
  
 

 

 

 

 

 

 LTE-UE-L1-Processing-On-Parallela 

 

 

By 

Basma Magdy Hussien Ali 

Dina Magdy Mohamed Mohamed 

Omayma Gomaa Abdelazem 

Somaia Hussien Rashad Mohamed 

 

 

A Thesis submitted to the 

Faculty of Engineering at Cairo University 

In partial fulfilment of the requirements 

For the Degree of Bachelor of Science in  

ELECTRONICS AND ELECTRICAL COMMUNICATION 

ENGINEERING  

 

FACULTY OF ENGINEERING, CAIRO UNIVERSITY 

GIZA, EGYPT 

2016 

 



ii 
 

LTE-UE-L1-Processing-On-Parallela 

By 

Basma Magdy Hussien Ali 

Dina Magdy Mohamed Mohamed 

Omayma Gomaa Abdelazem 

Somaia Hussien Rashad Mohamed 

 

Under the Supervision of 

 Dr. Ahmed Hesham  

 Dr. Hassan Mostafa   

A Graduation Project Report Submitted to  

the Faculty of Engineering at Cairo University 

In Partial Fulfillment of the Requirements for the 

Degree of 

Bachelor of Science 

in 

Electronics and Communications Engineering 

Faculty of Engineering, Cairo University 

Giza, Egypt 

July 2016 

  



iii 
 

Table of Contents 

List of Tables ......................................................................................................... viii 

List of Figures .......................................................................................................... ix 

List of Symbols and Abbreviations ........................................................................... xi 

Acknowledgments ................................................................................................... xii 

Abstract .................................................................................................................. xiii 

Chapter 1: Introduction.......................................................................................... 0 

1.1 Problem Definition ...................................................................................... 0 

1.2 Problem Solution with Project Provides....................................................... 2 

1.3 Requirements .............................................................................................. 3 

1.4 Project Vision.............................................................................................. 3 

Chapter 2: Parallella .............................................................................................. 4 

2.1 Overview .................................................................................................... 4 

2.2 Parallella System Architecture ..................................................................... 6 

2.2.1 Zynq Memory Map .............................................................................. 6 

2.2.2 Epiphany Memory Map ........................................................................ 7 

2.3 Parallella Features Description .................................................................... 8 

2.3.1 CPU ..................................................................................................... 8 

2.3.2 Epiphany Coprocessor .......................................................................... 9 

2.3.3 SDRAM ..............................................................................................10 

2.3.4 LED Indicators ....................................................................................10 

2.3.5 Serial Port ...........................................................................................11 

2.3.6 Powering the Board .............................................................................11 

2.4 Parallella Start & Booting...........................................................................11 

Chapter 3: Epiphany SDK ....................................................................................14 

3.1 Introduction ................................................................................................14 

3.1.1 SDK (Software Development Kit) Overview .......................................14 



iv 
 

3.1.2 Epiphany Memory Model ....................................................................15 

3.1.3 Epiphany Programming Framework ....................................................16 

3.2 Building SDK ............................................................................................17 

3.2.1 Building Steps .....................................................................................17 

3.2.2 Building check ....................................................................................19 

3.3 Epiphany SDK Tool chain ..........................................................................20 

3.3.1 C/C++ Compiler (E-GCC) ..................................................................20 

3.3.2 Linker (E-LD) .....................................................................................21 

3.3.3 Instruction Set Simulator (E-Run) .......................................................23 

3.3.4 Debugger (E-GDB) .............................................................................24 

3.3.5 Hardware Connection Server (E-SERVER) .........................................27 

3.4 Epiphany SDK utilities (E-UTILS) .............................................................28 

3.4.1 Introduction.........................................................................................28 

3.4.2 Reset Utility (E-RESET) .....................................................................29 

3.4.3 Loader Utility (E-LOADER) ...............................................................29 

3.4.4 Memory Read Utility (E-READ) .........................................................30 

3.4.5 Memory Write Utility (E-WRITE) ......................................................30 

3.5 Epiphany Hardware Utility Library (e-Lib) ................................................31 

3.6 Epiphany Host Library (eHAL) ..................................................................32 

Chapter 4: Frame Structure ...................................................................................33 

4.1 Introduction ................................................................................................33 

4.2 Frame Structure Type 1 ..............................................................................35 

4.3 Frame Structure Type 2 ..............................................................................39 

4.4 Downlink Frame Structure .........................................................................42 

4.5 Uplink Frame Structure ..............................................................................43 

Chapter 5: Fixed Point Representation ..................................................................45 

5.1 Motivation..................................................................................................45 



v 
 

5.2 Ways of Fixed Point Representation ...........................................................46 

5.2.1 Sign/magnitude ...................................................................................46 

2.5.5 One's complement ...............................................................................46 

5.2.3 Two's complement ..............................................................................47 

5.3 Q-Format number representation ................................................................47 

5.4 Converting Floating Point to Fixed Point Example .....................................49 

Chapter 6: Scrambler ............................................................................................51 

6.1 Introduction ................................................................................................51 

2.5 Implementation ways: ................................................................................52 

Chapter 7: Modulation & Precoder .......................................................................58 

7.1 Introduction:...............................................................................................58 

7.1.1 QPSK ..................................................................................................59 

7.1.2 16QAM ...............................................................................................59 

3.1.7 64QAM ...............................................................................................60 

7.2 Implementation Ways.................................................................................60 

7.3 Precoder .....................................................................................................62 

Chapter 8: DFT ....................................................................................................64 

8.1 Introduction ................................................................................................64 

8.2 Implementation way ...................................................................................64 

8.2.1 Theory and Output Generated Signals .................................................64 

8.2.2 Error Measurement Ways ....................................................................68 

8.2.2.1 Comparing the Constellations ................................................................... 68 

8.2.2.2 Calculating SNR ........................................................................................ 69 

8.2.2.3 Calculating EMV ....................................................................................... 70 

8.3 IFFT ...........................................................................................................70 

Chapter 9: Hardware Prototype ............................................................................73 

9.1 Motivation..................................................................................................73 

9.2 FreeRTOS ..................................................................................................73 



vi 
 

9.2.1 Background .........................................................................................73 

9.2.2 Problem formulation ...........................................................................74 

9.2.3 Message ..............................................................................................75 

9.2.4 Message-passing between Cores..........................................................75 

9.2.4.1 FreeRTOS Queues .................................................................................... 76 

9.2.4.2 Creating the Message Box ........................................................................ 77 

9.2.4.3 Mutual Exclusion ..................................................................................... 78 

9.2.5 Simulation ...........................................................................................78 

9.2.6 Hardware ............................................................................................79 

9.3 ARM Cross Compiler .................................................................................79 

9.4 Hello world on epiphany core .....................................................................80 

9.4.1 Introduction.........................................................................................80 

9.4.2 Implementation ...................................................................................80 

9.4.3 Results: ...............................................................................................82 

9.5 Test Functionality of Communication Blocks .............................................82 

9.5.1 Introduction.........................................................................................82 

9.5.2 Modulation block ................................................................................82 

9.5.3 Scrambler & DFT Blocks ....................................................................83 

9.6 Optimization Levels ...................................................................................84 

9.6.1 Introduction.........................................................................................84 

9.6.2 Running each Block on Single Core ....................................................84 

9.6.3 Running all Blocks on 12-core in parallel ............................................84 

Conclusion ...............................................................................................................86 

Future Work .............................................................................................................87 

References ................................................................................................................88 

Appendix I Supported Tutorials .............................................................................90 

Appendix II ..............................................................................................................91 

Appendix III Budget ........................................................................................... 116 



vii 
 

  



viii 
 

List of Tables 

 

Table 1-1: Comparison between different systems architecture and epiphany system  4 

Table 2-1: Parallella Feature Summary ...................................................................... 5 

Table 2-2: Zynq Memory Map .................................................................................. 8 

Table 2-3: Epiphany Memory Map ............................................................................ 9 

Table 3-1: General Compiler Options .......................................................................51 

Table 3-2: Optimization Options ..............................................................................51 

Table 3-3: Memory Management Scenarios ..............................................................24 

Table 3-4: Linker Sections ........................................................................................24 

Table 3-5: Simulator Command Line Options...........................................................22 

Table 3-6: Debugger Command Line Options...........................................................28 

Table 3-7: eServer Command Line Options ..............................................................29 

Table 3-8: Loader Command Line Options ...............................................................73 

Table 3-9: e-read Command Line Options ................................................................71 

Table 3-10: e-write Command Line Options .............................................................75 

Table 4-1:  Frame units V.S. their times ...................................................................32 

Table 4-2: Cyclic Prefix Types V.S Lengths .............................................................33 

Table 4-3: Subcarriers , Resource blocks corresbonding to the B.W .........................39 

Table 4-4: Open Source LTE survey  ........................................................................45 

Table 7-1: The number of bits corresbonding to each modulation scheme.................23 

Table 7-2: QPSK modulation mapping .....................................................................63 

Table 7-3: 16-QAM modulation mapping .................................................................61 

Table 8-1: IFFT Sizes Corresponding to each B.W ...................................................75 

 

  

 

  

 

  

 

  

 



ix 
 

List of Figures 

Figure 1-1: CDMA voice call vs. VoIP. ..................................................................... 2 

Figure 2-1: Parallella board (top view). ..................................................................... 6 

Figure 2-2: Parallella board (bottom view). ............................................................... 6 

Figure 2-3: Zynq connectivity diagram. ..................................................................... 7 

Figure 2-4: Parallella accessories ..............................................................................12 

Figure 2-5: Login in Parallella ..................................................................................13 

Figure 3-1: Epiphany SDK. ......................................................................................14 

Figure 3-2: Epiphany Program build flow. ................................................................17 

Figure 3-3: Simulate Hello-World simple code .........................................................19 

Figure 3-4: The eServer Client-Target Connection Concept. .....................................27 

Figure 4-1: PUSCH Bit Processing Chain. ................................................................33 

Figure 4-2: PUSCH Symbol Processing Chain. ........................................................33 

Figure 4-3: FDD Frame Structure Type 1. ................................................................35 

Figure 4-4: Uplink resource grid. ..............................................................................36 

Figure 4-5: LTE FDD Frame of 1.4 MHz, Normal CP. .............................................38 

Figure 4-6: TDD Frame Structure type 2    ...............................................................38 

Figure 4-7: LTE resource grid for FDD    . ...............................................................41 

Figure 4-8: LTE Uplink Subframe 2-3 of 5 MHz, Normal CP    . ..............................44 

Figure 5-1: Progress of implement the codes of blocks to generate test cases ............48 

Figure 5-2: Showing How the conversion of floating point to fixed point happens. ...51 

Figure 6-1: The output From Scrambler Code Versus Test cases. .............................57 

Figure 7-1: Signal constellations for: (a) QPSK; (b) 16QAM; (c) 64QAM. ...............60 

Figure 7-2: The output From Modulation Code Versus Test case. .............................64 

Figure 8-1: shows the DFT/IDFT reference design blocks. .......................................65 

Figure 8-2: The output from DFT code versus test cases. ..........................................68 

Figure 8-3: constellation plot of test case of modulated signals. ................................68 

Figure 8-4: constellation plot of IFFT of test case DFT signals. ................................69 

Figure 8-5: Difference between case 1 and case 2. ....................................................69 

Figure 8-6: Localized Mapping V.S. Distributed Mapping. .......................................72 

Figure 9-1: State diagram of FreeRTOS tasks [12]....................................................74 

 Figure 9-2: Hello-world with ARM cross compiler. .................................................80 

 



x 
 

Figure 9-3: The way to Implement code on single core on parallella . .......................82 

Figure 9-4: The way to Implement code on single core on parallella. ........................83 

Figure 9-5: First modulation output and time consumption . .....................................83 

Figure 9-6: First scrambler output and time consumption . .......................................83 

Figure 9-7: First DFT output and time consumpion . ................................................85 

Figure 9-8: First output and time of each block and over all time of application . ......85 

Figure 9-9: First DFT output and over all time of application . .................................85 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



xi 
 

 

List of Symbols and Abbreviations 

 

                                                                                       

  

 

 

  

LTE The Long-Term Evolution   

3GPP the Third Generation Partnership Project 

GPP general purpose processor 

VOLTE voice over LTE 

NoC Network-on-Chip 

UE User Equipment 

L1 Physical Layer 

SDK Software Development Kit 
PUSCH
scM

   

  

Scheduled bandwidth for uplink transmission, expressed as a 

number of subcarriers 

PUSCH
RBM  Scheduled bandwidth for uplink transmission, expressed as a 

number of resource blocks 

Qm  

 

Modulation order: 2 for QPSK, 4 for 16QAM and 6 for 64QAM 

transmissions 

PUSCH Physical Uplink Shared Channel 

RB Resource Block 

CP Cyclic Prefix 

MIMO Multi Input Multi Output 

PA Power Amplifier 



xii 
 

Acknowledgments 

 

First of all, we would like to express our deep sense of respect and gratitude towards 

our advisors and guides DR. Ahmed Hesham and DR. Hassan Mostafa for their 

continuous support, advice, and guidance throughout our work. 

We are grateful to AXXCELERA EGYPT for supporting some of Graduation Projects 

for the first year. 

Next, we want to express our respects to Eng. Mohamed Taha, Eng. Karim Osama, 

Eng. Wael Elbreqy, and other Technical References from AXXCELERA EGYPT for 

their great effort support. 

 

Great thanks to our parents who support us with their valuable patience and love. 

  

mailto:wael.elbreqy@axxceleraegypt.com
mailto:wael.elbreqy@axxceleraegypt.com


xiii 
 

Abstract 

 

As the ubiquitous wireless communication devices consume a lot of processing power, 

therefore we need to decrease the power consumed by LTE processing units in UEs, 

also decrease the development time while increasing the throughput the thing that 

maximize the performance. 

The main purpose of that project is to compare experimentally between the power 

consumption of general purpose processor (GPP) such as Parallella platform and Digital 

Signal processor (DSP). 

The experimental results are collected from Parallella board containing epiphany 

system of 16 cores and compared with past results found in literature regarding DSP’s 

used in communication applications. The results show that the Parallella board 

consumes 92 % less power than the DSP. 

Therefore, we can consider Parallella platform as a good prototype which minimize 

power consumption and achieve high performance. 

In this documentation we can find the illustration of each block of symbol chain and all 

experiments which have been done to achieve high level of optimization such as power 

and time optimization.



 
 

1 
 

Chapter 1: Introduction 

1.1 Problem Definition 

We can say we have enormous mobile data revolution, to adapt the mass-market expansion of 

smart phones, tablets, notebooks, and laptop computers. This great growth in data mobile services 

and applications such as Video streaming, social networking and Web browsing, will develop the 

next generation of wireless standards and also becomes a very great force for the development. As 

a result, new standards are evolved to provide network capacity and data rates necessary to support 

worldwide delivery of these types of rich multimedia application.  

 

Nowadays, it is important to understand how cellular systems have developed and also to 

understand the mobile-communication systems, its complexity and from where they came. The 

task of developing mobile technologies has also changed, from regional or national concern, to 

become an increasingly complex task controlled by the global organizations for developing 

standards such as the ”3GPP” (Third Generation Partnership Project) and involving thousands of 

people. 

 

Mobile communication technologies have a lot of generations, started from 1G which is analog 

mobile radio system, 2G which is considered the first digital mobile system, and 3G which is the 

first mobile system used to handle the broadband data. And finally The LTE (Long-Term 

Evolution) and it’s commonly called “4G”, but actually it’s 3.9G and the upgrade of it is called 

LTE-Advance and it’s actually the 4G. This continuing race of increasing sequence numbers of 

mobile system generations is in fact just a matter of labels. 

 

LTE and LTE-Advanced have been developed to realize the goal of achieving global broadband 

mobile communications and to respond to the requirements of this area. The objectives and goals 

of this developed system include higher radio access data rates, improved system capacity and 

coverage, flexible bandwidth operations, significantly improved spectral efficiency, low latency, 

reduced operating costs, multi-antenna support, and seamless integration with the Internet and 

existing mobile communication systems. 



 
1 

 

So as obvious LTE phones are fast, but the battery is sucked quickly in just some few hours, based 

on some studies made by Nokia Siemens Networks, they found that LTE devices consume from 5 

percent to 20 percent more than previous-generation phones, and also it depends on the used 

application. In Samsung Galaxy Nexus’ review, they found that the Google Navigation running 

over the LTE network ate battery power faster than the Nexus’ car charger could restore it [34]. 

 

Every mobile carrier wants to replace their old voice services with new VoIP-based systems 

utilizing their 4G networks, but it looks like they’ve got some big kinks to iron out in the 

technology first. Wireless testing and measurement vendor Spirent Communications has identified 

a big problem with voice over LTE (VoLTE): it consumes twice as much power as a traditional 

2G call, which could have big implications for mobile phone battery life. 

Metrico Wireless, a radio field testing company Spirent acquired in September, conducted voice 

trials on a commercial VoLTE-enabled network in two U.S. cities, comparing the power 

consumption of VoIP calls made over LTE against the power used by the same carrier’s CDMA 

systems as shown on Figure (1-1) [33]. 

 

 
Figure 1-1: CDMA voice call vs.VoIP 

 

It’s important to know why LTE is considered battery killer, the first reason is Phones with LTE 

has rabbit ears, All LTE devices sold today use a technology called MIMO, which doesn’t just 

send or receive a single signal, but rather multiple parallel transmissions. Today’s devices support 

two such paths – future devices will support more — which means each phone has two antennas, 

http://www.spirent.com/About-Us/News_Room/Press-Releases/2012/2012_09_06_News_Announcement


 
2 

 

each of which requires its own power amplifier. Another reason for LTE to be greedy that LTE 

devices are co-dependent. Phone screen may be dark, but phone is constantly pining for the 

network. That means it’s periodically scans the airwaves around it to determine which tower it 

should tether itself to. The more networks there are to choose from the more scans it must make. 

With the typical operator sporting some combination of GSM, HSPA, CDMA and EV-DO systems 

—often multiple version of each in different frequency bands — there are a lot of other networks 

for an LTE device to flip between. 

So the major ultimate goal of LTE L1 processing in UEs is to provide maximum performance 

while consuming minimal power. A lot of platforms are optimized to achieve this goal but there 

still some challenges in this area, like achieving 64QAM while minimizing the processing power. 

 

1.2 Problem Solution with Project Provides 

Implementing LTE UE-L1 processing on a system with many-cores general-purpose processors 

(GPP) will decrease both the cost and development time, plus it is eco-friendlier as it will consume 

less power than the complex DSP processors using now in implementing LTE.  

To evaluate implementing LTE UE-L1 processing on GPP platform, we introduce the Epiphany 

system which consists of GPP clustered in a Network-on-Chip (NoC) that range from 4x4 to 64x64 

cores. The Epiphany combines fully-featured floating point C/C++ programmable RISC 

processors, as each core has separate CPU, each CPU can run a separate and independent program 

(MIMD not SIMD). 

 Epiphany introduces a high bandwidth distributed memory system, a low latency Network-On-

Chip, and low overhead off-chip IO to bring an unprecedented level of processing to power 

constrained systems. Table (1-1) below show comparison between Architecture Comparison of 

different systems and epiphany systems. 

 

 

 

 

 



 
3 

 

Table 1-1: comparison between different systems architecture and epiphany systems. 

Technology FPGA  DSP Epiphany  

Process 28nm 40nm 28nm 

Programming VHDL OCL/C++/C OCL/C++/C 

Area (mm^2) 590 108 10 

Chip Power (W) 40 22 2 

Compile Time Hours Minutes Minutes 

L1 Memory 6MB 512KB 2MB 

1.3 Requirements  

It is required to evaluate the feasibility of implementing one of the LTE UE-L1 (R10) data 

processing chains (PDSCH or PUSCH) on the Epiphany system represented by parallella platform 

which consist of 16 epiphany co-processors.  

The following steps are required to achieve this:  

1-Study the LTE UE-L1 system (PDSCH and/or PUSCH), and choose a design that would 

maximize parallelization gain. 

2-Choose the blocks that will be implemented. 

3-Implement C code for these blocks as processing kernels. 

4-Port these kernels as jobs for the processing cores on the HW platform. 

5-Synchronize between those jobs running on different cores. 

6-Implement a testing mechanism that would involve LTE transmission on wire (Ethernet).  

1.4 Project Vision 

The vision of the company on the long term to use the platform prototype as a complete transmitter 

of LTE system using min power and with high rate. That low power consumption will help in the 

far places which is hard to be supported by huge amount of power ex the submarines in petroleum 

field where I need to coverage it with efficient communication system, low power consumption 

and far periodic maintenance planning (cost). 

  



 
4 

 

Chapter 2: Parallella 

2.1 Overview 

Parallella board is a high performance computing platform based on a dual-core ARM-A9 Zynq System-On-

Chip and Adapteva’s Epiphany multicore coprocessor. 

Current commercially available models Table (2-1): 

 

Table 2-1: Parallella Feature Summary 

Model            P1600                            P1601                                     P1602 

Mnemonic       “Microserver”           “Desktop”            “Embedded” 

 
    Host 
Processor 
 

  
Xilinx Zynq Dual-core ARM A9 

                           XC7Z010 

 
Xilinx Zynq Dual-core ARM A9  
                  XC7Z020 

 
Coprocessor 

 
Epiphany 16-core CPU 

                                                         E16G301 

Memory                                                      1 GB DDR3 

Ethernet                                                    Gigabit Ethernet 

Boot Flash                                                  128Mb QSPI Flash 

Power                                                        5V DC 

Storage                                                     Micro-SD 

USB               No                              USB 2.0 Host Port 

HDMI               No                                 Micro HDMI 

GPIO Pins                0                24                      48 

    eLink 
Connectors 

               0                 2                       2 

FPGA 
Logic 

28K Logic Cells 
80 DSP Slices 

28K Logic Cells 
80 DSP Slices 

80K Logic Cells 
220 DSP slices 

Weight  1.3 oz (36 grams)                       1.4 oz (38 grams) 

Size                    3.5″ x 2.1″ x 0.625″ (90mmx55mmx18mm) 

SKU   P1600-DKxx     P1601-DKxx     P1602-DKxx 

  HTS Code 
(Schedule B ) 

  8471.41.0150     8471.41.0150     8471.41.0150 



 
5 

 

 
Figure 2-1: Parallella Board (top view) 

 

 

Figure 2-2: Parallella Board (bottom view) 



 
6 

 

 

Figure 2-3: Zynq connectivity Diagram 

2.2 Parallella System Architecture 

2.2.1 Zynq Memory Map 

Table (2-2) shows the hard-coded memory architecture of the Zynq architecture most relevant to 

the Parallella architecture. 

 

 



 
7 

 

 
Table 2-2: Zynq memory map 

Address Start         Address End                 Size                    Function                    Note 

0x0010_0000 0x3FFF_FFFF 1GB DRAM Accessible to all 
interconnect 

masters 
0x4000_0000 0x7FFF_FFFF 1GB PL Custom logic address 

range 
0x8000_0000 0xBFFF_FFFF 1GB PL Epiphany address 

range 
0xFC00_0000 0xFCFF_FFFF 16MB FLASH Quad-SPI linear 

address for linear 
mode 

 
0xFFF0_0000 0xFFFF_FFFF 252KB OCM OCM upper address 

range 
 

The ARM communicates with programmable logic, GPIO connected to the programmable logic, 

and the Epiphany by accessing the memory ranges shown in the table.   

The Epiphany 32-bit memory space is mapped into the Zynq memory space allowing for easy 

sharing of data and resources between the ARM and the Epiphany. The Epiphany address range is 

a matter of convention and depends on the appropriate AXI master and slave interfaces being 

implemented within the programmable logic on the Zynq.  

2.2.2 Epiphany Memory Map 

The Epiphany chip is situated within a 1GB section within the Zynq host processor memory map. 

The offset within the 1GB space occupied by an Epiphany coprocessor is set by the ROWID and 

COLID pins on the Epiphany chip. The ROWID and COLID can be individually set on boards 

through the PEC_POWER connector enabling direct board to board connection through the 

PEC_NORTH and PEC_SOUTH connectors. By default, the address locations of the Epiphany 

cores on Parallella-16 are as shown in Table (2-3). 

 

 

 

 

 



 
8 

 

Table 2-3: Epiphany memory map 

     Core Number                  Start Address                End Address                       Size 

(32,8) 80800000 80807FFF 32KB 

(32,9) 80900000 80907FFF 32KB 

(32,10) 80A00000 80A07FFF 32KB 

(32,11) 80B00000 80B07FFF 32KB 

(33,8) 84800000 84807FFF 32KB 

(33,9) 84900000 84907FFF 32KB 

(33,10) 84A00000 84A07FFF 32KB 

(33,11) 84B00000 84B07FFF 32KB 

(34,8) 88800000 88807FFF 32KB 

(34,9) 88900000 88A07FFF 32KB 

(34,10) 88A00000 88A07FFF 32KB 

(34,11) 88B00000 88B07FFF 32KB 

(35,8) 8C800000 8C807FFF 32KB 

(35,9) 8C900000 8C907FFF 32KB 

(35,10) 8CA00000 8CA07FFF 32KB 

(35,11) 8CB00000 8CB07FFF 32KB 

 

2.3 Parallella Features Description 

2.3.1 CPU 

The central processor on the Parallella board is the Zynq™-7000 AP SoC. The Zynq represents a 

new class of processor product which combines an industry-standard ARM® dual-core 

Cortex™-A9 MPCore™ processing system with Xilinx 28nm programmable logic. The Zynq 

SoC includes the following set of features:  

Dual-core ARM® Cortex™-A9 CPU:  

 Coherent multiprocessor support. 

 ARMv7-A architecture. 

 32 KB Level 1 4-way set-associative instruction/data caches (independent for each CPU). 

 512 KB 8-way set-associative Level 2 cache shared between CPUs. 

 TrustZone® security. 

 Jazelle® RCT execution Environment Architecture. 

 NEON™ media-processing engine. 

 Single and double precision Vector Floating Point Unit (VFPU).  

 CoreSight™ and Program Trace Macrocell (PTM). 



