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Abstract

This thesis discusses the implementation of chains for multi-standards
communication (3G, LTE, and WIFI) on a dynamically and partially reconfigurable
heterogeneous platform FPGA VIRTEXS5. Implementation results highlight the
benefit of considering an FPGA platform like (VIRTEX 5) that supports efficiently
intensive computation components. The implementation of the desired chains for
multi-standards communication proves the availability of Partial Dynamic

Reconfiguration technology to support efficiently Software Defined Radio.

This project aims to implement the transmitter and receiver chains for the three
standards (Wi-Fi, 3G and LTE). Then reconfigure the FPGA by the desired chain on
the fly without the need for resetting. This technique depends on the new technology
Partial Dynamic Reconfiguration (PDR) which is introduced by XILINX. The new
technology is expected to save area, power and cost of communication devices and
increases the speed of switching and reconfiguring the FPGA. During the project,
experience is gained in HDL & MATLAB modelling of the transmitter and receiver
blocks of the three standards, building a system on chip that consists of: Micro-blaze
processor IP, ICAP IP and system Ace IP to enable partial configuration and other
peripherals. Thus enable the communication with PC while testing the reconfiguration
on separate blocks and finally testing the reconfiguration of the entire standards

chains.
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Motivation

Communication system design is typically a highly complex process. The
telecommunications industry is technologically dynamic, with new technologies and
enhancement of existing technologies constantly evolving. The implementation of
Radio Communication systems could have two ways: Hardware specific design which
has the advantage of minimum usage of resources and best performance and software
defined radio where the hardware components are implemented as software on PC or
an embedded system which has the advantage of being flexible to any changes or
updates.

Reconfigurable hardware platforms like FPGAs opened a way to have a solution
that combines advantages of both ways by using hardware specific design that could

be reconfigured or programmed by software control.

The idea of our project aims to even improve this solution by using the partial

dynamic reconfiguration technology.

Partial dynamic reconfiguration allows us to divide the FPGA to partitions that
could be reconfigured on the fly without need to reset the whole FPGA. Complete
separate chains could be reduced to a few partitions that could be reconfigured to fit

the required communication standard.
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Chapter 1:  Introduction

In this thesis we are going to prove the concept of the availability for using partial
dynamic reconfiguration in implementing software defined radio. The thesis flow will

go as following.

Chapter 2 introduces a survey about the technology then in Chapter 3 a brief
summary of software defined radio followed by a partial dynamic reconfiguration
concept. Then an overview of FPGA construction is covered illustrating targeted
applications and advantages. Coexistence with communication standards discussed as
viewed in other patents and papers as a step towards implementing the standards

chains.

Throughout Chapter 4, 5 and 6 we will go deep in the implemented standards’
transmitter and receiver (3G, LTE and Wi-Fi). Those chapters introduce the
architectures of the standards chains (Receiver and transmitter), implementation of the
HDL codes, illustrating the challenges, mentioning each block implementation and
any modification done. Each implementation is done giving the all data rates
combinations, where complete system design is performed, obtaining different

blocks’ specifications and expected non-idealities.

Chapter 7 covers functional verification of the chain blocks using MATLAB codes

and Perl scripts, IFFT test and fixed point simulation.

Chapter 8 discusses system on chip concepts, each chain implementation using one
RP, switching between different chains and kit steps implementing Microblaze bus.

Chapter 9 covers the FPGA testing environment, 1/O files and methods used to

interface with PC.

Chapter 10 introduces new approach that’s deal with reconfigurable partition rather

than one partition and discusses the testing environment for this new technique.

Chapter 11 concludes our achievements and results through a year full of team

work, enthusiasm, hard work and research.

Chapter 12 proposes the potentials expected in the upcoming years and

improvements that are the next step for the projects fellows.
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Chapter 2:  Survey

Software-Defined Radio (SDR) is a rapidly evolving technology that is receiving
enormous recognition and generating widespread interest in the telecommunication
industry. Over the last few years, analog radio systems are being replaced by digital
radio systems for various radio applications in military, civilian and commercial
spaces. In addition to this, programmable hardware modules are increasingly being
used in digital radio systems at different functional levels. SDR technology aims to
take advantage of these programmable hardware modules to build open-architecture
based radio system software.

SDR technology facilitates implementation of some of the functional modules in a
radio system. This helps in building reconfigurable software radio systems where
dynamic selection of parameters for each of the above-mentioned functional modules
is possible. A complete hardware based radio system has limited utility since
parameters for each of the functional modules are fixed. A radio system built using
SDR technology extends the utility of the system for a wide range of applications that

use different techniques.

Commercial wireless communication industry is currently facing problems due to
constant evolution of protocol standards (2G, 3G, and 4G), existence of incompatible
wireless network technologies in different countries inhibiting deployment of
problems in rolling-out new services and features due to wide-spread presence of

legacy subscriber handsets.

SDR technology promises to solve these problems by implementing the radio
functionality as software modules running on a generic hardware platform. Further,
multiple software modules implementing different standards can be present in the
radio system. The system can take up different personalities depending on the
software module being used. Also, the software modules that implement new services
and features can be downloaded over-the-air onto the handsets. This kind of flexibility
offered by SDR systems helps in dealing with problems due to differing standards and

issues related to deployment of new services and features.



Current market drivers such as future-proof equipment, seamless integration of
new services, multi-mode equipment and over-the-air feature insertion in commercial
wireless networking industry have resulted in widespread interest in SDR technology.
The technology can be used to implement wireless network infrastructure equipment
as well as wireless handsets, wireless modems and other end user devices. However,
factors like higher power consumption, increased complexity of software and possibly
higher initial cost of equipment regarding to the benefits offered by the technology
should be carefully considered before using SDR technology to build a radio system.



Chapter 3: SDR & PDR Concepts

3.1 SDR by Definition

Historically, radios have been designed to process a specific waveform. Single-
function, application-specific radios that operate in a known, fixed environment are
easy to optimize for performance, size, and power consumption. At first glance most
radios appear to be single function a first-generation cellular phone sends your voice,
while a WiFi base station connects you to the Internet. Upon closer inspection, both of
these devices are actually quite flexible and support different waveforms. Clearly a
software-defined radio’s main characteristic is its ability to support different
waveforms. The definition from wireless innovation forum (formerly SDR forum)
states: A software-defined radio is a radio in which some or all of the physical layer functions

are software defined. [1]

3.2 Why SDR?

It takes time for a new technology to evolve from the lab to the field. Since SDR is
relatively new, it is not yet clear where it can be applied. Some of the most significant

advantages and applications are summarized below.

e Interoperability. An SDR can seamlessly communicate with multiple
incompatible radios or act as a bridge between them. Interoperability was a
primary reason for the US military’s interest in, and funding of, SDR for the
past 30 years. Different branches of the military and law enforcement use
dozens of incompatible radios, hindering communication during joint
operations. A single multi-channel and multi-standard SDR can act as a

translator for all the different radios.

e Efficient use of resources under varying conditions. An SDR can adapt the
waveform to maximize a key metric. For example, a low-power waveform can
be selected if the radio is running low on battery. A high-throughput
waveform can be selected to quickly download a file. By choosing the
appropriate waveform for every scenario, the radios can provide a better user

experience.



3.2.1

Opportunistic frequency reuse (cognitive radio) An SDR can take advantage
of underutilized spectrum. If the owner of the spectrum is not using it, an SDR
can ‘borrow’ the spectrum until the owner comes back. This technique has the

potential to dramatically increase the amount of available spectrum.

Reduced obsolescence (future-proofing). An SDR can be upgraded in the field
to support the latest communications standards. This capability is especially
important to radios with long life cycles such as those in military and
aerospace applications. For example, a new cellular standard can be rolled out
by remotely loading new software into an SDR base station, saving the cost of

new hardware and the installation labor.

Lower cost. An SDR can be adapted for use in multiple markets and for
multiple applications. Economies of scale come into play to reduce the cost of
each device. For example, the same radio can be sold to cell phone and
automobile manufacturers. Just as significantly, the cost of maintenance and

training is reduced.

Research and development. An SDR can be used to implement many different
waveforms for real-time performance analysis. Large trade-space studies can
be conducted much faster (and often with higher fidelity) than through

simulations.

Field Programmable Gate Arrays

A Field Programmable Gate Arrays (FPGA) is a pre-manufactured silicon device

with high flexibility and capability to be configured to realize different applications

developed by a designer. They are programmed using Hardware Description

Language (HDL) like VHDL or Verilog. So, it is naturally different from an

Application Specific Integrated Circuit (ASIC), which is a circuit designed for a

specific application with no reconfiguration capabilities.

An ASIC not only lacks the configurability feature, but also requires a long design

cycle, and high start-up engineering cost compared to an FPGA. On the other side,

FPGAs trade the extra area, power consumption, and delay for its unique feature.

“Typically, FPGAs occupy larger area and dissipate more switching power than ASIC

standard cells by factors of 20-30x and 10x, respectively.
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From marketing prospective, FPGAs are used for small volume products need to
be sold faster, where ASICs are used for large volume products, but the non-recurring
engineering cost in the ASICs make their cost as a function of production volume in a
flatter way than the FPGA. As shown in Error! Reference source not found., the
more the technology advances in the scaling factor, the wider the range of using

FPGAs in production.

Total
cost

ASIC 0.15 pm

ASIC costs start
high, but slope
is flatter

ASIC 025 WM

-

-

Volume, k units

T
For each technology advance,
crossover volume moves higher

Figure 3.1: FPGA and ASIC total cost V.s production volume

3.2.2 What is inside the FPGA?

1. Configurable Logic Blocks (CLBs): includes Registers and Look-Up Tables
(LUTSs). They are the building blocks of the FPGA. Each Xilinx Virtex 5
device contains arrays of CLBs, each Virtex 5 CLB has two slices, and each
slice has four LUTs and four Flip Flops. Combinatorial logic is implemented
using LUTSs, they can implement any 6-input combinatorial function of the
user choice, with a cost of delay. Noting that, complexity of combinatorial
function does not matter as long as it depends on six inputs or less. Flip Flops
can be programmed to be latch, SR, JK, or D Flip Flops. Also, one carry
chain is available per slice for arithmetic purpose; it helps to secure fast
propagation of carry bit to nearby cells, which means it improves the speed.
Moreover, it saves LUTS.

2. Dedicated Blocks: Like DSPs, which acts as an arithmetic logic unit, RAM

blocks, PCle core.



3. Input/output Blocks:
LVCMOS, LVPECL, and PCI. In fact, each bank can support several

with programmable standard functionality,

standards as long as they share the same reference voltage, or output voltage.

4. Routing: a combination of programmable and dedicated routing lines, use
switching matrices connect lines from any source to any destination.
Constrains can be applied.

5. Clocking Resources: like Phase Locked Loop (PLL) which removes clock
errors, and Digital Clock Management (DCM). The dedicated clock trees

balance the skew and minimize the delay. Thirty-two separate clock networks

are available in Virtex 5 FPGA. As shown in Figure 3.2.
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3.3 FPGA Configuration

3.3.1 Configuration Definition

Using a preliminary definition, a configuration is a complete FPGA design. That
means, everything on the chip is specified either to do a function, or nothing at
all. One can view the FPGA is a two-layered device, consists of a configuration
memory layer, and a logic layer Figure 3.3. The configuration, or the complete

design, stored on the configuration memory layer, will control the logic on the other

layer.
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Configuration Memory Layer

Figure 3.3:FPGA Layers

3.3.2 Types of Configuration

There are four types of configuration of FPGAs shown in Figure 3.4

1. Fixed Configuration: where data is loaded from a memory at power-on, then
the configuration will remain fixed until the end of the FPGA cycle. This type lacks
efficiency, since all the possible functions needed to be done by the FPGA must be
specified in the configuration file from the beginning. On the other side, the space and

resources of the FPGA are limited. That adds complexity to the design.

2. Reconfiguration: An initial full bit file contains a complete configuration is
loaded into the device at power-on. Then different full bit files with other complete
configurations can be loaded on the FPGA during its duty cycle, but the configuration
memory must be erased first. This is a good step but it is not enough, as seen in figure
4, there is large overhead time in the reconfiguration phase.

3. Partial Reconfiguration: Initial full bit file with a complete configuration is

loaded into the device at power-on. Whenever something to be altered, all
computations will stop, then a partial bit file concerned with the modification in the
original complete configuration is loaded. This time the reconfiguration overhead
time is reduced compared the previous type. In applications where FPGAs are used as
communication hub, they must be active all the time to retain active links, so partial
reconfiguration is not enough, as the computations stop during loading the partial bit
file.



4. Dynamic Partial Reconfiguration (DPR): Unlike the partial reconfiguration,

while the configuration layer on the FPGA is being modified, the logical layer

continues its normal operation, except for the circuit subjected to modification. This

reconfiguration overhead is limited to the circuit.

(A) (B)
Configuration Device Confi
guration Reconfiguration
Overheiad Dut}’cycle Overhead Overhead
- == ”
g [ ——— 5 e 1
Power Sh
On Time Down i % Time Bown
(C) (D)
Configuration Reconfiguration Reconfiguration
Overhead Overhead 8322?:;?]0"] Overhead
S T,
= =
Power Shut Power Shut
On Time Down On Time Down
Figure 3.4: FPGA configuration types
3.3.3 What is Partial Reconfiguration (Problems to solve)?

Applications need to be able handle a wide variety of functions.
— Supporting many at once can use a great deal of space.

FPGA and board space is limited.
Multi-chip solutions require extra area, cost and power.

FPGA can be a communications hub, must remain active.
— Cannot reconfigure due to established links.
PCle enumeration time is increasingly difficult to meet with larger devices.

Challenge increases significantly in Virtex-5 and Virtex-6.

3.4 Partial Reconfiguration of FPGASs

As

systems become more complex and designers are asked to do more with less,

FPGA adaptability has become a critical asset. While FPGAs have always provided

the flexibility to do on-site device reprogramming, today’s tougher cost, board space,

and power consumption constraints demand even more efficient design strategies.
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Partial reconfiguration extends the inherent flexibility of the FPGA by allowing
specific regions of the FPGA to be reprogrammed with new functionality while
applications continue to run in the remainder of the device Figure 3.5. Partial
reconfiguration addresses three fundamental needs by enabling the designer to:
Reduce cost and/or board space, change a design in the field, Reduce power

consumption. [2]

The two most prevalent user problems addressed by partial reconfiguration are:
Fitting more logic into an existing device and fitting a design into a smaller, less
expensive device. Historically, designers have spent a lot, trying new implementation
switches, reworking code, and re-engineering solutions to squeeze them into the
smallest possible FPGA. Partial reconfiguration enables these designers to reduce the
size of their designs by dynamically time-multiplexing portions of the available
hardware resources. The ability to load functions on an as-needed basis also reduces
the amount of idle logic, thereby saving additional space. One of the applications of
this strategy is the use of partial reconfiguration within a software defined radio
(SDR) system, where the user uploads a new waveform on demand to establish
communication with a new channel. Any number of waveforms can be supported by a
single hardware platform, requiring only unique partial bit streams to be available for
these waveforms. Established links to other channels are not disrupted by the update

to another channel due to the on-the-fly characteristics of partial reconfiguration.

3.4.1 Partial Reconfiguration Enables
e System Flexibility
e Perform more functions while maintaining communication links
e Size and Cost Reduction
e Time-multiplex the hardware to require a smaller FPGA
e Power Reduction

e Shut down power-hungry tasks when not needed

11
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Figure 3.5: Reconfigurable FPGA Structure

3.4.2 Brief History of Partial Reconfiguration
e The ability to partially reconfigure Xilinx FPGAs has been evolving for years
— JBits and the XC6200 family are early examples
— These solutions were experimental and very restrictive
— They were used by academics
e The Difference Design approach
— Quiet cumbersome
e The Modular Design approach appeared in 2005
— Flow was complex and the silicon still had significant limitations
— The PR Lounge, using 9.2.04i software, phased out in 2QCY10
e More robust, mainstream solution was needed
— Release 11 was a new dawn in the support of Partial Reconfiguration
— Tools leverage mature technology (Partitions, PlanAhead)
— Flow is more user-friendly, less complex
e Software has been limiting factor preventing wide adoption
— Early efforts were difficult and labor intensive
— Modular Design provided first real flow, but was convoluted
— Software was not included in mainstream tools
— Partitions now permit a more mainstream approach
e However, new flow is not “push-button”
— User needs to follow specific rules and requirements in design and flow

— Restrictions will reduce performance and efficiency

12



3.4.3 Partial Reconfiguration Analogy
A FPGAs PR region is similar to the stack in a microprocessor. The FPGA can

have many PR regions so it can be much more powerful than a microprocessor for

applications switching Figure 3.6Error! Reference source not found..

3.4.4 System Flexibility: Communication Hub
The FPGA can be a communications hub and must remain active. It cannot

perform full reconfiguration due to established links Figure 3.7.

3.4.5 Size and Cost Reduction: Time Multiplexing

Applications need to be able handle a variety of functions; supporting many at
once can use a great deal of space. The library of functions use case covers a wide
number of applications. The time-based multiplexing of functions reduces device size

requirement Error! Reference source not found..

FPGA Configuration Switch

Processor Context Switch

uP FPGA

HoBIS

MMU

| uoifal ¥qd
Z uoibal ¥d
N uoifal ¥d

2

Process 1 Partial Bitstream A

Process N Partial Bitstream N

Figure 3.6: PR analogy

3.4.6 Power Reduction Techniques with PR

= Board space and resources are limited

— Multi-chip solutions consume extra area, cost, and power
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= Many techniques can be employed to reduce power

— Swap out high-power functions for low-power functions when
maximum performance is not required

— Swap out black boxes for inactive regions

— Swap high-power 1/0O standards for lower-power I/O when specific
characteristics are not needed

— Time-multiplexing functions will reduce power by reducing amount of
configured logic

=\
S

Radio Link

. us Lin
Link FPGA

1 uoibal ¥d
Z uoibal yd
¢ uolbal Yd

Figure 3.7: FPGA as communication Hub

ﬁg—l\—ﬂemow Storage )

10 GigE  tdrx
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Figure 3.8: FPGA time multiplexing
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Breaking the logic layer (Partial/Static Regions, Reconfigurable
Partitions/Modules)

Having a partial reconfiguration design means that, there are some parts of the
design that will be changed according to its various configurations during run-time,
and other parts that will not be changed, either due to design, or because it cannot be
reconfigured. The first type, reconfigurable areas, are named partial region. The
other type that will not be reconfigured is named the static region. Nearly everything
on an FPGA can be reconfigured: LUTS, Flip Flops, block RAMs, distributed RAMs,
shift registers, DSP blocks, and 10 components. But there are some parts that cannot
be reconfigured at all, like: clock modifying blocks, global clock buffers, device
feature blocks like ICAP and STARTUP.

A partial region defined by the user to make its logic reconfigurable is also called
reconfigurable partition, on the other hand, in a single design/configuration, the
portion of the design occupies this reconfigurable partition is named reconfigurable
module. Each reconfigurable partition may have multiple reconfiguration modules, as
a reconfigurable module can be replaced in run-time by another reconfigurable

module occupying the same reconfigurable partition.

As seen in figure 5, the grey block can be seen as static region, they will not
experience any changes in run-time. On the other side, colored blocks are the
reconfigurable partitions, each partition represents a LED with a certain color, but on
the same partition of a specific color, red for example, multiple modules can be
applied, each module represent blinking speed of its LED. So red is a reconfigurable

partition, with three modules of three speeds can be applied in run-time.

3.4.7 Styles of Partial Regions
There are three different possible configuration styles Figure 3.9 in which partial

regions can be arranged into:

1. Island Style: It is the easiest possible style. Using it, only one reconfigurable
module can be hosted exclusively per island. A system can support more than
one island within its logic.

a. Single island style, is the case when modules are tied to their specific planned

islands.
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b. Multiple island style is the case when modules are free to be relocated to

different islands within the system.

This approach is suitable with a system having few modules are being swapped.
On the other side it suffers from internal fragmentation, which is the result of having
more than one module sharing the same partition. One of these modules will require
more resources than the other, so the partition is initially planned to contain all those
resources needed by the most complex module. When the simpler module is used, not

all the resources will be used, and they cannot be shared outside this partition/island.

2. Tiling (Slot Style and Grid Style): A slot style is one dimensional tiling, while
the grid is two dimensional tiling. Tiling a reconfigurable region allows multiple
modules to be hosted simultaneously within it; each module will occupy the number
of tiles based on the required resources to be used. So, this improves the internal
fragmentation. On the other hand, it makes it more complex to communicate with
reconfigurable modules. Also, a more complex type of fragmentation exists, the
external fragmentation, because the partial region is not homogeneous, various
elements exists in different places within the FPGA according to its design (like

ROMs, DSPs), so tiling the region will consider this.

a) island style b) slot style c) grid style

N ‘ | I
uBR SR RQEILT

\ ™

static part of the system unused reconfigurable area different modules

~

Figure 3.9: Partial regions styles

3.4.8 Full bit file V.s Partial bit file

A full bit file contains the data of a complete design/configuration. It contains all
the necessary information to reset the FPGA device, configure it with a complete
design, and verify a bit file is not corrupted.

A partial bit file contains a partial design configuration; it has no header, only the
address of the target region and its corresponding partial data. The partial bit file may

have many errors, like the address information, the data information.
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There is no error detection built-in mechanism; a corrupt partial bit file can damage
the FPGA if left in operation. So, system with high probability of its partial bit being
corrupted, like those which are sent over radio, should implement a check circuit on
the FPGA before loading the partial bit file received.

3.4.9 Types of Partial Reconfiguration
There are two mechanisms to be followed for performing partial reconfiguration,

noting that the first one is used in PlanAhead:

1. Modular Based: All the components of the design are implemented separate
from each other, and then the complete bit stream is the sum of all the partial
bit streams of these components. This mechanism is suitable for large changes
in the functionality of the structure of a design.

2. Difference Based: All the possible configurations of the design are specified,
with one full bit file. The partial bit files are generated from the differences of
two configurations of the design. It is suitable for small changes, giving a high

switching speed between the versions of the design.

3.4.10 Benefits of Partial Reconfiguration
1. Reducing the size and the cost of the FPGA: By time multiplexing the

hardware, more logic can be fit into the same area, hence bigger designs can

be fit into smaller less expensive devices.

2. Reduce power consumption: Smaller and simpler designs consume less power.
Moreover, developers can implement more than mode for the same design,

so that the user will be able to choose between high performance/low power

mode, and low performance/high power mode. Also, swapping between high
power 10 standards and low power 10 standards will be possible.
3. Increase deployed system flexibility: Changing a design in the field becomes

easier; the modified function is placed and routed in context with the already

verified remainder of the design, then this partial file will be delivered to the

system in field. These can be applied without shutting down system.
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4. Improving FPGA fault tolerance.
5. Accelerating configurable computing.

6. A variety of applications are now possible using PR and PDR.

3.4.11 Requirements of PDR
To implement a run-time reconfigurable system, the following requirements must

be satisfied:

1. Partial modules have to use exclusive resources, not shared with any other part
of the system.

2. Routing has to be constrained to specific wires for crossing the module border
for each signal bit of the module entity.

3. Activate all clock trees that are used by partial modules.

4. Constraint the timing.

The first requirement is called Area Group Constrain. In some cases, the different
configuration modules, associated with a reconfigurable partition, use different

resources.

The area group constraint of this reconfigurable partition must contain all the
resources needed by all its reconfigurable modules. It is applied practically in the
phase of floor planning in PlanAhead, or by writing directly into the constraint file.
Activating all the clock trees, and constraining the timing form the Time Constrains,
and they are related to the design also are done in PlanAhead by writing into the

constraint file.

3.4.12 Partition Pins

Partition pins are the interfaces between the static and the reconfigurable logic.
Unlike the other requirements that are done using the constraint file, there is no
constraint to bind a signal in a top level design that is responsible for the
communication with a partial module to a specific wire that crosses the partial-to-
static border. To solve this, there are many macros have been developed using
vendors like Xilinx in their tools Figure 3.10:
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1. Bus Macros: Consists of a LUT in the static part and a LUT in the partial
region, the signal then will be bounded to the internal macro wires. This costs
two LUTs per signal to wire binding. Moreover, this has an effect of
additional latency.

2. Proxy Logic: LUT acting like an anchor will be placed in the partial region.
Then, differentially, the interfaces to the partial region at the static region will
be routed to those anchors. Also the partial modules will be implemented
incrementally from the routed static system and those anchors without
modifying any static routing. This leads to preserving the initial static routing,
hence satisfying binding the signal to certain wires. On the other hand, the
routing will be different for each reconfigurable partition. Making it
impossible to optimize island styles to be multiple island style.

3. A new approach: This approach Defines tunnels through the partial region by
blocking other possible routes, so this drilled tunnel, is the only possible path

for a signal. By this, the router is forced to bind a signal to this tunnel.

partial reconfiguration "slice-based bus macro" partial reconfiguration "proxy logic" partial reconfiguration "PR link"

— i_n — . Il

B ol " ~ L o

A ] LC—E—-

> L) p— h—} — <
NAND OR NAND OR Vi b= inanp OR Vi ==
a) old slice-based bus macro technique b) recent proxy logic technique c) new PR link approach

Figure 3.10: Partition pins
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Chapter 4. 3G transmitter and receiver implementation

By the late 1990s, the very success of GSM (global system for mobile) was again
raising questions about the future need for yet more spectrum. The GSM community
was initially focused on developing GSM*s circuit and packet switched data services.
It is limited to maximum data rates of less than 50 kbps and neither can support video
telephony. There was an obvious potential evolution towards a wider bandwidth
CDMA system. The aim was to develop a radio system capable of supporting up to 2
Mbps data rates. The global WCDMA(wide code division multiple access)
specification activities were combined into a third generation partnership project
(3GPP) that aimed to create the first set of specifications by the end of 1999, called

Release 99.

The early WCDMA networks offered some benefits for the end users including

data rate up to 384 kbps in uplink and in downlink and simultaneous voice and data.

HSDPA (High Speed Downlink Packet Access) brought a few major changes to the
radio networks: the architecture became flatter with packet scheduling and
retransmissions. The peak bit rates increased from 0.384 Mbps initially to 1.8-3.6
Mbps and later to 7.2-14.4 Mbps.

Suddenly, wide area networks were able to offer data rates similar to low end
ADSL (Asymmetric Digital Subscriber Line) and were also able to push the cost per
bit down. So that offering hundreds of megabytes or even gigabytes of data per month

became feasible. The high efficiency also allowed changes to the pricing model.

The HSPA (High Speed Packet Access) network efficiency has improved
considerably especially with Ethernet-based transport and compact new base stations
with simple installation, low power consumption and fast capacity expansion. HSPA
evolution also includes a number of features that can enhance the spectral efficiency.
Quality of Service (QoS) differentiation is utilized to control excessive network usage
to keep users happy also during the busy hours. HSPA evolution includes features that
cut down the power consumption considerably and also improve the efficiency of

small packet transmission in the HSPA radio networks.
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4.1 Frame structure

) Data
DPDCH Ny, bits
B Taor = 2560 chips, N g = 10*2¥ bits (k=0_.6) "
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DPCCH Nyt bits Nrecr bits N g, bits N ppc bits
Tsiet = 2560 chips, 10 bits
. Pilot TPC
DPCCH2 N g bits Nrpc bits
X Tuoe = 2560 chips, 10 bits i
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S-DPCCH Ngjm bits IL"f'.:zr'. bits
— : £
T Tlet= 2560 chips. 10 bits
Slot#0 | Slot#l | Slot#2 | Slot#3 Slot #1 Slot #14
Subframe #0 Subframe #1 Subframe 72 Subframe #3 Subframe #4
1 subframe = 2 ms
—>
- S—

1 radio frame: T ;= 10 ms

Figure 4.1: Frame structure

There are seven types of uplink dedicated physical channels, the uplink Dedicated
Physical Data Channel (uplink DPDCH), the uplink Dedicated Physical Control
Channel (uplink DPCCH), the uplink Secondary Dedicated Physical Control Channel
(uplink S-DPCCH), the uplink Dedicated Physical Control Channel 2 (uplink
DPCCH2), the uplink E-DCH Dedicated Physical Data Channel (uplink E-DPDCH),
the uplink E-DCH Dedicated Physical Control Channel (uplink E-DPCCH) and the
uplink Dedicated Control Channel associated with HS-DSCH transmission (uplink

HS-DPCCH) [3].

Each frame consists of 5 sub-frames; each sub-frame consists of 3 slots so the

frame consists of 15 slots. The Length of the frame corresponds to 38400 chips. Chip

Rate is 3.84 Mcps so Frame Length is 10ms as shown in Figure 4.1.
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The length of a Slot of DPDCH (Dedicated Physical Data Channel) corresponds to
2560 chips. Ny (number of data bits in the slot) = 10 = 2% bits. The parameter
k is related to the spreading factor SF whereSF = 256/2%. In uplink: SF range is
from 256 down to 4 so k range is from 6 down to 0 so N,,;, range is from 10 to 640

bits.

Slot of DPCCH (Dedicated Physical Control Channel): fixed SF of 256 and
contains 10 bits. DPCCH has four fields: Pilot, TFCI (transport-format combination
indicator), FBI (feedback information), and TPC (transmit power-control), size of

each field is not fixed and defined in the table shown in Figure 4.2 [4].

Slot Channel Bit Channel S‘_!,rmbol SF Bits/ Bits/ Np“o[ Nipc Ntec) NEeg; Transmitted
Form Rate (kbps) Rate (ksps) Frame Slot slots per
at #i radio frame
0 15 15 256 150 10 6 2 2 0 15
DA 15 15 256 150 10 5 2 3 0 10-14
0B 15 15 256 150 10 4 2 4 0 8-9
1 15 15 256 150 10 8 2 0 0 8-15
2 15 15 256 150 10 5 2 2 1 15
2A 15 15 256 150 10 4 2 3 1 10-14
2B 15 15 256 150 10 3 2 4 1 8-9
3 15 15 256 150 10 7 2 0 1 8-15
4 15 15 256 150 10 5] 4 0 0 8-15
5 12 13 256 1320 10 6 2 2 0 8-19

Figure 4.2: DPCCH Field
Pilot used for channel estimation and Frame Synchronization. Pilot Bit Patterns
depend on number of pilot bits and slot number and are defined in this table shown in
Figure 4.4

TFCI used for bit rate control, channel decoding, interleaving parameters for every

DPDCH frame. FBI used for transmission diversity in the DL. TPC used for inner

loop power control commands. TPC Bit Patterns are defined in Figure 4.3

TPC{ Bit Pattern Transmitter power

NTF": =2 NTF": =4 NTPC =8 control command
11 1111 11111111 1
00 0ooa 00000000 0

Figure 4.3: Bit patterns of TPC
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Figure 4.4: Pilots for uplink DPCCH

4.2 3G Transmitter

Radin
Frame
Segmentation

» lat
Irmbarleaner
Code black
concatenation

Radio
Frame
Equalization

Mpdulation

Code block
segmentation

CRC
attachment

Transmitter of 3G consists of several blocks as shown in Figure 4.5

Figure 4.5: Transmitter blocks
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4.2.1 CRC (Cyclic Redundancy Check) attachment

CRC process is provided on transport blocks for error detection in which the entire
block is used to calculate the CRC parity bits for each transport block. Instead of
adding just one bit to a block of data, several bits are added. The size of the CRC is
24,16, 12, 8 or 0 bits and it is signaled from higher layers -depending on the channel-
what CRC size that should be used [5].

CRCs are typically implemented in hardware as a linear feedback shift register as
shown in Figure 4.6 and its equations are shown in Table 4.1.

Table 4.1: Types of CRC

CRC Mode Equation
CRC24 gCRC24(D) =D24+D23+D6+D5+D + 1
CRC16 gCRC16(D)=D16 + D12+ D5 + 1
CRC12 gCRC12(D)=D12+D11+D3+D2+D +1
CRC8 gCRC8(D)=D8+D7+D4+D3+D +1
&b S L dh
b A <

L4

k4

aby
oy

Figure 4.6: CRC as shift register
After modeling the CRC block and other blocks of the chain in HDL we face a
problem that rates differ from a block to another so we have to control the time of
handshaking between blocks to ensure proper data transfer. In addition, we have to

unify the interface of the blocks to realize the concept of the PDR.

So we design a top controlled module consists of a controller, a FIFO (first input
first output) and the designed block as shown in Figure 4.7. Fifo store the input bit

stream and controller to control the fifo and the designed block.

In this module we add two signals enable and finished to control the handshake.
Enable comes from the next block to indicate that it is ready to receive data.

Finished is sent to the previous block to indicate that the current block has finished

its function. So the top controlled module of CRC will be as shown in Figure 4.8.
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topControlled crc8 3g

num_after crc(13:0)
data_in data_out
finished

valid_in valid_out

topControlled crc8 3g

Figure 4.7: Top controlled CRC
The pins description of the controlled module is shown in Table 4.2

4.2.2 Segmentation

Segmentation of the bit sequence from transport block concatenation is performed
if X; > Z. The code blocks after segmentation are of the same size. The number of
code blocks on TrCH ‘i’ is denoted by Ci. If the number of bits input to the
segmentation, X, is not a multiple of Ci, filler bits are added to the beginning of the

first block. If turbo coding is selected and Xi < 40, filler bits are added to the
beginning of the code [5]

Table 4.2: pins description of CRC

PIN Description
Data_in The input bits
Valid_in The signal indicates that current data_in is valid data
Data_out The output data of the block
Valid_out The signal indicates that current data_out is valid data
Finished The signal indicated that the CRC is ready for the new frame
Enable The signal indicates that the next block is ready to have data
Num_after_crc The signal indicates that total number of bits after crc
Flag The signal indicates that the num_after crc is valid
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fifo_crcB_3g

controller

Figure 4.8: Internal module of CRC
block [6] [4]. The filler bits are transmitted and they are always set to 0. The

maximum code block sizes are:
Convolutional coding: Z = 504;
Turbo coding: Z = 5114.

The bits output from code block segmentation, for Ci # 0, are denoted by 0ir1, Oirz,
Oir3... Oirki where i is the TrCH number, r is the code block number, and K; is the
number of bits per code block.

