ACCELERATING AWARE MACHINE LEARNING
ALGORITHMS DESIGN AND VERFICATION
By
Ahmed Tarek Mostafa

Abdallah Mohamed Said
Amr Adel Mohamady
Amr Mohamed Eid
Fatma Khaled Mohamed
Farida Khaled Mohamed

A graduation project sponsored by Mentor Graphics ICVS
Under the Supervision of

Associate Prof. Hassan Mostafa And Dr. Eman El Mandouh

A Graduation Project thesis
Submitted to the Faculty of Engineering at Cairo University
in Partial Fulfillment of the Requirements for the Degree of Bachelor of
Science in Electronics and Communications Engineering
Faculty of Engineering, Cairo University Giza, Egypt

August 2020

TABLE OF CONTENTS

LI Lo L) o O TSRS SR VI
TADIES .. E Rt E e r et et e IX
AADSTFACT ... bbb R R bR R b b et b bbb bt ne s X
Chapter L. INTOTUCTIONcvveieiie et e et e e e s e te et e eseesaeeseeeseesbeesseaseesbeeseensearaenteennenneas 1
1.1 IMIOTIVATION ...tttk bbb e e bbbt bbbt e e e b et bbbt e et e e 1
1.2-Layers of Convolutional Neural NEIWOIKSc.ciiiiiiieie et 2
1.2.1. CONVOIULION TAYETottt e et e e e s ba e te e e e e beenbeestesneesreenneareenneens 3
1.2.2. POOIING TAYET ...t bbbt bbb bbbt b et 4
I I o (V7 A o] (N =Y ST SSPI 4
1.2.4. Normalization Layer (Batch NOrmalization).............cooouriiiiiiiiiinc s 9
SR B (o] o 01U B I YT PP OUPROPPRRPPS 9
1.2.6. FUIlY CONNECTEA LAY ...ttt bbbt bbbttt 10
1.3-Different CNN AFCHITECTUIES ..ottt n s 10
1.3 1-ATEXNEL (2012) ..oveoeeoeeeeeeeeeeeeeeeeeseeeseeseeeeseeesseesees e esseeesseeseees e es e es e ee s eesseeseeeseees e ee s eeseeesesesereseeees 10
1.3.2-VGGNEL (2014) ... e ee e 11
1.3.3-G00GIENEL (INCEPLION VL) .. .oiieieieeee ettt ettt e e e be e b e e eenaesreenneens 12
1.3.4 RESNEE-50 (2015) ..o eee e ee e ee e eeee e 14

R Yo U L=TC T N] TSP 16
14,1 FITE IMOTUIES ...t bbbtk b et b bbb ettt 17
1.4.2-SQUEEZE-NEL ATCHITECIUIE ...ttt bbbt 18
1.4.3-Evaluation Of SQUEEZE-INEL.........ccviiiieie ettt e e e be e s reeeeae e 19

1.4 4-HYPEIPATAMETETSc.eeeeieieiee ettt et s e s e e R e e e et e me e e s e e an e e e e e nne e e neenneeenne e 20
1.4.5-SQUEEZENET VAITANTSc.vviiiieiiie ettt ettt et e st e et e et e e s be e s s be e st e e e sbeesseeebeeateeensee e 21
1.5-FiXed-POINt rEPIESENTALIONc.veiviitiiteitietiei ettt bbbttt b et b et e b e e e 21
LLB-ParAIEIISIT.......eei bbbttt bbbt bbb 22

1.6.1 Inter Layer PArall@liSIMoe i 23

1.6.2 Inter OULPUL ParalleliSM..........cviiieiecic e te et e et e e e re e e enes 23
1.6.3 Inter Kernel ParalleliSM..........cc.o i 24
1.6.4 Intra Kernel ParalleliSMccoiiiiiicee e 24
A) T LU= TE S U Y YU OR S 25
LLB SUMIMANY ... bRt h bbbt e st b e e bt e e bt e bt e e b e e bbb s 28
Chapter 2. ARCHITECTUREociiiiiiiiteieee ettt bbb bbbttt ettt e et b e e nee e 29
2.1 The PIPEliNed @rCRITECTUIE ...t b bt 29
2.0.0 CONV UNIE: Lottt bbb b bbbt b bbbt e bt bbb b e n e 30
2.2 The Time-Shared arCNITECIUIE.oiiiiii e bbb 32
2.2. 1 SQUEBZE LAYET ...ttt bbbt b bbbt b e h e et bbb bRttt 32
2.2.2 EXPANG LAY ..ottt ettt e et e e ra e teen e e ae e te e e reerennes 33
W B N 0[] I =TSSP UR TR UR SRR 35
A B L e WY, (=] 1 4 (o] YR PRPUPR PP 37
2.2.5 WEIGNTS MEIMOIY ...t bbb bbbt b bbbttt 39
WA I | O o0 1 -] SRR ST 40
PG B0 10TV U TPPTRR 40
Chapter 3. DETAILED DESIGNoooiiiiiieit ettt e et eeaneenne e e aneesneenseaneeaseenneens 41
0 R 1@ 1\ VAV R - To [P PTPPTRR 42
311 IMAGE IMIBIMOIY ...t bbbt bttt b e bt b et neenne e 42
TN O e | O 3 o1V & - PR PSSPRR 43
313 CONVOIULIONAI TAYET ...ttt 44
3.2 MAX-POOLING [AYETeiiiiieiiiteite ettt bbb bbbttt b bt b e 49
321 FIFO DUFTEI ottt s e bt e b et nr et ne e reenae e 49
3.2.2 POOING TAYET ...t bbbttt bbbt 51
TR T o [(=31 = To PSPPSR PRUPPRPS 52
3.3.1 PING-PONG MEMOIY ...ttt bbbttt ettt nbeenne e 52
3.3.2 SOUEEZE JAYET .ttt e et et e naeabeearee s 54

3.3.3 IO DUTTOE e e ennnan 56

KT B o q o 1= 11 I -\ Y- S SSPSS 56
34 CONV_T0 SEAGE ...ttt bbb e bbbt bbb bt e bt e bt b e nn e 61
341 CoNVOIULIONGI TAYET........c ittt e te et e e esreenteeneesnaenae e 61
3.4.2 Global Average-POOIING TQYEFc.ooiiiiei ettt 63
3.5 HIerarchy OF OUI DESIGNc.ooviiiiiiiieie ettt b et 65
K TR0 B 0T oI 1Y [T [] L USSP 65
3.5.2 CONIOl TOP MOUUIE ...t bbbt 67
3.5.3 Master Control IMOGUIE ..o bbb 68
BT SUMIMIAIY ...tttk b s ko4 st bt et e R e R e b e 4R e Rt e Rt 2R e R e e bt e Rt e e bt e et e be e b e e n e e e b e e ne s 71
Chapter 4. SYNTHESIS AND OPTIMIZATIONSocii oottt snee s e 72
4.1 TIMING ENNANCEMENTScviiiieitieiie ettt et e s ae e st e et e s be e beessesseesteesseateeteeseesseesreeneesreeseans 72
4.1.1 ENance BRAM TIMING ...oviiiiiiiiiii et bbbttt 72
4.1.2 Enhance DSP timing and POWEccueiieiieie ettt ettt te e taesbeasaesraesreeneesnaenae e 73
4.1.3 Breaking and Pipelining large combinational paths ..., 73
4.1.4 Using one hot encoding FOr FSMcoiiiiiii et 74
4.2 ATEA BNNANCEIMENT ... ittt ettt bbb bbbt bbbt b e bt bt et bt bttt n et 75
4.2.1 Using MUX primitive INStEad OF LUTS......ccuiiiiiiiiiiiiiieee e 75
4.2.2 Using don’t cares in default BlOCKSccoviiiiiiiiiiii s 76
A3 FINAL TESUITS ...ttt b e bbbt b e bt et e e b ettt e bt e e e e 76
e T N == T 1 01 0T YRR 76
4.,3.2 THMING SUMIMAIYttittitiitienieteste sttt bbb btk e e s e s e b e b e b e eb e bt e bt e b e e se e s b et e s et b e et e e bt e bt e re e e e nnns 77
01101 0T YT PT TP OPR 77
Chapter 5. IMPLEMENTATION ...ttt bttt r et b et esbe e nteeneeabeenne e 78
5.1 CIOCK PEITOA = 10 NIS: ...ttt sttt bbbttt bbbt bbb s e b e bbbttt b e e 78
5.2 CIOCK PEITOA = B NS: ...tttk b bbbt e bbbt b e e e 78
5.2.1 Reasons Of high WIre delayoooiiii e 78
5.2.2 TIMING ClOSUIE TECNNIGQUES. ... ueeitiiiiie ittt eitee sttt ste ettt e et e et e e e e e s te e e beesseeasbaesreeesee e 78

5.2.3 Analyzing SYNthesiS RESUIT...........cviiiie e 79

5.2, PLACEIMENT. ...ttt bt bbb R R R Rt et 79
5.2.5 CONQESTION: ...tttk b bbbt h e e bbbtk R R e R bbbt bbbttt 79

ORI o AN o To o o oo SRR 80
D4 SUIMIMIAITY ...ttt site ekttt ettt e ettt ekt ekt e ettt e e sttt oo s b e ekt e e ket e 42 bt e e 4Rk 4o 4R ket oo R et e aR bt e eR bt e e e Rt e e bt e e e bt e e e be e e e nnn e e enes 82
Chapter 6. SOFTWARE OPTIMIZATIONS ...ttt sttt nneenne e 83
TN A I oSy (= (== Vg 1o SRS 83
8.2 OVEITIOW bbb bbbt bbbt bt bt e e et e bbbttt b e 85
6.2.1 Saturation instead Of WIaPPINGccvoiuiiieiieie et reeneens 85
6.2.2 CHPPEU RELU ... bbb bbbt b et b bttt 86
6.2.3 Clipped RELU and DynamicC fiXed POINTccoiiiiiiiiiieieresese et 87

5.3 SUIMIMIAITY ...ttt ittt e sttt ettt ettt et e ek e e b e e ettt e esb e e e st e o8 bt e ek bt e 4 ket e oAkt e oAbt e e e R ke e oo Rt e e n bt e e e Rt e e e Rt e e e bt e e e b e e e e nne e e enes 88
CRAPLEr 7. RESULTS ... ettt bbb bbbt bbbt e st et e bt e bbbttt e e e e e e 89
7.1 SIMUIALION RESUILS. ...ttt 89
7.2 TIMING RESUILS ...ttt et bbbttt et et bbbt bt 91
7.3 POWET RESUITS ...ttt bbbt bbbt b bbb et nn e 92
7.3.1 Methods to reduce POWEr CONSUMPLION........ccuiiiiiieie ettt sre e ae e sre e e 93
7.3.2 POWET TEPOIT SUMIMIAIY ...ttt ettt ettt ettt b bbb e et be e bt et e b e b e et e e b e e e e 93

T4 OFNEI WOTKS ...ttt bbb bbbt bbbt et b bbbt b e e sttt nn et 94
7.5 SUMIMAIY ...ttt bbbt s b bt R e b bRt ARt e bt e s e b e et e b e b e et e be e b e e e n e nbe e e e 96
Chapter 8. FUTURE WORKooiiiiiiiete ettt sttt s et e ettt beebeene e e eneeneas 97
B L WEIGNT CACNE ...t bbbttt ettt bbbt 97
8.2 DALA CACNE ... bRt b bbbt 98
8.3 Pipelining ConV 1 and FIre TaYEISccui ittt e e e nbeesree s 98
8.4 Pipelining Fire 9 and CONV 10cooiiiiiiiiieieie ettt bbbt 98
8.5 FIFO POOIING FEABSIGN ...ttt ettt e et e e bt e e s e e st e e sbe e saeeesbeeeteeenbeesreaebeeaneeas 99

R (=] Lo T O TSROV 100

TABLE OF FIGURES

1o 0T N I LN Y £ O 1N N SRS 2
Figure 2: CONVOIULION OPEIALIONcueitiiiiitiitietie ettt ettt b e bt e e e e 3
(o U A oo T aTo P OSSPSR 4
Figure 3: Binary step activation FUNCLION............ooiuiiiiiice et raesae e 5
Figure 4: Linear ACHVALION TUNCLIONcuiiiiiece ettt et e e steene e raene e 6
Figure 5: Derivative Of SIgMOIA TUNCHION.oiiiiiiiiiiee bbbt 7
FIQure 6: SIGMOIA TUNCLION ...ttt nb bbbt e e nnas 7
Figure 7: Derivative Of Tanh fUNCHION ...ttt 8
Figure 8: Tanh function 8

Figure 9: Derivative of RELU TUNCLION ot 9
Figure 10: RELU function 9

Figure 11: AIEXNEL AFCNITECIUIEeiiiieieciecee ettt et e e st e et e e st e sreesteeseeaseesaeeneesreas 10
FIgUre 12: VGG-NEL ATCNITECIUIEovi ettt ettt e et ste et e e st e s reenneeneeareesbeeneenreas 11
Figure 13: G0O0GIE-NEt ATCHITECTUIE ..ottt 12
Figure 14: INCEPLION MOUUIEouiiieieiee bbbttt b ettt nb et et nns 13
Figure 15: RES-NEt AFCNITECIUIEcvi et e et e e e sreeste e e e s reesteeneenreas 14
Figure 16: Increasing network depth leads to Worse performanceccccveveiieieciciecse e 14
FIQUre 17: RESIAUAI DIOCKeoiiiiieeee bbb bbbttt 15
FIQUIE 18: FIre MOQUI.......oiiiiee bbbttt ettt bbbt b e e 17
Figure 19: An example shows the effect of the bottleneck layer on the computation costccccoevveienen. 18
Figure 20: Squeeze-Net (Left), Squeeze-Net with simple bypass (Middle), Squeeze-Net with complex bypass
.. 18
Figure 21: Simple Squeeze-Net arChitECIUIEcviiie e 19
Figure 22: Comparing Squeeze-Net to model compression appProachesccccveveieereeieseese e e e 20
Figure 23: Different Hyperparameter Values for SQUEEZE-NELccoveieiieiiiie e 20
Figure 24: Squeeze-Net accuracy and model size using different microarchitecture configurations................ 21
Figure 25: Fixed point NUMDBEr rePreSENTATIONoiiiiirieiti ittt 22
Figure 26: Inter OULPUL ParalleliSmovieiice e 23
Figure 27: Inter Kernel ParalleliSM..........c.ooiiiiii e 24
Figure 28: Intra Kernel ParalleliSm..........cooiiiiiiiiee bbb 24
Figure 30: Overview of Pipelined ArChITECIUIEc..oiviiiii e 29
Figure 31: Control unit of pipelined arChiteCtUIeccuviiiiiii e 30
Figure 32: K block in control unit of pipelined architeCture ... 30
Figure 33: Overview of Time-Shared arChiteCIUIEooiiiiiiiieeeee e 32

\

Figure 34: Ordering of Parameters 0f SQUEEZE TAYETooiiiiiiiieee e 33

Figure 35: Ordering of weights of EXPaNd JQYErcc.oiiiiie e 34
Figure 36: Input parameters 0f EXPANd LAYETccvoiiiiiiiie ettt ae e nneas 34
Figure 37: AJder tre€ arChItECIUIEco.iiiii it e bbbt 36
Figure 38: pipelined Adder tree arChitECIUIEooviiiiiiii e 36
Figure 39: Data distribution in Time-shared architeCture............ccoov e 37
Figure 40: Dual port RAM 08 EXPANG LAYELScouviiiiieiecie ettt ste et sne e e na e e eneenneas 38
FIgure 41: PING-PONG MEMOIYoiuiitiitiitiiiieieeieteste sttt bbbkttt e bbbt b et ne e e e 39
Figure 43: SQUEEZENET ATCNITECIUIEoiuiiiiieieie ettt bbbt n e 41
Lo U A 6L] NN LY A B - Vo -SSR SSSRSSI 42
Figure 45-a: FIFO buffer iNFIrSt CYCIE ...ovvoee e 43
Figure 45-b: FIFO DUffer in SECONG CYCIE.........oiiiieieee e 43
Figure 45-c: FIFO buffer in third CYCIEoo o 44
Figure 45-d: FIFO buffer after 2% W3 CYCIESccuvi it 44
Figure 45-e: FIFO buffer after 2XW+4 CYCIESccuvieicee ettt ae e 44
Figure 46: Parallelism of Convolutional layer in CONV_1 StAgEcoceiveriririiriiiieeeie e 44
Figure 47: Convolution of the window of IFM with filter of depth =3 ..., 46
Figure 48: Convolution operation of the first filter with a window of IPMcccooiiiiiiici e, 47
Figure 48: Stride 2 of Convolution layer | CONV _1 stage with zero-paddingccccoevveveiveveiiciiececien, 48
Figure 49: The window of even count propagates (Green), while the odd one is ignored (Red)...........c.c........ 48
Figure 50: The FIFO buffer sets before POOIING [aYET ..o 50
FIgUre 51: The POOKNG TAYEEoeeiiieeee ettt e st e e a e sre e ste e e e e reesteennenreas 51
Figure 52: FIow Chart 0f POOIING TQYETccuiiieiiee et re e sneas 52
Figure 53: Toggle of Ping-Pong Memory across NEIWOIKcceuiiiriiiienesiesie e 53
Figure 54: Input and OUtPUL OF SQUEEZE AYETc.eoiiieieiiie e 54
Figure 55: Convolution operation in SQUEEZE TAYENceccuiiieieece et 56
Figure 56: FIFO buffer between Squeeze layer and EXpand [ayer...........cccooeiieiieieieeie e 56
Figure 57: Input and Output Of EXPANT TAYETc.oiiiiiieiii e 58
Figure 58: Convolution operation in EXpand_3X3 MOTUIE..........c.couiiiiiiiiiie i, 59
Figure 59: Convolution operation in Expand_1X1 MOAUIE.........cccoiiiiiiiiiieiie e 60
Figure 60: Zero-Padding is done in FIFO buffer between Squeeze and Expand_3X3ccccoceviievieiiecnnnnnn, 60
Figure 61: CONV_3X3 MOUUIEcviieeiiieiee et bbbttt bbb bt n e 62
Figure 62: CONV_10 MOAUIEcuiiiieiiiie bbbttt b e bbbttt 63
Figure 63: Average-Pooling accumulator for 10 channels ..., 64
Figure 64: Flow chart of NON-restoring diVISIONccciiiiiiiiiie et 65
Figure 65: TOP_IMODULE GESIGNc..iitiitiitiiiietieieiesie sttt sb bbbttt sttt ene e e 67