 
9 

 

 Three watchdog timers, one global timer, two triple-timer counters. 

I/O Peripherals and Interfaces: 

  10/100/1000 tri-speed Ethernet MAC peripherals GMII, RGMII, and SGMII interfaces. 

  Two USB 2.0 OTG peripherals. 

  Two full CAN 2.0B compliant CAN bus interfaces. 

  Two SD/SDIO 2.0/MMC3.31 compliant controllers. 

  Two full-duplex SPI ports with three peripheral chip selects. 

  Two high-speed UARTs (up to 1 Mb/s). 

  Two master and slave I2C interfaces. 

  8-Channel DMA Controller with scatter/gather capability. 

  JTAG port for ARM debugging and FPGA programming. 

  12-bit ADC input. 

  On-chip voltage and temperature sensing.  

Programmable Logic: 

  LVCMOS, LVDS, and SSTL signaling with 1.2V to 3.3V IO. 

  Easily accessible from ARM cores through AXI bus (master or slave). 

  Up to 125 programmable IO pins (Z-7020). 

  Up to 85K programmable logics cells (Z-7020). 

  Up to 560 KB distributed RAM (Z-7020). 

  Up to 220 DSP slice and (Z-7020). 

2.3.2 Epiphany Coprocessor 

The Parallella-16 includes the E16G301 device with 16 CPU cores and the Parallella-64 includes 

the E64G401 device with 64 CPU cores. Both devices have the following basic features:   

Epiphany Core (eCore):  

 32-bit dual-issue superscalar RISC architecture. 

 Quad-bank 32KB local single cycle access memory. 

 Floating point instruction set (IEEE754). 

 64-entry register file. 

 Dual channel DMA engine. 



 
10 

 

 Two 32-bit timers. 

 Nested interrupt controller. 

 Memory protection unit. 

 Debug unit. 

 

Network-On-Chip (eMesh):  

  Three separate networks:  

o rMesh for read transactions 

o xMesh for off-chip write transactions 

o cMesh for on-chip write transactions  

  “API-less” network that processes regular load/store transactions. 

  All transactions are complete and atomic 104 bit transactions (32-bit address, 64-bit data, 

and 8 control bits). 

  Around robin arbitration at every mesh node. 

  Mesh network extends off chip enabling glue-less multi-chip design. 

 

Chip-To-Chip Links (eLink): 

 North, east, west, south links for connecting to other Epiphany chips, FPGAs, or ASICs. 

 Source synchronous LVDS links with transmit clock aligned in the middle of the data eye. 

 Dual data rate communication (positive and negative edge transfers).  

 Max transfer of 2 bytes transferred in and out simultaneously per link per clock cycle. 

 Automatic bursting for sequential 64-bit write transactions. 

 

2.3.3 SDRAM 

1GB 32-bit wide DDR3L SDRAM. 

2.3.4 LED Indicators 

 A green LED controlled by the Zynq GPIO pin.  

 A red LED controlled by the Epiphany flag pin. 



 
11 

 

 Two LEDs on the RJ45. The left LED indicates link speed. (amber=1Gb, green=100Mb, 

off=10Mb). The right indicates that there is activity on the port. 

2.3.5 Serial Port 

A three-pin header for 3.3V UART output from the Zynq. 

2.3.6 Powering the Board 

The Parallella should be powered through a stable 5V/2A power supply. Current consumption for 

the Parallella board can be as low as 0.3A but can reach 1.5A when fully loaded. 

 

2.4 Parallella Start & Booting 

 

Figure 2-4: Parallella accessories  

 

Step1: Ensuring the required accessories 

 A high quality 2000mA rated 5V DC power supply with 5.5mm OD / 2.1mm ID center 

positive polarity plug.  

 An Ethernet cable. 

 A fan.  

 A micro HDMI to HDMI cable (not needed for headless option as in our project).  

 A USB male Micro-B to female Standard-A cable (not needed for headless option as in 

our project). 

Step 2: Creating a bootable micro-SD card 

 Using “SDFormatter” program to format SD card. 



 
12 

 

 Using “Win32DiskImager” program to boot Ubuntu image onto SD card 

 Another way follows [1]. 

Step 3: Familiarizing with known issues 

 The board does get hot so we have to take precautions to cool the board properly. Before 

letting the board run for hours, we must ensure that the board doesn’t overheat. (Preferably 

by using the ‘xtemp’ utility script exists on board)  

 Boards used without a fan must be placed vertically.  

 The Parallella is sensitive to static discharge and must be handled appropriately. 

Step 4: Connect peripherals, fit the heat-sink and apply power  

   

  Connect the cables as indicated by #1, 4 in Figure (2-4)  

 Attach a heatsink to the Zynq device using double face sticker shipped with board as 

indicated by #5 in Figure (2-4)  

  Make sure a fan is directed at the board if required. A fan is required when using the 

small heatsink.  

 Monitor the temperature using a utility such as xtemp, and keep the chip temp below 70 

degrees Celsius.  

  Apply power as indicated by #6 in Figure (2-4). 

Step 5: Connect between PC and Board 

Option 1:   Connecting using UART cable. 

Option 2: Connecting by opening session with board using (ssh parallella@ip) command as we 

have used in our work. 

 

 

 

 



 
13 

 

Step 6: Build and run a program  

The system will boot and a login screen will appear.  

Login with the username parallella and password parallella. 

 

Figure 2-5: Login in parallella board 

  



 
14 

 

Chapter 3: Epiphany SDK 

3.1 Introduction 

3.1.1 SDK (Software Development Kit) Overview 

The Epiphany™ architecture defines a multicore, scalable, shared-memory computing fabric. It 

consists of a 2D array of mesh compute nodes connected by a low-latency mesh network-on-chip. 

The Epiphany Software Development Kit (eSDK) is a state-of-the art software development 

environment targeting the Epiphany multicore architecture. The eSDK is based on standard 

development tools including an optimizing C-compiler, functional simulator, debugger, and 

multicore integrated development environment (IDE). The eSDK enables out-of-the-box 

execution of applications written in regular ANSI-C and does not require any C-subset, language 

extensions, or SIMD style programming. The unparalleled energy efficiency of the Epiphany 

architecture and the ease of use and fine grain control of the eSDK offer developers best-in-class 

capabilities for the most demanding real-time applications. The Epiphany SDK framework is 

illustrated in Figure (3-1) and contains the following key components:  

 Optimized ANSI-C compiler (based on gcc).  

 Robust multicore Eclipse IDE (on selected platforms “doesn’t exist on our platform).  

 Multicore debugger (based on gdb). 

 Multicore communication and hardware utility libraries.  

 Fast functional simulator with instruction trace capability. 

 

Figure 3-1: Epiphany SDK 

 



 
15 

 

3.1.2 Epiphany Memory Model 

The Epiphany cores have access to two types of memory. Both types can be accessed directly [6]. 

 Internal Memory 

Size: 32KB (0x8000) per core 

Location in address space: 

 0x00000000 - 0x00007fff when a core is referring to its own memory. 

 0xXXX00000 - 0xXXX07fff when referring to the memory of any other core. The 

XXX indicate the core. 

Terminology: 

 Internal memory. 

 eCore memory. 

 SRAM or Static RAM. Not to be confused with Shared memory. 

Usage: 

 Program code, starting at lower addresses. 

 Program data (global variables), starting at lower addresses after code. 

 Stack (local variables), starting at 0x8000 expanding downwards. 

 

 External Memory 

Size: 32 MB (0x02000000) 

Location in address space: 

 0x8e000000 - 0x8fffffff  

Terminology: 

 External memory 

 Shared memory 

 DRAM or Dynamic RAM 

 SDRAM or Shared DRAM 

Usage: 



 
16 

 

 Location: 0x8e000000 - 0x8effffff 

Size: 0x01000000 (16 MB) 

Contents: newlib (the C library, with code, data, stack) 

 Location: 0x8f000000 - 0x8fffffff 

Size: 0x01000000 (16 MB) 

Contents: 

 Location: 0x8f000000 - 0x8f7fffff 

Size: 0x00800000 (8 MB) 

Section label: shared_dram  

Contents: used by the e_shm_xxx functions of the ESDK 

Extra info: because of a bug, malloc returns addresses from this region which 

causes this region to be corrupted if one uses any C function that uses malloc 

internally. 

 Location: 0x8f800000 - 0x8fffffff 

Size: 0x00800000 (8 MB) 

Section label: heap_dram  

Contents: is meant to be divided in 512KB for each core (16 * 512KB = 8MB) and 

then used for malloc but this does not currently work. Instead malloc returns 

addresses from shared_dram 

3.1.3 Epiphany Programming Framework 

Each one of the Epiphany processor nodes can run independent programs. Figure (3-2) shows the 

general programming flow for the Epiphany architecture, highlighting the independent build of 

programs running on different cores and the use of a common loader to load the complete multicore 

program onto the chip. 

 



 
17 

 

 
Figure 3-2: Epiphany program build flow 

 

 

3.2 Building SDK 

3.2.1 Building Steps 

Step 1: Installing Prerequisites  

(The following packages need to be installed in order to build the SDK) 

Sudo apt-get install build-essential git bison flex libgmp3-dev 

libncurses-dev libmpc-dev libmpfr-dev texinfo xzip lzip zip 

gcc-arm-linux-gnueabihf g++-arm-linux-gnueabihf 

 

 

 

 



 
18 

 

Step 2: Downloading the SDK 

First, we should create a directory for our build environment, for example 

${HOME}/epiphany-sdk. Next set an environment variable named 

EPIPHANY_BUILD_HOME which points to the root of your build tree. 

mkdir epiphany-sdk 

export EPIPHANY_BUILD_HOME=$HOME/epiphany-sdk 

 

(Downloading the SDK Sources) 

cd $EPIPHANY_BUILD_HOME 

git clone https://github.com/adapteva/epiphany-sdk sdk 

 

(Downloading the SDK build Scripts) 

mkdir buildroot && cd buildroot 

git clone --branch 2016.3 https://github.com/adapteva/epiphany-sdk.git 

sdk 

 

Step 3: Building the SDK 

(Building for Intel x86-64 (on x86-64)) 

./sdk/build-epiphany-sdk.sh -C -R -a x86_64 

 

Step 4: Adding the SDK to my Path 

export PATH=/home/somaia/epiphany-sdk/esdk/tools/e-gnu/bin:$PATH 

 

(Note: Building SDK is done completely over the Internet, so it needs stable internet also because 

the building lasts for 12 hours almost [5].)  



 
19 

 

3.2.2 Building check 

To check that the SDK have been built successfully, we have run simple code of Hello-World 

using Compiler and Simulator of SDK. 

1. We have downloaded text editor “gedit” for writing scripts. 

2. Write simple code to print Hello-World. 

3. To compile the code we have to change the path of code script to the path of “e-gnu” of 

SDK. To avoid changing path of every code to path of SDK we have edited “.bashrc” file 

with the path of SDK so it can see it always and we don`t need to change path again. Edit 

“.bachrc” with 

            export PATH=/home/somaia/epiphany-sdk/esdk/tools/e-gnu/bin:$PATH 

           export EPIPHANY_HOME=/home/somaia/epiphany-sdk/esdk 

           export EPIPHANY_HDF=/home/somaia/epiphany-sdk/ 

esdk.2015.1/bsps/parallella_E16G3_1GB 

4. Compile code by this command  

$ e-gcc hello_world.c -o hello_world.elf  

hello_world.c: code file name  

-o: option to generate output in the next file 

hello_world.elf: output file with elf extension for simulation 

 

5. Simulate code by this command  

$ e-run hello_world.elf 

 

 

Figure 3-3: Simulate hello-world simple code  

 

 



 
20 

 

3.3  Epiphany SDK Tool chain 

3.3.1 C/C++ Compiler (E-GCC) 

The GCC compiler supports the following versions of C/C++:  

 ISO/IEC 9899:1990 (C89)  

 ISO/IEC 9899:1999 (C99)  

 ISO/IEC 9899:2011 (C11) (partial)  

 ISO/IEC 14882:1998 (C++98)  

 ISO/IEC 14882:2011 (C++11) (partial) 

To use the compiler to create an executable from a simple program source file without any 

optimization.   

 

$ e-gcc hello_world.c -o hello_world.elf 

The GCC compiler supports a wide range of options allowing for fine grain compilation process. 

Some are illustrated in Table (3-1) and some of optimization options are illustrated in Table (3-2).  

 

Table 3-1: General Compiler Options 

Option Function 

-c Compile or assemble source code, but do not link 

-o file Place output in file file. 

--version Print the version number of the compiler 

@file Read command-line options from file. 
--help Print (on the standard output) a description of the command line 

options understood by gcc. 

 

Table 3-2: Optimization Options 

Option Function 

-O0 Reduce compilation time and make debugging produce the expected 
results. This is the default. 

-O1 ‘-O or –O1’ turns on the following optimization flags: 

-fauto-inc-dec -fcprop-registers 
-fdce -fdefer-pop  

-fdelayed-branch -fdse  

-fguess-branch-probability -fif-conversion2  

-fif-conversion -finline-small-functions  
-fipa-pure-const -fipa-reference  

-fmerge-constants -fsplit-wide-types 

-ftree-ccp -ftree-ch  



 
21 

 

-ftree-copyrename -ftree-dce  

-ftree-dominator-opts -ftree-dse  
-ftree-fre -ftree-sra  

-ftree-ter -funit-at-a-time 

 

‘-O’ also turns on ‘-fomit-frame-pointer’ 

-O2 GCC performs nearly all supported optimizations that do not involve 

a space-speed tradeoff. It turns on all optimization flags in O1 and the 

following additional flags: 

-fthread-jumps  -falign-functions  
-falign-jumps  -falign-loops   

-falign-labels  -fcaller-saves   

-fcrossjumping  -fcse-follow-jumps   
-fcse-skip-blocks  -fdelete-null-pointer-checks   

-fdevirtualize  -fexpensive-optimizations   

-fgcse  -fgcse-lm   
-finline-small-functions  -findirect-inlining   

-fipa-sra  -foptimize-sibling-calls   

-fpartial-inlining  -fpeephole2   

-fregmove  -freorder-blocks   
-freorder-functions  -frerun-cse-after-loop   

-fsched-interblock  -fsched-spec   

-fschedule-insns  -fschedule-insns2   
-fstrict-aliasing  -fstrict-overflow   

-ftree-switch-conversion  -ftree-pre   

-ftree-vrp 

-O3 Optimize yet more. -O3 turns on all optimizations specified by -O2 
and 

also turns on: 

-finline-functions -funswitch-loops  
-fpredictive-commoning -fgcse-after-reload   

-ftree-vectorize -fipa-cp-clone 

 

3.3.2 Linker (E-LD) 

The Epiphany linker ‘e-ld’ combines a number of objects and archives, relocates their data and 

resolves symbol references. 

To use the linker to create an elf executable from an object file using the default linker file for 

simulation using the Epiphany instruction set simulator. 

$ e-ld my_object.o -o exec.elf 

 

The link process is controlled by a linker script written in the GNU linker command language. The 

purpose of the linker script is to describe how the sections in the input files should be mapped into 

the output file, and to control the memory layout of the output file. If you do not supply a linker 

file to ‘e-ld’, it will use a default linker file. 



 
22 

 

Executables compiled with the default linker will only execute correctly using the ‘e-run’ 

instruction set simulator and will not work correctly when loaded on specific hardware targets. 

To correctly link for specific hardware targets, you should use the ‘-T’ option to specify one of the 

board specific linker files that come with the board support package (BSP) or your own custom 

linker file. 

The linker description files that come with the different Epiphany Board Support Packages have a 

number of key words that allow fine grained management of code and data placement from within 

the C/C++ source code. The keywords gives the programmer and support libraries complete 

control of the placement of data and code within the memory system on a per-symbol, per-file, 

and per-object library. The keywords are derived from section names within the linker descriptor 

file and can be augmented by the user at his discretion. Table (3-3) shows configurations of the 

three basic linker descriptor files. The ‘legacy’ scenario is to be used for bringing up code quickly 

but will run slowly since all data and code is placed in external memory. The ‘fast’ scenario is 

used to place user code internally and standard library `code externally. The ‘internal’ scenario can 

be used for to effectively place all code and data in the local memory by default. The three 

descriptor files effectively determine the default placement of all sections and symbols within the 

objects. The user can override these settings on an individual basis from the C/C++ source code 

using the attributes defined in Table (3-4) to specify that certain variables and/or functions should 

be placed in specific program output sections. Note that with all of the predefined LDF’s, the heap 

is allocated externally. This means that use of stdio library will render the program very slow. 

 

 

 

 

 

 

 

 

 

 

 



 
23 

 

Table 3-3: Memory Management Scenarios 

File User Code 

& Data 

Standard 

Library 

Stack Note 

legacy.ldf External 

SDRAM 

External 

SDRAM 

External 

SDRAM 

Use to run any legacy code 

with up to 1MB of 

combined code and data. 

fast.ldf Internal 
SRAM 

External 
SDRAM 

Internal 
SRAM 

Places all user code and 
static data in local memory, 

including the stack. Use to 

implement fast critical 
functions. It is the user’s 

responsibility to ensure that 

the code fits within the local 

memory. 

internal.ldf Internal 

SRAM 

Internal 

SRAM 

 
 

Internal 

SRAM 

Places all code and static 

data in local memory, 

including the stack. Use to 
implement fastest 

applications. It is the user’s 

responsibility to ensure that 

the code fits within the local 
memory. 

 

Table 3-4: Linker Sections  
Section  User Controllable Sections 

.text Application code, read only 

.data Application data (global variables that are 

not constant) 
.rodata Application data, read only (constants, 

strings) 

.bss Static variables initialized to zero 

.text_bank0 Starts at end of reserved section in bank0 

.text_bank1 Starts at the beginning of bank1 

.text_bank2 Starts at the beginning of bank2 

.text_bank3 Starts at the beginning of bank3 

.data_bank0 End of .text_bank0 

.data_bank1 End of .text_bank1 

.data_bank2 End of .text_bank2 

.data_bank3 End of .text_bank3 

.code_dram Code section in external memory 

.shared_dram Data section in external memory 

.heap_dram Heap section in external memory 

 

3.3.3 Instruction Set Simulator (E-Run) 

The Epiphany Instruction Set Simulator (ISS) is an accurate and fast functional representation of 

the Epiphany Instruction Set Architecture. The simulator accurately models the instruction set and 



 
24 

 

register map of a single Epiphany core, but does not model pipeline behavior or any of the non-

CPU hardware mechanisms such as the eMesh Network-On-Chip, DMA, or timers. The simulator 

runs in a host Linux environment, takes a binary ELF file as an input and supports standard I/O. 

To simplify program debugging and profiling, the simulator supports outputting program traces. 

Simulation of the execution of an Epiphany elf executable using the ISS within a Linux host 

platform is done by this command 

$ e-run hello_world.elf 

 

To get an instruction trace of the executed program, use the ‘-t’ option before the hello_world.elf 

argument as follows:  

$ e-run -t hello_world.elf 

 
Table 3-5: Simulator Command Line Options 

Option Function 

-t, --trace Output simulated instruction trace to scree 

--memory-region ADDRESS, SIZE Defines a memory region as valid for 
simulator.  
Default is to allow 0x0        1MB 

--help Prints help 

 

3.3.4 Debugger (E-GDB) 

The Epiphany debugger (e-gdb) is based on the popular GNU GDB debugger. It allows to see what 

is going on inside a program while it executes. Some of the powerful debug features enabled by 

the debugger include:   

 Interactive program load. 

 Stopping program on specific conditions (usually a breakpoint placed in source code). 

 Examine complete state of machine and program once program has stopped.  

 Continuing program one instruction at a time or until the next stop condition is met. 

The Epiphany debugger supports program debugging using the functional simulator as a target or 

the hardware platform as a target using the ‘e-server’. The only difference between the two modes 

of debugging is the argument specified with the ‘target’ command within the debugger client. The 

simulator only supports debugging programs running on a single Epiphany CPU core and is not 

multi-core aware. 

 



 
25 

 

To debug a simple “Hello World” program with the Epiphany instruction set simulator. 

 

In a Linux shell, start an e-gdb session using your executable.  

 

$ e-gdb hello_world.elf  

  

Inside e-gdb, connect to the instruction set simulator debugging target.  
 

(gdb) target sim  

  

Load the program to the core memory.  
 

(gdb) load  

  

Place a breakpoint at the main function entry point.  
 

(gdb) b main  

  

Run the functional simulator.  
 

(gdb) run  

  

Continue program execution from breakpoint.  

 

(gdb) c  

  

Program then runs until completion and displays.  

 

“Hello World!” 

  

Exit debugger  

 

(gdb) q 

 

Debugging a program running on an Epiphany based hardware target. 

  

Make sure that a connection has been established with the hardware using the e-server program:  

 



 
26 

 

$ e-server –hdf ${EPIPHANY_HOME}/bsps/emek3/emek3.xml -test-

memory  

  

In a Linux shell, start a e-gdb session using your executable (same as for the simulator).  

 

$ e-gdb hello_world.elf  

  

Inside e-gdb, connect to the TCP/IP socket connected to core that you want to debug.   

 

(gdb) target remote:51000  

  

Load the program the core memory.  

 

(gdb) load  

Place a breakpoint at the main function entry point.  

 

(gdb) b main 

  

Continue program execution from breakpoint.  

 

(gdb) c  

  

Program then runs until completion and displays.  

 

“Hello World!” 

  

Exit debugger  

 

(gdb) q 



 
27 

 

Invoke the debugger by running the program ‘e-gdb’. Once started, ‘e-gdb’ reads commands from 

the terminal until you tell it to exit. You can also run ‘e-gdb’ with a variety of arguments and 

options, to specify more of your debugging environment at the outset. 

 

The most common way to start ‘e-gdb’ is to simply specify the program as the only argument:  

$ e-gdb program.elf 

 

Table 3-6: Debugger Command Line Options 

Option Function 

-x file Execute gdb commands from file file. 

-d directory Add directory to the path to search for source files. 

-quiet | q  
-silent 

“Quiet”. Do not print the introductory and copyright 
messages. 

3.3.5 Hardware Connection Server (E-SERVER) 

The GDB client runs on the Linux host machine and communicates with the Epiphany GDB server 

using GDB's internal RSP (remote serial protocol) over TCP/IP ports. The e-server responds to the 

GDB client or Loader requests and controls the hardware or hardware emulation model. Each core 

in the system needs a separate GDB client and connects to the GDB server using a unique TCP/IP 

port. By default, cores connect to the e-server starting at port 51000. The e-server responds to the 

e-loader requests in the dedicated port. 

 

An illustration of the GDB server/client operations is shown below in Figure (3-3): 

 
 

Figure 3-4: The eServer Client-Target Connection Concept 



 
28 

 

 

To start the Target Server, open a terminal window and type the following in the command line:  
 

$ e-server –hdf 

${EPIPHANY_HOME}/bsps/zedboard/zed_E16G3_512mb.xml 

  

The debug server now responds with status messages regarding the connection process and the 

results of the memory test, if performed. The output should be similar to the following:  

 

Using the HDF file: zed_E16G3_512mb.xml  

Listening for RSP on port 51000 

Listening for RSP on port 51001 

Listening for RSP on port 51002 

Listening for RSP on port 51004 

Listening for RSP on port 51005 

: 

Listening for RSP on port 51006 

Listening for RSP on port 51007 

Listening for RSP on port 51010 

Listening for RSP on port 51009 

Listening for RSP on port 51011 

 
 
Table 3-7: eServer Command line Options 

Argument Note 
-hdf file Mandatory argument, specifies the platform 

specific description file containing platform 

definitions, normally located in the 

esdk/bsps/{platform} directory. 
--show-memory-map Print out the supported memory map. 
--test-memory Test the memory before serving the 

debugger clients (*only for select platforms) 

 

The run-time connection from a host to the epiphany target is performed via the eHAL library. 

3.4 Epiphany SDK utilities (E-UTILS) 

3.4.1 Introduction 

The Epiphany SDK is provided with a group of command-line utility programs. These programs 

are used to perform Epiphany system related tasks during program development and debugging. 

The e-utils programs include:  

e-reset  



 
29 

 

e-loader 

e-read 

e-write 

3.4.2 Reset Utility (E-RESET) 

The Epiphany reset utility (e-reset) is used to reset the Epiphany subsystem, in case it gets stuck 

due to some unstable situation, or in order to bring it to a known state. 

 
$ e-reset 

3.4.3 Loader Utility (E-LOADER) 

The Epiphany loader (e-loader) is responsible for loading programs onto the hardware platform. 

The input to the loader is a compiled and linked Epiphany program that was generated by e-gcc/e-

ld. currently, the loader supports binary images formatted as a text file with a standard S-record 

(known as SREC) file format. This format is an ASCII hexadecimal ("hex") text encoding for 

binary data. The S-record is an output of the binary utility ‘e-objcopy’. 

When loading a binary image on the chip there is a need to translate the internal core addresses to 

global space addresses. During compile time, the build tools do not know what core will be the 

target of the executable. This information is known only at load time. Thus, the insertion of the 

core ID data has to be done prior to sending the SREC file to the e-loader. When loading images 

of more than one core, each partial SREC has to be pre-processed separately. 

e-loader [-s|--start] [-r|--reset] <e-program> [row col [rows cols]] 

 
Table 3-8: Loader Command line Options 

Option Function 
-r, --reset Perform a full hardware reset of the Epiphany platform before loading 

the program. 

-s, --start With this option set, the loaded programs are started after they have 

finished loading on all cores in workgroup. 

<e-program> Path to the program image to load onto the core workgroup. 
row, col Absolute coordinates of first core in workgroup to be loaded. The 

default values are the platform’s first physical core. 

rows, cols Size of cores workgroup to be loaded. The default values are (1, 1). 

h, --help Display a help message. 

