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Abstract 

This thesis discusses the implementation of chains for multi-standards 

communication (3G, LTE, and WIFI) on a dynamically and partially reconfigurable 

heterogeneous platform FPGA VIRTEX5. Implementation results highlight the 

benefit of considering an FPGA platform like (VIRTEX 5) that supports efficiently 

intensive computation components. The implementation of the desired chains for 

multi-standards communication proves the availability of Partial Dynamic 

Reconfiguration technology to support efficiently Software Defined Radio.  

This project aims to implement the transmitter and receiver chains for the three 

standards (Wi-Fi, 3G and LTE). Then reconfigure the FPGA by the desired chain on 

the fly without the need for resetting. This technique depends on the new technology 

Partial Dynamic Reconfiguration (PDR) which is introduced by XILINX. The new 

technology is expected to save area, power and cost of communication devices and 

increases the speed of switching and reconfiguring the FPGA. During the project, 

experience is gained in HDL & MATLAB modelling of the transmitter and receiver 

blocks of the three standards, building a system on chip that consists of: Micro-blaze 

processor IP, ICAP IP and system Ace IP to enable partial configuration and other 

peripherals. Thus enable the communication with PC while testing the reconfiguration 

on separate blocks and finally testing the reconfiguration of the entire standards 

chains. 
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Motivation 

Communication system design is typically a highly complex process. The 

telecommunications industry is technologically dynamic, with new technologies and 

enhancement of existing technologies constantly evolving. The implementation of 

Radio Communication systems could have two ways: Hardware specific design which 

has the advantage of minimum usage of resources and best performance and software 

defined radio where the hardware components are implemented as software on PC or 

an embedded system which has the advantage of being flexible to any changes or 

updates. 

Reconfigurable hardware platforms like FPGAs opened a way to have a solution 

that combines advantages of both ways by using hardware specific design that could 

be reconfigured or programmed by software control. 

The idea of our project aims to even improve this solution by using the partial 

dynamic reconfiguration technology. 

Partial dynamic reconfiguration allows us to divide the FPGA to partitions that 

could be reconfigured on the fly without need to reset the whole FPGA. Complete 

separate chains could be reduced to a few partitions that could be reconfigured to fit 

the required communication standard. 
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Chapter 1: Introduction 

In this thesis we are going to prove the concept of the availability for using partial 

dynamic reconfiguration in implementing software defined radio. The thesis flow will 

go as following. 

Chapter 2 introduces a survey about the technology then in Chapter 3 a brief 

summary of software defined radio followed by a partial dynamic reconfiguration 

concept. Then an overview of FPGA construction is covered illustrating targeted 

applications and advantages. Coexistence with communication standards discussed as 

viewed in other patents and papers as a step towards implementing the standards 

chains. 

 Throughout Chapter 4, 5 and 6 we will go deep in the implemented standards’ 

transmitter and receiver (3G, LTE and Wi-Fi). Those chapters introduce the 

architectures of the standards chains (Receiver and transmitter), implementation of the 

HDL codes, illustrating the challenges, mentioning each block implementation and 

any modification done. Each implementation is done giving the all data rates 

combinations, where complete system design is performed, obtaining different 

blocks’ specifications and expected non-idealities. 

Chapter 7 covers functional verification of the chain blocks using MATLAB codes 

and Perl scripts, IFFT test and fixed point simulation. 

Chapter 8 discusses system on chip concepts, each chain implementation using one 

RP, switching between different chains and kit steps implementing Microblaze bus. 

Chapter 9 covers the FPGA testing environment, I/O files and methods used to 

interface with PC.     

Chapter 10 introduces new approach that’s deal with reconfigurable partition rather 

than one partition and discusses the testing environment for this new technique. 

Chapter 11 concludes our achievements and results through a year full of team 

work, enthusiasm, hard work and research.  

Chapter 12 proposes the potentials expected in the upcoming years and 

improvements that are the next step for the projects fellows. 
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Chapter 2: Survey 

Software-Defined Radio (SDR) is a rapidly evolving technology that is receiving 

enormous recognition and generating widespread interest in the telecommunication 

industry. Over the last few years, analog radio systems are being replaced by digital 

radio systems for various radio applications in military, civilian and commercial 

spaces. In addition to this, programmable hardware modules are increasingly being 

used in digital radio systems at different functional levels. SDR technology aims to 

take advantage of these programmable hardware modules to build open-architecture 

based radio system software.  

SDR technology facilitates implementation of some of the functional modules in a 

radio system. This helps in building reconfigurable software radio systems where 

dynamic selection of parameters for each of the above-mentioned functional modules 

is possible. A complete hardware based radio system has limited utility since 

parameters for each of the functional modules are fixed. A radio system built using 

SDR technology extends the utility of the system for a wide range of applications that 

use different techniques.  

Commercial wireless communication industry is currently facing problems due to 

constant evolution of protocol standards (2G, 3G, and 4G), existence of incompatible 

wireless network technologies in different countries inhibiting deployment of 

problems in rolling-out new services and features due to wide-spread presence of 

legacy subscriber handsets.  

SDR technology promises to solve these problems by implementing the radio 

functionality as software modules running on a generic hardware platform. Further, 

multiple software modules implementing different standards can be present in the 

radio system. The system can take up different personalities depending on the 

software module being used. Also, the software modules that implement new services 

and features can be downloaded over-the-air onto the handsets. This kind of flexibility 

offered by SDR systems helps in dealing with problems due to differing standards and 

issues related to deployment of new services and features. 
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Current market drivers such as future-proof equipment, seamless integration of 

new services, multi-mode equipment and over-the-air feature insertion in commercial 

wireless networking industry have resulted in widespread interest in SDR technology. 

The technology can be used to implement wireless network infrastructure equipment 

as well as wireless handsets, wireless modems and other end user devices. However, 

factors like higher power consumption, increased complexity of software and possibly 

higher initial cost of equipment regarding to the benefits offered by the technology 

should be carefully considered before using SDR technology to build a radio system.  
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Chapter 3: SDR & PDR Concepts 

3.1 SDR by Definition 

Historically, radios have been designed to process a specific waveform. Single- 

function, application-specific radios that operate in a known, fixed environment are 

easy to optimize for performance, size, and power consumption. At first glance most 

radios appear to be single function a first-generation cellular phone sends your voice, 

while a WiFi base station connects you to the Internet. Upon closer inspection, both of 

these devices are actually quite flexible and support different waveforms. Clearly a 

software-defined radio’s main characteristic is its ability to support different 

waveforms. The definition from wireless innovation forum (formerly SDR forum) 

states: A software-defined radio is a radio in which some or all of the physical layer functions 

are software defined. [1] 

3.2 Why SDR? 

It takes time for a new technology to evolve from the lab to the field. Since SDR is 

relatively new, it is not yet clear where it can be applied. Some of the most significant 

advantages and applications are summarized below. 

 Interoperability. An SDR can seamlessly communicate with multiple 

incompatible radios or act as a bridge between them. Interoperability was a 

primary reason for the US military’s interest in, and funding of, SDR for the 

past 30 years. Different branches of the military and law enforcement use 

dozens of incompatible radios, hindering communication during joint 

operations. A single multi-channel and multi-standard SDR can act as a 

translator for all the different radios.   

 Efficient use of resources under varying conditions. An SDR can adapt the 

waveform to maximize a key metric. For example, a low-power waveform can 

be selected if the radio is running low on battery. A high-throughput 

waveform can be selected to quickly download a file. By choosing the 

appropriate waveform for every scenario, the radios can provide a better user 

experience. 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 Opportunistic frequency reuse (cognitive radio) An SDR can take advantage 

of underutilized spectrum. If the owner of the spectrum is not using it, an SDR 

can ‘borrow’ the spectrum until the owner comes back. This technique has the 

potential to dramatically increase the amount of available spectrum.   

 Reduced obsolescence (future-proofing). An SDR can be upgraded in the field 

to support the latest communications standards. This capability is especially 

important to radios with long life cycles such as those in military and 

aerospace applications. For example, a new cellular standard can be rolled out 

by remotely loading new software into an SDR base station, saving the cost of 

new hardware and the installation labor.   

 Lower cost. An SDR can be adapted for use in multiple markets and for 

multiple applications. Economies of scale come into play to reduce the cost of 

each device. For example, the same radio can be sold to cell phone and 

automobile manufacturers. Just as significantly, the cost of maintenance and 

training is reduced. 

 Research and development. An SDR can be used to implement many different 

waveforms for real-time performance analysis. Large trade-space studies can 

be conducted much faster (and often with higher fidelity) than through 

simulations. 

3.2.1 Field Programmable Gate Arrays  

A Field Programmable Gate Arrays (FPGA) is a pre-manufactured silicon device 

with high flexibility and capability to be configured to realize different applications 

developed by a designer. They are programmed using Hardware Description 

Language (HDL) like VHDL or Verilog. So, it is naturally different from an 

Application Specific Integrated Circuit (ASIC), which is a circuit designed for a 

specific application with no reconfiguration capabilities.  

An ASIC not only lacks the configurability feature, but also requires a long design 

cycle, and high start-up engineering cost compared to an FPGA. On the other side, 

FPGAs trade the extra area, power consumption, and delay for its unique feature. 

“Typically, FPGAs occupy larger area and dissipate more switching power than ASIC 

standard cells by factors of 20-30x and 10x, respectively. 
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From marketing prospective, FPGAs are used for small volume products need to 

be sold faster, where ASICs are used for large volume products, but the non-recurring 

engineering cost in the ASICs make their cost as a function of production volume in a 

flatter way than the FPGA. As shown in Error! Reference source not found., the 

more the technology advances in the scaling factor, the wider the range of using 

FPGAs in production.  

 

 
Figure 3.1: FPGA and ASIC total cost V.s production volume 

 

3.2.2 What is inside the FPGA? 

1. Configurable Logic Blocks (CLBs): includes Registers and Look-Up Tables 

(LUTs). They are the building blocks of the FPGA. Each Xilinx Virtex 5 

device contains arrays of CLBs, each Virtex 5 CLB has two slices, and each 

slice has four LUTs and four Flip Flops.  Combinatorial logic is implemented 

using LUTs, they can implement any 6-input combinatorial function of the 

user choice, with a cost of delay. Noting that, complexity of combinatorial 

function does not matter as long as it depends on six inputs or less.  Flip Flops 

can be programmed to be latch, SR, JK, or D Flip Flops. Also, one carry 

chain is available per slice for arithmetic purpose; it helps to secure fast 

propagation of carry bit to nearby cells, which means it improves the speed. 

Moreover, it saves LUTs.   

2. Dedicated Blocks: Like DSPs, which acts as an arithmetic logic unit, RAM 

blocks, PCIe core.  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3. Input/output Blocks: with programmable standard functionality, like 

LVCMOS, LVPECL, and PCI. In fact, each bank can support several 

standards as long as they share the same reference voltage, or output voltage.   

4. Routing: a combination of programmable and dedicated routing lines, use 

switching matrices connect lines from any source to any destination. 

Constrains can be applied.   

5. Clocking Resources: like Phase Locked Loop (PLL) which removes clock 

errors, and Digital Clock Management (DCM). The dedicated clock trees 

balance the skew and minimize the delay. Thirty-two separate clock networks 

are available in Virtex 5 FPGA. As shown in Figure 3.2. 

 

 
Figure 3.2:FPGA Internal structure 

3.3 FPGA Configuration 

3.3.1 Configuration Definition 

Using a preliminary definition, a configuration is a complete FPGA design. That 

means, everything on the chip is specified either to do a function, or nothing at 

all. One can view the FPGA is a two-layered device, consists of a configuration 

memory layer, and a logic layer Figure 3.3. The configuration, or the complete 

design, stored on the configuration memory layer, will control the logic on the other 

layer. 
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Figure 3.3:FPGA Layers 

3.3.2 Types of Configuration 

There are four types of configuration of FPGAs shown in Figure 3.4 

1. Fixed Configuration: where data is loaded from a memory at power-on, then 

the configuration will remain fixed until the end of the FPGA cycle. This type lacks 

efficiency, since all the possible functions needed to be done by the FPGA must be 

specified in the configuration file from the beginning. On the other side, the space and 

resources of the FPGA are limited. That adds complexity to the design.  

2. Reconfiguration: An initial full bit file contains a complete configuration is 

loaded into the device at power-on. Then different full bit files with other complete 

configurations can be loaded on the FPGA during its duty cycle, but the configuration 

memory must be erased first. This is a good step but it is not enough, as seen in figure 

4, there is large overhead time in the reconfiguration phase. 

3. Partial Reconfiguration: Initial full bit file with a complete configuration is 

loaded into the device at power-on. Whenever something to be altered, all 

computations will stop, then a partial bit file concerned with the modification in the 

original complete configuration is loaded. This time the reconfiguration overhead 

time is reduced compared the previous type. In applications where FPGAs are used as 

communication hub, they must be active all the time to retain active links, so partial 

reconfiguration is not enough, as the computations stop during loading the partial bit 

file.  
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4. Dynamic Partial Reconfiguration (DPR): Unlike the partial reconfiguration, 

while the configuration layer on the FPGA is being modified, the logical layer 

continues its normal operation, except for the circuit subjected to modification. This 

reconfiguration overhead is limited to the circuit.  

 

Figure 3.4: FPGA configuration types 

3.3.3 What is Partial Reconfiguration (Problems to solve)? 

 Applications need to be able handle a wide variety of functions. 

– Supporting many at once can use a great deal of space. 

 FPGA and board space is limited. 

– Multi-chip solutions require extra area, cost and power. 

 FPGA can be a communications hub, must remain active. 

– Cannot reconfigure due to established links. 

 PCIe enumeration time is increasingly difficult to meet with larger devices. 

– Challenge increases significantly in Virtex-5 and Virtex-6. 

3.4 Partial Reconfiguration of FPGAs 

As systems become more complex and designers are asked to do more with less, 

FPGA adaptability has become a critical asset. While FPGAs have always provided 

the flexibility to do on-site device reprogramming, today’s tougher cost, board space, 

and power consumption constraints demand even more efficient design strategies.  
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Partial reconfiguration extends the inherent flexibility of the FPGA by allowing 

specific regions of the FPGA to be reprogrammed with new functionality while 

applications continue to run in the remainder of the device Figure 3.5. Partial 

reconfiguration addresses three fundamental needs by enabling the designer to: 

Reduce cost and/or board space, change a design in the field, Reduce power 

consumption. [2] 

The two most prevalent user problems addressed by partial reconfiguration are: 

Fitting more logic into an existing device and fitting a design into a smaller, less 

expensive device. Historically, designers have spent a lot, trying new implementation 

switches, reworking code, and re-engineering solutions to squeeze them into the 

smallest possible FPGA. Partial reconfiguration enables these designers to reduce the 

size of their designs by dynamically time-multiplexing portions of the available 

hardware resources. The ability to load functions on an as-needed basis also reduces 

the amount of idle logic, thereby saving additional space. One of the applications of 

this strategy is the use of partial reconfiguration within a software defined radio 

(SDR) system, where the user uploads a new waveform on demand to establish 

communication with a new channel. Any number of waveforms can be supported by a 

single hardware platform, requiring only unique partial bit streams to be available for 

these waveforms. Established links to other channels are not disrupted by the update 

to another channel due to the on-the-fly characteristics of partial reconfiguration. 

3.4.1 Partial Reconfiguration Enables 

 System Flexibility 

 Perform more functions while maintaining communication links 

 Size and Cost Reduction 

 Time-multiplex the hardware to require a smaller FPGA 

 Power Reduction 

 Shut down power-hungry tasks when not needed 
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Figure 3.5: Reconfigurable FPGA Structure  

3.4.2 Brief History of Partial Reconfiguration  

 The ability to partially reconfigure Xilinx FPGAs has been evolving for years 

– JBits and the XC6200 family are early examples 

– These solutions were experimental and very restrictive 

– They were used by academics 

 The Difference Design approach  

– Quiet cumbersome 

 The Modular Design approach appeared in 2005 

– Flow was complex and the silicon still had significant limitations 

– The PR Lounge, using 9.2.04i software, phased out in 2QCY10 

 More robust, mainstream solution was needed 

– Release 11 was a new dawn in the support of Partial Reconfiguration 

– Tools leverage mature technology (Partitions, PlanAhead) 

– Flow is more user-friendly, less complex 

 Software has been limiting factor preventing wide adoption 

– Early efforts were difficult and labor intensive 

– Modular Design provided first real flow, but was convoluted 

– Software was not included in mainstream tools 

– Partitions now permit a more mainstream approach 

 However, new flow is not “push-button” 

– User needs to follow specific rules and requirements in design and flow 

– Restrictions will reduce performance and efficiency 
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3.4.3 Partial Reconfiguration Analogy 

A FPGAs PR region is similar to the stack in a microprocessor.  The FPGA can 

have many PR regions so it can be much more powerful than a microprocessor for 

applications switching Figure 3.6Error! Reference source not found.. 

3.4.4 System Flexibility: Communication Hub 

The FPGA can be a communications hub and must remain active. It cannot 

perform full reconfiguration due to established links Figure 3.7.  

3.4.5 Size and Cost Reduction: Time Multiplexing 

Applications need to be able handle a variety of functions; supporting many at 

once can use a great deal of space. The library of functions use case covers a wide 

number of applications. The time-based multiplexing of functions reduces device size 

requirement Error! Reference source not found.. 

 

 

Figure 3.6: PR analogy 

3.4.6 Power Reduction Techniques with PR 

 Board space and resources are limited 

– Multi-chip solutions consume extra area, cost, and power 
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 Many techniques can be employed to reduce power 

– Swap out high-power functions for low-power functions when 

maximum performance is not required 

– Swap out black boxes for inactive regions 

– Swap high-power I/O standards for lower-power I/O when specific 

characteristics are not needed 

– Time-multiplexing functions will reduce power by reducing amount of 

configured logic 

 

Figure 3.7: FPGA as communication Hub 

 

Figure 3.8: FPGA time multiplexing 
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 Breaking the logic layer (Partial/Static Regions, Reconfigurable 

Partitions/Modules)  

Having a partial reconfiguration design means that, there are some parts of the 

design that will be changed according to its various configurations during run-time, 

and other parts that will not be changed, either due to design, or because it cannot be 

reconfigured. The first type, reconfigurable areas, are named partial region. The 

other type that will not be reconfigured is named the static region. Nearly everything 

on an FPGA can be reconfigured: LUTs, Flip Flops, block RAMs, distributed RAMs, 

shift registers, DSP blocks, and IO components. But there are some parts that cannot 

be reconfigured at all, like: clock modifying blocks, global clock buffers, device 

feature blocks like ICAP and STARTUP.  

A partial region defined by the user to make its logic reconfigurable is also called 

reconfigurable partition, on the other hand, in a single design/configuration, the 

portion of the design occupies this reconfigurable partition is named reconfigurable 

module. Each reconfigurable partition may have multiple reconfiguration modules, as 

a reconfigurable module can be replaced in run-time by another reconfigurable 

module occupying the same reconfigurable partition.  

As seen in figure 5, the grey block can be seen as static region, they will not 

experience any changes in run-time. On the other side, colored blocks are the 

reconfigurable partitions, each partition represents a LED with a certain color, but on 

the same partition of a specific color, red for example, multiple modules can be 

applied, each module represent blinking speed of its LED. So red is a reconfigurable 

partition, with three modules of three speeds can be applied in run-time.  

3.4.7 Styles of Partial Regions 

There are three different possible configuration styles Figure 3.9 in which partial 

regions can be arranged into:  

1. Island Style: It is the easiest possible style. Using it, only one reconfigurable 

module can be hosted exclusively per island. A system can support more than 

one island within its logic.  

a. Single island style, is the case when modules are tied to their specific planned 

islands.  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b. Multiple island style is the case when modules are free to be relocated to 

different islands within the system. 

This approach is suitable with a system having few modules are being swapped. 

On the other side it suffers from internal fragmentation, which is the result of having 

more than one module sharing the same partition. One of these modules will require 

more resources than the other, so the partition is initially planned to contain all those 

resources needed by the most complex module. When the simpler module is used, not 

all the resources will be used, and they cannot be shared outside this partition/island. 

2. Tiling (Slot Style and Grid Style): A slot style is one dimensional tiling, while 

the grid is two dimensional tiling. Tiling a reconfigurable region allows multiple 

modules to be hosted simultaneously within it; each module will occupy the number 

of tiles based on the required resources to be used. So, this improves the internal 

fragmentation. On the other hand, it makes it more complex to communicate with 

reconfigurable modules. Also, a more complex type of fragmentation exists, the 

external fragmentation, because the partial region is not homogeneous, various 

elements exists in different places within the FPGA according to its design (like 

ROMs, DSPs), so tiling the region will consider this. 

 

Figure 3.9: Partial regions styles 

3.4.8 Full bit file V.s Partial bit file 

 A full bit file contains the data of a complete design/configuration. It contains all 

the necessary information to reset the FPGA device, configure it with a complete 

design, and verify a bit file is not corrupted.  

A partial bit file contains a partial design configuration; it has no header, only the 

address of the target region and its corresponding partial data. The partial bit file may 

have many errors, like the address information, the data information. 
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There is no error detection built-in mechanism; a corrupt partial bit file can damage 

the FPGA if left in operation. So, system with high probability of its partial bit being 

corrupted, like those which are sent over radio, should implement a check circuit on 

the FPGA before loading the partial bit file received.  

3.4.9 Types of Partial Reconfiguration  

There are two mechanisms to be followed for performing partial reconfiguration, 

noting that the first one is used in PlanAhead:  

1. Modular Based: All the components of the design are implemented separate 

from each other, and then the complete bit stream is the sum of all the partial 

bit streams of these components. This mechanism is suitable for large changes 

in the functionality of the structure of a design.   

2. Difference Based: All the possible configurations of the design are specified, 

with one full bit file. The partial bit files are generated from the differences of 

two configurations of the design. It is suitable for small changes, giving a high 

switching speed between the versions of the design. 

3.4.10 Benefits of Partial Reconfiguration 

1. Reducing the size and the cost of the FPGA: By time multiplexing the 

hardware, more  logic can be fit into the same area, hence bigger designs can 

be fit into smaller less expensive devices.   

2. Reduce power consumption: Smaller and simpler designs consume less power. 

 Moreover, developers can implement more than mode for the same design, 

so that the user will be able to choose between high performance/low power 

mode, and low performance/high power mode. Also, swapping between high 

power IO standards and low power IO standards will be possible.   

3. Increase deployed system flexibility: Changing a design in the field becomes 

easier; the modified function is placed and routed in context with the already 

verified remainder of the design, then this partial file will be delivered to the 

system in field. These can be applied without shutting down system.  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4. Improving FPGA fault tolerance.   

5. Accelerating configurable computing.   

6. A variety of applications are now possible using PR and PDR.  

3.4.11 Requirements of PDR 

To implement a run-time reconfigurable system, the following requirements must 

be satisfied:  

1. Partial modules have to use exclusive resources, not shared with any other part 

of the system.   

2. Routing has to be constrained to specific wires for crossing the module border 

for each signal bit of the module entity.   

3. Activate all clock trees that are used by partial modules.   

4. Constraint the timing.  

The first requirement is called Area Group Constrain. In some cases, the different 

configuration modules, associated with a reconfigurable partition, use different 

resources. 

 The area group constraint of this reconfigurable partition must contain all the 

resources needed by all its reconfigurable modules. It is applied practically in the 

phase of floor planning in PlanAhead, or by writing directly into the constraint file. 

Activating all the clock trees, and constraining the timing form the Time Constrains, 

and they are related to the design also are done in PlanAhead by writing into the 

constraint file. 

3.4.12 Partition Pins  

Partition pins are the interfaces between the static and the reconfigurable logic. 

Unlike the other requirements that are done using the constraint file, there is no 

constraint to bind a signal in a top level design that is responsible for the 

communication with a partial module to a specific wire that crosses the partial-to-

static border. To solve this, there are many macros have been developed using 

vendors like Xilinx in their tools Figure 3.10: 

 



19 

 

1. Bus Macros: Consists of a LUT in the static part and a LUT in the partial 

region, the signal then will be bounded to the internal macro wires. This costs 

two LUTs per signal to wire binding. Moreover, this has an effect of 

additional latency.   

2. Proxy Logic: LUT acting like an anchor will be placed in the partial region. 

Then, differentially, the interfaces to the partial region at the static region will 

be routed to those anchors. Also the partial modules will be implemented 

incrementally from the routed static system and those anchors without 

modifying any static routing. This leads to preserving the initial static routing, 

hence satisfying binding the signal to certain wires. On the other hand, the 

routing will be different for each reconfigurable partition. Making it 

impossible to optimize island styles to be multiple island style.   

3. A new approach: This approach Defines tunnels through the partial region by 

blocking other possible routes, so this drilled tunnel, is the only possible path 

for a signal. By this, the router is forced to bind a signal to this tunnel. 

 

Figure 3.10: Partition pins 
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Chapter 4: 3G transmitter and receiver implementation 

By the late 1990s, the very success of GSM (global system for mobile) was again 

raising questions about the future need for yet more spectrum. The GSM community 

was initially focused on developing GSM‘s circuit and packet switched data services. 

It is limited to maximum data rates of less than 50 kbps and neither can support video 

telephony. There was an obvious potential evolution towards a wider bandwidth 

CDMA system. The aim was to develop a radio system capable of supporting up to 2 

Mbps data rates. The global WCDMA(wide code division multiple access) 

specification activities were combined into a third generation partnership project 

(3GPP) that aimed to create the first set of specifications by the end of 1999, called 

Release 99. 