Number of code blocks:
Ci=[XilZ]

Number of bits in each code block (applicable for Ci # 0 only):
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if Xi <40 and Turbo coding is used, then

Ki=140

else

Ki=[Xi/Ci]

end if

Number of filler bits: Y = CiKj - X

fork=1toY; --Insertion of filler bits
Oi=0

end for

for k =Yi+1 to Ki

Oik=X;,(K-Yi)

end for

r=2 -- Segmentation
while r < C;j

for k =1 to K

Oin=Xi, (k+(r-1)-Ki-Y3)

end for

r=r+l

end while

Concerning the HDL implementation the Figure 4.9 shows the interface of the

Segmentation
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top segmentation_3g

block_indes

valid out

valid_out_|

top_segmentation_3g

Figure 4.9: Segmentation Interface
The internal block diagram is shown in Figure 4.10

top_segmentation_3g:1

top_fifo_3g fsm_segmentation_3g

top_segmentation_3g

Figure 4.10: Internal Design for Segmentation
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Table 4.3: Interface Signal Decleration

PIN

Description

num_after_crc

This is input signal from CRC that indicates the total number of
data bits plus concatenated CRC bits

clk_fast Connected to the clk_spreading signal to increase the speed for
the division required to generate the number of blocks produced

Data_in The input bits
Flag Input signal from the CRC that indicates that the num_after_crc

is ready to be read for the segmentation block

Segmentation_Type

To differentiate between Convolutional Encoder “0” or Turbo
Encoder “1”

valid_in This signal indicates that current data_in is valid data
valid_encoder This signal indicates that the next block is ready to have data
Block_index Output signal that indicates the index for the block being
transmitted to the encoder
Block_size Number of bits included in each block after performing the
segmentation process.
Num_Blocks Total number of blocks output from the segmentation process
Data_out The output bits
finished The signal indicated that the mapper is ready for the new frame
Flag_filler Output signal used for the encoder such that it does not read the
extra zero filler bit that remains on the bus while moving from
state to another inside the code. Consequently, this reserve that
valid_out signal to remain always one within the data block as
shown in Figure 4.11
valid_out

This signal indicates that current data_out is valid data

T clk_fast

1';3 flag
» B num_after_cre[1
» B num_b
» P block :

-|'Eg data_out

1 valid_out

Ly flag_filler

» B filler[12:0]

176. 125530667 ms

Figure 4.11: flag filler explanation use

The output segments and the valid_out that is input to the encoder to intiate the
processing for each segment is as shown in Figure 4.12
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]I;] flag
» B num_after_crd13] x
» B num_b
» B block

2:0] 1]
_HE-‘ data_out
]

Ly valid_out

Figure 4.12: Output from the segmentation block

One of the challenging in the segmentation is the division used to generate either
the num_blocks or block_size that will be used by the successing blocks. For the
num_blocks, it is a result for dividing the num_after_crc by the constant value for
either the convolutional or turbo decoder. Since this division is by a constant and
large value, therefore we use the concept of subtracting in division and by making use
for clk_spreading to maximize the speed for division as shown in Figure 4.13.
Moreover, during the time of division segmentation block is still waiting to data to be
exit from the CRC. On the other hand, we use a combinational synthesizable divider
to get the block_size since if we make use for the subtraction concept, number of
clock cycles will be wasted since the denominator is very small relatively to the
numerator. Also, data were already stored in the FIFO for the segmentation and so
any waste of cycles will lead in slowing down the speed for data transmission within

the chain

4.2.3 Encoder

Convolutional codes with constraint length 9 and coding rates 1/3 and 1/2 are
defined. The configuration of the convolutional coder is presented in Figure 4.14,
Figure 4.15.

Output from the rate 1/3 convolutional coder shall be done in the order outputO,
outputl, output2, outputO, outputl, output 2, output O, ..., output 2. Output from the
rate 1/2 convolutional coder shall be done in the order output 0, output 1, output 0,
output 1, output 0... output 1 [5].
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Figure 4.13: clk and clk_fast period

8 tail bits with binary value 0 shall be added to the end of the code block before

encoding. The initial value of the shift register of the coder shall be "all 0" when

starting to encode the input bits.
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Figure 4.15: Rate 1/3 Convolutional encoder

G, = 711 (octal)

The top module of the 3g convolutional encoder rate half is shown in Figure 4.16.

The pins description of the top controlled is shown in Table 4.4.
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Comment: The signal C is just through the block, which is required for the

concatenation block.

topControlled _convolutionHalf _3g

c_in(6:0) c_out(6:0)

| data_out

Figure 4.16: Schematic
Table 4.4: pins description of encoder

PIN Description
C_in(6:0) Number of code blocks from the segmentation
Clk Clock of the all encoder blocks
Clk2 Clock of the serial output
Data_in Data in for the convolutional encoder
Enable Working enable for the encoder
Flag_filler Flag from segmentation
Reset Reset encoder registers by inserting Zeros
Valid _in Valid in to consider the input
C_out(6:0) Indicates the number of cade blocks
Data_out Encoder input
Finished Signal indicates the block is ready for the new frame
Valid_out Valid out signal to the next block

The termination problem solved by adding a counter that starts when the valid_in
signal goes low after it was high; the counter ends after eight counts thus the

termination done.
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Detailed block diagram for the blocks that shown internal construction of the

convolutional encoder in Figure 4.17.

Figure 4.17: Internal block diagram

4.2.4 Code block concatenation

The input bit sequence for the code block concatenation block are the
sequences ey, forr=0,.....,C-1 and k =0,.....,E,.-1. The output bit sequence from the
code block concatenation block is the sequence f;, for k = 0,....,G-1.. The code block

concatenation consists of sequentially concatenating the rate matching outputs for the
different code blocks. Therefore,

Setk=0andr=0

whiler<C

Setj=0

while j < E,

fre = erj k=k+1 j=j+1

end while
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r=r+l1 end while

The block interface is as shown in Figure 4.18, the signals declaration and
description is as shown in Table 4.5 and the block simulation is as shown in
Figure 4.19.

There is no difference between the implementation of the code block concatenation
in 4G and 3G, they are exactly the same [5].

top_codeBlockConcatenation_4g

data_out

top_codeBlockConcatenation_4g

Figure 4.18: Code block concatenation block interface.

Table 4.5: Code block concatenation block signals declaration

PIN PIN Type Description
C IN Total number of code blocks (segmentation section)
Enable IN This signal indicates that the next block is ready to have
data
valid_in IN This signal indicates that current data_in is valid data
data_in ouT The input bits
finished ouT This signal indicates that the interleaver is ready to have
a new frame
valid_out ouT This signal indicates that current data_out is valid data
data_out ouT The output bits
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15 valid_in
15 data_in

-”—'p valid_out
—”fh data_out
» B cl1s:0

Figur .19.

4.2.5 Radio frame equalization
To ensure data can be divided into equal-sized blocks, padding bits are

concatenated at the end of the set of coded bits, and can be either logical Os or 1s [5].

For example, if a TrCH with a 80ms TTI (8 Frames) have 70 bits after channel
coding; two padding bits would be added to give a total of 72 bits which can later be

split into eight sets (radio frames) of nine bits each.
Radio frame size equalization is only performed in the UL.

The input bit sequence to the radio frame size equalization is denoted
by:e;i1, €2, €igyemr o ,e;g, Where (i) is TrCH number and E; the number of bits. The
output bit sequence is denoted by:t;y, t;z, tiz,..., tir, Where T; is the number of bits.

The output bit sequence is derived as follows:

tiK: ik fOT'k: 1EL

ti1:0 fOT'k :EL+ 1Tl
Ti =Fi*Ni
N, = 2

=17

F; is the number of segments (frames) and it depends on TTI as shown in Table 4.6

N; is the number of bits per segment after size equalization.
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Table 4.6: number of frames

TTI

je~u

10ms

20ms

40ms

oM™

80ms

Concerning the HDL implementation, Figure 4.20 shows the interface. The pins
description is in the following Table 4.7. The implementation depends on counter
counts input bits from zero till number of frames and repeats again , for example
TTI=40 and number of bits equal 1001,the counter will end at value 1 so equalizer

will pad 3 zeros to reach value 4 (number of frames) as shown in Figure 4.21.

top radioFrameEqualization 3g

tti(6:0) bitsperframe{11:0)

numberofframes(3:0)
data_in
data out

reset

. valid out
valid_in =

Figure 4.20: Radio Frame Equalization interface
Table 4.7-Frame Equalization Pin description

PIN Description
Data_in The input bits
Valid_in The signal indicates that current data_in is valid data
TTI Transmission Time Interval
possible values are : 10, 20, 40 and 80
bitsperframe Number of bits per frame N;
numberofframes Number of frames F;
finished The signal indicated that the block is ready for the new frame
enable The signal indicates that the next block is ready to have data
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o

-“;] valid_in [

» B tileal

» B numberofframes| 4
1y valid_out

p B bitsperframe(11:] 518

» B counter(3:0]

Figure 4.21: Equalizer timing diagram example

4.2.6 First interleaving

Interleaving is a way to re-arrange data in a non-contiguous way to make it stand
burst errors. These types of errors can destroy many bits in a row and make it hard to
recover using FEC coding, since these expects the errors to be more uniformly
distributed. This method is popular because it is a less complex and cheaper way to
handle burst errors than directly increasing the power of the error correction scheme

and interleaving cause increasing the performance of decoding as shown in Table 4.8

[5].

The main disadvantage of using interleaving techniques is that increases latency
because the entire interleaved block must be received before the packets can be
decoded. Interleaving period equals to TTI (Transmission Time Interval) which
determines then number of columns in the interleaving matrix (10, 20, 40, 80ms => 1,

2, 4, 8 columns).

Table 4.8: comparison between with and without interleaving

Without interleaving With interleaving
Transmitted Bits : Transmitted Bits :
b0 bl b2 b3 b4 b5 b6 b7 b8 b0 bl b2 b3 b4 b5 b6 b7 b8
Received Bits : Interleaved Bits :
b0 bl b2 b3 x x x b7 b8 b0 b3 b6 bl b4 b7 b2 b5 b8
(x indicates to error in bit) Received Bits :

bOb3b6bl x x X b5 b8
Deinterleaved Bits:
b0 bl x b4 b5 b6 xsh8

Burst errors Distributed errors
hard to recover easy to recover

First interleaver is Inter-frame interleaving where all frames are interleaved together

Three steps for interleaving as shown in Figure 4.22.
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e Write input bits into the matrix row by row
e Perform inter-column permutation based on pre-defined patterns (according to
the TTI)

e Read output bits from the matrix column by column

VARY
[ Inputbits | — 2 - [ORnE =
STEP 1 STEP 2 STEP 3
Write input bits Inter-column Read output bits
row by row permutation column by column

Figure 4.22: Steps of Interleaving

Inter-column permutation patterns are defined in Table 4.9.

Table 4.9-Inter-column permutation for first interleaver

TTI Number of columns Inter-column permutation
patterns

10ms 1 <0>

20ms 2 <0,1>

40ms 4 <0,2,1,3>

80ms 8 <0,4,2,6,1,5,3,7>

The following Figure 4.23 shows an example of first interleaver where
TTI=40ms and 16 bits. Number of columns equal 4 so number of rows equal 4 so
first writing bits in the interleaving matrix row by row then Perform inter-column

permutation <0,2,1,3> then read from matrix column by columns.

Concerning the HDL implementation, Figure 4.24 shows the interface of first

interleaver
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bl | B2 | b3 | b4 | b5 | b6 | b7 | b8 | bS | blD | b1l | b12 | B13 | bl4 | bI5 | bl6
bl | b2 | B3 | b4 bl | b3 | b2 | b4
b5 | b6 | B7 | b8 b5 | b7 | b6 | b8
b9 | b10 | b1l | bl2 b9 | bll | bl0 | bl2
bl3 | bl4 | blS | bl6 bl3 | bl5 | bl4 | bl6
bl | b5 | B9 | bI3 | B3 | b7 | b1l | b15 | b2 | b6 | blD | b14 | b4 | bE | bl2 | bl6

bit

Figure 4.23: Interleaving Example

indata_ready

leaver in

leaver out

valid out

Figure 4.24: First Interleaver interface

40




The internal block diagram is shown in Figure 4.25

Table 4.10-First Interleaver Pin description

PIN Description

Leaver_in The input bits

Indata_ready The signal indicates that current data_in is valid data

TTI Transmission Time Interval
possible values are : 10, 20, 40 and 80

Bitsperframe Number of bits per frame N;

fifo_firstinterleay

interleaver_firstinterlea

Figure 4.25: First Interleaver Block Diagram
The implementation depends on a ram which we write in it in-of order and

read from it out-of-order depending TTI.

For TTI=80ms, there are 8 columns and the matric after permutation shown in

following table

bo b, b, be b, be b, b,
bg bi, big bi4 bg bi3 2% bis
b16 bZO b18 b22 b17 b21 b19 b23
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So the address start with O (first column in columns permutation) and
increment by 8 (number of frames) till end and then 4 (second column in columns

permutation) and increment by 8 (number of frames) till end and so on.

For TT1=40ms, there are 4 columns and the matric after permutation shown in

following table

by b, by bs
b, be be b,
b8 blO b9 bll

So the address start with 0 (first column in columns permutation) and
increment by 4 (number of frames) till end and then 2 (second column in columns

permutation) and increment by 4 (number of frames) till end and so on.

For TT1=20ms, there are 2 columns and the matric after permutation shown in
following table

bo b,
b, bs
by bs

So the address start with O (first column in columns permutation) and
increment by 2 (number of frames) till end and then 1 (second column in columns

permutation) and increment by 2 (number of frames) till end and so on.
For TT1=10ms, reading from ram in-of-order.

Figure 4.26 shows the timing diagram for example TTI1=40ms, address_read
starts with 0 and increments by 4 till 2068 then be 2.

» B address_read[13] o

Ty re 1

- % address_read[13

Figure 4.26: First interleaver timing diagram
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4.2.7 Radio Frame Segmentation

When the transmission time interval is longer than 10ms, the input bit

sequence is segmented and mapped onto consecutive F; radio frames [5].

In our 80ms TTI example above, with 72 bits after radio frame equalization,
the first nine interleaved bits will be transmitted in the first radio frame, the next

nine bits in the second radio frame, and so on over all eight frames of the TTI.

The input bit sequence is denoted by: Xj1, Xj2, X3, o , Xix, where i is the
TrCH number and X;is the number bits. The Fi output bit sequences per TTI are
denoted bY:Yin.1 + Vingz + Yin3 «ooeeeee Yin;y; Where n;is the segment

number and Yi is the number of bits per radio frame for TrCH i. The output

sequences are defined as follows
Yingk = Xi(n-Dyp+k K =11
Where Yi = (Xi / Fi) is the number of bits per segment

Concerning the HDL implementation, Figure 4.27 shows the interface

top_radioFrameSegmentation_ 3¢

bitsperframe(11:0) daia out

data in

inferleaver finished

valid in valid out

Figure 4.27: Radio Frame Segmentation interface
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The pins description is in the following Table 4.11.

Table 4.11-Radio Frame Segmentation Pin description

PIN Description
Data_in The input bits
Valid_in The signal indicates that current data_in is valid data
TTI Transmission Time Interval
possible values are : 10, 20, 40 and 80
bitsperframe Number of bits per frame N;
Interleaver_finished | The signal indicated that the second interleaver is ready
for the new frame

The internal block diagram is shown in Figure 4.28

top_radioFrameSegmentation_3g:1

readWriteEnable_radioFrameSegmentation_3g fifo_radioFrameSegmentation_3g

Figure 4.28: Radio Frame Segmentation Block Diagram
Segmentation outputs the first block and waits signal from second interleaver
that indicates the interleaving is finished and it is ready for new block as shown
in Figure 4.29.

-

Figure 4.29: Radio Frame Segmentation timing diagram

4.2.8 Second interleaving
Second interleaving is Intra-frame interleaving which means interleaving is done

frame by frame so interleaving period is 10ms.

Number of columns of the interleaving matrix is equal 30. The columns of the

matrix are numbered 0, 1, 2... 29 from left to right.
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The number of rows of the matrix is determined by finding minimum integer R
such that: U <= R *30 where U is the number of bits in one radio frame and The rows

of rectangular matrix are numbered 0, 1, 2, ..., R2 - 1 from top to bottom.

Writing the input bit sequence into the R*C matrix row by row starting with bit in
column 0 of row 0 and if R * C> U, the dummy bits are padded .These dummy bits

are pruned away from the output of the matrix after the inter-column permutation.

Performing the inter-column permutation for the matrix based on the pattern that is
shown in Table 4.12 [5].

Table 4.12-inter-column permutation for second interleaver

Number of columns C2 Inter-column permutation pattern

30 <0, 20, 10, 5, 15, 25, 3, 13, 23, 8, 18, 28,
1,11, 21,6, 16, 26, 4, 14, 24, 19, 9, 29,
12,2,7,22,27, 17>

The output of the block interleaver is the bit sequence read out column by column
and pruned by deleting dummy bits that were padded to the input of the matrix before

the inter-column permutation.
Concerning the HDL implementation, Figure 4.30 shows the interface.
The pins description is in the following Table 4.13.
The internal block diagram is shown in Figure 4.31.

Table 4.13 : Second Interleaver pin description

PIN Description
Data_in The input bits
Valid_in The signal indicates that current data_in is valid data
TTI Transmission Time Interval
possible values are : 10, 20, 40 and 80
bitsperframe Number of bits per frame N;
finished The signal indicated that the block is ready for the new frame
enable The signal indicates that the next block is ready to have data
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top _secondlnterleaver 3g

bitsperframe(11:0) data out

finished
data in

valid in valid out

Figure 4.30: Second Interleaver interface

top_secondinterie

terleaver_3g o_secondlnterleaver_3g

interleaver_secondinterleaver_3g

Figure 4.31: Second Interleaver Block Diagram
Equalizer adds the dummy bits and calculates number of rows, for example if the
number of bits equal 518 so number of rows equal 18 and equalizer pads bits to be
540 bits as shown in Figure 4.32 .
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o o N N R g S S —
|

» B rowsnumperizol | 18 I R A [ ® |
I N A I

Figure 4.32: Second interleaver timing diagram 1
The implementation depends on a ram which we write in it in-of order and read
from it out-of-order, there are 30 columns and the matrix after permutation shown in

following table

bo bZO b10 b5 b15 b25 b3 b13 TR b7 b22 b27 b17
b30 b50 b40 b35 b4_5 b55 b33 b15 P T I TR b37 b52 b57 b47
b60 b80 b70 b65 b75 b85 b63 b23 ' b67 b82 b87 b77

So the address start with O (first column in columns permutatlon) and increment by 30
(number of columns) till end and then 20 (second column in columns permutation)
and increment by 30 (number of frames) till end and so on.

Figure 4.33 shows the timing diagram for example address_read starts with 0 and

increments by 30 till end then be 20.

1 0
| re_leaver 0
[l ] 1eaver_address[11:0]

—
1 B re_leaver

[l % 1eaver_address[11:0]

Figure 4.33: Second interleaver - timing diagram 2

4.2.9 Interleaving Block

Figure 4.34 shows the block diagram of overall interleaving block containing:
Radio Frame Equalizer, First Interleaver, Radio Frame Segmentation and Second
Segmentation.

Figure 4.35 shows timing diagram of overall interleaving block for two blocks of
Data. First has TTI=80 and 1116 bits and second has TTI=40 and 723 bits
Radio frame equalizer pads the first block with 4 bits to be equally sized blocked
with140 bits per frame and 8 frames and pads the second block with 1 bit to be
equally sized blocked with 181 bits per frame and 4 frames then first interleaver is
inter interleaving which interleave all frames together but second interleaver is intra

interleaving which interleave frame by frame.
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Radio Frame o Radio Frame Second
i : :
- Equalizer . f— Segmentation > interleaver | L—
interleaver
J
\\ A \\\ _,// \ B \ >

Figure 4.34: Interleaving Block Diagram

T ok

]L reset

]L valid_in

f, data_in

By il

Equalizer

]!ig data_out 0

B numberofframes| &

]!ig valid_out
]!ig leaver_out
Segmentation
]!ig valid_out
]!ig data_out
Second interleaver

]!ig valid_out

]!ig data_out
15, finished
B Pzl

Figure 4.35: Interleaving Block Timing Diagram

4.2.10 Spreading and Scrambling

Spreading is applied to the physical channels. It consists of two operations

e Channelization operation: increase the bandwidth of the signal using fully
orthogonal codes called channelization codes to not interfere with each other.
Every data is transformed into number of chips. The number of chips per data
symbol is called the Spreading Factor (SF). The channelization codes are
picked from the code tree as shown in Figure 4.37 [7].
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e In our project we transmit only one DPDCH (Dedicated Physical Data
Channel ) DPDCH1 shall be spread by Cgr x wWhere SF is the spreading factor
of DPDCH1 and k= SF / 4. We found that the generated code of

channelization consists of a periodically repeated sequence of (1, 1,-1, 1).

The data out of the spreading block will be raise by ratio SF over the data input bits

and this is shown in Figure 4.36

1,093,700 us

g ok E
]I;] data_in 1}
-lliu valid_out
" t
> B
» B ni2s0

X1: 1,093,230,078600 us

Figure 4.36: waveform of spreading block
e Scrambling operation: Scrambling code is applied to the spread signal and it
doesn’t affect the signal bandwidth. The scrambling code can be a long code
(a Gold code with 38400chips) or a short code (256 chips) the long code is
used if the BS uses a Rake receiver and the short code is used if multiuser
detector and interference cancellation receivers are used in BS. In our project

we use long code.

e The data after scrambler will be unique so we can separate between different
users in uplink and the receiver can retrieve the original data by using the
same scrambler sequence. The overall block diagram is shown in Figure 4.38.

e The controlled module of the overall block is shown in Figure 4.39.
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Copapo=(1.1.1.1)

Cean2o=(1.1)
Capaa=(1.1.-1.-1)
Caao=(1
Capax=(1.-1.1.-1)
Cao1=(1.-1)
Caaz=(1-1-1.1)
SF=1 SF=2 SF=4

Figure 4.37: Code-tree for generation of Orthogonal Spreading Factor codes

channelization codes (SF) scrambling codes

Data >

bit rate chip rate chip rate
Figure 4.38: block diagram of spreading

topControlled_spreadingScrambling_3g

finished

valid_in valid_out

topControlled_spreadingScrambling_3g

Figure 4.39: Top controlled spreading
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The pins description of the controlled spreading is shown in Table 4.14

Table 4.14: pins description of spreading block

PIN Description
Data_in The input bits
Valid _in The signal indicates the current data_in is valid data
Data_out The output data of the block
Valid_out The signal indicates that current data_out is valid data
Finished The signal indicates the spreading is ready for the new frame
Enable The signal indicates the next block is ready to have data
SF The signal indicates the number of chips per data symbol
N The signal indicates scrambling sequence number

And the internal structure of the spreading block is shown in Figure 4.40.

top_spreadingScrambling_3g:1

spreading

Figure 4.40: Internal structure of spreading block

4.2.11 Modulation

Modulation is the process by which information (e.g. bit stream) is transformed
into sinusoidal waveform. A sinusoidal wave has three features those can be changed
- phase, frequency and amplitude- according to the given information and to the used

modulation technique.

In 3G standard Phase Shift Keying (BPSK) modulation technique is used
according to the desired data rate. The bits are mapped to complex-valued modulation
symbol d=(I + j Q). In BPSK, a single bit is mapped to a complex-valued modulation

symbol according to Table 4.15 [7].
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Table 4.15: BPSK mapping

b(i) I Q
o | 1/V2 | /42
1| —1/V2 | -2

Concerning the HDL implementation, Figure 4.41 shows the interface of the

mapper

topControlled bpskMapper_ 39

mod_out_im{11:0)
mod_out_re(11:0)
finished

valid_out

topControlled_bpskMapper_3Q

Figure 4.41: Mapper interface
As shown in the figure every symbol is represented in 12 bits — this number is
determined through a simulation will be discussed later- . The pins description is in
Table 4.16.

It consists of fifo to store the input bit stream, controller to control the fifo and the
mapper module (top_mod_wifi) which consists of mapper module that mapps bits to

the corresponding symbol following the constellation.

Table 4.16: pin description of mapper module

PIN Description
Data_in The input bits
Valid _in The signal indicates that current data_in is valid data
Mod_out Re The modulated real part of the input
Mod _out_im The modulated imaginary part of the input
Finished The signal indicated that the mapper is ready for the new frame
Enable The signal indicates that the next block is ready to have data
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The internal block diagram is shown in Figure 4.42.

mapper

mapper

topControlled__bpskM apper__3c

Figure 4.42: Detailed block of mapper

4.3 3G Receiver

The main target of the receiver is to retrieve the same data send before transmitter
so it consists of the blocks shown in Figure 4.43

Figure 4.43: receiver blocks

4.3.1 Channel modeling

First of all we want to model the random noise of the channel as so we have to
make a synthesizable HDL code which adds a random noise to the real and imaginary
outputs of the transmitter. This noise depends on the SNR (signal to noise ratio) of the
channel. Here we face a problem that random operation is not synthesizable

We can’t implement a VHDL code to model the noise. Also we can’t fix the
output noise to a number of bits. Fixation advantages and process will be discussed
later. In addition, random operation generate different outputs for different runs so we
can’t test the function and output of the block by comparing it with MATLAB code
output as we made for all other blocks.
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To solve all this problems we make a general MATLAB code which generate the
noise and make a fixation to this output then open a .v file and print the sentences of
Verilog code eg, fprintf(fid,'module top_noise( \n');. Then we assign the fixed output
noise to an array of 12 bits noise of Verilog code. We open also a .m and print the
code of MATLAB so the generated MATLAB and Verilog code will contain the same
noise and we can compare the output. In addition, the Verilog code is now fully

synthesizable and the top of it is shown in Figure 4.44 .

top_noise
data bit_imag(11:0) mod_out_im(11:0)
data_bit_real{11:0)
mod_out_re(11:0)

valid_in valid_out

top_noise

Figure 4.44: noise top block
Table 4.17: Ports description of noise

PIN Description
Data_bit_imag The imaginary part of the input bits
Data_bit_real The real part of the input bits
Valid_in The signal indicates that current data bits are valid data
Mod_out Re The modulated real part of the input
Mod_out_im The modulated imaginary part of the input
Valid_out The signal indicates that current data_out is valid data

4.3.2 Demapper
It is the first block of the receiver that will receive the real and imaginary data of
the channel which came in the form of 12 bits divide to 9 bits represent the fraction

part and 3 bits represent the real part. The main target of the block is to receive these
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data symbols, specify the decision region and convert these symbols to a stream of
bits.

In 3g we have only a BPSK mapper with a constellation not on the axis as shown

in Figure 4.45 . So the equation of the decision region will be y = —x

b(i) I Q
0 1/V2 | /2
1| —1/V2 | —1/2

Figure 4.45: constellation of bpsk
If y > —x the output will be 0 and if y < —x the output will be 1

As the data can be positive or negative we have to make the two’s complement of
the imaginary and compare real data with the two’s complement of the imaginary the

output data shown in Figure 4.46

P g real_data[ilo] | x
-llig data_out b4
1§ valid_in 0
1 ax

- - X1: 0.000 ns

Figure 4.46: Wavefom of demapper

The pins description of the top demapper are shown in Table 4.18

Table 4.18 : Pins description of demapper

PIN Description
Data_bit_imag The imaginary part of the input bits
Data_bit_real The real part of the input bits
Valid_in The signal indicates that current data bit real and imaginary are
valid data
Data_out The output data in the form of stream of bits
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Valid_out The signal indicates that current data_out is valid data

read The signal indicates that the block is ready to read data of the
next symbol

The top demapper is shown in Figure 4.47

top_demapper_3g
data_owut
data_bit_imag
data_bit_real

valid_in valid out

top_demapper_3g

Figure 4.47: Top demapper 39
4.3.3 Despreading block

Despreading and descrambling block consists of two operations

e Descrambling operation: one of the advantages of the scrambling codes that if
we multiply the data with the scrambling data square we retrieve the same
data.

So in the descrambling process we multiply the data out from the demapper
with the same scrambling code of the transmitter by using the same

scrambling sequence number (n).

The scrambling code can be a long code (a Gold code with 38400chips) or

a short code (256 chips) the long code is used if the BS uses a Rake receiver

and the short code is used if multiuser detector and interference cancellation

receivers are used in BS. In our project we use long code.
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e Despreading operation: In the despreading process we multiply the data out
from the descrambler with a periodically repeated sequence of (1, 1,-1, 1)
which is the same as the spreading code we repeat these sequence with a
number equal k where k= SF/4 this is because we transmit only one DPDCH
(Dedicated Physical Data Channel).

Then we integrate the data by increasing a signed register count when the
output of multiplying with the spreading code is one and decreasing count
when the output of multiplying with the spreading code is zero. So after we
receive bits equal to SF we decide if the output will be 1 or 0 and we store this
value in a data out register to be out while calculating the count and decide

what the next bit is.
The top of the despreading is shown in Figure 4.48
The pins description of the top despreading are shown in Table 4.19

Table 4.19: pins description of despreading

PIN Description

Data_in The input bits

Valid_in The signal indicates the current data_in is valid data
Data_out The output data of the block

Valid_out The signal indicates that current data_out is valid data
SF The signal indicates the number of chips per data symbol
n The signal indicates scrambling sequence number

top_despreadingDescrambling_3g

data_out

data_inl

valid out

top_despreadingDescrambling 3¢

Figure 4.48: top despreading and descrambling
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4.3.4 Deconcationation

Deconcationation of the bit sequence is performed if Xi>Z. This concept is the
same as the segmentation block but with different z values .The code blocks after
deconcationation are of the same size. The number of code blocks on TrCH ‘i’ is
denoted by Ci. If the number of bits input to the deconcationation, Xi, is not a
multiple of Ci, filler bits are added to the beginning of the first block. If turbo coding
is selected and Xi < 40, filler bits are added to the beginning of the code block. The

filler bits are transmitted and they are always set to 0.

To retrieve the same data before transmitter and as the data from segmentation is

multiplied by the encoder rate so we calculate Z according to Table 4.20

Table 4.20: how to calculate z

Z Description
504*2=1008 Convolutional coding and coding rate = %2
5114*2=10228 Turbo coding and coding rate = %
504*3=1582 Convolutional coding and coding rate = 1/3
5114*3=15342 Turbo coding and coding rate = 1/3

The bits output from code block segmentation, for Ci # 0, are denoted by o0irl,
oir2, oir3... oirki where i is the TrCH number, r is the code block number, and Ki is

the number of bits per code block.

Number of code blocks: Ci = [Xi/Z]

Number of bits in each code block (applicable for Ci # 0 only):
if Xi <40 and Turbo coding is used, then

Ki =40

else

Ki=[Xi/Ci]

end if

Number of filler bits: Yi = CiKi - Xi
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fork=1toYi
Oilk=0

end for

fork = Yi+1l to Ki
Oik=Xi,(K-Yi)
end for

r=2

while r < Ci

for k =1 to Ki
Oirk=Xi, (k+(r-1)-Ki-Yi)
end for

r=r+l

end while

--Insertion of filler bits

-- Segmentation

Concerning the HDL implementation

Deconcationation shown in Figure 4.49
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top_deconcationation_3g

num_after_crc(13.0)

finished

flag_filler

segmentation_type

valid_in valid_out_buffer

valid_in_encoder

top_deconcationation_3g

Figure 4.49: Top deconcationation

Description of pins of the block are described in Table 4.21

Table 4.21 : Description of deconationation block

PIN

Description

num_after_crc

This is input signal from despreading that indicates the total
number of data bits out from the dispreading block

clk_fast This is faster clock signal to increase the speed for the division
required to generate the number of blocks produced
flag This is an input signal from the despreading that indicates that

the num_after crc is ready to be read for the deconationation

Segmentation_Type

To differentiate between Convolutional Encoder “0” or Turbo
Encoder “1”

valid_in This signal indicates that current data_in is valid data
valid_encoder This signal indicates that the next block is ready to have data
Block_index Output signal that indicates the index for the block being
transmitted to the deinterleaver block
Block_size Number of bits included in each block after performing the
segmentation process
Num_Blocks Total number of blocks output from the deconcationation
process
finished The signal indicated that the deinterleaver is ready for the new
frame
Flag_filler Output signal used for the encoder such that it does not read the
extra zero filler bit that remains on the bus while moving from
state to another inside the code. Consequently, this reserve that
valid_out signal to remain always one within the data block
valid_out This signal indicates that current data_out is valid data
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The internal block of the deconcationation is shown in

top_deconcationation_3qg:1

ncationation_3g

wali_in_erwodier

top_deconcationation_3g

Figure 4.50: Internal design of deconcationation

4.3.5 Deinterleaver
Deinterleaver is the block which re-arranges the received bits to repeal the impact

of the interleaver. The Deinterleaver’s block diagram is shown Figure 4.51.

output

input
7 data

data RadioFrame Second RadioFrame First

Segmentation Deinterleaver Concatenation Deinterleaver

Figure 4.51 : Block diagram of deinterleaver.
Radio frame segmentation separates different frames depending on the value of
“tti”.

Table 4.22 shows the relationship between tti and number of frames.

Table 4.22: The relationship between tti and nmber of frames.

Tti Number of frames
10 1
20 2
40 4
80 8
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Then, every frame enters the second deinterleaver to be re-arranged. we add
dummy bits to make the data multiple of 30 . Then, data with dummy bits is
interleaved again using second interleaver. Finally, columns of the memory saving the

interleaved data with dummy bits are arranged in the following arrangement

{Col(0),col(12),col(25),col(6),col(18),col(3),col(15),col(26),col(9),col(22),col(2),c
ol(13),col(24),col(7),col(19),col(4),col(16),col(29),col(10),col(21),col(1),col(14),col(
27),col(8),col(20),col(5),col(17),0cl(28),col(11),col(23)}

Dummy bits are thrown out, and only data bits are getting out to the Radio frame

concatenation.

Radio frame concatenation adds up the bits from different frames according to tti

to be fed to first deinterleaver , as first deinterleaver is interframe deinterleaver.

In first Deinterleaver, number of columns is equal to number of frames. Data is
written row by row, and then column permutation is done according to Table 4.23 .

Finally data is read column by column.

Table 4.23: columns arrangement in first deinterleaver.

Tti Permutation

10 Col(1)

20 Col(1), Col(2)

40 Col(1),col(3),col(2),col(4)

80 Col(1),col(5),col(3),col(7),col(2),col(6),col(4),col(8)

All these blocks are implemented in MATLAB and tested by entering random
input vector to the interleaver then to the deinterleaver and comparing the output bits
to the original bits and it works properly.

4.3.6 Desegmentation Block

The desegmentation is the same as the concatenation block .The input bit sequence
for the desegmentation block are the sequencese,, for r = 0,.....,C-1 and k =
0,......,E.-1. The output bit sequence from the code block desegmentation block is the

sequence f fork =0,....,G-1.

