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1- Introduction and Literature review

1.1   General Introduction about RISC-V

RISC-V core processor is considered to be a free and open-source Instruction Set

Architecture (ISA) that has paved the way for a new era of processor development and

innovation through open standard collaborations. RISC-V ISA delivers a new level of free,

extensible software and hardware freedom on architecture, paving the way for the next 50

years of computing design and innovation. The goal of RISC-V is to be a universal ISA in

the field of microprocessors and to fit different and widespread applications. It could target

all sizes of processors from the tiny ones in the embedded microcontrollers to the most

suitable ones for high-computing applications. Moreover, it aims to be compatible with

different implementation platforms either FPGA or ASIC. Also, it should be suitable with

popular programming languages and software stacks. Although it has just appeared for a few

years, it has proven its stability and continuity in its base ISA unlike the very early

generations of AMD (Am29000), Intel (i960), Zilog (Z8000), and Motorola (8800). RISC-V

ISA is defined as a base integer ISA, which must be present in any implementation, plus

optional extensions to the base ISA. The base integer ISAs are very similar to that of the

early RISC processors except with no branch delay slots and with support for optional

variable-length instruction encodings.

There are two main types of ISA which are Complex Instruction Set Computer (CISC) and

Reduced Instruction Set Computer (RISC). The differences between these types can be

summarized in the following table:

3



CISC RISC

Original microprocessor ISA Redesigned ISA that emerged in the early
1980s

One instruction can take several clock cycles Single-cycle instruction

Hardware-centric design: ISA does a lot of
computation using hardware circuitry in many
cycles

Software-centric design using high level
compilers

More efficient use of RAM than RISC Multiple memory access

Complex and variable length instruction Simple standardized instructions

Can support microcodes (instructions are
treated like small programs)

Only one layer of instruction

A large number of instructions A small number of fixed-length instructions

Compound addressing mode Limited addressing mode

The ISA can decide the application of its processor. Globally, we could find that there are only

two ISA which are X86 and ARM and each ISA application is totally different from the other.

For instance, almost more than 99% of personal computers (PCs), laptops, and servers are based

on X86 or AMD64 ISA and the intellectual property (IP) belongs to Intel and AMD respectively.

In addition, more than 99% of mobile phones and tablets are based on ARM ISA and their IPs

are divided into A series, R series, and M series. These implementations of single area usages of

ISA were the reason why RISC-V has appeared to the market and could grow up very fast.

RISC-V is a reduced ISA that has been designed to suit many fields of application, especially the

applications of storage, edge computing, and AI applications. These applications are very critical

applications in today’s market. These applications that are uniquely addressed by RISC-V make

it possible for RISC-V to compete with any ISA in the market such as X86 and ARM.
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1.2  Problem Definition

Over the past few years, many problems arose regarding the speed of different applications,

especially AI applications which need a lot of memory and high speed to be accomplished in

their required time. AI acceleration is a set of approaches and algorithms to speed up high

intensive tasks required. The acceleration can be divided into both software and hardware

acceleration. Both kinds of acceleration should be incorporated to fulfill required tasks properly

with respect to their constraints.

To achieve targeted processing constraints, the parallelism concept is introduced. Parallelism is

meant to split the required computation into small tasks so that they can be spread among small

computational blocks. This approach can be done on-chip level with schedulers and multi-core

processors. There are many products from different companies that are introduced to fulfill the

tasks of hardware acceleration. These products can be categorized into four different computing

devices: FPGA, GPUs, ASIC, and Neuromorphic chips. FPGA (Field Programmable Gate

Array), is a class of computing elements that can be reprogrammed through its gates. GPUs

(Graphical Processing Units) were deployed for only graphical processing at first. However, it

has been found that they can be adopted for AI and achieved great results. ASIC (Application

Specific Integrated Circuit) can be described as a family of processors to carry out certain

specific tasks.

In this project, we will integrate different platforms of hardware implementation. We will

implement an optimized RISC-V core optimized for high-speed computation and integrate many

of this core to achieve the concept of parallelism into a GPU and all of this work will be
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integrated later with a hardware FPGA implementation for one of the machine learning

algorithms (Convolutional Neural Network (CNN)) achieving the optimum approach for

integrating software and hardware acceleration.

1.3  Objectives

The recent silicon industry suffers from a shortage in manufacturing process components which

leads to a massive storm in related industries like automotive and cell phones. This led big

companies like Apple to postpone their new release of the iPhone. Also, there are some

expectations for price increase through the rest of 2021 in the automotive and electronics

markets. It is a supply chain so any change in a step will lead to a constructive effect on the

following steps whether it was positive or negative. Modern technology companies must have a

time-to-market specification in order to keep competence. Time-to-market means the time taken

from the first ideation to selling the product to the customers. Through this time design,

manufacturing, testing, and marketing are made. Our main scope is the backend design of

RISC-V from RTL to GDS||. RISC-V is already used in many applications and there is a need to

accelerate its design process. Our main objective is to provide a clear GDS|| file of the

open-source RTL Design of OpenPULP Core (CV32E40P) using three different flows ; the flat,

hierarchal, and topographical flows. Targeting high-performance matrix with higher speed and

low area. Then, this design could be used as a part of an AI acceleration system that has a

hardware part and a software part, the software would be used on our RISC-V core.

1.4 Functional Requirements/product specification.

As mentioned before, we hope to use this RISC-V core inside an acceleration system for AI

applications specifically for automotive vehicles. According to the recent research in the area of

automotive researchers are looking for high-speed systems with a low area as in runtime a car
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would face a high-speed environment with varying inputs for the system which needs an

ultra-high processing capability. Working on the Frequency we target to work at the max

available speed in the scope of our used library and computational capabilities. For power, we

target to have low IR drop through the design to be able to be suitable to our target application.

As initial specifications hope to achieve these values for area power and speed.

1. Area: 0.1 mm2.

2. Clock frequency: 500 MHZ.

3. Power:

1.5 Report Organization

This thesis document consists of six chapters, chapter 1 gives a brief background about RISC-V

architecture. Then it goes to our problem definition and how it could be solved followed by the

objectives and product specification and report organization. In chapter 2 a market research with

literature review is made to track the revolution of RISC-V in today’s industry. Chapter 3

describes the core work made through the project including project purposes and constraints in a

section, followed by the project technical specifications section. Moreover, design alternatives

and how to differentiate between them is discussed in design alternatives and justifications. At

the end of chapter 3, we discuss the chosen design and its components in two sections.

Proceeding to chapter 4 project execution is clarified by showing the task taken through the

journey and Gantt chart followed by a detailed description of the different subsystems inside the

design, at the end of the chapter we discuss testing and evaluation of the final product.

Following, Chapter 5 shows the cost analysis and evaluation of the project in terms of

environmental impact, ethics and sustainability …etc. Last but not least, a conclusion is driven in

chapter 6 followed by used references.
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2- Market and Literature Review

2.1   A survey of the state of the art concerning the subject under consideration.

As mentioned above in the introduction section, PULP is a collaborative project between the

Integrated Systems Laboratory (IIS) of ETH Zürich and Energy-efficient Embedded Systems

(EEES) group of the University of Bologna. The IIS are having a long tradition in tapping

out ASICs. They have tapped out nearly 500 chips in different applications. Since the IIS is

greatly involved in the PULP project beside tapping out ASICs, they have tapped out more

than 30 PULP based ASICs ranging in complexity and targeting different applications. In this

section, we shall review the most important of these different implementations arranged

from the oldest to the most recent in some detail. That Chronological order is preserved

unless we had to mention related chips together. A summary including the year, application,

technology, manufacturer, chip dimensions, number of gates, voltage and frequency is

presented in table 1.

In 2013, the chip Or10n was implemented using the UMC180 technology. This chip does not

use the Open RISK code. But rather the code is optimized for ASIC implementation. Also

improvements have been made to increase the IPC -instructions per cycle to above 0.9. The

same improved core was also used in the Sir10us chip with minor changes in the memory

implemented.

Parallel Ultra Low Power Processor (PULP) is a shared data memory, parallel processor

architecture. It has 3 different versions PULPv1, PULPv2, and PULPv3. PULPv1 is

implemented using ST28 FDSOI technology using lower leakage RVT transistors. It contains

one cluster with 4 OpenRISC cores modified to have a much higher IPC and a dedicated
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DMA controller. The aim of the chip design is to test aggressive body biasing techniques

especially to reduce the transistors off current. The system has 6 power islands that can be

switched between two external body bias voltages in a short period of time[1].PULPV2

differs from PULP v1 by 5 main points. First, it uses the faster low-leakage (LVT) transistors.

Second, It has an FFL integrated within the system for internal clock generation. It has

standard cell-based memories for low-voltage operation. AXI buses and Master and slave

SPI interfaces are also included. It has 64 kBytes of L2 memory, 40 kBytes of TCDM (out of

which 8 Kbytes is SCM), and in total 4 kBytes of private SCM[2]. Finally, the PULPV3

version of the chip was implemented using the same technology as PULP v1. In total 128

kBytes of L2, 48 kBytes of TCDM (32 kByte SRAM + 16 kBytes of SCM) are included.

There is a shared 4 kBytes 4 way set associative instruction cache for the processor cores

using SCMs. Moreover, the chip has two body bias regions. The body bias voltages for each

region vary from -1.8V to Vdd/2 + 0.3V. The chip also includes two on-chip FLLs and the

cluster can be completely shut down, which is another useful low power feature. Besides,

there is an integrated dedicated hardware accelerator for 2D convolutions and a hardware

convolution engine with energy efficiency and bandwidth consumption optimizations[3].

The four chips, Artemis[4], Hecate, Selene[5], and Diana[6] represent a series that aims to

add floating-point operations to a 4 core cluster. The cores used are the Or10n. The main

difference between the 4 chips is in the number and type of FPUs used. In Artemis, a

dedicated FPU is added to each core. In Hecate, it was noticed that there is a small

probability that all cores utilise the FPU at the same time. Thus, the 4 cores here share 2

FPUs. Selena chip is a little bit different in that it uses a different representation for

floating-point where it uses a Logarithmic Number System(LNS). The LSA makes the
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difficult calculations as the multiplication and division much easier while the normal addition

and subtraction processes are much more difficult in LSA. Since the LSA FPU is much larger

than the ordinary FPU used in the other chips, only one LSA FPU is shared among the cores

in the Selene chip. Finally, the Diana chip is very similar to Artemis with a dedicated FPU in

each core. However, to tradeoff area and power vs precision, one of the FPUs is exact -

similar to the one used in Artemis- while the remaining 3 FPUs are inexact.

Mia-Wallace chip (2015) is designed to have enough memory and interfaces allowing it to be

used in a variety of applications. It contains 4 Or10n cores that support both vector

instructions and a functional debug interface. It has two power domains, one at 1.2V and the

other at 0.3V. At the lower power, the standard SRAM is not functioning. Besides, the chip

has 2 FLL to generate an operating frequency ranging from 0 to 500MHz from the standard

32kHz oscillator for both the cores cluster and other components on the SoC. It also includes

a large L2 memory as well as different interfaces like SPI, UART and a JTAG port. A

convolutional accelerator is also included where it can compute 2x 16-bit pixels per cycle[7].

VivoSoC is a combination of flexible analog acquisition circuitry and a SAR-ADC with a

PULP processor. Its main application is to be used in biomedical signal acquisition as in

wearable EEG, ECG and EMG. It uses a dual-core PULP processor along with other

peripherals. It was implemented in 2015. Later on in 2016, VivoSoc was updated and

extended to make the second version VivoSoC2[8] and VivoSoC2.001[9] for a wider range

of applications including mass-market consumer fitness tracker, medical-grade telehealth

point-of-care, implantable devices for chronic disease monitoring and management.

VivoSoC2 is empowered by a Quad-core RISK processor equipped with a larger variety of
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peripherals. The third generation of the VivoSoC collection includes the VivoSoC3 and

VivoSoC 3.142 which were developed in 2018 and 2019 respectively. They both target the

same application and also support simultaneous acquisition and processing. For all the

VivoSoC collection, the tight energy budgets of portable devices needed to be considered.

Thus, fine-tuning of the operating point of each SoC block was used to trade-off unnecessary

precision with power. The technology used with VivoSoC is SMIC 130/110.

In 2015, the three chips Manny, Sid, and Diego were tapped out for research purposes. They

were designed with a target of the lowest possible power consumption taking the advantage

of near or subthreshold operation, beside approximate computing principles. The chips

system is based on a 4 core PULP system 64 kByte of L2 memory, 16 kBytes of TCDM and

4 kBytes of shared instruction cache. This system is then augmented by a shared approximate

single precision floating point unit. In addition there is a generic hardware accelerator

interface which allows the in-exact accelerators to be connected to the main system. Two

generic FIR filters are also present on the chip. The main difference between the three chips

is the used library where the Manny chip uses the subthreshold library, and thus should be the

largest and slowest. The Diego library is the low vt library and thus should be the fastest.

And finally the Sid chip uses the standard library. The three chips are considered to be of

high area of more than 50 square millimeters. The implementation technology is the Alp180.

Honey Bunny chip (2015) is the first PULP chip utilizing RI5CY. It has 4 RI5CY cores, 64

kBytes of TCDM,256 kBytes of L2 memory and 4 kBytes as standard cell based memories.

This large memory is designed to support various applications. An FFL is included in the

design to support the desired frequency within the range from 0 to 666MHz.
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Imperio (2015) is the first ASIC implementation of PULPino in the UMC 65nm technology.

PULPino is a microcontroller-like system based on a small 32-bit RISC-V core with an IPC

close to 1[10].

Patronus is a chip implemented in 2016 that uses the RISKY core which has been optimised

for energy efficiency. However, it is considered a large chip with around 40kGE. The

Patronus system has a special design where it has 3 cores: Eeny, ZeroRISK and Remus. Eeny

is a single cycle RISK-V core. ZeroRisk is a RISK-V core with 3 stage pipeline. Remus is a

RISC-V core with CFI (Control FLow Integrity) to withstand fault attacks. At a time, only

one of the cores is active and that is what makes this system different. All the cores have

access to the different memories in the system as well as the different interfaces.

Mr. Wolf chip (2017) is an IoT processor utilizing optimized RISK-V cores. It includes one

cluster of eight 32 bit RISC-V cores, two FPUs each shared by 4 cores, 64 kBytes TDMC

beside 512 kByte of L2 memory. A zero-risky is used as the controller of this design. Also an

LDO is integrated to generate the internal voltages[11].

The Automario chip developed in 2018 using the UMC65 technology is the first ASIC

implementation of a multi-cluster PULP. It contains 2 clusters each with 4 RISKY cores

beside an instruction cache of 8 kBytes and TCDM memory of 64 kBytes.

Poseidon chip (2018) is the first PULP based design in the GF 22nm technology. Poseidon is

built from 3 independent modules. The first is called Kerbin including the 64 bit RISC-V

core, Ariane, along with a 32 kB instruction cache and a 32kB data cache. The second

module is basically a PULPissimo design updated with an autonomous uDRAM I/O
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subsystem. It also includes a small hardware accelerator for binary neural networks in

addition to 512kB of memory. The third and final module in Poseidon is called Hyperdrive

which is a binary neural network accelerator[12].