The early WCDMA networks offered some benefits for the end users including 

data rate up to 384 kbps in uplink and in downlink and simultaneous voice and data. 

HSDPA (High Speed Downlink Packet Access) brought a few major changes to the 

radio networks: the architecture became flatter with packet scheduling and 

retransmissions. The peak bit rates increased from 0.384 Mbps initially to 1.8–3.6 

Mbps and later to 7.2–14.4 Mbps. 

Suddenly, wide area networks were able to offer data rates similar to low end 

ADSL (Asymmetric Digital Subscriber Line) and were also able to push the cost per 

bit down. So that offering hundreds of megabytes or even gigabytes of data per month 

became feasible. The high efficiency also allowed changes to the pricing model. 

The HSPA (High Speed Packet Access) network efficiency has improved 

considerably especially with Ethernet-based transport and compact new base stations 

with simple installation, low power consumption and fast capacity expansion. HSPA 

evolution also includes a number of features that can enhance the spectral efficiency. 

Quality of Service (QoS) differentiation is utilized to control excessive network usage 

to keep users happy also during the busy hours. HSPA evolution includes features that 

cut down the power consumption considerably and also improve the efficiency of 

small packet transmission in the HSPA radio networks. 
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4.1 Frame structure 

 

Figure 4.1: Frame structure 

There are seven types of uplink dedicated physical channels, the uplink Dedicated 

Physical Data Channel (uplink DPDCH), the uplink Dedicated Physical Control 

Channel (uplink DPCCH), the uplink Secondary Dedicated Physical Control Channel 

(uplink S-DPCCH), the uplink Dedicated Physical Control Channel 2 (uplink 

DPCCH2), the uplink E-DCH Dedicated Physical Data Channel (uplink E-DPDCH), 

the uplink E-DCH Dedicated Physical Control Channel (uplink E-DPCCH) and the 

uplink Dedicated Control Channel associated with HS-DSCH transmission (uplink 

HS-DPCCH) [3]. 

Each frame consists of 5 sub-frames; each sub-frame consists of 3 slots so the 

frame consists of 15 slots. The Length of the frame corresponds to 38400 chips. Chip 

Rate is 3.84 Mcps so Frame Length is 10ms as shown in Figure 4.1. 
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The length of a Slot of DPDCH (Dedicated Physical Data Channel) corresponds to 

2560 chips. 𝑁𝑑𝑎𝑡𝑎(𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑑𝑎𝑡𝑎 𝑏𝑖𝑡𝑠 𝑖𝑛 𝑡ℎ𝑒 𝑠𝑙𝑜𝑡) = 10 ∗ 2
𝑘 𝑏𝑖𝑡𝑠. The parameter 

k is related to the spreading factor SF where𝑆𝐹 = 256/2𝐾. In uplink: SF range is 

from 256 down to 4 so k range is from 6 down to 0 so 𝑁𝑑𝑎𝑡𝑎 range is from 10 to 640 

bits. 

Slot of DPCCH (Dedicated Physical Control Channel): fixed SF of 256 and 

contains 10 bits. DPCCH has four fields: Pilot, TFCI (transport-format combination 

indicator), FBI (feedback information), and TPC (transmit power-control), size of 

each field is not fixed and defined in the table shown in Figure 4.2 [4].  

 

Figure 4.2: DPCCH Field  

Pilot used for channel estimation and Frame Synchronization. Pilot Bit Patterns 

depend on number of pilot bits and slot number and are defined in this table shown in 

Figure 4.4 

TFCI used for bit rate control, channel decoding, interleaving parameters for every 

DPDCH frame. FBI used for transmission diversity in the DL. TPC used for inner 

loop power control commands. TPC Bit Patterns are defined in Figure 4.3 

 

Figure 4.3: Bit patterns of TPC 
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Figure 4.4: Pilots for uplink DPCCH 

4.2 3G Transmitter  

Transmitter of 3G consists of several blocks as shown in Figure 4.5  

 

Figure 4.5: Transmitter blocks 
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4.2.1 CRC (Cyclic Redundancy Check) attachment 

CRC process is provided on transport blocks for error detection in which the entire 

block is used to calculate the CRC parity bits for each transport block. Instead of 

adding just one bit to a block of data, several bits are added. The size of the CRC is 

24, 16, 12, 8 or 0 bits and it is signaled from higher layers -depending on the channel- 

what CRC size that should be used [5]. 

CRCs are typically implemented in hardware as a linear feedback shift register as 

shown in Figure 4.6 and its equations are shown in Table 4.1. 

Table 4.1: Types of CRC 

CRC Mode Equation 

CRC24 gCRC24(D) = D24 + D23 + D6 + D5 + D + 1 

CRC16 gCRC16(D) = D16 + D12 + D5 + 1 

CRC12 gCRC12(D) = D12 + D11 + D3 + D2 + D + 1 

CRC8 gCRC8(D) = D8 + D7 + D4 + D3 + D + 1 

 

 

Figure 4.6: CRC as shift register 

After modeling the CRC block and other blocks of the chain in HDL we face a 

problem that rates differ from a block to another so we have to control the time of 

handshaking between blocks to ensure proper data transfer. In addition, we have to 

unify the interface of the blocks to realize the concept of the PDR.  

So we design a top controlled module consists of a controller, a FIFO (first input 

first output) and the designed block as shown in Figure 4.7. Fifo store the input bit 

stream and controller to control the fifo and the designed block. 

In this module we add two signals enable and finished to control the handshake. 

Enable comes from the next block to indicate that it is ready to receive data. 

 Finished is sent to the previous block to indicate that the current block has finished 

its function. So the top controlled module of CRC will be as shown in Figure 4.8. 
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Figure 4.7: Top controlled CRC 

 The pins description of the controlled module is shown in Table 4.2  

4.2.2 Segmentation 

Segmentation of the bit sequence from transport block concatenation is performed 

if Xi > Z. The code blocks after segmentation are of the same size. The number of 

code blocks on TrCH ‘i’ is denoted by Ci. If the number of bits input to the 

segmentation, Xi, is not a multiple of Ci, filler bits are added to the beginning of the 

first block. If turbo coding is selected and Xi < 40, filler bits are added to the 

beginning of the code [5] 

Table 4.2: pins description of CRC 

PIN Description 

Data_in The input bits 

Valid_in The signal indicates that current data_in is valid data 

Data_out The output data of the block 

Valid_out The signal indicates that current data_out is valid data 

Finished The signal indicated that the CRC is ready for the new frame 

Enable The signal indicates that the next block is ready to have data 

Num_after_crc The signal indicates that total number of bits after crc 

Flag The signal indicates that the num_after_crc is valid 
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Figure 4.8: Internal module of CRC 

block [6] [4]. The filler bits are transmitted and they are always set to 0. The 

maximum code block sizes are:  

Convolutional coding: Z = 504; 

Turbo coding: Z = 5114. 

The bits output from code block segmentation, for Ci ≠ 0, are denoted by oir1, oir2, 

oir3… oirki where i is the TrCH number, r is the code block number, and Ki is the 

number of bits per code block. 

Number of code blocks:  

Ci = [Xi/Z] 

Number of bits in each code block (applicable for Ci ≠ 0 only):  
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if Xi < 40 and Turbo coding is used, then  

Ki = 40  

else  

Ki = [Xi / Ci]  

end if  

Number of filler bits: Yi = CiKi - Xi  

for k = 1 to Yi    --Insertion of filler bits 

Oi1k=0 

end for 

for k = Yi+1 to Ki 

Oik=Xi,(K-Yi) 

end for  

r = 2      -- Segmentation  

while r ≤ Ci  

for k = 1 to Ki  

Oirk=Xi, (k+(r-1)-Ki-Yi) 

end for  

r = r+1  

end while 

 

Concerning the HDL implementation the Figure 4.9 shows the interface of the 

Segmentation 
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Figure 4.9: Segmentation Interface 

The internal block diagram is shown in Figure 4.10 

 

Figure 4.10: Internal Design for Segmentation 
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Table 4.3: Interface Signal Decleration 

PIN Description 

num_after_crc This is input signal from CRC that indicates the total number of 

data bits plus concatenated CRC bits 

clk_fast Connected to the clk_spreading signal to  increase the speed for 

the division required to generate the number of blocks produced 

Data_in The input bits 

Flag Input signal from the CRC that indicates that the num_after_crc 

is ready to be read for the segmentation block 

Segmentation_Type To differentiate between Convolutional Encoder “0” or Turbo 

Encoder “1” 

valid_in This signal indicates that current data_in is valid data 

valid_encoder This signal indicates that the next block is ready to have data 

Block_index Output signal that indicates the index for the block being 

transmitted to the encoder 

Block_size Number of bits included in each block after performing the 

segmentation process. 

Num_Blocks Total number of blocks output from the segmentation process 

Data_out The output bits 

finished The signal indicated that the mapper is ready for the new frame 

Flag_filler Output signal used for the encoder such that it does not read the 

extra zero filler bit that remains on the bus while moving from 

state to another inside the code. Consequently, this reserve that 

valid_out signal to remain always one within the data block as 

shown in Figure 4.11 

valid_out This signal indicates that current data_out is valid data 

 

 

Figure 4.11: flag filler explanation use 

The output segments and the valid_out that is input to the encoder to intiate the 

processing for each segment is as shown in Figure 4.12 
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Figure 4.12: Output from the segmentation block 

One of the challenging in the segmentation is the division used to generate either 

the num_blocks or block_size that will be used by the successing blocks. For the 

num_blocks, it is a result for dividing the num_after_crc by the constant value for 

either the convolutional or turbo decoder. Since this division is by a constant and 

large value, therefore we use the concept of subtracting in division and by making use 

for clk_spreading to maximize the speed for division as shown in Figure 4.13. 

Moreover, during the time of division segmentation block is still waiting to data to be 

exit from the CRC. On the other hand, we use a combinational synthesizable divider 

to get the block_size since if we make use for the subtraction concept, number of 

clock cycles will be wasted since the denominator is very small relatively to the 

numerator. Also, data were already stored in the FIFO for the segmentation and so 

any waste of cycles will lead in slowing down the speed for data transmission within 

the chain 

4.2.3 Encoder 

Convolutional codes with constraint length 9 and coding rates 1/3 and 1/2 are 

defined. The configuration of the convolutional coder is presented in Figure 4.14, 

Figure 4.15. 

Output from the rate 1/3 convolutional coder shall be done in the order output0, 

output1, output2, output0, output1, output 2, output 0, ..., output 2. Output from the 

rate 1/2 convolutional coder shall be done in the order output 0, output 1, output 0, 

output 1, output 0... output 1 [5].  
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Figure 4.13: clk and clk_fast period 

8 tail bits with binary value 0 shall be added to the end of the code block before 

encoding. The initial value of the shift register of the coder shall be "all 0" when 

starting to encode the input bits. 

 

Figure 4.14: Rate 1/2 convolutional encoder 

 

 

Figure 4.15:  Rate 1/3 Convolutional encoder 

 

The top module of the 3g convolutional encoder rate half is shown in Figure 4.16. 

The pins description of the top controlled is shown in Table 4.4. 
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Comment: The signal C is just through the block, which is required for the 

concatenation block. 

 

Figure 4.16: Schematic 

Table 4.4: pins description of encoder 

PIN Description 

C_in(6:0) Number of code blocks from the segmentation 

Clk Clock of the all encoder blocks 

Clk2 Clock of the serial output 

Data_in Data in for the convolutional encoder 

Enable Working enable for the encoder 

Flag_filler Flag from segmentation 

Reset Reset encoder registers by inserting Zeros 

Valid_in Valid in to consider the input 

C_out(6:0) Indicates the number of cade blocks 

Data_out Encoder input 

Finished Signal indicates the block is ready for the new frame 

Valid_out Valid out signal to the next block 

The termination problem solved by adding a counter that starts when the valid_in 

signal goes low after it was high; the counter ends after eight counts thus the 

termination done. 
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Detailed block diagram for the blocks that shown internal construction of the 

convolutional encoder in Figure 4.17. 

 

Figure 4.17:  Internal block diagram 

4.2.4 Code block concatenation 

The input bit sequence for the code block concatenation block are the 

sequences 𝑒𝑟𝑘, for r = 0,…..,C-1 and k = 0,…..,𝐸𝑟-1. The output bit sequence from the 

code block concatenation block is the sequence 𝑓𝑘 for k = 0,….,G-1.. The code block 

concatenation consists of sequentially concatenating the rate matching outputs for the 

different code blocks. Therefore, 

   Set k = 0 and r = 0 

while r < C 

Set j = 0 

while j < 𝐸𝑟 

 𝑓𝑘 = 𝑒𝑟𝑗     k = k +1   j = j +1 

end while 
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r = r +1  end while 

The block interface is as shown in Figure 4.18, the signals declaration and 

description is as shown in Table 4.5 and the block simulation is as shown in 

Figure 4.19. 

There is no difference between the implementation of the code block concatenation 

in 4G and 3G, they are exactly the same [5]. 

 

 
Figure 4.18: Code block concatenation block interface. 

 

 

Table 4.5: Code block concatenation block signals declaration 

PIN PIN Type Description 

C IN Total number of code blocks (segmentation section) 

Enable IN This signal indicates that the next block is ready to have 

data 

valid_in IN This signal indicates that current data_in is valid data 

data_in OUT The input bits 

finished OUT This signal indicates that the interleaver is ready to have 

a new frame 

valid_out OUT This signal indicates that current data_out is valid data 

data_out OUT The output bits 
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Figure 4.19: Code block concatenation block simulation. 

 

4.2.5 Radio frame equalization 

To ensure data can be divided into equal-sized blocks, padding bits are 

concatenated at the end of the set of coded bits, and can be either logical 0s or 1s [5].  

For example, if a TrCH with a 80ms TTI (8 Frames) have 70 bits after channel 

coding; two padding bits would be added to give a total of 72 bits which can later be 

split into eight sets (radio frames) of nine bits each.  

Radio frame size equalization is only performed in the UL. 

The input bit sequence to the radio frame size equalization is denoted 

by:𝑒𝑖1, 𝑒𝑖2, 𝑒𝑖3,…… , 𝑒𝑖𝐸𝑖 where (i) is TrCH number and 𝐸𝑖 the number of bits. The 

output bit sequence is denoted by:𝑡𝑖1, 𝑡𝑖2, 𝑡𝑖3,… , 𝑡𝑖𝑇𝑖 where 𝑇𝑖 is the number of bits.  

The output bit sequence is derived as follows: 

𝑡𝑖𝐾 = 𝑒𝑖𝐾    𝑓𝑜𝑟 𝑘 = 1…… . 𝐸𝑖  

𝑡𝑖1=0          𝑓𝑜𝑟 𝑘 = 𝐸𝑖 + 1…… . . 𝑇𝑖 

𝑇𝑖 = 𝐹𝑖 ∗ 𝑁𝑖 

𝑁𝑖 = ⌈
𝐸𝑖
𝐹𝑖
 ⌉ 

𝐹𝑖 is the number of segments (frames) and it depends on TTI as shown in Table 4.6 

𝑁𝑖 is the number of bits per segment after size equalization. 
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Table 4.6: number of frames 

TTI 𝑭𝒊 
10ms 1 

20ms 2 

40ms 4 

80ms 8 

 

Concerning the HDL implementation, Figure 4.20 shows the interface. The pins 

description is in the following Table 4.7. The implementation depends on counter 

counts input bits from zero till number of frames and repeats again , for example 

TTI=40 and number of bits equal 1001,the counter will end at value 1 so equalizer 

will pad 3 zeros to reach value 4 (number of frames) as shown in Figure 4.21.  

 

Figure 4.20: Radio Frame Equalization interface 

Table 4.7-Frame Equalization Pin description 

PIN Description 

Data_in The input bits 

Valid_in The signal indicates that current data_in is valid data 

TTI Transmission Time Interval   

possible values are : 10 , 20 , 40 and 80 

bitsperframe Number of bits per frame  𝑁𝑖 
numberofframes Number of frames  𝐹𝑖  

finished The signal indicated that the block is ready for the new frame 

enable The signal indicates that the next block is ready to have data 
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Figure 4.21: Equalizer timing diagram example 

4.2.6 First interleaving  

Interleaving is a way to re-arrange data in a non-contiguous way to make it stand 

burst errors. These types of errors can destroy many bits in a row and make it hard to 

recover using FEC coding, since these expects the errors to be more uniformly 

distributed. This method is popular because it is a less complex and cheaper way to 

handle burst errors than directly increasing the power of the error correction scheme 

and interleaving cause increasing the performance of decoding as shown in Table 4.8 

[5]. 

The main disadvantage of using interleaving techniques is that increases latency 

because the entire interleaved block must be received before the packets can be 

decoded. Interleaving period equals to TTI (Transmission Time Interval) which 

determines then number of columns in the interleaving matrix (10, 20, 40, 80ms => 1, 

2, 4, 8 columns). 

Table 4.8: comparison between with and without interleaving 

Without interleaving   With interleaving 

Transmitted Bits : 

b0 b1 b2 b3 b4 b5 b6 b7 b8 

Received Bits : 

b0 b1  b2 b3  x  x x b7 b8 

(x indicates to error in bit) 

 

Transmitted Bits : 

b0 b1 b2 b3 b4 b5 b6 b7 b8 

Interleaved Bits : 

b0 b3 b6 b1 b4 b7 b2 b5 b8 

Received Bits : 

b0 b3 b6 b1   x   x    x  b5  b8 

Deinterleaved Bits: 

b0  b1  x  b4  b5  b6  x s b8 

 

Burst errors 

hard to recover 

Distributed errors 

easy to recover 

 

 

First interleaver is Inter-frame interleaving where all frames are interleaved together 

Three steps for interleaving as shown in Figure 4.22. 
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 Write input bits into the matrix row by row 

 Perform inter-column permutation based on pre-defined patterns (according to 

the TTI) 

 Read output bits from the matrix column by column 

 

Figure 4.22: Steps of Interleaving 

Inter-column permutation patterns are defined in Table 4.9. 

Table 4.9-Inter-column permutation for first interleaver 

TTI Number of columns Inter-column permutation 

patterns 

10ms 1 <0> 

20ms 2 <0,1> 

40ms 4 <0,2,1,3> 

80ms 8 <0,4,2,6,1,5,3,7> 

 

  

 

The following Figure 4.23  shows an example of first interleaver where 

TTI=40ms and 16 bits. Number of columns equal 4 so number of rows equal 4 so 

first writing bits in the interleaving matrix row by row then Perform inter-column 

permutation <0,2,1,3> then read from matrix column by columns. 

Concerning the HDL implementation, Figure 4.24 shows the interface of first 

interleaver 
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Figure 4.23: Interleaving Example 

 

 

Figure 4.24: First Interleaver interface 
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The internal block diagram is shown in  Figure 4.25 

Table 4.10-First Interleaver Pin description 

PIN Description 

Leaver_in The input bits 

Indata_ready The signal indicates that current data_in is valid data 

TTI Transmission Time Interval   

possible values are : 10 , 20 , 40 and 80 

Bitsperframe Number of bits per frame  𝑁𝑖 

 

 

Figure 4.25: First Interleaver Block Diagram 

The implementation depends on a ram which we write in it in-of order and 

read from it out-of-order depending TTI. 

For TTI=80ms, there are 8 columns and the matric after permutation shown in 

following table 

𝑏0 𝑏4 𝑏2 𝑏6 𝑏1 𝑏5 𝑏3 𝑏7 

𝑏8 𝑏12 𝑏10 𝑏14 𝑏9 𝑏13 𝑏11 𝑏15 

𝑏16 𝑏20 𝑏18 𝑏22 𝑏17 𝑏21 𝑏19 𝑏23 
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So the address start with 0 (first column in columns permutation) and 

increment by 8 (number of frames) till end and then 4 (second column in columns 

permutation) and increment by 8 (number of frames) till end and so on. 

For TTI=40ms, there are 4 columns and the matric after permutation shown in 

following table 

𝑏0 𝑏2 𝑏1 𝑏3 

𝑏4 𝑏6 𝑏5 𝑏7 

𝑏8 𝑏10 𝑏9 𝑏11 

So the address start with 0 (first column in columns permutation) and 

increment by 4 (number of frames) till end and then 2 (second column in columns 

permutation) and increment by 4 (number of frames) till end and so on. 

For TTI=20ms, there are 2 columns and the matric after permutation shown in 

following table 

𝑏0 𝑏1 

𝑏2 𝑏3 

𝑏4 𝑏5 

 

So the address start with 0 (first column in columns permutation) and 

increment by 2 (number of frames) till end and then 1 (second column in columns 

permutation) and increment by 2 (number of frames) till end and so on. 

For TTI=10ms, reading from ram in-of-order. 

Figure 4.26 shows the timing diagram for example TTI=40ms, address_read 

starts with 0 and increments by 4 till 2068 then be 2. 

 

Figure 4.26: First interleaver timing diagram 
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4.2.7 Radio Frame Segmentation 

When the transmission time interval is longer than 10ms, the input bit 

sequence is segmented and mapped onto consecutive 𝐹𝑖  radio frames [5]. 

In our 80ms TTI example above, with 72 bits after radio frame equalization, 

the first nine interleaved bits will be transmitted in the first radio frame, the next 

nine bits in the second radio frame, and so on over all eight frames of the TTI.  

The input bit sequence is denoted by: 𝑥𝑖1, 𝑥𝑖2, 𝑥𝑖3,…… , 𝑥𝑖𝑋𝑖  where i is the 

TrCH number and 𝑋𝑖is the number bits. The Fi output bit sequences per TTI are 

denoted by:𝑦𝑖,𝑛𝑖1 , 𝑦𝑖,𝑛𝑖2 , 𝑦𝑖,𝑛𝑖3 ………,𝑦𝑖,𝑛𝑖𝑌𝑖  where 𝑛𝑖  is the segment 

number and Yi is the number of bits per radio frame for TrCH i. The output 

sequences are defined as follows 

𝑦𝑖,𝑛𝑖𝑘 = 𝑥𝑖,((𝑛𝑖−1).𝑌𝑖)+𝑘   , 𝑘 = 1…… . 𝑌𝑖 

Where Yi = (Xi / Fi) is the number of bits per segment 

Concerning the HDL implementation, Figure 4.27 shows the interface 

 

 

Figure 4.27: Radio Frame Segmentation interface 
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The pins description is in the following Table 4.11. 

Table 4.11-Radio Frame Segmentation Pin description 

PIN   Description 

Data_in The input bits 

Valid_in The signal indicates that current data_in is valid data 

TTI Transmission Time Interval   

possible values are : 10 , 20 , 40 and 80 

bitsperframe Number of bits per frame  𝑁𝑖 
Interleaver_finished The signal indicated that the second interleaver  is ready 

for the new frame 

The internal block diagram is shown in Figure 4.28 

 

Figure 4.28: Radio Frame Segmentation Block Diagram 

Segmentation outputs the first block and waits signal from second interleaver 

that indicates the interleaving is finished and it is ready for new block as shown 

in Figure 4.29. 

 

Figure 4.29: Radio Frame Segmentation  timing diagram 

4.2.8 Second interleaving  

Second interleaving is Intra-frame interleaving which means interleaving is done 

frame by frame so interleaving period is 10ms.   

Number of columns of the interleaving matrix is equal 30. The columns of the 

matrix are numbered 0, 1, 2… 29 from left to right. 
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The number of rows of the matrix is determined by finding minimum integer R 

such that: U <= R *30 where U is the number of bits in one radio frame and The rows 

of rectangular matrix are numbered 0, 1, 2, …, R2 - 1 from top to bottom.   

Writing the input bit sequence into the R*C matrix row by row starting with bit in 

column 0 of row 0 and if R * C> U, the dummy bits are padded .These dummy bits 

are pruned away from the output of the matrix after the inter-column permutation. 

Performing the inter-column permutation for the matrix based on the pattern that is 

shown in Table 4.12 [5]. 

Table 4.12-inter-column permutation for second interleaver 

Number of columns C2 Inter-column permutation pattern 

30 <0, 20, 10, 5, 15, 25, 3, 13, 23, 8, 18, 28, 

1, 11, 21,6, 16, 26, 4, 14, 24, 19, 9, 29, 

12, 2, 7, 22, 27, 17> 

The output of the block interleaver is the bit sequence read out column by column 

and pruned by deleting dummy bits that were padded to the input of the matrix before 

the inter-column permutation. 

Concerning the HDL implementation, Figure 4.30 shows the interface. 

The pins description is in the following Table 4.13. 

The internal block diagram is shown in Figure 4.31. 

