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Abstract 

Automobile security is a demanding field of enhancement. High theft rates side 

by side with the new cyber threats for in-vehicle network have directed the attention 

towards applying new technologies to leverage car security. For this reason, a system 

is proposed using face recognition to identify the car driver, and also to apply security 

concepts to controller area network (CAN) to secure the communication between 

vehicle parts. 
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Chapter 1: Introduction 

1.1 Motivation 

When future and its technologies are mentioned no one can omit the fact that 

the two most developing and promising technologies that keeps people looking forward 

to what is new: are machine/deep learning and internet of things (IOT). Those 

technologies are being gradually added to every and each factor of our modern lives.  

Creating machines that think have been a dream for a long time. Now computers are 

told what to do, breaking big problems up into many small, precisely defined tasks that 

the computer can easily perform. By contrast, we don’t tell the computer how to solve 

our problem. Instead, it learns from observational data, figuring out its own solution to 

the desired problem. That’s how machine learning is introduced. 

Deep learning is a subset of machine learning in artificial intelligence (AI) that has 

networks capable of learning from data without external interfering, these networks are 

called neural networks. In recent years, neural networks have won numerous contests 

in pattern recognition, and currently provide the best solutions to many problems in 

computer vision, speech recognition, and natural language processing. 

Among different types of deep neural networks, convolutional neural networks (CNNs) 

have been most extensively used with visual document tasks, specifically image-related 

problems such as classification or scene parsing because the convolution operation captures  

the 2D nature of images, also it was reported that learning process using CNN for image 

classification was "surprisingly fast", and one of the reasons that made usage of CNNs 

has increased in the last few years was that datasets of Large Scale Visual Recognition 

Challenge (ILSVRC) [1] have become available for training and validation. 

Face recognition is one of CNNs applications that has been from the most challenging 

and attractive areas of computer vision. Face recognition is a method of identifying or 

verifying the identity of a person using their face. Hence, people in photos, video, or in 

real-time can be identified using face recognition systems. In the near future, face 

recognition technology will likely become more widely spread. It may be used to track 

individuals’ movements out in the world.  

https://www.investopedia.com/terms/m/machine-learning.asp
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Internet of things made the idea of having far things monitored and under control come 

true. Remaining at your own seat you can check on your house, your car, your business 

and whatever that concerns you, and even have the ability to manipulate them over the 

air. IOT is also employed in many industrial applications where it gives the machines 

in factories the ability to communicate and exchange data. 

The idea is to add connectivity to all objects and also give them the ability to process 

data that they send and receive. This opens the door to a vast range of new applications 

that was only defined as imagination before. Smart city is an application in which IOT 

connects city objects together in order to control traffic, water distribution and various 

city related problems. Smart farming introduces the same concept to manage farms. 

IOT can also be used to monitor goods being transmitted and shipped all over the world. 

Trucks and buses owners can also monitor their fleets by only setting in front of a 

computer screen. 

Implementing IOT connectivity to vehicles was indeed a great addition to automotive 

domain. Making the vehicle connected, it can be monitored and even can be given 

commands remotely. Furthermore, employing a large number of connected cars and all 

the sensors they have, they can be a vital source of collecting data from every part of 

the world. In this era of artificial intelligence and big data, this data collection network 

formed by connected cars can lead to a huge growth in data available for training 

machine learning models or data analytics purposes.  

IOT does not only connect a car to the internet, it also introduces V-2-V (vehicle to 

vehicle communication) and V-2-X (vehicle to infrastructure). When cars on the road 

are interconnected they can give each other information about which is the best route 

to take for a certain destination, locate congestions and even avoid accidents. 
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1.2 Problem Definition 

1.2.1 Car Theft  

Car theft is one of the major problems facing car owners. According to statistics 

a chart of the number of motor vehicles thefts reported in England and whales across 

time is depicted below in Figure 1-1. This chart gives an intuition of the losses sustained 

by car owners due to car thefts, which is actually more severe in other parts of the world 

rather than England [2] 

Automotive industry is now revolutionized by new technologies leading to new trends 

e.g. autonomous driving and smart driver assistant systems (DAS). However, the 

security of automobiles did not experience as much development as other automotive 

aspects. More attention has to be directed to employing new technologies such as 

artificial intelligence in building more mature and reliable car security systems. 