Kosmodrom chip (2018) is designed to help in the evaluation of different library options of

the GF 22FDX process using a realistic benchmark. It includes two 64 bit Ariane cores. One

of which is optimized for high performance(1.3GHz typical) and the other is optimised for

extremely low power consumption(300MHz typical case operation) using different

optimization corners and different standard cell libraries. Moreover, the design included 1.25

MByte of SRAM memory that is used by the Ariane cores, an Adaptive Body Biasing block,

a neurostream accelerator, and test structures for electro-optical interfaces[13]. Later on in

2019, an improved version of Kosmodrom called Baikonur was issued fixing issues related to

third party IP[14]. The main difference between the two is that the two Ariane cores in

Baikonur had different operating conditions than Kosmodrom. That is, one core is optimized

for high performance(1GHz, worst casel) and the other is optimised for extremely low power

consumption(300MHz worst case operation)

Arnold (2018) is a design that combines the PULPissimo design with an eFPGA where the

eFPGA is programmed through the PULPissom’s RI5CY core via memory mapped r/w

operations. Since the eFPGA has an extra APB bus interface, it can be accessed as a standard

peripheral. The eFPGA can also access the same memory that the processor can access as it

has 4 TCDM access ports. The chips also include a set of peripherals and a uDMA to copy

data from and to the peripherals[15].
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Scarabaeus -standing for Specifically Crafted Acronym Referencing an Ariane in a

Brilliantly and Artistically Engineered Unprecedented SoC- is a PULP based SoC developed

using the UMC65 technology in 2018 as well. It represents an Ariane based RISK-V SoC

that includes a Data and Instruction cache of 4 kBytes and 64 kBytes of L2 memory. The

Design is improved by adding a Platform Level Interrupt Controller (PLIC) and a DMA

controller that facilitates data transfer to upto 4 dimensions.

Xavier Chip(2019) is an enhanced PULPissimo system including a RISKY core(RV32ICMF)

as the main processing engine. It also has a uDMA system that can handle 8 SPI ports. A

hardware accelerator is also included for quantised neural networks. The system has

512kByte memory. The Hardware Processing Engine (HWPE) uses the small zero Risky core

(RV32-ICM)as a controller rather than using a control FSM.

Urania Chip (2019) is the first ASIC implementation for the bigPULP design used in the

HERO project. Urania is a heterogeneous system based completely on RISK-V. It contains an

Ariane core as the main processor. It also has two clusters of 4 RISKY cores each. Each core

has an individual FPUs. Each cluster has a specialised Hardware Accelerator called PULPo.

It is responsible for the first order optimizations to solve a range of problems.

Rosetta Chip (2019) is based on PULPissimo architecture utilizing the RISKY core with a

new vector processing ISA extension and multiple accelerators to support different kinds of

signal processing applications. The chip has a wide variety of different memory technologies.

It has 4 conventional SRAM banks with a total size of 512KiB for normal computations

demanding high memory capacities. Other two xSRAM banks of 64KiB total capacity are

specifically for the core to execute programs simultaneously without bank conflicts.
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Furthermore, a 4 KiB two port latch based standard cell memory is included, which executes

small programs at low supply voltages. Other memories such as 64 KiB of eDRAM and 32

KiB of in-SRAM are also available. Beside the different memory technologies, the chip

includes a programmable autonomous accelerator for signal processing. As with most of the

PULP chips, a wide variety of peripherals are present as well.
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Table 1.1

Or10n Sir10us PULP v1 PULP v2 PULP v3 Artemis,
Hecate,
Selene &
Diana

Mia-
wallace

VivoSoC VivoSoC2
&
VivoSoC2
.001

Year 2013 2013 2013 2014 2015 2014 2015 2015 2016

Application Processor Processor Pulp Pulp Pulp Pulp Pulp Biomedica
l

Biomedic
al

Technology 180 180 28 28 28 65 65 130 130

Manufactur
er

UMC UMC STM STM STM UMC UMC SMIC SMIC

Type Semester
Thesis

Semester
Thesis

Research Research Research Semester
thesis

Research Research Research

Dimension
s

1525μm x
1525μm

1525μm x
1525μm

1650μm x
1650μm

1650μm x
1650μm

1650μm x
1650μm

1252μm x
1252μm

3950μm x
1875μm

4000μm x
3200μm

4368μm x
4768μm

Gates 80 kGE 100kGE 700 kGE 1800 kGE 2500 kGE 600 kGE 2 MGE 600 kGE 800 kGE

Voltage 1.8 V 1.8 V 0.4-1.2 V 1.0 V 1.0 V 1.2 V 1.2 V 1.2 V 1.2
V-0.6V

Power 1 mW,
1MHz 1.8V

93 mW,
166MHz
1.8V

8 mW
@0.7V,
10MHz

100 mW 1.2 mW @
0.6V,
50MHz

1 mW
@1.2V
1MHz

1 mW
@1.2V
1MHz

45 mW
(@40MHz
, 1.2V)

20 mW
(@50MH
z, 1.2V)

Clock 360 MHz 166MHz 475 MHz 1000 MHz 66 MHz @
0.6V
supplyMHz

500 MHz 400 MHz 140 MHz 64 MHz

16

http://asic.ethz.ch/2014/Artemis.html
http://asic.ethz.ch/applications/Pulp.html
http://asic.ethz.ch/applications/Pulp.html
http://asic.ethz.ch/applications/Biomedical.html
http://asic.ethz.ch/applications/Biomedical.html
http://asic.ethz.ch/applications/Biomedical.html
http://asic.ethz.ch/applications/Biomedical.html
http://asic.ethz.ch/technologies/28.html
http://asic.ethz.ch/manufacturers/STM.html


Table 1.2

VivoSoC3
&
VivoSoC3
.142

Manny Diego Sid Honey-
Bunny

Imperio Patronus Mr. Wolf Automario

Year 2018/19 2015 2015 2015 2015 2015 2016 2017 2018

Application Biomedic
al

Pulp Pulp Pulp Pulp Pulp Pulp IoT Pulp

Technology 110 180 180 180 28 65 65 40 65

Manufactur
er

SMIC ALP ALP ALP GF UMC UMC TSMC UMC

Type Research Research Research Research Research Semester
thesis

Research Research Semester
thesis

Dimension
s

4368μm x
4768μm

7201μm x
8160μm

7201μm x
8160μm

7201μm x
8160μm

1500μm x
2000μm

1252μm x
1252μm

2626μm x
2626μm

3200μm x
3200μm

2626μm x
2626μm

Gates 2 MGE 2 MGE 2 MGE 2 MGE 2 MGE 500 kGE 5 MGE 1800 kGE 3 MGE

Voltage 1.2
V-0.6V

0.6 V 0.8V 1V 1.2 V 1.2 V 1.2 V 0.8-1.1 V 1.2 V

Power 10 mW
(@50MH
z, 0.8V)

3 W
@0.6V
1.5MHz

3 W
@0.8V 15
MHz

3 W
@1.0V 15
MHz

1 mW
@1.2V
1MHz

32.8 mW
@1.2V
400MHz

999 mW
@ 1.2 V,
400 MHz

153 mW
@ 1.1 V,
450 MHz

54 mW @
1.2 V, 200
MHz

Clock 100 MHz 1.25 MHz 15 MHz 15 MHz 60 MHz 650 MHz
(typ) MHz

100 MHz 450 MHz 200 MHz
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Table 1.3

Poseidon Kosmodro
m

Baikonur Arnold Scarabaeu
s

Xavier Urania Rosetta

Year 2018 2018 2019 2018 2018 2019 2019 2019

Application Pulp Pulp Pulp Pulp Pulp Pulp Pulp Pulp

Technology 22 22 22 22 65 65 65 65

Manufactur
er

GF GF GF GF UMC UMC UMC TSMC

Type Research Research Research Research Semester
thesis

Semester
thesis

Research Research

Dimensions 3000μm x
3000μm

3000μm x
3000μm

3000μm x
3000μm

3000μm x
3000μm

2626μm x
1252μm

2626μm x
2626μm

4000μm x
4000μm

4100μm x
3000μm

Gates - 25MGE 80 MGE - 1200 kGE 3 MGE 6 MGE 6 MGE

Voltage 0.8 V 0.8 V 0.8 V 0.8 V 1.2 V 1.2 V 1.2 V 1.2 V

Power 30 mW
@ 0.8 V,
700 MHz

1 pW @
1.8 V, 1
MHz mW

- - 45.97 mW
@ 1.2 V,
200 MHz

20 mW @
1.2 V, 100
MHz

1 pW
@1.2 V, 1
GHz mW

-

Clock 700 MHz 1300MHz
(typical)

1000MHz(t
ypical)

330 MHz 200 MHz 250 MHz 100 MHz 190 MHz
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2.2   Literature that relates to the subject

A single-core RISC-V 64-bit instruction set architecture (ISA) was implemented in 28

nm technology by a team in Berkeley in 2018. The design was described using Chisel

hardware construction language. This language, through features of object oriented

programming language, allows fast exploration of design-space while guaranteeing a

synthesizable design. The main obstacle in design synthesis was synthesizing multiport

register files because they were not offered within the foundry standard cells. So, the

multiport registers were custom designed as macros of standard cells to improve

performance and help with design convergence. Tri-state buffers were used in the design

of multiport registers because they allow multiple entries to be read on the same wire

which relieves routing congestion. Further, the read wire was composed of shorter wires

arranged hierarchically and connected to the global read wire using multiplexers to

reduce parasitic capacitances. Overall, the register files were described at the gate level

and went through manually guided place & route. The chip area was 2.7mm x 1.8mm and

the core operated at 1 GHz frequency when Vdd was between 0.6 V and 0.9 V. It

achieved 3.77 CoreMark/MHz in the famous benchmark CoreMark [16].

Another team from Berkeley and MIT managed to actually fabricate a 64 bit dual core

RISC-V processor in 45 nm technology. They used the exact same synopsis tools we are

using to perform both synthesis and back end place and route steps. However, their

original RTL was written in Chisel but translated into verilog before synthesis. The total

chip area of both cores was 2.8 mm x 1.1 mm and it achieved a peak frequency of 1.3

GHz with a Vdd of 1.2 V. Further, it was shown to achieve a high energy efficiency of
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16.7 double-precision GFLOPS/W.The advantage of this implementation which makes it

special is the integration of a custom vector accelerator with each core. This is a good

example of the extensible open source nature of the RISC-V ISA [17].

2.3 Overview of the tools and techniques needed to build state of the art

system

Building a state of art ASIC system requires going through the ASIC flow. The three

main steps in the flow are the RTL code writing and testing, the synthesis, and the PnR

steps, beside the physical verification and timing checking steps. The most popular tools

used in logic synthesis are Leonardo Spectrum (Mentor Graphics) Design Compiler

(Synopsys), RTL Compiler, Genus™ Synthesis Solution (Cadence). The most popular

tools used in the PnR step are Innovus® Implementation System(Cadence),

ICC(Synopsys). Finally, the famous tools for physical verification are Calibre DRC,

LVS, PEX (Mentor Graphics)  Diva, Assura (Cadence), Hercules, ICV (Synopsys).

There are 3 flows that can be followed for ASIC chip design. These are flat, hierarchical

and topographical flow. The flat and hierarchical flows are very similar except for the

synthesis step. In the flat flow synthesis, the synthesis tool performs auto ungrouping to

all the hierarchies in the design. In other words, the design hierarchy is not preserved.

The privilege of that is that it allows the tool to perform further optimisations. On the

other hand, the hierarchical flow disables the auto ungroup option and thus, preserving

the design hierarchy. In both of the previous flows, synthesis is only performed once,

then we move to the PnR step. The topographical flow is a little bit different.Synthesis is

performed once then the resulting netlist is sourced in ICC and only the power grid is
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implemented. Then, the resulting power grid is taken to DC in the topographical mode

where a coarse placement and second pass synthesis take place. Then, the resulting floor

plan with the coarsely placed cells are taken once again to ICC to perform placement

optimization, clock tree synthesis and routing.

In this project, we are following the same ASIC Flow using the Synopsys tools for both

logic synthesis and PnR. For Synthesis we are using Design Compiler tool. For PnR, we

are using IC Compiler, and for Physical Verification, we are using Herculis. We preferred

the Synopsis tools since we are doing this project in collaboration with Si-Vision

acquired by Synopsys. After finishing routing successfully, we will use Primetime tool

(PT) as a signoff timing check that verifies that the setup and hold timing constraints are

met. If not, PT suggests modifications to the timing path to solve the violations. The

suggested modifications are then passed back to ICC to perform suitable routing for the

added or modified cells. Multiple iterations of timing modifications and routing should

then be done until all the timing constraints are met and no physical violations exist.

Regarding the flow, this project intends to perform the 3 flows: Flat, hierarchical and

topographical flow. A final comparison between the outcome of the 3 flows shall be

presented as well.

22



3- Project Design

3.1 Project purpose and constraints

The main purpose of the project is to implement a layout of the RISC-V processor that

satisfies a very stringent timing constraint. Additionally, the project is intended to help the

team members acquire hands-on and detailed experience of the Synopsis ASIC tools. Finally,

it is required to obtain a DRC and LVS clean layout. Several constraints restrict the available

options in the different steps of the layout implementation process. First, the timing

constraint is a clock period of 2 ns which is considered a very high frequency for similar

architectures. Second, the design is implemented with an educational process design kit

(PDK) that uses a primitive and simple fabrication technology. For instance, the used PDK

performs all signal and power routing including the power grid in only 10 metal layers which

causes a lot of routing errors. Further, there are only a small number of standard cells

available which increases the area and delay due to using multiple cells. Finally, the

technology node is a relatively old one which results in worse timing and area. The third

constraint is the core utilization which is naturally bound between 0.25 and 0.4. This

increases the chance of the occurrence of DRC violations. Fourth, the voltage drop limit that

ensures that all cells are working properly and fast enough sets many restrictions on the

implementation of the power grid and power routing in general. We choose the maximum

allowed voltage drop to be 22 mV. Congestion is also another source of DRC and LVS errors

and its value also can affect the timing of the design. So, the fifth constraint is congestion

strictly below 1%. Congestion above this value has been experimentally correlated to

significantly more DRC and LVS errors. The final constraint is that a large portion of the

design is synchronous which requires an extensive and complicated clock tree routing. Not
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only does this set more difficulty on achieving the required timing constraint, but also is a

source of DRC and LVS errors in signal routes due to the limited number of metal layers.

Please refer to the below table for a complete list of the project constraints.

Clock period 2 ns

Technology Library
and Design kit

1- Few standard cells
2- Old Technology
3- Limited metal layers

Core Utilization 0.25 - 0.4

Voltage Drop Below 22 mV

Congestion Below 1%

Clock Tree Routing Many synchronous parts

3.2 Project technical specifications

As mentioned previously, RISC-V has many applications. Yet, our target for this project is to

optimize the RISCY core to best fit hardware acceleration applications such as CNN hardware

acceleration. So, the core will be used as part of the processing system for CNN computation.

The most important criteria for these targeted applications is the speed, so our main work is

performing timing optimization for the design in all the stages starting from compilation,

floorplanning, placement, clock tree synthesis, till routing.

Our main factor is the frequency value which depends on the design architecture, our flow and

optimizations, and the library used. The design and library are already determined, so we go

through the three flows, flat, hierarchical and topographical, and try to do optimizations on all of

them. As a result, what we do now is we start from low frequency and track the slack, then repeat
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the process again using higher frequency until we reach the maximum one. For now, we are

working on a 3 ns period for the flat flow, and similar periods for the other flows.

3.3 Design Alternatives and justification

3.3.1 Alternative libraries

In Semi-custom ASIC approach designers are using standard cells to implement their design

in a fast way. These cells are provided by the foundry as a cell library, which contains all the

information needed about each logical cell like AND, OR, FF …etc. Each foundry has a

different library as the manufacturing process differs for each foundry [18].

Available cell libraries:

a. NangateOpenCellLibrary_PDKv1_3_v2010_12

OpenCell Library was introduced for the first time by Nangate and then was

donated to Si2.org for open use. Then it was introduced to educational use in

universities to help develop new EDA tools and techniques. The first development of

this library was made by Nangate's Library Creator™ and the North Carolina State

University 45nm FreePDK Kit. This library was preferable as it has 3 corners of

characterization (slow, typical and fast), multiple flavors of threshold voltages for the

available cells and multiple strengths for the basic gates -which allows high fanout-.

In addition, it has a wide range of cells like half adders, full adders, Tri-state buffers,

latches, inverters, filler cells and clock gated cells [19].
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b. SAED_EDK90_CORE

SAED PDK is introduced by Synopsys for educational purposes, it is free for use. It

was anticipated to design different combinational and sequential cells. It also

provides different driving strengths for each cell and different threshold voltages for

the transistors used. It also has some peripherals like Retention Flip-Flops, Isolation

Cells, Always-on Buffers, Level Shifters, and Power Gating Cells. These cells

strengthen the ability of the library to make higher performance designs [20].

c. ASAP 7nm Predictive PDK

This PDK was introduced for academic use and It does not follow any foundry, it

uses the most recent models of 7nm transistors, it supports four voltage threshold

voltages (Vth) for both PMOS and PMOS. It supports Cadence EDA tools for

schematic and layout. But LVS, parasitic extraction and DRC are made through

Mentor Caliber [21].