Table 4.13 : Second Interleaver pin description 

PIN Description 

Data_in The input bits 

Valid_in The signal indicates that current data_in is valid data 

TTI Transmission Time Interval   

possible values are : 10 , 20 , 40 and 80 

bitsperframe Number of bits per frame  𝑁𝑖  
finished The signal indicated that the block is ready for the new frame 

enable The signal indicates that the next block is ready to have data 
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Figure 4.30: Second Interleaver interface 

 
Figure 4.31: Second Interleaver Block Diagram 

Equalizer adds the dummy bits and calculates number of rows, for example if the 

number of bits equal 518 so number of rows equal 18 and equalizer pads bits to be 

540 bits  as shown in Figure 4.32 . 
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Figure 4.32: Second interleaver timing diagram 1 

The implementation depends on a ram which we write in it in-of order and read 

from it out-of-order, there are 30 columns and the matrix after permutation shown in 

following table  

𝑏0 𝑏20 𝑏10 𝑏5 𝑏15 𝑏25 𝑏3 𝑏13 …………… .. 𝑏7 𝑏22 𝑏27 𝑏17 

𝑏30 𝑏50 𝑏40 𝑏35 𝑏45 𝑏55 𝑏33 𝑏15 …………… .. 𝑏37 𝑏52 𝑏57 𝑏47 

𝑏60 𝑏80 𝑏70 𝑏65 𝑏75 𝑏85 𝑏63 𝑏23 …………… .. 𝑏67 𝑏82 𝑏87 𝑏77 

So the address start with 0 (first column in columns permutation) and increment by 30 

(number of columns) till end and then 20 (second column in columns permutation) 

and increment by 30 (number of frames) till end and so on. 

Figure 4.33 shows the timing diagram for example address_read starts with 0 and 

increments by 30 till end then be 20. 

 

Figure 4.33: Second interleaver - timing diagram 2 

4.2.9 Interleaving Block 

Figure 4.34 shows the block diagram of overall interleaving block containing: 

Radio Frame Equalizer, First Interleaver, Radio Frame Segmentation and Second 

Segmentation. 

Figure 4.35 shows timing diagram of overall interleaving block for two blocks of 

Data. First has TTI=80 and 1116 bits and second has TTI=40 and 723 bits  

Radio frame equalizer pads the first block with 4 bits to be equally sized blocked 

with140 bits per frame and 8 frames and pads the second block with 1 bit to be 

equally sized blocked with 181 bits per frame and 4 frames then first interleaver is 

inter interleaving which interleave all frames together but second interleaver is intra 

interleaving which interleave frame by frame. 
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Figure 4.34:  Interleaving Block Diagram 

 

Figure 4.35: Interleaving Block Timing Diagram  

 

4.2.10 Spreading and Scrambling 

Spreading is applied to the physical channels. It consists of two operations  

 Channelization operation: increase the bandwidth of the signal using fully 

orthogonal codes called channelization codes to not interfere with each other. 

Every data is transformed into number of chips. The number of chips per data 

symbol is called the Spreading Factor (SF). The channelization codes are 

picked from the code tree as shown in Figure 4.37 [7]. 
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   In our project we transmit only one DPDCH (Dedicated Physical Data 

Channel ) DPDCH1 shall be spread by 𝐶𝑆𝐹,𝐾  where SF is the spreading factor 

of DPDCH1 and k= SF / 4. We found that the generated code of 

channelization consists of a periodically repeated sequence of (1, 1,-1, 1).  

The data out of the spreading block will be raise by ratio SF over the data input bits 

and this is shown in Figure 4.36 

 

Figure 4.36: waveform of spreading block 

 Scrambling operation: Scrambling code is applied to the spread signal and it 

doesn’t affect the signal bandwidth. The scrambling code can be a long code 

(a Gold code with 38400chips) or a short code (256 chips) the long code is 

used if the BS uses a Rake receiver and the short code is used if multiuser 

detector and interference cancellation receivers are used in BS. In our project 

we use long code.  

 The data after scrambler will be unique so we can separate between different 

users in uplink and the receiver can retrieve the original data by using the 

same scrambler sequence. The overall block diagram is shown in Figure 4.38. 

 The controlled module of the overall block is shown in Figure 4.39.  
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Figure 4.37: Code-tree for generation of Orthogonal Spreading Factor codes 

 

Figure 4.38: block diagram of spreading 

 

Figure 4.39: Top controlled spreading 
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The pins description of the controlled spreading is shown in Table 4.14 

Table 4.14: pins description of spreading block 

PIN Description 

Data_in The input bits 

Valid_in The signal indicates the current data_in is valid data 

Data_out The output data of the block 

Valid_out The signal indicates that current data_out is valid data 

Finished The signal indicates the spreading is ready for the new frame 

Enable The signal indicates the next block is ready to have data 

SF The signal indicates the number of chips per data symbol 

N The signal indicates scrambling sequence number 

And the internal structure of the spreading block is shown in Figure 4.40. 

 

Figure 4.40: Internal structure of spreading block 

4.2.11 Modulation 

Modulation is the process by which information (e.g. bit stream) is transformed 

into sinusoidal waveform. A sinusoidal wave has three features those can be changed 

- phase, frequency and amplitude- according to the given information and to the used 

modulation technique. 

In 3G standard Phase Shift Keying (BPSK) modulation technique is used 

according to the desired data rate. The bits are mapped to complex-valued modulation 

symbol d=(I + j Q). In BPSK, a single bit is mapped to a complex-valued modulation 

symbol according to Table 4.15 [7]. 



52 

 

Table 4.15: BPSK mapping 

                                                                                        

Concerning the HDL implementation, Figure 4.41 shows the interface of the 

mapper 

 

Figure 4.41: Mapper interface 

As shown in the figure every symbol is represented in 12 bits – this number is 

determined through a simulation will be discussed later- . The pins description is in 

Table 4.16. 

It consists of fifo to store the input bit stream, controller to control the fifo and the 

mapper module (top_mod_wifi) which consists of mapper module that mapps bits to 

the corresponding symbol following the constellation. 

Table 4.16: pin description of mapper module 

PIN Description 

Data_in The input bits 

Valid_in The signal indicates that current data_in is valid data 

Mod_out_Re The modulated real part of the input 

Mod_out_im The modulated imaginary part of the input 

Finished The signal indicated that the mapper is ready for the new frame 

Enable The signal indicates that the next block is ready to have data 
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The internal block diagram is shown in Figure 4.42. 

 

Figure 4.42: Detailed block of mapper 

4.3 3G Receiver 

The main target of the receiver is to retrieve the same data send before transmitter 

so it consists of the blocks shown in Figure 4.43 

 

Figure 4.43: receiver blocks 

4.3.1 Channel modeling  

First of all we want to model the random noise of the channel as so we have to 

make a synthesizable HDL code which adds a random noise to the real and imaginary 

outputs of the transmitter. This noise depends on the SNR (signal to noise ratio) of the 

channel. Here we face a problem that random operation is not synthesizable 

 We can’t implement a VHDL code to model the noise. Also we can’t fix the 

output noise to a number of bits. Fixation advantages and process will be discussed 

later. In addition, random operation generate different outputs for different runs so we 

can’t test the function and output of the block by comparing it with MATLAB code 

output as we made for all other blocks.  
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To solve all this problems we make a general MATLAB code which generate the 

noise and make a fixation to this output then open a .v file and print the sentences of 

Verilog code eg, fprintf(fid,'module top_noise( \n');. Then we assign the fixed output 

noise to an array of 12 bits noise of Verilog code. We open also a .m and print the 

code of MATLAB so the generated MATLAB and Verilog code will contain the same 

noise and we can compare the output. In addition, the Verilog code is now fully 

synthesizable and the top of it is shown in Figure 4.44 .   

 

Figure 4.44: noise top block  

Table 4.17: Ports description of noise 

PIN Description 

Data_bit_imag The imaginary part of the input bits 

Data_bit_real The real part of the input bits 

Valid_in The signal indicates that current data bits are  valid data 

Mod_out_Re The modulated real part of the input 

Mod_out_im The modulated imaginary part of the input 

Valid_out The signal indicates that current data_out is valid data 

4.3.2 Demapper 

It is the first block of the receiver that will receive the real and imaginary data of 

the channel which came in the form of 12 bits divide to 9 bits represent the fraction 

part and 3 bits represent the real part. The main target of the block is to receive these 
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data symbols, specify the decision region and convert these symbols to a stream of 

bits.  

In 3g we have only a BPSK mapper with a constellation not on the axis as shown 

in Figure 4.45 . So the equation of the decision region will be y = −x  

 

Figure 4.45: constellation of bpsk 

If y >  −x the output will be 0 and if y < −x the output will be 1 

As the data can be positive or negative we have to make the two’s complement of 

the imaginary and compare real data with the two’s complement of the imaginary the 

output data shown in Figure 4.46 

 

Figure 4.46: Wavefom of demapper 

The pins description of the top demapper are shown in Table 4.18 

Table 4.18 : Pins description of demapper 

PIN Description 

Data_bit_imag The imaginary part of the input bits 

Data_bit_real The real part of the input bits 

Valid_in The signal indicates that current data bit real and imaginary are  

valid data 

Data_out The output data in the form of stream of bits 
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Valid_out The signal indicates that current data_out is valid data 

read The signal indicates that the block is ready to read data of the 

next symbol 

 

The top demapper is shown in Figure 4.47 

 

Figure 4.47: Top demapper 3g 

4.3.3 Despreading block 

Despreading and descrambling block consists of two operations  

 Descrambling operation: one of the advantages of the scrambling codes that if 

we multiply the data with the scrambling data square we retrieve the same 

data. 

So in the descrambling process we multiply the data out from the demapper 

with the same scrambling code of the transmitter by using the same 

scrambling sequence number (n). 

The scrambling code can be a long code (a Gold code with 38400chips) or 

a short code (256 chips) the long code is used if the BS uses a Rake receiver 

and the short code is used if multiuser detector and interference cancellation 

receivers are used in BS. In our project we use long code. 
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 Despreading operation: In the despreading process we multiply the data out 

from the descrambler with a periodically repeated sequence of (1, 1,-1, 1) 

which is the same as the spreading code we repeat these sequence with a 

number equal k where k= SF/4 this is because we transmit only one DPDCH 

(Dedicated Physical Data Channel). 

Then we integrate the data by increasing a signed register count when the 

output of multiplying with the spreading code is one and decreasing count 

when the output of multiplying with the spreading code is zero. So after we 

receive bits equal to SF we decide if the output will be 1 or 0 and we store this 

value in a data out register to be out while calculating the count and decide 

what the next bit is.  

The top of the despreading is shown in Figure 4.48 

The pins description of the top despreading are shown in Table 4.19 

Table 4.19: pins description of despreading 

PIN Description 

Data_in The input bits 

Valid_in The signal indicates the current data_in is valid data 

Data_out The output data of the block 

Valid_out The signal indicates that current data_out is valid data 

SF The signal indicates the number of chips per data symbol 

n The signal indicates scrambling sequence number 

 

Figure 4.48: top despreading and descrambling 
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4.3.4 Deconcationation  

Deconcationation of the bit sequence is performed if Xi>Z. This concept is the 

same as the segmentation block but with different z values .The code blocks after 

deconcationation are of the same size. The number of code blocks on TrCH ‘i’ is 

denoted by Ci. If the number of bits input to the deconcationation, Xi, is not a 

multiple of Ci, filler bits are added to the beginning of the first block. If turbo coding 

is selected and Xi < 40, filler bits are added to the beginning of the code block. The 

filler bits are transmitted and they are always set to 0.  

To retrieve the same data before transmitter and as the data from segmentation is 

multiplied by the encoder rate so we calculate Z according to Table 4.20 

Table 4.20: how to calculate z 

Z Description 

504*2=1008 Convolutional coding and coding rate = ½ 

5114*2=10228 Turbo coding and coding rate = ½ 

504*3=1582 Convolutional coding and coding rate = 1/3 

5114*3=15342 Turbo coding and coding rate = 1/3 

 

The bits output from code block segmentation, for Ci ≠ 0, are denoted by oir1, 

oir2, oir3… oirki where i is the TrCH number, r is the code block number, and Ki is 

the number of bits per code block. 

Number of code blocks:  Ci = [Xi/Z] 

Number of bits in each code block (applicable for Ci ≠ 0 only):  

if Xi < 40 and Turbo coding is used, then  

Ki = 40  

else  

Ki = [Xi / Ci]  

end if  

Number of filler bits: Yi = CiKi - Xi  
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for k = 1 to Yi    --Insertion of filler bits 

Oi1k=0 

end for 

for k = Yi+1 to Ki 

Oik=Xi,(K-Yi) 

end for  

r = 2      -- Segmentation  

while r ≤ Ci  

for k = 1 to Ki  

Oirk=Xi, (k+(r-1)-Ki-Yi) 

end for  

r = r+1  

end while 

 

Concerning the HDL implementation the shows the interface of the 

Deconcationation shown in Figure 4.49 



60 

 

 

Figure 4.49: Top deconcationation 

Description of pins of the block are described in Table 4.21  

Table 4.21 : Description of deconationation block 

PIN Description 

num_after_crc This is input signal from despreading that indicates the total 

number of data bits out from the dispreading block 

clk_fast This is faster clock signal to increase the speed for the division 

required to generate the number of blocks produced 

flag This is an input signal from the despreading that indicates that 

the num_after_crc is ready to be read for the deconationation 

Segmentation_Type To differentiate between Convolutional Encoder “0” or Turbo 

Encoder “1” 

valid_in This signal indicates that current data_in is valid data 

valid_encoder This signal indicates that the next block is ready to have data 

Block_index Output signal that indicates the index for the block being 

transmitted to the deinterleaver block 

Block_size Number of bits included in each block after performing the 

segmentation process 

Num_Blocks Total number of blocks output from the deconcationation 

process 

 

finished The signal indicated that the deinterleaver is ready for the new 

frame 

Flag_filler Output signal used for the encoder such that it does not read the 

extra zero filler bit that remains on the bus while moving from 

state to another inside the code. Consequently, this reserve that 

valid_out signal to remain always one within the data block 

valid_out This signal indicates that current data_out is valid data 
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The internal block of the deconcationation is shown in  

 

Figure 4.50: Internal design of deconcationation 

4.3.5 Deinterleaver 

Deinterleaver is the block which re-arranges the received bits to repeal the impact 

of the interleaver. The Deinterleaver’s block diagram is shown Figure 4.51. 

 

Figure 4.51 : Block diagram of deinterleaver. 

Radio frame segmentation separates different frames depending on the value of 

“tti”. 

 Table 4.22 shows the relationship between tti and number of frames. 

Table 4.22: The relationship between tti and nmber of frames. 

Tti Number of frames 

10 1 

20 2 

40 4 

80 8 
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Then, every frame enters the second deinterleaver to be re-arranged. we add 

dummy bits to make the data multiple of 30 . Then, data with dummy bits is 

interleaved again using second interleaver. Finally, columns of the memory saving the 

interleaved data with dummy bits are arranged in the following arrangement 

{Col(0),col(12),col(25),col(6),col(18),col(3),col(15),col(26),col(9),col(22),col(2),c

ol(13),col(24),col(7),col(19),col(4),col(16),col(29),col(10),col(21),col(1),col(14),col(

27),col(8),col(20),col(5),col(17),ocl(28),col(11),col(23)} 

Dummy bits are thrown out, and only data bits are getting out to the Radio frame 

concatenation. 

Radio frame concatenation adds up the bits from different frames according to tti 

to be fed to first deinterleaver , as first deinterleaver is interframe deinterleaver. 

In first Deinterleaver, number of columns is equal to number of frames. Data is 

written row by row, and then column permutation is done according to Table 4.23 . 

Finally data is read column by column. 

Table 4.23: columns arrangement in first deinterleaver. 

Tti Permutation 

10 Col(1) 

20 Col(1), Col(2) 

40 Col(1),col(3),col(2),col(4) 

80 Col(1),col(5),col(3),col(7),col(2),col(6),col(4),col(8) 

 

All these blocks are implemented in MATLAB and tested by entering random 

input vector to the interleaver then to the deinterleaver and comparing the output bits 

to the original bits and it works properly. 

4.3.6 Desegmentation Block  

The desegmentation is the same as the concatenation block .The input bit sequence 

for the desegmentation block are the sequences 𝑒𝑟𝑘, for r = 0,…..,C-1 and k = 

0,…..,𝐸𝑟-1. The output bit sequence from the code block desegmentation block is the 

sequence 𝑓𝑘 for k = 0,….,G-1. 

The desegmentation consists of sequentially concatenating the rate matching 

outputs for the different code blocks. Therefore, 
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Set k = 0 and r = 0 

while r < C 

Set j = 0 

while j < 𝐸𝑟 

 𝑓𝑘 = 𝑒𝑟𝑗   

k = k +1 

 j = j +1 

end while 

r = r +1 

end while 

The desegmentation block interface is as shown in Figure 4.52 and the signals 

declaration and description is as shown in Table 4.5. 

 

 
Figure 4.52: top desegmentation 
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Table 4.24: Desegmentation block signals declaration 

PIN Description 

C Total number of code blocks (segmentation section) 

enable This signal indicates that the next block is ready to have data 

valid_in This signal indicates that current data_in is valid data 

data_in The input bits 

finished This signal indicates that the interleaver is ready to have a new 

frame 

valid_out This signal indicates that current data_out is valid data 

data_out The output bits 

 

4.3.7 CRC (Cyclic Redundancy Check) check  

CRC check process is provided for error check in which the entire received block 

is used to calculate the CRC parity bits for each received block.  

We receive the total number of bits and subtract the CRC bits number from it and 

generate CRC parity bits by equations shown in Table 4.25 for 

only 𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑏𝑖𝑡𝑠 –  𝐶𝑅𝐶 𝑏𝑖𝑡𝑠. 

Finally, we compare these generated bits with the last bits received and decide out 

if these data was right or wrong. The data is wrong if there is any mismatch in the 

comparison.  

Table 4.25: Equations of CRC check 

CRC Mode Equation 

CRC24 gCRC24(D) = D24 + D23 + D6 + D5 + D + 1 

CRC16 gCRC16(D) = D16 + D12 + D5 + 1 

CRC12 gCRC12(D) = D12 + D11 + D3 + D2 + D + 1 

CRC8 gCRC8(D) = D8 + D7 + D4 + D3 + D + 1 

 

The top block of the CRC check is shown in Figure 4.53  

Pins description is showed in Table 4.26 
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Figure 4.53 : Top CRC check 

Table 4.26: Pins description of DeCRC 

PIN Description 

Data_in The input bits 

Valid_in The signal indicates that current data_in is valid data 

Data_out The output data of the block 

Valid_out The signal indicates that current data_out is valid data 

Finished The signal indicated that the CRC is ready for the new frame 

Correct The signal indicates if the data received is correct or not 

And the internal structure is shown in Figure 4.54. 

 

Figure 4.54: Internal structure of CRC 
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Chapter 5: Wi-Fi Standard Transmitter and Receiver 

A brief introduction to the 802.11 and WLAN technology follows 

5.1 Overview 

WLAN technology and the WLAN industry date back to the mid-1980s when the 

Federal Communications Commission (FCC) first made the RF spectrum available to 

industry. During the 1980s and early 1990s, growth was relatively slow. Today, 

however, WLAN technology is experiencing tremendous growth. The key reason for 

this growth is the increased bandwidth made possible by the IEEE 802.11 standard 

[8]. 

5.2 Standard History  

The IEEE initiated the 802.11 project in 1990 with a scope “to develop a Medium 

Access Control (MAC) and Physical Layer (PHY) specification for wireless 

connectivity for fixed, portable, and moving stations within an area.” In 1997, IEEE 

first approved the 802.11 international interoperability standards. In 1999, the IEEE 

ratified the 802.11a and the 802.11b wireless networking communication standards. 

The goal was to create a standards-based technology that could span multiple physical 

encoding types, frequencies, and applications. The 802.11a standard uses orthogonal 

frequency division multiplexing (OFDM) to reduce interference. This technology uses 

the 5 GHz frequency spectrum and can process data at up to 54 Mbps [8].  

5.3 Frequency and Data Rates  

The IEEE 802.11a standard is the most widely adopted member of the 802.11 

WLAN families. It operates in the licensed 5 GHz band using OFDM technology. The 

popular 802.11b standard operates in the unlicensed 2.4 GHz-2.5 GHz Industrial, 

Scientific, and Medical (ISM) frequency band using a direct sequence spread-

spectrum technology. The ISM band has become popular for wireless 

communications because it is available worldwide.  



68 

 

5.4 Physical Layer of 802.11a 

IEEE 802.11 standard specifies a 2.4 GHz operating frequency with data rates of 1 

and 2 Mbps using either Direct Sequence Spread Spectrum (DSSS) or Frequency 

Hopping Spread Spectrum (FHSS). The IEEE 802.11a standard specifies an OFDM 

physical layer (PHY) that splits an information signal across 52 separate subcarriers to 

provide transmission of data at a rate of 6, 9, 12, 18, 24, 36, 48, or 54 Mbps. In the 

802.11a IEEE standard the 6, 12, and 24 Mbps data rates are mandatory. Four of the 

subcarriers are pilot subcarriers that the system uses as a reference to disregard 

frequency or phase shifts of the signal during transmission.  

In the 802.11a standard, a pseudo binary sequence is sent through the pilot 

subchannels to prevent the generation of spectral lines. In the 802.11a, the remaining 

48 subcarriers provide separate wireless pathways for sending the information in a 

parallel fashion. The resulting subcarrier frequency spacing in the IEEE 802.11a 

standard is 0.3125 MHz (for a 20 MHz bandwidth with 64 possible subcarrier 

frequency slots).  

Also in the 802.11a standard, the primary purpose of the OFDM PHY is to 

transmit Media Access Control (MAC) Protocol Data Units (MPDUs) as directed by 

the 802.11 MAC layer. The OFDM PHY of the 802.11a standard is divided into two 

elements: the Physical Layer Convergence Protocol (PLCP) and the Physical Medium 

Dependent (PMD) sublayers [8].  

5.5 PPDU frame structure 

The PHY Sub-layer Service Data Units (PSDU) of the 802.11a is converted to a 

PLCP Protocol Data Unit (PPDU). The PSDU of the 802.11a is provided with a PLCP 

preamble and header to create the PPDU. 

Figure 5.1 shows the format for the PPDU including the OFDM PLCP preamble, 

OFDM PLCP header, PSDU, Tail bits, and Pad bits. The PLCP header contains the 

following fields: RATE, a reserved bit, LENGTH, an even parity bit, 6 Tail bits and 

the SERVICE field. In terms of modulation, the LENGTH, RATE, reserved bit, and 

parity bit (with 6 zero tail bits appended) constitute a separate single OFDM symbol, 

denoted SIGNAL, which is transmitted with the most robust combination of BPSK 
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modulation and a coding rate of R = 1/2. The SERVICE field of the PLCP header and 

the PSDU (with 6 zero tail bits and pad bits appended), denoted as DATA, are 

transmitted at the data rate described in the RATE field and may constitute multiple 

OFDM symbols. The tail bits in the SIGNAL symbol enable decoding of the RATE 

and LENGTH fields immediately after the reception of the tail bits. The RATE and 

LENGTH fields are required for decoding the DATA part of the packet [8]. 

 
Figure 5.1: PPDU frame format 

5.5.1 SIGNAL field 

The OFDM training symbols shall be followed by the SIGNAL field, which 

contains the RATE and the LENGTH fields of the TXVECTOR (PSDU). The RATE 

field conveys information about the type of modulation and the coding rate as used in 

the rest of the packet. The encoding of the SIGNAL single OFDM symbol shall be 

performed with BPSK modulation of the subcarriers and using convolutional coding 

at R = 1/2.  

The encoding procedure, which includes convolutional encoding, interleaving, 

modulation mapping processes, pilot insertion, and OFDM modulation, follows the 

steps that used for transmission of data with BPSK-OFDM modulated at coding rate 

1/2. The contents of the SIGNAL field are not scrambled. 

The SIGNAL field shall be composed of 24 bits, as illustrated in Figure 5.2. The 

four bits 0 to 3 (R1-R4) shall encode the RATE. Bit 4 shall be reserved for future use. 

Bits 5–16 shall encode the LENGTH field of the TXVECTOR, with the LSB being 

transmitted first (the length of the PSDU, this length represent the number of octets in 

the PSDU). A continuation is a parity bit and 6 tail bits. The tail bits are set to "zeros" 

to facilitate a reliable and timely detection of the RATE and LENGTH fields. 
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Figure 5.2: SIGNAL field bit assignment 

5.5.2 RATE field 

The bits R1–R4 shall be set, dependent on RATE, according to the values in Table 

1. 

Table 5.1: Contents of the SIGNAL field 

R1-R4 Rate (Mb/s) 

(20 MHz channel 

spacing) 

Rate (Mb/s) 

(10 MHz channel 

spacing) 

Rate (Mb/s) 

(5 MHz channel 

spacing) 

1101 6 3 1.5 

1111 9 4.5 2.25 

0101 12 6 3 

0111 18 9 4.5 

1001 24 12 6 

1011 36 18 9 

0001 48 24 12 

0011 54 27 13.5 

 

5.5.3 PLCP LENGTH field 

The PLCP LENGTH field shall be an unsigned 12-bit integer that indicates the 

number of octets in the PSDU that the MAC is currently requesting the PHY to 

transmit. This value is used by the PHY to determine the number of octet transfers 

that will occur between the MAC and the PHY after receiving a request to start 

transmission. 

5.5.4 Parity (P), Reserved (R), and SIGNAL TAIL fields 

Fourth bit is reserved. It shall be set to 0 on transmit and ignored on receive. The 

seventh (17th) bit shall be a positive parity (even parity) bit for bits 0–16. The bits 18–

23 constitute the SIGNAL TAIL field, and all 6 bits shall be set to 0. 

5.5.5 DATA field 

The DATA field contains the SERVICE field, the PSDU, the TAIL bits, and the 

PAD bits, if needed .All bits in the DATA field are scrambled. 
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This field contains the PSDU. The first 16 bits (7 null bits used for the scrambler 

initialization and 9 null bits reserved for future use) for the SERVICE field. A 

continuation is the PSDU. A continuation is a 6 tail bits and pad bits.  

