
1

ASIC Implementation of PULPissimo Microcontroller

By

Ahmed Hamouda Abdelhafeez

Ahmed saied

Hossam Adel Elsayed

Mohamed Adel

Osama Mostafa

A Thesis Submitted to the

 Faculty of Engineering at Cairo University

in Partial Fulfillment of the

Requirements for the Degree of

BACHELOR OF SCIENCE

in

Electronics and Electrical Communications Engineering

FACULTY OF ENGINEERING, CAIRO UNIVERSITY

GIZA, EGYPT

2022

2

ASIC Implementation of PULPissimo Microcontroller

By

Ahmed Hamouda Abdelhafeez

Ahmed saied

Hossam Adel Elsayed

Mohamed Adel

Osama Mostafa

A Thesis Submitted to the

 Faculty of Engineering at Cairo University

in Partial Fulfillment of the

Requirements for the Degree of

BACHELOR OF SCIENCE

in

Electronics and Electrical Communications Engineering

Under the supervision of

Dr. Hassan Mostafa Dr. Amin Nassar

Associate Professor Emeritus Professor

Electronics and Communications Department Electronics and Communications Department

Faculty of Engineering, Cairo university Faculty of Engineering, Cairo university

FACULTY OF ENGINEERING, CAIRO UNIVERSITY

GIZA, EGYPT

2022

3

Contents

1. Introduction ... 13

1.1 PULP:

1.2 The Need to low power designs:

1.3 PULPissimo compared to other PULP products:

 1.4 Thesis Objective

 1.5 Thesis Map

2. PULPissimo Overview11

2.1 Main blocks in the PULPissimo:

2.1.1 The RI5CY and Ibex cores:

2.1.2 Autonomous Input/Output subsystem (uDMA):

2.1.3 Interleaved and private memories:

2.1.4 Support for Hardware Processing Engines (HWPEs):

2.1.5 New simple interrupt controller:

2.1.6 Peripherals:

2.2 Main domains in PULPissimo:

2.2.1 SoC domain: ...

2.2.1.1 The Fabric Control subsystem:

2.2.1.2 SoC peripherals: ..

2.2.1.3 L2 Ram multibank: ..

2.2.1.4 SoC Interconnect wrap:

2.2.1.5 Boot ROM:

2.2.1.6 Debug blocks:

4

2.2.1.7 SoC clock and reset generator:

2.2.2 Safe domain:

2.2.3 Pad frame:

3. The actual implementation of the PULPissimo….24

3.1 Constraints of the three chosen flows

3.1.1 Electrical DRC constraints

3.1.1.1 Maximum capacitance and maximum transition:

3.1.1.2 Maximum fan-out number:

3.1.2 Timing constraints:

3.1.2.1 Clock period

3.1.2.2 Uncertainty value:

3.1.2.3 Clock latency:

3.1.2.4 Input delay constraint:

3.1.2.1 Output delay constraint:

3.2 Instantiating of SAED 32nm IPs in the PULPissimo

RTL:

3.2.1 Instantiating of SAED 32nm SRAM:

3.2.2 Instantiating of SAED 32nm PLL IP:

3.2.3 Instantiating of SAED 32nm clock gating:

3.2.4 Instantiating of SAED 32nm IO pads

3.3 Logic synthesis:

3.3.1 Hierarchical flow:

3.3.2 Topographical flow:

3.3.2.1 Inputs and outputs:

3.3.2.2 Main steps:

5

3.5.1 Flat flow:

3.4 Design planning for the 3 different flows:

3.4.1 Floor-planning:

3.4.2 Virtual flat placement:

3.4.3 Reducing the congestion:

3.4.4 Power tree synthesizing:

3.4.5 Reducing delay:

3.4.6 Extracting:

3.5 Placement of for the 3 different flows:

3.5.1 Setting of the non-default routing rules:

3.5.2 Setting of the options of the high fan-out synthesis:

3.5.3 Placement:

3.5.4 Reporting:

3.5.5 Optimization of the placement:

3.6 Clock tree synthesis:

3.6.1 Setting the clock tree options:

3.7 Clock tree synthesizing:

4. Results: .. 70

4.1 Synthesis Results:

4.1.1 Flat Flow:

4.1.1.1 Area Results:

4.1.1.2 Power Results:

4.1.1.3 Timing Results:

4.1.1.4 Run Time:

4.1.2 Hierarchical Flow:

4.1.2.1 Area Results:

6

4.1.2.2 Power Results

4.1.2.3 Timing Results:

4.1.2.4 Run Time:

4.1.3 Topographical Flow:

4.1.3.1 Area Results:

4.1.3.2 Power Results:

4.1.3.3 Timing Results:

4.1.3.4 Run Time:

4.2 Place and route Results:

4.2.1 Flat Flow:

4.2.1.1 Design Planning:

4.2.2 Placement:

4.2.3 Hierarchical Flow:

4.2.3.1 Design Planning:

Placement

5. Conclusion and Future Work: 130

References………………………………………………….136

Appendix: ASIC flow ... 137

1. Introduction:

2. Front-end part:

2.1 Idea or specific algorithm:

2.2 Behavioral HDL simulation:

2.3 Logic synthesis step:

2.3.1 Libraries loading:

7

2.3.2 Analyze and elaborate steps:

2.3.3 Constraints applying:

2.3.4 Compilation step:

2.3.5 Reporting:

2.3.6 Writing the outputs:

3. Back-end part:

3.1 Data setup:

3.1.1 Target library:

3.1.2 Link library:

3.1.3 Physical library

3.1.4 Table look up plus files:

3.1.5 Gate-level netlist:

3.1.6 Constraints:

3.2 Design planning step:

3.2.1 Creating floor-planning:

3.2.2 Virtual flat placement:

3.2.3 Reducing congestion:

3.2.4 Power network creating:

3.2.5 Reducing delay:

3.2.6 Extracting:

3.3 Placement:

3.3.1 Setting of the non-default routing rules:

3.3.2 The high fan-out synthesis:

3.3.3 Placement:

3.3.4 Congestion and setup reporting:

3.3.5 Incremental optimization for placement:

8

3.4 Clock tree synthesis:

3.4.1 Setting of the clock options:

3.4.2 Clock tree synthesizing:

3.4.3 Analysis:

3.4.4 Solve hold violations:

3.4.5 Routing of clock tree:

3.5 Routing:

3.5.1 Global routing:

3.5.2 Track assignment:

3.5.3 Detailed routing:

3.5.4 Search and repair:

3.6 Chip finishing:

3.6.1 Antenna fixing:

3.6.2 Redundant via insertion:

3.6.3 Filler cell insertion:

3.6.4 Metal fill insertion:

3.6.5 Metal slotting:

4. Main verification steps:

4.1 Post-layout static timing analysis:

4.2 Formal verification: .. 171

 Code Availability

9

List of Figures:

Figure 1 simplified block diagram of PULPissmo SoC

Figure 2: block diagram of the RISCY core at the heart of PULPissimo

SoC

Figure 3: the three main domains of PULPissimo

Figure 4: Main blocks in the SoC domain

Figure 5: schematic showing the FC subsystem

Figure 6: schematic showing the soc peripherals module

Figure 7: schematic showing SoC interconnect wrap

Figure 8: an example of the “max_capacitance” attribute

Figure 9: example of the wire load model

Figure 10: global skew of the SPIM_CLK, per_clk and ref_clk clock

domains in the initial running

Figure 11: global skew of the soc_clk clock domain in the initial running

Figure 12: the difference between the two types of the source latency .. 35

Figure 13: an example on an input delay constraint of the MY_DESIGN

design

Figure 14: an example on an output delay constraint of the

MY_DESIGN design

Figure 15: SAED 32 nm clock gating standard cell

Figure 16: multiplexed scan register used for the DFT

Figure 17: Setup time Histogram

Figure 18: IR Drop map & Color Code (Flat Flow)

Figure 19: Congestion Map after DP (Flat Flow)

Figure 20: Congestion Map after Placement (Flat Flow)

Figure 21: Setup Time after Placement Histogram

Figure 22: Hold Time after Placement Histogram

Figure 23:Figure 18: IR Drop map & Color Code (Hierarchical Flow)

10

Figure 24: Congestion Map after Design planning (Hierarchical Flow)

Figure 25: flow chart of the front-end part in ASIC

Figure 26: flow chart of the logic synthesis step with a trial and error

method

Figure 27: summarized flow chart of the PnR flow

Figure 28: example on FRAM view of NAND logic cell

Figure 29: example on the site (unit tile).

Figure 30: flow chart of design planning step

Figure 31: flow chart of creating floor-planning step

Figure 32: flow chart of virtual flat placement step

Figure 33: flow chart of reducing the congestion step

Figure 34: flow chart of power network syntheisizing step

Figure 35: flow chart of the reducing delay step

Figure 36: flow chart for placement stage

Figure 37: flow chart of clock tree synthesis

Figure 38: flow chart describes main steps in the routing step

Figure 39: an example of a top view of the first and the second metal

layers in a chip

Figure 40: An example on the Sboxes

Figure 41: an example of increasing the Sbox sizing.

Figure 42: flow chart shows the main steps in the chip finishing stage

Figure 43: an example on the dishing and the erosion of copper

Figure 45:

Figure 46:

Figure 47:

Figure 48: Peripheral Domain Clock Tree (Flat Flow)

Figure 49: Reference Clock Tree (Flat Flow)

Figure 50: Setup Time Histogram after CTS (Flat Flow)

Figure 51: Hold Time Histogram after CTS (Flat Flow)

Figure 52: SoC Domain Clock Tree (Hierarchical Flow)

Figure 53: Peripheral Domain Clock Tree (Hierarchical Flow)

Figure 54: Reference Clock Tree (Hierarchical Flow)

Figure 55: Setup Time Histogram after CTS (Hierarchical Flow)

Figure 56: Hold Time Histogram after CTS (Hierarchical Flow)

Figure 57: SoC Clock Tree (Topographical Flow)

Figure 58: Peripheral Clock Tree (Topographical Flow)

11

Figure 59: Reference Clock Tree (Topographical Flow)

Figure 60: : Setup Time Histogram after CTS (Topographical Flow)

Figure 61: Hold Time Histogram after CTS (Topographical Flow)

Figure 62: Horizontal/Vertical Wire Distribution (Flat Flow)

Figure 63: Horizontal/Vertical Wire Distribution (Hierarchical Flow)

Figure 64: Horizontal/Vertical Wire Distribution (Topographical Flow)

Figure 65: Setup Time Histogram after PnR (Flat Flow)

Figure 66: Hold Time Histogram after PnR (Flat Flow)

Figure 67: Setup Time Histogram after PnR (Hierarchical Flow)

Figure 68: Hold Time Histogram after PnR (Hierarchical Flow)

Figure 69: Setup Time Histogram after PnR (Topographical Flow)

Figure 70: Hold Time Histogram after PnR (Topographical Flow)

Figure 71: flow chart of the front-end part in ASIC

Figure 72: flow chart of the logic synthesis step with a trial and error

method

Figure 73: summarized flow chart of the PnR flow

Figure 74: example on FRAM view of NAND logic cell

Figure 75: example on the site (unit tile).

Figure 76: flow chart of design planning step

Figure 77: flow chart of creating floor-planning step

Figure 78: flow chart of virtual flat placement step

Figure 79: flow chart of reducing the congestion step

Figure 80: flow chart of power network syntheisizing step

Figure 81: flow chart of the reducing delay step

Figure 82: flow chart for placement stage

Figure 83: flow chart of clock tree synthesis

Figure 84: flow chart describes main steps in the routing step

Figure 85: an example of a top view of the first and the second metal

layers in a chip

Figure 86: An example on the Sboxes

Figure 87: an example of increasing the Sbox sizing

Figure 88: flow chart shows the main steps in the chip finishing stage

Figure 89: an example on the dishing and the erosion of copper

12

List of Tables

Table 1: PULPissimo PadFrame signals

Table 2: DRC constraints of the PULPissimo implemented in the

topographical flow

Table 3: the timing constraints of the PULPissimo implemented

in the topographical flow

Table 4: table showing the used number of the SAED32nm

SRAM IP in each memory bank

Table 5: clock tree synthesis options for each clock domain in the

PULPissimo implemented in hierarchical approach.

Table 6: clock tree synthesis options for each clock domain in the

PULPissimo implemented in topographical approach.

Table 7: clock tree synthesis options for each clock domain in the

PULPissimo implemented in topographical approach.

Table 8: Flat Flow Area Results

Table 9: Macro Area

Table 10: Types of memory banks

Table 11: Flat Flow Power results

Table 12: Hierarchical Flow Area Results

Table 13: Macro types

Table 14: Memory types

Table 15: Hierarchal Flow Power results

Table 16: topographical Flow Area Results

Table 17: Macro-occupied area

Table 18: Memory types

Table 19: Topographical flow power results

Table 20: Design planning flat flow results

Table 21: Hierarchal Flow Design Planning results

Table 22: Topographical Flow design planning results

Table 23: Flat Flow Area Results

Table 24: Hierarchical Flow Final Area Results

Table 25: Topographical Flow Final Area Results

13

1. Introduction

1.1 . PULP:

The Parallel Ultra Low Power (PULP) platform attempts to bridge the gap between

academic research and the development of industrially relevant microcontroller

systems specifically tailored for low power processing. It is a young project

launched in 2013 as a collaboration between the Integrated Systems Laboratory

(IIS) at ETH Zürich, Switzerland and Energy-efficient Embedded Systems (EEES)

group at the University of Bologna, Italy.

1.2 . The Need to low power designs:

The design of power-efficient system on chip (SoC) is of significance importance

to the development of the applications with a built-in battery that targets operations

with a large-number of computations to increase the life-time of the applications,

therefore increases the reliability of the designs.

The Internet of Things (IoT) applications is an example of these previously

mentioned applications and the PULP designs are aimed for these kind of

applications.

1.3 . PULPissimo compared to other PULP products:

PULP products can be summarized as following:

1) Multi-core microcontroller:

 PULP microcontroller.

2) Single-core microcontroller:

 PULPino microcontroller.

 PULPissimo microcontroller.

The previously mentioned summary shown, the PULPissimo is like PULPino as

both are a single-core microcontroller, however the PULPissimo is significantly

14

advanced version compared to the PULPino in terms of complexity and

completeness and it is used as a main System-on-Chip controller for all recent

multi-core PULP chips.

The PULPissimo is an open source advanced microcontroller System on Chip

(SoC), readily available as RTL as part of the open source initiative PULP

platform.

1.4. Thesis Objective

RTL-to-GDSII Flow plays an important role in the development process of

electronic chips over the world. Due to the huge competition in this field and huge

customer demands, the technology in this field is developing at a fast pace

towards smaller, faster and more complex devices which is making it harder for a

newcomer to cope up with this field without learning and understanding the basics

first. CAD tools nowadays offer more than one ASIC design style to satisfiy huge

customer demands and improve QoR and TTR of ASIC designs. Objective of this

thesis is to go through the core ASIC implementation design steps, i.e. Logic

synthesis and Placement and Routing using Synopsys Computer Aided Design

(CAD) tools and SAED32nm CMOS technology library.