3.3.2 Alternative technology nodes

Each foundry provides multiple nodes of standard cells. A node is a number referencing the

length of the transistor used in building the cells. When comparing between different nodes

we found that smaller nodes will be faster charging and discharging so the frequency of their

cell will be higher. On the other hand leakage power would be higher for smaller Vts. Also

smaller nodes dissipate higher temperatures. A 45nm node was chosen as it introduces

acceptable frequency with lower power dissipation which helps us in our goal.
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3.3.3 Alternative EDA tools

There are different vendors in this part, there are many areas in IC design flow, not each

vendor has a tool in each area as shown in the following table

ASIC flow Synopsys Cadence Mentor Others

Synthesis Design compiler RTL compiler -- Talus Design

PnR IC compiler SoC Encounter Olympus Aprisa

STA PrimeTime ETS -- TeKton

Power/IR PrimePower Voltage Storm -- Talus Power

DFT/Scan DFT Compiler Encounter Test -- Talus Design

As we see from the above table, Synopsys and Cadence have almost similar products in

each area, but each one of them has an edge in specific areas, so their products are as

much familiar for designers as the other. Cadence has advantage in the area of analog

design so their products are well known for designers in this area. On the other hand,

Synopsys dominates the digital flow by its DC, ICC, Primetime and VCS tools which are

most popular for digital design in undergrad level. So we choose Synopsys tools in our

project as they cover all the needed steps from RTL to GDS|| track.
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3.3.4 Alternative flow options

ASIC design depends on understanding requirement specifications and EDA tools behavior.

The same RTL design could be synthesized for low power or high speed or both of them

with high Area. It is popular that you should choose between speed, power and area. Making

optimization to get high speed would force you to use more area, also targeting low power

design would force you to work with less frequency and vice versa.

These alternatives are decided by the designer and implemented in the back-end stage of

ASIC design. Through our journey in developing our .tcl code, we face many alternatives to

apply, each of them has some advantages and disadvantages. Our main goal is getting high

speed and acceptable power and no constraint on footprint.

Examples of these alternatives:

A- Power grid layers numbers:

Routing is a main issue regarding the speed of the design, the usual choice is to use 5 metal

layers for routing and 5 layers for power grid. This choice is made in our case of 10 layers

only, but this still makes some DRCs and problems in speed increase.

So a proposal was made to solve this, we can take more layers for routing, for example from

layer 1 to 6 for routing and from layer 7 to 10 for power grid. This change did not make

further improvements. Further we increase the routing to be from layer 1 to layer 7 in one

time and to layer 8 in another time. These changes have improved the routing but

unfortunately increased IR drop as the allowed area for the power grid was lowered. The

final version in flat design is making routing from layer 1 to layer 6, CTS from layer 7 to
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layer 8 and power grid from layer 9 to layer 10. For hierarchical design from layer 1 to layer

6 used in routing and power grid from layer 7 to layer 10. Considering that the first power

grid layer should have vertical straps to make it easy for the tools to deliver power to the

cells in the first metal layer.

3.4 Description of the process

The main target of the project is to go through the ASIC flow from RTL to GDS going through

synthesis, floorplanning, power grid synthesis, placement, Clock tree synthesis , signal routing,

DRC and LVS fixing, then finally, signoff timing checking and fixing using Primetime. In this

section, we shall present a brief description of each step of the process of the RTL to GDS flow.

A more detailed description of the steps and options shall be provided in section 4.2.

3.4.1 Synthesis

Logic synthesis is the process in which a hardware description Language written design is

converted into an optimized gate level netlist that is mapped to a certain technology library. The

synthesis process in this project is done using the Design Compiler EDA tool. The synthesis

process using Design Compiler can be explained in the following five steps.

1. HDL Inputting: Design files -written in using an HDL such as verilog or VHDL - are

inputted to the Design Compiler tool.

2. Translation: DC uses three types of libraries: technology library, synthetic - or

DesignWare - libraries and symbol libraries. The generic technology library (GTECH)

consists of Flip Flops and the basic logic gates. The DesignWare library includes more

complex cells like adders and comparators. Both the generic technology and the synthetic
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libraries are technology independent. That means that they are not mapped into a specific

technology library. The third type of libraries is the symbol library which is used by

Design Compiler to generate schematics for the designs. During synthesis, DC translates

HDL to components extracted from the generic technology library and DesignWare

libraries.

3. Optimization and mapping: After the design translation into gates, design optimization is

done. Then, DC maps the design into a target library. This process is driven by the design

constraints, which are the required timing and restrictions that should be met by the

synthesis process.

4. Test synthesis: Test synthesis is the process in which test logic is integrated into the

design. It enables the testing of the design for early test errors resolving.

5. Finally, the design is ready for the Place and Route step. In this step, the cells are placed

and cell interconnections are made. It is then possible to back-annotate the design with

the actual interconnect delays. DC can then redo the synthesis for more accurate timing

analysis. Redoing the synthesis while having the PnR information is basically what we

call the topographical flow.

Figure 1 depicts the basic synthesis flow using the Design Compiler retrieved from the DC user

guide.
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Figure 1. Synthesis flow steps[22]

The synthesis in the topographical flow is a little different from the normal flat and hierarchical

flows. In those two flows, synthesis is performed only once without any prior information about

the floorplanning or placement of the cells. At that point, the timing estimation is solely based on

the Wire Load Model (WLM) which is a model that estimates the delay of a certain signal based

on the fanout of the gate where the signal originates. Obviously, this estimation is not very

accurate because this is not necessarily the only factor determining the signal delay. Other
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important factors include the distance covered by the signal and the parasitics along the way.

Here comes the importance of the topographical flow. In the topographical flow, a first synthesis

round is conducted based on WLM as the other flow. Then, the floorplanning and power grid

synthesis are performed in ICC based on the resulting netlist from the first synthesis. The

floorplanning and powergrid information are taken back to the DC tool in topo mode. Using that

information, the topographical model of the tool can perform placement of the netlist then

estimate timing more accurately. The accurate timing estimation allows the tool to enhance its

netlish and even placement in a second pass synthesis process. The process is iterative such that

the cells are placed and their placement is used to estimate the timing. Then, the estimated timing

is used to enhance the netlist and the placement and so on. After finishing the second synthesis,

the design is moved to ICC for placement optimization only because the placement has already

been done.

3.4.2 Floorplanning

The floorplan describes the core size, the shape and placement of standard cell rows and routing

channels, the constraints of the standard cell placement, and the placement of peripheral I/Os,

power, ground, corner and filler pad cells. Floorplanning is the first step in the PnR flow. In this

project, this step is performed using Synopsys tool: IC Compiler. Before the floorplan is

initialized, the design netlist should be read first and unique instances are created for modules

that are instantiated many times. Creating the floor plan, the aspect ratio and the core utilizations

options can be set. The aspect ratio can be chosen either to fit within a certain shape in a SoC if

that is a requirement. It can also be chosen through different trials such as to minimize the

congestion due to signal routes. See figure 2 for the aspect ratio example.
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Figure 2. a)Floorplan With No Options Specified. b)Floorplan With Aspect Ratio of 2.

The core utilization represents the ratio of the cell area to the total chip area. It is usually chosen

somewhere in between 0.25 and 0.35 in order to allow for successful signal routing without

unwanted congestion. Moreover, the spacing left from the input/output pins to the chip core is

also determined in the floorplanning step. Aslo the pairing and/or flipping of the standard cell

rows can be set, see figure 2 below.

Figure 3. a) Floor Plan With Row Pairing at the Core Bottom. b)Floor Plan With First Row

Flipped
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3.4.3 Power Grid synthesis

ICC supports both single voltage and multi voltage designs. In this thesis we are concerned with

the single voltage power network flow since the design under consideration is a single voltage

design. Figure 4 shows the design flow steps for creating the power network of a single voltage

design. Before running the power synthesis, the design should be saved. This is an important step

since reaching a good power network satisfying the acceptable IR drop constraints might require

multiple trials and iterations. Thus, if at any trial the results of the power network were not

satisfying, we can simply load the saved design and restart the power synthesis step after

modifying the constraints. The second step is defining logic power and ground connections. In

this step, logical connections are created between the design’s power and ground nets and the

power pins of both standard cells and macros. Third, we apply the power rails constraints. Such

constraints determine the width, spacing, offset, direction and other parameters required by ICC

to create the power network straps and rings. Next, the power ring constraint should be applied.

These constraints control the creation of the power rings around the macros and plangroups.

Once we have all the constraints set, we need to add temporary power sources for the design

which is provided by adding the virtual power pads. Virtual power pads provide the design with

additional current source for the power without any additional modifications in the premade

floorplan. Different trials can be made using different numbers and arrangements of the virtual

power pads to determine the best choice. Then once this is determined, the floorplan shall be

modified by inserting actual power pads according to the premade analysis. With all the

constraints and virtual pads ready, the power grid synthesis shall be done. ِAfter the created

power plan is satisfying regarding its IR drop, committing the power plan is done to convert the

virtual power rings and straps into actual power and ground metal wires and vias. Finally the
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power rails of the standard cells are added to connect the standard cells and a final power grid

analysis is done to make a final IR drop check.

Figure 4. Power Network Synthesis for Single-Voltage Designs [23]

3.4.4 Placement

Instantaneous placement of standard cells and macros is called virtual flat placement. It

represents an initial fast placement performed for the purpose of design planning. Virtual flat

placement can also be used for plan groups, macros and voltage areas that have not been placed

where it helps in deciding sizing, locations, and shapes of the top level physical blocks. It is

called virtual placement since it considers the design to be flat temporarily. That is it temporarily

ignores the hierarchies. However, after the shapes and locations of the physical blocks are
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determined, the design hierarchy is restored and we proceed with the physical design flow

block-by-block.

The process of the virtual flat placement can be controlled to satisfy the most crucial design

properties such as timing constraints meeting, routing congestion avoidance, pin locations,

hierarchical gravity, or scan chain connectivity. Since the virtual flat placement is considered a

fast step, different trials could be made to explore various tradeoffs between the design variables

before the floorplan finalization.

Virtual flat placement is typically done after the floorplan initialization, but before the macros

and the standard cells have been placed. To perform the virtual floorplanning the following

should be done first. First, the chip boundary should be defined. Second, the I/O pad cells

should be placed. Third, the site rows should be defined. Finally, the timing constraints should be

set and should be reasonably achievable. However, the power structure is not necessarily

defined at this step, except for the I/O pads.

Virtual flat placement can be arranged into the following steps:

1. Use the set_fp_placement_strategy command to set the virtual flat placement strategy options.

2. Use the set_fp_macro_options command to set the macro placement options.

3. Required constraints setting.

4. Set the blockage, margin, and shielding options.

5.Use the create_fp_placement command to perform virtual flat placement.

6. Analyze the resulting timing and congestion. Use manual editing if required and applicable.

7. Repeat steps 1 through 6 if the results are not good enough.
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3.4.5 Clock Tree Synthesis (CTS)

The design contains a great number of synchronous sequential elements due to the presence of a

large number of intra-stage registers among other reasons. Hence, there is a need to implement a

large clock tree with minimal skew. In this stage, we first check that the design is ready for clock

tree synthesis, that is we check that the floorplan and the netlist information are available, the

design is placed and the clock constraints are defined. Then, we set the clock tree synthesis

options such as the maximum parasitic capacitance, the target skew value, the maximum tree

fanout. In addition, we specify the design clock signal and the library gate to be used as a driving

cell for the clock port. We further set the options of the clock tree synthesis process to allow for

gate relocation and gate resizing as we are targeting maximum clock speed so we need to give

the algorithm the maximum flexibility possible. Moreover, we specify the library gates to be

used as buffers on the clock tree. Those buffers are to be used later for adjusting hold time

violations. Next, the tool compiles the clock tree taking into consideration the options and

information that we specified. The clock tree is implemented as an H tree starting from the clock

input port. The H tree is one of the best shapes to minimize the clock skew. It depends on a very

simple concept which is the equality of all paths length from starting point to all the gates

connected to the clock. The clock tree routing is implemented across layers 7 and 8. The last step

is to run the clock optimization algorithm to fix the hold time violations across the compiled tree

by gate or buffer relocation and sizing. Then, we perform power connections to connect the

newly inserted clock buffers and in case any existing cells were relocated. Finally, we run

congestion and quality of results (qor) checks to track any issues with timing, power, or design

rules due to clock tree synthesis. It is worth mentioning that the qor includes statistics about the
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count of cells which indicates the quantity of clock tree buffers inserted during clock tree

synthesis.

Figure 5.  H tree with 16 sink points [24]

3.4.6 Routing

The routing is a complicated, time consuming, and error prone stage. So, we had to do it

carefully and accurately to avoid any errors it could cause. We were targeting high speed as in

the previous stages. First, we insert a number of spare cells to allow the routing algorithm to use

alternative paths in case it fails to connect a specific path using the original cells. The spare cells

are only NAND and NOR cells since all binary logic can be built from those two cells or even

only one of them. We place only 20 spare cells to avoid high congestion. The cells are evenly

distributed across the design area. Then, we check the routeability of the design in terms of pin

access points, cell instance wire tracks … etc. Next, we set to routing algorithm options such that

the global routing and the track assignment are timing driven, the incremental routing is enabled,

and the same net notch rule is checked. We adjust the signal integrity options to minimize the

crosstalk and the static noise.
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The crosstalk is a common issue and affects the timing of the design. It is when signal drivers are

connected to each other through a parasitic capacitor and either charge at the time or when

charges and the other discharges at the time. It causes a bump and/or delay in one of the signals.

Then, we run the routing algorithm with high effort to obtain the best result available. The

routing is performed across the downmost six layers. It was decided not to use layers 7 and 8 and

leave space for clock tree synthesis in those layers to avoid high congestion, crosstalk, and

design rule violations. After the routing is finished, we run an incremental routing optimization

with high effort as well to obtain better timing and to fix all violations.

Figure 6. Aggressor and victim switching in the opposite direction [25].

3.4.7 DRC and LVS fixing

After placement, clock tree synthesis and routing, we are faced by Layout Versus Schematic

(LVS) and Design Rule Check (DRC) errors. So, a number of commands are run with the aim of

eliminating or minimizing those errors. At first, we focused on fixing LVS errors. We run

route_eco command which searches for broken nets and fixes them. We set this command to run
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20 iterations because the number of fixed errors stabilizes after this number. Further, the

command is adjusted such that the algorithm attempts to fix open nets first without breaking

connected nets then breaks connected nets if it fails to do so. To further improve LVS errors we

run the route_zrt_eco command which,after fixing open nets, works on fixing DRC errors. The

command also operates using the same methodology where the open nets are attempted without

breaking any nets first then breaks nets in case of failure.

Next, we focused on fixing DRC violations. So, we used the focal_opt command which fixes

DRC violations in more aggressive and expensive ways than other commands. Then, we check

the LVS errors from ICC GUI. It was found that there are a number of cells not connected to

power rails due to absence of vias from the preroute metals to the power rails and the absence of

the preroute metals in some cases. ًThat issue was fixed using preroute_standard_cells to fill the

empty rows with metal. Then, create_preroute_vias was used to place the missing vias manually

in specific locations along the newly placed preroute metal.The other LVS errors were found to

be fake errors. The errors were about unused cell pins that were actually not connected in the

netlist. For example, there were so many D flip flops that their negated output was not used.𝑄 

Another example is full adders whose carry out pins were not used. Further analysis is required

for the DRC errors but it was not completed due to the unavailability of the IC Validator tool.