The tail bits containing 0s are appended to the PPDU to ensure that the 

convolutional encoder is brought back to zero state and the pad bits are used as guards 

for the PPDU frame. 

5.5.6 SERVICE field 

The IEEE 802.11 SERVICE field has 16 bits, which shall be denoted as bits 0–15. 

The bit 0 shall be transmitted first in time. The bits from 0–6 of the SERVICE field, 

which are transmitted first, are set to 0s and are used to synchronize the descrambler 

in the receiver. The remaining 9 bits (7–15) of the SERVICE field shall be reserved 

for future use. All reserved bits shall be set to 0. Refer to Figure 5.3. 

 
Figure 5.3: SERVICE field bit assignment 

5.5.7 PPDU TAIL field 

The PPDU TAIL field shall be six bits of 0, which are required to return the 

convolutional encoder to the zero state. This procedure improves the error probability 

of the convolutional decoder, which relies on future bits when decoding and which 

may be not be available past the end of the message. The PLCP tail bit field shall be 

produced by replacing six scrambled zero bits following the message end with six 

non-scrambled zero bits. 

5.5.8 Pad bits (PAD) 

The number of bits in the DATA field shall be a multiple of NCBPS, the number of 

coded bits in an OFDM symbol (48, 96, 192, or 288 bits). To achieve that, the length 

of the message is extended so that it becomes a multiple of NDBPS, the number of data 

bits per OFDM symbol.  
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At least 6 bits are appended to the message, in order to accommodate the TAIL 

bits. The number of OFDM symbols, NSYM; the number of bits in the DATA field, 

NDATA; and the number of pad bits, NPADS, are computed from the length of the 

PSDU (LENGTH) as follows: 

NSYM = Ceiling((16 + 8 ∗ LENGTH + 6)/NDBPS 

𝑁𝐷𝐴𝑇𝐴 = 𝑁𝑆𝑌𝑀 ∗  𝑁𝐷𝐵𝑃𝑆 

NPAD = NDATA − (16 + 8 ∗ 𝐿𝐸𝑁𝐺𝑇𝐻 + 6) 

5.5.9 PLCP preamble: 

 This field is used to acquire the incoming OFDM signal and train and synchronize 

the demodulator. The PLCP preamble is BPSK-OFDM modulated at 6 Mbps using 

convolutional encoding rate R=1/2. 

5.5.10 Frame Summary points 

 The PLCP header field is produced from the RATE, LENGTH, and SERVICE 

fields of the TXVECTOR by filling the appropriate bit fields. 

 The PPDU SIGNAL field is the PLCP Header but without the SERVICE field.  

 The contents of the SIGNAL field and the 6 tail bits in the DATA field are not 

scrambled but follow the same steps for convolutional encoding, interleaving, 

BPSK modulation, pilot insertion, IFFT, and pre-pending a GI. 

5.6 802.11a Transmitter PHY Block Diagram 

 
Figure 5.4: Wi-Fi Tx Block Diagram 
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5.6.1 Scrambler 

Scrambler is used to randomize the service, PSDU, pad and data patterns to 

prevent long sequences of 1s or 0s to keep synchronization. The contents of the 

SIGNAL field and the 6 tail bits in the DATA field are not scrambled [8] [9]. The 

frame synchronous scrambler uses the generator polynomial S(x) as follows:   

𝑆(𝑥) = 𝑥7 + 𝑥4 + 1 

This generator polynomial S(x) can be represented as shown in Figure 5.5 

 
Figure 5.5: Data Scrambler 

According to the initial state the scrambler will generate 127 bit sequence then it 

will return to its initial state. 

For example: Assume that the initial state of the scrambler is all ones (1111111) 

but it is not a fixed initial. 
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And so on….. 

We can say that all the bits transmitted by the 802.11a PMD in the data portion are 

scrambled using a frame synchronous 127 bits sequence generator. Because there is a 

sequence of bits generated at node B that shown in Figure 5.5 and this sequence is 

repeated after 127bit. 

In the previous example (all ones initial state) the 127-bit sequence generated 

repeatedly by the scrambler is 00001110 11110010 11001001 00000010 00100110 

00101110 10110110 00001100 11010100 11100111 10110100 00101010 11111010 

01010001 10111000 1111111 and this sequence change when the initial state change. 

The same scrambler is used to scramble the transmitted data and descramble the 

received data 

The seven LSBs of the SERVICE field will be set to all zeros prior to scrambling 

to enable estimation of the initial state of the scrambler in the receiver. The contents 

of the SIGNAL field of the 802.11a are not scrambled. 

Regarding the HDL implementation Figure 5.6 shows the interface of the 

Scrambler and signals declaration and definition is as shown in Table 5.2 
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Figure 5.6: Top Controlled Scrambler Interface 

 

Table 5.2: Scrambler Signals Declaration 

PIN Description 

Data_in The input bits 

Valid_in This signal indicates that current data_in is valid data 

enable This signal indicates that the next block is ready to have data 

finished This signal indicates that the scrambler is ready to have a new 

frame 

Data_Out The output bits 

Valid_out This signal indicates that current data_out is valid data 

 

 
Figure 5.7: Internal Signals for Scrambler 
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5.6.2 Convolutional Encoder 

The DATA field, composed of SERVICE, PSDU, tail, and pad parts, shall be 

coded with a convolutional encoder of coding rate R = 1/2, 2/3, or 3/4, corresponding 

to the desired data rate. The convolutional encoder shall use the industry-standard 

generator polynomials, g0 = 1338 and g1 = 1718, of rate R = 1/2, as shown in 

Figure 5.8. The bit denoted as “A” shall be output from the encoder before the bit 

denoted as “B.” Higher rates are derived from it by employing “puncturing.” 

Puncturing is a procedure for omitting some of the encoded bits in the transmitter 

(thus reducing the number of transmitted bits and increasing the coding rate) and 

inserting a dummy “zero” metric into the convolutional decoder on the receive side in 

place of the omitted bits. The encoder is followed by parallel to serial block to 

transmit the encoded bits to the puncture [10].  

 
Figure 5.8: Convolutional Encoder (K=7) 

 

Schematic (shown in the following Figure 5.9 the top module of the 3g 

convolutional encoder rate half) 
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Figure 5.9: Schematic of the convolutional encoder 

 

 

Table 5.3: Convolution Encoder Signals Declaration 

PIN Description 

Clk_out Clock of the serial output 

Data_in Data in for the convolutional encoder 

Enable Working enable for the encoder 

Reset Reset encoder registers by inserting Zeros 

Valid_in Valid in to consider the input 

Data_out Encoder input 

Finished Signal indicates the block is ready for the 

new frame 

Valid_out Valid out signal to the next block 

Detailed a block diagram for the blocks that shown internal construction of the 

WIFI convolutional encoder in Figure 5.10. 

5.6.3 Puncture 

If the system could only change the data rate by adjusting the constellation size, 

and not the code rate, a very large number of different rates would be difficult to 

achieve as the number of constellations and the number of points in the largest 

constellation would grow very quickly. 
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Figure 5.10: Internal block diagram of the convolutional encoder 

Another solution would be to implement several different convolutional encoders 

with different rates and change both the convolutional code rate and constellation. 

However this approach has problems in the receiver that would have to implement 

several different decoders for all the codes used. 

 Puncturing is a very useful technique to generate additional rates from a single 

convolutional code. Puncturing was first discovering by Cain, Clark, and Geist, and 

subsequently the technique was improved by Hagenauer. 

The basic idea behind puncturing is to not transmit some of the output bits from the 

convolutional encoder, thus increasing the rate of the code and inserting a dummy zero 

metric into the convolutional decoder on the receive side in place of the omitted bits, 

hence only one encoder/decoder pair is needed to generate several different code rates 

[8]. 

The puncture pattern is specified by the Puncture vector parameter in the mask. 

The puncture vector is a binary column vector. A 1 indicates that the bit in the 

corresponding position of the input vector is sent to the output vector, while a 0 

indicates that the bit is removed. 
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If we used 1/2 convolutional encoder and we have 6 data bits, we will send 12 bits 

on the channel, puncturing will remove some of the bits and adds some data bits from 

the next frame as shown in Figure 5.11 

Puncture input :                       1   0   0   1   1   0   1   0   1   1   1   0 

Puncture vector:                      1   1   0   1   1   0   1   1   0   1   1   0 

Puncture output:             1   0   x    1 1   x   1   0   x   1    1 x  

 
Figure 5.11: Puncturing example 1 

 

There are two types of punctures in wifi standard: (2/3) and (3/4) according to the 

data rate as shown in Table 5.4. 

Table 5.4: Data Rates and Puncture types 

Rate (Mbps) Code rate Rate (Mbps) Code rate 

6 ½ 24 ½ 

9 ¾ 36 ¾ 

12 ½ 48 2
3⁄  

18 ¾ 54 ¾ 

In case of total rate (½) there is no puncture  and in case of total rate (2 3⁄ ) the rate 

of puncture should be 
4

3
 so 

1

2
∗
4

3
=

2

3
  =2 3⁄  but in case of total rate (¾) the rate of 

puncture should be 
6

4
 so 

1

2
∗
6

4
=

3

4
. Puncture vector for different rates are show in 

Figure 5.12 

 

Figure 5.12: Puncture vector 

 



80 

 

Concerning the HDL implementation, Figure 5.13 shows the interface 

The pins description is in the following Table 5.5. 

The internal block diagram is shown in Figure 5.14. 

 
Figure 5.13: Puncture interface 

 
Table 5.5: Puncture Pin description 

PIN Description 

Data_in The input bits 

Valid_in The signal indicates that current data_in is valid data 

Clk_in Clk of data_in 

Clk_out Clk of data_out 

Finished The signal indicated that the block is ready for the new frame 

Enable The signal indicates that the next block is ready to have data 
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Figure 5.14: Puncture block diagram 

 

Implementation of puncture depend on fifo which we control the write enable of it 

according to puncture vector and the signal field (first 48 coded bits ) are not 

punctured  then read from fifo by order , Figure 5.15 shows the timing diagram of 

write enable for puncture ¾.   

 

Figure 5.15: Puncture 3/4 timing diagram - write enable 

The ratio between input clock and output clock depends on the rate of puncture; 

Figure 5.16 shows the timing diagram of write enable for puncture ¾. 

 

Figure 5.16: Puncture 3/4 timing diagram - clock ratio 

5.6.4 Interleaver 

All encoded data bits shall be interleaved by a block interleaver with a block size 

corresponding to the number of bits in a single OFDM symbol, NCBPS. The interleaver 

is defined by a two-step permutation. 
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 The first permutation ensures that adjacent coded bits are mapped onto 

nonadjacent subcarriers. The second ensures that adjacent coded bits are mapped 

alternately onto less and more significant bits of the constellation and, thereby, long 

runs of low reliability (LSB) bits are avoided. 

The index of the coded bit before the first permutation shall be denoted by k; i shall 

be the index after the first and before the second permutation; and j shall be the index 

after the second permutation, just prior to modulation mapping [8] [9]. The first 

permutation is defined by the rule: 

𝑖 = (
𝑁𝐶𝐵𝑃𝑆
16

) ∗ (𝑘 𝑚𝑜𝑑 16) + 𝐹𝑙𝑜𝑜𝑟 (
𝑘

16
)         𝑘 = 0,1, … . . , 𝑁𝐶𝐵𝑃𝑆 − 1 

 

The function Floor (.) denotes the largest integer not exceeding the parameter. 

The second permutation is defined by the rule:  

𝑗 = 𝑠 ∗ 𝐹𝑙𝑜𝑜𝑟 (
𝑖

𝑠
) + (𝑖 + 𝑁𝐶𝐵𝑃𝑆 − 𝐹𝑙𝑜𝑜𝑟 (16 ∗

𝑖

𝑁𝐶𝐵𝑃𝑆
))𝑚𝑜𝑑 𝑠  

𝑖 = 0,1, …… ,𝑁𝐶𝐵𝑃𝑆 − 1 

The value of s is determined by the number of coded bits per subcarrier, 𝑁𝐵𝑃𝑆𝐶, 

according to: 

𝑠 = max (
𝑁𝐵𝑃𝑆𝐶
2

, 1) 

The deinterleaver, which performs the inverse relation, is also defined by two 

permutations. Interleaver block simulation 

The interleaver block interface is as shown in Figure 5.17, the signals declaration 

and description is as shown in Table 5.6 and the block simulation is as shwon in 

Figure 5.18. 
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Figure 5.17: Interleaver block interface 

 

Table 5.6: Interleaver block signals declaration 

PIN Description 

enable This signal indicates that the next block is ready to have data 

valid_in This signal indicates that current data_in is valid data 

data_in The input bits 

finished This signal indicates that the interleaver is ready to have a new 

frame 

valid_out This signal indicates that current data_out is valid data 

data_out The output bits 

 

The implementation of this block is based on a RAM, this RAM used to store all 

the input data to the interleaver block as shown in Figure 5.19 then we read from this 

RAM but out of order according to the index that calculated from the interleaving 

equations as shown in Figure 5.20 
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Figure 5.18: Interleaver block simulation 

 
Figure 5.19: Writing the input data in the RAM 

 

 
Figure 5.20: Reading the data from the RAM 

 

 

The interleaving equation is different according to 𝑁𝐶𝐵𝑃𝑆 and 𝑁𝐵𝑃𝑆𝐶 values, these 

values are as shown in Table 5.7 So finally we have four interleavers: 

𝑁𝐵𝑃𝑆𝐶 = 1 , 𝑁𝐶𝐵𝑃𝑆 = 78 

𝑁𝐵𝑃𝑆𝐶 = 2 , 𝑁𝐶𝐵𝑃𝑆 = 96 

𝑁𝐵𝑃𝑆𝐶 = 7 , 𝑁𝐶𝐵𝑃𝑆 = 192 

𝑁𝐵𝑃𝑆𝐶 = 6 , 𝑁𝐶𝐵𝑃𝑆 = 288 
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Table 5.7: Modulation-dependent parameters 

 

5.6.5 Modulation Mapper 

Modulation is the process by which information (e.g. bit stream) is transformed 

into sinusoidal waveform. A sinusoidal wave has three features those can be changed 

- phase, frequency and amplitude- according to the given information and to the used 

modulation technique [8]. 

In 802.11a Phase Shift Keying (BPSK, QPSK) and Quadrature Amplitude 

Modulation (16-QAM, 64-QAM) modulation techniques are used according to the 

desired data rate as described in the following equation:   d=(I + j Q)* Kmod 

where Kmod is the normalization factor and is used in to achieve the same average 

power for all mappings. It depends on the base modulation mode as shown in Table 5.8. 

Table 5.8: Normalization factor for all modulation modes. 

Modulation Kmod 

BPSK 1 

QPSK 1/√2 

16-QAM 1/√10 

64-QAM 1/√40 

 

Every modulation mode has a modulation specified in the standard as shown in 

Figure 5.21. 
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Figure 5.21: Modulation constellations for BPSK, QPSK, 16-QAM, and 64-QAM. 
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Concerning the HDL implementation, Figure 5.22 shows the interface of the 

mapper. 

 

Figure 5.22: Wi-Fi mapper interface. 

 

As shown in the figure every symbol is represented in 12 bits – this number is 

determined through a simulation will be discussed later- the pins description is in 

Table 5.9. 

Table 5.9: Pin description of wifi mapper. 

PIN Description 

Data_in The input bits 

Valid_in The signal indicates that current data_in is valid data 

Mod_out_Re The modulated real part of the input 

Mod_out_im The modulated imaginary part of the input 

finished The signal indicated that the mapper is ready for the new frame 

enable The signal indicates that the next block is ready to have data 

The internal block diagram is shown in Figure 5.23Error! Reference source not 

found.. 

It consists of fifo to store the input bit stream, controller to control the fifo and the 

mapper module (top_mod_wifi) which consists of serial to parallel inverter and the 

mapper module that mapps bits to the corresponding symbol following the 

constellation. 
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Figure 5.23:Detailed block diagram of Wi-Fi mapper module. 

5.6.6 IFFT Modulation 

WIFI uses orthogonal frequency division multiplexing for modulation, An OFDM 

signal consists of a number of closely spaced modulated carriers as shown in 

Figure 5.24  [9], those carriers are orthogonal so the receiver could demodulate them, 

OFDM systems are very sensitive to  frequency offset and ISI because any error in the 

received signal affects all carriers and all data so a guard interval is used between 

OFDM symbols, In this guard signal we insert a cyclic prefix of the symbol to 

compensate for any synchronization problems with in the receiver. 

 

Figure 5.24:Spectrum of a single subcarrier of the OFDM signal (a), Spectrum of the 

OFDM signal (b) 
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The important parameters for the OFDM modulation system are the number of 

subcarriers used within the bandwidth, the cyclic prefix and where to insert pilot 

signals.   

Inverse fast Fourier transform is used for the modulation operation, as specified by 

the IEEE 802.11-2012, 64-point IFFT is used with symbol duration of 4 us in the 20 

MHz operation of the standard. The symbol time consists of a 3.2 us symbol and 0.8 

us for the cyclic prefix, the timing of the OFDM frame is as shown in Figure 5.25. [8] 

 

Figure 5.25: OFDM training structure 

The single OFDM symbol contains 48 data symbols from the mapper, contains 4 

pilot symbols, 11 null symbol and null input at DC, this mapping is shown in the 

below function where k is the logical subcarrier number and M(k) is the frequency 

offset index, The frequency offset index mapping to the IFFT inputs is shown in 

Figure 5.26. [8] 

𝑀(𝑘) =  

{
 
 

 
 

𝑘 –  26        0 ≤ 𝑘 ≤ 7

  𝑘 –  25        5 ≤ 𝑘 ≤ 14

   𝑘 –  27        18 ≤ 𝑘 ≤ 23

   𝑘 –  23        27 ≤ 𝑘 ≤ 29

  𝑘 –  22        30 ≤ 𝑘 ≤ 72

  𝑘 –  21        73 ≤ 𝑘 ≤ 74

 

 
Figure 5.26: inputs and outputs of the IFFT [8] 
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The contribution of the pilot subcarriers for the nth OFDM symbol is produced by 

inverse Fourier transform of sequence P, given by 

𝑃−26,26= {0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 

0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, –1, 0, 0, 0, 0, 0} [8] 

The polarity of the pilot subcarriers is controlled by the sequence, pn, which is a 

cyclic extension of the 127 elements sequence and is given by 

𝑝0..126𝑣 = {1,1,1,1,–1,–1,–1,1,–1,–1,–1,–1,1,1,–1,1, –1,–1,1,1, –1,1,1,–1, 

1,1,1,1,1,1,–1,1,1,1,–1,1, 1,–1,–1,1, 1,1,–1,1,–1,–1,–1,1, –1,1,–1,–1, 1,–1,–1,1, 

1,1,1,1, –1,–1,1,1,–1,–1,1,–1,1,–1,1,1,–1,–1,–1,1, 1,–1,–1,–1, –1,1,–1,–1, 1,–1,1,1, 

1,1,–1,1,–1,1,–1,1,–1,–1,–1,–1,–1,1,–1,1,1,–1,1,–1, 1,1,1,–1,–1,1,–1,–1,–1,1,1,1,–1,–

1,–1,–1, –1,–1,–1} [8] 

Pilots are inserted at subcarriers -21, -7, 7, 21. 

The final mapping of the 64 subcarrier is as shown in Figure 5.27. 

 
Figure 5.27: Final 64 subcarrier mapping [8] 

 

The hardware circuit implementation needs an IFFT circuit, we used the Xilinx 

LogiCORE IP Fast Fourier Transform v7.1, and the IP has many options we used the 

pipelined streaming I/O to ensure continuous output to comply with the standard 

requirements. 

The Pipelined, Streaming I/O solution pipelines several Radix-2 butterfly 

processing engines to offer continuous data processing. Each processing engine has its 

own memory banks to store the input and intermediate data Figure 5.28. The core has 

the ability to simultaneously perform transform calculations on the current frame of 

data, load input data for the next frame of data, and unload the results of the previous 

frame of data. The user can continuously stream in data and, after the calculation 
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latency, can continuously unload the results. If preferred, this design can also 

calculate one frame by itself or frames with gaps in between. 

In the scaled fixed-point mode, the data is scaled after every pair of Radix-2 stages. 

The block floating-point mode may use significantly more resources than the scaled 

mode, as it must maintain extra bits of precision to allow dynamic scaling without 

impacting performance. Therefore, if the input data is well understood and is unlikely 

to exhibit large amplitude fluctuation, using scaled arithmetic (with a suitable scaling 

schedule to avoid overflow in the known worst case) is sufficient, and resources may 

be saved. 

The input data is presented in natural order. The unloaded output data can either be 

in bit reversed order or in natural order. When natural order output data is selected, 

additional memory resource is utilized. 

This architecture covers point sizes from 8 to 65536. The user has flexibility to 

select the number of stages to use block RAM for data and phase factor storage. The 

remaining stages use distributed memory. [11] 

-

 
Figure 5.28: pipelined streaming I/O [11] 

 

The IFFT block interface is as shown Figure 5.29, The XK_RE, XK_IM are the 

input symbols to the IFFT, XK_INDEX is the index of the symbol that should be 

input to the IFFT now for example in this case, it will be from 0 to 63. XN_RE, 

XN_IM and XN_INDEX are the same as XK but for output.  
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CP_LEN is the required cyclic prefix length in our case it will be fixed to 16 

symbols. CP_LEN_WE is the control signal to reconfigure CP_LEN. FWD_INV is 

the configuration bit that defines whether the FFT block will be FFT or IFFT. 

FWD_INV_WE is the control signal to reconfigure FWD_INV. 

Asserting START starts the data loading phase, which immediately flows into the 

transform calculation phase and then the data unloading phase. Pulsing START once 

allows the transform calculation for a single frame. Pulsing START every N clock 

cycles allows continuous data processing. Alternatively, holding START High also 

allows continuous data processing. START is ignored except when the core can begin 

loading a new frame, that is, when no data is being loaded, or the last value in the data 

frame is being loaded. If no NFFT_WE, FWD_INV_WE, or SCALE_SCH_WE were 

asserted before the initial START, then the defaults are used. This architecture can 

also support extended intervals between frames. Simply assert START at any time to 

begin data loading. After the data frame is loaded, the core proceeds to calculate the 

transform and then output the results. Figure 10 shows the timing of entire frames. 

 It does not show the small skews between signals which occur at the start and end 

of frames. [11] 

5.6.6.1 Applying Data 

Data is applied in a contiguous burst. The point at which data input should start 

relative to the START pulse is determined by the Input Data Timing parameter set in 

the GUI. 

If “No offset” was selected for the Input Data Timing parameter, the input data 

(XN_RE, XN_IM) corresponding to the given XN_INDEX should arrive on the same 

cycle as the XN_INDEX it matches. The first data sample should therefore be applied 

as soon as RFD goes High, such that the first sample pair is read into the core on the 

first transition of XN_INDEX, If “3 clock cycle offset” was selected for the Input 

Data Timing parameter, the input data (XN_RE, XN_IM) corresponding to the given 

XN_INDEX should arrive three clock cycles later than the XN_INDEX it matches. In 

this way, XN_INDEX can be used to address external memory or a frame buffer 

storing the input data. RFD remains High with XN_INDEX during the loading phase 

and so indicates that data may be input. [11] 
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5.6.6.2 Data Processing and Data Output 

BUSY goes High while the core is calculating the transform. DONE goes High 

when calculation is complete. EDONE goes High one cycle before that, that is, during 

the last cycle of the calculation phase. The cycle in which DONE goes High, the core 

begins unloading. During the unloading phase, while valid output results are present 

on XK_RE/XK_IM, DV (Data Valid) is High. During unloading, XK_INDEX 

corresponds to the XK_RE/XK_IM being presented. If cyclic prefix insertion is used, 

the cyclic prefix is unloaded first. CPV goes High to indicate that the cyclic prefix is 

being unloaded, and XK_INDEX counts from (point size) - (cyclic prefix length) up 

to (point size) – 1, After the cyclic prefix has been unloaded, or if the cyclic prefix 

length is zero, or if cyclic prefix insertion is not used, the whole frame of output data 

is unloaded. CPV goes Low (if present) and XK_INDEX counts from 0 up to (point 

size) - 1. [11] 

5.6.6.3 Cyclic Prefix Considerations 

If cyclic prefix insertion is used, more samples are unloaded from the core than are 

loaded. Therefore, the core cannot continuously stream frames, but must insert a gap 

of (cyclic prefix length) clock cycles in between each frame of input data to 

accommodate the additional clock cycles required to unload the cyclic prefix. This is 

indicated by the Ready For Start (RFS) pin. RFS goes High when the core is ready for 

the START pin to be asserted to begin loading the next frame of data. START is 

ignored except when RFS is High. RFS remains low for (cyclic prefix length) clock 

cycles after RFD has gone Low, to allow for unloading the cyclic prefix. [11] 

A detailed waveform of the timing control is shown in Figure 5.30. 

Our final implementation top module is the top_ofdm_wifi whose interface is 

shown in Figure 5.31, the top_ofdm_wifi contains top_preample_wifi explained 

above and top_IFFT_controller that we will explain later, the pin diagram for the 

top_ofdm_wifi is shown in Figure 5.31 and the internal hierarchy of the 

top_ofdm_wifi is shown in Figure 5.32 and in Table 5.10. 

