

Wireless Signal Identification Receiver

Prepared by:

Abdelrahman Emad Labib

Abdelrahman Farid Shawkey

Rawan Sayed Ali

Mohammed Hassan Mohammed

Hisham Mohamed Abdelhamed

Supervised by:

Dr. Hassan Aboushady

Dr. Hassan Mostafa

A Graduation Project Report Submitted to
The Faculty of Engineering at Cairo University in Partial Fulfillment of the

Requirements for the
Degree of

Bachelor of Science
In

Electronics and Communications Engineering.
Faculty of Engineering, Cairo University

Giza, Egypt. August 2020.

Cairo University

Faculty of Engineering

Electronics and Communications dept.

ii

ACKNOWLEDGMENTS

Gratitude breeds success. First of all, we have to thank our research supervisors.
Dr. Hassan Aboushady and Dr. Hassan Mostafa for offering the opportunity to work with them at

Digital electronics field. Without their assistance, dedicated involvement in every step throughout the
process and their faith in our work, this project would have never been accomplished.

Most importantly, none of this could have happened without our families.

We would like to thank them for their constant support, patience, and sacrifices for many long years

iii

ABSTRACT

In the past decade, Deep Learning (DL) and especially Convolutional Neural Networks (CNNs)
have shown extremely growth due to their effectiveness at a wide range of applications especially
in image and audio. One of these applications is 5G wireless communication systems which
require portable devices capable of analyzing the spectrum congestion and establishing
communication on the available frequency bands using the appropriate standards. This
graduation project presents a CNN algorithms Implemented on FPGA that balance between the
three main factors for portable devices: accuracy, area, and power. Algorithms target two active
research fields in 5G systems. First field is Wireless Interference Identification used in identifying
the source of interference to prevent spectrum congestion. Second field is Modulation
Recognition used in recognizing the type of the signal for demodulation purpose which is one of
the main tasks in establishing communication between two systems.

iv

TABLE OF CONTENTS
ACKNOWLEDGMENTS .. II

ABSTRACT .. III

TABLE OF CONTENTS .. IV

LIST OF TABLES .. VII

LIST OF FIGURES ... VIII

LIST OF ABBREVIATIONS .. X

CHAPTER ONE: INTRODUCTION ... 1

1.1 PROBLEM STATEMENT ... 1

1.2 COGNITIVE RADIO AS A PROPOSED SOLUTION .. 3

1.3 DESCRIPTION OF TERMS ... 4

1.3.1 Modulation recognition .. 4

1.3.2 Wireless Interference .. 5

1.4 STATE OF THE ART .. 5

CHAPTER TWO: FUNDAMENTAL CONCEPTS ... 7

2.1 MACHINE LEARNING .. 7

2.2 DEEP LEARNING .. 9

CHAPTER THREE: SOFTWARE APPROCH ... 12

3.1 MODULATION RECOGNITION ... 12

3.1.1 DATASET .. 12

3.1.2 Literature in modulation recognition using CNN .. 13

3.1.3 Multi path model .. 15

3.1.3.1 Multi path model idea and advantages ... 15

3.1.3.2 PSI (Ψ) model Structure ... 16

3.1.3.3 PSI (Ψ) model Performance ... 18

3.1.4 Optimized IQ model .. 23

3.1.4.1 Model Introduction .. 23

3.1.4.2 Training Model ... 24

3.1.4.3 Results .. 24

3.1.4.3.1 Accuracy Curves .. 24

3.1.4.3.2 Performance Metrics .. 26

3.1.4.3.3 Confusion Matrix ... 27

3.1.4.3.4 Number of calculations and model size .. 27

3.2 WIRELESS INTERFERENCE.. 29

3.2.1 Introduction .. 29

v

3.2.2 Literature of wireless interference identification ... 31

3.2.3 PSI model for wireless interference .. 31

3.2.3.1 Introduction ... 31

3.2.3.2 Performance comparison .. 31

3.2.4 PSI lite model for wireless interference .. 33

3.3 SOFTWARE WORK SUMMARY... 37

3.4 FIXED POINT REPRESENTATION .. 38

3.4.1 Implementation Explanation .. 38

3.4.2 Visualization ... 39

3.5 PROPOSED MODELS WITH FIXED-POINT .. 44

3.5.1 Optimized IQ ... 44

3.5.2 Psi .. 44

3.5.3 Psi-Lite ... 46

CHAPTER FOUR: HARDWARE APPROACH ... 47

4.1 OPTIMIZED IQ MODEL HARDWARE: .. 47

4.1.1 Fixed Point Operations .. 47

4.1.2 Implementations of used Operations ... 47

4.1.2.1 Convolution Operations ... 47

4.1.2.2 Neuron Implementation .. 49

4.1.2.3 Activation Functions .. 50

4.1.2.3.1 ReLU .. 50

4.1.2.3.2 softmax .. 51

4.1.3 Model Flow ... 53

4.1.3.1 Convolution Layer 1 ... 53

4.1.3.2 Convolution Layer 2 ... 53

4.1.3.3 Dense Layer 1 ... 53

4.1.3.4 Dense Layer 2 ... 54

4.1.4 Hardware results .. 55

4.1.4.1 Estimated error .. 55

4.1.4.2 Accuracy Curves ... 56

 4.1.4.3 Confusion Matrix ... 56

4.1.4.4 Performance Metrics ... 57

4.1.4.5 Layers Utilization .. 57

4.1.4.6 Compare with related work ... 58

4.2 PSI-LITE HARDWARE ... 60

4.2.1 Fixed Point .. 60

4.2.2 Device Targeted .. 60

4.2.3 Verilog Code .. 60

4.2.3.1 IQ Convolution Layer output ... 61

4.2.3.2 Amplitude Convolution Layer output .. 62

vi

4.2.3.3 Max-Pool Layer output .. 64

4.2.3.4 Shared Convolution Layer output .. 64

4.2.3.5 Dense Layer output .. 65

4.2.3.6 Max-Pool Layer output .. 66

4.2.4 Memory problem .. 66

4.2.5 Verilog Synthesis ... 67

4.2.6 Results ... 68

CHAPTER FIVE: TOOLS.. 69

5.1 SOFTWARE TOOLS ... 69

5.2 HARDWARE TOOLS .. 69

CHAPTER SIX: CONCLUSION ... 70

CHAPTER SEVEN: FUTURE WORK ... 71

REFRENCES .. 72

vii

LIST OF TABLES
Table 1: Oshea’s model structure ... 14

Table 2: Ψ model Structure .. 18

Table 3: Performance metrics comparison for Modulation recognition 19

Table 4: Performance Metrics of Kulin’s Paper .. 26

Table 5: Performance Metrics of Proposed model on GPU.. 27

Table 6: Performance metrics comparison for Wireless Interference Identification................... 33

Table 7: Psi Lite Data Flow .. 35

Table 8: Clarifying Maximum Pooling Layer operations ... 36

Table 9: Psi-Lite Data Flow without Max-Pool Layer .. 36

Table 10: Software Comparison .. 37

Table 11: Performance Metrics of Proposed Model on GPU vs FPGA. .. 57

Table 12: Layers Utilization of Optimized IQ. ... 57

Table 13: Utilization of optimized IQ Vs soltani model. ... 58

Table 14: Psi-Lite Number of Bits .. 60

Table 15: Psi-Lite Hardware Results ... 68

viii

LIST OF FIGURES
Figure 1: Cognitive radio procedure. .. 3

Figure 2: Accuracy curves of different techniques. .. 6

Figure 3: Wireless identification process. ... 6

Figure 4: Modulation schemes. .. 12

Figure 5: O’Shea’s Sequential Model. ... 13

Figure 6: Cognitive processing chain. ... 15

Figure 7: Ψ Model block diagram. .. 16

Figure 8: F1-Score performance comparison. .. 19

Figure 9: Model Size Comparison. .. 20

Figure 10: Accuracy comparison for Modulation Recognition. .. 21

Figure 11: PSI WITH SNR 6DB. ... 22

Figure 12: IQ WITH SNR 6DB. .. 22

Figure 13: AMP/PHASE WITH SNR 6DB. ... 22

Figure14: FREQUENCY WITH SNR6DB. ... 22

Figure 15: Proposed IQ Model Architecture. .. 23

Figure 16: Accuracy of Proposed Model. .. 25

Figure 17: Accuracy of Kulin’s Model. ... 25

Figure 18: Confusion Matrix of Proposed IQ Model. .. 28

Figure 19: Confusion Matrix of Kulin’s IQ Model. .. 28

Figure 20: Confusion Matrix of Kulin’s Amp / Phase Model. .. 28

Figure 21: Frequency channel classes of example CNN in the 2.4GHz-ISM-Band [3]. 29

Figure 22: WII Dataset Representation. ... 30

Figure 23: Accuracy comparison for Wireless Interference Identification. 32

Figure 24: Multi Path CNN Model (Psi-Lite), Block size proportional with its operations. 34

Figure 25: Psi-Lite Accuracy. ... 37

Figure 26: Random Input Data. ... 40

Figure 27: Normalized Input Data. .. 40

Figure 28: Model structure. .. 40

Figure 29: Model Weights. The first tensor is Conv1, second Conv2, and the last is Dense. 41

Figure 30: Conv1 Output. .. 41

Figure 31: conv1 output in range [-1, 1] and New weights. ... 42

Figure 32: Weights after Normalization. .. 42

Figure 33: Weight after multiplying by (25-1). ... 43

Figure 34: Conv1 Output in fixed-point operation. .. 43

Figure 35: Dividing Conv1 fixed-point output with 31.. 43

Figure 36: arctan function with small data range. .. 44

Figure 37: arctan function with big data range. ... 45

Figure 38: arctan function with Symbol data. .. 45

Figure 39: Multi-Branches with Multi-Layers. .. 46

file:///F:/gp_thesis/thesis/Thesis.docx%23_Toc48461157
file:///F:/gp_thesis/thesis/Thesis.docx%23_Toc48461158

ix

Figure 40: convolution operation implementation. ... 48

Figure 41: Dense operation implementation. .. 49

Figure 42: Activation functions. .. 50

Figure 43: RELU operation. ... 51

Figure 44: Softmax operation. .. 52

Figure 45: Softmax Implementation. .. 52

Figure 46: Convolution Layer 1 block.. 54

Figure 47: Convolution Layer 2 block.. 54

Figure 48: Dense Layer 1 block. .. 54

Figure 49: Dense Layer 2 block. .. 54

Figure 50: Estimated error. ... 55

Figure 51: classification Accuracy on FPGA VS GPU. .. 56

Figure 52: Confusion matrix on FPGA VS GPU. ... 56

Figure 53: Optimized IQ Power. .. 59

Figure 54: Soltani model Power. ... 59

Figure 55: bladeRF characteristics. ... 61

Figure 56: IQ Convolution branch operations. ... 62

Figure 57: Amplitude Convolution branch operations. .. 62

Figure 58: Square root Difference between Software and Hardware. .. 63

Figure 59: Max-Pool branch operations. .. 64

Figure 60: Shared Convolution Layer operations. .. 65

Figure 61: Dense Layer Operations. ... 65

Figure 62: Final Output Comparison. .. 66

Figure 63: Multi-Pumping Solution [14]. .. 67

Figure 64: Psi-Lite Synthesis. ... 68

file:///F:/gp_thesis/thesis/Thesis.docx%23_Toc48461171
file:///F:/gp_thesis/thesis/Thesis.docx%23_Toc48461181
file:///F:/gp_thesis/thesis/Thesis.docx%23_Toc48461183
file:///F:/gp_thesis/thesis/Thesis.docx%23_Toc48461184

x

LIST OF ABBREVIATIONS

A Amplitude

AM-SSB Amplitude Modulation Single Side Band

AM-DSB Amplitude Modulation Double Side Band

BPSK Binary Phase Shift Keying

BFSK Binary Frequency Shift Keying

CPFSK Continuous Phase Frequency Shift Keying

CNN Convolutional Neural Network

CR Cognitive Radio

DL Deep Learning

DSA Dynamic Spectrum Access

F Frequency

FPGA Field Programmable Gate Array

GSM Global System for Mobile Communication

GMSK Gaussian Minimum Shift keying

IEEE Institute of Electrical and Electronics Engineers

IOT Internet of Things

IQ In-Phase & Quadrature

ISM Industrial Scientific Medical

LUT Look Up Table

PAM Pulse Amplitude Modulation

P Precision

QAM Quadrature Amplitude Modulation

R Recall

ReLU Rectified Linear Unit

SNR Signal to Noise Ratio

WBFM Wide Band Frequency Modulation

WII Wireless Interference Identification

1

CHAPTER ONE: INTRODUCTION

1.1 Problem statement

As a starting point, we need first to state the issue we have been dealing with and what

really lead us to start doing this project. As a definition, the radio spectrum is considered as a

subset of electromagnetic spectrum with waves known as radio waves, these waves are lying

starting from 3 kHz reaching up to 300 GHZ, where the spectrum is portioned into ranges with

different frequencies and limits of bandwidths. There are very low, low, medium, high, very

high, ultra-high, super high and extremely high range of frequencies. As the frequency is

increased, the range of the Bandwidth is increased as well. All applications added to the typical

services we use; all of the radio-communication services and all of the cellular networks are

having different parts of radio spectrum bands by a process defined as frequency allocation.