Vil

Figure 66: Controol_TOp_MODULE dESIGN........ciiiiiiiiiiiii it 67

Figure 67: Master_Control_MODULE deSIGNccviiiiiiiiie et ae e nneas 68
Figure 68: Fire_Master_Control MOdule GESIN.........eciiiieiieie et ae e sreas 71
Figure 69: Structure 0f BRAM MOAUIEooiiiiii e 72
Figure 70: Structure 0f DSP MOUUIE............coiiiii e 73
Figure 71: Non-pipelined/Pipelined [0giC UNITS...........cciiiiiiiic e sneas 74
Figure 72: BiNary/HOt ENCOUING........ciiiieiieie ittt et te e teeteaneesseesseaneeaseeteaneenreas 75
Figure 73: MUX primitive along WIth LUTS........cviiiiiii e 75
FIQUIe74: PlacemeNt QIMECTIVES........cuiiiieiiieie ettt ettt b et 79
Figure 75: Timing analysis using VIVADO TCL COMMANGScccoeiiieiiaieiiesieeeeseesie e e sie e seesse e snees 80
Figure 76: FIoOr planning fOr deSIgNcoveiiiieie ettt e sre e re e te e sreas 81
Figure 77: Placement before floor planning ..o 81
Figure 78: Placement after FIOOr PIANNINGoviiiiiiiiii e 82
Figure 78: 10 Randomly Selected Images from 10 CIASSEScvcvuveieiieieeie et 84
Figure 79: Accuracy after 4 iterations each 0f 64 €POCNS...........ccoii i 85
Figure 80: Saturation VS WIaPPINGccuoouiriiiieiiiieieie sttt sttt sttt b e bbbt ab et e e nn e 86
Figure 29: Clipped relu VS NOIMal REIU........coiiiiiiieee e 86
Figure 82: Valdiation accuracy for different limits on relu function. moving average was applied to data.87
Figure 83-a: values of 10 classes from RTL mModel iN NeX.........ccooviiiiiiiiic e 89
Figure 83-b: values of 10 classes from MATLAB MOGElccoooiiiiiiiiiieee e, 89
Figure 83-c: Values of 10 classes from RTL model in decimal ..., 90
Figure 83-d: Values from MATLAB MOEL............coi ot 90
Figure 84-a: Class identification from MATLAB MOUEIc.coviiiiiiiice et 91
Figure 84-b: Class identification from RTL MOelccooiiiiiiiiiii e 91
Figure 85: Overlapping between different layers in Fire module............ccoocoiiiiiiiiiiiicie e, 92
Figure 86: Power report summary from VIVADO t00]..........cccoiiiiiiiicice e 93
Figure 87: The power consumed by each module from VIVADO toolccccooveieiiciiiicec e 94
Figure 87: CaChe TOr WRIGNTS ..o bbbttt 97
Figure 88: Non-overlapping/ Overlapping between Conv-1 and FIre2ccccoveviiieieiene i, 98

VIl

TABLES

Table 1: Comparison between different architeCtUIEScccveiiiieiiie i 15
Table 2: Sizes of IMF and OFM of each Fire stage in SqueezeNet and the estimated number of required clock
(03 Y/0] 5 TSSOSO 35
Table 3: Utilization of LUTS, Registers and MUXS for OUr deSign..........cccoveiviieiiieiieie e 76
Table 4: Utilization of BRAMS and DSPS fOr our deSIgncccoceiieiieieiiese e 77
Table 5: Utilization of LUTs and REGs for carry save adder and dividerccooeeieninineniniieeeee 77
Table 6: 10 Classes Used to Train the Squeeze-Net MOdel.............coooiiiiiiiiiiiic e 83
Table 7: Maxiumum limit fOr €aCh TAYENociiie e nae e 87
Table 8: Time for each layer in SQUEEZENEL...........covi it re e 91
Table 9: Comparison with different implementations for CNNS 0N FPGAccoiiiiiiiiiniieeee 95
Table 10: Comparison with implementation on GPU GeForce RTX 2080 Tlccccovveviiiienenienie e 96

ABSTRACT

The Convolutional Neural Network gains an increasing importance nowadays because it
enables machines to interact with surrounding environment and paving the way to computer
vision applications to detect, classify and take decisions based on this data in all aspects of
life. it is noted that GPUs have high power consumption and relatively large area making
them unable to fit in mobile devices. On the other hand, FPGA implementations of CNN
architectures have higher speed compared to GPUs and CPUs due to the parallel nature of
FPGASs which can be used in real time applications. The purpose of this project is to
implement Squeeze-Net CNN architecture on FPGA and achieving a very high speed with
acceptable accuracy to contribute in nowadays trends towards machine learning applications

in Automotive, security and others fields.

Chapter 1
Introduction

CHAPTER 1. INTRODUCTION

1.1 MOTIVATION

Artificial Intelligence has been witnessing a monumental growth in bridging the gap between the
capabilities of humans and machines. Researchers and enthusiasts alike, work on numerous aspects of the
field to make amazing things happen. One of many such areas is the domain of Computer Vision. The agenda
for this field is to enable machines to view the world as humans do, perceive it in a similar manner and even
use the knowledge for a multitude of tasks such as Image & Video recognition, Image Analysis &
Classification, Media Recreation, Recommendation Systems, Natural Language Processing, etc. The
advancements in Computer Vision with Deep Learning have been constructed and perfected with time,
primarily over one particular algorithm — a Convolutional Neural Network.

A Convolutional Neural Network (Conv-Net/CNN) is a Deep Learning algorithm which can take in
an input image, assign importance (learnable weights and biases) to various aspects/objects in the image and
be able to differentiate one from the other. The pre-processing required in a Conv-Net is much lower as
compared to other classification algorithms. While in primitive methods filters are hand-engineered, with
enough training, Conv-Nets have the ability to learn these filters/characteristics.

The major difference between a traditional Artificial Neural Network (ANN) and CNN is that only the last
layer of a CNN is fully connected whereas in ANN, each neuron is connected to every other neuron as shown
in figure.1. ANNSs are not suitable for images because these networks lead to over-fitting easily due to the size
of the images. Consider an image of size [32x32x3]. If this image is to be passed into an ANN, it must be
flattened into a vector of 32x32x3 = 3072 rows. Thus, the ANN must have 3072 weights in its first layer to
receive this input vector. For larger images, say [300x300x3], it results in a complex vector (270,000
weights), which requires a more powerful processor to process.

Chapter 1
Introduction

Artificial Neural Network (ANN)

Hidden
Input
Output

Convolutional Neural Network (CNN)

Convoluton Pooling Convolution Pooling Fully Fully Output Predictions
Connect

.

| e e gt

= = | — —

FIGURE 1: ANNS VS CNNS

CNNs consist of a stack of layers that takes in an input image, perform a mathematical operation (non-
linear activation function such as RELU, tanh) and predicts the class or label probabilities at the output.
Instead of using standard handcrafted feature extraction methods, CNNs takes in the raw pixel intensity of the
input image as a flattened vector. For example, a [30x30] color image will be passed as a 3- dimensional
matrix to the input layer of CNN. CNN automatically learns complex features present in the image using the
different layers which has “learnable” filters and combines the results of these filters to predict the class or
label probabilities of the input image. Unlike an ANN, the neurons in a CNN layer are not connected to all
other neurons, but connected only to a small region of neurons in the previous layer. The first layer might
detect the lowest level features such as corners and edges in the image. The next subsequent layers might
detect middle level features such as shapes and textures, and finally higher-level features such as structure of
the plant or flower will be detected by higher layers in the network. This unique technique of building up
from lower level features to higher level features in an image is what makes CNNs most useful in many
applications. The next section (section 1.2) dives into convolutional neural networks and explains each layer
in detail.

1.2-LAYERS OF CONVOLUTIONAL NEURAL NETWORKS

Convolutional neural networks are constructed by stacking a number of generic network layers, which
transform the input feature maps of dimension (in * w;, * ch;,). into output feature maps of dimension
(hout * Wour * Choyt). A typical CNN path consists of two parts:

e The feature extractor which extracts features across the CNN layers which are; Convolutional (Conv),
Pooling (Pool) Rectified Linear Unit (RELU).

Chapter 1
Introduction

e The Classifier, which is implemented using fully connected layers, takes these features and decides on the
output class.

In order to understand the proposed hardware implementation, the CNN detailed layers will be discussed in
this section.

1.2.1. CONVOLUTION LAYER

The Conv layer is the main block of a CNN that does most of the computations. From [1] it works by
dividing the image into small regions (known as receptive field) and convolving them with a specific filter
(multiplying weights of the filter or kernel (weights) with corresponding receptive field elements), then
sliding these filters over the input feature maps as shown in figure 2. Each of these weight filters can be
thought of as feature identifiers.

The computation is given in (1), where M is the number of output feature maps (number of filters) of size E x
E, C is the number of channels in Input feature maps, and R x R is the size of the Filter.

OUT[m][hollwo] = b; + Xi_1 Xk, =0 Lk, =0 IN[il[ho + knllw, + ki * kernel[m][i][kn]lkw] (1)

Input Image

Many
Filters (M

Output Image

l

- E —>

Many
Output Channels (M)

FIGURE 2: CONVOLUTION OPERATION
There are 2 parameters in conv layers which are listed below:

1. Filters:

Chapter 1
Introduction

The Conv layer’s parameters consist of a set of learnable filters which work as feature detector (edges, simple
colors, and curves).

2. Stride:

Stride is the number of pixels by which the filter matrix slides over the input matrix.

1.2.2. POOLING LAYER

The Pool layers (also called sub-sampling) do dimensionality reduction on each feature map, but keep
the most important information. The depth of output feature maps is identical to that of input feature maps,
while the size of each feature map scales down according to the size of the sub-sampling window (called also
kernel) as shown in figure 3. By subsampling with some simple function; for example, average or maximum.
Max-pooling being the most popular because the rate of change in the maximum value is very small
compared to the rate of change of the average value of any receptive field (the window of the input feature
map at which pooling is applied). Authors of [1] said that the use of pooling operation helps to extract a
combination of features, which are invariant to translational shifts and small distortions. Also, pooling may
reduce overfitting to training data.

224x224x64 : :
119%112%64 Single depth'sllce
| pod 4 A 2| 4
- [m & max pool with 2x2 filters |
7" 516|7 |8 and stride 2 6 8
1 | 3 | 2 D 4
1| 2 Boils
224 downsampling’ L ‘ g :
112
224 y

FIGURE 1: POOLING LAYER

1.2.3. ACTIVATION LAYER

Activation functions are mathematical equations that determine the output of a neural network. The
function is attached to each neuron in the network, and determines whether it should be activated (“fired”) or
not, based on whether each neuron’s input is relevant for the model’s prediction. It’s important that activation
functions be computationally efficient because they are calculated several times (thousands or even millions)
for each data sample.

Chapter 1
Introduction

1.2.3.1. BINARY STEP FUNCTION

The binary step function outputs one if the input is positive and zero otherwise. Step function cannot
support classifying the inputs into one of several categories. As they produce don’t support multi-value
output.

T - W—

FIGURE 2: BINARY STEP ACTIVATION FUNCTION

1.2.3.2. LINEAR ACTIVATION FUNCTIONS

It takes the inputs, multiplied by the weights for each neuron, and creates an output signal proportional
to the input as shown in figure 5. In one sense, a linear function is better than a step function because it allows
multiple outputs, not just yes and no.

Chapter 1
Introduction

FIGURE 3: LINEAR ACTIVATION FUNCTION

However, a linear activation function has two major problems:

1. Not possible to use backpropagation (gradient descent) to train the model since the derivative of the
function is a constant, and has no relation to the input, X.

2. A linear activation function makes the neural network unable to fit non-linear data. They turn the neural
network into just one layer; the last layer will be a linear function of the first layer (because a linear
combination of linear functions is still a linear function).

1.2.3.3. NONLINEAR ACTIVATION FUNCTION
Networks use a non-linear activation functions which help them fit non-linear data such as images,
video, audio, etc.

https://missinglink.ai/guides/neural-network-concepts/backpropagation-neural-networks-process-examples-code-minus-math/

Chapter 1
Introduction

FIGURE 4: DERIVATIVE OF SIGMOID FUNCTION FIGURE 5: SIGMOID FUNCTION

Non-linear functions fix the problems of a linear activation function:

1. They have a derivative function which is related to the inputs and so allow backpropagation.
2. They allow stacking of multiple layers of neurons to create a deep neural network. Deep neural
network with multiple hidden layers are needed to learn complex data with high levels of accuracy.

According to [2], there 7 types of Nonlinear Activation functions and here are the most popular nonlinear
activation functions:

1. SIGMOID /LOGISTICS FUNCTIONS
Advantages

e Smooth gradient, preventing “jumps” in output values.

e Output values between 0 and 1, normalizing the output of each neuron.

e Clear predictions—for X above 2 or below -2, tends to bring the Y value (the prediction) to the edge
of the curve, very close to 1 or 0.

Disadvantages

e Vanishing gradient: For very high or very low input values, the derivative is almost zero, this can
result in the network refusing to learn, or being too slow to reach an accurate prediction.

e Qutputs not zero centered.

e Computationally expensive due to the exponential function.

2. TANH /HYPERBOLIC TANGENT

Chapter 1
Introduction

Advantages

e Zero centered: which make it easier to model inputs that have negative, neutral, and positive values.
e Otherwise like the sigmoid function.

Disadvantages

e Like the Sigmoid function

FIGURE 6: DERIVATIVE OF TANH FUNCTION FIGURE 7: TANH FUNCTION

3. RELU (RECTIFIED LINEAR UNIT)
The RELU is a piece-wise linear function. It outputs the same input if it’s positive and outputs zero

for negative values.

Advantages

e Computationally efficient
e No vanishing gradient problem for positive inputs

Disadvantages

e [For negative inputs the gradient becomes zero, the network cannot perform backpropagation and
cannot learn. This issue is called the dying RELU.

Chapter 1
Introduction

FIGURE 8: DERIVATIVE OF RELU FUNCTION FIGURE 9: RELU FUNCTION

RELU and its variants are preferred over others activations as it helps in overcoming the vanishing gradient
problem.

1.2.4. NORMALIZATION LAYER (BATCH NORMALIZATION)

Neural networks learn slowly if the distribution of their input’s changes over time. This issue is called
the internal covariance shift. Batch normalization addresses this issue by bringing the values to zero mean and
unit variance. It then multiplies the normalized results by a learnable parameter (new variance) and add a
learnable parameter to it (new mean) and so gives the network the ability to choose the suitable distributions.
It also smoothens the flow of gradient and acts as a regulating factor, which improves generalization of the
network without relying on dropout. [1]

Batch normalization for transformed feature map T} is shown in equation (2).

¥
o2 +2i TiK

N lk = 2

In equation (2), N represents normalized feature map, where T/ is input feature map and o depicts
variation in feature map.

1.2.5 DROP OUT LAYER

Dropout works by randomly skipping some units or connections in the network thus, introduces
regularization within network, which ultimately improves generalization. In NNs, multiple connections that
learn a non-linear relation are sometimes co-adapted, which causes overfitting.

Chapter 1
Introduction

1.2.6. FuLLY CONNECTED LAYER

Fully connected layer is mostly used at the end of the network for classification purpose. It takes
input from the previous layer and analyses output of all previous layers globally. It makes a
non-linear combination of selected features, which are used for the classification of data. Unlike
pooling and convolution, it is a global operation [1].

1.3-DIFFERENT CNN ARCHITECTURES

In recent years, the world witnessed the birth of numerous CNNs. These networks have gotten so deep
that it has become extremely difficult to visualize the entire model. We stop keeping track of them and treat
them as black box models. This section is a visualization of 4 common CNN architectures and then in next
section (section 1.4), Squeeze-Net is explained in detail. These illustrations provide a more compact view of
the entire model of each architecture.

1.3.1-ALEXNET (2012)

max-pool
3x3

max-pool max-pool
3x3 3x3

224%224%3

4096 4096 1000

FIGURE 10: ALEXNET ARCHITECTURE

Alex-Net is one of most famous CNN architecture because it was the first CNN to win the ILSVRC in
2012.AlexNet consist of 5 conv layers and 3 max-pooling layers in addition to 3 fully-connected layers in the
end of architecture as shown in figure 12. It has a huge size and 60 million parameters; Alex-Net was the first
to implement:

1. Rectified Linear Units (RELUS) as activation functions.
2. Overlapping pooling in CNNs.

10

Chapter 1
Introduction

1.3.2-VGGNET (2014)

max-pool max-pool

input 2x2 2x2

224x%224x%3

4096 4096 1000

FIGURE 11: VGG-NET ARCHITECTURE

In this architecture the designers from Visual Geometry Group (VGG) depend on the most
straightforward way to improve the accuracy of CNN is to go deeper and increase the number of layers and
parameters.as shown in figure 14, VGG-Net has 13 convolutions layers and 5 max-pooling layers followed by
3 fully-connected layers in near to output. And it depends also on RELU the same activation function of Alex-
Net. VGG-Net has 138M parameters and takes up about 500MB of storage space.it has another version

VGG-19 with a greater number of layers and higher accuracy.

11

Chapter 1
Introduction

1.3.3-GOOGLENET (INCEPTION V1)

w Stem I—»—l inception ma;;g”' I——l inception
x2

224%224%3

FIGURE 12: GOOGLE-NET ARCHITECTURE

This 22-layer architecture with 5M parameters is called the Inception-v1, shown in figure 15. The main
building block of this architecture is the “Inception modules”. Finding out how an optimal local sparse
structure in a CNN can be approximated and covered by readily available dense components is the idea of the
Inception module. It is needed to find the optimal local construction and to repeat it spatially. A layer-by layer
construction in which one should analyze the correlation statistics of the last layer and grouping them in units
with high correlation [6]. These groups form the units of the following layer and are linked to those in the
previous one. The lower layer (the ones close to the input) consists of units which corresponds to a certain
region in the input image and then grouped into filter banks. In these layers correlated units would
concentrate in local regions. This means, this would end up with a lot of groups concentrated in a single
region [6]. So, by using layers of 1x1 convolution there will be decreasing in number of patches over the
network. In order to avoid patch alignment issues, The Inception architecture has been built only by filter
sizes 1x1, 3x3 and 5x5.This means that the output of these layers is concatenated together, and form the input
of the next stages. As pooling layers have been important for CNNs, the authors suggest that adding an
alternative parallel pooling path in each stage will increase the accuracy (see figure 16(a)). As these
“Inception modules” are stacked on top of each other, their output correlation statistics are bound to vary: as

12

Chapter 1
Introduction

features of higher abstraction are captured by higher layers, their spatial concentration is expected to decrease
suggesting that the ratio of 3x3 and 5x5 convolutions should increase as we move to higher layers. One big
problem with the above modules, at least in this naive form,

F i
concaimns ko

e
! oo woiuoas a3 corvoksiorn: | 225 mreciuics % o g e L T T ¥
~_1_ - | [—] 2=
Powdcsabwysr | Prescas
(a) Inception module, naive version (b) Inception module with dimension reductions

FIGURE 13: INCEPTION MODULE

is when we even use a reasonable number of 5x5 convolutions with large number of filters on the top of the
network, this increases the number of the output channels from stage to another leading to a huge
computational cost in few stages. To avoid these problems a second idea has been found from the proposed
architecture by reducing the dimensions and applying dimensional projections when the computational cost
increase. 1x1 convolution is used for reductions before the 3x3 and 5x5 convolutions. Moreover, 1x1 conv
layers used for reduction, they also include rectified-linear functions, so they have been considered to have
dual purpose. The final result is depicted in figure 15(b). In general, an Inception network is a network
consisting of Inception modules stacked above each other, with stride 2 max-pooling layers to decrease the
resolution to halve of its dimension. Traditional convolution has been used in lower layers while inception
modules in higher ones for memory efficiency, this is not necessary. So, the main beneficial aspects of this
architecture are: 1) Increasing the number of units at each stage significantly without an uncontrolled blow-up
in computational complexity. 2) Dimension reduction allows for shielding the large number of input filters of
the last stage to the next layer, first reducing their dimension before convolving over them with a large patch
size. [8]

13

Chapter 1
Introduction

1.3.4 RESNET-50 (2015)

global
avg-pool

1000

input ma;x%oul |—-| cony identity conv identity I—-| conv |—-| identity |—~| conv identity |—~
224x224%3 e %2 x3 x5 x2

9

Conv block Identity block

FIGURE 14: RES-NET ARCHITECTURE

Researches from Microsoft introduced another CNN architecture called ResNet-50 with 26 million
parameters. As shown in figure 16, Res-Net has 2 basics blocks, the conv and identity blocks. It uses batch
normalization and a new concept called skip connections to overcome on some problems happens when
stacking layers. The most straightforward way to increase the performance is by going deeper and increase the
number of layers. While Alex-Net had only 5 convolutional layers, the VGG network and Google-Net had 19
and 22 layers respectively. But in some point, accuracy saturates and might then degrade rapidly that happens
because of that; The CNN gets more difficult to train because of notorious vanishing gradient problem. Deep
networks are hard to train because of the as the gradient is back-propagated to earlier layers, repeated

multiplication may make the gradient infinitively small [9] as shown in Figure 17. So, finding another way to
achieve better performance is necessary.