 

After building an Epiphany elf program, translate from elf to S-record program load format:  
 

$ e-objcopy --srec-forceS3 --output-target srec main1.elf main1.srec 



 
30 

 

  

Load program onto the target, on a 4*4 block of cores starting at core 0x808 (32, 8) and start it 

immediately after:  
 

$ e-loader --start main.srec 32 8 4 4 

 

Or, perform a system reset and load the program onto a single core at the chip’s origin. Then 

wait for host command to start the program.  
 

$ e-loader --reset main.srec 

3.4.4 Memory Read Utility (E-READ) 

The Epiphany memory read utility (e-read) is used to read words from memory locations on the 

Epiphany chip(s) or the External Memory. 

 
e-read [-v|-r] <row> [<col>] <address> [<num-words>] 

 
Table 3-9: e-read Command line Options 

Option Function 

<row> Row coordinate of the target core. To read data from External 

Memory, enter -1. 

 
The core coordinates are relative to the platform’s chip bounding box. 

That is, all of the Epiphany chips are considered one workgroup, 

where the first core of the first chip is at coordinates (0,0). 

[<col>] Row coordinate of the target core. When reading from External 
Memory, this parameter is omitted. 

<address> The start address of the read data. Address is given as local space when 

reading from a core memory, or as an offset from the platform’s 
External Memory base. Address should be in hexadecimal format and 

is rounded down to the word (4-bytes) alignment. 

[<num-words>] Number of words to read from the target, starting at <address>. If this 

parameter is omitted, a single word is read. 

[-v] Verbose mode - print more information. 

[-r] Raw mode - print only the memory contents. 

 

 

3.4.5 Memory Write Utility (E-WRITE) 

The Epiphany memory write utility (e-write) is used to write words to memory locations on the 

Epiphany chip(s) or the External Memory. 

e-write [-v] <row> [<col>] <address> [<val0> <val1> ...] 

 

 



 
31 

 

 

Table 3-10: e-write Command line Options 

Option Function 
<row> Row coordinate of the target core. To read data from External 

Memory, enter -1. 

 
The core coordinates are relative to the platform’s chip bounding 

box. That is, all of the Epiphany chips are considered one 

Workgroup, where the first core of the first chip is at coordinates 

(0,0). 
[<col>] Row coordinate of the target core. When reading from External 

Memory, this parameter is omitted. 

<address> The start address of the read data. Address is given as local space 

when reading from a core memory, or as an offset from the 
platform’s External Memory base. Address should be in 

hexadecimal format and is rounded down to the word (4-bytes) 

Alignment. 
[<val0> <val1> …] Number of words to write to the target, starting at <address>. If  

  
This parameter is omitted, the input is taken in interactive mode 

from the standard input, one word at a time, until an empty line is 
entered. Values are entered as 32-bit hexadecimal numbers. 

 

3.5 Epiphany Hardware Utility Library (e-Lib) 

The Epiphany Hardware Utility library provides functions for configuring and querying the 

Epiphany hardware resources. These routines automate many common programming tasks that are 

not provided by the C and C++ languages and are specific to the Epiphany architecture. 

The master header file for the eLib, which includes all the per-family headers, is the “e-lib.h” 

header file. Include this header file at the beginning of a program that uses the eLib functions and 

objects. 

 

#include “e-lib.h” 

  

In order to use this library to build an Epiphany program, use the e-gcc compiler option -le-lib on 

the build command line. 



 
32 

 

3.6 Epiphany Host Library (eHAL) 

The Epiphany Hardware Abstraction Layer (eHAL) library provides functionality for 

communicating with the Epiphany chip when the application runs on a host. The host can be a PC 

or an embedded processor. The communication is performed using memory writes to and reads 

from shared buffers that the applications on both sides should define. The library interface is 

defined in the e-hal.h header file. 

 

In order to use this library in your application, the compiler and linker must be configured with the 

paths to the header file and the library binary. In your tools options use the following 

configurations: 

  

$ gcc -I${EPIPHANY_HOME}/tools/host/include \ 

      -L${EPIPHANY_HOME}/tools/host/lib -le-hal ... 

  



 
33 

 

Chapter 4: Frame Structure  

4.1 Introduction 

The bits that are carried on the radio waves undergo a lot of processing before these are ready for 

transmission. The processing makes them resilient to the attenuation, and also packs them in a way 

to make them economical to transmit over the air. The processing starts right from the point where 

they leave the MAC layer so the first stage of processing is the Transport Channel Processing 

which is called the bit chain in Figure (4-1) and the bit sequence resulting from this stage is input 

to the next stage which is called the symbol chain as in Figure (4-2). Hence, we can say that the 

PUSCH coding processing is divided into 2 processing chains, the bit chain and the symbol chain. 

Here In the project we are working in the physical layer for the uplink shared data and we are 

interested in the symbol chain to be implemented. 

Transport block 

CRC attachment

Code block segmentation

Code block CRC attachment

Channel coding

Rate matching

Code block 

concatenation

Data and Control multiplexing

Channel 

coding

110 ,...,, Aaaa

110 ,...,, Bbbb

 110 ,...,, rKrrr ccc

 
)(

1
)(

1
)(

0 ,...,, i
Dr

i
r

i
r r

ddd


 110 ,...,, rErrr eee

110 ,...,, Gfff

110 ,...,, Hggg

110 ,...,, Oooo

10
,...,,qq

Channel Interleaver

110 ,...,, H+Qhhh

Channel 

coding

ACK
Q

ACKACK

ACK
qqq 110 ,...,, 

Channel 

coding

RI
Q

RIRI

RI
qqq 110 ,...,, 

] [or  ][ 100 ooo
RI RI RI

RI

] [
110

ACK

O

ACKACK
ACKooo




] [or  ][ 100
ACKACKACK ooo or  

1CQIQq

 

Figure 4-1: PUSCH Bit Processing Chain 



 
34 

 

Scrambling
Modulation 

mapper

Transform 

precoder

Resource 

element mapper

SC-FDMA 

signal gen.

 Figure 4-2: PUSCH Symbol Processing Chain 

Let’s now take a quick overview about the symbol processing chain blocks. 

The baseband signal representing the physical uplink shared channel is defined in terms of the 

following steps: [10] 

- Scrambling (change the input sequence by using a known random sequence) 

- Modulation of scrambled bits to generate complex-valued symbols 

- Transform Preceding to generate complex-valued symbols 

- Mapping of complex-valued symbols to resource elements 

- Generation of complex-valued time-domain SC-FDMA signal for each antenna port 

But before we are talking about the symbol chain blocks in deep, their use and implementation 

ways, let’s talk about the Frame Structure. 

There are two types of frame structure in the LTE standard, Type 1 is FDD, it uses Frequency 

Division Duplexing (uplink and downlink are separated by frequency), and type 2 is TDD, it uses 

Time Division Duplexing (uplink and downlink are separated in time). There are more than one 

time unit for the frame structure as shown in Table (4-1). 

Table 4-1: Frame units V.S. their times. 

UNIT TIME (ms) 

Frame 10 

Half Frame 5 

Sub-frame 1 

Slot 0.5 

 

javascript:void(0);
javascript:void(0);


 
35 

 

4.2 Frame Structure Type 1 

Now, we are going to illustrate the FDD frame. Frame structure type 1 is applicable to both full 

duplex and half duplex FDD. Full duplex FDD means I can send and receive on different 

frequencies at the same time whereas half duplex means that UE can’t receive while transmitting 

even if they are on different frequencies. 

Each radio frame consists of 20 slots numbered from 0 to 19, each slot of length Tslot = 0.5 ms. A 

subframe is defined as two adjacent slots, e.g. subframe number 5 is consists of time slot number 

10 and 11, to generalize we can say that sub-frame i  consists of slots i2 and 12 i . 

 

Figure 4-3: FDD Frame Structure Type 1 

We can conclude from Figure (4-3), time duration for one radio frame is 10 ms, hence we can says 

that we have 100 radio frame per second. The number of samples in one frame is 307.2 K samples 

and also we can say that the number of samples per second is 307.2K x 100 = 30.72 M samples. 

And as subframe is 1 ms, so we have 10 subframes per frame, and each subframe has two slots, so 

we have 20 slots per the whole frame, each slot has as shown 7 symbols in time and 12 subcarriers 

at frequency.  

We can see also smaller structures within a symbol. At the beginning of the symbol we can see a 

very small span called 'Cyclic Prefix' and the remaining part is the real symbol data. There are two 

types of Cyclic Prefix. One is 'Normal Cyclic Prefix' and the other is 'Extended Cyclic Prefix' 

which is longer than the Normal Cyclic Prefix. These cyclic prefixes affect the number of symbols 

in one slot, when using ‘Normal Cyclic Prefix' the number of symbols are 7 symbols while when 



 
36 

 

using 'Extended Cyclic Prefix' the number of symbols become 6 symbols (As the length of one 

slot is fixed and cannot be changed, the number of symbols that can be taken in a slot will be 

decreased. Hence we can have only 6 symbols if we use 'Extended Cyclic Prefix'). The first OFDM 

symbol in a slot is longer than the rest of OFDM symbols in the same slots. For short cyclic prefix 

(Normal) and long cyclic prefix (Extended), Table 4-2 specifies their lengths. 

 

Table 4-2: Cyclic Prefixes Types V.S. Lengths 

Configuration Cyclic prefix length  

Normal cyclic prefix 0for    160 l  
6,...,2,1for    144 l  

Extended cyclic prefix 5,...,1,0for    512 l  

 

By observing the FDD frame, we notice that the time slot is the smallest unit that we can use, 

Right? By just observing we may say yes, but by knowledge we definitely will say NO.  How? 

Let’s get deeper into the time slot, and know more about it. 



 
37 

 

UL
symbN SC-FDMA symbols

One uplink slot slotT

0l 1UL
symb  Nl

RB sc
U

L
RB

N
N


su

bc
ar

rie
r

s

RB sc
N

su
bc

ar
rie

r

s

RB
sc

UL
symb NN 

Resource 

block resource 

elements

Resource 

element
),( lk

0k

1RB
sc

UL
RB  NNk

 

Figure 4-4: Uplink resource grid 

We are right now inside the time slot. The time slot consists of a lot of elements, each is called 

Resource Block (RB) as shown in the bold box of the above figure. The RB is considered the 

smallest element that can be assigned for one user, but as shown, it’s for sure not the smallest 

element in the time slot at all.  

Each RB consists of 12 subcarriers in frequency and 7 symbols in time, 1 subcarrier x 1 symbol is 

called Resource Element (RE), which is the smallest part of the frame and contains a single 

complex value representing data from a physical channel or signal. The resource block is 

180 kHz wide in frequency and 1 slot long in time. In frequency, these 180 kHz contains 12 

subcarriers or in some cases can contains 24 subcarriers, so we can say, resource blocks are either 

12 x 15 kHz subcarriers or 24 x 7.5 kHz subcarriers wide in frequency. But the mostly common 

used in channels and signals are 12 subcarriers per resource block.  

javascript:void(0);


 
38 

 

The number of resource blocks and hence the subcarriers per frame depends on the bandwidth. 

The bandwidths defined by the standard are 1.4, 3, 5, 10, 15, and 20 MHz. Table 4-3 below shows 

how many subcarriers and resource blocks there are in each bandwidth for uplink and downlink. 

Table 4-3: Subcarriers, resource blocks corresponding to the BW. 

Bandwidth 

(MHz) 

  
 

Resource 

Blocks 

Subcarriers 

(downlink) 

Subcarriers 

(uplink) 

1.4 6 73 72 

3 15 181 180 

5 25 301 300 

10 50 601 600 

15 75 901 900 

20 100 1201 1200 

 

For downlink signals, the DC subcarrier is not transmitted, but is counted in the number of 

subcarriers. For uplink, the DC subcarrier does not exist because the entire spectrum is shifted 

down in frequency by half the subcarrier spacing and is symmetric about DC [12].  

 Another clear Figure (4-5) for FDD Frame of 1.4 MHz bandwidth and Normal CP for more 

illustration of the FDD frame structure, time slots and resource block and its content. 

 

 

 

 

Figure 4-5: LTE FDD Frame of 1.4 MHz, Normal CP 

http://rfmw.em.keysight.com/wireless/helpfiles/89600B/webhelp/subsystems/lte/content/lte_dlg_fmt_halfsubcarrshift.htm
http://rfmw.em.keysight.com/wireless/helpfiles/89600B/webhelp/subsystems/lte/content/lte_dlg_fmt_halfsubcarrshift.htm


 
39 

 

4.3 Frame Structure Type 2 

That was the frame structure type 1, now we are going to speak about frame structure type 2. Frame 

structure type 2 is applicable to TDD. In TDD mode, the uplink and downlink subframes are 

transmitted on the same frequency and are multiplexed in the time domain. The locations of the 

uplink, downlink, and special subframes are determined by the uplink-downlink configuration. 

The following is an illustration of a TDD frame with uplink-downlink configuration set to 2 and 

special subframe configuration set to 6. 

One slot, 

Tslot=15360Ts

GP
UpPT

S
DwPTS

One radio frame, Tf = 307200Ts = 10 ms

One half-frame, 153600Ts = 5 ms

30720Ts

One 

subframe, 

30720Ts

GP
UpPT

S
DwPTS

Subframe #2 Subframe #3 Subframe #4Subframe #0 Subframe #5 Subframe #7 Subframe #8 Subframe #9

 

 Figure 4-6: TDD Frame Structure type 2 

Subframe number 1 and 6 contain three sections DwPTS, GP and UpPTS. These subframes are 

called Special subframes. They are used for switching from downlink to uplink. Subframes 0 and 

5 and DwPTS are always reserved for downlink transmission. UpPTS and the subframe 

immediately following the special subframe are always reserved for uplink transmission. DwPTS 

is the Downlink Pilot Time Slot. DwPTS contains P-SS. PDSCH can also be transmitted during 

DwPTS when DwPTS is configured to be longer than a slot. UpPTS is the Uplink Pilot Time Slot. 

UpPTS can contain PRACH and SRS, but cannot contain or PUCCH or PUSCH. GP is a guard 

period between DwPTS and UpPTS. PRACH format 4 begins in the guard period. Otherwise, 

nothing else is transmitted during the guard period. The lengths of these three sections are 

determined by the special subframe configuration index (specified by the Dw/Gp/Up Len 

parameter). There are 9 possible configurations in the standard [10]. 

Now, we are going to talk about Uplink user transmission. Uplink user transmission consists of 

uplink user data (PUSCH), user control channels (PUCCH), random-access requests (PRACH), 

and sounding reference signals (SRS). FDD and TDD uplink transmissions have the same physical 

javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
http://rfmw.em.keysight.com/wireless/helpfiles/89600B/webhelp/subsystems/lte/content/lte_dlg_fmt_dwgpuplen.htm


 
40 

 

channels and signals. The only difference is that TDD frames include a special subframe, part of 

which can be used for SRS and PRACH uplink transmissions. We will now illustrate the whole 

LTE uplink frame which contains the whole data, the shared one and the reference signals and 

whole control data. But before we illustrate that, the downlink frame will be illustrated which we 

can understand easily. Another reason for understanding the downlink frame is that we use an LTE 

open source to be reference for us, the one we’ve used is “OpenLTE”.  And we’ve made a survey 

before this choice about more than one open source for the LTE (this survey is shown in Table 4-

4), then after this survey the “OpenLTE’ is chosen to be our reference code. By the way, 

“OpenLTE” codes don’t have a code for uplink frame and we need to do it whereas there is no 

reference, but a downlink frame structure code has been found in the reference code, so we needed 

to understand this code to make some code like it but for uplink as we need in the project, that’s 

we can say the main reason for understanding the downlink frame structure first before moving 

into the uplink frame structure. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
41 

 

 

Table 4-4: Open Source LTE Survey 

 OPENLTE LTE-SIM SRS-LTE 

3GPP LTE 

release 

Number Release 10 …….. 

LTE Release 8 

compliant. 

Programming 

language C++ 

LTE-Sim has been 

written in C++, using 

the object-oriented 

paradigm C 

Testing 

octave code is 

available for test and 

simulation of 

downlink transmit 

and receive 

functionality and 

uplink PRACH 

transmit and receive 

functionality 

tested on  

- Linux i386 Ubuntu 

12.04 with g++-4.6  

- Linux amd64 

Ubuntu 12.04 with 

g++-4.6  

- Linux i386 Ubuntu 

10.10 with g++-4.4  

- Linux amd64 

Ubuntu 10.10 with 

g++-4.4  

- Mac OS X v10.6.8  

UE receiver tested 

and verified with 

Amari soft LTE 100 

eNodB and 

commercial LTE 

networks  

 

Implementation 

target  

 

E-NodB  

 

B (eNB), Home eNB 

(HeNB)  

 

SDR(UE), evolved 

Node B (eNB)  

 

The license  License Affero 

General Public 

License  

 

( GNU GENERAL 

PUBLIC LICENSE)  

 

GPLv3  

 

Links we use  

 

[15] 

To download it... [7]  

[17] 

[18] 

[19] 



 
42 

 

4.4 Downlink Frame Structure  

Figure 4-7: LTE resource grid for FDD 

Figure (4-7) shows the overall subframe structure from "LTE Resource Grid".  

We can see that the shared data in PDSCH is the available right area and the shared data is the one 

we are interested in to be implemented its chain, but in our project we refer to PUSCH not the 

downlink one. By the way, as shown in Figure (4-7) we have a lot of channels which is considered 

the control signals we have, each channel corresponds to its color which is considered its place in 

the resource grid. 

We can see also black points in the grid, these are the reference signals. They are very important 

signals to be sent during the grid, some of its importance points is: 

1- Synchronization  

2- Channel estimation 

3- Handover procedures, as within it we can know the power of mine and can be determined 

if handover is needed to be occur or not. 



 
43 

 

The rest of channels in our case or project, they are out of the project scope, it’s just will be 

given to us to place it in its place in the subframe code. 

  

4.5 Uplink Frame Structure  

 

  Figure 4-8: LTE Uplink Subframe 2-3 of 5 MHz, Normal CP 

As we have seen in Figure (4-7) the downlink subframe structure, Figure (4-8) represents the 

uplink frame structure, actually they are only 2 subframes from it, subframe 2 and sub frame 3. 

But as before we have data signals represented in PUSCH (the channel we are interested in and 

going to implement its symbol chain) and have some control signals represented in the reference 

signals and the rest of channels except PUSCH. We are not interested in the control signals as it’s 

out of our project scope, and we are interested in PUSCH.The benefit of this chapter is to know 

and understand the frame structure of both types specifically type 1 cause that’s we need to 



 
44 

 

implement by the end of implementing our blocks of PUSCH and collect the rest of data in the 

subframe, that’s actually what’s has to be done. 

 

  



 
45 

 

Chapter 5: Fixed Point Representation  

5.1 Motivation 

Our codes in the projects have been generated as implementing them firstly with MATLAB (may 

be this step has several versions) with this step we generate files similar to the test cases that we 

have. Then write the code in C and MATLAB. Then compare between both the generated files 

from MATLAB and others ones from c as shown in Figure (5-1). 

 

Figure 5-1: Progress of implement the codes of blocks to generate test cases 

As the Figure (5-1) showed that we deal in general with fixed point .so let’s know why and how 

we used fixed point. 

In a digital hardware, numbers are stored in binary words. A binary word is a fixed‐length sequence 

of bits (1's and 0's). How hardware components or software functions interpret this sequence of 1's 

and 0's is defined by the data type. Binary numbers are represented as either fixed‐point or floating‐

point data types. In order to implement an algorithm such as communication algorithms, the 

algorithm should be converted to the fixed‐point domain and then it should be described with 

Hardware Description Language (HDL). In HDL coding process, it is necessary to indicate the 

size of the variables and registers. The registers should be large enough to represent the value of 

parameters with the desired precision [24] 

 

To be accurately construct an algorithm, double or single precision floating-point data and 

coefficient values should be used. However there is significant processor overhead required to 

perform floating-point calculations resulting from the lack of hardware based floating-point 



 
46 

 

support. In some cases such as with lower powered embedded processors there is not even compiler 

support for double precision floating-point numbers. Floating-point overhead limits the effective 

iteration rate of an algorithm [25].  

 

As we have in our platform Parallella which includes 16 superscalar floating point RISC CPUs 

(eCore), each one capable of two floating point operations per clock cycle and one integer 

calculation per clock cycle.  So to buil our algorithm that will be consume huge power and 

processing time if we used floating point. 

 

To improve mathematical throughput or increase the execution rate (i.e. increase the rate the 

algorithm could be repetitively run), calculations can be performed using fixed-point 

representations. Fixed-point representations require the programmer to create a virtual decimal 

place in between two bit locations for a given length of data (variable type). 

 

Fixed‐point data types can be either signed or unsigned. Signed binary fixed‐point numbers are 

typically represented in one of different ways. 

 

5.2 Ways of Fixed Point Representation 

5.2.1 Sign/magnitude 

 The leftmost bit represent the sign of the no. 

 The remaining bits represent the binary equivalent of the magnitude of the no. 

o Advantages 

 Simple and easy to understand 

o Disadvantages 

 The no. zero can be represented in two ways: 00000000 and 10000000. 

 The sign bit and the magnitude part have to be handled separately complicates the 

design of the circuit used for addition particularly. 

5.2.2 One's complement 

It`s done by getting One`s complement of number. 



 
47 

 

5.2.3 Two's complement 

 Two's complement is the way every computer I know of chooses to represent 

integers (similar to the design of the memory).  

 To get the two's complement negative notation of an integer, you write out the 

number in binary. You then invert the digits, and add one to the result. 

 Two's complement is the most common representation of signed fixed‐point 

numbers and is the only representation used by Fixed‐Point Toolbox in MATLAB. 

 

5.3 Q-Format number representation 

As we saw fixed‐point data type helps us to know what happens in the hardware. In the other words 

when an algorithm is represented in floating‐point domain, all of the variables have 64 bits (in 

MATLAB programming). So all of the operations are done with large number of bits. We know 

that it is impossible to implement an algorithm with large number of flip flops. Because large 

number of flip flops need a larger area, and more power consumption. In order to solve this 

problem, the algorithm should be converted to the fixed‐point domain. In the fixed‐point domain 

a pair (W, F) is considered for each of the parameters in the algorithm, where W is the word length 

of the parameters and F is the fractional length of the parameters. It is obvious that larger W and 

F results in a better performance and lower bit error rate (BER) but the design needs a large silicon 

area. On the other hand, smaller W and F result in a larger BER but less area. So we should choose 

suitable values of (W, F) for each parameter in the algorithm. For this reason, a simulation should 

be run for the algorithm to get the dynamic range of the parameters. Simulation results indicate 

the dynamic range of the variables and the number of bits for W and F, which are used to represent 

the variables with the desired precision [24]. 

So from the previous section we see that W represents both QI (integer bits) and QF (floating bits). 

And this W usually corresponds to variable widths supported on a given processor. Typical word 

lengths would be {8, 16, 32} bits corresponding to {char, int, long int} C/C++ variable types 

commonly implemented in compilers for microcontrollers or DSPs. 

For example, a binary representation of a generalized fixed‐point number (either signed or 

unsigned) is shown below: 



 
48 

 

 

 
 

Figure 5-2: showing how the conversion of floating point to fixed point happens 

 
 

Where: 

𝑏𝑖  Is the ith binary digit. 

𝑤𝑙 Is the word length in bits. 

𝑏𝑤𝑙−1Is the location of the most significant, or highest, bit (MSB). 

𝑏0Is the location of the least significant, or lowest, bit (LSB). 

 

Fixed‐Point Toolbox provides fixed‐point data types in MATLAB and enables algorithm 

development by providing fixed‐point arithmetic like what we used in DFT block where we used 

fi to generate fixed point. Where   fi takes parameters of (v,s,w,f) returns a fixed-point object with 

value v, Signed property value s, word length w, and fraction length f. Fraction length can be 

greater than word length or negative. 

 

But also we can use steps of conversion floating point to fixed point   

 

Consider a floating‐point variable, x: 

Step 1: Calculate y=x * 2𝐹 , where F is the fractional length of the variable. Note that y is 

represented in decimal. 

Step 2:  Round the value of y to the nearest integer value. For example: 

  round (3.68)= 4 , round (-1.7)= -2 

Step 3: Convert y from decimal to binary representation and name the new variable Z. 



 
49 

 

Step 4: Now, we assume that Z, needs n bits to represent the value of y in binary. On the other 

hand, we obtain the values of W and F, from the simulation. So the value of W should be 

equal or larger than n. If Small value is chosen for W, we should truncate Z. If W is larger 

than n, (W‐ n) zero‐bits add to the leftmost of Z [24]. For example: truncate (3.68) =3, 

round (-1.7) =-1 

 

So can verify this method by the MATLAB tool (fi function). 

 

Note: in some cases instead of using y=x * 2𝐹  we use y=x * 2𝐹−1  when want to shift the range 

of signed integer number. 

5.4 Converting Floating Point to Fixed Point Example 

In our modulation code we needed to store the LUT (look up tables) of all modulation schemes 

(QPSK, 16QAM, 64QAM). So we found that the largest  number we need to implement is +/-  

427  so  2 bits for  integer bits  and if we used standard int 16 bit  so Q=F=14 for fractional bits 

.So this MATLAB code is  LUT of  QPSK we deal with real and complex separately. 

 
Q=14; %2^Q  

% table example 

% QPSK 

QPSK_I= round([1 ; 1 ; -1 ; -1]       ./sqrt(2) * (2^Q ) ); 

QPSK_Q= round([1 ;  -1 ;  1 ; -1]     ./sqrt(2) * (2^Q ) ); 

%% store the  converted value  in 16 bit 

QPSK_I = ((QPSK_I<0)*(2^16)+QPSK_I); 

QPSK_Q = ((QPSK_Q<0)*(2^16)+QPSK_Q); 

 

st_string = ''; 

%% output the QPSK LUT 

st_string = [st_string, sprintf( 'uint16 QPSK[4*2]={\n')]; 

for k = 1:length(QPSK_I) 

st_string = [st_string, sprintf( '\t\t0x%04X, 0x%04X, \n', 

QPSK_I(k),QPSK_Q(k))]; 

end  

st_string = [st_string, sprintf( '};\n\n')]; 

 

%% saving the LUT to a file 

fid = fopen('QPSK_LUT.txt','w','n'); 

fprintf(fid, '%s', st_string); 

fclose(fid); 

 
 



 
50 

 

 
 
 
 

Notes:  

In the all blocks we have to save after each block the same Q where: 

             – Qm + Qm ⇒ Qm 

             – Qm x Qn ⇒ Qm+n  

             So to save the same Qm   we shifted the result n times to right usually we       present the 

complex symbols as 16 bit real (MSB) and 16 bit real (LSB).Both of them as fixed points. 