3.4.7 Signoff timing estimation and fixing using PrimeTime

If we report timing using ICC, we know that this timing estimation is not so accurate. This is

why we need to report timing using Primetime which gives a more accurate estimation of the

design timing. First, we extract the RC parasitics from ICC in both the maximum and the

minimum estimations. Then, we go to primetime and adjust library corners such that the setup
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time check is performed with the slow-slow corner and the hold time check is performed with the

fast-fast corner. Using the extracted parasitics, the netlish and the selected corners, Primetime

can proceed to the timing estimation step. It is worth mentioning that the minimum estimation of

parasitics is used with the hold time violations checking. On the other hand, the maximum

estimation of parasitics is used with the setup time checking.

After obtaining the accurate timing estimation, a negative slack is obtained in the setup time

estimation. To fix that negative slack, we use the fix_eco_timing command which outputs a list

of changes to the design netlist. If those changes are applied, the slack is fixed. We then take the

list of changes back to ICC and apply them. Of course, there will be open nets after applying the

changes. So, we use the route_eco command once again to fix them. The parasitics of the new

design are extracted to be taken once again to Primetime for accurate timing estimation. The

cycle of parasitic extraction, estimation, producing change list and fixing is repeated until the

slack becomes positive or zero.

Afterwards, the hold time is checked for negative slack as well using the minimum parasitics

estimation and the fast fast corner as mentioned above. If negative slack is found, the same cycle

is repeated for the hold time violations. Normally, the hold time slack is not very large and is

easier to fix than setup time slack. This is evident in the nature of changes applied to fix each of

them. The changes for hold time fixing is normally insertion of buffers along the signal path to

delay the signal. In setup time fixing, the signal needs to arrive earlier than it does. This is

usually achieved by sizing the cells along the signal path to become faster. Sometimes, this is not

enough for the signal to arrive early enough.
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3.5 Block Diagram

3.5.1 Block diagrams of the RISC-V core.

Figure 7. Simplified block diagram of the design
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Figure 8. Block Diagram of CV32E40P RISC-V Core [26]

3.5.2 Block diagram of the ASIC flow

Figure 9. Block Diagram of ASIC flow

4-Project Execution
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4.1 Project Tasks and Gantt chart

2  /12
- First meeting

15/12
- Reviewed openpulp RISC-V system
- We checked CNN work and Hero (both are not OK)

1/1
- Chosen RISKY 32
- Finished synthesis

12/1
- Synthesis with different options (compile_ultra) flat/hierarchy
- Optimize for speed

26/1
- Modified RTL for gated clock standard cell
- Done rough floorplanning, power, placement, and CTS
- Checked the different flavors of threshold voltages of different cells in the library
- Done dc_topo synthesis

9/2
- Flat and hierarchy: floorplanning till routing
- Modified CTS script

9/3
- Flat + hierarchy: modified routing script + still LVS&DRC errors
- topo: completed the second pass synthesis

6/4
- Topo: succeeded to extract the design from DC back to ICC
- Modified routing script to fix open and shorts
- Modified the layers for PG, CTS, and the routing layers
- done placement, CTS, and routing with a few LVS errors and slack

20/5
- PT flow completed ( reg to reg path)
- Used the change list in ICC using route_eco
- Fixed  sourcing SDC problem in primetime

11/6
- Finalizing the project documentation
- Report the highest frequency for all three flows with the corresponding power and area.
- Make a comparison and interpret the results to design the best flow.

4.2 Description of each subprocess
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In this section, we shall describe each of the ASIC flow steps mentioned in section 3.5 while

mentioning all the details of the steps including the used commands and their detailed options

and functions. Figures showing the changes applied to the designs through the intermediate steps

are also included as extracted from the perspective tool, either DC or ICC. The upcoming steps

are the same for both the hierarchical and flat flows. The topographical flow has some

differences that shall be highlighted after the placement section.

4.2.1 Synthesis

The following steps represent the basic synthesis flow:

1. Developing HDL files

As mentioned earlier, the design files inputted to Design Compiler are generally written in

VHDL or verilog. Such design description files should be carefully written in order to achieve

the best results possible after synthesis. Certain considerations should be taken into account

while describing the design such as coding style, design partitioning and data management.

Despite the fact that the HDL writing is not a part of DC flow, it directly affects the synthesis and

the optimization process and results.

2. Libraries specification

Link, target, symbol, and synthetic libraries are specified for Design Compiler using the

commands link_library, target_library, symbol_library, and synthetic_library respectively.

The most important two libraries are the link and target libraries. These are technology libraries

that define the set of cells of a semiconductor vendor and related information, including cell

names, cell pin names, pin loading, delay arcs, operating conditions and design rules. Without

these two the synthesis process cannot proceed. The symbol library is only needed if using the

Design Vision GUI is required. This library defines the symbols used for schematic viewing of
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the design in the GUI. In addition, the synthetic_library command is used to specify any

specially licensed DesignWare libraries. The standard DesignWare library need not be specified.

3. Reading the design:

Both RTL designs and gate-level netlists can be read by Design Compiler. Verilog and VHDL

RTL designs are read by HDL Compiler of Design Compiler. Design Compiler has a specialized

netlist reader for Verilog and VHDL gate-level netlists reading. The specialized netlist reader is

faster and utilizes less memory than HDL Compiler. Reading design files can be done by Design

Compiler using the  following ways:

• The analyze and elaborate commands

• The read_file command

• The read_vhdl and read_verilog commands. These commands are derived from the read_file

-format VHDL and read_file -format verilog commands.

In this project we used the first way which is using the analyze and elaborate commands. The

analyze command translates the specified HDL files into an intermediate format and stores the

intermediate format in the specified library ready to elaborate as needed to link a full design.

This command is given the work library that will receive the analyzed output files using the

command option [-library], the format of the input design file using the option [-format] and

finally the design file to be analyzed. The elaborate command uses the intermediate format to

build the design. It is given the design name, and the ;library name to which the work should be

mapped using the option [-library].

4. Defining the design environment
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It is required that the environment of the design to be synthesized should be modelled. This

model includes the external operating conditions (temperature, manufacturing process, and

voltage), fanouts, loads, drives, and wire load models. Such modelling directly influences design

synthesis process and optimization results. You define the design environment by using the set

commands listed below as shown in figure 1.

set_operating_conditions
set_wire_load_model
set_drive
set_driving_cell
set_load
set_fanout_load

5. Set design constraints

Design rules and optimization constraints are used by the design compiler to control the

synthesis of the design. Design rules specify technology requirements cannot be violated to

ensure that the product will meet the required specifications and work as intended. Such rules

should be available in the vendor technology library. Typical design rules add constraints on

transition times using set_max_transition command, fanout loads using set_max_fanout

command, and capacitances using set_max_capacitance command.

Optimization constraints determine the design targets for timing (clocks, clock skews, input

delays, and output delays) and area (maximum area). During optimizations, Design Compiler

tries to meet the given goals while meeting the design rules. You define these constraints by

using commands such as create_clock, set_clock_latency, set_propagated_clock,

set_clock_uncertainty, set_clock_transition, set_input_delay, set_max_area, set_output_delay.

For correct optimizations , realistic constraints should be set. In our project, all the required
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constraints were already set using the above commands in a constraints file that we only needed

to source. We only needed to change the clock constraints in order to discover the minimum

clock period that could be achieved in each of the three design flows. We did not need to modify

other timing constraints since the constraints were already defined as a function of the clock

period. So we only changed the clock period and everything changed accordingly.

6. Select Compile Strategy

There are two basic compile strategies that can be used to optimize hierarchical designs: top

down and bottom up. In the top-down strategy, Design Compiler compiles the top-level design

and all its sub designs together. Environment settings and constraint settings are thus defined

with respect to the top-level design. Despite the fact that this strategy automatically considers the

interblock dependencies, the method is non practical for large designs since all designs must

exist in memory at the same time which requires a very large memory.

In the bottom-up strategy, individual subdesigns are compiled separately while each has its own

constraints. After successful compilation of subdesigns, the designs are assigned the dont_touch

attribute which prevents further changes to them during the upcoming compile phases. The

compiled subdesigns are gathered to build the designs of the next higher level, and these designs

are compiled. This process of compilation continues through the hierarchy until the top-level

design is synthesized. Using this method allows for large designs compilation since the Design

Compiler is not required to load all the uncompiled subdesigns at once into the memory. The

drawback of this step is that at each stage, the interblock constraints should be estimated which

may require compilation iterations to get good estimates.
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7. Optimize the Design

Invoking the Design Compiler synthesis and optimization processes is done via either the

compile command or the compile_ultra command. For the compile command several options are

available regarding the degree of optimizations done. The map_effort option can be set to low,

medium, or high. In a primary compile, it is only required to get a quick idea of design

performance and area. Thus, setting map_effort to low can be sufficient for this purpose. In a

normal compile, when performing design exploration, medium map_effort option can be used.

The final compile in a design implementation can be done by setting map_effort to high which

results in a CPU intensive compile process.

Complie_ultra command on the other hand, performs a high-effort compile process on the design

for better quality of results (QoR) .This command targets high-performance designs with very

critical timing constraints. It provides a simple approach to achieve critical delay optimization.

By default, two ungrouping phases for design hierarchies are included in compile_ultra

command. The first phase is done before "Pass1 Mapping" and tries to ungroup small design

hierarchies. This phase can be turned off using: set compile_ultra_ungroup_small_hierarchies

false command. The second ungrouping phase is done during "Mapping Optimization" and

applies a delay-based ungrouping strategy for design hierarchies. Variables can be set to control

the second ungrouping phase. To preserve all design hierarchies, use the -no_autoungroup

option. In our project, we have used the [-no_auto_ungroup] option in the hierarchical flow to

keep the design hierarchies. On the other hand, for the flat flow, we left the default option of auto

ungrouping all the hierarchies.
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Another important option in the compile_ultra command is the [-spg] option. This option enables

physical guidance and congestion optimization. It is used when a floorplanning and placement

information is available for Design Compiler which can be used to perform a physically guided

synthesis process. Congestion optimization is effective in reducing routing-related congestion.

Design Compiler Graphical uses physical guidance to save coarse placement information and

pass it to IC Compiler which can begin the implementation flow by optimizing the placement

using the place_opt command. Running commands such as create_placement,

remove_buffer_tree, or psynopt to create placement is then no longer needed by IC Compiler.

Instead, it uses the Design Compiler coarse placement as a starting point which improves

placement, runtime and area correlation.

In our project, we used the compile ultra command with all the timing optimization options

[-timing_high_effort_script -retime ] since we were targeting high speed. The target period was

initially 3ns. We also used the [-gate_clock] options to reduce the power consumption whenever

possible.

8. Analyze and Resolve Design Problems

In this step, multiple reports are generated to check the design and to generate the required

reports showing the results of the synthesis and optimization process. These reports include: area

report, power report, cell count report, and most importantly, the timing report.

9. Save the Design Database

The final step is to use the write command to save the post synthesis design.

50



Figure 10. Post Synthesis Steps

4.2.2 Floorplanning

Creating the floorplan in IC Compiler is done via the command create_floorplan. This command

has many options including [-control_type] which determines how the command sizes the core

area of the floorplan. The control type can either be the aspect ratio, width and height, or

boundary. In our case, we chose the control type to be the aspect ratio and we set it to be 2. The

core utilization is another option that determines the ratio of the cell area to the core area. It is set

to be 0.25 to avoid wire congestion while routing. [-start_first_row] and [ -flip_first_row ]
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options to begin row pairing at the bottom of the core area, and flip the first row at the bottom of

the floorplan respectively. The spacing from the io to the core is also determined. See figure 11

for the result of the floorplan step. Course placement is sometimes done in this step using the

command create_floorplan_placement.

Figure 11. After create_floorplan command and initial coarse placement

4.2.3 Power Grid Synthesis

As mentioned above in section 3.5, the power grid network step is done in many steps. First, the

design is saved using the command save_mw_cel such that to allow for multiple iterations

whenever required until a satisfactory IR drop is achieved. Next, the power and ground

connections are defined using the command derive_pg_connection which connects the power
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and ground nets to power and ground pins of standard cells. Then, the power rail constraints are

applied using the set_fp_rail_constraints command. This command determines the power straps

and power ring constraints including spacing, width, offset, metal layers and strap directions. In

our design, we set the power ring constraints such that the power rings are in metal layers 7 upto

10. The ring spacing is 0.8, the ring width is 5 and the ring offset is 0.8. On the other hand, the

power strap related constraints are used to set the power strap layers to be metal6 upto metal10

for the hierarchical flow while for the other two flows, the uppermost four layers are set for

power straps. The lowermost power layer should be vertical such that to cross the horizontal

power rails of the standard cells and thus can be connected by vias. The maximum number of

straps is 128 and the minimum number of straps is 20. The spacing is set to minimum in all

layers. After setting the constraints, virtual pads are added using the command

create_fp_virtual_pad or from ICC GUI. The positions of the virtual pads are set to be enough in

number and to be uniformly distributed around the design such that it would mimic the action of

actual floorplan power pads. Now, the design is ready for the power network synthesis via the

synthesize_fp_rail command. This command creates virtual power straps and rings and analyzes

and reports their IR drops. See figure 12 for the design IR drop after synthesis. Once the power

grid synthesis step shows satisfactory power plan, the commit_fp_rail command is used to

convert the virtual straps and rings to actual straps and rings with defined metal layers. Figure 13

shows the design after the commitment step.
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Figure 12.  IR drop after synthesis of power network. Maximum IR drom is much less than the
maximum threshold set.

Finally the power rails of the standard cells are added using the command

preroute_standard_cells. This command adds the metal1 rails that connect power and ground

ports of standard cells. The command analyze_fp_rail is then used to make sure that these newly

added metal1 rails still meet the IR drop constraints.
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Figure 13. Power grid is committed to the design.

4.2.4 Placement

The main two commands in the placement step are create_floorplan_placement and place_opt.

Create_fp_placement command performs a virtual flat placement of standard cells and hard

macros. It provides an initial placement for floorplan creation which determines relative

locations and shapes of the top-level physical blocks of a flat design with no placed plan groups

or voltage areas. The used options for this command in our project are: [-effort high],

[-congestion_driven] and [-timing_driven] in order to use extensive CPU computations to place

the cells while meeting the timing constraints and avoiding wire congestions. [-incremental all ]

option can also be used to refine the placement given that an initial placement existed. On the
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other hand, place_opt command performs simultaneous placement, routing, and optimization on

the current design.

What makes the topographical flow different, however, is that the placement step is not done in

IC Compiler as in the case of flat and hierarchical flows. In the topographical flow, a first pass

synthesis is done in Design Compiler followed by the floorplanning and power grid synthesis in

IC Compiler. After that, a def file and a floorplan file is written in ICC using the write_def and

write_floorplan commands respectively. Then, we return back to Design Compiler and extract

the physical constraints from the def file using the command extract_physical_constraints. We

also read the floorplan using the read_floorplan command. A second pass synthesis is then done

using the compile_ultra command with the [-spg] option. This command tells the Design

Compiler to create the physically guided cell placement. The final placement is then written

again using write_def and write_floorplan commands. The ddc file is also written in this step. We

then return to ICC, read the def file and the ddc file. Now we have the cells placed by DC and we

only need to perform placement optimizations using place_opt command with the [-spg ] option

set.

4.2.5 Clock tree Synthesis (CTS)

Clock tree synthesis is a very important and critical stage. It involves checking the design

readiness for CTS, specifying the CTS options, compiling the clock tree and optimizing it. The

first step is performed using the command check_physical_design -stage pre_clock_opt. This

command, depending on which option is used after it, can be used to check the readiness of the

design for placement, CTS, or routing. In the CTS stage, the option -stage is given the value

pre_clock_opt to indicate that we need to check that the floorplan and the netlist information are
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available. Further, the command checks that the cells are placed and the clock constraints are

specified.

Figure 14. Design before CTS in topographical flow

The next used command is set_driving_cell which is used to specify which buffer cell drives the

clock input port. It was decided to choose the BUF_X16 cell which is one of the strongest

buffers available in the library yet does not span too large an area. The next step was to specify

the target performance metrics of the clock tree using the set_clock_tree_options command as

shown in the table below.