The desegmentation consists of sequentially concatenating the rate matching

outputs for the different code blocks. Therefore,
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Setk=0andr=0
whiler<C
Setj=0

while j < E,

fr = erj

k=k+1

j=j+

end while
r=r+l

end while

The desegmentation block interface is as shown in Figure 4.52 and the signals

declaration and description is as shown in Table 4.5.

top_desegmentation_3g

data_out
finished

valid_in valid out

top_desegmentation_3g

Figure 4.52: top desegmentation
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Table 4.24: Desegmentation block signals declaration

PIN Description
C Total number of code blocks (segmentation section)

enable This signal indicates that the next block is ready to have data
valid_in This signal indicates that current data_in is valid data
data_in The input bits

finished This signal indicates that the interleaver is ready to have a new

frame

valid_out This signal indicates that current data_out is valid data
data_out The output bits

4.3.7 CRC (Cyclic Redundancy Check) check
CRC check process is provided for error check in which the entire received block
is used to calculate the CRC parity bits for each received block.

We receive the total number of bits and subtract the CRC bits number from it and

generate CRC parity bits by equations shown in Table 4.25 for

only total number of bits - CRC bits.

Finally, we compare these generated bits with the last bits received and decide out

if these data was right or wrong. The data is wrong if there is any mismatch in the

comparison.
Table 4.25: Equations of CRC check
CRC Mode Equation
CRC24 gCRC24(D)=D24 +D23+D6+D5+D + 1
CRC16 gCRC16(D) =D16 + D12+ D5+ 1
CRC12 gCRC12(D)=D12+D11+D3+D2+D +1
CRC8 gCRC8(D)=D8+D7+D4+D3+D +1

The top block of the CRC check is shown in Figure 4.53

Pins description is showed in Table 4.26
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opControlled_decrc8_3g¢

correct
data_in data_out
finished

valid_in valid_out

opControlled_decrc8_3g

Figure 4.53 : Top CRC check
Table 4.26: Pins description of DeCRC

PIN Description
Data_in The input bits
Valid_in The signal indicates that current data_in is valid data
Data_out The output data of the block
Valid_out The signal indicates that current data_out is valid data
Finished The signal indicated that the CRC is ready for the new frame
Correct The signal indicates if the data received is correct or not

And the internal structure is shown in Figure 4.54.

ntroller_dec

buffer

controller

topControlled_decrc8_ 3g

Figure 4.54: Internal structure of CRC
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Chapter 5:  Wi-Fi Standard Transmitter and Receiver
A brief introduction to the 802.11 and WLAN technology follows

5.1 Overview

WLAN technology and the WLAN industry date back to the mid-1980s when the
Federal Communications Commission (FCC) first made the RF spectrum available to
industry. During the 1980s and early 1990s, growth was relatively slow. Today,
however, WLAN technology is experiencing tremendous growth. The key reason for
this growth is the increased bandwidth made possible by the IEEE 802.11 standard

[8].

5.2 Standard History

The IEEE initiated the 802.11 project in 1990 with a scope “to develop a Medium
Access Control (MAC) and Physical Layer (PHY) specification for wireless
connectivity for fixed, portable, and moving stations within an area.” In 1997, IEEE
first approved the 802.11 international interoperability standards. In 1999, the IEEE
ratified the 802.11a and the 802.11b wireless networking communication standards.
The goal was to create a standards-based technology that could span multiple physical
encoding types, frequencies, and applications. The 802.11a standard uses orthogonal
frequency division multiplexing (OFDM) to reduce interference. This technology uses

the 5 GHz frequency spectrum and can process data at up to 54 Mbps [8].

5.3 Frequency and Data Rates

The IEEE 802.11a standard is the most widely adopted member of the 802.11
WLAN families. It operates in the licensed 5 GHz band using OFDM technology. The
popular 802.11b standard operates in the unlicensed 2.4 GHz-2.5 GHz Industrial,
Scientific, and Medical (ISM) frequency band using a direct sequence spread-
spectrum technology. The ISM band has become popular for wireless

communications because it is available worldwide.
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5.4 Physical Layer of 802.11a

IEEE 802.11 standard specifies a 2.4 GHz operating frequency with data rates of 1
and 2 Mbps using either Direct Sequence Spread Spectrum (DSSS) or Frequency
Hopping Spread Spectrum (FHSS). The IEEE 802.11a standard specifies an OFDM
physical layer (PHY) that splits an information signal across 52 separate subcarriers to
provide transmission of data at a rate of 6, 9, 12, 18, 24, 36, 48, or 54 Mbps. In the
802.11a IEEE standard the 6, 12, and 24 Mbps data rates are mandatory. Four of the
subcarriers are pilot subcarriers that the system uses as a reference to disregard

frequency or phase shifts of the signal during transmission.

In the 802.11a standard, a pseudo binary sequence is sent through the pilot
subchannels to prevent the generation of spectral lines. In the 802.11a, the remaining
48 subcarriers provide separate wireless pathways for sending the information in a
parallel fashion. The resulting subcarrier frequency spacing in the IEEE 802.11a
standard is 0.3125 MHz (for a 20 MHz bandwidth with 64 possible subcarrier

frequency slots).

Also in the 802.11a standard, the primary purpose of the OFDM PHY is to
transmit Media Access Control (MAC) Protocol Data Units (MPDUSs) as directed by
the 802.11 MAC layer. The OFDM PHY of the 802.11a standard is divided into two
elements: the Physical Layer Convergence Protocol (PLCP) and the Physical Medium
Dependent (PMD) sublayers [8].

5.5 PPDU frame structure

The PHY Sub-layer Service Data Units (PSDU) of the 802.11a is converted to a
PLCP Protocol Data Unit (PPDU). The PSDU of the 802.11a is provided with a PLCP
preamble and header to create the PPDU.

Figure 5.1 shows the format for the PPDU including the OFDM PLCP preamble,
OFDM PLCP header, PSDU, Tail bits, and Pad bits. The PLCP header contains the
following fields: RATE, a reserved bit, LENGTH, an even parity bit, 6 Tail bits and
the SERVICE field. In terms of modulation, the LENGTH, RATE, reserved bit, and
parity bit (with 6 zero tail bits appended) constitute a separate single OFDM symbol,
denoted SIGNAL, which is transmitted with the most robust combination of BPSK
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modulation and a coding rate of R = 1/2. The SERVICE field of the PLCP header and
the PSDU (with 6 zero tail bits and pad bits appended), denoted as DATA, are
transmitted at the data rate described in the RATE field and may constitute multiple
OFDM symbols. The tail bits in the SIGNAL symbol enable decoding of the RATE
and LENGTH fields immediately after the reception of the tail bits. The RATE and
LENGTH fields are required for decoding the DATA part of the packet [8].

[ PLCP Header [
() L
RATE | Reserved| LENGTH/| Parity | Tail | SERVICE . Tail :
Abits | 1bit | 12bite | 1bit | 6bits| 16 bits PSDU 6 bits |~ 24 Bits
T~ e Coded/OFDM | Coded/ OFDM |
~ (BPSK.r=1/2) | (RATE is indicated in SIGNAL) |
- | -
PLCP Preamble SIGNAL DATA

12 Symbols  |One OFDM Symbol Variable Number of OFDM Symbols

Figure 5.1: PPDU frame format

5.5.1 SIGNAL field

The OFDM training symbols shall be followed by the SIGNAL field, which
contains the RATE and the LENGTH fields of the TXVECTOR (PSDU). The RATE
field conveys information about the type of modulation and the coding rate as used in
the rest of the packet. The encoding of the SIGNAL single OFDM symbol shall be
performed with BPSK modulation of the subcarriers and using convolutional coding
atR =1/2.

The encoding procedure, which includes convolutional encoding, interleaving,
modulation mapping processes, pilot insertion, and OFDM modulation, follows the
steps that used for transmission of data with BPSK-OFDM modulated at coding rate
1/2. The contents of the SIGNAL field are not scrambled.

The SIGNAL field shall be composed of 24 bits, as illustrated in Figure 5.2. The
four bits 0 to 3 (R1-R4) shall encode the RATE. Bit 4 shall be reserved for future use.
Bits 5-16 shall encode the LENGTH field of the TXVECTOR, with the LSB being
transmitted first (the length of the PSDU, this length represent the number of octets in
the PSDU). A continuation is a parity bit and 6 tail bits. The tail bits are set to "zeros"
to facilitate a reliable and timely detection of the RATE and LENGTH fields.
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RATE LENGTH SIGNAL TAIL
(4 bits) (12 bits) (6 bits)
R1 R2 R3 R4| R|LSB MSB| P [+07 0™ 0™ 0™ =0 <0
|0 [L[2]3[4|5]6[7[8 |9 |10]11[12 |13 |14 |15 |16 |17 [18]19 |20 |21 |22 23|

Transmit Order

|

Figure 5.2: SIGNAL field bit assignment

5.5.2 RATE field
The bits R1-R4 shall be set, dependent on RATE, according to the values in Table

Table 5.1: Contents of the SIGNAL field

R1-R4 Rate (Mb/s) Rate (Mb/s) Rate (Mb/s)
(20 MHz channel | (10 MHz channel (5 MHz channel
spacing) spacing) spacing)
1101 6 3 15
1111 9 4.5 2.25
0101 12 6 3
0111 18 9 4.5
1001 24 12 6
1011 36 18 9
0001 48 24 12
0011 54 27 13.5

5.5.3 PLCP LENGTH field

The PLCP LENGTH field shall be an unsigned 12-bit integer that indicates the
number of octets in the PSDU that the MAC is currently requesting the PHY to
transmit. This value is used by the PHY to determine the number of octet transfers
that will occur between the MAC and the PHY after receiving a request to start

transmission.

5.5.4 Parity (P), Reserved (R), and SIGNAL TAIL fields

Fourth bit is reserved. It shall be set to 0 on transmit and ignored on receive. The
seventh (17"") bit shall be a positive parity (even parity) bit for bits 0—16. The bits 18—
23 constitute the SIGNAL TAIL field, and all 6 bits shall be set to 0.

5.5.5 DATA field
The DATA field contains the SERVICE field, the PSDU, the TAIL bits, and the
PAD bits, if needed .All bits in the DATA field are scrambled.
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This field contains the PSDU. The first 16 bits (7 null bits used for the scrambler
initialization and 9 null bits reserved for future use) for the SERVICE field. A

continuation is the PSDU. A continuation is a 6 tail bits and pad bits.

The tail bits containing Os are appended to the PPDU to ensure that the
convolutional encoder is brought back to zero state and the pad bits are used as guards
for the PPDU frame.

5.5.6 SERVICE field

The IEEE 802.11 SERVICE field has 16 bits, which shall be denoted as bits 0-15.
The bit 0 shall be transmitted first in time. The bits from 0-6 of the SERVICE field,
which are transmitted first, are set to Os and are used to synchronize the descrambler
in the receiver. The remaining 9 bits (7-15) of the SERVICE field shall be reserved

for future use. All reserved bits shall be set to 0. Refer to Figure 5.3.

Scrambler Initialization  Reserved SERVICE Bits R: Reserved
"m0 TUY"TNTYE R R RERERERERER

01

[ ]
s
e
h

6|7 (89 |10(11|12{13|14|15

Transmuit Order
-

Figure 5.3: SERVICE field bit assignment

5.5.7 PPDU TAIL field

The PPDU TAIL field shall be six bits of 0, which are required to return the
convolutional encoder to the zero state. This procedure improves the error probability
of the convolutional decoder, which relies on future bits when decoding and which
may be not be available past the end of the message. The PLCP tail bit field shall be
produced by replacing six scrambled zero bits following the message end with six

non-scrambled zero bits.

5.5.8 Pad bits (PAD)

The number of bits in the DATA field shall be a multiple of N¢gps, the number of
coded bits in an OFDM symbol (48, 96, 192, or 288 bits). To achieve that, the length
of the message is extended so that it becomes a multiple of Npgps, the number of data
bits per OFDM symbol.
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At least 6 bits are appended to the message, in order to accommodate the TAIL
bits. The number of OFDM symbols, Ngyy; the number of bits in the DATA field,
Npata; and the number of pad bits, Npaps, are computed from the length of the
PSDU (LENGTH) as follows:

NSYM = Ce1]1ng((16 + 8 * LENGTH + 6)/NDBPS

Npara = Nsym * Nppps

NPAD = NDATA - (16 + 8% LENGTH + 6)

5.5.9 PLCP preamble:
This field is used to acquire the incoming OFDM signal and train and synchronize
the demodulator. The PLCP preamble is BPSK-OFDM modulated at 6 Mbps using

convolutional encoding rate R=1/2.

5.5.10 Frame Summary points
e The PLCP header field is produced from the RATE, LENGTH, and SERVICE
fields of the TXVECTOR by filling the appropriate bit fields.
e The PPDU SIGNAL field is the PLCP Header but without the SERVICE field.
e The contents of the SIGNAL field and the 6 tail bits in the DATA field are not
scrambled but follow the same steps for convolutional encoding, interleaving,

BPSK modulation, pilot insertion, IFFT, and pre-pending a Gl.

5.6 802.11a Transmitter PHY Block Diagram

Mod. Mapper
Scrambler BPSK & QPSK
avoid long seq = —>» G?;D —> l:tmvrir —> Filler ——> 16 QAM
(127 bits) 64 QAM
Preamble cP P25 IFFT s2p Framer

Figure 5.4: Wi-Fi Tx Block Diagram
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5.6.1 Scrambler

Scrambler is used to randomize the service, PSDU, pad and data patterns to
prevent long sequences of 1s or Os to keep synchronization. The contents of the
SIGNAL field and the 6 tail bits in the DATA field are not scrambled [8] [9]. The

frame synchronous scrambler uses the generator polynomial S(x) as follows:
S(x)=x"+ x*+1

This generator polynomial S(x) can be represented as shown in Figure 5.5

Data In
D
X7 X6 Xx° l Xt X9 X2 Xt
A B
Descrambled
Data Out

Figure 5.5: Data Scrambler
According to the initial state the scrambler will generate 127 bit sequence then it

will return to its initial state.

For example: Assume that the initial state of the scrambler is all ones (1111111)

but it is not a fixed initial.

Data In

Descrambled
Data Our

Data In

Descrambled
Data Out
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Data In

Descrambled
Data Out

Data In

Descrambled
Data Out

And soon.....

We can say that all the bits transmitted by the 802.11a PMD in the data portion are
scrambled using a frame synchronous 127 bits sequence generator. Because there is a
sequence of bits generated at node B that shown in Figure 5.5 and this sequence is
repeated after 127bit.

In the previous example (all ones initial state) the 127-bit sequence generated
repeatedly by the scrambler is 00001110 11110010 11001001 00000010 00100110
00101110 10110110 00001100 11010100 11100111 10110100 00101010 11111010
01010001 10111000 1111111 and this sequence change when the initial state change.
The same scrambler is used to scramble the transmitted data and descramble the

received data

The seven LSBs of the SERVICE field will be set to all zeros prior to scrambling
to enable estimation of the initial state of the scrambler in the receiver. The contents
of the SIGNAL field of the 802.11a are not scrambled.

Regarding the HDL implementation Figure 5.6 shows the interface of the

Scrambler and signals declaration and definition is as shown in Table 5.2
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opcontrolled scramble r_wii

data_out

finished
valid_in valid_out

opcontrolled _scrambler_wifi

Figure 5.6: Top Controlled Scrambler Interface

Table 5.2: Scrambler Signals Declaration

PIN Description

Data_in The input bits

Valid_in This signal indicates that current data_in is valid data
enable This signal indicates that the next block is ready to have data
finished This signal indicates that the scrambler is ready to have a new

frame
Data_Out The output bits
Valid_out This signal indicates that current data_out is valid data

fifo_scrambler_wifi controller_scrambler_wifi

controller

top_Scrambler_wifi

scrambler

Figure 5.7: Internal Signals for Scrambler
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5.6.2 Convolutional Encoder

The DATA field, composed of SERVICE, PSDU, tail, and pad parts, shall be
coded with a convolutional encoder of coding rate R = 1/2, 2/3, or 3/4, corresponding
to the desired data rate. The convolutional encoder shall use the industry-standard

generator polynomials, gy = 133g and g1 = 171g, of rate R = 1/2, as shown in

Figure 5.8. The bit denoted as “A” shall be output from the encoder before the bit
denoted as “B.” Higher rates are derived from it by employing “puncturing.”
Puncturing is a procedure for omitting some of the encoded bits in the transmitter
(thus reducing the number of transmitted bits and increasing the coding rate) and
inserting a dummy “zero” metric into the convolutional decoder on the receive side in
place of the omitted bits. The encoder is followed by parallel to serial block to
transmit the encoded bits to the puncture [10].

}ﬂ‘___“ *  Output Data A
Input Data Ty Ty, ™ Ty ™ Th ™ Ty Ty 4
‘—___H_
-—-—‘_\-—‘_‘—h____-‘_\-—-_-\—

T~ I //-/
Q:;.. -‘1\71 _ Output Data B
J/

Figure 5.8: Convolutional Encoder (K=7)

Schematic (shown in the following Figure 5.9 the top module of the 3g

convolutional encoder rate half)
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top_convo_wifi

clk data_out

C lP-:__clx_Jj

data in

enable

valid_in

top _convo_wifi

Figure 5.9: Schematic of the convolutional encoder

Table 5.3: Convolution Encoder Signals Declaration

PIN Description
Clk_out Clock of the serial output
Data_in Data in for the convolutional encoder
Enable Working enable for the encoder
Reset Reset encoder registers by inserting Zeros
Valid_in Valid in to consider the input
Data_out Encoder input
Finished Signal indicates the block is ready for the
new frame
Valid_out Valid out signal to the next block

Detailed a block diagram for the blocks that shown internal construction of the

WIFI convolutional encoder in Figure 5.10.

5.6.3 Puncture

If the system could only change the data rate by adjusting the constellation size,

and not the code rate, a very large number of different rates would be difficult to

achieve as the number of constellations and the number of points in the largest

constellation would grow very quickly.
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Figure 5.10: Internal block diagram of the convolutional encoder

Another solution would be to implement several different convolutional encoders
with different rates and change both the convolutional code rate and constellation.
However this approach has problems in the receiver that would have to implement
several different decoders for all the codes used.

Puncturing is a very useful technique to generate additional rates from a single
convolutional code. Puncturing was first discovering by Cain, Clark, and Geist, and

subsequently the technique was improved by Hagenauer.

The basic idea behind puncturing is to not transmit some of the output bits from the
convolutional encoder, thus increasing the rate of the code and inserting a dummy zero
metric into the convolutional decoder on the receive side in place of the omitted bits,

hence only one encoder/decoder pair is needed to generate several different code rates

8.

The puncture pattern is specified by the Puncture vector parameter in the mask.
The puncture vector is a binary column vector. A 1 indicates that the bit in the
corresponding position of the input vector is sent to the output vector, while a 0
indicates that the bit is removed.
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If we used 1/2 convolutional encoder and we have 6 data bits, we will send 12 bits
on the channel, puncturing will remove some of the bits and adds some data bits from

the next frame as shown in Figure 5.11

Puncture input 100110101110

Puncture vector: 110110110110

Puncture output: 1 0x 11 x10x1 1x

100110101110

B

10111011

—

Puncturing

Figure 5.11: Puncturing example 1

There are two types of punctures in wifi standard: (2/3) and (3/4) according to the

data rate as shown in Table 5.4.

Table 5.4: Data Rates and Puncture types

Rate (Mbps) Code rate Rate (Mbps) Code rate
6 Y 24 )
9 Ya 36 Ya
12 Y 48 2 /3
18 Ya 54 Ya

In case of total rate (%2) there is no puncture and in case of total rate (2/3) the rate

4

of puncture should be 3 S0 %* 3 =§ :2/3 but in case of total rate (%) the rate of

6 1 6 3 . .
puncture should be ;S0 *, = Puncture vector for different rates are show in

Figure 5.12

(1), 000000

data 1/2 code 10 ]

OO0 g, HHH M S v cose
Py~ i
(e [ -

Figure 5.12: Puncture vector
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Concerning the HDL implementation, Figure 5.13 shows the interface

The pins description is in the following Table 5.5.

The internal block diagram is shown in Figure 5.14.

top_puncture34controllerd_ wifi

clk_in | | data_out
clk out |

data in

finished

valid_in

top_puncture34controllerd _ wifi

Figure 5.13: Puncture interface

Table 5.5: Puncture Pin description

PIN Description
Data_in The input bits
Valid _in The signal indicates that current data_in is valid data
Clk_in Clk of data_in
Clk_out Clk of data_out
Finished The signal indicated that the block is ready for the new frame
Enable

The signal indicates that the next block is ready to have data
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top_puncture34controllerd_wifi:1

puncture

Figure 5.14: Puncture block diagram

Implementation of puncture depend on fifo which we control the write enable of it
according to puncture vector and the signal field (first 48 coded bits ) are not
punctured then read from fifo by order , Figure 5.15 shows the timing diagram of

write enable for puncture %.

PYT TLALLL LA LT
L
»u c- mma DEXDEE

& we

Figure 5.15: Puncture 3/4 timing diagram - write enable
The ratio between input clock and output clock depends on the rate of puncture;

Figure 5.16 shows the timing diagram of write enable for puncture %a.

Figure 5.16: Puncture 3/4 timing diagram - clock ratio

5.6.4 Interleaver
All encoded data bits shall be interleaved by a block interleaver with a block size
corresponding to the number of bits in a single OFDM symbol, Nceps. The interleaver

is defined by a two-step permutation.
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The first permutation ensures that adjacent coded bits are mapped onto
nonadjacent subcarriers. The second ensures that adjacent coded bits are mapped
alternately onto less and more significant bits of the constellation and, thereby, long
runs of low reliability (LSB) bits are avoided.

The index of the coded bit before the first permutation shall be denoted by k; i shall
be the index after the first and before the second permutation; and j shall be the index
after the second permutation, just prior to modulation mapping [8] [9]. The first
permutation is defined by the rule:

. (NCBPS
i=(—=

k
€ )*(kmod 16)+Floor(—) k=0.1,....,Negps — 1

16

The function Floor (.) denotes the largest integer not exceeding the parameter.

The second permutation is defined by the rule:

i i
j=s*Floor(—)+ i + Ncgps — Floor (16* ) mod s
S Ncpps

The value of s is determined by the number of coded bits per subcarrier, Ngpsc,
according to:

Ngpsc
2

s = max( , 1)

The deinterleaver, which performs the inverse relation, is also defined by two

permutations. Interleaver block simulation

The interleaver block interface is as shown in Figure 5.17, the signals declaration
and description is as shown in Table 5.6 and the block simulation is as shwon in
Figure 5.18.
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top_interleaverd8 wifi

finished

valid _out
data in

valid in

top_interleaverd8 wifi

Figure 5.17: Interleaver block interface

Table 5.6: Interleaver block signals declaration

PIN Description

enable This signal indicates that the next block is ready to have data
valid_in This signal indicates that current data_in is valid data
data_in The input bits

finished This signal indicates that the interleaver is ready to have a new

frame

valid_out This signal indicates that current data_out is valid data
data_out The output bits

The implementation of this block is based on a RAM, this RAM used to store all
the input data to the interleaver block as shown in Figure 5.19 then we read from this
RAM but out of order according to the index that calculated from the interleaving

equations as shown in Figure 5.20
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4.495000 us

Ty reset
-|_B enable
iy valid_in
-|_B data_in
1l finished
1l valid_out

1l data_out
» B address_write[15:0
» Ba address_|

Figure 5.18: Interleaver block simulation

T4 v , _i_______i
]_E data_in 1 I I
» B address_wiite[15:0] 5 ]
» W address readl15:0]) &

Figure 5.19: Writing the input data in the RAM

SR SsS e e =

Figure 5.20: Reading the data from the RAM

The interleaving equation is different according to N.gps and Ngpge Values, these

values are as shown in Table 5.7 So finally we have four interleavers:
Nppsc =1, Ncpps = 48
Nppsc = 2, Ncpps = 96
Nppsc =4, Ncpps = 192

Nppsc = 6, Ncpps = 288
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Table 5.7: Modulation-dependent parameters

Coded bits Coded Data bits Data rate Data rate Data rate
Coding per bits per per (My/'s) (Mb/s) (Mb/s)
Modularion rate subcarrier OFDM OFDM (20 MHz (10 MHz (5 MHz
(R) I~ * symbeol symbol channel channel channel
(VEpsc) (Negps) (Npgps) spacing) spacing) spacing)
BPSK 12 1 48 24 [ 3 15
BPSK 34 1 48 36 o 45 225
QPSK 12 2 06 43 12 & 3
QPSK 34 2 06 72 18 o 45
16-QAM 12 4 192 06 24 12 &
16-QAM 34 4 102 144 36 13 0
64-QAM 23 6 288 192 43 24 12
64-QAM 34 [ 288 216 54 27 135

5.6.5 Modulation Mapper

Modulation is the process by which information (e.g. bit stream) is transformed

into sinusoidal waveform. A sinusoidal wave has three features those can be changed

- phase, frequency and amplitude- according to the given information and to the used

modulation technique [8].

In 802.11a Phase Shift Keying (BPSK, QPSK) and Quadrature Amplitude
Modulation (16-QAM, 64-QAM) modulation techniques are used according to the

desired data rate as described in the following equation: d=(I + j Q)* Kmod

where Kmog IS the normalization factor and is used in to achieve the same average

power for all mappings. It depends on the base modulation mode as shown in Table 5.8.

Table 5.8: Normalization factor for all modulation modes.

Modulation Kmod
BPSK 1
QPSK 1A\2

16-QAM 110
64-QAM 1740

Every modulation mode has a modulation specified in the standard as shown in

Figure 5.21.
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Figure 5.21: Modulation constellations for BPSK, QPSK, 16-QAM, and 64-QAM.
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Concerning the HDL implementation, Figure 5.22 shows the interface of the

mapper.

topControlled_16QamMod_ wifi

valid_in

mod_out_im(11:0)

mod_out_re(11:0)

finished

topControlled 16QamMod_ wifi

Figure 5.22: Wi-Fi mapper interface.

As shown in the figure every symbol is represented in 12 bits — this number is

determined through a simulation will be discussed later- the pins description is in

Table 5.9.
Table 5.9: Pin description of wifi mapper.
PIN Description

Data_in The input bits

Valid _in The signal indicates that current data_in is valid data
Mod_out Re The modulated real part of the input
Mod_out_im The modulated imaginary part of the input

finished The signal indicated that the mapper is ready for the new frame

enable The signal indicates that the next block is ready to have data

The internal block diagram is shown in Figure 5.23Error! Reference source not

found..

It consists of fifo to store the input bit stream, controller to control the fifo and the

mapper module (top_mod_wifi) which consists of serial to parallel inverter and the

mapper module that mapps bits to the

constellation.
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B amiod_wifi-1

Cami od_wifi

controller

top_16QamMod_wifi:1

mapper

mapper

topControlled_16Qamiod_wifi

Figure 5.23:Detailed block diagram of Wi-Fi mapper module.
5.6.6 IFFT Modulation

WIFI uses orthogonal frequency division multiplexing for modulation, An OFDM
signal consists of a number of closely spaced modulated carriers as shown in
Figure 5.24 [9], those carriers are orthogonal so the receiver could demodulate them,
OFDM systems are very sensitive to frequency offset and ISI because any error in the
received signal affects all carriers and all data so a guard interval is used between
OFDM symbols, In this guard signal we insert a cyclic prefix of the symbol to

compensate for any synchronization problems with in the receiver.

--;-’\,,.’x.lx;x{K;i;;\zx/\,-

(a) (b)

Figure 5.24:Spectrum of a single subcarrier of the OFDM signal (a), Spectrum of the
OFDM signal (b)
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The important parameters for the OFDM modulation system are the number of

subcarriers used within the bandwidth, the cyclic prefix and where to insert pilot

signals.

Inverse fast Fourier transform is used for the modulation operation, as specified by
the IEEE 802.11-2012, 64-point IFFT is used with symbol duration of 4 us in the 20
MHz operation of the standard. The symbol time consists of a 3.2 us symbol and 0.8
us for the cyclic prefix, the timing of the OFDM frame is as shown in Figure 5.25. [8]

P& 8§+8=16ps o
P 10x08=8ps | 1x08+2x32=80us | 08+32=40ps | 08+32=40ps| 08+32=40ps
T T FANe T N\ T
[t taty ts 515 17t to tig) G211 T, | T, GI|SIGNAL3GI| Datal || GI| Data2
A W 1 N s W T i . SN 1 AN ' A,
W 4+—> < > < > <
SlE: ect, Coarse Freq. Channel and Fine Frequency = RATE SERVICE+DATA DATA
AGC. Diveraity  Offset Esmation Offset Fstimation LENGTH
Selection Timing Synchronize

Figure 5.25: OFDM training structure
The single OFDM symbol contains 48 data symbols from the mapper, contains 4
pilot symbols, 11 null symbol and null input at DC, this mapping is shown in the
below function where k is the logical subcarrier number and M(K) is the frequency
offset index, The frequency offset index mapping to the IFFT inputs is shown in

Figure 5.26. [8]

M(k) = A

Nul ——1 0 Q=
#1 — 1 ] S
& e 12 2l
S B e, B8
Null —— 27 /5 | I
Null —— : S
Null —| 37 37 ——
£26 — 38 38
22 — e X
#1 —| 63 63 ——

Figure 5.26: inputs and outputs of the IFFT [8]

89



The contribution of the pilot subcarriers for the nth OFDM symbol is produced by

inverse Fourier transform of sequence P, given by
P_,¢26=10,0,0,0,0,1,0,0,0,000000000010000,0,0,0,
00000010000000000000-100,0,0,0}[8]

The polarity of the pilot subcarriers is controlled by the sequence, pn, which is a

cyclic extension of the 127 elements sequence and is given by

Porser = {111,1-1-1-11,-1-1-1-111-11, -1-1,1,1, -1,1,1-1,
111,111-1,1,11,-1,1, 1-1,11, 11-1,1-1-1,11, -11,-1-1, 11,11,
11,11, 1,111,1,1,1,11,1,1,1,-1,-1-1,1, 1,111, -1,1,-1-1, 1,-1,1,1,
11,1,1,1,1,11,1,1,-1,1,1,1,11,1,1,1,-1, 1,1,1,1,1,1,-1,-1,1,1,1,1,-1—
1,-1,-1,-1,-1,-1} [8]

Pilots are inserted at subcarriers -21, -7, 7, 21.

The final mapping of the 64 subcarrier is as shown in Figure 5.27.

dg dg P_yds di7P_7 dig  d3DC dyy  dyoP7 d3p dgyp Pydy  dyg
i | | i
! | 1 |
eme : eme : cme coe : eme : 'Y X
| | | |
| | 1 | |
36 9] " 0 7 21 26

Figure 5.27: Final 64 subcarrier mapping [8]

The hardware circuit implementation needs an IFFT circuit, we used the Xilinx
LogiCORE IP Fast Fourier Transform v7.1, and the IP has many options we used the
pipelined streaming 1/0 to ensure continuous output to comply with the standard

requirements.

The Pipelined, Streaming 1/0 solution pipelines several Radix-2 butterfly
processing engines to offer continuous data processing. Each processing engine has its
own memory banks to store the input and intermediate data Figure 5.28. The core has
the ability to simultaneously perform transform calculations on the current frame of
data, load input data for the next frame of data, and unload the results of the previous

frame of data. The user can continuously stream in data and, after the calculation
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latency, can continuously unload the results. If preferred, this design can also

calculate one frame by itself or frames with gaps in between.

In the scaled fixed-point mode, the data is scaled after every pair of Radix-2 stages.
The block floating-point mode may use significantly more resources than the scaled
mode, as it must maintain extra bits of precision to allow dynamic scaling without
impacting performance. Therefore, if the input data is well understood and is unlikely
to exhibit large amplitude fluctuation, using scaled arithmetic (with a suitable scaling
schedule to avoid overflow in the known worst case) is sufficient, and resources may

be saved.

The input data is presented in natural order. The unloaded output data can either be
in bit reversed order or in natural order. When natural order output data is selected,

additional memory resource is utilized.

This architecture covers point sizes from 8 to 65536. The user has flexibility to
select the number of stages to use block RAM for data and phase factor storage. The

remaining stages use distributed memory. [11]

Group 0 Group 1
: [ Memory | | Memory I i: | Memory I Memory E
: ' ¥ ‘ 1 !
Input Data | | Radix-2 Radiz | 1| | Radix2 Radix2 | | _—
: Butterfly Butterfly :: Butterfly Butterfly ﬁl_'
l Stage 0 Stage1 I Stage 2 Stage3 !

Butterfly Butterfly Shuffling

!
|
|
|
!
Radix-2 | Radix2 | ! Output | Output Data
T
!
|
|

Figure 5.28: pipelined streaming 1/O [11]

The IFFT block interface is as shown Figure 5.29, The XK_RE, XK _IM are the
input symbols to the IFFT, XK_INDEX is the index of the symbol that should be
input to the IFFT now for example in this case, it will be from 0 to 63. XN_RE,
XN_IM and XN_INDEX are the same as XK but for output.
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CP_LEN is the required cyclic prefix length in our case it will be fixed to 16
symbols. CP_LEN_WE is the control signal to reconfigure CP_LEN. FWD_INV is
the configuration bit that defines whether the FFT block will be FFT or IFFT.
FWD_INV_WE is the control signal to reconfigure FWD_INV.

Asserting START starts the data loading phase, which immediately flows into the
transform calculation phase and then the data unloading phase. Pulsing START once
allows the transform calculation for a single frame. Pulsing START every N clock
cycles allows continuous data processing. Alternatively, holding START High also
allows continuous data processing. START is ignored except when the core can begin
loading a new frame, that is, when no data is being loaded, or the last value in the data
frame is being loaded. If no NFFT_WE, FWD_INV_WE, or SCALE_SCH_WE were
asserted before the initial START, then the defaults are used. This architecture can
also support extended intervals between frames. Simply assert START at any time to
begin data loading. After the data frame is loaded, the core proceeds to calculate the

transform and then output the results. Figure 10 shows the timing of entire frames.

It does not show the small skews between signals which occur at the start and end
of frames. [11]

5.6.6.1 Applying Data

Data is applied in a contiguous burst. The point at which data input should start
relative to the START pulse is determined by the Input Data Timing parameter set in
the GUI.