‘/\,\ﬁ

20-layer

test error (%)

56-laver

training error (%)

20-layer

5] I 3 5 i
iter. (1e4) iter. (1ed)

FIGURE 15: INCREASING NETWORK DEPTH LEADS TO WORSE PERFORMANCE

14

Chapter 1
Introduction

The main idea of Res-Net is introducing a called “identity shortcut connection” (sometimes called skip or
residual connection) that feeds the next layer and the other that 2-3 layers away, as shown in Figure 18. This
method helps to skip the layers that contributed in degradation and save the accuracy [9].

| weight layer

lrelu

| weight layer

F(x)

identity

F(x) +x

FIGURE 16: RESIDUAL BLOCK

e Convent estimates for single element batch for memory consumption and FLOP

counts for all CNNs [4]

Table 1: Comparison between different architectures

CNN . Parameters Features
Input size Flops Performance

Arch. memory memory
Alex-Net 224x224 233 MB 3 MB 727 MFLOPs 41.80/19.20
VGG-Net 224x224 528 MB 58 MB 16 GFLOPs 28.50/9.90
Google-Net 224x224 51 MB 26 MB 2 GFLOPs 34.20/12.90
Res-Net 224x224 98 MB 103 MB 4 GFLOPs 24.60/7.70
Squeeze-Net 224x224 5MB 30 MB 837 MFLOPs 41.90/19.58

15

Chapter 1
Introduction

1.4-SQUEEZE-NET

Recent researches on deep learning are focused primarily to achieve high level accuracy, smaller CNN
architectures offer at least three advantages while maintaining the same accuracy or higher:

l. Require less communication during the training process.
Il. Achieve low size model, Therefore, easily to export from cloud to a lot of applications
M. More feasible to deploy on FPGAs and other hardware with limited memory. To provide all of these
advantages, we propose a small CNN architecture called Squeeze-Net.

Squeeze-Net achieves Alex-Net-level accuracy on ImageNet with 50x fewer parameters. Additionally, with
model compression techniques, we are able to compress Squeeze-Net to less than 0.5MB (510x% smaller than
Alex-Net), it designed with three main strategies:

l. Replace 3x3 filters with 1x1 filters so the weight parameters are decreased nine times
Il. Decreasing the number of input channels which is entered to 3*3 filters in expand layer to still
maintain small number of parameters as it equal (number of input channels) * (number of filters) *
(3*3) which is the objective of squeeze layer
M. Down sampling late in the network so that convolution layers have large activation maps, which can
lead to higher classification accuracy

Strategies 1 and 2 are about decreasing the number of parameters in a CNN while attempting to preserve
accuracy; Strategy 3 is about maximizing accuracy on a limited budget of parameters [12].

16

Chapter 1
Introduction

1.4.1 FIRE MODULES

3x3 Conv

FIGURE 17: FIRE MODULE

A Fire module is the building block of Squeeze-Net, it contains squeeze convolution layer (which has
only 1x1 filters), feeding into an expand layer which has a mix of 1x1 and 3x3 convolution filters, the
objective of use of 1x1 filters in Fire modules is an application of Strategy 1 from Section 1.4. There are three
tunable dimensions (hyperparameters) in a Fire module: s1x1, elx1, and e3x3. In a Fire module, s1x1 is the
number of filters in the squeeze layer (all 1x1), elx1 is the number of 1x1 filters in the expand layer, and
e3x3 is the number of 3x3 filters in the expand layer. When we use Fire modules, we set s1x1 to be less than
(e1x1 + e3x3), so the squeeze layer helps to limit the number of input channels to the 3x3 filters, as per
Strategy 2.

Bottleneck layers are used in fire module, the main idea is to reduce the size of the input tensor in a
convolutional layer with kernels bigger than 1x1 by reducing the number of input channels. This technique
helps in keeping the number of parameters, and thus the computational cost low, as shown in the example in
figure 20.

17

Chapter 1
Introduction

bottleneck layer

»

- -
CONV CONV
1> 1 5 =5
i6 3

2
131 > 192 28 x 28 =16 Ex5 =X 16 28 =< 28 = 32

28 =< 28 =< 192

28 < 28 = 16 > 192 = 2,1M 28 = 28 = 32 =5 >x5>16 = 10,0AM

12,407

-
120AF

FIGURE 18: AN EXAMPLE SHOWS THE EFFECT OF THE BOTTLENECK LAYER ON THE COMPUTATION COST

1.4.2-SQUEEZE-NET ARCHITECTURE

96
maxpool/2
96

| 128

128

256
maxpool/2

512
maxpool/2

512

1000
global avgpool

"labradoxr global svgpool global avgpool
retriever i

dog"

FIGURE 19: SQUEEZE-NET (LEFT), SQUEEZE-NET WITH SIMPLE BYPASS (MIDDLE), SQUEEZE-NET WITH COMPLEX
BYPASS

Chapter 1

Introduction
Aer skoe / s e #parameter |#parameter
I'I!l'::::'llﬂ output size (if r::::aﬁra depth “,1;'11 ['1;11 ;3;:3 S1x1 e1x1 €3x3 | ¥ bits be:ﬁure afhe_r
layer) squeeze) | expand) | expand) | P2V | SPATSITY | sparsity pruning | pruning
input image 224x224x3
convl 111x111x96 | Fx7/2 (w96) 1 100% (Tx7) ehit 14,208 14,208
maxpooll S5uS5NO6 In3/S 2 0
fire2 55x55x128 2 16 64 64 100% 100% 33% Bbit 11,920 5,746
fire3 55x55x128 2 16 64 B4 100% 100% 33% Bbit 12,432 6,258
fired S55x55x256 2 32 128 128 100% 100% 33% ehit 45,344 20,646
maxpoold 2TH2Tx256 In3S2 (]
fire5 2Tx2T7x256 2 32 128 128 100% 100% 33% Bbit 49,440 24,742
fireb 2Tx2T7x384 2 48 192 192 100% 509 33% Bbit 104,880 44 700
fire? 2Tx2T=384 2 48 192 192 50% 100% 33% ehit 111,024 46,236
fire8 2TH2Tx512 2 &4 256 256 100% 50%: 33% Bhbit 188,992 77,581
maxpoolg 13x12x512 In3/S 2 (]
fire9 13x13x512 2 54 256 256 50% 100% 30%: Bbit 197,184 77,581
convld 13x13x1000 | 1x1/1 (x1000) 1 20% (3x3) Bbit 513,000 103,400
avgpool10 | 1x1x1000 13x13/1 0 | |
[il r J i § i| 1,248,424 421,098
activations parameters compression info (total) (total)

FIGURE 20: SIMPLE SQUEEZE-NET ARCHITECTURE

As shown in figure 22 & 23:

o Simple Squeeze-Net: begins with a standalone convolution layer (convl), followed by 8 Fire modules

(fire2—9), ending with a final conv layer (conv10).
e The number of filters per fire module is gradually increased from the beginning to the end of the network.
e Max-pooling with a stride of 2 is performed after layers convl, fire4, fire8, and conv10.

e Squeeze Net with simple bypass (Middle) and Squeeze Net with complex bypass (Right): The use of

bypass is inspired by Res-Net.

1.4.3-EVALUATION OF SQUEEZE-NET

In figure 23, Squeeze-Net has been reviewed in the context of recent model compression results.
There are ways able to compress the pertained model of Alex-Net to decrease the model size, SVD
compresses it by factor of 5x while decreasing the accuracy of top-1 to 56% (Denton et al., 2014). Network
pruning compresses it by factor of 9x while maintain the accuracy of ImageNet the same. Deep compression
compresses it by factor of 35x while maintain the accuracy the same. Now squeeze-net achieves 50x
reduction in model size while meeting top —1 accuracy and top -5 accuracy of Alex-net without any
compression techniques. Using 33% sparsity 8-bit quantization this leads to 0.66MB model (363x smaller
than 32-bit Alex-Net). Using 33% sparsity 6-bit quantization this leads 0.47MB model (510x% smaller than 32-

19

https://towardsdatascience.com/review-resnet-winner-of-ilsvrc-2015-image-classification-localization-detection-e39402bfa5d8

Chapter 1
Introduction

bit Alex-Net) with the same accuracy of Alex-Net as shown in figure 24 [12] Compression (Han et al., 2015a)
not only works well on CNN architectures with many parameters (e.g. Alex-Net and VGG), but it is also able
to compress the already compact, fully convolutional Squeeze-Net architecture. Deep Compression
compressed Squeeze-Net by 10x while preserving the baseline accuracy. In summary: by combining CNN
architectural innovation (Squeeze-Net) with state-of-the-art compression techniques (Deep Compression), we
achieved a 510x reduction in model size with no decrease in accuracy compared to the baseline. Finally, note
that Deep Compression (Han et al., 2015b) uses a codebook as part of its scheme for quantizing CNN

CNN archilecture Compression Approach Data Original —+ Reduction in Top-1 Top-5
Type Compressed Model Model Size ImageNet ImageNet
Size vs. AlexNet Accuracy Accuracy
AlexNet None (baseline) 32 hit 240MB Ix 537.2% B0.3%
AlexNet SVD (Denton et al.. 32 hit 240MB — 48MB X 56.09 79.4%
2014)
AlexNet MNetwork Pruning (Han 32 bit 240MB — 2TMB 9x 57.2% B0.3%
etal., 2015b)
AlexNet Deep 5-8 bit 240MB — 6.9MB 35x 57.2% 80.3%
Compression (Han
et al, 2015a)
SqueezeNel (ours) None 32 hit 4.58MB A% 57.5% 80.3%
SqueezeNet (ours) Deep Compression 8 bit 4.8MB — 0.66MB 363x 57.5% 80.3%
SqueezeNet (ours) Deep Compression 6 bit 48MB — 0.4TMB Sl 57.5% 80.3%

FIGURE 21: COMPARING SQUEEZE-NET TO MODEL COMPRESSION APPROACHES

Squeeze Ratio (SR) Percentage of 3x3 filters (pet,.,)

0125025 Q.5 0.75 1.0 100 1.0 12.5 25.037.5 50,0 62,5 75.0 B7.5 99.0
100 Squeez;Net H 85 3% 2610% ! rT T T &slasg |] HE
20.3% H accufacy accyracy H T63% H L acoyracy H P accuracy
80 accuracy g —————— @ — s * 80 accuracy’ _—e—& -3 @ i
l : 13MBof ~~~ 19MBof 7 o o e T 77 13 MBof 21 MB of
weeights weights 5.7 MB of | weights | weights
] o) s S S, S R i TR R H

B0 weights

B
(=]

A0 e

[
o

ImageNet-1k Top-5 accuracy (%)

ImageNet-1k Top-5 accuracy (%)

i i T S N R N I
4.8 7.6 13 19 24 57 7.4 9.3 11 13 15 17 19 21

0 i

o

MB of weights in mode| ME of weights in model
(a) Exploring the impact of the squeeze ratio (SR) (b) Exploring the impact of the ratio of 3x3 filters in
on model size and accuracy. expand layers (petara) on model size and accuracy.

FIGURE 22: DIFFERENT HYPERPARAMETER VALUES FOR SQUEEZE-NET

1.4.4-HYPERPARAMETERS

In figure 25, at the left the Squeeze ratio (SR) is the ratio between the number of filters in squeeze layers and
the number of filters in expands layers. By Increasing SR beyond 0.125 can further increase ImageNet top-5

20

Chapter 1
Introduction

accuracy from 80.3% (i.e. Alex-Net-level) with a 4.8MB model to 86.0% with a 19MB model. Accuracy
plateaus at 86.0% with SR=0.75 (a 19MB model), and setting SR=1.0 further increases model size without
improving accuracy, however, at the right the Percentage of 3x3 Filters (Right): Top-5 accuracy plateaus at
85.6% using 50% 3xa3 filters, and further increasing the percentage of 3x3 filters leads to a larger model size
but provides no improvement in accuracy on ImageNet. [12]

1.4.5-SQUEEZENET VARIANTS

As in figure 26, results of the accuracy of different architectures of squeeze-net like simple, simple bypass and
complex bypass.

Architecture Top-1 Accuracy | Top-5 Accuracy | Model Size
Vanilla SqueezeNet 57.5% 80.3% 4.8MB
SqueezeNet + Simple Bypass 60.4% 82.5% 4.8MB
SqueezeNet + Complex Bypass 58.8% 82.0% 1.7MB

FIGURE 23: SQUEEZE-NET ACCURACY AND MODEL SIZE USING DIFFERENT MICROARCHITECTURE
CONFIGURATIONS

1.5-FIXED-POINT REPRESENTATION

Because of improvement in DCNN and increasing the number of layers and parameters to achieve
better accuracy, methods to decrease computational complexity of floating-point arithmetic are highly
needed. The fixed-point number system shows the best trade-off between accuracy and computational
complexity in hardware-based applications. Fixed-point has two main advantages. firstly, the smaller
hardware implementation of fixed point-based system allows for more modules to be instantiated in same
area with same logic gates that increases the opportunities of parallelism and pipelining. Secondly, the
smaller data representation of parameters or input pixels reduces the required memory, enabling larger CNN
models to fit within the given memory capacity and reducing the power of memory-access because more data
fit within same memory bandwidth. [13]

The representation of any number in fixed point consists of two parts IL and FL as shown in figure 28,
the integer part. And fractional part respectively and another bit (S) is added to indicate the number sign.

21

https://medium.com/coinmonks/paper-review-of-alexnet-caffenet-winner-in-ilsvrc-2012-image-classification-b93598314160

Chapter 1
Introduction

WL

FIGURE 24: FIXED POINT NUMBER REPRESENTATION

The required bits of represent the result of addition of two numbers with same length WL is WL+1.and the
required bits of represent the result of multiplication of two numbers with same length WL is 2*WL+1.The
threats of using fixed-point number system such as manipulating overflow and saturation are extremely rare
and occurs when all integer and fraction are saturated to either the lower or the upper limit of IL and FL.
Results show a good performance of static fixed point for as low as 18-bit, however, when reducing the bit-
width further, the accuracy starts to drop significantly. To overcome this problem dynamic fixed-point is
used. Since the range of numbers is [—2/£~1, 2/L=1—2~FL [and resolution is 27 so increasing the FL will
cover more numbers that helps to increase the accuracy of multiplication and addition and avoid vanishing of
small parameters. Every layer has its suitable WL that may differ of next layer to reduce the loss. Ristretto is
frameworks that choose the best dynamic fixed-point WL of trained model [14]. The WL can be 32-bits, 16-
bits and 8-bits.the choose of suitable bit-width is tradeoff between memory footprint and accuracy loss.
Performing deep learning inference using the squeeze net architecture on the ImageNet dataset, with 8-bit
dynamic fixed-point weights and 8-bit dynamic fixed-point data, resulting in less than 1% degradation of
accuracy [15].

Replacing 32-bits floating point with 8-bits fixed point for a hardware implementation, this reduces the size
of multipliers by about one order of magnitude. Moreover, the required memory is reduced by 4-8X.it helps
to hold 4-8X more parameters in on-chip buffers [15].

1.6-PARALLELISM

DCNN Applications in embedded systems are required to be fast and low power. Parallelism in CNN
hardware accelerators offer opportunities to increase the throughput of operations and decrease the switching
power of memory accessing. Here different methods of parallelism are discussed.

22

Chapter 1
Introduction

1.6.1 INTER LAYER PARALLELISM

Data between the layers of CNN architecture are dependent so no layer can be executed before
another and layers can’t work in parallel. Squeeze-net has 10 fire modules; first fire module can perform its
operations and delivers the output as input to second module. Now second fire module begins its operations
without any dependency on pervious module so first fire module can process another input image without
problems. This method called pipelining and can increase the total throughput of DCNN.

1.6.2 INTER OUTPUT PARALLELISM

Every output feature map is result of convolution between the input feature map and filter. All filters
are independent and different so the output feature maps are totally independent of each other. The
convolution between the input volume and different filters can be performed in parallel without problems as
shown in figure 29. That can decrease the required cycles to access memory for different filters.

Filter 1
Input

[O o o Output
e v v e
4 9 2 |5 8 3 | | [|
D 6 2 4 0 3 4x4
2 4 5 “ 5 2
(" 6 B 4 7 8 —_
5 7 7 9 2 1 —_

| — qxX4x2
5|8 |5|3|8]|4]|- —
6x6x3
4x4 https: /findaml.com

FIGURE 25: INTER OUTPUT PARALLELISM

23

Chapter 1
Introduction

1.6.3 INTER KERNEL PARALLELISM

0o | 25 75| 80 | 80

o | 75 | 20 | 80 | 80 1| o3

o | 75 | 20 | 80 | 80 | X| 5 | o > o —a_| 75

o |[70175|s0 [so—f2lo | 2| | ©|©]|B° ;\ H
o o | o| o| o —9 1 9 | 80

FIGURE 26: INTER KERNEL PARALLELISM

The output feature map is result of swapping filter on all input feature map and performing convolution. Each
convolution is independent since input pixels are independent from each other so it is possible to compute all
of output pixels in output feature map concurrently as shown in figure 28.

1.6.4 INTRA KERNEL PARALLELISM

The convolution is set of multiplication and addition operations. Every multiplication operation
between the input pixel and corresponding parameter in filter and all of operations are independent and the
addition operation of results from multiplication to calculate the output pixel can be performed in parallel also
as shown in figure 29. Squeeze-net has 3x3 and 7x7 filters so parallelism the multiplication operations can
increase the speed by x9 and x49 respectively in these layers.

FIGURE 27: INTRA KERNEL PARALLELISM

24

Chapter 1
Introduction

The challenge against the total parallelism is the available area and resources. Parallelism requires additional
modules to perform operations. Now it is obvious the tradeoff between speed and area. Although, parallelism
can reduce the time significantly but the limited area and limited memory bandwidth must be taken in to
consideration. Choosing a combination of parallelism and pipelining techniques to meet time and area
constrains is the main challenge.

1.7 LITERATURE SURVEY

GPUs are known to do well on data parallel computation that exhibits regular parallelism and
demands high floating-point compute throughput. Across generations, GPUs offer increased FLOP/s, by
incorporating more floating-point units, on-chip RAMSs, and higher memory bandwidth. For example, the
latest Titan X Pascal offers peak 11 TFLOP/s of 32-bit floating-point throughput, a noticeable improvement
from the previous generation Titan X Maxwell that offered 7 TFLOP/s peak throughput. However, GPUs can
face challenges from issues, such as divergence, for computation that exhibits irregular parallelism. Further,
GPUs support only a fixed set of native data types. So, other custom-defined data types may not be handled
efficiently. These challenges may lead to underutilization of hardware resources and unsatisfactory achieved
performance.