To generate correct output the IFFT_controller start the preamble (preamble_st) 

module when the mapper is ready to send data, the preamble output lasts for 16 us and 

the IFFT first patch of outputs will have about 12 us latency so the preamble sends a 

signal (enable_iff) for IFFT after 4us of its operation so the IFFT will start processing 
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and its output will start after the preamble, to guarantee the continuity of output as 

shown in Figure 5.33.  

 
Figure 5.29: IFFT block interface [11] 

 

The IFFT_controller consists of two ram of size 48 and the LogiCORE FFT IP, 

The two ram sizes are used to arrange the symbols according to the mapping function 

explained before. To ensure correct operation of the FFT streaming block we must 

have an input ready whenever the FFT block requests input. The FFT streaming block 

takes 48 symbols then takes no input for 16 clock cycles then takes input again. So we 

used two memories to buffer input so whenever one memory is inputting to the FFT 

block the other one has the next input ready for the next patch.  
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Figure 5.30: FFT timing for applying data 

 
Figure 5.31: top_ofdm_wifi interface 
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Table 5.10: top_ofdm_wifi pin description 

Pin Description 

Data_in_im Imaginary input data 

Data_in_re Real input data 

Clk IFFT clk (20 MHz) 

Clk_fast System fast clk 

enable Not used here 

Last_sym Mapper marking to the IFFT that these patch 

of symbols are the last patch to be processed 

Mapper_ready Marks that mapper  started to input symbols 

to its pipeline 

Reset Reset the IFFT_controller 

Valid_in Marks that the mapper output signals are 

valid 

Data_out_im Output imaginary part data 

Data_out_re Output real part data 

Finished Signals the mapper that the IFFT is ready to 

receive data 

Valid_out Signals the IFFT output now are valid 

 

 
Figure 5.32: top_ofdm_wifi hierarchy 

 

 

Figure 5.33: Waveform of preample and IFFT outputs 
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5.6.7 Preamble 

In Wifi 802.11a, The PLCP Preamble field is used for synchronization. It consists 

of 10 short symbols and two long symbols that are shown in Figure 5.34. The timings 

described in this subclause and shown in Figure 5.34 are for 20 MHz channel spacing. 

They are doubled for half-clocked (i.e., 10 MHz) channel spacing and are quadrupled 

for quarter-clocked (i.e., 5 MHz) channel spacing. 

 
Figure 5.34:  OFDM training structure. 

 

Figure 5.34 shows the OFDM training structure (PLCP preamble), where t1 to t10 

denotes short training symbols and T1and T2 denote long training symbols. The 

PLCP preamble is followed by the SIGNAL field and DATA. 

The total training length is 16μs. The dashed boundaries in the figure denote 

repetitions due to the periodicity of the inverse Fourier transform. 

A short OFDM training symbol consists of 12 subcarriers, which are modulated by 

the elements of the sequence, given by 

S–26, 26  = √(13/6) × {0, 0, 1+j, 0, 0, 0, –1–j, 0, 0, 0, 1+j, 0, 0, 0,–1–j, 0, 0, 0, –1–j, 0, 

0, 0, 1+j, 0, 0, 0, 0,0, 0, 0, –1–j, 0, 0, 0, –1–j, 0, 0, 0, 1+j, 0, 0, 0, 1+j, 0, 0, 0, 1+j, 0, 0, 

0, 1+j,0,0}  

A long OFDM training symbol consists of 53 subcarriers (including the value 0 at dc), 

which are modulated by the elements of the sequence L, given by 

L–26, 26 = {1, 1, –1, –1, 1, 1, –1, 1, –1, 1, 1, 1, 1, 1,1, –1, –1, 1, 1, –1, 1,–1, 1, 1, 1, 1, 

0, 1, –1, –1, 1, 1, –1, 1, –1, 1, –1, –1, –1, –1, –1, 1, 1, –1, –1, 1, –1, 1, –1, 1, 1, 1, 1} 

The PLCP preamble shall be transmitted using an OFDM modulated fixed waveform. 

The IEEE 802.11 SIGNAL field, BPSK-OFDM modulated with coding rate 1/2, shall 

indicate the modulation and coding rate that shall be used to transmit the MPDU. 
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Concerning HDL modeling, and to save performing IFFT for constant values each 

frame, we have implemented a lookup table for the time domain representation of the 

sequences.  

 

 

Table 5.11Table 5.11 shows the time domain representation of the short sequence.  

There is another table for the long  preamble. As implementing such lookup table 

will be a very hard work, we have used a MATLAB script that reads this table, re-

arrange the data in a suitable format and generate a Verilog code for the preamble 

generator. 

The interface of preamble generator block is shown in Figure 5.35 

 

Figure 5.35: Interface of Wi-Fi preamble generator 
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Table 5.11 :  Frequency domain representation of the short sequences

. 

5.7 802.11a Receiver PHY Block Diagram 

 
Figure 5.36: Wi-Fi Rx Block Diagram 

5.7.1 DeMapper 

It receive the real and imaginary data of the channel which came in the form of 12 

bits divide to 9 bits represent the fraction part and 3 bits represent the real part. The 

main target of the block is to receive these data symbols, specify the decision region 

and convert these symbols to a stream of bits.  
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In WI-FI we have a Phase Shift Keying (BPSK, QPSK) and Quadrature Amplitude 

Modulation (16-QAM) and the decision regions are shown in Figure 5.37 

 
Figure 5.37: decision regions of WIFI demapper 

 

The top Demapper is shown in Figure 5.38 

 
Figure 5.38: Top Demapper 

 

The pins description of the top Demapper are shown in Table 5.12  
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Table 5.12: Pins description of the demapper 

PIN Description 

Data_bit_imag The imaginary part of the input bits 

Data_bit_real The real part of the input bits 

Valid_in The signal indicates that current data bit real and imaginary are  

valid data 

Data_out The output data in the form of stream of bits 

Valid_out The signal indicates that current data_out is valid data 

read The signal indicates that the block is ready to read data of the 

next symbol 

 

5.7.2 DeInterleaver 

The deinterleaver, which performs the inverse relation, is also defined by two 

permutations.  

Here the index of the original received bit before the first permutation shall be 

denoted by j; d shall be the index after the first and before the second permutation; 

and e shall be the index after the second permutation, just prior to delivering the 

coded bits to the convolutional (Viterbi) decoder. 

The first permutation is defined by the rule: 

d = s ∗ Floor (
j

s
) + (𝑗 + 𝐹𝑙𝑜𝑜𝑟 (16 ∗

𝑗

𝑁𝐶𝐵𝑃𝑆
))𝑚𝑜𝑑 𝑠       𝑗 = 0,1… ,𝑁𝐶𝐵𝑃𝑆 − 1 

This permutation represents the inverse equation of the second permutation 

equation in the interleaver of the transmitter (Section 5.6.4). 

The second permutation is defined by the rule: 

e = 16 ∗ d − (𝑁𝐶𝐵𝑃𝑆 − 1) ∗ 𝐹𝑙𝑜𝑜𝑟 (16 ∗
𝑑

𝑁𝐶𝐵𝑃𝑆
)        𝑑 = 0,1… ,𝑁𝐶𝐵𝑃𝑆 − 1 

This permutation represents the inverse equation of the first permutation equation 

in the interleaver of the transmitter (Section 5.6.4). 

The value of s is determined by the number of coded bits per subcarrier, 𝑁𝐵𝑃𝑆𝐶, 

according to: 

𝑠 = max (
𝑁𝐵𝑃𝑆𝐶
2

, 1) 
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The block interface is as shown in Figure 5.17, the signals declaration and 

description is as shown in Table 5.6 and the block simulation is as shwon in 

Figure 5.18. 

 

Figure 5.39: Deinterleaver block interface. 

PIN PIN TYPE   Description 

enable IN This signal indicates that the next block is ready to have 

data 

valid_in IN This signal indicates that current data_in is valid data 

data_in IN The input bits 

finished OUT This signal indicates that the interleaver is ready to 

have a new frame 

valid_out OUT This signal indicates that current data_out is valid data 

data_out OUT The output bits 

The implementation of this block is very close to the implementation of the 

interleaver block because the implementation of this block is also based on a RAM, 

this RAM used to store all the input data to the deinterleaver block as shown in 

Figure 5.41 then we read from this RAM but out of order according to the index that 

calculated from the deinterleaving equations as shown in Figure 5.42 . 

The deinterleaving equation is different according to 𝑁𝐶𝐵𝑃𝑆 and 𝑁𝐵𝑃𝑆𝐶 values, 

these values is as shown in Table 5.7.  

So finally we have four deinterleavers: 

𝑁𝐵𝑃𝑆𝐶 = 1 , 𝑁𝐶𝐵𝑃𝑆 = 78 
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𝑁𝐵𝑃𝑆𝐶 = 2 , 𝑁𝐶𝐵𝑃𝑆 = 96 

𝑁𝐵𝑃𝑆𝐶 = 7 , 𝑁𝐶𝐵𝑃𝑆 = 192 

𝑁𝐵𝑃𝑆𝐶 = 6 , 𝑁𝐶𝐵𝑃𝑆 = 288 

 

Figure 5.40: Deinterleaver block simulation. 

 

Figure 5.41: Writing the input data in the RAM. 

 

Figure 5.42: Reading the data from the RAM. 

5.7.3 Depuncture 

Depuncture is the reverse block of puncture. Depuncture adds dummy bits in the 

position of removed bits by puncture.  

The positions of removed bits are determined in the standard in the puncture vector 

which is a binary column vector. A 1 indicates that the bit in the corresponding 

position of the input vector is sent to the output vector, while a 0 indicates that the bit 

is removed. Figure 5.45 shows the procedure of puncture and depuncture of rate ¾. 

Figure 5.46 and Figure 5.45 shows the procedure of puncture and depuncture of rate 

2/3. 
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The interface of depuncture block is shown in Figure 5.43. 

 
Figure 5.43 : The interface of depuncture block diagram. 

 

 

The internal block diagram of depuncture is shown in Figure 5.44. 

 

Figure 5.44 : internal block of depuncture. 
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Figure 5.45: Depuncture 3/4 rate procedure 

 

 

Figure 5.46 : Depuncture 2/3 rate procedure 
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5.7.4 Convolutional Decoder: 

5.7.4.1 Decoding of Convolutional Encoded Data using Viterbi Algorithm 

(VA). 

The trellis in Figure 5.47 shows the transitions possible for example encoder for 

sequence of input bits 1 0 1 1 1 0 0. 

The VA works by using the received version of the encoded bit sequence to find 

the most likely path through this trellis representing the state machine of the encoder. 

Once this most likely path through the trellis is known, the data bits which would 

have caused the encoder to follow this path can be implied and these bits are the 

output from the VA. 

 

 
Figure 5.47: Trellis diagram of Convolutional Encoder 

 

Viterbi algorithm is called optimum algorithm since it minimizes the probability of 

error. The main drawback of These Viterbi Decoders is that they are very expensive 

in terms of chip area. 
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The basic units of Viterbi decoder as shown in Figure 5.48 are: 

 Branch metric unit (BMU) where received data symbols are compared to the 

ideal outputs of the encoder from the transmitter to compute branch metrics 

which is Hamming distance or the Euclidean distance. The hamming distance 

is the number of bits not matching the possibility and the Euclidean distance is 

the point distance between the possibilities and the received data, which is 

obtained using the point distance formula. Hamming distance is selected as it 

is easy to implement on hardware. 

 Add–compare–select unit (ACSU) which selects the survivor paths for each 

trellis state, also finds the minimum path metric of the survivor paths. 

 Survivor memory unit (SMU). 

 Metric Memory Unit (MMU). 

 Trace Back Unit (TBU) is responsible for selecting the output based on the 

minimum path metric.  

 
Figure 5.48: Block Diagram of Viterbi decoder 

 

Viterbi algorithm can be explained briefly with the following three steps as shown 

in Figure 5.49. 

1. Get one input code word (2 bits or 3 bits corresponding to the coding rate).  

2. Calculating the branch metric 

3. Reading the previous path metric for all the states from the Metric Memory.  
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4. Add the branch metric to the path metric for the old state. 

5. Compare the sums for paths arriving at the new state (there are only two such 

paths 

incoming). 

6. Select the path with the smallest value which is called the survivor path. If both 

path Metrics are equal then any one is chosen. 

7. Writing the survivor path in survivor memory unit to be used in the trace back 

process.  

8. Writing the new path metric in metric memory unit 

9. When the sliding window reaches its end then begins the trace back process  

 

 
Figure 5.49: Viterbi decoder algorithm flow chart 
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The following example shown in Figure 5.50 describes the process of 

Conventional Decoding 

Consider the received sequence as 11 10 00 01 01 11 which is error free and 

should be decoded. 

 
Figure 5.50: Trellis diagram for error free decoding 

 

Given the message data 101100 the encoded output is 11 10 00 01 01 11 which is 

received error free at the receiver. After completing the first two steps explained 

above the path metrics to reach each state in the trellis is obtained which is shown in 

red color just above the states. After calculation of the path metrics the survivor unit 

traces back the optimum path which will always start from state zero. 

The following example shown in Figure 5.51 describes the process of 

Conventional Decoding in case of errors. 

Consider the output is:   11 01 00 10 01 10 11 and received sequence is 11 11 00 

10 01 11 11. 

5.7.4.2 Design Specification:  

 Code Rate = ½, Constraint Length (K) = 7 which denotes the length of the 

Convolutional encoder, The amount of branch metric is 2 ^ K= 128 branches, The 

amount of state metric is 2 ^ (K-1) = 64 states, window size equals 64 stages, and 
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Hard Decision which means that the demodulator is quantized to two levels: zero and 

one.   

 
Figure 5.51: Trellis diagram for error decoding 

 

Since we have 64 states should be estimated at each decoding instants (each input 

code word) but this requires 64 ACS (Add-Compare-Select) in parallel which requires 

more Hardware which will increase the cost so we put 4 ACSs only and this will 

make 4 states only are ready at a time and then we need 16 iteration to complete 

estimation of the 64 states as shown in Figure 5.53. 4 states are processed together 

and from the observations any next state can be reached through 2 previous state, so 

we can see the 64 states as a 16 group each group contains 4 adjacent states (for 

example "S0s”,"S1", "S2" and "S3" are in one group).we need first an address that 

indicates which group's processing is in progress and since we have 16 group so we 

need 4 bits to indicate the group and this is done through ACSSegment. The other 

important thing is that to process 4 states we have 8 previous states that can reach 

these next states (recall the observations) so we need another bits to indicate which 

previous state and branch. The next example of K=3 trellis diagram in Figure 5.52 

may help us to understand this. But notice that in this example we assume the 

following we have only 2 ACSs and then each group contains only 2 states and hence 

we have 4 groups so we need 4 iterations and we need ACSSegmet to be 2 bits only.  
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Figure 5.52: Example of 8 state Trellis diagram. 

 

As shown in the previous figure, the previous states are in the left and the next 

states are in the right, the blue branches stands for "0" input bit and the black branches 

stand for “1” input bit .Ok let's start the methodology of addressing the next state , as 

said before we need in this example 4 iterations at iteration # 0 we need to process 

group 0 which contains states "S000" and "S001" and they can be reached from the 

previous states "S000","S001","S010" and "S011" and to process Group1 which 

contains "S10" and "S11" which can be reachesd from "S100","S101","S110" and 

"S111". With simple observation we can say the following to access the memory 

reading the path metrics of the previous states we need to 2 additional bits that 

changes from 00 to 11 and another most significant bit that chooses whether the first 4 

previous states(S"0 00" to S"0 11") or the second 4 previous states (S"1 00" to "S1 

11"). Also with simple observations we can deduce that this most significant bit(s) 

is/are the ACSSegment bits without the ACSSegment MSB. Here in this example 

ACSSegment[0] is used in addition to the 2 bits that get all the combinations. Ok now 

to generalize these observations in our implementation, ACSSegment are 4 bits [3:0] 

they are used to know which Group of  next  states will be processed in the iteration 

#(ACSSegment[3:0]) and 2 bits changes from 0 to 3 to indicate which state of the 

states(we will called them as State ID[1:0]), in other words if we get the new metrics 
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and we need to write them in the metric memory we use an address as following 

{ACSSegment[3:0], State ID[1:0]}, for example if we need to calculate the new 

metric of the state "0 000 00" that can be reached only from state"0000  00" or state"0 

000 01" . 

 

Figure 5.53-AcsSegment timing digram 

5.7.4.3 Branch Metric Unit: 

The BMU receives Code signals, calculating its distance with all possibility of 

branch metric, giving the output of Distances signal. Hard Decision which means that 

the demodulator is quantized to two levels: zero and one. Values generated are 

depending on the value of ACSSegment as shown in Figure 5.55. The Distance 

Calculator block computes the hard-distance of Code with the branch metric from 

Viterbi Encoder block.   

The Block diagram of the BMU Unit is as following Figure 5.54 

 

Figure 5.54: BMU Unit block diagram 

The distance calculator calculate the distance for each branch which is the number 

of error bits between the received code word and the output of the branch and this 

distance is stored in 2 bits only since in case of R=1/2 , the error could be 0, 1 or 2 

bits which needs only 2bits. 

In the case of R=1/3 the error between the received code word (which is 3 bits in 

this case) and the output of the branch can be 0, 1, 2 or 3 bits which needs only 2 bits. 
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 The calculation of the distance differs from the R=1/2 and R1/3 cases as following 

in Table 5.13 and Table 5.14: 

Output of branch metric unit is 16 bits which is concatenation of eight branch 

metrics as shown in Figure 120. 

 

Figure 5.55-Branch ID Values generation 

The distance is function of XOR output between received code and branch output  

Table 5.13: Output Distance in case of rate 1/2 

 

For Rate ½: 

Output Distance [0] = MS^LS  

 Output Distance [1] =MS&LS 

For rate 1/3: 

Output Distance [0] =MS^XS^LS.  

Output Distance [1] =MS&XS+XS&LS+LS&MS. 
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Table 5.14: Output Distance in case of rate 1/3 

 

 

Figure 5.56-Branch metric timing diagram 

5.7.4.4 Add–compare–select unit (ACSU) 

It adds the path metric to the distance and compare the new path metric to choose 

the least metric and save it as a survivor path as shown in . 

 

Figure 5.57-ACSU timing diagram 

5.7.4.5 Metric Memory Unit: 

The metric values are saved on Metric Memory. Two blocks of RAM needed as we 

have to know the current metric values and save the next metric values we’ve just 

calculated. Each Memory has its own index, therefore the addressing scheme using 

signal MMReadAddress and MMWriteAddress. 
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We should toggle the read from and the write in Memories between the decoding 

instants (every new input code word) as shown in . If MMBlockSelect = 0: Read from 

RAM B and Write from RAM A. MMBlockSelect = 1: Read from RAM A and Write 

from RAM B,if  MMBlockSelect =1: the previous Path Metrics are stored in RAM A 

then we read from RAM A and after calculation the new Path Metrics write them to 

RAM B. 

 

Figure 5.58-Metric Memory Unit timing diagram 

5.7.5 Descrambler 

The same as stated in section 5.6.1 
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Chapter 6: LTE transmitter implementation 

 

LTE stands for Long Term Evolution. The technology designed and developed by 

3GPP (Release 8) as air interface for cellular mobile communication systems. It is 

used to increase the capacity and data transfer speed of mobile telephone networks 

used mainly for data communication. LTE is marketed as 4G technology. 

LTE uses OFDMA in the downlink and SC-FDMA in the uplink. It supports six 

different channel bandwidths from 1.4 to 20 MHz and both frequency- and time-

division-duplex (FDD and TDD) modes. The resource allocation in LTE is as based 

on resource block concept defined. LTE supports various frequency bands in both 

TDD (Band 33 to 43) and FDD (Band 1 to 25). 

Since the bands for the GSM and UMTS are implemented previously, therefore we 

use them bands in the LTE as it is expected that at one day the GSM will vanish and 

the band will be unutilized. Consequently, the LTE uses the band of the GSM. 

About the duplex technique used to separate between the UL and DL. In LTE we 

use both the FDD and TDD technique where we can use F1 for UL and F2 for DL in 

case FDD or we can divide the frame in slots used for UL and DL. The frame 

distribution is going to be explained later. 

Before moving to the frame structure let’s consider the BW for the Carrier in LTE. 

The Carrier BW in LTE may be one of the following values (1.4, 3, 5, 10, 15, 

20)MHz. 

Back to the Frame structure, we have two frame structures in LTE.  

The first frame structure is for FDD and the second one is for TDD. FDD is 

dividing the frequency into different subcarriers. The distribution of frequencies is as 

follow. 

 12 subcarrier per every sub-channel. 

 Sub-channel BW is 180KHz 

 Subcarrier BW is 15KHz  

 For the first frame structure, it will be FDD. The distribution for the frame per 

one subcarrier is shown in Figure 6.1 .  
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Figure 6.1 : First LTE frame structure. 

 

The subcarrier is divided into frames. The time for one frame is 10msec. The frame 

is divided into sub-frame each with duration 1msec. the sub-frame is divided into two 

slots. The slot carries the OFDM symbol where the symbol contains both the samples 

plus the CP. The number of bits per sample depends on the modulation technique 

used; it may be 16QAM-64QAM ……etc.  

Now taking a focus look for the usage of the resource in LTE. As shown in 

Figure 6.2the resource of the LTE are divided horizontally to 12 different frequencies 

represent the subcarriers of LTE. Each frequency is divided into small blocks where 

the small block represents a symbol and every 7 successive symbols represent a time 

slot. 

. 
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Figure 6.2 : Resource elements in LTE. 

To adjust synchronization and to see the effect of channel on data being 

transmitted, reference signals are embedded within the data during transmission as 

shown in Figure 6.3. Moreover, the reference signal is used during the usage of 

MIMO antennas concept. 

The second frame structure is TDD, shown in Figure 6.4. 

As shown in Figure 6.4,  time slot may be used for either the UL or DL. If the user 

need more speed for the downlink he takes more slots for DL rather than UL, radio 

frame composed of two half frames, each of 5ms duration resulting in total frame 

duration of about 10ms. Each radio frame will have total 10 sub-frames; each sub-

frame will have 2 time slots. Sub-frame configuration is based on Uplink downlink 

configuration (0 to 6). Usually in all the cases, sub-frame #0 and sub-frame#5 is 

always used by downlink. The Special sub-frame carry DwPTS (Downlink Pilot Time 

Slot),GP(Guard Period) and UpPTS (Uplink Pilot Time Slot). For the 5ms DL to UL 
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switch point periodicity case, SS(Special subframe ) exists in both the half frames. 

For the 10ms DL to UL switch point periodicity case, SS exists only in first half 

frame. 

 

Figure 6.3 : Refrence signals positions in LTE frame. 

 

Figure 6.4 : Second LTE frame structure. 
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Figure 6.5 : LTE frame structure, TDD , Type-2. 

 

LTE transmitter block diagram is shown in Figure 6.6 . 

 

Figure 6.6 : Full LTE transmitter block diagram. 

Since in our project we are working on a kit that holds only one port for antenna. 

Therefore, the main concept of LTE that consider in MIMO technique is not used and 

so the block diagram is eliminated to that shown in Figure 6.7 where we remove the 

(Layer Mapper and Precoding) blocks. 
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Figure 6.7 : Simplified LTE transmitter block diagram. 

6.1 Scrambler 

Scrambler is used to randomize the bits, prevent long sequences of 1s or 0s to keep 

synchronization. The scrambling sequence generator shall be initialized with  

Cinit = nRNTI .2
14 + q.213 + floor(ns/2).29 + Ncell   

At the start of each subframe where nRNTI  corresponds to the RNTI associated with 

the PUSCH transmission. 

6.2 Cyclic redundancy check (CRC) 

The CRC block in LTE is the same as in 3G, stated in section 2.2.1 except the 

polynomial generator which is different than 3G. The polynomial generator equation 

is  

gCRC24A= D24 + D23 + D18 + D17 + D14 + D11 + D10 + D7 + D6 + D5 + D4 + D3 +D +1. 

6.3 Code block segmentation and code block CRC attachment 

The input bit sequence to the code block segmentation is denoted 

by:𝑏0, 𝑏1, 𝑏2… . . 𝑏𝐵−1. 
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If B is larger than the maximum code block size Z, segmentation of the input bit 

sequence is performed and an additional CRC sequence of L = 24 bits is attached to 

each code block. 

The maximum code block size (Z) is equal 6144 and the minimum code block size 

(Z) is equal 40. 

Total number of code blocks C is determined by the following algorithm: 

if B <= Z 

L = 0 

Number of code blocks: C =1 

𝐵′ = 𝐵 

else 

L = 24 

Number of code blocks: C = ⌈B /(Z – L)⌉ . 

𝐵′ = B+C. L 

end if 

The bits output from code block segmentation, for C! = 0, are denoted by:  

𝐶𝑟0, 𝐶𝑟1, 𝐶𝑟2, ……… . , 𝐶𝑟(𝑘𝑟−1)  where r is the code block number and Kr is the number 

of bits for the code block number r. 