If “No offset” was selected for the Input Data Timing parameter, the input data
(XN_RE, XN_IM) corresponding to the given XN_INDEX should arrive on the same
cycle as the XN_INDEX it matches. The first data sample should therefore be applied
as soon as RFD goes High, such that the first sample pair is read into the core on the
first transition of XN INDEX, If “3 clock cycle offset” was selected for the Input
Data Timing parameter, the input data (XN_RE, XN_IM) corresponding to the given
XN_INDEX should arrive three clock cycles later than the XN_INDEX it matches. In
this way, XN_INDEX can be used to address external memory or a frame buffer
storing the input data. RFD remains High with XN_INDEX during the loading phase
and so indicates that data may be input. [11]
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5.6.6.2 Data Processing and Data Output

BUSY goes High while the core is calculating the transform. DONE goes High
when calculation is complete. EDONE goes High one cycle before that, that is, during
the last cycle of the calculation phase. The cycle in which DONE goes High, the core
begins unloading. During the unloading phase, while valid output results are present
on XK _RE/XK_IM, DV (Data Valid) is High. During unloading, XK_INDEX
corresponds to the XK_RE/XK_IM being presented. If cyclic prefix insertion is used,
the cyclic prefix is unloaded first. CPV goes High to indicate that the cyclic prefix is
being unloaded, and XK_INDEX counts from (point size) - (cyclic prefix length) up
to (point size) — 1, After the cyclic prefix has been unloaded, or if the cyclic prefix
length is zero, or if cyclic prefix insertion is not used, the whole frame of output data
is unloaded. CPV goes Low (if present) and XK_INDEX counts from 0 up to (point
size) - 1. [11]

5.6.6.3 Cyclic Prefix Considerations

If cyclic prefix insertion is used, more samples are unloaded from the core than are
loaded. Therefore, the core cannot continuously stream frames, but must insert a gap
of (cyclic prefix length) clock cycles in between each frame of input data to
accommodate the additional clock cycles required to unload the cyclic prefix. This is
indicated by the Ready For Start (RFS) pin. RFS goes High when the core is ready for
the START pin to be asserted to begin loading the next frame of data. START is
ignored except when RFS is High. RFS remains low for (cyclic prefix length) clock

cycles after RFD has gone Low, to allow for unloading the cyclic prefix. [11]
A detailed waveform of the timing control is shown in Figure 5.30.

Our final implementation top module is the top_ofdm_wifi whose interface is
shown in Figure 5.31, the top_ofdm_wifi contains top_preample_wifi explained
above and top_IFFT_controller that we will explain later, the pin diagram for the
top_ofdm_wifi is shown in Figure 5.31 and the internal hierarchy of the
top_ofdm_wifi is shown in Figure 5.32 and in Table 5.10.

To generate correct output the IFFT_controller start the preamble (preamble_st)
module when the mapper is ready to send data, the preamble output lasts for 16 us and
the IFFT first patch of outputs will have about 12 us latency so the preamble sends a
signal (enable_iff) for IFFT after 4us of its operation so the IFFT will start processing
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and its output will start after the preamble, to guarantee the continuity of output as

shown in Figure 5.33.

— XN_RE XK_RE [m—
— ¢ V| XK_IM e
— START XN_INDEX je
— UNLOAD XK_INDEX |
— | NFFT_WE BUSY ——
DV |
—— FWD_INV EDONE |——
— FWD_INV_WE DONE |
SCALE_SCH
—1 SCALE_SCH_WE CPV[—
] CP_LEN RFS |——
____| CP_LEN_WE Siie B
—] SCLR = o
—.CE OVFLO |
— ] CLK

Figure 5.29: IFFT block interface [11]

The IFFT_controller consists of two ram of size 48 and the LogiCORE FFT IP,
The two ram sizes are used to arrange the symbols according to the mapping function
explained before. To ensure correct operation of the FFT streaming block we must
have an input ready whenever the FFT block requests input. The FFT streaming block
takes 48 symbols then takes no input for 16 clock cycles then takes input again. So we
used two memories to buffer input so whenever one memory is inputting to the FFT

block the other one has the next input ready for the next patch.
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Figure 5.30: FFT timing for applying data

top_ofdm_wifi

top_ofdm_wifi

Figure 5.31: top_ofdm_wifi interface
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Table 5.10: top_ofdm_wifi pin description

Pin Description
Data_in_im Imaginary input data
Data_in_re Real input data
Clk IFFT clk (20 MHz)
Clk_fast System fast clk
enable Not used here
Last_sym Mapper marking to the IFFT that these patch
of symbols are the last patch to be processed
Mapper_ready Marks that mapper started to input symbols
to its pipeline
Reset Reset the IFFT_controller
Valid_in Marks that the mapper output signals are
valid
Data_out _im Output imaginary part data
Data_out re Output real part data
Finished Signals the mapper that the IFFT is ready to
receive data
Valid_out Signals the IFFT output now are valid

= top‘_—'ofdm - top_ofdm_wifi (top_ofdm_wifi.v)
= ifft_module - IFFT_Controller - CONTROLLER (top_IFFT_Controller.vhd)
hgl U1 - IFFT - STRUCTURE (IFFT.vhd)
"4y U2 - ram_model - memory (ram_meodel.vhd)
"4y U3 - ram_model - memory (ram_meodel.vhd)
"4y U4 - ram_model - memory (ram_medel.vhd)
"4gl US - ram_model - memory (ram_model.vhd)
= U6 - top_pilotsGenerator_wifi (top_pilotsGenerator_wifi.v)
' rom - rom_pilotsGenerator_wifi (rom_pilotsGenerator_wifi.v)
= preamble - top_preamble_wifi (top_preamble_wifi.v)
S - short_preabmle (short.v)
L - long_preabmle (long.v)

Figure 5.32: top_ofdm;wifi hierarchy

Name
[ 9 data_out_ifft_re[11:0] 000000000000

p B data_out_ifft_im[11:0] c 000000000000
» B pre re[11:0] c 000000101000
» B pre_im[11:0]

1k valid_out_ifft

1% valid_out_pre
» B data_out_re[11:0]
p B data_out_im[11:0]

WE.) valid_out

Figure 5.33: Waveform of preample and IFFT outputs
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5.6.7 Preamble

In Wifi 802.11a, The PLCP Preamble field is used for synchronization. It consists
of 10 short symbols and two long symbols that are shown in Figure 5.34. The timings
described in this subclause and shown in Figure 5.34 are for 20 MHz channel spacing.
They are doubled for half-clocked (i.e., 10 MHz) channel spacing and are quadrupled

for quarter-clocked (i.e., 5 MHz) channel spacing.

P 8+8=16us .
|
< 10x0.8=8 ps =L.. 2x08+2x32=80ps | 08+32=40ps | 08+32=40ps| 08+32=40ps
AT T T T T T SN N |
bty s tstgtotg oty GI2 1 Ty 1 T GI| S]GNAL} GI| Datal | GI| Data2
P W N N T T R ] ' \ ' ' '
S Do +——>< rPe——> <
Stend eteck Coarse Freq.  Channel and Fine Frequency ~ RATE SERVICE + DATA  DATA
AGC, Diversity Offset Estimation Offset Estimation LENGTH
Selection Timing Synchronize

Figure 5.34: OFDM training structure.

Figure 5.34 shows the OFDM training structure (PLCP preamble), where t1 to t10
denotes short training symbols and Tland T2 denote long training symbols. The
PLCP preamble is followed by the SIGNAL field and DATA.

The total training length is 16ps. The dashed boundaries in the figure denote

repetitions due to the periodicity of the inverse Fourier transform.

A short OFDM training symbol consists of 12 subcarriers, which are modulated by

the elements of the sequence, given by

S.26,26 = V(13/6) x {0, 0, 14}, 0, 0, 0, —1-j, 0, 0, 0, 1+j, 0, 0, 0,—1—j, 0, 0, 0, —1j, O,
0,0, 1+j,0,0,0,0,,0,0,-1,0,0,0-1,0,0,0, 14}, 0, 0, 0, 1+j, 0, 0, O, 1+j, 0, O,
0, 1+j,0,0}
A long OFDM training symbol consists of 53 subcarriers (including the value 0 at dc),

which are modulated by the elements of the sequence L, given by

Lo»={1,1-1-11,1-11-111,1111-1-1,1,1,-1,1-1,1,1,1,1,
01-1,-111-11-121-1-1-1,-1,-1,1,1,-1,-1,1,-1,1,-1,1, 1,1, 1}
The PLCP preamble shall be transmitted using an OFDM modulated fixed waveform.
The IEEE 802.11 SIGNAL field, BPSK-OFDM modulated with coding rate 1/2, shall
indicate the modulation and coding rate that shall be used to transmit the MPDU.
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Concerning HDL modeling, and to save performing IFFT for constant values each
frame, we have implemented a lookup table for the time domain representation of the

sequences.

Table 5.11Table 5.11 shows the time domain representation of the short sequence.

There is another table for the long preamble. As implementing such lookup table
will be a very hard work, we have used a MATLAB script that reads this table, re-
arrange the data in a suitable format and generate a Verilog code for the preamble

generator.

The interface of preamble generator block is shown in Figure 5.35

top_preamble_wifi

ore im(11:0)

enable_ifft

valid_in valid_out

top_preamble_wifi

Figure 5.35: Interface of Wi-Fi preamble generator
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Table 5.11 : Frequency domain representation of the short sequences

## Re Im ##4 Re Im # Re Im it Re Im
100 0.092 0.000 101 0.143 —0.013 102 | —0.013 [ —0.079 103 | -0.132 0.002
104 0.046 0.046 105 0.002 -0.132 106 | —0.079 | -0.013 107 | -0.013 0.143
108 0.000 0.092 109 | —0.013 0.143 110 | —0.079 [ —0.013 111 0.002 —-0.132
112 0.046 0.046 113 | -0.132 0.002 114 | —0.013 [ —0.079 115 0.143 —0.013
116 0.092 0.000 117 0.143 -0.013 118 | —0.013 [ —0.079 119 | -0.132 0.002
120 0.046 0.046 121 0.002 -0.132 122 | —0.079 | -0.013 123 | -0.013 0.143
124 0.000 0.092 125 | —0.013 0.143 126 | —-0.079 [ —0.013 127 0.002 -0.132
128 0.046 0.046 129 | -0.132 0.002 130 | —0.013 [ —0.079 131 0.143 —0.013
132 0.092 0.000 133 0.143 —0.013 134 | —0.013 [ —0.079 135 | -0.132 0.002
136 0.046 0.046 137 0.002 -0.132 138 | —0.079 | -0.013 139 | -0.013 0.143
140 0.000 0.092 141 —0.013 0.143 142 | —0.079 [ —0.013 143 0.002 —-0.132
144 0.046 0.046 145 | -0.132 0.002 146 | —0.013 [ —0.079 147 0.143 -0.013
148 0.092 0.000 149 0.143 —0.013 150 | —0.013 [ —0.079 151 -0.132 0.002
152 0.046 0.046 153 0.002 -0.132 154 | —0.079 | -0.013 155 | -0.013 0.143
156 0.000 0.092 157 | —0.013 0.143 158 | —0.079 [ —0.013 159 0.002 -0.132
160 0.023 0.023

5.7 802.11a Receiver PHY Block Diagram

frame
detection &

Depreamble

————
4[ De-CP H P25 g‘[ FFT H S52P H Deframer
A S

A 4

A

Mod. Demapper
BPSK & QFSK
16 QAM
64 QAM

viterbi decoder

Descrambler 12 Depuncture(3/4,

213) <« Deinterleaver

Figure 5.36: Wi-Fi Rx Block Diagram
5.7.1 DeMapper

It receive the real and imaginary data of the channel which came in the form of 12
bits divide to 9 bits represent the fraction part and 3 bits represent the real part. The
main target of the block is to receive these data symbols, specify the decision region
and convert these symbols to a stream of bits.
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In WI-FI we have a Phase Shift Keying (BPSK, QPSK) and Quadrature Amplitude
Modulation (16-QAM) and the decision regions are shown in Figure 5.37

i I
BPSK UI . L= AM 04 gl s by
- LLEg 1] FL 10 1L Lk Lk 1
" 1 [ ] [ ] o L] L]
m = T
-I oo 11 il 11 1L 11 Lk L1
L] L] &l L] W
— -1 i - |
k)
UPSE 0 bty |.I'|.I-._|.I-I III'II] ) II"I'.l] Il'.l_'l'.l]
Ll 11
L] - L
Lk D) (N LE] 11 (x 161 (1
L] L] i, L] o

Figure 5.37: decision regions of WIFI demapper

The top Demapper is shown in Figure 5.38

data_bit_imag

data_bit_real

valid_in valid_out

top _demapperQpsk_wif

Figure 5.38: Top Demapper

The pins description of the top Demapper are shown in Table 5.12
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Table 5.12: Pins description of the demapper

PIN Description

Data_bit_imag The imaginary part of the input bits

Data_bit_real The real part of the input bits

Valid_in The signal indicates that current data bit real and imaginary are
valid data

Data_out The output data in the form of stream of bits

Valid_out The signal indicates that current data_out is valid data

read The signal indicates that the block is ready to read data of the

next symbol

5.7.2 Delnterleaver

The deinterleaver, which performs the inverse relation, is also defined by two

permutations.

Here the index of the original received bit before the first permutation shall be

denoted by j; d shall be the index after the first and before the second permutation;

and e shall be the index after the second permutation, just prior to delivering the

coded bits to the convolutional (Viterbi) decoder.

The first permutation is defined by the rule:

d = s * Floor (%) + <j + Floor (16 *

)) mods j=0,1.. Ncgps—1
CBPS

This permutation represents the inverse equation of the second permutation

equation in the interleaver of the transmitter (Section 5.6.4).

The second permutation is defined by the rule:

e =16 +xd — (Nggps — 1) * Floor (16 *

) d = 0,1 ""NCBPS - 1
CBPS

This permutation represents the inverse equation of the first permutation equation

in the interleaver of the transmitter (Section 5.6.4).

The value of s is determined by the number of coded bits per subcarrier, Ngpgc,

according to:

NBPSC

s = max(; , 1)
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The block interface is as shown in Figure 5.17, the signals declaration and
description is as shown in Table 5.6 and the block simulation is as shwon in

Figure 5.18.

top_deinterleaver48_wif]

data in

finished

top_deinterleaver48_wif]

Figure 5.39: Deinterleaver block interface.

PIN PIN TYPE Description
enable IN This signal indicates that the next block is ready to have
data
valid_in IN This signal indicates that current data_in is valid data
data_in IN The input bits
finished ouT This signal indicates that the interleaver is ready to
have a new frame
valid_out ouT This signal indicates that current data_out is valid data
data_out ouT The output bits

The implementation of this block is very close to the implementation of the
interleaver block because the implementation of this block is also based on a RAM,
this RAM used to store all the input data to the deinterleaver block as shown in
Figure 5.41 then we read from this RAM but out of order according to the index that

calculated from the deinterleaving equations as shown in Figure 5.42 .

The deinterleaving equation is different according t0 Ncgps and Ngpsc Values,

these values is as shown in Table 5.7.
So finally we have four deinterleavers:

Ngpsc =1, Ncgps = 48
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Nppsc = 2, Ncpps = 96
Nppsc =4, Ncgps = 192

Nppsc = 6, Ncpps = 288

-|_E enable
1 valid_in
-|_E data_in
1 finished
-”;- valid_out
-”;- data_out
» B address_write[15:0

» M address_read[15:0]

[y valid_in

]_E data_in
p B address_write[15:0
p B address_read[15:0]

Figure 5.41: Writing the input data in the RAM.

o oo 'L-FII_-F“|

b W address_write[15:0 . [ s ]

p B address_read[15:0]

Figure 5.42: Reading the data from the RAM.

5.7.3 Depuncture
Depuncture is the reverse block of puncture. Depuncture adds dummy bits in the

position of removed bits by puncture.

The positions of removed bits are determined in the standard in the puncture vector
which is a binary column vector. A 1 indicates that the bit in the corresponding
position of the input vector is sent to the output vector, while a 0 indicates that the bit
is removed. Figure 5.45 shows the procedure of puncture and depuncture of rate %.
Figure 5.46 and Figure 5.45 shows the procedure of puncture and depuncture of rate
2/3.
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The interface of depuncture block is shown in Figure 5.43.

top_depuncture23_wifi

clk_r valid_out

top_depuncture23_wifi

Figure 5.43 : The interface of depuncture block diagram.

The internal block diagram of depuncture is shown in Figure 5.44.

top_depuncture23_ wifi

Figure 5.44 : internal block of depuncture.
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Punctured Coding (r = 3/4)

Source Data

Encoded Data

Bit Stolen Data

(sent/received data)

Bit Inserted Data

Decoded Data

| xo| x| x| o] xa | x5 | x| %7 | x4
Ap | Al As| Az | Ay | As| Ag | A7 | Ag
B, | B, | B,

Stolen Bit
B, | By | Bs | B | B; | Bg I:l ofen =1

[Ad B Ade

A]| 133‘ A4| Bs

Aqgl Ayl As | Ag| A7 | A
3 4 2 6 7 8 I:l Inserted Dummy Bit

Ag | A | As
By | B; | Bo | By| By | Bs | Bg | B- | Bg
‘Y0|Y]‘}"2 }"3| ‘YS|Y(:|3"7|Y8|

Figure 5.45: Depuncture 3/4 rate procedure

Punctured Coding (r = 2/3)

Source Data

Encoded Data

Bit Stolen Data
(sent/received data)

Bit Inserted Data

Decoded Data

Stolen Bit

Inserted Dummy Bit

Xo | Xi| Xo| X3 | X | X5
Ag | A1 | Ax | Az | Ay | As
By | B | B, | By | By | Bs
Ag|By | Al Ayl Bo| Az Ayl By| As
Ay | A Ayl A5l Ayl AS
By | B; | B, | Bs| By Bs
¥o ¥1 Y2 | ¥3 ¥4 ¥s

Figure 5.46 : Depuncture 2/3 rate procedure
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5.7.4 Convolutional Decoder:

5.7.4.1 Decoding of Convolutional Encoded Data using Viterbi Algorithm
(VA).
The trellis in Figure 5.47 shows the transitions possible for example encoder for

sequence of input bits1011100.

The VA works by using the received version of the encoded bit sequence to find
the most likely path through this trellis representing the state machine of the encoder.
Once this most likely path through the trellis is known, the data bits which would
have caused the encoder to follow this path can be implied and these bits are the
output from the VA.

Input: 1 0 1 1 1 0 0
Output: 11 t)l 00 10 01

@“,O( {00) 1%)-(pg) 200, nou 0(00) {00) 0(0! )

/

o

i
-
—

-

/
o

Ve

- -

—

Figure 5. 47 Trellis dlagram of Convolutional Encoder

Viterbi algorithm is called optimum algorithm since it minimizes the probability of
error. The main drawback of These Viterbi Decoders is that they are very expensive

in terms of chip area.
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The basic units of Viterbi decoder as shown in Figure 5.48 are:

e Branch metric unit (BMU) where received data symbols are compared to the
ideal outputs of the encoder from the transmitter to compute branch metrics
which is Hamming distance or the Euclidean distance. The hamming distance
is the number of bits not matching the possibility and the Euclidean distance is
the point distance between the possibilities and the received data, which is
obtained using the point distance formula. Hamming distance is selected as it
is easy to implement on hardware.

e Add-compare-select unit (ACSU) which selects the survivor paths for each
trellis state, also finds the minimum path metric of the survivor paths.

e Survivor memory unit (SMU).

e Metric Memory Unit (MMU).

e Trace Back Unit (TBU) is responsible for selecting the output based on the

minimum path metric.

Mertric
Memory
_________________ e
INPUT: | f : | OUTPUT:
Code ! . Distance LowestState | DecodeOut
L BMG | ACS | Tracsback | !
CTL Signals CTL Signals CTL Signals |
| ——p — —» |
l |
| |
: SURIVORS |
| ] . Data I
i —— CTL Signals Survivor :
I - CTLsignas | Memory |q | |
| —» Address |
I |
l |

Figure 5.48: Block Diagram of Viterbi decoder

Viterbi algorithm can be explained briefly with the following three steps as shown
in Figure 5.49.

1. Get one input code word (2 bits or 3 bits corresponding to the coding rate).
2. Calculating the branch metric

3. Reading the previous path metric for all the states from the Metric Memory.
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4. Add the branch metric to the path metric for the old state.

5. Compare the sums for paths arriving at the new state (there are only two such
paths

incoming).

6. Select the path with the smallest value which is called the survivor path. If both
path Metrics are equal then any one is chosen.

7. Writing the survivor path in survivor memory unit to be used in the trace back

process.
8. Writing the new path metric in metric memory unit

9. When the sliding window reaches its end then begins the trace back process

Start
v
Initialize
v

Calculate the branch metrics -

v

ACS

v

Store the path information

v

Trellis stages end?

Trace - back

v

Decode data

+

Ernd

Figure 5.49: Viterbi decoder algorithm flow chart
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The following example shown in Figure 5.50 describes the process of

Conventional Decoding

Consider the received sequence as 11 10 00 01 01 11 which is error free and
should be decoded.

t=0 t=1 t=2 =3 t=4 t=5 t=6
0/00 oG 0/00 - 0/00

DATA 1 0 1 1 0 0
ENC DATA 11 10 00 01 01 11
RECEIVED 11 10 00 01 01 11

Figure 5.50: Trellis diagram for error free decoding

Given the message data 101100 the encoded output is 11 10 00 01 01 11 which is
received error free at the receiver. After completing the first two steps explained
above the path metrics to reach each state in the trellis is obtained which is shown in
red color just above the states. After calculation of the path metrics the survivor unit

traces back the optimum path which will always start from state zero.

The following example shown in Figure 5.51 describes the process of

Conventional Decoding in case of errors.

Consider the output is: 11 01 00 10 01 10 11 and received sequence is 11 11 00
1001 11 11.

5.7.4.2 Design Specification:
Code Rate = %, Constraint Length (K) = 7 which denotes the length of the
Convolutional encoder, The amount of branch metric is 2 ~ K= 128 branches, The

amount of state metric is 2 ~ (K-1) = 64 states, window size equals 64 stages, and
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Hard Decision which means that the demodulator is quantized to two levels: zero and

one.
Output: 11 01 00 10 01 10 11
Receive: 11 11 |'I[I 10 01 11 11
— 0(00 — 0(00 — 0 , , O 00) /==
OOf ( "..;_;..< x '_ / +/ '\ J ()'"

f
—
-

—

I B B =

Figure 5.51: Trellis diagram for error decoding

Since we have 64 states should be estimated at each decoding instants (each input
code word) but this requires 64 ACS (Add-Compare-Select) in parallel which requires
more Hardware which will increase the cost so we put 4 ACSs only and this will
make 4 states only are ready at a time and then we need 16 iteration to complete
estimation of the 64 states as shown in Figure 5.53. 4 states are processed together
and from the observations any next state can be reached through 2 previous state, so
we can see the 64 states as a 16 group each group contains 4 adjacent states (for
example "S0s”,"S1", "S2" and "S3" are in one group).we need first an address that
indicates which group's processing is in progress and since we have 16 group so we
need 4 bits to indicate the group and this is done through ACSSegment. The other
important thing is that to process 4 states we have 8 previous states that can reach
these next states (recall the observations) so we need another bits to indicate which
previous state and branch. The next example of K=3 trellis diagram in Figure 5.52
may help us to understand this. But notice that in this example we assume the
following we have only 2 ACSs and then each group contains only 2 states and hence

we have 4 groups so we need 4 iterations and we need ACSSegmet to be 2 bits only.
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Group0,
Previous Iteration 20
statesto L
Group 0 ACSSegment="00"
“00" and
Group2
“Waleed = N N\ 7 " esscsccccscccscccccccns
theyared
states Group 1,
(needs2bits Iteration#1
in —
addressing) ACSSegment="01"
Group 2,
Previous Iteration#2
statesto p—
Group1 ACSSegment="10"
“01" and
Group 2
“1Mand=— 7 S T N\ "*eccccccccccccccccces
theyare4
states Group 3,
(needs2bits Iteration &3
n g
addressing) / ACSSegment="11"
1@ ® 111
— Y —_

Figure 5.52: Example of 8 state Trellis diagram.

As shown in the previous figure, the previous states are in the left and the next
states are in the right, the blue branches stands for 0" input bit and the black branches
stand for “1” input bit .Ok let's start the methodology of addressing the next state , as
said before we need in this example 4 iterations at iteration # 0 we need to process
group 0 which contains states "S000" and "S001" and they can be reached from the
previous states "S000","S001","S010" and "S011" and to process Groupl which
contains "S10" and "S11" which can be reachesd from "S100","S101","S110" and
"S111". With simple observation we can say the following to access the memory
reading the path metrics of the previous states we need to 2 additional bits that
changes from 00 to 11 and another most significant bit that chooses whether the first 4
previous states(S"0 00" to S"0 11") or the second 4 previous states (S"1 00" to "S1
11"). Also with simple observations we can deduce that this most significant bit(s)
is/are the ACSSegment bits without the ACSSegment MSB. Here in this example
ACSSegment[0] is used in addition to the 2 bits that get all the combinations. Ok now
to generalize these observations in our implementation, ACSSegment are 4 bits [3:0]
they are used to know which Group of next states will be processed in the iteration
#(ACSSegment[3:0]) and 2 bits changes from 0 to 3 to indicate which state of the

states(we will called them as State ID[1:0]), in other words if we get the new metrics
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and we need to write them in the metric memory we use an address as following
{ACSSegment[3:0], State ID[1:0]}, for example if we need to calculate the new
metric of the state "0 000 00" that can be reached only from state"0000 00" or state"0
000 01" .

[ Clock2

p B ACSSegment[30] | 5

Figure 5.53-AcsSegment timing digram

5.7.4.3 Branch Metric Unit:

The BMU receives Code signals, calculating its distance with all possibility of
branch metric, giving the output of Distances signal. Hard Decision which means that
the demodulator is quantized to two levels: zero and one. Values generated are
depending on the value of ACSSegment as shown in Figure 5.55. The Distance
Calculator block computes the hard-distance of Code with the branch metric from
Viterbi Encoder block.

The Block diagram of the BMU Unit is as following Figure 5.54

Code ; | Distances

7~  Distance =

‘7‘> Calculator
B

Viterbi
Encoder

ACSSEGMENT

0

Figure 5.54: BMU Unit block diagram

The distance calculator calculate the distance for each branch which is the number
of error bits between the received code word and the output of the branch and this
distance is stored in 2 bits only since in case of R=1/2 , the error could be 0, 1 or 2

bits which needs only 2bits.

In the case of R=1/3 the error between the received code word (which is 3 bits in

this case) and the output of the branch can be 0, 1, 2 or 3 bits which needs only 2 bits.
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The calculation of the distance differs from the R=1/2 and R1/3 cases as following
in Table 5.13 and Table 5.14:

Output of branch metric unit is 16 bits which is concatenation of eight branch

metrics as shown in Figure 120.

N ][
o S

» W B0l6:0]
» B B1l60) 3 |1
» W B2060) 7 )
75
()

» B 6360
» M B4l60]
» M Bsl60)
» M Bsl6:0)
» M 67060

Figure 5.55-Branch ID Values generation
The distance is function of XOR output between received code and branch output

Table 5.13: Output Distance in case of rate 1/2
XOR Output Distance[1:0]

Output[1:0]

MS | LS J Output Distance[l] | Output Distance[0]
0 0 0 0
0 1 0 1
1 0 0 1
1 1 1 0

For Rate Y2:

Output Distance [0] = MS~ALS
Output Distance [1] =MS&LS
For rate 1/3:

Output Distance [0] =MSMXSALS.

Output Distance [1] =MS&XS+XS&LS+LS&MS.
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Table 5.14: Output Distance in case of rate 1/3

NOER Output[ 2:0] Output Distance[1:0]
MS XS Ls Output Distance[ 1] Output Distance[0]
] 0 O 0
0 1 0 1
] 0 0 1
0 1 1 1 0]
1 O O O 1
1 O 1 1 0
1 1 0] 1 0]
1 1 1 1 1

» B Dolal
» M Dil10)
» B D200
» B 0310
» B D4lr0)

» B Ds(a)
» B Dslt0l
» M 070
p P Distance(15:0]

Figure 5.56-Branch metric timing diagram

5.7.4.4 Add-compare-select unit (ACSU)
It adds the path metric to the distance and compare the new path metric to choose

the least metric and save it as a survivor path as shown in .

Lgg Clock2

B PathMetric1[15:0]
g Distance1[1:0]
B# ADD1[15:0]

B PathMetric0[15:0]
P Distance0[1:0]

B§ ApDo[15:0]

10 :
Ly Survivor

» B Metric[15:0]

Figure 5.57-ACSU timing diagram

5.7.4.5 Metric Memory Unit:

The metric values are saved on Metric Memory. Two blocks of RAM needed as we
have to know the current metric values and save the next metric values we’ve just
calculated. Each Memory has its own index, therefore the addressing scheme using
signal MMReadAddress and MMWriteAddress.
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We should toggle the read from and the write in Memories between the decoding
instants (every new input code word) as shown in . If MMBIlockSelect = 0: Read from
RAM B and Write from RAM A. MMBlockSelect = 1: Read from RAM A and Write
from RAM B,if MMBIockSelect =1: the previous Path Metrics are stored in RAM A
then we read from RAM A and after calculation the new Path Metrics write them to

RAM B.

UL

1 MMBlockSelect
b W M_REG_AI0:63,15:0)

b B MREG_BI0:s3,15:01 | oo D0L (0C000NOCDO0N0() Do0odoo0o0000011,0000000... 1 ") ([0)0000000000001,00000000... )

Figure 5.58-Metric Memory Unit timing diagram

5.7.5 Descrambler

The same as stated in section 5.6.1
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Chapter 6: LTE transmitter implementation

LTE stands for Long Term Evolution. The technology designed and developed by
3GPP (Release 8) as air interface for cellular mobile communication systems. It is
used to increase the capacity and data transfer speed of mobile telephone networks
used mainly for data communication. LTE is marketed as 4G technology.

LTE uses OFDMA in the downlink and SC-FDMA in the uplink. It supports six
different channel bandwidths from 1.4 to 20 MHz and both frequency- and time-
division-duplex (FDD and TDD) modes. The resource allocation in LTE is as based
on resource block concept defined. LTE supports various frequency bands in both
TDD (Band 33 to 43) and FDD (Band 1 to 25).

Since the bands for the GSM and UMTS are implemented previously, therefore we
use them bands in the LTE as it is expected that at one day the GSM will vanish and
the band will be unutilized. Consequently, the LTE uses the band of the GSM.

About the duplex technique used to separate between the UL and DL. In LTE we
use both the FDD and TDD technique where we can use F1 for UL and F2 for DL in
case FDD or we can divide the frame in slots used for UL and DL. The frame

distribution is going to be explained later.

Before moving to the frame structure let’s consider the BW for the Carrier in LTE.
The Carrier BW in LTE may be one of the following values (1.4, 3, 5, 10, 15,
20)MHz.

Back to the Frame structure, we have two frame structures in LTE.

The first frame structure is for FDD and the second one is for TDD. FDD is
dividing the frequency into different subcarriers. The distribution of frequencies is as

follow.

e 12 subcarrier per every sub-channel.

e Sub-channel BW is 180KHz

e Subcarrier BW is 15KHz

e For the first frame structure, it will be FDD. The distribution for the frame per

one subcarrier is shown in Figure 6.1 .
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Figure 6.1 : First LTE frame structure.

The subcarrier is divided into frames. The time for one frame is 10msec. The frame
is divided into sub-frame each with duration 1msec. the sub-frame is divided into two
slots. The slot carries the OFDM symbol where the symbol contains both the samples
plus the CP. The number of bits per sample depends on the modulation technique
used; it may be 16QAM-64QAM ...... etc.

Now taking a focus look for the usage of the resource in LTE. As shown in
Figure 6.2the resource of the LTE are divided horizontally to 12 different frequencies
represent the subcarriers of LTE. Each frequency is divided into small blocks where
the small block represents a symbol and every 7 successive symbols represent a time

slot.
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Figure 6.2 : Resource elements in LTE.
To adjust synchronization and to see the effect of channel on data being
transmitted, reference signals are embedded within the data during transmission as
shown in Figure 6.3. Moreover, the reference signal is used during the usage of

MIMO antennas concept.
The second frame structure is TDD, shown in Figure 6.4.

As shown in Figure 6.4, time slot may be used for either the UL or DL. If the user
need more speed for the downlink he takes more slots for DL rather than UL, radio
frame composed of two half frames, each of 5ms duration resulting in total frame
duration of about 10ms. Each radio frame will have total 10 sub-frames; each sub-
frame will have 2 time slots. Sub-frame configuration is based on Uplink downlink
configuration (0 to 6). Usually in all the cases, sub-frame #0 and sub-frame#5 is
always used by downlink. The Special sub-frame carry DWPTS (Downlink Pilot Time
Slot),GP(Guard Period) and UpPTS (Uplink Pilot Time Slot). For the 5ms DL to UL
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switch point periodicity case, SS(Special subframe ) exists in both the half frames.

For the 10ms DL to UL switch point periodicity case, SS exists only in first half

frame.
;: Subframe Fi
- Slot »ie Slot  ——
| [R] R
@
2
n R R
A
@
o
[R] R
R R
Figure 6.3 : Refrence signals positions in LTE frame.
! One radio frame = 10 ms !
] i
' One half-frame = 5ms i H
) ] |
One subframe = 1 ms ! !
] L] |}
i $ i i
One slot = 0.5 ms ! !
p—ol . i H
\‘uhlufmr . '\'uh(l-:ﬁl\r "2 \'uhlu'mr LE '\'ullr.ﬁnr # g Subframe o5 Suhlr.tfim- l{\‘uh(u:mr o ASubframe o
=y - \ .
\ \
/ \ \\\ \ \
\ \ \ \
DwPTS  GP UpPTS DwPTS GP UpPTS

Figure 6.4 : Second LTE frame structure.
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Figure 6.5 : LTE frame structure, TDD , Type-2.

LTE transmitter block diagram is shown in Figure 6.6 .

CRC Channel Rate Block Circular
—_—

t

Attachmen — " Coding " Matching —  ~ Concatenation — Buffer —

_ . Scrambling Modulatio Layer Resources OFDM

—»

n Maoper Precodin Manner Maodulatio
Mappe g
Scrambling Modulatio r Resources OFDM
— — — — —
n Maoper Manooer Modulatio

Figure 6.6 : Full LTE transmitter block diagram.

