INTERNET ACCESS OVER VISIBLE LIGHT COMUNICATIONS

By

Gehad Mohie El-Din Abd ElHafez

Reem Ahmed Mohamed

Rwan Nabil Mohamed

Salma Mohamed Attia

Samar Hassan Mohamed

Under supervision of

Dr. Hassan Mostafa

Dr. Tawfik Ismail

A Graduation Project Report Submitted to the Faculty of Engineering at Cairo University in Partial Fulfillment of the Requirements for the Degree of Bachelor of Science in Electronics and Communications Engineering

Faculty of Engineering, Cairo University

Giza, Egypt

July 2016 i

Table of Contents

List of T	Table	s iv
List of F	Figure	es v
List of S	Symb	ols and Abbreviationsviii
Abstract		X
Chapter	1:	Introduction
1.1	Visi	ble Light Communication
1.2	Hist	orical Background2
1.3	App	lications
1.3	.1	Security
1.3	.2	EMI Sensitive Environments
1.3	.3	Cellular Communication
1.3	.4	Augmented Reality
1.3	.5	Local Advertising
1.3	.6	Underwater Communication
1.4	Mot	ivation7
1.5	Cha	pters Summary9
Chapter	2:	System Description
2.1	Flov	w of Building up the System11
Chapter	3:	Software Approach
3.1	ISE	Software Platform
3.2	The	Ethernet IP Core
3.2	.1	Generating the Core
3.2	.2	Using Example Design

3.2.3	Hardware Testing	21
3.3 Th	e Serial Communication Protocol	22
3.3.1	Gigabit Ethernet	27
3.4 To	op Level Design	33
3.5 UA	ART	45
Chapter 4:	Hardware Approach	50
4.1 Tra	ansmitter Circuit	51
4.2 Th	ne Receiver Circuit	59
Chapter 5:	Monitoring System	63
5.1 De	esign characterization	63
5.1.1	IBERT CORE	63
5.1.2	IBERT COMPONENTS	63
5.1.3	IBERT DESIGN FLOW	63
5.1.4	IBERT FEATURES	64
5.1.5	SERIAL TRANSCEIVER FEATURES	65
5.1.6	GENERATING THE CORE	65
5.2 De	esign Creation, Customization and Generating of IBERT core	67
5.3 De	ealing with the Design using ChipScope pro Analyzer	71
5.4 Pe	rforming Sweep Test Analysis	75
Chapter 6:	Conclusion and Future Work	77
References.		80

List of Tables

List of Figures

Figure 1-1: Electromagnetic spectrum	2
Figure 1-2: Comparison between security in LiFi and WiFi	4
Figure 1-3: Visible light communication underwater	6
Figure 1-4: Phase one block diagram	7
Figure 2-1: System block diagram	
Figure 2-2: Flow chart for project work	
Figure 3-1: New project wizard window	15
Figure 3-2: TEMAC new source wizard window	16
Figure 3-3: TEMAC wizard window	17
Figure 3-4: Illustrates the top-level design for the TEMAC solution example d	esign 19
Figure 3-5: Spartan-6 evaluation kit	
Figure 3-6: Frames arriving from FPGA to PC on Wireshark	
Figure 3-7: Ethernet frames generation using SoftPerfect Network Protocol An	nalyzer 22
Figure 3-8: First phase output on teraterminal	
Figure 3-9: SPI protocol	
Figure 3-10: SMA socket	
Figure 3-11: GTP new source wizard window	
Figure 3-12: GTP transceivers wizard window	
Figure 3-13: Clocking wizard window	30
Figure 3-14: GTP example design block diagram	
Figure 3-15: GTP test with counter on Chipscope	
Figure 3-16: Standard Ethernet frame	
Figure 3-17: Downlink cores connections	
Figure 3-18: Top Level RTL Schematic	
Figure 3-19: Receiving frames without the first two bytes	
Figure 3-20: TEMAC connection in applications	39
Figure 3-21: FSM for negative edge of BYTE_VALID dependency	40
Figure 3-22: Counter reset on negative edge of BYTE_VALID	41

Figure 3-23: FSM for Ethernet frames reception	42
Figure 3-24: States on Chipscope	42
Figure 3-25: Adding header after counter reset	43
Figure 3-26: Sending 1000 frames	44
Figure 3-27: Receiving the 1000 frames after resolving the two bytes problem	44
Figure 3-28: UART complete frame	46
Figure 3-29: Transmitter state diagram	46
Figure 3-30: Receiver state diagram	47
Figure 3-31: software simulation of UART	47
Figure 3-32: transmitter circuit hardware test	48
Figure 3-33: Block diagram of the Ethernet and UART	48
Figure 3-34: Software Simulation of Ethernet and UART	49
Figure 4-1: First phase transmitter circuit	50
Figure 4-2: First phase receiver circuit	51
Figure 4-3: GTP transceivers voltage levels	52
Figure 4-4: Transmitter circuit design on CADsoft	54
Figure 4-5: Transmitter circuit simulation on Proteus	54
Figure 4-6: Oscilloscope output in Proteus	55
Figure 4-7: Transmitter circuit layout for print	55
Figure 4-8: Transmitter PCB	56
Figure 4-9: LEDs not blinking for 0.8v input	57
Figure 4-10: Photodiode equivalent model	60
Figure 4-11: Receiver circuit simulation on Proteus using LDR	60
Figure 4-12: Receiver circuit design on CADsoft	61
Figure 4-13: Receiver circuit layout for print	61
Figure 4-14: Receiver PCB	62
Figure 5-1: Design Flow of IBERT Core	64
Figure 5-2: Hardware Connection Setting	66
Figure 5-3: New project options part	67
Figure 5-4: Customizing and generating IBERT Core	68

Figure 5-5: Generating IBERT Core page 1 window	68
Figure 5-6: Generating IBERT Core page 2 window	69
Figure 5-7: Generating IBERT Core page 3 window	
Figure 5-8: Generating IBERT Core page 4 window	
Figure 5-9: Generating IBERT Core page 5 window	71
Figure 5-10: IBERT testing on ChipScope Pro page 1 Window	
Figure 5-11: IBERT testing on ChipScope Pro page 2 Window	
Figure 5-12: IBERT testing on ChipScope Pro page 3 Window	73
Figure 5-13: IBERT testing on ChipScope Pro page 4 Window	73
Figure 5-14: IBERT Console for MGT/BERT Settings page 1 Window	74
Figure 5-15: IBERT Console for MGT/BERT Settings page 2 Window	75
Figure 5-16: IBERT Console for Sweep test Settings Window	76
Figure 5-17: Log file Extracted from Sweep test panel	76
Figure 6-1: Final System Setting	
Figure 6-2: Visible light sensor through headphone jack	

List of Symbols and Abbreviations

VHDL	VHSIC Hardware Description Language
PC	Personal computer
DC	Direct current
BJT	Bipolar Junction Transistor
LDR	light-dependent resistor
IBERT	Integrated bit error rate test
FCS	Frame check sequence
Wi-Fi	wireless fidelity
UART	Universal asynchronous receiver/transmitter
USB	Universal Serial Bus
EMI	Electromagnetic Interference
ADSL	Asymmetric digital subscriber line
SMA	Sub Miniature version A
JTAG	Joint Test Action Group
РСВ	printed circuit board
GTP	gigabit transceiver protocol
VLAN	virtual local area network
CPRI	Common Public Radio Interface
SPI	Serial Peripheral Interface
PCI	Peripheral Component Interconnect
IP	intellectual property
TEMAC	Tri Mode Ethernet MAC
MII	Media independent interface
PHY	Physical
ММСМ	Mixed-Mode Clock Manager
GMII	Gigabit Media Independent Interface
RGMII	Reduced Gigabit Media Independent Interface
IOB	Input Output buffer

DDR	Double data rate
FIFO	first in first out
AVB	Audio video bridging
MAC	Media access control
CLK	Clock
Ucf	User constraint file
DIP	Dual In-line Package
Ю	input output
DRP	dynamic reconfiguration ports
PRBS	pseudo random bit sequence
PMA	Physical Medium Attachment
PLL	Phase-Locked Loop
PCS	Physical Coding Sublayer
LiFi	Light Fidelity
LED	Light Emitting Diode
FPGA	Field Programmable Gate Array
Op-Amp	Operational Amplifier
MGT	Multiple gigabit transceivers
VLC	Visible Light Communication
RF	Radio Frequency

Abstract

Looking into the crowded RF spectrum and the increasing demand for wireless communications services, it is obvious that the wireless communications field needs to expand which does not only require new technologies utilizing the same RF spectrum but also requires using a new band of frequencies so the Visible light band can be a good alternative. A typical application scenario might be to use the LEDs for high speed wireless transmission in a full network, which is known as LiFi.

Our final outcome is a complete hardwired channel using Spartan-6 Xilinx FPGA providing large speed internet access using more than one serial communication protocol that will be used to cover a medium sized room replacing WiFi and wired ADSL through Visible Light Communication.

ACKNOWLEDGEMENTS

Thanks to God The Almighty for giving us the patience to deliver this report with our best efforts.

Special thanks to Dr. Hassan and Dr. Tawfik for introducing the project idea, providing us with the needed hardware and giving feedbacks.

Our sincere thanks also go to Eng.Sameh, Eng. Khaled and, Eng. Karim Ismail for helping us through the FPGA, and to last year's team members that were working on the first phase of this project

Chapter 1: Introduction

1.1 Visible Light Communication

Nowadays trend is to have an environment friendly communications technologies in all aspects, so the VLC technology hit was greatly invading the communications markets and scientific theories five years ago .Having an unexploited source like the visible light spectrum in our daily life which is a license free and nearly has no health regulation on the transmitted power is a great motive to think of using it for communication purposes. The main idea of using VLC in communications is having a medium that uses visible light between 400 and 800 terahertz (THz) that works just like switching a torch on and off according to a certain pattern relaying a secret message in binary code.

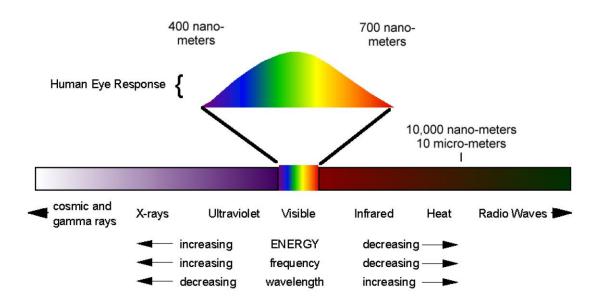


Figure 1-1: Electromagnetic spectrum

The wide bandwidth in VLC -as it works in the THz range of frequencies, the high transmission data rates reaching to Gigabits, the increased level of security for a reliable transmission of data, and the low power consumption are the main benefits that we get from the LiFi technology if it is compared with Wi-Fi.

1.2 Historical Background

The term LiFi was first coined by Professor Harold Hass- the Director of the LiFi Research and Development Center at the University of Edinburgh. LiFi is high speed wireless communications through LEDs. As LEDs become a more common source for room lighting, they're opening a new pathway for linking mobile devices to the Internet, with the potential for wider bandwidth and quicker response time than Wi-Fi, At least that's what researchers such as Harald Haas, are hoping. [1]

VLC history dates back to the 1880s, including any use of the visible light portion of the electromagnetic spectrum to transmit information. In April 2014, the Russian company Stins Coman announced the development of a Li-Fi wireless local network called BeamCaster. Their current module transfers data at 1.25 gigabytes per second but they foresee boosting speeds up to 5 Gbps in the near future. In 2014 a new record was established by Sisoft -a Mexican company- that was able to transfer data at speeds of up to 10 Gbps across a light spectrum` emitted by LED lamps. [2]

1.3 Applications

1.3.1 Security

In contrast to radio waves, the light does not pass through the walls. Therefore, with minimal precautions to avoid leakage from windows or any gaps, security is fundamentally enhanced as compared with Wi-Fi.



Figure 1-2: Comparison between security in LiFi and WiFi

1.3.2 EMI Sensitive Environments

On aircraft, Li-Fi enabled lighting will allow high data rate connectivity for each passenger. It will allow connectivity at all times, without creating electromagnetic interference (EMI) with sensitive radio equipment on the flight deck. The reduction in cabling requirement also means a lighter aircraft. In explosion hazard environments, the use of electrical equipment, including mobile phones, is generally greatly restricted. The use of Li-Fi to pass data will simplify the configuration of data networks in such environments, and can enable new systems to enhance security in these environments. Hospitals are a specific case of an environment where both EMI sensitivity and security of data are issues. Li-Fi can enable the better deployment of secure networked medical instruments, patient records, etc.

1.3.3 Cellular Communication

In external urban environments, the use of Li-Fi enabled street lamps would provide a network of internet access points. In cellular communication, the distance between radio base stations has come down to about 200-500 meters. So, instead of deploying new radio base stations in our cities, street lamps could provide both, illumination during night, and high speed data communication 24/7. Surprisingly, even when the lights are off as perceived by the eye, full data communication rates are still possible. There is also an additional cost benefit as installing new radio base stations usually comes with large cost – for installation and site lease. Apple looks set to include a li-fi capability in future versions of the iPhone, meaning it can access high-speed data using lighting. The iPhone's operating system now openly references li-fi capability in its programming code. Apple already holds a patent on using its camera to capture data as well as images, so the company is well placed to exploit the new technology. [3]

1.3.4 Augmented Reality

Exhibits in museums and galleries are illuminated with specific lighting. Li-Fi enabled lighting can provide localized information within that light. This means that a visitor's

camera or mobile phone can be used to download further information regarding the object being viewed from the light that illuminates the exhibit.

1.3.5 Local Advertising

By using shop display lighting as a Li-Fi broadcast channel, it is possible to transmit advertising information on the goods being viewed, as well as say special offers and coupons. This will allow the merging of the high street and online shopping experience, and provide novel retail business models to emerge. Catalogue information, discount coupons, and advertising videos could all be provided to shoppers.

1.3.6 Underwater Communication

Radio waves are quickly absorbed in water, preventing underwater radio communications, but light can penetrate for large distances. Therefore, Li-Fi can enable communication from diver to diver, diver to mini-sub, diver to drilling rig, etc.

Figure 1-3: Visible light communication underwater

1.4 Motivation

This project is considered complementary for another graduation project that was proposed last year at our department under the title "Visible Light Communication System Over FPGA". They were finally able to send Data from the FPGA to the laptop and the opposite using USB-to-UART module of the Spartan-6 FPGA through the VLC interface. On the PC they used a program called **TeraTerminal**, a PC ports emulator through which they were able to access the USB port to send frames of certain format with a start and end bits used for error checking. Through this setting they reached a final speed of few Kbps at a distance around 1m. Below is their block diagram using only one FPGA for both the uplink and downlink

In the second phase of the project the target is to create a hardware system for internet access over VLC with speed ranging around tens of Mbps to cover a medium sized room

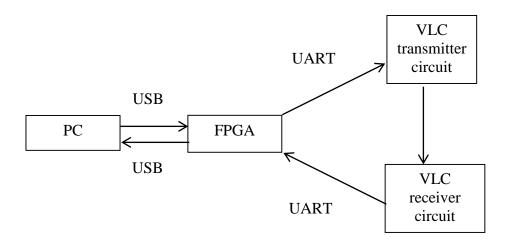


Figure 1-4: Phase one block diagram

Our basic motive is that we believe VLC is very promising in Egypt specially using it for local internet access that suffers from many issues in Egypt right now and has an increasing demand for the speeds. Having a look over the VLC market revenue in different regions that started using it, VLC/ LiFi market size is expected to grow with Compound Annual Growth Rate (CAGR) of 87.313% from 2014 to 2020. The VLC/Li-Fi technology is still in the research and development phase. However, the commercialization of the technology will start taking place from 2015. Till 2016, the market will enter into almost all the major application areas of VLC technology. [4]

Region	2012	2014	2016	2018	CAGR% (2013-2018)
North America	29.58	203.91	824.5	1,940.42	83.9
Europe	24.89	180.8	743.68	1,769.48	85.4
APAC	33.09	233.35	905.43	1,992.12	79.5
ROW	8.52	60.49	217.55	436.01	73.9
Total	96.08	678.54	2,691.08	6,138.02	82.00

Table 1-1: LiFi market revenue in different cities

Beside the previous reasons, our personal motive to choose the idea for our graduation project is its learning outcome. Since the idea is rich in the research content, implies a technology that in new to our study and has high demand in the market and involve a hardware optimization and permit exposure to many software platforms.

