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1. Introduction  
 

1.1 .  PULP: 
 

The Parallel Ultra Low Power (PULP) platform attempts to bridge the gap between 

academic research and the development of industrially relevant microcontroller 

systems specifically tailored for low power processing. It is a young project 

launched in 2013 as a collaboration between the Integrated Systems Laboratory 

(IIS) at ETH Zürich, Switzerland and Energy-efficient Embedded Systems (EEES) 

group at the University of Bologna, Italy. 

 

1.2 .  The Need to low power designs: 
 

The design of power-efficient system on chip (SoC) is of significance importance 

to the development of the applications with a built-in battery that targets operations 

with a large-number of computations to increase the life-time of the applications, 

therefore increases the reliability of the designs. 

The Internet of Things (IoT) applications is an example of these previously 

mentioned applications and the PULP designs are aimed for these kind of 

applications. 

 

1.3 .  PULPissimo compared to other PULP products: 
 

PULP products can be summarized as following: 

1) Multi-core microcontroller: 

 PULP microcontroller. 

2) Single-core microcontroller: 

 PULPino microcontroller. 

 PULPissimo microcontroller. 

The previously mentioned summary shown, the PULPissimo is like PULPino as 

both are a single-core microcontroller, however the PULPissimo is significantly 
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advanced version compared to the PULPino in terms of complexity and 

completeness and it is used as a main System-on-Chip controller for all recent 

multi-core PULP chips. 

The PULPissimo is an open source advanced microcontroller System on Chip 

(SoC), readily available as RTL as part of the open source initiative PULP 

platform. 

 

1.4.  Thesis Objective 

RTL-to-GDSII Flow plays an important role in the development process of 

electronic chips over the world. Due to the huge competition in this field and huge 

customer demands, the technology in this field is developing at a fast pace 

towards smaller, faster and more complex devices which is making it harder for a 

newcomer to cope up with this field without learning and understanding the basics 

first. CAD tools nowadays offer more than one ASIC design style to satisfiy huge 

customer demands and improve QoR and TTR of ASIC designs. Objective of this 

thesis is to go through the core ASIC implementation design steps, i.e. Logic 

synthesis and Placement and Routing using Synopsys Computer Aided Design 

(CAD) tools and SAED32nm CMOS technology library. 

 

1.5. Thesis Map 

After introducing the main goal of this thesis, in chapter two we will present the 

architecture, of the PULPissimo SoC focusing on its key relevant features of 

relevance to our design. In chapter three we focus on our backend design of the 

chip in three implementation approaches called hierarchal, topographical and flat 

flows. We present our results and discuss them in chapter 4 and lay the ground for 

future work in chapter 5. We supplement all of this with appendix giving 

necessary ASIC background. 
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2. PULPissimo Overview 
 

2.1  Main blocks in the PULPissimo: 
 

The main blocks in the PULPissimo can be summarized as following: 

1) Either the RI5CY core or the Ibex one as main core 

2) Autonomous Input/Output subsystem (uDMA) 

3) New memory subsystem (interleaved and private memories). 

4) Support for Hardware Processing Engines (HWPEs) 

5) New simple interrupt controller 

6) Peripherals 

 

Figure 1 simplified block diagram of PULPissmo SoC 

And they are discussed in the below sections  
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2.1.1 The RI5CY and Ibex cores: 
 

1) The zero-riscy core: 

 

 In-order, single-issue core with 2 pipeline stages. 

 It has full support for the base integer instruction set (RV32I) and 

compressed instructions (RV32C).  

 It can be configured to have multiplication instruction set extension 

(RV32M) and the reduced number of registers extension (RV32E).  

 It has been designed to target ultra-low-power and ultra-low-area 

constraints.  

 

2) The RISCY core: 

 

 In-order, single-issue core with 4 pipeline stages and it has an 

instruction per cycle (IPC) close to 1. 

 Full support for the base integer instruction set (RV32), compressed 

instructions (RV32C) and multiplication instruction set extension 

(RV32M).  

 It can be configured to have single-precision floating-point instruction 

set extension (RV32F).  

 It implements several ISA extensions such as: hardware loops, post-

incrementing load and store instructions, bit-manipulation instructions, 

MAC operations, support fixed-point operations, packed-SIMD 

instructions and the dot product.  

 It has been designed to increase the energy efficiency of in ultra-low-

power signal processing applications. 
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Figure 2: block diagram of the RISCY core at the heart of PULPissimo SoC 

From the previous compared, it appears that the RISCY core is better than the 

zero-riscy core, therefore it is chosen in the design of this thesis. 

 

2.1.2 Autonomous Input/Output subsystem (uDMA): 
 

PULPissimo includes a new efficient I/O subsystem via a uDMA (pronounced 

"micro-DMA") which communicates with the peripherals And provides to them 

an autonomous access to the interleaved memory, therefore the peripherals can 

directly communicate with the interleaved memory without communicating with 

it through the core, which reduces the latency and increase the overall 

performance. 

 

2.1.3 Interleaved and private memories: 
 

The interleaved memory can be accessed by core, APB, uDMA and debug units 

through a logarithmic interconnect which provides a low-latency access for the 

interleaved and private memories. This memory is made in interleaved 



18 

 

configuration to minimize conflicts during parallel accesses of different masters 

(e.g., core and accelerator). And it consists of 4 memory banks, each one of them 

is size of 215 ∗ 32 which is a 128KB memory size. 

The private memory can be accessed by the core only, therefore it is called a 

private memory. And it consists of 2 memory banks, each one of them is size of 

8192 (213) ∗ 32 which is a 32KB memory size. 

 

2.1.4 Support for Hardware Processing Engines (HWPEs): 
 

The HWPE has its own master ports to memories within the system. So the 

HWPE is programmed by the core through the APB through its configuration 

interface, where the core tells the HWPE to start address, or to find, the data to 

process and where the results should be written to, and then the HWPE fetches the 

data from the memory independently without any interaction from the core. The 

core will be notified as soon as the operation is finished through a certain event 

line.  

 

2.1.5 New simple interrupt controller: 
 

The interrupt controller has 32 interrupt lines only. And as the SoC has many 

interrupt lines, than the 32 interrupt lines that are in the interrupt controller, an  

another block called SoC event generator receives several interrupt lines from the 

peripherals and HWPE and maps them to 2 lines of the 32 interrupt lines in the 

interrupt controller. 

 

2.1.6 Peripherals: 
 

The main peripherals in the PULPissimo are: 

1) SPI ( flash memory): The SPI stands for Serial Peripheral Interface. It’s a 

simple serial protocol that can talk to a variety of devices, including serial 

flash devices. The SPI Flash is simply the cheapest, simplest way of 

building off-chip non-volatile flash memory at the moment. 

 

https://en.wikipedia.org/wiki/Serial_Peripheral_Interface_Bus
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2) I2S: is an electrical serial bus interface standard used for connecting 

digital audio devices together. It is used to communicate PCM audio data 

between integrated circuits in an electronic device. And it consists of a 

SCK (Serial Clock), which is the clock signal also referred as BCLK (Bit 

Clock Line), FS (Frame Select) which is used to discriminate Right or Left 

Channel data also referred WS (Word Select) and SD (Serial Data) which 

is the serial data to be transmitted. 

 

 

3) Camera Interface (CPI): In camera peripheral, RGB565 camera are used 

and it is especially (cheap) screens used with embedded devices do not 

provide 24 bit color-depth. Only provides 2^16=65 536 colors. 

 

4) I2C: alternatively known as I2C or IIC, is a synchronous, multi-

controller/multi-target, packet switched, single-ended, serial 

communication bus 

 

5) UART: A universal asynchronous receiver-transmitter is a computer 

hardware device for asynchronous serial communication in which the data 

format and transmission speeds are configurable. 

 

 

6) JTAG: named after the Joint Test Action Group which codified it. And It 

specifies the use of a dedicated debug port implementing a serial 

communications interface for low-overhead access without requiring 

direct external access to the system address and data buses. 

 

7) 4 Timers 

 

8) ROM 

2.2  Main domains in PULPissimo: 
 

Figure (3) shows a simplified block diagram showing the main modules of the 

chip. The top module of the PULPissimo is a wrapper that includes three 

submodules, called domains and a set of different high level control signals. The 3 

domains are called SoC domain, safe domain and pad frame. 

https://en.wikipedia.org/wiki/Debug_port
https://en.wikipedia.org/wiki/Serial_communication
https://en.wikipedia.org/wiki/Serial_communication
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Figure 3: the three main domains of PULPissimo 

And the Reasons behinds this segmentation are as follows: 

1) To enable the usage of different voltage levels. 

2) To turn off the power from some parts of the system during the 

idle duration, to save power, without affecting the essential 

operations of the core. 

The three domains are discussed in the below sections. 

 

2.2.1 SoC domain: 
 

The SoC domain is what wraps most of the chip’s core logic, it contains key 

functional modules such as the RISC-V core, the interleaved and private memory 

banks, the debug modules and others. The figure below (figure 4) gives an 

abstract view of the SoC domain submodules and their interconnectivity. We can 

see that the SoC domain consists of 5 major modules: soc_interconnect_wrap, 

fc_subsystem, boot_rom, L2_ram_multibank and soc_peripherals. For the rest of 

this subsection we will dig deeper into each of these components. 
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Figure 4: Main blocks in the SoC domain 

These blocks are discussed in the below sections. 

 

2.2.1.1 The Fabric Control subsystem: 
 

The FC, short for Fabric Control, subsystem is what wraps the RISC-V core of the 

SoC, in PULPissimo this is the place where the hardware processing engine would 

be plugged in if needed. The reason why they are placed in the same module even 

though they do not interact with each other directly but through the SoC 

interconnect is to simplify voltage gating as these are the main power intensive 

modules in the design. In our implementation we did not consider hardware 

accelerators. The FC subsystem also includes an interrupt controller that handles 

the passing of interrupts from the SoC peripherals sub-domain (which will be 

explained shortly) and the RISC core. 
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Figure 5: schematic showing the FC subsystem 

 

2.2.1.2 SoC peripherals: 
 

This is where the different peripheral the SoC could support are to be found it 

contains modules such as: 

1) Hardware event controller: which takes as input any of the different 

interrupts the peripherals (or the hardware processing engine, if it exists) 

can send and maps it to one of the 32 interrupt lines of our RISC-V core 

through the interrupt controller.  

 

2) GPIO controller: provides basic gpio functionalities like reading or setting 

their different values. 

 

 

3) µDMA subsystem:  this allows all peripheral, wrapped within this module 

like I2C, I2S, camera interface, etc to send or receive data directly to or 

from the main memory, bypassing the CPU minimize the workload on the 

processor improving the speed.  
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4) peripheral bus wrap: which just de-multiplexes the transactions to the 

different peripherals. 

 

 

5) SoC Control Registers (apb_soc_control): A register file with an APB 

interface that stores configuration signals that are global to the whole SoC. 

 

Figure 6: schematic showing the soc peripherals module 

 

2.2.1.3 L2 Ram multibank: 
 

This acts as a wrapper for memory banks of both interleaved and private 

memories. All memory banks are made of a SRAM IP that is provided by the 
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vendor of used technology library instead of latch and flip-flop to implement 

these memories in reasonable area with a reasonable power consumption. 

The memories are slaves of the system bus, which is based on a single-cycle 

latency logarithmic interconnect. 

 

2.2.1.4 SoC Interconnect wrap: 
 

 

Figure 7: schematic showing SoC interconnect wrap 

The SoC Interconnect wrap arbitrates three masters FC, uDMA and Debug Ports. 
It has three TCDM de-multiplexers, one for each master, which de-multiplexes 

signals (transactions) from masters, according to their addresses, to three different 

domains the first is the interleaved region, the second is the contiguous region and 
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the third is the AXI crossbar domain. And it can summarized in points as 

following: 

 Blocks in blue color are Logarithmic interconnects that uses TCDM 

protocol that allows single cycle latency memory access, but it’s not the 

best option for accessing peripherals having variable delays. 

 

 The Interleaved Region uses Interleaved logarithmic Interconnect (LogInt) 

to access an interleaved memory banks where memory is divided into 

number of separate banks (modules) over which sequential words of data 

are interleavingly mapped, this would reduce memory conflicts between 

different masters accessing the memory. 

 

 The contiguous region uses Contiguous Logarithmic Interconnect to 

access three contiguous memory banks where words are mapped 

sequentially into them. Only the Core, which is included in FC master, is 

allowed to access those memory banks, this would improve the 

performance of the core. Each of the three banks has a certain type of data 

to be stored in it, where Bank 0 is for Instructions, Bank 1 is for the stack 

and Bank 2 is for Boot ROM. 

 

 AXI Crossbar which is used for accessing peripherals having variable 

delays instead of the LogInt, it has three TCDM to AXI blocks one for 

each master. It has two output ports the first is for SoC Peripherals through 

APB, while the second port is for the Cluster domain. 

 

2.2.1.5 Boot ROM: 
 

Besides the RAM, PULPissimo also includes a Read-only-memory (ROM) that 

has been implemented to store the boot instructions responsible for setting the 

system upon reset. 

 

2.2.1.6 Debug blocks: 
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The PULPissimo contains two debug units which are a RSICY debug module and 

legacy debug module.  

 

1) The RSIC-V debug module consists of 2 units: debug module called 

“dm_top” module and a debug module interface module called “dmi_jtag” 

module, where 

The “dm_top” module allows:  

 basic debug functionality of the core, like single stepping and 

break points.  

 Allows to access the system bus (the logarithmic interconnect). 

The “dmi_jtag” module provides a jtag access to the RSIC-V debug unit. 

 

2) The Legacy debug unit consists of 2 modules that are called 

“jtag_tap_top” and “lint_jtag_wrap” modules and Reasons of this unit:  

 

 If something goes wrong with the RSIC-V debug unit, the legacy 

debug unit provides access to the system to be debugged. 