Since in our project we are working on a kit that holds only one port for antenna.
Therefore, the main concept of LTE that consider in MIMO technique is not used and
so the block diagram is eliminated to that shown in Figure 6.7 where we remove the
(Layer Mapper and Precoding) blocks.
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CRC Channel Rate Block

Attachment Coding Matching Concatenation
Circular . MAodulation Resources
Buffer Scrambling Mapper Mapper
OFDM
Modulation

Figure 6.7 : Simplified LTE transmitter block diagram.

6.1 Scrambler

Scrambler is used to randomize the bits, prevent long sequences of 1s or Os to keep
synchronization. The scrambling sequence generator shall be initialized with

Cinit = NrnTi 214 + .21 + floor(ns/2).2° + Nee!

At the start of each subframe where nrnti corresponds to the RNTI associated with
the PUSCH transmission.

6.2 Cyclic redundancy check (CRC)

The CRC block in LTE is the same as in 3G, stated in section 2.2.1 except the
polynomial generator which is different than 3G. The polynomial generator equation
is

gCRC24A: D24+ D23+ D18+ D17+ D14+ D11+ D10+ D7+ D6+ D5+ D4+ D3+D +1.

6.3 Code block segmentation and code block CRC attachment

The input bit sequence to the code block segmentation is denoted
by:by, b1, b .....bg_1.
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If B is larger than the maximum code block size Z, segmentation of the input bit
sequence is performed and an additional CRC sequence of L = 24 bits is attached to

each code block.

The maximum code block size (Z) is equal 6144 and the minimum code block size
(2) is equal 40.

Total number of code blocks C is determined by the following algorithm:

ifB<=Z
L=0
Number of code blocks: C =1
B'=B
else
L=24
Number of code blocks: C=[B /(Z-L)] .
B'=B+C. L

end if

The bits output from code block segmentation, for C! = 0, are denoted by:

Cr0, Cr1, Crzy von von v, Cri,—1) Where 1 is the code block number and K is the number

of bits for the code block number r.

First segmentation size: K+= minimum K in Table 6.1 such that C.K > B’

ifC=1

the number of code blocks with length K+is C+=1,K-=0,C.=0
elseifC>1

Second segmentation size: K-= maximum K in Table 6.1 such that K < K+

Ak=K:+-K-
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€. K:— B

J

Number of segments of size K-: C_ = | "

Number of segments of size K+: C, =C — C_

Blocks with size K_ are out first then Blocks with K,

end if

Number of filler bits which added to the beginning of the first block:
F=C:+.K:++C..K-B’

if B < 40, filler bits are added to the beginning of the code block.
if C >1 The Sequence CT'O' CT]J CTZ' NTETTRTIEY CT'(kr—L—l)

is used to calculate the CRC parity bits pro, Dr1, Dr2s ooe oor voee Pr—1) With the

generator polynomial gcreaes(D)=1 + D + D5 + D + D23 + D?*,

Table 6.1-K Values

i K [ K I K

1 2 5 32 9 512
2 4 6 64 10 1024
3 8 7 128 11 2048
4 16 8 256 12 4096

This table is simplified version of full k table in standard to simplify the
implementation of Segmentation and turbo encoder and also we assumed Z equal

4096 instead of 6144.
For example: if number of input data bits (B) =8000
the number of blocks (C)=[8000 /(4096 — 24)]=2
B' = B+C. L=8000+2*24=8048
K+=minimum K in Table 6.1 such that K > 4024 = 4096
K-=maximum K in Table 6.1 such that K < 4096 = 2048

Ax=4096 — 2048 = 2048
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Number of segments of size K-: - = [%J

=0

Number of segments of sizeK+: C, =2—-0=2

F =2*4096 + 0*2048—- 8048 = 144

First block (r=0)

144  filler | 3928 bits | 24 crc bits
bits fromb, to bsg,7

Second block (r=1)

4072 bits from b3g,g to bygee | 24 CrC bits

Segmentation was implemented as a Finite state machine (FSM) and Figure 6.8
shows the state diagram of it and Table 6.2 shows the state description of its.

Table 6.2-Segmentation state description

State Description
IDLE Reset state and waiting bits from CRC
Save Store bits in fifo and waiting number of
bits from CRC
Calc Calculate segmentation parameters
like:C,,C_,K_,K,,F
Filler Generate filler bits for output
First_oneblock Generate rest of first block bits in case of
one block (C=1, B<Z)
First_cplus Generate rest of first block bits in case of
multi blocks (C>1) & C_ =0
First_cminus Generate rest of first block bits in case of
multi blocks (C>1) & C_!' =0
Waiting Waiting for the turbo encoder to be ready
for next block.
Other_blocks Generate other blocks
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reset
Salid_num=1

Walid_in=1 -E

add_read Valid_in=0

0

=add write Clount_filler—0 & C=1

First oneblock

Count_filler=0 & Cl!=1 & C_ =0

Count_filler=0 & Cl=1 & C__ =0

encoder_walid_in=——1

add read=k -L -F Ee& r<(c-10)
addr_read

add read=lk+ -L -F
== expacted_addr

r==c-1

Figure 6.8: Segmentation State Diagram

6.4 Turbo encoder

The scheme of turbo encoder is a Parallel Concatenated Convolutional Code

(PCCC) with two 8-state constituent encoders and one turbo code internal interleaver.

The coding rate of turbo encoder is 1/3. The structure of turbo encoder is illustrated

in. The transfer function of the 8-state constituent code for the PCCC is:

91(d)],

G(D)= [1’go(d)

Where go(D)= 1+D?+D3
g1(D)=1+D+D?

The initial value of the shift registers of the 8-state constituent encoders shall be all

zeros when starting to encode the input bits.

The output from the turbo encoder is
dI(CO): Xk
d,(cl): Zy

@)_
d, =z
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For k= 0,1,2, ..., K-1. If the code block to be encoded is the 0-th code block and

the number of filler bits is greater than zero, i.e., F > 0, then

the encoder shall set ¢,, = 0, £ = 0,...,(F-1) at its input and shall set d,(co):NULL  k

=0,...,(F-1) and d\"=NULL , k =0,...,(F-1) at its output.

The bits input to the turbo encoder are denoted by ¢, ¢;, ¢,, ¢3,....¢x 1, and the

bits output from the first and second 8- state constituent encoders are denoted by z,,
Zy, Zg, Z3,....,Zk—1 aNd Zg, Z1, Z3, Z3,....., Zg_,respectively. The bits output from the
turbo code internal interleaver are denoted byc), ci, ¢3, c5,...., ¢, and these bits are

to be the input to the second 8-state constituent encoder.

6.4.1 Trellis termination for turbo encoder
Trellis termination is performed by taking the tail bits from the shift register
feedback after all information bits are encoded. Tail bits are padded after the encoding

of information bits.

The first three tail bits shall be used to terminate the first constituent encoder
(upper switch of Figure 6.9 in lower position) while the second constituent encoder is
disabled. The last three tail bits shall be used to terminate the second constituent
encoder (lower switch of Figure 6.9 in lower position) while the first constituent

encoder is disabled.

The transmitted bits for trellis termination shall then be:
0 0 0 0 1;

dl((, )= Xk dl(c+)1: Zi41s dl(<+)2: xl’c’dl(c+)3: Zk+1
1 1 1 1] 1) _ 1

A=z, 4= Xera, d,= 2 ds= X

2 2 2 1] 2) _ 1
d1(< = Xk+1 d1(<+)1: Zie+2s d1(<+)2: xk+1’dl(<+)3_ Zic+2
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Figure 6.9. Structure of rate 1/3 turbo encoder

6.4.2 Turbo Code Internal Interleaver

The bits input to the turbo code internal interleaver are denoted by ¢, , ¢; ,....ck,

where K is the number of input bits.

The bits output from the turbo code internal interleaver are denoted by ¢y, ¢, c3,

Chyereny Choq-
The relationship between the input and output bits is as follows:
Cl{: C]_[(i)v i:0, 1,..., (K-l)

where the relationship between the output index i and the input index [](7) satisfies
the following quadratic form: [](i)= (f;.i+f;.i?)mod K.

The parameters depend on the block size K and are summarized in Figure 6.11.

N.B: We implemented the turbo encoder with even K numbers thus the division

would be synthesizable.
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Schematic show the top module of the turbo encoder rate third.
The input and output ports indicated below in Figure 6.10.

Detailed block diagram for the blocks that shown internal construction of the turbo

encoder in Figure 6.12.

N.B: C&R signals just pass through the turbo encoder block.

top_turbo_4g

Figure 6.10:Schematic of turbo encoder
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| K| A L] K | i | /2 i K Hh| f i K | i | >
1 40 3 10 | 48 | 416 25 52 95 | 1120 | 67 | 140 | 142 | 3200 | 111 | 240
2 | 48 T 12 |49 | 424 | 51 | 106 | 96 | 1152 | 35 | 72 | 143 | 3264 | 443 | 204
3 56 19 42 | 50 | 432 47 72 97 | 1184 | 19 74 | 144 | 3328 | 51 | 104
4 64 ¥ 16 | 51 | 440 91 | 110 | 98 | 1216 | 39 76 | 145 | 3392 | 51 | 212
5 72 7 18 | 52 | 448 29 | 168 | 99 | 1248 | 19 78 | 146 | 3456 | 451 | 192
6 80 11 20 | 53 | 456 29 | 114 | 100 | 1280 | 199 | 240 | 147 | 3520 | 257 | 220
7 88 5 22 | 54 | 464 | 247 | 58 | 101 | 1312 [ 21 82 | 148 | 3584 | 57 | 336
8 96 11 24 | 55 | 472 29 | 118 | 102 | 1344 | 211 | 252 | 149 | 3648 | 313 | 228
9 1104 | 7 26 | 56 | 480 | 89 | 180 | 103 | 1376 | 21 86 | 150 | 3712 | 271 | 232
10 | 112 | 41 84 | 57 | 488 91 | 122 | 104 | 1408 | 43 88 | 151 | 3776 | 179 | 236
111120 | 103 | 90 |58 | 496 | 157 | 62 | 105 | 1440 | 149 | 60 | 152 | 3840 | 331 | 120
12 | 128 | 15 32 | 59 | 504 55 84 | 106 | 1472 | 45 92 | 153 | 3904 | 363 | 244
131136 | 9 34 | 60| 512 31 64 | 107 | 1504 | 49 | 846 | 154 | 3968 | 375 | 248
14 | 144 | 17 | 108 | 61 | 528 17 66 | 108 | 1536 | 71 48 | 155 | 4032 | 127 | 168
15 | 152 9 38 | 62 | 544 35 68 | 109 | 1568 | 13 28 | 156 | 4096 | 31 64
16 | 160 | 21 | 120 | 63 | 560 | 227 | 420 | 110 | 1600 | 17 80 | 157 | 4160 | 33 | 130
17 1168 | 101 | 84 |64 | 576 | 65 | 96 | 111 | 1632 | 25 | 102 | 158 | 4224 | 43 | 264
18 | 176 | 21 44 | 65 | 592 19 | 74 | 112 | 1664 | 183 | 104 | 159 | 4288 | 33 | 134
19 | 184 | 57 46 | 66 | 608 37 76 | 113 | 1696 | 55 | 954 | 160 | 4352 | 477 | 408
20 | 192 | 23 | 48 |67 | 624 | 41 | 234 | 114 | 1728 | 127 | 96 | 161 | 4416 | 35 | 138
21 200 | 13 50 | 68 | 640 39 80 | 115 | 1760 | 27 | 110 | 162 | 4480 | 233 | 280
22 | 208 | 27 52 |69 | 656 | 185 | 82 | 116 | 1792 | 29 | 112 | 163 | 4544 | 357 | 142
23 | 216 | 11 36 | 70 | 672 43 [ 252 | 117 | 1824 | 29 | 114 | 164 | 4608 | 337 | 480
24 | 224 | 27 56 | 71 | 688 21 86 | 118 | 1856 | 57 | 116 | 165 | 4672 | 37 | 146
25 | 232 | 85 58 |72 | 704 | 155 | 44 | 119 | 1888 | 45 | 354 | 166 | 4736 | 71 | 444
26 | 240 | 29 60 | 73| 720 79 [ 120 | 120 [ 1920 | 31 | 120 | 167 | 4800 | 71 | 120
27 | 248 | 33 62 | 74| 736 [ 139 | 92 | 121 | 1952 | 59 | 610 | 168 | 4864 | 37 | 152
28 | 256 | 15 32 |75 | 752 23 94 | 122 | 1984 | 185 | 124 | 169 | 4928 | 39 | 462
29 | 264 | 17 | 198 | 76 | 768 | 217 | 48 | 123 | 2016 | 113 | 420 | 170 | 4992 | 127 | 234
30| 272 | 33 68 | 77 | 784 25 98 | 124 | 2048 | 31 64 | 171 | 5056 | 39 | 158
311|280 | 103 [ 210 | 78 | 800 17 80 | 125 | 2112 | 17 66 | 172 | 5120 | 39 80
32 | 288 | 19 36 |79 | 816 | 127 | 102 | 126 | 2176 | 171 | 136 | 173 | 5184 | 31 96
33| 296 | 19 74 | 80 | 832 25 52 | 127 | 2240 | 209 | 420 | 174 | 5248 | 113 | 902
34 | 304 | 37 76 | 81| 848 | 239 (106 | 128 | 2304 | 253 | 216 | 175 | 5312 | 41 | 166
35| 312 | 19 78 | 82 | 864 17 48 | 129 | 2368 | 367 | 444 | 176 | 5376 | 251 | 336
36| 320 | 21 [ 120 | 83 | 880 | 137 | 110 | 130 | 2432 | 265 | 456 | 177 | 5440 | 43 | 170
37 | 328 | 21 82 |84 | 896 | 215 | 112 | 131 | 2496 | 181 | 468 | 178 | 5504 | 21 86
38 336|115 | 84 [ 85| 912 29 | 114 | 132 | 2560 | 39 80 | 179 | 5568 | 43 | 174
39 | 344 | 193 | 86 | 86 | 928 15 58 | 133 | 2624 | 27 | 164 | 180 | 5632 | 45 | 176
40 | 352 | 21 44 |87 | 944 | 147 | 118 | 134 | 2688 | 127 | 504 | 181 | 5696 | 45 | 178
41 | 360 | 133 | 90 | 88 | 960 29 60 | 135 | 2752 | 143 | 172 | 182 | 5760 | 161 | 120
42 | 368 | 81 46 | 89 | 976 59 | 122 | 136 | 2816 | 43 88 | 183 | 5824 | 89 | 182
43 | 376 | 45 94 | 90 | 992 65 | 124 | 137 [ 2880 | 29 | 300 | 184 | 5888 | 323 | 184
44 | 384 | 23 48 | 91 | 1008 | 55 84 | 138 | 2944 | 45 92 | 185 | 5952 | 47 | 186
45 | 392 | 243 | 98 | 92 | 1024 | 31 64 | 139 | 3008 | 157 | 188 | 186 | 6016 | 23 94
46 | 400 | 151 | 40 | 93 | 1056 | 17 66 | 140 | 3072 | 47 96 | 187 | 6080 | 47 | 190
47 | 408 | 155 | 102 | 94 | 1088 | 171 | 204 | 141 | 3136 | 13 28 | 188 | 6144 | 263 | 480

Figure 6.11. Turbo code internal interleaver parameters

130




Figure 6.12. Internal block diagram

Table 6.3 : Inputs and outputs of turbo encoder.

Pin Pin Direction Description
C_in(2:0) Input Number of code blocks
from the segmentation
K(12:0) Input Block size of data
R1(2:0) Block index
Clk Input Clock of the all encoder
blocks
Data_in Input Data in for the
convolutional encoder
Enable Input Working enable for the
encoder
Reset Input Reset encoder registers
and interleaver by
inserting zeros.
Valid_in Input Valid in to consider the
input
C(2:0) Output Indicates the number of
code blocks
D(12:0) Output Block size after turbo
encoder
R(2:0) Output Block index
do Output Turbo output(0)
dl Output Turbo output(1)
d2 Output Turbo output(2)
Finished Output Signal indicates the block
is ready for the new frame
of data

131




Valid_out \ Output | Valid out to the next block |

6.5 Rate matching for turbo coded transport channels

The rate matching for turbo coded transport channels is defined per coded block

and consists of interleaving the three information bit streams d,EO), d,(cl) and d,(f),

followed by the collection of bits and the generation of a circular buffer as depicted in
Figure 6.13.

The bit stream d,(co) is interleaved according to the sub-block interleaver defined in

section 6.5.1 with an output sequence defined as vp vy s ts s woee e e Vper, .

The bit stream d,(cl) is interleaved according to the sub-block interleaver defined in

section 6.5.1 with an output sequence defined as v vy, vs", ... .. '”Ki}—l

The bit stream d,(f) is interleaved according to the sub-block interleaver defined in

section 6.5.1 with an output sequence defined as vy vy s ts s woee e e Vprr, .

dY Subblock | V&
3 interleaver ]
virtual circular
buffer
1) m €k
d© g . , . .
k Sub-block Vi Bit Wi Bit selection
L interleaver i collection and pruning )
2 (2)
d! v
k Sub-block k
interleaver

Figure 6.13: Rate matching for turbo coded transport channels.
6.5.1 Sub-block interleaver

The bits input to the block interleaver are denoted by d_”, dgi), dgi), v dg)_l,where
D is the number of bits. The output bit sequence from the block interleaver is derived
as follows:
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Assign CI%.. . =32 to be the number of columns of the matrix. The
columns of the matrix are numbered 0,1,2,.....,CI%p10cx — 1 from left to
right.

Determine the number of rows of the matrix RIS ., .., by finding minimum
integer RTC, 10 such that:

TC TC
D < RSL_LbblOCk * Csubblock
The rows of rectangular matrix are numbered 0,1,2, ....., RTS, 00 — 1 from
top to bottom.

Rébbtock * Coubblock > D, then Np = Rifpiock * Coupprock — D dummy bits
are padded such that y, = <NULL> fork = 0,1,2,.....,N, — 1. Then,
YNpr = d,(;) k=0, 1,..., D-1, and the bit sequence yj is written into the

RIS piocke * C& p1ock Matrix row by row starting with bit y0 in column 0 of
row O:

Yo | Y2 T R (A
“mbblock
Y ac Y i Y i : ¥, i
C l.'u.f:'l.*J.f. WK C FI!.[J.'IJI:N:'k-H' C mb.-‘:l.'m'.i.' +2 . 2C SJ:'."JIIJI'OI k -1
LTS LI ¥ e JIC ¥ o I Yo 10
(Raubbloc k_lJ XC subblock (Raubblock _l]x{- subblock +1 (H.wh.fm'm k —1xC subblock™ 2 (Hﬂfhb.'au X Cubblack _1]
0 1),
For d,(( ) and d,(( );

Perform the inter-column permutation for the matrix based on the pattern P(j)
that is shown in Table 6.4, where P(j) is the original column position of the j-
th permuted column. After permutation of the columns, the inter-column
permuted (RTC, 10k * CHC 110ck ) Matrix is equal to

Ve Vp Yper N, i
. I(D] . }(1] 7P . '”((-.u.'h.bu'm'k_l]
Ve ( Y paysc? Ypayecte Ypiere 1+ 15
( )+ u.fJbu Wk ( )+ \:*meu\ (‘1]_ .'_qrb.':.'a:'i' . ( 'mb.'JF{J:'i'._ ]+ “subblock
y i 1T y 1w T y 1C T " Ypete 10 TC
P(0) _(R.mhbu'm'k _I)Kf'.ﬂrhfh'm'i' PO Rebblock _1))(('.ﬂ|’h")|'{h ok Pc)ﬂkmbﬁ.‘m'k —xC subblock '”({'.ﬂrh.";u'm'k ~H( Riubblock € subblock

The output of the block interleaver is the bit sequence read out column by

column from the inter-column permuted (RIS, 10k * SW_z}blog,‘j) matrix. 'I;he
(i

bits after sub-block interleaving are denoted by vc, sV Vg e e Vg g
where v() corresponds to y, o), vl() corresponds to Yp@+¢T prock and

— TC
[RSJbb;DEJ{ Csubb!ock:]-

.
Ford,™:

The output of the sub-block interleaver is denoted by
v o v, vl where v, = v and where
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k
(k) = (.F‘ (Fiaar (R“——)) +CI5 e * (kmod RIS, )+ 1)mad k_

subblock

The permutation function P is defined in Table 6.4.

Table 6.4:Inter-column permutation pattern for sub-block interleaver.

Number of columns Inter-column permutation pattern
Clubbiock < P(0). PQD).....P(C {uppiper—1) >
137 <0, 16, 8, 24, 4, 20, 12, 28, 2, 18, 10, 26, 6, 22, 14, 30,
1,17,9,25,5,21,13,29,3,19,11,27,7,23,15,31>

The block interface is as shown in Figure 6.14 and the signals declaration and
description is as shown in Table 6.5.

top_interleaver1 4g

numofrows 7 0)

finished

top_interleaver1_4g

Figure 6.14: Interleaver block interface.

Table 6.5:Interleaver block signals declaration

PIN PIN Type Description
enable IN This signal indicates that the next block is ready to have
data
D IN This signal indicates the number of bits in the code-block
valid_in IN This signal indicates that current data_in is valid data
data_in IN The input bits
K pi ouT This signal indicates the number of output bits
(multiple from 32)
numofrows ouT This signal indicates the number of rows of the
Matrix Rezypiock
finished ouT This signal indicates that the interleaver is ready to have
a new frame
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valid_out ouT This signal indicates that current data_out is valid data

data_out ouT The output bits

K_pi and numofrows output signals are required in the bit selection block to be
used in a certain calculations so to prevent any conflict we are going to transfer these
signals with each code-block through the bit collection block to be sure that each

code-block at the bit selection will be associated with the correct information.

The output signal data_out can’t be one bit only because we want to represent the
dummy bits, so as shown in Figure 6.14 that data_out is two bits and the

representation is as following:
When the output bit is 0 therefore data_out = 00
When the output bit is 1 therefore data_out = 01
When the output bit is dummy (x) therefore data_out = 10

6.5.2 Bit collection
The input bits to the bit collection block is the output bits from the three sub-block
interleaver and the block output can be represented by virtual circular buffer as shown

in Figure 6.13.

The circular buffer of length kK, = 3K_ for the r-th coded block is generated as

follows:
W = v Fork=0,1,....K, —1
(1
Wi +2 = Fork=01,....K,—1

Wi soeer = ) FOrk=01,....K, —1

The block interface is as shown in Figure 6.15 and the signals declaration and

description is as shown in Table 6.6.

As shown in Figure 6.15 and Table 6.6 that the signals K_pi and numofrows are

passed through the block without any modifications (as a buffer) because these signals
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are required in the bit selection block to be used in a certain calculations as mentioned

before.
top_bitCollection_4g
top_bitCollection_4g
Figure 6.15:Bit collection block interface.
Table 6.6:Bit collection block signals declaration
PIN PIN Type Description
enable IN This signal indicates that the next block is ready to have
data
valid_in IN This signal indicates that current data_in is valid data
vO,v1,v2 IN The input bits that received from each interleaver
K pil IN This signal indicates the number of output bits from the
interleaver (multiple from 32)
numofrowsl IN This signal indicates the number of rows of the
Matrix Rezppiock
finished ouT This signal indicates that the interleaver is ready to have
a new frame
valid_out ouT This signal indicates that current data_out is valid data
W ouT The output bits
K pi ouT This signal indicates the number of output bits from the
interleaver (multiple from 32)
numofrows ouT This signal indicates the number of rows of the
matrix Reyniock

6.5.3 Bit selection

It is the last block in the block diagram of the rate matching, the block has its input
from the output of the bit collection as shown in Figure 6.13 and it is used to remove
the dummy bits from the bit collection output according to the following calculations:
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Denote the soft buffer size for the r-th code block by N, bits. For UL-SCH, MCH,
SL-SCH and SL-DCH transport channels N, = K,,.

Define by G the total number of bits available for the transmission of one transport
block.

G = Ny Ny (Nulsymb - 1) 2.0, N,

e N, is the number of resource blocks which is assigned to UE

14
o Ny =12
° NUlsymb =7

e (,, is the number of bits per symbol
e N, is the number of layers
Denoting by E the rate matching output sequence length for the r-th coded block,

and rv;4, the redundancy version number for this transmission (rv;,, = 0), the rate

matching output bit sequence is e, , k=0,1,..., E-1.

Set G' = G/(N,.Q,,) Where Q,, is equal to 2 for QPSK, 4 for 16QAM, 6 for
64QAM and 8 for 256 QAM and where N, = 2 for transmit diversity.

Sety=G' mod C , where C is the number of code blocks (segmentation section).

fr=C—y—1 Set E = N;.Q,,. Floor(G'/C)
else Set E = N;. Q.. ceil(G'/C)
endif

Set kO = RZ‘IEbblOCk' (2 Ceil (TIZ—Cb> . rvidx + 2)

subblock
Setk=0andj=0
while k< E

If W(k0+j)m0d Ngp *+= < NULL >
€x = W(ky+j)mod Ngp
k=k+1

endif
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j=j+1

end while

The block interface is as shown in Figure 6.16 and the signals declaration and

description is as shown in Table 6.7 .

top_bitSelection_¢

top bitSelection 4«

Figure 6.16: Bit selection block interface.

Table 6.7:Bit selection block signals declaration

PIN PIN Type Description
Enable IN This signal indicates that the next block is ready to have
data
valid_in IN This signal indicates that current data_in is valid data
data_in IN The input bits that received from each interleaver
C IN This signal indicates the number of code blocks
K_pi IN This signal indicates the number of output bits from the
interleaver (multiple from 32)
numofrows IN This signal indicates the number of rows of the
matrix Repiock
N_prb IN This signal indicates the number of resource blocks
(from MAC layer)
Qm IN This signal indicates the number of bits per symbol
R IN This signal indicates the index number of a code block
finished ouT This signal indicates that the interleaver is ready to have
a new frame
valid_out ouT This signal indicates that current data_out is valid data
W ouT The output bits

138




Finally the block diagram of the rate matching block will be as shown in

Figure 6.17 and the block interface will be as shown in Figure 6.18.

6.6 Code block concatenation

As stated in section 4.2.4

Figure 6.17: Ratematchi block diagram.
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top_rateMatching_4g

top_rateMatching_4g
Figure 6.18:Rate matching block interface

Table 6.8: Rate Matching block signals declaration

PIN PIN Type Description
enable IN This signal indicates that the next block is ready to have
data
valid_in IN This signal indicates that current data_in is valid data
do,d1,d2 IN The input bits that received from each interleaver
C IN This signal indicates the number of code blocks
D IN This signal indicates the number of bits in the code-block
K_pi IN This signal indicates the number of output bits from the
interleaver (multiple from 32)
numofrows IN This signal indicates the number of rows of the
matrix Repiock
N_prb IN This signal indicates the number of resource blocks
(from MAC layer)
Qm IN This signal indicates the number of bits per symbol
r IN This signal indicates the index number of a code block
Co ouT This signal indicates the number of code blocks
finished ouT This signal indicates that the interleaver is ready to have
a new frame
valid_out ouT This signal indicates that current data_out is valid data
w ouT The output bits

the signal C is passed through the block without any modifications (as a buffer)
because this signal is required in the code block concatenation block.

140



6.7 Divider

As shown in the previous blocks (Rate matching, interleaver, ....etc) that there are
some equations that need to be modeled to be able to write a synthesizable HDL code.

Division is the most common problem.

6.7.1 Sequential Divider
The sequential divider works at the raising/falling edge of the clock, the sequential
divider takes many clock cycles to generate output which complicates our RTL, and

we need faster divider.

Combinational Divider
The combinational divider works without clock because its RTL is combinational
S0 it is more better that the sequential divider because it generates output within the

same clock cycle.

Ceil divider simulation is as shown in Figure 19 and Floor divider simulation is as

shown in Figure 20.

2,000 ns 2,500 ns

» ﬂgnumeratorhﬁ:\:
» M@ denumenator(l
» B resutt15:0

» B remainder[15:0]

2,000,000 ns|

» ®@ numerator(15:0
» Md denumenator(l
» B resutiisa

» B4 remainder(15:0]

Figure 20: Floor divider simulation
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6.8 Modulation

Modulation is the process by which information (e.g. bit stream) is transformed
into sinusoidal waveform. A sinusoidal wave has three features those can be changed
- phase, frequency and amplitude- according to the given information and to the used

modulation technique.

In LTE standard Phase Shift Keying (BPSK, QPSK) and Quadrature Amplitude
Modulation (16-QAM, 64-QAM, 256-QAM) modulation techniques are used
according to the desired data rate. The bits are mapped to complex-valued modulation
symbol d= (I + j Q) In BPSK, a single bit is mapped to a complex-valued modulation

symbol according to Table 6.9.

Table 6.9: BPSK mapping

b(i) I Q
o | /N2 | 1/\2
1 | =1/2 | =1/\2

In QPSK, pairs of bits are mapped to complex-valued modulation symbols x=I+jQ

according to Table 6.10.

Table 6.10: QPSK mapping

b(i), b(i +1) I Q
00 /v2 | 142
01 N2 | -1/V2
10 —-1/¥2 | 12
11 “Y\2 | -1/\2

In 16-QAM, quadruplets of bits are mapped to complex-valued modulation symbols
x=1+jQ according to Table 6.11.

Concerning the HDL implementation, Figure 6.21 shows the interface of the

mapper as shown in the figure every symbol is represented in 12 bits — this number is
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determined through a simulation will be discussed later- .the pins description is in
Table 6.12.

The internal block diagram is shown in Figure 6.22.

It consists of fifo to store the input bit stream, controller to control the fifo and the
mapper module (top_mod_wifi) which consists of serial to parallel inverter and the
mapper module that mapps bits to the corresponding symbol following the

constellation.

Table 6.11: 16-QAM mapping

s o+ T B - T 43 ] o
Lo Yo | e
o010 o | e
oot 3o T
L] Wi | -y
il |.|'J'||_'_', _aln',ﬁ_{.
10 o | —fde
o1 o | -3t
1000 _ifho | e
100 _|,|"1|'|_{| '|,|"n.|'l_-[|
010 -3 | e
1011 —’l,l'm 1,|rq|ﬁ
1100 o | oy
1101 T T T T
1110 _a,-'ﬁ —Lquﬁ
111 -3 | —3fjin

topControlled_16QamMod_4g

mod_out_im(11:0)
mod_out_re(11:0)
finished

valid_out

topControlled_16QamMod_4g

Figure 6.21: LTE mapper interface
Table 6.12: Pin discription od LTE mapper module

PIN Description
Data_in The input bits
Valid_in The signal indicates that current data_in is valid data
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Mod out Re The modulated real part of the input
Mod_out_im The modulated imaginary part of the input
finished The signal indicated that the mapper is ready for the new frame
Enable The signal indicates that the next block is ready to have data

controller

top_16QamMod_4g:1

sipo_l6gammod_4g Ggammod_4g

map per

mapper

topControlled_16QamMod_4g

Figure 6.22: Detailed block diagram of LTE mapper module

6.9 IFFT

LTE uplink uses SC-FDMA which is a modified form of the OFDM with similar
throughput performance and complexity, SC-FDMA is viewed as DFT-coded OFDM
where time-domain symbols are transformed to frequency domain symbols and then
go through the standard OFDM modulation, SC-FDMA has all the advantages of
OFDM like robustness against multi-path signal propagation, the block diagram for
the SC-FDMA is shown in Figure 6.23. [4]

. .
—> —

Figure 6.23: Transmitter block diagram [4]
The IFFT subcarriers are grouped into sets of 12 subcarrier, each group is called a

resource block.
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The main advantage of SC-FDMA is the low Peak Average Power Ratio (PAPR)
of the transmit signal, PAPR is a big concern for user equipment, as PAPR relates to
the power amplifier efficiency as low PAPR allows the power amplifier to operate
close to the saturation region resulting in high efficiency that is why SC-FDMA is the

preferred technology for user terminals.

The LTE supported bandwidths are as shown in Table 6.13 [5], we chose the 128
point IFFT to facilitate our testing process, we also chose the extended cyclic prefix
so for our 128 point IFFT we have 32 cyclic prefix and our sampling frequency is
1.92 MHz, the pin interface for the our top_ofdm_4g is as shown Figure 6.24, the pin
description is the same as what we will explain later in WIFI the different pins are
start_rb and num_of rbs, start_rb defines the starting resource block that will be used,
and num_of rbs defines the number of resource blocks to use and the IFFT clk is
1.92 MHz.

In our implementation we used Xilinx IP LogiCORE Discrete Fourier Transform,
[6] the pin interface is shown in Figure 6.25, the DFT module transform size is
reconfigurable by the pin called size, the desired transformation size is decided as the
required number of resource blocks The core indicates that it is ready to accept a new
frame of data by setting RFFD high. When RFFD is high, data input may be started
by setting FD_IN high for one or more cycles. Data is input via XN_RE and XN_IM.
It should be provided over N cycles without interruption. Data input and output are
complex and in natural order. FD_OUT signals when the core starts data output and
DATA_VALID signals when data on XK_RE and XK _IM is valid.

Note that FD_IN is ignored while RFFD is low, and so FD_IN can be kept high for
multiple cycles. FD_IN is accepted on the first cycle that RFFD is high, if FD_IN is
set permanently high, then the core will start a new frame of data input as soon as the
core is ready, this arrangement provides maximum transform throughput.
Alternatively, RFFD may be connected directly to FD_IN to achieve the same
behavior. [6]

The first element of input data should be provided on the same cycle that the core
starts to receive data, that is, the first cycle in which both FD_IN and RFFD are high,
the IFFT module is later explained in WIFI.
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The encoding of the size parameter that we used is shown in Figure 6.26. [6]

Table 6.13: Basic transmission schemes [5]

Transmission

. 1.4 MHz | 3 MHz 5 MHz 10 MHz | 15MHz | 20 MHz
Bandwidth
Sampling 1.92 3.84 7.68 15.36 23.04 30.72
frequency MHz MHz MHz MHz MHz MHz
FFT Size 128 256 512 1024 1536 2048
#RBs = (1214 15 25 50 75 100

subcarriers)

Figure 6.24: top_ofdm_wifi interface

top_ofdm_wifi

data out_re(11:0)

top_ofdm_wifi
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DFT Engine

FORWARD -
SIZE -~ * DATA VALID
XN _RE Z j XK_RE
XN_IM XK_IM
FD_IN .
RFFD - FD OUT
CLK —{3] £ ]: :
SCLR Intermediate [J° |
CE— buffer
Figure 6.25: DFT interface [6]
Time to
Process
Slze N M P Q Latency C| | Perlod Cy 1200
(BInary) (Radix-2) | (Radix-3) | (Radix-5) | Cycles | Cycles | Polnts, us
(at 245.76
MHz)
0 12 2 1 75 62 25.28
1 24 3 1 122 109 22.22
2 % 2 2 152 139 18.90
3 48 4 1 176 163 16.63

Figure 6.26: Encoding of size parameter [6]

Our top_ofdm_4g module contains a 48 register memory, reconfigurable DFT

module and 128-point IFFT module, when the mapper is ready to send data we buffer

the symbols in the memory then we set the DFT size to the required size, the we start

inputting symbols to the DFT and after it finishes it writes its output to the memory

then we input the symbols for the IFFT. Each LTE frames consists of 6 sub frames,

the third sub frame of each frame is dedicated for demodulation reference signal, in

our implementation we assumed the demodulation reference signal to be all ones, and

it should be improved in later designs.
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Chapter 7:  Verification Methodology

7.1 Functional Verification

Functional Verification is very important to check that HDL implementations
outputs are identical to expected outputs, we implemented MATLAB models for all

transmitter and receiver blocks to use as a reference models.