1.5 Chapters Summary

In chapter 2 we will illustrate the description of our system showing its block diagram and our flow of work. In chapter 3 we provide a detailed illustration for our software approach, the platforms we used and the hardware coding and how we dealt with the kit and the already made IP cores for the communications standards. In chapter 3 we show our hardware approach through clear images of the circuits and simulations using analog circuit simulators. Finally, In chapter 5 we provide a simple method for monitoring the system channel through another VHDL code. The codes will be provided in an external CD attached with the project report.

Chapter 2: System Description

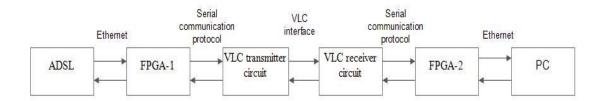


Figure 2-1: System block diagram

The block diagram illustrates the targeted final outcome of our system, wireless internet access will be provided for the user (PC) in a bidirectional channel for both uplink and downlink. The first FPGA functionality is to process on the coming Ethernet frames to be able to send it on the wireless visible light medium through a certain communication protocol that is compatible with the desired high speeds that will hopefully be in the range of tens of Mbps. The transmitter circuit is simply the circuit that has the blinking LEDs, alternatively the receiver circuit is holds the photo sensors. The second FPGA functionality is to do the reverse function of the first one, it processes on the coming electrical signal to eventually convert it back to the original Ethernet frames. For the bidirectional channel both circuits should be replaced by a transceiver that contains both the LEDs and the photodiodes, and both FPGA should have both functions.

2.1 Flow of Building up the System

Our approach to build the system will be hierarchical we will start by the software approach till we have the two FPGA working correctly using SMA connectors instead of the VLC interface .Then we will proceed in connecting the transmitter and receiver circuits for the downlink channel . After the system is stable we will go for the uplink channel, enhancing the power and distance. Finally, there will be an addition in the form of a software user interface to monitor the system or accessing the internet using it.

A detailed flow chart for the system build up is illustrated below.

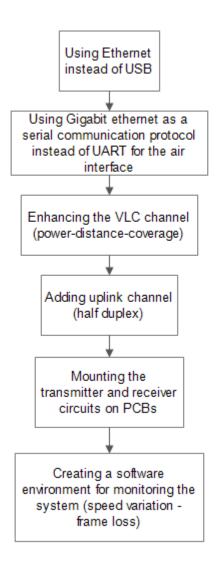


Figure 2-2: Flow chart for project work

Chapter 3: Software Approach

3.1 ISE Software Platform

The SP605 evaluation kit includes entitlement to a seat that permits the ISE Design Suite: Logic Edition to be used with a Spartan-6 XC6SLX45T FPGA.

By using ISE we have the availability of burning IP core which is a reusable unit of logic, cell, or chip layout design that is the intellectual property of one party. IP cores may be licensed to another party or can be owned and used by a single party alone. The IP cores can be used as building blocks within FPGA logic designs. Included with the ISE some tools that we used in our work

- **ISim**: which provides a complete, full-featured HDL simulator integrated within ISE. HDL simulation now can be an even more fundamental step within the design flow with the tight integration of the ISim within your design environment.
- **ChipScope Pro system**: ChipScope is an embedded, software based logic analyzer for hardware debugging. By inserting an "integrated controller core" (icon) and an "integrated logic analyzer" (ila) into your design and connecting them properly, you can monitor any or all of the signals in your design. ChipScope provides you with a convenient software based interface for controlling the "integrated logic analyzer," including setting the triggering options and viewing the waveforms. [5]

The two blocks requiring VHDL coding are the Ethernet and the serial communication protocol at both the transmitting and receiving sides. The procedure followed through the software approach was:

- Generating the cores and writing the code of each protocol separately after understanding the core specifications and functions of its input and output signals.
- Software Simulation
- Hardware Test
- Writing the top level code

We started first by burning simple VHDL codes as AND gate with switches and LEDs to get familiar with the steps of ISE platform and the SP605 Evaluation kit.

3.2 The Ethernet IP Core

3.2.1 Generating the Core

- Start a New Project wizard where you choose the Xilinx board used and the hardware description language of the generated core whether VHDL or Verilog and the simulation tool Isim.

elect the device and design flow for the p	project	
Property Name	Value	
Evaluation Development Board	Spartan-6 SP605 Evaluation Platform	
Product Category	All	
Family	Spartan6	
Device	XC6SLX45T	
Package	FGG484	
Speed	-3	1
Top-Level Source Type	HDL	
Synthesis Tool	XST (VHDL/Verilog)	•
Simulator	ISim (VHDL/Verilog)	•
Preferred Language	VHDL	•
Property Specification in Project File	Store all values	•
Manual Compile Order		
VHDL Source Analysis Standard	VHDL-93	•
Enable Message Filtering		

Figure 3-1: New project wizard window

- Select the IP core.

We used Tri Mode Ethernet MAC "TEMAC" version 5.5 which is the AXI version of this core

The AXI Interconnect IP connects one or more AXI memory-mapped Master devices to one or more memory-mapped Slave devices. The AXI interfaces conform to the AMBA® AXI version 4 specifications from ARM®, including the AXI4-Lite control register interface subset. The Interconnect IP is intended for memory-mapped transfers only. [6]

View by Function	N View by Name	Version	AXI4	AXI4-Stream	AXI4-Lite	Status	License	Vendor	Library	^
🖶 衬 Basic Ele	ements									
🖶 🔁 Commu	inication & Networking									
	r Correction									
🖨 🔁 Ethe	rnet									
1 - 1	AXI Direct Memory Access	6.02.a	AXI4	AXI4-Stream	AXI4-Lite	Production		xilinx.com	ip	
	Embedded Tri-Mode Ethernet MAC Wrapper	4.8						xilinx.com	ip	
	Ethernet 1000BASE-X PCS/PMA or SGMI	11.5				Production		xilinx.com	ip	
	Ethernet AVB Endpoint	3.1				Production	8	xilinx.com	ip	
	Ethernet AVB Endpoint	3.2				Production	3	xilinx.com	ip	
	Ethernet Statistics	3.5				Production		xilinx.com	ip	
	Ethernet Statistics	3.6				Production		xilinx.com	ip	
	QSGMII	1.5						xilinx.com	ip	
	RXAUI	2.4						xilinx.com		
	Ten Gigabit Ethernet MAC	10.3				Production	8	xilinx.com		
	Ten Gigabit Ethernet MAC	11.1		AXI4-Stream		Pre-Production	3	xilinx.com		
	Ten Gigabit Ethernet MAC	11.4		AXI4-Stream		Production	3	xilinx.com		
	Ten Gigabit Ethernet MAC	11.6		AXI4-Stream		Production	8	xilinx.com		
	Ten Gigabit Ethernet PCS/PMA (10GBASE-R/KR)	2.6					8	xilinx.com		
	Tri Mode Ethernet MAC	4.6		·····		Production	3	xilinx.com		
	Tri Mode Ethernet MAC	5.5		AXI4-Stream		Production	â	xilinx.com	ip	¥
Search IP Catalog:									Clear	

Figure 3-2: TEMAC new source wizard window

- Specify the desired core specifications.

Choose the PHY layer to be MII which is the standard interface used to connect a fast Ethernet standardized by **IEEE 802.3u**, it uses a clock of 25 MHZ frequency and 4 data lines to achieve (100Mbit/s).

4		Tri Mode Ethernet MAC	_ 🗆 🗙
View Documents			
IP Symbol	凸 ×	A PE	
		لمون المرتقد المرتق	xilinx.com:ip:tri_mode_eth_mac:5.5
glbl_rstn → rx_axi_rstn →	← gmii_tx_clken	Component Name ethernet_1	
tx_axi_rstn	→ gmii_tx_en	Physical Interface	Mac Duplex Selection
to_axi_isin —y	→ gmii_tx_er		-Mac Duplex Selection
tx_axi_clk	e grii_ors	PHY Interface MII	✓ Half Duplex
tx_reset_out ←	←— gmii_col	The Example Design will implement a MII Interface	Management Type
tx_axis_mac_tvalid	gmii_rxd[3:0]	MAC Speed	AXI4-Lite
tx_axis_mac_tlast	€ gmii_rx_dv	C 10/100/1000 Mbps	C Configuration Vector
tx_axis_mac_tuser[0:0]	e-gmii_rx_er		
tx_axis_mac_tready ←		C 1000 Mbps	AVB Option
tx_collision ←	→ mdc_out	• 10/100 Mbps	
tx_retransmit <	→ mdio_tri		Enable AVB
tx_ifg_delay[7:0]	→ mdio_out	- Frame Filter Options	
$tx_enable \rightarrow$	← mdio_in		
tx_statistics_vector[31:0]		Frame Filter	
tx_statistics_valid ←		Number of Table Entries 4 Range: 08	
rx_axi_olk		Statistics Counter Options	
rx_reset_out <	← bus2ip_clk		
rx_axis_mac_tdata[7:0]	€ bus2ip_reset	Statistics Counters	
rx_axis_mac_tvalid ←	bus2ip_addr[31:0]	✓ Statistics Reset	
rx_axis_mac_tlast ←	← bus2ip_cs	Charling Mildle Cable	
rx_axis_mac_tuser ←	€ bus2ip_rdce	Statistics_Width 64bit	
rx_axis_filter_tuser[4:0]	- bus2ip_wroe		
rx_enable	bus2ip_data[31:0]	Datasheet	Generate Cancel Help

Figure 3-3: TEMAC wizard window

3.2.2 Using Example Design

Attached with the generated core a complete example design that has certain features and utilizes the TEMAC core as a HDL block. It has several options for example it can operate as a pattern generator, it has a pattern checker and the received data can be looped back. This allows the functionality of the core to be demonstrated either using a simulation package or in hardware, if placed on a suitable board, also the codes of the example design are available as an open source unlike the core so they can be modified and customized to be compatible with the desired performance, and this is specifically what we went through. The example design has the following features.

- An instance of the TEMAC solution

- Clock management logic, including MMCM and Global Clock Buffer instances.
- MII, GMII or RGMII interface logic, including IOB and DDR registers instances.
- Statistics vector decode logic.
- AXI4-Lite to IPIF interface logic.
- User Transmit and Receive FIFOs with AXI4-Stream interfaces.
- User basic pattern generator module with a frame generator and frame checker plus loopback logic.
- User AVB pattern generator module providing a second frame generator and frame checker for designs including the AVB Endpoint.
- A simple state machine to bring up the PHY (if any) and MAC ready for frame transfer. [7]

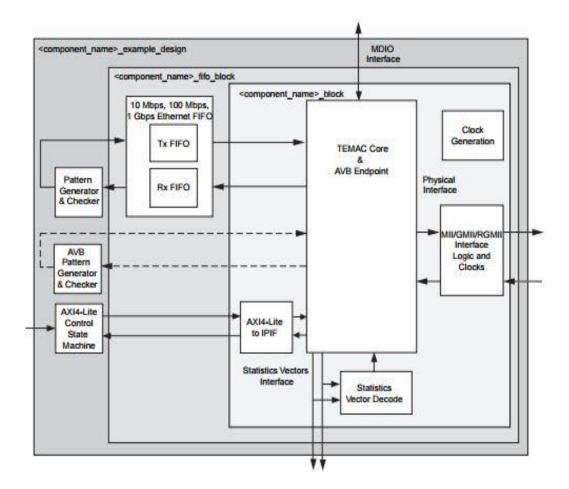


Figure 3-4: Illustrates the top-level design for the TEMAC solution example design

- After the core is generated, start including the files of the example design in your project from "Add source". Include all the .vhd and .ucf files including the test bench and the all of the cores available in the ChipScope Pro system.
- Burn the example design on the FPGA by clicking on "Generate Programming File" then "Configure Target Device" after connecting the USB JTAG. The JTAG chain can be used to program the FPGA and access the FPGA for hardware and software debugging.

- We were able to observe the packets on the Wireshark when sending from the FPGA to the PC by enabling the Pattern generator "Turn the third DIP switch ".

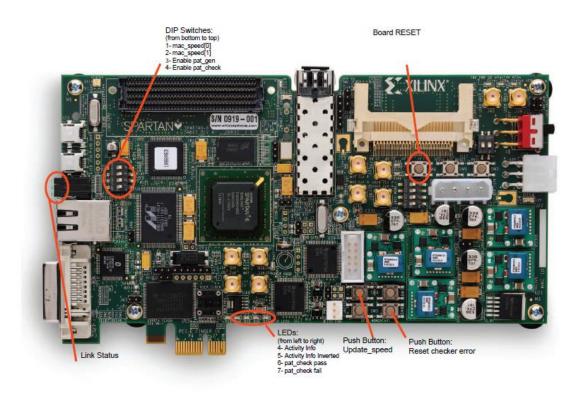


Figure 3-5: Spartan-6 evaluation kit

- By disabling the pattern generator, we managed to send the packets from the PC to FPGA using. **SoftPerfect Network Protocol Analyzer** which is a free professional tool for analyzing, debugging, maintaining and monitoring local networks and Internet connections. It captures the data passing through the dial-up connection or Ethernet network card, analyses this data and then represents it in a readable form.

- We sent those packets to the address swap block and the packets were looped back after reversing the source and destination address

3.2.3 Hardware Testing

- Burn the example design on the FPGA "Generate Programming File" then "Configure Target Device" after connecting the USB JTAG. The JTAG chain can be used to program the FPGA and access the FPGA for hardware and software debug.

- We were able to observe the packets on the Wireshark when sending from the FPGA to the PC by enabling the Pattern generator "Turn the third DIP switch ".