1.5. Thesis Map

After introducing the main goal of this thesis, in chapter two we will present the

architecture, of the PULPissimo SoC focusing on its key relevant features of

relevance to our design. In chapter three we focus on our backend design of the

chip in three implementation approaches called hierarchal, topographical and flat

flows. We present our results and discuss them in chapter 4 and lay the ground for

future work in chapter 5. We supplement all of this with appendix giving

necessary ASIC background.

15

2. PULPissimo Overview

2.1 Main blocks in the PULPissimo:

The main blocks in the PULPissimo can be summarized as following:

1) Either the RI5CY core or the Ibex one as main core

2) Autonomous Input/Output subsystem (uDMA)

3) New memory subsystem (interleaved and private memories).

4) Support for Hardware Processing Engines (HWPEs)

5) New simple interrupt controller

6) Peripherals

Figure 1 simplified block diagram of PULPissmo SoC

And they are discussed in the below sections

16

2.1.1 The RI5CY and Ibex cores:

1) The zero-riscy core:

 In-order, single-issue core with 2 pipeline stages.

 It has full support for the base integer instruction set (RV32I) and

compressed instructions (RV32C).

 It can be configured to have multiplication instruction set extension

(RV32M) and the reduced number of registers extension (RV32E).

 It has been designed to target ultra-low-power and ultra-low-area

constraints.

2) The RISCY core:

 In-order, single-issue core with 4 pipeline stages and it has an

instruction per cycle (IPC) close to 1.

 Full support for the base integer instruction set (RV32), compressed

instructions (RV32C) and multiplication instruction set extension

(RV32M).

 It can be configured to have single-precision floating-point instruction

set extension (RV32F).

 It implements several ISA extensions such as: hardware loops, post-

incrementing load and store instructions, bit-manipulation instructions,

MAC operations, support fixed-point operations, packed-SIMD

instructions and the dot product.

 It has been designed to increase the energy efficiency of in ultra-low-

power signal processing applications.

17

Figure 2: block diagram of the RISCY core at the heart of PULPissimo SoC

From the previous compared, it appears that the RISCY core is better than the

zero-riscy core, therefore it is chosen in the design of this thesis.

2.1.2 Autonomous Input/Output subsystem (uDMA):

PULPissimo includes a new efficient I/O subsystem via a uDMA (pronounced

"micro-DMA") which communicates with the peripherals And provides to them

an autonomous access to the interleaved memory, therefore the peripherals can

directly communicate with the interleaved memory without communicating with

it through the core, which reduces the latency and increase the overall

performance.

2.1.3 Interleaved and private memories:

The interleaved memory can be accessed by core, APB, uDMA and debug units

through a logarithmic interconnect which provides a low-latency access for the

interleaved and private memories. This memory is made in interleaved

18

configuration to minimize conflicts during parallel accesses of different masters

(e.g., core and accelerator). And it consists of 4 memory banks, each one of them

is size of 215 ∗ 32 which is a 128KB memory size.

The private memory can be accessed by the core only, therefore it is called a

private memory. And it consists of 2 memory banks, each one of them is size of

8192 (213) ∗ 32 which is a 32KB memory size.

2.1.4 Support for Hardware Processing Engines (HWPEs):

The HWPE has its own master ports to memories within the system. So the

HWPE is programmed by the core through the APB through its configuration

interface, where the core tells the HWPE to start address, or to find, the data to

process and where the results should be written to, and then the HWPE fetches the

data from the memory independently without any interaction from the core. The

core will be notified as soon as the operation is finished through a certain event

line.

2.1.5 New simple interrupt controller:

The interrupt controller has 32 interrupt lines only. And as the SoC has many

interrupt lines, than the 32 interrupt lines that are in the interrupt controller, an

another block called SoC event generator receives several interrupt lines from the

peripherals and HWPE and maps them to 2 lines of the 32 interrupt lines in the

interrupt controller.

2.1.6 Peripherals:

The main peripherals in the PULPissimo are:

1) SPI (flash memory): The SPI stands for Serial Peripheral Interface. It’s a

simple serial protocol that can talk to a variety of devices, including serial

flash devices. The SPI Flash is simply the cheapest, simplest way of

building off-chip non-volatile flash memory at the moment.

https://en.wikipedia.org/wiki/Serial_Peripheral_Interface_Bus

19

2) I2S: is an electrical serial bus interface standard used for connecting

digital audio devices together. It is used to communicate PCM audio data

between integrated circuits in an electronic device. And it consists of a

SCK (Serial Clock), which is the clock signal also referred as BCLK (Bit

Clock Line), FS (Frame Select) which is used to discriminate Right or Left

Channel data also referred WS (Word Select) and SD (Serial Data) which

is the serial data to be transmitted.

3) Camera Interface (CPI): In camera peripheral, RGB565 camera are used

and it is especially (cheap) screens used with embedded devices do not

provide 24 bit color-depth. Only provides 2^16=65 536 colors.

4) I2C: alternatively known as I2C or IIC, is a synchronous, multi-

controller/multi-target, packet switched, single-ended, serial

communication bus

5) UART: A universal asynchronous receiver-transmitter is a computer

hardware device for asynchronous serial communication in which the data

format and transmission speeds are configurable.

6) JTAG: named after the Joint Test Action Group which codified it. And It

specifies the use of a dedicated debug port implementing a serial

communications interface for low-overhead access without requiring

direct external access to the system address and data buses.

7) 4 Timers

8) ROM

2.2 Main domains in PULPissimo:

Figure (3) shows a simplified block diagram showing the main modules of the

chip. The top module of the PULPissimo is a wrapper that includes three

submodules, called domains and a set of different high level control signals. The 3

domains are called SoC domain, safe domain and pad frame.

https://en.wikipedia.org/wiki/Debug_port
https://en.wikipedia.org/wiki/Serial_communication
https://en.wikipedia.org/wiki/Serial_communication

20

Figure 3: the three main domains of PULPissimo

And the Reasons behinds this segmentation are as follows:

1) To enable the usage of different voltage levels.

2) To turn off the power from some parts of the system during the

idle duration, to save power, without affecting the essential

operations of the core.

The three domains are discussed in the below sections.

2.2.1 SoC domain:

The SoC domain is what wraps most of the chip’s core logic, it contains key

functional modules such as the RISC-V core, the interleaved and private memory

banks, the debug modules and others. The figure below (figure 4) gives an

abstract view of the SoC domain submodules and their interconnectivity. We can

see that the SoC domain consists of 5 major modules: soc_interconnect_wrap,

fc_subsystem, boot_rom, L2_ram_multibank and soc_peripherals. For the rest of

this subsection we will dig deeper into each of these components.

21

Figure 4: Main blocks in the SoC domain

These blocks are discussed in the below sections.

2.2.1.1 The Fabric Control subsystem:

The FC, short for Fabric Control, subsystem is what wraps the RISC-V core of the

SoC, in PULPissimo this is the place where the hardware processing engine would

be plugged in if needed. The reason why they are placed in the same module even

though they do not interact with each other directly but through the SoC

interconnect is to simplify voltage gating as these are the main power intensive

modules in the design. In our implementation we did not consider hardware

accelerators. The FC subsystem also includes an interrupt controller that handles

the passing of interrupts from the SoC peripherals sub-domain (which will be

explained shortly) and the RISC core.

22

Figure 5: schematic showing the FC subsystem

2.2.1.2 SoC peripherals:

This is where the different peripheral the SoC could support are to be found it

contains modules such as:

1) Hardware event controller: which takes as input any of the different

interrupts the peripherals (or the hardware processing engine, if it exists)

can send and maps it to one of the 32 interrupt lines of our RISC-V core

through the interrupt controller.

2) GPIO controller: provides basic gpio functionalities like reading or setting

their different values.

3) µDMA subsystem: this allows all peripheral, wrapped within this module

like I2C, I2S, camera interface, etc to send or receive data directly to or

from the main memory, bypassing the CPU minimize the workload on the

processor improving the speed.

23

4) peripheral bus wrap: which just de-multiplexes the transactions to the

different peripherals.

5) SoC Control Registers (apb_soc_control): A register file with an APB

interface that stores configuration signals that are global to the whole SoC.

Figure 6: schematic showing the soc peripherals module

2.2.1.3 L2 Ram multibank:

This acts as a wrapper for memory banks of both interleaved and private

memories. All memory banks are made of a SRAM IP that is provided by the

24

vendor of used technology library instead of latch and flip-flop to implement

these memories in reasonable area with a reasonable power consumption.

The memories are slaves of the system bus, which is based on a single-cycle

latency logarithmic interconnect.

2.2.1.4 SoC Interconnect wrap:

Figure 7: schematic showing SoC interconnect wrap

The SoC Interconnect wrap arbitrates three masters FC, uDMA and Debug Ports.
It has three TCDM de-multiplexers, one for each master, which de-multiplexes

signals (transactions) from masters, according to their addresses, to three different

domains the first is the interleaved region, the second is the contiguous region and

25

the third is the AXI crossbar domain. And it can summarized in points as

following:

 Blocks in blue color are Logarithmic interconnects that uses TCDM

protocol that allows single cycle latency memory access, but it’s not the

best option for accessing peripherals having variable delays.

 The Interleaved Region uses Interleaved logarithmic Interconnect (LogInt)

to access an interleaved memory banks where memory is divided into

number of separate banks (modules) over which sequential words of data

are interleavingly mapped, this would reduce memory conflicts between

different masters accessing the memory.

 The contiguous region uses Contiguous Logarithmic Interconnect to

access three contiguous memory banks where words are mapped

sequentially into them. Only the Core, which is included in FC master, is

allowed to access those memory banks, this would improve the

performance of the core. Each of the three banks has a certain type of data

to be stored in it, where Bank 0 is for Instructions, Bank 1 is for the stack

and Bank 2 is for Boot ROM.

 AXI Crossbar which is used for accessing peripherals having variable

delays instead of the LogInt, it has three TCDM to AXI blocks one for

each master. It has two output ports the first is for SoC Peripherals through

APB, while the second port is for the Cluster domain.

2.2.1.5 Boot ROM:

Besides the RAM, PULPissimo also includes a Read-only-memory (ROM) that

has been implemented to store the boot instructions responsible for setting the

system upon reset.

2.2.1.6 Debug blocks:

26

The PULPissimo contains two debug units which are a RSICY debug module and

legacy debug module.

1) The RSIC-V debug module consists of 2 units: debug module called

“dm_top” module and a debug module interface module called “dmi_jtag”

module, where

The “dm_top” module allows:

 basic debug functionality of the core, like single stepping and

break points.

 Allows to access the system bus (the logarithmic interconnect).

The “dmi_jtag” module provides a jtag access to the RSIC-V debug unit.

2) The Legacy debug unit consists of 2 modules that are called

“jtag_tap_top” and “lint_jtag_wrap” modules and Reasons of this unit:

 If something goes wrong with the RSIC-V debug unit, the legacy

debug unit provides access to the system to be debugged.

 It is faster with the memory transfer than the RSIC-V debug unit,

through its jTAG interface.

2.2.1.7 SoC clock and reset generator:

The PULPissimo has three clock domains called SoC, peripheral and reference

clock domains, where the SoC and peripheral clock domains are generated from a

reference input frequency signal using 2 separate, internal phase lock loops

(PLLs). And the reason behind using different clock domains is to allow the

different domains to operate at different speeds which helps with the overall

performance as the SoC is not as constrained by the slower peripheral clock and

can have its own clock.

2.2.2 Safe domain:

27

This is the domain that contains every module that must be always powered on, the

power of this domain cannot be turned off. And these modules are:

1) The pad controller: effectively a multiplexer between the different module

output signals to the IO pads. Note that this control is needed because the IO

pads of PULPissimo aren’t as many as what the modules require, this is related

to the rich set of peripherals that the system can support. So, we multiplex the

outputs signals coming from the different PULPissimo modules, and connect

the output of the MUX to the output pad.

2) Reset Generator: Synchronizes the reset signals to the ref. clock (32 KHz) and

the resynchronized signals are only used with the Safe domain.

In principle, more logic that needs to be power gated could be added to this domain.

2.2.3 Pad frame:

This is where Input/Output (IO) pads are included. The signals connected to each

pad are logic signals from the SoC to IO pads and vice versa, output driver

enable, the actual pad signal, and additional Configuration signals. The table 1

below shows the different signals with their description and defined direction as

they are defined in its SystemVerilog module;

Table 1 Padframe signals

Direction (Pad frame perspective) Name Description

Input Oe_<padname>_i Active high output driver enable.

Output in_<padname>_o Logic Signal from pad to SoC.

Input Out_<padname>_i Logic signal from SoC to pad.

Inout pad_<padname> The actual pad signal that is connected

to the top level.

Input Pad_cfg_i Additional configuration signals for

pads.

28

3. The actual implementation of the PULPissimo:

CAD tools offers many flows to implement the RTL-GDS (ASIC) flow. During

this thesis, we will use three flows and compare the results among them. The

parameter of comparison will be area, power and runtime. Here are the chosen

flows:

3.1 Constraints of the three chosen flows:

The constraints mainly extracted from the used technology library in this thesis

which is the Synopsys SAED 32nm. And they consist of electrical DRCs and

timing constraints. We choose to design on the worst case process variation which

is slow-slow at 0.9 voltage at temperature negative 40 degree of Celsius based on

the trial and error method and some other criteria. And these constraints and the

criteria, by which the constraints are chosen, are discussed the following sections.

3.1.1 Electrical DRC constraints:

The electrical DRC constraints extracted from the technology library:

Table 2 DRC constraints of the PULPissimo implemented in the topographical flow

DRC constraint name Value

Maximum capacitance 416 fF

Maximum fan-out number 20

Maximum transition 1.024 ns

3.1.1.1 Maximum capacitance and maximum transition:

Where the maximum capacitance was extracted from collecting all the values of

the “max_capacitance” attribute for each pin of each version of the standard cells,

which is done by the code in the appendix C part 1, choosing the maximum value

29

among them. The figure (figure 28) below shows an example of the

“max_capacitance” attribute in the Synopsys SAED 32nm technology library.

The maximum transition extraction is very similar to the maximum capacitance

extraction as there is an attitude called “max_transtion” for each pin of each

version of the standard cells, which is done by the code in the appendix C part 2,

choosing the maximum value among them

Figure 8: an example of the “max_capacitance” attribute

3.1.1.2 Maximum fan-out number:

The maximum fan-out number is chosen based on the attached wire load model

(WLM) in the technology library, which is written in the following manner:

“fanout_length function (fanout number, estimated net length), and the figure

below shows an example of the wire load model.

30

Figure 9: example of the wire load model

3.1.2 Timing constraints:

The PULPissimo has 3 different master clock domains, which are called “ref_clk,

soc_clk and per_clk”, where the clock source of the reference clock (ref_clk)

domain comes from outside the chip and enters the chip through a pad called

“pad_xtal_in”. and the clock source of the two other clock domain, SoC clock

31

domain and the peripheral clock domain, are generated by 2 different phase lock

loop (PLL) IPs which are internally placed in the PULPissimo microcontroller

and the reference clock source of the two PLL IPs is the same clock source of the

reference clock domain.