Verification methodology is based on equivalence checking between HDL Model
and MATLAB Model, we setup testing framework consists of Verilog testbench,
MATLAB testbench and Perl script.

Figure 7.1 shows the functional verification procedure; first Verilog testbench
generates random input bits and store it in a file and also save the output data bits
from all blocks in different files, MATLAB testbench read the input file and also save
the output data bits from all blocks in different files, Perl script compare these files

and generate output comparison file.

To cover different cases we change number of bits and also number of successive
frames to check that every block can reset its state after frame finished and process

next frame correctly.

Figure 7.2 shows the different generated files from both testbenches, for example
outputfilel4 hdiModel means that this file contains output from HDL model of fourth

block in chain and first frame.

Figure 7.3 Shows the comparison output file from Perl script, first columns
represents bit number (index) starting from zero, second column represents bit value
from hdl model, third column represents bit value from MATLAB model, fourth
column represents result for this bit whether correct which indicates they are equal or
wrong which indicates they are not equal and finally after all bits there are number of

correct bits and number of wrong bits.
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Output _matlab model

Verilog Testbench

HDL Model I

Random input

MATLAB Testbench

MATLAB Model

/

Output _hdl model

Comparison Script

l Correct or Wrong

Figure 7.1-functional verification procedure

|=] outputfilel1_hdIModel bt
|j outputfilel1_matlabModel .t
=] outputfile12_hdIModel.bt
|j cutputfilel2_matlabModel td
=| outputfile13_hdIModel bt
|j cutputfilel3_matlabModel bt
=| outputfilel4_hdiModel et
|j cutputfileld_matlabModel bt
=| outputfile15_hdIModel bt
|j cutputfile13_matlabModel bt
=| outputfile16_hdIModel bt
|j outputfilel&_matlabModel .t
=] outputfile17_hdIModel.bt
|j outputfilel7_matlabModel .t
=| outputfile18_hdIModel bt
|j cutputfile1®_matlabModel bt

= outputfile2_hdIModel.bet
|j outputfile21_matlabModel.txt
= outputfile22_hdIModel.bet
|j outputfile2?_matlabModel.tt
= outputfile23_hdIModel.bet
|j outputfile23_matlabModel bt
= outputfile2d_hdIModel.bet
|j outputfile2d_matlabModel bt
=] outputfile25_hdIModel.bxt
|j cutputfile25_matlabModel.tdt
= outputfile2_hdIModel.bet

|j outputfile2&_matlabModel.tt
|j outputfile27_matlabModel bt

= outputfile28_hdIModel.bet
|j cutputfile2d_matlabModel tt

Figure 7.2 : testbenches generated files
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case number wverilog MATLAB comparison
B8 8@ B correct

1 1 1 correct

2 1 1 correct
301 1 correct
4 1 1 correct

5 1 1 correct

6 1 1 correct
P e correct

a 1 1 correct

9 1 1 correct
511 1 1 correct
512 @ e correct
513 1 1 correct
514 @ e correct
515 1 1 correct
correct : 516

wrong : @

Figure 7.3-compariosn file

7.2 1FFT testing

We set up a small framework using MATLAB to test our IFFT results, the test
block diagram is simple we use MATLAB script to generate random modulated input
like the mapper output and then set it to a fixed point representation, the output file
MATLAB script is used by the IFFT test bench to feed the IFFT with the test data
then the IFFT output is dumped to a file, the MATLAB script performs the same
operation of our IFFT module like symbol arrangement and pilot insertion then

performs

the IFFT operation then the MATLAB output is converted to fixed-point
representation of 12-bit then compares the two outputs and computes average error,
our average error in WIFI is -73 dB, The block diagram of the testing process is

shown in Figure 7.4.

151



MATLAB script
(generation &
modaulation)

Random iﬁput files

MATLAB script
HDL Model (framing and IFFT
computation)

12-bit fixed point output data

MATLAB script
(comparison and
error computation)

Average error and each symbol error
to facilitate debugging

Figure 7.4: IFFT testing framework process
The framing, IFFT computation, comparison and error computation scripts are

integrated in the complete chain test bench.

The framing and IFFT computation part is in LTE_mod_func.m for LTE and
Wifi_mod_func.m for WIFI, the comparison and error computation parts are in the
top chain test bench.. An example for the final output of the testing framework is

shown Figure 7.5.

7.3 Post-Synthesis Simulation

Synthesis is transformation from RTL to gate level and generate the netlist level.

Because of bad coding style, there may be mismatch between Pre-synthesis
simulation and Post —synthesis simulation so we built Post-synthesis simulation
models and rerun the testing framework to check that there is no mismatch between

Pre-synthesis simulation and Post—synthesis simulation.
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Command Window

Error computations:

Total average error:
Absolute Value: 0.025129

Error in dB : =73.674897

Symbol 1 average error:

Absolute Value: 0.018332
Error in dB : —-79.981814

Symbol 2 average error:
Absolute Value: 0.019898

Error in dB : -78.343202

Symbol 3 average error:

Absolute Value: 0.0209%44
Error in dB $E=FF 53183494

Symbol 4 average error:

Figure 7.5: MATLAB testbench output for a WIFI chain

7.4 Fixed Point Simulation

Starting from the output of the mapper to the end of any chain, we deal with soft
values not bits. This lightens the way for us to determine number of digits
representing each bit.

We have modeled the transmitter and receiver chain and the AWGN noise of the
channel using MATLAB, calculated the BER when using floating point operations.
Then we implemented MATLAB functions (dec2fix, dec2twos, fix2dec ,twos2dec)
that convert numbers from decimal to binary and vice versa to be able to convert
fractions and negative numbers —not only integers as in MATLAB built-in functions-.
Using these functions we could calculate BER using different number of bits and
compare it with the BER of the floating point to choose the number of digits
representing each bit to get an acceptable BER. These results are shown in Figure 7.6,
Figure 7.7. In Figure 7.6, simulation was done to determine number of bits
representing the integer part. Figure 7.7, simulation was done to determine number of
bits representing the fraction part. These simulation results that we use 9 bits for

fraction part and 3 bits for integer part.
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1a

10

10

160AM integer part fixation

floating point

1b int,16h frac 1
2b int 16b frac |1

3b int, 16k frac |]

Figure 7.6 : Results of 16-QAM integer part fixation.

160AM fraction part fixation

floating point |]
3bint 4b frac |1
3b int Gh frac |
3bint 8b frac |]
3b int 9b frac |

16

Figure 7.7 : Results of 16-QAM fraction part fixation.
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Chapter 8: Hardware implementation

8.1 FPGA

The FPGA is an Integrated Circuit (IC) that is electrically programmed to execute
a certain application. It initially has no functionality to operate before it is
programmed. FPGA is formed from a combination of transistors that are connected in
a specific way. Applying an external voltage to these transistors it will operate certain
functionality. This combination of transistors called Look up Tables (LUTSs). Each
group of LUTs forms a Programmable Logic Blocks (PLB). These PLB blocks have
been developed through many years. Recent FPGAs has different types of PLB
functionality such as memory blocks that can store data for internal operations,
multipliers for complex arithmetic operations, and general PLBs that is used to
implement general functions from simple 2-bit adder to a complete microprocessor
unit. The internal heterogeneity of FPGA PLBs is shown in Figure 8.1 . The FPGA
internal routing consists of wires and programmable switches that allow the
connections among the PLBs, memory blocks, multipliers and 1/0 ports. These
connections are developed for best data routing and latency, sometimes with different
characteristics varies from the shortest path to the fastest one. Also, there is a
dedicated network of connections that takes care of clock distribution and reset

signals for achieving low skew.

The LUT size is measured by its number of inputs such as an LUT has 3 inputs
will be named as 3-LUT. The number of LUTs in the PLB may be of equal size or
mixture of different sizes. There are three different major techniques used to program
the FPGA LUTs: Anti-Fuse Flash, look up table and SRAM programming
technologies. The advantages of the Anti-Fuse and Flash over the SRAM, they are
non-volatile and occupies a small area. While the SRAM is easily reprogrammed and
use the standard CMOS process technology so SRAM has become the dominant
approach to program the FPGA LUTs ,but till now there is no technique that can
combine the best of them all.
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Figure 8.1: FPGA internal structure

8.1.1 Softcore and Hardcore processors

Current FPGAs has IP blocks, these IPs are standard libraries which are optimized
and developed to facilitate the FPGA development. An engineer can drag and drop
certain functionality instead of building the new block from scratch. IPs like
accumulators, bus interfaces, encoders ... etc. The microprocessors are considered
one of the important IP core. There are two types of microprocessors, softcore and
hardcore. The softcore processor like MicroBlaze by Xilinx is implemented using the
FPGA logic gates. The hardcore processor like PowerPC by IBM is fabricated in the
core of the IC of the FPGA chip and connected to FPGA fabric as shown in
Figure 8.2.
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The main concern of the softcore processor is its limitation in speed, around 200
MHz, also, it takes many resources on the FPGA. Where there are some advantages of
using softcore processor like modifying it for specific requirements, customizing
instructions and multiple core system. On the other hand, using hardcore processor
can achieve higher processing speeds more than 1GHz. Hence, the hardcore processor
has its own fabric in the FPGA chip it doesn’t occupy resources on the FPGA fabric
which allows the full usage for the FPGA. The disadvantage of the hardcore is its
fixed architecture that can’t be modified. Zynq series by Xilinx is a perfect example
of the current SoC chips; it combines ARM dual-core or quad-core microprocessor in
a processing system (PS) with Xilinx FPGA fabric as a Programmable Logic (PL).

Memory Multiplier Memory Multiplier
AN AN
PLB Mm || PLB Ml PLB | |PLB | | PLB | | PLB PLB | | Mm | | PLB Ml PLB | |PLB | |PLB | | PLB
PLB Mm || PLB Ml PLB | |PLB | | PLB | | PLB PLB | | Mm | | PLB Ml PLB | |PLB | |PLB | | PLB
PLB Mm || PLB Ml P1B | |PLB | |PLB | | PLB PLB | | Mm | | PLB Ml PLB || PLB | | PLB | | PLB
PLB ; PLB | | PLB PLIB | | Mm | | PLB Ml PLB || PLB | |PLB | | PLB
PLB 1|PLB | | PLB PLB | | Mm | | PLB Ml PLB || PLB | |PLB | | PLB
PLB PLE | | PLB PLB | | Mm | | PLB Ml PLB || PLB | |PLB | | PLB
PLB Mm || PLB Ml P1B | |PLB | |PLB | | PLB PLB || PLB | |PLB | | PLB
Hardcore Processor
PLB Mm || PLB Ml P1IB | |PLB | |PLB | | PLB PLB | |PLB | |PLB | | PLB
a b

Figure 8.2: Softcore and Hardcore processor
As shown in Figure 8.2 (a) that the shaded part represent the implementation of
softcore processor on the FPGA logic it acquires some of the available resources like
PLBs, memory and multiplier blocks and as shown in Figure 8.2 (b) Hardcore

processor fabricated beside the FPGA fabric.

8.1.2 Xilinx Virtex-5
An example to the FPGA that is generally introduced in section 8.1, Xilinx FPGA
Virtex-5-XC5VLX110T that is shown in Figure 8.3. It is FPGA chip from Xilinx

Virtex-5 series. Xilinx is a major FPGA vendor of market share 50%.
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Figure 8.3: Xilinx FPGA
Configurable Logic Blocks (CLBs): The Configurable Logic Blocks (CLBs) are
the main programmable logic resources in Xilinx FPGAs. The CLBs are general
PLBs that is used for implementing sequential and combinational circuits on Xilinx
FPGA. The XC5VLX110T has in total CLB array of 160 x 54 (Rows x Columns). In
Virtex-5 series each CLB contains two slices and a switching matrix is used to switch

between them as shown in figure 2.3.

The 54 CLB columns contain 108 slices, where it is an important note that, on
using the DPR technique a complete CLB is taken in the constraint boundaries. In
other words, you cannot split the CLB while reconfiguring the FPGA. Each slice has
four 6-LUTSs, four flip-flops, carry-logic and multiplexers, to provide logic, arithmetic
and ROM functions. Slice heterogeneity exists in Xilinx Virtex-5 that allows more

area and time optimization.

Dedicated Blocks: Like DSPs, which acts as an arithmetic logic unit, RAM
blocks, PCle core.

Input/Output Blocks: With programmable standard functionality, like LVCMOS,
LVPECL, and PCI. In fact, each bank can support several standards as long as they

share the same reference voltage, or output voltage.
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Figure 8.4: CLB routing matrix in Virtex-5

Routing: A combination of programmable and dedicated routing lines, use
switching matrices connect lines from any source to any destination. Constrains
can be applied.

Clocking Resources: like Phase Locked Loop (PLL) which removes clock errors,
and Digital Clock Management (DCM). The dedicated clock trees balance the
Skew and minimize the delay. Thirty two separate clock networks are available in
Virtex 5 FPGA.

8.1.3 MiicroBlaze softcore processor

MicroBlaze is an embedded softcore microprocessor. It is a reduced instruction set

computer (RISC) based architecture. MicroBlaze is optimized for implementation

in

Xilinx FPGAs families using a portion of the available resources on the FPGA.

Figure 8.5 shows the internal construction for the MicroBlaze .
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Figure 8.5: MicroBlaze block diagram

8.2 Hardware System Hierarchy

As explained before PDR has two for implementation: JTAG cable with PC
control or Embedded system on Chip for control, for our project we chose the
embedded system on chip for a better control environment so the FPGA chip could be
completely independent and could control its switching process without external

interference.

The system hierarchy is shown in Figure 8.6, The system consists of Static part
that contains the microprocessor which control the PDR process and enables the ICAP
module to reconfigure the specified partition with the proper bit file, we use an
external compact flash memory to hold the bit files with a sys_ace interface in our
system to read from it, For testing purposes only we use the board UART port, so we
add to this system an additional UART module to handle communications between
PC and the micro-blaze processor, For testing also we use the compact flash to hold

input and output files for our system.
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Dynamic Part
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Memory storage for
the partial bit files
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Wifi - LTE - 3G
partitions

Figure 8.6: Embedded system on chip
A more detailed block diagram is shown in Figure 8.7, the micro-blaze processor
uses PLB bus to communicate with its peripherals like the UART, System ACE,
ICAP, and communication partitions. So the communication system partitions should
be in the Green RP module, as the communication modules are not built to
communicate with a Micro-processor or to be a peripheral of it so a container is
needed to handle the communications with the micro-processor.

This container must have some modules to deal with the PLB bus and other
controllers to communicate with the partitions, the block diagram for this container is
shown in Figure 8.8, in the system used, reconfigurable partitions are only slaves so
only PLB slaves are used, the communication process between the micro-blaze and
the peripheral is shown in Figure 8.9, the peripheral contains a memory of slave
registers, each one has a unique address, the micro-blaze processor transfers certain
data with certain slave register address through the PLB bus to the PLB slave, the
PLB slaves moves data and address to the user_logic module which contains the slave
registers and the communication partition, the user_logic should store the data in its
slave register specified by the address, later the communication peripheral should read
data from the salve registers, The same happens for reading, the communication
peripheral should write the data in the slave registers and then the micro-blaze
processor requires to read certain address from the salve register to get data.
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Figure 8.8: Peripheral template for partitions

162



Bus2IP_RdReq

Bus2IP_‘\WReq
Bus2IP_RdCE

Bus2IP_Data Regd

P2Bus_Data
JP2Bus_RdAdk
jPZBus_\MPLk
:IPZBus_Enor

User Logic

Figure 8.9: Peripheral slave registers

8.3 Partial dynamic reconfiguration flow

To develop a partial reconfiguration design using Xilinx tools we are going to use
the Xilinx Platform Studio (XPS), Software Development Kit (SDK), and the Plan-
Ahead™ design tool. XPS is used to create a processor hardware system that includes
a lower-level module defining the Reconfigurable Partition (RP). SDK is used to
create a software application that enables you to perform partial reconfiguration. XPS
and SDK are part of the Embedded Design Kit (EDK), which is included in the ISE®
Design Suite Embedded and System Editions.

Plan-Ahead is used to Floor-plan the design including defining a reconfigurable
partition for the reconfigurable Region and Create multiple configurations and run the

partial reconfiguration implementation flow to generate full and partial bit-streams.

The example that will be used to explain the flow of partial dynamic
reconfiguration we are going to define one Reconfigurable Partition (RP) and two
Reconfigurable Modules (RM). The two RM perform crc_4g and crc_3g functions.

The steps will be as shown in Figure 8.10 .
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Generation of netlist files of
crc_4g and crc_3g using XST
Synthesis (ISE)

Embedded system on chip
implementation on Xilinx
Platform Studio (XPS)

Developing the Micro-Blaze
processor control software
(Xilinx SDK)

Generate different
configurations partial and
full bit files using Plan Ahead

Generation of static system
bootable ace files

Figure 8.10: Partial dynamic reconfiguration flow

8.3.1 Generation of netlist files (XST Synthesis)
1. Create new project.

X
-

Create New Project
Specify project location and type.
Enter a name, locations, and comment for the project

Name: | crc_4dl

Location: i E:\CRC_HW\se\crc_4g

Working Directory: |E:\CRC_HW\se\crc_4g |
Description:

Al

Select the type of top-evel source for the project

Top-evel source type:
HDL

Figure 8.11: ISE create project
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2. Adjust the design properties to meet the kit specifications.

X

Project Settings

Specify device and project properties.

Select the device and design flow for the project
Property Name Value ~
Evaluation Development Board None Specified v
Product Cateqory All v
Family Virtex5 v
Device XC5VLX110T v
Package FF1136 v
Speed < v
Top-Level Source Type iHDL
Synthesis Tool |XST (VHDL/Verilog) %)
Simulator 1Sim (VHDL/Verilog) v
Preferred Language VHDL v
Property Specification in Project File | Store all values v
Manual Compile Order 0
VHDL Source Analysis Standard |VHDL-93 [Z]

Figure 8.12: ISE Kit specs
3. Add the source codes to the project.

™ |SE Project Mavigator (P.20131013) - EACRC_

File Edit View Project Source Process Teoeols Window Layout Help

D:aiﬂ[‘—ﬂl ’| do L \X|¢7ﬂ| 2 i g ;;‘ﬁ;‘-‘."{'/"i"]

Design + 05 X|
[[] | View: @ {83} mplementation ) B simulation

(JE| | Hierarchy =
{1 | = I —
— [Z] Mew Source...

=
&

= The view curreni project using
g; the toolbar at led Add Copy of Source... using the

s Design, Files, an

Manual Compile Order

™ Use:
— P Implement Top Module

¥ = Mew Sol "

File/Path Display 4

# | P2 Mo Processes Runnir
— - - Expand All
l%rt No single design moduy Collapse All
S| G- Design Utiliti
— m Find... Ctrl+F
&=

Figure 8.13: ISE add source
4. From synthesis design properties uncheck the 1/0O buff as shown in
Figure 8.15.
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2 Run Aborted: Translate

Processes: top_crc_dg

= Design Summary/Reports
Design Utilities
User Constraints

Erﬁ Run

B £5 |#5 4% |V

Implerment D
Generate Prog ReRun
Configure Tar Rerun All

Analyze Desig Et Stop
'E View Text Report

o Start  E1§  Design
Force Process Up-to-Date

1 Console

| Implement Top Module
Design Geoals & Strategies...

® ¥ Process Properties...

Figure 8.14: ISE synthesis

B

Process Properties - Xilinx Specific Options

CAEIaY Switch Name Property Name Value
1 Synthesis Options -iobuf Add 1/O Buffers 0
+ HDL Options P =
- Xilinx Specific Options -max fanout | MaxFanout | 100000 =
-register_duplication Register Duplication ™
-equivalent_register_removal Equivalent Register Removal [
-register_balancing Register Balancing {No B

-mbve_first_stage
-move_last_stage
-iob

-lc
-reduce_control_sets
-slice_packing

-optimize_primitives

Move First Flip-Flop Stage

'Move Last Flip-Flop Stage

Pack 1/0 Registers into I0Bs Auto

v

' LUT Combining No
Reduce Control Sets No
| Slice Packing ¥

» Optimize Instantiated Primitives |:|

Property display level: Standard . [ Display switch names

Default |

[ oc || concel || aosly

]..

Figure 8.15: Synthesis properties
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5. XST synthesis.

# | #2 Mo Processes Running
%'!1; Processes: top_cre_dg
E’t 4 Design Summary/Reports
— Design Utilities
E"t User Constraints
C— 28 hesize - X5T
| =02 Imp l?;: Run
f2 Gen
ReRun
@ Con
Eu Ana Rerun All
S{ Stop
& Start B pe View Text Report
Td Console Force Process Up-to-Date
¥ Implement Top Module
Design Goals & Strategies...
E't Process Properties...

Figure 8.16: Run Synthesis

> ThisPC > Local Disk (E) > CRC_HW > ise > crc_4g

~

A Name Date modified Type Size
s _ngo 7/16/2016 3:50 AM File folder
5 _Xmsgs 7/16/2016 3:50 AM  File folder
iseconfig 7/16/2016 3:24 AM  File folder
xInx_auto_0_xdb 7/16/2016 3:50 AM File folder
xst 7/16/2016 3:49 AM File folder
©) u crc_4g.gise 7/16/2016 3:49 AM  GISE File 2KB
& crc_4gxise 7/16/2016 3:43 AM Xilinx ISE Project 40 KB
€ [ top_cre_4g.bld 7/16/20163:50 AM  BLD File 1KB
[ top_crc_4g.cmd_log 7/16/2016 3:50 AM  CMD_LOG File 1KB
12 Gra [7] top_crc_4g.lso 7/16/2016 3:49 AM LSO File 1KB
& top_crc_4g.ngc 7/16/2016 3:49 AM  NGC File 191 KB
ers D top_crc_4g.ngd 7/16/2016 3:50 AM  NGD File 434 KB
le Mo D top_crc_4g.ngr 7/16/2016 3:49 AM  NGR File 117 KB

Figure 8.17: Resulting Netlist file
Get the netlist file (.ngc) from the project directory then repeat the same steps for

the crc_3g function.

8.3.2 Embedded Development Kit (EDK)
e Embedded Development Kit (EDK) is a Xilinx software suite for designing
complete embedded programmable systems.
e It enables the integration of both hardware and software components of an

embedded system.
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e It includes all the tools, documentation, and IP that you require for designing
systems with embedded IBM PowerPC™ hard processor cores, and/or Xilinx
MicroBlaze™ soft processor cores.

e XPS and SDK are part of the Embedded Design Kit (EDK), which is included
in the ISE® Design Suite Embedded and System Editions.

8.3.3 Xilinx Platform Studio

e Includes IP cores that required for designing a complete embedded systems.

e Generates netlists and simulation models of the hardware of the embedded
programmable systems.

1. Open Xilinx platform studio and create new project using base system builder.

> Xilinx Platform Studio (EDK_P.20131013) - no project opened

File Edit View Project Hardware DeviceConfiguration Debug Simulaion Window Help

D2EY O | % X®|o o |[M| DRI O | 5 E@R | 2EONR
- z =
F \ XILINX PLATFORM smmo\\
=)
Getting Started Documentation
34 wProj i ‘ @ See Vihats New
[_"J Use the Base System Builder wizard to create an XPS project Release notes and information about new IDS features in this release
&
Create New Blank Project View A8 EDK Documentation
~| create anew xS project without usng the Base Builder ‘ related to EDK
= ‘
p ‘ ) Open Project ﬁ I Exlore XPS Tutorials
‘ Open a previously reated project Information about creating an example design using the embedded design flow

Figure 8.18: XPS main window

2. Define the project path, select the interconnect type and add the board support
package path because by default the XPS doesn’t contain the package of our
board.
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i~ Create New XPS Project Using BSB Wizard

New Project

prsect i [ENCRC_ W eckirc_edere syl

Select an Interconnect Type

(O AXI System

AXI is an interface standard recently adopted by Xilinx as the standard interface used for all current and
future versions of Xilinx IP and tool flows. Details on AXI can be found in the AXI Reference Guide on
xilinx.com.

(® PLB System

PLB is the legacy bus standard used by Xilinx that supports current FPGA families, induding Spartané and
Virtex6. PLB IP will not support newer FPGA families, so is not recommend for new designs that may

migrate to future FPGA families. Details on PLB can be found in the PLBv46 Interface Simplifications
document on xilinx.com.

Select Existing .bsb Settings File(saved from previous session)

Set Project Peripheral Repository Search Path

|E:\CRC_HW\EDK-XUPV5-LX 110T-Pack\ib

Figure 8.19: XPS new project wizard
3. Create new design.

/27 Base System Builder

¢ Welcome Board System Processor Peripheral Cache Summary
Welcome to the Base System Builder
This tool leads you through the steps necessary for creating an embedded system.
Select One of the Following:
® 1would like to create a new design
(O 1would like to load an existing .bsb settings file (saved from a previous session)
| Browse ...

Figure 8.20: Base system builder wizard

4. Select the target development board that defined in step 2.
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/27 Base System Builder

g Welcome Board System Processor Peripheral Cache Summary
Board Selection
Select a target development board.
Board
(® 1would like to create a system for the following development board
Board Vendor [Xilinx
Board Name [xhﬁvslx 110T Evaluation Platform E

Board Revison [
O 1would like to create a system for a custom board
Board Information

Architecture Device Package Speed Grade
gvirtexs | I !chlellOt v flff1136 v' l—l VI

[ use stepping | v
Reset Polarity |Active Low J

|Related Information
Vendor's Website

Vendor's Contact Information
Third Party Board Definition Files Download Website
The XUPV5-LX110T Evaulation Platform is intended to showcase and demonstrate Virtex-5 technology. The XUPV5-LX110T board utilizes Xilinx Virtex 5

XC5VLX110T-FF 1136 device. The board indudes Tri-Mode Ethernet MAC/PHY, 256MB DDR2 SDRAM SODIMM memory, 1MB ZBT SRAM, 32MB of Commodity
Flash, 8kb IIC EEPROM, CPU Debug and CPU Trace connectors, System ACE CF controller, SPI peripherals and 2 RS232 serial ports.

Figure 8.21: BSB board choice
5. Configure the system as a single processor system in the system configuration.

= Welcome Peripheral

System Configuration
Configure your system.
I (® Single-Processor System I (O Dual-Processor System
Select this option to create a design with a single processor. This Wizard Select this option to create a design with two processors. This Wizard
will let you configure the processor, the peripheral set and some major will let you select the types of processors, peripherals unique to each
configuration parameters for the peripherals. processor, and peripherals shared by the processors.

Processor 1 Peripherals

Processor 1

RS232 GPIO

Processor 1

Shared Peripherals

Mailbox Mutex  .......

Processor 1 Peripherals

RS8S232 GG s

Processor 2 Peripherals

Processor 2 DDA EMAC ...

Figure 8.22: BSB single processor system

6. Configure the processor by choosing processor type as MicroBlaze, speed

(design dependent) for example 100 and memory size (design dependent) for
example 64Kk.
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/i# Base System Builder ? X
ya: Welcome ‘Board System Processor Peripheral Cache Summary
Processor Configuration
Configure the processor(s).
Reference Clock Frequency [1_00_.00 | MHz
Processor 1 Configuration
Processor Type {Mia'oBIaze E]
System Clock Frequency IEOII) i E MHz
Local Memary e _______H
Debug Interface {on-Chip HW Debug Module o
moaﬁng Point Unit

Figure 8.23: BSB Micro-Blaze specs

7. Adjust the peripheral configuration list by removing all the unrequired
peripherals then adjust the UART baud rate to 115200.

/i~ Base System Builder

Welcome Board System Processor Peripheral Cache

L

Peripheral Configuration
To add a peripheral, drag it from the "Available Peripherals™ to the processor peripheral list. To change a core parameter, dick on the peripheral.

Available Peripherals

Peripheral Names Select All ]
(- 10 Devices
- L-FLASH
=} Internal Peripherals
-Imb_bram_if_cntlr
xps_bram_if_cntlr
- xps_timebase_wdt
- xps_timer

Processor 1 {(MicroBlaze) Peripherals

Core Parameter

iCore: xps_gpio
Hard_Ethernet_MAC
Core: xps_|l_temac
IIC_EEPROM
Core: xps_iic
LEDs_8Bit
Core: xps_gpio
LEDs_Positions
Core: xps_gpio
PCle_Bridge
Core: plbv46_pcie
PS2_Keyboard
Core: xps_ps2
PS2_Mouse
Core: xps_ps2
Core Xps_gpio
Use Interrupt il
RS232_Uart_1
Core: xps_uartlite, Baud Rate: 9600, Data ...
RS232_Uart_2
Core: xps_uartlite, Baud Rate: 9600, Data ...
SRAM
Core: xps_mch_emc
SysACE_CompactFlash
Core: xps_sysace
dimb_cntlr
Core: Imb_bram_if_cntlr
ilmb_cntir
Core Ilmh _hram if cntlr

Add >

< Remove

j More Info

[<Bad< HNext> H Cancel

Figure 8.24: BSB peripheral wizard
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/i~ Base System Builder ? X

% Welcome Board System Processor Peripheral Cache Summary

Peripheral Configuration
To add a peripheral, drag it from the "Available Peripherals” to the processor peripheral list. To change a core parameter, dlick on the peripheral.

Available Peripherals
Peripheral Names Processor 1 (MicroBlaze) Peripherals Select Al i
£)-10 Devices Core Parameter
- RS232_Uart_2
. LEDs. 8Bt RS232_Uart_1 .
- LEDs_Positions RS232 Uart_1 \xps_uartlite \V
- Push_Buttons_5Bit Baud Rate @
- DIP_Switches_8Bit : ‘
- PS2_Mouse Unka b ¢ i
- PS2_Keyboard Parity None Y
- IC_EEPROM Use Interrupt |
- SRAM SysACE_CompactFlash
~ FLASH Core: xps_sysace
- PCle_Bridge dimb_cntir
- Hard_Ethernet_MAC Core: Imb_bram_if_cntir
DDR2_SDRAM ilmb_cntlr
(1 Internal Peripherals ROT Core: Imb bram if cntlr

Figure 8.25: BSB UART specs

8. Advance to finish the base system builder wizard.

7~ Base System Builder ? X
& Welcome Board System Processor Peripheral Cache Summary

Summary
Below is the summary of the system you are creating.

System Summary
Col

Instance Name Base Address High Address

= icroblaze_0
RS232_Uart_1 0x84000000 0x8400FFFF
- Xps_sysace SysACE_CompactFlash 0x83600000 0x8360FFFF
Imb_bram_if_cntir dimb_cntir 0x00000000 0OxO000FFFF
- Imb_bram_if_cntlr ilmb_cntir 0x00000000 0OxO000FFFF
File Location
= Overall

- ENCRC_HW\edk\crc_edk\crc_sys.xmp

- ENCRC_HWN\edk\crc_edk\crc_sys.mhs

- EACRC_HW\edk\crc_edk\data\crc_sys.ucf
EACRC_HW\edk\crc_edk\etc\fast_runtime.opt

- EACRC_HW\edk\crc_edk\etc\download.cmd
EACRC_HW\edk\crc_edk\etc\bitgen.ut

[~] save Base System Builder (.bsb) Settings File
|E:\CRC_HW\edk\crc_edk\crc_sys.bsb |

More Info | [ <Bak |[ Fmsh || cancel |

Figure 8.26: finish BSB wizard
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9. Now we want to create a new peripheral that include the reconfigurable
partition and has the ability to deal with PLB bus (IP core) as explained
before. The steps will be as follows:

2 x Platform Studio (E EACRC_HWAedk\cre_edk\cre.
@ File Edit View Project Hardware Device Configuration Debug Simulation Window Help NEE
DPEG . Baa snEx®vald 8o R aa/B@ = c[2e0N
. 3¢ | TP Catalog ~o&ax|, | & 4+ BusInterfaces  Ports  Addresses Bus Interface Filters <<
=
=@ HE MName Bus Name 1P Type 1P Version & By Connection -
g escription P Vel - dimb Jr Imb10 200b e g
: nconnecte o
- £ EDKInstall o | - ilmb 7r ImbviD 200k b
@ Analog o | - mb_plb 4 plbvi6 1.05a il
Bus and Bridge 2 microblaze 0 Yr microblaze  850.c f
Run DRCs " & mb_bram 7r bram_block  1.00.a !
Clock, Reset and Interrupt T . |
Communication High-Spi . T dimb_entlr Fr Imb_bram i... 3.10.c & “”*If‘;;;:u‘l’”‘"”t
— D e L ilmb,_cntie 7 Imb_bram_i.. 3.10.c
- DMA and Timer & mdm_0 7 mdm 210a AR
. Debug SysACE_Co.. Jr xps_sysace  1.01a MBINTERRUBT
i FPGA Reconfigurstion PS232.Uart 1 i wps_uartite 1022 METERR,
. U‘EN - - General Purpose [0 - clock gener... 3 clock gene.. 4.03.a
enerate et 10 Modules " proc_sys_re.. 7 proc_sys_re.. 3.00a & By Interface Type
Interprocessor Communication : Slaves
- Memory and Memory Controller A Masters
pal " [ Master Slaves
Generate BitStream Peripheral Controller Monitors
- Processor B Targets
Utility
[ Initiat
@ Project Local PCores nitistors
Expart Design
(7
Generate HDL Files
Legend
diMaster @Slave diMaster/Slave B Target CInitiator ¥ Connected UUnconnected M Monitor
< > | Yeproduction Bllicense (paid) Sllicense (eval) Local &ipre Production FBeta S Development
(1 Superseded D
Launch Simuator Search P Catalogs || = Design Summary oje Graphical Design View 0 e System Assembly View [<]]
Console eOdx
Copied E:/Xilinx/14.7/ISE_DS/EDK/data/xflow/bitgen virtex5.ut to etc directory
P >

Figure 8.27: Working Space for XPS

1. From hardware select create or import peripheral.

@ File Edit View Project [l3EC0EUS Device Configuration Debug Simulation Window Help

D(BHF‘#' = s,fugl: Generate Netlist M| @r_,_(’]@lg g{:ﬁ"| ﬁﬁﬂ| .|
Navigator % || 1P catald i Generate Bitstream LLP a Bus Interfaces Ports A
ML
1| Create or Import Peripheral... g EE Name Bus Name
esign Flow
pe;c”pt =§ Configure Coprocessor... me
=8 P | ]
@ 2 x_ ﬁ Launch Clock Wizard... - mb_plh
$* Check and View Core Licenses... * G- microblaze 0
Run DRCs | — [ Imb_bram
@i Clean Netlist o % '[ G dlmb_cntlr
@ Cim Bt . g i
& Clean Hardware Y' - SysACE_Co...
%H PGA Reconfiguration @ || B RS232 Uart 1
z e eneral Purpose IO - clock_gener...
enerate Netlis 0 Modules - ProC_SY's_re..
nterprocessor Communication
Memory and Memory Controller
Cl
Generate BitStream Peripheral Controller
rocessor
@ tility

- Project Local PCores
Export Design

Simulation Flow

fn]

Figure 8.28: XPS hardware menu
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2. Select create template for a new peripheral from the wizard.