  



 
51 

 

Chapter 6: Scrambler 

6.1 Introduction 

In this chapter we are going to talk about the first block we implemented in the symbol chain, 

“Scrambler”. As we have said before that the scrambler input is the bits that get out from the last 

block in the bit chain “Interleaver”.  

Before we talk about the block itself and its implementation way and the drawbacks that meet us 

in its implementation, let’s define the scrambler first and mention its use and importance first, then 

go to the implementation way and the rest of chain blocks. 

What’s the scrambler? Simply it’ a block takes some input bits and its output is the same number 

of input bits but has another random values. But how is this made? Simply the scrambler block 

generates some random bits then it makes XOR operation between these random bits and the input 

sequence, so the output will be another sequence differs than the input one. The scrambler 

generated random bits is called pseudo random sequence. 

Ok, now what is the importance of the scrambler block or why we use it? Actually there are more 

than one reason for that, but the most important reasons are security and data saving. How? 

Regarding the data saving, simply, if we have a long input bits or sequence of one’s or zero’s, and 

the channel was a fading channel and in this part of the channel the whole data can be lost, so I 

can’t ever know that there was here a long sequence of bits of the same value, therefore a great 

data will be lost, also a long sequence of ‘0’s or ‘1’s can degrade the timing/clock synchronizer 

performance or may even result in loss of synchronization, consequently, the importance of 

scrambler is appeared here, by xoring these long sequence of bits that have the same values, these 

long sequence will be disappeared and replaced by another random sequence based on the xored 

code with the input, so I can save the data  from being lost and avoid long sequences of bits of the 

same value. Scrambler also introduces security (as part of an encryption procedure) to protect the 

data. After we do the scrambling operation, for sure at the receiver a reverse block to reverse the 

scrambler operation is needed to retrieve the original sent data, this block is called “Descrambler”. 



 
52 

 

Now after we know what the scrambler is and why the scrambler is being used, let’s go on and 

talk about the implementation ways especially we code in C as there is no MATLAB code to be 

placed on the board, so it was a little bit weird and strange for us. 

6.2 Implementation ways: 

 

Pseudo-random sequences are defined by a length-31 Gold sequence. The output sequence )(nc  

of length PNM , where 1,...,1,0 PN  Mn , is defined by [10] 

 

 

  2mod)()1()2()3()31(

2mod)()3()31(

2mod)()()(

22222

111

21

nxnxnxnxnx

nxnxnx

NnxNnxnc CC







 

What do these equations mean? And how we can generate our code from them? And what about 

the coding process of them? That’s what we are going to explain now.  

As we have known that we generate some bits and call them pseudo random sequence, this 

sequence represented in the first equation C(n). This equation means that we will generate some 

other sequences to enable us generate this code, these sequences called X1(n), X2(n). In the first 

equation 1600CN . What does it mean? It means that I will generate X1 sequence and X2 

sequence for a lot of iterations but what I will take from them is after the generated sequence 

number 1600, after this number I will consider X1 and X2 sequences and use them to generate my 

required code. As we must know that any two bits if I added them then multiply them in modulus 

two as in the last equations that’s equal to XORing these two bits with each other. The first 

equation means that we XOR the X1 sequence with X2 sequence and start from bit number 1600 

in these two sequences to get the code wanted. But why 1600CN  not any other number? What 

we conclude and got by searching and asking that the most fit and suitable number that can protect 

data and randomize the input and achieve the scrambler functionality efficiently is this number 

and this reason is for all the numbers that you can find in the standard and ask yourself why this 

number specifically that I must use! And also what we have found that these numbers came by try 

and error and choose the best fit number, and also not by try and error only, there are international 

meetings that’s held between most countries representatives to argue, choose and assure on the 



 
53 

 

final chosen numbers. As we said also that the main reason for scrambling is changing the input 

sequence randomly to save and protect data, so by taking some bits after specific number like 1600 

then start my code from this bit, provides more security for my data. 

Now, what we need to get the code is getting X1 and X2 sequences and those can be got from 

the last two equations for them. Let’s explain them,  

𝑥1(𝑛 + 31) = (𝑥1(𝑛 + 3) + 𝑥1(𝑛))𝑚𝑜𝑑2 

X1 bits generation is starting from bit number 32. As 𝑛 is staring from 0. This equation generates 

bit by bit in X1 sequence. The first 31 bits is given in the standard as an initialization for X1 then 

we get the rest of sequence. 30,...,2,1,0)(,1)0( 11  nnxx . The first bit x1(0) =1 and the rest 30 

bit is equal zero’s. To generate bit number 32 from the last equation 𝑥1(31) we xor bit number 4 

with bit number 1 from the same x1 sequence  𝑥1(0) 𝑥𝑜𝑟 𝑥1(3) , and bit 33 is gotten from bits 2 

and 5 and so on for the rest of sequence. From that we can conclude that each new bit in the 

sequence depends on the last bits of the same sequence so 𝑥1(𝑛) depends on itself for the rest bit 

sequence. 

Let’s now move on to talk about the second sequence used to get the generated code. 

𝑥2(𝑛 + 31) = (𝑥1(𝑛 + 3) + 𝑥1(𝑛 + 2) + 𝑥1(𝑛 + 1) + 𝑥1(𝑛))𝑚𝑜𝑑2 

This sequence is slightly different than the last one in its initialization. It’s obvious from the 

equation that we do like the last one to get bit number 32 we xor between bits numbers 1, 2, 3 and 

4. But for the first initialized 31 bits mentioned in the standard, it has a little difference that x1. 

We have the next two equations to get the first 31 bits. 

 

 

 

The first 31 bit of x2 can be got from the last second equation. First we must get 𝐶𝑖𝑛𝑖𝑡 

And then get x2 from it. 𝐶𝑖𝑛𝑖𝑡 In the last first equation comes from some parameters, these 

parameters comes from the e-NodB to the UE used. 𝑁𝑟𝑛𝑡𝑖  Represents the RNTI assigned to the 

UE, RNTI stands for Radio Network Temporary Identifier. RNTIs are used to differentiate/identify 

 


30

0 2init 2)(
i

iixc

 
cell

ID

9

s

14

RNTIinit 222 Nnnc 



 
54 

 

a connected mode UE in the cell, a specific radio channel, a group of UEs in case of paging, a 

group of UEs for which power control is issued by the e-NodB, system information transmitted 

for all the UEs by the e-NodB etc… 

There are a several RNTI types in LTE such as SI-RNTI, P-RNTI, C-RNTI, Temporary C-RNTI, 

SPS-CRNTI, TPC-PUCCH-RNTI, TPC-PUSCH-RNTI, RA-RNTI, and M-RNTI. Each RNTI’s 

usage, its value range etc. [14]. 

 

By the way, these parameters have range that it must not exceed, and by getting the needed 

configurations of these parameters, we can get 𝐶𝑖𝑛𝑖𝑡  and then get the X2 initialization. But what 

does this equation mean?   


30

0 2init 2)(
i

iixc . 

Simply it means that 𝐶𝑖𝑛𝑖𝑡is an ordinary decimal number and to get X2 bits, you can convert 

𝐶𝑖𝑛𝑖𝑡from decimal number to a binary number and take from the converted number the first 31 bits 

as an initialization for X2 to apply then X2 equation and get the rest of bits. That was about the 

Scrambler equations that will be applied inside the code. 

  

Now, let’s take a tour inside the written code and some of the drawbacks we’ve faced in this block. 

The code is just applying the previous explained equations, but by applying the test cases (it’s an 

input file has some values and another output file with other values, for the code to be right, the 

output file from the code must be the same as the tested one when entered the given input file to 

the code) by the way, by applying these test cases, the output file was not as the tested one, so 

there is something wrong with the code and trying a lot by changing some parameters and values 

and make a lot trials to know where is the wrong in the code, by debugging the code, it’s found 

that: 

the input file is read and saved in the memory from  right to left (Little Endian) and (X1 and X2 ) 

are saved from left to right (Big Endian), so a wrong bits is xored with each other, so for sure the 

output must be wrong and to discover that, it take a very long time from us. 

After solving the last problem, the output is still wrong and there is no reason for that, by some 

trials to discover what’s wrong, it’s discovered that the input test file was wrong so also for sure 

the output must be wrong as we xor this input file with the generated code, and also this drawback 

takes much time to be solved.  



 
55 

 

And finally the code worked properly and the output test file from the code is as the same as the 

given one we have, to check out code as shown below. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6-1: The output from Scrambler code versus test cases 

In Figure (6-1), the output from the code and test cases are compared and both are the same. The 

program used to compare the files is called Beyond Compare. 

Some of the most important things that must be taken in consideration is that we write a code for 

just a software: 

 The codes must be modular. To say that a code or a component is modular, some 

specifications should be satisfied; the component should be implemented in separate .c/.h 

files. To link to the library, the testing (harness) code should include the header file.   

 All the configurations and the memory POINTERS used should be in a private context 

(structure) this structure type is specific for this component. The component should be used 

through public APIs. In general 2 APIs should be used, one for configuration and one for 

processing. The arguments of configuration API is the component structure pointer and the 

current configuration. The input for the processing API should be only the pointer to the 

component context.  



 
56 

 

 The memory allocation and structure definition should be done in the upper testing code 

and by calling the component APIs, and passing pointers to the memory and the component 

structure, the component can register the memory and configurations in the component 

structure.  

 

This modularization property is important to ease the components integration and dynamic and 

static structure manipulation, otherwise, conflicts and bugs are highly probable.  

But for writing a code for a hardware system; we must take care of 

 memory use in the code  

 The time if it’s critical  

 Don’t use malloc () or any other dynamic memory allocation as it’s  harmful in embedded 

systems because: 

o The memory is limited in embedded systems. (It is important that you do not 

suddenly find yourself out of memory). 

o Fragmentation - embedded systems can run for years which can cause a severe 

waste of memory due to fragmentation. 

o Not really required. Dynamic memory allocation allows you to reuse the same 

memory to do different things at different times. Embedded systems tend to do the 

same thing all the time (except at startup). 

o Speed. Dynamic memory allocation is either relatively slow (and gets slower as the 

memory gets fragmented) or is fairly wasteful (e.g. buddy system). 

o If you are going to use the same dynamic memory for different threads and 

interrupts then allocation/freeing routines need to perform locking which can cause 

problems servicing interrupts fast enough. 

o Dynamic memory allocation makes it very difficult to debug, especially with some 

of the limited/primitive debug tools available on embedded system. If you statically 

allocate stuff then you know where stuff is all the time which means it is much 

easier to inspect the state of something [26]. 

 



 
57 

 

For the time it’s critical in our case because we write for an LTE system which is the whole 

subframe takes 1 ms which is this block must be in micro seconds at least. For example, the process 

of generation the pseudo codes must be out the run time to not take time from the available 1 ms.  

What’s made in the code to optimize as most as possible is: 

Regarding the memory, X1 and X2 were only single integer number not an array, and that’s made 

by overwriting, generate new bit by the last operation and overwrite in same place of it, so some 

great memory has been saved.  

Regarding the time, a way for saving and reducing the time is using a matrix, matrix to generate 

the pseudo code outside the run time by a quick way and also will be ready once needed for xoring 

with the input the thing that will reduce the code time a lot.  

 

 

  



 
58 

 

Chapter 7: Modulation & Precoder 

7.1 Introduction: 

Modulation is the process of making messages (digital symbols or analogue signals) ready and 

suitable to be sent through the channel. There are many reasons why the modulation process is 

vital; to change the frequency of the (analogue) message, in order to match the channel's available 

frequency band or the antenna radiation range. In digital communication, it is quite necessary to 

make an analogue signal out of the digital symbols. Modulation also allows more than one user to 

simultaneously transmit through a shared channel. (Of course multiple access should be considered 

as a distinct concept from the modulation, but in a general picture, it is the result of using the 

modulation wisely). In the frequency domain, multiple adjacent tones or subcarriers are each 

independently modulated with complex data. Also the modulation is needed for improving the 

bandwidth, efficiency (where transmission of a plain digital signal gives you no opportunity for 

error correction, synchronization. Modulation along with coding solves the problem), noise 

immunity, antenna sizing and the Multiplexing (difficult to be achieved without modulation).  

The modulation schemes used in the LTE standard include QPSK, 16QAM and 64QAM. Figure 

(7-1) shows the constellation diagrams of these three modulation schemes. 

 

Figure 7-1: Signal constellations for: (a) QPSK; (b) 16QAM; (c) 64QAM. 

In the case of QPSK modulation, each modulation symbol can have one of four different values, 

which are mapped to four different positions in the constellation diagram. QPSK needs 2 bits to 

encode each of its four different modulation symbols. The 16QAM modulation involves using 16 



 
59 

 

different signaling choices and thus utilizes 4 bits of information to encode each modulation 

symbol. The 64QAM modulation involves 64 different possible signaling values and thus requires 

6 bits to represent a single modulation symbol. 

 

Table 7-1:  the number of bits corresponding to each modulation scheme 

Modulation schemes Bits per symbol 

QPSK 2 

16QAM 4 

64QAM 6 

 

After we’ve known about the modulation importance and definition, our target in the project 

is to achieve 64QAM while minimizing the processing power for LTE L1 processing in UEs. 

The modulation mappings are applicable for the physical uplink shared channel, so our target to 

use the higher rate this mean to implement up the 3 modulation schemes. These are the tables of 

modulation mapper takes binary digits, 0 or 1, as input and produces complex-valued modulation 

symbols, x=I+jQ, as output.  

7.1.1 QPSK 

In case of QPSK modulation, pairs of bits, )1(),( ibib  are mapped to complex-valued modulation 

symbols x=I+jQ according to Table 7-2 [10]. 

Table 7.2: QPSK modulation mapping 

)1(),( ibib  I  Q 

00 21  21  

01 21  21  

10 21  21  

11 21  21  

 

7.1.2 16QAM 

In case of 16QAM modulation, quadruplets of bits, )3(),2(),1(),(  ibibibib  are mapped to 

complex-valued modulation symbols x=I+jQ according to Table 7-3 [10]. 

 



 
60 

 

Table 7-3: 16QAM modulation mapping 

)3(),2(),1(),(  ibibibib  I  Q 

0000 101  101  

0001 101  103  

0010 103  101  

0011 103  103  

0100 101  101  

0101 101  103  

0110 103  101  

0111 103  103  

1000 101  101  

1001 101  103  

1010 103  101  

1011 103  103  

1100 101  101  

1101 101  103  

1110 103  101  

1111 103  103  

 

 

7.1.3 64QAM 

It’s actually the same as 64 QAM, In case of 64QAM modulation, hextuplets of bits,

)5(),4(),3(),2(),1(),(  ibibibibibib  are mapped to complex-valued modulation symbols x=I+jQ 

according to Table in the standard [1] section (7.1.4). 

7.2 Implementation Ways 

The block of scrambled bits resulting in a block of complex-valued symbols )1(),...,0( symb Mdd  

supporting (QPSK, 16QAM, 64QAM) [10] 

LTE transmits data by dividing it into slower parallel paths that modulate multiple subcarriers in 

the assigned channel. The data is transmitted in segments of one symbol per segment over each 

subcarrier [11]. 



 
61 

 

Hence, the code of modulation stored in it the LUT’s of the 3 schemes modulation depending on 

the Qm (modulation order) it decides which LUT will be accessed, and the size of the input of 

scrambler must be divisible by modulation order (Qm) as LTE standard shows.  

Before we continue writing in modulation, let’s stop here a little bit and talk about the LUT. It’s 

an abbreviation of the (Look up Table), it’s simply like an array, we save the data in it. Why we 

use it here? As we use a fixed point not floating point, so no float number is allowable to be used, 

hence, we can’t use the last tables of the modulation schemes and as we’ve said we converted these 

floats number to a fixed number and save them in a new table has the new values, this table or 

array in the code is called LUT. 

Back again to the modulation, the same rules of writing c code are applied here in modulation 

code. Where there are 2 mainly API one of them for configuration parameters which are 

modulation order and size of input file. And the second API is performed the modulation mapper 

function. 

in our case the Qm =4 so it’s 16 QAM modulation order so each time read 4 bits from the input 

then accesses the 16QAM LUT for real part and complex part then concatenate these 2 fixed points 

numbers (real in MSB and imaginary in LSB) each of then stored in 16 bit. And that’s how we get 

single complex symbol   then repeat it till Length (Bytes) of input file divided by Qm. 

Then comparing the result with the test case either we have from Axxcelera with the one we have 

generated from MATLAB code. And finally the code worked properly and the output test file from 

the code is as the same as the given one we have, to check out code as shown below. 



 
62 

 

 

Figure 7-2: The output from Modulation code versus test cases 

The case of  Qm=6 (64QAM) has  has a condition in the code that the length ( Bytes)  

should be devidable by 24 bits (3 bytes) as each loop  generate 4 symbols  from 3 bytes of the 

input . 

In the platform, modulation is performed parallel in the multiple core and while the code depends 

mainly on access LUT so that make it more applicable with embedded system application. 

7.3 Precoder 

Precoding is a technique or process to distribute the incoming data to the antenna ports. It supports 

multi-layer transmission in multi-antenna wireless communications. it's for sure this process is not 

that simple to just say this part of data must go to antenna port 1 and the this part for antenna port 

2 and so on, No it’s not like that simple. In reality, the data from all the layers gets combined in a 

specific way and then those combined data gets distributed to each of the antenna port.  

It’s also can be used to be the pre-knowledge of the channel, the receiver is a simple detector, such 

as a matched filter, and does not have to know the channel side information. This technique will 

reduce the corrupted effect of the communication channel [30]. 

This was the importance and use of Precoder in a very simple way. Actually we are not interested 

to see or understand the complex equations and the ways the data are assigned to each antenna port 

https://en.wikipedia.org/wiki/MIMO


 
63 

 

as it’s considered the implementation way and we don’t implement it, we have known about its 

use and importance and that’s enough for our case, because it’s used for the MIMO systems, the 

systems that have multi input and multi output each on an antenna port. And in our project we 

don’t use MIMO Systems. Therefore, we don’t have to implement the Precoder block. 

 

 



 
64 

 

Chapter 8: DFT 

8.1 Introduction 

When transmitting data from the mobile terminal to the network, a power amplifier is required to 

boost the outgoing signal to a level high enough to be picked up by the network. The power 

amplifier is one of the biggest consumers of energy in a device and should thus be as power 

efficient as possible to increase the operation time of the device on a battery charge. But there is a 

problem for this transmission that, the PAPR are high so the data peaks will be clipped so we need 

to change the PA to solve this problem, but this solution will be very costly in the uplink side as 

we must in this case change each amplifier in all handsets which is not applicable as the handset 

will be very expensive so to solve this problem SC-FDMA is used instead of OFDMA in the uplink 

side, but in the downlink side, we still use OFDMA as changing the power amplifier of the E-

NodB will be only one time and not costly as changing the PA of each handset. 

By applying SC-FDMA in the uplink side, DFT block is used before the IFFT block so we can 

reduce the high peaks of the data and protect it from clipping, that’s why the DFT block is not 

exist in the downlink side and exists only in the uplink side. 

 

 

 

 

Figure 8-1: shows the DFT/IDFT reference design blocks. 

8.2 Implementation way 

8.2.1 Theory and Output Generated Signals 

The block of complex-valued symbols )1(),...,0( symb Mdd  is divided into PUSCH
scsymb MM  sets, each 

corresponding to one SC-FDMA symbol. Transform precoding shall be applied according to 



 
65 

 

1,...,0

1,...,0

)(
1

)(

PUSCH

scsymb

PUSCH

sc

1

0

2

PUSCH

sc
PUSCH

sc

PUSCH

sc

PUSCH
sc

PUSCH
sc





 






MMl

Mk

eiMld
M

kMlz
M

i

M

ik
j



 

Resulting in a block of complex-valued symbols )1(),...,0( symb Mzz . The variable RB

sc

PUSCH

RB

PUSCH

sc NMM 

, where PUSCH
RBM  represents the bandwidth of the PUSCH in terms of resource blocks, and shall fulfil 

UL
RB

PUSCH
RB

532 532 NM 
  

Where 532 ,,   is a set of non-negative integers? 

 This the implementation way from the standard [10]. This way is the same function as we studied 

in the college which is described as the following equation  

𝑥(𝑘) = ∑ 𝑓𝑛(𝑖)𝑒
−𝑗2𝜋𝑘𝑖

𝑁

𝑁−1

𝑖=0

 

Where it x (k) is sampled frequency domain signal which generated from a sampled time domain 

signal. Hence if we referred this equation to the standard equating   X(k) will be equivalent to 

)( PUSCH

sc kMlz  .and d is the input function (complex fixed point from modulation block  as in 

our case precoder using single antenna ) 

We divide by square (
PUSCH

scM ) as referred to standard for normalization. 

But what’s the ( PUSCH

scM ) well, that’s need to go back to chapter (4) .the e-NodB send 

configurations to each UE .These configurations include ( PUSCH

RBM ) which represents the PUSCH 

includes how many resource blocks and we have ( RB

scN ) which represents the resource block 

includes how many frequency subcarrier and this value is 12 from PUSCH (chapter 4). 

 Therefore, 
PUSCH

RB

PUSCH

sc MM  *12 so in our test case PUSCH

RBM  =80, 960PUSCH

sc M  

The DFT function is to distribute the complex symbols to the sub frame, the sub frame as we’ve 

said consists of 2 slots each of 7 symbols, we have to use 6 OFDM symbols of each slot, so we 

will use 12 OFDM symbols, and the rest 2 symbols (these 2 OFDM symbols are number 3in 1st 

time slot and number 10 in the 2nd time slot in the sub frame symbols) will be used for inserting 



 
66 

 

the reference signals. Hence, simply we will generate  PUSCH

scM  DFT symbols per OFDM symbol 

(l) which equal 12 or as the equation from the standard to get (Lmax), therefore each L 

independently implemented PUSCH

scM  DFT.so it helps to make them parallel operations on 12 core 

of epiphany platform. The implementation of LUT needed to have high rate that’s make reduce 

the modules, multiplication and division operations as possible ...so we had to make a LUT with 

the worst case which is at PUSCH

RBM =100 (max) then PUSCH

scM  will be 1200 hence the size of phase 

LUT will be 2(2bytes in int16)*1200 .then to access it at any other case we may use interpolation. 

But the problem of interpolation we made that was linear interpolation so that increased the BER 

OR to be more accurate increase the precision loss .to solve this problem we had to build 

exponential interpolation function which will makes another problem of the complexity of the code 

with embedded system and reduce the operation rate. 

That’s why we have implemented a special case of our test case and the phase LUT has size of 

960 of type int 16 for each real and complex value of phase. Then in the code we simply implement 

the previous equation with index to LUT is ((i*k) %960). 

Then multiply the input with value of phase and sum them over 960 then apply shift operation to 

keep the Q (bits of floating point constant=14). Applying the shifting operating outside the internal 

loop where the Q=28 (Q1=14 from input multiplied by Q2=14 from). Then we have to shift it 14 

to right. But in our test case (from the company we have scale factor is 2).so the shifting will be 

15 to right to make the file be applicable compared with the test case file. 

Applying the shifting operating outside the internal loop is better from the point of view of 

precision loss. After that divide by square 960 to make it normalized .and finally constant the real 

and imaginary values as we did in modulation block. 

 Finally, we compared the generated file from C with the Test Cases and it showed as below. 

 

 



 
67 

 

Figure 8-2: The output from DFT code versus test cases 

As we saw the generated file not totally as the test cases not like modulation and scrambler. But it 

differs little bit in the least bits of real part (most 2 Bytes of int32 (complex value)) and it differs 

little bit in the least bits of imaginary part (least 2 Bytes of int32 (complex value)). That happens 

due to the arithmetic operation (summation, multiplication and division). As the test cases 

generated from floating point representation and finally convert then to fix. But the generated file 

is performed from the beginning with fixed point representation numbers. 

Therefore, the generated code due to sifting operation (to keep Q) not 100% accurate but was 

approached to the right values. Let’s try to measure this error (precision loss). 

 



 
68 

 

8.2.2 Error Measurement Ways 

8.2.2.1 Comparing the Constellations 

 Firstly draw the constellations (using MATLAB) of the modulated signal as Figure (8-3). 

 

 

 

 

 

 

Figure 8-3: constellation plot of test case of modulated signals 

Then draw the constellation (using MATLAB) of the signal after IFFT block of test cases of DFT 

Signals as Figure (8-4) 

Figure 8-4: constellation plot of IFFT of test case DFT signals 

 
 



 
69 

 

we assume that if the error is zero  so  when we get the diffrence between two constellations it will 

be zero .hence BER(here is persession loss) propotional with the diffrence between the two 

previous figures  as showen in Figure (8-5) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 8-5: difference between case (1) and case (2) 

 

As we see the max differences 3 which too low compared to the last 2 figures constellation was 

multiplied by 104 .then the error here is also low which is acceptable. 

8.2.2.2 Calculating SNR 

 Measuring SNR of the DFT signal (single to noise ratio). That compares the level of a desired 

signal to the level of background noise. It is defined as the ratio of signal power to the noise power. 