First segmentation size: K+ = minimum K in Table 6.1 such that C.K > 𝐵′ 

if C = 1 

the number of code blocks with length K+ is C+ =1, K- = 0 , C- = 0 

else if C > 1 

Second segmentation size: K- = maximum K in Table 6.1 such that K < K+ 

Δ K = K+ - K- 
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Number of segments of size K- :  

Number of segments of size K+ : 𝐶+ = 𝐶 − 𝐶− 

Blocks with size 𝐾− are out first then Blocks with  𝐾+   

end if 

Number of filler bits which added to the beginning of the first block: 

 F = C+ .K+ + C- .K- - 𝐵′  

if B < 40, filler bits are added to the beginning of the code block. 

if C >1   The sequence 𝐶𝑟0, 𝐶𝑟1, 𝐶𝑟2, ……… . , 𝐶𝑟(𝑘𝑟−𝐿−1)   

is used to calculate the CRC parity bits 𝑝𝑟0, 𝑝𝑟1, 𝑝𝑟2, ……… . , 𝑝𝑟(𝐿−1)  with the 

generator polynomial gCRC24B(D)=1 + 𝐷 + 𝐷5 + 𝐷6 + 𝐷23 + 𝐷24. 

Table 6.1-K Values 

i K i K I k 

1 2 5 32 9 512 

2 4 6 64 10 1024 

3 8 7 128 11 2048 

4 16 8 256 12 4096 

 

This table is simplified version of full k table in standard to simplify the 

implementation of Segmentation and turbo encoder and also we assumed Z equal 

4096 instead of 6144. 

For example: if number of input data bits (B) =8000 

the number of blocks (C)= ⌈8000 /(4096 – 24)⌉=2 

𝐵′ = B+C. L=8000+2*24=8048 

K+ = minimum K in Table 6.1 such that K > 7027 = 7096 

K- = maximum K in Table 6.1 such that K < 4096 = 2048 

Δ K = 4096 – 2048 = 2048 



125 

 

Number of segments of size K- :  

Number of segments of size K+ : 𝐶+ = 2 − 0 = 2 

F = 2*4096 + 0*2048 – 8078 = 177 

First block (r=0) 

  144 filler 

bits 

3928 bits 

from𝑏0 𝑡𝑜 𝑏3927  

24 crc bits  

Second block (r=1) 

4072 bits from 𝑏3928 𝑡𝑜 𝑏7999  24 crc bits  

 Segmentation was implemented as a Finite state machine (FSM) and Figure 6.8  

shows the state diagram of it and Table 6.2 shows the state description of its. 

Table 6.2-Segmentation state description 

State Description 

IDLE Reset state and waiting bits from CRC 

Save Store bits in fifo and waiting number of 

bits from CRC 

Calc Calculate segmentation parameters 

like:𝐶+, 𝐶−, 𝐾−, 𝐾+, 𝐹 

Filler Generate filler bits for output 

First_oneblock Generate rest of first block bits in case of 

one block (C=1 , B<Z) 

First_cplus Generate rest of first block bits in case of 

multi blocks (C>1) & 𝐶− = 0  

First_cminus Generate rest of first block bits in case of 

multi blocks (C>1) & 𝐶−! = 0 

Waiting Waiting for the turbo encoder to be ready 

for next block. 

Other_blocks Generate other blocks 
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Figure 6.8: Segmentation State Diagram 

6.4 Turbo encoder 

The scheme of turbo encoder is a Parallel Concatenated Convolutional Code 

(PCCC) with two 8-state constituent encoders and one turbo code internal interleaver.  

The coding rate of turbo encoder is 1/3. The structure of turbo encoder is illustrated 

in. The transfer function of the 8-state constituent code for the PCCC is: 

G(D)=  [1,
𝑔1(𝑑)

𝑔0(𝑑)
], 

Where 𝑔0(𝐷)= 1+𝐷2+𝐷3 

𝑔1(𝐷)= 1+D+𝐷3 

The initial value of the shift registers of the 8-state constituent encoders shall be all 

zeros when starting to encode the input bits.  

The output from the turbo encoder is 

𝑑𝑘
(0)

= 𝑥𝑘  

𝑑𝑘
(1)

= 𝑧𝑘 

𝑑𝑘
(2)

= 𝑧𝑘
′  
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For k= 0,1,2, ..., K-1. If the code block to be encoded is the 0-th code block and 

the number of filler bits is greater than zero, i.e., F > 0, then  

the encoder shall set ck, = 0, k = 0,...,(F-1) at its input and shall set 𝑑𝑘
(0)

=
 
NULL , k 

= 0,...,(F-1) and 𝑑𝑘
(1)

=
 
NULL , k = 0,...,(F-1) at its output. 

The bits input to the turbo encoder are denoted by c0 , c1 , c2 , c3 ,...,cK 1 , and the 

bits output from the first and second 8- state constituent encoders are denoted by 𝑧0, 

𝑧1, 𝑧2, 𝑧3,….,𝑧𝑘−1 and 𝑧0
′ , 𝑧1

′ , 𝑧2
′ , 𝑧3

′ ,….., 𝑧𝐾−1
′ respectively. The bits output from the 

turbo code internal interleaver are denoted by𝑐0
′ , 𝑐1

′ , 𝑐2
′ , 𝑐3

′ ,…., 𝑐𝑘−1
′  and these bits are 

to be the input to the second 8-state constituent encoder.  

6.4.1  Trellis termination for turbo encoder 

Trellis termination is performed by taking the tail bits from the shift register 

feedback after all information bits are encoded. Tail bits are padded after the encoding 

of information bits.  

The first three tail bits shall be used to terminate the first constituent encoder 

(upper switch of Figure 6.9 in lower position) while the second constituent encoder is 

disabled. The last three tail bits shall be used to terminate the second constituent 

encoder (lower switch of Figure 6.9 in lower position) while the first constituent 

encoder is disabled.  

The transmitted bits for trellis termination shall then be:  

𝑑𝑘
(0)

= 𝑥𝑘 , 𝑑𝑘+1
(0)

= 𝑧𝑘+1, 𝑑𝑘+2
(0)

= 𝑥𝑘
′ ,𝑑𝑘+3

(0)
= 𝑧𝑘+1

′  

𝑑𝑘
(1)

= 𝑧𝑘 , 𝑑𝑘+1
(1)

= 𝑥𝑘+2, 𝑑𝑘+2
(1)

= 𝑧𝑘
′ ,𝑑𝑘+3

(1)
= 𝑥𝑘+1

′  

𝑑𝑘
(2)

= 𝑥𝑘+1 , 𝑑𝑘+1
(2)

= 𝑧𝑘+2, 𝑑𝑘+2
(2)

= 𝑥𝑘+1
′ ,𝑑𝑘+3

(2)
= 𝑧𝑘+2

′  
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Figure 6.9. Structure of rate 1/3 turbo encoder 

  

6.4.2 Turbo Code Internal Interleaver 

The bits input to the turbo code internal interleaver are denoted by c0 , c1 ,...,cK, 

where K is the number of input bits.  

The bits output from the turbo code internal interleaver are denoted by 𝑐0
′ , 𝑐1

′ , 𝑐2
′ , 

𝑐3
′ ,…., 𝑐𝑘−1

′ . 

The relationship between the input and output bits is as follows:  

𝑐𝑖
′= 𝑐∏(𝑖), i=0, 1,..., (K-1)  

where the relationship between the output index i and the input index ∏(i) satisfies 

the following quadratic form: ∏(i)= (𝑓1. 𝑖+𝑓1. 𝑖
2)mod K. 

The parameters depend on the block size K and are summarized in Figure 6.11.  

N.B: We implemented the turbo encoder with even K numbers thus the division 

would be synthesizable. 
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Schematic show the top module of the turbo encoder rate third. 

The input and output ports indicated below in  Figure 6.10. 

Detailed block diagram for the blocks that shown internal construction of the turbo 

encoder in Figure 6.12. 

N.B: C&R signals just pass through the turbo encoder block. 

 

Figure 6.10:Schematic of turbo encoder 
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Figure 6.11. Turbo code internal interleaver parameters 
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Figure 6.12. Internal block diagram 

Table 6.3 : Inputs and outputs of turbo encoder. 

Pin Pin Direction Description 

C_in(2:0) Input Number of code blocks 

from the segmentation 

K(12:0) Input Block size of data 

R1(2:0)  Block index 

Clk Input Clock of the all encoder 

blocks 

Data_in Input Data in for the 

convolutional encoder 

Enable Input Working enable for the 

encoder 

Reset Input Reset encoder registers 

and interleaver by 

inserting zeros. 

Valid_in Input Valid in to consider the 

input 

C(2:0) Output Indicates the number of 

code blocks 

D(12:0) Output Block size after turbo 

encoder 

R(2:0) Output Block index 

d0 Output Turbo output(0) 

d1 Output Turbo output(1) 

d2 Output Turbo output(2) 

Finished Output Signal indicates the block 

is ready for the new frame 

of data 
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Valid_out Output Valid out to the next block 

6.5 Rate matching for turbo coded transport channels 

The rate matching for turbo coded transport channels is defined per coded block 

and consists of interleaving the three information bit streams 𝑑𝑘
(0)

, 𝑑𝑘
(1)

 and 𝑑𝑘
(2)

, 

followed by the collection of bits and the generation of a circular buffer as depicted in 

Figure 6.13.  

The bit stream 𝑑𝑘
(0)

 is interleaved according to the sub-block interleaver defined in 

section 6.5.1 with an output sequence defined as . 

The bit stream 𝑑𝑘
(1)

 is interleaved according to the sub-block interleaver defined in 

section 6.5.1 with an output sequence defined as . 

The bit stream 𝑑𝑘
(2)

 is interleaved according to the sub-block interleaver defined in 

section 6.5.1 with an output sequence defined as . 

 

 

 
Figure 6.13: Rate matching for turbo coded transport channels. 

6.5.1 Sub-block interleaver 

The bits input to the block interleaver are denoted by 𝑑0
(𝑖)
, 𝑑1

(𝑖)
, 𝑑2

(𝑖)
, …… . , 𝑑𝐷−1

(𝑖) ,where 

D is the number of bits. The output bit sequence from the block interleaver is derived 

as follows: 
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1. Assign 𝐶𝑠𝑢𝑏𝑏𝑙𝑜𝑐𝑘
𝑇𝐶 = 32 to be the number of columns of the matrix. The 

columns of the matrix are numbered 0,1,2, … . . , 𝐶𝑠𝑢𝑏𝑏𝑙𝑜𝑐𝑘
𝑇𝐶 − 1 from left to 

right. 

2. Determine the number of rows of the matrix 𝑅𝑠𝑢𝑏𝑏𝑙𝑜𝑐𝑘
𝑇𝐶 , by finding minimum 

integer 𝑅𝑠𝑢𝑏𝑏𝑙𝑜𝑐𝑘
𝑇𝐶  such that: 

 

𝐷 ≤ 𝑅𝑠𝑢𝑏𝑏𝑙𝑜𝑐𝑘
𝑇𝐶 ∗  𝐶𝑠𝑢𝑏𝑏𝑙𝑜𝑐𝑘

𝑇𝐶  

The rows of rectangular matrix are numbered 0,1,2, … . . , 𝑅𝑠𝑢𝑏𝑏𝑙𝑜𝑐𝑘
𝑇𝐶 − 1 from 

top to bottom. 

 

3. 𝑅𝑠𝑢𝑏𝑏𝑙𝑜𝑐𝑘
𝑇𝐶 ∗  𝐶𝑠𝑢𝑏𝑏𝑙𝑜𝑐𝑘

𝑇𝐶 > 𝐷, then 𝑁𝐷 = 𝑅𝑠𝑢𝑏𝑏𝑙𝑜𝑐𝑘
𝑇𝐶 ∗  𝐶𝑠𝑢𝑏𝑏𝑙𝑜𝑐𝑘

𝑇𝐶 − 𝐷 dummy bits 

are padded such that 𝑦𝑘 = <NULL> for 𝑘 =  0,1,2, … . . , 𝑁𝐷 − 1. Then,   

𝑦𝑁𝐷+𝑘 = 𝑑𝑘
(𝑖)

 , k = 0, 1,…, D-1, and the bit sequence 𝑦𝑘 is written into the 

𝑅𝑠𝑢𝑏𝑏𝑙𝑜𝑐𝑘
𝑇𝐶 ∗  𝐶𝑠𝑢𝑏𝑏𝑙𝑜𝑐𝑘

𝑇𝐶  matrix row by row starting with bit y0 in column 0 of 

row 0: 

 
 

For 𝑑𝑘
(0)

 and 𝑑𝑘
(1)

: 

 

4. Perform the inter-column permutation for the matrix based on the pattern P(j) 

that is shown in Table 6.4, where P(j) is the original column position of the j-

th permuted column. After permutation of the columns, the inter-column 

permuted (𝑅𝑠𝑢𝑏𝑏𝑙𝑜𝑐𝑘
𝑇𝐶 ∗  𝐶𝑠𝑢𝑏𝑏𝑙𝑜𝑐𝑘 

𝑇𝐶 ) matrix is equal to 

 

 
 

5. The output of the block interleaver is the bit sequence read out column by 

column from the inter-column permuted (𝑅𝑠𝑢𝑏𝑏𝑙𝑜𝑐𝑘
𝑇𝐶 ∗  𝐶𝑠𝑢𝑏𝑏𝑙𝑜𝑐𝑘 

𝑇𝐶 ) matrix. The 

bits after sub-block interleaving are denoted by  

where 𝑣0
(i)

 corresponds to 𝑦𝑝(0), 𝑣1
(i)

 corresponds to  𝑦𝑝(0)+𝐶𝑠𝑢𝑏𝑏𝑙𝑜𝑐𝑘
𝑇𝐶 … and 

. 

 

For 𝑑𝑘
(2)

: 

 

1. The output of the sub-block interleaver is denoted by 

 , where  and where  
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The permutation function P is defined in Table 6.4. 

 

 

Table 6.4:Inter-column permutation pattern for sub-block interleaver. 

 
 

The block interface is as shown in Figure 6.14 and the signals declaration and 

description is as shown in Table 6.5. 

 

 

 
Figure 6.14: Interleaver block interface. 

Table 6.5:Interleaver block signals declaration 

PIN PIN Type Description 

enable IN This signal indicates that the next block is ready to have 

data 

D IN This signal indicates the number of bits in the code-block 

valid_in IN This signal indicates that current data_in is valid data 

data_in IN The input bits 

K_pi OUT This signal indicates the number of output bits 

(multiple from 32) 

numofrows OUT This signal indicates the number of rows of the 

matrix 𝑅𝑠𝑢𝑏𝑏𝑙𝑜𝑐𝑘
𝑇𝐶  

finished OUT This signal indicates that the interleaver is ready to have 

a new frame 
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valid_out OUT This signal indicates that current data_out is valid data 

data_out OUT The output bits 

 

 

K_pi and numofrows output signals are required in the bit selection block to be 

used in a certain calculations so to prevent any conflict we are going to transfer these 

signals with each code-block through the bit collection block to be sure that each 

code-block at the bit selection will be associated with the correct information. 

The output signal data_out can’t be one bit only because we want to represent the 

dummy bits, so as shown in Figure 6.14 that data_out is two bits and the 

representation is as following: 

When the output bit is 0 therefore data_out = 00 

When the output bit is 1 therefore data_out = 01 

When the output bit is dummy (x) therefore data_out = 10 

6.5.2 Bit collection 

The input bits to the bit collection block is the output bits from the three sub-block 

interleaver and the block output can be represented by virtual circular buffer as shown 

in Figure 6.13. 

The circular buffer of length  for the r-th coded block is generated as 

follows: 

𝑊𝑘 = 𝑣𝑘
(0)

  For  

 For  

 For  

The block interface is as shown in Figure 6.15 and the signals declaration and 

description is as shown in Table 6.6. 

As shown in Figure 6.15 and Table 6.6 that the signals K_pi and numofrows are 

passed through the block without any modifications (as a buffer) because these signals 
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are required in the bit selection block to be used in a certain calculations as mentioned 

before. 

 
Figure 6.15:Bit collection block interface. 

 

Table 6.6:Bit collection block signals declaration 

PIN PIN Type Description 

enable IN This signal indicates that the next block is ready to have 

data 

valid_in IN This signal indicates that current data_in is valid data 

v0,v1,v2 IN The input bits that received from each interleaver 

K_pi1 IN This signal indicates the number of output bits from the 

interleaver (multiple from 32) 

numofrows1 IN This signal indicates the number of rows of the 

matrix 𝑅𝑠𝑢𝑏𝑏𝑙𝑜𝑐𝑘
𝑇𝐶  

finished OUT This signal indicates that the interleaver is ready to have 

a new frame 

valid_out OUT This signal indicates that current data_out is valid data 

W OUT The output bits 

K_pi OUT This signal indicates the number of output bits from the 

interleaver (multiple from 32) 

numofrows OUT This signal indicates the number of rows of the 

matrix 𝑅𝑠𝑢𝑏𝑏𝑙𝑜𝑐𝑘
𝑇𝐶  

 

6.5.3 Bit selection 

It is the last block in the block diagram of the rate matching, the block has its input 

from the output of the bit collection as shown in Figure 6.13 and it is used to remove 

the dummy bits from the bit collection output according to the following calculations: 
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Denote the soft buffer size for the r-th code block by 𝑁𝑐𝑏 bits. For UL-SCH, MCH, 

SL-SCH and SL-DCH transport channels 𝑁𝑐𝑏 = 𝐾𝑤. 

Define by G the total number of bits available for the transmission of one transport 

block.  

𝐺 = 𝑁𝑝𝑟𝑏. 𝑁𝑟𝑏𝑠𝑐 . (𝑁𝑢𝑙𝑠𝑦𝑚𝑏 − 1) . 2. 𝑄𝑚. 𝑁𝐿  

 𝑁𝑝𝑟𝑏 is the number of resource blocks which is assigned to UE 

  𝑁𝑟𝑏𝑠𝑐 = 12  

 𝑁𝑢𝑙𝑠𝑦𝑚𝑏 = 4 

 𝑄𝑚 is the number of bits per symbol  

 𝑁𝐿 is the number of layers  

Denoting by E the rate matching output sequence length for the r-th coded block, 

and 𝑟𝑣𝑖𝑑𝑥 the redundancy version number for this transmission (𝑟𝑣𝑖𝑑𝑥 = 0), the rate 

matching output bit sequence is 𝑒𝑘 , k = 0,1,..., E-1. 

Set 𝐺′ = 𝐺/(𝑁𝐿 . 𝑄𝑚) where 𝑄𝑚 is equal to 2 for QPSK, 4 for 16QAM, 6 for 

64QAM and 8 for 256QAM and where 𝑁𝐿= 2 for transmit diversity. 

Set γ =𝐺′ 𝑚𝑜𝑑 𝐶 , where C is the number of code blocks (segmentation section). 

If                 Set 𝐸 = 𝑁𝐿 . 𝑄𝑚. 𝐹𝑙𝑜𝑜𝑟(𝐺
′/𝐶) 

 else                          Set 𝐸 = 𝑁𝐿 . 𝑄𝑚. 𝑐𝑒𝑖𝑙(𝐺
′/𝐶) 

endif 

Set 𝑘0 = 𝑅𝑠𝑢𝑏𝑏𝑙𝑜𝑐𝑘
𝑇𝐶 . (2. 𝑐𝑒𝑖𝑙 (

𝑁𝑐𝑏

8𝑅𝑠𝑢𝑏𝑏𝑙𝑜𝑐𝑘
𝑇𝐶 ) . 𝑟𝑣𝑖𝑑𝑥 + 2)  

Set 𝑘 = 0 𝑎𝑛𝑑 𝑗 = 0 

while k < E 

 If  𝑤(𝑘0+𝑗)𝑚𝑜𝑑 𝑁𝑐𝑏 ≠ < 𝑁𝑈𝐿𝐿 > 

  𝑒𝑘 = 𝑤(𝑘0+𝑗)𝑚𝑜𝑑 𝑁𝑐𝑏 

  𝑘 = 𝑘 + 1 

 endif 
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𝑗 = 𝑗 + 1 

end while 

The block interface is as shown in Figure 6.16 and the signals declaration and 

description is as shown in Table 6.7 . 

 
Figure 6.16: Bit selection block interface. 

 

Table 6.7:Bit selection block signals declaration 

PIN PIN Type Description 

Enable IN This signal indicates that the next block is ready to have 

data 

valid_in IN This signal indicates that current data_in is valid data 

data_in IN The input bits that received from each interleaver 

C IN This signal indicates the number of code blocks 

K_pi IN This signal indicates the number of output bits from the 

interleaver (multiple from 32) 

numofrows IN This signal indicates the number of rows of the 

matrix 𝑅𝑠𝑢𝑏𝑏𝑙𝑜𝑐𝑘
𝑇𝐶  

N_prb IN This signal indicates the number of resource blocks 

(from MAC layer) 

Qm IN This signal indicates the number of bits per symbol 

R IN This signal indicates the index number of a code block 

finished OUT This signal indicates that the interleaver is ready to have 

a new frame 

valid_out OUT This signal indicates that current data_out is valid data 

W OUT The output bits 
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Finally the block diagram of the rate matching block will be as shown in 

Figure 6.17 and the block interface will be as shown in Figure 6.18.  

6.6 Code block concatenation 

As stated in section 4.2.4 

 

 
Figure 6.17: Rate matching block diagram. 
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Figure 6.18:Rate matching block interface 

Table 6.8: Rate Matching block signals declaration 

PIN PIN Type   Description 

enable IN This signal indicates that the next block is ready to have 

data 

valid_in IN This signal indicates that current data_in is valid data 

d0,d1,d2 IN The input bits that received from each interleaver 

C IN This signal indicates the number of code blocks 

D IN This signal indicates the number of bits in the code-block 

K_pi IN This signal indicates the number of output bits from the 

interleaver (multiple from 32) 

numofrows IN This signal indicates the number of rows of the 

matrix 𝑅𝑠𝑢𝑏𝑏𝑙𝑜𝑐𝑘
𝑇𝐶  

N_prb IN This signal indicates the number of resource blocks 

(from MAC layer) 

Qm IN This signal indicates the number of bits per symbol 

r IN This signal indicates the index number of a code block 

Co OUT This signal indicates the number of code blocks 

finished OUT This signal indicates that the interleaver is ready to have 

a new frame 

valid_out OUT This signal indicates that current data_out is valid data 

w OUT The output bits 

the signal C is passed through the block without any modifications (as a buffer) 

because this signal is required in the code block concatenation block. 
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6.7 Divider 

As shown in the previous blocks (Rate matching, interleaver, ….etc) that there are 

some equations that need to be modeled to be able to write a synthesizable HDL code. 

Division is the most common problem. 

6.7.1 Sequential Divider 

The sequential divider works at the raising/falling edge of the clock, the sequential 

divider takes many clock cycles to generate output which complicates our RTL, and 

we need faster divider. 

Combinational Divider   

The combinational divider works without clock because its RTL is combinational 

so it is more better that the sequential divider because it generates output within the 

same clock cycle. 

Ceil divider simulation is as shown in Figure 19 and Floor divider simulation is as 

shown in Figure 20. 

 
Figure 19: Ceil divider simulation. 

 

 
Figure 20: Floor divider simulation 

 

 



142 

 

6.8 Modulation 

Modulation is the process by which information (e.g. bit stream) is transformed 

into sinusoidal waveform. A sinusoidal wave has three features those can be changed 

- phase, frequency and amplitude- according to the given information and to the used 

modulation technique. 

In LTE standard Phase Shift Keying (BPSK, QPSK) and Quadrature Amplitude 

Modulation (16-QAM, 64-QAM, 256-QAM) modulation techniques are used 

according to the desired data rate. The bits are mapped to complex-valued modulation 

symbol d= (I + j Q) In BPSK, a single bit is mapped to a complex-valued modulation 

symbol according to Table 6.9. 

Table 6.9: BPSK mapping 

 

In QPSK, pairs of bits are mapped to complex-valued modulation symbols x=I+jQ 

according to Table 6.10. 

 

Table 6.10: QPSK mapping 

 

 

In 16-QAM, quadruplets of bits are mapped to complex-valued modulation symbols 

x=I+jQ according to Table 6.11. 

Concerning the HDL implementation, Figure 6.21  shows the interface of the 

mapper as shown in the figure every symbol is represented in 12 bits – this number is 
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determined through a simulation will be discussed later- .the pins description is in 

Table 6.12. 

The internal block diagram is shown in Figure 6.22. 

It consists of fifo to store the input bit stream, controller to control the fifo and the 

mapper module (top_mod_wifi) which consists of serial to parallel inverter and the 

mapper module that mapps bits to the corresponding symbol following the 

constellation.                                                                                             

Table 6.11: 16-QAM mapping 

 

 

Figure 6.21: LTE mapper interface 

Table 6.12: Pin discription od LTE mapper module 

PIN Description 

Data_in The input bits 

Valid_in The signal indicates that current data_in is valid data 
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Mod_out_Re The modulated real part of the input 

Mod_out_im The modulated imaginary part of the input 

finished The signal indicated that the mapper is ready for the new frame 

Enable The signal indicates that the next block is ready to have data 

 

 

Figure 6.22: Detailed block diagram of LTE mapper module 

6.9 IFFT 

LTE uplink uses SC-FDMA which is a modified form of the OFDM with similar 

throughput performance and complexity, SC-FDMA is viewed as DFT-coded OFDM 

where time-domain symbols are transformed to frequency domain symbols and then 

go through the standard OFDM modulation, SC-FDMA has all the advantages of 

OFDM like robustness against multi-path signal propagation, the block diagram for 

the SC-FDMA is shown in Figure 6.23. [4] 

 

Figure 6.23: Transmitter block diagram [4] 

The IFFT subcarriers are grouped into sets of 12 subcarrier, each group is called a 

resource block. 
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The main advantage of SC-FDMA is the low Peak Average Power Ratio (PAPR) 

of the transmit signal, PAPR is a big concern for user equipment, as PAPR relates to 

the power amplifier efficiency as low PAPR allows the power amplifier to operate 

close to the saturation region resulting in high efficiency that is why SC-FDMA is the 

preferred technology for user terminals. 