 

Figure 1-1: Number of motor vehicle theft offences recorded in England and Wales from 2002/03 to 

2018/19 

1.2.2 CAN Security 

Recently, after the increasing interest in IOT, connected vehicles, V-2-V 

(vehicle to vehicle) and V-2-X (vehicle to infrastructure) technologies, a new car 

security threat came to light. This new threat gained huge attention after an incident in 

which two security researchers -named Charlie Miller and Chris Valasek- were able to 
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remotely manipulate a number of functions in a modern Jeep vehicle shown in Figure 

1-2, and they were also able to stop its engine on a highway. They aimed to reveal the 

vulnerabilities in the car. This was not their first attempt to hack a vehicle; they were 

also able to manipulate a Toyota Prius and a Ford Escape after they gained wired 

connection to the internal CAN bus of both (through the OBD II port in the vehicles) 

[3]. 

 

Figure 1-2: The hacked Jeep 

 In vehicle controller area network (CAN) is the network dedicated for the operating 

electronic control units (ECU) to communicate. This network is the medium for 

transmitting all the critical commands among car ECUs. However, when CAN network 

was first designed at 1983 by Robert Bosch, the only concern was to guarantee reliable 

data transfer between car ECUs under the real time constrains defined by car 

performance specs. The fact that the cars will evolve to be communicating devices, 

besides being transportation means, was not then taken into consideration. The moment 

science thought of connecting a vehicle to internet or to other vehicles, a huge surface 

of vulnerabilities appeared. These vulnerabilities made CAN bus security a demanding 

field of enhancement.  

Besides the importance of preventing CAN bus attacks to car owner’s safety and 

security in general. It is particularly important when intending to design anti-theft car 

security system, because if an attacker is able to hack the network, the attacker will 

obviously be able to counter whatever measures the security system will take to prevent 

the robbery.  
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1.3 Solution 

The proposed solution introduces a security system to stand against car theft 

attempts. System parts are illustrated in Figure 1-3. The system is based mainly on 

equipping the vehicle with face recognition module to define the person in front of the 

wheel, and make sure it is the authorized owner. In case it is not, the car will then have 

connection to the owner’s cell phone to have the permission to move. In case it is not 

the car owner, and not someone trusted by the car owner the car may then lock itself, 

and contact the police station if needed. The car will also be equipped with GPS module 

to give the owner the ability to track his car through his mobile phone, and to define 

its’ location in case of emergencies. 

For the purpose of in-vehicle network security the proposed solution starts first at 

analyzing the defined threat model in CAN bus. This threat model analysis will result 

in a solid knowledge of CAN bus common security attacks. Then, countermeasures will 

be added to the communication system on CAN bus to eliminate or limit the ability of 

those attacks.   

 

Figure 1-3: Proposed system 

 

 



6 

 

1.4 Organization 

The following chapters will discuss the work done to achieve the proposed 

system for improved vehicles security. The two major points of investigation and 

discussion in this system will be the face recognition module and the in-vehicle network 

security module. Each of them will be discussed separately and in details. The flow will 

include the face recognition module in chapters 2, 3 and 4 starting from some basic 

knowledge about the deployed technology, literature survey, system details, reached 

results and some suggested future work to improve the system. 

Then CAN security system will be discussed in chapters 5, 6 and 7 which will expose 

basic info about in-vehicle CAN and the communication nature in the network, study 

the previous work in the domain, state the proposed system elements, describe system 

performance and point to some future work in the way to more developed CAN bus 

security system.  
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Face Recognition 

Chapter 2: Background and Related Work 

2.1 Neural Networks 

2.1.1 Overview 

Neural networks are multi-layer networks of neurons that we use to classify 

things, make predictions, etc. It’s called a neural network as it works similarly to the 

human brain’s neural network. A “neuron” is considered a mathematical function that 

collects and classifies information based on a specific architecture. A typical neural 

network consists of input layer, hidden layers and output layer as shown in Figure 2-1. 

The input layer collects input patterns. The output layer has classifications according to 

input pattern. Hidden layers tune the input weightings until the margin of error is 

minimal.  

 

Figure 2-1: Neural Network 
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2.1.2 Forward and Backward Propagation 

Forward propagation is the operation of the calculation and storage of 

intermediate variables for the neural network from the input layer to the output layer 

[4]. In the forward propagation, the weights and bias are initialized randomly in the 

beginning. Then the weighted sum of activation and bias (z) is calculated. After 

obtaining z, the activation function can be applied to it which will be discussed later. 