Meanwhile, FPGAs have advanced significantly in recent years. There are several FPGA trends to
consider. First, there are much more on-chip RAMs on next-generation FPGAs. For example, Stratix 10 [16]
offers up to ~28 MBs worth of on-chip RAMs (M20Ks). Second, frequency can improve dramatically,
enabled by technologies such as HyperFlex. Third, there are many more hard DSPs available. Fourth, off-chip
bandwidth will also increase, with the integration of HBM memory technologies. Fifth, these next-generation
FPGAs use more advanced process technology (e.g., Stratix 10 uses 14nm Intel technology). Overall, it is
expected that Intel Stratix 10 can offer up to 9.2 TFLOP/s of 32bit floating-point performance. This brings
FPGAs closer in raw performance to state-of-the-art GPUs. Unlike GPUs, the FPGA fabric architecture was
made with extreme customizability in mind, even down to bit-levels. Hence, FPGAs have the opportunity to
do increasingly well on the next-generation DNNSs as they become more irregular and use custom data types.
[17]

The authors of paper [17] consider whether future high-performance FPGAs will outperform GPUs
for next-generation DNNs in terms of speed beside its superiority in power consumption-efficiency,
evaluating a selection of emerging DNN algorithms on two generations of Intel FPGAs (ArriaTM 10,
StratixTM 10) against the latest highest performance Titan X Pascal GPU. They study various general matrix-
matrix multiplication (GEMM) operations for next generation DNNs, and then proposed a detailed case study
on accelerating Ternary ResNet which relies on sparse GEMM on 2-bit weights (i.e., weights constrained to
0, +1, and -1) and full-precision neurons which its accuracy is within ~1% of the full precision Res-Net which

25

Chapter 1
Introduction

won the 2015 Image-Net competition. The results were very promising; Stratix 10performance is 10%, 50%
and 5.4x better in performance (TOP/sec) than Titan X Pascal GPU on GEMM operations for pruned, Int6,
and binarized DNNSs, respectively. OnTernary-ResNet, the Stratix 10 FPGA is projected to deliver 60% better
performance over Titan X Pascal GPU, while being 2.3x better in performance/watt. Results indicate that
FPGAs may become the platform of choice for accelerating DNNS.

Authors of [18] from the Institute of Semiconductors from the Chinese Academy of Sciences in
Beijing China attempted a small implementation in 2015. Their implementation ran on an Altera Arria V
FPGA board operating at 50 MHz. The input images were 32x32, used an 8-bit fixed point data format, and
used a 3 Convolution Layers with Activation, 2 Pooling Layers, and 1 Softmax Classifier. This work
implemented custom processing elements which could be reconfigured when needed. They measured their
performance based on how many images could be processed.

Authors of [19] from the School of Computing, Informatics, and Decision Systems Engineering at
Arizona State University. In 2016, one of their research groups afforded to create a scalable FPGA
implementation of a Convolutional Neural Network. This group realized that as ever newer Deep Learning
CNN configurations increase in layer count, and FPGA implementation would need to keep pace. This group
also created a CNN compiler to analyze the input CNN model’s structure and sizes, as well as the degree of
computing parallelism set by users, to generate and integrate parametrized CNN modules. This
implementation ran on a Stratix-V GXA7 FPGA operating with a clock frequency of 100MHz, uses a 16bit
fixed data format, consumes 19.5 watts of power, and achieves 114.5 GFLOPS performance. Their FPGA
resource utilization is 256 DSPS, 112K Look Up Tables, and 2,330 Block RAM. Their design employs the
use of a shared multiplier bank for use with all the multiplication operations.

One of the most limiting hardware realizations for Deep Learning techniques on FPGAs is design size.
The trade-off between design configurability and density means that FPGA circuits are often considerably
less dense than hard-ware alternatives and so implementing large neural networks has not always been
possible. However, as modern FPGAs continue to exploit smaller feature sizes to increase density and
incorporate hardened computational units along-side generic FPGA fabric, deep networks have started to be
implemented on single FPGA systems. [20]

So not only FPGAs are recommended to be used as hardware accelerators in implementing CNN but also
ASIC technologies which gives a better performance, on the other hand the FPGA based accelerators have
attracted more attention of researchers than ASIC accelerators because they have advantages of quite good
performance, fast development round and capability of reconfiguration.

Authors of [21] consider the spatial architectures used in ASIC and FPGA-based accelerators,
discussing how data-flows can increase data reuse from low cost memories in the memory hierarchy to reduce

26

Chapter 1
Introduction

energy consumption. This includes a large global buffer with a size of several hundred kilobytes that connects
to DRAM, an inter-PE network that can pass data directly between the ALUs, and a register file (RF) within
each processing element (PE) with a size of a few kilobytes or less. They investigate data-flows that exploit
three forms of input data reuse (convolutional, feature map and filter). For convolutional reuse, the same
input feature map activations and filter weights are used within a given channel, just in different combinations
for different weighted sums. For feature map reuse, multiple filters are applied to the same feature map, so the
input feature map activations are used multiple times across filters. Finally, for filter reuse, when multiple
input feature maps are processed at once (referred to as a batch), the same filter weights are used
multiple times across input features maps.

Authors of [22] studied the novel architecture for Squeeze-Net [12] like CNN models and this can be
extended to support any CNN model as well. They have addressed two approaches to mitigate resource
constraints. First, they use a custom floating point (12 bits for computation and 8bit for storing). The Second
is slicing the model into repetitive block called computation blocks. Computation block can be configured
dynamically by the host processor to operate in a different mode. They have implemented Squeeze-Net v1.1
for Image-Net for large-scale classification which achieved around 9 FPS at 100MHz. Accuracy loss due to
using custom float is measured to be less than 2%. Unlike other implementations which use FPGA boards
with a large amount of resources, their experiments are done in DE10-Nano, this mimics actual embedded
system like environment.

While authors of [24] have suggested optimizations to speed up computations in order to efficiently
use already trained neural networks on a mobile device. Specifically, they propose an approach for speeding
up neural networks by moving computation from software to hardware and by using fixed-point calculations
instead of floating-point. They propose a number of methods for neural network architecture design to
improve the performance with fixed-point calculations. They also show an example of how existing datasets
can be modified and adapted for the recognition task in hand. Finally, they present the design and the
implementation of a floating-point gate array-based device to solve the practical problem of real-time
handwritten digit classification from mobile camera video feed. The proposed design is successfully
implemented in FPGA. In this implementation, input images are processed in real time, and the original
image is displayed along with the result. Classification of one image requires about 230 thousand clock cycles
and they achieve overall processing speed with the large margin over 150 frames/sec.

Author of [25] from faculty of California State Polytechnic University, Pomona. In spring 2019, he
introduces the top-level architectural FPGA implementation involving multiple sub designs communicating
on an AXI bus through different sections in [25]. He also discusses how each layer of the convolutional
network was accelerated by hardware and software techniques like parallelism in different layers. Alex-Net
was implemented on Artix7 XC7A200T, with only 10 classes, not all the 1000 class as the software model,

27

Chapter 1
Introduction

with validation accuracy 0. The frequency is 100 MHz with power equals 1.5 W and latency equals 4062 ms.
We compare our work with this work, will be stated in section 7.4.

1.8 SUMMARY

In this chapter a background about convolution neural networks, different architectures, detailed
discussion about Squeeze-Net and useful terms such as parallelism and fixed-point representation were
presented in addition to literature survey. In next chapter a comparison between 2 different approaches for
purposed architecture are discussed.

28

Chapter 2
Architecture

CHAPTER 2. ARCHITECTURE

In this chapter it’s presented two different architectures for implementing the CNN (Squeeze-Net) on”
Virtex7 FPGA”. The first one “Pipelined architecture” that targets high speed implementation of Squeeze-Net
by pipelining all the fire modules together and deploying the whole architecture but due to limited resources
of the FPGA the number of filters and channels processed at a time per fire module will be small which will
not help in achieving the target. The second one “Time-shared architecture” is designinng a very fast 1 block

using available FPGA’s resources and reuse the block in different fire modules.

2.1 THE PIPELINED ARCHITECTURE

Input ima; F= === === -
N Fire2
4 |
| C
. A
Conyl = Pooling _..4: sqweme] |
H
: E
I
L - - - - - = = = =
P = = == - = - F g ————— - = -
I Fire9, 1 E Fire4,
' C 1| e C I
lobal : A ! rLJ A
G o= Convl(cl- 5‘1::?2 I — 1 p Siq.::u L
Avg L_J ' H ! ll_ﬁ H I
| L Bowa | | B | 1L c|o Fpend I
| | I E [
e et i - - - - - - - 4 —_—— e e, _— e _- - - 4

FIGURE 30: OVERVIEW OF PIPELINED ARCHITECTURE

The design metholodgy of this architcture is designing fast CNN by implementing all the 9 fire modules of
SqueezeNet on FPGA as shown in figure 30. In each fire module the units needed are:

« Conv 1x1 for squeeze.

« Conv 1x1 for expand.

29

Chapter 2
Architecture

» Conv 3x3 for expand.

To build this pipliened architecture, in each of the eight fire modules, from fire 1 to fire 9, three “Conv
units”,discussed later. Three “Maxpooling” in the whole architecture and one “Conv unit’’ for the first
convolution layer (Conv1) and last convolution layer (Conv10) are needed.

2.1.1 CoNVv UNIT:

. . e y T - Pixel(i) in
—»leléft‘:nndo‘ﬁ—L Kj J—éurg—» channel(j)
depth x —— R window—{ K1 —Gum— 50
| L prmaes G gm0
1 - .
i Y Y Y

FIGURE 31: CONTROL UNIT OF PIPELINED ARCHITECTURE

weights
Input

activgdtions

FIGURE 32: K BLOCK IN CONTROL UNIT OF PIPELINED ARCHITECTURE

The Conv Unit, as shown in figure 31, consists of one main block which is K-block (shown in figure
32). Let’s discuss how The Conv Unit works, Firstly the shift window is a convolution shift window that

30

Chapter 2
Architecture

holds a 3 x 3 convolution matrix. K-block describes the Conv Unit, and the weights of the filters saved in this
block. The activation inputs (convolution data) received from the shift window after that the convolution
operation starts immediately. When this operation has been finished the K-block sends a request to shift the
window at this time the Sum will get the result after the accumulation of all depths and bias. The result will
be stored in the buffer, and after the memory finishes this reading state, the cache writes the new result back
into memory. As discussed in 2.2.1, each fire module needs 3 Conv Units (Expand3x3, Expandlxland
Squeezelx1). As shown in figure 2, X and Y are design parameters. X is the number of channels which is
taken from the IFM (Input Feature Map) as well as from each filter (the depth of the Conv layer). Y is the
number of filters processed at a time in each Conv unit. If there is ” n” multiplies of the “X” channels and
“m” multiplies of “Y” filters , n times of iterations across the depth to complete one pixel of the OFM (output
feature map), by summation the output by SUM block in figure 2 ,and also m times for all filters to complete
the depth of OFM. K-block could be pipelined in 3 stages download data, multiply, add. But there will be
bubble in Expand 3x3 across the time because every add stage waits the result of the previous one. When a
3x3 window of complete pixels in OFM completed, it can go throw the network and processed by the next

layers of the fire modules.

In Expand 1x1 and Squeezelxl, no adder as 3x3 window of pixels (from O1 to O9) will be generated at a
time (no bubbles) but in Expand3x3, 1 pixel will be generated at a time.

To calculate the resources, first assumption for X, Y parameters to be 16, 16 respectively to fasten the

convolution operation since 16 is the greatest common divisor for the number of filters in different layers ,
the number of DSPs required for the 8 fire modules in Squeeze Net = 16x16x9x8x3 = 55,296 DSPs.

This number of DSPs is too large to be implemented on” FPGA Virtex Ultra Scale”, the used FPGA Kkit,
which contain 2800 DSPs only. We can decrease the number of “X” and “Y” according to the available
resources but this will decrease the speed. Therefore, it’s a tradeoft.

31

Chapter 2
Architecture

2.2 THE TIME-SHARED ARCHITECTURE

Expand3 N
Squeeze ey Expand
Weights - 3
F PI
NG
Squeeze I
q;lxl > F - > & =P Classifier
0 PO
Expand — + F NG
gt 1 ,
— N = ; & Pooling
Weights 0
= Convl 4 Inputimage

FIGURE 33: OVERVIEW OF TIME-SHARED ARCHITECTURE

The design metholodgy of this architure is designneing a very fast 1 block using available FPGA’s
resources and reuse the block in different fire modules.The block as shown in figure 33, contains a specific
blocks for squeeze layer, expand 1x1 layer and expand 3x3 layer. every block of them is running for specific
number of clock cycles depends on the fire module that execautes in this stage. The output of squeeze layer is
stored in FIFO before loading as input to Expand layers. The output of expand layers is stored in Data
memory and goes to squeeze layer again as input for next stage.

It’s useful to remebr that squeeze layers always have a high number of IFM channels (64, 128, 256, 384, 512)
and low number of filters(16,32,48,64). On other hand, the expand layer have a low number of input channels
but with a high number of filters therefore choosing different method to parallism in each of them is needed.

2.2.1 SQUEEZE LAYER

Squeeze layer as shown in figure 34, the block is a 2D matrix array of DSPs. Filters in this layer is
only 1x1 filters and the parallism methods were chosen in this layer is Inter output parallelism through

32

Chapter 2
Architecture

channels and filters. In every clock cycle, the block performs operations on a 16 IFM channels with 8
different filters. therefore the latency to claculate the output of 1 pixel in OFM is equal.

#of filters , #of Channels
8 16 '

Latency for 1 pixel =

The total number of DSPs in this layer is 128 DSP.

Chle Ch3 Ch2 Chl
Riltert| ~ -~ T TTTT===~F Eilter1| |Filterl| |Filterl
Chle Ch3 Ch2 Chl
Filter2| —~ ~ ~ ~ ~ ~ ~ -~ -~ T-T-T-T=©=°~° Filter2| |Filter2| |Filter2

I [I I

I [I I

| [I |

| [I |

I [I I

I [I I

| [I |

| [I |

I [I I
Chle Ch3 Ch2 Chl
Filter§ | = - -~~~ —~—~~—=—=====—=—-+ Filter8 Filter8 Filter8

FIGURE 34: ORDERING OF PARAMETERS OF SQUEEZE LAYER

2.2.2 EXPAND LAYER

Expand layer as shown in figure 35, the block is a 2D matrix array of DSPs. Filters in this layer is mix
between 1x1 and 3x3 filters and the parallism methods were chosen in this layer are Inter output parallelism
through channels and filters and Intra kernel parallelism in Expand 3x3 block. In every clock cycle, the block
performs operations on a 16 IFM channels with size 3x3 as shown in figure 36, with 16 different filters and in
Exapand 3x3 all 9 multiplications are done in parallel. therefore the latency to claculate the output of 1 pixel
in OFM for every block is.

#of filters , #of Channels
16 8

Latency for 1 pixel =

The total number of DSPs in this layer is 16*8+16*8*9=1280 DSPs.

33

Chapter 2
Architecture

Chs
Filterl

Chs

Filter2

Ch8

Filterl6

Ch3 Ch2 Chl
Filter1 Filter1 Filterl
Ch3 Ch2 Chl
Filter2 Filter2 Filter2
1 | 1
| | |
1 | 1
1 | 1
| | |
1 | 1
1 | 1
| | |
1 | 1
Ch3 Ch2 Chl
Filterl6| [Filterld| [Filterlé

FIGURE 35: ORDERING OF WEIGHTS OF EXPAND LAYER

Pixell Pixel2 Pixel3
Chl Chl Chl
Filterl Filterl Filterl
Pixel4 Pixel5 Pixelé6
Chl Chl Chl
Filterl Filterl Filterl
Pixel7 Pixel8 Pixel9
Chl Chl Chl
Filterl Filterl Filterl

FIGURE 36: INPUT PARAMETERS OF EXPAND LAYER

34

Chapter 2
Architecture

Table 2: Sizes of IMF and OFM of each Fire stage in SqueezeNet and the estimated number of required clock cycles

Module Num Layer input Output clk cycles

Squeeze 56x56x64 56x56x16 6272
Fire2

Expand 56x56x16 56x56x128 12544

Squeeze 56x56x128 56x56x16 12544
Fire3

Expand 56x56x16 56x56x128 12544

Squeeze 28x28x128 28x28x32 6272
Fire4

Expand 28x28x32 28x28x256 12544

Squeeze 28x28x256 28x28x32 12544
Fire5

Expand 28x28x32 28x28x256 12544
Fire6 Squeeze 14x14x256 14x14x48 4704
Fire6 Expand 14x14x48 14x14x384 7056

Squeeze 14x14x384 14x14x48 7056
Fire7

Expand 14x14x48 14x14x384 7056

Squeeze 14x14x384 14x14x64 9408
Fire8

Expand 14x14x64 14x14x512 12544

Squeeze 14x14x512 14x14x64 12544
Fire9

Expand 14x14x64 14x14x512 12544

2.2.3 ADDER TREE

35

Chapter 2
Architecture

W

P

WA

= L= S—

A Accumulator

i

ARk

=]

7 T

FIGURE 37: ADDER TREE ARCHITECTURE

T

557

W

A L@

W
AN
® Reg 5 o
| |— —
Reg A\ e T—
Fay Accumulator
—@— Reg
[+ A
ReQ | m—

W

FIGURE 38: PIPELINED ADDER TREE ARCHITECTURE

The adder tree is used to implement 3x3 convolution operation; the adder used is carry save adder as it has 3
inputs. The carry-save adder reduces the addition of 3 numbers to the addition of 2 numbers. The propagation

36

Chapter 2
Architecture

delay is 3 gates regardless of the number of bits. The carry-save unit consists of n full adders, each of which
computes a single sum and carries bit based solely on the corresponding bits of the three input numbers.

There are two architectures for the adder tree, the pipelined, shown in figure 38, and the non-pipelined, shown
in figure 37. The non-pipelined advantage is the processing of all pixels in one cycle, However it has a long
critical path (Multiply + log,(Channels) + 1).The pipelined advantages are having short delay path
(Multiply) and processing multiple channels simultaneously but it has additional storage area due to the
registers.

2.2.4 DATA MEMORY

2.2.4.1 DATA DISTRIBUTION

gy ap

Pixel_1 Channel_1 Pixel_1 Channel_2 Pixel_1 Channel_16

Pixel_1 Channel 17 Pixel_1 Channel 12 Pixel_1 Channel 32

Pixel_1 Channel_49 | | Pixel_1Channel 50 | © © O | pixel_1 Channel_64

Pixel_2 Channel_1 Pixel_2 Channel_2 Pixel_2 Channel_16

FIGURE 39: DATA DISTRIBUTION IN TIME-SHARED ARCHITECTURE

37

Chapter 2
Architecture

The data memory is designed to have multiple ports equal to the number of channels fed to the adder
tree in one cycle. In this case, the number of ports is 16. In order to achieve this huge number of ports with
block rams the data is divided across several block rams as shown in figure 39. Every clock cycle 16 data
ports are read from the memory by the squeeze layer.

2.2.4.2 DUAL PORT RAMS

| Pixel_1Ch_1 |

Expand Pixel 1 Ch 2
1x1 T===============|

" || Pixel_1Ch_32 |

Pixel_1Ch_33
Pixel 1 Ch_34
Expand
3x3
Pixel 1 Ch 64

FIGURE 40: DUAL PORT RAM FOE EXPAND LAYERS

The expand stage writes 16 data to the memory in one cycle where 8 data come from expand 1x1 and
8 from expand 3x3. Each block from expand 1xland expand 3x3 blocks writes in different locations in the
memory, as shown in figure 40. Therefore, we use dual port block RAMs where each port is independent
from the other.

2.2.4.3 PING PONG MEMORY STRUCTURE

38

Chapter 2
Architecture

Data_out A

Input
data

Output
data

DeMux

_I—) Mem A
L

Mem B

Data_out B

l >

Toggle

FIGURE 41: PING-PONG MEMORY

When a fire stage starts, the squeeze layer reads data from memory A and processes it. After that, the
expand layer processes the output of the squeeze layer and stores the data into memory B. In the next fire
stage, the squeeze layer reads the data from memory B while the expand layer stores in memory A.

This alternating process can be achieved using ping pong memories where a control signal decides which of
the two memories will receive the input data along with the required signals such as the address, write enable,
etc. and which memory will output the data. The block diagram is shown in figure 41

2.2.5 WEIGHTS MEMORY

2.2.5.1 DATA DISTRIBUTION

The weights memory has the same distribution as the data memory for one filter weights. In this design 8
filters run in parallel therefore, 8 copies of the same memory are made but with different initialization for
each filter.

2.2.5.2 ROMs

Weights are stored in ROMs implemented using either BRAMSs or LUTs. The BRAM approach is chosen for
layers with lots of weights (expand1x1, expand3x3). The LUTs approach is better for low depth memories so
LUTs are used to store weights for the squeeze layer and biases of the whole design.