The following table shows all timing constraints for each clock domain, which are

used in this thesis to implement the PULPissimo microcontroller using Synopsys

SAED 32nm technology library.

Table 3 the timing constraints of the PULPissimo implemented in the topographical flow

Clock domain name ref_clk soc_clock per_clk SPIM_CLK

(generated

clock from

per_clk)

Clock period 56 14 28 20

Uncertainty value for

setup checks

6 5 5 ---

Uncertainty value for

hold checks

1.15 0.88 2.22 ---

Source Latency 3 -- 2 ---

Max. input/output delay -- 7 -- ---

Min. input/output delay -- 7 -- ---

3.1.2.1 Clock period:

In the implemented PULPissimo in this thesis, the clock period of the reference

clock domain determines the other clock determines the clock period of the SoC

and peripherals clock domains and that because the available phase locked loop

(PLL) IP with the SAED 32nm technology library, which is used in this thesis,

has three operating modes: normal, external feedback and bypass.

In the external feedback mode, the feedback input clock (FB_CLK) will be phase-

aligned with reference input clock (REF_CLK). These aligned clocks will allow

removing clock delay and skew between devices. And the frequency of the output

clock signal can be the frequency of the reference clock Multiplied by a factor 4,

2 or 1. In Bypass mode, reference clock will be bypassed to out.

32

Figure 10: the SAED 32nm PLL IP as a black box

And as the SoC clock domain is the faster clock signal in the PULPissimo, we

choose the PLL IP of that clock domain to work in the external feedback mode

and multiplies the frequency of the reference clock by a factor 4, therefore it is

equal to 14 ns which is 25% of the 56 ns reference clock.

The peripheral clock signal is slower than the SoC clock signal, as it is used to

trigger the PULPissimo peripherals that work on low speed signal, therefore we

choose the PLL IP of that clock domain to work in the external feedback mode

and multiplies the frequency of the reference clock by a factor 2, therefore it is

equal to 28 ns which is 50% of the 56 ns reference clock.

33

3.1.2.2 Uncertainty value:

The uncertainty value of clock signal differs based on the stage at which the

designer works, since before the clock tree synthesis, it is equal to the summation

of the estimated skew, jitter and margin. And after the clock tree synthesis, the

skew is computed, therefore the uncertainty becomes the summation of the jitter

and margin. Usually, the margin in the uncertainty is increased to push the tool to

the best optimization and to meet the timing constraints under conservative

constraints. Therefore the designer can reduce the margin in the uncertainty as a

way to solve the timing violation after the clock tree synthesis.

The uncertainty has two types, one is used for the setup timing checks and the

other is used for the hold timing checks. And as the jitter doesn’t affect on the

hold timing checks because all sequential elements in the same way, the

uncertainty for the hold timing checks is more less than the uncertainty for the

setup timing checks.

To choose the values of the 2 kinds of the uncertainty, we begin by choosing the

uncertainty for setup timing checks of each clock domain to 10% of the clock

period and the uncertainty for hold timing checks of each clock domain to 2.5%

of the clock signal and these values are initial ones, and then we proceed the

ASIC flow till we reach the clock tree synthesis to see the actual global skew of

each clock domain, and finally we takes the uncertainty for the setup timing

checks as rounding value of actual global skew multiplied by factor 3, and the

uncertainty for the hold timing checks as the actual global skew. The figure below

shows the global skew of each clock domain in the first pass of the hierarchal

flow.

34

Figure 10: global skew of the SPIM_CLK, per_clk and ref_clk clock domains in the initial running

Figure 11: global skew of the soc_clk clock domain in the initial running

3.1.2.3 Clock latency:
The clock latency consists of:

35

1) The network latency which is the time taken by the clock signal to travel

from the clock pad in the chip to a clock pin of a sequential element

inside the chip.

2) The source latency which has 2 kind of definitions:

4.3.1. Source latency of clock signal generate outside the chip and

it is the time taken by the clock signal to travel from the clock pad

in the chip.

4.3.2. Source latency of clock signal generate inside the chip by a

PLL IP and it is the time taken by the clock signal to travel from

the clock pin of the PLL IP in the chip to the clock pin of the clock

generating circuitry.

Based on the definition in 2).b, the master clock domain, that doesn’t have a

generated clock domain, doesn’t have a latency. Therefore the SoC master clock

domain doesn’t have a source latency value.

Figure 12: the difference between the two types of the source latency

36

The source latency of the reference clock domain is larger than the source latency

of the peripheral clock domain because the path at which the reference clock

signal travels, that consists of a wire on the PCB that contains the PULPissimo, is

longest than the path at which the peripheral clock signal travels, that consists of a

wire implemented inside the PULPissimo.

3.1.2.4 Input delay constraint:

The input delay constraint determine the division of the clock period between

your chip and the other the chip that is connected to your chip as an input. All the

input ports in the PULPissimo are associated with the peripheral clock domain

only, therefore the peripheral clock domain is the only clock domain that has an

input delay constraints and we specified 30% of the peripheral clock domain to

the delay that is resulting from the logic outside the PULPissimo and 70% of the

peripheral clock domain to inside the domain to the delay that is resulting from

the logic inside the PULPissimo.

Figure 13: an example on an input delay constraint of the MY_DESIGN design

3.1.2.1 Output delay constraint:

The output delay constraint determine the division of the clock period between

your chip and the other the chip that is connected to your chip as an output. All

the output ports in the PULPissimo are associated with the peripheral clock

domain only, therefore the peripheral clock domain is the only clock domain that

has an output delay constraints and we specified 30% of the peripheral clock

domain to the delay that is resulting from the logic outside the PULPissimo and

37

70% of the peripheral clock domain to inside the domain to the delay that is

resulting from the logic inside the PULPissimo.

Figure 14: an example on an output delay constraint of the MY_DESIGN design

3.2 Instantiating of SAED 32nm IPs in the PULPissimo RTL:

3.2.1 Instantiating of SAED 32nm SRAM:

As the memories of the PULPissimo microcontroller are significantly

large, they must be implemented using SRAM memory banks,

otherwise they will degrade the area and power of the microcontroller

and that will affect the main specification for which the PULPissimo

is made. The SRAM that is used in this thesis is the single port SRAM

SAED 32nm IP with a memory array dimensions 512 words and 32

bits per word.

The PULPissimo requires 3 different SRAM banks where:

 Four memory banks, each one of them has a memory array of

128 KB size. the four memory banks create the interleaved

memory in the PULPissimo.

 Two memory banks, each one of them has a memory array of

32 KB size. the two memory banks create the private memory

in the PULPissimo.

38

 One memory bank has a memory array of 2 KB size. the two

memory banks create the private memory in the PULPissimo.

Table 4 table showing the used number of the SAED32nm SRAM IP in each memory bank

 Interleaved memory

bank

Private memory

bank

ROM

size 215 ∗ 32 215 ∗ 32 29 ∗ 32

IP instance number 64 16 4

3.2.2 Instantiating of SAED 32nm PLL IP:

We manually instantiated two instances of the SAED 32nm PLL IP that is

available with the SAED 32nm technology library, where one is used for

generating of the SoC clock domain from the reference clock signal and the other

for generating of the peripheral clock domain from the reference clock signal.

3.2.3 Instantiating of SAED 32nm clock gating:

we manually instantiated integrated clock gating cells from the SAED 32 nm

target library to avoid over constraining the clock gating design rules such clock

gating setup or hold timing constraints, pre-mapped cells Design compiler (DC)

takes its design rule constrains in its account.

39

Figure 15: SAED 32 nm clock gating standard cell

3.2.4 Instantiating of SAED 32nm IO pads:

We manually instantiated 41 instances of SAED 32 nm IO pads in the pad frame

domain, 4 SAED 32 nm corner pads and 3 filler pads to make the total number

even, therefore makes the floor-planning more organized.

3.3 Logic synthesis:

3.3.1 Hierarchical flow:

In the hierarchical flow, the levels of the provided hierarchy in the RTL code are

kept as they are during all different steps in the ASIC implementation flow.

Keeping of the hierarchical levels can restrict the ASIC implementation tools,

specially the design compiler tool, and prevent them from many optimizations

step like boundary and partition optimization steps at which the design compiler

tool can break the level of the hierarchy or the boundary of the module to reduce

delay and optimize the timing paths that are extent more than one module.

We use the design compiler (DC) tool to perform the logic synthesis step. After

reading the RTL code and applying the constraints, we used “ compile_ultra”

command with the following options:

40

1) No autoungroup: to disable the default setting of the “compile_ultra”

command that automatically break the levels of the hierarchy of the design

to optimize the timing paths that are contained in more than one module or

hierarchical level.

2) Scan: to take into the consideration the design of testability (DFT) in the

beginning of the ASIC designing. Where the design of testability increase

the fan-out of each net connect to a register, like the figure below shows.

Figure 16: multiplexed scan register used for the DFT

3) Retime timing option: to be used with the critical timing paths to move

their register in order to add more positive slack from the non-critical,

neighboring timing paths. The –retime option is available starting with

v2007.03. It performs “adaptive register retiming”, which moves the

logical location of registers up or down a timing path, to help improve

local critical path timing without creating or worsening timing violations

of surrounding paths. This will be discussed further in a later unit, in

conjunction with the optimize_registers command.

4) Gate_clock: to use the instanced of the clock gating cells in the RTL code

and add more.

41

And we done the incremental compilation step by high ultra-compilation efforts

and some other techniques such as clock gating to improve (QoR) of timing,

power and area.

3.3.2 Topographical flow:

In ultra-deep submicron designs, interconnect parasitics have a major effect on

path delays; accurate estimates of resistance and capacitance are necessary to

calculate path delays. In topographical mode, Design Compiler leverages the

Synopsys physical implementation solution to derive the “virtual layout” of the

design so that the tool can accurately predict and use real net capacitances instead

of wire load model-based statistical net approximations. If wire load models are

present, they are ignored. In addition, the tool updates capacitances as synthesis

progresses. That is, it considers the variation of net capacitances in the design by

adjusting placement-derived net delays based on an updated “virtual layout” at

multiple points during synthesis. This approach eliminates the need for over-

constraining the design or using optimistic wire load models in synthesis. The

accurate prediction of net capacitances drives Design Compiler to generate a

netlist that is optimized for all design goals including area, timing, test, and

power. It also results in a better starting point for physical implementation.

In order to meet the constraints, mainly the timing constraints, Synopsys offers

this flow. Usually, the floor-planning step follows the synthesis step, this may

lead to sub-optimal results, since the synthesis has no knowledge of the potential

cell and macro placement.

And to overcome this issue we use the second pass flow, which is called

topographical flow. And the main steps of the topographical flow can be

summarized as the following:

1) Creating an initial netlist by synthesis.

2) Proceeding to the floor-planning step and once we reach a good floor-

planning which achieve the following:

 No congestions.

 Good and well-ordered pin and pad placement.

42

 Good and well-ordered macro placement.

 Good quality of results.

3) Backing and redo the logic synthesis step with the created floor-planning,

but this time the synthesis step is aware of standard cells, pin, pads and

macro placement which will potentially yield better results in terms of the

timing (mainly the setup) , area and leakage power.

3.3.2.1 Inputs and outputs:

The second pass of the logic synthesis step in the topographical flow is done by

the design compiler (DC) invoked in a topographical mode and the invocation is

done by the command “dc_shell –topographical” command. And the tool takes

the following files as inputs:

1) The gate-level netlist

2) The RTL code

3) The floor-planning described in the LEF file and FP floor-planning

This section describes the physical constraints imported from the DEF file with

the extract_physical_constraints command, in the following subsections:

 Die Area

 Placement Area

 Macro Location and Orientation

 Hard, Soft, and Partial Placement Blockages

 Wiring Keepouts

 Placement Bounds

 Port Location

 Preroutes

 Site Array Information

 Vias

 Routing Tracks

 Keepout Margins

4) Constraints

43

5) Logic library

6) Physical library

The output of the design compiler is the topographical mode is a better

synthesized gate-level netlist and the figure below shows these inputs and output.

Figure 17: Inputs and Outputs in Design Compiler Topographical Mode

To visually inspect your extracted physical constraints, use the layout view in the

Design Vision layout window. All physical constraints extracted from the DEF

file are automatically added to the layout view.

3.3.2.2 Main steps:

44

To map a design to a new technology in the Design Compiler in the topographical mode,

the following steps must be performed:

1) Add the original technology library to the link library:

dc_shell-topo>> lappend link_library tech_orig.db

2) Set up your Design Compiler environment for the new target technology.

 Specify the logic libraries.

 Specify the physical libraries.

3) Read in your mapped design:

dc_shell-topo >> read_verilog design.v

4) Run the “compile_ultra –incremental” command to translate the design to

the new technology.

The steps of the PnR won’t be different than the ones previously described in the

back-end part section.

We use the design compiler (DC) tool to perform the logic synthesis step. After

reading the RTL code and applying the constraints, we used “ compile_ultra”

command for the first and second pass in the topographical mode with the

following options:

1) No autoungroup: to disable the default setting of the “compile_ultra”

command that automatically break the levels of the hierarchy of the design

to optimize the timing paths that are contained in more than one module or

hierarchical level.

2) Scan: to take into the consideration the design of testability (DFT) in the

beginning of the ASIC designing. Where the design of testability increase

the fan-out of each net connect to a register, like the figure below shows.

3) Retime timing option: to be used with the critical timing paths to move

their register in order to add more positive slack from the non-critical,

neighboring timing paths. The –retime option is available starting with

v2007.03. It performs “adaptive register retiming”, which moves the

logical location of registers up or down a timing path, to help improve

local critical path timing without creating or worsening timing violations

of surrounding paths. This will be discussed further in a later unit, in

conjunction with the optimize_registers command.

45

4) Gate_clock: to use the instanced of the clock gating cells in the RTL code

and add more.

And we done the incremental compilation step by high ultra-compilation efforts

and some other techniques such as clock gating to improve (QoR) of timing,

power and area.

3.5.1 Flat flow:

In the flat flow, the levels of the provided hierarchy in the RTL code are broken

during the first implementation step, which is the logic synthesis step, and remain

broken during the rest of steps in the ASIC implementation flow.

By default, the high effort compilation removes levels of hierarchy as much as it

can so we allow tool to remove levels of hierarchy which help it to optimize

results.

We use the design compiler (DC) tool to perform the logic synthesis step. After

reading the RTL code and applying the constraints, we used “ compile_ultra”

command with the following options:

5) Scan: to take into the consideration the design of testability (DFT) in the

beginning of the ASIC designing. Where the design of testability increase

the fan-out of each net connect to a register, like the figure below shows.

6) Retime timing option: to be used with the critical timing paths to move

their register in order to add more positive slack from the non-critical,

neighboring timing paths. The –retime option is available starting with

v2007.03. It performs “adaptive register retiming”, which moves the

logical location of registers up or down a timing path, to help improve

local critical path timing without creating or worsening timing violations

of surrounding paths. This will be discussed further in a later unit, in

conjunction with the optimize_registers command.

7) Gate_clock: to use the instanced of the clock gating cells in the RTL code

and add more.

And we done the incremental compilation step by high ultra-compilation efforts

and some other techniques such as clock gating to improve (QoR) of timing,

power and area.