𝑧 = 𝐼𝑛𝑝𝑢𝑡𝑖 ×  𝑤𝑖 + 𝑏 

Backpropagation is the method of calculating the gradient of neural network 

parameters. Therefore, the method traverses the network, from the output to the input 

layer. We can define a cost function that measures how good our neural network 

performs which will be discussed in detail later. For a certain input, and desired output, 

y, the cost of a specific training example can be calculated as the square of the 

difference between the network’s output and the desired output, that is: 

𝐶𝑘 = (𝑂𝑢𝑡𝑝𝑢𝑡 − 𝑦)2 

The overall cost of a training set is the average of the individual cost functions of the 

data in the training set. For the purpose of improving the performance of the neural 

network on the training examples, the weights and bias are tuned, and hopefully, lower 

the total cost. In order to know how much the specific weights and bias affect the total 

cost, the partial derivatives of the total cost with respect to the weights and bias are 

calculated using the chain rule. Then the weights and bias are updated like this 

𝑤𝑖 = 𝑤𝑖 − 𝛼 𝑑𝑤𝑖 

𝑏 = 𝑏 − 𝛼 𝑑𝑏 

where 𝛼 is the learning rate. After finishing the first iteration of the backward 

propagation. The forward propagation can be proceeded, calculate the cost, and then go 

back to the backward propagation again as shown in Figure 2-2. 
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Figure 2-2: Forward and Backward Propagation 

 

2.1.3 Activation Functions 

Neural network activation functions are a significant component of deep 

learning. Activation functions are mathematical equations that determine the output of 

neural network like yes or no. They map the resulting values in between 0 to 1 or -1 to 

1 etc. (depending upon the function). Activation functions introduce non-linearity into 

the output of a neuron and the purpose of non-linearity in a neural network is to produce 

a nonlinear decision boundary via non-linear combinations of the weight and inputs. 

Activation functions also affect greatly on the ability of neural network to converge and 

the convergence speed, or in some cases, they might prevent neural networks from 

converging in the first place [5]. They are applied after the hidden layers and the output 

layer. Types of activation functions as shown in Figure 2-3 are: 
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2.1.3.1 Sigmoid Function 

It is a function which has a graph that looks like ‘S’ shaped graph. It is represented by 

this equation: 

𝜎(𝑧) =
1

1 + 𝑒−𝑧
 

where 𝜎(𝑧) is between 0 and 1. It is usually used in output layer of a binary 

classification due to its range. 

2.1.3.2 Tanh Function 

This function works almost always better than sigmoid function. It is actually 

mathematically shifted version of the sigmoid function and also known as Tangent 

Hyperbolic function. It is represented by this equation: 

tanh(𝑧) =
𝑒𝑧 − 𝑒−𝑧

𝑒𝑧 + 𝑒−𝑧
 

where tanh(𝑧) is between -1 and 1. It is usually used in hidden layers of a neural 

network as its values lies between -1 to 1 hence the mean for the hidden layer comes 

out be 0 or very close to it. This increases the capability of learning for the next layer. 

2.1.3.3 ReLU Function 

It stands for Rectified linear unit. It is the most widely used activation function. Since, 

it is used in almost all the convolutional neural networks. It is represented by this 

equation: 

𝑅(𝑧) = max (0, 𝑧) 

where 𝑅(𝑧) is between 0 and ∞. It is less computationally expensive than tanh and 

sigmoid because it involves simpler mathematical operations. 

 

Figure 2-3: Types of Activation Functions 
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2.1.4 Cost Function 

A cost function is a method to determine the error between the output of the 

network and the given target value. Cost function is expressed as the square of 

difference between the predicted value and the actual one. It can be estimated by 

running the model iteratively in order to compare the actual values against the estimated 

predictions. 

The purpose of cost function is to be minimized as shown in Figure 2-4, then returned 

value is usually called cost, loss or error. The goal is to find the values of model 

parameters for which cost function return as small number as possible, and the way to 

do that is by using gradient descent which is an efficient optimization algorithm that 

attempts to find a local or global minima of a function. Gradient descent enables a 

model to learn the direction that the model should take in order to reduce errors. As the 

model iterates, it gradually converges towards a minimum where the parameters 

produce little or zero changes in the loss. 

 

Figure 2-4: Cost Function vs. number of iterations 
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2.2 Convolutional Neural Networks 

Convolutional Neural Networks are so similar to ordinary Neural Networks. 

They are made up of neurons that have learnable weights and biases. Each neuron is 

fed with some inputs, performs a dot product and optionally follows it with an activation 

function. And they are finished with a loss function (e.g. SVM/Softmax) on the last 

fully-connected layer [6]. 

So what changes? CNN architectures make the explicit assumption that the inputs are 

visual data such as images. A CNN is composed of two basic parts which are feature 

extraction and classification as shown in Figure 2-5. Feature extraction includes many 

convolution layers that can be followed by max-pooling and an activation function. The 

classifier usually consists of fully connected layers.   