 

 It is faster with the memory transfer than the RSIC-V debug unit, 

through its jTAG interface. 

 

2.2.1.7 SoC clock and reset generator: 
 

The PULPissimo has three clock domains called SoC, peripheral and reference 

clock domains, where the SoC and peripheral clock domains are generated from a 

reference input frequency signal using 2 separate, internal phase lock loops 

(PLLs). And the reason behind using different clock domains is to allow the 

different domains to operate at different speeds which helps with the overall 

performance as the SoC is not as constrained by the slower peripheral clock and 

can have its own clock. 

 

2.2.2 Safe domain: 
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This is the domain that contains every module that must be always powered on, the 

power of this domain cannot be turned off. And these modules are: 

1) The pad controller: effectively a multiplexer between the different module 

output signals to the IO pads. Note that this control is needed because the IO 

pads of PULPissimo aren’t as many as what the modules require, this is related 

to the rich set of peripherals that the system can support. So, we multiplex the 

outputs signals coming from the different PULPissimo modules, and connect 

the output of the MUX to the output pad. 

 

2) Reset Generator: Synchronizes the reset signals to the ref. clock (32 KHz) and 

the resynchronized signals are only used with the Safe domain. 

In principle, more logic that needs to be power gated could be added to this domain. 

 

2.2.3 Pad frame: 
 

This is where Input/Output (IO) pads are included. The signals connected to each 

pad are logic signals from the SoC to IO pads and vice versa, output driver 

enable, the actual pad signal,  and additional Configuration signals. The table 1 

below shows the different signals with their description and defined direction as 

they are defined in its SystemVerilog module; 

Table 1 Padframe signals 

Direction (Pad frame perspective) Name Description 

Input Oe_<padname>_i Active high output driver enable. 

Output in_<padname>_o Logic Signal from pad to SoC. 

Input Out_<padname>_i Logic signal from SoC to pad. 

Inout pad_<padname> The actual pad signal that is connected 

to the top level. 

Input Pad_cfg_i Additional configuration signals for 

pads. 
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3. The actual implementation of the PULPissimo: 
 

CAD tools offers many flows to implement the RTL-GDS (ASIC) flow. During 

this thesis, we will use three flows and compare the results among them. The 

parameter of comparison will be area, power and runtime. Here are the chosen 

flows: 

 

3.1  Constraints of the three chosen flows:  
 

The constraints mainly extracted from the used technology library in this thesis 

which is the Synopsys SAED 32nm. And they consist of electrical DRCs and 

timing constraints. We choose to design on the worst case process variation which 

is slow-slow at 0.9 voltage at temperature negative 40 degree of Celsius based on 

the trial and error method and some other criteria. And these constraints and the 

criteria, by which the constraints are chosen, are discussed the following sections. 

 

3.1.1 Electrical DRC constraints: 
 

The electrical DRC constraints extracted from the technology library: 

 

Table 2 DRC constraints of the PULPissimo implemented in the topographical flow 

DRC constraint name Value 

Maximum capacitance 416 fF 

Maximum fan-out number 20 

Maximum transition 1.024 ns 
 

 

3.1.1.1 Maximum capacitance and maximum transition: 
 

Where the maximum capacitance was extracted from collecting all the values of 

the “max_capacitance” attribute for each pin of each version of the standard cells, 

which is done by the code in the appendix C part 1, choosing the maximum value 
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among them. The figure (figure 28) below shows an example of the 

“max_capacitance” attribute in the Synopsys SAED 32nm technology library. 

The maximum transition extraction is very similar to the maximum capacitance 

extraction as there is an attitude called “max_transtion” for each pin of each 

version of the standard cells, which is done by the code in the appendix C part 2, 

choosing the maximum value among them 

 

 

Figure 8: an example of the “max_capacitance” attribute 

 

3.1.1.2 Maximum fan-out number: 
 

The maximum fan-out number is chosen based on the attached wire load model 

(WLM) in the technology library, which is written in the following manner: 

“fanout_length function (fanout number, estimated net length), and the figure 

below shows an example of the wire load model. 
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Figure 9: example of the wire load model 

 

3.1.2 Timing constraints: 
 

The PULPissimo has 3 different master clock domains, which are called “ref_clk, 

soc_clk and per_clk”, where the clock source of the reference clock (ref_clk) 

domain comes from outside the chip and enters the chip through a pad called 

“pad_xtal_in”. and the clock source of the two other clock domain, SoC clock 
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domain and the peripheral clock domain, are generated by 2 different phase lock 

loop (PLL) IPs which are internally placed in the PULPissimo microcontroller 

and the reference clock source of the two PLL IPs is the same clock source of the 

reference clock domain. 

The following table shows all timing constraints for each clock domain, which are 

used in this thesis to implement the PULPissimo microcontroller using Synopsys 

SAED 32nm technology library. 

 

Table 3 the timing constraints of the PULPissimo implemented in the topographical flow 

Clock domain name ref_clk soc_clock per_clk SPIM_CLK 

(generated 

clock from 

per_clk) 

Clock period 56 14 28 20 

Uncertainty value for 

setup checks 

6 5 5 --- 

Uncertainty value for 

hold checks 

1.15 0.88 2.22 --- 

Source Latency 3 -- 2 --- 

Max. input/output delay -- 7 -- --- 

Min. input/output delay -- 7 -- --- 

 

3.1.2.1 Clock period: 
 

In the implemented PULPissimo in this thesis, the clock period of the reference 

clock domain determines the other clock determines the clock period of the SoC 

and peripherals clock domains and that because the available phase locked loop 

(PLL) IP with the SAED 32nm technology library, which is used in this thesis, 

has three operating modes: normal, external feedback and bypass.  

In the external feedback mode, the feedback input clock (FB_CLK) will be phase-

aligned with reference input clock (REF_CLK). These aligned clocks will allow 

removing clock delay and skew between devices. And the frequency of the output 

clock signal can be the frequency of the reference clock Multiplied by a factor 4, 

2 or 1. In Bypass mode, reference clock will be bypassed to out. 
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Figure 10: the SAED 32nm PLL IP as a black box 

And as the SoC clock domain is the faster clock signal in the PULPissimo, we 

choose the PLL IP of that clock domain to work in the external feedback mode 

and multiplies the frequency of the reference clock by a factor 4, therefore it is 

equal to 14 ns which is 25% of the 56 ns reference clock. 

The peripheral clock signal is slower than the SoC clock signal, as it is used to 

trigger the PULPissimo peripherals that work on low speed signal, therefore we 

choose the PLL IP of that clock domain to work in the external feedback mode 

and multiplies the frequency of the reference clock by a factor 2, therefore it is 

equal to 28 ns which is 50% of the 56 ns reference clock. 
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3.1.2.2 Uncertainty value: 
 

The uncertainty value of clock signal differs based on the stage at which the 

designer works, since before the clock tree synthesis, it is equal to the summation 

of the estimated skew, jitter and margin. And after the clock tree synthesis, the 

skew is computed, therefore the uncertainty becomes the summation of the jitter 

and margin. Usually, the margin in the uncertainty is increased to push the tool to 

the best optimization and to meet the timing constraints under conservative 

constraints. Therefore the designer can reduce the margin in the uncertainty as a 

way to solve the timing violation after the clock tree synthesis.  

The uncertainty has two types, one is used for the setup timing checks and the 

other is used for the hold timing checks. And as the jitter doesn’t affect on the 

hold timing checks because all sequential elements in the same way, the 

uncertainty for the hold timing checks is more less than the uncertainty for the 

setup timing checks. 

To choose the values of the 2 kinds of the uncertainty, we begin by choosing the 

uncertainty for setup timing checks of each clock domain to 10% of the clock 

period and the uncertainty for hold timing checks of each clock domain to 2.5% 

of the clock signal and these values are initial ones, and then we proceed the 

ASIC flow till we reach the clock tree synthesis to see the actual global skew of 

each clock domain, and finally we takes the uncertainty for the setup timing 

checks as rounding value of actual global skew multiplied by factor 3, and the 

uncertainty for the hold timing checks as the actual global skew. The figure below 

shows the global skew of each clock domain in the first pass of the hierarchal 

flow. 
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Figure 10: global skew of the SPIM_CLK,  per_clk and ref_clk clock domains in the initial running 

 

Figure 11: global skew of the soc_clk clock domain in the initial running  

 

3.1.2.3 Clock latency: 
The clock latency consists of: 
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1) The network latency which is the time taken by the clock signal to travel 

from the clock pad in the chip to a clock pin of a sequential element 

inside the chip. 

 

2) The source latency which has 2 kind of definitions: 

4.3.1. Source latency of clock signal generate outside the chip and 

it is the time taken by the clock signal to travel from the clock pad 

in the chip. 

 

4.3.2. Source latency of clock signal generate inside the chip by a 

PLL IP and it is the time taken by the clock signal to travel from 

the clock pin of the PLL IP in the chip to the clock pin of the clock 

generating circuitry. 

Based on the definition in 2).b, the master clock domain, that doesn’t have a 

generated clock domain, doesn’t have a latency. Therefore the SoC master clock 

domain doesn’t have a source latency value. 

 

 

Figure 12: the difference between the two types of the source latency 
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The source latency of the reference clock domain is larger than the source latency 

of the peripheral clock domain because the path at which the reference clock 

signal travels, that consists of a wire on the PCB that contains the PULPissimo, is 

longest than the path at which the peripheral clock signal travels, that consists of a 

wire implemented inside the PULPissimo. 

 

3.1.2.4 Input delay constraint: 
 

The input delay constraint determine the division of the clock period between 

your chip and the other the chip that is connected to your chip as an input. All the 

input ports in the PULPissimo are associated with the peripheral clock domain 

only, therefore the peripheral clock domain is the only clock domain that has an 

input delay constraints and we specified 30% of the peripheral clock domain to 

the delay that is resulting from the logic outside the PULPissimo and 70% of the 

peripheral clock domain to inside the domain to the delay that is resulting from 

the logic inside the PULPissimo. 

 

Figure 13: an example on an input delay constraint of the MY_DESIGN design 

3.1.2.1 Output delay constraint: 
 

The output delay constraint determine the division of the clock period between 

your chip and the other the chip that is connected to your chip as an output. All 

the output ports in the PULPissimo are associated with the peripheral clock 

domain only, therefore the peripheral clock domain is the only clock domain that 

has an output delay constraints and we specified 30% of the peripheral clock 

domain to the delay that is resulting from the logic outside the PULPissimo and 
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70% of the peripheral clock domain to inside the domain to the delay that is 

resulting from the logic inside the PULPissimo. 

 

 

Figure 14: an example on an output delay constraint of the MY_DESIGN design 

 

3.2  Instantiating of SAED 32nm IPs in the PULPissimo RTL: 
 

3.2.1 Instantiating of SAED 32nm SRAM: 
 

As the memories of the PULPissimo microcontroller are significantly 

large, they must be implemented using SRAM memory banks, 

otherwise they will degrade the area and power of the microcontroller 

and that will affect the main specification for which the PULPissimo 

is made. The SRAM that is used in this thesis is the single port SRAM 

SAED 32nm IP with a memory array dimensions 512 words and 32 

bits per word. 

The PULPissimo requires 3 different SRAM banks where: 

 Four memory banks, each one of them has a memory array of 

128 KB size. the four memory banks create the interleaved 

memory in the PULPissimo. 

 

 Two memory banks, each one of them has a memory array of 

32 KB size. the two memory banks create the private memory 

in the PULPissimo. 
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 One memory bank has a memory array of 2 KB size. the two 

memory banks create the private memory in the PULPissimo. 

 

 

Table 4 table showing the used number of the SAED32nm SRAM IP in each memory bank 

 Interleaved memory 

bank 

Private memory  

bank 

ROM 

size 215 ∗ 32 215 ∗ 32 29 ∗ 32 

IP instance number 64 16 4 
 

 

3.2.2 Instantiating of SAED 32nm PLL IP: 
 

We manually instantiated two instances of the SAED 32nm PLL IP that is 

available with the SAED 32nm technology library, where one is used for 

generating of the SoC clock domain from the reference clock signal and the other 

for generating of the peripheral clock domain from the reference clock signal. 

 

3.2.3 Instantiating of SAED 32nm clock gating: 
 

we manually instantiated integrated clock gating cells from the SAED 32 nm 

target library to avoid over constraining the clock gating design rules such clock 

gating setup or hold timing constraints, pre-mapped cells Design compiler (DC) 

takes its design rule constrains in its account. 
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Figure 15: SAED 32 nm clock gating standard cell 

 

3.2.4 Instantiating of SAED 32nm IO pads: 
 

We manually instantiated 41 instances of SAED 32 nm IO pads in the pad frame 

domain, 4 SAED 32 nm corner pads and 3 filler pads to make the total number 

even, therefore makes the floor-planning more organized. 

 

3.3  Logic synthesis: 
 

3.3.1 Hierarchical flow:  
 

In the hierarchical flow, the levels of the provided hierarchy in the RTL code are 

kept as they are during all different steps in the ASIC implementation flow. 

Keeping of the hierarchical levels can restrict the ASIC implementation tools, 

specially the design compiler tool, and prevent them from many optimizations 

step like boundary and partition optimization steps at which the design compiler 

tool can break the level of the hierarchy or the boundary of the module to reduce 

delay and optimize the timing paths that are extent more than one module. 

We use the design compiler (DC) tool to perform the logic synthesis step. After 

reading the RTL code and applying the constraints, we used “ compile_ultra” 

command with the following options: 



40 

 

1) No autoungroup: to disable the default setting of the “compile_ultra” 

command that automatically break the levels of the hierarchy of the design 

to optimize the timing paths that are contained in more than one module or 

hierarchical level. 