No.	Time Source	Destination	Protocol Length Info	^
100	3 da:01:02:03:04:05	5a:01:02:03:04:05	LLC 65 S, func=RR, N(R)=24; DSAP 0x32 Group, SSAP 0x32 Command	
100	3 5a:01:02:03:04:05	da:01:02:03:04:05	LLC 65 S, func=RR, N(R)=24; DSAP 0x32 Group, SSAP 0x32 Command	
100	3 da:01:02:03:04:05	5a:01:02:03:04:05	LLC 65 S, func=RR, N(R)=24; DSAP 0x32 Group, SSAP 0x32 Command	
100	3 5a:01:02:03:04:05	da:01:02:03:04:05	LLC 65 S, func=RR, N(R)=24; DSAP 0x32 Group, SSAP 0x32 Command	
100	3 da:01:02:03:04:05	5a:01:02:03:04:05	LLC 65 S, func=RR, N(R)=24; DSAP 0x32 Group, SSAP 0x32 Command	
100	3 5a:01:02:03:04:05	da:01:02:03:04:05	LLC 65 S, func=RR, N(R)=24; DSAP 0x32 Group, SSAP 0x32 Command	
100	3 da:01:02:03:04:05	5a:01:02:03:04:05	LLC 65 S, func=RR, N(R)=24; DSAP 0x32 Group, SSAP 0x32 Command	
100	3 5a:01:02:03:04:05	da:01:02:03:04:05	LLC 65 S, func=RR, N(R)=24; DSAP 0x32 Group, SSAP 0x32 Command	
100	3 da:01:02:03:04:05	5a:01:02:03:04:05	LLC 65 S, func=RR, N(R)=24; DSAP 0x32 Group, SSAP 0x32 Command	
100	3 5a:01:02:03:04:05	da:01:02:03:04:05	LLC 65 S, func=RR, N(R)=24; DSAP 0x32 Group, SSAP 0x32 Command	
100	3 da:01:02:03:04:05	5a:01:02:03:04:05	LLC 65 S, func=RR, N(R)=24; DSAP 0x32 Group, SSAP 0x32 Command	
100	3 5a:01:02:03:04:05	da:01:02:03:04:05	LLC 65 S, func=RR, N(R)=24; DSAP 0x32 Group, SSAP 0x32 Command	
100	3 da:01:02:03:04:05	5a:01:02:03:04:05	LLC 65 S, func=RR, N(R)=24; DSAP 0x32 Group, SSAP 0x32 Command	
100	3 5a:01:02:03:04:05	da:01:02:03:04:05	LLC 65 S, func=RR, N(R)=24; DSAP 0x32 Group, SSAP 0x32 Command	
100	3 da:01:02:03:04:05	5a:01:02:03:04:05	LLC 65 S, func=RR, N(R)=24; DSAP 0x32 Group, SSAP 0x32 Command	
100	3 5a:01:02:03:04:05	da:01:02:03:04:05	LLC 65 S, func=RR, N(R)=24; DSAP 0x32 Group, SSAP 0x32 Command	
100	3 da:01:02:03:04:05	5a:01:02:03:04:05	LLC 65 S, func=RR, N(R)=24; DSAP 0x32 Group, SSAP 0x32 Command	
100	3 5a:01:02:03:04:05	da:01:02:03:04:05	LLC 65 S, func=RR, N(R)=24; DSAP 0x32 Group, SSAP 0x32 Command	
100	3 da:01:02:03:04:05	5a:01:02:03:04:05	LLC 65 S, func=RR, N(R)=24; DSAP 0x32 Group, SSAP 0x32 Command	
100	3 5a:01:02:03:04:05	da:01:02:03:04:05	LLC 65 S, func=RR, N(R)=24; DSAP 0x32 Group, SSAP 0x32 Command	
100	3 da:01:02:03:04:05	5a:01:02:03:04:05	LLC 65 S, func=RR, N(R)=24; DSAP 0x32 Group, SSAP 0x32 Command	
100	3 5a:01:02:03:04:05	da:01:02:03:04:05	LLC 65 S, func=RR, N(R)=24; DSAP 0x32 Group, SSAP 0x32 Command	
100	3 da:01:02:03:04:05	5a:01:02:03:04:05	LLC 65 S, func=RR, N(R)=24; DSAP 0x32 Group, SSAP 0x32 Command	
100	3 5a:01:02:03:04:05	da:01:02:03:04:05	LLC 65 S, func=RR, N(R)=24; DSAP 0x32 Group, SSAP 0x32 Command	~
Frame	e 1: 65 bytes on wire (520	bits), 65 bytes captur	red (520 bits) on interface 0	
▷ IEEE	802.3 Ethernet			
Logic	cal-Link Control			
> Data	(47 bytes)			
0000	ia 01 02 03 04 05 5a 01 02	02 04 05 00 22 22 22		-
	31 30 2f 2e 2d 2c 2b 2a 29			
	21 20 1f 1e 1d 1c 1b 1a 19			
	L1 10 0f 0e 0d 0c 0b 0a 09			
0040	91			

Figure 3-6: Frames arriving from FPGA to PC on Wireshark

- Disabling the pattern generator, we managed to send the packets from the PC to FPGA using. SoftPerfect Network Protocol Analyzer which is a free professional tool for

analyzing, debugging, maintaining and monitoring local networks and Internet connections. It captures the data passing through the dial-up connection or Ethernet network card, analyses this data and then represents it in a readable form.

- Finally we generated some Ethernet frames **SoftPerfect Network Protocol Analyzer** and forwarded them to the FPGA which has the address swap block activated and the frames were looped back after reversing the source and destination address.

8		SoftPerfect Network Protocol Analyzer – 🗗
File Edit View Tools Filters Capt	ture Analysis Help · 釄 🎉 🎭 🛱 🖨 💑 🌑 🛛 🥹	
Network Interface Realtek PCIe FE Family	Controller [192.168.1.10]	✓ ▶ Start Capture
🜔 Capture 🧠 Data Flows 🛡 Packe	t Builder	
> □ Ethernet 902.3 > □ U.C header	0x10 3332 3130 2F2E	3531 21.0203 2334 21.02 22.02 <td< th=""></td<>
Captured 2 Filtered 1000	Link Speed 0 Memory	CPU usage 0%

Figure 3-7: Ethernet frames generation using SoftPerfect Network Protocol Analyzer

3.3 The Serial Communication Protocol

Serial signaling is the preferred choice in all markets such as telecom, datacom, computing, and storage, it supports very high multi-gigabit data rates, avoids clock/data skew by using embedded clock, power consumption. It is the only IO technology that meets today's high-

speed requirements as it is faster than parallel signaling. Parallel I/O data rates are inherently limited due to unavoidable skew between clock lines and multiple data lines. As aforementioned the initial prototype of last year's team used UART as the serial communication protocol for the VLC transmitter and receiver interface with the FPGA. The transmitter takes bytes of the data and sends each bit sequentially with its own clock it also adds start, stop and parity check bits for error checking. At the receiver they had another UART code which re-assembles the bits into complete bytes with its own clock after extracting the added start, stop and parity bits.

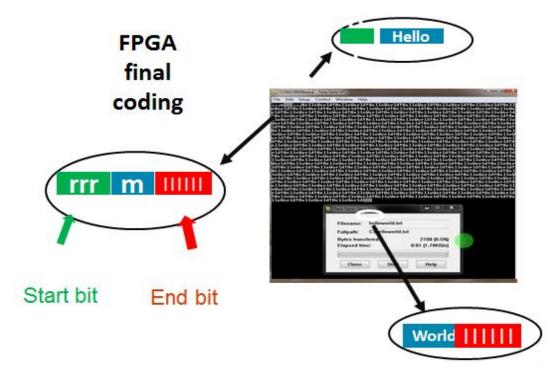


Figure 3-8: First phase output on teraterminal

If using 8-bit data, 1 start, 1 stop, and no parity bits, the effective throughput is: 115200 * 8 / 10 = 92160 bits/sec.

UART is limited by the max Baud Rate. The main problem with this protocol is its speed which is not compatible with the internet access over VLC that one of its main target is enhancing the speeds. Also we already used the 10 Mbps Ethernet so if we used UART after Integrating the two protocols one with high speed and the other with low speed, we will be restricted to the lower one . [8]

The second alternative we thought of was SPI. The SPI bus is a synchronous serial communication interface specification used for short distance communication, primarily in embedded systems. Data link setup with a Master / Slave interface and can support up to 1 mega baud or 10Mbps of speed.

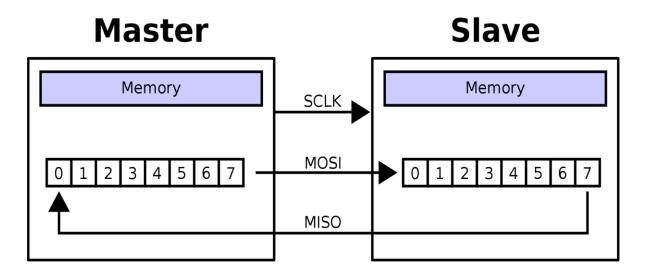


Figure 3-9: SPI protocol

The speeds of SPI could have been enough for our system, but the problem was that its IP core is not supported by Spartan-6 license. So we started looking for an open source code online that we can overwrite some of its lines to be compatible with our system. However,

the codes required many details for the clocking synchronization and modifications for the hardware of the transmitter and receiver circuits, that made it better to look for an alternative for the protocol. Moreover, using another protocol that supports higher data rates even if we would not use them in the initial prototype would be good for future enhancements.

Finally we decided to use the Gigabit transceivers of the Spartan-6 that uses SMA connectors instead of the ordinary copper wires and can support data rates up to 1.25 GHz. The transceivers' wizard has the following features.

• Creates customized HDL wrappers to configure Spartan-6 FPGA GTP transceivers

Predefined templates automate transceiver configuration for industry standard protocols such as: CPRI[™], Display Port, Gigabit Ethernet, High-Definition Serial Digital Interface (HD-SDI), Open Base Station Architecture Initiative (OBSAI), PCI EXPRESS ® (PCIe ®) generation I, Serial RapidIO, 10 Gb Attachment Unit Interface (XAUI), Aurora 8B/10B, Serial Advanced Technology Attachment (SATA) 1.5 Gb/s, and SATA 3 Gb/s.

• Custom protocols can be specified using the Start from Scratch option in the GUI.

• Automatically configures transceiver analog settings of the Spartan-6 FPGA GTP transceivers

• Supports 8B/10B encoding/decoding.

• Includes an example design with a companion test bench as well as implementation and simulation scripts. [9]

The main reason behind the high data rates supported by the GTP transceivers is the usage of the SMA connectors. They are semi-precision coaxial RF connectors developed in the 1960s as a minimal connector interface for coaxial cable with a screw type coupling mechanism. The connector has a 50 Ω impedance. SMA is designed for use from DC to 18 GHz, but is most commonly encountered with WiFi antenna systems and USB Software Defined Radio dongles. [10]

Figure 3-10: SMA socket

3.3.1 Gigabit Ethernet

The Gigabit transceivers support many protocols as mentioned but we chose to work with Gigabit Ethernet defined by the <u>IEEE 802.3-2008</u> standard. Gigabit Ethernet builds on top of the Ethernet protocol, but increases speed tenfold over Fast Ethernet to 1000 Mbps, or 1 gigabit per second (Gbps). This protocol, which was standardized in June 1998, promises to be a dominant player in high-speed local area network backbones and server connectivity.

It has been decided that Gigabit Ethernet will look identical to Ethernet from the data link layer upward but several changes has been made to the physical interface of Ethernet. Leveraging these two technologies means that the standard can take advantage of the existing high-speed physical interface technology of Fiber Channel while maintaining the IEEE 802.3 Ethernet frame format, backward compatibility for installed media, and use of full- or half-duplex carrier sense multiple access collision detect (CSMA/CD). This scenario helps minimize the technology complexity, resulting in a stable technology that can be quickly developed.

3.3.1.1 Generating the Core

- Follow the same steps that were illustrated in generating the Ethernet IP core in choosing the kit.

- Choose the GTP V1.11 IP core which has the previously mentioned features.

	Version 1.5 2.2 2.4 	AXI4 AXI4-Stream	n AXI4-Lite	Status	License Vendor	
	2.2					
	2.2					
	2.2					
	2.2					
1					xilinx.co xilinx.co	om ip
	2.4				xilinx.co xilinx.co	
	2.6				xilinx.co xilinx.co	
	2.0				xilinx.co	
	4.1			Production	xilinx.co	
lizard						
	1.11			Production	xilinx.co	
	izard 1.7				xilinx.co	om ip
	2.1				xilinx.co	om ip
ceiver Wizard	1.7				xilinx.co	om ip
	1.11				xilinx.co	om ip
ard	1.12				xilinx.co	m ip
						~
						>
	Vizard Vizard ceiver Vizard ceiver Wizard ceiver Wizard card ard	Vizard 1.11 iigabit Transceiver Wizard 1.7 ceiver Wizard 2.1 ceiver Wizard 1.7 tard 1.11	Vizard 1.11 igabit Transceiver Wizard 1.7 ceiver Wizard 2.1 ceiver Wizard 1.7 tard 1.11	Vizard 1.11 iigabit Transceiver Wizard 1.7 ceiver Wizard 2.1 ceiver Wizard 1.7 card 1.11	Vizard 1.11 Production iigabit Transceiver Wizard 1.7 ceiver Wizard 2.1 ceiver Wizard 1.7 card 1.11	Vizard 1.11 Production xilinx.co sigabit Transceiver Wizard 1.7 xilinx.co ceiver Wizard 2.1 xilinx.co ceiver Wizard 1.7 xilinx.co tard 1.11 xilinx.co xilinx.co xilinx.co xilinx.co xilinx.co

Figure 3-11: GTP new source wizard window

- Specify the core specifications

Spartan-6 FPGA GTP Transceiver Wizard – 🗆 🗙
Documents
Logi CRE Spartan-6 FPGA GTP Transceiver Wizard xilinx.com:ip:s6_gtpwizard:1.11
GTP Placement and Clock
Component Name GTP
Select Tiles and Reference Clocks
Tile Location GTP0 REFCLK GTP1 REFCLK GTPA1_DUAL_X1_Y0 REFCLK0 X1Y0 Use GTP0 PLL GTPA1_DUAL_X0_Y0 Use GTP1 PLL REFCLK1 X0Y0
Transceivers selected (2 per GTPA1_DUAL) 2
✓ Advanced Clocking
Each GTPA1_DUAL tile contains two individual GTP transceivers. Selecting a tile above enables both transceivers. If multiple tiles are selected, settings for the specified transceivers are applied to the respective transceivers in each selected tile.
Datasheet < Back Page 1 of 11 Next > Generate Cancel Help

Figure 3-12: GTP transceivers wizard window

We chose this clocking scheme which allows us to use the 200MHz oscillator of the FPGA to generate the 125 MHz using another IP core, clock wizard.