Frequency allocation is done by setting out what radio services can use which frequency band

out of the whole spectrum and under what conditions; if the band is licensed or not. All of

these terms are applied on the national frequency allocation table. The spectrum allocation of

TV, E-GSM, GSM-1800, 3G (UMTS) and Wi-Fi is inside the partition of Ultra-high frequency

starting from 880-915 MHZ heading to 5.725-5.875 GHZ.

As an example, let’s talk about the cellular networks; the generations we have, 5G

spectrum, which is also GSMA, is allocated a range of radio frequencies in the super high

frequency partition, referring to the radio frequencies from the user to its serving base station

carrying data in a bi-direction. It’s allocated at super high frequency. Hence, it needs very wide

bandwidth of 1GHZ to achieve higher bit rate compared to the other technologies and the

previous generations. Some of the applications that their frequencies are allocated;

broadcasting, Air band, Marine band, Citizens’ band and personal radio services, Industrial,

scientific, medical, Land mobile bands, Radio control, radar and many other unlimited

applications.

Another important example is IoT (Internet of things). IoT, as a scientific definition, is a

network of internet connected objects able to collect and exchange data. As we can say that

you have “objects” around you surrounded by data which it senses and collect in order to send

it through the internet. IoT serves a huge number of devices and application upon which

definition. It’s a matter of fact that the number of IoT products have surpassed a huge number

of humans on planet. By 2021, there may be around 20 billion IoT smart devices up and running

with an increase in the demand of 5G network. IoT devices are basically which have the

possibility to connect through the internet and are able to interact with the other surrounding

devices over the internet with a remote access to users so that they can manage the device as

2

per they need. A few examples for such smart devices are; top smart devices in market, smart

mobiles, smart refrigerator, smart watches, smart door lock at home or office, medical sensors,

fitness trackers, smart security system, smart fire alarm, smart bicycle and many other

uncountable IoT devices.

All of the technologies and applications mentioned above need to have their own

frequency band in a way so that the spectrum is manageable, to ensure the fact of frequency

assignment to all of the services, which leads us to our problem. Consequently, this leads the

spectrum to be way crowded as it has never been before and difficult to be accessed. It will

require in the future for the spectrum to be extended so that it can take all of these allocations

due to the increment of the upcoming technology, applications and services we have in our

daily life that are used on certain band in the spectrum. The spectrum extension is not that easy

because of the several limitations we have on different bands. In addition to that, the spectrum

utilization is not the same for all of the band, some partitions in the band are over-utilized and

some bands are under-utilized. This is determined depending on the licensed and unlicensed

bands. All of which will guide the subject to a big problem; spectrum scarcity.

The question is; is the spectrum resource scarce? Yes. The main objective for now is to

manage its scarcity. The long time needed to make a final decision, the diversity of the working

parties, the huge amount of applications and the upcoming technology, the growing number of

the participants seem to encourage the idea of that finite resources needed to be shared

among more users so that it can be manageable. However, the user must be informed the

extraordinary growth of radio systems by being more diverse and powerful, for the whole team

benefit. Who could imagine; 50 years ago, the “mobile phone revolution”, the world wide

satellite services and the broadcasting of thousands of TV programs, everywhere? As a matter

of fact, at that time already, the spectrum was thought to be busy in the future! Therefore, Yes.

The spectrum scarcity is for real.

In order to assist the spectrum load and usage, there was an activity going by

telecommunication experts to evaluate and diagnose to find out that radio services during

combination with permanent progress of technology improve the efficiency of the resources

year after year. As a claiming thought, about no limitations on the radio services neither on

quantity nor quality, but this improvement upon a tighter optimization works. So, what is need

to be done is to figure out how the spectrum can be shared, how we can contain the spectrum

scarcity and under what terms and conditions this can be happening. All of these wondering

prompted to have a whole new level in which the “Cognitive radio” has been approved.

Cognitive radio (CR) is an adaptive, intelligent radio and network technology that can

automatically detect available channels in a wireless spectrum to allocate frequencies to

whoever needs and change the transmission parameters enabling more communications to run

simultaneously and improve the operating behavior as well. In other words, Cognitive Radio

(CR) is a smart way to deal with the spectrum and services that needs an available channel at

3

specified time slots without sensing the band to be busy or interference with another. Cognitive

Radio (CR) has shown a good impact on the spectrum utilization and its resources that require

sensing, monitoring and understanding by its awareness and utilizing the under-utilized

partitions in the spectrum bands in order to improve a better performance.

1.2 Cognitive radio as a proposed solution

As per the fact that the spectrum utilization lately has been worse, and the crowded

spectrum that we all have witnessed as well as the solution which gave us a better utilization

with a good performance and desired efficiency, Cognitive radio (CR). Cognitive Radio performs

various tasks as spectrum sensing and dynamic spectrum access (DSA) for more awareness

about the situation. In order to support CR’s tasks, Machine learning has showed up to provide

means and methods so that one can learn from and be adapted to the dynamic spectrum

access (DSA). And as a particular subject to be specific, deep learning can process “uncooked”

spectrum data and operate on the representations by capturing and analyzing high dimensional

and dynamic spectrum data that conventional feature-based machine learning algorithms fail

to clutch. One of its properties is considered as Convolutional Neural Network (CNN) algorithm

for modulation recognition. CNNs have recently witnessed a great success in image

classification driven by an improvement in algorithms, large public repositories and high-

performed computing systems such as GPUs. Deep neural network has been used to

automatically learn the features from the data itself, and develop a data-driven detection

approach. Inspired by the powerful capability of Convolutional Neural Network (CNN) in

extracting features of matrix-shaped data. As per the fact that the existing spectrum sensing

methods make decisions based on using model-driven test statistics that has probability ratio of

failure or missed error, this was replaced by deep-learning detection (CNN) mechanism. Figure

1 shows the cognitive radio cycle.

FIGURE 1: COGNITIVE RADIO PROCEDURE.

4

Accordingly, we can say that Modulation Recognition and Wireless Interference

Identification are related to cognitive radio. By using CNN algorithm either for a multipath

algorithm, including I/Q, Amplitude/Phase and frequency, or only one path which is I/Q CNN

model (This will be discussed in details later) seeking for better accuracy, better performance

and satisfying results compared to other related works as in O’shea [1] and soltani models [2].

Regarding the data sets [1],[3], Modulation Recognition datasets consists of 11

modulation schemes/classes; 8 Digital and 3 analog modulation, all are widely used in wireless

communication systems all around the world. This is classified as; BPSK, QPSK, 8PSK, 16QAM,

64QAM, BFSK, CPFSK, PAM4 for digital modulations and WB-FM, AM-SSB, AM-DSB for analog

modulations. Data is modulated at a rate of roughly 8 samples per symbol with a normalized

average of transmitted power of zero db. 70% of data is used for training and 30% of data is

used for test. Wireless Interference Identification dataset consists of 15 modulation classes

with ten, two and three frequency channels of IEEE 802.15.1, IEEE 802.15.4 and IEEE 802.11 b/g

complaint signals.

Back to the cognitive radio, it’s a task of a human mind. It acts with several steps to be

done. First, sensing the radio environment. Second, analysis the data. Third, determining the

best strategy to make the best decision. Finally, adaptation for the new transition parameters

to make the spectrum sharing happen. We are focused on the middle part starting from sensing

the environment then sweeping the spectrum to make the spectrum share.

1.3 Description of Terms

In order to achieve the solution, in other words the CR, we have 2 methods to make it

happen. First, Modulation recognition. As a definition, we determine the Modulation Scheme of

an unknown signal coming to the receiver antenna which will help in so many applications and

diverse function. Second, Wireless Interference. As a definition, we identify the source of

interference and its band.

1.3.1 Modulation recognition

As we said, it defines the modulation scheme, this may be useful in diverse functions.

One of them is that we can determine the standards of the upcoming signal to the receiver.

Since that each generation in the standards has its own modulation scheme (e.g. GSM’s

modulation scheme is GMSK, DAMPS’s modulation scheme is DQPSK, etc...), this will make us

define the standards of the signal easily. Another advantage we can be helped with in the

Demodulation block itself in its construction and when we need to make the demodulation step

5

at the receiver. Concerning the CR, we can say that we detect any user unlicensed in the

licensed band and that’s the relation among the monitoring for the spectrum resource. In

addition, we cannot forget that modulation recognition leads us to not collide and less

interference in band since that each user is assigned by its own part of the band. Therefore,

neither collision nor jamming. Another functions can be done by modulation recognition and

that what makes it very important.

1.3.2 Wireless Interference

Since we are talking about wireless network and wireless medium, Interference remains

the most limiting factor of wireless network capacity. It has its ways to be calculated and

measured and also to be recovered from. We managed to make an identification for the wireless

interference and that for Wi-Fi, Zigbee, and Bluetooth in the ISM band since it’s a free band to

be accessed freely (Unlicensed). Functions for the wireless interference detection is either

detecting the interferers to reduce the interference effect on other users and that’s concerning

monitoring the spectrum resources, or methods to detect the interference such as disc on/off

method which is all about the common range and the distance between the transmitter and the

receiver compared to the common range or exact methods by comparing the SINR of the signal

to a certain threshold which gives us an exact value for the interference.

What we have done is that we used the CNN algorithm for both modulation recognition

and wireless interference done in software and hardware level as will be discussed in the

upcoming chapters all in details.

1.4 State of the Art

Before we talk about previous work in this field, we need to ask an important question.

Why did we choose to implement Modulation recognition model and wireless Interference by

using CNN (Convolutional Neural Network)? Why specifically CNN?

The answer to that question will lead us to the advantage of CNN over any other

techniques (e.g. KNN, SVM, DNN, etc.…) CNN doesn’t need any engineering knowledge or years

of research. It doesn’t need an expert or anything unlike any other old techniques. In addition to

its very high accuracy compared to others. It can be used in many things at a time for example

modulation recognition and wireless interference both. The graph below clarifies the

classification accuracy for different training examples. The solid line as we can see is the highest

of all which represents the CNN with different dropouts while the dotted line represents other

techniques with low accuracy.

Briefly, we can say that CNN accuracy is the best compared to all of other’s accuracy as

shown in Figure 2[1].

6

FIGURE 2: ACCURACY CURVES OF DIFFERENT TECHNIQUES.

Back to the previous work, for the RF signal classification, M. Kulin’s paper [4] has made

a processing pipeline for end-to-end learning from spectrum data. First step is data acquisition

concerning getting the data in phase and quadrature phase at the receiver antenna to be put in

data vectors as an input for the next step. The second two steps are pre-processing and

classification, those what will be highlighted in our project as we did software simulation and

hardware implementation for those two steps. For pre-processing, it takes care of analysis and

manipulation for data vector from the previous step to be pipelined as an input for signal

processing tools that analyze, process, transform data into simple data representation such as

frequency, amplitude, phase and more features to be extracted by Machine learning. For

classification, its concerned about the spectrum access scheme, modulation format, wireless

technology, type of interfering, detecting available spectrum band and so on.

The last step is decision step, the predictions calculated in ML model will be an input for

the decision module. To be the output in the last step for the pipelining process. The process

illustrated above is summarized in Figure 3 [4].

FIGURE 3: WIRELESS IDENTIFICATION PROCESS.

7

CHAPTER TWO: FUNDAMENTAL CONCEPTS

In order to properly delve into the proposed designs and work, we should first review

some fundamental theory behind Convolutional Neural Networks. This Chapter will review the

mathematical properties of.

This chapter depends on kulin et al paper [4].

2.1 Machine learning

Machine learning (ML) refers to a set of algorithms that learn a statistical model from

historical data. The obtained model is data-driven rather than explicitly derived using domain

knowledge.

The goal of ML is to find a mathematical function, f that defines the relation between a

set of inputs X, and a set of outputs Y, i.e.