 

2) Scan: to take into the consideration the design of testability (DFT) in the 

beginning of the ASIC designing. Where the design of testability increase 

the fan-out of each net connect to a register, like the figure below shows. 

 

Figure 16: multiplexed scan register used for the DFT 

3) Retime timing option: to be used with the critical timing paths to move 

their register in order to add more positive slack from the non-critical, 

neighboring timing paths. The –retime option is available starting with 

v2007.03. It performs “adaptive register retiming”, which moves the 

logical location of registers up or down a timing path, to help improve 

local critical path timing without creating or worsening timing violations 

of surrounding paths. This will be discussed further in a later unit, in 

conjunction with the optimize_registers command. 

 

4) Gate_clock: to use the instanced of the clock gating cells in the RTL code 

and add more. 
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And we done the incremental compilation step by high ultra-compilation efforts 

and some other techniques such as clock gating to improve (QoR) of timing, 

power and area. 

 

3.3.2 Topographical flow: 
 

In ultra-deep submicron designs, interconnect parasitics have a major effect on 

path delays; accurate estimates of resistance and capacitance are necessary to 

calculate path delays. In topographical mode, Design Compiler leverages the 

Synopsys physical implementation solution to derive the “virtual layout” of the 

design so that the tool can accurately predict and use real net capacitances instead 

of wire load model-based statistical net approximations. If wire load models are 

present, they are ignored. In addition, the tool updates capacitances as synthesis 

progresses. That is, it considers the variation of net capacitances in the design by 

adjusting placement-derived net delays based on an updated “virtual layout” at 

multiple points during synthesis. This approach eliminates the need for over-

constraining the design or using optimistic wire load models in synthesis. The 

accurate prediction of net capacitances drives Design Compiler to generate a 

netlist that is optimized for all design goals including area, timing, test, and 

power. It also results in a better starting point for physical implementation.  

 

In order to meet the constraints, mainly the timing constraints, Synopsys offers 

this flow. Usually, the floor-planning step follows the synthesis step, this may 

lead to sub-optimal results, since the synthesis has no knowledge of the potential 

cell and macro placement. 

And to overcome this issue we use the second pass flow, which is called 

topographical flow. And the main steps of the topographical flow can be 

summarized as the following: 

1) Creating an initial netlist by synthesis. 

 

2) Proceeding to the floor-planning step and once we reach a good floor-

planning which achieve the following: 

 No congestions. 

  

 Good and well-ordered pin and pad placement. 
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 Good and well-ordered macro placement. 

 Good quality of results. 

 

3) Backing and redo the logic synthesis step with the created floor-planning, 

but this time the synthesis step is aware of standard cells, pin, pads and 

macro placement which will potentially yield better results in terms of the 

timing (mainly the setup) , area and leakage power. 

 

3.3.2.1 Inputs and outputs: 
 

The second pass of the logic synthesis step in the topographical flow is done by 

the design compiler (DC) invoked in a topographical mode and the invocation is 

done by the command “dc_shell  –topographical” command. And the tool takes 

the following files as inputs: 

1) The gate-level netlist 

 

2) The RTL code 

 

 

3) The floor-planning described in the LEF file and FP floor-planning 

This section describes the physical constraints imported from the DEF file with 

the extract_physical_constraints command, in the following subsections:  

 Die Area  

 Placement Area  

 Macro Location and Orientation  

 Hard, Soft, and Partial Placement Blockages  

 Wiring Keepouts  

 Placement Bounds   

 Port Location  

 Preroutes  

 Site Array Information 

 Vias  

 Routing Tracks  

 Keepout Margins 

 

4) Constraints 
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5) Logic library  

 

 

6) Physical library 

The output of the design compiler is the topographical mode is a better 

synthesized gate-level netlist and the figure below shows these inputs and output. 

 

Figure 17: Inputs and Outputs in Design Compiler Topographical Mode 

To visually inspect your extracted physical constraints, use the layout view in the 

Design Vision layout window. All physical constraints extracted from the DEF 

file are automatically added to the layout view.  

 

3.3.2.2 Main steps: 
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To map a design to a new technology in the Design Compiler in the topographical mode, 

the following steps must be performed: 

1) Add the original technology library to the link library:  

dc_shell-topo>> lappend link_library tech_orig.db  

2) Set up your Design Compiler environment for the new target technology.  

 Specify the logic libraries.  

 Specify the physical libraries.  

3) Read in your mapped design:  

dc_shell-topo >> read_verilog design.v  

4) Run the “compile_ultra –incremental” command to translate the design to 

the new technology. 

The steps of the PnR won’t be different than the ones previously described in the 

back-end part section. 

We use the design compiler (DC) tool to perform the logic synthesis step. After 

reading the RTL code and applying the constraints, we used “ compile_ultra” 

command for the first and second pass in the topographical mode with the 

following options: 

1) No autoungroup: to disable the default setting of the “compile_ultra” 

command that automatically break the levels of the hierarchy of the design 

to optimize the timing paths that are contained in more than one module or 

hierarchical level. 

 

2) Scan: to take into the consideration the design of testability (DFT) in the 

beginning of the ASIC designing. Where the design of testability increase 

the fan-out of each net connect to a register, like the figure below shows. 

 

3) Retime timing option: to be used with the critical timing paths to move 

their register in order to add more positive slack from the non-critical, 

neighboring timing paths. The –retime option is available starting with 

v2007.03. It performs “adaptive register retiming”, which moves the 

logical location of registers up or down a timing path, to help improve 

local critical path timing without creating or worsening timing violations 

of surrounding paths. This will be discussed further in a later unit, in 

conjunction with the optimize_registers command. 
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4) Gate_clock: to use the instanced of the clock gating cells in the RTL code 

and add more. 

And we done the incremental compilation step by high ultra-compilation efforts 

and some other techniques such as clock gating to improve (QoR) of timing, 

power and area. 

 

3.5.1 Flat flow: 
 

In the flat flow, the levels of the provided hierarchy in the RTL code are broken 

during the first implementation step, which is the logic synthesis step, and remain 

broken during the rest of steps in the ASIC implementation flow.  

By default, the high effort compilation removes levels of hierarchy as much as it 

can so we allow tool to remove levels of hierarchy which help it to optimize 

results. 

We use the design compiler (DC) tool to perform the logic synthesis step. After 

reading the RTL code and applying the constraints, we used “ compile_ultra” 

command with the following options: 

5) Scan: to take into the consideration the design of testability (DFT) in the 

beginning of the ASIC designing. Where the design of testability increase 

the fan-out of each net connect to a register, like the figure below shows. 

 

6) Retime timing option: to be used with the critical timing paths to move 

their register in order to add more positive slack from the non-critical, 

neighboring timing paths. The –retime option is available starting with 

v2007.03. It performs “adaptive register retiming”, which moves the 

logical location of registers up or down a timing path, to help improve 

local critical path timing without creating or worsening timing violations 

of surrounding paths. This will be discussed further in a later unit, in 

conjunction with the optimize_registers command. 

 

7) Gate_clock: to use the instanced of the clock gating cells in the RTL code 

and add more. 

And we done the incremental compilation step by high ultra-compilation efforts 

and some other techniques such as clock gating to improve (QoR) of timing, 

power and area. 
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3.4  Design planning for the 3 different flows: 
 

In this section we describe in more details the steps and design decisions that are 

made in the three different flows, which are flat, hierarchical and topographical, 

to implement the PULPissimo microcontroller.  

 

3.4.1 Floor-planning:  
 

In floor-planning stage, we start by defining die and core area by defining the 

height and width and the distance between the IO pads and the core boundaries, 

which define the aspect ratio and the utilization factor. Aspect ratio is the ratio 

between height and width, core utilization means the percentage of total cell area 

relative to the total area of the chip. We chose the following: 

1) The core height to be 6200 um. 

2) The core width to be 6200 um. 

3) The distance between the IO pads boundaries and the core boundaries to 

be 100 um. 

Which give us an aspect ratio equal to 1 a utilization factor equal to 0.401, so that 

we can be able to reduce the congestion issue. And he distance between the IO 

pads and the core boundaries are 100 um in all sides of the chip. Then we define 

placement constraints on the following: 

1) Pins 

2) IO pads 

3) Macros including, the SRAM macro cells and the 2 PLLs  

We define the metal layers that will be used for signal routing stage and the metal 

layers that will be used for routing of the power network, this is important at 

floor-planning stage so that PnR tool can perform global routing to estimate 

routing regions and potential congestion properly. The technology file provided 

with the PDK contains 9 routable layers, minimum routing layer is chosen to be 

metal layer 1 and maximum routing layer is metal layer 8. These layers will be 

used as the following: 

 From Metal layer 1 to metal layer 7 will be used for signals routing. 
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 Metal layer 9 and Metal layer 8 for horizontal and vertical power straps and 

rings.  
 

 From Metal layer 3 to metal layer 5 will be used for clock signal routing as 

higher metal layers have less resistance than lower layers which means lower 

interconnections propagation delay with non-default routing rules, which are 

doubling of minimum width and doubling of minimum spacing. 

 

 

3.4.2 Virtual flat placement: 
 
 

Virtual placement is then performed to allocate standard cell placement locations 

inside the chip core as previously explained and to place the macros, IO pads and 

the pins based on the previously defined constraints. The figure below shows the 

results of the floor-planning floorplan of the chip. 
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Figure 18: the floor-planning of the PULPissimo. 

 

Where we choose to place macro cells as the following: 

1) the private memory, which consists of 2 memory banks each one of them 

consists of 16 SRAM macro cell, in the upper right corner of the chip with 

a X offset equal to 90 um and a Y offset equal to 70 um 
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2) The ROM, which consists of the 4 SRAM macro cells, below the private 

memory and with the same X and Y offset as the private memory. 

3) The interleaved memory, which consists of 4 memory banks each one of 

them consists of 64 SRAM macro cells, below the ROM and with the 

same X and Y offset as the private memory. Where each four rows 

represent a one memory bank of the interleaved memory.  

4) The 2 PLLs are collecting together into one macro array and a 50 um 

separated distance between is chosen. And let the IC compiler tool to 

choose a suitable location to them in order to enhance the quality of 

results. 

5) We set the keep-out margin, where the standard cells are prevent to be 

placed in the area of the keep-out margin, of all macro cells to 10 um from 

each sides of them. And that to reduce the congestion and provide more 

routing resources for the interconnects of the macro cell pins. 

The reason behind collecting the SRAM macro cells of the private memory, 

ROM and the interleaved memory together in one place and reduce the 

separation distance between them as much as possible is reduce the 

interconnects be as much as possible, therefore better quality of results and 

because the number of interconnects among the SRAM macro cells and 

themselves is much larger than the number of the interconnects among the 

SRAM macro cells and other standard cells, therefore that placement may 

enhance the congestion as well. Figures below show the location of each 

macro.  
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Figure 19: the highlighted 2 memory banks of the private memory 
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Figure 20: the highlighted ROM 
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Figure 21: the highlighted 4 memory banks of the interleaved memory 
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Figure 22: the highlighted 2 PLLs 

The figure below shows the hierarchical virtual placement, where each 

domain of the 3 domains of the PULPissimo, SoC, pad frame and peripheral 

domains, is placed on one area as much as possible. 
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Figure 23: the hierarchical map shows the 3 main domain in the PULPissimo. 

3.4.3 Reducing the congestion: 
 

Reducing of the congestion in the design planning stage is very important to 

ensure that the core area contains an enough amount of routing resources, where 

the routing resources are the metal tracks in the metal layers, otherwise the IC 

compiler won’t be able to complete the routing properly in the proceeding stages. 

We use the trial and error method to determine the optimum offset in both X and 

Y directions between the SRAM macro cells in order to enhance the congestion as 

much as possible and keep the SRAM macro cells well-ordered, the figure below 

(figure 24) shows some of the trial and their results where in each trial we was 

increasing the offset in both X and Y directions. 
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Figure 24: shows some of the trial and their results 

The figures below shows the congestion map of our design, where almost all 

GRCs have available tracks more than the demand tracks. 

 

3.4.4 Power tree synthesizing: 
 

The power network consists of rings, straps and supply rails. We chose to 

implement the power network on the chip as the following: 

1) The power and ground rings are been chosen to be implemented in metal 

layer 8 and 9 where the horizontal ring segments in the metal layer 9 and 

the vertical ring segments in the metal layer 8, where: 

 Their width is set to the maximum value which is 5um to increase 

the cross section at which the current flow, therefore their 

resistance will be decreased their resistance, therefore the IR drop 

on them will be decreased. 

 The separation distance between the power and ground rings is set 

to the minimum spacing distance in the metal layer 8 and 9, which 

is 0.5 um, to increase the number of the power and ground rings as 

much as possible, therefore reduce the IR drop in them. 

   The figure below shows the ring structure. 
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Figure 25: rings as a part of power network of the PULPissimo implemented in flat, hierarchical and 

topographical flows 

2) The power and ground mesh, which consists of horizontal straps 

implemented in metal layer 8 and vertical straps implemented in metal 

layer 9, where: 

 Their width is set to the maximum value which is 5um to increase 

the cross section at which the current flow, therefore their 

resistance will be decreased their resistance, therefore the IR drop 

on them will be decreased. 

 The separation distance between in each group of power and 

ground straps is set to the minimum spacing distance in the metal 

layer 8 and 9, which is 0.5 um, to increase the number of the power 

and ground straps as much as possible, therefore reduce the IR 

drop in them. 

 The separation distance between each group of power and ground 

straps and the other is set to a distance which is 100 um to increase 

the number of the power and ground straps as much as possible, 

therefore reduce the IR drop in them. 