39

Chapter 2
Architecture

2.2.6 FIFO BUFFER

The FIFO buffer holds the output data of the squeeze stage and passes it to the expand stage. Once the
squeeze finishes processing a pixel, that new pixel with all of its channels gets stored in the buffer. After the
buffer gets filled with W + 2 entries the expand stage starts processing the data in the buffer.

2.3 SUMMARY

In this chapter 2 different designs are compared with different aspects related to resources. Overviews on the
block diagrams of 2 architectures are viewed, one for pipelined architecture that required too much resources
and another one for time shared architecture that may needs more clock cycles than the pipelined architecture
but with significantly lower number of resources is required. In next chapter the detailed design stages and
blocks for time-shared architecture will be discussed.

40

Chapter 3
Detailed Design

CHAPTER 3. DETAILED DESIGN

convl]
maxp}):.;‘;

[ﬁrlez]

(ﬁ'le3)

[fire4a]
-

(o J

(ﬁfles)

(fire7)
_ l '?84

(ﬁrles‘)

maxpool/2

([fireo)

l 512
conv10
1000
global avgpool
"labrador
[i]_, retriever
dog"

FIGURE 43: SQUEEZENET ARCHITECTURE

As shown in figure 43, we can divide Squeeze-Net architecture into three successive stages as following
Stagel: CONV_1 layer
Stage2: Pooling layer
Stage3: FIRE layer

Stage4: CONV_10 layer.

41

Chapter 3
Detailed Design

And each stage reads its filters’ weights from weights memory, and its input parameters from image
memory as in CONV _1 stage, or from Data memory (PING_PONG memory) as in FIRE and CONV_10
stages. There is another layer that is POOLINHG layer, which is necessary to decrease the number of
parameters across the network.

In the following sections, Parallelism of the different stages to speed up the implemented design on
FPGA will be described, their inputs and outputs and explain their different methodologies.

3.1 CONV_1STAGE

CONV_1 layer includes

w 2nd
18T
Meneiiiniii it >
group group
& 7
RREREEES
& P1/P2/P3
P1 ¥ Fi [ELEAES A

P4 PS5 PE il il

v

01 |P1/P2/P3 * PePT PG 2
3 <3P

&
v
V-p
ol
22
515
E1E
515
]
A

|pilpzies NEXTCYC

}
i] :
-
X & 11 A F2 | P
: \ \ | 3 b
‘. Image] s \ o :: :: P D pe [P [pe)
") ;) Conv I } ¥
Moy PR -o_butter ‘ / elerieal, v
|
|

}Hlﬁ > ‘

P1P2[P3

P1|P2|PS

F32{pa|ps|ee

S 5
Sl lrel ™ BEE /:
p1lp2lpslpa] F--f--d--f--l--] ﬁ 3 <2
B o pE e i o |
I] A Y
} =
- .
H o1 o
e
2 g

FIGURE 44: CONV_1 STAGE

3.1.1 IMAGE MEMORY

The input image is stored in ROMs implemented using BRAMS approach, as the size of image is
large, as shown in figure 44, (224 x 224 x 3) x16 bits =2.3 Mbits.

42

Chapter 3
Detailed Design

3.1.2 FIFO BUFFER

FIFO buffer is used before the convolutional layer for real time applications or input videos as
only one image can be stored in memory. Therefore, FIFO is needed in this design to ensure
synchronization.

SIZE

Size of FIFO = 2*Input_Image_width+3 = 2*224+3,

Where w equals Input_Image_width , with number of channels equals three, as shown in figure 2#,since
input image has only three channels (RGB channels) as shown in figure 44.

INPUT
The input of the FIFO buffer is three pixels, one pixel to the tail of each channel of the buffer, from the
input image memory and control signals.

OuTPUT
The output of the FIFO buffer is three windows with size 3x3, a window from each channel, to perform
3x3 convolutions.

METHODOLOGY

Initially each register in the FIFO buffer stores ‘0’, while an input pixel is inserted at the tail of the FIFO
buffer, the pixel at the head of the FIFO is shifted to the left as shown in figure. After filling the FIFO
buffer, convolutional operation is started by taking the first window, after (2w+3) cycles, as shown in
figures 45.

P11/ P1|P2/

FIGURE 45-A: FIFO BUFFER IN FIRST CYCLE FIGURE 45-B: FIFO BUFFER IN SECOND CYCLE

43

Chapter 3
Detailed Design

- - -

P1/P2|P3(P4| --1
R25226227p28 --1-- vl
50451

P1/P2|P3

FIGURE 45-C: FIFO BUFFER IN THIRD CYCLE FIGURE 45-D: FIFO BUFFER AFTER 2*W+3

CYCLES

FIGURE 45-E: FIFO BUFFER AFTER 2*W+4 CYCLES

3.1.3 CONVOLUTIONAL LAYER

v, 3 L 4
5 . g . - -
11 FH2FNS
.., \? F1 "I"r"' Il_v .‘--.3 = F33
.2 i1 23
1192 | 1s 2 P 12 jns
14 s |ns 1 najisns
17 s fns n7{nsns
v 3 _ .. 3
= e g Next clk FzeiFzi2Fzis i
L
F2 o 218 cycle F34 Brermes
21 "“ 29IFIS F2a8
"-\Q
s21FIzizaziz i

FB4 gabaalacal

2izzirs21e

F32 Fa214321€329

-‘2‘_“' 32T

FIGURE 46: PARALLELISM OF CONVOLUTIONAL LAYER IN CONV_1 STAGE

44

Chapter 3
Detailed Design

This is the core of CONV _1 stage. In this layer there are 64 different filters with size 3x3, with
stride equals 2 and number of channels equals 3, since the depth of the filters equals to the depth of the
input feature map, (the depth of the input image), as shown in figure 44.

PARALLELISM

Since filters have depth of three channels which is small number of channels, then convolution is
performed to the whole depth. And to speed up the convolution operation, 32 filters are executed out of
64 filters in one cycle for a window of parameters then in the next cycle the other 32 filter will be
convolved with the same window of parameters, as shown in figure46.

INPUT
The inputs of the convolution layer are

1. 32x9x3 pixels represent the 32 filters with size 3x3 across depth of eight channels from weights
memory.

2. 32 pixels represent the filter biases.

3. 9x3 pixels represent the input image parameters from the FIFO buffer.

4. Control signals.

OuTPUT
The output of the convolutional layer is 32 pixel in depth in output feature map, as shown in
figure #, and then propagates through the next layer which is POOLING layer.

METHODOLOGY

The input compound window (a window from input feature map with its depth) from the buffer
enters this layer and the operation is held by convolving it with 32 filter in parallel as shown in figure3#.
Let’s describe the operation in details by taking the first window of the input, with its depth, with one
filter as shown in figure 47.

45

i1 i

i3

i14]i

i16

7]

i19

i21 i

i25

i27

i1

i32

i35 §

137}

Fi11 F12F113
FU4F11SF116
FUTF1EF113

F121F122F 123
F124F125F125
F127F128F129

F131F132F133
F134F135F136
F137F138F 139

Chapter 3
Detailed Design

Depth

FIGURE 47: CONVOLUTION OF THE WINDOW OF IFM WITH FILTER OF DEPTH =3

The convolution operation is executed by multiplying each parameter pixel to the corresponding pixel in
the filter by using DSPs, adding the product of each window among the depth, 3 channels, together.
Then adding the result of the 3 channels together, as shown in figure 47. By using MAC operation of the
last DSP module, that multiplies the 9™ parameter with the 9™ weight of the last channel, the bias of each
filter has been added. This technique decreases the number of the used LUTs as no extra adder is
needed, as shown in figure48.

46

Chapter 3
Detailed Design

PIXEL1-
input-CH1 =
!"ITPUT
[uT [oF l
OUTPUT 2rd
oF m:r—(?_1
FIRET EL
CHANNEL
-%
PIXEL®-
mpuLCH1W

FIGURE 48: CONVOLUTION OPERATION OF THE FIRST FILTER WITH A WINDOW OF IPM

Every filter represents a channel in the output feature map as discussed in chapter 1, Therefore the final
OPM depth is 64, as shown in figure 48.

For convolving with stride 2, horizontal stride 2. After filling the FIFO buffer, a counter starts initially
with ‘0’; the first window is propagated through the following layer while the next window is ignored.
Therefore, each even window is propagated to convolutional operation while the odd one is ignored, as
shown in figure 49 . While for vertical stride 2 all windows whose counter number is between
(FIFO_WIDTH -2) to (2* FIFO_WIDTH -1) are ignored to skip the second row.

Zero-Padding is used in this stage because filter size is 3x3 and input image size 224x224 which results
in the filter window slides out of the input image boarders as in figure 48. Therefore, Zero-Padding is
done at the left and the bottom boundaries for validation of convolution operation

47

(a)

Pilpzlps|

(d)

[p1lp2jes
p25226227
443450451

(e)

......

P1|P2

P1|P2|P3

(b)

27|

(©)

Chapter 3
Detailed Design

FIGURE 48: STRIDE 2 OF CONVOLUTION LAYER | CONV_1 STAGE WITH ZERO-PADDING

FIGURE 49: THE WINDOW OF EVEN COUNT PROPAGATES (GREEN), WHILE THE ODD ONE IS IGNORED (RED)

48

Chapter 3
Detailed Design

3.2 MAX-POOLING LAYER

In Squeeze-Net versionl.1, Max-Pooling layer is used after three layers throughout the network,
which are CONV_1 layer, FIRE_3 and FIRE_5. Since we use a time-shared design, then this layer is
common after those three layers and also since the Max-Pooling needs a window of parameters of size
equals 3x3 and stride equals 2, then a FIFO buffer is used before Max-Pooling layer.

3.2.1 FIFO BUFFER

FIFO buffer is used before Pooling layer to get a window with size 3x3 simultaneously to output
the maximum pixel among this window.

SIZE
Since POOLING layer is used after CONV_1, FIRE_3 and FIRE_5, which have different sizes and
different number of channels, then the size of FIFO buffer is varying across its channels for full

utilization.

e CONV_1 output feature map (OFM) have 64 channels with size 112x112.
e FIRE_3 OFM have 128 channels with size 55x55.
e FIRE_5 OFM have 256 channels with size 28x28.

Then the number of channels in this FIFO buffer is 256 channels with the size 2*W+3. We divide the
depth into 8 sets as shown in figure 50, 32 channels for each as output of the pervious stage (CONV_1,
FIRE_3 or FIRE_5) is 32 pixels in depth.

For the first 2 sets W equals 112 for OFM of CONV_1 size as number of channels of this stage equal
64.Although every fire has different size and depth, Therefore handling these different sizes throughout
the design flow is done by control signals .For example, in the next 2 sets W equals 56 according to the
size OFM of FIRE_3 that is 56x56x128, and for the last 4 sets channels W equals 28 since size of OFM
of FIRE_5 is 28x28x256.

49

Chapter 3
Detailed Design

/" HINT:
' Each set includes 32 7 N W e ~
\ FIFO v # A

25
15'»

= ‘ NEXT CYC
z} e[=% [=
o1z - - v
i & 2 "Qo
N L "
» ,ﬂ
SET1 2
b, o bf Al ser
4 . T

BrAN &
N xS
& é} 01102

SETH
A o

SETS

FIGURE 50: THE FIFO BUFFER SETS BEFORE POOLING LAYER

INPUT
The input of the FIFO buffer is 32 pixels, one pixel to the tail of each channel of the buffer, from the

input image memory and control signals.

OuTpPUT
The output of the FIFO buffer is 32 windows with size 3x3, a window from each channel, to perform
3x3 convolutions.

METHODOLOGY

Initially each register in the FIFO buffer stores ‘0’, while an input pixel is inserted at the tail of the FIFO
buffer, the pixel at the head of the FIFO is shifted to the left as shown in figure50. After filling the FIFO
buffer, the window is propagated to the next layer as discussed in section 3.1.

50

Chapter 3
Detailed Design

3.2.2 POOLING LAYER

The pooling function is to reduce the number of parameters after certain convolution layers to
classify the input image to small number of classes in the last layer. The input of any pooling layer in
SqueezeNet is a window with size 3x3x32 pixels and the output is the maximum pixel, as shown in
figure 9#.

Parallelism

Since in CONV_1 layer, FIRE_3 and FIRE_5, 32 filters are executed in parallel for the same window of
parameters in 1 cycle and the pooling layer is following these layers, then we design the pooling layer to
take 32 windows for 32 channels in parallel in one cycle.

Input
The inputs of the pooling layer are

1. 32x9 pixels represent the 32 channels with size 3x3 from FIFO buffer.
2. Control signals.

Qutput

The output of the convolutional layer is 32 pixels for different channels in output feature map and stored
in PING-PONG memory.

011021031
012022032 ¥
013023033 /-7 M o
: 2 ,,;\, Max A
: Pooling

..........................

FIGURE 51: THE POOLING LAYER

51

Chapter 3
Detailed Design

METHODOLOGY
Pooling layer is responsible for getting the important information from IFM to decrease number of

parameters across network. The type of Pooling used in SqueezeNet is ‘Max-pooling’, at which the most
important information among the input window is the maximum parameter. Flow chart of the Pooling
layer is shown in the following figure 52. Simply we get the maximum of each row by comparing its
parameters, using behavioral comparator. Then we compare the maximum pixel of each row to get the
maximum pixel of the whole window.

YES [MAX1pows=
o1

NO

PRE_MAX =
MAX2gow1

MAX1powe=

THEN BY GETTING PRE MAX - FINALLY,
THE MAX2 OF THE iy ‘
THREE ROWS ROW2
(MAX2g0w1. PRE_MAX> MAX =
MAXZ2rows= MAX2g0w2 MAX2g0ps) MAX2p0ws PRE_MAX
031

MAX2R0W1= MAX =
MAX1 MAX2rows3

FIGURE 52: FLOW CHART OF POOLING LAYER

3.3 FIRE STAGE

Each Fire Module in Squeeze-Net divide into 2 main layers, which are SQUEEZE layer and
EXPAND layer and PING-PONG Memory as discussed in chapterl.

3.3.1 PING-PONG MEMORY
This Memory follows FIRE_2, FIRE_4, FIRE_6, FIRE_7, FIRE_8 and Pooling layer.

INPUT
There are 2 input ports for Ping-Pong memory; each port has size of 16 pixels, 16x16 Bits, addresses
and control signals.

52

Chapter 3
Detailed Design

OuTpPUT
The output of the Ping-Pong memory is one output port with size 16x16 Bits.

METHODOLOGY
The Size of input port (2x16x16 Bits) is determined as the output of Conv_1 layer in one cycle is 32
pixels in depth, as discussed in section 3.1, then they are stored in two consecutive addresses, as shown

in 53.There are 2 different input ports, each of size 16x16, because the output of Expand layer which
will be discussed later on in this section, is 16 pixels from Expand 1x1 and another 16 pixels from
Expand 3x3. Each 16 pixels are stored in apart addresses as OFM of Expand 3x3 module is concatenated
with OFM of that of Expand 1x1, as shown in 53.

As discussed in section2.2.4, the memory that receive the input data has toggled with the memory that
outputs the data after each Fire module due to pipelined design that allows reading and writing data in
different layers simultaneously, as shown in figure 53.

Pooling |170. address 1
outputin |- .
Conv1_stage o s PING_MEM
b] R
S address_2
Ko
ml ; PONG_MEM
K N L

Expandix1 [§]
output . . o
12 .
g ‘,1 ﬁ
] % PING_MEM
Expand layer >
output SR address_1
Expand3x3 @
output gyp|--" ¥
S ',—"'@L address_2
.

FIGURE 53: TOGGLE OF PING-PONG MEMORY ACROSS NETWORK

53

Chapter 3
Detailed Design

3.3.2 SQUEEZE LAYER

This layer is a convolution layer of filters with size 1x1 and number of filters relatively small
compared to next layer (Expand layer).

T V- 4
KN e " [)

A |
@ o A NEXT CYC — &
e :D@ %

F2

Q, Till finishing all

1
‘ channels
.................... -
I 3

>

' x
o F3

’6‘. %

é?

* -
e F3 A
L) N
l
2] l &l
2] ‘F“'_'
1, Q, Pl
o L. I
2
1ST_Out 23"_’0-:;"
rou
(‘.’,»5 (9>>186)

FIGURE 54: INPUT AND OUTPUT OF SQUEEZE LAYER

PARALLELISM

Since input feature map (IFM) of this stage has large number of channels, starts with 64 channels ,the
output of CONV_1 stage, and ends with 512 channels, the output of FIRE_8 module. In addition to
small number of filters in Squeeze layer, starts from 16 filters in FIRE_1 module and ends with 64 filters
in FIRE_9 module, then we design Squeeze layer to convolve 8 filters with 16 channels with the same
window of 16 channels from IFM in parallel in one clock cycle.

INPUT
The inputs of the Squeeze layer are

1. 8x16 pixels represent the 8 filters with size 1x1 across depth of 16 channels from weights memory.
2. 8 pixels represent the filter biases.

54

Chapter 3
Detailed Design

3. 8 pixels represent the IFM parameters from the Ping-Pong memory.
4. Control signals.

Output

The output of the Squeeze layer is 1x1x8 pixels in OFM after number of clock cycles = number of
channels in Squeeze module / 16 (number of parallel channels), and stored in the following FIFO buffer.

As shown in figure 54, a compound pixel is completed after number of cycles equals the number of IFM
channels in this layer /16, where the 32 channels pixel input is the output of convl and expand module
in any fire at one cycle that is saved in Ping-Pong memory.

Methodology

In one cycle we convolve 16 channels of IFM with the opposite 16 channels of 8 filters, and then
accumulate the result of this convolution until we finish all the depth (number of channels) of the same
window. Subsequently we repeat this operation until finishing all the filters, and then we can switch to
the next window, the operation is declared in only one window as shown in figure.

Hint: Accumulation on channels and Repeat for filters. Bias is added for each filter as shown in figure
55.

adder1

*
R
REPEAT UNTIL - ‘
P FINISHING ALL REPEAT UNTIL
= a THE CHANNELS FINSHING ALL
FILTERS

NPUTT _
CHie L=

TILL THE 8TH FILTER (8 FILTER PARALELL SiM)

55

Chapter 3
Detailed Design

FIGURE 55: CONVOLUTION OPERATION IN SQUEEZE LAYER

3.3.3 FIFO BUFFER

As discussed in previous sections a FIFO buffer is used when the convolution is of size 3x3.
Same design of FIFO buffer is used but with size 2*W+3, where W is the size of IFM that is 55x55.
Number of channels of this FIFO buffer equals 64 which is the maximum number of filters in the
squeeze layer of FIRE_9, at which number of channels are divided into 8 sets each of 8 channels
because the output of Squeeze layer is 8 channels, as declared in figure 56.

10
"Q\Q
2

NEXT CYC =l
e SET2 SETS .
R /20 10
b 3 R
% SET1 = 7
- B |
. 0 "o

A’}(\Q
® 11, (21,131,

SET1
10 2w+3 cycle
QN
K2 ,
11, 21,31, a1,

Ise1[s71 581591

lm, HI,[!I;“‘,."’

.
[21,]s1,]a1,

|571158|[55, hestmusnmmhengnnn

Inz,ns, e,/

FIGURE 56: FIFO BUFFER BETWEEN SQUEEZE LAYER AND EXPAND LAYER

3.3.4 EXPAND LAYER

56

Chapter 3
Detailed Design

This layer is divided into 2 layers which are Expand_1x1 where filters of size 1x1 and
Expand_3x3 where filters of size 3x3.