𝑓 ∶ X → Y (1)

The inputs,𝑋 ∈ 𝑅𝑚∗𝑥, present a number of distinct data points, samples or observations

denoted as

𝑋 =

[

𝑋1

𝑇

𝑋2
𝑇

⋮
𝑋𝑚

𝑇]

 (2)

Where m is the sample size, while xi 2 Rn is a vector of n measurements or features for

the ith observation called a feature vector,

𝑥𝑖 = [𝑥𝑖1 𝑥𝑖2 ⋯ 𝑥𝑖𝑛]𝑇 (3)

The outputs,𝑦 ∈ 𝑅𝑚 , are all the outcomes, labels or target values corresponding to the

m inputs xi, denoted by

𝑦𝑖 = [𝑦1 𝑦2 ⋯ 𝑦𝑚]𝑇 (4)

Then the observed data consists of m input-output pairs, called the training data or

training set, S,

𝑠 = {(𝑥1, 𝑦1), (𝑥2, 𝑦2), … . , (𝑥2, 𝑦2)} (5)

Each pair (𝑥𝑖, 𝑦𝑖) is called a training example because it is used to train or teach the

learning algorithm how to obtain f. In machine learning, f is called the predictor whose task is to

8

predict the outcome yi based on the input values of xi. There are two classical data models

depending on the prediction type, described by:

𝑓(𝑥) = {
𝑟𝑒𝑔𝑟𝑒𝑠𝑠𝑜𝑟, 𝑖𝑓 𝑦 ∈ 𝑅

𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑟, 𝑖𝑓 𝑦 ∈ {0,1}
 (6)

In short, when the output variable y is continuous or quantitative, the learning problem is

a regression problem. But, if y predicts a discrete or categorical value, it is a classification

problem.

Given a training set, S, the goal of a machine learning algorithm is to learn the

mathematical model for f. To make sense of this task, we assume there exists a fixed but

unknown distribution,𝑝(𝑥, 𝑦) = 𝑝𝑥(𝑥)𝑝(𝑦|𝑥) according to which the data sample is identically

and independently distributed (i.i.d).

Here, 𝑝𝑥(𝑥)is the marginal distribution that models the uncertainty in the sampling of

the input points, while𝑝(𝑦|𝑥), and is the conditional distribution that describes the statistical

relation between the input and output.

Thus, f is some fixed but unknown function that defines the relation between X and Y. The

depicted ML algorithm determines the functional form or shape. The unknown function f is

estimated by applying the selected learning method to the training data, S, so that f is a good

estimator for new unseen data, i.e.

𝑦 ≈ 𝑦̂ = 𝑓(𝑥𝑛𝑒𝑤) (7)

The predictor f is parametrized by a vector𝜃 ∈ 𝑅𝑛, and describes a parametric model. In

this setup, the problem of estimating f reduces down to one of estimating the parameters

𝜃𝑖 = [𝜃1 𝜃2 ⋯ 𝜃𝑛]𝑇 . In most practical applications, the observed data are corrupted

versions of the expected values that would be obtained under ideal circumstances. These

unavoidable corruptions, typically termed noise, prevent the extraction of true parameters from

the observations. With this in regard, the generic data model may be expressed as

𝑦 = 𝑓(𝑥) + 𝜖 (8)

Where 𝑓(𝑥) is the model and 𝜖 are additive measurement errors and other

discrepancies. The goal of ML is to find the input-output relation that will ``best'' match the noisy

observations.

9

Hence, the vector may be estimated by solving a (convex) optimization problem. First, a

loss or cost function

𝑙(𝑥, 𝑦, 𝜃) Is set, which is a (point-wise) measure of the error between the observed data

point 𝑦𝑖 and the model prediction of 𝑓(𝑥𝑖) for each value of𝜃. However, 𝜃 is estimated on the

whole training data, S, not just one example. For this task, the average loss over all training

examples called training loss, J, is calculated:

𝑗(𝜃) ≡ 𝑗(𝑠, 𝜃) =
1

𝑚
∑ 𝑙(𝑥, 𝑦, 𝜃) (9)

(𝑥𝑖,𝑦𝑖)∈𝑠

Where S indicates that the error is calculated on the instances from the training set and

𝑖 = 1, … . ,𝑚. The vector 𝜃 that minimizes the training loss J(𝜃), that is

𝑎𝑟𝑔𝑚𝑖𝑛

𝜃∈𝑅𝑛 𝐽(𝜃) (10)

Will give the desired model. Once the model is estimated, for any given input x, the

prediction for y can be made with 𝑦̂ = 𝜃𝑇𝑥.

In engineering parlance, the process of estimating the parameters of a model that is a

mapping between input and output observations is called system identification. System

Identification or ML classification techniques are well suited for wireless signal identification

problems.

2.2 Deep learning

The prediction accuracy of ML models heavily depends on the choice of the data

representation or features used for training. For that reason, much effort in designing ML models

goes into the composition of pre-processing and data transformation chains that result in a

representation of the data that can support effective ML predictions. Informally, this is referred

to as feature engineering. Feature engineering is the process of extracting, combining and

manipulating features by taking advantage of human ingenuity and prior expert knowledge to

arrive at more representative ones, that is

∅(𝑑) ∶ d → x (11)

I.e. the feature extractor - transforms the data vector 𝑑 ∈ 𝑅𝑑 into a new form, 𝑥 ∈ 𝑅𝑛,

more suitable for making predictions. The importance of feature engineering highlights the

10

bottleneck of machine learning algorithms: their inability to automatically extract the

discriminative information from data.

Feature learning is a branch of machine learning that moves the concept of learning from

``learning the model'' to ``learning the features''. One popular feature learning method is deep

learning. In particular, this paper focuses on convolutional neural networks (CNN).

Convolutional neural networks perform feature learning via non-linear transformations

implemented as a series of nested layers. The input data is a multidimensional data array, called

tensor, which is presented at the visible layer. This is typically a grid-like topological structure,

e.g. time-series data, which can be seen as a 1D grid taking samples at regular time intervals,

pixels in images with a 2D layout, a 3D structure of videos, etc. Then a series of hidden layers

extract several abstract features. Those layers are ``hidden'' because their values are not given.

Instead, the deep learning model must determine which data representations are useful for

explaining the relationships in the observed data. Each layer consists of several kernels that

perform a convolution over the input; therefore, they are also referred to as convolutional layers.

Kernels are feature detectors, which convolve over the input and produce a transformed version

of the data at the output. Those are banks of finite impulse response filters as seen in signal

processing, just learned on a hierarchy of layers. The filters are usually multidimensional arrays

of parameters that are learnt by the learning algorithm through a training process called

backpropagation. For instance, given a two-dimensional input x, a two-dimensional kernel h

computes the 2D convolution by

(𝑥 ∗ ℎ)𝑖𝑗 = 𝑥[𝑖, 𝑗] ∗ ℎ[𝑖, 𝑗] = ∑∑𝑥[𝑛,𝑚]. ℎ[𝑖 − 𝑛][𝑗 − 𝑚] (12)

𝑚𝑛

I.e. the dot product between their weights and a small region they are connected to in

the input. After the convolution, a bias term is added and a pointwise nonlinearity g is applied,

forming a feature map at the filter output. If we denote the l-th feature map at a given

convolutional layer as ℎ𝑙 , whose filters are determined by the coefficients or weights 𝑤𝑙 , the

input x and the bias 𝑏𝑙 , then the feature map hl is obtained as follows

ℎ𝑙
𝑖𝑗 = 𝑔((𝑤𝑙 ∗ 𝑥)𝑖𝑗 + 𝑏𝑖) (13)

Where * is the 2D convolution while g (.) is the activation function. Typically, the rectifier

activation function is used for CNNs, which is defined by g(x) = max (0; x). Kernels using the

rectifier are called RELU (Rectified Linear Unit) and have shown to greatly accelerate the

convergence during the training process compared to other activation functions. Others common

activation functions are the hyperbolic tangent function.

11

𝑡𝑎𝑛ℎ, 𝑔(𝑥) =
2

1+𝑒−2𝑥 − 11, and the sigmoid activation 𝑔(𝑥) =
1

1+𝑒−𝑥 In order to form a

richer representation of the input signal, commonly, multiple filters are stacked so that each

hidden layer consists of multiple feature maps,

ℎ(𝑙){𝑙 = 0,… . . , 𝐿} (14)

The number of filters per layer is a tunable parameter or hyper-parameter. Other tunable

parameters are the filter size, the number of layers, etc. The selection of values for hyper-

parameters may be quite difficult, and finding it commonly is much an art as it is science. An

optimal choice may only be feasible by trial and error. The filter sizes are selected according to

the input data size so as to have the right level of granularity that can create abstractions at the

proper scale. For instance, for a 2D square matrix input, such as spectrograms, common choices

are 3×3, 5×5, 9×9, etc. For a wide matrix, such as a real-valued representation of the complex I

and Q samples of the wireless signal in𝑅2∗𝑁, suitable filter sizes may be 1 ×3, 2 ×3, 2 × 5, etc.

The penultimate layer in a CNN consists of neurons that are fully-connected with all feature maps

in the preceding layer. Therefore, these layers are called fully-connected or dense layers. The

very last layer is a SoftMax classifier, which computes the posterior probability of each class label

over K classes as

𝑦𝑖̂ =
𝑒𝑧𝑖

∑ 𝑒𝑧𝑖𝑘
𝑗=1

 (15)

 I=1, 2….K that is, the scores 𝑧𝑖 computed at the output layer, also called logits, are

translated into probabilities. A loss function, l, is calculated on the last fully-connected layer that

measures the difference between the estimated probabilities,𝑦𝑖̂ and the one-hot encoding of the

true class labels, 𝑦𝑖. The CNN parameters 𝜃, are obtained by minimizing the loss function on the

training set{𝑥𝑖 , 𝑦𝑖}𝜖𝑠 of size m,

𝑚𝑖𝑛

𝜃
∑{𝑦𝑖̂, 𝑦𝑖}

𝑖𝜖𝑠

 (16)

Where L(.) is typically the mean squared error the categorical cross-entropy

For which a minus sign is often added in front to get the negative log-likelihood.

To control over-fitting, typically regularization is used in combination with dropout, which is a

new extremely effective technique that ``drops out'' a random set of activations in a layer. Each

unit is retained with a fixed probability p, typically chosen using a validation set, or set to 0:5

which has shown to be close to optimal for a wide range of applications.

12

CHAPTER THREE: SOFTWARE APPROCH

In this chapter we will discuss the software approach we took to solve the problem encountered

in modulation recognition by proposing PSI model and Optimized IQ model in section 1 of this chapter,

and problem encountered in wireless interference identification by proposing PSI and PSI Lite models in

section 2 of this chapter.

3.1 Modulation recognition

Modulation recognition in the cognitive radio is the method that allows the detection of

the modulation scheme used without previous knowledge of the sent data.

3.1.1 Dataset

The data set used in the literature and in our work on the modulation recognition is the

RadioML 2016.10a Modulation [1] which includes 11 modulation schemes and consists of

220,000 In-phase and quadrature (I/Q) represented data vectors divided to 20 different SNRs

limited between [-20 : 18] dB and each symbol consists of 256 sample (2 x 128).

Figure 4 shows the 11 modulation schemes included in the data set.

FIGURE 4: MODULATION SCHEMES.

13

3.1.2 Literature in modulation recognition using CNN

 The first model used in modulation recognition is the model proposed by Oshea [1],

this model is a sequential model consists of 2 convolutional layers and 2 dense layers, the last

one of them classifies between the 11 different modulation schemes in the data set.

Figure 5 shows Oshea’s model block diagram.

FIGURE 5: O’SHEA’S SEQUENTIAL MODEL.

Table 1 shows the detailed structure of Oshea’s model illustrating each layer input size,

parameters like number of filters, filter size and number of neurons it also mentions the

activation functions of each layer.

14

TABLE 1: OSHEA’S MODEL STRUCTURE

Layer Type Input Size Parameters Activation Function

Convolution Layer 2 x 128

256 filter

filter size 1 x 3

Dropout=0.6

ReLU

Convolution Layer 256 x 2 x128

80 filter

filter size 2 x 3

dropout=0.6

ReLU

Fully Connected

Layer
10240 x 1

256 neurons

dropout=0.6
ReLU

Fully Connected

Layer
256 x 1 11 neurons SoftMax

Then Kulin et al reproduced Oshea’s model and made signal processing on the data set

RadioML 2016.10a Modulation which In-phase and Quadrature represented, once to convert

it to Amplitude and Phase representation (𝐴/𝜑) and another to convert it to frequency

modulated representation (𝐹).

The data set is represented as 2 vectors 𝑥𝑖 carries the in-phase samples and 𝑥𝑞 holds the

quadrature samples.

 To transform to Amplitude and Phase representation (𝐴/𝜑) these equations is used:

 Amplitude samples (𝐴) = (𝑥𝑖
2 + 𝑥𝑞

2) 1/2 (17)

 Phase samples (𝜑) = 𝑎𝑟𝑐𝑡𝑎𝑛 (
𝑥𝑞

𝑥𝑖
) (18)

To transform to frequency representation Kulin [4] used Fast Fourier transform(𝐹𝐹𝑇).

Kulin [4] then trained and tested the model with each data representation to study the

effect of the representation on the model accuracy.

Figure 6 [4] shows the cognitive processing diagram showing RF module and modulation of

the signal from air. The signal is then pass through an analog to digital converter then the

signal is processed to the other two representation mentioned above.

15

FIGURE 6: COGNITIVE PROCESSING CHAIN.

3.1.3 Multi path model

3.1.3.1 Multi path model idea and advantages

The Multi path model is inspired from the fact that the more ways the data is represented

in, the higher chance the model correctly classify it, as some representations are more

suitable to some kind of data which will easily be detected by the model if it is in this

representation.