By applying these equations: 

𝑃𝑠𝑖𝑔𝑛𝑎𝑙(𝑑𝐵) = 10𝑙𝑜𝑔10(𝑃𝑠𝑖𝑔𝑛𝑎𝑙)               ,          𝑃𝑒𝑟𝑟𝑜𝑟(𝑑𝐵) = 10𝑙𝑜𝑔10(𝑃𝑒𝑟𝑟𝑜𝑟) 

𝑆𝑁𝑅(𝑑𝐵) = 10𝑙𝑜𝑔10(
𝑃𝑠𝑖𝑔𝑛𝑎𝑙 

𝑃𝑒𝑟𝑟𝑜𝑟
) =𝑃𝑠𝑖𝑔𝑛𝑎𝑙(𝑑𝐵) − 𝑃𝑒𝑟𝑟𝑜𝑟 (𝑑𝐵) 

The results are: 

𝑃𝑠𝑖𝑔𝑛𝑎𝑙(𝑑𝐵)=118.8268                               ,          𝑃𝑒𝑟𝑟𝑜𝑟(𝑑𝐵)=54.1035 

𝑆𝑁𝑅(𝑑𝐵) =64.7233 



 
70 

 

8.2.2.3 Calculating EMV 

Measuring the error by using EVM or The error vector magnitude (it’s called receive constellation 

error or RCE) is a measure used to quantify the performance of a digital radio transmitter or 

receiver. A signal sent by an ideal transmitter or received by a receiver would have all constellation 

points precisely at the ideal locations, however various imperfections in the implementation [31]. 

Where can be calculated by these equations: 

𝐸𝑉𝑀(𝑑𝐵) = 10𝑙𝑜𝑔10(
𝑃𝑒𝑟𝑟𝑜𝑟  

𝑃𝑟𝑒𝑓
)               ,                  𝐸𝑉𝑀(%) = (√(

𝑃𝑒𝑟𝑟𝑜𝑟 

𝑃𝑟𝑒𝑓
) ∗ 100 ) 

Where: 

𝑃𝑟𝑒𝑓 𝑎𝑛𝑑 𝑃𝑒𝑟𝑟𝑜𝑟  Are RMS reference power vector and RMS error power vector, when applying 

these 2 equation on MATLAB the results are: 

𝐸𝑉𝑀(𝑑𝐵) =-64.7233                               ,         𝐸𝑉𝑀(%)=0.0581 

 

 

 

8.3 IFFT 

After the DFT block, the output of it is as we said has a low data peaks so it will not be clipped by 

the PA. Now it’s the last step, sending the data over the air, and that’s can be done by the IFFT 

block. It converts the frequency domain to time domain to be sent within the air. It has a higher 

number of input pins than the output of DFT because as we know if both DFT and IFFT has the 

same number of pins the effect of each other will be vanished. IFFT sizes are power of two, and 

its size is bigger than the DFT block which is a very good thing as the rest of pins we can put Zeros 

on them, so the overall data peaks will be decreased much more than the output of DFT which is 

what we want. The sizes of IFFT depends on the Bandwidth we have, as shown in Table (8-1).  

 

 

https://en.wikipedia.org/wiki/Digital_radio
https://en.wikipedia.org/wiki/Constellation_diagram
https://en.wikipedia.org/wiki/Constellation_diagram


 
71 

 

Table 8.1: IFFT Sizes corresponding to each BW 

Bandwidth (MHz) IFFT Size 

1.4 128 

3 256 

5 512 

10 1024 

15 1536 

20 2048 

 

DFT output of the data symbols is mapped to a subset of subcarriers, a process called Subcarrier 

mapping. The subcarrier mapping assigns DFT output complex values as the Amplitudes of some 

of the selected subcarriers. Subcarrier mapping can be classified into two types: localized mapping 

and distributed mapping. In localized mapping, the DFT outputs are mapped to a subset of 

consecutive sub-carriers thereby confining them to only a fraction of the system bandwidth. In 

distributed mapping, the DFT outputs of the input data are assigned to subcarriers over the entire 

bandwidth non-continuously, resulting in zero amplitude for the remaining subcarriers. A special 

case of distributed SC-FDMA is called interleaved SC-FDMA, where the occupied subcarriers are 

equally spaced over the entire bandwidth. Figure (10-1) is a general picture of localized and distributed 

mapping [32].  

  



 
72 

 

 

 

 

 

 

 

 

 

 

Figure 8-6: Localized mapping vs. Distributed mapping 

 

That was the IFFT concept, we don’t implement it in the project because, we were focusing on the 

project target which optimizing the time and power, so for the future work, it’s recommended to 

do that block and complete the whole chain. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
73 

 

Chapter 9: Hardware Prototype 

9.1 Motivation 

The demand for compute power is steadily rising. This also holds for embedded systems. Many-

core processors provide a large computation power with less energy consumption compared to 

single core processors. We have choose parallella board to be our prototype because it introduces 

Epiphany system with has 16-core which will minimize power and it has low cost compared to 

other commercial many core boards. 

9.2 FreeRTOS 

9.2.1 Background 

FreeRTOS is a real-time operating system kernel for embedded devices that has been ported for 

more than 22 processor architectures [23] and recently to the Epiphany processor [22]. 

FreeRTOS supports many different compiler tool chains, and is designed to be small, and easy to 

use for real time embedded systems [21]. The kernel of FreeRTOS has pre-emptive, cooperative 

and hybrid configuration options and it is written mostly in C language. A Pre-emptive kernel [20] 

means that the OS can pre-empt (stop or pause) the currently scheduled task if a higher priority 

task is ready to run, while in a cooperative kernel [20] the running task is not allowed to be 

interrupted by other task until it yield or it finishes its execution. For better understanding of 

FreeRTOS the following parts are explained: Tasks in FreeRTOS: A task is a user‐defined code 

with a given priority that performs a special function. In FreeRTOS tasks can have the following 

states: 

Ready: When a new is task created, it will go directly to the ready list. 

Running: The task is currently running. 

Blocked: Task could be blocked due to accessing of a shared resource. 

Suspended: All tasks except the running one will be suspended, the suspended tasks are out of 

scheduling and it needs to be resumed. 



 
74 

 

At the end of the tasks lifecycle the tasks can be deleted. A state diagram of FreeRTOS tasks are 

shown in Figure (9-1). 

 

Figure 9-1:  State diagram of FreeRTOS tasks [12] 

 

FreeRTOS Scheduler: A scheduler works as a decision center that decides which task should run 

at a particular time. In the ready list the tasks are ordered according to their priority. The scheduler 

runs the highest priority task in the list, i.e. fixed priority scheduler. The timer interrupt makes the 

scheduler run periodically at every period tick. 

Communication: In some systems, tasks need to communicate with each other. In FreeRTOS 

message queues are used to communicate between tasks. 

Resource Sharing: Due to the fact that embedded systems have small recourses, away to 

synchronize the usage of shared resources is required. FreeRTOS use binary semaphore and 

mutexes to this purpose. 

9.2.2  Problem formulation 

In order to get the traversal time through the NoC, we need to calculate the time taken for reading 

and writing request between the cores. The question that should be answered is: 

Can we find a proper response time analysis to get the worst case traversal time for resulting 

messages on the NoC? 

Since main goal of our work is to bound the end-to-end delay for the communication between two 

cores we also need to find an analysis to calculate the worst case delay encountered during the 



 
75 

 

memory access on the tiles themselves. By looking at the hardware architecture and using formulas 

to describe the hardware’s behavior, allows us to extract the end to end delay. 

The question will be: 

Can we calculate the end to end delay of the underlying architecture? 

Because that we run one OS instance on each core, to enable communication between the different 

OS instances a message passing mechanism is needed. The next question will be: 

How can we transport all messages on many-core processor by introducing a message passing 

mechanism? 

In order to get no conflicts between cores, the need to guarantee mutual exclusion is required. The 

question that should be answered is:Can we find a suitable method for synchronizing memory 

accesses between cores? 

9.2.3  Message 

A message is data, which needs to be sent from one core to another core. A Message is represented 

in flows. A flow is a data that is transferred between two cores, each flow has a specific size, a 

source and a destination addresses. A flow traverses between nodes via links until it reaches its 

destination. Since an instance of FreeRTOS is running on each core, thus messages are sent within 

a task. The message has a period and is sent periodically, which is done by the task. The maximum 

size of one message is a double word, which is equivalent to 64-bits. A message f is represented 

by the tuple {s, dest, source, T}, where s is the message size in flits, dest. And source are the 

destination and source node respectively and T is the period of the message. 

9.2.4 Message-passing between Cores 

The cores communicate via message-passing. Since the cores cannot pass messages directly, 

instead they access other core’s local memory. It is possible to get a global address of a memory 

location in another core’s local memory [3]. Once a global address is known, it is always possible 

to pass messages via read and write transactions directly to the local memory of that core. For 

achieving message passing, suitable APIs has been developed. These APIs can access cores local 

memory explicitly. The user can use those APIs to communicate between the cores through 

assigning the destination core ID without having knowledge about the underlying operation. 



 
76 

 

Before starting using APIs for message passing, it is important to create a message box to store 

messages in each core. The following features should be considered in the message box: 

1. It is important to keep the size of the message box small, because the Epiphany cores have a 

small amount of memory, which is 32 KB for both data and code. 

2. The message box should be able to save messages from more than one task of the cores. 

3. To get faster communication, accessing the message box must have a high performance.  

9.2.4.1  FreeRTOS Queues 

Since each core executes an instance of FreeRTOS, it is possible to use FreeRTOS queues as a 

message box. They can be used to send messages between tasks. They use a FIFO (First in First 

Out) buffer and the data can be sent to the back or the front of the queue. A task can be blocked if 

it is attempting to read from an empty queue or to write to a full queue to avoid CPU time 

consumption [20]. The problem with this method is that the queue takes too much memory space, 

because it will require creating a queue for each core. This means that each queue will need an 

allocated memory for it, and as the Epiphany processor has 16 cores, this means that each core will 

have 16 queues, one queue for each core, and it will require to allocate memory for the entire 16 

queue. In Addition, messages cannot be stored directly in the queues, it will need a variable to 

store they arrived message, and then pass this variable to the queue. The equations (1), (2), (3) and 

(4) have been used to find a total size that is required for the data structures inside each core’s local 

memory. 

                           Qs=Nm*S                                        Equation (1) Queue size 

Where: 

Qs: Queue size 

Nm: Number of messages per core 

S: Size of one message 

Equation (1) calculates the size of the queue that is used to store messages from each core by 

multiplying the number of messages with the size of one message. 

                               S=Ds+Ms                             Equation (2) Size of one message 



 
77 

 

Where: 

Ds: Data size 

Ms: Mutex size 

Equation (2) calculates the size of one message by adding the data size with the mutex size. The 

data size is specified by a data type of message data, i.e. integer, float or double. 

The mutex size is a size of integer. 

                      Y= Qs                             Equation (3) size of variables to store messages 

Where: 

Y: The size of variables that store messages before sending it to the queues 

Equation (3) calculates the size of the variable that is used to store the message to pass it to the 

queue. The size of variables is the same as the queue size. 

                   Ts= Qs*Nt*Nc +Y         Equation (4) Total size of FreeRTOS Queue 

Where: 

Ts:Total size 

Nt: Number of tasks per core (each core can run more than one task) 

Nc: Number of cores 

This equation calculates the total size of the data structure by using the results from the previous 

equations. 

9.2.4.2 Creating the Message Box 

Before passing messages between cores it is necessary to initialize a message box. An API 

(create_box ()) has been developed for this purpose. The API initializes the message box as 

follows: 

1. Allocate a memory for the message box. 

2. Initialize reads and writes mutex. 



 
78 

 

3. Lock a read and unlocks a write mutex to make sure that the message box has got a message. 

9.2.4.3  Mutual Exclusion 

The Epiphany processor uses mutexes to guarantee mutual exclusion while accessing shared 

resources. Read and write mutexes have been added to the message box structure to ensure mutual 

exclusion between cores during write and read transactions. In the many-core processor each core 

has a read and write mutexes for locking of a shared resource. Once the mutex is locked, no other 

core can access the resource of that core until the mutex is unlocked. All cores can lock and unlock 

mutexes across core boundaries. 

9.2.5 Simulation  

The simulation is yielding the same behavior as experienced on the Epiphany processor NoC 

including: network topology, routing mechanism, and wormhole switching. In addition, it also 

contains parts of Epiphany processor such as crossbar, mutex, system cycle counter, read and write 

channels.  

We use FreeRTOS API‘s and methods in SDK simulator: 

1- At the beginning we make “Hello world “using FreeRTOS on one core to be enable next to test 

communication blocks codes  

Steps: 

1.1- We have download FreeRTOS “source codes & Demo projects for different platforms. 

1.2 -Study careful Demo project of parallella to follow it in making our code. 

1.3- Study FreeRTOS manual to understand configuration of functions in demo project. 

1.4 -Study Makefile (Makefiles are a simple way to organize code compilation) basics. 

1.5 -Implement our first Demo which just hello world code. 

2- Simulate modulation block code using FreeRTOS:  

As mention before in chapter 2 that core internal memory size is only 32 kB so when we tested at 

first modulation block, more problem about memory size appear so we need to deal with simulation 

debugger to follow problems and solve it. 



 
79 

 

3- Simulate all blocks at first before testing on platform using FreeRTOS. 

9.2.6  Hardware  

We don’t need to use FreeRTOS on hardware as we discover good optimization way better than 

massaging passing using FreeRTOS.  

9.3 ARM Cross Compiler 

To test ARM processor of board we have compiled simple hello-world code with ARM cross 

compiler to generate binary file suitable to run on parallella board. 

First we have installed the Cross Compilers, utilities. 

Install the GCC, G++ cross compiler support programs by: 
$ sudo apt-get install libc6-armel-cross libc6-dev-armel-cross 

$ sudo apt-get install binutils-arm-linux-gnueabi 

$ sudo apt-get install libncurses5-dev 

 

Using an Acqua board: 
$ sudo apt-get install gcc-arm-linux-gnueabihf 

$ sudo apt-get install g++-arm-linux-gnueabihf 

 

Create simple code of hello-world then compile it by: 
$ arm-linux-gnueabi-gcc hello.c -o hello 

 

Then copy the executable binary to board by: 
$ scp hello parallella@ip:~/ 

 

Run the executable binary on board: 
./hello 

 



 
80 

 

    

Figure 9-2: Hello-world with ARM cross compiler  

9.4 Hello world on epiphany core  

9.4.1 Introduction 

Here we test every core on parallella platform and make sure that every core work Properly, 

therefore we create a simple application which is run on each core of the epiphany device in turn 

and performs a simple hello world type application. 

Achieving this make us ensure that we know deeply how to: 

1- Use of the epiphany hardware abstraction layer to initialize, reset, open and load the 

target Epiphany device 

2- Use of basic commands of the epiphany hardware utility library(e-Lib). 

3- Improve a build script to create the host (ARM processor) & target (Epiphany co-

processors). ELF executables 

4- Improve a run script to execute the application on the host (ARM processor) and target 

(Epiphany co-processors). 

9.4.2 Implementation  

First step it to create two directories within our chosen development directory, these directories 

should be called Debug and Source, Within the Source directory we will store the application 

source codes for the host and target (epiphany).  The Debug folder is where the build process will 

store the executable files. 



 
81 

 

The application will use the shared DRAM memory to communicate between the host and target 

application. At a predefined memory location known to both applications. the target application 

will write a string using the sprint function while the host application will look for, retrieve and 

print out that message. 

The main file for this demonstration is going to be the host application this application will: 

1. System initialization: using the function e_init ()  

2. Reset the system: using the function e_reset_system ()  

3. Get the platform information: using the function e_get_platform_info () which defines core 

configuration, number of devices within the system and number of external memories. 

4. Allocate new location of the shared memory used for communication. 

5. Address each core in turn and retrieve its printed string. To do this the host must: 

1. Define work group to be a single core: using the function e_open (). 

2. Reset the workgroup: using the function e_reset_group ( ) 

3. Load the s record into the working group: using the function e_load ( ), when doing this 

it will also check for the success of the operation. 

4. Wait for the target to finish execute its application 

5. Read the shared memory location: using the function e_read() to obtain the message from 

the target 

6. Get the message from Arm as output. 

6. Having finally completed addressing each core the host application will then close and tidy 

up the epiphany and allocated memory before exiting 

 

By comparison the epiphany target application is much simpler, it just gets the core ID for the core 

it is currently running upon, formats this into a string and writes it into the shared memory location. 

 

 

 

  



 
82 

 

9.4.3 Results: 

Figure (9-3) below appears that every core work properly. 

 

Figure 9-3: The way to implement code on single core on parallella  

9.5 Test Functionality of Communication Blocks  

9.5.1 Introduction  

Here we start implementing every block code on single core on platform by using test cases input 

and compare output with full file of output test cases.  

9.5.2 Modulation block  

We insert modulation code as application on epiphany core in the same way like hello world 

application on previous section. 

We face more problems related to memory size as input size is very large is about 5760 bytes and 

output size 4680 byte which very large compared to internal memory size of core so we directed 

to shared memory we store input on it on host program, and read it from epiphany program the 

epiphany write output again on shared memory as shown on Figure (9-4) 



 
83 

 

 

Figure 9-4: The way to implement code on single core on parallella  

Then after sure that all test cases pass and achieve functionality of code we measure time is equal 

= 0.002783 sec as shown on Figure (9-5) 

 

Figure 9-5:  First modulation output and time consumption. 

9.5.3 Scrambler & DFT Blocks  

The same way we implement Modulation block we implement DFT and Scrambler blocks and 

their results shown on two figures below, but as shown in Figure (9-4) the DFT block take more 

time. 

 

 Figure 9-6: First scrambler output and time consumption. 

 

Figure 9-7: First DFT output and time consumption. 



 
84 

 

9.6 Optimization Levels 

9.6.1 Introduction 

We have to optimize in three factors memory, time and power to achieve our project target. 

9.6.2 Running each Block on Single Core  

In this phase we run each block on single core after each other as at first scrambler run on single 

core then deliver output to modulation which run and wait input on another core and finally 

modulation deliver its output to DFT which also run and wait input on third core. 

In this stage we test that combination between blocks work successfully, the result of first output 

and time taken of each block and overall time taken for three cores shown in Figure (9-8) 

 

Figure 9-8:  First output and time for each block and overall time of application. 

9.6.3 Running all Blocks on 12-core in parallel 

Here the final optimization level we have done, steps we did in this level: 

1- Make only one binary for three blocks to avoid adding loading time in power measurement. 

2- Divide input to 12 part to insert every part on different core. 

3- Load the same binary on 12 core, but each core takes different input and result different output 

depend on core ID.  

This way decrease time more than 100% as it decreased it from 28 msec to 319 msec as shown in 

Figure (9-9) 



 
85 

 

 

Figure 9-9: First DFT output and overall time of application 

  



 
86 

 

Conclusion  

In this thesis we presented the implementation of LTE UE-L1 on many-core general-purpose 

processors(GPP) Epiphany NoC system represented in Parallella platform, it was a challenge to 

achieve low power while achieving low time at the same time, but  we achieved great results as 

final time for the implementation is 332 m sec which is good time compared to the PHY team in 

Axxcellera Company when measure the UL channel, it took 400msec before optimization, so  332 

m sec is normal and this will be decreased when optimizing the code and using upgraded version 

of our Parallella with more numbers of cores as what will be described in future work section in 

this thesis and as we mentioned in introduction  chapter the power of all epiphany 16 core system 

is less than 2 watt which is much less than DSP power.  

The Project flow is summarized in 6 main stages which are: 

1- Write c code for communication blocks (Scrambler-Modulation-DFT). 

2- Using SDK simulator to test codes. 

3- Prepare hardware environment to load codes on cores of Parallella. 

4- Implement codes of blocks on hardware and test them with full test cases files. 

5- Measure time for each block on platform. 

6- Optimization level for code and the way of hardware implementation to decrease time. 

We faced a lot of problems most of them were related to: 

1- Parallella Memory (internal and external). 

2- Tradeoff between power consumption and Time of processing as power consumption may 

be increased when use all cores (as one core take 25 mw which for sure less than 12 cores) 

but the time is decreased in this case, so it is a tradeoff.  

The memory problems were solved by dividing the input file on 12 cores as described on chapter 

9 section 5. And regarding the tradeoff problem between time and power consumption we have 

some recommendation described in future work chapter. 

  



 
87 

 

Future Work 

Most of the future work that can be done is in the Optimization level which is divided into two 

ways. 

First way: Optimization in software codes by 

1. Using Butterfly algorithm in implementing DFT block which will decrease time. 

2. Using exponential interpolation in DFT implementation to generate the max size of phase 

Look up Table. 

3. Using a matrix to generate the pseudo code outside the run time by a quick way and it also 

will be ready once needed for XORing with the input the thing that will reduce the code 

time a lot. 

Second way: Optimization by Epiphany System 

1. Using all 16-core of epiphany system instead of 12-core only which will decrease over all 

time. 

2. Using “Embedded “version of Parallella which has 64-core where using all of them in 

parallel to implement all blocks will decrease time a lot. 

The rest of future work that we recommend to be continued is implementing the IFFT block and 

place it with all codes on Parallella and trying to optimize in it regarding the time, also to 

implement and form the whole subframe as a software code, then place it on the board and try to 

optimize as much as possible to reach the 1ms required time of sub-frame. 

 

 

 

 

 

 

 

 



 
88 

 

References 

[1] http://www.parallella.org/create-sdcard/ 

[2] “Parallella-1.x Reference Manual” 

[3] Adapteva Inc.,”Epiphany SDK Reference”, REV 5.13.09.10, 2008-2013 

[4] Adapteva Inc.,”Epiphany Architecture Reference”, REV 14.03.11, 2008-2013 

[5] https://github.com/adapteva/epiphany-sdk/wiki/Building-the-SDK 

[6] https://github.com/coduin/epiphany-bsp/wiki/Memory-on-the-parallella 

[7] “FreeRTOS - A FREE RTOS for small real time embedded systems,” 2003-2005 

[8] Nahro Nadir, Omar Jamal, “Communication mechanism among instances of many-core real 

time system,” Malardalen University, 2015 

[9] http://www.acmesystems.it/arm9_toolchain 

[10] 3GPP TS 36.211 v9.1.0, “Evolved Universal Terrestrial Radio Access (E-UTRA); Physical 

Channels and Modulation,” Release 9 

[11] http://www.sharetechnote.com/html/FrameStructure_DL.html 

[12] http://rfmw.em.keysight.com/wireless/helpfiles/89600B/webhelp/subsystems/lte/ 

content/lte_overview.htm 

[13] http://3gpphelp.blogspot.com.eg/2011/11/physical-layer-bit-processing.html 

[14] http://howltestuffworks.blogspot.com.eg/2014/06/rntis-in-lte.html 

[15] https://en.wikipedia.org/wiki/OpenLTE 

[16] http://sourceforge.net/projects/openlte/ 

[17] https://code.google.com/p/lte-sim/issues/list 

[18] https://www.google.com.eg/webhp?sourceid=chromeinstant&ion=1&espv=2&i                        

=UTF-8#q=%2F%2Ftelematics.poliba.it%2FLTE-Sim 

[19] https://github.com/srsLTE/srsLTE 

[20] Giorgio C. Buttazzo, Hard Real-Time Computing Systems: Predictable Scheduling 

[21] FreeRTOS http://www.freertos.org/. Last access 15, May, 2015. 

[22] http://forums.parallella.org/viewtopic.php?f=28&t=1948, (FreeRTOS running on Epiphany 

core) Last access 15, May, 2015. 

[23] http://www.freertos.org/a00090.html, (FreeRTOS Ports) Last access 15, May, 2015.  

 

[24] Floating‐point to Fixed‐point conversion 

http://www.parallella.org/create-sdcard/
https://github.com/adapteva/epiphany-sdk/wiki/Building-the-SDK
https://github.com/coduin/epiphany-bsp/wiki/Memory-on-the-parallella
http://www.acmesystems.it/arm9_toolchain
http://www.sharetechnote.com/html/FrameStructure_DL.html
http://rfmw.em.keysight.com/wireless/helpfiles/89600B/webhelp/subsystems/lte/%20content/lte_overview.htm
http://rfmw.em.keysight.com/wireless/helpfiles/89600B/webhelp/subsystems/lte/%20content/lte_overview.htm
http://3gpphelp.blogspot.com.eg/2011/11/physical-layer-bit-processing.html
http://howltestuffworks.blogspot.com.eg/2014/06/rntis-in-lte.html
https://en.wikipedia.org/wiki/OpenLTE
http://sourceforge.net/projects/openlte/
https://code.google.com/p/lte-sim/issues/list
https://www.google.com.eg/webhp?sourceid=chromeinstant&ion=1&espv=2&i%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20=UTF-8#q=%2F%2Ftelematics.poliba.it%2FLTE-Sim
https://www.google.com.eg/webhp?sourceid=chromeinstant&ion=1&espv=2&i%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20=UTF-8#q=%2F%2Ftelematics.poliba.it%2FLTE-Sim
https://github.com/srsLTE/srsLTE
http://forums.parallella.org/viewtopic.php?f=28&t=1948
http://www.freertos.org/a00090.html


 
89 

 

 

[25] Erick L. Oberstar, “Fixed-Point Representation & Fractional Math ,” 2004-2007 Oberstar 

Consulting, Revision 1.2, Released August 30, 2007 

[26] https://www.quora.com/Why-is-malloc-harmful-in-embedded-systems 

[27] http://www.radio-electronics.com/info/cellulartelecomms/lte-long-term-evolution/lte-ofdm-

ofdma-scfdma.php 

 

[28] John Wiley and Sons, Ltd, “Understanding LTE with MATLAB®: From Mathematical 

Modeling to Simulation and Prototyping,” First Edition, 2014   

[29] http://electronicdesign.com/4g/introduction-lte-advanced-real-4g 

 

[30] https://en.wikipedia.org/wiki/Precoding 
 

[31] https://en.wikipedia.org/wiki/Error_vector_magnitude 

[32] Rev A, “SC-FDMA Single Carrier FDMA in LTE”, November 2009 

[33] https://gigaom.com/2012/11/28/volte-calls-consumer-twice-the-power-of-2g-voice-calls/ 

[34] https://gigaom.com/2012/02/17/why-lte-sucks-your-battery-that-is/ 

 

 

 

 
  

 

 

 

 

 

 
 

 

 

  

https://www.quora.com/Why-is-malloc-harmful-in-embedded-systems
http://www.radio-electronics.com/info/cellulartelecomms/lte-long-term-evolution/lte-ofdm-ofdma-scfdma.php
http://www.radio-electronics.com/info/cellulartelecomms/lte-long-term-evolution/lte-ofdm-ofdma-scfdma.php
http://electronicdesign.com/4g/introduction-lte-advanced-real-4g
https://en.wikipedia.org/wiki/Error_vector_magnitude
https://gigaom.com/2012/11/28/volte-calls-consumer-twice-the-power-of-2g-voice-calls/
https://gigaom.com/2012/02/17/why-lte-sucks-your-battery-that-is/


 
90 

 

Appendix I Supported Tutorials 

1- Embedded for linux course By Dr.Ahmed ElArabawy 

http://linux4embeddedsystems.com/courses/course/index.php?categoryid=2 

2- Rohde & Schwarz LTE Basics Webinar - Part 01 

            https://www.youtube.com/watch?v=VMcnDNZm5jY&list=PL65F3CFB5FF6EB6AC 

http://linux4embeddedsystems.com/courses/user/view.php?id=2&course=1
http://linux4embeddedsystems.com/courses/course/index.php?categoryid=2
https://www.youtube.com/watch?v=VMcnDNZm5jY&list=PL65F3CFB5FF6EB6AC


 
91 

 

Appendix II  

 ARM Code 

 

       ****************************************************** 

/* 

 main.c 

 

  Copyright (C) 2016 Team (3). 