 The figure below shows the structure of the horizontal and vertical straps. 
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Figure 26: power network straps of the PULPissimo implemented in flat, hierarchical and topographical 

flows 

3) We chose to build power and ground rings around each macro cell to 

make power and ground pins of the macro cells connected easily to power 

network and reduce the resistance of the interconnects that connects the 

power and ground pins of the macro cells to the power mesh in the metal 

layer 9 and 8. The setting of them are chosen to be as the following: 

 The horizontal segments are implemented in metal layer 5, as the 

pins of the SRAM macro cells are implemented in the same metal 

layer, and the vertical segments are implemented in metal layer 6. 

 Their width is set to the maximum value which is 5um. 

 The separation distance between the power and ground rings is set 

to 0.5 um. 

 The offset between the top side of the rings and the top side of 

SRAM macro cell is set to 2 um to reduce the length of the 

interconnects that connects the power and ground pins of the 

macro cells to the rings that are around the macro cells, therefore 

reduces their resistance and enhances the IR drop on them. 

 The offset between the all other sides of the rings and all other 

sides of SRAM macro cell is set to 15 um to increase the routing 

resources around all other pins of the SRAM macro cells, therefore 

reduce the congestion. 
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The figures below show the power and ground rings around SRAM and 

the PLL macro cells. 

 

Figure 27: power and ground rings around SRAM macro cells in the PULPissimo implemented in flat, 

hierarchical and topographical flows 

 

Figure 28: power and ground rings around PLL macro cells in the PULPissimo implemented in flat, 

hierarchical and topographical flows 

4) The power supply are implemented in the metal layer 1, and we choose the 

disable the routing of the supply rails over the macro and fill each rows 

that with at least one placed standard cells. 

 

3.4.5 Reducing delay: 
 



59 

 

The reducing delay is important before the extracting, but this is needed only 

when there are a large setup timing violations, where the worst negative slack 

(WNS) more than 20% of the clock period. 

Fortunately, due to well-defined virtual placement, the WNS in the flat, 

hierarchical and topographical flows is in the SoC clock domain and it is less than 

or equal to 0.14% of the SoC clock period in. Therefore there is no need to reduce 

the delay. 

 

3.4.6 Extracting:  
 

The RC extracting is done to easily translate and pass the RC models of the power 

network and the estimated interconnects to other tools, like the design compiler 

tool in the topographical flow. 

 

3.5  Placement of for the 3 different flows: 
 

3.5.1 Setting of the non-default routing rules: 
 

The setting of the non-default routing (NDR) rules of the clock signals should be 

done before the placement stage to enable the IC compiler tool to take them into 

the consideration, especially during the RC extracting of the clock nets that 

happens in the placement engine in the tool. 

We choose the NDR rules of the clock nets, that will be implemented in the metal 

layer 3, 4 and 5, to be as the following: 

1) The minimum spacing is equal to the minimum spacing of each metal 

layer in the used SAED 32nm technology library, to reduce the inter-wire 

capacitance that arise between the wires, therefore reduces the cross-talk 

between the wires and prevents swings in them. The non-default minimum 

spacing in the metal layer 3 is set to 0.112 and in the metal layer 4 and 5 is 

set to 0.224. 

2) The minimum width is equal to the minimum width of each metal layer in 

the used SAED 32nm technology library, to increase the cross-section at 

which the current flows, therefore reduces the resistance of the clock nets. 
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The non-default minimum width in the metal layer 3 is set to 0.112 and in 

the metal layer 4 and 5 is set to 0.224. 

 

3.5.2 Setting of the options of the high fan-out synthesis: 
 

The setting the options of the high fan-out synthesis (HFS) is important before the 

execute the main command of the placement stage, which is the “place_opt” 

command, because the main command won’t run the HFS engine unless these 

options are set. The HFS reduces the high fan-out number of the high fan-out nets 

by building a buffer or inverter tree at which the large net is divided into smaller 

nets with a much smaller fan-out number. 

We chose the options of the high fan-out synthesis as the following: 

1) The reference standard cells by which the buffer or inverter tree is built to 

be all inverters that are available with the used technology library which is 

SAED 32nm. We chose only the inverters to build the trees because the 

delay of the inverter in less than the buffers, but that may increase the 

congestion because the tool add more inverters and the available versions 

are described in the figure below. 

 

 

Figure 29: inverters specifications that used as reference of HFS engine 

2) Enable port punching 

3) Enable boundary phase 

4) Enable the HFS to work on the constant nets 
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3.5.3 Placement: 
 

The main placement engine of the IC compiler tool is invoked by the “place_opt” 

command and we choose the following as options for this command: 

1) Power. 

2) Congestion. 

3) Setting the effort to high to get best result, but the high effort will increase 

the CPU time which is acceptable to us. 

4) Area recovery, where the main placement engine tries to re-size the 

standard cells to enhance the area. 

5) Timing, where the main placement engine tries to fix the setup timing 

violations only and doesn’t fix the hold timing violations. 

And before the executing of the “place_opt” command we reduce the keep-out 

margin to be 8 um for all the macro cells. 

 

3.5.4 Reporting: 
 

As the more important things to evaluate the placement stage are the congestion 

may the setup timing slack, we reported the congestion by executing the global 

route engine in the IC compiler by executing the “route_global” command and 

reported the quality of the results (QoRs) by executing the “report_qor” command 

and that to determine the options of the placement optimization engine that will 

be illustrated in the following the section. 

 

3.5.5 Optimization of the placement: 
 

The optimization of the placement in the IC compiler tool is executed by the 

“psynopt” command and the options of this command are chosen based on the 

results of the previous reporting step where: 

1) if the design is congested, the designer should choose the “-congestion” 

option and if the design is still congested, the designer may delete the old 

results of the “place_opt” command, execute the “set 

placer_enable_enhanced_router TRUE” and then execute a new 
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“place_opt” command, that will invoke the real global routing engine 

during executing the new round of the “place_opt” command instead of 

the global routing estimator engine that is used the previous the 

“place_opt” therefore the results will be much better, but the CPU time 

will increase.  

2) If the WNS of the timing setup checks isn’t good or the DRC violations 

are a lot, the designer should execute the “psynopt –only_design_rule” 

command. 

 

3.6   Clock tree synthesis: 
 

3.6.1 Setting the clock tree options: 
 

Before the beginning of the clock tree synthesis, the designer should set options of 

the clock tree synthesis engine and these options are divided into the following: 

1) Targets, which are just to the tools which means that if the results of the 

clock tree synthesis doesn’t meet these target, no violations are reports, 

but it is always nice to meet these targets. And the target that must be 

specified for each clock domain are: 

 Target skew which is the maximum global skew in the clock 

domain. 

 Target early delay which is the minimum insertion delay in the 

clock domain. 

2) Constraints, if the clock tree engine couldn’t meet these specified 

constraints, violations are reported and the CTS will fails. And they are the 

following  

 Maximum capacitance 

 Maximum fan-out 

 Maximum transition 

3) References, which are the standard cells that the clock tree synthesis 

engine will use to build the clock tree of each clock domain. 

4) The non-default routing rules by which the clock trees are routed. 

5) The metal layer at which the the clock trees are routed. 

We begin first running with an estimated skew in the uncertainty for the setup 

timing checks (which is equal to summation of estimated maximum global skew, 

jitter and margin) and the uncertainty of the hold timing checks (which is equal to 
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the estimated maximum global skew only, as the the jitter doesn’t affect on the 

hold timing checks) and proceeding the ASIC flow steps till we reach the clock 

tree synthesis step and synthesize all the clock domains in the PULPissimo and 

then report the maximum global skew of each clock domain. Then we go back to 

the beginning of the ASIC flow and set the uncertainty of both setup and hold 

timing checks as the following: 

1) The uncertainty of the setup timing checks of each clock domain in the 

PULPissimo is set to be equal the maximum global skew that is resulted 

from the first running multiplied by factor 3. 

2) The uncertainty of the hold timing checks of each clock domain in the 

PULPissimo is set to be equal the maximum global skew that is resulted 

from the first running. 

To determine the clock tree targets and the constraints, we use the resulted 

maximum global skew that is resulted from the first running as initial point to 

begin with in the synthesizing clock domains in the PULPissimo. The following 

table summarized the clock tree synthesis options for each clock domain in the 

PULPissimo implemented in the three used ASIC approaches, hierarchical, 

topographical and flat. 

Table 5 clock tree synthesis options for each clock domain in the PULPissimo implemented in hierarchical 

approach. 

CTS option name ref_clk soc_clk Per_clk SPIM_CLK 

Target skew (in ns) 1 0.75 2 1 

Target early delay (in ns) 5.64 1.4 2.5 5.64 

Maximum capacitance (in 

ff) 

300 300 300 300 

Maximum fan-out 10 10 10 10 

Maximum transition (in 

ns) 

0.2 0.2 0.2 0.2 

Gate relocation 

optimization 

TRUE TRUE TRUE TRUE 

Gate resizing 

optimization 

TRUE TRUE TRUE TRUE 

Buffer relocation 

optimization 

TRUE TRUE TRUE TRUE 

Buffer resizing 

optimization 

TRUE TRUE TRUE TRUE 

Use default routing for 

sinking 

TRUE TRUE TRUE TRUE 
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Table 6 clock tree synthesis options for each clock domain in the PULPissimo implemented in topographical 

approach. 

CTS option name ref_clk soc_clk Per_clk SPIM_CLK 

Target skew (in ns) 1 0.75 2 1 

Target early delay (in ns) 5.64 1.4 2.5 5.64 

Maximum capacitance (in 

ff) 

300 300 300 300 

Maximum fan-out 10 10 10 10 

Maximum transition (in 

ns) 

0.2 0.2 0.2 0.2 

Gate relocation 

optimization 

TRUE TRUE TRUE TRUE 

Gate resizing 

optimization 

TRUE TRUE TRUE TRUE 

Buffer relocation 

optimization 

TRUE TRUE TRUE TRUE 

Buffer resizing 

optimization 

TRUE TRUE TRUE TRUE 

Use default routing for 

sinking 

TRUE TRUE TRUE TRUE 

 

Table 7 clock tree synthesis options for each clock domain in the PULPissimo implemented in topographical 

approach. 

CTS option name ref_clk soc_clk Per_clk SPIM_CLK 

Target skew (in ns) 1 0.75 2 1 

Target early delay (in ns) 5.64 1.4 2.5 5.64 

Maximum capacitance (in 

ff) 

300 300 300 300 

Maximum fan-out 10 10 10 10 

Maximum transition (in 

ns) 

0.2 0.2 0.2 0.2 

Gate relocation 

optimization 

TRUE TRUE TRUE TRUE 

Gate resizing 

optimization 

TRUE TRUE TRUE TRUE 

Buffer relocation 

optimization 

TRUE TRUE TRUE TRUE 
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Buffer resizing 

optimization 

TRUE TRUE TRUE TRUE 

Use default routing for 

sinking 

TRUE TRUE TRUE TRUE 

 

 

 

 

3.6.2 Clock tree synthesizing: 
 

After setting of the clock tree options, we follow a certain approach to efficiently 

handling multi-clock domain design: 

1) Synthesizing clock domain without either fixing hold violations or routing 

it. 

2) Reporting the actual global skew of the synthesized clock domain. 

3) Removing the summation of the actual skew of the synthesized clock 

domain skew and a margin from the uncertainty of the setup timing 

checks. 

4) Setting the hold timing checks of the synthesized clock domain to zero. 

5) Fixing the hold timing violations of the synthesized clock domain. 

6) Reporting the quality of results of the synthesized clock domain. 

7) Perform more hold-fixing if the quality of results isn’t acceptable. 

8) If the quality of results isn’t acceptable, reducing the maximum 

capacitance and maximum fan-out number of the synthesized clock 

domain, and then repeats all above steps.  

We use the following command each clock domain in the PULPissimo to perform 

the previously mentioned approach: 

1) The “clock_opt –only_cts –no_clock_route –clock_trees 

$clock_domain_name” command synthesizes the given clock domain 

without either fixing hold timing violations or routing it. 

2) The “report_clock_trees –summary –clock_trees $clock_domain_name” 

command is used to report the actual global skew of the synthesized clock 

domain. 

3) The “set_fix_hold $clock_domain_name” and “set_fix_hold_options –

prioritize_tns –effort high” commands , and then executing the “clock_opt 
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–psyn_only –no_clock_route” command. By these 3 commands, we begin 

solve the hold timing violations of specified clock domain. 

4) After synthesizing and fixing the hold violations of each clock domain, we 

begin to routing all clock signal simultaneously, by executing the 

“route_zrt_group -all_clock_nets -reuse_existing_global_route true” 

command. 

 

3.7  Chip finishing: 
 

Chip finishing consists of four basic steps: 

1) Metal layers spreading and widening 

2) Standard cell filling 

3) Redundant vias insertion 

4) Metal filling 

 

3.8.1 Pad filling: 
 

Pad filling is performed in the empty locations between the IO pads to 

make the chip uniform in density and to route the power and ground 

tracks properly. 

 

3.8.2 Standard cell filling: 

 

Standard cell filling is performed in the empty locations in the standard cell rows 

to make the chip uniform in density and to improve the yield of the chip. Some 

locations may be still empty because if filling occurred at such locations, it would 

lead to DRC violations. 

 

3.8.3 Metal filling: 
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Metal filling is performed to protect metal interconnections in low metal density 

regions from over-etching during fabrication process. Timing driven metal filling 

specifically is performed to preserve timing on critical nets, metal fill near critical 

nets on the same layer, upper layer, and lower layer are removed or trimmed. 

 

3.8.4 Verifying and reporting: 
 

Verifying for design rules violations is done by executing the “verify_route” 

command which reports a summary for the DRC violations and shorts. And 

verifying for shorts and opens is done by executing the “verify_lvs” command 

which reports the shorts and opens in the design by performing layout versus 

schematic checks. The reporting is done by executing the “report_qor” command 

to report setup and hold worst negative slack and to setup and hold total negative 

slack, area of standard cells, IO pads and macros and the CPU time. 