The multi path model extracts more features from the data set as it processes three

different data representations at the same time allowing single branch optimization, also has

a huge size reduction.

This multi path model proposed by us which we named PSI (Ψ) model, as it is shaped like

the Greek letter, is based on the three different data representation of the data set RadioML

2016.10a Modulation which are the three-representation used by Kulin [4] The model is

formed of three unique branches each branch is optimized separately for each one of the

three different representations.

PSI model is the first multi path model in modulation recognition based on convolutional

neural network.

16

3.1.3.2 PSI (Ψ) model Structure

The model is formed of three unique branches each branch is optimized separately for

each one of the three different representations as shown in Figure 7.

The first branch is optimized for the In-phase and quadrature representation, the second

branch for the Amplitude and phase representation and the third branch is for the Frequency

representation. All of the three branches are optimized in two-way operation. first each of

the three paths is separately optimized then an overall optimization is done to the whole

model.

FIGURE 7: Ψ MODEL BLOCK DIAGRAM.

17

As listed in Table 2 the model consisted of three paths with different layers in each path

The first path/branch is the IQ path which consists of 2 convolutional layers, the first consists

of 8 filters each of size (1x10) and the second consists of 64 filters each of size (2x8).

The second path is the Amplitude-phase path which consists of the same number and

type of the IQ layers as it consists of 2 convolutional layers with the only change in the number

of filters and the size of them the first consists of 64 filters each of size (2x3) and the second

comes with 5 filters each of size (1x3).

The third path is the frequency path which has a single convolutional layer which consists

of 64 filters each filter of size (2x5).

The results of the three paths are gathered together then pass through a shared

convolutional layer consists of 8 filters each filter of size (1x9) which is cross optimized

through the three paths for the best results of the different paths. This shared convolutional

layer increased the overall model accuracy as it is considered as a model to the new set of

data generated from a different representation results so the model can learn more features

from it.

The results from the shared convolutional layer is then passed through 2 dense layers.

the first consists of 16 neurons and the second consists of 11 neurons to classify the data into

the 11 different modulation types.

The model structure listed in table 2 is optimized for modulation recognition. Later in this

thesis an illustration to a modification, done to PSI model to improve its wireless interference

performance, will be discussed in the wireless interference performance subsection.

18

TABLE 2: Ψ MODEL STRUCTURE

Branch Layer type Input size Structure

IQ

Convolution 1x2x128 8 filters, filter size 1x10

Convolution 8x2x119 64 filters, filter size 2x8

Amp/Phase

Convolution 1x2x128 64 filters, filter size 2x3

Convolution 64x1x1126 5 filters, filter size 1x3

Frequency Convolution 3x2x128 64 filters, filter size 2x5

Shared Convolution 133x4x128 8 filters, filter size 1x9

Layers

Fully connected 1x960 16 neurons

Fully connected 16x1 11 neurons

3.1.3.3 PSI (Ψ) model Performance

The model performance is measured on several bases which are the size of the model,

the accuracy of the classification done by the model for a range of SNR form [-20: 18] dB and

the speed of the model. The number of multiplications-additions will be used to measure and

compare the speed of the model which is a good indication of model’s speed as the

multiplications-additions are the most time-consuming operations.

To clearly show the model performance, the model is compared to our reimplementation

of the model proposed by Oshea [1] to compare between sequential model and multi path

model. We entered the three data representation as done by Kulin [4].

In the reproduced Kulin model we got nearly the same performance in case of IQ, lower

in case of Amp/Phase, and higher in case of Frequency relative to results announced by Kulin.

The results of the reimplementation of the sequential model is compared to our proposed

multi path model (PSI Model) to show that the multipath model is more efficient in all the

performance bases discussed above than the single branch implementation (sequential

model).

Table 3 shows the performance metrics comparison between the PSI model and Oshea’s

model with different representations which shows that the multi path model (PSI model)

achieves higher performance in all SNRs levels than the sequential model (Oshea’s model).

19

TABLE 3: PERFORMANCE METRICS COMPARISON FOR MODULATION RECOGNITION

Model parameters Multi-add

(millions)

SNR P-

average

R-

average

F1-score

average

PSI

36,888

2.69

High 0.85 0.84 0.84

Medium 0.82 0.81 0.81

Low 0.39 0.40 0.36

IQ

2,667,615

20.59

High 0.79 0.78 0.77

Medium 0.78 0.76 0.74

Low 0.38 0.35 0.33

Amp/Phase

2,667,615

20.59

High 0.77 0.73 0.71

Medium 0.65 0.63 0.61

Low 0.20 0.14 0.10

Frequency

2,667,615

20.59

High 0.72 0.70 0.69

Medium 0.70 0.69 0.67

Low 0.37 0.34 0.31

Higher performance difference is shown in the medium and high SNRs as shown in

Figure 8 which shows the difference between accuracy of the F1-Score between PSI model

and Oshea’s model with different representations in high SNR.

FIGURE 8: F1-SCORE PERFORMANCE COMPARISON.

20

Table 3 also show a tremendous reduction in the model size of about x72 as the PSI model

is about 36,888 parameters compared to Oshea’s model 2,667,615 parameters.

Table 3 also shows the tremendous reduction in number of multiplications-additions in PSI

model relative to Oshea’s model as the number of multiplications-additions decreased to

2.69 million compared to 20.59 million in Oshea’s model which lead to higher model speed

compared to Oshea’ model.

Figure 9 clearly show the tremendous reduction of the model size compared to oshea’s

model. This reduction is due to the reduction on the size of the used convolutional layers in

the PSI compared to the used on Oshea’s model as Oshea’s model was meant to be used with

image classification which requires high convolutional layers size.

FIGURE 9: MODEL SIZE COMPARISON.

Figure 10 shows that the multi path model (PSI model) achieves higher accuracy in all

SNRs than the sequential model (Oshea’s model).

As shown in this figure at very low SNRs the accuracy is almost the same for all models as

the signal power is very low relative to noise power so the models couldn’t detect it as the

SNR value increases the PSI models starts to outperforming other models and at high SNRs,

the PSI model has good increase in the accuracy than any other models.

21

FIGURE 10: ACCURACY COMPARISON FOR MODULATION RECOGNITION.

This slightly higher accuracy, performance metrics values, and small size came from when

a certain CNN path from the three paths gives low accuracy estimation for modulation type

due to similarity in a certain data representation, the two other paths give higher estimation

due to the non-similarity in their domain, so overall the model gives correct prediction. So,

the model noise immunity had increased and this reduced error, increased accuracy, and

enabled us to reduce number of parameters also. To identify which modulation type PSI

model gets better prediction than O’Shea model and which it gets worse, this subsection is

concluded with comparing between confusion matrix of Psi model and O’Shea model with

different input data representation at SNR value 6dB. Figure 11 shows the confusion matrix

of PSI model which shows that PSI gets worst accuracy in QAM16 and QAM64 relative to

Amplitude and Phase shown in Figure 13 domain but better than IQ and frequency

representations, PSI also misclassify AM-DSB as WBFM which is not at any other domain, but

it eliminates misclassification of IQ ,Amplitude and phase and frequency, shown in figure 12

, 13 and 14 , for QPSK as 8-PSK, it also has less misclassification for WBFM as 8-PSK exists also

in all data representation, also it can be noticed that it eliminates misclassification of 8-PSK

as QAM64 that exists in all data representation with different degrees. Finally, we notice that

if the application has expectation at medium SNR that QAM16 and QAM64 and AM-DSB will

be dominant, Then Amplitude and phase domain will fit your problem better than PSI,

Otherwise PSI will be better for your application.

22

FIGURE 11: PSI WITH SNR 6DB. FIGURE 12: IQ WITH SNR 6DB.

FIGURE 13: AMP/PHASE WITH SNR 6DB. FIGURE14: FREQUENCY WITH SNR6DB.

23

3.1.4 Optimized IQ model
3.1.4.1 Model Introduction

This model targets modulation recognition problem, Optimized IQ developed from IQ

branch of psi to be implemented on FPGA. The size of the model is an important feature as a low

size model will have relatively low number of calculations which will highly decrease the cost of

the device needed for the implementation. At the same time, it was very important to maintain

accuracy as high as possible, the small size of the model also increased the model classification

speed due to the reduction on the number of calculations. The model consists of 2 convolution

layers and 2 dense layers. The first convolution layer has 45 filters each of 2x8 parameters, the

second layers has 9 filters each of 1x6 parameters, the first dense layer has 32 neuron, and the

second dense layer has 11 neuron for the classification purpose to classify the results to the 11

modulation types. Model architecture is shown in Figure 15.

FIGURE 15: PROPOSED IQ MODEL ARCHITECTURE.

24

3.1.4.2 Training Model

 Model trained on Kaggle website using Keras framework with Batch size 512 and 200

epochs. Biases were turned off to facilitate fixed point operation. Adam optimizer was used with

learning rate 0.001, validation accuracy reached 54.38%.

3.1.4.3 Results

 In this subsection classification accuracy of the proposed model will be discussed in details

but to get better sense of the results we will compare the results with another paper [4]. Kulin’s

paper introduced three data representation techniques for oshea’s model. One works on data

(IQ) without any preprocessing as our proposed model, the second method transfers data to

amplitude / phase representation and last one transfer data to frequency representation.

3.1.4.3.1 ACCURACY CURVES

 Classification accuracy curve over different SNRs of proposed model shown in Figure 16

and the classification accuracy curve of Kulin’s paper for the three representations can be seen

in Figure 17 [4]. We can notice from SNR -20 to -10 dB there is no significant difference between

proposed model and Kulin’s three representations. From SNR -10 to 5 dB IQ representation in

Kulin’s model took the advantage and become the highest accuracy compared with the other

two representations ,when compared with our proposed model we will find they are much alike,

from SNRs after 5 dB amplitude / phase representations gets higher accuracy compared to the

other two representation in Kulin’s model but when compared with proposed model we can find

that the proposed model slightly have higher accuracy peaking at SNR 10 dB with accuracy of

84%. We can conclude now that the proposed model implemented on FPGA succeeded in getting

high accuracy all over different override all three representations proposed in Kulin’s paper.

25

FIGURE 16: ACCURACY OF PROPOSED MODEL.

FIGURE 17: ACCURACY OF KULIN’S MODEL.

26

3.1.4.3.2 PERFORMANCE METRICS

 Numerical results is a more detailed way to compare between the two models. table I

and table II shows precision, recall, and f1 score at high SNR (18dB), medium SNR (0dB) and low

SNR (-8dB) for the proposed IQ model and the three model’s in Kulin’s paper

[4], comparing proposed model implemented on FPGA with IQ model in Kulin’s paper it’s obvious

that at high and medium SNRs the proposed model has much better F1 score compared.

 to Kulin’s paper [4] however in low SNR Kulin’s representation gives better F1 score as

the precision of proposed model in low SNR is very low which affected the F1 score, F1 score of

the amplitude and phase representation become equal compared with the proposed model at

high SNR but in medium and low SNRs the proposed model is much higher, comparing with

frequency model in kulin’s paper.

TABLE 4: PERFORMANCE METRICS OF KULIN’S PAPER

Model SNR Precision Recall F1 Score

Proposed

CNNIQ

High 0.84 0.86 0.82

Medium 0.76 0.77 0.74

Low 0.31 0.33 0.27

CNNIQ

High 0.83 0.82 0.79

Medium 0.75 0.75 0.72

Low 0.36 0.32 0.30

CNNA/Φ

High 0.86 0.84 0.82

Medium 0.70 0.70 0.69

Low 0.33 0.29 0.26

CNNF

High 0.71 0.68 0.67

Medium 0.63 0.60 0.59

Low 0.28 0.25 0.22

27

3.1.4.3.3 CONFUSION MATRIX

Confusion matrix will help to better understand and visualize classification accuracy and

which classes causes wrong predictions. We will compare confusion matrix of the proposed

model with the IQ and Amplitude / Phase representations in Kulin’s paper [4]. Frequency

representation won’t be considered as it’s obvious from previous scores that frequency gives

very bad accuracy and scores so its confusion matrix will be messed up. Comparing proposed

model confusion matrix shown in Figure 18 with IQ model in Kulin’s paper Figure 19 we can see

that miss classification between QPSK and 8PSK in Kulin’s model improved a lot in

proposed model but the both still miss classify WBFM with AM-DSB and QAM16 with QAM64.

comparing proposed model confusion matrix in Figure 18 with Amplitude / Phase

Model in Kulin’s paper in Figure 20 we can find that Amplitude / Phase improved miss

classification in QAM16 with QAM64 but didn’t improve miss classification between QPSK

and 8PSK and a new miss classification showed up between 8PSK and QPSK which gives

advantage to the proposed model compared with Kulin’s models.