Target early delay 0.1

Target skew 0.5

Maximum parasitic capacitance 300
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Maximum fanout 10

Maximum transition 0.3

The early delay is the time taken by the clock signal to travel from the clock port to the end of

the longest path in the tree. The skew is the maximum time difference between the clock edge at

two different points on the tree. The transition time specifies the delay of the buffers and

inverters used on the clock tree. Then, the same command was used to allow the CTS algorithm

to relocate and resize both gates and clock buffers if needed. In addition, the cell to be used as

clock buffers along the tree is specified using the set_clock_tree_references command. The CTS

itself is run using the compile_clock_tree. This command also fixes DRC violations after clock

tree synthesis. The last command, clock_opt -fix_hold_all_clocks -congestion, is used with the

aim of optimizing the clock tree to fix the hold time violations by gate or buffer relocation or

sizing. The -congestion option is used to take congestion into consideration while replacing cells

for clock optimization.

4.2.6 Routing

As mentioned in section 3.4, the routing stage is delicate and error prone. The first command in

this stage is the insert_spare_cells command. This command is used to evenly distribute a

number of spare cells across the design area to be used by the routing algorithm if needed. The

routing algorithm sometimes finds difficulty in routing the existing cells so it uses alternative

routing tracks with spare cells. The insert_spare_cells command is used with only 20 instances

of NAND and NOR cells. The option -tie is used to tie their inputs to the ground. Then, the

routeability of the design is checked in terms of pin access points, cell instance wire tracks … etc

using the command check_physical_design -stage pre_route_opt. Next, we use the
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set_route_options command to adjust the routing algorithm options such that the global routing

and the track assignment are timing driven, the incremental routing is enabled, and the same net

notch rule is checked. We also adjust the signal integrity options to minimize the crosstalk and

the static noise. Then, we use the route_auto command with high effort to do the actual routing.

The reason for choosing high effort is that we would sacrifice runtime for better results in terms

of errors and timing. The route_auto command involves three ordered stages. The first stage is

the global routing where the tool creates a three dimensional array of global routing cells and

assigns unrouted nets to those cells. The cells are used to estimate the demand and capacity of

global routing. The second stage is the track assignment where the tool assigns actual wire tracks

within routing cells to the unrouted nets all over the design at once. When this stage is

completed, the design is already routed but there are many violations. Those violations are fixed

thoroughly in the detailed routing stage. Then, we run the route_opt command, with high effort

and incremental mode, to optimize the routing and fix more violations. With the incremental

mode enabled, the route_opt command does not redo the routing but only optimizes the existing

routing.

4.2.7 DRC and LVS fixing

After routing, we need to fix Layout Versus Schematic (LVS) and Design Rule Check (DRC)

errors. We start by fixing LVS errors. The route_eco command is run. This command searches

for broken nets and fixes them. It is set to run 20 iterations because the number of fixed errors

does not change after this number of iterations. Moreover, the command is adjusted such that it

attempts to fix open nets first without breaking connected nets then breaks connected nets if it

fails. To fix more LVS errors, we run the route_zrt_eco command which,after fixing open nets,
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works on fixing DRC errors. The command also operates using the same methodology of

route_eco that we mentioned.

Next, we moved to fixing DRC violations. The focal_opt command was used because it fixes

DRC violations in more powerful and costly ways. Then, we view the LVS errors from ICC GUI.

It was found that there are some cells unconnected to power rails due to absence of vias from the

preroute metals to the power rails which lead to the absence of some preroute metals as shown in

the figure 15 below. ًWe used the preroute_standard_cells command to fill the empty rows with

metal. The create_preroute_vias command can create vias from any layer to any layer. It was

used to place the missing vias manually in well distributed locations along the new preroute

metal. Further analysis is required for the DRC errors but it was not achieved due to the

unavailability of the IC Validator tool.

Figure 15. a) Absence of some preroutes b) All preroutes after fixing
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Figure 16.  Absence of vias from preroute to power rails

4.2.8 Primetime

As we mentioned in section 3.4, it is crucial to make an accurate estimation of timing which is

not available in ICC. So, we go to Primetime for an accurate timing estimation. Before that, we

extract the RC parasitics from ICC in both the maximum and the minimum estimations using the

extract_rc command which extracts parasitic resistance and capacitance from the routes of the

design. Then , we use the write_parasitics command to write the parasitics of the design in two

SPEF format files. One file is for the minimum estimation and the other is for the maximum

estimation. Then, we go to primetime and adjust library corners such that the setup time check is

performed with the slow-slow corner and the hold time check is performed with the fast-fast

corner. The extracted parasitics from ICC are sourced using the read_parasitics command. Using

the extracted parasitics, the netlish and the selected corners, Primetime can proceed to the timing

estimation step with the update_timing command followed by the report_timing command to

display the timing information.

After obtaining the accurate timing estimation, a negative slack is obtained in the setup time

estimation. To fix that negative slack, we use the fix_eco_timing command which produces a list

of changes to the design netlist. If those changes are made, the slack is fixed. The changes for
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hold time fixing is insertion of buffers on the signal route to delay the signal. In setup time

fixing, the signal needs to arrive earlier. This is usually achieved by resizing the cells on the

signal route to make them faster. There will be open nets after applying the changes. So, we use

the route_eco command once again to fix them. The cycle of parasitic extraction, estimation,

producing change list and fixing is repeated until the slack becomes positive or zero. Finally, the

hold time is checked for negative slack. If negative slack occurs, the same cycle is repeated for

the hold time violations.

4.3 Project Testing and Evaluation

One of the main aims of this project, in addition to satisfying the constraints, was to compare the

three ASIC flows against each other. In this section, we are going to show the obtained results in

all flows and attempt to reach a conclusion about which of them is better in terms of total area,

total power, timing and congestion.

4.3.1 Topographical flow

As previously explained, the topographical flow advantage over the other flows is the accurate

estimation of timing during synthesis step. This accurate estimation allows a higher degree of

optimizing the netlist and the placement in an iterative manner to satisfy harder constraints. That

is why we expect the topographical flow to meet the timing constraint that we set. We initially

identified our target clock period to be 2 ns which the topographical flow easily accomplished.

We decided to go even further and try a clock period of 1.8 ns which the topographical flow also

achieved. Concerning the area, the topographical flow achieved a total chip area of 136,938.

Because of the high frequency, the design exhibited high dynamic power consumption which

contributed to a high overall power consumption of 2.42 mW. The congestion and the IR drop

requirements were also satisfied. For a fair comparison with other flows, we need to calculate the
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power delay product (PDP) for the topographical flow. The PDP for the topographical flow was

found to be 4.356 ✕ 10 ^ -12. The LVS errors were all fixed except for 12 signals that were

shorted to ground most probably because they were assigned a zero value in the RTL.

.4.3.2 Flat flow

Speed

In comparison with hierarchical flow, flat flow could achieve optimal speed performance. It

could achieve exactly 2.3ns in its clock period; corresponding to approximately 435 MHz for its

clock frequency. The reason for this higher speed is that flat design flow is not constrained by the

hierarchy of design; in other words, it does not preserve the hierarchy of every punch of blocks.

Instead, it makes all design blocks implemented without use of a certain block more than once.

Therefore, flat flow has a higher speed level than hierarchical one. Figure 17 shows that exact

clock achieved after many optimizations.

Figure 17. Clock period of flat design
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Area

Since flat flow is based on implementation of all blocks and sub-blocks without preserving

hierarchy, the area of the flow is bigger than that of the hierarchical one. The chip area of the

flattened design is nearly 0.137mm2 with area of standard cells of 0.0297mm2 and the rest of the

chip is for the interconnect for cells. Figure 18 and 19 show the area of the whole chip, and

figure 20 shows the area of the standard cells used.

Figure 18. Chip width
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Figure 19. Chip Length

Figure 20. Area of standard cells
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Power

Power consumption of the flattened design is observed to be higher than that of the hierarchical

one. The reason for that is that the flat design implements all design blocks and sub-blocks and

there is no room for sharing a certain block more than once in the same design. The overall

power consumption of the flat flow is 1.8mW. Figure 21 illustrates the detailed results of the flat

design.

Figure 21. Power Analysis of Flat Design

4.3.3 Hierarchical Flow results

The hierarchical flow is expected to be slower than the other two flows since it does not provide

enough optimization in order to keep the design hierarchy. For the timing results of the

hierarchical flow, the design could not work at the required period of 2 ns. A large negative slack

existed and could not be fixed by the PrimeTime change list. Since the available optimizations

techniques could not fix the timing of the design the clock period of the design is increased to

determine the smallest period that can be achieved using this flow. The achieved period was 3.3

ns which is larger than the other two flows as expected. The final achieved total area 128,950

square micrometers. Total power achieved was 1.3108 mW.

66



5- Cost Analysis

- Our project:

We are doing the ASIC design of RISCY as an IP. We used openPDK45n which is an educational

open-source library, free to use. The tools used are DC, ICC, and PT, all are educationally

licensed. Tools cost is $240 per year According to Synopsys Academic Program, the core can not

be contained in a chip because there are no I/O cells to connect it to the outside world during the

packaging phase. Also, the design can not be fabricated because openPDK45n can not be

fabricated. So, the final design can be considered as a hard IP [27].

- Industrial:

If the target is to do the ASIC design of the RISCY as a chip. The tools needed will be DC, ICC

or ICC2, PT, and ICV.

- Tools cost:

The cost depends on the time and the complexity of the design. Also, we may need other tools

such as Formality. Yet, on average it will be $30K-$100K. Unofficial estimates are available at

[28]

Library cost: The cost depends on the library technology and quality.

- Impact :

There is a demand for processors in security, AI, Graphics, and high-performance computing

fields. Science Risc-V processor is open-source and has ints Instruction Set Architectures. So,

there is a potential to contribute to many research projects such as Nutshell: A Linux Compatible

RISC-V Processor Chinese group. Their target is to have a Linux-compatible RISC-V processor
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supporting both the SV39 virtual-memory system and the RV64MAC instruction extension. As a

result, European Processor Initiative (EPI) is developing a RISC-V processor which will lead to

high-performance and low-power processing units [29] .

Since RISCY is a small processor, it most fits low-power applications. This impacts the IoT

field. There is a recent trend which is IoT security. Since most IoT systems’ security have limited

capabilities, and there is a potential for personal data attack. RISC-V can guarantee data and

programs confidentiality, integrity, and availability. Also, it has two advantages over traditional

security systems. RISC-V ISA is open instead of the IPs that lead to fragmented and expensive

design. In addition, IPs result in rigid and complex software implementation as there are many IP

vendors. As a result, RISC-V will lead this field [30].

- Ethics:

all RTL designs have no copyrights and are free to use. Also, the tools are licensed. So, there are

not unethical aspects.

- Sustainability:

There are two points that will be considered in this design and shall be considered in any AISC

design project which are electromigration and aging. They are part of the full reliability solutions

for the entire product lifetime. The two chosen points are under the wear-out failures section [31]
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).

Figure 22. Full product life cycle [31]

Firstly, electromigration is the movement of the atoms based on the circuit current. If it is high,

the heat dissipation will break atoms from the material causing vacancies and deposits which
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may result in open or short circuits.

Figure 23. Electromigration [32]

TO solve this problem, the wire width should be large enough to hold the circuit current. There

are 4 EM constraints depending on the current type chosen such as absolute, average, peak, and

root-mean-square currents. The most critical current is the peak current, so the circuit should be

able to handle the circuit max current. Also, EM depends on many factors such as wire material,

temperature, and size [32].
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Secondly, aging is defined as a time-dependent degradation of the electrical properties in IC. In

advanced technologies, the electrical behaviors of transistors deviate from original intended

behaviors during the chip’s lifetime. This causes the circuit to degrade the chip performance until

the chip fails to do its required function.

Aging can be analyzed using many models. Also, Synopsys offers a tool to analyze aging.

Figure 24. Device aging model [33]

The aging analysis is important to estimate the lifetime of the commercial products from the

manufacturing company.
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6- Conclusion and Future Work

The topographical flow achieves lowest timing as expected. The hierarchical flow achieves the

smallest area. It is intended to package the RISCY hard IP so that it can be fabricated on a chip.

Currently, Fabricating the design is not possible because the used library does not have I/O cells.

I/O cells are the cells that connect the chip to the outside world. Those cells are required only if

the target is to tap out the design. Also, the used FreePDK45 is not an industrial library, so its

standard cells can not be fabricated.

So, to proceed to the tap-out phase, the library shall be replaced with an industrial library

containing I/O cells. In addition, a packaging tool should be used. Synopsys has 3DIC Compiler

tool which can do packaging [34]. To proceed with this phase, the team needs to read the tool

manual because it has not been used before by any team member. Also, the library problem

should be resolved as it is not common for undergraduate students in an educational project to

have access to industrial libraries.

On the other hand, we can use the OpenCell 15nm library, it was reported to have a better

optimization than the 45nm library. The main change in the 15nm library is the use of FinFet

transistors but it has less number of standard cells. The 15nm has a smaller number of cells so

when comparing between the two libraries using the common cells we get a better optimization

of the speed, area and power consumption.

More development could be done by using this processor inside the higher project called

Convolutional Neural Network for LIDAR Data processing. Its main function would be making
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the preprocessing steps on the LIDAR Data before going into the Neural Network. After that the

Neural Network will make all the related processes of detecting and selecting objects.

7 - Conclusion:

In conclusion, we could notice that the topographical flow has the best timing with the shortest

clock period of 1.8 ns. The flat flow has better timing than the hierarchical flow as expected

since the flat flow performs ungrouping of the hierarchies to allow for further optimizations.

Regarding the area, the hierarchical flow has the smallest area as expected. Both the flat flow and

the topographical flat flow have nearly the same area. When it comes to power, the Hierarchical

flow has the lowest power consumption. That is expected since its clock period is the largest. To

make a reasonable comparison in the results, we cannot compare the periods or the power only.

The power delay product should be considered. It was noticed that the power delay product of

the flat flow is the smallest. The detailed results are emphasized in the below table.