46

3.4 Design planning for the 3 different flows:

In this section we describe in more details the steps and design decisions that are

made in the three different flows, which are flat, hierarchical and topographical,

to implement the PULPissimo microcontroller.

3.4.1 Floor-planning:

In floor-planning stage, we start by defining die and core area by defining the

height and width and the distance between the IO pads and the core boundaries,

which define the aspect ratio and the utilization factor. Aspect ratio is the ratio

between height and width, core utilization means the percentage of total cell area

relative to the total area of the chip. We chose the following:

1) The core height to be 6200 um.

2) The core width to be 6200 um.

3) The distance between the IO pads boundaries and the core boundaries to

be 100 um.

Which give us an aspect ratio equal to 1 a utilization factor equal to 0.401, so that

we can be able to reduce the congestion issue. And he distance between the IO

pads and the core boundaries are 100 um in all sides of the chip. Then we define

placement constraints on the following:

1) Pins

2) IO pads

3) Macros including, the SRAM macro cells and the 2 PLLs

We define the metal layers that will be used for signal routing stage and the metal

layers that will be used for routing of the power network, this is important at

floor-planning stage so that PnR tool can perform global routing to estimate

routing regions and potential congestion properly. The technology file provided

with the PDK contains 9 routable layers, minimum routing layer is chosen to be

metal layer 1 and maximum routing layer is metal layer 8. These layers will be

used as the following:

 From Metal layer 1 to metal layer 7 will be used for signals routing.

47

 Metal layer 9 and Metal layer 8 for horizontal and vertical power straps and

rings.

 From Metal layer 3 to metal layer 5 will be used for clock signal routing as

higher metal layers have less resistance than lower layers which means lower

interconnections propagation delay with non-default routing rules, which are

doubling of minimum width and doubling of minimum spacing.

3.4.2 Virtual flat placement:

Virtual placement is then performed to allocate standard cell placement locations

inside the chip core as previously explained and to place the macros, IO pads and

the pins based on the previously defined constraints. The figure below shows the

results of the floor-planning floorplan of the chip.

48

Figure 18: the floor-planning of the PULPissimo.

Where we choose to place macro cells as the following:

1) the private memory, which consists of 2 memory banks each one of them

consists of 16 SRAM macro cell, in the upper right corner of the chip with

a X offset equal to 90 um and a Y offset equal to 70 um

49

2) The ROM, which consists of the 4 SRAM macro cells, below the private

memory and with the same X and Y offset as the private memory.

3) The interleaved memory, which consists of 4 memory banks each one of

them consists of 64 SRAM macro cells, below the ROM and with the

same X and Y offset as the private memory. Where each four rows

represent a one memory bank of the interleaved memory.

4) The 2 PLLs are collecting together into one macro array and a 50 um

separated distance between is chosen. And let the IC compiler tool to

choose a suitable location to them in order to enhance the quality of

results.

5) We set the keep-out margin, where the standard cells are prevent to be

placed in the area of the keep-out margin, of all macro cells to 10 um from

each sides of them. And that to reduce the congestion and provide more

routing resources for the interconnects of the macro cell pins.

The reason behind collecting the SRAM macro cells of the private memory,

ROM and the interleaved memory together in one place and reduce the

separation distance between them as much as possible is reduce the

interconnects be as much as possible, therefore better quality of results and

because the number of interconnects among the SRAM macro cells and

themselves is much larger than the number of the interconnects among the

SRAM macro cells and other standard cells, therefore that placement may

enhance the congestion as well. Figures below show the location of each

macro.

50

Figure 19: the highlighted 2 memory banks of the private memory

51

Figure 20: the highlighted ROM

52

Figure 21: the highlighted 4 memory banks of the interleaved memory

53

Figure 22: the highlighted 2 PLLs

The figure below shows the hierarchical virtual placement, where each

domain of the 3 domains of the PULPissimo, SoC, pad frame and peripheral

domains, is placed on one area as much as possible.

54

Figure 23: the hierarchical map shows the 3 main domain in the PULPissimo.

3.4.3 Reducing the congestion:

Reducing of the congestion in the design planning stage is very important to

ensure that the core area contains an enough amount of routing resources, where

the routing resources are the metal tracks in the metal layers, otherwise the IC

compiler won’t be able to complete the routing properly in the proceeding stages.

We use the trial and error method to determine the optimum offset in both X and

Y directions between the SRAM macro cells in order to enhance the congestion as

much as possible and keep the SRAM macro cells well-ordered, the figure below

(figure 24) shows some of the trial and their results where in each trial we was

increasing the offset in both X and Y directions.

55

Figure 24: shows some of the trial and their results

The figures below shows the congestion map of our design, where almost all

GRCs have available tracks more than the demand tracks.

3.4.4 Power tree synthesizing:

The power network consists of rings, straps and supply rails. We chose to

implement the power network on the chip as the following:

1) The power and ground rings are been chosen to be implemented in metal

layer 8 and 9 where the horizontal ring segments in the metal layer 9 and

the vertical ring segments in the metal layer 8, where:

 Their width is set to the maximum value which is 5um to increase

the cross section at which the current flow, therefore their

resistance will be decreased their resistance, therefore the IR drop

on them will be decreased.

 The separation distance between the power and ground rings is set

to the minimum spacing distance in the metal layer 8 and 9, which

is 0.5 um, to increase the number of the power and ground rings as

much as possible, therefore reduce the IR drop in them.

 The figure below shows the ring structure.

56

Figure 25: rings as a part of power network of the PULPissimo implemented in flat, hierarchical and

topographical flows

2) The power and ground mesh, which consists of horizontal straps

implemented in metal layer 8 and vertical straps implemented in metal

layer 9, where:

 Their width is set to the maximum value which is 5um to increase

the cross section at which the current flow, therefore their

resistance will be decreased their resistance, therefore the IR drop

on them will be decreased.

 The separation distance between in each group of power and

ground straps is set to the minimum spacing distance in the metal

layer 8 and 9, which is 0.5 um, to increase the number of the power

and ground straps as much as possible, therefore reduce the IR

drop in them.

 The separation distance between each group of power and ground

straps and the other is set to a distance which is 100 um to increase

the number of the power and ground straps as much as possible,

therefore reduce the IR drop in them.

 The figure below shows the structure of the horizontal and vertical straps.

57

Figure 26: power network straps of the PULPissimo implemented in flat, hierarchical and topographical

flows

3) We chose to build power and ground rings around each macro cell to

make power and ground pins of the macro cells connected easily to power

network and reduce the resistance of the interconnects that connects the

power and ground pins of the macro cells to the power mesh in the metal

layer 9 and 8. The setting of them are chosen to be as the following:

 The horizontal segments are implemented in metal layer 5, as the

pins of the SRAM macro cells are implemented in the same metal

layer, and the vertical segments are implemented in metal layer 6.

 Their width is set to the maximum value which is 5um.

 The separation distance between the power and ground rings is set

to 0.5 um.

 The offset between the top side of the rings and the top side of

SRAM macro cell is set to 2 um to reduce the length of the

interconnects that connects the power and ground pins of the

macro cells to the rings that are around the macro cells, therefore

reduces their resistance and enhances the IR drop on them.

 The offset between the all other sides of the rings and all other

sides of SRAM macro cell is set to 15 um to increase the routing

resources around all other pins of the SRAM macro cells, therefore

reduce the congestion.

58

The figures below show the power and ground rings around SRAM and

the PLL macro cells.

Figure 27: power and ground rings around SRAM macro cells in the PULPissimo implemented in flat,

hierarchical and topographical flows

Figure 28: power and ground rings around PLL macro cells in the PULPissimo implemented in flat,

hierarchical and topographical flows

4) The power supply are implemented in the metal layer 1, and we choose the

disable the routing of the supply rails over the macro and fill each rows

that with at least one placed standard cells.

3.4.5 Reducing delay:

59

The reducing delay is important before the extracting, but this is needed only

when there are a large setup timing violations, where the worst negative slack

(WNS) more than 20% of the clock period.

Fortunately, due to well-defined virtual placement, the WNS in the flat,

hierarchical and topographical flows is in the SoC clock domain and it is less than

or equal to 0.14% of the SoC clock period in. Therefore there is no need to reduce

the delay.

3.4.6 Extracting:

The RC extracting is done to easily translate and pass the RC models of the power

network and the estimated interconnects to other tools, like the design compiler

tool in the topographical flow.

3.5 Placement of for the 3 different flows:

3.5.1 Setting of the non-default routing rules:

The setting of the non-default routing (NDR) rules of the clock signals should be

done before the placement stage to enable the IC compiler tool to take them into

the consideration, especially during the RC extracting of the clock nets that

happens in the placement engine in the tool.

We choose the NDR rules of the clock nets, that will be implemented in the metal

layer 3, 4 and 5, to be as the following:

1) The minimum spacing is equal to the minimum spacing of each metal

layer in the used SAED 32nm technology library, to reduce the inter-wire

capacitance that arise between the wires, therefore reduces the cross-talk

between the wires and prevents swings in them. The non-default minimum

spacing in the metal layer 3 is set to 0.112 and in the metal layer 4 and 5 is

set to 0.224.

2) The minimum width is equal to the minimum width of each metal layer in

the used SAED 32nm technology library, to increase the cross-section at

which the current flows, therefore reduces the resistance of the clock nets.

60

The non-default minimum width in the metal layer 3 is set to 0.112 and in

the metal layer 4 and 5 is set to 0.224.

3.5.2 Setting of the options of the high fan-out synthesis:

The setting the options of the high fan-out synthesis (HFS) is important before the

execute the main command of the placement stage, which is the “place_opt”

command, because the main command won’t run the HFS engine unless these

options are set. The HFS reduces the high fan-out number of the high fan-out nets

by building a buffer or inverter tree at which the large net is divided into smaller

nets with a much smaller fan-out number.

We chose the options of the high fan-out synthesis as the following:

1) The reference standard cells by which the buffer or inverter tree is built to

be all inverters that are available with the used technology library which is

SAED 32nm. We chose only the inverters to build the trees because the

delay of the inverter in less than the buffers, but that may increase the

congestion because the tool add more inverters and the available versions

are described in the figure below.

Figure 29: inverters specifications that used as reference of HFS engine

2) Enable port punching

3) Enable boundary phase

4) Enable the HFS to work on the constant nets

61

3.5.3 Placement:

The main placement engine of the IC compiler tool is invoked by the “place_opt”

command and we choose the following as options for this command:

1) Power.

2) Congestion.

3) Setting the effort to high to get best result, but the high effort will increase

the CPU time which is acceptable to us.

4) Area recovery, where the main placement engine tries to re-size the

standard cells to enhance the area.

5) Timing, where the main placement engine tries to fix the setup timing

violations only and doesn’t fix the hold timing violations.

And before the executing of the “place_opt” command we reduce the keep-out

margin to be 8 um for all the macro cells.

3.5.4 Reporting:

As the more important things to evaluate the placement stage are the congestion

may the setup timing slack, we reported the congestion by executing the global

route engine in the IC compiler by executing the “route_global” command and

reported the quality of the results (QoRs) by executing the “report_qor” command

and that to determine the options of the placement optimization engine that will

be illustrated in the following the section.

3.5.5 Optimization of the placement:

The optimization of the placement in the IC compiler tool is executed by the

“psynopt” command and the options of this command are chosen based on the

results of the previous reporting step where:

1) if the design is congested, the designer should choose the “-congestion”

option and if the design is still congested, the designer may delete the old

results of the “place_opt” command, execute the “set

placer_enable_enhanced_router TRUE” and then execute a new

62

“place_opt” command, that will invoke the real global routing engine

during executing the new round of the “place_opt” command instead of

the global routing estimator engine that is used the previous the

“place_opt” therefore the results will be much better, but the CPU time

will increase.

2) If the WNS of the timing setup checks isn’t good or the DRC violations

are a lot, the designer should execute the “psynopt –only_design_rule”

command.

3.6 Clock tree synthesis:

3.6.1 Setting the clock tree options:

Before the beginning of the clock tree synthesis, the designer should set options of

the clock tree synthesis engine and these options are divided into the following:

1) Targets, which are just to the tools which means that if the results of the

clock tree synthesis doesn’t meet these target, no violations are reports,

but it is always nice to meet these targets. And the target that must be

specified for each clock domain are:

 Target skew which is the maximum global skew in the clock

domain.

 Target early delay which is the minimum insertion delay in the

clock domain.

2) Constraints, if the clock tree engine couldn’t meet these specified

constraints, violations are reported and the CTS will fails. And they are the

following

 Maximum capacitance

 Maximum fan-out

 Maximum transition

3) References, which are the standard cells that the clock tree synthesis

engine will use to build the clock tree of each clock domain.

4) The non-default routing rules by which the clock trees are routed.

5) The metal layer at which the the clock trees are routed.

We begin first running with an estimated skew in the uncertainty for the setup

timing checks (which is equal to summation of estimated maximum global skew,

jitter and margin) and the uncertainty of the hold timing checks (which is equal to

63

the estimated maximum global skew only, as the the jitter doesn’t affect on the

hold timing checks) and proceeding the ASIC flow steps till we reach the clock

tree synthesis step and synthesize all the clock domains in the PULPissimo and

then report the maximum global skew of each clock domain. Then we go back to

the beginning of the ASIC flow and set the uncertainty of both setup and hold

timing checks as the following:

1) The uncertainty of the setup timing checks of each clock domain in the

PULPissimo is set to be equal the maximum global skew that is resulted

from the first running multiplied by factor 3.

2) The uncertainty of the hold timing checks of each clock domain in the

PULPissimo is set to be equal the maximum global skew that is resulted

from the first running.

To determine the clock tree targets and the constraints, we use the resulted

maximum global skew that is resulted from the first running as initial point to

begin with in the synthesizing clock domains in the PULPissimo. The following

table summarized the clock tree synthesis options for each clock domain in the

PULPissimo implemented in the three used ASIC approaches, hierarchical,

topographical and flat.

Table 5 clock tree synthesis options for each clock domain in the PULPissimo implemented in hierarchical

approach.

CTS option name ref_clk soc_clk Per_clk SPIM_CLK

Target skew (in ns) 1 0.75 2 1

Target early delay (in ns) 5.64 1.4 2.5 5.64

Maximum capacitance (in

ff)

300 300 300 300

Maximum fan-out 10 10 10 10

Maximum transition (in

ns)

0.2 0.2 0.2 0.2

Gate relocation

optimization

TRUE TRUE TRUE TRUE

Gate resizing

optimization

TRUE TRUE TRUE TRUE

Buffer relocation

optimization

TRUE TRUE TRUE TRUE

Buffer resizing

optimization

TRUE TRUE TRUE TRUE

Use default routing for

sinking

TRUE TRUE TRUE TRUE

64

Table 6 clock tree synthesis options for each clock domain in the PULPissimo implemented in topographical

approach.