PARALLELISM

Since input feature map (IFM) of this stage has small number of channels, starts with 16 channels ,the
output of FIRE_2 stage, and ends with 64 channels, the output of FIRE_9 module. In addition to large
number of filters in Expand layer, starts from 128 filters in FIRE_1, 64 filters in Expand_3x3 and same
in Expand_1x1, and ends with 512 filters in FIRE_9 64 filters in Expand_3x3 and same in Expand_1x1.
Then we design Expand layer to convolve 16 filters with 8 channels with same window of 8 channels
from IFM in parallel in one clock cycle.

INPUT
The inputs of the Expand layer are

1. 16x8 pixels represent the 16 filters with size 1x1 across depth of 8 channels for Expand_1x1 from
weights memory.

2. 16x8x9 pixels represent the 16 filters with size 3x3 across depth of 8 channels for Expand_3x3 from
weights memory.

3. 16 pixels represent the filter biases.

4. 16x9 pixels represent the IFM parameters from FIFO buffer.

5. Control signals.

OuTpPUT

The output of the Expand layer is 1x1x16 pixels in OFM of Expand 1x1 and 1x1x16 pixels in OFM of
Expand 3x3 completed after number of cycles equals to number of channels in Expand module / 8
(number of parallel channels), and stored in the FIFO buffer in case of FIRE_3 and FIRE_5 or stored in
Ping-Pong memory in any other fire module which is determined by control signals.

METHODOLOGY

In one cycle we convolve 8 channels of IFM with the opposite 8 channels of 16 filters, and then
accumulate the result of this convolution until we finish all the depth (number of channels) of the same
window in OFM. Subsequently we repeat this operation until finishing all the filters, then we can switch
to the next window, as shown in figure 58.

57

Chapter 3
Detailed Design

The result of Expand_3x3 is concatenated after result of Expand_1x1 to get the final OFM of the Fire
module, then stored again in Ping-Pong memory or passes to pooling layer after certain fires (Fire_3 and
Fire_5),as shown in figure 57. .

Also figure 57 declared that each window with 8 channels is convolved with 16 filters from Expand 3x3
layer and the center pixel is taken to be convolved with 16 filters from Expand 1x1 layer at the same
time.

EXPAND EXPAND|
3X3 1X1

M1l
¢y P1P2PS [N e

P4 P5 PS »
P& P7 PE. P W * .
I * e

3 - darecs 3
a4 The OUTPUT OF EXPAND p
MODULE IS SAVED IN MEM OR
SAVED IN FIFO BUFFER TO

APPLY MAX-POOLING

1

@

“' & OPERATION
»

i P1 P2 P3
F2 loglpsies| |
PsP7 PR3 D 3

OR addrﬁe_ss_i

e)

: 3
i ; 1[N0
" P1[P2|P3 Fi6 A FiFO Max »
palpsipe ‘o — " > 3k
A () ROOLEWS POOLING 4
3
l o

‘—r—" o1
» o address_2
[C
5 @ A
b i
L .

FIGURE 57: INPUT AND OUTPUT OF EXPAND LAYER

In Expand3x3 module, as shown in figure 58, 3x3x8 pixels of an IFM window convolves with 3x3x8
pixels of 16 different expand_3x3 filters in parallel at one cycle. Then accumulate the result of this
convolution until we finish all the depth (number of channels) of the same window. Subsequently we
repeat this operation until finishing all the filters, and then we can switch to the next window, the
operation is declared in figure 16#. Bias is added for each expand_3x3 filters in Expand_3x3 module as
shown in figure 58.

In Expand1x1 module that shown in figure 15#, is the same as expand 3x3 as the middle pixel, (i5 in
figure 57), convolves with 16 different expand_1x1 filters in parallel at one cycle, as shown in figure
57.Then accumulate the result also till finishing all the channels of IPM and repeating this operation till

58

Chapter 3
Detailed Design

finishing all the expand_1x1 filters. Bias is added for each expand_1x1 filters in Expand_1x1 module as
shown in figure 58.

Zero-Padding is used in this stage with type ‘Same’ because the size of filters in Expand 3x3 is 3x3 and
the size of IFM is 56x56, which resulted in OFM with smaller size, as discussed in chapter 1 in section
1.2.1, and cannot be concatenated with the OFM of Expand_1x1 which has the same size of IFM.
Therefore, Zero-Padding is done at all boundaries of IFM by starting convolution operation after filling
the FIFO buffer before Expand layer with only W+2 pixels for padding the upper boundary. This is also
the reason why we take the center pixel for Expand_1x1 convolution, as shown in figure 60.

| TILL THE 16TH FILTER
‘, (16 FILTERPARALELL SiM)
I ' o |

H'\

Repeat until
finishing all the
FILTERS

TILL THE 8TH
CHANNEL
(8 CHANNEL
PARALELLSIM)

FIGURE 58: CONVOLUTION OPERATION IN EXPAND_3X3 MODULE

59

INPUT-
CH1

CLK

reset

rese

FIGURE 59: CONVOLUTION OPERATION IN EXPAND_1X1 MODULE

TILL THE 16TH FILTER
(16 FILTERPARALELL SIM)

Chapter 3

Detailed Design

N

0 P1p2|P3| F--{--4---

il BN

5657 |58

“ Repeat until
finishing all the
’ FILTERS

FIGURE 60: ZERO-PADDING IS DONE IN FIFO BUFFER BETWEEN SQUEEZE AND EXPAND_3X3

By using control signal this FIRE stage is adapted according to the running fire module due to variety

number of filters and channels among different fire modules.

60

Chapter 3
Detailed Design

3.4 CONV_10STAGE

CONV_10 layer includes 10 classes relative to application of internal security of a building from
ImageNet data set.

3.4.1 CONVOLUTIONAL LAYER

In this layer there are 10 different filters with size 1x1, with stride equals 1 and number of channels
equals 512, since the depth of the filters equals to the depth of the input feature map.

Parallelism

Since input feature map (IFM) of this layer has 512 layers, which is large number of channels, then we
design Conv_10 layer to convolve 10 filters with 32 channels with same window of 32 channels of IFM
in parallel in one clock cycle.

Input

The inputs of the convolution layer are

1. 10x32 pixels represent the 10 filters with size 1x1 across depth of 32 channels from weights
memory.

2. 32 pixels represent the IFM parameters from the Ping-Pong memory.

3. Control signals.

Output

The output of the CONV_10 layer is 1x1x10 pixels of OFM after number of clock cycles =number of
channels in CONV_10 module / 32 =512/32=16) clock cycles.

Methodology

In one cycle we convolve 32 channels of IFM with the opposite 32 channels of 10 filters, then
accumulate the result of this convolution until we finish all the depth (number of channels) of the same
window in OFM, then we can switch to the next window. As shown in figure 61, Conv_3x3 module is
used to convolve 1x1x9 pixels of IPM with the opposite 1x1x9 pixels of one of the filters. Since we
convolve 1x1x32 pixels of IPM with the opposite 1x1x32 pixels of 10 different filters at one cycle, then
4 instantiations of Conv_3x3 module are used and there results are accumulated with the next 32

61

Chapter 3
Detailed Design

channels till fishing all the channels of IFM , finishing one compound pixel in OFM, as shown in figure
62.

The 10 filters used represent the number of classes we want, as we choose 10 classes from 1000 classes
related to the security of the buildings. In section# we will discuss in detail how we get the weights and
the accuracy of the new pre trained model

INPUT-
CH1

input-CH®9

FIGURE 61: CONV_3X3 MODULE

62

Chapter 3
Detailed Design

CONV_3X3
MODULE
FROM

CHANNEL
| 1708 |

CONV_3X3
| MODULE
| FROM TILL THE 10THFILTER |
CHANNEL 10 FILTER PARALELL Sit}
107018 - f |

reset

CONV_3X3
MODULE
FROM
CHANNEL

1810277

CONV_3X3 |
MODULE
FROM
CHANNEL
287032

FIGURE 62: CONV_10 MODULE

3.4.2 GLOBAL AVERAGE-POOLING LAYER

In this final layer, it is required to get the probability of classification that represents how much the

input image belongs to the 10 classes. This is done by getting the average of each channel

19¢ pij _ . :
&)= l])/l% , where ‘i’ is the number of channels ranges from 1 to 10; and °j’ is the number of pixels

in each channel which is equal to size of OFM of CONV _10 that equals 14x14.

63

Chapter 3
Detailed Design

This operation is done in our RTL design through 2 stages
1- Average pooling accumulator
2- Divider

1- AVERAGE POOLING ACCUMULATOR

INPUT
The inputs of the accumulator are

1. One pixel represents a parameter in a channel in OFM of CONV_10.
2. Control signals.

OuTpPUT
The output is a pixel from accumulating the previous result of accumulation operation with new
parameter from the OFM of CONV _10 for the same channel, as shown in figure 63.

¢
B L
- !] s

PR R CLK

RESE

FIGURE 63: AVERAGE-POOLING ACCUMULATOR FOR 10 CHANNELS

2- DIVIDER

INPUT
The inputs of the divider are

1. Dividend
2. Divisor

64

Chapter 3
Detailed Design

3. Control signals

OuTpPUT
A pixel represents the average of the parameters of each channel from OFM of CONV_10,
which has size of 14x14 with 10 channels.

METHODOLOGY
Non-restoring division is used due to its modularity and simplicity rather than restoring division.
As shown in figure 64, the flow chart of non-restoring division is done as a finite state machine (FSM).

B=0
M=DiwvisSor
p=0iswiderned

Count = 1
e [I

w
Shift Left A, Shift Left A,
A= A

FIGURE 64: FLOW CHART OF NON-RESTORING DIVISION

3.5 HIERARCHY OF OUR DESIGN

Our Design as discussed in the previous section is divided into number of modules; each of them has its
own control unit that ensures higher accuracy, modularity, easiness of the debugging and testing of each
module as well as the whole design.

3.5.1 Top MODULE

The only inputs to this module the global reset and the global clock signals from FPGA .As
shown in figure 65, top module includes:

Convl_FIFO module includes Image_Mem module and FIFO_Conv1 module.

65

Chapter 3
Detailed Design

e Image_Mem module reads the parameters of image and save it in FIFO_Conv1.
- Convl module includes Convl_bias_Mem module and Convl_Filters_Mem module.

e The Convl _Filters Mem and Convl bias Mem modules read the weights and biases saved in
BRAMs to be used in convolution operation in Convl module that convolve a 3x3 winodw from
FIFO_Conv1 with 32 filters of the 3 channels at a time.

- FIFO_Pooling module that has saved the IFM before pooling layer (after Convl, Fire 3, Fire_5). It
includes the FIFOs modules of different width sizes to ensure utilization as we discussed in detail earlier
in section 3.2.

- Pooling module for getting the maximum parameter in the input, which is a 3x3 window of parameters,
by comparing them as we discussed in section 3.2.

- PING_PONG module for saving the results of some layers and reading them back for the next layers.
This module used the dual port BRAMS in the FPGA.

- Fire module includes Squeeze module, FIFO_Fire module (between Squeeze and Expand modules), and
Expand module.

e Squeeze module includes Squeeze bias_Mem module and Squeeze_ Filters_ Mem module that
reads the weights and biases saved in BRAMs that is used in convolution operation. Squeeze
module convolves 16 channels of 8 filters at a time as discussed in section3.3.

e Expand module includes Expand_bias_ Mem module and Expand_Filters_ Mem module that
reads the weights and biases saved in BRAMSs that is used in convolution operation. Expand
module convolves a 3x3 window of IFM with that of 8 channels of 16 filters at a time as
discussed in section3.3.

- Conv_10 module includes Conv10_bias_Mem module, Conv10_ Filters_ Mem module and Divider
module.

e The Conv10_Filters_Mem and Conv10_bias_Mem modules read the weights and biases saved in
BRAMSs to be used in convolution operation in Conv10 module that convolve a 1x1x32 channels
with the 10 filters ,that represent the number of classes, at a time and then accumulate the result
till finishing the whole channel of the 10 channels OPM, then using divider module for global
average pooling operation as discussed in section3.4.

66

Chapter 3
Detailed Design

TOP_MODULE
]
Conv1_FIFO
RESET o ’ Control_Top
LRI ,
Conv1 ~——»FIFO_Pooling,— 5 Pooling PING_PONG Fire Conv_10 i
" ' 4.bits

Represents
10 Classes

FIGURE 65: TOP_MODULE DESIGN

3.5.2 CONTROL ToP MODULE

The inputs to this module, as shown in figure 66:

START_MASTER_CTRL Master_Control

New_Pixel

The global reset signals.

The global clock signals.

START_MASTER_CTRL signal: It is the output from ImageMem module to make Convl
starts.

New_pixel signal: It is the output from ImageMem module that indicates whether we could shift
the window or not. If new_pixel equals 1 we will read a new window and convolve it with the
first 32 filters, else when new_pixel equals O we will not and convolve with second 32 filters.
(The same window convolves with 64 filters but we have in this stage 32 filters parallelism).
Control_Top module includes Master_Control module which will described later in detail, and
Delay_Regs to delay some control signals that is necessary for synchronization after multiply
operation, adder tree and other delays due to pipelined design.

Control_Top MODULE

RESET

R
CLK

—_—

[

. l

rl_signals

! ! : ‘

Delay_Reg Delay_Reg

Delay_Reg

FIGURE 66: CONTROOL_TOP_MODULE DESIGN

67

Chapter 3
Detailed Design

3.5.3 MASTER CONTROL MODULE

The inputs to this module, as shown in figure 67:
e The global reset signals.
e The global clock signals.
e START_MASTER_CTRL signal
e New_pixel signal

As shown in figure 66, the Master_Control top is the main control units that includes all the sub-control
units for other blocks and manage the order of each operation one after another. After
‘START Master control’ raised high, CONV 1 stage is started until the input image have finished
completely (224x224 input pixel), by finishing CONV_1 stage following by POOLING stage and
saving the OFM in Ping-Pong memory, ‘End Conv_1" signal is raised. Raising ‘END_CONV 1’
signal leads to raising ‘START FIRE 2’ signal which enables the Fire stage doing its operation. Other
fire modules will succeed one after another until FIRE 9 also by ‘CONF_START FIRE’ signal and
“current_fire’ counter. If ’current fire’ counter counts nine, then ‘START CONV_10’ will raise leads
to start CONV_10 stage following by global average pooling which gives the final result of
classification of the input image.

Master Control

RESET
T
CLK

[i

P et N ‘ |

Control_Conv1 &—>| Flre_Mtast;er L—bConh’ol_Convw!

START |
R

\
L

New_Pixel
T

ctrl jsignals ctrl_signals ctrl_signals

v v v

FIGURE 67: MASTER_CONTROL_MODULE DESIGN

68

Chapter 3
Detailed Design

3.5.3.1 CONV1 CONTROL

For CONVL1 state there are 2 main operations as discussed in the previous section which are
convolution operation and pooling operation. The CONV1_control module controls these operations and
the intermediate stages through four main states which are:

Pre-CONV1 state: that responsible for filling the FIFO buffer preceding CONV1 layer.
CONV1 state
CONV1 with pooling state: that takes place after filling the FIFO buffer preceding POOLING layer.

POOLING state

3.5.3.2 FIRE MASTER CONTROL

The inputs to this module:
e The global reset signal.
e The global clock signal.
e CONF START FIRE

At this module there is an instantiation of Fire_control module that controls the operation of the fire
module and the order of layers within the Fire stage. The Fire_Control module controls all the states in
Fire module according whether this firemodule is followed by POOLING layer or not,

If it is followed by POOLING layer, there are five main states that are listed as:
SQUEEZE state.

SQUEEZE with EXPAND state: takes place after filling the FIFO buffer preceding EXPAND layer with
the required zero-padding.

SQUEEZE with EXPAND with POOLING state: takes place after filling the FIFO buffer preceding
POOLING layer.

Expand with POOLING state.

POOLING state.

69

Chapter 3
Detailed Design

Else, there are 3 states only which are
SQUEEZE state.

SQUEEZE with EXPAND state.
EXPAND state.

For different fire modules with different sizes, number of filters, number of channels and also the fires
sometimes followed by different tracks, therefore there are 14 multiplexers as shown in figure 68:

1- Expand_Address_Bias_Depth, Squeeze Address Bias Depth MUXs: To select the number of
iterations to read the biases of SQUEEZE/EXPAND filters according to number of filters in each fire
module.

2- Expand_Address_Filter_Depth, Squeeze Address_Filter_Depth MUXs: To select the number of
iterations to read the weights of SQUEEZE/EXPAND filters according to number of filters in each fire
module.

3- Expand_Fire_Channels MUX: To select the number of iterations to finish all channels of IFM in each
fire module.

4- Expand_Fire_Filters, Squeeze Fire_Filters MUXs: To select the number of iterations to finish all
Filters in each fire module.

5-Squeeze_Fire_Width_Squared, Expand_Fire_Width_Squared MUXs: To select the number of
iterations to finish the whole pixels of IFM channel in each fire module.

6-Fire_Select MUX: To select how many sets from the 8 sets of FIFO_Conv1 will be selected according
to the output of which filter.

7-Paralleism_Fire MUX: To order the output of Expandlxl and Expand3x3 of the same fire in
PINGPONG memory according to the number of filters in each fire.

8-Squeeze Fire_Width MUX: To select the Width of IFM of Squeeze layer according to the current fire.

9-With_Pool: To select whether after the Expand layer in the current Fire, there is a Pooling operation or
not.

70

Chapter 3
Detailed Design

10-Squeeze_Adress_Fire_Depth MUX: we select the number of iterations to finish all channels of IFM
in each fire module.

Fire_Master_Control

Fire_control
RESET

—_—

CLK

CONF_START_Fire

.

MUX b

’—{ Expand. Addsses, Eiea. Deplh ’ ' Squsezs_Addrses_Blss_Dspth ‘—~

MUX MUX

——’ Expand_adarses_Fiter_Depth ’ ' Squeszs_Address_Flitsr_Depth }'—‘
MUX C(,, Jr MUX
Expand_Firs_Channets ~ "9’7@,! 3queezs_Adoress_Data_Depth }-—\

MUX MUX
'—‘ Expand_Firs_Flitare ’ | Squeezs_Fire_Filters ’—
MUX ; MUX
Expand_Firs_Wioth_Squarsd ’ ' Squeeze_Fire_Width_Squarsd ’—,
MUX = MUX
Fire_Sslect ’ ' Parallesim_Fire F.
MUX B MUX

F Squeezs_Fire_Wiaih ’ ' Vil Pool F‘

I !

FIGURE 68: FIRE_MASTER_CONTROL MODULE DESIGN

3.6 CONV10 Control

For CONV10 state there is one main operation as discussed in the previous section which is
convolution operation with 10 filters, accumulator and divider for global average pooling. The
CONV10_control module controls this operation through only one main state which is:

CONV10 state

3.7 SUMMARY

In this chapter, we have discussed in details our design for implementing SqueezeNet on FPGA
through explaining the different stages of the architecture and their control. In chapter synthesis and
optimizations that are done to this design will be presented.

71

Chapter 4
Synthesis and Optimizations

CHAPTER 4. SYNTHESIS AND OPTIMIZATIONS

In this chapter, the goal is to enhance the design in terms of timing and area along with fixing the
synthesis issues and solve any simulation and synthesis mismatch.

This phase started with a utilization of 88% LUTs and a clock speed of 100 MHz with zero slack. It
ended with a utilization of 22% LUTs and a clock speed of 200 MHz with 1.4ns positive slack. In
section 2.3 the major enhancements in timing and area will be discussed in detail and with a quick
overview of minor ones. In section 4, the final results of the synthesis phase will be discussed as well.

4.1 TIMING ENHANCEMENTS

4.1.1 ENHANCE BRAM TIMING

To follow the standard language template of BRAM inference from the FPGA vendor user guide
which recommends including output registers to every BRAM to enhance, and separate the logic delay
of the BRAM from other combinational delays after it. Adding this output register allow the BRAM
instance to work at a frequency up to 400 MHz

As shown in figure 69, the internal structure of a BRAM module and the output registers.