 

Figure 2-5: Convolutional Neural Network 

2.3 Convolutional Neural Network Layers 

2.3.1 Convolutional Layer 

The convolutional layer is the basic building block of a Convolutional Neural 

Network. It is the first layer that extract features from an input image using convolution 

operation that utilizes small squares of input data in order to learn features of image. It 

is a mathematical operation that is applied on two inputs such as image matrix and a 

filter. 

The convolutional layer’s parameters consist of a set of learnable filters. Every filter 

has width and height smaller than the width and the height of input volume, but has the 

same number of channels. For example, the first layer of CNN might have size 5x5x3 

which means that the input image is RGB or has 3 channels. 
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Figure 2-6: Convolution Operation 

 

During the forward pass in Figure 2-6, we slide and convolve each filter across the 

width and height of the input volume and compute dot products between the entries of 

the filter and the input at any position. And then a 2-dimensional activation map will 

be produced that gives the responses of that filter at every spatial position. Every filter 

will produce some type of visual feature such as a blotch of some color or edge of some 

orientation on the first layer, or eventually wheel-like patterns or entire honeycomb on 

higher layers of the network. 

 

2.3.2 Pooling layer 

Section of pooling layers will lower the number of parameters when the images 

are too large. Spatial pooling also known as subsampling or downsampling which 

reduces each map’s dimensionality but retains important details.  

Spatial pooling can be of different types: 

 Max Pooling 

 Average Pooling 

 Sum Pooling 

Max pooling as shown in Figure 2-7 is taken from the rectified feature map as the largest 

dimension. The pooling units may also perform other functions, such as average 

pooling, or even L2-norm pooling, in addition to max pooling. Average pooling has 

often been used traditionally but recently has fallen out of favor in contrast with the 

max pooling system, which has been shown to perform better in practice. 
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Figure 2-7: Max Pooling 

 

2.3.3 Fully connected layer 

This layer is called as fully connected layer as it connects every neuron in one layer to 

every neuron in another layer. 

 

Figure 2-8: Fully Connected Layers 

 

In Figure 2-8, the feature map matrix will be converted as vector (x1, x2, x3 and x4). 

With the fully connected layers, these features are combined together to create a model. 

Finally, an activation function such as softmax or sigmoid is applied to classify the 

outputs. 
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2.4 Classic Architectures 

2.4.1 LeNet-5 

LeNet-5, a 7-layer convolutional network by LeCun et al in 1998 that classifies 

digits. Several banks used it to recognize hand-written numbers on checks digitized in 

32x32 pixel greyscale input images. The LeNet-5 architecture is constrained by the 

availability of computing resources. Since, the ability to process higher resolution 

images requires larger and more convolutional layers [7]. The architecture consists of 

two sets of convolutional and average pooling layers, followed by a fully-connected 

convolutional layer, then a fully-connected layer and finally a softmax classifier as 

shown in Figure 2-9. 

 

Figure 2-9: LeNet-5 Architecture 

2.4.2 AlexNet 

AlexNet is a Deep Convolutional Neural Network (CNN) for image 

classification that won the ILSVRC-2012 competition and achieved a winning top-5 

test error rate of 15.3%, compared to 26.2% achieved by the second-best entry, named 

after Alex Krizhevsky, who was the first author of the paper describing this work. The 

network had a very similar architecture as LeNet-5 but was deeper, with more filters 

per layer, and with stacked convolutional layers.  

AlexNet has 5 convolutional layers and 3 fully connected layers. And between them, 

there are some pooling and activation layers. AlexNet input starts with 227×227×3 

images. And then the first layer applies a set of 96 of 11×11 filters with a stride of 4. 

And because it uses a large stride of 4, the dimensions shrinks to 55×55. And then it 

applies max pooling with a 3×3 filter and a stride of 2. So this reduces the volume to 

27×27×96, and then it performs a 5×5 same convolution, same padding, so it ends up 

http://yann.lecun.com/exdb/publis/pdf/lecun-98.pdf
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with 27×27×276. Followed by max pooling again, this reduces the height and width to 

13. And then another same convolution, so same padding. So it’s now 13×13×384. 

And then 3×3, same convolution again. Then 3×3, same convolution. Then max pool, 

brings it down to 6×6×256. If all these numbers are multiplied, 6×6×256, that’s 9216. 

And then finally, it has a few fully connected layers that uses a softmax to output which 

one of classes the object could be as shown in Figure 2-10. AlexNet had about 60 

million parameters. 

 

 

Figure 2-10: AlexNet Architecture 

 

AlexNet made a number of changes that helped in developing networks that came after 

such as using ReLU instead of Tanh to add non-linearity which accelerates the speed 

by 6 times at the same accuracy, using dropout instead of regularization to handle 

overfitting, and using spatial pooling to reduce the size of network which reduces the 

top-1 and top-5 error rates by 0.4% and 0.3%, respectively. 