 

3.8.5 Outputs: 
 

The outputs are GDS file, which contains the layout of the chip, gate-level netlist 

written in Verilog, constraints written in SDC format and the standard parasitic 

extraction format (SPEF) files, which allows the representation of parasitic 

information of a design(R, L, and C) in an ASCII, to be used in the static timing 

analysis in the Synopsys Prime-Time tool. 

 

3.8  Static timing analysis: 
 

After performing a clean place-and-route phase, the next necessary step is to 

make timing verification on a high precision static timing analysis tool as the 

timing aspect is a very sensitive aspect to take care of. Our STA tool that we have 

worked on is Synopsys Prime-Time, and we are going to discuss our work on it. 

The target of using this tool in this stage is to verify timing on a spectrum of 

operating conditions that the design is expected to operate at. These operating 

conditions have three main dimensions which are temperature, operating voltage 
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and manufacturing process. Another dimension that can be taken into account is 

MOSFET threshold voltage. We are going to spread them below. 

In manufacturing process analysis, we can classify it to three elements: slow-

slow, typical-typical, and fast-fast process. As illustrated from the naming, the 

slow-slow process has the highest standard cell delay among the others, and then 

the fast-fast process has the lowest one among them. With respect to the ambient 

temperature, we can say that the highest temperature-based cells have the highest 

delay, and the lowest temperature-based cells have the lowest delay. 

Another affecting aspect is the operating voltage, it also has a significant impact 

on the propagation delay, since the highest voltage-based cells have the lowest 

delay, and the lowest voltage can contribute with a higher delay. 

The last affecting factor is the MOSFET threshold voltage. There are three main 

types of threshold voltage based on MOS devices, and they are low voltage 

threshold (LVT), regular voltage threshold (RVT), high voltage threshold 

(HVT). This factor is also significantly affecting the delay of the standard cells. 

The low threshold-based cells have the lowest delay, and the highest one has the 

highest propagation delay. In our case, we have only regular voltage threshold-

based libraries. This type of libraries has a variety of the previously mentioned 

operating conditions. 

Therefore, we can conclude that the best-case library has the lowest 

temperature, the highest voltage, and the fastest process, and the worst-case 

library has the inverse of these condition. 

After recognizing the expected cases, we can go through our work, and 

handle all of these cases in order to meet the setup and hold timing 

requirements. One the significant problems that we have faced is that we have 

performed the synthesis process in the worst-case library. That implies good 

setup timing results, but deeply worst hold-timing results, since the timing 

paths is welloptimized for the worst case and have minimum possible delay so 

that these paths cannot hold enough time for data to be well-stabilized. 

In order to solve this problem, we have to insert plenty of buffers to boost 

the delay, and that can be achieve in each case separately. 

Recalling to the inputs of the tool, the tool needs to read the Verilog netlist 

and the operating library that we are going to analyze its case, in addition to the 

constraints file, and the parasitics file so that we can define the actual delays of 

the physical nets. 
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Till now, everything appears to be great, but a problem arises when setting 

up the environment to work, and this problem is that the tool calculates the 

propagation delay of the nets based on a non-real resistance and capacitance 

values, thus that can lead to non-real delay values. As discussed in the library 

section in the appendix, the standard cell library has a table to calculate the 

delay based on it. When the parasitic values exceed these values, the STA tool 

begins to make extrapolations based on the last parasitic values that defined in 

the table, and it takes this maximum value of defined delay and adds an extra 

10% of delay. This can result in non-accurate delay calculations at all. That 

conclusion illustrated that the parasitic values, one way or another, is wrongly 

written in the file. 

Therefore, we have resorted to another manipulating solution, and that 

solution was to work with DDC-based files. These files contain the design 

netlist information in addition to the calculated values of the parasitics, and 

also the design constraints are built-in in this file. To ensure that these values 

are valid, we have made a small comparison between the end-point path slack 

histogram in both layout tool and STA tool, and the result was approximately 

the same. 

After finishing the setup successfully, we have stepped forward to analyze 

the design against the different cases. In most cases, the design had clean setup 

timing, and the problem was at the hold time. There are two was ways to solve 

such problems. The first one is to fix them in the layout tool and forward the 

design to layout tool to verify the results. The other one is to fix them in STA 

tool itself and to write the changes that have done to the design, and then 

forward them the layout tool to make these changes on the design, and finally 

the tool can write a new DDC-based file that contains the changes. That new 

file can be forwarded again to the STA tool for further analysis. 

After experiencing the two method, we have decided to build our final 

results based on the second method. The PrimeTime STA tool offers a built-in 

synthesis engine to fix the setup and hold timing violations. We can take case 

study example, and we can consider all the other cases were treated by the 

same analogy. 

For example, we have a certain library causes a certain hold time violation 

to the design. Therefore, we basically have inserted buffers with different sizes 

to recover the violation, but unfortunately, the STA cannot fix the setup and 

hold time violations simultaneously. Thus, a setup time violation can easily 

arise. After few iterations for solving the setup and hold violations, we can 
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finally forward the changes file, which can be named “ECO netlist”, to the 

layout tool. Then, the layout have to do some modifications on the design such 

as performing eco routing to resolve the expected violations that can be 

resulted from the “ECO netlist”. 

 

 

 

 

 

 

 

 

 

4) Results: 
 

The following sections represent and discuss the results of implementing the 

PULPissimo microcontroller in the flat, hierarchial and topographical ASIC 

approaches using SAED 32nm technology library. The results are represented and 

discussed in the following order: 

1) Logic synthesis 

2) Design planning 

3) Placement 

4) Clock tree synthesis 

5) Routing 

6) Chip finishing 

7) Static timing analysis 

4.1  Logic synthesis results: 
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4.1.1 Flat flow: 
 

4.1.1.1 Area results: 
 

Table 8 : Flat Flow Area Results 

 After Removing Hierarchy 

Total Cell Area  16311413.9 µm2  

Net 1547462.2 µm2 

Total Design 

Area 

17858876.2 µm2 

 

Combinational Area 247349.2 µm2 

Non-combinational Area 862207.2 µm2 

Macro Area 15201857.5 µm2 
 

Macros take up 93% of the design area. Those macros are I/O Pads, SRAMs and 

PLL.  

Table 9: Macro Area 

I/O Pads 528000 µm2 

PLL 10873.333 µm2 

2%5%

93%

Area

Combinational Area Non-combinational Area Macro Area
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SRAM 14768716.43 µm2 
 

 
 

As shown in the above chart the SRAM takes up most of the Macro Area, 

this is because the design uses three types of memory banks Interleaved 

memory bank, Private memory bank and ROM bank. Those banks are 

large sized and due to the limited size of SRAM instance available in 

SAED 32nm library, which is 512 × 32 𝑏𝑖𝑡𝑠, we used multiple instances 

to build one bank of each type 

 

 

 

Table 10: Types of memory banks 

 Number of Banks Bank Size Number of Instances used for 

each bank 

Interleaved Memory 4 215 × 32 bits 64 

Private Memory 2 213 × 32 bits 16 

ROM 1 29 × 32 bits 4 

 

4.1.1.2 Power results: 
 

3%
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Figure 17: power report after synthesis (flat flow) 
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Table 11: Power Results 

Internal Cell Power 5.88 mW 

Leakage Power 11.291 mW 

Switching Power 123.1 µW 

Total Power 17.304 mW 

 

 
 

The above results shows that most of power consumption is due to leakage power 

which is the static power consumed in the transistor due to constant current from 

VDD to Ground and it increases with shrinking the transistor size, that is why its 

value is high in our case. The second most type of consumed power is the internal 

power which is dissipated within the cell boundary in the form of dissipation 

during switching due to charging or discharging of any internal capacitors and the 

short circuit power which is caused by the flow of a current through a direct path 

between VDD and Ground during switching of both NMOS and PMOS 

transistors for a short period of time. The third type is Switching power which is 

dissipated in load capacitance during charging and discharging. 

  

34%

65%

1%

Power

Internal Cell Power

Leakage Power

Switching Power
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4.1.1.3 Timing results: 
 

 

Figure 18: Setup time histogram after synthesis (flat flow) 

 

Figure 19: Hold time histogram after synthesis (flat flow) 
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The chart below shows the worst critical slack in each clock domain among the 

setup timing checks: 

 

 

The chart below shows the worst negative slack in each clock domain among the 

hold timing checks: 

 

4.1.1.4 Run time: 
 

 

Figure 20: CPU time of synthesis (flat flow) 

Total Compile time equals 1264.48 seconds which equals 21.07 minutes. 
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4.1.2 Hierarchical flow: 
 

4.1.2.1 Area: 
 

Table 12 : Hierarchical  Flow Area Results 

 After Removing Hierarchy 

Total Cell Area  16300430 µm2  

Net Area 334048 µm2 

Total Design Area 16634478 µm2 

 

Combinational Area 252014 µm2 

Non-combinational Area 846558 µm2 

Macro Area 15201857.5  µm2 
 

 

 
 

Macro cells take up 93% of the design area. Those macro cells are I/O Pads, 

SRAMs and PLL.  

  

2%5%

93%

Area

Combinational Area Non-combinational Area Macro Area
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Table 13: Macro Types 

I/O Pads 528000 µm2 

PLL 10873.333 µm2 

SRAM 14768716.43 µm2 
 

 
 

As shown in the above chart the SRAM takes up most of the Macro Area, this is 

because the design uses three types of memory banks interleaved memory bank, 

Private memory bank and ROM bank. Those banks are large sized and due to the 

limited size of SRAM instance available in SAED 32nm library, which is 512 ×

32 𝑏𝑖𝑡𝑠, we used multiple instances to build one bank of each type. 

 

Table 14: Memory Types 

 Number of Banks Bank Size Number of Instances used for each 

bank 

Interleaved Memory 4 215 × 32 bits 64 

Private Memory 2 213 × 32 bits 16 

ROM 1 29 × 32 bits 4 
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4.1.2.1 Power Results: 
 

 

Figure 21: power report after logic synthesis (hierarchical flow) 

 

Table 15: Power Results 

Internal Cell Power 5.94 mW 

Leakage Power 11.3 mW 

Switching Power 123.46 µW 

Total Power 17.33 mW 
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The above results shows that most of power consumption is due to leakage power 

which is the static power consumed in the transistor due to constant current from 

VDD to Ground and it increases with shrinking the transistor size, that is why its 

value is high in our case. The second most type of consumed power is the internal 

power which is dissipated within the cell boundary in the form of dissipation 

during switching due to charging or discharging of any internal capacitors and the 

short circuit power which is caused by the flow of a current through a direct path 

between VDD and Ground during switching of both NMOS and PMOS 

transistors for a short period of time. The third type is Switching power which is 

dissipated in load capacitance during charging and discharging. 
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4.1.2.2 Timing Results: 

 

 

Figure 2: Setup Time Histogram after Logic Synthesis (Hierarchical Flow) 

 

Figure 22: Hold Time Histogram after Logic Synthesis (Hierarchical Flow) 
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The chart below shows the worst negative slack in each clock domain among the 

hold timing checks: 

 

 

The chart below shows the worst negative slack in each clock domain among the 

hold timing checks: 

 

4.1.2.3 Run Time: 

 

 

Figure 23: CPU time of synthesis (hierarchal flow) 

Total Compile time equals 1390.01 seconds which equals 23.16 minutes. 
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4.1.3 The second pass in Topographical flow: 
 

4.1.2.2 Area: 
Table 16 : Topographical Flow Area Results 

 After Removing Hierarchy 

Total Cell Area  16462564.8 µm2  

Net Area 0 µm2 

Total Design Area 16462564.8 µm2 

 

Combinational Area 411211.6 µm2 

Non-combinational Area 849495.8 µm2 

Macro Area 15201857.5 µm2 
 

 

 
 

Macro cells take up 93% of the design area. Those macro cells are I/O Pads, 

SRAMs and PLL.  

Table 17: Macro Types 

I/O Pads 528000 µm2 

PLL 10873.333 µm2 

SRAM 14768716.43 µm2 

2%5%

93%

Area

Combinational Area Non-combinational Area Macro Area
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As shown in the above chart the SRAM takes up most of the Macro Area, this is 

because the design uses three types of memory banks Interleaved memory bank, 

Private memory bank and ROM bank. Those banks are large sized and due to the 

limited size of SRAM instance available in SAED 32nm library, which is 512 ×

32 𝑏𝑖𝑡𝑠, we used multiple instances to build one bank of each type. 

 

Table 18: Memory Types 

 Number of Banks Bank Size Number of Instances used for each 

bank 

Interleaved Memory 4 215 × 32 bits 64 

Private Memory 2 213 × 32 bits 16 

ROM 1 29 × 32 bits 4 
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4.1.2.4 Power Results: 
 

 

Figure 24: power report after logic synthesis (Topographical Flow) 

 

Table 19: Power Results 

Internal Cell Power 6.11 mW 

Leakage Power 11.698 mW 

Switching Power 812.86 µW 

Total Power 18.625 mW 
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The above results shows that most of power consumption is due to leakage power 

which is the static power consumed in the transistor due to constant current from 

VDD to Ground and it increases with shrinking the transistor size, that is why its 

value is high in our case. The second most type of consumed power is the internal 

power which is dissipated within the cell boundary in the form of dissipation 

during switching due to charging or discharging of any internal capacitors and the 

short circuit power which is caused by the flow of a current through a direct path 

between VDD and Ground during switching of both NMOS and PMOS 

transistors for a short period of time. The third type is Switching power which is 

dissipated in load capacitance during charging and discharging. 