BRAM

EN } WEA DOA /

WE ——— A 7 DO

DI —oia —{ cE
5
ADDR #— ADDRA S
>
CLK X10563

FIGURE 69: STRUCTURE OF BRAM MODULE

72

Chapter 4
Synthesis and Optimizations

4.1.2 ENHANCE DSP TIMING AND POWER

To follow the standard language template of DSP inference from the FPGA vendor user guide. A
fully pipelined DSP is used to separates every stage of the DSP using registers, as shown in figure 70.
An input register is added as well to enhance the power of the module which is also suggested by the
FPGA vendor user guide.

DSPs can perform this equation
P=({A+D)xB+C

In our design, DSPs are used either as a multiplier (4 x B) or as a multiply and add(A X B + C).

48-Bit Accumulator/Logic Unit

B
A P

> 3 >

e
> 25x 18

D A Multiplier - o

> Pre-adder -
c - Pattern Detector

UG479_c1_21_032111

FIGURE 70: STRUCTURE OF DSP MODULE

4.1.3 BREAKING AND PIPELINING LARGE COMBINATIONAL PATHS

Long chains of logic elements (LUTS) cause a large timing path. Some of these chains contained
redundant logic which was removed enhancing both timing and area. Other chains were fixed by
separating each combinational block from the other using registers. Other chains were fixed by

73

Chapter 4
Synthesis and Optimizations

pipelining the logic such as the CSA adder which was converted to a multi-cycle adder instead of single
cycle to enhance timing while sacrificing some area for the added registers, as shown in figure 71.

delayl + delay2
b ™
) z
c >0 :
clk |_
delayl delay2

b T —)))—1—-
>

clk)

FIGURE 71: NON-PIPELINED/PIPELINED LOGIC UNITS

4.1.4 USING ONE HOT ENCODING FOR FSM

One hot FSM encoding uses a separate register for each state. The state register is connected
directly to the FSM outputs providing the fastest clock to out timing and are simple, because, with other
encoding, logic gates are used to “decode”, for example, an 8 state with 3-bit representation into one of
the eight states, whereas with one-hot encoding there is nothing to decode. The state is connected
directly to the one bit corresponding to the state which is the out of the register.

74

Binary Encoded FSM
(Highly Encoded)

Chapter 4

Synthesis and Optimizations

One Hot Encoding

FIGURE 72: BINARY/HOT ENCODING

4.2 AREA ENHANCEMENT

4.2.1 USING MUX PRIMITIVE INSTEAD OF LUTS

The FPGA fabric contains Mux primitive along with LUTS, as shown in figure 73. In order to
direct the FPGA synthesizer to use Mux primitive instead of creating mux using LUTSs, the full case
needs to be provided to the mux otherwise the synthesizer will optimize the code and use LUTS instead.

The problem with Mux primitive is that they cause congestion during placement and routing. This will
be discussed in chapter 7.

D3

D2

D1 ——

Do

SEL1—

SELO

D3
D2

D1
Do

SELO—

SEL1

Slice

LUT3

=/

LUT3

MUXF5

=/

FIGURE 73: MUX PRIMITIVE ALONG WITH LUTS

Chapter 4
Synthesis and Optimizations

4.2.2 USING DON’T CARE IN DEFAULT BLOCKS

Don’t care in Verilog can be used to tell the synthesizer that this logic is not used or unreachable and can
be optimized away. Therefore, don’t cares are assigned to all variables in default block in case

statement.

4.3 FINAL RESULTS

4.3.1 AREA SUMMARY

The final utilization for the whole design and each module is shown in Table.1. The biggest blocks are
the pooling FIFO and the Fire blocks. Fire blocks have most of the BRAMs and DSPs due to the large
number of weights stored in ROMs and the large number of multipliers.

Table 3: Utilization of LUTSs, Registers and MUXs for our design

LUTs Registers Mux
Count %of | % of Count % of % of Count % of % of
FPGA | Design FPGA | Design FPGA | Design
Image
ROM 920 | 0.21% | 0.94% 450 0.05% | 0.28% 0 0% 0%
Conv1 | 13793 | 3.18% | 14.2% | 19644 | 2.27% | 12.3% 0 0% 0%

Fire 32677 | 7.54% | 33.7% | 44452 | 5.13% | 27.8% | 1080 0.5% 19%

Convi10 | 7708 | 1.78% | 7.95% | 10065 | 2.27% | 6.3% 0 0% 0%

FIFO

pooling | 26480 | B42% | 37.6% | 82084 | 947% | 514% | 4320 | 199% | 76.1%

Pooling | 1248 | 0.29% | 1.29% | 1920 | 0.22% | 1.2% 0 0% 0%

Ping-Pong | 512 | 0.12% | 0.53% | 0 % | 0% 0 0% 0%
|

C‘;':I;o 3844 | 0.89% | 3.96% | 1153 | 0.13% | 0.72% | 274 | 0.13% | 4.83%

Total 96990 | 22.4% | 100% | 159772 | 18.4% | 100% | 5674 | 2.62% | 100%

76

Chapter 4
Synthesis and Optimizations

Table 4: Utilization of BRAMSs and DSPs for our design

BRAMs DSP
Count Fol/;) g; ;f;;n Count Fol/;) g; % of Design

Image ROM 96 34.83% %9.7 0 0% 0%
Conv 1 0 0% 0% 864 24% 32.5%
Fire 384 | 26.12% | 38.7% 1464 40% 55.1%
Conv 10 0 0% 0% 330 9.1% 12.4%

Ping-Pong 512 | 38.83% | 51.6% 0 0% 0%
Total 992 | 67.48% 100% 2658 | 73.8% 100%

Table 5: Utilization of LUTs and REGs for carry save adder and divider

Count LUTsper | Total LUTs Regs Per | Total Regs
module | (% of Design) | module %
CSA 1308 32 41856(43.2%) 0 0(0%)
Divider 10 141 1410(1.45%) 71 710(0.44%)

4.3.2 TIMING SUMMARY

The critical paths for each combinational module. The control unit FSM is the most complex
having the longest chain of logic which is 9 in Conv 1 control and 8 in Fire control. The CSA adder and
the 3-input comparator follow with a logic level of 7 for both.

4.4 SUMMARY

In this chapter, an overview over synthesis results of area and timing is discussed with different
methods that are used to improve timing, area, and power. The next chapter focuses on the output of the
implementation step.

77

Chapter 5
Implementation

CHAPTER 5. IMPLEMENTATION

In this chapter different implementations with different clock periods will be discussed in the following
sections.

5.1 CLoCK PERIOD =10 NS:

The design was implemented at a frequency of 100 MHz and the tool strategy was “spread-logic
= high “to avoid creating any congestion regions due to the design has low utilization and it was meeting
the timing constraints but there was a high wire delay which was the motivation to improve the
frequency to 200 MHZ and get benefit from this high wire delay

5.2 CLOCK PERIOD =6 NS:

5.2.1 REASONS FOR HIGH WIRE DELAY

Cross-boundary optimization of synthesis
High fan-out

LUT combining

MUXF7, MUXF8

Bad Floor-planning

Wrong directive used in placement

BN

5.2.2 TIMING CLOSURE TECHNIQUES

CREATE CONSTRAINT FILE:

SYNTHESIS CONSTRAINT FILE:
e Create clock

e Define clock interactions
e Set input and output delays

e Set IOB Buffer registers to improve timing

78

Chapter 5
Implementation

PHYSICAL CONSTRAINT FILE:
e Define input differential clock pins

e Define input and output pins connected to FPGA

e Floor planning Style

5.2.3 ANALYZING SYNTHESIS RESULT

e C(Create slack histogram to analyze the modules which don’t meet the timing analysis before
placement as a first intuition

e Analyze complexity and congestion that will be seen by the placer and the router to have an image to
re-synth with another technique or stop crossboundary optimization at certain module or re-design
any certain module

5.2.4 PLACEMENT

e Try most of the placement directives techniques and didn’t expect that it will solve all the problems
but this will give an initiation about the best directive consistent with your design which has the
lowest worst negative slack

Faster Higher

Compile Performance

Quick Runtime Default Explore
Optimized

FIGURE74: PLACEMENT DIRECTIVES

5.2.5 CONGESTION:

Congestion has two reasons high pin density, and high utilization of routing resources

e Placer Congestion: can be reduced with tool suggestions commands to know the reason of the
congestion in the design and replacement after solving it and see the result again and therefore on.

e Router Congestion: routing detours are used to handle congestion at the expense of timing.

79

Chapter 5
Implementation

Open Check point placed design

report_qor_suggestions -max_paths to define the reasons of the congestion and try to
solve it and replace the design again and so on

if there is Congestion by the placer

Try most of directive which is consistent with design problem . ours are high fanout and bad
placement of cells

phys_opt_design -directive

Try untill phys_opt_design command doesn't improve anything or WNS =10

route_design -directive

< Nets with load placed far apart >

(report power | timing summary, etc) N \",mmm

Violation

phys_opt_design 1

T Vidlation '(High RAM/DSP/SRL delay impact)

FIGURE 75: TIMING ANALYSIS USING VIVADO TCL COMMANDS

5.3 FPGA FLOOR-PLANNING:

If the high wire delay problem isn’t solved then it can lead to use the FPGA floor-planning to
place modules that are communicating side by side to reduce the wire length and that can be achieved
using PBLOCK option in VIVADO GUI to define a certain area for modules that are communicating to
each other close to each other’s and repeat the above flowchart sequence again until the wire delay is
reduced.

as shown in the following figure : Convl and Fire modules is placed side by side and Data mem and
MASTER_CTRL_UNIT placed as children for Fire PBLOCK in the middle of the design as they are
sharing resources between all modules and with inferring the tool for timing optimization it will set the
FIFO_POOLING and the POOLING module between Convl and the Fire PBLOCK to reduce the wire
delay and place conv10 close to the MASTER_CTRL_UNIT to reduce the delay of the needed signals
from the MASTER_CTRL_UNIT.

80

Netli

= H

top
? Nets (52968
> Leaf Cells (12
3 [0 CLK_DIVISION (clk_divider
b convi_fifo (CONVI_FIFO
> Bl conv_1(CONY_1

> B conv_10 (Cony_1
> cirl_top (CTRL_Top
> [DATA_MEM (PingPong

> fifo_pooling_top
> E fire (Fire

b pooling (POOLING

Chapter 5
Implementation

FIGURE 76: FLOOR PLANNING FOR DESIGN

Device

FIGURE 77: PLACEMENT BEFORE FLOOR PLANNING

81

Chapter 5
Implementation

Netlist Device

= M &

top
>[5 Nets (31465
) Leaf Cells (11
> (2] clkDivsion (clk_wiz_|
> Bl convi_fifa (CONVA_FIFO
> ¥ conv_1(CONV_1
> H conv_10 (Conv_10
> (1] ctrl_top (CTRL_Top
> W DATA_MEM (FingFong
> B fifo_pooling_top (FIFC_POOLING_SETS
» Bl fre (Fire
5 B pooling (FOOLING

FIGURE 78: PLACEMENT AFTER FLOOR PLANNING

5.4 SUMMARY

This chapter discussed the output of implementation phase, the struggles and problems in design
and different tips to complete successfully the floor planning and routing. In next chapter software
results and optimization technique to achieve the highest possible accuracy are discussed.

82

Chapter 6
Software Optimizations

CHAPTER 6. SOFTWARE OPTIMIZATIONS

In this chapter, the software modifications and optimizations will be presented in the following
sections to efficiently implement Squeeze-Net on FPGA.

6.1 TRANSFER LEARNING

Transfer learning consists of taking features learned on one problem, and leveraging them on a
new, similar problem. It is usually done for tasks where your dataset has too little data to train a full-
scale model from scratch.

The most common steps of transfer learning in the context of deep learning are the following workflow:

1. Take layers from a previously trained model.
Freeze them, to avoid destroying any of the information they contain during future training rounds.
3. Add some new, trainable layers on top of the frozen layers. They will learn to turn the old features
into predictions on a new dataset.
4. Train the new layers on your dataset.

The TensorFlow option seemed to be the most promising since it could train a Convolutional Neural
Network very quickly using the GPU and leverage the extremely large data set provided by the
ImageNet Challenge database. The goal of developing a model in TensorFlow was achieved to load the
re-trained weights in the design memory.

A small data set of 10 classes from ImageNet dataset was used to train Squeeze-Net Convolutional
Neural Network. These classes were selected for security of buildings applications as luggage scanner or
detecting some edged, bladed weapons as listed in table 6 and figure 78.

Table 6: 10 Classes Used to Train the Squeeze-Net Model

Class Number ImageNet ID Class Description
1 n02749479 assault rifle
2 n02951585 can opener
3 n03000684 chainsaw

83

Chapter 6
Software Optimizations

4 n03041632 cleaver

5 n03109150 corkscrew
6 n03481172 hammer

7 n03498962 hatchet

8 n03658185 letter opener
9 n04090263 rifle

10 n04154565 screwdriver

FIGURE 78: 10 RANDOMLY SELECTED IMAGES FROM 10 CLASSES

Keras is an open-source neural-network library written in Python and it is capable of running on top of
TensorFlow, to run this code, these codes can be seen at the links in the appendix. Firstly, the trained
weights of the pre-trained model from CONV1 layer to Fire 9 layer have been included. Secondly,
freezing all the layers expect Fire 9 layer for retraining it. Then, Adding CONV10 layer with 10 filters,
represents 10 classes instead of 1000, of size 1x1x512. Using 1000 images for each class from ImageNet
data set, 80% as the training set for the Squeeze-Net CNN (9857 images for training set) and 20% as
validation set (2468 images for validation set), the network was trained over 4 iterations. During these
iterations, the parameters of the model have varied to improve the validation accuracy. The final
parameters that results in validation accuracy 61.47% as shown in figure 79 are listed as below:

e Regularization = 0.0 (No Regularization)
e Learning Rate = 0.0001

84

e Weight Scale = 1/255

e Batch Size =32

e Epochs =64

e Optimizer = Adams optimizer

Epoch 56/64

Epoch 57/64

411/41@ [========== ——e=e]

Epoch 58/64

Epoch 59/64

411/41@ [==================c==c=ooooooo]

Epoch 66/64

411/41@ [========s==================o=2] -

Epoch 61/64

Epoch 62/64

411/41@ [============================o2] -

Epoch 63/64

- 145s

147s

- 15@s

146s

147s

- 146s

145s

411/410 [==============================] - 143s
Epoch 64/64
411/410 [==============================] - 143s

FIGURE 79: ACCURACY AFTER 4 ITERATIONS EACH OF 64 EPOCHS

6.2 OVERFLOW

353ms/step -
357ms/step -
365ms/step -
355ms/step -
357ms/step -
356ms/step -
352ms/step -
348ms/step -

348ms/step -

loss:

loss:

loss:

loss:

loss:

loss:

loss:

loss:

loss:

.1528 -

L1477 -

.1424 -

.1363 - a

.1273 -

.1299 -

L1212 -

L1121 -

acc:

acc:

acc:

acc:

acc:

acc:

: 0.6048 -

8.6077 -

©.6124 -

: 0.6088 -

©.6149 -

0.6149 -

: 9.6128 -

Chapter 6

Software Optimizations

val_loss:
val_loss:
val_loss:
val_loss:
val_loss:
val_loss:
val_loss:
5 - val_loss:

- val_loss:

=

=y

[y

[

[

.5119 -

.9348 -

.3558 -

.1115 -

.9526 -

.5148 -

.3874 -

1 - val_acc:
val_acc:
val_acc:
val_acc:
1 - val_acc:
val_acc:
val_acc:
val_acc:

val_acc:

8.6220

0.6313

0.6009

9.6424

0.6252

9.6183

9.6195

0.6471

8.6147

This design uses fixed-point representation. Some numbers overflowed causing numbers to
change in sign which caused a significant loss in accuracy. We tried several solutions to this issue. In the
following section we will discuss them and show the advantages and disadvantages of each.

6.2.1 SATURATION INSTEAD OF WRAPPING

In order to stop numbers from changing sign, a maximum limit on numbers was placed. For example, if
the fixed-point representation has 4 bits for integer part then the maximum will be24~* — 1 = 7, and
any number that exceeds this limit will be brought back to the maximum. This led to some loss in

accuracy

85

Chapter 6
Software Optimizations

255 255

255 255

Saturation Wrap

FIGURE 80: SATURATION VS WRAPPING

6.2.2 CLIPPED RELU

Applying a maximum limit on hardware causes some loss in accuracy that’s why it was better to place
the limit in software and retrain the network to deal with these new limits.

A different version of RELU activation function was utilized, it is called Clipped RELU as shown in
Fig. 81.

10 7
—RelLU
= Clipped ReLU

FIGURE 28: CLIPPED RELU VS NORMAL RELU

After experimenting on different limits, it was shown that a limit of 8 or less will cause a loss of 4% in
accuracy, and the more we increase the limit the higher the accuracy. Fig.82 shows the validation
accuracy versus iteration for different limits.

86

Chapter 6
Software Optimizations

0.75

m— Re U8
0.74 —|===RelLU16
RelLU32
0.73 —==RelUG4
== RelLU128
0.72 RelU

T)
0.7 /4’7 5‘? <-..;

0.69 /"/:(.
0.68 S /—/
0.67 7~

- 2~

FIGURE 29: VALDIATION ACCURACY FOR DIFFERENT LIMITS ON RELU FUNCTION. MOVING AVERAGE WAS
APPLIED TO DATA.

After calculating the accuracy in hardware, it was found that the accuracy is still lower compared to the
software accuracy.

6.2.3 CLIPPED RELU AND DYNAMIC FIXED POINT

The best solution was to combine the previous solution with a dynamic fixed point representation.

First layers in the network have lower range of numbers around -10, and 10 while last layers have higher
range. Different representation was used for different layers, i.e. giving the first layer fewer bits for
integer and the last layers more bits. The First layers were trained on small limits and the limits were
increased as for the last layers. Table 7 shows the limits for every layer.

Table 7: Maxiumum limit for each layer

Layer Convl, Fire2, Fire3 Fired, Fireb Fire6, Fire7 Fire8, Fire9, Conv10

Maximum 4 16 64 128

87

Chapter 6
Software Optimizations

This solution achieved the closest hardware accuracy compared to the software. And the loss in software
accuracy was almost negligible.

6.3 SUMMARY

This chapter discussed the purposed application on this design and steps to perform transfer
learning successfully and clipped RELU methods which used to achieve acceptable accuracy.in next
chapter the final results from timing, hardware simulation and power is overviewed.

88

Chapter 7
Results

CHAPTER 7. RESULTS

In this chapter results of simulation and comparison with other works will be presented.

7.1 SIMULATION RESULTS

To test the simulation results a complete MATLAB code is written for squeeze-net architecture
to compare the intermediate values between different layers such as squeeze and expand or between
different fires modules and to predict the degradation in accuracy due to limited 16-bits fixed number
representation.

HHHHHHHHHHHHHHpiKElnum= [e e e e R

ch 1=18ef
ch 2=0008
ch 3=68213
ch A=0B27e
ch 5=82dc
ch b6=148c
ch 7=02eB
ch 8=000e8

FIGURE 83-A: VALUES OF 10 CLASSES FROM RTL MODEL IN HEX

1 [10ec

2 0000
3 0215
40273
5 02ed
6 148f
7 02el
8 0000

FIGURE 83-B: VALUES OF 10 CLASSES FROM MATLAB MODEL

89

Chapter 7
Results

0.1296
0.1558
0.,1787
1.2842
0.17%7

== = R N R = e

FIGURE 83-C: VALUES OF 10 CLASSES FROM RTL MODEL IN DECIMAL

0
0.1302
0.1549
0.1802
1.2850
0.1799

0

== = R R A R

FIGURE 83-D: VALUES FROM MATLAB MODEL

As shown in figures 81, the intermediate values from hardware model and MATLAB code is very close
and the difference can be neglected and approximated in both bases’ hexadecimal and decimal. The
purpose of CNN is classifying the image therefore to determine the performance of hardware design it
should choose the correct class. As shown in figures 82, the hardware design successfully determined
the class.