 

2.4.3 VGG-16 

VGG-16 is a convolutional neural network by K. Simonyan and A. Zisserman 

from the University of Oxford. VGG-16 achieves 92.7% top-5 test accuracy in 

ImageNet, which is a dataset of over 14 million images. VGG-16 model was one of the 

famous models submitted to ILSVRC-2014. It makes improvement over AlexNet by 

replacing large kernel-sized filters with multiple 3×3 kernel-sized filters. 

http://www.image-net.org/challenges/LSVRC/2014/results
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The input to conv1 layer is of fixed size 224×224 RGB image. The image is passed 

through a stack of convolutional layers, where the filters were used with a very small 

receptive field 3×3. Convolution filters of 1×1 is also utilized in one of the 

configurations, which can be considered as a linear transformation of the input 

channels. The convolution stride is fixed to 1 pixel. Spatial pooling is done by five max-

pooling layers, which follow some of the convolutional layers. Max-pooling is 

performed over a 2×2 window, with stride 2. Three Fully-Connected layers follow a 

stack of convolutional layers followed by a softmax layer. All hidden layers are 

equipped with the rectification non-linearity as shown in Figure 2-11. The network 

contains almost 140 million parameters. 

 

Figure 2-11: VGG-16 Architecture 
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Chapter 3: System Design 

Face recognition is the task of making a positive identification of face in a photo 

or video against a pre-existing database of faces. It begins with detecting and 

distinguishing human faces from other objects in the image and then works on 

identification of those detected faces. 

Face recognition technology based on CNN has become the main method adapted in 

the field of face recognition, so we use convolutional Siamese network for face 

recognition which is one of the most popularly one-shot learning algorithms. 

In our project we first tried a pre-trained face recognition model, then we build our 

model to achieve the objective of identification before sending the required result over 

communication protocol. 

In this chapter, we will discuss the models we used in face recognition, how they work 

and our contribution to make them fit the objective of face identification. We also will 

discuss the liveness detection and our chosen technique to make sure there is a live 

person in front of the camera. So the flow of work will be as follow: 

 First, a pre-trained model for face recognition have been applied 

 We started to build our model from scratch and we did our best to achieve the 

best accuracy, so we can summarize our work in some points: 

 Choosing the CNN architecture which achieve high accuracy. 

 Choosing the dataset which the model can be trained on. 

 Dividing the dataset into pairs (positive and negative pairs) 

 Using one shot learning to train the pairs of images. 

 Choosing similarity function to compute similarity between input 

images. 

 Choosing activation function that turns the output to 0 or 1. 

 Implementing the liveness detection using eye blink detection technique. 

All previous points will be discussed in this chapter. 
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3.1 Pre-trained Model  

This pre-trained model uses dlib liberary to perform face recognition. It uses 

ResNet network with 29 conv layers which is essentially a version of the ResNet-34 

network. And it has accuracy of 99.38% on the standard Labeled Faces in the Wild 

benchmark.  

To build face recognition system, first face detection should be performed, and then 

face embedding would be extracted from each face using deep learning. The next step 

is to train face recognition model on the embedding and finally recognize faces in 

images or in a video stream. 

 

Figure 3-1: Pre-trained Model Pipeline 

                        

As shown in Figure 3-1, dlib liberary and deep learning are applied together to: 

1. Detect faces 

2. Compute 128-d face embedding to quantify a face 

3. Train the network  

4. Recognize faces in images and video streams 
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3.1.1 Face Detection 

Face detection is a necessary step before applying face recognition as it is 

important to feed the network with person’s face cropped without any objects around 

him, which makes the model to work efficiently. 

Face detector in this model is applied using dlib library, it is divided into two methods: 

3.1.1.1 HoG Face Detector in Dlib 

This is a widely used model of face detection, based on HoG and SVM features. 

The model is built out of 5 HOG filters: front looking, left looking, right looking, front 

looking but rotated left, and a front looking but rotated right. The training dataset 

consists of 2825 images from the LFW dataset. The pros of this method can be 

explained as follows: 

1. Fastest method on CPU 

2. Works very well for frontal and slightly non-frontal faces 

3. Light-weight model as compared to the other three. 

4. Works under small occlusion 

This approach essentially works in most cases except for those cases that will be 

discussed below: 

Cons 

1. The major drawback is that it does not detect small faces as it is trained for 

minimum face size of 80×80. Thus, the face size must be more than that in the 

application. You can however, train your own face detector for smaller sized 

faces. The bounding box often excludes part of forehead and even part of chin 

sometimes. 