- Generate the Clock wizard IP core and add it the same project. It is included under FPGA Features and Design, Clocking, **Clocking Wizard V3.6**.
- Configure its input clock to be 200MHz differential capable pin and.
- Configure its output clock to be 125 MHZ which is required in the GTP core.
- The clock wizard instance will be defined as a component in the top level of the GTP codes at both the receiver and transmitter **gtp_ip_top.**

P			Clocking	Wizard				×
Documents View								
IP Symbol	8×	DE	_					
		LogiCXRE	C	Clocking W	/izard		xilinx.cor	n:ip:clk_wiz:3
					clk		Clocking Fe	atures
CLK_OUT1_CE		Component name			CIK		/ Input	Clocks
CLK_OUT1_CL	2						,	
		Clocking Feature	S			Clock Manager Type		
CLK_OUT2_CE		Frequency sy	nthocic					
CLK_OUT2_CL	2	i requency sy	nuicala					
		Phase alignm	ent (known p	hase relationship to inp	out clock)	Mode		
CLK_OUT3_CE		Minimize pov				Mode		
CLK_OUT3_CL	2	Minimize pov	/er			Auto Selection		
CLKFB_IN_N> CLK_OUT4		🗌 Dynamic pha	se shift			(Recommended: Wizard selects primiti	ve)	
CLK_OUT4_CE			- C			C Manual Selection		
RESET	2	I Dynamic reco	infiguration (I	in system output freq m	logification)	(User selects primitive)		
POWER_DOWN		Jitter Optimiza	tion					
K CLK_OUT5_CE		Balanced						
CLK_OUT5_CL	2							
				w clock jitter filtering)		Input Jitter Unit		
CLK_OUT8_CE		C Maximize in	nput jitter filte	ering (allow larger inpu	t jitter)	(° UI ⊂	PS	
CLK_OUTB_CL	2							
CLK_OUT7_CE		Input Clock Infor	mation					
CLK_OUT7_CL	2		Inn	ut Freq (MHz)				
> INPUT_CLK_S	OPPED	Input Clock			Input Jitter	Source		
PSCLK> STATUS[2:0]			Value	Valid Range		<u></u>		
PSEN		primary	200.000	5.000 - 558.659	0.010	Single ended clock capable pin	•	-
PSINCDECCLK_VALID								
PSDONE -								
		Datacheat			× 0-		marata Carrel	1
V IP Symbol V Resource Estimation		Datasheet			< Ba	ack Page 1 of 6 Next > Ge	enerate Cancel	Help

Figure 3-13: Clocking wizard window

3.3.1.2 Using Example Design

The PCI EXPRESS example consists of the following components:

- A demonstration test bench to drive the example design in simulation
- An example design providing clock signals and connecting an instance of the PCI EXPRESS wrapper with modules to drive and monitor the wrapper in hardware, including optional ChipScope[™] Pro tool support.
- Scripts to synthesize and simulate the example design

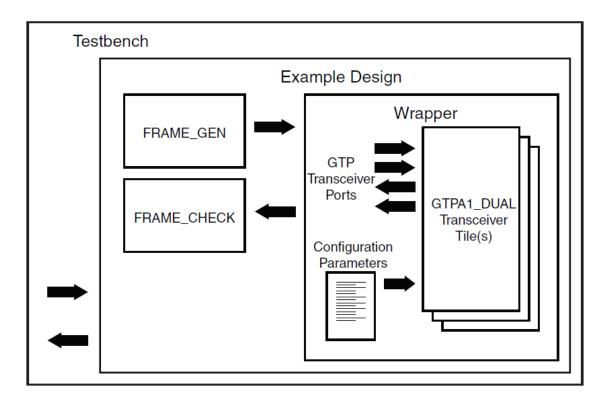


Figure 3-14: GTP example design block diagram

The GTP IP core is generated by default as a transceiver, having the functionality of both the transmitter and receiver, so in the first phase of the project while implementing the downlink channel only we need the code at the first FPGA to have the transmitter functionality so we had to remove the code lines and connections of the receiver pins, and the same procedure applies for the receiver code.

At the transmitter side a counter with automatic reset is generated to be received at the receiver side.

The counter frames was received successfully at the receiver and viewed using the chipscope, the chipscope has multiple cores that will be included in the GTP core, which assist with on-chip debugging: integrated logic analyzer (ILA), integrated bus analyzer

(IBA), and virtual input/output (VIO) low-profile software cores. These cores allow you to view internal signals and nodes in your FPGA. We only used ILA and ICON.

- ICON

The Integrated Controller (ICON) core provides the communication between the embedded ILA, IBA, and VIO cores and the computer running the ChipScope Pro Analyzer software. ICON generates one vector signal CONTROL with length equal to the number of the cores included in the main code.

- ILA

The ILA core is a customizable logic analyzer core that can be used to monitor the internal signals in your design. Because the ILA core is synchronous to the design being monitored, all design clock constraints applied to your design are also applied to the components inside the ILA core. ILA simply generates three signals, CONTROL vector INOUT signal that will be connected to the CONTROL signal of ICON, CLK signal that is connected to the clock of the main code, and TRIGGER vector signal which will be connected the signals to be viewed on the Chipscope waveform analyzer.

Bus/Signal	х	0	515	516	517	518	5	19 I	520	521	52	2 52	3 (524	525	526	527	528	529	530	53
≻ DataPort	1F	1F	22	X 23	χ 24) 25	X	26 X	27	X 28	X 29) 2.	A X	2В Х	2C) 2D) 2E) 2F	X 30	X 31	ХЗ
DataPort[8]	0	0																			
																					•

Figure 3-15: GTP test with counter on Chipscope

3.4 Top Level Design

In a simple description at this step we are having two cores or blocks the TEMAC and GTP, and it is required to get the Ethernet frames from the TEMAC core to the GTP core at the transmitter and the opposite at the receiver. The standard format of the Ethernet frame is shown below as defined by IEEE Std 802.3. The signals that carries the frame are **tx_axis_av_tdata[7:0]** for the input frames and **rx_axis_av_tdata[7:0]** for the output frames, note that output or input here refers to the Ethernet core not the other interfacing node which is known as client.

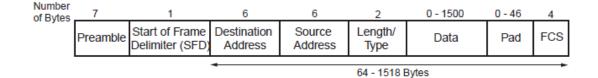


Figure 3-16: Standard Ethernet frame

- Preamble: used for synchronization and contains seven bytes with the pattern 0x55 this field is always stripped from the incoming frame, before the data is passed to the client
- Start of Frame Delimiter: marks the start of the frame and must contain the pattern 0xD5. for transmission on the physical interface, this field is automatically inserted by the Ethernet MAC. For reception, this field is always stripped from the incoming frame before the data is passed to the client.
- Destination Address: MAC address of the destination and is always retained in the receive packet data
- Source Address: MAC address of the source and is always retained in the receive packet data.
- Length/Type: When used as a length field, the value in this field represents the number of bytes in the following data field .If it contains a value of 0x8100 indicates that the frame is a VLAN frame, and a value of 0x8808 indicates a PAUSE MAC control frame which we disabled at this stage of our work.
- Data: The required Payload, The data field can vary from 0 to 1,500 bytes in length for a normal frame. The Ethernet MAC can handle jumbo frames of any length.
- Pad: vary from 0 to 46 bytes in length. This field is used to ensure that the frame length is at least 64 bytes in length (the preamble and SFD fields are not considered part of the frame for this calculation), which is required for successful CSMA/CD operation, are used in the frame check sequence calculation but are not included in the length field value.

FCS: The value of the FCS field is calculated over the destination address, source address, length/type, data, and pad fields using a 32-bit Cyclic Redundancy Check (CRC) as defined in IEEE Std 802.3-2008 para. 3.2.8:

G(x) = x32 + x26 + x23 + x22 + x16 + x12 + x11 + x10 + x8 + x7 + x5 + x4 + x2 + x1 + x0

The Data field is what we actually want to transmit or receive between the two cores and between both kits. Usually any core has some signal associated with the data transmission for flow control some of them are ignored but some signals were connected for proper operation and they were useful in the final implementation. As for the GTP core it mainly needed three signals beside the data which are CLK, RESET and Valid_Data which can be used as a flow control signal to discard the invalid data. The Ethernet core has around 30 signals and some of them are even vectors, but we will illustrate only the ones that were critical in our flow.

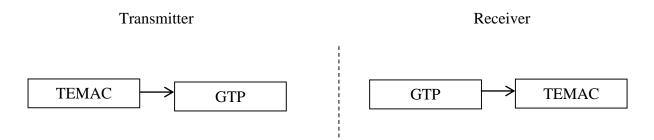


Figure 3-17: Downlink cores connections

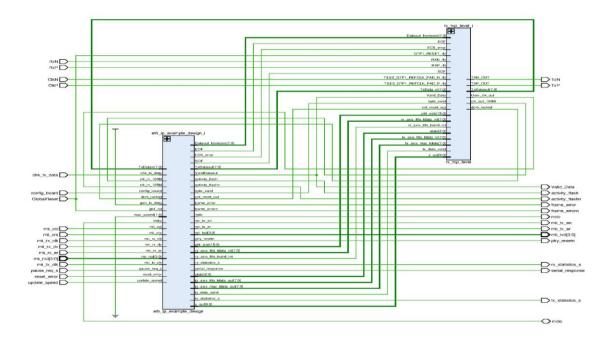


Figure 3-18: Top Level RTL Schematic

Firstly, whole system must use the same clock for synchronization, so CLK signal was input to both cores also the RESET of both cores were connected. At the transmitter side the **rx_axis_av_tdata[7:0]** signal of the TEMAC was connected to **Tx_DATA** of the GTP and the data was delivered successfully using frames generated by **SoftPerfect Network Protocol Analyzer** without too much complications unlike the receiver side.

The main problem aroused at the receiver side was how to detect the start of frame generated by **SoftPerfect Network Protocol Analyzer** while the TEMAC core directly strips both the preamble and the SFD. Before this point the frames were coming to TEMAC from the frame generator so the whole bit stream was a sequence of frames and with lengths that are known to the core so it was easy for it to detect the start of frame unlike the case of randomly generated frames which will be the generic case of the final system.

The example design interprets the frame based on a Finite State Machine, so we worked on understanding the FSM and trying to modify over it till the core interprets the frames generated by **SoftPerfect Network Protocol Analyzer.** We used the code of the frame generator to insert the random frames in order to make use of the signals generated by the frame generator instead of writing a code from scratch so that we can guarantee its compatibility.

First step in solving this issue is that we made the destination address fixed, since after stripping the preamble and the SFD the destination address field becomes the first field in the received frame and check on its first byte thus the core can step into the state of HEADER in the FSM. To move from one state to another this takes one clock cycle which means that two cycles will be lost one for checking on the first byte of the fixed destination address and the second one will be lost to move to the next state. The length of frame was also made fixed to make the transition from the state of data to the next state after a fixed number of counts.

*Local Area Connection		
File Edit View Go Capture Analyze Statistics Telephony Wireless Tools Help		
◢ ■ ∅ ◎ 🔒 🖻 🗙 🖻 ۹. ↔ ↔ 🕾 🖗 ♦ 🚍 🗐 ۹. ۹. ۹. ۳		
Apply a display filter <ctrl-></ctrl->	Exp	ession + Apply this filte
No. Time Source Destination Protocol Length		
980 0 MS-NLB-PhysServer-0 MS-NLB-PhysServer-0 0x3534		63
981 0 MS-NLB-PhysServer-0 MS-NLB-PhysServer-0 0x3534		63
982 0 MS-NLB-PhysServer-0 MS-NLB-PhysServer-0 0x3534		63
983 0 MS-NLB-PhysServer-0 MS-NLB-PhysServer-0 0x3534		63
984 0 MS-NLB-PhysServer-0 MS-NLB-PhysServer-0 0x3534		63
985 0 MS-NLB-PhysServer-0 MS-NLB-PhysServer-0 0x3534		63
986 0 MS-NLB-PhysServer-0 MS-NLB-PhysServer-0 0x3534		63
987 0 MS-NLB-PhysServer-0 MS-NLB-PhysServer-0 0x3534		63
988 0 MS-NLB-PhysServer-0 MS-NLB-PhysServer-0 0x3534		63
989 0 MS-NLB-PhysServer-0 MS-NLB-PhysServer-0 0x3534		63
990 0 MS-NLB-PhysServer-0 MS-NLB-PhysServer-0 0x3534		63
991 0 MS-NLB-PhysServer-0 MS-NLB-PhysServer-0 0x3534		63
992 0 MS-NLB-PhysServer-0 MS-NLB-PhysServer-0 0x3534		63
993 0 MS-NLB-PhysServer-0 MS-NLB-PhysServer-0 0x3534		63
994 0 MS-NLB-PhysServer-0 MS-NLB-PhysServer-0 0x3534		63
995 0 MS-NLB-PhysServer-0 MS-NLB-PhysServer-0 0x3534		63
996 0 MS-NLB-PhysServer-0 MS-NLB-PhysServer-0 0x3534		63
997 0 MS-NLB-PhysServer-0 MS-NLB-PhysServer-0 0x3534		63
998 0 MS-NLB-PhysServer-0 MS-NLB-PhysServer-0 0x3534		63
999 0 MS-NLB-PhysServer-0 MS-NLB-PhysServer-0 0x3534		63
1000 0 MS-NLB-PhysServer-0 MS-NLB-PhysServer-0 0x3534		63
Frame 1000: 63 bytes on wire (504 bits), 63 bytes captured (504 bits) on interface 0		
Ethernet II, Src: MS-NLB-PhysServer-03_04:05:00:35 (02:03:04:05:00:35), Dst: MS-NLB-PhysServer-03_04:05:da	:01 (02:03:04:05:da:01)	(
4 Destination: MS-NLB-PhysServer-03_04:05:da:01 (02:03:04:05:da:01)		
Address: MS-NLB-PhysServer-03_04:05:da:01 (02:03:04:05:da:01)		
0000 02 03 04 05 da 01 02 03 04 05 00 35 35 34 33 32		
3010 31 30 2f 2e 2d 2c 2b 2a 29 28 27 26 25 24 23 22 10/,+*)('&%\$#"		
0020 21 20 1f 1e 1d 1d 1b 1a 19 18 17 16 15 14 13 12 !		
0030 11 10 0f 0e 0d 0c 0b 0a 09 08 07 06 05 04 03		
	Packets: 1000 · Displayed: 1000 (100.0%)	Profile: Defau

Figure 3-19: Receiving frames without the first two bytes

Consequently we have three problems the fixed destination address, the two bytes that are missed from the frame and the fixed frame length. To solve the first problem, we needed to detect the start of frame two bytes earlier, checking on the block diagram and internal signals of the TEMAC core we found that it contains a packet **FIFO** that holds the frames before it reaches the core by some cycles, This signal can be exploited for the purpose of early detection.

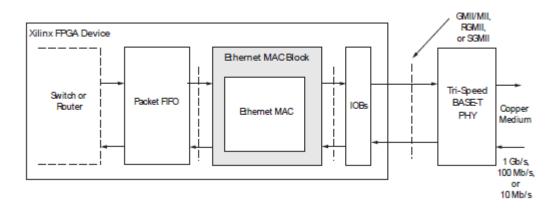


Figure 3-20: TEMAC connection in applications

Rx_statistics [27:0] is another vector signal that gives 28 bits according to some statistics in the coming frame. Bit 22 is called **BYTE_VALID** asserted if a MAC frame byte (destination address to FCS inclusive) is in the process of being received. This is valid on every clock cycle.

Keeping the frame length fixed and observing the number of cycles between the **BYTE_VALID** positive edge and **FIFO** signal carrying the frame they are found constant. So we created a **COUNTER** signal that resets after the constant number of counts so that the core interprets it is the start of the frame at the counter reset.

Allowing the frame length to be variable **BYTE_VALID** keeps high for variable duration depending on the frame length consequently the number of counts will not be constant. But the duration between negative edge of **BYTE_VALID** and **FIFO** signal carrying the frame is constant regardless of the frame length. To detect the negative edge, using a CLK'event

gave an error in the code synthesis so we made another FSM depending on the negative edge of **BYTE_VALID**.