3.1.4.3.4 NUMBER OF CALCULATIONS AND MODEL SIZE

Number of calculations performed by model and number of model’s parameters are

considered the biggest advantage of the proposed IQ model, number of operations interpreted

on FPGA as multipliers and adders, number of parameters interpreted as flip flops and LUTS on

FPGA. Table 5 shows how much the parameters and calculations are reduced of

proposed model compared to Kulin’s model [4], parameters almost reduced by x 72 and

number of million multiplications - Additions reduced by x 46 which made the proposed IQ

model very efficient and suitable when implemented on FPGA and if implemented on IC

operating in low power applications such as LUTs and embedded devices.

TABLE 5: PERFORMANCE METRICS OF PROPOSED MODEL ON GPU

Model Parameters Million Mult-Adds

Proposed IQ

Model
36,910 0.443

Kulin’s Model 2,667,615 20.59

28

FIGURE 18: CONFUSION MATRIX OF PROPOSED IQ MODEL.

FIGURE 19: CONFUSION MATRIX OF KULIN’S IQ MODEL. FIGURE 20: CONFUSION MATRIX OF KULIN’S AMP / PHASE MODEL.

29

3.2 Wireless Interference

3.2.1 Introduction

As mentioned in the introduction section, Wireless Interference Identification (WII)

targets classifying signals in the Industrial, Scientific, and Medical (ISM) Band. Schmidt et al.[3]

divided the bandwidth into 15 classes: ten classes for IEEE 802.15.1(Bluetooth), two classes for

IEEE 802.15.4 (ZigBee), and three class for IEEE 802.11 (Wi-Fi). To make the signal within the

desired bandwidth, in WII 10 MHz, he expanded Wi-Fi signal on three different snapshots as Wi-

Fi signal takes bandwidth bigger than desired one as shown Figure 21.

FIGURE 21: FREQUENCY CHANNEL CLASSES OF EXAMPLE CNN IN THE 2.4GHZ-ISM-BAND [3].

To get more intuition about the dataset, we plotted them as shown in Figure 22. Where
y-axis represents Quadrature-Branch and x-axis represents In-Phase-Branch. Each subplot
represents one of the 15 classes in the dataset. Dataset consists from 225,225 Symbols; each
symbol represents one of the 15 classes and consists from 2x128 samples. The 225,225 symbols
are distributed on a 21 distinct Signal-to-Noise (SNR) range from [-20 dB : 20 dB] with step size
of 2 db. Where each SNR step has 715 symbols. So, the final shape of the used dataset in WII is
(15, 21, 715, 2, 128)1.

1 Multiplying 15x21x715 will give the 225,225 which represents the total number of symbols, whereas 2x128 is

data samples

30

FIGURE 22: WII DATASET REPRESENTATION.

31

3.2.2 Literature of wireless interference identification

The first work in the wireless interference is done by Kulin et al.[4] using the same model

produced by Oshea et al. [1] for modulation recognition using also the same data set used

mentioned in this section.

3.2.3 PSI model for wireless interference

3.2.3.1 Introduction

The same PSI model used in modulation recognition is used for wireless interference

identification except when we made optimization we could remove shared fully connected layer

which was 16 neurons in modulation recognition and instead of 1x10 and 2x8 which was in IQ

branch, we change it to 2x10 and 1x8 which gives faster response as the dimension that enter

second convolutional layer became 1x8 became 1x119 instead of 2x119 which lead to smaller

number of multiplications and learnable parameters which leads at end to smaller neural

network.

3.2.3.2 Performance comparison

To compare between O’Shea model with different input data representation and

sequential model in wireless interference identification, we again reimplemented the model

proposed in by Oshea [1], as in the modulation recognition case. the reimplemented model get

higher values for performance metrics in case of IQ and Frequency but lower values in case of

Amplitude and Phase than the values in announced by Kulin [4].

Figure 23 shows that multi path PSI model achieves higher accuracy in all SNRs relative to

the sequential model with any data representation.

32

FIGURE 23: ACCURACY COMPARISON FOR WIRELESS INTERFERENCE IDENTIFICATION.

To ensure the previous results, a comparison is done between performance metrics

including precision(P), recall (R) and F1-score in wireless interference identification between

multipath model and sequential model. the comparison results is shown in Table 6 which shows

that Psi model has higher performance metrics values in all SNRs than IQ & Amplitude and Phase

sequential models and the same or slightly less than Frequency sequential model implementing

O’Shea Model, also it shows huge reduction on the number of parameters relative to O’Shea

model, and a smaller number of multiplications-additions which implies higher speed than

Oshea’s model.

33

TABLE 6: PERFORMANCE METRICS COMPARISON FOR WIRELESS INTERFERENCE IDENTIFICATION

Model parameters Multi-add

(millions)

SNR P-

average

R-

average

F1-score

average

 PSI

36,888

2.69

High 1.00 1.00 1.00

Medium 0.99 0.99 0.99

Low 0.92 0.92 0.92

IQ

20.59

High 0.99 0.99 0.99

Medium 0.99 0.99 0.99

Low 0.90 0.89 0.89

 Amp/Phase

 2,667,615

 20.59

High 0.77 0.76 0.74

Medium 0.74 0.72 0.72

Low 0.51 0.51 0.51

 Frequency

 2,667,615

20.59

High 1.00 1.00 1.00

Medium 1.00 1.00 1.00

Low 0.94 0.93 0.93

3.2.4 PSI lite model for wireless interference

When trying to implement PSI, explained in previous chapter, in the hardware domain, in

our case FPGA, we faced two problems:

34

 First: Phase Branch is the output from dividing Quadrature (Q) branch over In-phase (I)
branch and taking arctan for it (shown in Equation (19)). As will be explained in the Fixed-
Point Representation Section, this arctan operation will make the output’s range within

[
−𝜋

2
:
𝜋

2
]. So, it will need a bigger number of bits relative to the other branches which make

the whole model bigger than blade RF size2 [3].

 Second: Frequency Branch needs complex circuit which will utilizes big part of resources
to be implemented.

 𝑝ℎ𝑎𝑠𝑒 = 𝑎𝑟𝑐𝑡𝑎𝑛 (
𝑋𝑞

𝑋𝑖
) (19)

So, to solve the two problems stated above, we dropped The Frequency branch and Phase

part from A/Ө branch to facilitate an initial trial, moving the dropped branches to the future

work. The final model shape is shown in Figure 24 and data flow between layers is shown in Table

7 We call this structure Psi-Lite as it was built upon Psi where consisting from two branches I/Q

branch and Amp branch, also it is much smaller than Psi and much faster.

FIGURE 24: MULTI PATH CNN MODEL (PSI-LITE), BLOCK SIZE PROPORTIONAL WITH ITS OPERATIONS.

2 It’s a device for software defined radio that is used as transmitter and receiver which facilitate making real-time

experiment.

35

 TABLE 7: PSI LITE DATA FLOW

Layer name Input size Output size Weights

Amplitude Convolution 1x2x128 10x1x122 56

IQ Convolution 1x2x128 8x1x122 140

Max-Pool 18x1x122 18x1x61 0

Shared Convolution 18x1x61 10x1x57 900

Dense 570 15 8550

Max-Pool 15 1 0

 The model share most of its layers with Psi, but there was an additional layer which is a

Maximum Pooling layer3. Maximum Pooling layer (a.k.a. Max-Pool4) takes ‘n’ inputs compare

between them to find the maximum value, doing this reduce the size of the model (e.g. taking

Max-Pool 2x2 from the input features5 will reduce the size of Max-Pool’s output to 1/4. Pooling

in Psi-Lite should be 1xn as input to Max-Pool is 1D data. Max-Pool layer in Psi-Lite is 1x2 which

means it takes two samples, compare between them, remove the smaller one, and forward the

biggest value to the next layer. Max-Pool is shared between IQ and Amplitude branches.

Although it takes two separate samples from each branch, at any instance it has four

samples, but as it remove half of its inputs and has a speed double the blocks before it, so it can

be shared between them, e.g. when circuit start working Max-Pool takes the first sample from

Amplitude Convolution branch6, at time t0, then start taking samples simultaneously from I/Q

Convolution branch and Amplitude branch, at time t1, t2, ….., (there is a deliberately delay one

clock between the two branches at the start of any new sample to make the protocol works

properly). We can note that at time t1, it has two samples from Amplitude branch and only one

sample from IQ branch then it could compare between the two samples, selecting the max

between them and feed this value to the shared convolution and clear the Amplitude buffer.

 At time t2 it has two samples from IQ branch but one sample from Amplitude branch, so

it compares values for IQ branch and remove the max and this operation repeats. To clarify its

operation more, we inserted samples at Table 8 to show Max-Pool operation where we assume,

for simplicity, that any sample comes is bigger than its previous one (i.e. A1> A0, A3>A2, and A5

> A4).

3 In the following context, we mean with maximum pooling the medium layer not the last, the last layer targets

choosing the Output not reducing size or overfitting
4 This notation is used in Py-Torch Library.
5 Any input/output from convolution layer called input/output features as the main target of convolution layer is

finding features from the data to be used in distinguishing different classes/categories/objects.
6 The reason for starting with Amplitude branch not IQ branch is that Amplitude branch consists only from one

data row not two which makes it faster to load it from memory and makes its output faster, so instead of

buffering all its output until IQ branch output be ready, we buffer all except the last one and feed the first

buffered element into the Max-Pool Circuit.

36

 TABLE 8: CLARIFYING MAXIMUM POOLING LAYER OPERATIONS

Time t0 t1 t2 t3 t4 t5

Amplitude buffer A0 A1 A2 A3 A4 A5

IQ buffer None IQ0 IQ1 IQ2 IQ3 IQ4

Max-Pool output None None A1 IQ1 A3 IQ3

To emphasize on the effect of Max-Pool Layer in Psi-Lite, we inserted in Table 9 Flow of

data in case Max-Pool doesn’t exist, the last Max-Pool used in finding the number of the class, so

it’s mandatory. Comparing Table 7 with Table 9 shows the effect of The Max-Pool Layer whereas

in Table 9 there is a big input to Dense layer which leads to a big number of weights leading also

to a big memory footprint.

 TABLE 9: PSI-LITE DATA FLOW WITHOUT MAX-POOL LAYER

Layer name Input size Output size Weights

Amplitude Convolution 1x2x128 10x1x122 56

IQ Convolution 1x2x128 8x1x122 140

Shared Convolution 18x1x122 10x1x118 900

Dense 1180 15 17700

Max-Pool 15 1 0

Although Psi-Lite has small size, but it also has a good accuracy relative to other models

such as Kulin’s IQ and A/Ө [9], but as WII dataset was generated in the frequency domain, so any

model can generalize and get high accuracy in the frequency domain. Figure 25 shows that Psi-

Lite has a bigger accuracy than any model not working with data in the frequency domain.

37

FIGURE 25: PSI-LITE ACCURACY.

3.3 Software work summary

In this section we explained different solution to the modulation recognition and wireless

interference identification problems as PSI, optimized IQ, and PSI-Lite models showing their

layered architecture and data flow. Finally,Table 10 shows a comparison between Literature and

software models proposed in this chapter.

 TABLE 10: SOFTWARE COMPARISON

7 Modulation Recognition Empty Entries weren’t provided in Literature

Model Name target7 Accuracy Size Million
Mult-Adds

Oshea IQ WII 84.3 2,667,615 20.59

Oshea A/Ө WII 56.2 2,667,615 20.59

Oshea F WII 89.21 2,667,615 20.59

Psi MR/WII 56.2/89.25 36,888 2.69

Optimized IQ MR 54.38 36,910 0.443

Psi-Lite WII 84.5 9,646 0.095

38

3.4 Fixed Point Representation

3.4.1 Implementation Explanation

Deep Learning Tools use floating point representation for weights as computers

support floating point operations, allowing for a better accuracy and search space for

weights than fixed point representation, but to move from Software Domain to Hardware

Domain, we need to convert weights from floating point into a Fixed Point as FPGA

doesn’t support Floating point operation except with additional circuits.

 Our target in weights conversion is finding the minimum number of bits that

represents weights in the fixed-point domain without any loss in the accuracy.

Solovyev et al’s Paper [9] proposed a technique for this low bit’s conversion. To

make this conversion we need to constraint values from each layer to prevent overflow,

i.e. making input/output to/from any layer between [-1, 1], this can be guaranteed if

weights between [-1, 1] and inputs between [-1, 1] then multiplying input with weights

will also be between [-1, 1].

we are imposed with bits of input8 as we have control only on the weights not

the input, but this will not increase size and power9 dramatically as size of inputs is in

range of hundreds, it’s 2x128 in the project dataset, but size of weights is in range of

thousands and if model big it will be millions and in some cases it reaches billions,in our

case it’s 36,888 in Psi and 36,910 Optimized IQ.

So we take input and divide by its number of bits to be in range [-1, 1], but if we

made the range of weights between [-1, 1] by taking the biggest value of weights and

divided the weight with it, this will guarantee that all weights’ values between [-1, 1] but

this doesn’t guarantee that layer’s output is between [-1, 1].