Command Window

»>> results

results =

5.5302 0.464%9 0.7503 0.0878 0.3212 0.211% 0.0343 Q.1778 4.8138 0.176

> [walue,index]=max(results)

value =

5.5302

index =

90

Chapter 7
Results

FIGURE 84-A: CLASS IDENTIFICATION FROM MATLAB MODEL

» W Classifier_output[3:0] 1 Array
THE_END_output 1 Logic

FIGURE 84-B: CLASS IDENTIFICATION FROM RTL MODEL

7.2 TIMING RESULTS

In Table 8 the time taken from each layer in 100 MHz frequency is shown, it easily to be noticed
that convl layer is the bottleneck layer because of large number of input image dimensions(224*224
pixels) and large number of output filters (64 filter).

Table 8: Time for each layer in Squeeze-Net

Layer Time (ps)
Convl & poolingl 1021.725
Fire2 255.805
Fire3 & pooling2 511.325
Fired 260.765
Fire5 & pooling3 521.245
Fire6 199.955
Fire7 294.045
Fire8 397.075
Fire9 522.525
Conv10 32.035
Total 4.016 ms

91

Chapter 7
Results

The high-speed performance of hardware model can be explained by parallelism in addition to the
overlapping between layers. Expand layer starts while squeeze layer still running and pooling layer
begins while squeeze and Expand haven’t finished yet due to FIFO module that enables the start of
Expand or pooling layers even with no complete output of squeeze module is cached as explained in
chapter 3.

Fire2 Fire3

$queeze :Sql:ieeze

+—rt—>
W+2 W+2 2W+2

Time

FIGURE 85: OVERLAPPING BETWEEN DIFFERENT LAYERS IN FIRE MODULE

7.3 POWER RESULTS

Power consumption is an important metric to analyze the performance of Hardware design
compared to GPUs and to decide if it’s suitable for many applications or not. Next different methods to
reduce the consumed power are discussed.

92

Chapter 7
Results

7.3.1 METHODS TO REDUCE POWER CONSUMPTION

Registering DSP inputs: any arithmetic modules such as adders or multipliers calculate output for
every different inputs therefor if input bits from input vectors has different skews, the arithmetic
module repeats the operation for every new input until the last delayed bit reaching and the output is
settled. Registering inputs make input source is very close to DSP and skew can be neglected and
that helps a lot to reduce the switching power.

Enable signal for FIFO input: let’s take fire2 as example, the input for squeeze layer is 64 channel
and in every clock cycle squeeze module can perform operations only on 16 channels therefore the
desired output is ready after accumulation during 4 clock cycles. Instead of depending on
overwriting the values on FIFO input, using an enable signal that high every 4 cycles in fire2 stage
can help in reducing the switching power.

Enable signal for Data memory input: same idea as discussed in pervious point. Write enable signal
that is high after the desired output of Expand layer is ready can reduce a lot the writing rate in block
RAM.

7.3.2 POWER REPORT SUMMARY

Power analysis from Implemented netlist. Activity On-Chip Power
derived from constraints files, simulation files or
vectorless analysis. Dynamic: 8.286 W 2.4 %G
] . 7%

Total On-Chip Power: 8.904 W Clocks: 0.564 W T

- . - 24%
Design Power Budget: MNot Specified Signals: 1988 W 24%
Power Budget Margin: MNiA g4 11% Lagic: 0946 W 11
Junction Temperature: 35.1°C 379 BRAM: 5 06d W ST O,
Thermal Margin: 49.9°C (41.6 W) D=p- 1E19w (220
Effective SJA: 1T 22% WO 0.005 W
Power supplied to off-chip devices: 0W
Confidence level: Medium 5% Device Static: 0.518 W

Launch Power Constraint Advisor to find and fix
invalid switching activity

FIGURE 86: POWER REPORT SUMMARY FROM VIVADO TOOL

The total on-chip power in proposed design is 8.904 watt. as shown in figure 86, BRAM and DSP
consumed around 60% (5 watt) of power dissipated, therefore most of power reduction efforts are
focused on those components.

This result is obtained at frequency equals 100 MHz Power and timing has a tradeoff relationship.
Higher frequency means higher switching rate and higher power consumption therefore Energy which is
Time*Power maybe a more accurate metrics to describe the performance of the design.

93

Chapter 7
Results

Utilization Mame Clocks (W) Signals (W) Data(W) ClockEnable (W) Selt/Reset(W) Logic(W) BRAM{W) DSP (W)
v T 8.386 W (9 o top
~ I 5.199 W (58% of total fire (Fire 0152 1.363 1.363 =0.001 =0.001 0.753 1437 1.495
> [T 4.333 W (49% of total) expand (Expand) 0.07 0.897 0.897 <0.001 =0.001 0.668 1341 1.357
> W 0.448 W (5% oftotal fifo (FIFO_SQUEEZE_EXPAND_TOP! 0.07 0.357 0.357 =0.001 =0.001 0.021 =0.001 =0.001
> @ 0291 W (3 squeeze e 0.007 0.082 0.082 =0.001 =0.001 0.064 =0.001 0.138
B 0127 W(1% 0 Leaf Cells (1843
> 1 =0001TW (= delay_Expand_fire_selector_2 (Delay_.. =0.001 =0.001 =0.001 =0.001 =0.001 =0.001 =0.001 =0.001
> I 1607W(1 DATA_MEM (FingFong 0.002 0.07 0.07 =0.001 =0.001 0.001 15634 =0.001
> @ 074w otal conv_10 (Conv_10 0.037 0.206 0.206 =0.001 =0.001 0.177 =0.001 0.321
> B0329W (4 cirl_top (CTRL_Top 0.004 0313 0.279 0.013 0.021 0.012 =0.001 =0.001
> B 0D297W(3 fifo_pooling_top (FIFO_POOLING_SETS 0.297 =0.001 =0.001 =0.001 =0.001 =0.001 =0.001 =0.001
b convl_fifo (CONVI_FIFO 0.004 0.035 0.034 0.002 =0.001 0.003 0.093 <0.001
> 1 0.065W (1% 0 conv_1 (CONY_1 0.063 =0.001 =0.001 =0.001 =0.001 =0.001 =0.001 0.003
» 10007 W(=1% pooling (FOOLING 0.006 0.001 0.001 =0.001 =0.001 =0.001 =0.001 =0.001
1 0.005 W (=1% of tota Leaf Cells (94

FIGURE 87: THE POWER CONSUMED BY EACH MODULE FROM VIVADO TOOL

As shown in figure 87, expand is the most consumed module and that can be explained as it has the
major number of DSPs and weights ROMs which have a very high reading rate. Second module is the
data memory.

7.4 OTHER WORKS

In this table we compare our work, 16-bit representation with dynamic clipped-RELU activation
function, with the latest works that either implement the whole Squeeze-Net on different FPGASs or
implement one of CNNSs but with only 10 classes for a certain application, as shown in table 10.

94

Chapter 7

Results
Table 9: Comparison with different implementations for CNNs on FPGA
. This
Design [22] [23] [24] [25] implementation
De0-NANO Artix7 .
FPGA De-10 board Zyng-7020 board XC7A200T Virtex-7 VC709
CNN Squeeze-Net | Squeeze-Net VGG-Net Alex-Net Squeeze-Net
No. of Classes 1000 1000 10 10 10
Frequency
(MH2) 100 - 10 100 100
Power(watt) 2 7.95 - 1.5 8.9
Time (ms) 110 1030 21.84 4062 4.02
Energy (mJ) 220 8,188 - 6,093 35.78
0% (Over
0 0, 0 0
Accuracy 55% 57.5% 96% fitted) 66.8%
Utilization
- 0, - 0, 0,
BRAMS 80% 38.22% 67.48%
Utilization
- 0, - 0, 0
DSPs 95% 16% 73.8%
Utilization FF - 48% - 38.72% 18.44%
Utilization . 102% 27% 68.66% 22.39%
LUTS 0 0 . 0 . 0

As shown in the previous table, our implementation requires the highest power that is equal 8.9 watts,
however its latency is the smallest between the other implementations and the energy is the smallest as

well.

While in the following table, a comparison between our implementation on FPGA Virtex-7 VC709 with
2 different operating frequencies, 100MHz and 172 MHz, and our design implemented on GPU.

95

Chapter 7
Results

As in table 11, GPU requires much more power compared with the implementation on FPGA with both
operating frequencies, but its latency is smaller than the implementation on FPGA with operating
frequency 100MHz.

The accuracy is same in all cases as shown in table 11 because we retrained the model with the new
activation function, Dynamic clipped RELU, and extracted the new weights of all the layers and stored
them in our on-chip memory.

Table 10: Comparison with implementation on GPU GeForce RTX 2080 Tl

This Implementation This implementation GPU
GeForce RTX 2080T]
Frequency 100 MHz 172 MHz 1.545 GHz
Latency (msec) 4.02 2.34 3.02
Power (Watt) 8.9 17.4 55
Accuracy 69.9% 69.9% 69.9%

7.5 SUMMARY

This chapter is discussion about the final results from hardware simulation phase and the
summary of power and timing with comparison with pervious works. In next chapter the different
methods to enhance the performance of this design are shared.

96

Chapter 8
Future Work

CHAPTER 8. FUTURE WORK

In this chapter, extra modifications that can be done to implement Squeeze-Net more efficiently
with reduction in used clock cycles and FPGA resources will be presented.

8.1 WEIGHT CACHE

Weights of all Fire layers are stored together in the same Bram according to the structure shown
in section 2.2.1 However, during each stage we only need a small part of what is stored in the Bram and
this part range from 8 to 128 entries out of 1024 location in a single Bram Therefore huge power is
consumed to access these deep memories for only few entries.

Shallow memories implemented using LUTs consume less power compared to BRAMSs. Therefore, in
order to reduce Bram power consumption, we suggest adding a LUT cache of depth 128 that contains
the weights of the current processed Fire layer, as shown in figure 87. This way the BRAMSs will be
accessed one time per fire layer to load the weights in the cache, and the cache will be used instead for
processing.

Fire 2 Weights

Depth = 128

Depth = 1024

FIGURE 87: CACHE FOR WEIGHTS

97

Chapter 8
Future Work

8.2 DATA CACHE

Similar to the point 1, the pixel to be processed is re-read several times for different filters from a
very deep memory (PING-PONG). Therefore, it’s better to store the pixel in a cache and process it from
there to reduce power consumption.

8.3 PIPELINING CONV 1 AND FIRE LAYERS

The current design works by finishing Conv 1 and Pool 1 and storing their results in PING-
PONG memory and then starting the fire stage. A better solution is to Pipeline Conv 1, Pool 1, and Fire
2 altogether, as shown in figure 88. This way the latency of the design will reduce as shown in Fig#, and
the power consumption will reduce too since storing Pool 1 output and reading it for Fire 2 is now
removed as the data will enter Fire 2 directly. This will remove about 400K memory write and read
operations.

Time Time

FIGURE 88: NON-OVERLAPPING/ OVERLAPPING BETWEEN CONV-1 AND FIRE2

8.4 PIPELINING FIRE 9 AND CONV 10

Conv10 gets the data directly from fire 9 instead of saving it in data mem to reduce the sharing
resources depending on data memory as it is shared between the whole design which is causing
congestion and to save clock cycles and power.

98

Chapter 8
Future Work

8.5 FIFO POOLING REDESIGN

Redesign for module FIFO pooling as 9- Shift register get data and do pooling on them and then
start another convolution layer instead of waiting for convl to end its operation and store in data mem [
to save more utilization and reduce congestion as this module is shared between convl and the fires.

99

References

REFERENCES:

[1] Asifullah Khanl, 2*, Anabia Sohaill, Umme Zahooral, and Agsa Saeed Qureshil. A Surve

y of the
Recent Architectures of Deep Convolutional Neural Networks.

[2]https://missinglink.ai/guides/neural-network-concepts/7-types-neural-network-activation-
functions-
right/?fbclid=IwAR2qtgviulKBEMx5nZ0Y XIETZL 3RsOEqU8zkrj31G6L9zgv1UH]jPvoBIMYyO

[3] Krizhevsky, Alex et al. ImageNet Classification with Deep Convolutional Neural Networks. C

ommun.
ACM 60 (2012): 84-90.

[4] https://github.com/albanie/convnet-burden

[5] Simonyan, K. & Zisserman, A. (2014). Very Deep Convolutional Networks for Large-

Scale Image
Recognition. CoRR, abs/1409.1556.

[6] Sanjeev Arora, Aditya Bhaskara, Rong Ge, and Tengyu Ma. Provable bounds for learning so
me deep
representations.

[7] Min Lin, Qiang Chen, and Shuicheng Yan. Network in network.

[8] Christian Szegedy , Wei Liu, Yangging Jia, Pierre Sermanet , Scott Reed, Dragomir Anguelov,
Dumitru
Erhan, Vincent Vanhoucke, Andrew Rabinovich. Going deeper with convolutions.

[9] M. Everingham, L. Van Gool, C. K. Williams, J. Winn, and A. Zisserman. The Pascal Visua

| Object
Classes (VOC) Challenge.

[10]] I. J. Goodfellow, D. Warde-Farley, M. Mirza, A. Courville, and Y. Bengio. Maxout networks.

[11]] Rupesh Kumar Srivastava, Klaus Greff, Jurgen Schmidhuber. Highway Networks.

[12] Forrest N. landola, Song Han, Matthew W. Moskewicz, Khalid Ashraf, William J. Dall

Y, Kurt
Keutzer.SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and <0.5MB model size.

100

http://https/missinglink.ai/guides/neural-network-concepts/7-types-neural-network-activation-functions-right/?fbclid=IwAR2qtgvlu1KBFMx5nZ0YXIETZL3RsOEqU8zkrj3IG6L9zqv1UHjPvoBIMy0
http://https/missinglink.ai/guides/neural-network-concepts/7-types-neural-network-activation-functions-right/?fbclid=IwAR2qtgvlu1KBFMx5nZ0YXIETZL3RsOEqU8zkrj3IG6L9zqv1UHjPvoBIMy0
http://https/missinglink.ai/guides/neural-network-concepts/7-types-neural-network-activation-functions-right/?fbclid=IwAR2qtgvlu1KBFMx5nZ0YXIETZL3RsOEqU8zkrj3IG6L9zqv1UHjPvoBIMy0
http://https/github.com/albanie/convnet-burden
http://https/arxiv.org/search/cs?searchtype=author&query=Srivastava%2C+R+K
http://https/arxiv.org/search/cs?searchtype=author&query=Greff%2C+K
http://https/arxiv.org/search/cs?searchtype=author&query=Schmidhuber%2C+J
http://https/arxiv.org/search/cs?searchtype=author&query=Schmidhuber%2C+J
http://https/arxiv.org/search/cs?searchtype=author&query=Iandola%2C+F+N
http://https/arxiv.org/search/cs?searchtype=author&query=Han%2C+S
http://https/arxiv.org/search/cs?searchtype=author&query=Moskewicz%2C+M+W
http://https/arxiv.org/search/cs?searchtype=author&query=Ashraf%2C+K
http://https/arxiv.org/search/cs?searchtype=author&query=Dally%2C+W+J
http://https/arxiv.org/search/cs?searchtype=author&query=Dally%2C+W+J
http://https/arxiv.org/search/cs?searchtype=author&query=Keutzer%2C+K

References

[13] P. Gysel, M. Motamedi, and S. Ghiasi, “Hardware-
oriented Approximation of Convolutional Neural
Networks,”

[14] Gupta, S., Agrawal, A., Gopalakrishnan, K., and Narayanan, P. “Deep Learning with Limited N
umerical
Precision”.

[15] M. Motamedi, P. Gysel, V. Akella and S. Ghiasi, "Design space exploration of FPGA-

based Deep Convolutional Neural Networks,
[16] Altera Stratix 10 Website. https://www.altera.com/products/fpga/stratix-

series/stratix10/overview.html

[17] E. Nurvitadhi et al., "Can FPGAs Beat GPUs in Accelerating Next-Generation
Deep Neural Networks?”, 2017.

[18] Li, H., & Zhang, Z., & Yang, J., & Liu, L., & Wu, N. (Nov. 6, 2015). A novel vision chip
architecture for image recognition based on convolutional neural network. IEEE 2015
International Conference on ASIC (ASICON), 11th. doi: 10.1109/ASICON.2015.7516878.

[19] Ma, Y., & Suda, N., & Cao, Y., & Seo, J., & Vrudhula, S. (Sept. 29, 2016). Scalable and
modularized RTL compilation of Convolutional Neural Networks onto FPGA. International
180 Conference on Field Programmable Logic and Applications (FPL), 26th, Session
S5bCompilation. doi:10.1109/FPL.2016.7577356

[20] Lacey, G., & Taylor, G., & Areibi, S., (Feb. 13, 2016). Deep Learning on FPGAs: Past,
Present, and Future. Cornell University Library. https://arxiv.org/abs/1602.04283

[21] V. Sze et al., "Efficient Processing of Deep Neural Networks: A Tutorial and Survey",
2017.

[22] Kathirgamaraja Pradeep, Kamalakkannan Kamalavasan and Ratnasegar Natheesan,
EdgeNet: SqueezeNet like Convolution Neural Network on Embedded FPGA.

[23] Meghas Arora and Samyukta Lanka, Accelerating SqueezeNet on FPGA,
https://lankas.github.io/15-
618Project/?fbclid=IwARO0KgaJF56hJy4K60rrKBU2vdVI7hmsS4uL WCAXHVY x1VujlLmUrxI
OPOCU.

[24] Roman A. Solovyev, Alexandr A. Kalinin, Alexander G. Kustov, Dmitry V. Telpukhov,
and Vladimir S. Ruhlov, FPGA Implementation of Convolutional Neural Networks with Fixed-
Point Calculations.

101

https://www.altera.com/products/fpga/stratix-series/stratix10/overview.html
https://www.altera.com/products/fpga/stratix-series/stratix10/overview.html
https://arxiv.org/abs/1602.04283
https://lankas.github.io/15-618Project/?fbclid=IwAR0KgaJF56hJy4K6orrKBU2vdVI7hmsS4uLWC4xHVYx1VujILmUrxI0POCU
https://lankas.github.io/15-618Project/?fbclid=IwAR0KgaJF56hJy4K6orrKBU2vdVI7hmsS4uLWC4xHVYx1VujILmUrxI0POCU
https://lankas.github.io/15-618Project/?fbclid=IwAR0KgaJF56hJy4K6orrKBU2vdVI7hmsS4uLWC4xHVYx1VujILmUrxI0POCU

References

[25] Mark A. Espinosa, IMPLEMENTATION OF CONVOLUTIONAL NEURAL
NETWORKS IN FPGA FOR IMAGE CLASSIFICATION.

[26] XILINX, Vivado Design SuiteUser Guide Programming and Debugging UG908 (v2018.2)
June 6, 2018.

[27] XILINX, VC709 Evaluation Board for the Virtex-7 FPGA User Guide UG887 (v1.6) March
11, 20109.

[28] XILINX, Vivado Design Suite User Guide Using Constraints UG903 (v2018.3) December
5, 2018.

[29] XILINX, VC709 Si570 Programming October 2013.
[30] XILINX, Vivado Design Suite User Guide Synthesis UG901 (v2019.1) June 12, 2019.

[31] XILINX, Vivado Design Suite User Guide Release Notes, Installation, and Licensing
UG973 (v2015.4) November 18, 2015.

[32] XILINX, Vivado Design Suite User Guide: Logic Simulaton UG900 (v2019.2) October 30,
2019.

102