2. Does not work very well under substantial occlusion 

3. Does not work for side face and extreme non-frontal faces, like looking down 

or up. 
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3.1.1.2 CNN Face Detector in Dlib  

This approach uses a CNN based Maximum-Margin Object Detector (MMOD). 

The training process is very easy for this system, and you do not need a large amount 

of data to train a custom object detector. It uses a dataset manually labeled, consisting 

of images from various datasets like ImageNet, PASCAL VOC, VGG, WIDER, Face 

Scrub. It contains 7220 images.  

Pros 

1. Works for different face orientations 

2. Robust to occlusion 

3. Works very fast on GPU 

4. Very easy training process 

Cons 

1. Very slow on CPU 

2. The bounding box is even smaller than the HoG detector 

However, the model gives the user the ability to choose one of these two methods 

depending on his requirements or his application. 

 

3.1.2 Embedding extraction  

Deep learning works with face recognition by using a technique called deep 

metric learning. In deep learning, it’s known that the network is trained to output a 

classification or a label for that image. 

However, deep metric learning is different, instead of trying to output a single label, 

the network is outputting a real-valued feature vector. For the dlib face recognition 

network, the feature vector used to quantify the face is 128-d. 

After detecting the face from the given images and initializing the parameters, the 

network extracts the 128-diminsion encoding for each face in the images as shown in 

Figure 3-2. 
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Figure 3-2: Embedding Extraction     

   

3.1.3 Training the model 

Training the network is done using triplets, two of these images are of the same 

person and third image is a random face from the dataset and is a different person as 

shown in Figure 3-3.  

 

Figure 3-3: Triplet Training 
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First, the network constructs the 128-dimension embedding for each face. From there, 

the general idea is to learn the weights of the neural network so that the 128-d 

embedding of the same person will be closer to each other and farther from the third 

embedding. 

3.1.4 Recognizing faces 

Now, the model becomes ready to recognize faces from any image by 

quantifying the face and extracting 128-d face embedding, then comparing it with all 

faces embedding in the database to know if this person is one of the known faces or not.   
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3.2 ResNet 

Researchers observed that when it comes to convolutional neural networks “the 

deeper the better”. However, it’s been noticed that after some depth, the performance 

degrades and accuracy gets saturated. To overcome this problem, a deep residual 

learning framework is introduced which is also called ResNet. The chosen CNN 

architecture for training is ResNet due to its high accuracy which is needed in face 

recognition application to identify people correctly.  

3.2.1 Overview 

Deep Residual Network is almost similar to the networks which have 

convolution, pooling, activation and fully-connected layers stacked one over the other. 

The only construction to the simple network to make it a residual network is the identity 

connection between the layers which will be discussed later. ResNet won 1st place in 

the ILSVRC 2015 classification competition with top-5 error rate of 3.57% (An 

ensemble model) and also won the 1st place in ILSVRC and COCO 2015 competition 

in ImageNet Detection, ImageNet localization, Coco detection and Coco segmentation. 

There are multiple versions of ResNet architectures such as ResNet-34, ResNet-50 and 

ResNet-152 etc. but the choice is on ResNet-34 and ResNet-50 since they are not very 

deep so they can avoid overfitting. ResNet-34 has top-1 error rate of 21.84% and top-5 

error rate of 5.71% while ResNet-50 has top-1 error rate of 20.74 % and top-5 error rate 

of 5.25% on ImageNet validation set. 

3.2.2 Network Architecture 

ResNet-34 consists of 34 layers and 21.8 million parameters. It consists of 

convolutional layers, average pooling and a fully connected layer and has 3.6 billion 

FLOPs (multiply-adds). 

To illustrate the architecture well, two models are described as follows: 

Plain Network: This network (Figure 3-4, middle) is based on VGG nets (Figure 3-4, 

left). The convolutional layers mostly contains 3x3 filters and follow two simple design 

rules:  

 The number of filters is doubled if the feature map size is halved to preserve 

the time complexity per layer. 
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 The layers have the same number of filters for the same output feature map 

size.  

Convolutional layers that have a stride of 2 are responsible of downsampling in the 

network. The network ends with a global average pooling layer and a 1000-way fully-

connected layer with softmax. The total number of weighted layers is 34. It is noticed 

that the plain model has fewer filters and lower complexity than VGG nets since 

number of FLOPs is only 18% of VGG-19 (19.6 billion FLOPs).  

Residual Network: Based on the above plain network, shortcut connections are 

inserted (Figure 3-4, right) which turn the network into its counterpart residual version. 

The identity shortcuts can be directly used when the input and output are of the same 

dimensions (solid line shortcuts in Figure 3-4). When the dimensions increase (dotted 

line shortcuts in Figure 3-4) [8]. 