So in [9] they proposed flowing input through the model’s layers and taking the

absolute of the biggest output from each layer, as the negative value may be bigger than

positive value, and divide weights by this biggest output. This will guarantee that output

from the current layer is between [-1, 1] and consequently input for the next layer is

between [-1, 1].

 This operation is completely equivalent to the floating point operation although

we change the values from each layer until the maximum layer but we kept the maximum

8 In case of bladeRF the input is 12 bits
9 Increasing number of bits will increase number of bits multiplication which consequently increase required

power

39

value relative to other which is what is importance for making the prediction, as last Max-

Pool layer choose the maximum value relative to other values regardless its Magnitude.

The next step will be quantizing the weights values because until now we didn’t

convert weights10 to fixed point representation which is the target. In this step, we need

to quantize weights without affecting the accuracy and this achieved with try and error.

To mathematically formulate this we can assume input i = ax2N and weights w = bx2M

where ’a’ and ‘b’ are values between [-1, 1], ‘N’ is imposed by the A/D in the stage before

the FPGA, and ‘M’ is what we target to find in this quantization step.

 Assuming that ‘N’ and ‘M’ is now known and in the last step we need to make

shifting. First, we are going to explain why we need shifting then discussing the shifting

operations method.

 To implement convolution and dense Layers, we need to make two operations:

Multiplication and Addition. Multiplication: in floating point

z = a x b but in fixed point Zbits = I x w = (ax2Nxbx2M) so we have three cases:

1. N = M so zbits = (axbx22M)

2. N > M and in this case, we need shift weights (shift left) in the first layer to be the same
number as N so zbits = (axbx22N)

3. N < M and in this case, we shift input (shift left) after it enters FPGA so zbits = (axbx22M)

 we can consider zbits = (axbx22M) but we need to constrain it within 2M range, so it doesn’t

overflow as after the next layer it will be 23M and this shows needing for shifting operation.

Addition: z = a+b and we constrain value of ‘z’ between [-1, 1] in the previous steps, but

in floating point zbits = i+w = (ax2N + bx2M), and by using the same approach as above,

(ax2M + bx2M) = ((a+b)x2M) = zx2M and that is the target value.

 There are two ways to make shifting explained in [9], either shifting after each

multiplication operation, or shifting after finishing the convolution operation. As addition

is linear operation so it will not affect the result.

3.4.2 Visualization

We will try to visualize the operation of fixed-point in this subsection, assuming that we

have to classify data into two classes/categories:

 Get Data: Data that you need to train your model with, assuming random data to
visualize with it.

10 We need to quantize weights only as input came from A/D and quantized by default

40

FIGURE 26: RANDOM INPUT DATA.

11Data: Normalize it to be in range [-1, 1], assuming that max value of input data is 31(i.e.

5bits, this number is getting from the input such as A/D or Camera but in this random

data, the max value is 24 which can be fitted in 5bits which represents data from 0 until

31) so we divide it by 31.

FIGURE 27: NORMALIZED INPUT DATA.

 Get Model: After searching for a model that fits this data and give high accuracy,
usually this step is done using Keras [10] or PyTorch12 [11] or any other Deep Learning
Framework, let’s assume that model consists from two convolution layers and one
Dense.

Figure 28: Model structure.

11 Normalize means in this section dividing by the biggest value to make the data within range [-1, 1] and we don’t

mean to subtract by mean and divide by standard deviation
12 This visualization step was made by using PyTorch

41

 Get weights: After searching for the best model that fit data with small size and

latency, the next step is to get its weights, usually framework provide

Function/Method that enable you to get weights after training the model

FIGURE 29: MODEL WEIGHTS. THE FIRST TENSOR IS CONV1, SECOND CONV2, AND THE LAST IS DENSE.

 Layer Inputs/Outputs: After that we pass all inputs through the model, in this case we
have only one sample but in real life example they are in range of thousands such as
in WII where dataset is 255255 symbols. The input for the first layer (Conv1) is
between [-1, 1] as that is data input which was normalized in the first step, but Conv1
output isn’t within this range

FIGURE 30: CONV1 OUTPUT.

 Normalize Conv1 weights: We check output from each layer and divide the weights
over the max value for each layer13 which guarantee that max output for each layer14
is within range [-1, 1]

13 Weights / (max (weight. Abs ().max (), output. Abs ().max ()))
14 We took also a safety factor in case of Psi-Lite as there may be an input in real-time experiment that bigger than

inputs in the dataset, also if input maybe exceed after this safety factor, we can create a monitor circuit that

check if input bigger than this safety factor and trigger an alarm.

42

FIGURE 31: CONV1 OUTPUT IN RANGE [-1, 1] AND NEW WEIGHTS.

 Layer Weights and/or Input/Output: Repeat the previous two steps on all model
layers and get the final weights, Note that weights in Figure 32 is the normalized
version of weights in Figure 31, where Conv1 weights divided by 2.38(max weights in
Conv1), Conv2 is divided by 1.99(max weights in Conv2), and finally Dense is divided
by 2.25(max output from Dense). This guarantee that all outputs and weights will be
in range [-1, 1]

FIGURE 32: WEIGHTS AFTER NORMALIZATION.

 Fixed-point Representation: Now we normalized weights and input, but the input
from A/D that enters FPGA will not be normalized or floating and also we can’t put a
float weight, as explained in the previous subsection, we need to find ‘M’ which
enable us represent weights in Fixed-point without loss in accuracy, let’s assume that
‘M’ = ‘N’ where ‘N’ is the input ‘5’ bits and multiply weights in Figure 33 with 31 and
take floor15 for it.

15 Taking floor directly will down negative number to less than its value, but as we multiplied by 31, so down -31

to -32 will not have any effect on the FPGA because for 5bits + one-bit sign, the result is between -32 to 31

43

FIGURE 33: WEIGHT AFTER MULTIPLYING BY (25-1).

 Now, we got the weights in Figure. 33 that can be sent to FPGA memory and data in
Figure 26 that enters from A/D. We need know to emulate operation on FPGA and see
if it gives true or wrong output compared to floating point.

FIGURE 34: CONV1 OUTPUT IN FIXED-POINT OPERATION.

 The last step: is checking if this visualization was true or not, that can be done by
taking output shown in Figure. 34 dividing it by 25, comparing the output with data
shown in Figure. 30. We can note from Comparison that 5 bits for weights was not the
best choice. Although the output keeps the same ratio between values, negative, and
positive signs and will mostly give a true classification in this symbol/data, but it may
be wrong in other cases.

FIGURE 35: DIVIDING CONV1 FIXED-POINT OUTPUT WITH 31.

44

3.5 Proposed Models with Fixed-point

3.5.1 Optimized IQ

We did the same as discussed in the previous two subsections except that we

didn’t normalize the input before training the model, this was handled by avoiding shifting

in the first block but this leads to 16 bits to represent the weights with 1% Error Increasing.

3.5.2 Psi

Phase branch in Psi is the output from dividing Quadrature (Q) branch over In-

phase (I) branch and taking arctan for it as was mentioned in the Psi-Lite Section. This

arctan function if it takes small input data range, it will give output like shown in figure

36, where if it takes big input data range, it will give output like shown in Figure 37. Figure

38 shows arctan with data symbol from WII data.

 FIGURE 36: ARCTAN FUNCTION WITH SMALL DATA RANGE.

45

FIGURE 38: ARCTAN FUNCTION WITH SYMBOL DATA.

In the three Figures above, arctan makes the output’s range within range [
−𝜋

2
,
𝜋

2
].

So, IQ range is [-2048: 2047](i.e. 212 bit + 1 bit sign) and arctan range is [-1.57, 1.57]. This

will leads to different in data ranges and need a bigger number of bits to represents

weights ‘N’ as explained in the previous section which make the whole model bigger than

bladeRF size and make real-time experiment impossible. So, this gives an intuition about

the reason for moving from Psi to Psi-Lite.

FIGURE 37: ARCTAN FUNCTION WITH BIG DATA RANGE.

46

3.5.3 Psi-Lite

We did the same as discussed in the previous two subsections except that

existence of two branches imposed a new constrain. This constrain comes from the need

to unify scale factor of both branches (e.g. if IQ branch is divided by ‘x’ factor and

Amplitude branch is divided by ‘y’ factor and this cause next layer with weights, Shared

Convolution layer in case of Psi-Lite but it exists in Psi Model, will have inputs with

different scales leads to biasing towards the branch with smaller scale factor which will

leads to a wrong classification. This problem can be solved by dividing weights in both

branches by the biggest value of both branches (max (x, y)). if there are more than layer

in each branch, which is not the case in Psi-Lite, this will lead ‘x’ and ‘y’ to be scaling factor

from each branch. We can consider it as a factorization problem and solve it.

FIGURE 39: MULTI-BRANCHES WITH MULTI-LAYERS.

Figure 39 shows a branch with this Problem where we can deduce from this figure that

x=B1L1*B1L2=1.5*1.7 = 2.55, y=B2L1*B2L2=2*2.5 = 5 and as y > x, we can divide weights

of branch2 and layer1 with 2 and weights of branch2 and layer2 with 2.5 but for Branch

1 it should be 5 not 2.55 and we can distribute16 this increasing in the division factor x,

one way is as shown in Equation (20)

(𝐵1𝐿1 + 𝛿) ∗ (𝐵1𝐿2 + 𝛿) = 5

𝛿2 + 3.2𝛿 − 2.45 = 0
𝛿 = .6383

 (20)

So now we can divide weights of branch1 and layer1 with (1.5 + .6383) and weights of

branch2 and layer2 with (1.7 + .6383)

16 Distribution increase in the factor doesn’t guarantee achieving the best solution but the intuition with this

solution is distributing this new increasing in the factor on all layers and taking the floor function after it will

reduce its effect which leads to reduce in the required number of bits

47

Chapter Four: Hardware approach
In this chapter, hardware implementation and results for two models: optimized IQ and

psi lite are discussed. Section 1 shows Optimized IQ and section 2 shows psi lite.

4.1 optimized IQ model Hardware:

 This section discusses implementation of proposed IQ model targeting modulation

recognition problem. Verilog used as a hardware description language. Vivado 2017.4 Used as

synthesis tool. Targeted FPGA is ZYNQ Ultra scale+ ZU104 FPGA [5].

The reasons to choose this model on FPGA not psi model are: it has low number operations

as discussed in chapter 3 section 1.4 , low number of bits needed when using fixed point

operations as discussed in chapter 3 section 5.1, and no need to implement FFT operation as

hardware.

4.1.1 Fixed Point Operations

 Extracted weights from Keras are represented in floating point which was a problem from

the perspective of number of calculations and processing time. Also using floating points

consumes more resources of FPGA which means more power so it was wise to avoid floating

point operation and use fixed point operation. After simulating model again with integer weights

using fixed point operation it was concluded that storing weights in 16 bits minimizes the error

and maintains accuracy almost unchanged.

4.1.2 Implementations of used Operations

This subsection, shows how to implement used operation in FPGA.

4.1.2.1 Convolution Operations

 Convolution layers in the models are 2D convolution. In convolutional layers of 2D CNNs,

the input and output features have multiple channels. A 2D convolution is applied to each

channel of the input feature and the generated outputs are then accumulated resulting in one

channel of the final output feature, For simplicity, X used to indicate the input samples with a

size of h×w and Y used to indicate the output with a size of m×ho×wo. Here, m is the number of

output channels. hi and wi are height and width of input, and ho and wo are height and width of

output. W used to indicate the weights feature with m×k1 ×k2 , k1 and k2 are height and width of

kernel. ho equals to h+k1-1, wo equals to w+k2-1. Each pixel Y[mm] [hh] [ww] in the output feature

is calculated by:

48

Y[mm][hh][ww] = ∑ ∑ 𝑊[𝑚𝑚][𝑟𝑟][𝑐𝑐] ∗ 𝑋[𝑐ℎ][ℎℎ + 𝑟𝑟][𝑤𝑤 + 𝑐𝑐]

𝑘2−1

𝑐𝑐=0

 (21)

𝑘1−1

𝑟𝑟=0

 To Implement this equation on hardware, figure 40 shows the implementation.

Input data to the filter is multiplexed each clock cycle with address counter works as

selection line. The input data each clock is a shifted version by one as stride is one then the

selected data is multiplied with corresponding weights from memory after that all outputs of

multiplier is summed and de-multiplexed to the corresponding output line . After all inputs is

multiplied by filters, next filters weights replace current weights and multiplied by input as

shown.

FIGURE 40: CONVOLUTION OPERATION IMPLEMENTATION.

49

4.1.2.2 Neuron Implementation

 Operations in neuron can be described as weighted sum next equation elaborate this

statement:

𝑌 𝑜𝑢𝑡𝑝𝑢𝑡[𝑖] = ∑𝑊[𝑖][𝑗] ∗ 𝑋[𝑗]

𝑁

𝑗=0

 (22)

 X used to indicate the input with a size of hx, hy is the height of input X . Y used to indicate

the output with a size of N, and N is number of neurons. We used to indicate the weights feature

with size of N ×hx.