  

33%

63%

4%

Power

Internal Cell Power

Leakage Power

Switching Power



87 

 

 

4.1.2.5 Timing Results: 

 

Setup Time 

 

 

Figure 2: Setup time: Hold Time Histogram after 2nd Pass Logic Synthesis (Topographical Flow) 

From the above figure, there is Setup Time violation equals -0.8 ns which is small 

enough to be solved in the later optimizations after Design Planning stage.  
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Hold Time 

 

 

Figure 25: Hold Time Histogram after 2nd Pass Logic Synthesis (Topographical Flow) 
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4.1.2.6 Run Time: 
 

 

Total Compile time equals 1328.17 seconds which equals 22.13 minutes. 

 

 

4.2. Design planning: 
 

4.2.1 Flat flow: 
 

Table 20: Design Planning (Flat Flow) 

Core Utilization 0.401 

Number of Rows 3708 

Core Width(micron) 6200 

Core Height(micron) 6200 

Aspect Ratio 1 

 

From the above table core area can be calculated to be 38.44 mm2 and the die area 

of the chip is 49 mm2, where the die height is 7mm and the die width is 7mm.  
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IR drop map of the power network: 

 

Figure 26: IR Drop map (Flat Flow) 

 

 
 

 

From the above map the maximum IR drop is 73.6 mV which is 7.75% of the 

used power supply value which is 950 mV and this drop is acceptable since it’s 

lower than 10% limit recommended by Synopsys. 
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Congestion map at the end of the design planning stage: 

 

Figure 27: Congestion Map after design planning (Flat Flow) 

 

 

 
 

 

As shown in the above map there is no congestion at all on the edges of all global 

routing cells (GRCs), this is due to the well-defined offset between hard macros in 

both X and Y directions. 
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Histogram of end point slack of setup and hold timing checks: 

 

Figure 28: Setup Histogram after Design Planning (FlatFlow) 

 

Figure 29: Hold Histogram after Design Planning (Flat Flow) 
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Critical slack on of setup and hold timing checks each clock domain: 
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4.2.2 Hierarchal flow: 
 

Table 21: Design Planning (Hierarchal Flow) 

Core Utilization 0.401 

Number of Rows 3708 

Core Width(micron) 6200 

Core Height(micron) 6200 

Aspect Ratio 1 

 

 

 

From the above table core area can be calculated to be 38.44 mm2 and the die area 

of the chip is 49 mm2, where the die height is 7mm and the die width is 7mm.  
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IR drop map of the power network:  

 

Figure 30: IR Drop map (Hierarchal Flow) 

 

 

 
 

From the above map the maximum IR drop is 76.3 mV which is 8.03% of the 

used power supply value which is 950 mV and this drop is acceptable since it’s 

lower than 10% limit recommended by Synopsys. 
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Congestion map at the end of the design planning stage: 

 

Figure 31: Congestion Map after Design Planning (Hierarchal Flow) 

 

 

 
 

As shown in the above map there is no congestion at all on the edges of all global 

routing cells (GRCs), this is due to the well-defined offset between hard macros in 

both X and Y directions. 
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Histogram of end point slack of setup and hold timing checks: 

 

Figure 32: Setup Histogram after Design Planning (Hierarchal Flow) 

 

Figure 33: Hold Histogram after Design Planning (Hierarchal Flow) 
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Critical slack on of setup and hold timing checks each clock domain: 
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4.2.3 Topographical flow: 
 

Table 22: Design planning (topographical Flow) 

Core Utilization 0.401 

Number of Rows 3708 

Core Width(micron) 6200 

Core Height(micron) 6200 

Aspect Ratio 1 

 

From the above table core area can be calculated to be 38.44 mm2 and the die area 

of the chip is 49 mm2, where the die height is 7mm and the die width is 7mm.  
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Figure 34: Design Layout (Topographical Flow) 

 

Layout of the Topographical Flow is different from other Flows. 
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IR drop map of the power network:  

 

Figure 35: IR Drop map (Topographical Flow) 

 

 

 
 

From the above map the maximum IR drop is 120.8 mV which is 12.7% of the 

used power supply value which is 950 mV. This value is higher than 10% 

recommended IR drop by Synopsys, however it could be improved by reducing 

the offset between the power and ground straps which will result in the reduction 

of the resistance of the power and ground mesh, therefore reduces the IR drop on 

them, and this can be done in the future work of this thesis, however 12.7% IR-

drop is still acceptable. 
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Congestion map at the end of the design planning stage: 

 

 

Figure 36: Congestion Map after design planning (Topographical Flow) 

 

 

 
 

As shown in the above map there is no congestion at all on the edges of all global 

routing cells (GRCs), this is due to the well-defined offset between hard macros in 

both X and Y directions.  
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Histogram of end point slack of setup and hold timing checks: 

 

Figure 37: Setup Histogram after Design Planning (Topographical Flow) 

 

Figure 38: Hold Histogram after Design Planning (Topographical Flow) 
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Critical slack of setup and hold timing for each clock domain: 
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4.3 Placement: 
 

4.3.1. Flat Flow 

4.3.1.1. Congestion Map: 
 

 

Figure 39: Congestion Map after Placement (Hierarchal Flow) 

As shown in the above map there is no congestion at all on the edges of all 

global routing cells (GRCs), this is due to the well-defined offset between 

hard macros in both X and Y directions. 
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4.3.1.2. Timing Results 
 

 

Figure 40: Setup Time Histogram after Placement (Flat Flow) 

 

Figure 41: Hold Time Histogram after Placement (Hierarchical Flow) 
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4.3.2. Hierarchical Flow 

4.3.1.1. Congestion Map: 
 

 

Figure 42: Congestion Map after Placement (Hierarchal Flow) 

As shown in the above map there is no congestion at all on the edges of all global 

routing cells (GRCs), this is due to the well-defined offset between hard macros in 

both X and Y directions. 
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4.3.1.2. Timing Results 
 

 

Figure 43: Setup Time Histogram after Placement (Hierarchical Flow) 

 

Figure 44: Hold Time Histogram after Placement (Hierarchical Flow) 
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4.3.3. Topographical Flow 

4.3.1.1. Congestion Map: 
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4.3.1.2. Timing Results 
 

 

Figure 45: Setup Time Histogram after Placement (Topographical Flow) 

 

Figure 46: Hold Time Histogram after Placement (Topographical Flow) 
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4.4 Clock Tree Synthesis (CTS) 

4.4.1. Flat Flow 

 

 

Figure 47: SoC Domain Clock Tree (Flat Flow) 
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Figure 48: Peripheral Domain Clock Tree (Flat Flow) 

 

Figure 49: Reference Clock Tree (Flat Flow) 
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Figure 50: Setup Time Histogram after CTS (Flat Flow) 

 

 

Figure 51: Hold Time Histogram after CTS (Flat Flow) 
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4.4.2. Hierarchical Flow 
 

 

Figure 52: SoC Domain Clock Tree (Hierarchical Flow) 
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Figure 53: Peripheral Domain Clock Tree (Hierarchical Flow) 

 

Figure 54: Reference Clock Tree (Hierarchical Flow) 
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Figure 55: Setup Time Histogram after CTS (Hierarchical Flow) 

 

 

Figure 56: Hold Time Histogram after CTS (Hierarchical Flow) 
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4.4.3. Topographical Flow 
 

 

Figure 57: SoC Clock Tree (Topographical Flow) 

 

Figure 58: Peripheral Clock Tree (Topographical Flow) 
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Figure 59: Reference Clock Tree (Topographical Flow) 

 

 

Figure 60: Setup Time Histogram after CTS (Topographical Flow) 



122 

 

 

 

Figure 61: Hold Time Histogram after CTS (Topographical Flow) 

 

 

 

 

 

 

  



123 

 

4. Routing and PnR Final Results 
 

4.4. Area Results 

4.4.1. Flat Flow 
 

Table 23 : Flat Flow Area Results 

 After Removing Hierarchy 

Total Cell Area 16349625.9 µm2 

Net Area 1351556.03 µm2 

Total Design Area 17701181.9 µm2 

 

Combinational Area 697474.8 µm2 

Non-combinational Area 846293 µm2 

Macro Area 14805857.5  µm2 
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4.5.1.2. Hierarchical Flow 
 

Table 24: Hierarchical Flow Final Area Results 

 After Removing Hierarchy 

Total Cell Area 16281037.7 µm2 

Net Area 1410248.6 µm2 

Total Design Area 17691286.3 µm2 

 

Combinational Area 627477.5 µm2 

Non-combinational Area 847702.8 µm2 

Macro Area 14805857  µm2 
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4.5.1.3. Topographical Flow 
 

Table 25 : Topographical Flow Final Area Results 

 After Removing Hierarchy 

Total Cell Area  16307357.7 µm2  

Net Area 1355910.3 µm2 

Total Design Area 17663268 µm2 

 

Combinational Area 653124 µm2 

Non-combinational Area 848375 µm2 

Macro Area 14805857.5 µm2 
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Power Results 

4.4.2. Flat Flow 
 

Internal Power 7.36 mW 

Switching Power 5.61 mW 

Leakage Power 11.75 mW 

Total Power 24.73 mW 
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4.5.3.2. Hierarchical Flow 

 
 

Internal Power 6.68 mW 

Switching Power 3.25 mW 

Leakage Power 11.67 mW 

Total Power 21.6 mW 
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4.5.3.3. Topographical Flow 
 

Internal Power 7.15 mW 

Switching Power 5.22 mW 

Leakage Power 11.73 mW 

Total Power 24.103 mW 
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Wire Statistics 

4.4.3. Flat Flow 
 

 

Figure 62:Horizontal/Vertical Wire Distribution (Flat Flow) 

 

4.5.3.2. Hierarchical Flow 
 

 

Figure 63: Horizontal/Vertical Wire Distribution (Hierarchical Flow) 
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4.5.3.3. Topographical Flow 
 

 

Figure 64: Horizontal/Vertical Wire Distribution (Topographical Flow) 

4.3. TimingResults 

 

Flat Flow 

 
Figure 65: Setup Time Histogram after PnR (Flat Flow) 
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Figure 66: Hold Time Histogram after PnR (Flat Flow) 

Hierarchical Flow 

 
Figure 67: Setup Time Histogram after PnR (Hierarchical Flow) 
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Figure 68: Hold Time Histogram after PnR (Hierarchical Flow) 
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Topographical Flow 

 
Figure 69: Setup Time Histogram after PnR (Topographical Flow) 

 

Figure 70: Hold Time Histogram after PnR (Topographical Flow)  
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5. Conclusion and Future Work 
Here, we presented the core implementation results, mainly the logic synthesis 

and the PnR, the work presented here could be complemented in the future by 

carrying out standard verification procedures using Formality for formal 

verification, as explained in Appendix A, and doing Layout versus Schematic 

(LVS) simulations. Furthermore, the whole PULPissimo core could be used to 

instantiate multicore IoT processors like OpenPulp. The design could also be 

integrated with a hardware processing engine in a heterogeneous computing 

architecture for computationally intensive tasks. 
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Appendix: ASIC flow 
 

1. Introduction: 
 

ASIC stands for Application Specific Integrated Circuits, ASICs are Integrated 

circuits customized and manufactured as an implementation of a specific an 

algorithm rather than implementing it as a function on a general purpose 

processor or programming it on an FPGA. And the advantages of ASIC over 

FPGA and general purpose microcontroller are summarized as following:  

1) High utilization as we use only wanted cells. 

2) High performance but more complex. 

3) Low cost of fabrication in the massive production. 

All ASIC flows consists of front-end and back-end parts, and in this thesis the 

flat, hierarchal and topographical flows will be illustrated in details in the 

following sections. 

 

2. Front-end part: 
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Figure 71: flow chart of the front-end part in ASIC 

 

2.1  Idea or specific algorithm: 
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The front-end part is begun by an idea, a specific algorithm or a function that we 

want to implement by ASIC, hence specifying the inputs and outputs properties 

and all others specifications, like a required operating frequency, area, leakage 

power, maximum static and dynamic power consumption, etc. And then starting 

to write a RTL code that describes and performs the required function. 

 

2.2  Behavioral HDL simulation: 
 

After finishes the RTL code, the RTL simulation is performed to ensure that the 

RTL code work properly and performs the required function and it is cyclic and 

bit accurate (which means that produces the right bit value in the right cycle). If 

the RTL code isn’t satisfied the previously mentioned conditions, it must be 

modified. 

 

2.3  Logic synthesis step: 
 

The logic synthesis step concerns to convert the RTL into netlist. And it can be 

used with a trial and error method is used when it is wanted to know the best 

constraints that the RTL code can be work properly with a specific technology 

library. The logic synthesis step with a trial and error method by the design 

compiler (DC), as it is used in this thesis, can be illustrated in the following flow 

chart: 
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Figure 72: flow chart of the logic synthesis step with a trial and error method 

 

2.3.1 Libraries loading: 
 

The Load libraries step which consists of the following: 

1) Technology libraries that mainly contain: 
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 Standard cells and input-output (IO) pads information. The standard 

cells and input-output (IO) pads are used to map/compile the GTECH 

cells in the unmapped gate-level netlist (where GTECHs are 

technology-independent cells and don’t have any timing, area and 

power information) to standard cells to create a mapped gate-level 

netlist. 

 Operating conditions which is basically the process, voltage and 

temperature variations of the used technology library. 

 

 Units attributes of each quantity. 

 

 Wire load models (WLM) which is used to estimate the length of each 

net based on its fan-out number information, and then multiplies it in 

the per-unit value of the resistance and capacitance. 

 

2) Link libraries that contains timing information of all standard cells, IO 

pads and used macros to be used in mapping and reporting. 