Each layer contains parameters which are composed of weights and biases and are 

needed in convolution operation, detailed description of layers and parameters are given 

in Table 3-1 where the image input size is 224×224×3 and batch normalization is 

applied right after each convolution and before activation. 
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Figure 3-4: Network Architectures. Left: VGG-19 model. Middle: Plain Network. Right: Residual 

Network 
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Table 3-1: Detailed Description of all ResNet-34 Layers and their Parameters 

ID Layer Name Layer Type Kernel Stride Padding Output Size #Params 

1 Conv1 Convolution  7×7 2 3 112×112×64 9.728K 

Pool1 Max Pooling 3×3 2 1 56×56×64 - 

2 Conv2_a1 Convolution 3×3 1 1 56×56×64 37.184K 

3 Conv2_a2 Convolution 3×3 1 1 56×56×64 37.184K 

4 Conv2_b1 Convolution 3×3 1 1 56×56×64 37.184K 

5 Conv2_b2 Convolution 3×3 1 1 56×56×64 37.184K 

6 Conv2_c1 Convolution 3×3 1 1 56×56×64 37.184K 

7 Conv2_c2 Convolution 3×3 1 1 56×56×64 37.184K 

8 Conv3_a1 Convolution 3×3 2 1 28×28×128 83.2K 

9 Conv3_a2 Convolution 3×3 1 1 28×28×128 148.096K 

10 Conv3_b1 Convolution 3×3 1 1 28×28×128 148.096K 

11 Conv3_b2 Convolution 3×3 1 1 28×28×128 148.096K 

12 Conv3_c1 Convolution 3×3 1 1 28×28×128 148.096K 

13 Conv3_c2 Convolution 3×3 1 1 28×28×128 148.096K 

14 Conv3_d1 Convolution 3×3 1 1 28×28×128 148.096K 

15 Conv3_d2 Convolution 3×3 1 1 28×28×128 148.096K 

16 Conv4_a1 Convolution 3×3 2 1 14×14×256 330.24K 

17 Conv4_a2 Convolution 3×3 1 1 14×14×256 591.104K 

18 Conv4_b1 Convolution 3×3 1 1 14×14×256 591.104K 

19 Conv4_b2 Convolution 3×3 1 1 14×14×256 591.104K 

20 Conv4_c1 Convolution 3×3 1 1 14×14×256 591.104K 

21 Conv4_c2 Convolution 3×3 1 1 14×14×256 591.104K 

22 Conv4_d1 Convolution 3×3 1 1 14×14×256 591.104K 

23 Conv4_d2 Convolution 3×3 1 1 14×14×256 591.104K 

24 Conv4_e1 Convolution 3×3 1 1 14×14×256 591.104K 

25 Conv4_e2 Convolution 3×3 1 1 14×14×256 591.104K 

26 Conv4_f1 Convolution 3×3 1 1 14×14×256 591.104K 

27 Conv4_f2 Convolution 3×3 1 1 14×14×256 591.104K 

28 Conv5_a1 Convolution 3×3 2 1 7×7×512 1.31584M 

29 Conv5_a2 Convolution 3×3 1 1 7×7×512 2.361856M 

30 Conv5_b1 Convolution 3×3 1 1 7×7×512 2.361856M 

31 Conv5_b2 Convolution 3×3 1 1 7×7×512 2.361856M 

32 Conv5_c1 Convolution 3×3 1 1 7×7×512 2.361856M 

33 Conv5_c2 Convolution 3×3 1 1 7×7×512 2.361856M 

Avg_pool Average Pooling 7×7 1 0 1×1×512 - 

34 1000-d_fc Fully Connected - - - 1000 513K 

 



28 

 

3.2.2.1 Identity Block  

The identity block is the standard block used in ResNets, and corresponds to the 

case where the input activation has the same dimension as the output activation. To 

illustrate the different steps of what happens in a ResNet’s identity block, Figure 3-5 

shows the individual steps as the lower path is the main path, and the upper path is the 

shortcut path which skips 2 layers.  

 

Figure 3-5: Identity Block 

3.2.2.2 Convolutional Block 

The ResNet convolutional block is the second block type. This type of block is 

used when the input and output dimensions don’t match up. The difference with the 

identity block is the existence of a convolutional layer in the shortcut path as shown in 

Figure 3-6. This convolutional layer is used to resize the input in order to make the 

input and output dimensions match up in the final addition needed to add the shortcut 

value back to the main path. 