CTS option name ref_clk soc_clk Per_clk SPIM_CLK

Target skew (in ns) 1 0.75 2 1

Target early delay (in ns) 5.64 1.4 2.5 5.64

Maximum capacitance (in

ff)

300 300 300 300

Maximum fan-out 10 10 10 10

Maximum transition (in

ns)

0.2 0.2 0.2 0.2

Gate relocation

optimization

TRUE TRUE TRUE TRUE

Gate resizing

optimization

TRUE TRUE TRUE TRUE

Buffer relocation

optimization

TRUE TRUE TRUE TRUE

Buffer resizing

optimization

TRUE TRUE TRUE TRUE

Use default routing for

sinking

TRUE TRUE TRUE TRUE

Table 7 clock tree synthesis options for each clock domain in the PULPissimo implemented in topographical

approach.

CTS option name ref_clk soc_clk Per_clk SPIM_CLK

Target skew (in ns) 1 0.75 2 1

Target early delay (in ns) 5.64 1.4 2.5 5.64

Maximum capacitance (in

ff)

300 300 300 300

Maximum fan-out 10 10 10 10

Maximum transition (in

ns)

0.2 0.2 0.2 0.2

Gate relocation

optimization

TRUE TRUE TRUE TRUE

Gate resizing

optimization

TRUE TRUE TRUE TRUE

Buffer relocation

optimization

TRUE TRUE TRUE TRUE

65

Buffer resizing

optimization

TRUE TRUE TRUE TRUE

Use default routing for

sinking

TRUE TRUE TRUE TRUE

3.6.2 Clock tree synthesizing:

After setting of the clock tree options, we follow a certain approach to efficiently

handling multi-clock domain design:

1) Synthesizing clock domain without either fixing hold violations or routing

it.

2) Reporting the actual global skew of the synthesized clock domain.

3) Removing the summation of the actual skew of the synthesized clock

domain skew and a margin from the uncertainty of the setup timing

checks.

4) Setting the hold timing checks of the synthesized clock domain to zero.

5) Fixing the hold timing violations of the synthesized clock domain.

6) Reporting the quality of results of the synthesized clock domain.

7) Perform more hold-fixing if the quality of results isn’t acceptable.

8) If the quality of results isn’t acceptable, reducing the maximum

capacitance and maximum fan-out number of the synthesized clock

domain, and then repeats all above steps.

We use the following command each clock domain in the PULPissimo to perform

the previously mentioned approach:

1) The “clock_opt –only_cts –no_clock_route –clock_trees

$clock_domain_name” command synthesizes the given clock domain

without either fixing hold timing violations or routing it.

2) The “report_clock_trees –summary –clock_trees $clock_domain_name”

command is used to report the actual global skew of the synthesized clock

domain.

3) The “set_fix_hold $clock_domain_name” and “set_fix_hold_options –

prioritize_tns –effort high” commands , and then executing the “clock_opt

66

–psyn_only –no_clock_route” command. By these 3 commands, we begin

solve the hold timing violations of specified clock domain.

4) After synthesizing and fixing the hold violations of each clock domain, we

begin to routing all clock signal simultaneously, by executing the

“route_zrt_group -all_clock_nets -reuse_existing_global_route true”

command.

3.7 Chip finishing:

Chip finishing consists of four basic steps:

1) Metal layers spreading and widening

2) Standard cell filling

3) Redundant vias insertion

4) Metal filling

3.8.1 Pad filling:

Pad filling is performed in the empty locations between the IO pads to

make the chip uniform in density and to route the power and ground

tracks properly.

3.8.2 Standard cell filling:

Standard cell filling is performed in the empty locations in the standard cell rows

to make the chip uniform in density and to improve the yield of the chip. Some

locations may be still empty because if filling occurred at such locations, it would

lead to DRC violations.

3.8.3 Metal filling:

67

Metal filling is performed to protect metal interconnections in low metal density

regions from over-etching during fabrication process. Timing driven metal filling

specifically is performed to preserve timing on critical nets, metal fill near critical

nets on the same layer, upper layer, and lower layer are removed or trimmed.

3.8.4 Verifying and reporting:

Verifying for design rules violations is done by executing the “verify_route”

command which reports a summary for the DRC violations and shorts. And

verifying for shorts and opens is done by executing the “verify_lvs” command

which reports the shorts and opens in the design by performing layout versus

schematic checks. The reporting is done by executing the “report_qor” command

to report setup and hold worst negative slack and to setup and hold total negative

slack, area of standard cells, IO pads and macros and the CPU time.

3.8.5 Outputs:

The outputs are GDS file, which contains the layout of the chip, gate-level netlist

written in Verilog, constraints written in SDC format and the standard parasitic

extraction format (SPEF) files, which allows the representation of parasitic

information of a design(R, L, and C) in an ASCII, to be used in the static timing

analysis in the Synopsys Prime-Time tool.

3.8 Static timing analysis:

After performing a clean place-and-route phase, the next necessary step is to

make timing verification on a high precision static timing analysis tool as the

timing aspect is a very sensitive aspect to take care of. Our STA tool that we have

worked on is Synopsys Prime-Time, and we are going to discuss our work on it.

The target of using this tool in this stage is to verify timing on a spectrum of

operating conditions that the design is expected to operate at. These operating

conditions have three main dimensions which are temperature, operating voltage

68

and manufacturing process. Another dimension that can be taken into account is

MOSFET threshold voltage. We are going to spread them below.

In manufacturing process analysis, we can classify it to three elements: slow-

slow, typical-typical, and fast-fast process. As illustrated from the naming, the

slow-slow process has the highest standard cell delay among the others, and then

the fast-fast process has the lowest one among them. With respect to the ambient

temperature, we can say that the highest temperature-based cells have the highest

delay, and the lowest temperature-based cells have the lowest delay.

Another affecting aspect is the operating voltage, it also has a significant impact

on the propagation delay, since the highest voltage-based cells have the lowest

delay, and the lowest voltage can contribute with a higher delay.

The last affecting factor is the MOSFET threshold voltage. There are three main

types of threshold voltage based on MOS devices, and they are low voltage

threshold (LVT), regular voltage threshold (RVT), high voltage threshold

(HVT). This factor is also significantly affecting the delay of the standard cells.

The low threshold-based cells have the lowest delay, and the highest one has the

highest propagation delay. In our case, we have only regular voltage threshold-

based libraries. This type of libraries has a variety of the previously mentioned

operating conditions.

Therefore, we can conclude that the best-case library has the lowest

temperature, the highest voltage, and the fastest process, and the worst-case

library has the inverse of these condition.

After recognizing the expected cases, we can go through our work, and

handle all of these cases in order to meet the setup and hold timing

requirements. One the significant problems that we have faced is that we have

performed the synthesis process in the worst-case library. That implies good

setup timing results, but deeply worst hold-timing results, since the timing

paths is welloptimized for the worst case and have minimum possible delay so

that these paths cannot hold enough time for data to be well-stabilized.

In order to solve this problem, we have to insert plenty of buffers to boost

the delay, and that can be achieve in each case separately.

Recalling to the inputs of the tool, the tool needs to read the Verilog netlist

and the operating library that we are going to analyze its case, in addition to the

constraints file, and the parasitics file so that we can define the actual delays of

the physical nets.

69

Till now, everything appears to be great, but a problem arises when setting

up the environment to work, and this problem is that the tool calculates the

propagation delay of the nets based on a non-real resistance and capacitance

values, thus that can lead to non-real delay values. As discussed in the library

section in the appendix, the standard cell library has a table to calculate the

delay based on it. When the parasitic values exceed these values, the STA tool

begins to make extrapolations based on the last parasitic values that defined in

the table, and it takes this maximum value of defined delay and adds an extra

10% of delay. This can result in non-accurate delay calculations at all. That

conclusion illustrated that the parasitic values, one way or another, is wrongly

written in the file.

Therefore, we have resorted to another manipulating solution, and that

solution was to work with DDC-based files. These files contain the design

netlist information in addition to the calculated values of the parasitics, and

also the design constraints are built-in in this file. To ensure that these values

are valid, we have made a small comparison between the end-point path slack

histogram in both layout tool and STA tool, and the result was approximately

the same.

After finishing the setup successfully, we have stepped forward to analyze

the design against the different cases. In most cases, the design had clean setup

timing, and the problem was at the hold time. There are two was ways to solve

such problems. The first one is to fix them in the layout tool and forward the

design to layout tool to verify the results. The other one is to fix them in STA

tool itself and to write the changes that have done to the design, and then

forward them the layout tool to make these changes on the design, and finally

the tool can write a new DDC-based file that contains the changes. That new

file can be forwarded again to the STA tool for further analysis.

After experiencing the two method, we have decided to build our final

results based on the second method. The PrimeTime STA tool offers a built-in

synthesis engine to fix the setup and hold timing violations. We can take case

study example, and we can consider all the other cases were treated by the

same analogy.

For example, we have a certain library causes a certain hold time violation

to the design. Therefore, we basically have inserted buffers with different sizes

to recover the violation, but unfortunately, the STA cannot fix the setup and

hold time violations simultaneously. Thus, a setup time violation can easily

arise. After few iterations for solving the setup and hold violations, we can

70

finally forward the changes file, which can be named “ECO netlist”, to the

layout tool. Then, the layout have to do some modifications on the design such

as performing eco routing to resolve the expected violations that can be

resulted from the “ECO netlist”.

4) Results:

The following sections represent and discuss the results of implementing the

PULPissimo microcontroller in the flat, hierarchial and topographical ASIC

approaches using SAED 32nm technology library. The results are represented and

discussed in the following order:

1) Logic synthesis

2) Design planning

3) Placement

4) Clock tree synthesis

5) Routing

6) Chip finishing

7) Static timing analysis

4.1 Logic synthesis results:

71

4.1.1 Flat flow:

4.1.1.1 Area results:

Table 8 : Flat Flow Area Results

 After Removing Hierarchy

Total Cell Area 16311413.9 µm2

Net 1547462.2 µm2

Total Design

Area

17858876.2 µm2

Combinational Area 247349.2 µm2

Non-combinational Area 862207.2 µm2

Macro Area 15201857.5 µm2

Macros take up 93% of the design area. Those macros are I/O Pads, SRAMs and

PLL.

Table 9: Macro Area

I/O Pads 528000 µm2

PLL 10873.333 µm2

2%5%

93%

Area

Combinational Area Non-combinational Area Macro Area

72

SRAM 14768716.43 µm2

As shown in the above chart the SRAM takes up most of the Macro Area,

this is because the design uses three types of memory banks Interleaved

memory bank, Private memory bank and ROM bank. Those banks are

large sized and due to the limited size of SRAM instance available in

SAED 32nm library, which is 512 × 32 𝑏𝑖𝑡𝑠, we used multiple instances

to build one bank of each type

Table 10: Types of memory banks

 Number of Banks Bank Size Number of Instances used for

each bank

Interleaved Memory 4 215 × 32 bits 64

Private Memory 2 213 × 32 bits 16

ROM 1 29 × 32 bits 4

4.1.1.2 Power results:

3%

0%

97%

Macro Area

I/O Pads

PLL

SRAM

Memory Type

Data

73

Figure 17: power report after synthesis (flat flow)

74

Table 11: Power Results

Internal Cell Power 5.88 mW

Leakage Power 11.291 mW

Switching Power 123.1 µW

Total Power 17.304 mW

The above results shows that most of power consumption is due to leakage power

which is the static power consumed in the transistor due to constant current from

VDD to Ground and it increases with shrinking the transistor size, that is why its

value is high in our case. The second most type of consumed power is the internal

power which is dissipated within the cell boundary in the form of dissipation

during switching due to charging or discharging of any internal capacitors and the

short circuit power which is caused by the flow of a current through a direct path

between VDD and Ground during switching of both NMOS and PMOS

transistors for a short period of time. The third type is Switching power which is

dissipated in load capacitance during charging and discharging.

34%

65%

1%

Power

Internal Cell Power

Leakage Power

Switching Power

75

4.1.1.3 Timing results:

Figure 18: Setup time histogram after synthesis (flat flow)

Figure 19: Hold time histogram after synthesis (flat flow)

76

The chart below shows the worst critical slack in each clock domain among the

setup timing checks:

The chart below shows the worst negative slack in each clock domain among the

hold timing checks:

4.1.1.4 Run time:

Figure 20: CPU time of synthesis (flat flow)

Total Compile time equals 1264.48 seconds which equals 21.07 minutes.

0

5

10

15

20

ref_clk soc_clk per_clk inputs to
reg

reg to
outputs

inputs to
outputs

Setup Critical Path slack (ns)

Setup critical slack (ns)

0

1

2

3

ref_clk soc_clk per_clk inputs to
reg

reg to
outputs

inputs to
outputs

Hold WNS

Hold WNS (ns)

77

4.1.2 Hierarchical flow:

4.1.2.1 Area:

Table 12 : Hierarchical Flow Area Results

 After Removing Hierarchy

Total Cell Area 16300430 µm2

Net Area 334048 µm2

Total Design Area 16634478 µm2

Combinational Area 252014 µm2

Non-combinational Area 846558 µm2

Macro Area 15201857.5 µm2

Macro cells take up 93% of the design area. Those macro cells are I/O Pads,

SRAMs and PLL.

2%5%

93%

Area

Combinational Area Non-combinational Area Macro Area

78

Table 13: Macro Types

I/O Pads 528000 µm2

PLL 10873.333 µm2

SRAM 14768716.43 µm2

As shown in the above chart the SRAM takes up most of the Macro Area, this is

because the design uses three types of memory banks interleaved memory bank,

Private memory bank and ROM bank. Those banks are large sized and due to the

limited size of SRAM instance available in SAED 32nm library, which is 512 ×

32 𝑏𝑖𝑡𝑠, we used multiple instances to build one bank of each type.

Table 14: Memory Types

 Number of Banks Bank Size Number of Instances used for each

bank

Interleaved Memory 4 215 × 32 bits 64

Private Memory 2 213 × 32 bits 16

ROM 1 29 × 32 bits 4

3%

0%

97%

Macro Area

I/O Pads

PLL

SRAM

Memory Type

Data

79

4.1.2.1 Power Results:

Figure 21: power report after logic synthesis (hierarchical flow)

Table 15: Power Results

Internal Cell Power 5.94 mW

Leakage Power 11.3 mW

Switching Power 123.46 µW

Total Power 17.33 mW

80

The above results shows that most of power consumption is due to leakage power

which is the static power consumed in the transistor due to constant current from

VDD to Ground and it increases with shrinking the transistor size, that is why its

value is high in our case. The second most type of consumed power is the internal

power which is dissipated within the cell boundary in the form of dissipation

during switching due to charging or discharging of any internal capacitors and the

short circuit power which is caused by the flow of a current through a direct path

between VDD and Ground during switching of both NMOS and PMOS

transistors for a short period of time. The third type is Switching power which is

dissipated in load capacitance during charging and discharging.

34%

65%

1%

Power

Internal Cell Power

Leakage Power

Switching Power

81

4.1.2.2 Timing Results:

Figure 2: Setup Time Histogram after Logic Synthesis (Hierarchical Flow)

Figure 22: Hold Time Histogram after Logic Synthesis (Hierarchical Flow)

82

The chart below shows the worst negative slack in each clock domain among the

hold timing checks:

The chart below shows the worst negative slack in each clock domain among the

hold timing checks:

4.1.2.3 Run Time:

Figure 23: CPU time of synthesis (hierarchal flow)

Total Compile time equals 1390.01 seconds which equals 23.16 minutes.