 

2.3.2 Analyze and elaborate steps: 
 

The analyze and elaborate steps are used to read the RTL coed in synthesis tool 

(design compiler), where  

 The analyze step: reads the RTL codes, informs the designer if there are 

any syntax errors or non-synthesizable statements and converts the RTL 

code into intermediate binary formats to be read by the elaborate step.  

 The elaborate step: translates the intermediate binary formats into GTECH 

(technology independent gates) gate-level netlist. 

We could use instead of these two commands “read_file” command which makes 

analyze and elaborate in single step, “link” command must follow “read_file” 

command. 

 

2.3.3 Constraints applying: 
 

The applying of design constrains in the DC tool is used to define the following 

matters: 
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1) timing constraints which can be summarized in the following points: 

 Clock period. 

 

 Source latency.  

 

 Input and output delay constraints.  

 

 Uncertainty of the clock which is the summation of the estimated skew 

of the clock, jitter and margin. 

 

 False (timing paths that wouldn’t happen as they logically cannot 

occur) and multicycle (timing paths that need more than clock cycle to 

be executed) paths. 

 

 Path groups, their weight and critical range (to solve the sub-critical 

timing paths). 

 

2) Area goal. 

 

3) Leakage Power and power intent of the design. 

 

4) Electrical DRC constraints which are maximum input transition, 

maximum load capacitance and maximum fan-out number of each net in 

the design.  

  

The timing paths are categorized in 4 types of paths: 

1) Register-to- register path: starts from a clock pin of a launch sequential 

element and ends at a clock pin of a capture sequential element. 

 

2) Input-to- register path: starts from an input port of the design and ends at a 

clock pin of a capture sequential element. 

 

3) Register-to-output path: starts from clock pin of a launch sequential 

element and ends at output port of the design. 
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4) Input-to-output path: starts from input port of a design and ends at output 

port of the design. 

 

 The ‘create_clock’ command is used as a DC command to define a clock domain. 

We pass the period and the port at which the clock object will be attached to. 

The timing paths of input-to-register, register-to-output and input-to-output types 

are constrained by defining another constraint which are input and output delay 

constraints and that is done by “set_input_delay” and “set_output_delay” 

commands. 

 

2.3.4 Compilation step: 
 

The compilation step is mainly convert the GTECH gate-level netlist into mapped 

gate-level netlist. And it is done in the DC by the “compile_ultra” command for 

more optimization on timing and area. 

 

2.3.5 Reporting: 
 

The generating reports are for: 

1) Area  

 

2) All mapped standard cells 

 

3) Quality of results (QoRs) 

 

4) Clock gating 

 

5) Setup timing reports (maximum delay type). 

 

 

The design mustn’t have any setup timing violation to writing the outputs of the 

logic synthesis, otherwise the designer must perform incremental optimization on 
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the mapped gate-level netlist and report to check whether there are any setup 

timing violations or not. And that what is means by setup-violation clean design. 

Whereas the design is allowed to have any number of hold timing violations in 

this step, as they will be solved by the clock tree synthesis (CTS) step in the place 

and route (PnR) flow. 

The reporting of area is done by “report_area” command, the setup timing 

reporting is done by the “report_timing –delay_type max”. 

 

If the reports appear negative slacks we should make another incremental 

compile, and get another reports to see if the slacks are fixed or not, if still 

negative slacks appear change the constrains and make another compile then 

report until there is no negative slacks (the design is setup clean).  

 

2.3.6 Writing the outputs: 
 

The outputs are mainly 2 files: 

1) the gate-level netlist written in a HDL and the constraints written a 

specific format to be easily read by the layout tool. In case using design 

compiler to perform the logic synthesis step, the outputs will be gate-level 

netlist written in a Synopsys internal database called ddc. 

2) The constraints is written in a format called Synopsys design constraints 

(SDC). 

 

3. Back-end part: 
 

The back-end part in the ASIC flow is called PnR which stands for place and 

route, but in fact it contains more steps before and after the place and route steps, 

here is a flow chart that describes that all main steps of the PnR flow in short: 
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Figure 73: summarized flow chart of the PnR flow 

The below section describes each step in more details. 

 

3.1  Data setup: 
 

In the data setup step, the designer gives specific inputs to the PnR tool, which is 

the IC compiler in this thesis, to prepare it to the nest steps in the flow. These 

inputs can be summarized as following: 

 

3.1.1 Target library: 
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1) Standard cells and input-output (IO) pads information, like timing, area, 

leakage power, Boolean function and information about each pin in each 

cell. 

 

2) Operating conditions. 

 

3) Units attributes of each quantity. 

 

4) Wire load models (WLM). 

And it is has .db and .lib extension, where the .lib file contains the previously 

mentioned information in ASCII format to be easily read by the designer and the 

.db file contains these information in binary format to be easily read by the IC 

compiler. And it the .lib file is the only one existed the IC compiler will convert it 

into binary format (.db extension). And its directory is saved in reserved variable 

called “target_library” in the IC compiler tool. 

 

3.1.2 Link library: 
 

Link libraries contain timing information of all standard cells, IO pads and used 

macros to be used in analyzing and reporting the standard cells, IO pads and used 

macros that are considered as parts of the different timing paths in the design. 

And its directory is saved in reserved variable called “link_library” in the IC 

compiler tool. 

 

3.1.3 Physical library  
 

The physical libraries contains physical information about standard cells, IO pads 

and used macros, and these information like: 

1) Abstraction view of the layout, which is called FRAM view. 
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Figure 74: example on FRAM view of NAND logic cell 

2) Layers that is used in the layout to be considered as obstacles in the 

routing step and prevented any short can happened during placement or 

routing steps. 

 

3) Pins layer, its size and its locations. 

 

4) Units attributes. 

 

5) Defines placement site. 

 

Figure 75: example on the site (unit tile). 
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6) Technology file which contains the geometrical design rule checks 

(DRCs) of each layer in the used technology library. And the extension of 

that file is “.tf”. 

 

These information is placed in internal database of the Synopsys company called 

Milkyway database and it is created by command called “create_mw_lib” which 

mainly takes the FRAM view of each standard cells, IO pads and used macros, 

and the technology file. And all the previously mentioned files are provided by 

the vendor of the used technology library. 

The following steps show how to create a Milkyway database in the Synopsys 

tools: 

1) Define the power and ground nets.  

For example, set the following variables:  

set mv_power_net VDD  

set mw_ground_net VSS  

set mw_logic1_net VDD  

set mw_logic0_net VSS  

set mw_power_port VDD  

set mw_ground_port VSS  

If you do not set these variables, power and ground connections are not 

made during execution of write_milkyway. Instead power and ground nets 

can get translated to signal nets.  

 

2) Use the create_mw_lib command to create the Milkyway design library.  

For example, 

 create_mw_lib -technology $mw_tech_file \ -

mw_reference_library $mw_reference_library \ 

$mw_design_library_name.  

 

3) Use the open_mw_lib command to open the Milkyway library that you 

created.  

For example,  
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open_mw_lib $mw_design_library_name. 

 

4) (Optional) Use the set_tlu_plus command to attach TLUPlus files.  

For example,  

set_tlu_plus_files -max_tluplus $max_tlu_file \ -min_tluplus 

$min_tlu_file\ -tech2itf_map $prs_map_file. 

 

5) In subsequent topographical mode sessions, you use the open_mw_lib 

command to open the Milkyway library. If you are using TLUPlus files 

for RC estimation, use the set_tlu_plus_files command to attach these 

files.  

For example,  

open_mw_lib $mw_design_library_name  

set_tlu_plus_files -max_tluplus $max_tlu_file \  

-min_tluplus $min_tlu_file \  

-tech2itf_map $prs_map_file  

The following Milkyway library commands are also supported:  

 copy_mw_lib  

 close_mw_lib  

 report_mw_lib   

 current_mw_lib  

 check_tlu_plus_files  

 write_mw_lib_files  

 set_mw_lib_references 

 

3.1.4 Table look up plus files: 
 

The Table look up plus (tlup) files contain the resistance and capacitance per-unit 

values of each of metal layer to be used in extraction of the RC model of the 

estimated length of the interconnects or the actual interconnect, after the track 

assignment stage in the routing step. 

 They consist of 3 different files which are called tluMax, tluMin and mapping 

files where the mapping file maps the names of layers that are in the interconnect 

technology format (ITF) file to the ones in the technology file. Where the 

interconnect technology format (ITF) file contains an ordered list of all 

conductive and dielectric layers in the technology library. 
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3.1.5 Gate-level netlist: 
 

The gate-level netlist contains the mapped all standard cells and IO pads and used 

macros in the RTL. 

 

3.1.6 Constraints: 
 

The timing, area, electrical DRCs and power constraints written in Synopsys 

design constraints (SDC) format. And that is used and written by the design 

compiler tool. 

 

3.2 Design planning step: 
 

The Design planning step is very important step, as all the following steps depend 

on it, so that it should be performed carefully. It is usually done by many 

iterations after beginning by an initial planning as all design stages in all fields, 

not in the ASIC designing only. The following is a flow chart describing the 

Design planning step: 
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Figure 76: flow chart of design planning step 

The following sections describe each step in more details. 

 

3.2.1 Creating floor-planning: 
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Figure 77: flow chart of creating floor-planning step 

The Creation of the floor-planning begins with the “create_floorplan” command 

which takes the following arguments: 

1) Control type by which the IC compiler tool set the height and width of the 

core of the chip. And it can be height and width or respect ratio. 

 

2) Height and width dimensions of the chip core, if the control type is set to 

height and width value. 

 

3) Utilization ratio which is ratio between the combined area of all used 

standard cells, IO pads, macros and estimated net area and the core area. 

 

4) Respect ratio: which is the ratio between the the height of the core and the 

width of the core. 

 

5) Determining whether the placement of the standard cells is done on 

horizontal or vertical rows. 
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6) The distance between the core boundaries and the IO pads edges from 

each side in the chip. 

 

 

The pin placement is done by the “set_pin_physical_contraints” command and the 

pad placement is done by the “set_pad_physical_contraints”. The both previously 

commands are set for each pin and pad in the design to have well-defined 

placement of them, otherwise the IC compiler tool will place them automatically 

and they may be dis-ordered. 

Defining of the macro placement is done by the collecting the macro in arrays and 

these array can be one or two dimensional and can have any number of macro 

cells in any order, the designer wants and the designer can specify the offset 

between the macro cells in an one array in both direction, the X and Y directions. 

The macro array is handled by the “set_fp_macro_array”. 

After setting the macro array, the designer should specify the locations of these 

macro array by the “set_fp_macro_options” command, otherwise the IC compiler 

will place them automatically and the overlapping the different macro arrays can 

happen. It worst to mention that all the macro placement constraints are soft 

constraints, which means that the IC compiler tool will try to honor them, but if it 

finds better options than the specified ones, it will choose them over the specified 

macro placement constraints.  

During determining the macro placemenet constraints, the designer should 

observe some basic rules when measuring QoR, such as pushing hard macros to 

the core boundary and aligning similar hard macros. However, the critical 

measurements that are used to evaluate the placement results are timing and 

routability. 

Defining the macro keep-out margin is essential step as it prevent the placer 

engine in the IC compiler tool from placing the standard cells in specified area 

around the macro cells, therefore it will reduce the congestion and keep more 

space for the interconnects that connect the macro pins to the standard cells and 

IO pads. 

 

3.2.2 Virtual flat placement: 
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Figure 78: flow chart of virtual flat placement step 

As the above flow chart shows, the strategy of the virtual placement engine 

should be set before beginning of that placement. The strategy is set by the 

“set_fp_placement_strategy” command. And the usual setting are: 

1) The virtual in-place optimization (VIPO) is set to on. 

2) Sliver size which determines the upper bound of the size of channels that 

are between the macro cells at which there is no standard cells placement. 

3) Congestion effort. 

After the setting of the virtual placement strategy, the virtual placement itself is 

performed by the “create_fp_placement” command and that command requires 

the driven by which the placement is guided, and the available option is timing 

one or/and congestion. 

Virtual flat placement is the simultaneous placement of standard cells and macros 

for the whole chip. The initial virtual flat placement is very fast and is optimized 

for wire length, congestion, and timing. For designs with macros, plan groups, or 

voltage areas that have not already been placed, virtual flat placement can help 

you decide on the locations, sizes, and shapes of the top-level physical blocks. 

 

3.2.3 Reducing congestion: 
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Figure 79: flow chart of reducing the congestion step 

After the virtual placement, the congestion should be analyzed and that is done by 

the “route_global –congestion_map_only” or “route_fp_proto -

congestion_map_only”. The first command is more accurate than the other, but 

the second one is faster. 

If the design is congested, the following is available to solve this problem: 

 

1) Changing macro placement or their orientation, then run another floor-

planning placement with a timing and congestion drivens. 

 

2) Increasing core area by decreasing the core utilization. 

 

3) Increasing the keep-out margins. 



155 

 

 

 

Congestion reporting is a map at which the design is divided into cells call global 

routing cells and Number of nets crossing the global routing cell (GRC) edge, 

versus Number of available routing tracks are computed and then compared. 

 

3.2.4 Power network creating: 
 

 

Figure 80: flow chart of power network syntheisizing step 

Power network consists of rings, straps, stacked vias and supply rails, where 

 

1) Rings: they are thick wires routed in the space that between IO pads 

boundaries and core boundaries, and they are usually routed in the highest 

metal layers of the technology library (if the ASIC consists of 10 metal 
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layers, then the rings will be in the 10th, 9th, 8th and 7th metal layers), they 

are usually 2 rings, one for power and the other for ground, and they 

connected to the power and ground pads in order to move the power and 

ground from the outside the ASIC to the space between IO box and core 

area. They are created by the “create_rectangle_rings” command in the IC 

compiler tool. 