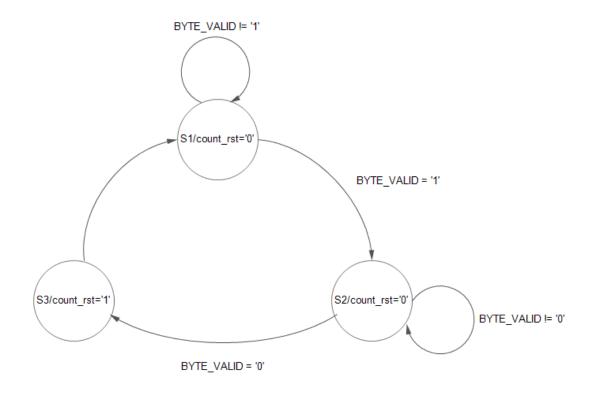


Figure 3-21: FSM for negative edge of BYTE_VALID dependency

2	ISim (P.2013101	3) - [wf.wcfg*]	- 🗆 🗙
m File Edit View Simulation Window Layout Help			- 8 ×
🖻 🔊 🖬 😓 🕺 🗅 🖬 🗙 🕲 🔽 🖉 🖾		» 🗠 🛨 🕇 🏫 🐴 🖸 🕨 🗚 1.00us 🗸 😼 🗔 Re-launch	
Instances and Processes ↔ □ ₽ × Objects ↔ □ ₽ ×	Æ	58.585499 us	^
Simulation Objects for :4404	Name Value	55 us 60 us 65 us 70 us	75 us 80 us 85 u
Instance and Process Name	Name Value > ************************************	55 us160 us65 us770 us 0000 X	75 us 80 us 85 u
Ch :4386 Object Name Value	mil_rxd[s:0] 0000 mil_rxd[s:0] 0000 mil_rxd[s:0] 0		
34387 la glbi_rstn 1			
🚰 :4388 🕌 rx_axi_rstn 1	S v ans_mac_tual os		
(1) 14389 (1) 1 (1) 14390 (1) 1 1 (1) 14390 (1) 1 1 1			
(14390 12 rx enable 0	10		
Ci :4392 Li tx_axi_clk 0	Imaxi_tclk Imaxi_tcl	00 20 20	2f × 03
Ca :4393 tx_axis_mac_tv 0			
(1):4394 (1):4394 (1):4394 (1):4395 (1)	1 U counter_reset 0		
G :4396	The start 0		
(1) :4397	101 b data_out[7:0] 00	00 XX 2e X2eX 2f X	2f X2f 03
Ci :4398 gmii_col 0	: E31	s1 (s2 (s1) s2 (s1) s2	(s1) s2 × s1
(1) :4399 (1) gmil_crs 0 (1) :4400 (1) gmil_tr_clken 1			
G :4401			
Ci :4402 gmii_rx_er 0			
Ci :4403 mdio_in 1			·
Ci :4404 U bus2ip_clk 1 Ci :4405 ♥ bus2ip_reset 0		X1: 58.585499 us	
< > buszip cs 0	< > > < >	<	> 🗸
A Instances and Proce Source	Default.wcfg 🛛 🔀	wf.wcfg* 🛛 🖹 eth_ip.vhd 🗵	
Console			++ □ ♂ ×
at 72280 ns(2): Note: Comparing Transmitted Data Frames to Received Data Frames (/demo_tb/).			^
at 83720 ns(2): Note: Comparing Transmitted Data Frames to Received Data Frames			
(/demo_tb/).			
at 89122500 ps(7): Note: ** Note: Programming MAC speed (/demo_tb/dut/axi_lite_controller/).			
at 89252500 ps(7): Note: ** Note: Checking for PHY			
(/demo_tb/dut/axi_lite_controller/). Stopped at time : 103342600 ps : File "D:/GP/Codes/ethernet_forburning/pcore_dir/eth_i	in.vbd" Line 4404		
ISim>			~
🔤 Console 📄 Compilation Log 🔸 Breakpoints 🕅 Find in Files Results	Search Results		
Undo the last action			Sim Time: 103,342,600 ps

Figure 3-22: Counter reset on negative edge of BYTE_VALID

Last observation was for the frames with error, it is noticed that **BYTE_VALID** is high whenever it detects an Ethernet frame even if it did not pass the Frame Check Sequence test although **FIFO** will not pass it to the core. Recalling the statistics vector, Bit 2 is called **FCS_ERROR** which is asserted if the previous frame received was correctly aligned but had an incorrect FCS value or the MAC detected error codes during frame reception.

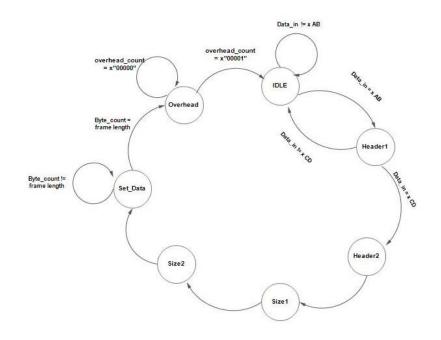


Figure 3-23: FSM for Ethernet frames reception

We used the chipscope to check the states are working properly.

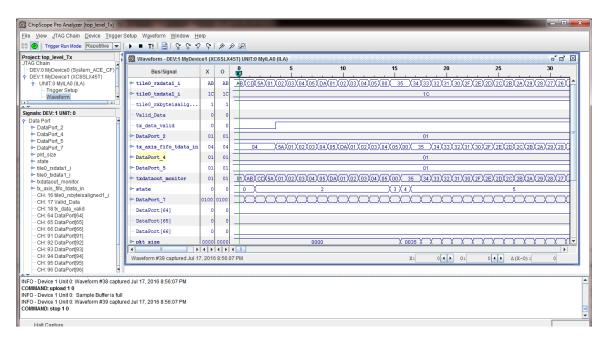


Figure 3-24: States on Chipscope

And we checked the header is being sent properly in the simulation.

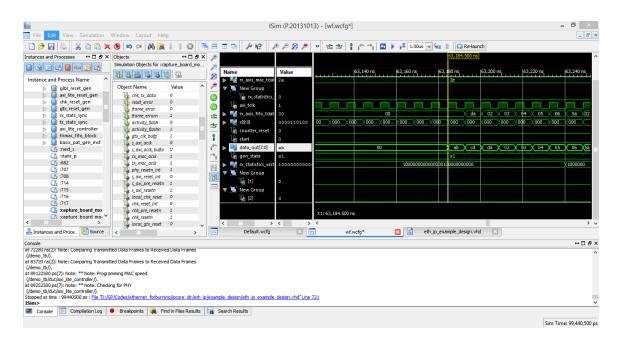


Figure 3-25: Adding header after counter reset

Finally we sent 1000 frames and received them successfully with the first two bytes.

8			tPerfect Network Protocol Analyzer – 🗗	×
	Tools Filters Capture Analysis H			
T 🖪 🖬 🌽	🖓 🚑 • 💎 • 🖬 🎇 🎭	🛱 💑 🌑 🥹		
Network Interface	Realtek PCIe FE Family Controller [192.168	s. 1. 10] 🗸 🕨 Sta	tart Capture	
D Capture	iata Flows 🤍 Packet Builder			
Citerret 86 Citerret 86 Citerret 86 Citerret 86	0 x 1 (0 x 2 (0 x 3 (0 x 4 (2 2322 2120 1F1E 1D1C 1B1A 191 1 312 1110 0F0E 0 302 01 SoftPerfect N Send 1 frame(s)	28 2726 2524 3210/,+*) ('&\$\$ 18 1716 1514 #"! ************************************	
Capturec 0	Filtered 1000 Link Speed 0	Memory CPU u	usage 0%	

Figure 3-26: Sending 1000 frames

C Local Area Connection			_ D _ X
File Edit View Go Capture Anal	ze Statistics Telephony Wireless Tools Help		
🖉 🔳 🙋 🛞 🕼 🖾 🕱 🛅 🔍 🗢	• ⇔ ≝ 7 🧶 🗐 🗐 0, 0, 0, 🗉		
eth.addr == da:01:02:03:04:05 && eth.ad	r == 5a:01:02:03:04:05	Expression +	Apply this filter
No. Time Source	Destination Protocol Length		
977 4 da:01:02:03:04:05	5a:01:02:03:04:05 LLC		68
978 4 da:01:02:03:04:05	5a:01:02:03:04:05 LLC		68
979 4 da:01:02:03:04:05	5a:01:02:03:04:05 LLC		68
980 4 da:01:02:03:04:05	5a:01:02:03:04:05 LLC		68
981 4 da:01:02:03:04:05	5a:01:02:03:04:05 LLC		68
982 4 da:01:02:03:04:05	5a:01:02:03:04:05 LLC		68
983 4 da:01:02:03:04:05	5a:01:02:03:04:05 LLC		68
984 4 da:01:02:03:04:05	5a:01:02:03:04:05 LLC		68
985 4 da:01:02:03:04:05	5a:01:02:03:04:05 LLC		68
986 4 da:01:02:03:04:05	5a:01:02:03:04:05 LLC		68
987 4 da:01:02:03:04:05	5a:01:02:03:04:05 LLC		68
988 4 da:01:02:03:04:05	5a:01:02:03:04:05 LLC		68
989 4 da:01:02:03:04:05	5a:01:02:03:04:05 LLC		68
990 4 da:01:02:03:04:05	5a:01:02:03:04:05 LLC		68
991 4 da:01:02:03:04:05	5a:01:02:03:04:05 LLC		68
994 4 da:01:02:03:04:05	5a:01:02:03:04:05 LLC		68
995 4 da:01:02:03:04:05	5a:01:02:03:04:05 LLC		68
996 4 da:01:02:03:04:05	5a:01:02:03:04:05 LLC		68
997 4 da:01:02:03:04:05	5a:01:02:03:04:05 LLC		68
998 4 da:01:02:03:04:05	5a:01:02:03:04:05 LLC		68
999 4 da:01:02:03:04:05	5a:01:02:03:04:05 LLC		68
1000 4 da:01:02:03:04:05	5a:01:02:03:04:05 LLC		68
Frame 1000: 68 bytes on wire (544 bits), 68 bytes captured (544 bits) on in	erface 0	
> IEEE 802.3 Ethernet			
Logical-Link Control			
Data (50 bytes)			
a second as the state of the second second			
0000 5a 01 02 03 04 05 da 01 0			
0010 33 32 31 30 2f 2e 2d 2c 2 0020 23 22 21 20 1f 1e 1d 1d 1			
0030 13 12 11 10 0f 0e 0d 0c 0			
040 03 02 01 01			
0 7		Packets: 1626 • Displayed: 1524 (93, 7%)	Profile: Defau
~ _		1 TOKES 1020 ENANCE 151710	

Figure 3-27: Receiving the 1000 frames after resolving the two bytes problem

3.5 UART

During the last period of the project we tried working on another path so that we can present the hardware in a working state. Besides, the UART can have acceptable data rates even if it cannot reach the rates of GTP which would be compatible to use in places that already have poor infrastructure and cannot support the very high data rates.

First we wrote the UART transmitter code that receives input data (byte by byte) in Data register with clock (4.8 MHZ) and retransmit it (bit by bit) through shift register in order to have parallel to serial transmission but with a clock that is 8 times faster than that used to receive the data (38.4 MHZ), i.e the transmitter receives the data with clock (4.8 MHZ) and transmits the bits with clock (38.4 MHZ).

The receiver code makes the opposite direction that receives serially (bit by bit) and goes with the following sequence:

- Start of the frame is detected.
- The following 8 bits are received in a shift register to form "receiving byte".
- When the end of frame is detected the "received byte" is delivered to the output bus of the receiver.



Figure 3-28: UART complete frame

So, the transmitter alternates between two states (IDLE, Sending) through two signals (Data_ready and count). Data_ready is set to 1 if the transmitter receives new byte to be sent while the count signal is responsible for counting the transmitted bits so when it reaches 8 this indicates that the whole byte is sent so it returns to the idle state again.

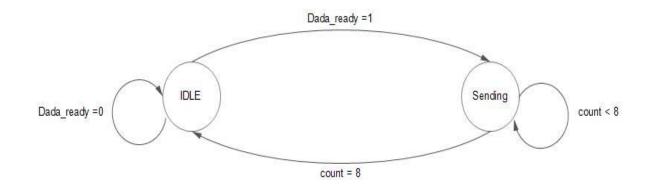


Figure 3-29: Transmitter state diagram

Also the receiver has only two alternating state (IDLE and Receiving) and they are determined according to (start_determined and end_determined) signals. The first indicates the start bit –start of the frame - so it moves the receiver to the receiving mode while the later indicates the end bit –end of frame- that returns the receiver back to the idle state.

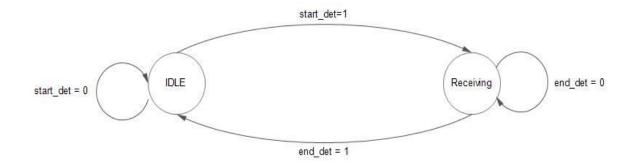


Figure 3-30: Receiver state diagram

In order to test the UART separately we designed the top level module that has the transmitter and the receiver as components, also it has a counter that delivers the data successively to the transmitter and the following result was brought from the software test.

Figure 3-31: software simulation of UART

After connecting the two FPGAs back to back with jumpers between general purposes pins, we have tested the performance through Chipscope and the following result was got.

oject: TX_top	Setup Waveform Windo T! Setup T! Setup Vaveform - DEV:1	0 9		۾ ھ	1:01																
oject: TX_top		_	? ?	99																	
AG Chain	Waveform - DEV:1					_		_	_	_	_	_	_	_	_	_	_	_	_	_	_
		MyDe	vice1 (XC6SLX4	45T) UNIT	:0 MyILAO	(ILA)														°ø'⊵
DEV:0 MyDevice0 (System_ACE_CF) DEV:1 MyDevice1 (XC6SLX45T)	Bus/Signal	х	0	6	7	8	9	10 	11	12	: 1	13	14	15 	16 	17	18	19	20	2	1 :
UNIT:0 MyILA0 (ILA)	Υ− DATA	80	80	86	87	X 88	89	(BA) 88) 80		BD X	8E	(8F	χ 90) 91) 92	X 93	(94	X 9	5
- Trigger Setup	- DataPort[0]	0	0			1				1					1						
- Waveform	- DataPort[1]	0	0		-	1			-	7		Ē			1				_		
anals: DEV: 1 UNIT: 0	- DataPort [2]	0	0			1						_			1		_				
Data Port	DataPort[3]	0				_															
- DATA						1									_						
- CH: 8 TX - CH: 9 DataPort[9]	- DataPort[4]	0	0																		
- CH: 10 DataPort[10]	- DataPort[5]	0	0																		
- CH: 11 DataPort[11]	- DataPort[6]	0	0																		
- CH: 12 DataPort[12] - CH: 13 DataPort[13]	DataPort[7]	1	1																		
- CH: 14 DataPort[14]	TX	0	0				1					Г		1							
- CH: 15 DataPort[15]																					_
Trigger Ports TriggerPort0																					
TriggerPort1																					
- CH: 0 TX																					
 CH: 1 TriggerPort1[1] CH: 2 TriggerPort1[2] 																					
- CH: 3 TriggerPort1[3]																					
- CH: 4 TriggerPort1[4]																					
- CH: 5 TriggerPort1[5]		4 1	4 6	4																	Þ
 CH: 6 TriggerPort1[6] CH: 7 TriggerPort1[7] 	Waveform #11 captur				O PM									X:	0 4	• 0:			Δ(X-0):		0
	L														-				-(,.[_	_
O - Device 1 Unit 0: Waveform #10 capture	ed Jul 18, 2016 3:53:58 Pl	M																			
MMAND: upload 1 0																					
O - Device 1 Unit 0: Sample Buffer is full O - Device 1 Unit 0: Waveform #11 capture	d lul 10, 2016 2:52:50 P																				
MMAND: stop 1 0	50 301 10, 2010 3.33.39 PI																				
Halt Capture																					

Figure 3-32: transmitter circuit hardware test.