  Contributed by Somia,Dina,Omayma,Basma 

 

 

  This program is the ARM part of Scrambler, Modulation and DFT running on 

parallella platform 

 

   July,3 2016 

 

*/ 

 

 

#include <stdlib.h> 

#include <stdio.h> 

#include <errno.h> 

#include <unistd.h> 

#include <stdint.h> 

#include <e-hal.h> 

#include <time.h> 

 

#define ALLOC_MEM  200000 

 

uint32_t     scram_in   [1440]; 

uint32_t     mod_out    [2*5760]; 

uint32_t     DFT_out    [2*5760]; 

uint8_t      scram_out  [5760]; 

 

FILE *fo; 

FILE *foo; 

FILE *fooo; 

FILE *foooo; 

Int  DFT_finish,DFT_finish2,DFT_finish3,DFT_finish4,DFT_finish5,DFT_finish6,   

DFT_finish7,DFT_finish8,DFT_finish9,DFT_finish10,DFT_finish11,DFT_finish12; 

int src[1]; 

 

int main() 

{     double diff ; 

  struct timespec start_1, end_1; 

         clock_t       begin,end ; 

         double        time_spent ; 

         unsigned      row_loop,col_loop; 

         e_platform_t  epiphany; 

         e_epiphany_t  dev; 

         e_mem_t       memory; 

         int           rc; 

         int           i; 



 
92 

 

 

src[0] = 0x0; 

 

/* *** Reading input file of Scrambler *** */ 

            fo = 

fopen("/home/parallella/16_core_chain/Src/sf00_Interleaver_Out_m2lob.lod" , 

"r"); 

                 if(fo == NULL) 

                         { 

                             printf("can't open file"); 

                          } 

 

                 else 

                          { 

                             fread(scram_in, sizeof(int32_t),1440, fo); 

                          } 

 

                fclose(fo); 

 

 

/*  initialization platform and reset system */ 

             e_init(NULL); 

             e_reset_system(); 

             e_get_platform_info(&epiphany); 

 

/* start calculate processing time */ 

            // begin= clock(); 

 

/* Allocate buffer in shard ram */ 

             rc = e_alloc(&memory, 0x01800000,ALLOC_MEM); 

             if (rc != E_OK) 

                     { 

                      return EXIT_FAILURE; 

                     } 

 

/* initialize allocated buffer with zeros */ 

        for ( i=0; i< ALLOC_MEM; i++) 

           { 

  e_write(&memory,0,0,i,src,1) ; 

           } 

 

/* Write input buffer into memory */ 

         e_write(&memory,0,0,0x00000000,scram_in,sizeof(scram_in)) ; 

 

/* creating workgroup of 3 cores */ 

        row_loop=0; 

        col_loop=0; 

 

       e_open(&dev,row_loop,col_loop,3,4); 

       e_reset_group(&dev); 

 

/* load progrms on cores */ 

 

  e_load_group("full_chain.srec", &dev,0,0,3,4, E_TRUE); 

 

/* Calculating Epiphany Time */ 



 
93 

 

int start,end1 ; 

       while(1) 

{ 

     e_read(&memory,0,0,0x000019738, &start,sizeof(int)); 

if(start==1) break; 

} 

  begin= clock(); 

  clock_gettime(CLOCK_REALTIME,&start_1); 

 

       while(1) 

{ 

     e_read(&memory,0,0,0x000019738, &end1,sizeof(int)); 

if(end1==2) break; 

} 

end =clock(); 

clock_gettime(CLOCK_REALTIME,&end_1); 

diff=(1000000000L*(end_1.tv_sec - start_1.tv_sec)+ end_1.tv_nsec - 

start_1.tv_nsec); 

printf("time of clock %f \n",diff*0.000000001); 

 

/* check for DFT Ending */ 

       while(1) 

          { 

            e_read(&memory,0,0,0x00019708, &DFT_finish, sizeof(int)); 

            e_read(&memory,0,0,0x0001970c, &DFT_finish2,sizeof(int)); 

            e_read(&memory,0,0,0x00019710, &DFT_finish3,sizeof(int)); 

            e_read(&memory,0,0,0x00019714, &DFT_finish4,sizeof(int)); 

            e_read(&memory,0,0,0x00019718, &DFT_finish5,sizeof(int)); 

            e_read(&memory,0,0,0x0001971c, &DFT_finish6,sizeof(int)); 

            e_read(&memory,0,0,0x00019720, &DFT_finish7,sizeof(int)); 

            e_read(&memory,0,0,0x00019724, &DFT_finish8,sizeof(int)); 

            e_read(&memory,0,0,0x00019728, &DFT_finish9,sizeof(int)); 

            e_read(&memory,0,0,0x0001972c, &DFT_finish10,sizeof(int)); 

            e_read(&memory,0,0,0x00019730, &DFT_finish11,sizeof(int)); 

            e_read(&memory,0,0,0x00019734, &DFT_finish12,sizeof(int)); 

 

            if((DFT_finish == 1)&&(DFT_finish2 == 1)&& (DFT_finish3 == 1)&& 

(DFT_finish4 == 1)&&(DFT_finish5 == 1)&&(DFT_finish6 == 1)&&(DFT_finish7 == 

1)&&(DFT_finish8 == 1)&&(DFT_finish9 == 1)&&(DFT_finish10 == 

1)&&(DFT_finish11 == 1)&&(DFT_finish12 == 1)) 

{ 

 

 break; 

} 

} 

 

/* Ending calculate time */ 

       //end = clock(); 

       time_spent = (double)(end -begin)/CLOCKS_PER_SEC ; 

       printf("\"%f\"\n",time_spent); 

 

 

 

 

 

 



 
94 

 

/* Reading Scrambler , Modulation and DFT output */ 

//             e_read(&memory,0,0,0x00001700  ,scram_out, sizeof(scram_out)); 

  //           e_read(&memory,0,0,0x00002e00  ,mod_out,   sizeof( mod_out)); 

               e_read(&memory,0,0,0x0000e280 ,DFT_out,   sizeof( DFT_out)); 

 

/* Printing first element of output */ 

    //  fprintf(stderr,"scrambler output is  = %x \n", scram_out[0]); 

    //  fprintf(stderr,"Modulation output is  = %x \n",mod_out[0]); 

        fprintf(stderr,"DFT output is  = %x \n",       DFT_out[0]); 

 

/* Writing output into file */ 

//       foo=fopen("/home/parallella/16_core_chain/modulation_out.lod","wb"); 

  //     fwrite( mod_out,sizeof(uint32_t),11520 ,  foo); 

            

fooo=fopen("/home/parallella/16_core_chain_original/DFT_out.lod","wb"); 

       fwrite( DFT_out,sizeof(uint32_t),11520 ,  fooo); 

    //   foooo=fopen("/home/parallella/16_core_chain/scram_out.lod","wb"); 

      // fwrite( scram_out,sizeof(uint8_t),5760 ,  foooo); 

 

 

/* close and free work group */ 

     e_close(&dev); 

     e_free(&memory); 

     e_finalize(); 

 

  return 0; 

 

} 

 

********************************************************************** 

 Epiphany Code 

 

        *************************************************** 

#include <stdio.h> 

#include <stdlib.h> 

#include <stdint.h> 

#include <time.h> 

 

#include "e_lib.h" 

 

 

#include "lte_scrambler.h" 

#include "lte_modulation.h" 

#include "lte_dft.h" 

#include "common_functions.h" 

 

#define maxSize  480 

 

/* Flags addresses */ 

#define address_scrambler_flag  0x8f819700 

#define address_modulation_flag 0x8f819704 

#define address_dft_flag        0x8f819708 



 
95 

 

#define address_dft_flag2       0x8f81970c 

#define address_dft_flag3       0x8f819710 

#define address_dft_flag4       0x8f819714 

#define address_dft_flag5       0x8f819718 

#define address_dft_flag6       0x8f81971c 

#define address_dft_flag7       0x8f819720 

#define address_dft_flag8       0x8f819724 

#define address_dft_flag9       0x8f819728 

#define address_dft_flag10      0x8f81972c 

#define address_dft_flag11      0x8f819730 

#define address_dft_flag12      0x8f819734 

#define start_end               0x8f819738 

 

/* Flags Decleration */ 

int *flag_scram =  (unsigned int *) address_scrambler_flag ; 

int *flag_mod =    (unsigned int *) address_modulation_flag ; 

int *flag_dft =    (unsigned int *) address_dft_flag ; 

int *flag_dft2 =   (unsigned int *) address_dft_flag2 ; 

int *flag_dft3 =   (unsigned int *) address_dft_flag3 ; 

int *flag_dft4 =   (unsigned int *) address_dft_flag4 ; 

int *flag_dft5 =   (unsigned int *) address_dft_flag5 ; 

int *flag_dft6 =   (unsigned int *) address_dft_flag6 ; 

int *flag_dft7 =   (unsigned int *) address_dft_flag7 ; 

int *flag_dft8 =   (unsigned int *) address_dft_flag8 ; 

int *flag_dft9 =   (unsigned int *) address_dft_flag9 ; 

int *flag_dft10 =  (unsigned int *) address_dft_flag10 ; 

int *flag_dft11 =  (unsigned int *) address_dft_flag11 ; 

int *flag_dft12=   (unsigned int *) address_dft_flag12 ; 

 

int *clock1=   (unsigned int *) start_end ; 

 

int z1=0; 

int z2=0; 

 

typedef struct intermediate_buffs_s { 

 

 uint32_t in_scram[maxSize / 4]; 

 uint8_t  in_mod[maxSize]; 

 uint32_t in_dft[maxSize * 2]; 

 uint32_t in_ifft[maxSize * 2]; 

 

} intermediate_buffs ; 

 

 

uint32_t  x1; 

uint32_t  x2; 

int32_t   address,address1,out_address_mod,out_address_scram,out_address_dft 

; 

int       num ; 

 

int main() { 

//        *clock1=1; 

        unsigned row ,col ; 

        e_coreid_t coreid; 

        e_group_config_t remote ; 

 



 
96 

 

        intermediate_buffs     intr_buffs ; 

 pusch_scramb           scramb_obj ; 

 pusch_mod              mod_obj; 

 pusch_dft              dft_obj; 

 

        e_emem_config_t        emem; 

        int                    i,l; 

        int                    scrambler_finish; 

        int                    modulation_finish; 

        int                    dft_finish; 

/*********************************initializations 

*****************************/ 

 uint8_t N_rnti = 142, Ns = 0, N_id_cell = 168; 

 uint8_t Qm = 4; 

 uint32_t length = maxSize * 8; 

 uint8_t N_rb= 80; 

 uint8_t L_max=maxSize * 2/(12*N_rb);  //mod_symboles_num= max-size*2 

 

/***************************** some parameters 

********************************/ 

 int32_t coff_out_size; 

 if (Qm==2) 

  coff_out_size=4*maxSize; 

 else if (Qm==4) 

  coff_out_size=2*maxSize; 

 else if (Qm==6) 

  coff_out_size=(maxSize*4)/3; 

 

/*************************Scrambler Function 

*********************************/ 

 

      coreid = e_get_coreid(); 

 

      if(coreid == 0x808)      {address=0x8f800000 ;  num=1;   

out_address_scram= 0x01801700; out_address_mod=0x01802e00 ; 

out_address_dft=0x0180e280 ;} 

      else if(coreid == 0x809) {address=0x8f8001e0 ;  num=2;   

out_address_scram= 0x018018e0; out_address_mod=0x01803d00 ; 

out_address_dft=0x0180f180 ;} 

      else if(coreid == 0x80a) {address=0x8f8003c0 ;  num=3;   

out_address_scram= 0x01801ac0; out_address_mod=0x01804c00 ; 

out_address_dft=0x01810080 ;} 

      else if(coreid == 0x80b) {address=0x8f8005a0 ;  num=4;   

out_address_scram= 0x01801ca0; out_address_mod=0x01805b00 ; 

out_address_dft=0x01810f80 ;} 

      else if(coreid == 0x848) {address=0x8f800780 ;  num=5;   

out_address_scram= 0x01801e80; out_address_mod=0x01806a00 ; 

out_address_dft=0x01811e80 ;} 

      else if(coreid == 0x849) {address=0x8f800960 ;  num=6;   

out_address_scram= 0x01802026; out_address_mod=0x01807900 ; 

out_address_dft=0x01812d80 ;} 

      else if(coreid == 0x84a) {address=0x8f800b40 ;  num=7;   

out_address_scram= 0x01802240; out_address_mod=0x01808800 ; 

out_address_dft=0x01813c80 ;} 



 
97 

 

      else if(coreid == 0x84b) {address=0x8f800d20 ;  num=8;   

out_address_scram= 0x01802420; out_address_mod=0x01809700 ; 

out_address_dft=0x01814b80 ;} 

      else if(coreid == 0x888) {address=0x8f800f00 ;  num=9;   

out_address_scram= 0x01802600; out_address_mod=0x0180a600 ; 

out_address_dft=0x01815a80 ;} 

      else if(coreid == 0x889) {address=0x8f8010e0 ;  num=10;  

out_address_scram= 0x018027e0; out_address_mod=0x0180b500 ; 

out_address_dft=0x01816980 ;} 

      else if(coreid == 0x88a) {address=0x8f8012c0 ;  num=11;  

out_address_scram= 0x018029c0; out_address_mod=0x0180c400 ; 

out_address_dft=0x01817880 ;} 

      else if(coreid == 0x88b) {address=0x8f8014a0 ;  num=12;  

out_address_scram= 0x01802ba0; out_address_mod=0x0180d300 ; 

out_address_dft=0x01818780 ;} 

 

 

        for(i = 0; i < maxSize/4; i++) 

         { 

              intr_buffs.in_scram[i] = ((uint32_t*)address)[i]; 

         } 

 

 

        pusch_scramb_init(&scramb_obj, intr_buffs.in_scram 

,intr_buffs.in_mod); 

 

     pusch_scramb_param_init(&scramb_obj, N_rnti, Ns, N_id_cell,num); 

 

     pusch_scramb_start(&scramb_obj, maxSize); 

 

     big_little_sweeping(scramb_obj.in, maxSize); 

 

     output_converting_to_8bit(&scramb_obj, maxSize); 

 

//        e_write(&emem,intr_buffs.in_mod 

,0,0,(void*)out_address_scram,sizeof(intr_buffs.in_mod )); 

 

/***************************Modulation Function 

******************************/ 

 

 pusch_mod_init(&mod_obj, intr_buffs.in_mod, intr_buffs.in_dft); 

 

 pusch_mod_param(&mod_obj, Qm, length); 

 

 pusch_mod_start(&mod_obj); 

 

//        

e_write(&emem,intr_buffs.in_dft,0,0,(void*)out_address_mod,sizeof(intr_buffs.

in_dft)); 

 

/**********************************DFT Function 

*******************************/ 

 

*flag_dft = 0; 

*flag_dft2 = 0; 

 



 
98 

 

 *clock1=1; 

         pusch_dft_init (&dft_obj,intr_buffs.in_dft , intr_buffs.in_ifft ,  

N_rb); 

         pusch_dft_start (&dft_obj, 0); 

         

e_write(&emem,intr_buffs.in_ifft,0,0,(void*)out_address_dft,sizeof(intr_buffs

.in_ifft )); 

 

 if(coreid == 0x808){*flag_dft=1;} 

else if(coreid == 0x809){*flag_dft2=1;} 

else if(coreid == 0x80a){*flag_dft3=1;} 

else if(coreid == 0x80b){*flag_dft4=1;} 

else if(coreid == 0x848){*flag_dft5=1;} 

else if(coreid == 0x849){*flag_dft6=1;} 

else if(coreid == 0x84a){*flag_dft7=1;} 

else if(coreid == 0x84b){*flag_dft8=1;} 

else if(coreid == 0x888){*flag_dft9=1;} 

else if(coreid == 0x889){*flag_dft10=1;} 

else if(coreid == 0x88a){*flag_dft11=1;} 

else if(coreid == 0x88b){*flag_dft12=1;} 

 

 

        *clock1=2; 

 

/****************************** The End 

*****************************************/ 

        return EXIT_SUCCESS; 

} 

 

 

 

************************************************************************ 

  

 Symbol chain Blocks Codes 

 

Scrambler codes: 

 

******************************************************* 

/*scrambler.h 

 

 * 

 

 *  Created on: ??þ/??þ/???? 

 

 *      Author: BBS 

 

 */ 

 

#ifndef SCRAMBLER_H_ 

 

#define SCRAMBLER_H_ 

 



 
99 

 

#include <stdint.h> 

 

 

typedef struct pusch_scrambler_structure { 

 

 uint8_t N_rnti ; 

 uint8_t Ns ; 

 uint8_t N_id_cell ; 

 uint32_t x1 ; 

 uint32_t x2 ; 

 int32_t *in; 

 int8_t *out; 

} pusch_scramb; 

 

 

void pusch_scramb_init(pusch_scramb *scrambler_obj , uint32_t *in ,  uint8_t 

*out); 

 

void pusch_scramb_param_init(pusch_scramb *scrambler_obj ,uint8_t N_rnti , 

uint8_t Ns , uint8_t N_id_cell, int num ) ; 

 

void pusch_scramb_start(pusch_scramb *scrambler_obj , uint32_t size) ; 

 

void output_converting_to_8bit(pusch_scramb *scrambler_obj , uint32_t size); 

 

void big_little_sweeping(int32_t *x, int32_t size); 

 

 

#endif /* SCRAMBLER_H_ */ 

************************************************************************  

                         ************************************************************** 

#include <stdint.h> 

 

#include <stdio.h> 

 

#include "lte_scrambler.h" 

 

int32_t i , n ; 

 

 

/**********************************************************************i 

 

***********************************************************************/ 

 

/*************** this function is for initialization, we insert the input and 

output arrays 

 * to the pointers inside the pusch_scrambler_structure 

 *******************************/ 

 

void pusch_scramb_init(pusch_scramb *scrambler_obj , uint32_t *in ,  uint8_t 

*out){ 

 

 scrambler_obj->in = in ; 

 



 
100 

 

 scrambler_obj->out = out ; 

 

} 

 

/***********************************************************************/ 

 

 

/**** just insert the initialization of the parameters to the scrambler 

structure ******/ 

 

void pusch_scramb_param_init(pusch_scramb *scrambler_obj, 

 

  uint8_t N_rnti, uint8_t Ns, uint8_t N_id_cell,int num) { 

 

 

 

 scrambler_obj->N_id_cell = N_id_cell; 

 

 scrambler_obj->N_rnti = N_rnti; 

 

 scrambler_obj->Ns = Ns; 

 

 scrambler_obj->x1 = 0x21a127a; 

 

 //scrambler_obj->x2 = 0x6f587d5c ; 

 

/**************generate the first 1600 bits of scrambler***************/ 

 for (int i = 0; i < 50; i++) { 

  for (int i = 0; i < 32; i++) { 

 

   x2 <<= 1; 

 

   x2 |= ((x2 & (0x80000000)) ^ ((x2 & (0x80000000 >> 1)) << 

1) 

     ^ ((x2 & (0x80000000 >> 2)) << 2) 

     ^ ((x2 & (0x80000000 >> 3)) << 3)) >> 31; 

  } 

 } 

 

 /******************************************************************/ 

 /** the code is distributed over 12 cores, so to choose the the codes 

that will run on each 

  * core, this function does that ( 5760 / 12 = 480 ) 

  * 5760 is the file input bytes , num represents the core number 

  * at num=0, no need for this function, only the first 480 bytes will 

be taken 

  * at num =1, the 2nd 480 pseudo code will be taken and so on ****** 

  */ 

 

 for (n = 0; n < ((num - 1) * 120); n++) { 

 

  for (i = 0; i < 32; i++) { 

 

   scrambler_obj->x1 <<= 1; 

 

   scrambler_obj->x2 <<= 1; 



 
101 

 

 

 

 

scrambler_obj->x1 |= ((scrambler_obj->x1 & (0x80000000)) 

 

 ^ ((scrambler_obj->x1 & (0x80000000 >> 3)) << 3)) >> 31; 

 

 

scrambler_obj->x2 |= ((scrambler_obj->x2 & (0x80000000)) 

 ^ ((scrambler_obj->x2 & (0x80000000 >> 1)) << 1) 

 

 ^ ((scrambler_obj->x2 & (0x80000000 >> 2)) << 2) 

 

 ^ ((scrambler_obj->x2 & (0x80000000 >> 3)) << 3)) >> 31; 

 

} 

} 

} 

 

 

 

/***********************************************************************/ 

 

/***********************************************************************/ 

 

 

 

void pusch_scramb_start(pusch_scramb *scrambler_obj, uint32_t maxSize) { 

 

 

 

 /**** generating the output ( xoring the code with the input ) 

  * an within generate each pseduo code that i will xor with *****/ 

 

 /*******************************************************************/ 

 

 

 

 for (n = 0; n < (maxSize / 4); n++) { 

 

 

  scrambler_obj->in[n] = scrambler_obj->in[n] ^ scrambler_obj->x1 

 

    ^ scrambler_obj->x2; 

 

 

  for ( i = 0; i < 32; i++) { 

 

   scrambler_obj->x1 <<= 1; 

 

   scrambler_obj->x2 <<= 1; 

 

   scrambler_obj->x1 |= ((scrambler_obj->x1 & (0x80000000)) 

   ^ ((scrambler_obj->x1 & (0x80000000 >> 3)) << 3)) >> 31; 

 

 



 
102 

 

 

scrambler_obj->x2 |= ((scrambler_obj->x2 & (0x80000000)) 

 

^ ((scrambler_obj->x2 & (0x80000000 >> 1)) << 1) 

 

^ ((scrambler_obj->x2 & (0x80000000 >> 2)) << 2) 

 

^ ((scrambler_obj->x2 & (0x80000000 >> 3)) << 3)) >> 31; 

 

} 

} 

} 

 

/***********************************************************************/ 

 

/*** the modulation input is 8 bit and scrambler output is 32 bit so this 

function does this conversion***/ 

 

/***********************************************************************/ 

 

 

 

void output_converting_to_8bit(pusch_scramb *scrambler_obj , uint32_t size){ 

 

 int k = 0 ; 

 

   for (n = 0; n < size-1 ; n+=4) { 

 

 

/*scrambler_obj->in[i] |= ((temp & 0xFF000000) >> 24) 

 

       | ((temp & 0x00FF0000) >> 8) | 

((temp & 0x0000FF00) << 8) 

 

       | ((temp & 0x000000FF) << 24);*/ 

 

 

 

scrambler_obj->out[n] = scrambler_obj->in[k] & (0x000000FF); 

scrambler_obj->out[n + 1] = (scrambler_obj->in[k] & (0x0000FF00)) >> 8; 

 

scrambler_obj->out[n + 2] = (scrambler_obj->in[k] & (0x00FF0000)) >> 16; 

 

scrambler_obj->out[n + 3] = (scrambler_obj->in[k] & (0xFF000000)) >> 24; 

 

 k++; 

 

} 

 

} 

 

 

 

 

 

 



 
103 

 

Modulation Codes 

                          ***********************************************************   

 

#ifndef LTE_MODULATION_H_INCLUDED 

#define LTE_MODULATION_H_INCLUDED 

 

#include <stdint.h> 

 

typedef struct pusch_mod_struct 

{ 

 uint8_t mod_type; 

 uint32_t length; 

 int8_t *in; 

 int32_t *out; 

} pusch_mod; 

 

void pusch_mod_init (pusch_mod *mod_obj, int8_t *input, int32_t *output); 

void pusch_mod_param (pusch_mod *mod_obj, uint8_t Qm, uint32_t length); 

void pusch_mod_start (pusch_mod *mod_obj); 

 

#endif // LTE_MODULATION_H_INCLUDED 

 

********************************************************************************  

*******************************************************************************  

#include <stdio.h> 

#include <stdlib.h> 

#include <stdint.h> 

#include "lte_modulation.h" 

//LUT the most segnificant 2 byts  >> real part of symbol 

//LUT the least segnificant 2 byts  >> imaginary part of symbol 

//LUT of QPSK scheme 

static const int32_t QPSK[] = { 0x2D412D41, 0x2D41D2BF, 0xD2BF2D41, 

0xD2BFD2BF }; 

//LUT of 16QAM scheme 

static const int32_t QAM16[] = { 0x143D143D, 0x143D3CB7, 0x3CB7143D, 

0x3CB73CB7, 

  0x143DEBC3, 0x143DC349, 0x3CB7EBC3, 0x3CB7C349, 0xEBC3143D, 

0xEBC33CB7, 

  0xC349143D, 0xC3493CB7, 0xEBC3EBC3, 0xEBC3C349, 0xC349EBC3, 

0xC349C349 }; 