/+# Create and Import Peripheral Wizard

& Peripheral Flow
Indicate if you want to create a new peripheral or import an existing peripheral. A\

This tool will help you create templates for a new EDK IP, or help you import an existing EDK IP into an XPS project or EDK repository. The interface files
and directory structures required by EDK will be generated.

5 Select flow

_ % (® Create templates for a new peripheral

Figure 8.29: Create or Import peripheral wizard

3. Store the new peripheral to an XPS project, this will store the peripheral in

the pcores folder. This folder should contain all user custom peripherals.

7 Create Peripheral ? X
(‘Repository or Project 2
Indicate where you want to store the new peripheral. \

A new peripheral can be stored in an EDK repository, or in an XPS project. When stored in an EDK repository, the peripheral can be accessed by multiple
XPS projects.

(O To an EDK user repository (Any directory outside of your EDK installation path)

Repository: J Browse...
® To an XPS project
Project:  [E\CRE Fiedkiere_edk ]| srowse...

Peripheral will be placed under:
E:\CRC_HW\edk\crc_edk\pcores

Figure 8.30: Create peripheral wizard save location
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4. Enter the name of the peripheral.

‘ 7i# Create Peripheral

“Name and Version w4
Indicate the name and version of your peripheral. S

Enter the name of the peripheral (upper case characters are not allowed). This name will be used as the top HDL design entity.

Name: }crc]

Version: 1.00.a

Major revision: Minor revision: Hardware /Software compatibility revision:
E= o [3] B

Description:

Figure 8.31: Peripheral name

5. Choose which buses will the peripheral attached to, in our case we are
going to select BLP bus (Xilinx Virtex 5).

/i~ Create Peripheral ? X
€ Bus Interface
i Indicate the bus interface supported by your peripheral. \

T —

To which bus will this peripheral be attached?

(O Ax14-Lite: Simpler, non-burst control register style interface
(O AXI4: Burst Capable, high-throughput memory mapped interface
(O AX14-Stream: Burst Capable, high-throughput streaming interface

I @ Processor Local Bus (PLB v4.6) I
(O Fast Simplex Link (FSL)

ATTENTION

Refer to the following documents to get a better understanding of how user peripherals connect to the CoreConnect(TM) bus PLB v4.6
interconnect and the FSL interface.

NOTE - Select the bus interface above and the corresponding link(s) will appear below for that interface.

CoreConnect Specification

PLB (v4.6) Slave IPIF Specification for single data beat transfer

PLB (v4.6) Slave IPIF Specification for burst data transfer

PLB (v4.6) Master IPIF Specification for single data beat transfer

PLB (v4.6) Master IPIF Spedification for burst data transfer

Figure 8.32: Bus choice

6. The peripheral will be connected to the PLB interconnect through
corresponding PLB interface (IPLF) modules, which provide us with a
quick way to implement the interface between the PLB interconnect and
user logic. Besides the standard functions like address decoding provided
by the slave IPIF module, the wizard tool also offers other commonly used

services and configurations to simplify the implementation of the design.
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According to the wizard we check the required services and

configurations.

< IPIF (IP Interface) Services

Indicate the IPIF services required by your peripheral.

@2

Your peripheral will be connected to the PLB (v4.6) interconnect through corresponding PLB IP Interface (IPIF) modules, which provide you with a quick
way to implement the interface between the PLB interconnect and the user logic. Besides the standard functions like address decoding provided by the
slave IPIF module, the wizard tool also offers other commonly used services and configurations to simplify the implementation of the design.

Processor Local Bus (version 4.6)

| |

PLB v4.6 PLB v4.6
Slave Master

=
= =
% =
& i}
S
= =
& i
-4

Write LocalLink

Slave service and configuration

Typically required by most peripherals for operations like logic control,
status report, data buffering, multiple memory/address space access,
and etc. (PLB slave interface will always be included).

[] software reset User logic software register
[] readwrite FIFO [] User logic memory space
[] Interrupt control Indude data phase timer

Master service and configuration
Typically required by complex peripherals like Ethernet and PCI for

commanding data transfers between regions (PLB master interface
will be induded if master service selected).

[] user logic master

Figure 8.33: IP interface

7. Determine the number of software accessible registers.

/> Create Peripheral

| €user S/W Register

Configure the software accessible registers in your peripheral.

The user specific software accessible registers will be implemented in the user-logic module of your peripheral, Such registers are typically provided for
software programs to control and to monitor the status of your user logic. These registers are addressable on the byte, half-word, word, double word
or quad word boundaries depending on your design. An example logic for register read/write will be induded in the user-ogic module generated by the

wizard tool for your reference.

User logic software registers may take full advantage of the slave IPIF address-

Bus2IP RdR decoding service to generate CE decodes for all of the individual register of
Rl LN Reg 0 interest. The diagram on the left shows the simplest set of IPIC slave signals to

Bus2IP_‘WrReg read/write the registers.

Bus2IP_RACE Reg 1

Reg 2 Number of software accessible registers: |64 |3 (1 to 4096)
Bus2IP_Daka GRS
P2Bus_Data Regii

IPZBus_RdAck

{PZBus_WrAck
JP2Bus_Eror

. User Logic

Figure 8.34: Slave reg choice

8. Advance to finish create peripheral wizard.
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10. Now we created the required peripheral template of our RP and it stored in the
pcores folder. From project make rescan user repositories to import the created

peripheral in the IP catalog.

7 Xilinx Platform Studio (EDK_P.20131013) - EACRC_HWhedk\cre_edk\cre_sysxmp - [Sy

ﬁ- File Edit VMiew PElEas] Hardware Device Configuration Debug  Simuli

D2 H L"}dl " |4 Project Optiens...

Design Rule Check Ctrl+ Shift+D

Mavigator X

L4t Select EIf File...
.

@ Export Hardware Design to SDE...

@ wg Archive Project..

BLRRE 0l Generate Block Diagram Image (Obsolete)
l&l Open Graphical Design View

ﬂ Generate and View Design Report

!}]_H L View Design Summary
B

R, = Run Version Migration

Rescan User Repositories

Figure 8.35: XPS rescan

11. We also need to import another peripheral that responsible for the FPGA

reconfiguration but this peripheral already exists in the IP catalog.

| 1P Catalog 08 x|
EHe =@ EA

Description IP Version

=]

- Analog

- Bus and Bridge

- Clock, Reset and Interrupt

- Communication High-Speed
- Communication Low-Speed
~-DMA and Timer

- Debug

=) FPGA Reconfiguration I

- 4'r FPGA Internal Configu... 5.01.a

- 10 Modules

- Interprocessor Communication

- Memeory and Memory Controller
-PCl

- Peripheral Controller

- Processor

- Utility

&

0}

~USER
-6 CRC 1.00.a

Figure 8.36: IP catalog
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12. After adding the two peripheral to the bus interface they need to be connected

to the PLB bus.
LLP & Busnterfaces  Ports  Addresses &
hg th E Name Bus Name IP Type IP Version
—————— | dimb T Imbv10  200b
— ilmb 3¢ Imb_v10 2.00.b
PO mb_plb 1 plb_v46 1.05.a
I—*-HP—— [+ microblaze 0 ¢ microblaze  8.50.c
t ’ T " - Imb_bram *;:[ bram_block  1.00.a
9@ i k # qlmb_cntlr 1;{ Imb_bram_!... 3.10.c
9@ [ ilmb_cntlr 37 Imb_bram_i... 3.10.c
- mdm_0 +'r mdm 2.10.a
=ac 0 ‘% crc 1.00.a
SPLB No Connecti... |+
=1 xps_hwicap_0 1 xps_hwicap 5.01.a
-SPLB No Connecti... |+
(=} SysACE_Co... 1r xps_sysace  1.01.a
o—L " SPLB mb_plb )
o Ro232 Uart 1 ir xps_uartﬁe Toos |
o— SPLB mb_plb \
clock_gener... 1 clock_gene.. 4.03.a
Pproc_sys_re... +r proc_sys_re.. 3.00.2

Figure 8.37: Peripheral Bus Connection

13. Generate addresses for the unmapped peripherals.

‘@ Bus Interfaces Ports Addresses =
Instance Base Name Base Address High Address Size Bus Interface(s) Bus Name Lock
= microblaze_0's Address Map

dimb_cntir C_BASEADDR 0x00000000 0x0000FFFF 64K +|SLMB dimb O
ilmb_cntlr C_BASEADDR 0x00000000 0x0000FFFF 64K +| SLMB ilmb O
SysACE_CompactFlash C_BASEADDR 0x83600000 0x8360FFFF 64K +|SPLB mb_plb O
RS232 Uart_1 C_BASEADDR 0x84000000 0x8400FFFF 64K +|SPLB mb_plb O
mdm_0 C_BASEADDR 0x84400000 0x8440FFFF 64K +|SPLB mb_plb O
= Unmapped Addresses
xps_hwicap_0 C_BASEADDR U | SPLB mb_plb
crc 0 C_BASEADDR u ~|SPLB mb_plb

Figure 8.38: Peripheral Address initiation

14. If one of these peripherals has unconnected port we have to connect it from
ports to prevent floating connections.in our case only the peripheral that
responsible on the FPGA reconfiguration has unconnected port which is ICAP

_CIk, we connect it to the output of the clock generator as shown.

Consale 08 x|
QERROR:EDK:4125 - IPNAME: xps_hwicap, INSTANCE: xps hwicap 0, PORT: ICAP Clk - ASSIGNMENT=REQUIRE is defined in the MPD. You must specify a connection A

Generated Addresses Successfully
QERROR:EDK:4125 - IPNAME: xps_hwicap, INSTANCE: xps hwicap 0, PORT: ICAP Clk - ASSIGNMENT=REQUIRE is defined in the MPD. You must specify a connection

v
4 >

Figure 8.39: Console display for missing port connection error
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4 Businterfaces  Ports  Addresses Q‘ Sl

Name Connected Port  Direction Range Class Frequency(Hz) ~ Reset Polarity Sensitivity IP Type
External Ports
dimb ﬁ Imb_v10
ilmb ¥ Imb_v10
[+ mb_plb ¥ plb_v46
microblaze 0 ¢ microblaze
Imb_bram +'r bram_block
dlmb_cntir ¢ Imb_bram_i...
ilmb_cntlr % Imb_bram_i...
mdm_0 i mdm
ac 0 % crc
& xps_hwicap_0 _ ¢ xps_hwicap
’ m,\( CLKOUTO N i
IP2INTC... = LEVEL_HIGH
SysACE_Co... | JX 7r xps_sysace
RS232 Uart_1 +r xps_uartlite
clock_gener... ¢ clock_gene...
Proc_sys_re... ¢ proc_sys_re...

Figure 8.40: Connecting the ICAP_CIk port to the kit clock generator

15. Generate netlist.
7 Xilinx Platform Studio (EDK_P.20131013) - ENCRC_HW\edk\crc_edk\cre_sysxmp - [System Assembly View]

@ File Edit View Project NREENELS

Device Configuration Debug  Simulation Window Help

SEFFIBEY - NEECRaar T R
Tl % || 1P catalg fi) Generate Bitstream & X| o Busnterfaces  Ports  Addresses
iz |@® a—l Create or Import Peripheral... Mame Connected Port  Direction Range
Descrlpt =f' Configure Coprocessor... n i} Bxternal Ports
= & ) - dimb
@ G @ Launch Clock Wizard... G- ilmb
-- @/" Check and View Core Licenses... - mb_plb
HEREEES - [} microbloze 0
- iy Clean Netlist - Imb_bram
0 g Clean Bitstream - dimb_cntlr
.. n‘.mb_cnn‘.r
__ ﬁ Clean Hardware [ mdm 0
@1_8 = FPGA Reconfiguration - ere 0
8 ) -4 FPGA Internal Configu.. 5.01.a =} xps_hwicap_0
Generate Netiit [#- General Purpose |0 ~ICAP_Clk  clock_generator.. 1
[ 10 Modules o [P2INTCu fo
[ Interprocessor Communication b SysACE Ce..
[ Memary and Memaory Controller B RS232 Uart_1
Generate BitStream [ PCl B clock_gener...
[+ Peripheral Controller [ proc_sys_re..
, [+ Processor
[} Utility
: [=- Project Local PCores
Expart Design = USER
By CRC 1.00.a

Figure 8.41: Generating Netlist File

8.3.4 Software Development Kit
e Used to perform the Software development.
e Xilinx Custom Compiler settings for PowerPC, MicroBlaze.
e Code editor, Error Navigation and debug.
e A hardware image is first generated to define the hardware platform for which
the software application will be developed.
Resuming XPS flow:
1. To export to SDK from XPS, in XPS select projects > Export Hardware
Design to SDK.
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= Xilinx Platform Studic (EDK_P.20131013) - EACRC_HWhedk\cre_ed khcre_sysxmp

File Edit VWiew PEi=s8 Hardware Device Configuration Debug Simulati

BR=AS Fiﬂl w4 Project Options...

@ Design Rule Check Ctrl+5Shift+D

Mavigator

{4 Select EIf File... /

T Export Hardware Design to SDE...

Figure 8.42: g(“porting the XPS file to the SDK for microprocessor configuration

2. Uncheck include bit stream and BMM file because we haven’t generated these

files yet.
(W Export to SDK / Launch SDK ? X

This dialog allows you to export hardware
platform information to be used in SDK.

[] Indude bitstream and BMM file

(XPS will regenerate bitstream if necessary,
and it may take some time to finish.)

Directory location for hardware description files
|E:\CRC_HW\edk\cre_edk\SDKISDK_Expart |

| Exportonly | ExportalaunchsDk| = Cancel || Hep |

Figure 8.43: Bitstream and BMM generation

3. Browse to the <Extract_Dir>/edk/SDK/SDK_Export workspace directory then
click ok to open the SDK.

@ Workspace Launcher

I

Select a workspace

Xilinx SDK stores your projects in a folder called a workspace.
Choose a werkspace folder to use for this session.

LTS EICRBE\CRC_ HW\edk\crc_edk\SDK VH Browse...

[[J Use this as the default and do not ask again

| OK | i Cancel

Figure 8.44: SDK Launcher
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4. Create new board support package.

 C/C++ - cre_edk_hw_platform,/system.xml - Xilinx SDK

File = Edit Socurce Refactor Mavigate Search Run Project  Xilinx Toels Window Help

Mew Alt+5Shift+MN * Q Application Project
Open File... [l Board Support Package
Close Crle W 1 Project...
Cloze All Ctrl+Shift+W % Source Folder
Save Chrl+S % Folder
Save As... |£|¢' Source File
Save Al CtrleShiftes | A Header File
Revert [ File from Template
(& Class
Move...
Rename... =) £ Other.. Ctri+MN

Figure 8.45: creating board support package
5. The default Project Name is standalone_bsp_0 and the OS is standalone. Then

click finish to open the board support package settings window.

4 New Board Suppert Package Project O X
Xilinx Board Support Package Project
Create a Board Support Package.

Project name: | standalone_bsp_0 |

[ Use default location
Locatior: | EACRC_HW\edk\crc_edk\SDK\standalone_bsp_0 Browse..,

Choose file system: |default

Target Hardware

Hardware Platform: tbcrc_edk_hw_platform vl

CPU:  microblaze 0

Board Support Package OS

xilkernel Standalone is a simple, low-level software layer. It provides access to basic

processor features such as caches, interrupts and exceptions as well as the
basic features of a hosted environment, such as standard input and output,
profiling, abort and exit.

® I

Figure 8.46: Defining Project name
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6. Check the xilfatfs check box to select the FAT file system support for the
Compact Flash card.

@ Board Support Package Settings X

Board Support Package Settings
Control various settings of your Board Support Package.
v Overview
v standalone stancaloe bep:0
xilfatfs OSType:  standalone Standalone is a simple, low-level software layer. It provides access to basic processor features such as
FSE -y . caches, interrupts and exceptions as well as the basic features of a hosted environment, such as standard
gy 05 Version: input and output, profiling, abort and exit.
Target Hardware
Hardware Specification: EACRC_HW\edk\crc_edk\SDK\crc_edk_hw_platform\system.xml
Processor: microblaze_0
Supported Libraries

Check the box next to the libraries you want included in your Board Support Package.You can configure the library in the navigator on the left.

Name Version Description
[] wip140 1.06.a IwlP TCP/IP Stack library: lwlP v1.4.0, Xilinx adapter v...
| [ xilfatfs 1.0-02 Provides read/write routines to access fﬁes stored on... I
[ xilflash 3.04.a Xilinx Flash library for Intel/AMD CFl compliant paral...
[ xilisf 3.02.a Xilinx In-system and Serial Flash Library
[ xilmfs 1.00.a Xilinx Memory File System
[ xilskey 1.01.a Xilinx Secure Key Library

©) =
Figure 8.47: Board Support Package Supported Libraries
7. From xilfatfs, make sure that the value of CONFIG_WRITE is true to be able
to write in the system ace.

@ Board Support Package Settings X

Board Support Package Settings ‘

|
i |
Control various settings of your Board Support Package.

v Overview

Configuration for library: xilfatfs
o e Name alue Default Type Description
v drivers 5 X
e CONFIG_WRITE _ false boolean enable write support for FAT 16/:
P CONFIG_DIR_SUPPORT alse false boolean enable chdir 8 mkdir for FAT fs

CONFIG_FAT12 false false boolean enable support for FAT 12 fs
CONFIG_MAXFILES 5 5 integer maximum number of files that c
CONFIG_BUFCACHE_SIZE 10240 10240 integer size of buffer cache (bytes)

Figure 8.48: Configuration for library xilfatfs

8. Create new application project.

{ C/C++ - standalone_bsp_0/system.mss - Xilinx SDK

File = Edit Source Refactor Mavigate Search Run Project  Xilink Tools  Window Help

Mew Alt+Shift+M > (&) Application Project

Open File... i}, Board Support Package
& i

Close criew O3 Project.

Close All Ctrl+Shift+W 5% Source Folder

Figure 8.49: Creating Application Project

9. Type the project name and select use existing option under the Board Support
Package field
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4P New Project O X

Application Project ,
Create a managed make application project. @

Use default location

Location: | EACRC_HW\edk\crc_edk\SDK\TestApp Browse...

Choose file systermn; default

Target Hardware

Hardware Platform ;circ_edk_hw_platform v' ‘j
Processor fj\icroblazgrp v;:
Target Software

0OS Platform standalone v
Language @C OC++

Board Support Package () Create New  TestApp bsp

(®) Use existing Tstandalone_bsp_O

Figure 8.50: Defining Project name

10. Select empty application in the project application template pane.

11. Right click on TestApp from project explorer and select import.

12. From import choose general -> file system.

13. Browse to the <Extract_Dir>/resources/TestApp/src/ folder and Select main.c

and xhwicap_parse.h then click finish.
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T Import

File system s =S

! Import resources from the local file system. B
| A i
I- S—
From directory: | ENCRC_HW\Resources\TestApp\src = Browse...
[®] = src 1 &1 desktop.ini
€] main.c

j €] xhwicap_parse.h

Filter Types... | Select All | Deselect All t

Into folder: | TestApp Browse...

Options
[] Overwrite existing rescurces without warning
[] Create top-level folder

| Advanced >>

Figure 8.51: Import Recources
14. Right click on TestApp and select generate linker script.
15. Be sure that the Heap and Stack sizes are set to 2048 (0x800).
16. Click generate.

@ Generate a linker script

Generate linker script ‘
Control your application's memory map. h

Basic  Advanced
Project: TestApp

Output Script: Place Code Sections n: | ilmb_cntlr_dimb_cntir vl
EACRC_HW\edk\crc_edk\SDK\TestApp\src\Iscript.id Browse Place Data Sections in: | ilmb_cntlr_dimb_cntir v |
Modify project build settings as follows: Place Heap and Stack in: l ilmb_cntlr_dimb_cntir v |
Set generated script on all project build configurations v Heap Size:
Stack Size: 2KB
Memory Base Address Size
ilmb_cntlr_dimb_cntlr 0x00000000 64 KB

Figure 8.52: Generating Linker Script
8.3.5 Plan-Ahead

This tool is also one of Xilinx tools and it is used to make the following:

e Creating partitions and setting them as reconfigurable.

e Management of Reconfigurable Modules (RMs) and configurations.
e Creation of floorplans and AREA_GROUP RANGE constraints.

e Promote / import of static and reconfigurable logic.

e Partial Reconfiguration-specific DRCs.

e Verification of consistency among configurations.

e Bit file size estimates and resource reporting.

Resuming XPS and SDK flow:
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1. Open Plan-Ahead then Create New Project.
2. Enable Partial Reconfiguration in the Post-synthesis Project.

(8 New Project X
i)

Project Type
Specify the type of project to create. gQ;
RTL Project

You will be able to add sources, generate IP, run RTL analysis, synthesis, implementation, design planning and analysis.

Do not specify sources at this time

Post-synthesis Project

You will be able to add sources, view device resources, run design analysis, planning and implementation.
[[] Do not specify sources at this time

Enable Partial Reconfiguration

1/O Planning Project
Do not specify design sources. You will be able to view part/package resources.

Import ISE Place & Route results
You will be able to do post-implementation analysis of your design.

O Imported Project
Create a PlanAhead project from a Synplify, XST or ISE Project File.

Figure 8.53: Enable Partial Reconfiguration

3. Browse to <Extract_Dir>/edk/ implementation/ and select all the netlist files
(.ngc) of the system on chip that was implemented using Xilinx platform
studio (XPS).

s [ implementation
cache 05 cre_sys.ilmb_wrap)
. clock_generator_0_wrapper % crc_sys_Imb_bram,

crc_0_wrapper
dimb_cntir_wrapper
dimb_wrapper

ilmb_cntlr_wrapper N5 crc_sys proc_sys
ilmb_wrapper Wi crc_sys_rs232 uart
Imb_bram_wrapper 5 crc_sys sysace cor
mb_plb_wrapper W5 cre_sys xps_hwicaj
mdm_0_wrapper M5 crc_sys xps_hwicaj
microblaze_0_wrapper Wi crc_sys xps_hwicaj
proc_sys_reset_0_wrapper %3 cre_sys xps_hwicaj
rs232_uart_1_wrapper W5 cre_sys xps_hwica

. sysace_compactflash_wrapper
xps_hwicap_0_wrapper

Figure 8.54: Selecting netlist files

4. Browse to <Extract_Dir>/edk/ data/ and select the UCF constrain file of the

top level.
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data

i crc_10_m.ucf

Figure 8.55: Selecting Constrain file
5. Choose Xilinx FPGA board from parts partition because the kit that we use is
not defined in board’s partition.
6. Click Open Synthesized Design under Netlist Analysis step of the Project
Manager Flow Navigator pane to invoke the netlist files parser. This is

necessary to access a lower-level module to define a reconfigurable partition.

(8 crc_plan_ahead - [E:/graduation_project/yTia/cr

File Edit Flow Toecls Window Layout V

'@az?{maw%mwaﬁ@%j

| Flow Navigator « | | Proj

|
| 5 g
;Q X, = Sour

1' 4 Project Manager ‘ =
| o+

% Project Settings =
Specify Partitions :

, g8
% Add Sources =

4 Netlist Analysis

> [@¥ Open Synthesized Design

Figure 8.56: Netlist Analysis
7. Select crc_0/USER_LOGIC_I/rp_instance in the Netlist view then right-click
and select Set Partition to create a reconfigurable partition.
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Metis: — O = = [EPrc:n_‘ieu::tSummar}-I = | D

t

= > [E] pu
3 crc_10_m ”~ | -
E-E Mets {1517)

B-= Zri";lﬁ"'es (34) | [@ Instance Properties... Ctrl+E
5-

& 3] dock gener®®™) 4 Export Statistics...
B Mets (2542] Unplace Ctrl+ U
G Primitives (3
m S
-[@] dimb {cre_10_rm &
-[&] dimb_cntr (cre _
[&] ilmb (crc_10_m | @& Unassign
AH] dmb_cntr (crc_| @ Draw Pblock
-[&] Imb_bram {crc_

ap Locations Ctrl+W

@] mb_plb {cre_10 MNew Pblock...
{3 mdm_0 (ere_10] Set Partition...
-[@] microblaze_o0 (c
-[@] proc_sys_reset Clear Partition
% R5232 Uart_1 Unset Reconfigurable Partition
= SysACE_Comps
4 Add Reconfigurable Module...
& Sources—. Select Primitives Ctrl+Shift+5

Figure 8.57: Set Reconfigurable Partition
8. Click Next twice then select Add this Reconfigurable module as a black box

without a Netlist.

C;, Set Partition
Is the Partition reconfigurable?
Specify whether the Partition is reconfigurable. .

Instance 'ac_0/crc_0/USER_LOGIC_I/rp_instance'
® is a reconfigurable Partition

!

O is a Partition

Figure 8.58: Reconfigurable Partition Initiation

(8 Set Partition

Reconfigurable Module Name
Enter a name for the new Reconfigurable Module for instance .

‘erc_0fecrc_0/USER_LOGIC_Ijrp_instance'.

!

Reconfigurable module name: dc_BB|

B Netlist already available for this Reconfigurable Module

® Add this Reconfigurable Module as a black box without a netlist

Figure 8.59: Adding Black Box Module

This design has two Reconfigurable Modules (RMs) for the Reconfigurable Partition
(RP) as we explained before, now we are going to add the two modules.
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a) Adding crc_4g module:
9. Select the math_0/USER_LOGIC_I/ rp_instance then right-click and select
Add Reconfigurable Module.
10. Click Next then type crc_3g in the Reconfigurable Module Name field and

verify that Netlist already available for this Reconfigurable Module is

selected.
(8 Add Reconfigurable Module X |
Reconfigurable Module Name
Enter a name for the new Reconfigurable Module for instance g,‘g

‘erc_0fecrc_0/USER_LOGIC_I/rp_instance'.

Reconfigurable module name: a?_ 4g|

® Netlist already available for this Reconfigurable Module

O Add this Reconfigurable Module as a black box without a netlist

Figure 8.60: Adding CRC_4G Module

11. Click Next then browse to <Extract_Dir>/resources/CRC/crc_4g/ and select
the top_crc_4g.ngc file.

(8 Add Reconfigurable Module X

Specify Top Netlist File
Specify the EDIF or NGC netlist that contains the Reconfigurable Module

Top netiist fle: | E:/CRC_HW fise/crc4g_new/top_crc_4g.ngc

Netlist directories {optional)

| Add Directories... |

Copy sources into project

| <sack [Med> ] Fasi | [ Conce
Figure 8.61: Adding Netlist file
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b) Adding crc_3g module:

12. Follow the same steps, from step 9 to step 11, to add a crc_3g RM from the
<Extract_Dir>/resource/CRC/crc_3g/top_crc_3g.ngc directory. Name the RM

cre_4g.

Next, floorplaning for the RP region. Depending on the type and amount of resources

used by each RM, the RP region must be appropriately defined so it can accommodate

any RM variant.
13. Select Window > Physical Constraints,

14. Select pblock _crc_0/USER_LOGIC_I/rp_instance then Right-click and select

Set Pblock Size.

Synthesized Design - xcSvix110tfF1136-1 (active)

Physical Constraints — O & = Metist
o = = = >0
[ netlist_1 3l crc_10_m
=8l ROOT B0 Mets (1517
Rl nblock_crc_0_Us B
& Pblock Properties... Ctrl+E
[ Ex port Statistics...
o Delete Delete
i
1

Fblock Properties Create a DCl Cascade

«>ER |®
= pblock_crc_o_USER_LOd| B

Figure 8.62: Set Pblock Size

Set Phlock Size

15. Move the cursor in the Device window.
16.Click and drag the cursor to draw a box that

SLICE_X8Y230:SLICE_X17Y239.
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9 Device X | ¥ Schematic X

Figure 8.63: Floor Planning

Xilinx recommends that you run a Design Rule Check (DRC) in order to detect errors
as soon as possible.
17. Select Tools > Report DRC then Deselect All Rules then Select Partial
Reconfig.
18. Click OK to run the PR-specific design rules.
Tools | Window Layout View He

Floorplanning >
IO Planning »
Tirming >

Schematic F4

5,

Show Connectivity Ctrl+T ¢
Show Hierarchy F&

|

Report Utilization ]
Report DRC...

H Q|

Report Moise...
Figure 8.64: Design Rule Checking
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Rules to Check: 17 of 1330

c iy G
Q&3

T I DO
([ ClkBuf (2

([ Flow (1

[ DSP48 (4)

([ Implementation (2)
@[ Floorplan (8]
[ Clock (1)

45| NAMB

ii_"» [.] Team Design (3]

O <

Select All Clear All

Openin a new tab

Now you can create and implement the first configuration.
Creating a New Strategy by using the -bm option pointing to the crc_sys.bmm file for

the new strategy.

19. Select Tools > Options then select Strategies in the left pane then select ISE 14

in the Flow drop-down box.

20. Under PlanAhead Strategies, select ISE Defaults and click the + button to
create a new strategy then name the new strategy ISE14_BM, and set the Type

to Implement.
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Figure 8.65: Define Rules to Check




Strategies
Flow: |fBISE 14 v | Name: ISE Defauits
General 2 call ol ® Description: ISE Defaults, induding packing registers in I0s off
= o = Options
=S (#-User Defined Strategies @ =
Colace [=)-PlanAhead Strategies | £ Transtate (nodbald)
= ®.-YISE Defaults o]
E MapTiming 2
- MapGlobalOptParHigh -aul
Selection Rules

—
MapGlobalOptiog i (8 New Strategy
MapTimingIgnorek
MapCoverBalance]
MapCoverArea

E7
eI
aaa

Neme: [1SE_BM|

rImpIement =

Tool version: |ISE 14~

<none>
Description: |

off

1
é = o Bl " area
- Window Behavior -ignore_keep_hierarchy
; 4

4c off i
v
iSelect an option above to see a description of it

Figure 8.66: Creating new Strategy

21. Under Translate (ngdbuild), click in the More Options field and Type -bm

.I..I..ledk/implementation/system.bmm then click ok.

Name: |ISE_BM

Description: ’

Options

= Translate (ngdbuild) A

g
OoOoO00Oo0O

-f
-bm E:\CRC_HW'edk\crc_edk\mplementation\crc_sys.bmm .

=l Map (map)
pr b
-smartguide
Hir loff
-t 1
-cm \area -
-ignore_keep... |
4 O
4c loff | v

Figure 8.67: Selecting BMM File

Running the Implementation Using crc_4g as a Variant.
22. At the bottom of the PlanAhead tool user interface, select the Design Runs tab

then Select the config_1 run.
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23. In the Implementation Run Properties window, select the General tab. In the
Name field, type crc_4g as the run name then click Apply to change the run

name from config_1 to crc_4g.

Implementation Run Properties U [ N DS
[s2 Apply [$% Cancel
=S config_1*

sme: cre_4g|

art: 9 xcSvix110tff1136-1 (active)
escription:

atus: Not started

onstraints: | &= constrs_1 (active) «

< > &

General Attributes | Options |Log |[Re 4 » F ||

Figure 8.68: Defining Configuration
24.In the Options tab, change the Strategy to ISE14 BM and check that —bm
option point to the correct directory then click Apply.

Implementation Run Properties S i T R
|4 Apply [5% Cancel @
=» config_1* 7
Strategy: |R [EEURCRE) v | B3
| Tranélate (ngdbuild) A |
-ur
2 L]
-aul m
-aut |
T [l
u ]

v

| General | Attributes Optnons Log [Rejq » B
Figure 8.69: Selecting Strategy for Configuration

25. In the Partitions tab, click the Module Variant column drop-down button and

select crc_4g as the variant then click apply.
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26.

27.

' Implementation Run Properties sl sseal
i

[ Apply [ Cancel
= crc_%é;
i
Name Module Variant  Action Import from
| ] static Logic Implemeni  NfA

%6 ac_0/ac OJUSER_LOGIC Ijrp_instancefc

General | Attributes | Options | Log | Reports | Messages | Partitions |

Figure 8.70: Selecting Partial Modules
In the Netlist window, make the corresponding module (crc_4g) active, right-
clicking on its entry and selecting Set as an Active Reconfigurabe Module.

O_wrapper) i
e
carc_0fUSER _LOGIC_Ifrp_instance [t -
WM
WL
Reconfigurable Module Properties... Ctrl+E
Delete Delete

In the Design Run window, select crc_4g, and right-click and select Launch

Runs to run the implementation then select Launch Runs on Local Host.

Clock Regions — E|123 ae ol ¥ Implementation Kun Froperties,.. Lirl+k

e | X Delete
Id Mame Row  Column  IfOBanks

1 X0oYo a a 6, 25 ~

2 xoYi1 o1 i 21 Change Run Settings...

3 xovz |2 a + 17 Save As Strategy...