Finally we integrated the UART code with the Ethernet code to form the final code as an alternative path that will use common jumpers rather than SMA connectors that supports very high frequencies. Ethernet and UART codes interfaced through some signals that is shown in the following block diagram

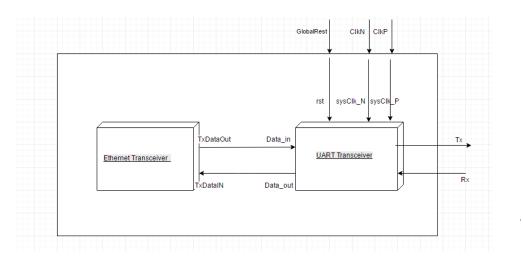


Figure 3-33: Block diagram of the Ethernet and UART

We had tested the integrated code by the software simulator (ISIM) to guarantee that the packets are delivered successfully.

The following result shows the delivery of the packets in order.

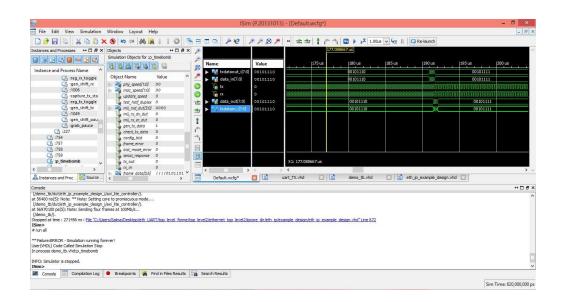


Figure 3-34: Software Simulation of Ethernet and UART

Chapter 4: Hardware Approach

Recalling the block diagram of our system the two blocks that require external hardware are the transmitter and receiver circuit. We already had the hardware on last year's team circuits implemented by lumped components on breadboards, both circuits are designed using well known analog stages consisting of Operational Amplifiers that were simulated and tested inside the lab using NI instruments kit that has a function generator and an oscilloscope.

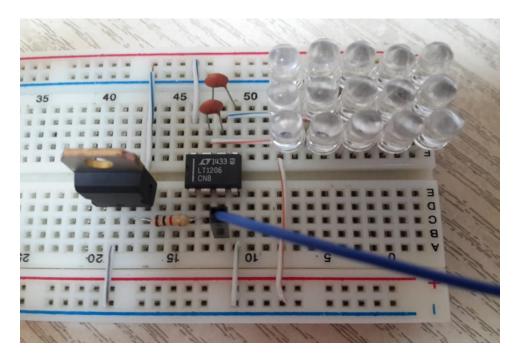


Figure 4-1: First phase transmitter circuit

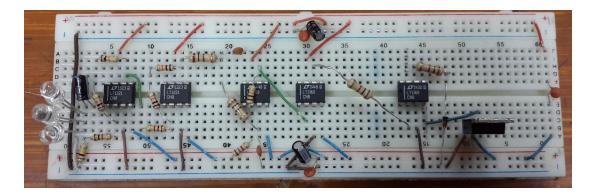


Figure 4-2: First phase receiver circuit

4.1 Transmitter Circuit

The transmitter circuit simply gets a random input of ones and zeros output from the Spartan-6 kit that are specified by 3.3v for the high level and -0.7v for the low level according to the USB-to-UART module. This voltage is required to lit up an array of parallel LEDs that will typically require higher current level that cannot be drawn directly from the kit so it has a single stage Op-Amp to amplify the current. We used the same design initially.

We begin looking for already made driver with LEDs but most of them were mounted on a kit together with a microcontroller. While drivers containing SMA sockets were mostly implemented with wireless antennas for short range communications like ZigBee and Bluetooth.

The first modification was to use the SMA ports and connector instead of the normal

jumpers. We had a problem that the SMA ports are not found on the usual electronic analog circuit simulators that we used like Proteus and Multisim. They were only found on CST (Computer Simulation Technology simulators that offers accurate, efficient computational solutions for electromagnetic design) and analysis, on the other hand does not contain the available lumped components as they are used mainly to simulate high frequency components as transmission lines and wave guides, so we searched for other open source simulators that can be used to simulate both but found none. Finally through some search we concluded that the SMA can be simulated as 50 ohm resistor in series with the input line which represents its equivalent impedance.

The Second problem that came along is the voltage levels specified by the GTP transceivers differ from the levels of the UART module it has a maximum input voltage of 1.32v. and minimum of -0.5, by measuring the actual operating voltages using a normal voltmeter with its probes placed on the pins of the SMA connector after burning a code sending only ones then another sending only zeros, they were found even less than the stated voltages around 0.8v for the ones and 0v for the zeros.

Symbol	Description	Min	Тур	Max	Units
MGTAVCC	Analog supply voltage for the GTP transmitter and receiver circuits relative to GND	1.14	1.20	1.26	۷
MGTAVTTTX	Analog supply voltage for the GTP transmitter termination circuit relative to GND	1.14	1.20	1.26	۷
MGTAVTTRX	Analog supply voltage for the GTP receiver termination circuit relative to GND	1.14	1.20	1.26	۷
MGTAVCCPLL	Analog supply voltage for the GTP transmitter and receiver PLL circuits relative to GND	1.14	1.20	1.26	V
MGTAVTTRCAL	Analog supply voltage for the resistor calibration circuit of the GTP transceiver bank (top or bottom)	1.14	1.20	1.26	۷

Figure 4-3: GTP transceivers voltage levels

Firstly we started by setting the old hardware in the same way to ensure it is functioning

well, unfortunately it was unstable but we succeeded in receiving some characters, the main obvious source for the instability is the breadboards and the connections using copper wires the effect of parasitic capacitance which cannot be neglected at high frequencies.

The instability of the breadboard and the high noise affecting the performance that will typically increase when the frequencies increase, as well as the inability to mount SMA ports on the breadboard are the main reasons for implementing the design on a PCB. We implemented the designs directly after ensuring that the old hardware is functioning and that the simulations are giving the required output for the 16 parallel LEDs.

Unfortunately that was before discovering the second problem of the voltage levels since it is not stated in the hardware user guide of Spartan-6 but when the PCB was not functioning upon connecting the SMA with random data we started measuring it and searching for another documents and found the information about the voltage levels output and input to the kit from any pin in DC and switching characteristics. The steps followed in this part were:

- Simulating the design on CADsoft eagle for printing then on Proteus.

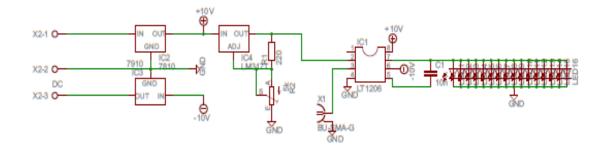


Figure 4-4: Transmitter circuit design on CADsoft

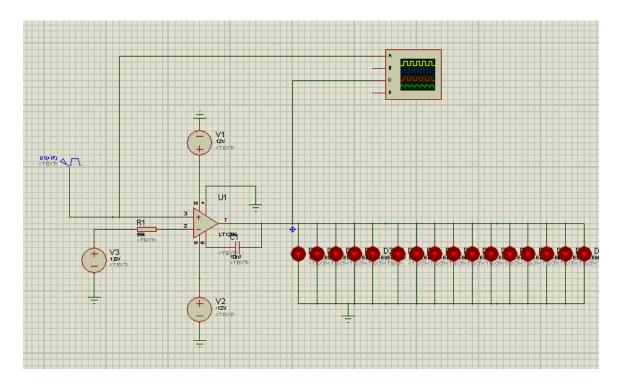


Figure 4-5: Transmitter circuit simulation on Proteus

The yellow represents the input 3.3-0 v and the pink represents the output voltage of the Op-Amp.

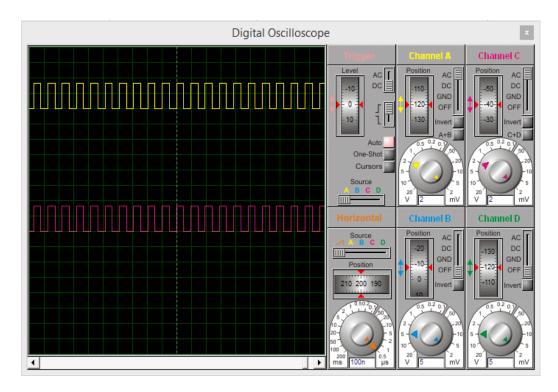


Figure 4-6: Oscilloscope output in Proteus

Creating the PCB layout. X llus LED5 LED12 LED9 LEDI

_

Figure 4-7: Transmitter circuit layout for print

- Implementing the PCB that was done outside the college at one of the electronics stores.

Figure 4-8: Transmitter PCB

The second step is trying to solve the two problems, adding the 50 ohm resistor in the simulations and lessening the value of the input signal to 0.8v instead of 3.3v and the regulator output which represents the comparator threshold to 0.4v the LEDs were not blinking and the voltage output from pin 7 gets lower till it reached 0.2 for the 0.8 high input, where the LEDs has a minimum voltage around 2.2v for high brightness and might accept a lower voltage in the range of 1.7v.

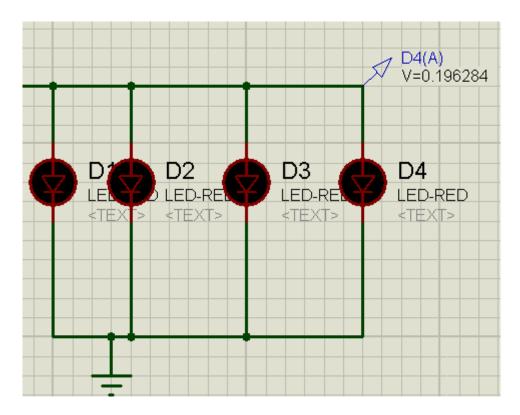


Figure 4-9: LEDs not blinking for 0.8v input

We tried using relay which is an electrically operated switch it is used where it is necessary to control a circuit by a separate low-power signal to control the old design transmitter with the small input voltage we have from the kit but this path has a serious problem which is the relay can't operate at high frequency so we used common emitter circuit. The common emitter configuration has the highest power gain combined with medium voltage and current gain.

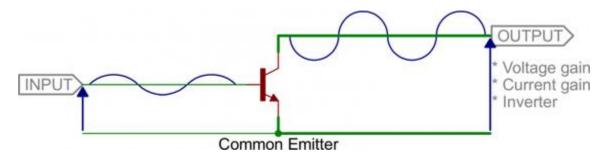


Figure 4-10: Common emitter theory of operation

The ability of this configuration in the above figure to increase input signal power by 20dB (100 times) and more is widely used as signal amplifiers in communications. Weak signals can restore their power passing through common-emitter amplifier.

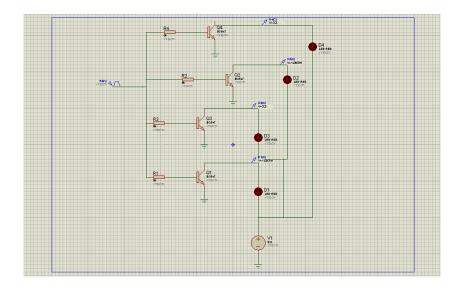


Figure 4-11: Transmitter circuit using common emitter amplifiers

As in fig 4-11 input is introduced to a resistance of 5K Ohm then to the base of the BJT, emitter is connected to ground and the collector output is connected to negative terminal of LED while positive terminal is connected to 3.3 v, when we have high signal 1 '0.8'

LEDs are lit on..

4.2 The Receiver Circuit

The receiver circuit on the other hand has photodiode that normally give an analog signal varying with the sensed light intensity, available photodiodes differ in their specifications regarding the slew rate and the spectral sensitivity .In the old design that used photodiode SFH203 with a five stage that are required finally to deliver a digital signal with 3.3v high voltage and -0.7v for the low voltage to the FPGA according to the blinking LEDs variations with the data sent.

The first and second stages were just amplifiers providing gain of 52 dB, the third stage was low pass filter implemented with Sallen-key design to filter the low frequency variations that is obtained from the surrounding ambient light and has to be ignored. The fourth stage has a comparator that will produce two values only thus transforming the analog signal into digital and the last stage consists of a level shifter to shift the volt down to suit the FPGA as 3.3 volt as input one and a -0.7 volt as an input zero.

The same steps followed with the transmitter circuit were followed with the receiver circuit.

- Simulating the design on CADsoft eagle for printing then on Proteus, the photodiode usually not found in simulators as Proteus instead we had to use an equivalent model for it as shown in the image below with standard calculations to

get the values for the model parameters.

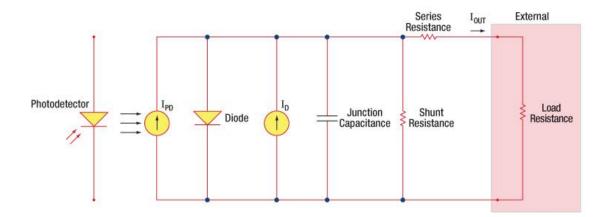


Figure 4-10: Photodiode equivalent model

Another solution that we did is to use the LDR with torch but it did not produce the output waveform as expected so we depended on hardware testing using a voltmeter with the already made circuits on the breadboards.

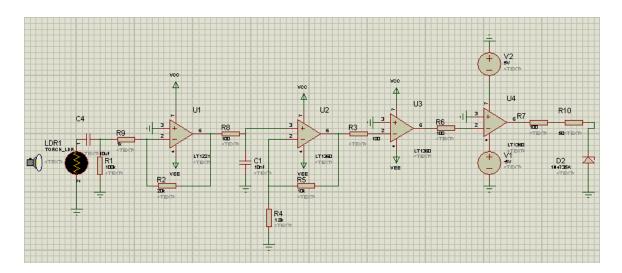


Figure 4-11: Receiver circuit simulation on Proteus using LDR

- Creating the PCB layout.