The LTE supported bandwidths are as shown in Table 6.13 [5], we chose the 128 

point IFFT to facilitate our testing process, we also chose the extended cyclic prefix 

so for our 128 point IFFT we have 32 cyclic prefix and our sampling frequency is 

1.92 MHz, the pin interface for the our top_ofdm_4g is as shown Figure 6.24, the pin 

description is the same as what we will explain later in WIFI the different pins are 

start_rb and num_of_rbs, start_rb defines the starting resource block that will be used, 

and num_of_rbs defines the number of resource blocks to use and the IFFT_clk is 

1.92 MHz. 

In our implementation we used Xilinx IP LogiCORE Discrete Fourier Transform, 

[6] the pin interface is shown in Figure 6.25, the DFT module transform size is 

reconfigurable by the pin called size, the desired transformation size is decided as the 

required number of resource blocks The core indicates that it is ready to accept a new 

frame of data by setting RFFD high. When RFFD is high, data input may be started 

by setting FD_IN high for one or more cycles. Data is input via XN_RE and XN_IM. 

It should be provided over N cycles without interruption. Data input and output are 

complex and in natural order. FD_OUT signals when the core starts data output and 

DATA_VALID signals when data on XK_RE and XK_IM is valid. 

Note that FD_IN is ignored while RFFD is low, and so FD_IN can be kept high for 

multiple cycles. FD_IN is accepted on the first cycle that RFFD is high, if FD_IN is 

set permanently high, then the core will start a new frame of data input as soon as the 

core is ready, this arrangement provides maximum transform throughput. 

Alternatively, RFFD may be connected directly to FD_IN to achieve the same 

behavior. [6] 

The first element of input data should be provided on the same cycle that the core 

starts to receive data, that is, the first cycle in which both FD_IN and RFFD are high, 

the IFFT module is later explained in WIFI. 
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The encoding of the size parameter that we used is shown in Figure 6.26. [6] 

 

 

Table 6.13: Basic transmission schemes [5] 

Transmission 

Bandwidth 
1.4 MHz 3 MHz 5 MHz 10 MHz 15 MHz 20 MHz 

Sampling 

frequency 

1.92 

MHz 

3.84 

MHz 

7.68 

MHz 

15.36 

MHz 

23.04 

MHz 

30.72 

MHz 

FFT Size 128 256 512 1024 1536 2048 

#RBs   (12 

subcarriers) 
6 15 25 50 75 100 

 

 

 

 

Figure 6.24: top_ofdm_wifi interface 
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Figure 6.25: DFT interface [6] 

 

 

Figure 6.26: Encoding of size parameter [6] 

 

Our top_ofdm_4g module contains a 48 register memory, reconfigurable DFT 

module and 128-point IFFT module, when the mapper is ready to send data we buffer 

the symbols in the memory then we set the DFT size to the required size, the we start 

inputting symbols to the DFT and after it finishes it writes its output to the memory 

then we input the symbols for the IFFT. Each LTE frames consists of 6 sub frames, 

the third sub frame of each frame is dedicated for demodulation reference signal, in 

our implementation we assumed the demodulation reference signal to be all ones, and 

it should be improved in later designs. 
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Chapter 7: Verification Methodology 

7.1 Functional Verification 

Functional Verification is very important to check that HDL implementations 

outputs are identical to expected outputs, we implemented MATLAB models for all 

transmitter and receiver blocks to use as a reference models. 

Verification methodology is based on equivalence checking between HDL Model 

and MATLAB Model, we setup testing framework consists of Verilog testbench, 

MATLAB testbench and Perl script. 

 Figure 7.1 shows the functional verification procedure; first Verilog testbench 

generates random input bits and store it in a file and also save the output data bits 

from all blocks in different files, MATLAB testbench read the input file and also save 

the output data bits from all blocks in different files, Perl script compare these files 

and generate output comparison file.   

To cover different cases we change number of bits and also number of successive 

frames to check that every block can reset its state after frame finished and process 

next frame correctly. 

Figure 7.2 shows the different generated files from both testbenches, for example 

outputfile14_hdlModel means that this file contains output from HDL model of fourth 

block in chain and first frame. 

Figure 7.3 Shows the comparison output file from Perl script, first columns 

represents bit number (index) starting from zero, second column represents bit value 

from hdl model, third column represents bit value from MATLAB model, fourth 

column represents result for this bit whether correct which indicates they are equal or 

wrong which indicates they are not equal and finally after all bits there are number of 

correct bits and number of wrong bits.   
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- 

 

Figure 7.1-functional verification procedure 

 
Figure 7.2 : testbenches generated files 
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Figure 7.3-compariosn file 

7.2 IFFT testing 

We set up a small framework using MATLAB to test our IFFT results, the test 

block diagram is simple we use MATLAB script to generate random modulated input 

like the mapper output and then set it to a fixed point representation, the output file 

MATLAB script is used by the IFFT test bench to feed the IFFT with the test data 

then the IFFT output is dumped to a file, the MATLAB script performs the same 

operation of our IFFT module like symbol arrangement and pilot insertion then 

performs 

 the IFFT operation then the MATLAB output is converted to fixed-point 

representation of 12-bit then compares the two outputs and computes average error, 

our average error in WIFI is -73 dB, The block diagram of the testing process is 

shown in Figure 7.4. 
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Figure 7.4: IFFT testing framework process 

The framing, IFFT computation, comparison and error computation scripts are 

integrated in the complete chain test bench. 

The framing and IFFT computation part is in LTE_mod_func.m for LTE and 

Wifi_mod_func.m for WIFI, the comparison and error computation parts are in the 

top chain test bench.. An example for the final output of the testing framework is 

shown Figure 7.5. 

7.3 Post-Synthesis Simulation 

Synthesis is transformation from RTL to gate level and generate the netlist level.  

Because of bad coding style, there may be mismatch between Pre-synthesis 

simulation and Post –synthesis simulation so we built Post-synthesis simulation 

models and rerun the testing framework to check that there is no mismatch between 

Pre-synthesis simulation and Post–synthesis simulation.  
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Figure 7.5: MATLAB testbench output for a WIFI chain 

7.4 Fixed Point Simulation 

Starting from the output of the mapper to the end of any chain, we deal with soft 

values not bits. This lightens the way for us to determine number of digits 

representing each bit.  

 We have modeled the transmitter and receiver chain and the AWGN noise of the 

channel using MATLAB, calculated the BER when using floating point operations. 

Then we implemented MATLAB functions (dec2fix, dec2twos, fix2dec ,twos2dec) 

that convert numbers from decimal to binary and vice versa to be able to convert 

fractions and negative numbers –not only integers as in MATLAB built-in functions-. 

Using these functions we could calculate BER using different number of bits and 

compare it with the BER of the floating point to choose the number of digits 

representing each bit to get an acceptable BER. These results are shown in Figure 7.6, 

Figure 7.7. In Figure 7.6, simulation was done to determine number of bits 

representing the integer part. Figure 7.7, simulation was done to determine number of 

bits representing the fraction part. These simulation results that we use 9 bits for 

fraction part and 3 bits for integer part.  
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Figure 7.6 : Results of 16-QAM integer part fixation. 

 

 

Figure 7.7 : Results of 16-QAM fraction part fixation. 
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Chapter 8: Hardware implementation 

8.1 FPGA  

The FPGA is an Integrated Circuit (IC) that is electrically programmed to execute 

a certain application. It initially has no functionality to operate before it is 

programmed. FPGA is formed from a combination of transistors that are connected in 

a specific way. Applying an external voltage to these transistors it will operate certain 

functionality. This combination of transistors called Look up Tables (LUTs). Each 

group of LUTs forms a Programmable Logic Blocks (PLB). These PLB blocks have 

been developed through many years. Recent FPGAs has different types of PLB 

functionality such as memory blocks that can store data for internal operations, 

multipliers for complex arithmetic operations, and general PLBs that is used to 

implement general functions from simple 2-bit adder to a complete microprocessor 

unit. The internal heterogeneity of FPGA PLBs is shown in Figure 8.1 . The FPGA 

internal routing consists of wires and programmable switches that allow the 

connections among the PLBs, memory blocks, multipliers and I/O ports. These 

connections are developed for best data routing and latency, sometimes with different 

characteristics varies from the shortest path to the fastest one. Also, there is a 

dedicated network of connections that takes care of clock distribution and reset 

signals for achieving low skew. 

The LUT size is measured by its number of inputs such as an LUT has 3 inputs 

will be named as 3-LUT. The number of LUTs in the PLB may be of equal size or 

mixture of different sizes. There are three different major techniques used to program 

the FPGA LUTs: Anti-Fuse Flash, look up table and SRAM programming 

technologies. The advantages of the Anti-Fuse and Flash over the SRAM, they are 

non-volatile and occupies a small area. While the SRAM is easily reprogrammed and 

use the standard CMOS process technology so SRAM has become the dominant 

approach to program the FPGA LUTs ,but till now there is no technique that can 

combine the best of them all. 
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Figure 8.1: FPGA internal structure 

8.1.1 Softcore and Hardcore processors 

Current FPGAs has IP blocks, these IPs are standard libraries which are optimized 

and developed to facilitate the FPGA development. An engineer can drag and drop 

certain functionality instead of building the new block from scratch. IPs like 

accumulators, bus interfaces, encoders … etc. The microprocessors are considered 

one of the important IP core. There are two types of microprocessors, softcore and 

hardcore. The softcore processor like MicroBlaze by Xilinx is implemented using the 

FPGA logic gates. The hardcore processor like PowerPC by IBM is fabricated in the 

core of the IC of the FPGA chip and connected to FPGA fabric as shown in 

Figure 8.2.  
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The main concern of the softcore processor is its limitation in speed, around 200 

MHz, also, it takes many resources on the FPGA. Where there are some advantages of 

using softcore processor like modifying it for specific requirements, customizing 

instructions and multiple core system. On the other hand, using hardcore processor 

can achieve higher processing speeds more than 1GHz. Hence, the hardcore processor 

has its own fabric in the FPGA chip it doesn’t occupy resources on the FPGA fabric 

which allows the full usage for the FPGA. The disadvantage of the hardcore is its 

fixed architecture that can’t be modified. Zynq series by Xilinx is a perfect example 

of the current SoC chips; it combines ARM dual-core or quad-core microprocessor in 

a processing system (PS) with Xilinx FPGA fabric as a Programmable Logic (PL). 

 

 
Figure 8.2: Softcore and Hardcore processor 

As shown in Figure 8.2 (a) that the shaded part represent the implementation of 

softcore processor on the FPGA logic it acquires some of the available resources like 

PLBs, memory and multiplier blocks and as shown in Figure 8.2 (b) Hardcore 

processor fabricated beside the FPGA fabric. 

8.1.2 Xilinx Virtex-5 

An example to the FPGA that is generally introduced in section 8.1, Xilinx FPGA 

Virtex-5-XC5VLX110T that is shown in Figure 8.3. It is FPGA chip from Xilinx 

Virtex-5 series. Xilinx is a major FPGA vendor of market share 50%. 
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Figure 8.3: Xilinx FPGA 

Configurable Logic Blocks (CLBs): The Configurable Logic Blocks (CLBs) are 

the main programmable logic resources in Xilinx FPGAs. The CLBs are general 

PLBs that is used for implementing sequential and combinational circuits on Xilinx 

FPGA. The XC5VLX110T has in total CLB array of 160 x 54 (Rows x Columns). In 

Virtex-5 series each CLB contains two slices and a switching matrix is used to switch 

between them as shown in figure 2.3. 

The 54 CLB columns contain 108 slices, where it is an important note that, on 

using the DPR technique a complete CLB is taken in the constraint boundaries. In 

other words, you cannot split the CLB while reconfiguring the FPGA. Each slice has 

four 6-LUTs, four flip-flops, carry-logic and multiplexers, to provide logic, arithmetic 

and ROM functions. Slice heterogeneity exists in Xilinx Virtex-5 that allows more 

area and time optimization. 

Dedicated Blocks: Like DSPs, which acts as an arithmetic logic unit, RAM 

blocks, PCIe core. 

Input/Output Blocks: With programmable standard functionality, like LVCMOS, 

LVPECL, and PCI. In fact, each bank can support several standards as long as they 

share the same reference voltage, or output voltage. 
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Figure 8.4: CLB routing matrix in Virtex-5 

 

Routing: A combination of programmable and dedicated routing lines, use 

switching matrices connect lines from any source to any destination. Constrains 

can be applied. 

Clocking Resources: like Phase Locked Loop (PLL) which removes clock errors, 

and Digital Clock Management (DCM). The dedicated clock trees balance the 

Skew and minimize the delay. Thirty two separate clock networks are available in 

Virtex 5 FPGA. 

8.1.3 MicroBlaze softcore processor 

MicroBlaze is an embedded softcore microprocessor. It is a reduced instruction set 

computer (RISC) based architecture. MicroBlaze is optimized for implementation 

in 

Xilinx FPGAs families using a portion of the available resources on the FPGA. 

Figure 8.5 shows the internal construction for the MicroBlaze . 
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Figure 8.5: MicroBlaze block diagram 

8.2 Hardware System Hierarchy  

As explained before PDR has two for implementation: JTAG cable with PC 

control or Embedded system on Chip for control, for our project we chose the 

embedded system on chip for a better control environment so the FPGA chip could be 

completely independent and could control its switching process without external 

interference. 

The system hierarchy is shown in Figure 8.6, The system consists of Static part 

that contains the microprocessor which control the PDR process and enables the ICAP 

module to reconfigure the specified partition with the proper bit file, we use an 

external compact flash memory to hold the bit files with a sys_ace interface in our 

system to read from it, For testing purposes only we use the board UART port, so we 

add to this system an additional UART module to handle communications between 

PC and the micro-blaze processor, For testing also we use the compact flash to hold 

input and output files for our system. 
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Figure 8.6: Embedded system on chip 

A more detailed block diagram is shown in Figure 8.7, the micro-blaze processor 

uses PLB bus to communicate with its peripherals like the UART, System ACE, 

ICAP, and communication partitions. So the communication system partitions should 

be in the Green RP module, as the communication modules are not built to 

communicate with a Micro-processor or to be a peripheral of it so a container is 

needed to handle the communications with the micro-processor. 

This container must have some modules to deal with the PLB bus and other 

controllers to communicate with the partitions, the block diagram for this container is 

shown in Figure 8.8, in the system used, reconfigurable partitions are only slaves so 

only PLB slaves are used, the communication process between the micro-blaze and 

the peripheral is shown in Figure 8.9, the peripheral contains a memory of slave 

registers, each one has a unique address, the micro-blaze processor transfers certain 

data with certain slave register address through the PLB bus to the PLB slave, the 

PLB slaves moves data and address to the user_logic module which contains the slave 

registers and the communication partition, the user_logic should store the data in its 

slave register specified by the address, later the communication peripheral should read 

data from the salve registers, The same happens for reading, the communication 

peripheral should write the data in the slave registers and then the micro-blaze 

processor requires to read certain address from the salve register to get data. 

Embedded system on 
Chip

Static System (not 
reconfigurable)

A module capable of 
taking the partial bit 

files for the partitions 
and reconfigures the 

FPGA (ICAP IP)

Micro-processor to 
control the 

reconfiguration 
process (Micro-Blaze)

Memory storage for 
the partial bit files 
(Compact Flash)

Dynamic Part 
(reconfigurable 
partitions of the 

communication chain)

Wifi - LTE - 3G 
partitions
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Figure 8.7: Embedded system on chip detailed block diagram 

 

Figure 8.8: Peripheral template for partitions 
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Figure 8.9: Peripheral slave registers 

8.3 Partial dynamic reconfiguration flow  

To develop a partial reconfiguration design using Xilinx tools we are going to use 

the Xilinx Platform Studio (XPS), Software Development Kit (SDK), and the Plan-

Ahead™ design tool. XPS is used to create a processor hardware system that includes 

a lower-level module defining the Reconfigurable Partition (RP). SDK is used to 

create a software application that enables you to perform partial reconfiguration. XPS 

and SDK are part of the Embedded Design Kit (EDK), which is included in the ISE® 

Design Suite Embedded and System Editions. 

Plan-Ahead is used to Floor-plan the design including defining a reconfigurable 

partition for the reconfigurable Region and Create multiple configurations and run the 

partial reconfiguration implementation flow to generate full and partial bit-streams. 

The example that will be used to explain the flow of partial dynamic 

reconfiguration we are going to define one Reconfigurable Partition (RP) and two 

Reconfigurable Modules (RM). The two RM perform crc_4g and crc_3g functions. 

The steps will be as shown in Figure 8.10 . 
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Figure 8.10: Partial dynamic reconfiguration flow 

8.3.1 Generation of netlist files (XST Synthesis) 

1. Create new project. 

 

Figure 8.11: ISE create project 

 

Generation of netlist files of 
crc_4g and crc_3g using XST 

Synthesis (ISE)

Embedded system on chip 
implementation on Xilinx 

Platform Studio (XPS)

Developing the Micro-Blaze 
processor control software 

(Xilinx SDK)

Generate different 
configurations partial and 

full bit files using Plan Ahead

Generation of static system 
bootable ace files 
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2. Adjust the design properties to meet the kit specifications. 

 

Figure 8.12: ISE kit specs 

3. Add the source codes to the project. 

 

Figure 8.13: ISE add source 

4. From synthesis design properties uncheck the I/O buff as shown in 

Figure 8.15. 
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Figure 8.14: ISE synthesis 

 

Figure 8.15: Synthesis properties 
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5. XST synthesis. 

 

Figure 8.16: Run Synthesis 

 

Figure 8.17: Resulting Netlist file 

Get the netlist file (.ngc) from the project directory then repeat the same steps for 

the crc_3g function. 

8.3.2 Embedded Development Kit (EDK) 

 Embedded Development Kit (EDK) is a Xilinx software suite for designing 

complete embedded programmable systems. 

 It enables the integration of both hardware and software components of an 

embedded system.  
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 It includes all the tools, documentation, and IP that you require for designing 

systems with embedded IBM PowerPC™ hard processor cores, and/or Xilinx 

MicroBlaze™ soft processor cores. 

 XPS and SDK are part of the Embedded Design Kit (EDK), which is included 

in the ISE® Design Suite Embedded and System Editions. 

8.3.3 Xilinx Platform Studio 

 Includes IP cores that required for designing a complete embedded systems. 

 Generates netlists and simulation models of the hardware of the embedded 

programmable systems. 

 

1. Open Xilinx platform studio and create new project using base system builder. 

 
Figure 8.18: XPS main window 

 

2. Define the project path, select the interconnect type and add the board support 

package path because by default the XPS doesn’t contain the package of our 

board. 
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Figure 8.19: XPS new project wizard 

3. Create new design. 

 
Figure 8.20: Base system builder wizard 

 

4. Select the target development board that defined in step 2. 
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Figure 8.21: BSB board choice 

5. Configure the system as a single processor system in the system configuration. 

 
Figure 8.22: BSB single processor system 

 

6. Configure the processor by choosing processor type as MicroBlaze, speed 

(design dependent) for example 100 and memory size (design dependent) for 

example 64k. 
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Figure 8.23: BSB Micro-Blaze specs 

 

7. Adjust the peripheral configuration list by removing all the unrequired 

peripherals then adjust the UART baud rate to 115200. 

 
Figure 8.24: BSB peripheral wizard 
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Figure 8.25: BSB UART specs 

 

 

8. Advance to finish the base system builder wizard. 

 
Figure 8.26: finish BSB wizard 
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9. Now we want to create a new peripheral that include the reconfigurable 

partition and has the ability to deal with PLB bus (IP core) as explained 

before. The steps will be as follows: 

 

 
Figure 8.27: Working Space for XPS 

 

1. From hardware select create or import peripheral. 

 

 
Figure 8.28: XPS hardware menu 
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2. Select create template for a new peripheral from the wizard. 

 

 
Figure 8.29: Create or Import peripheral wizard 

 

3. Store the new peripheral to an XPS project, this will store the peripheral in 

the pcores folder. This folder should contain all user custom peripherals. 

 

 
Figure 8.30: Create peripheral wizard save location 
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4. Enter the name of the peripheral. 

 

 
Figure 8.31: Peripheral name 

 

5. Choose which buses will the peripheral attached to, in our case we are 

going to select BLP bus (Xilinx Virtex 5). 

 
Figure 8.32: Bus choice 

6. The peripheral will be connected to the PLB interconnect through 

corresponding PLB interface (IPLF) modules, which provide us with a 

quick way to implement the interface between the PLB interconnect and 

user logic. Besides the standard functions like address decoding provided 

by the slave IPIF module, the wizard tool also offers other commonly used 

services and configurations  to simplify the implementation of the design. 
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According to the wizard we check the required services and 

configurations. 

 
Figure 8.33: IP interface 

 

7. Determine the number of software accessible registers. 

 

 
Figure 8.34: Slave reg choice 

 

8. Advance to finish create peripheral wizard. 

 



177 

 

10. Now we created the required peripheral template of our RP and it stored in the 

pcores folder. From project make rescan user repositories to import the created 

peripheral in the IP catalog. 

 

 
Figure 8.35: XPS rescan 

 

11. We also need to import another peripheral that responsible for the FPGA 

reconfiguration but this peripheral already exists in the IP catalog. 

 
Figure 8.36: IP catalog 

 

 



178 

 

12. After adding the two peripheral to the bus interface they need to be connected 

to the PLB bus. 

 
Figure 8.37: Peripheral Bus Connection 

 

13. Generate addresses for the unmapped peripherals. 

 

 
Figure 8.38: Peripheral Address initiation 

 

14. If one of these peripherals has unconnected port we have to connect it from 

ports to prevent floating connections.in our case only the peripheral that 

responsible on the FPGA reconfiguration has unconnected port which is ICAP 

_Clk, we connect it to the output of the clock generator as shown. 

 

 
Figure 8.39: Console display for missing port connection error 
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Figure 8.40: Connecting the ICAP_Clk port to the kit clock generator 

 

15. Generate netlist. 

 
Figure 8.41: Generating Netlist File 

8.3.4 Software Development Kit  

 Used to perform the Software development. 

 Xilinx Custom Compiler settings for PowerPC, MicroBlaze. 

 Code editor, Error Navigation and debug. 

 A hardware image is first generated to define the hardware platform for which 

the software application will be developed. 

Resuming XPS flow: 

1. To export to SDK from XPS, in XPS select projects > Export Hardware 

Design to SDK. 
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Figure 8.42: Exporting the XPS file to the SDK for microprocessor configuration 

 

2. Uncheck include bit stream and BMM file because we haven’t generated these 

files yet. 

 
Figure 8.43: Bitstream and BMM generation 

 

3. Browse to the <Extract_Dir>/edk/SDK/SDK_Export workspace directory then 

click ok to open the SDK. 

 
Figure 8.44: SDK Launcher 
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4. Create new board support package. 

 
Figure 8.45: creating board support package 

5. The default Project Name is standalone_bsp_0 and the OS is standalone. Then 

click finish to open the board support package settings window. 

 
Figure 8.46: Defining Project name 
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6. Check the xilfatfs check box to select the FAT file system support for the 

Compact Flash card. 

 
Figure 8.47: Board Support Package Supported Libraries 

7. From xilfatfs, make sure that the value of CONFIG_WRITE is true to be able 

to write in the system ace. 

 
Figure 8.48: Configuration for library xilfatfs 

 

8. Create new application project.  

 
Figure 8.49: Creating Application Project 

 

9. Type the project name and select use existing option under the Board Support 

Package field  
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Figure 8.50: Defining Project name 

 

10. Select empty application in the project application template pane. 

11. Right click on TestApp from project explorer and select import. 

12. From import choose general -> file system. 

13. Browse to the <Extract_Dir>/resources/TestApp/src/ folder and Select main.c 

and xhwicap_parse.h then click finish. 
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Figure 8.51: Import Recources 

14. Right click on TestApp and select generate linker script. 

15. Be sure that the Heap and Stack sizes are set to 2048 (0x800). 

16. Click generate. 

 
Figure 8.52: Generating Linker Script 

8.3.5 Plan-Ahead 

This tool is also one of Xilinx tools and it is used to make the following: 

 Creating partitions and setting them as reconfigurable. 

 Management of Reconfigurable Modules (RMs) and configurations. 

 Creation of floorplans and AREA_GROUP RANGE constraints. 

 Promote / import of static and reconfigurable logic. 

 Partial Reconfiguration-specific DRCs. 

 Verification of consistency among configurations. 

 Bit file size estimates and resource reporting. 

Resuming XPS and SDK flow: 
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1. Open Plan-Ahead then Create New Project. 

2. Enable Partial Reconfiguration in the Post-synthesis Project. 

 
Figure 8.53: Enable Partial Reconfiguration 

3. Browse to <Extract_Dir>/edk/ implementation/ and select all the netlist files 

(.ngc) of the system on chip that was implemented using Xilinx platform 

studio (XPS). 

 
Figure 8.54: Selecting netlist files 

 

4. Browse to <Extract_Dir>/edk/ data/ and select the UCF constrain file of the 

top level. 
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Figure 8.55: Selecting Constrain file 

5. Choose Xilinx FPGA board from parts partition because the kit that we use is 

not defined in board’s partition. 