4 XoY3 5] a 2,13

5 XoY4 4 0 0,1, 11 — - Launch Runs...

5 X0Y5 5 0 3, 15 v Libraries | Compile

< > O £, Sources | ||

Launch Mext Step: NGDBuild =
Launch Step To >

Part Constraints| 4

ucsvie110tF1136-1]constrs_1

[

=
Figure 8.72: Launch Runs
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Now we want to create another configuration for the crc_3g.
28. Select Flow > Create Runs. Click Next twice then in the Choose
Implementation Strategies and Reconfigurable Modules page, change the
name of the configuration from config_1 to crc_3g.

G crc_plan_ahead - [E:/graduation_project/y7ia/crc_10

File Edit | Flow | Tocls Window Layout View
Gl | Project Manager

Flow Navigat Open Synthesized Design

Q‘ o pag| B MNew Synthesized Design
g G . -

&  Implementation Settings...
B

- OIEE Run Implemnentation
ﬁ H Open Implemented Design ¥
L
O #  Promote Partitions...
o - : N
L% Verify Configuration..,
4 Netlist g @ Bitstream Settings...

b 5 %)  Generate Bitstream

¥ LaunchiMPACT
4 —~ -
Implger & Launch ChipScope Analyzer
I
gl |~ B ST .

Fig“l.llll'lé"g.732 Create new Runs

(8 Create New Runs X

Confi ! ation Runs
Create and configure one or more implementation runs using various Part, Constraints, flows and strategies g\d
Create Implementation Runs
Name Constraints Set Part Strategy Partition Action
ac_3a | & constrs_1 (active) v |[|6 xc5vix110tff1136-1 v | |& I1SE_BM (ISE 19) v ce=crc_3g | X
crc_BB {&= constrs_1 (active) v | |6 xcSvix110tff1136-1 v | |& 1SE_BM (ISE 14) v | |ac Ofere 0] | - x
[ More Runs to create: 2
 <Back Next> [ Finish | Cancel ]

Figure 8.74: Configuration Run
29. In the crc_3g configuration row, click the Partition Action field.
30. For the rp_instance row, click the Module Variant column drop-down arrow,
and select crc_3g as the variant to be implemented.
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(8 Specify Partition X

(o\"} Choose Module Variants for Reconfigurable Modules and actions
\ y
v

| | Name Module Variant  Action Import from

i [ static Logic Import  \ E:fgraduation_project/yZiajcrc_10_new_test/kit_flow/fcre_...

B¢ o 0/ac OUSER LOGIC Jjip._instance | N/A

Figure 8.75: Specify Partition

31. In the Netlist window, expand the crc_0 > crc_0 > Reconfigurable Modules
and rightclick on the adder, and select Set As an Active Reconfigurabe
Module.

32. In the Design Run window, select crc_3g, and right-click and select Launch
Runs to run the implementation then select Launch Runs on Local Host.
Repeat the same steps (from step 28 to step 32) to make a black box configuration

(crc_BB).

Next, you will check to be sure that the static implementation, including interfaces to
reconfigurable regions, is consistent across all configurations. To verify this, you can
run the PR_Verify utility.

33. Run the PR_Verify utility to make sure that there are no errors. In the
Configurations window, select any of the configurations then right-click, and
select Verify Configuration.

B crc_plan_ahead - [E:/graduation_project/y7ia/crc_10_

File Edit | Flow | Tools Window Layout View
o g Project Manager

Flow Navigat Open Synthesized Design ;
QT B MNew Synthesized Design s
& Implementation Settings... 3
4 Project| b Ry Implementation
ﬁ A Open Implemented Design » :
- 14  Promote Partitions.. 3
A

| % Verify Configuration...
|A Netlist # @ Bitstream Settings...

I .5 %] Generate Bitstream %

4 Implemen & C Y ~ ;
%I =% Create Runs... L

P Rerrsmpremerson [/ 7 X

Figure 8.76: Verify Configuration
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After PR_Verify validates all the configurations, you can generate full and partial bit
files for the entire project.

34. Generate bitstream.

[} RESEL U
Design Runs

»
O\ Mame Part Constraints Strategy 4
Z “ crc_4g (active) xcSvbc110tf1136-1|constrs_1  |ISE_BM (ISE 1. » 1
] wcSvin110tf1136-1  [constrs_1 15E_BM (ISE 14) il i
; i “fxesvin110tF1136-1  fcomstrs_ 1 |15E_BM (1SE 149) g 1
4 #  Promote Partitions...
» %] Generate Bitstream
“ h

Figure 8.77: Generating BitStream

8.3.6 Generation of static system bootable ace files
For this step you need to open an EDK shell, and create both a download.bit and a
crc_sys.ace file in the image/ directory. Copy the generated partial bit files, place
them in the image/ directory, and name them crc_4g.bit and crc_3g.bit.
Resuming the flow:
1. Launch the ISE Design Suite command prompt from your Windows
environment by selecting Start > All Programs > Xilinx Design Tools > Xilinx
ISE Design Suite > Accessories > ISE Design Suite Command Prompt.
2. In the command window, go to the <Extract_Dir>/image/ directory.

3. Execute the following command to generate the download.bit file (with the
software component included) from crc_4g.bit (with the hardware component)
only.

data2mem -bm ../edk/implementation/crc_sys bd

-bt ../PlanAhead/PlanAhead.runs/crc_4g/crc_4g.bit

-bd ../edk/SDK/SDK_Export/TestApp/Debug/TestApp.elf tag
microblaze 0 -o b download.bit

This generates the download.bit in the image/ directory.
4. In the Bash shell, execute the following command to generate the crc_sys.ace

file in the image/ directory.

xmd -tcl genace.tcl -jprog -target mdm -hw download.bit -board
ml605 —-ace crc_sys.ace

8.3.7 Summary of the hardware implementation flow
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Partial Modules
HDL files

Custom Peripheral
HDL files

Export Hardware design XPS ISE

Building Static system _
( (Silnthesis;, ) (Synthesis)

* Static System Netlist
files.
* Unmapped and empty

LMB memory address
space (system.bmm). HETVALEET

(Mapping)
(PAR)

Partial Modules
Netlist files
(top_crc_4g.ngc)

¢ Static system bit files
DatazMem ¢ Partial modules bit files

(loading C file into « Mapped and empty
processor memory) (system_bd.bmm)

Full system bit files
(download.bit)

.elf files

Xmd (genace.tcl)
(generate system
bootable ace file

System.ace file
Figure 8.78: Hardware implementation block diagram

While seemingly complex when viewed in total, the system design flow simply

combines the standard hardware flow used to create FPGA bitstreams and standard

software flow used to create processor ELF files. In fact, unless on-chip memory

resources are used to store the software image, the Embedded Developers Kit can be

viewed as nothing more than an extension to the Xilinx core generation tool CoreGen.

The first step is to create the ‘System Netlist” using the Embedded Developers Kit
and instantiate that netlist into the design’s HDL code. The hardware design is then
synthesized, merged and implemented using the exact same flow as used with any
other ‘black box’ core. While it is common to include a portion of the yet created

software image inside the FPGA using block RAM.

The second step is to create the ‘Board Support Package’ (BSP) using the
Embedded Developers Kit (EDK) and include the required drivers in the system’s C
code. The code is then compiled and linked with the various functions available in
the BSP as is the same with any other processor system. Finally ‘TestApp.elf® file
(Compiled ELF file) is generated.
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The third step is to create the partial dynamic reconfiguration using the PlanAhead
tool as shown in Error! Reference source not found. this tool take from the XPS all
the Netlist files (.ngc) ,UCF constrain file the ‘crc_sys.bmm’ file that contain the
unmapped memory address space and take from the ISE the Netlist files of the
reconfigurable module from ISE. After defining the different configurations, making
floorplaning and generating the bitstream files finally the output files are,
‘crc_sys_bd.bmm’ file that contain the memory address space after mapping,
‘crc_4g.bit’ file (Compiled BIT file) created during this phase of development only

contains the systems hardware description after defining the reconfigurable partition.

and ‘crc_4g_crc_0 _crc_0_user_logic_i_rp_instance_crc_4g_partial.bit’ file which

is the partial module bit file.

EDK provides a tool called Data2MEM which merges the appropriate sections of
the ‘Compiled ELF’ file with the ‘Compiled BIT’ file. The resulting BIT file is
typically created in a few seconds and can then be used to configure the FPGA.
When the entire software image is stored within the FPGA, only the BIT file is
needed to both configure the system and load the software image. If only portion of
the software image, such as the bootstrap, is stored within the FPGA, then
Data2MEM is run to create a combined BIT file and the system is once again
configured/loaded as any two chip solution using the unmerged ELF sections and the
combined BIT file.

So now we need to create ‘download.bit’ file (Combined BIT file) from
‘crc_sys.bmm’ file, ‘crc 4g.bit’ file (Combiled BIT file) and ‘TestApp.elf’ file
(Combiled ELF file) using Data2MEM tool.

Unlike general purpose processors, the physical system can be probed using Chip-
Scope modules. This capability provides a level of visibility into the operation of the
system unmatched by external processors.
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Chapter 9:  Testing

9.1 Communication Methodology

We have 2 entities (Micro-Blaze processor & our Reconfigurable partition) that we
want to establish a communication between though the PLB bus, They both run on the
same clock system clock frequency (100 MHz) but the problem is that the processor
code takes many cycles to write data in one register, so although they run on the same

clock they are not synchronized, that’s why a simple hand-shaking algorithm is used.

The Micro-blaze processor will send all data to slave registers and the RP will not
read anything from the slave registers until the micro-processor sends an

acknowledgement that he finished transferring data.

The same happens for data outputs, The RP starts writing its output to the slave
registers and then writes an acknowledgement that it finished so the processor starts

reading data.

Assuming a system of 11 slave registers the flow chart for the methodology of the
micro-processor is shown in , the flow chart for the user logic is shown in, and the

structure of the slave_registers is shown in Figure 9.1.

9.2 User Logic Code

As explained before user logic is the container that holds our RP and facilitate its
communication with the micro-processor, the user logic code is auto-generated using
the Create or Import Peripheral Wizard from Xilinx Platform Studio, The following is

a quick walkthrough for this code.
The user logic code functions are:

e Communicate with PLB slave (auto generated, Not edited in the project).
e Store Micro-processor sent data to the slave register with the specified address
(auto generated, Edited in the project).

e Communicate with the user IP (User code).
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C User Logic Slave

Slv_reg O
(data)

The user logic keeps
Reads input files from pooling on the special
compact flash slv_reg_9 until the register
indicates that the processor

has finished sending all data to Slv_reg_1

(data)

Slv_reg 2

Sends data to software
registers The code should now take
the data from the slave
registers and starts to the
input phase to RP according to
the RP nature

(data)

Slv_reg 3
(data)

Writes a special software
register like slv_reg_9 with all
ones to acknowledge all data

send

Slv_reg 4
(data)

The user logic now pools
on the valid_out signal from
the RP until it indicates that

the RP is generating valid
Keeps pooling on another output data
special software register like
slv_reg_10 to know when the RP
has finished writing data

Slv_reg 5
(data)

Slv_reg 6
(data)

Slv_reg 7
The User logic will write (data)

When the special slv_reg_10 the RP output data to the

indicates that the user logic has slave registers
finished writing data to the slave
registers and starts reading the
data

Slv_reg 8
(data)

Slv_reg 9
(processor
acknowledgement

The user logic will write an
The micro-process writes the acknowledgement at
data to an output file on the slv_reg_10 to indicate that it
compact flash finished writing RP output
E

Slv_reg_10 (RP
acknowledeement

Figure 9.1: flow charts and slave registers structure
The typical auto generated user logic code contains:

e Port definitions and components (RP).
e A process block for writing processor data into slave registers as shown in
Figure 9.2.
e A process block for sending salve registers data to processor when selected as
shown in Figure 9.3.
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|-— Tmplement slave model software accessible register(s)
SLAVE_REG_WRITE_PROC : process( Bus2IP_Clk ) is
begin

if Bus2IP_Clk'event and Bus2IP_Clk = '1' then
if Bus2IP_Reset = '1' then
slv_reg0 <= (others => '0');
slv_regl <= (others => '0');
else
case slv_reg write_sel is
when "1000000" =>
for byte_index in 0 to (C_SLV. DWIDTH/8) 1 loop

i if ( Bus2IP_BE(byte_index) = ' ) then

: 31vfrego(byte index*8 to byte index*8+7) <= Bus2IP_Data(byte_index*8 to byte_index*8+7);
i end 1T;

end Toop;

when "0100000" =>
for byte_index in 0 to (C_sLV. DWIDTH/c) 1 Toop
i if ( Bus2IP_BE(byte_index) = ) then
; 31vfregl(byte index*8 to byte index*8+7) <= Bus2IP_Data(byte_index*8 to byte_index*8+7);
i end if;
end loop;

Figure 9.2: writing processor data into slave registers

-~ implement slave model software accessible register(s) read mux
ELAVE REG READ_PROC : process( slv_reg_read_sel, slv_reg0, slv_regl, slv_reg2, slv_reg3, slv_regd, slv_reg5, slv_regé ) is
egin

case slv_reg_read_sel is
i when "1000000" => slv_ip2bus_data <= slv_reg0;
i when "0100000" => slv_ip2bus_data <= slv_regl;

Figure 9.3: reading data from slave registers to processor

Now as explained before to set a large test case many slave registers are like 128
registers or even 1024 registers, this will result in a very bad repetitive code which
will be hard to develop and debug, to solve this problem the following edit was done

to the user logic.

For easier large set of slave registers, the salve should instead be defined as an
array of signals instead of separate signals; this will require an additional address
encoder to convert the one-hot address send by the microprocessor to a normal index

that could be used to access the slave register signal array.

The edits are shown in Figure 9.4, Figure 9.5.

|-~ implement slave model software accessible register(s)
SLQVE REG_WRITE_PROC : process( Bus2IP_Clk ) is
egin
?f Bus2IP_Clk'event and Bus2IP_CTk = '1' then
{ if Bus2IP_Reset = '1' then
for i in 0 to (C_NUM_REG - 1) loop
slv_reg(i) <= (others => '0");
end 100p

1f( not (reg index_in = "10000000") ) then
i for byte_ 1ndex in 0 to (C_SLV_ DWIDTH/S) 1 Toop
if ( Bus2IP_BE(byte_index) = '1' ) then

s]vfreg(to 1nteger(uns1gned(reg_1ndex in))) (byte_index*8 to byte_index*8+7) <= Bus2IP_Data(byte_index*8 to byte_index*8+7);

Figure 9.4: Slave registers array code

203



-- implement slave model software acce557ble reg75ter(s) read mux
gLA\/E REG_READ_PROC : process(sTv_reg_read_sel,sTv_reg(0),s1v_reg(1),s1v_reg(2) ,s1v_reg(3),s1v_reg(4),s1v_req(5),s1v_reg(6) ,sTv_reg(7)
eqin
?f(not (reg_index_out = "10000000")) then
s}v _ip2bus_data <= sTv_reg(to_integer (unsigned(reg_index_out)));
else
slv_ip2bus_data <= (others => '0');
end if;
end process SLAVE_REG_READ_PROC;

Figure 9.5: Slave registers array processor read

The reg_index_in is the output of the encoder that is used to convert to one hot
address from the processor to normal address, an important note is that the user logic
cannot have any components unless they are added to the same library of the
user logic contrainer, that’s why the encoder instantiation code is as shown in
Figure 9.6. The rest of the user_logic code is used to convert the data from the slave
registers to RP input.

encl: entity crc_vl_00_a.encoder
port map (a => slv_reg write_sel,
1 f = index_in

library crc_v1_00_a;
use crc_vl_00_a.user_logic;
use crc_vl_00_a.encoder;

Figure 9.6: encoder instantiation and library definition

9.1 SDK C Code

SDK c code is modified to be able to read input data from the input file that exist
in the compact flash, transfer this input data to the system on chip (reconfigurable
partition) (user logic), wait the acknowledge from the system on chip to inform the
SDK ¢ code that the output data is ready in the slave registers, read the output data

from the system on chip and write it in the compact flash in the output file.

9.1.1 Sysace_read
This function is used to read input data from the input file that exist in the compact
flash. The header of this function is as shown in Figure 8 , and as shown in Figure 240

that this function call another four functions:

e sysace fopen

This function is used to open the input file and its header is as following:

void *sysace_fopen (const char *file, const char *mode)

Parameters: file is the name of the file on the flash device. Mode is “r” or

(13 2

W
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Returns: A non zero file handle on success.0 for failure.

User

Defined calculation() Sysace_read() sysace_stdio.h

Functions
¢ sysace_fopen()

¢ sysace_fread()
¢ sysace_fwrite()
¢ sysace_fclose()

stringtoint()

bus2rp() xil_io.h

e Xil_Out32()
rp2bus() xil_io.h

e Xil_In32

Sysace_write() sysace_stdio.h

esysace_fopen()
esysace_fwrite()

inttostring()
shuffle()

stringlen()

Figure 240: User defined functions diagram

The file name should follow the Microsoft 8.3 naming standard with a file
name of up to 8 characters, followed by a ‘.” and a 3 character extension. In
this version of the library, the 3 character extension is mandatory so a sample
file might be called test.txt. This function returns a file handle that has to be
used for subsequent calls to read/write or close the file. If mode is “r”” and the
named file does not exist on the device 0 is returned.

e sysace fread
This function is used to read the input file and its header is as following:

int sysace_fread (void *buffer, int size, int count, void *file)

Parameters: buffer is a pre allocated buffer that is passed in to this
procedure, and is used to return the characters read from the device. Size is
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restricted to 1. Count is the number of characters to be read. File is the file
handle returned by sysace_fopen.

Returns: None zero number of characters actually read for success. O for
failure.

The preallocated buffer is filled with the characters that are read from the
device. The return value indicates the actual number of characters read, while
count specifies the maximum number of characters to read. The buffer size
must be at least count. Stream should be a valid file handle returned by a call
to sysace_fopen.
sysace_fclose

This function is used to close the input file and its header is as following:

int sysace_fclose (void *file)

Parameters: file is the file handle returned by sysace_fopen.

Returns: 0 on success and -1 on failure.

Closes an open file. This function also synchronizes the buffer cache to
memory. If any files were written to using sysace_fwrite, then it is necessary
to synchronize the data to the disk by performing sysace_fclose. If this is not
performed, then the disk could possibly become corrupted.

stringtoint

int stringtoint(char str[])

This function is used to convert a string to an integer. Since that the size of
the memory is very limited so we can’t use built in functions like atoi, itoa,

strlen, pow,.....etc. so we created similar functions.

9.1.2 bus2rp

This function is used to transfer the input data to the system on chip slave registers

(reconfigurable partition) (user logic). The header of this function is as shown in
Figure 242.

Xil_Out32

#define Xil_In32(Addr) (*(volatile u32 *)(Addr))
Perform an input operation for a 32-bit memory location by reading from

the specified address and returning the value read from that address.

Parameters: Addr contains the address to perform the input operation at.
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Return : The value read from the specified input address.

9.1.3 rp2bus
This function is used to read the output data from the system on chip after waiting
the acknowledging signal to inform the SDK ¢ code that the output data is ready in the

slave registers. The header of this function is as shown in Figure 243.

e Xil_In32
#define Xil_Out32(Addr, Value) \ (*(volatile u32 *)((Addr)) = (Value))

* Perform an output operation for a 32-bit memory location by writing the

specified value to the specified address.
Parameters: Addr contains the address to perform the output operation at.
Value contains the value to be output at the specified address.

Return : None.

9.1.4 Sysace write

This function is used to write the output data in the output file that exist in the
compact flash. The header of this function is as shown in Figure 244, and as shown in
Figure 240 that this function call another four functions:

e sysace fopen (as explained before)
e sysace_fwrite (as explained before)
e inttostring
This function is used to convert an integer to a string without using built in
functions duo to the memory size limitation.
e Shuffle
This function is used to shuffle a string because the output string from
inttostring function is reversed.
e Stringlen
This function is used to find the length of a string without using built in

function (strlen).

- Function to Read from System agce--—--——-——-———————— o

'int Sysace read (Xuint32 * dataz in ,Xuintlé * incount , Xuint8*flagl, Xuint8¥flag2, Xuint8*flag3) {[J
Figure 8: Header of Sysace_read function
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ff-—--- --- ---- --Function to transfer input data to RP-—-——---- ---- --- ===/
void buslrp (Xuint3Z data in,Xuintlé * incount Xuint8*flag2) {[]

Figure 242: Header of bus2rp function

Xuint® rp?bus (Xuint32 * data out,Xuintlé * incount,Xuintlé ¥ outcount,Xuintf ¥ flag3) {[]

Figure 243: Header of rp2bus function

1nt Sysace write(SYSACE FILE #* stream output,Xuint3Z data out, Xuint® * flag4,Xuint® flags){[]
Figure 244: Header of Sysace_write function
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Chapter 10: Multiple Reconfigurable Partitions (RPs)

Till now we are able to reconfigure one RP so the process is as following

e Reconfigure the new partition ( 3G, 4G or WI-FI) using the PLB bus

e Handshake data between different internal blocks of this standard using the
PLB bus

o After all the frame data is generated from the last internal block we

reconfigure the new partition

This approach faces a lot of problems. First, we have to wait a long time until all
data is generated from last block of the chain. In addition, we can’t reconfigure each
internal block using multiple partitions only. That’s because of conflict of data on the
PLB bus between several data out of different internal blocks and conflict between
these data out and the reconfigurable data which is transferred using the same PLB

bus.

To solve all these problems we use a new approach using multiple reconfigurable
partitions with floating ports for the input and output data. By connecting the input
floating port of the internal block with the previous block’s output floating port we
generate a new bus for the data flow far away from the PLB bus as shown in
Figure 10.1. [12]

The new approach solves the problem of data conflict and adds a kind of pipelining
for the flow. Now after each internal block finish its function we can reconfigure it

with the next used standard internal block which decreases the overhead time greatly.

Now when the frame is finished the overhead time will be only the time of

reconfiguring the last internal block of each standard.

To implement this approach on our standards chains we have to divide our chains
to number of internal blocks which handshake the data and add the related blocks of
the different standards in the same RP to change between them as shown in
Figure 10.2 . After that we have to unify the interface of these related blocks in order

to change between them properly and perform the PDR concept.
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RP = Reconfigurable Partition

Figure 10.1-multiple RPs-system block diagram
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Figure 10.2-Standards Blocks
To prove the concept of multiple RPs, we made demo project to test the idea. The

Proc
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I ACE
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16 QAM
64 QAM

i —

Filler
Filler
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system contains two reconfigurable partitions, first contains two reconfigurable

modules: Adder, multiplier. Second contains two reconfigurable modules: addition by

3 and addition by 4 as shown in Figure 10.3.
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RM2
Multiplier

PLB
Bus

Figure 10.3-multiple RPs-Demo project

First, build the system on Xilinx platform studio (XPS). That needs modifications
to user logic VHDL files as shown in Figure 10.4 and modifications to math VHDL
files as shown in Figure 10.5.

In user logicl, math1l files, we added output port and connected it to output port of
reconfigurable partition.

In user logic2, math2 files, we added input port and connected it to input port of

reconfigurable partition.

We also adjusted mpd files to define the ports, directions of them and size of them

as shown in Figure 10.6.

To connect the ports of mathl, math2 together we need to edit the ports connection

on Xilinx platform studio (XPS) as shown in Figure 10.7 .

Graphical Design View of Xilinx platform studio (XPS) shows the connection to

verify that adjustment of files was correct as shown in Figure 10.7.

After that, we use Plan Ahead to generate bit files for different configurations. First
we define the reconfigurable partitions and reconfigurable modules as shown in
Figure 10.9.
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entity user logicl is

port

(
-— ADD USER PORTS BELOW THIS LINE
—-USER ports added here
output_port .
-— ADD USER PORTS ABCVE THIS LINE

--USER logic implementation added here

rpl_instance : rpl
port map |
ain =» slv_regQ,

bin => slv_regl,
Clk => Bus2IF Clk,
Reset => Bus2IP Reset,
result => result

)i

output_port<= result;

out =std_logic vector(0 to C_SLV_DWIDTH-1);

en’

(

tity user logic2 is

port

—- ADD USER PORTS BELCW THIS LINE
—-USER ports added here

input_port in std logic_vector (0 to C_SLV DWIDTH-1):
—- ADD USER PORTS RABCVE THIS LINE

—-USER logic implementation added here
rpl_instance : rp2
POt map |
=» slv_reg0,
=» input_port,
=» 3lv_regl,
=» Bus2IP _Clk,
Reset =»> Bus2IP_Reset,
result => result
)i

Figure 10.4-multiple RPs -user logic files

entity mathl is

port

[
-- ADD USER PCRTS BELCW THIS LINE
--USER ports added here
output_port math : out std_logic vector(0 to 31)
-- ADD USER PCRTS ABCVE THIS LINE

output_port math<=user output_port;
signal user output_port : std_logic_vector(0 to 31)

USER_LOGIC I : entity mathl vl 00 a.user logicl

pOIt map

[
-- MAP USER PCRTS BELCW THIS LINE --———————————————-
--USER ports mapped here
-- MAP USER PCRTS ABCVE THIS LINE --————--—————————-
output_port  =>user output_port,
Bus2IP Clk => ipif Bus2IP Clk,
Bus2IP_Reset => rst_Bus2IP Reset,
Bus2IP Data =»> ipif Bus2IP Data,
Bus2IP_BE => ipif Bus2IP BE,
Bus2IP RACE =» user Bus2IP R4CE,

Bus2IP_WrxCE
IP2Bus Data
IP2Bus_RdAck
IP2Bus WrAck
IP2Bus_Error

user Bus2IP_WrCE,
user IP2Bus Data,
user IP2Bus_Rdhck,
user IP2Bus_Wrkck,
user IPF2Bus_Error

{

=2

-- ADD USER PCRTS BELCW THIS LINE
--USER ports added here

input_port_math : =
-- ADD USER PCRTS ABCVE THIS LINE

USER_LOGIC I :

entity math2 is

port

in =td logic wector(0 to 31);

user_input port<=input port_math;

ignal user input port : ztd_logic_vector(0 to 31);

entity math2 vl 00 a.user logic2

port map
i
-- MAP USER PCRTS BELOW THIS LINE
--USER ports mapped here
-- MAP USER PCRTS ABCVE THIS LINE
input_port =»user_input_port,
Bus2IP Clk
Bus2IP Reszet
Bus2IP Data
Bus2IF BE
Bus2IP RACE
Bus=2IP WrCE
IP2Bus Data
IP2Bus Rdick
IP2Bus Wrkck
IP2Bus Error
)i

ipif Bus2IP Clk,

rst_Bus2IP Reset,
ipif Bus2IP Data,
ipif BusIIF BE,

user Bus2IP RACE,
user BuslIP WrCE,
user_IP2Bus Data,
user IP2Buz RdAck,
user_IP2Bus_Wrkck,
user IP2Bus Error

Figure 10.5-multiple RPs- math files

#%# Portcs
FORT ocutput port math

#%# Porcs
FORT input port math

"output port math" ,

input port math

DIR

, DIR I,

Figure 10.6-multiple RPs-mpd files
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=1 math1 0

output_... math2_O:input_port_math S0 [0:31]
=1 math2 0
input_p... math1_O:output_port_math £ [0:31]

Figure 10.7-multiple RPs-ports connection

miathl_0

math2_0

Figure 10.8-multiple RPs-graphical design view

: --EH math1_0/USER_LOGIC Ijrpl_instance (rpl
— _ Reconfigurable Madules (3
¢ > mathl_BB
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: Ly mult

-5 Nets (6

-1 Primitives (3

—-[&] math2_0 (trizl1_math2_0_wrappe

#-15) Nets (406

+-) Primitives (259

213 math2_0/USER_LOGIC Ifrpl_instance (rp2
=l-{=r Reconfigurable Modules (3

-4 math2_BB
plus3

5 & plus4

+-i5) Nets (156

417 Primitives {122

Figure 10.9-multiple RPs-Plan Ahead partitions

There are four different possible configurations: (adder+plus3), (adder+plus4),
(multiplier +plus3), (multiplier+plus4) but each reconfigurable module should be used
at least at one configuration so we can run only two configurations: (adder+plus3),

(multiplier+plus4) as shown in Figure 10.9.

To test the system we only reconfigure one partition and check the effect on the
output as shown in .the expected outputs are shown in Table 10.1 and Figure 10.11

shows the generated outputs which are identical to expected outputs.
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Configuration Module Variant
=% configl (3)

| ~[J# static Logic

- math1_0/math1_0/USER_LOGIC_Ifrpl_instance adder

¢ it math2_0fmath2_0/USER_LOGIC_Ijrpl_instance plus3

--% config2 (3)

-]+ Static Logic

- math1_0/math1_0/USER_LOGIC_Ifrpl_instance mult

-y math2_0/math2_0/USER_LOGIC_Ifrpl_instance plus4

Figure 10.10: multiple RPs-Plan Ahead configurations

Table 10.1-multiple RPs-Expected outputs

First operand = 3, second operand = 5

Adder Multiplier
Plus3 11 18
Plus4 12 19

—— Entering main{) —-

System ACE Controller Initialized
After HWICAP LookupConfig

HWICAP Initialized

Press m or H for multiplication

Press a or A for adder

Press p or P for plus3

Press r or R for plus4

Press b or B for blanking configuration

Press o or 0 to enter operands and display result
Press g or Q to quit the demo

Performing reconfiguration for adder
Performing reconfiguration for plus3

First operand: 3
first:

Second operand: S
second: 5

Result: 11
Performing reconfiguration for plush

Result: 12

Performing reconfiguration for multiplier

Result: 19

Performing reconfiguration for plus3

Result: 18
Figure 10.11-multiple RPs-generated outputs
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Chapter 11: Results

In this chapter we are going to conclude our achievements and results through a

year full of team work, enthusiasm, hard work and research.

Our project is an experience of both hardware and software skills. And in our
project we have been keen on verifying our results to make sure of the success of our

work.
Here are some of the results of our work

e HDL and MATLAB implementation of 3G transmitter and receiver

e HDL and MATLAB implementation of WI-FI transmitter and receiver

e HDL and MATLAB implementation of LTE (4G) transmitter

e Building a test framework to Verify of HDL implementation

e Implementation of the three chains on the FPGA (Virtex 5)

e Generate and prove the concept of multiple RPs by implementing it on a
simple example

e Prove the concept of PDR

e Debug the FPGA results using Chipscope

e Build a system on chip (SOC) with input and output files

e Reduce the total area and resources needed for implementation of the three
standards. We choose the most consuming standard and its resources is the
only needed resources to implement all the chains on this FPGA

e Reduce the total power of the system as we eliminate the static and sleep mode
power consumed by the idle chains

e Reduce reconfiguration overhead by reconfigure each internal block of the
chain after finishing its function. This is a kind of pipelining as we don’t need
to wait until all frame data is generated to reconfigure each internal block of

the chain
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Chapter 12: Conclusion and Recommendations

Conclusion:

After going through simulation and hardware implementation of PDR between
different communication standards like 3G, 4G, WIFI, we can say that it is very
useful to implement software defined radio in handsets using PDR. This enables us to

reduce area and power used.

The motivation behind this sustainable work that Cairo University could be pioneer
in this promising field and could build a system by hands and minds of ambitious

engineers and researchers to be used by all industrial companies.

Recommendations

Moving towards the market and changing project’s goal from just proofing
concepts to implementing an applicable market project needs some improvement,
These improvements also can be a suitable idea to broaden the horizon for future
graduation projects. Throughout this chapter, we are going to figure out most of the
enhancements that are required for the previously recalled chains as well as general
developing for the project.

12.1 3G

Most of the blocks and specifications for the 3G standards are covered within the
projects only few of blocks are needed to be added at the receiver since we assume
that the transmitter and receiver are synchronized [6]. First of all, the rate matching
and the turbo encoder at the transmitter are still not implemented. Also, the physical
interface with the MAC layer has to be created as most of the parameters are forced
during running since this part was out the project’s scope.

122 LTE

One of the main privileges for the LTE technology is boosting the rate for data

transmission and reception. To have this advantage numbers of techniques are used;
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one of these techniques is the modulation used for data bits that are stated in the

following table. For our project, we use only the QPSK and 16QAM technique [13].

Secondly, LTE support the use of multiple antennas for sending and receiving data.
These allow that more bits may be send at the same time by means of orthogonality.
To implement this technique numbers of blocks are required to be added to support
the MIMO. Figure 0.1 shows the block diagram for the MIMO implementation [13].

codewords layers antenna
. ports |

/ | |
/ | |

| |

s bl Modulation & Resource OFDM signal A
crambling mapper Al . element mapper generation Al
‘ Layer |
OFDMsignal | ')

generation v

A

. Precoding
mapper

. Modulation : ,‘ ' Resource ;
Scrambiling mapper 7 | element mapper

Figure 0.1: Block Diagram for MIMO

Moreover, for the OFDM block is consists of DFT followed by IFFT and the pilots
insertion block. Pilots are bits assigned to specific subcarriers used for channel
estimation at the receiver. Sequences of these bits are defined in standards for
different versions of LTE. In this project we assume that these pilots are assigned to
all ones since there is no channel estimation block at the receiver. Figure 0.2 shows

the position for the pilots within the subcarriers.

Pilot Subcarriers

User 2 Data Snbrarriers

// N User 1 Data Subcarriers
N\
.
\

7N /) N,

JTTTTTT[THTNMTTTTTT TITTLIITITTT[ W‘HM LT :

Gnarid Band Guard Band

Figure 0.2: OFDMA Subcarriers Signals

Finally, some blocks are needed at the receiver for accurate reception of data such
as synchronization block as well as the turbo decoder as the decoder need soft Viterbi

instead of hard Viterbi (values rather than zeros and ones) [8].
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12.3 WIFI

Timing synchronization block is the block required for accurate detection of the
data at the receiver. Therefore, implementation of such a block is a challenging one.
Timing synchronization performs two main functions packet detection and symbol
timing. Packet detection is the task of finding an approximate estimate of the start of
the preamble of an incoming data packet. It is the first synchronization algorithm that

is performed.

The rest of the synchronization process is dependent on good packet detection
performance. Also, one of drawbacks of OFDM is its sensitivity to carrier frequency
offset. To solve this problem, implementation for frequency synchronization is

required to be present in practical usage for Wi-Fi [9].

12.4 Others Improvements

Other standards may be implemented such as the Bluetooth standard and GSM
standard. Regarding the switching algorithm used in the FPGA to switch between the
standards may be improved to be more automated such without the need for user

presence.
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