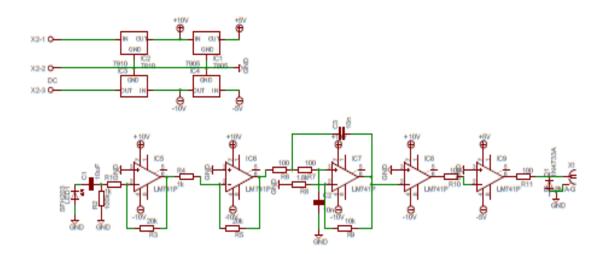


Figure 4-12: Receiver circuit design on CADsoft

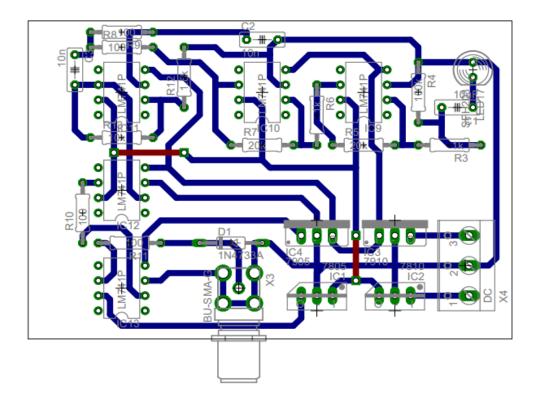


Figure 4-13: Receiver circuit layout for print

Figure 4-14: Receiver PCB

Chapter 5: Monitoring System

5.1 Design characterization

5.1.1 IBERT CORE

The Xilinx ChipScope[™] Pro IBERT core for Spartan-6 GTP transceivers is self-contained and can be used to evaluate and monitor Spartan-6 GTP transceivers. The design includes pattern checkers implemented in FPGA logic. The IBERT core has all the logic to control, monitor, and modify transceiver features and perform bit error ratio tests in more integrated way.

5.1.2 IBERT COMPONENTS

- BERT Logic Part

The BERT logic shows the actual transceiver component, and have the pattern generators and checkers. In this part we have different available patterns such as PRBS (pseudo random bit sequence) patterns and comma disclosures.

- Dynamic Reconfiguration Port (DRP) Logic

Each transceiver has a Dynamic Reconfiguration Port (DRP) on it, so that transceiver properties can be modified in system. All properties and DRP addresses can be read and can be written in IBERT core.

5.1.3 IBERT DESIGN FLOW

Because the IBERT is a individualistic design, the design flow is very simple. When using the ChipScope IBERT Core Generator to generate IBERT core designs we get

two important files the first one is the design directory and the other is the bit file. The design flow for generating IBERT core designs for Virtex-7, Kintex-7, Virtex-6, and Spartan-6 devices are very identical except the Xilinx CORE Generator tool is used. The main variance is that the design directory and device information is excluded in the Xilinx CORE Generator project. [11]

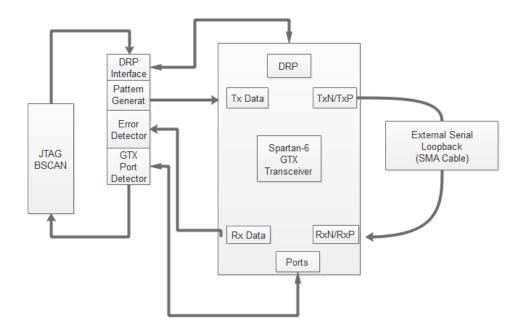


Figure 5-1: Design Flow of IBERT Core

5.1.4 IBERT FEATURES

- This feature supplies a communication path between the ChipScope Pro Analyzer software and the IBERT core itself.

- Has a user-selectable number of Spartan-6 GTP transceivers.

- Each transceiver can be specified for the desired line rate, reference clock rate and data path width.

The IBERT core supports a wider based Physical Medium Attachment (PMA) testing and demonstrated scheme for Spartan-6 GTP Transceiver. Data pattern generators and checkers are enclosed in each serial transceiver desired, giving a variance in PRBS and clock patterns to be sent over the channels. As well, the configuration and tuning of the serial transceivers can be accessed through logic that are connected to the DRP port of the serial transceiver, to change aspect settings, as well as registers that control the values on the ports. At run time testing the ChipScope Analyzer tool communicates to the IBERT core through JTAG using the Xilinx cables. [12]

5.1.5 SERIAL TRANSCEIVER FEATURES

IBERT is designed for PMA assessment and demonstration. All the major PMA features of the serial transceiver are supported and administrable in IBERT, including:

- Transmit (TX) pre-emphasis and post-emphasis
- TX differential swing
- Receive (RX) equalization
- Phase-Locked Loop (PLL) Divider settings

5.1.6 GENERATING THE CORE

IBERT has the feature to plot eye diagram for measuring Additive noise in the received signal , Peak distortion due to interruptions in the signal path ,Timing synchronization & jitter effects and Intersymbol interference. Eye diagram is an oscilloscope views in which a digital signal from a receiver is replicated sampled and applied to the vertical input, while the data rate is used to trigger the horizontal sweep.

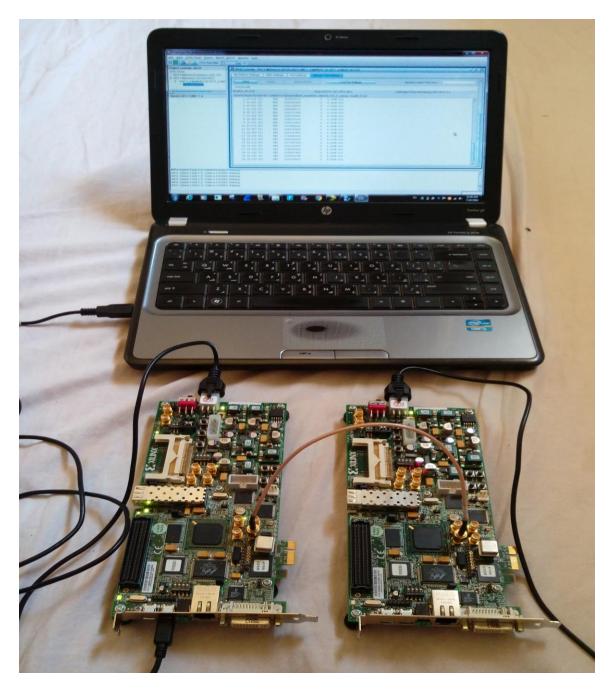


Figure 5-2: Hardware Connection Setting

It is named to be eye diagram for various types of coding, the pattern looks like a sequence of eyes between a pair of rails. It is an experimental tool for the testing of the combined effects of channel noise and intersymbol interference on the performance of a baseband pulse-transmission system. [13]

5.2 Design Creation, Customization and Generating of IBERT core

- The initial steps are already discussed in details in chapter 3 but here we choose in the "project options" those options as clear in figure below.

Part Generation Advanced Part Select the part for your project: Family Spartan6 Degice xc6six45t Package fgg484 Speed Grade -3 V	🂐 Project Options				? X
Advanced Select the part for your project: Family Spartan6 Device xc6slx45t Package fgg484	Part	-Part			
Family Spartan6 Device xc6slx45t Package fgg484		Select the part for	your project:		
Package fgg484		Fa <u>m</u> ily	Spartan6	•	
		De <u>v</u> ice	xc6slx45t	•	
Speed Grade -3		P <u>a</u> ckage	fgg484	•	
		Speed Grade	-3	•	
QK <u>C</u> ancel <u>Apply</u> <u>H</u> elp		QK	Cancel	Δρρίγ	Help (

Figure 5-3: New project options part

- Create IBERT Design

Catalog							đΧ			
View by Function View by Name								COPE	IBERT	\bigcirc
Jame	A	Version	Status	License	Vendor	Library		logi CŘR E	Sportone	<u>Show</u> Project
🗁 📂 Debug & Verification									Spartan6	rioject
AXI Bus Functional Model		2.1	Production		xilinx.com	ip			GTP	
ChipScope Pro Horizon 4 <p< th=""><th>ore 2)</th><th>1.05.a</th><th>Production</th><th></th><th>xilinx.com</th><th>ip</th><th></th><th></th><th>(ChipScope</th><th></th></p<>	ore 2)	1.05.a	Production		xilinx.com	ip			(ChipScope	
🖞 IBERT Kintex7 GTX (ChipScope Pro - I	BERT)	2.01.a			xilinx.com	ip				
		Cust	omize and (Generate					Pro - IBERT)	
	BERT)	🕻 Custo	mize the IP, a	and Genera	te the selec	ted outp	ut produ	re is supp	orted at status Production by yo	our
🏹 IBERT Virtex5 GTX (ChipScope Pro - If 🦞 IBERT Virtex6 GTH (ChipScope Pro - II		🐉 Answ	er Records					h part.		
🖞 IBERT Virtex6 GTH (ChipScope Pro - II	· 1.	📄 Data	Sheet					prmati	on	
IRERIT Virtex6 GTX (ChinScope Pro - If arch IP Catalog:	ERT)	🏂 Versio	n Information	٦				:ype:	IBERT Spartan6 GTP (ChipScope Pro - IBERT)	e
All IP versions			E		npatible wit	h chosen		Version: Identifier	2.02.a	

Figure 5-4: Customizing and generating IBERT Core

- Select the following settings

4	IBERT Spartan6 GTP (ChipScope Pro - IBERT)	- □ ×
Documents View		
IP Symbol & X	Logicifie IBERT Spartan6 GTP (ChipScope Pro - IBERT)	xilinx.com:ip:chipscope_lbert_spartan6_gtp:2.02.a
IBERT_SYSCLOCK → REFCLK0_X0Y0 → REFCLK1_X0Y0 → REFCLK1_X0Y0 → REFCLK1_X1Y0 →	System Design Generate Bitstream GAD Generate Bitstream GTP Dual Naming Sty Xm'n v ex. GTPA1_DUAL_X0Y0 / REFCLK0 X0Y0 System Clock V Use External clock source Frequency Pin Location K21 Pin Input Standard LVDS 25 v	
	Datasheet Sack Page 1 of 5	ی Next > Generate Cancel Help

Figure 5-5: Generating IBERT Core page 1 window

- Make the following settings:

Set the number of Protocols: 1

Set the line rate to Max Rate: 2.5 Gbps

Set the Refclk frequency to: 125 MHz

GTP Dual count: 1

N.	IBERT Spa	artan6 GTP (ChipScop	e Pro - IB	ERT)					- 🗆 🗙
Documents View									
IP Symbol & X	logiC ^{iere} (1	IBERT Sp ChipScope				xilinx.co	m:ip:chipscop	e_ibert_sparta	n6_gtp:2.02.a
	Number of Protocols	1 💌							-
	Line rate settings								
	Protocol	Max Rate (Gbps)	Data Width	Refclk (MHz)	GTP Dual cou	nt			
	Name Protocol	• 2.5	20 🔹	125.00 🔻	1	•			
	Custom_1								
	GTXs Resources					_			
IBERT_SYSCLOCK	GTP Dual count	1							
REFCLK0_X0Y0	BUFG count	6							
REFCLK1_X0Y0									
REFCLK0_X1Y0 -> RXRECCLK_GTP0_X1Y0									
REFCLK1_X1Y0> RXRECCLK_GTP1_X1Y0									
									-1
🍸 IP Symbol 🦉 Core Details	Datasheet		<	Back Page	2 of 5 N	lext >	Generate	Cancel	Help

Figure 5-6: Generating IBERT Core page 2 window

Set the Protocol for both GTP Dual Locations: Custom 1/2.5 Gbps

•	IBERT Spartan6	GTP (ChipScope Pro	- IBERT)			- • ×
Documents View IP Symbol		ERT Spart pScope Pr	tan6 GTP to - IBERT)	xilinx.com:ip:chipscope_ibert_spartan6_gtp:2	in6_gtp:2.02.	
	GTP Dual Location		Protocol Selected			
	GTPA1_DUAL_X1Y0 GTPA1_DUAL_X0Y0	Custom 1 / 2.5 Gbps None				
	GITAL_DUAL_AUTO	Custom_1				
	Total (GT Duals):	1 of 1				
REFCLK0_X0Y0						
	(1)0					
REFCLK1_X1Y0	(1Y0					
🍕 IP Symbol 💐 Core Details	Datasheet		< Back Page 3 of 5	Next > Generate	Cancel	Help

Figure 5-7: Generating IBERT Core page 3 window

- Set GTP Duals Refclk Sources to:REFCLK0 X1Y0

t -	IBERT Spartan6	GTP (ChipScope Pro	- IBERT)			-	
Documents View P Symbol ජී×	IB	ERT Spart pScope Pr			xilinx.com:ip:chipscop	e_ibert_spartant	5_gtp:2.0
	GTP Dual Location	Protocol	Linerate (Gbps)	Refclk MHz	GTP1 R Sour		
	GTPA1_DUAL_X1Y0	Custom_1	2.5	125.00	REFCLK0 X1Y0		•
IBERT_51SLOCK → REFCUA_UNY → REFCUA_UNY → REFCUA_UNY → REFCUA_UNY → REFCUA_UNY →							

Figure 5-8: Generating IBERT Core page 4 window

- Click Generate

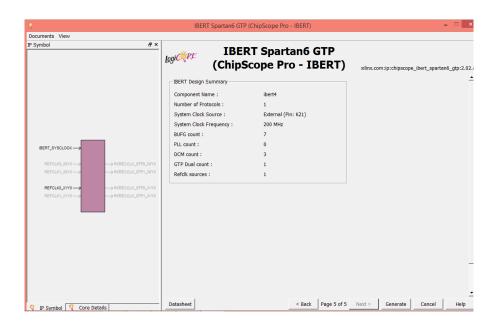


Figure 5-9: Generating IBERT Core page 5 window

5.3 Dealing with the Design using ChipScope pro Analyzer

- Open ChipScope Pro and click on the Open Cable Button

Figure 5-10: IBERT testing on ChipScope Pro page 1 Window

- Select Device > DEV:1 MyDevice1 (XC6SLX45T) > Configure

Select<design path>ready_for_download\ example_sp605_ibert.bit

🗟 ChipScope Pro Analyze	r [new project]			
<u>File</u> <u>View</u> <u>J</u> TAG Chain	Device Window Help	_		ChipScope Pro Analyzer [new project]
*** P	DEV: <u>0</u> MyDevice0 (System_ACE_CF) ►			JTAG Configuration
New Project	DEV:1 MyDevice1 (XC68LX45T)	<u>R</u> ename		File: example_sp605_ibert.bit
JTAG Chain DEV:0 MyDevice0 (Syst DEV:1 MyDevice1 (XC6		Configure Show IDCODE Show USERCODE Show Configuration Status Show JTAG Instruction Register	۰۰	Directory: C1sp805_ibertready_for_download Clean previous project setting Select New File
	C	hipS	CC	Import Design-level CDC File NOTE: This operation cannot be undone. Design-level CDC File Auto-create Buses File:
				Directory: C:\sp805_ibert\ready_for_download
				Select New File

Figure 5-11: IBERT testing on ChipScope Pro page 2 Window

-Select File > Open Project.