0

5

10

15

20

ref_clk soc_clk per_clk inputs to
reg

reg to
outputs

inputs to
outputs

Setup Critical Path Slack

Setup critical path slack (ns)

0

1

2

3

ref_clk soc_clk per_clk inputs to
reg

reg to
outputs

inputs to
outputs

Hold WNS (ns)

Hold WNS

83

4.1.3 The second pass in Topographical flow:

4.1.2.2 Area:
Table 16 : Topographical Flow Area Results

 After Removing Hierarchy

Total Cell Area 16462564.8 µm2

Net Area 0 µm2

Total Design Area 16462564.8 µm2

Combinational Area 411211.6 µm2

Non-combinational Area 849495.8 µm2

Macro Area 15201857.5 µm2

Macro cells take up 93% of the design area. Those macro cells are I/O Pads,

SRAMs and PLL.

Table 17: Macro Types

I/O Pads 528000 µm2

PLL 10873.333 µm2

SRAM 14768716.43 µm2

2%5%

93%

Area

Combinational Area Non-combinational Area Macro Area

84

As shown in the above chart the SRAM takes up most of the Macro Area, this is

because the design uses three types of memory banks Interleaved memory bank,

Private memory bank and ROM bank. Those banks are large sized and due to the

limited size of SRAM instance available in SAED 32nm library, which is 512 ×

32 𝑏𝑖𝑡𝑠, we used multiple instances to build one bank of each type.

Table 18: Memory Types

 Number of Banks Bank Size Number of Instances used for each

bank

Interleaved Memory 4 215 × 32 bits 64

Private Memory 2 213 × 32 bits 16

ROM 1 29 × 32 bits 4

3%

0%

97%

Macro Area

I/O Pads

PLL

SRAM

Memory Type

Data

85

4.1.2.4 Power Results:

Figure 24: power report after logic synthesis (Topographical Flow)

Table 19: Power Results

Internal Cell Power 6.11 mW

Leakage Power 11.698 mW

Switching Power 812.86 µW

Total Power 18.625 mW

86

The above results shows that most of power consumption is due to leakage power

which is the static power consumed in the transistor due to constant current from

VDD to Ground and it increases with shrinking the transistor size, that is why its

value is high in our case. The second most type of consumed power is the internal

power which is dissipated within the cell boundary in the form of dissipation

during switching due to charging or discharging of any internal capacitors and the

short circuit power which is caused by the flow of a current through a direct path

between VDD and Ground during switching of both NMOS and PMOS

transistors for a short period of time. The third type is Switching power which is

dissipated in load capacitance during charging and discharging.

33%

63%

4%

Power

Internal Cell Power

Leakage Power

Switching Power

87

4.1.2.5 Timing Results:

Setup Time

Figure 2: Setup time: Hold Time Histogram after 2nd Pass Logic Synthesis (Topographical Flow)

From the above figure, there is Setup Time violation equals -0.8 ns which is small

enough to be solved in the later optimizations after Design Planning stage.

0

5

10

15

ref_clk soc_clk per_clk inputs to reg reg to
outputs

inputs to
outputs

Setup Critical Path Slack

Setup WNS

88

Hold Time

Figure 25: Hold Time Histogram after 2nd Pass Logic Synthesis (Topographical Flow)

0

0.5

1

1.5

2

2.5

ref_clk soc_clk per_clk inputs to reg reg to
outputs

inputs to
outputs

Hold WNS

Setup WNS

89

4.1.2.6 Run Time:

Total Compile time equals 1328.17 seconds which equals 22.13 minutes.

4.2. Design planning:

4.2.1 Flat flow:

Table 20: Design Planning (Flat Flow)

Core Utilization 0.401

Number of Rows 3708

Core Width(micron) 6200

Core Height(micron) 6200

Aspect Ratio 1

From the above table core area can be calculated to be 38.44 mm2 and the die area

of the chip is 49 mm2, where the die height is 7mm and the die width is 7mm.

90

IR drop map of the power network:

Figure 26: IR Drop map (Flat Flow)

From the above map the maximum IR drop is 73.6 mV which is 7.75% of the

used power supply value which is 950 mV and this drop is acceptable since it’s

lower than 10% limit recommended by Synopsys.

91

Congestion map at the end of the design planning stage:

Figure 27: Congestion Map after design planning (Flat Flow)

As shown in the above map there is no congestion at all on the edges of all global

routing cells (GRCs), this is due to the well-defined offset between hard macros in

both X and Y directions.

92

Histogram of end point slack of setup and hold timing checks:

Figure 28: Setup Histogram after Design Planning (FlatFlow)

Figure 29: Hold Histogram after Design Planning (Flat Flow)

93

Critical slack on of setup and hold timing checks each clock domain:

0
-0.07

6.7

14.52

0.94

8.38

ref_clk soc_clk per_clk inputs to reg reg to
outputs

inputs to
outputs

Setup Critical Path Slack (ns)

0

0.5

1

1.5

2

2.5

ref_clk soc_clk per_clk inputs to reg reg to
outputs

inputs to
outputs

Hold Critical -ve Slack (ns)

94

4.2.2 Hierarchal flow:

Table 21: Design Planning (Hierarchal Flow)

Core Utilization 0.401

Number of Rows 3708

Core Width(micron) 6200

Core Height(micron) 6200

Aspect Ratio 1

From the above table core area can be calculated to be 38.44 mm2 and the die area

of the chip is 49 mm2, where the die height is 7mm and the die width is 7mm.

95

IR drop map of the power network:

Figure 30: IR Drop map (Hierarchal Flow)

From the above map the maximum IR drop is 76.3 mV which is 8.03% of the

used power supply value which is 950 mV and this drop is acceptable since it’s

lower than 10% limit recommended by Synopsys.

96

Congestion map at the end of the design planning stage:

Figure 31: Congestion Map after Design Planning (Hierarchal Flow)

As shown in the above map there is no congestion at all on the edges of all global

routing cells (GRCs), this is due to the well-defined offset between hard macros in

both X and Y directions.

97

Histogram of end point slack of setup and hold timing checks:

Figure 32: Setup Histogram after Design Planning (Hierarchal Flow)

Figure 33: Hold Histogram after Design Planning (Hierarchal Flow)

98

Critical slack on of setup and hold timing checks each clock domain:

-5

0

5

10

15

20

ref_clk soc_clk per_clk inputs to reg reg to
outputs

inputs to
outputs

Setup Critical Path Slack (ns)

0

0.5

1

1.5

2

2.5

ref_clk soc_clk per_clk inputs to reg reg to
outputs

inputs to
outputs

Hold critical -ve slack (ns)

99

4.2.3 Topographical flow:

Table 22: Design planning (topographical Flow)

Core Utilization 0.401

Number of Rows 3708

Core Width(micron) 6200

Core Height(micron) 6200

Aspect Ratio 1

From the above table core area can be calculated to be 38.44 mm2 and the die area

of the chip is 49 mm2, where the die height is 7mm and the die width is 7mm.

100

Figure 34: Design Layout (Topographical Flow)

Layout of the Topographical Flow is different from other Flows.

101

IR drop map of the power network:

Figure 35: IR Drop map (Topographical Flow)

From the above map the maximum IR drop is 120.8 mV which is 12.7% of the

used power supply value which is 950 mV. This value is higher than 10%

recommended IR drop by Synopsys, however it could be improved by reducing

the offset between the power and ground straps which will result in the reduction

of the resistance of the power and ground mesh, therefore reduces the IR drop on

them, and this can be done in the future work of this thesis, however 12.7% IR-

drop is still acceptable.

102

Congestion map at the end of the design planning stage:

Figure 36: Congestion Map after design planning (Topographical Flow)

As shown in the above map there is no congestion at all on the edges of all global

routing cells (GRCs), this is due to the well-defined offset between hard macros in

both X and Y directions.

103

Histogram of end point slack of setup and hold timing checks:

Figure 37: Setup Histogram after Design Planning (Topographical Flow)

Figure 38: Hold Histogram after Design Planning (Topographical Flow)

104

Critical slack of setup and hold timing for each clock domain:

0

2

4

6

8

10

12

14

16

ref_clk soc_clk per_clk inputs to reg reg to
outputs

inputs to
outputs

Setup critical slack (ns)

0

0.5

1

1.5

2

2.5

ref_clk soc_clk per_clk inputs to reg reg to
outputs

inputs to
outputs

Hold critical -ve slack (ns)

105

4.3 Placement:

4.3.1. Flat Flow

4.3.1.1. Congestion Map:

Figure 39: Congestion Map after Placement (Hierarchal Flow)

As shown in the above map there is no congestion at all on the edges of all

global routing cells (GRCs), this is due to the well-defined offset between

hard macros in both X and Y directions.

106

4.3.1.2. Timing Results

Figure 40: Setup Time Histogram after Placement (Flat Flow)

Figure 41: Hold Time Histogram after Placement (Hierarchical Flow)

107

0 -2.92

5.28

11.16

-1.87

6.61

-4

-2

0

2

4

6

8

10

12

ref_clk soc_clk per_clk inputs to reg reg to
outputs

inputs to
outputs

Setup critical slack (ns)

0.95
0.7

2.04

0 0 0
0

0.5

1

1.5

2

2.5

ref_clk soc_clk per_clk inputs to reg reg to
outputs

inputs to
outputs

Hold critical -ve slack (ns)

108

4.3.2. Hierarchical Flow

4.3.1.1. Congestion Map:

Figure 42: Congestion Map after Placement (Hierarchal Flow)

As shown in the above map there is no congestion at all on the edges of all global

routing cells (GRCs), this is due to the well-defined offset between hard macros in

both X and Y directions.

109

4.3.1.2. Timing Results

Figure 43: Setup Time Histogram after Placement (Hierarchical Flow)

Figure 44: Hold Time Histogram after Placement (Hierarchical Flow)

110

0
-3.28

4.94

10.98

-2.06

4.58

-4

-2

0

2

4

6

8

10

12

ref_clk soc_clk per_clk inputs to reg reg to outputs inputs to
outputs

Setup critical slack (ns)

0.95

0.68

2.03

0 0 0
0

0.5

1

1.5

2

2.5

ref_clk soc_clk per_clk inputs to reg reg to outputs inputs to
outputs

Hold critical -ve slack (ns)

111

4.3.3. Topographical Flow

4.3.1.1. Congestion Map:

112

4.3.1.2. Timing Results

Figure 45: Setup Time Histogram after Placement (Topographical Flow)

Figure 46: Hold Time Histogram after Placement (Topographical Flow)

113

0
-2.42

5.23

11.31

-0.62

2.91

-4

-2

0

2

4

6

8

10

12

ref_clk soc_clk per_clk inputs to reg reg to outputs inputs to
outputs

Setup critical slack (ns)

0.95
0.7

2.03

0 0 0
0

0.5

1

1.5

2

2.5

ref_clk soc_clk per_clk inputs to reg reg to outputs inputs to
outputs

Hold critical -ve slack (ns)

114

4.4 Clock Tree Synthesis (CTS)

4.4.1. Flat Flow

Figure 47: SoC Domain Clock Tree (Flat Flow)

115

Figure 48: Peripheral Domain Clock Tree (Flat Flow)

Figure 49: Reference Clock Tree (Flat Flow)

116

Figure 50: Setup Time Histogram after CTS (Flat Flow)

Figure 51: Hold Time Histogram after CTS (Flat Flow)

117

4.4.2. Hierarchical Flow

Figure 52: SoC Domain Clock Tree (Hierarchical Flow)

118

Figure 53: Peripheral Domain Clock Tree (Hierarchical Flow)

Figure 54: Reference Clock Tree (Hierarchical Flow)

119

Figure 55: Setup Time Histogram after CTS (Hierarchical Flow)

Figure 56: Hold Time Histogram after CTS (Hierarchical Flow)

120

4.4.3. Topographical Flow

Figure 57: SoC Clock Tree (Topographical Flow)

Figure 58: Peripheral Clock Tree (Topographical Flow)

121

Figure 59: Reference Clock Tree (Topographical Flow)

Figure 60: Setup Time Histogram after CTS (Topographical Flow)

122

Figure 61: Hold Time Histogram after CTS (Topographical Flow)

123

4. Routing and PnR Final Results

4.4. Area Results

4.4.1. Flat Flow

Table 23 : Flat Flow Area Results

 After Removing Hierarchy

Total Cell Area 16349625.9 µm2

Net Area 1351556.03 µm2

Total Design Area 17701181.9 µm2

Combinational Area 697474.8 µm2

Non-combinational Area 846293 µm2

Macro Area 14805857.5 µm2

4%
5%

91%

Area

Combinational Area Non-combinational Area Macro Area

124

4.5.1.2. Hierarchical Flow

Table 24: Hierarchical Flow Final Area Results

 After Removing Hierarchy

Total Cell Area 16281037.7 µm2

Net Area 1410248.6 µm2

Total Design Area 17691286.3 µm2

Combinational Area 627477.5 µm2

Non-combinational Area 847702.8 µm2

Macro Area 14805857 µm2

4%
5%

91%

Area

Combinational Area Non-combinational Area Macro Area

125

4.5.1.3. Topographical Flow

Table 25 : Topographical Flow Final Area Results

 After Removing Hierarchy

Total Cell Area 16307357.7 µm2

Net Area 1355910.3 µm2

Total Design Area 17663268 µm2

Combinational Area 653124 µm2

Non-combinational Area 848375 µm2

Macro Area 14805857.5 µm2

4%
5%

91%

Area

Combinational Area Non-combinational Area Macro Area

126

Power Results

4.4.2. Flat Flow

Internal Power 7.36 mW

Switching Power 5.61 mW

Leakage Power 11.75 mW

Total Power 24.73 mW

30%

21%

49%

Power

Internal Power

Switching Power

Leakage Power

127

4.5.3.2. Hierarchical Flow

Internal Power 6.68 mW

Switching Power 3.25 mW

Leakage Power 11.67 mW

Total Power 21.6 mW

31%

15%

54%

Power

Internal Power

Switching Power

Leakage Power

128

4.5.3.3. Topographical Flow

Internal Power 7.15 mW

Switching Power 5.22 mW

Leakage Power 11.73 mW

Total Power 24.103 mW

30%

21%

49%

Power

Internal Power

Switching Power

Leakage Power

129

Wire Statistics

4.4.3. Flat Flow

Figure 62:Horizontal/Vertical Wire Distribution (Flat Flow)

4.5.3.2. Hierarchical Flow

Figure 63: Horizontal/Vertical Wire Distribution (Hierarchical Flow)

130

4.5.3.3. Topographical Flow

Figure 64: Horizontal/Vertical Wire Distribution (Topographical Flow)

4.3. TimingResults

Flat Flow

Figure 65: Setup Time Histogram after PnR (Flat Flow)

131

Figure 66: Hold Time Histogram after PnR (Flat Flow)

Hierarchical Flow

Figure 67: Setup Time Histogram after PnR (Hierarchical Flow)

132

Figure 68: Hold Time Histogram after PnR (Hierarchical Flow)

133

Topographical Flow

Figure 69: Setup Time Histogram after PnR (Topographical Flow)

Figure 70: Hold Time Histogram after PnR (Topographical Flow)

134

5. Conclusion and Future Work
Here, we presented the core implementation results, mainly the logic synthesis

and the PnR, the work presented here could be complemented in the future by

carrying out standard verification procedures using Formality for formal

verification, as explained in Appendix A, and doing Layout versus Schematic

(LVS) simulations. Furthermore, the whole PULPissimo core could be used to

instantiate multicore IoT processors like OpenPulp. The design could also be

integrated with a hardware processing engine in a heterogeneous computing

architecture for computationally intensive tasks.