Point of
Comparison

Flat Hierarchical Topographical
(flat)

Area (square um) 134,753 128,950 136,938

Timing (min period) 2.3 ns 3.3 ns 1.8 ns

Power
1.8 mW

1.3108 mW 2.42 mW

Power Delay
Product

4.14 pJ 4.33 pJ 4.356 pJ
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Appendix

1. Topographical flow Codes

First Pass Synthesis

set hdlin_sverilog_std 2009
set design cv32e40p_core
set_app_var search_path
"/home/nano/Documents/NangateOpenCellLibrary_PDKv1_3_v2010_12/lib/Front_End/Liberty/NLDM \
/home/nano/Documents/NangateOpenCellLibrary_PDKv1_3_v2010_12/lib/Back_End/virtuoso/NangateO
penCellLibrary"
set_app_var link_library "* NangateOpenCellLibrary_ss0p95vn40c.db"
set_app_var target_library "NangateOpenCellLibrary_ss0p95vn40c.db"
sh rm -rf work
sh mkdir -p work
define_design_lib work -path ./work
analyze -library work -format sverilog ../rtl/cv32e40p_core.sv
elaborate cv32e40p_core -lib work
current_design
check_design
source ./cons/cv32e40p_core.sdc
link
compile_ultra -timing_high_effort_script \

-gate_clock \
-retime

compile_ultra -incremental
report_area > ./report/synth_area.rpt
report_power > ./report/synth_power.rpt
report_cell > ./report/synth_cells.rpt
report_qor  > ./report/synth_qor.rpt
report_resources > ./report/synth_resources.rpt
report_timing -max_paths 10 > ./report/synth_timing.rpt
write_sdc  output/cv32e40p_core.sdc
define_name_rules  no_case -case_insensitive
change_names -rule no_case -hierarchy
change_names -rule verilog -hierarchy
set verilogout_no_tri true
set verilogout_equation  false
write -hierarchy -format verilog -output output/cv32e40p_core.v
write -f ddc -hierarchy -output output/cv32e40p_core.ddc
exit

Floorplanning & Power Grid

set hdlin_sverilog_std 2009
set design cv32e40p_core

sh rm -rf $design

set sc_dir "/home/nano/Documents/NangateOpenCellLibrary_PDKv1_3_v2010_12"
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set_app_var search_path
"/home/nano/Documents/NangateOpenCellLibrary_PDKv1_3_v2010_12/lib/Front_End/Liberty/NLDM \

/home/nano/Documents/risc/rtl"

set_app_var link_library "* NangateOpenCellLibrary_ss0p95vn40c.db"
set_app_var target_library "NangateOpenCellLibrary_ss0p95vn40c.db"

create_mw_lib   ./${design} \
-technology $sc_dir/tech/techfile/milkyway/FreePDK45_10m.tf \

-mw_reference_library $sc_dir/lib/Back_End/mdb \
-hier_separator {/} \
-bus_naming_style {[%d]} \
-open

set tlupmax "$sc_dir/tech/rcxt/FreePDK45_10m_Cmax.tlup"
set tlupmin "$sc_dir/tech/rcxt/FreePDK45_10m_Cmin.tlup"
set tech2itf "$sc_dir/tech/rcxt/FreePDK45_10m.map"

set_tlu_plus_files -max_tluplus $tlupmax \
-min_tluplus $tlupmin \

-tech2itf_map $tech2itf

#####################################################
import_designs  ../syn/output/${design}.v \

-format verilog \
-top ${design} \
-cel ${design}

source  ../syn/cons/cv32e40p_core.sdc
set_propagated_clock [get_clocks clk_i]
save_mw_cel -as ${design}_1_imported

##############################################
########### 2. Floorplan #####################
##############################################

create_floorplan -control_type aspect_ratio \
-core_aspect_ratio 2 \
-core_utilization .25 \
-start_first_row -flip_first_row \
-left_io2core 12.4 -bottom_io2core 12.4 -right_io2core 12.4 -top_io2core 12.4

report_ignored_layers
remove_ignored_layers -all
set_ignored_layers -max_routing_layer metal6
save_mw_cel -as ${design}_2_fp

##################################################
########### 3. POWER NETWORK #####################
##################################################
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derive_pg_connection -power_net VDD  \
-ground_net VSS \
-power_pin VDD  \
-ground_pin VSS

set_fp_rail_constraints -set_ring -nets  {VDD VSS} \
-horizontal_ring_layer { metal7 metal9 } \
-vertical_ring_layer { metal8 metal10 }  \
-ring_spacing 0.8 \
-ring_width 5 \
-ring_offset 0.8 \
-extend_strap core_ring

set_fp_rail_constraints -add_layer  -layer metal10 -direction vertical   -max_strap 128 -min_strap 20
-min_width 2.5 -spacing minimum
set_fp_rail_constraints -add_layer  -layer metal9 -direction horizontal -max_strap 128 -min_strap 20
-min_width 2.5 -spacing minimum
set_fp_rail_constraints -add_layer  -layer metal8 -direction vertical   -max_strap 128 -min_strap 20
-min_width 2.5 -spacing minimum
set_fp_rail_constraints -add_layer  -layer metal7 -direction horizontal -max_strap 128 -min_strap 20
-min_width 2.5 -spacing minimum
set_fp_rail_constraints -add_layer  -layer metal6 -direction vertical   -max_strap 128 -min_strap 20
-min_width 2.5 -spacing minimum

set_fp_rail_constraints -set_global

## Creating virtual PG pads
###########################

create_fp_virtual_pad -net VDD -point {17.3190 510.5095}
create_fp_virtual_pad -net VDD -point {52.3200 510.5095}
create_fp_virtual_pad -net VDD -point {87.4110 510.5095}
create_fp_virtual_pad -net VDD -point {122.4120 510.5095}
create_fp_virtual_pad -net VDD -point {157.4125 510.4185}
create_fp_virtual_pad -net VDD -point {192.5950 510.4185}
create_fp_virtual_pad -net VDD -point {227.5955 510.5095}
create_fp_virtual_pad -net VDD -point {262.7775 510.5095}
create_fp_virtual_pad -net VDD -point {268.3995 492.2835}
create_fp_virtual_pad -net VDD -point {268.2180 480.5865}
create_fp_virtual_pad -net VDD -point {268.2180 445.8575}
create_fp_virtual_pad -net VDD -point {268.2180 411.4010}
create_fp_virtual_pad -net VDD -point {268.2180 376.4000}
create_fp_virtual_pad -net VDD -point {268.2180 342.0340}
create_fp_virtual_pad -net VDD -point {268.2180 307.3055}
create_fp_virtual_pad -net VDD -point {268.3090 272.3955}
create_fp_virtual_pad -net VDD -point {268.2180 237.4855}
create_fp_virtual_pad -net VDD -point {268.2180 203.1195}
create_fp_virtual_pad -net VDD -point {268.2180 168.3000}
create_fp_virtual_pad -net VDD -point {268.2180 133.6620}
create_fp_virtual_pad -net VDD -point {268.2180 98.8425}
create_fp_virtual_pad -net VDD -point {268.2180 64.2950}
create_fp_virtual_pad -net VDD -point {268.2180 29.6570}
create_fp_virtual_pad -net VDD -point {262.5055 -0.0845}
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create_fp_virtual_pad -net VDD -point {227.5955 -0.1750}
create_fp_virtual_pad -net VDD -point {192.5040 -0.0845}
create_fp_virtual_pad -net VDD -point {157.4125 -0.0845}
create_fp_virtual_pad -net VDD -point {122.3215 0.0060}
create_fp_virtual_pad -net VDD -point {87.2300 -0.0845}
create_fp_virtual_pad -net VDD -point {52.2290 -0.0845}
create_fp_virtual_pad -net VDD -point {17.2285 -0.0845}
create_fp_virtual_pad -net VDD -point {0.0000 18.2320}
create_fp_virtual_pad -net VDD -point {0.0000 52.6885}
create_fp_virtual_pad -net VDD -point {0.0000 87.5080}
create_fp_virtual_pad -net VDD -point {0.0000 122.1460}
create_fp_virtual_pad -net VDD -point {-0.0905 156.4215}
create_fp_virtual_pad -net VDD -point {0.0000 191.6035}
create_fp_virtual_pad -net VDD -point {0.0000 226.3320}
create_fp_virtual_pad -net VDD -point {0.0000 260.9700}
create_fp_virtual_pad -net VDD -point {0.0000 295.6990}
create_fp_virtual_pad -net VDD -point {0.0000 330.5185}
create_fp_virtual_pad -net VDD -point {0.0000 364.9750}
create_fp_virtual_pad -net VDD -point {0.0000 399.7945}
create_fp_virtual_pad -net VDD -point {0.0000 434.7045}
create_fp_virtual_pad -net VDD -point {0.0000 469.1615}
create_fp_virtual_pad -net VDD -point {0.0000 503.7995}
create_fp_virtual_pad -net VSS -point {34.8195 510.4185}
create_fp_virtual_pad -net VSS -point {69.8200 510.6905}
create_fp_virtual_pad -net VSS -point {104.8210 510.5095}
create_fp_virtual_pad -net VSS -point {140.0030 510.6000}
create_fp_virtual_pad -net VSS -point {175.0040 510.6000}
create_fp_virtual_pad -net VSS -point {210.0045 510.5095}
create_fp_virtual_pad -net VSS -point {245.0055 510.4185}
create_fp_virtual_pad -net VSS -point {268.2180 498.1775}
create_fp_virtual_pad -net VSS -point {268.2180 463.3580}
create_fp_virtual_pad -net VSS -point {268.2180 428.7200}
create_fp_virtual_pad -net VSS -point {268.2180 393.9915}
create_fp_virtual_pad -net VSS -point {268.2180 359.2625}
create_fp_virtual_pad -net VSS -point {268.2180 324.5340}
create_fp_virtual_pad -net VSS -point {268.2180 289.8955}
create_fp_virtual_pad -net VSS -point {268.2180 255.0765}
create_fp_virtual_pad -net VSS -point {268.3090 220.3475}
create_fp_virtual_pad -net VSS -point {268.3090 185.8000}
create_fp_virtual_pad -net VSS -point {268.3090 150.9810}
create_fp_virtual_pad -net VSS -point {268.2180 116.3430}
create_fp_virtual_pad -net VSS -point {268.2180 81.6140}
create_fp_virtual_pad -net VSS -point {268.2180 46.8855}
create_fp_virtual_pad -net VSS -point {268.2180 12.1565}
create_fp_virtual_pad -net VSS -point {245.0960 -0.0845}
create_fp_virtual_pad -net VSS -point {209.9140 -0.1750}
create_fp_virtual_pad -net VSS -point {174.9130 -0.0845}
create_fp_virtual_pad -net VSS -point {140.0030 -0.0845}
create_fp_virtual_pad -net VSS -point {104.8210 -0.0845}
create_fp_virtual_pad -net VSS -point {69.9110 -0.0845}
create_fp_virtual_pad -net VSS -point {34.6380 -0.0845}
create_fp_virtual_pad -net VSS -point {0.0000 -0.0845}
create_fp_virtual_pad -net VSS -point {0.0000 35.1880}
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create_fp_virtual_pad -net VSS -point {0.0000 70.1890}
create_fp_virtual_pad -net VSS -point {0.0000 104.6455}
create_fp_virtual_pad -net VSS -point {0.0000 139.4650}
create_fp_virtual_pad -net VSS -point {0.0000 174.1940}
create_fp_virtual_pad -net VSS -point {0.0000 208.7410}
create_fp_virtual_pad -net VSS -point {0.0905 243.3790}
create_fp_virtual_pad -net VSS -point {0.0905 278.3800}
create_fp_virtual_pad -net VSS -point {0.0000 312.9275}
create_fp_virtual_pad -net VSS -point {0.0000 347.5655}
create_fp_virtual_pad -net VSS -point {0.0000 382.4755}
create_fp_virtual_pad -net VSS -point {0.0000 417.0230}
create_fp_virtual_pad -net VSS -point {0.0000 451.8425}
create_fp_virtual_pad -net VSS -point {0.0905 486.5710}
# you can create them with gui. Preroute > Create Virtual Power Pad
############################################################################
############################################################################
############
create_fp_virtual_pad -net VDD -point {23.2985 518.8505}
create_fp_virtual_pad -net VDD -point {70.8200 518.9530}
create_fp_virtual_pad -net VDD -point {118.3410 518.8505}
create_fp_virtual_pad -net VDD -point {165.7600 518.9530}
create_fp_virtual_pad -net VDD -point {213.3835 518.9530}
create_fp_virtual_pad -net VDD -point {260.9050 518.9530}
create_fp_virtual_pad -net VDD -point {272.6050 482.7220}
create_fp_virtual_pad -net VDD -point {272.6050 435.6115}
create_fp_virtual_pad -net VDD -point {272.6050 388.6035}
create_fp_virtual_pad -net VDD -point {272.6050 341.8010}
create_fp_virtual_pad -net VDD -point {272.6050 294.5875}
create_fp_virtual_pad -net VDD -point {272.6050 247.2720}
create_fp_virtual_pad -net VDD -point {272.5025 200.3665}
create_fp_virtual_pad -net VDD -point {272.5105 153.5530}
create_fp_virtual_pad -net VDD -point {272.5105 106.5435}
create_fp_virtual_pad -net VDD -point {272.5105 59.1235}
create_fp_virtual_pad -net VDD -point {272.6135 12.2170}
create_fp_virtual_pad -net VDD -point {237.0990 -0.0985}
create_fp_virtual_pad -net VDD -point {189.6795 0.0035}
create_fp_virtual_pad -net VDD -point {142.0540 -0.0985}
create_fp_virtual_pad -net VDD -point {94.7370 -0.2015}
create_fp_virtual_pad -net VDD -point {47.1120 -0.2015}
create_fp_virtual_pad -net VDD -point {0.0000 0.0035}
create_fp_virtual_pad -net VDD -point {0.0000 47.5260}
create_fp_virtual_pad -net VDD -point {0.0000 94.8450}
create_fp_virtual_pad -net VDD -point {0.0000 141.6485}
create_fp_virtual_pad -net VDD -point {0.0000 188.6580}
create_fp_virtual_pad -net VDD -point {0.0000 235.8720}
create_fp_virtual_pad -net VDD -point {0.0000 283.0865}
create_fp_virtual_pad -net VDD -point {0.0000 329.9930}
create_fp_virtual_pad -net VDD -point {-0.1025 376.7970}
create_fp_virtual_pad -net VDD -point {0.0000 423.8060}
create_fp_virtual_pad -net VDD -point {0.0000 471.1230}
create_fp_virtual_pad -net VSS -point {0.0000 494.6275}
create_fp_virtual_pad -net VSS -point {47.0090 518.8505}
create_fp_virtual_pad -net VSS -point {94.6340 518.9530}
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create_fp_virtual_pad -net VSS -point {142.0535 518.8505}
create_fp_virtual_pad -net VSS -point {189.5760 518.8505}
create_fp_virtual_pad -net VSS -point {237.2010 518.8505}
create_fp_virtual_pad -net VSS -point {272.5090 506.2260}
create_fp_virtual_pad -net VSS -point {272.5105 459.1135}
create_fp_virtual_pad -net VSS -point {272.5145 412.0000}
create_fp_virtual_pad -net VSS -point {272.5145 365.1955}
create_fp_virtual_pad -net VSS -point {272.5145 318.1850}
create_fp_virtual_pad -net VSS -point {272.5145 271.1750}
create_fp_virtual_pad -net VSS -point {272.5145 223.9600}
create_fp_virtual_pad -net VSS -point {272.5145 176.8470}
create_fp_virtual_pad -net VSS -point {272.5145 129.9395}
create_fp_virtual_pad -net VSS -point {272.5145 83.1350}
create_fp_virtual_pad -net VSS -point {272.5145 35.8170}
create_fp_virtual_pad -net VSS -point {260.8135 -0.2105}
create_fp_virtual_pad -net VSS -point {213.2900 -0.1075}
create_fp_virtual_pad -net VSS -point {165.8695 -0.0050}
create_fp_virtual_pad -net VSS -point {118.3465 -0.0050}
create_fp_virtual_pad -net VSS -point {70.8230 -0.0050}
create_fp_virtual_pad -net VSS -point {23.3000 -0.1075}
create_fp_virtual_pad -net VSS -point {0.0000 24.0130}
create_fp_virtual_pad -net VSS -point {0.0000 71.2285}
create_fp_virtual_pad -net VSS -point {0.0000 118.1360}
create_fp_virtual_pad -net VSS -point {0.0000 165.1460}
create_fp_virtual_pad -net VSS -point {-0.1025 212.2585}
create_fp_virtual_pad -net VSS -point {0.0000 259.2685}
create_fp_virtual_pad -net VSS -point {0.0000 306.4840}
create_fp_virtual_pad -net VSS -point {0.0000 353.4940}
create_fp_virtual_pad -net VSS -point {0.0000 400.4015}
create_fp_virtual_pad -net VSS -point {0.0000 447.5140}
############################################################################
############################################################################
############
############################################################################
############################################################################
############

synthesize_fp_rail  -nets {VDD VSS} -synthesize_power_plan -target_voltage_drop 22 -voltage_supply 1.1
-power_budget 500

# Generate the real power network
commit_fp_rail

# Set maximum metal layer in DRC for power network connections for standard cells
set_preroute_drc_strategy -max_layer metal6

# Connect standard cells power and ground pins to the power and ground rings and straps
preroute_standard_cells -fill_empty_rows -remove_floating_pieces

# Analyze IR-drop; Modify power network constraints and re-synthesize, as needed.
analyze_fp_rail  -nets {VDD VSS} -power_budget 500 -voltage_supply 1.1

add_tap_cell_array -master   TAP \
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-distance 30  \
-pattern  stagger_every_other_row

save_mw_cel -as ${design}_3_power
############################################################################
######################OUTPUT TO DC TOPO######################################
############################################################################
write_floorplan -all /home/nano/Documents/risc/pnr/output/cv32e40p_core.fp
write_def -output /home/nano/Documents/risc/pnr/output/cv32e40p_core.def
############################################################################