6. Click Open Synthesized Design under Netlist Analysis step of the Project 

Manager Flow Navigator pane to invoke the netlist files parser. This is 

necessary to access a lower-level module to define a reconfigurable partition. 

 
Figure 8.56: Netlist Analysis 

7. Select crc_0/USER_LOGIC_I/rp_instance in the Netlist view then right-click 

and select Set Partition to create a reconfigurable partition. 
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Figure 8.57: Set Reconfigurable Partition 

8. Click Next twice then select Add this Reconfigurable module as a black box 

without a Netlist. 

 
Figure 8.58: Reconfigurable Partition Initiation 

 

 
Figure 8.59: Adding Black Box Module 

 

This design has two Reconfigurable Modules (RMs) for the Reconfigurable Partition 

(RP) as we explained before, now we are going to add the two modules. 
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a) Adding crc_4g module: 

9. Select the math_0/USER_LOGIC_I/ rp_instance then right-click and select 

Add Reconfigurable Module. 

10. Click Next then type crc_3g in the Reconfigurable Module Name field and 

verify that Netlist already available for this Reconfigurable Module is 

selected. 

 
Figure 8.60: Adding CRC_4G Module 

 

11. Click Next then browse to <Extract_Dir>/resources/CRC/crc_4g/ and select 

the top_crc_4g.ngc file. 

 
Figure 8.61: Adding Netlist file 
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b) Adding crc_3g module: 

12. Follow the same steps, from step 9 to step 11, to add a crc_3g RM from the 

<Extract_Dir>/resource/CRC/crc_3g/top_crc_3g.ngc directory. Name the RM 

crc_4g. 

Next, floorplaning for the RP region. Depending on the type and amount of resources 

used by each RM, the RP region must be appropriately defined so it can accommodate 

any RM variant. 

13. Select Window > Physical Constraints, 

14.  Select pblock_crc_0/USER_LOGIC_I/rp_instance then Right-click and select 

Set Pblock Size. 

 
Figure 8.62: Set Pblock Size 

15. Move the cursor in the Device window.   

16. Click and drag the cursor to draw a box that bounds 

SLICE_X8Y230:SLICE_X17Y239. 



190 

 

 
Figure 8.63: Floor Planning 

 

Xilinx recommends that you run a Design Rule Check (DRC) in order to detect errors 

as soon as possible. 

17. Select Tools > Report DRC then Deselect All Rules then Select Partial 

Reconfig. 

18. Click OK to run the PR-specific design rules. 

 
Figure 8.64: Design Rule Checking 
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Figure 8.65: Define Rules to Check 

 

Now you can create and implement the first configuration. 

Creating a New Strategy by using the -bm option pointing to the crc_sys.bmm file for 

the new strategy. 

19. Select Tools > Options then select Strategies in the left pane then select ISE 14 

in the Flow drop-down box. 

20. Under PlanAhead Strategies, select ISE Defaults and click the + button to 

create a new strategy then name the new strategy ISE14_BM, and set the Type 

to Implement. 
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Figure 8.66: Creating new Strategy 

 

 

21. Under Translate (ngdbuild), click in the More Options field and Type -bm 

../../../edk/implementation/system.bmm then click ok. 

 
Figure 8.67: Selecting BMM File 

 

Running the Implementation Using crc_4g as a Variant. 

22. At the bottom of the PlanAhead tool user interface, select the Design Runs tab 

then Select the config_1 run. 
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23. In the Implementation Run Properties window, select the General tab. In the 

Name field, type crc_4g as the run name then click Apply to change the run 

name from config_1 to crc_4g. 

 
Figure 8.68: Defining Configuration 

24. In the Options tab, change the Strategy to ISE14_BM and check that –bm 

option point to the correct directory then click Apply. 

 
Figure 8.69: Selecting Strategy for Configuration 

 

25. In the Partitions tab, click the Module Variant column drop-down button and 

select crc_4g as the variant then click apply. 
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Figure 8.70: Selecting Partial Modules 

26. In the Netlist window, make the corresponding module (crc_4g) active, right-

clicking on its entry and selecting Set as an Active Reconfigurabe Module. 

 

 
Figure 8.71: Activation Reconfigurable Module 

 

27. In the Design Run window, select crc_4g, and right-click and select Launch 

Runs to run the implementation then select Launch Runs on Local Host. 

 

 
Figure 8.72: Launch Runs 
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Now we want to create another configuration for the crc_3g. 

28. Select Flow > Create Runs. Click Next twice then in the Choose 

Implementation Strategies and Reconfigurable Modules page, change the 

name of the configuration from config_1 to crc_3g. 

 
Figure 8.73: Create new Runs 

 

 
Figure 8.74: Configuration Run 

29. In the crc_3g configuration row, click the Partition Action field. 

30. For the rp_instance row, click the Module Variant column drop-down arrow, 

and select crc_3g as the variant to be implemented. 
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Figure 8.75: Specify Partition 

 

31. In the Netlist window, expand the crc_0 > crc_0 > Reconfigurable Modules 

and rightclick on the adder, and select Set As an Active Reconfigurabe 

Module. 

32. In the Design Run window, select crc_3g, and right-click and select Launch 

Runs to run the implementation then select Launch Runs on Local Host. 

Repeat the same steps (from step 28 to step 32) to make a black box configuration 

(crc_BB). 

Next, you will check to be sure that the static implementation, including interfaces to 

reconfigurable regions, is consistent across all configurations. To verify this, you can 

run the PR_Verify utility. 

 

33. Run the PR_Verify utility to make sure that there are no errors. In the 

Configurations window, select any of the configurations then right-click, and 

select Verify Configuration. 

 
Figure 8.76: Verify Configuration 
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After PR_Verify validates all the configurations, you can generate full and partial bit 

files for the entire project. 

34. Generate bitstream. 

 
Figure 8.77: Generating BitStream 

 

8.3.6 Generation of static system bootable ace files  

For this step you need to open an EDK shell, and create both a download.bit and a 

crc_sys.ace file in the image/ directory. Copy the generated partial bit files, place 

them in the image/ directory, and name them crc_4g.bit and crc_3g.bit. 

Resuming the flow: 

1. Launch the ISE Design Suite command prompt from your Windows 

environment by selecting Start > All Programs > Xilinx Design Tools > Xilinx 

ISE Design Suite > Accessories > ISE Design Suite Command Prompt. 

2. In the command window, go to the <Extract_Dir>/image/ directory. 

3. Execute the following command to generate the download.bit file (with the 

software component included) from crc_4g.bit (with the hardware component) 

only. 

 
data2mem -bm ../edk/implementation/crc_sys_bd 

-bt ../PlanAhead/PlanAhead.runs/crc_4g/crc_4g.bit 

-bd ../edk/SDK/SDK_Export/TestApp/Debug/TestApp.elf tag 

microblaze_0 –o b download.bit 

 

This generates the download.bit in the image/ directory. 

4. In the Bash shell, execute the following command to generate the crc_sys.ace 

file in the image/ directory. 

xmd -tcl genace.tcl -jprog -target mdm -hw download.bit -board 

ml605 –ace crc_sys.ace 

 

8.3.7 Summary of the hardware implementation flow 
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Figure 8.78: Hardware implementation block diagram 

While seemingly complex when viewed in total, the system design flow simply 

combines the standard hardware flow used to create FPGA bitstreams and standard 

software flow used to create processor ELF files.  In fact, unless on-chip memory 

resources are used to store the software image, the Embedded Developers Kit can be 

viewed as nothing more than an extension to the Xilinx core generation tool CoreGen. 

The first step is to create the ‘System Netlist’ using the Embedded Developers Kit 

and instantiate that netlist into the design’s HDL code.  The hardware design is then 

synthesized, merged and implemented using the exact same flow as used with any 

other ‘black box’ core.  While it is common to include a portion of the yet created 

software image inside the FPGA using block RAM. 

The second step is to create the ‘Board Support Package’ (BSP) using the 

Embedded Developers Kit (EDK) and include the required drivers in the system’s C 

code.  The code is then compiled and linked with the various functions available in 

the BSP as is the same with any other processor system. Finally ‘TestApp.elf’ file 

(Compiled ELF file) is generated.  
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The third step is to create the partial dynamic reconfiguration using the PlanAhead 

tool as shown in Error! Reference source not found. this tool take from the XPS all 

the Netlist files (.ngc) ,UCF constrain file the ‘crc_sys.bmm’ file that contain the 

unmapped memory address space and take from the ISE the Netlist files of the 

reconfigurable module from ISE. After defining the different configurations, making 

floorplaning and generating the bitstream files finally the output files are, 

‘crc_sys_bd.bmm’ file that contain the memory address space after mapping, 

‘crc_4g.bit’ file (Compiled BIT file) created during this phase of development only 

contains the systems hardware description after defining the reconfigurable partition. 

 and ‘crc_4g_crc_0_crc_0_user_logic_i_rp_instance_crc_4g_partial.bit’ file which 

is the partial module bit file. 

EDK provides a tool called Data2MEM which merges the appropriate sections of 

the ‘Compiled ELF’ file with the ‘Compiled BIT’ file.  The resulting BIT file is 

typically created in a few seconds and can then be used to configure the FPGA.  

When the entire software image is stored within the FPGA, only the BIT file is 

needed to both configure the system and load the software image.  If only portion of 

the software image, such as the bootstrap, is stored within the FPGA, then 

Data2MEM is run to create a combined BIT file and the system is once again 

configured/loaded as any two chip solution using the unmerged ELF sections and the 

combined BIT file. 

So now we need to create ‘download.bit’ file (Combined BIT file) from 

‘crc_sys.bmm’ file, ‘crc_4g.bit’ file (Combiled BIT file) and ‘TestApp.elf’ file 

(Combiled ELF file) using Data2MEM tool. 

Unlike general purpose processors, the physical system can be probed using Chip-

Scope modules.  This capability provides a level of visibility into the operation of the 

system unmatched by external processors. 
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Chapter 9: Testing 

9.1 Communication Methodology  

We have 2 entities (Micro-Blaze processor & our Reconfigurable partition) that we 

want to establish a communication between though the PLB bus, They both run on the 

same clock system clock frequency (100 MHz) but the problem is that the processor 

code takes many cycles to write data in one register, so although they run on the same 

clock they are not synchronized, that’s why a simple hand-shaking algorithm is used. 

The Micro-blaze processor will send all data to slave registers and the RP will not 

read anything from the slave registers until the micro-processor sends an 

acknowledgement that he finished transferring data. 

The same happens for data outputs, The RP starts writing its output to the slave 

registers and then writes an acknowledgement that it finished so the processor starts 

reading data. 

Assuming a system of 11 slave registers the flow chart for the methodology of the 

micro-processor is shown in , the flow chart for the user logic is shown in, and the 

structure of the slave_registers is shown in Figure 9.1. 

9.2 User Logic Code 

As explained before user logic is the container that holds our RP and facilitate its 

communication with the micro-processor, the user logic code is auto-generated using 

the Create or Import Peripheral Wizard from Xilinx Platform Studio, The following is 

a quick walkthrough for this code. 

The user logic code functions are: 

 Communicate with PLB slave (auto generated, Not edited in the project). 

 Store Micro-processor sent data to the slave register with the specified address 

(auto generated, Edited in the project). 

 Communicate with the user IP (User code). 
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Figure 9.1: flow charts and slave registers structure 

The typical auto generated user logic code contains: 

 Port definitions and components (RP). 

 A process block for writing processor data into slave registers as shown in 

Figure 9.2. 

 A process block for sending salve registers data to processor when selected as 

shown in Figure 9.3. 
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Figure 9.2: writing processor data into slave registers 

 

 
Figure 9.3: reading data from slave registers to processor 

 

Now as explained before to set a large test case many slave registers are like 128 

registers or even 1024 registers, this will result in a very bad repetitive code which 

will be hard to develop and debug, to solve this problem the following edit was done 

to the user logic. 

For easier large set of slave registers, the salve should instead be defined as an 

array of signals instead of separate signals; this will require an additional address 

encoder to convert the one-hot address send by the microprocessor to a normal index 

that could be used to access the slave register signal array. 

The edits are shown in Figure 9.4, Figure 9.5. 

 
Figure 9.4: Slave registers array code 
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Figure 9.5: Slave registers array processor read 

 

The reg_index_in is the output of the encoder that is used to convert to one hot 

address from the processor to normal address, an important note is that the user logic 

cannot have any components unless they are added to the same library of the 

user_logic contrainer, that’s why the encoder instantiation code is as shown in 

Figure 9.6. The rest of the user_logic code is used to convert the data from the slave 

registers to RP input. 

 
Figure 9.6: encoder instantiation and library definition 

9.1 SDK C Code 

SDK c code is modified to be able to read input data from the input file that exist 

in the compact flash, transfer this input data to the system on chip (reconfigurable 

partition) (user logic), wait the acknowledge from the system on chip to inform the 

SDK c code that the output data is ready in the slave registers, read the output data 

from the system on chip and write it in the compact flash in the output file. 

9.1.1 Sysace_read 

This function is used to read input data from the input file that exist in the compact 

flash. The header of this function is as shown in Figure 8 , and as shown in Figure 240 

that this function call another four functions: 

 sysace_fopen  

This function is used to open the input file and its header is as following: 

void *sysace_fopen (const char *file, const char *mode) 

Parameters: file is the name of the file on the flash device. Mode is “r” or 

“w”. 
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Returns: A non zero file handle on success.0 for failure. 

 

Figure 240: User defined functions diagram 

The file name should follow the Microsoft 8.3 naming standard with a file 

name of up to 8 characters, followed by a ‘.’ and a 3 character extension. In 

this version of the library, the 3 character extension is mandatory so a sample 

file might be called test.txt. This function returns a file handle that has to be 

used for subsequent calls to read/write or close the file. If mode is “r” and the 

named file does not exist on the device 0 is returned. 

 sysace_fread  

This function is used to read the input file and its header is as following: 

int sysace_fread (void *buffer, int size, int count, void *file) 

Parameters: buffer is a pre allocated buffer that is passed in to this 

procedure, and is used to return the characters read from the device. Size is 
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restricted to 1. Count is the number of characters to be read. File is the file 

handle returned by sysace_fopen. 

Returns: None zero number of characters actually read for success. 0 for 

failure. 

The preallocated buffer is filled with the characters that are read from the 

device. The return value indicates the actual number of characters read, while 

count specifies the maximum number of characters to read. The buffer size 

must be at least count. Stream should be a valid file handle returned by a call 

to sysace_fopen. 

 sysace_fclose  

This function is used to close the input file and its header is as following: 

int sysace_fclose (void *file) 

Parameters: file is the file handle returned by sysace_fopen. 

Returns: 0 on success and -1 on failure. 

Closes an open file. This function also synchronizes the buffer cache to 

memory. If any files were written to using sysace_fwrite, then it is necessary 

to synchronize the data to the disk by performing sysace_fclose. If this is not 

performed, then the disk could possibly become corrupted. 

 stringtoint 

int stringtoint(char str[]) 

This function is used to convert a string to an integer. Since that the size of 

the memory is very limited so we can’t use built in functions like atoi, itoa, 

strlen, pow,…..etc. so we created similar functions. 

9.1.2 bus2rp 

This function is used to transfer the input data to the system on chip slave registers 

(reconfigurable partition) (user logic). The header of this function is as shown in 

Figure 242.  

 Xil_Out32 

#define Xil_In32(Addr)  (*(volatile u32 *)(Addr)) 

Perform an input operation for a 32-bit memory location by reading from 

the specified address and returning the value read from that address. 

Parameters: Addr contains the address to perform the input operation at. 
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Return : The value read from the specified input address. 

9.1.3 rp2bus 

This function is used to read the output data from the system on chip after waiting 

the acknowledging signal to inform the SDK c code that the output data is ready in the 

slave registers. The header of this function is as shown in Figure 243. 

 Xil_In32 

#define Xil_Out32(Addr, Value) \ (*(volatile u32 *)((Addr)) = (Value)) 

* Perform an output operation for a 32-bit memory location by writing the 

specified value to the specified address. 

Parameters: Addr contains the address to perform the output operation at. 

Value contains the value to be output at the specified address. 

Return : None. 

9.1.4 Sysace_write 

This function is used to write the output data in the output file that exist in the 

compact flash. The header of this function is as shown in Figure 244, and as shown in 

Figure 240 that this function call another four functions: 

 sysace_fopen (as explained before) 

 sysace_fwrite (as explained before) 

 inttostring 

This function is used to convert an integer to a string without using built in 

functions duo to the memory size limitation. 

 Shuffle 

This function is used to shuffle a string because the output string from 

inttostring function is reversed. 

 Stringlen 

This function is used to find the length of a string without using built in 

function (strlen). 

 
Figure 8: Header of Sysace_read function 
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Figure 242: Header of bus2rp function 

 

 
Figure 243: Header of rp2bus function 

 

 
Figure 244: Header of Sysace_write function 
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Chapter 10: Multiple Reconfigurable Partitions (RPs)  

Till now we are able to reconfigure one RP so the process is as following  

 Reconfigure the new partition ( 3G, 4G or WI-FI) using the PLB bus  

 Handshake data between different internal blocks of this standard using the 

PLB bus  

 After all the frame data is generated from the last internal block we 

reconfigure the new partition  

This approach faces a lot of problems. First, we have to wait a long time until all 

data is generated from last block of the chain. In addition, we can’t reconfigure each 

internal block using multiple partitions only. That’s because of conflict of data on the 

PLB bus between several data out of different internal blocks and conflict between 

these data out and the reconfigurable data which is transferred using the same PLB 

bus. 

To solve all these problems we use a new approach using multiple reconfigurable 

partitions with floating ports for the input and output data. By connecting the input 

floating port of the internal block with the previous block’s output floating port we 

generate a new bus for the data flow far away from the PLB bus as shown in 

Figure 10.1. [12]  

The new approach solves the problem of data conflict and adds a kind of pipelining 

for the flow. Now after each internal block finish its function we can reconfigure it 

with the next used standard internal block which decreases the overhead time greatly.  

Now when the frame is finished the overhead time will be only the time of 

reconfiguring the last internal block of each standard. 

To implement this approach on our standards chains we have to divide our chains 

to number of internal blocks which handshake the data and add the related blocks of 

the different standards in the same RP to change between them as shown in 

Figure 10.2 . After that we have to unify the interface of these related blocks in order 

to change between them properly and perform the PDR concept. 
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.  

 

Figure 10.1-multiple RPs-system block diagram 

 

 

Figure 10.2-Standards Blocks 

To prove the concept of multiple RPs, we made demo project to test the idea. The 

system contains two reconfigurable partitions, first contains two reconfigurable 

modules: Adder, multiplier. Second contains two reconfigurable modules: addition by 

3 and addition by 4 as shown in Figure 10.3. 
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Figure 10.3-multiple RPs-Demo project 

 

First, build the system on Xilinx platform studio (XPS). That needs modifications 

to user logic VHDL files as shown in Figure 10.4 and modifications to math VHDL 

files as shown in Figure 10.5. 

In user logic1, math1 files, we added output port and connected it to output port of 

reconfigurable partition. 

 In user logic2, math2 files, we added input port and connected it to input port of 

reconfigurable partition. 

We also adjusted mpd files to define the ports, directions of them and size of them 

as shown in Figure 10.6.   

To connect the ports of math1, math2 together we need to edit the ports connection 

on Xilinx platform studio (XPS) as shown in Figure 10.7 . 

Graphical Design View of Xilinx platform studio (XPS) shows the connection to 

verify that adjustment of files was correct as shown in Figure 10.7. 

After that, we use Plan Ahead to generate bit files for different configurations. First 

we define the reconfigurable partitions and reconfigurable modules as shown in  

Figure 10.9. 
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Figure 10.4-multiple RPs -user logic files 

 

 

 
Figure 10.5-multiple RPs- math files 

 

 
Figure 10.6-multiple RPs-mpd files 
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Figure 10.7-multiple RPs-ports connection 

 

 

Figure 10.8-multiple RPs-graphical design view 

 

 

Figure 10.9-multiple RPs-Plan Ahead partitions 

 

There are four different possible configurations: (adder+plus3), (adder+plus4), 

(multiplier +plus3), (multiplier+plus4) but each reconfigurable module should be used 

at least at one configuration so we can run only two configurations: (adder+plus3), 

(multiplier+plus4) as shown in Figure 10.9. 

To test the system we only reconfigure one partition and check the effect on the 

output as shown in .the expected outputs are shown in Table 10.1 and Figure 10.11 

shows the generated outputs which are identical to expected outputs. 
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Figure 10.10: multiple RPs-Plan Ahead configurations 

 

Table 10.1-multiple RPs-Expected outputs 

First operand = 3 , second operand = 5 

 Adder Multiplier 

Plus3 11 18 

Plus4 12 19 

 

 
Figure 10.11-multiple RPs-generated outputs 

 

 



215 

 

Chapter 11: Results  

In this chapter we are going to conclude our achievements and results through a 

year full of team work, enthusiasm, hard work and research.  

Our project is an experience of both hardware and software skills. And in our 

project we have been keen on verifying our results to make sure of the success of our 

work. 

Here are some of the results of our work    

 HDL and MATLAB implementation of 3G transmitter and receiver  

 HDL and MATLAB implementation of WI-FI transmitter and receiver  

 HDL and MATLAB implementation of LTE (4G) transmitter  

 Building a test framework to Verify of HDL implementation  

 Implementation of the three chains on the FPGA (Virtex 5) 

 Generate and prove the concept of multiple RPs by implementing it on a 

simple example  

 Prove the concept of PDR  

 Debug the FPGA results using Chipscope  

 Build a system on chip (SOC) with input and output files  

 Reduce the total area and resources needed for implementation of the three 

standards. We choose the  most consuming standard and its resources is the 

only needed resources to implement all the chains on this FPGA  

 Reduce the total power of the system as we eliminate the static and sleep mode  

power consumed by the idle chains  

 Reduce reconfiguration overhead by reconfigure each internal block of the 

chain after finishing its function. This is a kind of pipelining as we don’t need 

to wait until all frame data is generated to reconfigure each internal block of 

the chain    
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Chapter 12: Conclusion and Recommendations 

Conclusion: 

After going through simulation and hardware implementation of PDR between 

different communication standards like 3G, 4G, WIFI, we can say that it is very 

useful to implement software defined radio in handsets using PDR. This enables us to 

reduce area and power used.  

The motivation behind this sustainable work that Cairo University could be pioneer 

in this promising field and could build a system by hands and minds of ambitious 

engineers and researchers to be used by all industrial companies. 

Recommendations 

Moving towards the market and changing project’s goal from just proofing 

concepts to implementing an applicable market project needs some improvement, 

These improvements also can be a suitable idea to broaden the horizon for future 

graduation projects. Throughout this chapter, we are going to figure out most of the 

enhancements that are required for the previously recalled chains as well as general 

developing for the project. 

12.1 3G 

Most of the blocks and specifications for the 3G standards are covered within the 

projects only few of blocks are needed to be added at the receiver since we assume 

that the transmitter and receiver are synchronized [6]. First of all, the rate matching 

and the turbo encoder at the transmitter are still not implemented. Also, the physical 

interface with the MAC layer has to be created as most of the parameters are forced 

during running since this part was out the project`s scope. 

12.2 LTE 

One of the main privileges for the LTE technology is boosting the rate for data 

transmission and reception. To have this advantage numbers of techniques are used; 
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one of these techniques is the modulation used for data bits that are stated in the 

following table. For our project, we use only the QPSK and 16QAM technique [13]. 

Secondly, LTE support the use of multiple antennas for sending and receiving data. 

These allow that more bits may be send at the same time by means of orthogonality. 

To implement this technique numbers of blocks are required to be added to support 

the MIMO. Figure 0.1 shows the block diagram for the MIMO implementation [13]. 

 
Figure 0.1: Block Diagram for MIMO 

 

Moreover, for the OFDM block is consists of DFT followed by IFFT and the pilots 

insertion block. Pilots are bits assigned to specific subcarriers used for channel 

estimation at the receiver. Sequences of these bits are defined in standards for 

different versions of LTE. In this project we assume that these pilots are assigned to 

all ones since there is no channel estimation block at the receiver. Figure 0.2 shows 

the position for the pilots within the subcarriers. 

 
Figure 0.2: OFDMA Subcarriers Signals 

  

Finally, some blocks are needed at the receiver for accurate reception of data such 

as synchronization block as well as the turbo decoder as the decoder need soft Viterbi 

instead of hard Viterbi (values rather than zeros and ones) [8]. 
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12.3 WIFI 

Timing synchronization block is the block required for accurate detection of the 

data at the receiver. Therefore, implementation of such a block is a challenging one. 

Timing synchronization performs two main functions packet detection and symbol 

timing. Packet detection is the task of finding an approximate estimate of the start of 

the preamble of an incoming data packet. It is the first synchronization algorithm that 

is performed. 

 The rest of the synchronization process is dependent on good packet detection 

performance. Also, one of drawbacks of OFDM is its sensitivity to carrier frequency 

offset.To solve this problem, implementation for frequency synchronization is 

required to be present in practical usage for Wi-Fi [9]. 

12.4 Others Improvements  

Other standards may be implemented such as the Bluetooth standard and GSM 

standard. Regarding the switching algorithm used in the FPGA to switch between the 

standards may be improved to be more automated such without the need for user 

presence. 
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