- Select \ready_for_download\sp605_ibert.cpj

Figure 5-12: IBERT testing on ChipScope Pro page 3 Window

- Click Yes on this Dialog

ChipScope Pro Analyzer [sp605_ibert]	_ 🗆 🗙
Eile View JTAG Chain Device Window Help	
BERT Console - DEV:1 MyDevice1 (XC6SLX45T) UNIT:1_0 MyIBERT S6 GTP1_0 (IBERT S6 GTP)	d' 🛛
ChipScope Pro Analyzer - IBert S6GTP Project Settings	
Project settings do not match current core! Do you want to set up the IBERT S6GTP core with settings from the current project?	
Initia Yes No	
Reading project file: C1sp605_iberttready_for_download/sp605_ibert.cpj	

Figure 5-13: IBERT testing on ChipScope Pro page 4 Window

-The line rate is 2.5 Gbps for all four GTPs Near-End PMA is selected for the PCIe and FMC GTPs and TX Diff Output Swing = 205 mV (0000)

GT/BERT Settings DRP	Settings Port Settings Swe	ep Test Settings	
	GTPA1_DUAL_X1Y0_0	GTPA1_DUAL_X1Y0_1]
MGT Settings			
- MGT Alias	DUAL123_0	DUAL123_1	
- Tile Location	GTPA1_DUAL_X1Y0	GTPA1_DUAL_X1Y0	
- MGT Link Status	2.5 Gbps	2.5 Gbps	
- Line Rate	2.5 Gbps	2.5 Gbps	
- PLL Status	LOCKED	LOCKED	
- Loopback Mode	Near-End PCS 💌	Near-End PCS 🔹	0
- DUAL Reset	Reset	Reset	
- TX Polarity Invert			
- TX Error Inject	Inject	Inject	
- TX Diff Output Swing	205 mV (0000) 💌	205 mV (0000) 🗸	J
- TX Pre-Emphasis	0 dB (000)	0 dB (000)	

Figure 5-14: IBERT Console for MGT/BERT Settings page 1 Window

- TX/RX Data Patterns are set to PRBS 7-bit then Click BERT Reset buttons.

After pressing the BERT Reset buttons the RX Bit Error Count becomes as shown.

1		ChipScope Pro A	nalyzer [example_ibert4]	- 🗆 🗙
File View JTAG Chain Device IBERT_S				
📰 💿 📑 🧭 📎 JTAG Scan Rate: 1s	▼ S!			
Project: example_ibert4	🞯 IBERT Console - DEV:1 MyDe	vice1 (XC6SLX45T) UNIT:1_0 MyIB	ERT S6 GTP1_0 (IBERT S6 GTP)	r" 🗗 🗵
- DEV:0 MyDevice0 (System_ACE_CF)	MGT/BERT Settings DRP	Settings Port Settings Swe	ep Test Settings	
Gle View JTAG Chain Device IBERT_3 Image: Strate Strate Image: Strate Strate Strate Image: Strate Strate Strate Image: Strate Strate Strate Image: Tage Strate Strate Image: Strate Strate Strate Image: Strate Strate Strate Image: Strate Image: Strate		GTPA1_DUAL_X1Y0_0	GTPA1_DUAL_X1Y0_1	
Ile View ITAG Chain Device IBERT_St Topocc Example, bert4 TAG Chain DEV:0 MUPerice0 (System, ACE, CF) DEV:1 MUPerice0 (CSSLX457) PU:MIPerice1	RA Polanty inven			
	- RX AC Coupling Enable	v	×.	
	- RX Termination Voltage	GND 💌	GND 💌	
	- RX Equalization	-0.3 dB (00)	-0.3 dB (00)	
	- RX Sampling Point	640.504 UI	640.504 UI	
	P BERT Settings			
	- TX Data Pattern	PRBS 7-bit	PRBS 7-bit	
Elle View _TAG Chain _Device IBERT_S TAG Chain	- RX Data Pattern	PRBS 7-bit	PRBS 7-bit	
	- RX Bit Error Ratio	2.996E-011	3.141E-011	
	- RX Received Bit Count	3.337E010	3.183E010	
	- RX Bit Error Count	0.000E000	0.000E000]
	BERT Reset	Reset	Reset	
View ITAG Chain Device IBERT_ View ITAG Scan Rate: Imen Imen Imen Imen Imen Imen Imen I	Clocking Settings			
	- TXUSRCLK Freq (MHz)	250.00	250.00	
	- TXUSRCLK2 Freq (MHz)	125.00	125.00	
	- RXUSRCLK Freq (MHz)	250.00	250.00	-
	11.1			

Figure 5-15: IBERT Console for MGT/BERT Settings page 2 Window

5.4 Performing Sweep Test Analysis

Sweep test is a tool in IBERT that can set up a channel test that sweeps through a variety of transceiver settings. The sweeping test is available only if you set the transceivers to one of the near-end or external loopack .In our settings for the previous step in dealing with ChipScope pro we applied near-end loopback.

The most important part in dealing with sweeping test that we become able to get several analysis aspects in detecting the performance of wireless channel using GTP transceivers which is compatible with our system.

In this part, we can get a log file which implies all the tested features mainly the bit error rate through a specified number of iterations inserted in the options of the sweep test panel settings .In the sweep test plot ,you can plot an eyediagram with a 2D scan to detect the troubleshooting and noise additives of the channel at the receiver side.

MGT/BERT Settings	DRP Settin	gs Port Setti	ngs Sweep T	est Settings			
GTPA1_DUAL_X1Y0_0((DUAL123_	0) GTPA1_DU	JAL_X1Y0_1(DUA	AL123_1)			
Parameter Settings							
Set Sweep	Params to (Current MGT Valu	ies	Clear All			Add/Remove Parameters
Paramete	r Name		Start	Value	End Va	lue	# of Values
IX Diff Swing		578	mV (0100)	•	578 mV (0100)	•	1
TX Pre-Emphasis 0.8 dB (IB (001)	•	0.8 dB (001)	v	1	
RX Eq		-0.3	dB (00)		5.4 dB (10)		3
			ight Edge 127 (1		Increment 1		Point Region: 127 (1.000 UI)
Test Controls	Pause		Reset	Log File S			Point Region: 127 (1.000 UI) well Time (sec.)
Test Controls Start Test Results			Reset			Iteration D	
Test Controls Start Test Results teration: 384 of 384	Pause	Stop 8	Reset	Log File Si dTime: 00 h 7 m 8 s	ettings	Iteration D	well Time (sec.)
Test Controls Start Test Results eration: 384 of 384 Current Sweep Result File	Pause	Stop 8	Reset	Log File Si dTime: 00 h 7 m 8 s	ettings	Iteration D	well Time (sec.)
Test Controls Start Test Results eration: 384 of 384 Current Sweep Result File	Pause e: C:Wilinx\1	Stop 8	Reset Elapset _rwan\lbert_rw\D	Log File S dTime: 00 h 7 m 8 s UAL123_1_sweep_res	ettings	Iteration D	well Time (sec.)
Test Controls Start Test Results eration: 384 of 384 urrent Sweep Result File RX Sampling Point	Pause e: C:\Xilinx\1 Link	4.7\projects\lbert	Reset Elapser _rwan\lbert_rwD # Errs	Log File S dTime: 00 h 7 m 8 s UAL123_1_sweep_res BER	ettings	Iteration D	well Time (sec.)
Test Controls Start Test Results eration: 384 of 384 current Sweep Result File RX Sampling Point 0 (0.000 UI)	Pause e: C:Wilinx\1 Link YES	4.7\projects\lbert # Bits 2113801860	Reset Elapse 	Log File Si dTime: 00 h 7 m 8 s UAL123_1_sweep_res BER 4.731E-010	ettings	Iteration D	well Time (sec.)
Test Controls Start Test Results reation: 384 of 384 Furrent Sweep Result File RX Sampling Point 0 (0.000 UI) 1 (0.008 UI)	Pause e: C:Willinx\1 Link YES YES	Stop 8 4.7\projects\Ubert # Bits 2113801860 2375208040	Reset Elapse 	Log File So dTime: 00 h 7 m 8 s UAL123_1_sweep_res BER 	ettings	Iteration D	well Time (sec.)
Test Controls Start Test Results teration: 384 of 384 Current Sweep Result File RX Sampling Point 0 (0.000 UI) 1 (0.008 UI) 2 (0.016 UI)	Pause e: C:Wilinx/1 Link YES YES YES	4.7\projects\\bert # Bits 2113801860 2375208040 2382117700	Reset Elapser _rwan\lbert_rwD # Errs 0 0 0	Log File S dTime: 00 h 7 m 8 s UAL123_1_sweep_res EER 4.731E-010 4.210E-010 4.138E-010	ettings	Iteration D	well Time (sec.)
Test Controls Start Test Results teration: 384 of 384 Current Sweep Result File RX Sampling Point 0 (0.000 UI) 1 (0.008 UI) 2 (0.016 UI) 3 (0.024 UI) 3 (0.024 UI)	Pause e: C:Wilinx/1 Link YES YES YES YES	4.7\projects\lbert # Bits 2113801860 2375208040 2374650160	Reset Elapset _wan\lbert_wD # Errs 0 0 0 0	Log File S dTime: 00 h 7 m 8 s ULAL 123_1_sweep_res EER 4.731E-010 4.120E-010 4.210E-010 4.210E-010	ettings	Iteration D	well Time (sec.)

Figure 5-16: IBERT Console for Sweep test Settings Window

Extracting the Log file from the "Log file setting" tab

→ → → → → →	DUAL123_1_sweep_result	; (1) (1) - Microsof	t Excel					- 0	_
Home Insert Page Layout Formulas Data Review	/ View							0 -	-
$\begin{array}{ccc} & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ &$		· ****	Conditional Format	Cell Ins	ert Delete Form	🚽 🗔 Fill	toSum * A	A Find &	
Format Painter			Formatting * as Table *			" 🖉 Cle	ear * Filter *		
Clipboard 5 Font 5	Alignment 5 Nu	mber 5	Styles		Cells		Editing		
A1 🔹 🧊 🏂 gt type									
A	В	С	D	E	F	G	H I	J	
gt type	IBERT S6 GTP								
device	XC6SLX45T								
sw version	14.7 P.20131013 (Build 14700.13.286.464)								
date	06/29/2016								
time	3:49 PM CEST								
voltage interval									
sweep test settings	RX Sampling Point	(127						
sweep test settings	TX Diff Swing	578 mV (0100)	578 mV (0100)						
sweep test settings	TX Pre-Emphasis	0.8 dB (001)	0.8 dB (001)						
sweep test settings	RX Eq	-0.3 dB (00)	5.4 dB (10)						
Iteration	Elapsed Time	TX Diff Swing	TX Pre-Emphasis	RX Eq	RX Sampl Lin	ik #E	Bits #Errs	BER	
1	00:00:1	578 mV (0100)	0.8 dB (001)	-0.3 dB (00)	0		97E+09	0 5.08E-10	
	00:00:2	578 mV (0100)	0.8 dB (001)	-0.3 dB (00)	1		.39E+09	0 4.19E-10	
3	00:00:3	578 mV (0100)	0.8 dB (001)	-0.3 dB (00)	2	1 2.	.38E+09	0 4.20E-10	
	00:00:4	578 mV (0100)		-0.3 dB (00)	3		.38E+09	0 4.20E-10	
-	00:00:5	578 mV (0100)		-0.3 dB (00)	4		.75E+09	0 5.72E-10	
	00:00:6	578 mV (0100)		-0.3 dB (00)	5		.38E+09	0 4.21E-10	
	00:00:7	578 mV (0100)		-0.3 dB (00)	6		.38E+09	0 4.20E-10	
	00:00:9	578 mV (0100)		-0.3 dB (00)	7		.38E+09	0 4.20E-10	
9	00:00:10	578 mV (0100)		-0.3 dB (00)	8	1 2.	.38E+09	0 4.21E-10	
10	00:00:11	578 mV (0100)		-0.3 dB (00)	9	1 2.	.38E+09	0 4.21E-10	
11	00:00:12	578 mV (0100)		-0.3 dB (00)	10	1 2.	.38E+09	0 4.21E-10	
12	00:00:13	578 mV (0100)	0.8 dB (001)	-0.3 dB (00)	11	1 2.	.37E+09	0 4.22E-10	
13	00:00:14	578 mV (0100)	0.8 dB (001)	-0.3 dB (00)	12	1 2	.38E+09	0 4.20E-10	

Figure 5-17: Log file Extracted from Sweep test panel

Chapter 6: Conclusion and Future Work

We can summarize our results and improvements as follows:

- Building the PHY and MAC layers of the system software in an optimized VHDL coding making use of the IP cores provided by Xilinix for Spartan-6 to make a top level module for a VLC transmitter and receiver.
- Providing hardware design and implementation for the transmitter and receiver circuits working with UART serial communications protocol that can support relatively acceptable speeds and only requires connecting the Ethernet TEMAC with UART instead of GTP which we tried implementing during the last duration of the project in order to show the hardware in a working state. In addition to the main hardware of the PCBs implemented with the SMA sockets that require small modification to work with the high frequencies and low voltage levels that we moved through more than one approach to solve it
- An application layer in the form of a monitoring system ready to output some channel parameters after setting it.

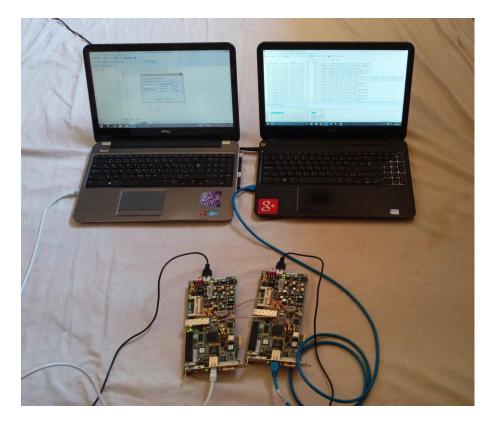


Figure 6-1: Final System Setting

To sum up, providing high data rate Internet access, VLC channel enhancement and creating a software application to monitor the system performance are the main features of the project's second phase.

Internet access over visible light communication has been a trend in research and development. And we believe this prototype and our work flow will become an important milestone for future enhancements that could be:

- Integrating the prototype in a more practical handheld hardware.
- Creating a multiuser environment (using RGB and a multiple access technique).

- Including mobile phone users, which is an important deliverable as Internet is commonly used by mobile devices more than PCs due to the great and fast development in smart phones and tablets which made Apple consider it in its future versions of Iphone. But can be implemented on a simpler scale we searched in this track to add it to our system and found out that there are light sensors that can be used with relatively high frequencies rather than the camera that can detect only low frequencies. Such sensors can be connected using the headphone jack as shown in the image below. This requires a quite good knowledge of Android or IOS system to modify on the default Internet access technique using either Wifi or Mobile data.

Figure 6-2: Visible light sensor through headphone jack

References

- [1] http://spectrum.ieee.org/telecom/internet/lifi-gets-ready-to-compete-with-wifi.
- [2] https://en.wikipedia.org/wiki/Li-Fi#History.
- [3] http://luxreview.com/article/2016/02/breaking-apple-set-to-add-lifi-capability-toiphone.
- [4] http://www.lifi-lab.com/lifi/lifi-vlc-analisi-2014-2020.html.
- [5] http://www-inst.eecs.berkeley.edu/~cs150/sp10/Collections/ChipScope.pdf.
- [6] http://www.xilinx.com/products/intellectual-property/axi_interconnect.html.
- [7] http://www.xilinx.com/support/documentation/boards_and_kits/ug525.pdf.
- [8] www.eeherald.com/section/design-guide/esmod12.html.
- [9] http://www.xilinx.com/support/documentation/ip_documentation/s6_gtpwizard/v1_ 11/ug546_s6_gtpwizard.pdf.
- [10] https://en.wikipedia.org/wiki/SMA_connector.
- [11] http://www.xilinx.com/support/documentation/sw_manuals/xilinx14_4/chipscope_ pro_sw_cores_ug029.pdf.
- [12] http://www.xilinx.com/support/documentation/sw_manuals/xilinx13_1/ug811_Chi pScopeUsingIBERTwithAnalyzer.pdf.
- [13] http://www.xilinx.com/support/documentation/ip_documentation/chipscope_ibert_s partan6_gtp.pdf.