135

References:

[1] P. D. Schiavone, D. Rossi, A. Pullini, A. Di Mauro, F. Conti and L. Benini,

"Quentin: an Ultra-Low-Power PULPissimo SoC in 22nm FDX," 2018 IEEE SOI-

3D-Subthreshold Microelectronics Technology Unified Conference (S3S), 2018,

pp. 1-3, doi: 10.1109/S3S.2018.8640145.

[2] PULP Platform (2021). “PULPissimo Datasheet”.

[3] Pasquale Davide Schiavone (2019), Understanding and working with PULP.

Online presentation. https://pulp-

platform.org/docs/riscv_workshop_zurich/schiavone_wosh2019_tutorial.pdf

[4] Synopsys, ”Design Compiler Guide”, Synopsys, Inc, September 2019

[5] Synopsys, ”IC Compiler Guide”, Synopsys, Inc, September 2019

[6] Synopsys, Digital Standard Cell Library SAED_EDK32/28_CORE DATA-

BOOK.

[7] Mehta, A.B. (2018). Functional Verification: Challenges and Solutions. In:

ASIC/SoC Functional Design Verification. Springer, Cham.

https://doi.org/10.1007/978-3-319-59418-7_2

[8] Sridhar Gangadharan, Sanjay Churiwala (2013). Constraining Designs for

Synthesis and Timing Analysis A Practical Guide to Synopsys Design Constraints.

Springer, https://doi.org/10.1007/978-1-4614-3269-2

[9] Khosrow Golshan (2007). Physical Design Essentials, An ASIC Design

Implementation Perspective. Springer, https://doi.org/10.1007/978-0-387-46115-1

[10] Abdelrahman Eltokhi and Si-vision team (2019), ASIC Physical Design,

PowerPoint slides.

https://doi.org/10.1007/978-1-4614-3269-2
https://doi.org/10.1007/978-0-387-46115-1

136

Appendix: ASIC flow

1. Introduction:

ASIC stands for Application Specific Integrated Circuits, ASICs are Integrated

circuits customized and manufactured as an implementation of a specific an

algorithm rather than implementing it as a function on a general purpose

processor or programming it on an FPGA. And the advantages of ASIC over

FPGA and general purpose microcontroller are summarized as following:

1) High utilization as we use only wanted cells.

2) High performance but more complex.

3) Low cost of fabrication in the massive production.

All ASIC flows consists of front-end and back-end parts, and in this thesis the

flat, hierarchal and topographical flows will be illustrated in details in the

following sections.

2. Front-end part:

137

Figure 71: flow chart of the front-end part in ASIC

2.1 Idea or specific algorithm:

138

The front-end part is begun by an idea, a specific algorithm or a function that we

want to implement by ASIC, hence specifying the inputs and outputs properties

and all others specifications, like a required operating frequency, area, leakage

power, maximum static and dynamic power consumption, etc. And then starting

to write a RTL code that describes and performs the required function.

2.2 Behavioral HDL simulation:

After finishes the RTL code, the RTL simulation is performed to ensure that the

RTL code work properly and performs the required function and it is cyclic and

bit accurate (which means that produces the right bit value in the right cycle). If

the RTL code isn’t satisfied the previously mentioned conditions, it must be

modified.

2.3 Logic synthesis step:

The logic synthesis step concerns to convert the RTL into netlist. And it can be

used with a trial and error method is used when it is wanted to know the best

constraints that the RTL code can be work properly with a specific technology

library. The logic synthesis step with a trial and error method by the design

compiler (DC), as it is used in this thesis, can be illustrated in the following flow

chart:

139

Figure 72: flow chart of the logic synthesis step with a trial and error method

2.3.1 Libraries loading:

The Load libraries step which consists of the following:

1) Technology libraries that mainly contain:

140

 Standard cells and input-output (IO) pads information. The standard

cells and input-output (IO) pads are used to map/compile the GTECH

cells in the unmapped gate-level netlist (where GTECHs are

technology-independent cells and don’t have any timing, area and

power information) to standard cells to create a mapped gate-level

netlist.

 Operating conditions which is basically the process, voltage and

temperature variations of the used technology library.

 Units attributes of each quantity.

 Wire load models (WLM) which is used to estimate the length of each

net based on its fan-out number information, and then multiplies it in

the per-unit value of the resistance and capacitance.

2) Link libraries that contains timing information of all standard cells, IO

pads and used macros to be used in mapping and reporting.

2.3.2 Analyze and elaborate steps:

The analyze and elaborate steps are used to read the RTL coed in synthesis tool

(design compiler), where

 The analyze step: reads the RTL codes, informs the designer if there are

any syntax errors or non-synthesizable statements and converts the RTL

code into intermediate binary formats to be read by the elaborate step.

 The elaborate step: translates the intermediate binary formats into GTECH

(technology independent gates) gate-level netlist.

We could use instead of these two commands “read_file” command which makes

analyze and elaborate in single step, “link” command must follow “read_file”

command.

2.3.3 Constraints applying:

The applying of design constrains in the DC tool is used to define the following

matters:

141

1) timing constraints which can be summarized in the following points:

 Clock period.

 Source latency.

 Input and output delay constraints.

 Uncertainty of the clock which is the summation of the estimated skew

of the clock, jitter and margin.

 False (timing paths that wouldn’t happen as they logically cannot

occur) and multicycle (timing paths that need more than clock cycle to

be executed) paths.

 Path groups, their weight and critical range (to solve the sub-critical

timing paths).

2) Area goal.

3) Leakage Power and power intent of the design.

4) Electrical DRC constraints which are maximum input transition,

maximum load capacitance and maximum fan-out number of each net in

the design.

The timing paths are categorized in 4 types of paths:

1) Register-to- register path: starts from a clock pin of a launch sequential

element and ends at a clock pin of a capture sequential element.

2) Input-to- register path: starts from an input port of the design and ends at a

clock pin of a capture sequential element.

3) Register-to-output path: starts from clock pin of a launch sequential

element and ends at output port of the design.

142

4) Input-to-output path: starts from input port of a design and ends at output

port of the design.

 The ‘create_clock’ command is used as a DC command to define a clock domain.

We pass the period and the port at which the clock object will be attached to.

The timing paths of input-to-register, register-to-output and input-to-output types

are constrained by defining another constraint which are input and output delay

constraints and that is done by “set_input_delay” and “set_output_delay”

commands.

2.3.4 Compilation step:

The compilation step is mainly convert the GTECH gate-level netlist into mapped

gate-level netlist. And it is done in the DC by the “compile_ultra” command for

more optimization on timing and area.

2.3.5 Reporting:

The generating reports are for:

1) Area

2) All mapped standard cells

3) Quality of results (QoRs)

4) Clock gating

5) Setup timing reports (maximum delay type).

The design mustn’t have any setup timing violation to writing the outputs of the

logic synthesis, otherwise the designer must perform incremental optimization on

143

the mapped gate-level netlist and report to check whether there are any setup

timing violations or not. And that what is means by setup-violation clean design.

Whereas the design is allowed to have any number of hold timing violations in

this step, as they will be solved by the clock tree synthesis (CTS) step in the place

and route (PnR) flow.

The reporting of area is done by “report_area” command, the setup timing

reporting is done by the “report_timing –delay_type max”.

If the reports appear negative slacks we should make another incremental

compile, and get another reports to see if the slacks are fixed or not, if still

negative slacks appear change the constrains and make another compile then

report until there is no negative slacks (the design is setup clean).

2.3.6 Writing the outputs:

The outputs are mainly 2 files:

1) the gate-level netlist written in a HDL and the constraints written a

specific format to be easily read by the layout tool. In case using design

compiler to perform the logic synthesis step, the outputs will be gate-level

netlist written in a Synopsys internal database called ddc.

2) The constraints is written in a format called Synopsys design constraints

(SDC).

3. Back-end part:

The back-end part in the ASIC flow is called PnR which stands for place and

route, but in fact it contains more steps before and after the place and route steps,

here is a flow chart that describes that all main steps of the PnR flow in short:

144

Figure 73: summarized flow chart of the PnR flow

The below section describes each step in more details.

3.1 Data setup:

In the data setup step, the designer gives specific inputs to the PnR tool, which is

the IC compiler in this thesis, to prepare it to the nest steps in the flow. These

inputs can be summarized as following:

3.1.1 Target library:

145

1) Standard cells and input-output (IO) pads information, like timing, area,

leakage power, Boolean function and information about each pin in each

cell.

2) Operating conditions.

3) Units attributes of each quantity.

4) Wire load models (WLM).

And it is has .db and .lib extension, where the .lib file contains the previously

mentioned information in ASCII format to be easily read by the designer and the

.db file contains these information in binary format to be easily read by the IC

compiler. And it the .lib file is the only one existed the IC compiler will convert it

into binary format (.db extension). And its directory is saved in reserved variable

called “target_library” in the IC compiler tool.

3.1.2 Link library:

Link libraries contain timing information of all standard cells, IO pads and used

macros to be used in analyzing and reporting the standard cells, IO pads and used

macros that are considered as parts of the different timing paths in the design.

And its directory is saved in reserved variable called “link_library” in the IC

compiler tool.

3.1.3 Physical library

The physical libraries contains physical information about standard cells, IO pads

and used macros, and these information like:

1) Abstraction view of the layout, which is called FRAM view.

146

Figure 74: example on FRAM view of NAND logic cell

2) Layers that is used in the layout to be considered as obstacles in the

routing step and prevented any short can happened during placement or

routing steps.

3) Pins layer, its size and its locations.

4) Units attributes.

5) Defines placement site.

Figure 75: example on the site (unit tile).

147

6) Technology file which contains the geometrical design rule checks

(DRCs) of each layer in the used technology library. And the extension of

that file is “.tf”.

These information is placed in internal database of the Synopsys company called

Milkyway database and it is created by command called “create_mw_lib” which

mainly takes the FRAM view of each standard cells, IO pads and used macros,

and the technology file. And all the previously mentioned files are provided by

the vendor of the used technology library.

The following steps show how to create a Milkyway database in the Synopsys

tools:

1) Define the power and ground nets.

For example, set the following variables:

set mv_power_net VDD

set mw_ground_net VSS

set mw_logic1_net VDD

set mw_logic0_net VSS

set mw_power_port VDD

set mw_ground_port VSS

If you do not set these variables, power and ground connections are not

made during execution of write_milkyway. Instead power and ground nets

can get translated to signal nets.

2) Use the create_mw_lib command to create the Milkyway design library.

For example,

 create_mw_lib -technology $mw_tech_file \ -

mw_reference_library $mw_reference_library \

$mw_design_library_name.

3) Use the open_mw_lib command to open the Milkyway library that you

created.

For example,

148

open_mw_lib $mw_design_library_name.

4) (Optional) Use the set_tlu_plus command to attach TLUPlus files.

For example,

set_tlu_plus_files -max_tluplus $max_tlu_file \ -min_tluplus

$min_tlu_file\ -tech2itf_map $prs_map_file.

5) In subsequent topographical mode sessions, you use the open_mw_lib

command to open the Milkyway library. If you are using TLUPlus files

for RC estimation, use the set_tlu_plus_files command to attach these

files.

For example,

open_mw_lib $mw_design_library_name

set_tlu_plus_files -max_tluplus $max_tlu_file \

-min_tluplus $min_tlu_file \

-tech2itf_map $prs_map_file

The following Milkyway library commands are also supported:

 copy_mw_lib

 close_mw_lib

 report_mw_lib

 current_mw_lib

 check_tlu_plus_files

 write_mw_lib_files

 set_mw_lib_references

3.1.4 Table look up plus files:

The Table look up plus (tlup) files contain the resistance and capacitance per-unit

values of each of metal layer to be used in extraction of the RC model of the

estimated length of the interconnects or the actual interconnect, after the track

assignment stage in the routing step.

 They consist of 3 different files which are called tluMax, tluMin and mapping

files where the mapping file maps the names of layers that are in the interconnect

technology format (ITF) file to the ones in the technology file. Where the

interconnect technology format (ITF) file contains an ordered list of all

conductive and dielectric layers in the technology library.

149

3.1.5 Gate-level netlist:

The gate-level netlist contains the mapped all standard cells and IO pads and used

macros in the RTL.

3.1.6 Constraints:

The timing, area, electrical DRCs and power constraints written in Synopsys

design constraints (SDC) format. And that is used and written by the design

compiler tool.

3.2 Design planning step:

The Design planning step is very important step, as all the following steps depend

on it, so that it should be performed carefully. It is usually done by many

iterations after beginning by an initial planning as all design stages in all fields,

not in the ASIC designing only. The following is a flow chart describing the

Design planning step:

150

Figure 76: flow chart of design planning step

The following sections describe each step in more details.

3.2.1 Creating floor-planning:

151

Figure 77: flow chart of creating floor-planning step

The Creation of the floor-planning begins with the “create_floorplan” command

which takes the following arguments:

1) Control type by which the IC compiler tool set the height and width of the

core of the chip. And it can be height and width or respect ratio.

2) Height and width dimensions of the chip core, if the control type is set to

height and width value.

3) Utilization ratio which is ratio between the combined area of all used

standard cells, IO pads, macros and estimated net area and the core area.

4) Respect ratio: which is the ratio between the the height of the core and the

width of the core.

5) Determining whether the placement of the standard cells is done on

horizontal or vertical rows.

152

6) The distance between the core boundaries and the IO pads edges from

each side in the chip.

The pin placement is done by the “set_pin_physical_contraints” command and the

pad placement is done by the “set_pad_physical_contraints”. The both previously

commands are set for each pin and pad in the design to have well-defined

placement of them, otherwise the IC compiler tool will place them automatically

and they may be dis-ordered.

Defining of the macro placement is done by the collecting the macro in arrays and

these array can be one or two dimensional and can have any number of macro

cells in any order, the designer wants and the designer can specify the offset

between the macro cells in an one array in both direction, the X and Y directions.

The macro array is handled by the “set_fp_macro_array”.

After setting the macro array, the designer should specify the locations of these

macro array by the “set_fp_macro_options” command, otherwise the IC compiler

will place them automatically and the overlapping the different macro arrays can

happen. It worst to mention that all the macro placement constraints are soft

constraints, which means that the IC compiler tool will try to honor them, but if it

finds better options than the specified ones, it will choose them over the specified

macro placement constraints.

During determining the macro placemenet constraints, the designer should

observe some basic rules when measuring QoR, such as pushing hard macros to

the core boundary and aligning similar hard macros. However, the critical

measurements that are used to evaluate the placement results are timing and

routability.