Second Pass Synthesis

set hdlin_sverilog_std 2009
set design cv32e40p_core
set_app_var search_path
"/home/nano/Documents/NangateOpenCellLibrary_PDKv1_3_v2010_12/lib/Front_End/Liberty/NLDM \
/home/nano/Documents/NangateOpenCellLibrary_PDKv1_3_v2010_12/lib/Back_End/virtuoso/NangateO
penCellLibrary"

set_app_var link_library "* NangateOpenCellLibrary_ss0p95vn40c.db"
set_app_var target_library "NangateOpenCellLibrary_ss0p95vn40c.db"

sh rm -rf work
set sc_dir "/home/nano/Documents/NangateOpenCellLibrary_PDKv1_3_v2010_12"
create_mw_lib   ./${design} \

-technology $sc_dir/tech/techfile/milkyway/FreePDK45_10m.tf \
-mw_reference_library $sc_dir/lib/Back_End/mdb \
-hier_separator {/} \
-bus_naming_style {[%d]} \
-open

set tlupmax "$sc_dir/tech/rcxt/FreePDK45_10m_Cmax.tlup"
set tlupmin "$sc_dir/tech/rcxt/FreePDK45_10m_Cmin.tlup"
set tech2itf "$sc_dir/tech/rcxt/FreePDK45_10m.map"
set_tlu_plus_files -max_tluplus $tlupmax \

-min_tluplus $tlupmin \
-tech2itf_map $tech2itf

sh mkdir -p work
define_design_lib work -path ./work
analyze -library work -format sverilog ../rtl/cv32e40p_core.sv
elaborate cv32e40p_core -lib work
current_design
extract_physical_constraints /home/nano/Documents/risc/pnr/output/cv32e40p_core.def -verbose
-exact -allow_physical_cells
read_floorplan /home/nano/Documents/risc/pnr/output/cv32e40p_core.fp -echo >
./report/read_floorplan_report.rpt

check_design
source ./cons/cv32e40p_core.sdc
link
compile_ultra -spg \

-timing_high_effort_script \
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-gate_clock \
-retime

report_area > ./report/synth_area.rpt
report_power > ./report/synth_power.rpt
report_cell > ./report/synth_cells.rpt
report_qor  > ./report/synth_qor.rpt
report_resources > ./report/synth_resources.rpt
report_timing -max_paths 10 > ./report/synth_timing.rpt

write_sdc  output/cv32e40p_core.sdc
define_name_rules  no_case -case_insensitive
change_names -rule no_case -hierarchy
change_names -rule verilog -hierarchy
set verilogout_no_tri true
set verilogout_equation  false

write -hierarchy -format verilog -output output/cv32e40p_core.v
write -f ddc -hierarchy -output output/cv32e40p_core.ddc
write_floorplan -all /home/nano/Documents/risc/syn_topo/output/cv32e40p_core.fp
write_def -output /home/nano/Documents/risc/syn_topo/output/cv32e40p_core.def

exit

Routing

set hdlin_sverilog_std 2009
set design cv32e40p_core

set sc_dir "/home/nano/Documents/NangateOpenCellLibrary_PDKv1_3_v2010_12"

set_app_var search_path
"/home/nano/Documents/NangateOpenCellLibrary_PDKv1_3_v2010_12/lib/Front_End/Liberty/NLDM \

/home/nano/Documents/risc/rtl"

set_app_var link_library "* NangateOpenCellLibrary_ss0p95vn40c.db"
set_app_var target_library "NangateOpenCellLibrary_ss0p95vn40c.db"

set tlupmax "$sc_dir/tech/rcxt/FreePDK45_10m_Cmax.tlup"
set tlupmin "$sc_dir/tech/rcxt/FreePDK45_10m_Cmin.tlup"
set tech2itf "$sc_dir/tech/rcxt/FreePDK45_10m.map"

set_tlu_plus_files -max_tluplus $tlupmax \
-min_tluplus $tlupmin \

-tech2itf_map $tech2itf

################second time icc#####################
open_mw_lib cv32e40p_core

87



read_ddc /home/nano/Documents/risc/syn_topo/output/cv32e40p_core.ddc
read_def /home/nano/Documents/risc/syn_topo/output/cv32e40p_core.def
#####################################################
source  ../syn/cons/cv32e40p_core.sdc
set_propagated_clock [get_clocks clk_i]

##########################################
################PLACEMENT#################
##########################################
place_opt -spg -effort high -congestion #max_cell_density 40%

set tie_pins [get_pins -all -filter "constant_value == 0 || constant_value == 0 && name !~ V* &&
is_hierarchical == false "]
derive_pg_connection     -power_net VDD \

-ground_net VSS \
-power_pin VDD \
-ground_pin VSS

if {[sizeof_collection $tie_pins] > 0 } {
connect_tie_cells -objects $tie_pins \

-obj_type port_inst \
-tie_low_lib_cell  LOGIC0_X1 \
-tie_high_lib_cell LOGIC1_X1

}
save_mw_cel -as ${design}_4_placed

##############################################
########### 5. CTS       #####################
##############################################

check_physical_design -stage pre_clock_opt

check_clock_tree
report_clock_tree

report_qor
report_timing

set_driving_cell -lib_cell BUF_X16 -pin Z [get_ports clk_i]

set_clock_tree_options \
-clock_trees clk_i \

-target_early_delay 0.1 \
-target_skew 0.5 \
-max_capacitance 300 \
-max_fanout 10 \
-max_transition 0.3
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set_clock_tree_options -clock_trees clk_i \
-buffer_relocation true \
-buffer_sizing true \
-gate_relocation true \
-gate_sizing true

set_clock_tree_references -references [get_lib_cells */CLKBUF*]

compile_clock_tree

clock_opt -fix_hold_all_clocks -congestion

report_congestion
report_qor

derive_pg_connection -power_net VDD  \
-ground_net VSS \
-power_pin VDD  \
-ground_pin VSS

save_mw_cel -as ${design}_5_cts

##report_timing to see network delay of launch from clk port to reg and capture from reg to clk port and
check if balanced
##create_balanced_group if not
##local skew and global skew
##############################################
########### 6. Routing   #####################
##############################################

insert_spare_cells -lib_cell {NOR2_X4 NAND2_X4} \
-num_instances 20 \
-cell_name SPARE_PREFIX_NAME \
-tie

set_dont_touch  [all_spare_cells] true
set_attribute [all_spare_cells]  is_soft_fixed true

check_physical_design -stage pre_route_opt

all_ideal_nets
all_high_fanout -nets -threshold 100
check_routeability

set_delay_calculation_options -arnoldi_effort high

set_route_options -groute_timing_driven true \
-groute_incremental true \
-track_assign_timing_driven true \
-same_net_notch check_and_fix
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set_si_options -route_xtalk_prevention true \
-delta_delay true \
-min_delta_delay true \
-static_noise true\
-timing_window true

route_auto -effort high

route_opt -incremental -effort high  -stage track

derive_pg_connection -power_net VDD  \
-ground_net VSS \
-power_pin VDD  \
-ground_pin VSS

save_mw_cel -as ${design}_6_routed
##############################################
########### 7. Finishing #####################
##############################################
#
#derive_pg_connection -power_net VDD -ground_net VSS -power_pin VDD -ground_pin VSS -create_ports
top -reconnect -preserve_physical_only_pg

insert_stdcell_filler -cell_without_metal {FILLCELL_X32 FILLCELL_X16 FILLCELL_X8 FILLCELL_X4
FILLCELL_X2 FILLCELL_X1} \

-connect_to_power VDD -connect_to_ground VSS

route_eco -search_repair_loop 20 -utilize_dangling_wires -reroute modified_nets_first_then_others
route_zrt_eco -open_net_driven true -reroute modified_nets_first_then_others
-reuse_existing_global_route true -utilize_dangling_wires true

focal_opt      -drc_nets all -effort high
focal_opt      -drc_pins all -effort high

derive_pg_connection     -power_net VDD \
-ground_net VSS \
-power_pin VDD \
-ground_pin VSS

remove_floating_pg -nets VDD -pad_lib_cells {*}
remove_floating_pg -nets VSS -pad_lib_cells {*}

insert_metal_filler -timing_driven -from_metal 1 -to_metal 6

save_mw_cel -as ${design}_7_finished
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save_mw_cel -as ${design}

#via insertion
preroute_standard_cells -fill_empty_rows #-remove_floating_pieces
create_preroute_vias -nets {VDD} \

-from_layer metal1 -to_layer metal6 \
-to_object_strap -from_object_std_pin_connection\
-within {{126.5  68.2} {129.1 68.5}} \
-mark_as user_defined

create_preroute_vias -nets {VDD} \
-from_layer metal1 -to_layer metal6 \
-to_object_strap -from_object_std_pin_connection\
-within {{80.5  68.2} {83.5 68.5}} \
-mark_as user_defined

create_preroute_vias -nets {VDD} \
-from_layer metal1 -to_layer metal6 \
-to_object_strap -from_object_std_pin_connection\
-within {{23.1  68.2} {25.8 68.5}} \
-mark_as user_defined

create_preroute_vias -nets {VDD} \
-from_layer metal1 -to_layer metal6 \
-to_object_strap -from_object_std_pin_connection\
-within {{217.7  68.2} {220.3 68.5}} \
-mark_as user_defined

create_preroute_vias -nets {VDD} \
-from_layer metal1 -to_layer metal6 \
-to_object_strap -from_object_std_pin_connection\
-within {{172.1  68.2} {174.7 68.5}} \
-mark_as user_defined

update_clock_latency

report_clock -skew

##############################################
########### 8. Checks and Outputs ############
##############################################
#PG
verify_pg_nets -pad_pin_connection all
#routing
verify_zrt_route
#LVS
verify_lvs -ignore_floating_port -ignore_floating_net \

-check_open_locator -check_short_locator
#DRC
report_design -physical
#congestion
report_congestion
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#timing
report_timing

#min and max routing
layers#################################################################

set_write_stream_options -map_layer $sc_dir/tech/strmout/FreePDK45_10m_gdsout.map \
-output_filling fill \

-child_depth 20 \
-output_outdated_fill  \
-output_pin  {text geometry}

write_stream -lib $design \
-format gds\

-cells $design\
./output/${design}.gds

define_name_rules  no_case -case_insensitive
change_names -rule no_case -hierarchy
change_names -rule verilog -hierarchy
set verilogout_no_tri true
set verilogout_equation  false

write_verilog -pg -no_physical_only_cells ./output/${design}_icc.v
write_verilog -no_physical_only_cells ./output/${design}_icc_nopg.v
##write new sdc to be used in pt
##ctrl+shift+N on path in gui to search for clock buffers
extract_rc
write_parasitics -output {./output/${design}.spef}

write_sdc ./output/${design}.sdc
close_mw_cel
close_mw_lib
exit

Primetime Hold

# Set your top module name as design
set design cv32e40p_core

set link_path "*
/home/nano/Documents/NangateOpenCellLibrary_PDKv1_3_v2010_12/lib/Front_End/Liberty/NLDM/Nan
gateOpenCellLibrary_ff1p25v0c.db"

read_verilog "../../pnr/output/${design}_icc.v"
#read_verilog "./${design}_icc.v"

current_design $design
link

source ../../pnr/output/${design}.sdc
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read_parasitics ../../pnr/output/${design}.spef.min

update_timing
report_timing -delay_type min
fix_eco_timing -type hold -methods insert_buffer -buffer_list {BUF_X4}
write_changes -format icctcl -output ./eco_hold.tcl
save_session ${design}_min.session

report_constraint -all_violators -significant_digits 4 > ./${design}.min_constr.rpt
report_timing -delay_type min -nworst 40 -significant_digits 4 > ./${design}.min_timing.rpt

write_sdf ./${design}.min.sdf

Primetime Setup

# Set your top module name as design
set design cv32e40p_core

set link_path  "*
/home/nano/Documents/NangateOpenCellLibrary_PDKv1_3_v2010_12/lib/Front_End/Liberty/NLDM/Nan
gateOpenCellLibrary_ss0p95vn40c.db"

read_verilog "../../pnr/output/${design}_icc.v"

current_design $design
link

source ../../pnr/output/${design}.sdc
read_parasitics ../../pnr/output/${design}.spef.max

update_timing
report_timing -delay_type max
fix_eco_timing -type setup -methods size_cell -buffer_list {BUFX4}
write_changes -format icctcl -output ./eco2.tcl
save_session ${design}_max.session

report_constraint -all_violators -significant_digits 4 > ./${design}.max_constr.rpt
report_timing -delay_type max -nworst 40 -significant_digits 4 > ./${design}.max_timing.rpt

write_sdf ./${design}.max.sdf
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2. Hierarchical flow Codes

2.1 Synthesis

# Set your top module name as design

set hdlin_sverilog_std 2009

set design cv32e40p_core

# Set the search_path, link_library, and target_library Synopsys application variables

set_app_var search_path
"/home/standard_cell_libraries/NangateOpenCellLibrary_PDKv1_3_v2010_12/lib/Front_End/Liberty/NLD
M \

/home/ahesham/Desktop/RISK_GP/rtl"

set_app_var link_library "* NangateOpenCellLibrary_ss0p95vn40c.db"
set_app_var target_library "NangateOpenCellLibrary_ss0p95vn40c.db"

# Remove any residing work directory from previous runs
sh rm -rf work

# Make the directory work
sh mkdir -p work

# Set the directory work to be the work library for this synthesis run
define_design_lib work -path ./work

# Analyze and elaborate your top module
analyze -library work -format sverilog ../rtl/cv32e40p_pkg.sv
analyze -library work -format sverilog ../rtl/cv32e40p_apu_core_pkg.sv
analyze -library work -format sverilog ../rtl/cv32e40p_fpu_pkg.sv
analyze -library work -format sverilog ../rtl/cv32e40p_tracer_pkg.sv
analyze -library work -format sverilog ../rtl/cv32e40p_sim_clock_gate.sv
analyze -library work -format sverilog ../rtl/cv32e40p_register_file_ff.sv
analyze -library work -format sverilog ../rtl/cv32e40p_decoder.sv
analyze -library work -format sverilog ../rtl/cv32e40p_controller.sv
analyze -library work -format sverilog ../rtl/cv32e40p_int_controller.sv
analyze -library work -format sverilog ../rtl/cv32e40p_alu.sv
analyze -library work -format sverilog ../rtl/cv32e40p_mult.sv
analyze -library work -format sverilog ../rtl/cv32e40p_obi_interface.sv
analyze -library work -format sverilog ../rtl/cv32e40p_prefetch_controller.sv
analyze -library work -format sverilog ../rtl/cv32e40p_fifo.sv
analyze -library work -format sverilog ../rtl/cv32e40p_popcnt.sv
analyze -library work -format sverilog ../rtl/cv32e40p_ff_one.sv
analyze -library work -format sverilog ../rtl/cv32e40p_alu_div.sv
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analyze -library work -format sverilog ../rtl/cv32e40p_register_file_ff.sv
analyze -library work -format sverilog ../rtl/cv32e40p_sim_clock_gate.sv
analyze -library work -format sverilog ../rtl/cv32e40p_hwloop_regs.sv
analyze -library work -format sverilog ../rtl/cv32e40p_apu_disp.sv
analyze -library work -format sverilog ../rtl/${design}.sv

elaborate $design -lib work

# Make sure that the current design is your top module in dc_shell memory
current_design

# Check design for any inconsistencies
check_design

# Read the timing constraints file
source ./cons/cv32e40p_core.sdc

# Resolve references
link

# Synthesize and optimize the gate-level netlist

2.2 Place and route

set hdlin_sverilog_std 2009
set design cv32e40p_core

sh rm -rf $design
set sc_dir "/home/standard_cell_libraries/NangateOpenCellLibrary_PDKv1_3_v2010_12"

# Set the search_path, link_library, and target_library Synopsys application variables
set_app_var search_path
"/home/standard_cell_libraries/NangateOpenCellLibrary_PDKv1_3_v2010_12/lib/Front_End/Liberty/NLD
M \