//LUT of 64QAM scheme 

static const int32_t QAM64[] = { 0x1DA01DA0, 0x1DA009E0, 0x09E01DA0, 

0x09E009E0, 

  0x1DA03161, 0x1DA04521, 0x09E03161, 0x09E04521, 0x31611DA0, 

0x316109E0, 

  0x45211DA0, 0x452109E0, 0x31613161, 0x31614521, 0x45213161, 

0x45214521, 

  0x1DA0E260, 0x1DA0F620, 0x09E0E260, 0x09E0F620, 0x1DA0CE9F, 

0x1DA0BADF, 

  0x09E0CE9F, 0x09E0BADF, 0x3161E260, 0x3161F620, 0x4521E260, 

0x4521F620, 



 
104 

 

  0x3161CE9F, 0x3161BADF, 0x4521CE9F, 0x4521BADF, 0xE2601DA0, 

0xE26009E0, 

  0xF6201DA0, 0xF62009E0, 0xE2603161, 0xE2604521, 0xF6203161, 

0xF6204521, 

  0xCE9F1DA0, 0xCE9F09E0, 0xBADF1DA0, 0xBADF09E0, 0xCE9F3161, 

0xCE9F4521, 

  0xBADF3161, 0xBADF4521, 0xE260E260, 0xE260F620, 0xF620E260, 

0xF620F620, 

  0xE260CE9F, 0xE260BADF, 0xF620CE9F, 0xF620BADF, 0xCE9FE260, 

0xCE9FF620, 

  0xBADFE260, 0xBADFF620, 0xCE9FCE9F, 0xCE9FBADF, 0xBADFCE9F, 

0xBADFBADF }; 

 

/*Qm(modulation order): 2,4,6 */ 

/*length number of inputs in bits   */ 

 

/* input is an array .. the array name is a pointer to the array .. 

 so we put the address of the first element of the array in 

 the pointer inside the pusch_mod structure to use "in" as my pointer to the 

 input array */ 

 

void pusch_mod_init(pusch_mod *mod_obj, int8_t *input, int32_t *output) 

 

{ 

 mod_obj->in = input; 

 mod_obj->out = output; 

} 

//mapping Qm and length of input array 

void pusch_mod_param(pusch_mod *mod_obj, uint8_t Qm, uint32_t length) { 

 mod_obj->mod_type = Qm; 

 mod_obj->length = length; 

 

} 

//the main function of modulation 

void pusch_mod_start(pusch_mod *mod_obj) { 

 int i, k, index, j = 0; 

 int8_t x, y, z; //temparory variable 

 //make sure that Qm is 2 or 4 or 6 

 if ((mod_obj->mod_type == 2) || (mod_obj->mod_type == 4) 

   || (mod_obj->mod_type == 6)) { 

  ///////////////////////////////////// Qm=2 ==>> QPSK 

/////////////////////////////////////////////// 

  if (mod_obj->mod_type == 2) { 

   for (k = 0; (mod_obj->in != '\0') && j < (mod_obj->length / 

2); k++) // loop on input bytes 

   { 

    index = (mod_obj->in[k] & (0xC0));  //casting 1st 

symbol per byte 

    index = index >> 6; //shift to (LSB)to convert it to 

index(number) entry  of look up table 

    mod_obj->out[j] = QPSK[index]; //get the complex 

fixed symbol from QPSK LUT 

    j += 1; 

 

    index = (mod_obj->in[k] & (0x30));  //casting 2nd 

symbol per byte 



 
105 

 

    index = index >> 4;  //shift to (LSB)to convert it to 

index(number) entry  of look up table 

    mod_obj->out[j] = QPSK[index]; //get the complex 

fixed symbol from QPSK LUT 

    j += 1; 

 

    index = (mod_obj->in[k] & (0x0C));  //casting 3rd 

symbol per byte 

    index = index >> 2; //shift to (LSB)to convert it to 

index(number) entry  of look up table 

    mod_obj->out[j] = QPSK[index]; //get the complex 

fixed symbol from QPSK LUT 

    j += 1; 

 

    index = (mod_obj->in[k] & (0x03));  //casting 4th 

symbol per byte 

    index = index >> 0; //shift to (LSB)to convert it to 

index(number) entry  of look up table 

    mod_obj->out[j] = QPSK[index]; //get the complex 

fixed symbol from QPSK LUT 

    j += 1; 

 

   } 

   mod_obj->out[j] = '\0'; 

   return; 

  } 

 

  ///////////////////////////////////// Qm=4 ==>> 16QAM 

/////////////////////////////////////////////// 

  else if (mod_obj->mod_type == 4) { 

   for (k = 0; (mod_obj->in != '\0') && j < (mod_obj->length / 

4); k++) // loop on input bytes 

   { 

    index = (mod_obj->in[k] & (0xF0));  //casting 1st 

symbol per byte 

    index = index >> 4; //shift to (LSB)to convrt it to 

index(number) entrie  of look up table 

    mod_obj->out[j] = QAM16[index];  //get the complex 

fixed symbol from 16QAM LUT 

    j += 1; 

 

    index = (mod_obj->in[k] & (0x0F));  //casting 2nd 

symbol per byte 

    index = index >> 0; //shift to (LSB)to convrt it to 

index(number) entry  of look up table 

    mod_obj->out[j] = QAM16[index]; //get the complex 

fixed symbol from 16QAM LUT 

    j += 1; 

 

   } 

   mod_obj->out[j] = '\0'; 

   return; 

 

  } 

 



 
106 

 

  ///////////////////////////////////// Qm=6 ==>> 64QAM 

/////////////////////////////////////////////// 

  ////////////we  will deal with 4 bytes for each iteration 

  else { 

   if ((((mod_obj->length) % 8) != 0) 

     || (((mod_obj->length) % 6) != 0)) // %8 not 

wasted bits & %6 cause of modulation 

   { 

 

    return; 

   } else { 

    k = 0; 

    for (i = 0; k < ((mod_obj->length) / 6); i += 3) { 

     //take 1st 6 bits  from the 1st byte to get the 

1st symbol 

     index = (mod_obj->in[i] & 0xFC); 

     index = index >> 2;  // //shift to (LSB)to 

convert it to index(number) entry  of look up table 

     mod_obj->out[k] = QAM64[index];//get the 

complex fixed symbol from 64QAM LUT 

 

     k += 1; 

                    ///////////////take the rest 2 bits from the 1st byte and 

1st 4 bits from the 2nd byte//////// 

 

     x = mod_obj->in[i] << 6;     ////shift the 6 

bits that we took before .to get the last 2 bits 

     y = mod_obj->in[i + 1] >> 2;// getting the rest 

4 bits from the 2nd byte 

     z = x | y;   // OR to get the 6 bits together 

     index = (z & 0xFC);  //take 2nd (6 bits) to get 

the 2nd 64QAM symbol 

     index = index >> 2; // //shift to (LSB)to 

convert it to index(number) entry  of look up table 

     mod_obj->out[k] = QAM64[index];  //get the 

complex fixed symbol from 64QAM LUT 

 

     k += 1; 

 

                    ///////////////take the rest 4 bits from the 2st byte and 

1st 2 bits from the 3rd byte//////// 

     x = mod_obj->in[i + 1] << 4;////shift the 4 

bits that we took before .to get the last 4 bits 

     y = mod_obj->in[i + 2] >> 4;// getting the rest 

4 bits from the 3rd byte 

     z = x | y; // OQ to get the 6 bits together 

     index = (z & 0xFC);  //take 3rd (6 bits) to get 

the 3rd 64QAM symbol 

     index = index >> 2;//shift to (LSB)to convert 

it to index(number) entry  of look up table 

     mod_obj->out[k] = QAM64[index];//get the 

complex fixed symbol from 64QAM LUT 

 

     k += 1; 

                    ///////////////take the rest 6 bits from the 3rd 

byte//////// 



 
107 

 

     x = mod_obj->in[i + 2] << 2;////shift the 2 

bits that we took before .to get the last 6 bits 

     index = (x & 0xFC);   //take 4th (6 bits) to 

get the 3rd 64QAM symbol 

     index = index >> 2; //shift to (LSB)to convert 

it to index(number) entry  of look up table 

     mod_obj->out[k] = QAM64[index];//get the 

complex fixed symbol from 64QAM LUT 

 

     k += 1; 

    } // each loop has 3 bytes &generate 4 symbols 

    mod_obj->out[k] = '\0'; 

    return; 

   } 

  } 

 

 } 

 

 else { 

  return; 

 } 

} 

 

 

*******************************************************************************  

DFT Codes 

****************************************************************  

  

/* 

 * DFT1.h 

 * 

 *  Created on: Apr 29, 2016 

 *      Author: omayma 

 */ 

 

#ifndef DFT1_H_ 

#define DFT1_H_ 

typedef struct pusch_DFT_struct 

{ 

 uint16_t M_PUSH; //number rb *12 

 uint8_t l; 

 int32_t *in  ; 

 int32_t *out ; 

 

} pusch_dft; 

 

void pusch_dft_init (pusch_dft *dft_obj, int32_t *in, int32_t *out, uint8_t 

N_rb); 

void pusch_dft_start (pusch_dft *dft_obj, uint8_t l); 

int16_t pusch_dft_interplation (int16_t y1 ,int16_t y2 ,int8_t x1,int8_t x2 

,float i ); 

void big_little_swapping(int32_t *x ,uint32_t size); 



 
108 

 

 

#endif /* DFT1_H_ */ 

 

****************************************************************  

*****************************************************************  

/* 

 ============================================================================ 

 Name        : DFT1.c 

 Author      : omayma 

 Version     : 

 Copyright   : Your copyright notice 

 Description : Hello World in C, Ansi-style 

 ============================================================================ 

 */ 

 

#include <stdio.h> 

#include <stdlib.h> 

#include <stdint.h> 

#include "lte_dft.h" 

 

 

//// LUT of real part of exponential (phase shift) with size 960  ///// 

static const int16_t exp_DFT_I[]={ 

  0x4000 ,0x4000 ,0x3FFF ,0x3FFD ,0x3FFA ,0x3FF7 ,0x3FF3 ,0x3FEF 

,0x3FEA ,0x3FE4 ,0x3FDD ,0x3FD6 ,0x3FCD ,0x3FC5 ,0x3FBB ,0x3FB1 ,0x3FA6 

,0x3F9B ,0x3F8E ,0x3F81 ,0x3F74 ,0x3F65 ,0x3F56 ,0x3F47 ,0x3F36 ,0x3F25 

,0x3F13 ,0x3F01 ,0x3EEE ,0x3EDA , 

  0x3EC5 ,0x3EB0 ,0x3E9A ,0x3E83 ,0x3E6C ,0x3E54 ,0x3E3B ,0x3E22 

,0x3E08 ,0x3DED ,0x3DD2 ,0x3DB6 ,0x3D99 ,0x3D7B ,0x3D5D ,0x3D3F ,0x3D1F 

,0x3CFF ,0x3CDE ,0x3CBD ,0x3C9B ,0x3C78 ,0x3C54 ,0x3C30 ,0x3C0B ,0x3BE6 

,0x3BC0 ,0x3B99 ,0x3B72 ,0x3B4A , 

  0x3B21 ,0x3AF7 ,0x3ACD ,0x3AA3 ,0x3A78 ,0x3A4C ,0x3A1F ,0x39F2 

,0x39C4 ,0x3995 ,0x3966 ,0x3937 ,0x3906 ,0x38D5 ,0x38A4 ,0x3871 ,0x383F 

,0x380B ,0x37D7 ,0x37A2 ,0x376D ,0x3737 ,0x3701 ,0x36C9 ,0x3692 ,0x3659 

,0x3620 ,0x35E7 ,0x35AD ,0x3572 , 

  0x3537 ,0x34FB ,0x34BE ,0x3481 ,0x3444 ,0x3406 ,0x33C7 ,0x3388 

,0x3348 ,0x3307 ,0x32C6 ,0x3285 ,0x3243 ,0x3200 ,0x31BD ,0x3179 ,0x3135 

,0x30F0 ,0x30AA ,0x3065 ,0x301E ,0x2FD7 ,0x2F90 ,0x2F48 ,0x2EFF ,0x2EB6 

,0x2E6D ,0x2E22 ,0x2DD8 ,0x2D8D , 

  0x2D41 ,0x2CF5 ,0x2CA9 ,0x2C5C ,0x2C0E ,0x2BC0 ,0x2B71 ,0x2B22 

,0x2AD3 ,0x2A83 ,0x2A33 ,0x29E2 ,0x2991 ,0x293F ,0x28ED ,0x289A ,0x2847 

,0x27F3 ,0x279F ,0x274B ,0x26F6 ,0x26A1 ,0x264B ,0x25F5 ,0x259E ,0x2547 

,0x24F0 ,0x2498 ,0x2440 ,0x23E7 , 

  0x238E ,0x2335 ,0x22DB ,0x2281 ,0x2227 ,0x21CC ,0x2171 ,0x2115 

,0x20B9 ,0x205D ,0x2000 ,0x1FA3 ,0x1F46 ,0x1EE8 ,0x1E8A ,0x1E2B ,0x1DCD 

,0x1D6E ,0x1D0E ,0x1CAE ,0x1C4E ,0x1BEE ,0x1B8D ,0x1B2D ,0x1ACB ,0x1A6A 

,0x1A08 ,0x19A6 ,0x1943 ,0x18E1 , 

  0x187E ,0x181B ,0x17B7 ,0x1753 ,0x16F0 ,0x168B ,0x1627 ,0x15C2 

,0x155D ,0x14F8 ,0x1492 ,0x142D ,0x13C7 ,0x1361 ,0x12FB ,0x1294 ,0x122D 

,0x11C6 ,0x115F ,0x10F8 ,0x1090 ,0x1029 ,0x0FC1 ,0x0F59 ,0x0EF1 ,0x0E88 

,0x0E20 ,0x0DB7 ,0x0D4E ,0x0CE5 , 

  0x0C7C ,0x0C13 ,0x0BAA ,0x0B40 ,0x0AD7 ,0x0A6D ,0x0A03 ,0x0999 

,0x092F ,0x08C5 ,0x085B ,0x07F0 ,0x0786 ,0x071B ,0x06B1 ,0x0646 ,0x05DB 



 
109 

 

,0x0570 ,0x0505 ,0x049B ,0x0430 ,0x03C5 ,0x0359 ,0x02EE ,0x0283 ,0x0218 

,0x01AD ,0x0142 ,0x00D6 ,0x006B , 

  0x0000 ,0xFF95 ,0xFF2A ,0xFEBE ,0xFE53 ,0xFDE8 ,0xFD7D ,0xFD12 

,0xFCA7 ,0xFC3B ,0xFBD0 ,0xFB65 ,0xFAFB ,0xFA90 ,0xFA25 ,0xF9BA ,0xF94F 

,0xF8E5 ,0xF87A ,0xF810 ,0xF7A5 ,0xF73B ,0xF6D1 ,0xF667 ,0xF5FD ,0xF593 

,0xF529 ,0xF4C0 ,0xF456 ,0xF3ED , 

  0xF384 ,0xF31B ,0xF2B2 ,0xF249 ,0xF1E0 ,0xF178 ,0xF10F ,0xF0A7 

,0xF03F ,0xEFD7 ,0xEF70 ,0xEF08 ,0xEEA1 ,0xEE3A ,0xEDD3 ,0xED6C ,0xED05 

,0xEC9F ,0xEC39 ,0xEBD3 ,0xEB6E ,0xEB08 ,0xEAA3 ,0xEA3E ,0xE9D9 ,0xE975 

,0xE910 ,0xE8AD ,0xE849 ,0xE7E5 , 

  0xE782 ,0xE71F ,0xE6BD ,0xE65A ,0xE5F8 ,0xE596 ,0xE535 ,0xE4D3 

,0xE473 ,0xE412 ,0xE3B2 ,0xE352 ,0xE2F2 ,0xE292 ,0xE233 ,0xE1D5 ,0xE176 

,0xE118 ,0xE0BA ,0xE05D ,0xE000 ,0xDFA3 ,0xDF47 ,0xDEEB ,0xDE8F ,0xDE34 

,0xDDD9 ,0xDD7F ,0xDD25 ,0xDCCB , 

  0xDC72 ,0xDC19 ,0xDBC0 ,0xDB68 ,0xDB10 ,0xDAB9 ,0xDA62 ,0xDA0B 

,0xD9B5 ,0xD95F ,0xD90A ,0xD8B5 ,0xD861 ,0xD80D ,0xD7B9 ,0xD766 ,0xD713 

,0xD6C1 ,0xD66F ,0xD61E ,0xD5CD ,0xD57D ,0xD52D ,0xD4DE ,0xD48F ,0xD440 

,0xD3F2 ,0xD3A4 ,0xD357 ,0xD30B , 

  0xD2BF ,0xD273 ,0xD228 ,0xD1DE ,0xD193 ,0xD14A ,0xD101 ,0xD0B8 

,0xD070 ,0xD029 ,0xCFE2 ,0xCF9B ,0xCF56 ,0xCF10 ,0xCECB ,0xCE87 ,0xCE43 

,0xCE00 ,0xCDBD ,0xCD7B ,0xCD3A ,0xCCF9 ,0xCCB8 ,0xCC78 ,0xCC39 ,0xCBFA 

,0xCBBC ,0xCB7F ,0xCB42 ,0xCB05 , 

  0xCAC9 ,0xCA8E ,0xCA53 ,0xCA19 ,0xC9E0 ,0xC9A7 ,0xC96E ,0xC937 

,0xC8FF ,0xC8C9 ,0xC893 ,0xC85E ,0xC829 ,0xC7F5 ,0xC7C1 ,0xC78F ,0xC75C 

,0xC72B ,0xC6FA ,0xC6C9 ,0xC69A ,0xC66B ,0xC63C ,0xC60E ,0xC5E1 ,0xC5B4 

,0xC588 ,0xC55D ,0xC533 ,0xC509 , 

  0xC4DF ,0xC4B6 ,0xC48E ,0xC467 ,0xC440 ,0xC41A ,0xC3F5 ,0xC3D0 

,0xC3AC ,0xC388 ,0xC365 ,0xC343 ,0xC322 ,0xC301 ,0xC2E1 ,0xC2C1 ,0xC2A3 

,0xC285 ,0xC267 ,0xC24A ,0xC22E ,0xC213 ,0xC1F8 ,0xC1DE ,0xC1C5 ,0xC1AC 

,0xC194 ,0xC17D ,0xC166 ,0xC150 , 

  0xC13B ,0xC126 ,0xC112 ,0xC0FF ,0xC0ED ,0xC0DB ,0xC0CA ,0xC0B9 

,0xC0AA ,0xC09B ,0xC08C ,0xC07F ,0xC072 ,0xC065 ,0xC05A ,0xC04F ,0xC045 

,0xC03B ,0xC033 ,0xC02A ,0xC023 ,0xC01C ,0xC016 ,0xC011 ,0xC00D ,0xC009 

,0xC006 ,0xC003 ,0xC001 ,0xC000 , 

  0xC000 ,0xC000 ,0xC001 ,0xC003 ,0xC006 ,0xC009 ,0xC00D ,0xC011 

,0xC016 ,0xC01C ,0xC023 ,0xC02A ,0xC033 ,0xC03B ,0xC045 ,0xC04F ,0xC05A 

,0xC065 ,0xC072 ,0xC07F ,0xC08C ,0xC09B ,0xC0AA ,0xC0B9 ,0xC0CA ,0xC0DB 

,0xC0ED ,0xC0FF ,0xC112 ,0xC126 , 

  0xC13B ,0xC150 ,0xC166 ,0xC17D ,0xC194 ,0xC1AC ,0xC1C5 ,0xC1DE 

,0xC1F8 ,0xC213 ,0xC22E ,0xC24A ,0xC267 ,0xC285 ,0xC2A3 ,0xC2C1 ,0xC2E1 

,0xC301 ,0xC322 ,0xC343 ,0xC365 ,0xC388 ,0xC3AC ,0xC3D0 ,0xC3F5 ,0xC41A 

,0xC440 ,0xC467 ,0xC48E ,0xC4B6 , 

  0xC4DF ,0xC509 ,0xC533 ,0xC55D ,0xC588 ,0xC5B4 ,0xC5E1 ,0xC60E 

,0xC63C ,0xC66B ,0xC69A ,0xC6C9 ,0xC6FA ,0xC72B ,0xC75C ,0xC78F ,0xC7C1 

,0xC7F5 ,0xC829 ,0xC85E ,0xC893 ,0xC8C9 ,0xC8FF ,0xC937 ,0xC96E ,0xC9A7 

,0xC9E0 ,0xCA19 ,0xCA53 ,0xCA8E , 

  0xCAC9 ,0xCB05 ,0xCB42 ,0xCB7F ,0xCBBC ,0xCBFA ,0xCC39 ,0xCC78 

,0xCCB8 ,0xCCF9 ,0xCD3A ,0xCD7B ,0xCDBD ,0xCE00 ,0xCE43 ,0xCE87 ,0xCECB 

,0xCF10 ,0xCF56 ,0xCF9B ,0xCFE2 ,0xD029 ,0xD070 ,0xD0B8 ,0xD101 ,0xD14A 

,0xD193 ,0xD1DE ,0xD228 ,0xD273 , 

  0xD2BF ,0xD30B ,0xD357 ,0xD3A4 ,0xD3F2 ,0xD440 ,0xD48F ,0xD4DE 

,0xD52D ,0xD57D ,0xD5CD ,0xD61E ,0xD66F ,0xD6C1 ,0xD713 ,0xD766 ,0xD7B9 

,0xD80D ,0xD861 ,0xD8B5 ,0xD90A ,0xD95F ,0xD9B5 ,0xDA0B ,0xDA62 ,0xDAB9 

,0xDB10 ,0xDB68 ,0xDBC0 ,0xDC19 , 

  0xDC72 ,0xDCCB ,0xDD25 ,0xDD7F ,0xDDD9 ,0xDE34 ,0xDE8F ,0xDEEB 

,0xDF47 ,0xDFA3 ,0xE000 ,0xE05D ,0xE0BA ,0xE118 ,0xE176 ,0xE1D5 ,0xE233 



 
110 

 

,0xE292 ,0xE2F2 ,0xE352 ,0xE3B2 ,0xE412 ,0xE473 ,0xE4D3 ,0xE535 ,0xE596 

,0xE5F8 ,0xE65A ,0xE6BD ,0xE71F , 

  0xE782 ,0xE7E5 ,0xE849 ,0xE8AD ,0xE910 ,0xE975 ,0xE9D9 ,0xEA3E 

,0xEAA3 ,0xEB08 ,0xEB6E ,0xEBD3 ,0xEC39 ,0xEC9F ,0xED05 ,0xED6C ,0xEDD3 

,0xEE3A ,0xEEA1 ,0xEF08 ,0xEF70 ,0xEFD7 ,0xF03F ,0xF0A7 ,0xF10F ,0xF178 

,0xF1E0 ,0xF249 ,0xF2B2 ,0xF31B , 

  0xF384 ,0xF3ED ,0xF456 ,0xF4C0 ,0xF529 ,0xF593 ,0xF5FD ,0xF667 

,0xF6D1 ,0xF73B ,0xF7A5 ,0xF810 ,0xF87A ,0xF8E5 ,0xF94F ,0xF9BA ,0xFA25 

,0xFA90 ,0xFAFB ,0xFB65 ,0xFBD0 ,0xFC3B ,0xFCA7 ,0xFD12 ,0xFD7D ,0xFDE8 

,0xFE53 ,0xFEBE ,0xFF2A ,0xFF95 , 

  0x0000 ,0x006B ,0x00D6 ,0x0142 ,0x01AD ,0x0218 ,0x0283 ,0x02EE 

,0x0359 ,0x03C5 ,0x0430 ,0x049B ,0x0505 ,0x0570 ,0x05DB ,0x0646 ,0x06B1 

,0x071B ,0x0786 ,0x07F0 ,0x085B ,0x08C5 ,0x092F ,0x0999 ,0x0A03 ,0x0A6D 

,0x0AD7 ,0x0B40 ,0x0BAA ,0x0C13 , 

  0x0C7C ,0x0CE5 ,0x0D4E ,0x0DB7 ,0x0E20 ,0x0E88 ,0x0EF1 ,0x0F59 

,0x0FC1 ,0x1029 ,0x1090 ,0x10F8 ,0x115F ,0x11C6 ,0x122D ,0x1294 ,0x12FB 

,0x1361 ,0x13C7 ,0x142D ,0x1492 ,0x14F8 ,0x155D ,0x15C2 ,0x1627 ,0x168B 

,0x16F0 ,0x1753 ,0x17B7 ,0x181B , 

  0x187E ,0x18E1 ,0x1943 ,0x19A6 ,0x1A08 ,0x1A6A ,0x1ACB ,0x1B2D 

,0x1B8D ,0x1BEE ,0x1C4E ,0x1CAE ,0x1D0E ,0x1D6E ,0x1DCD ,0x1E2B ,0x1E8A 

,0x1EE8 ,0x1F46 ,0x1FA3 ,0x2000 ,0x205D ,0x20B9 ,0x2115 ,0x2171 ,0x21CC 

,0x2227 ,0x2281 ,0x22DB ,0x2335 , 

  0x238E ,0x23E7 ,0x2440 ,0x2498 ,0x24F0 ,0x2547 ,0x259E ,0x25F5 

,0x264B ,0x26A1 ,0x26F6 ,0x274B ,0x279F ,0x27F3 ,0x2847 ,0x289A ,0x28ED 

,0x293F ,0x2991 ,0x29E2 ,0x2A33 ,0x2A83 ,0x2AD3 ,0x2B22 ,0x2B71 ,0x2BC0 

,0x2C0E ,0x2C5C ,0x2CA9 ,0x2CF5 , 

  0x2D41 ,0x2D8D ,0x2DD8 ,0x2E22 ,0x2E6D ,0x2EB6 ,0x2EFF ,0x2F48 

,0x2F90 ,0x2FD7 ,0x301E ,0x3065 ,0x30AA ,0x30F0 ,0x3135 ,0x3179 ,0x31BD 

,0x3200 ,0x3243 ,0x3285 ,0x32C6 ,0x3307 ,0x3348 ,0x3388 ,0x33C7 ,0x3406 

,0x3444 ,0x3481 ,0x34BE ,0x34FB , 

  0x3537 ,0x3572 ,0x35AD ,0x35E7 ,0x3620 ,0x3659 ,0x3692 ,0x36C9 

,0x3701 ,0x3737 ,0x376D ,0x37A2 ,0x37D7 ,0x380B ,0x383F ,0x3871 ,0x38A4 

,0x38D5 ,0x3906 ,0x3937 ,0x3966 ,0x3995 ,0x39C4 ,0x39F2 ,0x3A1F ,0x3A4C 

,0x3A78 ,0x3AA3 ,0x3ACD ,0x3AF7 , 

  0x3B21 ,0x3B4A ,0x3B72 ,0x3B99 ,0x3BC0 ,0x3BE6 ,0x3C0B ,0x3C30 

,0x3C54 ,0x3C78 ,0x3C9B ,0x3CBD ,0x3CDE ,0x3CFF ,0x3D1F ,0x3D3F ,0x3D5D 

,0x3D7B ,0x3D99 ,0x3DB6 ,0x3DD2 ,0x3DED ,0x3E08 ,0x3E22 ,0x3E3B ,0x3E54 

,0x3E6C ,0x3E83 ,0x3E9A ,0x3EB0 , 

  0x3EC5 ,0x3EDA ,0x3EEE ,0x3F01 ,0x3F13 ,0x3F25 ,0x3F36 ,0x3F47 

,0x3F56 ,0x3F65 ,0x3F74 ,0x3F81 ,0x3F8E ,0x3F9B ,0x3FA6 ,0x3FB1 ,0x3FBB 

,0x3FC5 ,0x3FCD ,0x3FD6 ,0x3FDD ,0x3FE4 ,0x3FEA ,0x3FEF ,0x3FF3 ,0x3FF7 

,0x3FFA ,0x3FFD ,0x3FFF ,0x4000 , 

}; 