Defining the macro keep-out margin is essential step as it prevent the placer

engine in the IC compiler tool from placing the standard cells in specified area

around the macro cells, therefore it will reduce the congestion and keep more

space for the interconnects that connect the macro pins to the standard cells and

IO pads.

3.2.2 Virtual flat placement:

153

Figure 78: flow chart of virtual flat placement step

As the above flow chart shows, the strategy of the virtual placement engine

should be set before beginning of that placement. The strategy is set by the

“set_fp_placement_strategy” command. And the usual setting are:

1) The virtual in-place optimization (VIPO) is set to on.

2) Sliver size which determines the upper bound of the size of channels that

are between the macro cells at which there is no standard cells placement.

3) Congestion effort.

After the setting of the virtual placement strategy, the virtual placement itself is

performed by the “create_fp_placement” command and that command requires

the driven by which the placement is guided, and the available option is timing

one or/and congestion.

Virtual flat placement is the simultaneous placement of standard cells and macros

for the whole chip. The initial virtual flat placement is very fast and is optimized

for wire length, congestion, and timing. For designs with macros, plan groups, or

voltage areas that have not already been placed, virtual flat placement can help

you decide on the locations, sizes, and shapes of the top-level physical blocks.

3.2.3 Reducing congestion:

154

Figure 79: flow chart of reducing the congestion step

After the virtual placement, the congestion should be analyzed and that is done by

the “route_global –congestion_map_only” or “route_fp_proto -

congestion_map_only”. The first command is more accurate than the other, but

the second one is faster.

If the design is congested, the following is available to solve this problem:

1) Changing macro placement or their orientation, then run another floor-

planning placement with a timing and congestion drivens.

2) Increasing core area by decreasing the core utilization.

3) Increasing the keep-out margins.

155

Congestion reporting is a map at which the design is divided into cells call global

routing cells and Number of nets crossing the global routing cell (GRC) edge,

versus Number of available routing tracks are computed and then compared.

3.2.4 Power network creating:

Figure 80: flow chart of power network syntheisizing step

Power network consists of rings, straps, stacked vias and supply rails, where

1) Rings: they are thick wires routed in the space that between IO pads

boundaries and core boundaries, and they are usually routed in the highest

metal layers of the technology library (if the ASIC consists of 10 metal

156

layers, then the rings will be in the 10th, 9th, 8th and 7th metal layers), they

are usually 2 rings, one for power and the other for ground, and they

connected to the power and ground pads in order to move the power and

ground from the outside the ASIC to the space between IO box and core

area. They are created by the “create_rectangle_rings” command in the IC

compiler tool.

2) Straps: they are thick straight wires routed across the core area itself in

the same metal layers that contains the rings, they connect to rings using

array of vias in order to move the power and ground (p/g) from the rings

(space that between IO box and core area) to inside core area itself and

they takes grid shape. They are created by the “create_power_straps”

command in the IC compiler tool.

3) Supply rails: they are thin wires routed in the 1st layer, they are connected

to the rings and straps using special vias called stacked vias and they

supply the standard cells which also are in the 1st metal layer with power

and ground. They are created by the “preroute_standard_cells” command

in the IC compiler tool.

4) Stacked vias: array of vias that connects the supply rail in the 1st layer to

the straps. They are created by the “create_preroute_vias” command in the

IC compiler tool.

To pass this step, the IR drop has to be equal or less than 3% of the supply

voltage. That to keep the noise margin of standard cells large and to prevent the

delay of them from degrading.

3.2.5 Reducing delay:

157

Figure 81: flow chart of the reducing delay step

As the previously mentioned, the design is mainly performed by iterations, so that

after synthesizing and committing of the power network, the delay must be

analyzed and reported. The considered delay type checks are the setup timing one

only.

3.2.6 Extracting:

The extracting of the RC models of estimated interconnects and actual wired

ones, like the power network, should be performed and saved to be used in the dc

compiler, like in the topographical flow.

3.3 Placement:

158

Figure 82: flow chart for placement stage

There are many configuration settings that affect the behavior of placement in IC

Compiler, including the following controls:

 Setting the Congestion Options

 Setting the Move Bounds

 Defining Inter-cell and Boundary Spacing Rules

 Defining the Buffer Strategy for Optimization

 Setting the Preferred Buffers for Hold Fixing

 Enabling Tie Cell Insertion

 Setting Placement and Optimization Attributes

159

To pass the placement step, the congestion and the setup timing slack should be

acceptable.

The following sections go through each step in more details.

3.3.1 Setting of the non-default routing rules:

The non-default routing (NDR) rules are set for routing the clock trees, but it is

set before the placement to be taken in the consideration during the placement

stage. They are set using the “define_routing_rules” command followed by

“set_net_routing_rule” command.

3.3.2 The high fan-out synthesis:

The high fan-out synthesis (HFS) targets the static signal nets with high fan-out

number and builds a tree of buffers and inverters to divide these high fan-out nets

into smaller nets, therefore reduces the output load capacitance and enhances the

delay or place the standard cells away from each other to improve the congestion.

The HFS is performed by a “create_buffer_tree” command.

3.3.3 Placement:

It is done by a “place_opt” command which performs the following:

1) global placement (coarse placement):

 Choose location for each cell.

 Cells can overlap.

 Orientation is ignored.

 Aims to meet the area and power target and avoid routing

congestion.

2) Electrical DRC violation fixing (HFS)

160

3) Legalized placement:

 Fixing the cell overlap.

 Assigning the cell to site rows.

 Aims to enhance the rout-ability and avoids DRC violation.

4) Optimization:

During this stage, the tool performs timing (solve setup violations only), area,

congestion, and leakage-power optimization.

3.3.4 Congestion and setup reporting:

The congestion is reported by the “route_global” command. And the setup timing

checks are reported by a “report_timing –delay_type max” command

3.3.5 Incremental optimization for placement:

The incremental optimization of placement is mainly performed by a “psynopt”

command, but its options are set based on the target of that optimization:

If the congestion is wanted to be optimized, the options should be “-congestion”.

And if the setup timing is wanted to be optimized, the options should be “-

only_size”, “-no_design_rule” or “-only_design_rule”.

3.4 Clock tree synthesis:

161

Figure 83: flow chart of clock tree synthesis

The following sections go through each step in more details

3.4.1 Setting of the clock options:

162

The setting of the clock options is done by a “set_clock_tree_options” command.

And the common options are

1) The references by which the clock tree is built, and the target libraries must
meet the following requirements:

 Any cell in the logic library that you want to use as a clock tree reference

(a buffer or inverter cell that can be used to build a clock tree) or for sizing

of gates on the clock network must be usable by clocktree synthesis and

optimization.

 By default, clock tree synthesis and optimization cannot use buffers and

inverters that have the dont_use attribute to build the clock tree. To use

these cells during clock tree synthesis and optimization, you can either

remove the dont_use attribute by using the remove_attribute command or

you can override the dont_use attribute by specifying the cell as a clock

tree reference by using the set_clock_tree_references command.

 The physical library should include All clock tree references (the buffer

and inverter cells that can be used to build the clock trees).

 Routing information, which includes layer information and non-default

routing rules.

 TLUPlus models must exist. Where the Extraction requires these models

to estimate the net resistance and capacitance.

2) Target skew: which is the maximum global skew, where the global skew is the

difference in shortest insertion time and largest insertion time of 2 sequential

elements.

3) Target early delay: which is the minimum insertion delay, where the insertion

delay is the delay taken by the clock signal to pass from the clock port of the

design to the clock pin of the cell.

4) Maximum fan-out.

163

5) Maximum capacitance.

6) Maximum transition.

7) Using default routing rules at sinks to prevent the DRC violations from

happening during the clock tree routing.

8) Clock tree optimizations, like:

 Buffer resizing

 Buffer relocation

 Gate resizing

 Gate relocation

3.4.2 Clock tree synthesizing:

The synthesizing of a clock tree is done by the “clock_opt –only_cts –

no_clock_route” command. And it is better to first synthesize the clock tree,

hence analyze the results, and then fix the hold violations and finally route the

clock tree.

3.4.3 Analysis:

1) CTS browser:

 Properties and attributes on clock tree objects

 Traversing clock tree levels

 Symbols for CTS objects like buffers, gates and sinks

2) CTS schematic:

 Trace forward/backward in schematic view

 Collapses all sinks in the fanout of a CTS buffer for clearer

CTS schematic

 Highlight CTS objects in the layout view

164

3) Clock arrival histogram.

4) Report by the “report_clock_tree –type skew”.

3.4.4 Solve hold violations:

The Solving of hold violations is done by the “ clock_opt –only_hold_time”

command after setting “set_fix_hold” command and “set_fix_hold_options”.

3.4.5 Routing of clock tree:

The routing of the clock tree is done by the “route_group –all_clock_nets”

command. And that after checking for all clock tree options.

3.5 Routing:

Routing creates physical connections to all clock and signal pins through metal

interconnects and after the routing stage, the following requirements must be

satisfied:

1) Routed paths must meet setup and hold timing, max cap/trans, and clock

skew requirements.

2) Metal traces must meet physical DRC requirements.

Here a flow chart describes the main steps in the routing stage:

165

Figure 84: flow chart describes main steps in the routing step

The below sections go through each step in more details.

3.5.1 Global routing:

At the global route, the design is divided into small, square cells called global

routing cells (GRCs) and the global routing engine tries to assign each net to

specific global routing cell and then to specific metal layer in order to reduce the

166

congestion, which is existed when more tracks are needed than available. And the

global routing engine doesn’t lay down any metal trace.

To illustrate the difference between the terms of metal track, metal trace and

global routing cell, the figure below (figure 22) shows two metal layers, its metal

tracks, and its metal track, where the metal trace is the real metal at which the

signal travels and the metal track is an imagine centered line at which the metal

trace can be made and finally the edges of the global routing cells represent a grid.

Figure 85: an example of a top view of the first and the second metal layers in a chip

3.5.2 Track assignment:

The track assignment (TA) engine does the following:

 Assigns each net to a specific track.

 Makes the actual metal traces.

 Makes long, straight traces.

 Reduces the number of vias.

 TA does not check or follow physical DRC rules.

3.5.3 Detailed routing:

167

The detailed routing (DR) does the following:

 Divides the chip into fixed sixes boxes called Sbox and fixes all DRC

violations inside each Sbox only.

 DR may not be able to clear all DRC violations.

Figure 86: An example on the Sboxes

3.5.4 Search and repair:

The search and repair engine fixes remaining DRC violations through multiple

loops and in each loop the tool increases the Sbox size and fixes the DRC inside

it, the figure below (figure 24) shows an example of increasing the Sbox sizing.

168

Figure 87: an example of increasing the Sbox sizing.

3.6 Chip finishing:

Figure 88: flow chart shows the main steps in the chip finishing stage

The below sections go through each step in more details.

3.6.1 Antenna fixing:

169

During etching of fabrication of metal layers of the IC exposed to a strong EM,

which generates a high instant voltage on the MOSFET gate of the transistors,

which may cause a damage to the thin 𝑆𝐼𝑂2, therefore a failure of the transistor,

so that the antenna DRC is set to make sure the metal layer that is connected to

the gate is less that a specified value. That is done by determining an antenna ratio

by the vendor, where Antenna Ratios = Metal Area Connected to Gate / gate area.

The solution of antenna DRC violations are

1) Layer jumping

2) Antenna diode

3.6.2 Redundant via insertion:

At the redundant via insertion step, the tool replace every stand-alone via with an

array of vias. And that for the following reasons:

1) Reducing the resistance of vias.

2) And if a one via is damaged the other vias will work, therefore there is no

single-point of failure.

3.6.3 Filler cell insertion:

At the filler cell insertion step, density of the chip needs to be uniform to increase

the fabrication yield, that is done by filling the remaining empty sites in all

placement rows with a special standrad cell called filler cell. And the same is

performed with IO pads where the empty spaces between the wire bounding IO

pads are filled with special pad called filler pads.

AT the IC compiler tool, the designer uses the “insert_pad_filler” command to

insert IO cell fillers and the “insert_stdcell_filler” command to insert standard cell

fillers.

3.6.4 Metal fill insertion:

170

A metal wire in low metal density region receives a higher ratio of etchant can get

over-etched, therefore there is a DRCs to control this issue and it is called

minimum metal density rules. And this step the tool add redundant wires to each

metal layer to meet its minimum metal density rule.

3.6.5 Metal slotting:

The wafer is made flat (planarized) by a process called Chemical Mechanical

Polishing (CMP), and at which Metals are mechanically softer than dielectrics,

which can cause the following:

1) CMP leaves metal tops with a concave shape which is called dishing, and

the wider the metal the more pronounced the dishing.

2) Very wide traces can become quite thin, therefore the dishing becomes

severe and is called erosion.

Figure 89: an example on the dishing and the erosion of copper

Maximum metal density rules are used to control erosion.

4. Main verification steps:

The main verification steps in the ASIC flow are the post-layout static timing

analysis (STA) and formal verification. And the following sections go through

each verification step in more details.

4.1 Post-layout static timing analysis:

The post-layout static timing analysis can be done by the Prime-Time Synopsys

tool. Where all critical paths in the design are analyzed to determine all timing

171

violations that can be setup, hold, recovery and removal and to solve these

violations.

The Prime-Time Synopsys tool takes the following as inputs:

1) Gate-level netlist, which is an output from the PnR tool.

2) Constraints, which mainly are physical, timing, area and leakage power

constraints.

3) Standard Parasitic Extraction Format (SPEF) file which is generated by

parasitic extractors like CALIBRE and contains the RC parasitic model of

interconnects.

4) Logic libraries.

The Prime-Time Synopsys tool produces the following as outputs:

1) Timing reports.

2) Standard Delay Format (SDF) file, which contains delays of cells and

interconnects that are in the design.

4.2 Formal verification:

The Formal verification is done by the formality Synopsys tools and it can be

three types:

1) A RTL code versus Modified RTL code, which is used to check either the

modified RTL has the old function of, the old RTL, or not.

2) A RTL code versus the gate-level netlist, which is used to check either the

RTL code are synthesized correctly by the synthesizing tool or not. And

this kind of the formal verification is used after the logic synthesis step.

172

3) The Gate-level netlist versus Modified gate-level netlist, which is used to

check either the modified gate-level netlist still has the old function of the

old gate-level netlist or not. And this kind of the formal verification is

used after the clock tree synthesizing (or after any modification happens in

the gate-level netlist).

There are very important definitions in the formal verification which are:

1) Reference Design: the basic/main design (design we sure about

its functionality that is correct).

2) Implementation Design: the design that we need to check either

its functionality is logically equivalent to the Reference design

or not.

3) Logic cone: block consists of combinational logic which drives

a compare point.

 Compare point: it can be one of the following

 Output port (primary output of the design).

 Capture DFF

 Input of a black box, that is within the design.

And the main Steps in the formality flow:

1) Read: Reference Design and Implementation Design are

segmented into logic cones.

2) Match: tool matches or maps each compare point in the

reference design to its corresponding compare point in the

implementation design.

3) Verifying.

4) Debugging.

173

Code Availability: Code available upon request from any of the authors. Contact

us at: hossam.gomaa99@eng-st.cu.edu.eg