To implement dense operation, weights are being read from memory then multiplied with

its corresponding inputs then all outputs are summed as shown in figure 41. Number of

multiplications in the neurons of first fully connected layer was 1044 which is very large number

and processing, all these multiplications at one time consumes almost all FPGA resources so it

was found that neuron operations should be reduced almost by x1/12 (87Multiplications/Clock)

to get reasonable utilization and at the same time keeping processing time small as possible.

FIGURE 41: DENSE OPERATION IMPLEMENTATION.

50

4.1.2.3 Activation Functions

4.1.2.3.1 RELU

ReLU was chosen as activation function due to its outstanding performance, high accuracy

and simplicity in figure 42, as it is the only one that does not need division operation.

we can notice how ReLU function can be easily implemented without any approximations and

complex calculations.

 It’s just filtering out negative numbers to zero and permits positive number, it’s

implemented as multiplexer its selection line the sign bit.

 So when sign bit is zero (positive number) the output will be as input and if sign bit is one

(negative number) the output will be zero which can be interpreted from figure 43.

FIGURE 42: ACTIVATION FUNCTIONS.

51

FIGURE 43: RELU OPERATION.

4.1.2.3.2 SOFTMAX

Output layer consists of eleven neurons each one of them corresponds to a class

(Modulation Scheme), the activation function of output layer is softmax, figure 44 explains how

sofmax works and it’s mathematical representation it turns outputs of neurons to a probability

distribution of each class, the predicted class is the one with the highest probability.

In order to implement softmax many complex calculations were needed to calculate

exponentials and dividers but softmax can be implemented in much simpler way that will save

much calculation and memory, Simply find out the largest neuron and the output is its position

which will correspond to the predicted class, figure 45 shows how algorithm works. Each

neuron compared with adjacent neuron using subtractor as a comparator, the sign bit of

subtractor output determines which operand is larger so if first operand is larger, its position will

be selected through multiplexer and vice versa, this operation done over all neuron until position

of largest neuron figured out.

52

FIGURE 44: SOFTMAX OPERATION.

FIGURE 45: SOFTMAX IMPLEMENTATION.

53

4.1.3 Model Flow

4.1.3.1 Convolution Layer 1

 In convolution layer 1, Sample for each filter is calculated every clock To speed the

convolution layer 1 operation. the block in figure 46, compute one sample for one filter so it is

repeated 45 times, to calculate all 45 output channels from hh to hh+7 of input height, then all

outputs (Y14, Y24… Y444) saved in LUTS.

The repeated block is constructed by using multiplier block, adder block, ReLU block, and

rescale block. Multiplier block multiply input and the correspondent weights. Adder block adds

the outputs of multiplier block by using tree adder. ReLU block do ReLU operation. Rescale block

reduces number of bits of ReLU block output by doing shift right operation. r

 In first clock hh equals to 0 so all 45 output channels from 0 to 7 of input height are

calculated, in the next clock period hh equals to 1 so all 45 output channels from 0 to 7 of input

height are calculated, and repeat this steps until hh is equal 127. When hh is equal 127

convolution layer 1 stop working unless the input changes, so weights does not change every

clock, but input is shifted by 1 every clock.

4.1.3.2 Convolution Layer 2

Convolution layer 2 block is like the repeated block in convolution layer 1, figure 47 Shows

that. Convolution layer 2 block is constructed by using multiplier block, adder block, ReLU block,

and rescale block. After adder operation number of bits does not increase as the inputs after

convolution 1 most of the values is not high values because of ReLU operation and rescale

operation and making Sure no overflow happens.

 To start the operation of convolution layer 2, convolution layer 1 must finish its first six

outputs as it is the minimum input for convolution layer 2. When convolution 2 starts hh is equal

to zero and mm is equal to zero. In each clock convolution layer 2 calculates, after that hh is

equal to hh+1. When hh is equal to 120, hh will reset to be zero and mm is equal to which means

channel mm of output of convolution 1 is calculated for all convolution layer 2 input height. When

mm is equal to 9 that’s mean convolution layer 2 operation is finished.

4.1.3.3 Dense Layer 1

 Dense layer 1 starts working when convolution layer 2 operation is finished. Each neuron is

done in several clock because large number of multiplications, when a neuron is finished the next

one is calculated, when the last one is finished dense layer 1 stops working as shown in figure 48.

54

4.1.3.4 Dense Layer 2

 Figure 48 shows how process, dense layer 2 stars its process when dense layer 1 is finished.

Each neuron in dense layer 2 done in one clock. When the last neuron is finished, dense layer

output goes to softmax unit, and then the last value is computed. Softmax works as described

before.

FIGURE 46: CONVOLUTION LAYER 1 BLOCK.

FIGURE 47: CONVOLUTION LAYER 2 BLOCK.

FIGURE 48: DENSE LAYER 1 BLOCK.

FIGURE 49: DENSE LAYER 2 BLOCK.

55

4.1.4 Hardware results

 In this section results will be discussed after implementing model on FPGA and thus results

will be compared with the results given on GPU or other models.

4.1.4.1 Estimated error

 The estimated error due to quantization error and using fixed point operations instead of

floating point was about 1.19% compared to GPU predictions but after implementing the model

on FPGA the results were almost the same and the validation accuracy on FPGA reached 54.38%

however the validation accuracy on GPU was 54.36% , it was a little bit confusing how 1.19%

mismatch with GPU results didn’t affect accuracy on FPGA and still almost same as GPU so and

investigation of the mismatched samples was done to better understand and explain this

phenomena.

 Neutral Mismatch Positive Mismatch Negative Mismatch

The mismatch with GPU prediction can be classified into three groups Neutral, Positive

and Negative mismatches .Neutral mismatch happens when the predictions on FPGA

mismatches with GPU prediction but both are wrong which won’t cause any harm to accuracy,

the positive mismatch happens when the predictions on FPGA mismatches with GPU prediction

but matches with the correct predictions which will increase accuracy, the last mismatch is

negative mismatch which eliminates effect of positive mismatch it happens when FPGA

predictions mismatches with GPU predictions however GPU predictions are correct so this will

cause reduction of accuracy so the total effect of the three mismatches will cancels each other

and the overall accuracy won’t be affected and this will be very obvious in resulting scores and

accuracy curves.

FIGURE 50: ESTIMATED ERROR.

56

4.1.4.2 Accuracy Curves

FIGURE 51: CLASSIFICATION ACCURACY ON FPGA VS GPU.

 4.1.4.3 Confusion Matrix

FIGURE 52: CONFUSION MATRIX ON FPGA VS GPU.

57

4.1.4.4 Performance Metrics

TABLE 11: PERFORMANCE METRICS OF PROPOSED MODEL ON GPU VS FPGA.

From the above results and accuracy curves and confusion matrix we can see how the

results of FPGA and GPU are very similar. Number of Calculations and Model Size.

4.1.4.5 Layers Utilization

Convolution Layer1 uses large number of DSPs due to parallel operations to decrease

delay of model but more power consumed in DSP blocks.

Convolution Layer1, Convolution Layer2, and Dense Layer1 uses more LUTS due to large

output of convolution layer1 and 2, in case odd dense layer1 because of it has large number of

weights. To free the design from memory Bandwidth limitations the weights and results stored

on LUTRAM and registers that’s why they are utilized by 14% and 12% respectively. Next Table

shows Utilization in each layer.

TABLE 12: LAYERS UTILIZATION OF OPTIMIZED IQ.

Layer/Utilization LUTS Flip Flop DSP

Convolution Layer1 28864 213 720

Convolution Layer2 19253 3413 270

Dense Layer1 19864 1330 87

Dense Layer2 1223 73 39

Model SNR Precision Recall F1 Score

GPU-optimized
CNNIQ

High 0.84 0.86 0.82

Medium 0.76 0.77 0.74

Low 0.31 0.33 0.27

FPGA- optimized
CNNIQ

High 0.84 0.86 0.82

Medium 0.76 0.77 0.75

Low 0.30 0.33 0.27

58

4.1.4.6 Compare with related work

Table 13 shows the proposed model (optimized IQ) utilization and total power against

model in paper [2] (soltani model).

In optimized IQ model 11 works with 11 modulation types. In soltani model, 6 modulation

types are used. Both models used same frequency. LUTS utilization in optimized IQ model is

smaller than in soltani model, this could because of soltani model used only dense layers witch

has more parameters than convolution layers wish was used in optimized IQ.

Optimized IQ has less total power on chip but has more DSP power which shown on

figures 53, and 54 [2]. DSP was used to decrease delaying model as power was not have

constraints.

TABLE 13: UTILIZATION OF OPTIMIZED IQ VS SOLTANI MODEL.

Comparison
\ Model

optimized IQ soltani model

number of
modulation

types

11 6

FPGA ZYNQ UltraScale+ MPSoC ZCU104 ZYNQ UltraScale+ MPSoC ZCU102

Frequency 70 MHz 70 MHz

LUT 81,358 158,435

LUTRAM 14,832 117,380

FF 58,386 16,222

DSP 1,118 210

IO 5 10

BUFG 22 4

Total
On-Chip
Power

 0.847 W

1.152 W

59

FIGURE 53: OPTIMIZED IQ POWER.

FIGURE 54: SOLTANI MODEL POWER.

60

4.2 Psi-Lite Hardware

4.2.1 Fixed Point

As explained in Section Psi-Lite, Fixed-Point implementation with two branches and how

to solve the two branches division factor Problem. To move to hardware with fixed point weights’

representation, we tried different number of bits and calculate the loss relative to floating-point

software. Table 14 shows the different number of bits and their accuracy loss relative to software.

We chose number of bits equal 11 bits as it compromises between error rate and bits required

for fixed-point representation.

TABLE 14: PSI-LITE NUMBER OF BITS

Number of bits 8 9 10 11 12 13

Error Rate 1.9% 1.1% 0.7% 0.1% 0.1% 0%

Miss Number 19 11 7 1 1 0

4.2.2 Device Targeted

As stated in the Psi-Lite introduction, we targeted bladeRF device [12] which has small

FPGA sizes but will enable us doing real-time test. There are four types of bladeRF: bladeRF x40,

bladeRF x115, bladeRF 2.0 micro xA4, and bladeRF 2.0 micro xA917, Figure 55 shows a comparison

between bladeRF 2.0 micro xA4 and XA9[12]. We selected the biggest bladeRF available which

has a big number of logic elements and DSP blocks relative to other bladeRF versions. But even

though, it has a small number relative to Deep Learning requirements and that was the reason

for moving from Psi to Psi-Lite as explained before.

4.2.3 Verilog Code

We used Verilog as a hardware description language to implement psi-lite on Intel FPGA

Cyclone V A9[13]. In the following subsections we will show the output from each part of Psi-Lite

17 Numbers x40 and x115 refer to number of kilo logic elements available on bladeRF, while number xA4 and

xA9 refers for key that Intel gives to its FPGAs (e.g. xA9 stands for Cyclone V A9 FPGA)

61

parts. Also, in the following as weights and data are small, we saved them on FPGA memory. We

assume that A/D will sample data in the air then send them to dedicated memory blocks, where

we specified two blocks for that purpose. FPGA contains two types of memory M10k and MLAB18.

M10k memory contains 1220 blocks where we store weights on them

FIGURE 55: BLADERF CHARACTERISTICS.

4.2.3.1 IQ Convolution Layer output

IQ branch needs two weights per clock or we can take them on two clocks as

convolution has shared weights19 so we putted weights of In-Phase branch and

Quadrature branch on the same Memory block. As shown in Table 7, IQ branch has 140

weights multiplying by 12 bits, 11 bits as explained and 1 bit for sign (positive or

negative weight), gives 1680 bits which less than M10k size.

18 M10k is 10k bits memory dedicated for storing while MLAB stands for Memory logic array blocks which can

be used as logic elements or as memory units.
19 Shared weights mean that for different input size, the filter weights are the same

62

FIGURE 56: IQ CONVOLUTION BRANCH OPERATIONS.

Figure 56 shows the operation of IQ convolution block, input weights in yellow is

the In-Phase branch weights and multiplied by input_data_I then sum gives hold_out1.

Weights after yellow circles are Quadrature-phase branch weights and multiplied by

input_data_Q then sum gives hold_out1. Sum hold_out1 and hold_out2 and shift by 1120

bits gives conv_output.

4.2.3.2 Amplitude Convolution Layer output

Amplitude branch doesn’t need more than one weight per clock and it has 56

weights, as shown in Table 7, multiplying by 12 bits gives 672 bits which enabled us

putting them on a single M10k block.

FIGURE 57: AMPLITUDE CONVOLUTION BRANCH OPERATIONS.