 

//// LUT of imaginary part of exponential (phase shift) with size 960  ///// 

static const int16_t exp_DFT_Q[]={ 

  0x0000 , 0xFF95 , 0xFF2A , 0xFEBE , 0xFE53 , 0xFDE8 , 0xFD7D , 

0xFD12 , 0xFCA7 , 0xFC3B , 0xFBD0 , 0xFB65 , 0xFAFB , 0xFA90 , 0xFA25 , 

0xF9BA , 0xF94F , 0xF8E5 , 0xF87A , 0xF810 , 0xF7A5 , 0xF73B , 0xF6D1 , 

0xF667 , 0xF5FD , 0xF593 , 0xF529 , 0xF4C0 , 0xF456 , 0xF3ED , 

  0xF384 , 0xF31B , 0xF2B2 , 0xF249 , 0xF1E0 , 0xF178 , 0xF10F , 

0xF0A7 , 0xF03F , 0xEFD7 , 0xEF70 , 0xEF08 , 0xEEA1 , 0xEE3A , 0xEDD3 , 

0xED6C , 0xED05 , 0xEC9F , 0xEC39 , 0xEBD3 , 0xEB6E , 0xEB08 , 0xEAA3 , 

0xEA3E , 0xE9D9 , 0xE975 , 0xE910 , 0xE8AD , 0xE849 , 0xE7E5 , 

  0xE782 , 0xE71F , 0xE6BD , 0xE65A , 0xE5F8 , 0xE596 , 0xE535 , 

0xE4D3 , 0xE473 , 0xE412 , 0xE3B2 , 0xE352 , 0xE2F2 , 0xE292 , 0xE233 , 



 
111 

 

0xE1D5 , 0xE176 , 0xE118 , 0xE0BA , 0xE05D , 0xE000 , 0xDFA3 , 0xDF47 , 

0xDEEB , 0xDE8F , 0xDE34 , 0xDDD9 , 0xDD7F , 0xDD25 , 0xDCCB , 

  0xDC72 , 0xDC19 , 0xDBC0 , 0xDB68 , 0xDB10 , 0xDAB9 , 0xDA62 , 

0xDA0B , 0xD9B5 , 0xD95F , 0xD90A , 0xD8B5 , 0xD861 , 0xD80D , 0xD7B9 , 

0xD766 , 0xD713 , 0xD6C1 , 0xD66F , 0xD61E , 0xD5CD , 0xD57D , 0xD52D , 

0xD4DE , 0xD48F , 0xD440 , 0xD3F2 , 0xD3A4 , 0xD357 , 0xD30B , 

  0xD2BF , 0xD273 , 0xD228 , 0xD1DE , 0xD193 , 0xD14A , 0xD101 , 

0xD0B8 , 0xD070 , 0xD029 , 0xCFE2 , 0xCF9B , 0xCF56 , 0xCF10 , 0xCECB , 

0xCE87 , 0xCE43 , 0xCE00 , 0xCDBD , 0xCD7B , 0xCD3A , 0xCCF9 , 0xCCB8 , 

0xCC78 , 0xCC39 , 0xCBFA , 0xCBBC , 0xCB7F , 0xCB42 , 0xCB05 , 

  0xCAC9 , 0xCA8E , 0xCA53 , 0xCA19 , 0xC9E0 , 0xC9A7 , 0xC96E , 

0xC937 , 0xC8FF , 0xC8C9 , 0xC893 , 0xC85E , 0xC829 , 0xC7F5 , 0xC7C1 , 

0xC78F , 0xC75C , 0xC72B , 0xC6FA , 0xC6C9 , 0xC69A , 0xC66B , 0xC63C , 

0xC60E , 0xC5E1 , 0xC5B4 , 0xC588 , 0xC55D , 0xC533 , 0xC509 , 

  0xC4DF , 0xC4B6 , 0xC48E , 0xC467 , 0xC440 , 0xC41A , 0xC3F5 , 

0xC3D0 , 0xC3AC , 0xC388 , 0xC365 , 0xC343 , 0xC322 , 0xC301 , 0xC2E1 , 

0xC2C1 , 0xC2A3 , 0xC285 , 0xC267 , 0xC24A , 0xC22E , 0xC213 , 0xC1F8 , 

0xC1DE , 0xC1C5 , 0xC1AC , 0xC194 , 0xC17D , 0xC166 , 0xC150 , 

  0xC13B , 0xC126 , 0xC112 , 0xC0FF , 0xC0ED , 0xC0DB , 0xC0CA , 

0xC0B9 , 0xC0AA , 0xC09B , 0xC08C , 0xC07F , 0xC072 , 0xC065 , 0xC05A , 

0xC04F , 0xC045 , 0xC03B , 0xC033 , 0xC02A , 0xC023 , 0xC01C , 0xC016 , 

0xC011 , 0xC00D , 0xC009 , 0xC006 , 0xC003 , 0xC001 , 0xC000 , 

  0xC000 , 0xC000 , 0xC001 , 0xC003 , 0xC006 , 0xC009 , 0xC00D , 

0xC011 , 0xC016 , 0xC01C , 0xC023 , 0xC02A , 0xC033 , 0xC03B , 0xC045 , 

0xC04F , 0xC05A , 0xC065 , 0xC072 , 0xC07F , 0xC08C , 0xC09B , 0xC0AA , 

0xC0B9 , 0xC0CA , 0xC0DB , 0xC0ED , 0xC0FF , 0xC112 , 0xC126 , 

  0xC13B , 0xC150 , 0xC166 , 0xC17D , 0xC194 , 0xC1AC , 0xC1C5 , 

0xC1DE , 0xC1F8 , 0xC213 , 0xC22E , 0xC24A , 0xC267 , 0xC285 , 0xC2A3 , 

0xC2C1 , 0xC2E1 , 0xC301 , 0xC322 , 0xC343 , 0xC365 , 0xC388 , 0xC3AC , 

0xC3D0 , 0xC3F5 , 0xC41A , 0xC440 , 0xC467 , 0xC48E , 0xC4B6 , 

  0xC4DF , 0xC509 , 0xC533 , 0xC55D , 0xC588 , 0xC5B4 , 0xC5E1 , 

0xC60E , 0xC63C , 0xC66B , 0xC69A , 0xC6C9 , 0xC6FA , 0xC72B , 0xC75C , 

0xC78F , 0xC7C1 , 0xC7F5 , 0xC829 , 0xC85E , 0xC893 , 0xC8C9 , 0xC8FF , 

0xC937 , 0xC96E , 0xC9A7 , 0xC9E0 , 0xCA19 , 0xCA53 , 0xCA8E , 

  0xCAC9 , 0xCB05 , 0xCB42 , 0xCB7F , 0xCBBC , 0xCBFA , 0xCC39 , 

0xCC78 , 0xCCB8 , 0xCCF9 , 0xCD3A , 0xCD7B , 0xCDBD , 0xCE00 , 0xCE43 , 

0xCE87 , 0xCECB , 0xCF10 , 0xCF56 , 0xCF9B , 0xCFE2 , 0xD029 , 0xD070 , 

0xD0B8 , 0xD101 , 0xD14A , 0xD193 , 0xD1DE , 0xD228 , 0xD273 , 

  0xD2BF , 0xD30B , 0xD357 , 0xD3A4 , 0xD3F2 , 0xD440 , 0xD48F , 

0xD4DE , 0xD52D , 0xD57D , 0xD5CD , 0xD61E , 0xD66F , 0xD6C1 , 0xD713 , 

0xD766 , 0xD7B9 , 0xD80D , 0xD861 , 0xD8B5 , 0xD90A , 0xD95F , 0xD9B5 , 

0xDA0B , 0xDA62 , 0xDAB9 , 0xDB10 , 0xDB68 , 0xDBC0 , 0xDC19 , 

  0xDC72 , 0xDCCB , 0xDD25 , 0xDD7F , 0xDDD9 , 0xDE34 , 0xDE8F , 

0xDEEB , 0xDF47 , 0xDFA3 , 0xE000 , 0xE05D , 0xE0BA , 0xE118 , 0xE176 , 

0xE1D5 , 0xE233 , 0xE292 , 0xE2F2 , 0xE352 , 0xE3B2 , 0xE412 , 0xE473 , 

0xE4D3 , 0xE535 , 0xE596 , 0xE5F8 , 0xE65A , 0xE6BD , 0xE71F , 

  0xE782 , 0xE7E5 , 0xE849 , 0xE8AD , 0xE910 , 0xE975 , 0xE9D9 , 

0xEA3E , 0xEAA3 , 0xEB08 , 0xEB6E , 0xEBD3 , 0xEC39 , 0xEC9F , 0xED05 , 

0xED6C , 0xEDD3 , 0xEE3A , 0xEEA1 , 0xEF08 , 0xEF70 , 0xEFD7 , 0xF03F , 

0xF0A7 , 0xF10F , 0xF178 , 0xF1E0 , 0xF249 , 0xF2B2 , 0xF31B , 

  0xF384 , 0xF3ED , 0xF456 , 0xF4C0 , 0xF529 , 0xF593 , 0xF5FD , 

0xF667 , 0xF6D1 , 0xF73B , 0xF7A5 , 0xF810 , 0xF87A , 0xF8E5 , 0xF94F , 

0xF9BA , 0xFA25 , 0xFA90 , 0xFAFB , 0xFB65 , 0xFBD0 , 0xFC3B , 0xFCA7 , 

0xFD12 , 0xFD7D , 0xFDE8 , 0xFE53 , 0xFEBE , 0xFF2A , 0xFF95 , 

  0x0000 , 0x006B , 0x00D6 , 0x0142 , 0x01AD , 0x0218 , 0x0283 , 

0x02EE , 0x0359 , 0x03C5 , 0x0430 , 0x049B , 0x0505 , 0x0570 , 0x05DB , 



 
112 

 

0x0646 , 0x06B1 , 0x071B , 0x0786 , 0x07F0 , 0x085B , 0x08C5 , 0x092F , 

0x0999 , 0x0A03 , 0x0A6D , 0x0AD7 , 0x0B40 , 0x0BAA , 0x0C13 , 

  0x0C7C , 0x0CE5 , 0x0D4E , 0x0DB7 , 0x0E20 , 0x0E88 , 0x0EF1 , 

0x0F59 , 0x0FC1 , 0x1029 , 0x1090 , 0x10F8 , 0x115F , 0x11C6 , 0x122D , 

0x1294 , 0x12FB , 0x1361 , 0x13C7 , 0x142D , 0x1492 , 0x14F8 , 0x155D , 

0x15C2 , 0x1627 , 0x168B , 0x16F0 , 0x1753 , 0x17B7 , 0x181B , 

  0x187E , 0x18E1 , 0x1943 , 0x19A6 , 0x1A08 , 0x1A6A , 0x1ACB , 

0x1B2D , 0x1B8D , 0x1BEE , 0x1C4E , 0x1CAE , 0x1D0E , 0x1D6E , 0x1DCD , 

0x1E2B , 0x1E8A , 0x1EE8 , 0x1F46 , 0x1FA3 , 0x2000 , 0x205D , 0x20B9 , 

0x2115 , 0x2171 , 0x21CC , 0x2227 , 0x2281 , 0x22DB , 0x2335 , 

  0x238E , 0x23E7 , 0x2440 , 0x2498 , 0x24F0 , 0x2547 , 0x259E , 

0x25F5 , 0x264B , 0x26A1 , 0x26F6 , 0x274B , 0x279F , 0x27F3 , 0x2847 , 

0x289A , 0x28ED , 0x293F , 0x2991 , 0x29E2 , 0x2A33 , 0x2A83 , 0x2AD3 , 

0x2B22 , 0x2B71 , 0x2BC0 , 0x2C0E , 0x2C5C , 0x2CA9 , 0x2CF5 , 

  0x2D41 , 0x2D8D , 0x2DD8 , 0x2E22 , 0x2E6D , 0x2EB6 , 0x2EFF , 

0x2F48 , 0x2F90 , 0x2FD7 , 0x301E , 0x3065 , 0x30AA , 0x30F0 , 0x3135 , 

0x3179 , 0x31BD , 0x3200 , 0x3243 , 0x3285 , 0x32C6 , 0x3307 , 0x3348 , 

0x3388 , 0x33C7 , 0x3406 , 0x3444 , 0x3481 , 0x34BE , 0x34FB , 

  0x3537 , 0x3572 , 0x35AD , 0x35E7 , 0x3620 , 0x3659 , 0x3692 , 

0x36C9 , 0x3701 , 0x3737 , 0x376D , 0x37A2 , 0x37D7 , 0x380B , 0x383F , 

0x3871 , 0x38A4 , 0x38D5 , 0x3906 , 0x3937 , 0x3966 , 0x3995 , 0x39C4 , 

0x39F2 , 0x3A1F , 0x3A4C , 0x3A78 , 0x3AA3 , 0x3ACD , 0x3AF7 , 

  0x3B21 , 0x3B4A , 0x3B72 , 0x3B99 , 0x3BC0 , 0x3BE6 , 0x3C0B , 

0x3C30 , 0x3C54 , 0x3C78 , 0x3C9B , 0x3CBD , 0x3CDE , 0x3CFF , 0x3D1F , 

0x3D3F , 0x3D5D , 0x3D7B , 0x3D99 , 0x3DB6 , 0x3DD2 , 0x3DED , 0x3E08 , 

0x3E22 , 0x3E3B , 0x3E54 , 0x3E6C , 0x3E83 , 0x3E9A , 0x3EB0 , 

  0x3EC5 , 0x3EDA , 0x3EEE , 0x3F01 , 0x3F13 , 0x3F25 , 0x3F36 , 

0x3F47 , 0x3F56 , 0x3F65 , 0x3F74 , 0x3F81 , 0x3F8E , 0x3F9B , 0x3FA6 , 

0x3FB1 , 0x3FBB , 0x3FC5 , 0x3FCD , 0x3FD6 , 0x3FDD , 0x3FE4 , 0x3FEA , 

0x3FEF , 0x3FF3 , 0x3FF7 , 0x3FFA , 0x3FFD , 0x3FFF , 0x4000 , 

  0x4000 , 0x4000 , 0x3FFF , 0x3FFD , 0x3FFA , 0x3FF7 , 0x3FF3 , 

0x3FEF , 0x3FEA , 0x3FE4 , 0x3FDD , 0x3FD6 , 0x3FCD , 0x3FC5 , 0x3FBB , 

0x3FB1 , 0x3FA6 , 0x3F9B , 0x3F8E , 0x3F81 , 0x3F74 , 0x3F65 , 0x3F56 , 

0x3F47 , 0x3F36 , 0x3F25 , 0x3F13 , 0x3F01 , 0x3EEE , 0x3EDA , 

  0x3EC5 , 0x3EB0 , 0x3E9A , 0x3E83 , 0x3E6C , 0x3E54 , 0x3E3B , 

0x3E22 , 0x3E08 , 0x3DED , 0x3DD2 , 0x3DB6 , 0x3D99 , 0x3D7B , 0x3D5D , 

0x3D3F , 0x3D1F , 0x3CFF , 0x3CDE , 0x3CBD , 0x3C9B , 0x3C78 , 0x3C54 , 

0x3C30 , 0x3C0B , 0x3BE6 , 0x3BC0 , 0x3B99 , 0x3B72 , 0x3B4A , 

  0x3B21 , 0x3AF7 , 0x3ACD , 0x3AA3 , 0x3A78 , 0x3A4C , 0x3A1F , 

0x39F2 , 0x39C4 , 0x3995 , 0x3966 , 0x3937 , 0x3906 , 0x38D5 , 0x38A4 , 

0x3871 , 0x383F , 0x380B , 0x37D7 , 0x37A2 , 0x376D , 0x3737 , 0x3701 , 

0x36C9 , 0x3692 , 0x3659 , 0x3620 , 0x35E7 , 0x35AD , 0x3572 , 

  0x3537 , 0x34FB , 0x34BE , 0x3481 , 0x3444 , 0x3406 , 0x33C7 , 

0x3388 , 0x3348 , 0x3307 , 0x32C6 , 0x3285 , 0x3243 , 0x3200 , 0x31BD , 

0x3179 , 0x3135 , 0x30F0 , 0x30AA , 0x3065 , 0x301E , 0x2FD7 , 0x2F90 , 

0x2F48 , 0x2EFF , 0x2EB6 , 0x2E6D , 0x2E22 , 0x2DD8 , 0x2D8D , 

  0x2D41 , 0x2CF5 , 0x2CA9 , 0x2C5C , 0x2C0E , 0x2BC0 , 0x2B71 , 

0x2B22 , 0x2AD3 , 0x2A83 , 0x2A33 , 0x29E2 , 0x2991 , 0x293F , 0x28ED , 

0x289A , 0x2847 , 0x27F3 , 0x279F , 0x274B , 0x26F6 , 0x26A1 , 0x264B , 

0x25F5 , 0x259E , 0x2547 , 0x24F0 , 0x2498 , 0x2440 , 0x23E7 , 

  0x238E , 0x2335 , 0x22DB , 0x2281 , 0x2227 , 0x21CC , 0x2171 , 

0x2115 , 0x20B9 , 0x205D , 0x2000 , 0x1FA3 , 0x1F46 , 0x1EE8 , 0x1E8A , 

0x1E2B , 0x1DCD , 0x1D6E , 0x1D0E , 0x1CAE , 0x1C4E , 0x1BEE , 0x1B8D , 

0x1B2D , 0x1ACB , 0x1A6A , 0x1A08 , 0x19A6 , 0x1943 , 0x18E1 , 

  0x187E , 0x181B , 0x17B7 , 0x1753 , 0x16F0 , 0x168B , 0x1627 , 

0x15C2 , 0x155D , 0x14F8 , 0x1492 , 0x142D , 0x13C7 , 0x1361 , 0x12FB , 



 
113 

 

0x1294 , 0x122D , 0x11C6 , 0x115F , 0x10F8 , 0x1090 , 0x1029 , 0x0FC1 , 

0x0F59 , 0x0EF1 , 0x0E88 , 0x0E20 , 0x0DB7 , 0x0D4E , 0x0CE5 , 

  0x0C7C , 0x0C13 , 0x0BAA , 0x0B40 , 0x0AD7 , 0x0A6D , 0x0A03 , 

0x0999 , 0x092F , 0x08C5 , 0x085B , 0x07F0 , 0x0786 , 0x071B , 0x06B1 , 

0x0646 , 0x05DB , 0x0570 , 0x0505 , 0x049B , 0x0430 , 0x03C5 , 0x0359 , 

0x02EE , 0x0283 , 0x0218 , 0x01AD , 0x0142 , 0x00D6 , 0x006B , 

}; 

 

 

 

//initial  function to map to the dft_obj structure 

//mapping the input , output and number of resource blocks to get M_PUSH 

void pusch_dft_init (pusch_dft *dft_obj, int32_t *input, int32_t *output , 

uint8_t N_rb) 

{ 

 dft_obj->in = input; 

 dft_obj->out = output; 

 dft_obj -> M_PUSH = N_rb*12; 

} 

 

 

//the essential function of building DFT 

// take the arguments of the DFT structure and number of OFDM symbol (l) 

 

void pusch_dft_start (pusch_dft *dft_obj, uint8_t l) 

{ 

 

 int32_t sumreal , sumimag; 

 int16_t exp_real,exp_imag,temp_I,temp_Q; 

 uint16_t k,temp,init_indx_out,i,init_indx_in; 

 //the bits of summation must be enough for the over flow which is 

calculated by log2(N)where N :size of internal loop 

 //here the over flow bits here is log2(960)>> 10 bits so the all bits 

16+16+10=42 bit 

 //that mean using int 64 

 //from matlab  the most number of bits of effective sum are in 36 bit 

here in this cale because the numbers is low 

 int64_t sumreal2 , sumimag2; 

 

 

 

 dft_obj -> l = l; // ofdm symbol 

 //update the index of output from  DFT 

 //by using l which is here 12 .one for each M_PUSH 

 init_indx_out=(dft_obj -> l)*(dft_obj -> M_PUSH) ;  // start of output 

index per L (ofdm symbol) 

 

 for (k = 0; k <  dft_obj -> M_PUSH; k++) /* For each output element */ 

 { 

  // initial sum =0 

  sumreal2 = 0; 

  sumimag2 = 0; 

  //update the part of input arrary that will be udes to get DFT 

  //by using l which is here 12 .one for each M_PUSH 

  init_indx_in=(dft_obj -> l)*(dft_obj -> M_PUSH) ;  // start of 

input index per L (ofdm symbol) 



 
114 

 

 

 

//internal loop of summatin the multiplication 

  for (i = 0; i < dft_obj -> M_PUSH; i++,init_indx_in++) /* For 

each input element */ 

  { 

   //the index of real and imaginary phase LUT's 

   temp= (((i)*k)%960);  // after the M_push the phase start 

new cycle 

 

//get the real and imaginary values from LUT's 

   exp_real=exp_DFT_I[temp]; 

   exp_imag=exp_DFT_Q[temp]; 

 

   temp_I =((dft_obj ->in[init_indx_in])>>16); 

   temp_Q= ((dft_obj ->in[init_indx_in])&0x0000FFFF); 

 

 

   sumreal = (((int32_t)temp_I * exp_real) - ((int32_t)temp_Q 

* exp_imag)) ; //both exp and input are complex 

   sumimag = (((int32_t)temp_Q * exp_real) + ((int32_t)temp_I 

* exp_imag)) ; 

   //the summation on the internal loop 

   sumreal2 = (sumreal+sumreal2); 

   sumimag2 = (sumimag+sumimag2); 

 

 

 

  } 

 

  // save the Q-format (fixed point representation =14) 

  // (Q_of input=14)*(Q_of exp =14  ) =Q=28 

  // after that scaling by divide on 2 to match test cases  so 

(shift to right 1) 

  // so shifting 15 came from Q_exp=14  and  1 for dividing by 2( 

scaling factors) 

  //////////////////////////////////// 

  /// the real part of input normalized (/sqrt(M_push) ) 

  sumreal2 = ((sumreal2)>>15)/31; 

  // Q = 14 , Bmx = 26 

  sumreal2 =sumreal2&0x000000000000FFFF; 

  /// the imaginary part of input normalized (/sqrt(M_push) ) 

  sumimag2 = ((sumimag2)>>15)/31; 

  sumimag2 =sumimag2&0x000000000000FFFF; 

 

 

  //generate the output symbol by concatinate the real(MSB) 

&real(LSB) 

  dft_obj ->out[init_indx_out] = (sumreal2)<<16 |((sumimag2) 

&0xFFFF); 

 

  init_indx_out+=1; 

 } 

 

 

 



 
115 

 

 

 

} 

 

 

//linear interpolation function 

//it will be used if LUT with size 1200 

int16_t pusch_dft_interplation (int16_t y1 ,int16_t y2 ,int8_t x1,int8_t x2 

,float i ) 

 

{ 

 int16_t z; 

 

 z = y1 + ((y2 - y1) *((i - x1)) / (x2 - x1)); 

 

 return z; 

} 

 

// swapping endianness function 

void big_little_swapping(int32_t *x ,uint32_t size) 

 

{ 

 int k; 

 

 

 for (k=0;k < size   ;k++) 

 { 

 

  x[k]= ((x[k]>>24)&0xff) | // move byte 3 to byte 0 

    ((x[k]<<8)&0xff0000) | // move byte 1 to byte 2 

    ((x[k]>>8)&0xff00) | // move byte 2 to byte 1 

    ((x[k]<<24)&0xff000000); // byte 0 to byte 3 

 } 

 

 

 return; 

} 

 

 

 

 

 

********************************************************* 

 



 
116 

 

Appendix III Budget 

 

                               Component Quantity Source Price 

Parallella Board 2 Amazon 3000  LE 

   3.3V Fr232RL FTDI Usb to Serial Adapter Module 1 Amazon  200  LE 

                                Ethernet cablel  1 RAM  30     LE 

SD Card  2 Elbostan Mall 120    LE 

                                                                         Total 3350 LE 

 