 

2) Straps: they are thick straight wires routed across the core area itself in 

the same metal layers that contains the rings, they connect to rings using 

array of vias in order to move the power and ground (p/g) from the rings 

(space that between IO box and core area) to inside core area itself and 

they takes grid shape. They are created by the “create_power_straps” 

command in the IC compiler tool. 

 

3) Supply rails: they are thin wires routed in the 1st layer, they are connected 

to the rings and straps using special vias called stacked vias and they 

supply the standard cells which also are in the 1st metal layer with power 

and ground. They are created by the “preroute_standard_cells” command 

in the IC compiler tool. 

 

4) Stacked vias: array of vias that connects the supply rail in the 1st layer to 

the straps. They are created by the “create_preroute_vias” command in the 

IC compiler tool. 

 

 

To pass this step, the IR drop has to be equal or less than 3% of the supply 

voltage. That to keep the noise margin of standard cells large and to prevent the 

delay of them from degrading.  

 

3.2.5 Reducing delay: 
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Figure 81: flow chart of the reducing delay step 

As the previously mentioned, the design is mainly performed by iterations, so that 

after synthesizing and committing of the power network, the delay must be 

analyzed and reported. The considered delay type checks are the setup timing one 

only. 

 

3.2.6 Extracting: 
 

The extracting of the RC models of estimated interconnects and actual wired 

ones, like the power network, should be performed and saved to be used in the dc 

compiler, like in the topographical flow. 

 

3.3  Placement: 
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Figure 82: flow chart for placement stage 

There are many configuration settings that affect the behavior of placement in IC 

Compiler, including the following controls: 

 Setting the Congestion Options 

 

 Setting the Move Bounds 

 

 Defining Inter-cell and Boundary Spacing Rules 

 

 Defining the Buffer Strategy for Optimization 

 

 Setting the Preferred Buffers for Hold Fixing 

 

 Enabling Tie Cell Insertion 

 

 Setting Placement and Optimization Attributes 

 

 



159 

 

 

To pass the placement step, the congestion and the setup timing slack should be 

acceptable.  

The following sections go through each step in more details. 

 

3.3.1 Setting of the non-default routing rules: 
 

The non-default routing (NDR) rules are set for routing the clock trees, but it is 

set before the placement to be taken in the consideration during the placement 

stage. They are set using the “define_routing_rules” command followed by 

“set_net_routing_rule” command. 

 

3.3.2 The high fan-out synthesis: 
 

The high fan-out synthesis (HFS) targets the static signal nets with high fan-out 

number and builds a tree of buffers and inverters to divide these high fan-out nets 

into smaller nets, therefore reduces the output load capacitance and enhances the 

delay or place the standard cells away from each other to improve the congestion. 

The HFS is performed by a “create_buffer_tree” command. 

 

3.3.3 Placement: 
 

It is done by a “place_opt” command which performs the following: 

1) global placement (coarse placement): 

 Choose location for each cell. 

 Cells can overlap. 

 Orientation is ignored. 

 Aims to meet the area and power target and avoid routing 

congestion. 

 

2) Electrical DRC violation fixing (HFS) 
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3) Legalized placement: 

 Fixing the cell overlap. 

 Assigning the cell to site rows. 

 Aims to enhance the rout-ability and avoids DRC violation. 

 

4) Optimization: 

During this stage, the tool performs timing (solve setup violations only), area, 

congestion, and leakage-power optimization. 

 

3.3.4 Congestion and setup reporting: 
 

The congestion is reported by the “route_global” command. And the setup timing 

checks are reported by a “report_timing –delay_type max” command 

 

3.3.5 Incremental optimization for placement: 
 

The incremental optimization of placement is mainly performed by a “psynopt” 

command, but its options are set based on the target of that optimization: 

If the congestion is wanted to be optimized, the options should be “-congestion”. 

And if the setup timing is wanted to be optimized, the options should be “-

only_size”, “-no_design_rule” or “-only_design_rule”. 

 

3.4  Clock tree synthesis: 
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Figure 83: flow chart of clock tree synthesis 

The following sections go through each step in more details 

 

3.4.1 Setting of the clock options: 
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The setting of the clock options is done by a “set_clock_tree_options” command. 

And the common options are 

1) The references by which the clock tree is built, and the target libraries must 
meet the following requirements: 

 Any cell in the logic library that you want to use as a clock tree reference 

(a buffer or inverter cell that can be used to build a clock tree) or for sizing 

of gates on the clock network must be usable by clocktree synthesis and 

optimization. 

 

 By default, clock tree synthesis and optimization cannot use buffers and 

inverters that have the dont_use attribute to build the clock tree. To use 

these cells during clock tree synthesis and optimization, you can either 

remove the dont_use attribute by using the remove_attribute command or 

you can override the dont_use attribute by specifying the cell as a clock 

tree reference by using the set_clock_tree_references command. 

 

 The physical library should include All clock tree references (the buffer 

and inverter cells that can be used to build the clock trees). 

 

 Routing information, which includes layer information and non-default 

routing rules. 

 

 TLUPlus models must exist. Where the Extraction requires these models 

to estimate the net resistance and capacitance. 

 

 

2) Target skew: which is the maximum global skew, where the global skew is the 

difference in shortest insertion time and largest insertion time of 2 sequential 

elements. 

 

3) Target early delay: which is the minimum insertion delay, where the insertion 

delay is the delay taken by the clock signal to pass from the clock port of the 

design to the clock pin of the cell. 

 

4) Maximum fan-out. 
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5) Maximum capacitance. 

 

6) Maximum transition. 

 

7) Using default routing rules at sinks to prevent the DRC violations from 

happening during the clock tree routing. 

 

8) Clock tree optimizations, like: 

 Buffer resizing  

 Buffer relocation 

 Gate resizing 

 Gate relocation 

 

3.4.2 Clock tree synthesizing: 
 

The synthesizing of a clock tree is done by the “clock_opt –only_cts –

no_clock_route” command. And it is better to first synthesize the clock tree, 

hence analyze the results, and then fix the hold violations and finally route the 

clock tree. 

 

3.4.3 Analysis: 
 

1) CTS browser: 

 Properties and attributes on clock tree objects 

 Traversing clock tree levels 

 Symbols for CTS objects like buffers, gates and sinks 

 

2) CTS schematic: 

 Trace forward/backward in schematic view 

 Collapses all sinks in the fanout of a CTS buffer for clearer 

CTS schematic 

 Highlight CTS objects in the layout view 
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3) Clock arrival histogram. 

 

4) Report by the “report_clock_tree –type skew”. 

 

3.4.4 Solve hold violations: 
 

The Solving of hold violations is done by the “ clock_opt –only_hold_time” 

command after setting “set_fix_hold” command and “set_fix_hold_options”.  

 

3.4.5 Routing of clock tree: 
 

The routing of the clock tree is done by the “route_group –all_clock_nets” 

command. And that after checking for all clock tree options. 

  

3.5 Routing: 
 

Routing creates physical connections to all clock and signal pins through metal 

interconnects and after the routing stage, the following requirements must be 

satisfied: 

1) Routed paths must meet setup and hold timing, max cap/trans, and clock 

skew requirements. 

 

2) Metal traces must meet physical DRC requirements. 

 

 

Here a flow chart describes the main steps in the routing stage: 
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Figure 84: flow chart describes main steps in the routing step 

 

The below sections go through each step in more details. 

 

3.5.1 Global routing: 
 

At the global route, the design is divided into small, square cells called global 

routing cells (GRCs) and the global routing engine tries to assign each net to 

specific global routing cell and then to specific metal layer in order to reduce the 
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congestion, which is existed when more tracks are needed than available. And the 

global routing engine doesn’t lay down any metal trace.  

To illustrate the difference between the terms of metal track, metal trace and 

global routing cell, the figure below (figure 22) shows two metal layers, its metal 

tracks, and its metal track, where the metal trace is the real metal at which the 

signal travels and the metal track is an imagine centered line at which the metal 

trace can be made and finally the edges of the global routing cells represent a grid. 

 

Figure 85: an example of a top view of the first and the second metal layers in a chip 

 

3.5.2 Track assignment: 
 

The track assignment (TA) engine does the following: 

 Assigns each net to a specific track. 

 Makes the actual metal traces. 

 Makes long, straight traces. 

 Reduces the number of vias. 

 TA does not check or follow physical DRC rules. 

 

3.5.3 Detailed routing: 
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The detailed routing (DR) does the following: 

 Divides the chip into fixed sixes boxes called Sbox and fixes all DRC 

violations inside each Sbox only. 

 DR may not be able to clear all DRC violations. 

 

 

Figure 86: An example on the Sboxes 

 

3.5.4 Search and repair: 

 

The search and repair engine fixes remaining DRC violations through multiple 

loops and in each loop the tool increases the Sbox size and fixes the DRC inside 

it, the figure below (figure 24) shows an example of increasing the Sbox sizing. 
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Figure 87: an example of increasing the Sbox sizing. 

 

3.6 Chip finishing: 
 

 

Figure 88: flow chart shows the main steps in the chip finishing stage 

The below sections go through each step in more details. 

 

3.6.1 Antenna fixing: 
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During etching of fabrication of metal layers of the IC exposed to a strong EM, 

which generates a high instant voltage on the MOSFET gate of the transistors, 

which may cause a damage to the thin 𝑆𝐼𝑂2, therefore a failure of the transistor, 

so that the antenna DRC is set to make sure the metal layer that is connected to 

the gate is less that a specified value. That is done by determining an antenna ratio 

by the vendor, where Antenna Ratios = Metal Area Connected to Gate / gate area. 

The solution of antenna DRC violations are  

1) Layer jumping 

 

2) Antenna diode 

 

3.6.2 Redundant via insertion: 
 

At the redundant via insertion step, the tool replace every stand-alone via with an 

array of vias. And that for the following reasons: 

1) Reducing the resistance of vias.  

 

2) And if a one via is damaged the other vias will work, therefore there is no 

single-point of failure. 

 

3.6.3 Filler cell insertion: 
 

At the filler cell insertion step, density of the chip needs to be uniform to increase 

the fabrication yield, that is done by filling the remaining empty sites in all 

placement rows with a special standrad cell called filler cell. And the same is 

performed with IO pads where the empty spaces between the wire bounding IO 

pads are filled with special pad called filler pads. 

AT the IC compiler tool, the designer uses the “insert_pad_filler” command to 

insert IO cell fillers and the “insert_stdcell_filler” command to insert standard cell 

fillers. 

 

3.6.4 Metal fill insertion: 
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A metal wire in low metal density region receives a higher ratio of etchant can get 

over-etched, therefore there is a DRCs to control this issue and it is called 

minimum metal density rules. And this step the tool add redundant wires to each 

metal layer to meet its minimum metal density rule. 

 

3.6.5 Metal slotting: 
 

The wafer is made flat (planarized) by a process called Chemical Mechanical 

Polishing (CMP), and at which Metals are mechanically softer than dielectrics, 

which can cause the following: 

1) CMP leaves metal tops with a concave shape which is called dishing, and 

the wider the metal the more pronounced the dishing. 

2) Very wide traces can become quite thin, therefore the dishing becomes 

severe and is called erosion. 

 

Figure 89: an example on the dishing and the erosion of copper 

Maximum metal density rules are used to control erosion. 

4. Main verification steps: 
 

The main verification steps in the ASIC flow are the post-layout static timing 

analysis (STA) and formal verification. And the following sections go through 

each verification step in more details. 

 

4.1 Post-layout static timing analysis: 
 

The post-layout static timing analysis can be done by the Prime-Time Synopsys 

tool. Where all critical paths in the design are analyzed to determine all timing 
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violations that can be setup, hold, recovery and removal and to solve these 

violations. 

The Prime-Time Synopsys tool takes the following as inputs: 

1) Gate-level netlist, which is an output from the PnR tool. 

 

2) Constraints, which mainly are physical, timing, area and leakage power 

constraints. 

 

3) Standard Parasitic Extraction Format (SPEF) file which is generated by 

parasitic extractors like CALIBRE and contains the RC parasitic model of 

interconnects. 

 

4) Logic libraries. 

 

 

 

The Prime-Time Synopsys tool produces the following as outputs: 

1) Timing reports.  

 

2) Standard Delay Format (SDF) file, which contains delays of cells and 

interconnects that are in the design. 

 

4.2  Formal verification: 
 

The Formal verification is done by the formality Synopsys tools and it can be 

three types: 

1) A RTL code versus Modified RTL code, which is used to check either the 

modified RTL has the old function of, the old RTL, or not. 

 

2) A RTL code versus the gate-level netlist, which is used to check either the 

RTL code are synthesized correctly by the synthesizing tool or not. And 

this kind of the formal verification is used after the logic synthesis step. 
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3) The Gate-level netlist versus Modified gate-level netlist, which is used to 

check either the modified gate-level netlist still has the old function of the 

old gate-level netlist or not. And this kind of the formal verification is 

used after the clock tree synthesizing (or after any modification happens in 

the gate-level netlist). 

 

There are very important definitions in the formal verification which are: 

1) Reference Design: the basic/main design (design we sure about 

its functionality that is correct). 

 

2) Implementation Design: the design that we need to check either 

its functionality is logically equivalent to the Reference design 

or not.     

 

3) Logic cone: block consists of combinational logic which drives 

a compare point. 

 Compare point: it can be one of the following  

 Output port (primary output of the design).  

 Capture DFF  

 Input of  a black box, that is within the design. 

 

And the main Steps in the formality flow: 

1) Read: Reference Design and Implementation Design are 

segmented into logic cones. 

 

2) Match: tool matches or maps each compare point in the 

reference design to its corresponding compare point in the 

implementation design. 

 

3) Verifying. 

 

4) Debugging. 
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Code Availability: Code available upon request from any of the authors. Contact 

us at: hossam.gomaa99@eng-st.cu.edu.eg 

 

 

 

 