/home/ahesham/Desktop/RISK_GP(copy)/pnr"

set_app_var link_library "* NangateOpenCellLibrary_ss0p95vn40c.db"
set_app_var target_library "NangateOpenCellLibrary_ss0p95vn40c.db"

create_mw_lib   ./${design} \
-technology $sc_dir/tech/techfile/milkyway/FreePDK45_10m.tf \

-mw_reference_library $sc_dir/lib/Back_End/mdb \
-hier_separator {/} \
-bus_naming_style {[%d]} \
-open

set tlupmax "$sc_dir/tech/rcxt/FreePDK45_10m_Cmax.tlup"
set tlupmin "$sc_dir/tech/rcxt/FreePDK45_10m_Cmin.tlup"
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set tech2itf "$sc_dir/tech/rcxt/FreePDK45_10m.map"

set_tlu_plus_files -max_tluplus $tlupmax \
-min_tluplus $tlupmin \

-tech2itf_map $tech2itf

#import_designs  /home/ahesham/Desktop/risc/syn_topo/output/${design}.v \
#                -format verilog \
# -top ${design} \
# -cel ${design}

import_designs  /home/ahesham/Desktop/RISK_GP/syn/output/${design}.v \
-format verilog \

-top ${design} \
-cel ${design}

source  /home/ahesham/Desktop/RISK_GP/syn/cons/cv32e40p_core.sdc
set_propagated_clock [get_clocks clk_i]

save_mw_cel -as ${design}_1_imported

##############################################
########### 2. Floorplan #####################
##############################################

## Create Starting Floorplan
############################
create_floorplan -control_type aspect_ratio \

-core_aspect_ratio 2 \
-core_utilization .25 \
-start_first_row -flip_first_row \
-left_io2core 12.4 -bottom_io2core 12.4 -right_io2core 12.4 -top_io2core 12.4

report_ignored_layers
remove_ignored_layers -all

set_ignored_layers -max_routing_layer metal6
create_fp_placement -effort high -congestion_driven -timing_driven

#create_fp_placement -effort high -congestion_driven -timing_driven

save_mw_cel -as fop

##################################################
########### 3. POWER NETWORK #####################
##################################################

derive_pg_connection -power_net VDD  \
-ground_net VSS \
-power_pin VDD  \
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-ground_pin VSS

set_fp_rail_constraints -set_ring -nets  {VDD VSS} \
-horizontal_ring_layer { metal7 metal9 } \
-vertical_ring_layer { metal8 metal10 }  \
-ring_spacing 0.8 \
-ring_width 5 \
-ring_offset 0.8 \
-extend_strap core_ring \

set_fp_rail_constraints -add_layer  -layer metal10 -direction vertical   -max_strap 128 -min_strap 20
-min_width 2.5 -spacing minimum
set_fp_rail_constraints -add_layer  -layer metal9 -direction horizontal -max_strap 128 -min_strap 20
-min_width 2.5 -spacing minimum
set_fp_rail_constraints -add_layer  -layer metal8 -direction  vertical  -max_strap 128 -min_strap 20
-min_width 2.5 -spacing minimum
set_fp_rail_constraints -add_layer  -layer metal7 -direction horizontal -max_strap 128 -min_strap 20
-min_width 2.5 -spacing minimum
set_fp_rail_constraints -add_layer  -layer metal6 -direction vertical   -max_strap 128 -min_strap 20
-min_width 2.5 -spacing minimum
set_fp_rail_constraints -set_global

## Creating virtual PG pads
###########################
# you can create them with gui. Preroute > Create Virtual Power Pad
############################################################################
############################################################################
############

-net VDD -point {49.0610 496.9990}
create_fp_virtual_pad -net VDD -point {119.1480 499.0010}
create_fp_virtual_pad -net VDD -point {187.2325 499.0010}
create_fp_virtual_pad -net VDD -point {0.0000 457.9505}
create_fp_virtual_pad -net VDD -point {261.3245 456.9490}
create_fp_virtual_pad -net VDD -point {0.0000 391.8680}
create_fp_virtual_pad -net VDD -point {261.3245 400.8795}
create_fp_virtual_pad -net VDD -point {262.3255 309.7665}
create_fp_virtual_pad -net VDD -point {-1.0010 295.7490}
create_fp_virtual_pad -net VDD -point {0.0000 210.6435}
create_fp_virtual_pad -net VDD -point {258.3205 213.6470}
create_fp_virtual_pad -net VDD -point {263.3270 119.5300}
create_fp_virtual_pad -net VDD -point {-1.0010 124.5365}
create_fp_virtual_pad -net VDD -point {49.0610 1.3835}
create_fp_virtual_pad -net VDD -point {125.1555 -0.6190}
create_fp_virtual_pad -net VDD -point {182.2260 -1.6200}
create_fp_virtual_pad -net VSS -point {81.0385 498.0000}
create_fp_virtual_pad -net VSS -point {154.0730 498.5000}
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create_fp_virtual_pad -net VSS -point {225.1070 497.5000}
create_fp_virtual_pad -net VSS -point {-0.5000 423.4645}
create_fp_virtual_pad -net VSS -point {261.6240 423.4645}
create_fp_virtual_pad -net VSS -point {-1.5005 345.9280}
create_fp_virtual_pad -net VSS -point {261.6240 348.4290}
create_fp_virtual_pad -net VSS -point {0.4985 252.6375}
create_fp_virtual_pad -net VSS -point {262.8170 260.6170}
create_fp_virtual_pad -net VSS -point {-0.4985 166.8605}
create_fp_virtual_pad -net VSS -point {261.8195 162.8710}
create_fp_virtual_pad -net VSS -point {261.8195 81.0835}
create_fp_virtual_pad -net VSS -point {-0.4985 80.0860}
create_fp_virtual_pad -net VSS -point {91.7990 -0.0540}
create_fp_virtual_pad -net VSS -point {157.2280 -0.0540}
create_fp_virtual_pad -net VSS -point {219.6710 -0.3025}
create_fp_virtual_pad -net VDD -point {262.4610 31.7895}
create_fp_virtual_pad -net VDD -point {-0.7460 35.2725}
create_fp_virtual_pad -net VDD -point {-0.7460 35.2725}
create_fp_virtual_pad -net VDD -point {-0.7460 35.2725}

############################################################################
############################################################################
############

synthesize_fp_rail  -nets {VDD VSS} -synthesize_power_plan -target_voltage_drop 22 -voltage_supply 1.1
-power_budget 500

# Generate the real power network
commit_fp_rail

# Set maximum metal layer in DRC for power network connections for standard cells
set_preroute_drc_strategy -max_layer metal10 -report_fail

# Connect standard cells power and ground pins to the power and ground rings and straps, if there is an
empty rows, add straps. if there are straps not conncted to anything, remove it
preroute_standard_cells -fill_empty_rows -remove_floating_pieces
#-special_via_rule optimize_via_locations

# Analyze IR-drop; Modify power network constraints and re-synthesize, as needed.
analyze_fp_rail  -nets {VDD VSS} -power_budget 500 -voltage_supply 1.1

# Final Floorplan Assessment
# Updates fp placement after PG mesh creation.
create_fp_placement -effort high -incremental all -congestion_driven  -timing_driven

add_tap_cell_array -master   TAP \
-distance 30 \
-pattern  stagger_every_other_row

verify_pg_nets -pad_pin_connection all
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save_mw_cel -as ${design}_3_power

##############################################
########### 4. Placement #####################
##############################################
report_ignored_layers
check_physical_design -stage pre_place_opt
check_physical_constraints

#Performs  simultaneous  placement,  routing, and optimization on the design
place_opt -effort high -congestion -cts
check_physical_constraints

psynopt -congestion

check_legality

verify_pg_nets -pad_pin_connection all

# DEFINING POWER/GROUND NETS AND PINS
derive_pg_connection     -power_net VDD \

-ground_net VSS \
-power_pin VDD \
-ground_pin VSS

## Tie fixed values
set tie_pins [get_pins -all -filter "constant_value == 0 || constant_value == 0 && name !~ V* &&
is_hierarchical == false "]

derive_pg_connection -power_net VDD \
-ground_net VSS \
-tie

#############
if {[sizeof_collection $tie_pins] > 0 } { connect_tie_cells -objects $tie_pins -obj_type port_inst
-tie_low_lib_cell  LOGIC0_X1  -tie_high_lib_cell LOGIC1_X1}

#############
verify_pg_nets -pad_pin_connection all

#remove_floating_pg -nets VSS -pad_lib_cells {*}
#remove_floating_pg -nets VDD -pad_lib_cells {*}

#verify_pg_nets -pad_pin_connection all

save_mw_cel -as ${design}_4_placed

##############################################
########### 5. CTS       #####################
##############################################
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check_physical_design -stage pre_clock_opt
check_clock_tree
report_clock_tree

set_driving_cell -lib_cell BUF_X16 -pin Z [get_ports clk_i]

define_routing_rule my_route_rule  \
-widths   {metal7 0.8 metal8 0.8} \
-spacings {metal7 0.8 metal8 0.8}

set_clock_tree_options \
-clock_trees clk_i \

-target_early_delay 0.1 \
-target_skew 0.5 \
-max_capacitance 300 \
-max_fanout 10 \
-max_transition 0.3 \
-routing_rule my_route_rule  \

-layer_list "metal7 metal8"

set_clock_tree_options  -clock_trees clk_i \
-buffer_relocation true \
-buffer_sizing true \
-gate_relocation true \
-gate_sizing true \
-use_default_routing_for_sinks 1

## To avoid NDR at clock sinks

set_clock_tree_references -references [get_lib_cells */CLKBUF*]

report_clock_tree -settings

## CTS
compile_clock_tree
clock_opt -fix_hold_all_clocks -congestion -operating_condition max

# DEFINING POWER/GROUND NETS AND PINS
derive_pg_connection     -power_net VDD \

-ground_net VSS \
-power_pin VDD \
-ground_pin VSS

save_mw_cel -as ${design}_5_cts

##############################################
########### 6. Routing   #####################
##############################################
## Before starting to route, you should add spare cells
insert_spare_cells -lib_cell {NOR2_X1 NAND3_X1 NAND2_X1 INV_X1 MUX2_X1 OAI221_X1 OAI211_X1
OAI22_X1 OAI21_X1 AOI22_X1 SDFFR_X1 BUF_X2 FA_X1 HA_X1 DFFR_X1} \

-num_instances 500 \
-cell_name SPARE_PREFIX_NAME \
-tie
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insert_spare_cells -lib_cell {NOR2_X4 NAND2_X4} -num_instances 20
-cell_name SPARE_PREFIX_NAME -tie

#Warning: Cell contains tie connections which are not connected to real PG. (MW-349)

set_dont_touch  [all_spare_cells] true
set_attribute [all_spare_cells]  is_soft_fixed true

check_physical_design -stage pre_route_opt;
# dump check_physical_design result to file ./cpd_pre_route_opt_*/index.html
all_ideal_nets
all_high_fanout -nets -threshold 100
check_routeability
#check the tie conncetion warning after this command

set_delay_calculation_options -arnoldi_effort high

set_route_options -groute_timing_driven true \
-groute_incremental true \
-track_assign_timing_driven true \
-same_net_notch check_and_fix

set_si_options -route_xtalk_prevention true\
-delta_delay true \
-min_delta_delay true \
-static_noise true\
-timing_window true

#set_fix_hold [all_clocks]
#set_prefer -min  [get_lib_cells "*/BUF_X2 */BUF_X1"]
#set_fix_hold_options -preferred_buffer

route_auto -effort high

route_opt -effort high  -stage track -xtalk_reduction -incremental
route_opt -effort high  -incremental

derive_pg_connection     -power_net VDD \
-ground_net VSS \
-power_pin VDD \
-ground_pin VSS

save_mw_cel -as ${design}_6_routed

##############################################
########### 7. Finishing #####################
##############################################
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insert_stdcell_filler -cell_without_metal {FILLCELL_X32 FILLCELL_X16 FILLCELL_X8 FILLCELL_X4
FILLCELL_X2 FILLCELL_X1} \

-connect_to_power VDD -connect_to_ground VSS

derive_pg_connection     -power_net VDD \
-ground_net VSS \
-power_pin VDD \
-ground_pin VSS

save_mw_cel -as ${design}_7_finished

save_mw_cel -as ${design}

##############################################
########### 8. Checks and Outputs ############
##############################################
#PG
verify_pg_nets -pad_pin_connection all
#routing
verify_zrt_route
#LVS
verify_lvs -ignore_floating_port -ignore_floating_net \

-check_open_locator -check_short_locator
#DRC
report_design -physical
#congestion
report_congestion
#timing
report_timing

insert_metal_filler -timing_driven -from_metal 1 -to_metal 8
#min and max routing layers

route_eco -search_repair_loop 20 -utilize_dangling_wires -reroute modified_nets_first_then_others

#report_congestion

route_zrt_eco -max_detail_route_iterations 40 -open_net_driven true -reroute
modified_nets_first_then_others -utilize_dangling_wires true

report_congestion

focal_opt      -drc_nets all -effort high
focal_opt      -drc_pins all -effort high

derive_pg_connection     -power_net VDD \
-ground_net VSS \
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-power_pin VDD \
-ground_pin VSS

remove_floating_pg -nets VSS -pad_lib_cells {*}
remove_floating_pg -nets VDD -pad_lib_cells {*}

set_write_stream_options -map_layer $sc_dir/tech/strmout/FreePDK45_10m_gdsout.map \
-output_filling fill \

-child_depth 20 \
-output_outdated_fill  \
-output_pin  {text geometry}

write_stream -lib $design \
-format gds\

-cells $design\
./output/${design}.gds

write_sdc design_name.sdc

define_name_rules  no_case -case_insensitive
change_names -rule no_case -hierarchy
change_names -rule verilog -hierarchy
set verilogout_no_tri true
set verilogout_equation  false

write_verilog -pg -no_physical_only_cells ./output/${design}_icc.v
write_verilog -no_physical_only_cells ./output/${design}_icc_nopg.v

extract_rc
#after routing update with route_zrt_eco  use the extract_rc -incremental command to perform
incremental extraction on the changed nets.

write_parasitics -output {./output/cv32e40p_core.spef}

close_mw_cel
close_mw_lib

3. Flat flow Codes

2.1 Synthesis

set hdlin_sverilog_std 2009
set design cv32e40p_core

set_app_var search_path
"/home/standard_cell_libraries/NangateOpenCellLibrary_PDKv1_3_v2010_12/lib/Front_End/Liberty/NLD
M \
/home/ahesham/Desktop/NangateOpenCellLibrary_PDKv1_3_v2010_12/lib/Back_End/virtuoso/Nangate
OpenCellLibrary"
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set_app_var link_library "* NangateOpenCellLibrary_ss0p95vn40c.db"
set_app_var target_library "NangateOpenCellLibrary_ss0p95vn40c.db"

sh rm -rf work
sh mkdir -p work
define_design_lib work -path ./work

analyze -library work -format sverilog ../rtl/cv32e40p_core.sv
elaborate cv32e40p_core -lib work
current_design

check_design
source ./cons/cv32e40p_core.sdc
link
compile_ultra -timing_high_effort_script \

-gate_clock \
-retime

compile_ultra -incremental
compile_ultra -incremental
compile_ultra -incremental
compile_ultra -incremental
compile_ultra -incremental

report_area > ./report/synth_area.rpt
report_power > ./report/synth_power.rpt
report_cell > ./report/synth_cells.rpt
report_qor  > ./report/synth_qor.rpt
report_resources > ./report/synth_resources.rpt
report_timing -max_paths 10 > ./report/synth_timing.rpt

write_sdc  output/cv32e40p_core.sdc
define_name_rules  no_case -case_insensitive
change_names -rule no_case -hierarchy
change_names -rule verilog -hierarchy
set verilogout_no_tri true
set verilogout_equation  false

write -hierarchy -format verilog -output output/cv32e40p_core.v
write -f ddc -hierarchy -output output/cv32e40p_core.ddc

exit

2.1 Place and Route (same as Hierarchical flow)
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