20 We hold the output from multiplication in 23 bit not 24 as multiplying two bits sign will result in one bit not two

63

 Figure 57 shows the operation of IQ convolution block. The space shown in yellow

is to synchronize the Amplitude branch with IQ branch21. To calculate Square root, we

used a function available on the internet [15]. Square root output has been held in 12 bit

which can hold up to 4096 bigger than biggest output from Amplitude branch as shown

in Equation 23.

 √𝑋𝑖
2 + 𝑋𝑞

2 = √(211)2 + (211)2 = √222 + 222 = √223 = 2(23 2⁄) = 2896 equation(23)

Square root function contains for loop to calculate the square, increasing for loop

number leads to increasing accuracy in cost of clock period which takes bigger time. So,

to compromise between two operations, we allowed a small difference in calculations

relative to software, as shown in Figure 58. as the difference is small, so it doesn’t affect

the final output or final class prediction as will be seen in Dense Layer below.

FIGURE 58: SQUARE ROOT DIFFERENCE BETWEEN SOFTWARE AND HARDWARE.

21 There is one clock difference as explained above for the MaxPool layer operations

64

4.2.3.3 Max-Pool Layer output

Max-Pool layer has no parameters, so it doesn’t deal with memory. Max-Pool layer

operations was explained in Psi-Lite software, section 3.2.4, and its operation with real

data is shown in Figure 59. Yellow rectangle areas show no-operation and Max-Pool waits

previous layers, either IQ_conv or Amplitude_conv22. Blue shows zero and that means

output from Amp_Phase was negative and we compare and either output zero or biggest

value between two consecutive values.

FIGURE 59: MAX-POOL BRANCH OPERATIONS.

4.2.3.4 Shared Convolution Layer output

To synchronize shared convolution layer with its previous inputs, we need to load weights on 25

clocks. As we need 100 weights23, so we need to load four samples per clock. To solve this

problem, we distributed weights of shared convolution layer on four M10K blocks. Shared

convolution layer has 900 weights, as shown in Table 7, So each block will have 225 weight

multiplying by 12 bits gives each block 2700 bits.

 Figure 60 shows operations of shared convolution layer. IQ_or_Amp_Phase is a signal

which works as a clock or oscillator to make Shared Convolution layer either multiply weights of

IQ branch or Amplitude branch which leads to truncated number of multiplications required to

half and also required number of DSP blocks.

22 Here written Amplitude_Phase_hold as a general case and to be used in the future with Psi Model
23 Shared convolution has ten filters, each filter size is 5. So we need to multiply 5*10 per clock, given that Shared

convolution deals with two branches, So we need 100 weights to be loaded before MaxPool data complete 5

samples

65

4.2.3.5 Dense Layer output

 Finally to synchronize Dense layer with Shared Convolution layer, we need 15

memory blocks, each block works with a neuron, as Dense has 15 neuron with weights

8850, as shown in Table 7, so each block has 590 weights multiplying by 12 bits gives 7080.

Figure 61 shows operations of Dense Layer. Dense layer unlike convolution, which has

shared weights, has weights for each input enter it24.

 FIGURE 61: DENSE LAYER OPERATIONS.

24 That is why it’s called also fully connected. Dense means that it has many weights

 FIGURE 60: SHARED CONVOLUTION LAYER OPERATIONS.

66

4.2.3.6 Max-Pool Layer output

This is the final layer that targets making classification for the output of the dense

layer. As Circuit works on multiple filters25 dense layer puts its data into memory interface

and in the next filter operation, it calls the data from the memory and add the new data

for it and push the data again. After the end of classification, Max-Pool Layer calls data

from the interface and choose the biggest between them. Figure 62 shows the output and

compare them with the output of software. We can note that output from hardware is

different from software due to square root in the Amplitude branch as discussed in 5.2.3.3

above but the final result doesn’t affect with this difference as the output is very big

relative to the difference caused by square root.

4.2.4 Memory problem

 Noting in Shared Convolution Layer or in Dense Layer that although two memory blocks

are enough for Shared Layer or eleven blocks for Dense Layer, but we used four and fifteen blocks

respectively. We partitioned the memory blocks to increase the speed and achieve the required

synchronization but with the cost of memory lost. In real applications they use one of two

solutions for this problem, one of them is implementing ASIC (application specific integrated

circuit) and buying suitable memory sizes, even if memory is standard but they can search for a

memory with the most suitable size to reduce wasted size. The other solution depends on

tackling the difference between the memory speed and the circuit speed which is called multi-

25 IQ convolution branch has ten filters and Amplitude branch has eight, if they worked together, this will require

at least ten times the current used DSP, expected 750, whereas Intel Cyclone V xA9 has only 342 which will

make the whole process of design failed and prevent using bladeRF. So, we made IQ conv and Amplitude conv

makes filter, two filters from each works simultaneously, which required ten times time.

FIGURE 62: FINAL OUTPUT COMPARISON.

67

pumping [14]. Multi-Pumping depends on memory works with speed multiple of circuit speed26.

So, we can take more than one sample from memory at the same cycle. Figure 63 shows multi-

pumping concept. Multi-Pumping solution intended to be used with Psi implementation in a

future work as Psi will require more samples per clock which will leads to bigger partition of

memory.

4.2.5 Verilog Synthesis

We used Intel Quartus Prime Lite 19.1 as it’s a free edition and has support for Intel

Verilog Cyclone V family. Error! Reference source not found. shows the synthesis of the Verilog

Code. We can note that we use a small number of Memory and logic elements, but a big number

of DSP blocks available on the chip. We can move to Cyclone V xA4 instead of xA9 but we need

to use methods to reduce the number of required DSP blocks so it reduces from 74 required block

to 66 block which are available on the bladeRF xA4. One of these methods can be by making

convolution layer works then stop and neurons works or a combination of them works to reduce

the required DSP but this will come in cost of speed required for communication applications,

and in case of combination of convolution and dense layers will leads to additional complexity of

the design. Another method which can be used is multi-pumping in DSP blocks [16] which can be

used in the implementation of Psi Model in a future work.

26 This leads also to make design first with memory partition to see the speed of the circuit then redesign the

memories blocks to take more than one sample per clock.

 FIGURE 63: MULTI-PUMPING SOLUTION [14].

68

FIGURE 64: PSI-LITE SYNTHESIS.

4.2.6 Results

As there isn’t any FPGA work regarding the Wireless interference Identification until

writing these lines. So, we will not be able making comparison with literature. Table 15 shows

our results. Memory bits equal weights * bits representation + data interface, where weights =

9646 and number of bits to represent data is 12 bits. We can note that we make test/ interference

identification 20000 each second. Number of tests is big or small depends on the application and

band that it operates at (e.g. free band like ISM will be more interference than communication

bands that companies hold). We can note also that we consume little dynamic power which prove

that FPGA size is big and it’s better to move for smaller one.

TABLE 15: PSI-LITE HARDWARE RESULTS

Model Memory
bits

DSP Speed Total
Power

Dynamic
Power

Static
Power

Ψ Lite 141,300
bits

74 20k 660.92
mW

128.55 mW 526.26
mW

69

CHAPTER FIVE: TOOLS

5.1 Software tools

The software tools used in this work is python as the programming language as it is the

most used language used by experts on the field also top deep learning libraries are available on

the Python ecosystem like Theano and TensorFlow. Tap into their power in a few lines of code

using Keras, the best-of-breed applied deep learning library.

 Used libraries are PyTorch and Keras used in Deep Learning for construction the model,

train it, and test it. The other libraries used in python are NumPy for multidimensional array

operations, Matplotlib which is used to draw the graphs and charts illustrating the model

characteristics and performances as it is a comprehensive library for creating static, animated,

and interactive visualizations in Python, and Pandas which is a fast, powerful, flexible and easy to

use open source data analysis and manipulation tool, built on top of the Python programming

language.

5.2 Hardware tools

 Verilog HDL is used as the hardware description language used to implement the model

on FPGA as it is a powerful language and the most used one in industry.

Synthesis tools used in the project are Quartus for wireless interference identification in

the PSI Lite mode which will be illustrate later on section 2 of chapter 5, and Vivado for

modulation recognition in the optimized in-phase and quadrature model which will be illustrated

in section 1 of chapter 5.

Targeted FPGAs are ZYNQ Ultra scale 104 for modulation recognition in the optimized in-

phase and quadrature model which will be illustrated in section 1 of chapter 5, Cyclone V A9 for

wireless interference identification in the PSI Lite mode which will be illustrate later on section 2

of chapter 5.

70

CHAPTER SIX: CONCLUSION

To conclude our work. First of all, we studied the literature of the field and compared between

the provided solutions then reproduced the best work done to make sure we have the base to

be compared with our proposed solutions. We took into our consideration the size of the model

as the intended goal of our work was to implement the most efficient model from the proposed

ones on FPGA, Increasing the accuracy also was one of our intended goals. The most suitable

model that combined between lower in size and higher in accuracy than the literature was

Multipath Model named PSI-Model which is the first multipath model in the literature in both

ways either modulation recognition or wireless interference. After that, we proposed an

optimized In-phase and quadrature phase model for modulation recognition and after testing in

software level it showed us relative reduction in the size compared to PSI model without any

need for any other signal processing unit. However, we had to scarify with its accuracy to become

lower than the PSI model. Consequently, we implemented the optimized IQ model on FPGA ZYNQ

Ultra scale+ MPSoC ZCU104 which shows high accuracy with very low size and much higher speed

than GPU. Last but not least, we managed to propose the PSI lite model with two branches only

from the full PSI model in order to identify the wireless interference. The model scarified 5% of

the full PSI model accuracy to be suitable for implementation on small FPGA with RF model to

make the real-time wireless signal identification possible. The PSI lite model was implemented

on FPGA Cyclone V A9 which was the first model to be implemented on FPGA for wireless

interference identification purpose.

71

CHAPTER SEVEN: FUTURE WORK

The future work to be done is:

I. Testing PSI Lite with real time data and detecting source of interference at that data.

II. Making real time modulation recognition and wireless interference with PSI model on

FPGA by providing bigger FPGA on RF circuit to process the big number of FLOPS (I.e

multiplication-addition) of PSI Model.

III. Generate a more efficient data set to increase model accuracy, and tackle different

problems such as detecting spectrum holes in the frequency spectrum.

72

REFRENCES
1. T. J. O'Shea, J. Corgan, and T. C. Clancy, ``Convolutional radio modulation recognition

networks,'' in Proc. Int. Conf. Eng. Appl. Neural Netw., 2016,pp. 213226.

2. Sohraab Soltani., (2019). ``Real-Time and Embedded Deep Learning on FPGA for RF

Signal Classification.''

3. M. Schmidt, D. Block and U. Meier,” Wireless interference identification with
convolutional neural networks,” 2017 IEEE 15th International Conference on Industrial
Informatics (INDIN), Emden, 2017, pp. 180-185.

4. M. Kulin, T. Kazaz, I. Moerman and E. De Poorter,” End-to-End Learning from Spectrum

Data: A Deep Learning Approach for Wireless Signal Identification in Spectrum

Monitoring Applications,” in IEEE Access, vol. 6, pp. 18484-18501, 2018.

5. UG1267 - ZCU104 Board User Guide

6. https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/po/ss

-cyclone-v-fpgas.pdf

7. https://www.nuand.com/product/bladerf-xa9/

8. A. Karpathy. Convolutional Neural Networks for Visual Recognition [Online]. Available:
http://cs231n.github.io/convolutional-networks/ , 2018. 4

9. Solovyev, Roman A., Alexandr A. Kalinin, Alexander G. Kustov, Dmitry V. Telpukhov and
Vladimir S. Ruhlov. “FPGA Implementation of Convolutional Neural Networks with Fixed-
Point Calculations.” ArXiv abs/1808.09945 (2018)

10. F. Chollet et al. (2015). Keras. [Online]. Available: https://github.com/fchollet/keras

11. Paszke, Adam and Gross, Sam and Chintala, Soumith and Chanan, Gregory and Yang,
Edward and DeVito, Zachary and Lin, Zeming and Desmaison, Alban and Antiga, Luca
and Lerer, Adam. “Automatic differentiation in PyTorch.” NIPS-W, 2017

12. https://www.nuand.com/bladerf-2-0-micro/

13. https://www.altera.com/en_US/pdfs/literature/hb/cyclone-v/cv_51001.pdf

14. Charles Eric LaForest and J. Gregory Steffan. 2010. Efficient multi-ported memories for
FPGAs. In Proceedings of the 18th annual ACM/SIGDA international symposium on Field
programmable gate arrays (FPGA ’10).

15. https://verilogcodes.blogspot.com/2017/11/a-verilog-function-for-finding-square-
root.html

16. Bajaj, Ronak & Fahmy, Suhaib. (2015). Minimizing DSP block usage through multi-
pumping. 184-187. 10.1109/FPT.2015.7393146.

https://www.nuand.com/product/bladerf-xa9/
http://cs231n.github.io/convolutional-networks/
https://github.com/fchollet/keras
https://www.nuand.com/bladerf-2-0-micro/