 

Figure 3-6: Convolutional Block 

 

ResNet-50 is similar to ResNet-34, but each 2-layer block in the 34-layer is replaced 

with a 3-layer block, resulting in a 50-layer ResNet and it has 25.6 million parameters. 
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3.3 VGGFace2 Dataset 

Datasets are an integral part of the field of machine learning. In computer vision, 

face images have been used extensively to develop facial recognition systems, face 

detection, and many other applications that use images of faces. Table 3-2 shows the 

comparison of several face datasets. The chosen dataset for training is VGGFace2 

which is a large-scale face recognition dataset. Images are downloaded from Google 

Image Search and have large variations in pose, age, illumination, ethnicity and 

profession as shown in Figure 3-7. The dataset contains 3.31 million faces of more than 

9000 identities, with an average of 362.6 images for each identity. It contains images 

from identities spanning a wide range of different ethnicities, accents, professions and 

ages. All face images are captured "in the wild", with pose and emotion variations and 

different lighting and occlusion conditions [9]. The dataset is divided into two parts: 

one for training which contains 8631 classes, and the other is for test which contains 

500 classes. 

 

Table 3-2: Statistics for recent public face datasets 

Datasets # of identities # of images year 

LFW 5, 749 13, 233 2007 

YTF 1, 595 3, 425 videos 2011 

CelebFaces+ 10, 177 202, 599 2014 

CASIA-WebFace 10, 575 494, 414 2014 

IJB-A 500 5, 712 images, 2, 085 videos 2015 

IJB-B 1, 845 11, 754 images, 7, 011 videos 2017 

IJB-C 3, 531 31, 334 images, 11, 779 videos 2018 

VGGFace 2, 622 2.6 M 2015 

MegaFace 690, 572 4.7 M 2016 

MS-Celeb-1M 100, 000 10 M 2016 

UMDFaces 8, 501 367, 920 2016 

UMDFaces-Videos 3, 107 22, 075 videos 2017 

VGGFace2 9, 131 3.31 M 2018 

 

https://en.wikipedia.org/wiki/Computer_vision
https://en.wikipedia.org/wiki/Facial_recognition_system
https://en.wikipedia.org/wiki/Face_detection
https://en.wikipedia.org/wiki/Face_detection
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Figure 3-7: (a-b) VGGFace2 poses and ages’ statistics. (c-j) example images for eight subjects with 

different ethnicities. 
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3.4 Training 

3.4.1 One Shot Learning 

In the previous chapter, we talked about Convolutional Neural Network and 

how it works. In this section, we will discuss using CNN to apply face recognition. 

One of the challenges that faces us that we need to recognize a person given one single 

image for the person’s face, but historically, deep learning algorithms can’t work well 

if we have only one training example. So we have to use one shot learning and similarity 

function to do this job.  

The main idea of one shot learning based on computing similarity between the input 

image and all images in the database to recognize which person in the database is more 

likely to be the same person in the input image as shown in Figure 3-8. A good way to 

do this is to use a Siamese network: through a sequence of convolutional, pooling and 

fully connected layers, we end up with a feature vector of let’s say 128 numbers.  

 

 

Figure 3-8: One Shot Learning 
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3.4.1.1 Siamese Neural Network (SNN) 

Siamese Networks are a type of Neural Networks which have multiple instance 

of the same model by sharing same architecture and same weights. Siamese Network 

solves the problem when we need to add or remove new persons to the data, in 

Traditional Neural Network we have to update the neural network and retrain it on the 

new dataset. On the other hand, SNN uses similarity function to compare the encodings 

of the two images as shown in Figure 3-9. Thus we can learn it to know if they are the 

same persons or not. 

 

Figure 3-9: Siamese Network 

 

Goal of learning SNN 

In deep neural network the word learn means to get the parameters well so that it gives 

a good encodings of the picture. 

We can learn the parameter so that: 

‖𝑓(𝑥(1)) − 𝑓(𝑥(2))‖2 is small  if the two input images are the same person 

‖𝑓(𝑥(1)) − 𝑓(𝑥(2))‖2 is large  if the two input images are different  person 
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3.5 Binary Cross Entropy Loss Function 

Binary cross entropy is a loss function that is used in binary classification tasks 

as it answers questions with only two choices as “A or B” as in our case “same person 

or different persons” so it’s chosen to be used formally. This loss is equal to the average 

of the categorical cross entropy loss on many two-category tasks. Also called sigmoid 

Cross-Entropy loss. It is a sigmoid activation plus a Cross-Entropy loss. Unlike softmax 

loss it is independent for each vector component (class), meaning that the loss computed 

for every CNN output vector component is not affected by other component values. 

That’s why it is used for multi-label classification, where the insight of an element 

belonging to a certain class should not influence the decision for another class.  

The binary cross entropy loss function calculates the loss of an example by computing 

the following average:  

 

The pipeline for each one of the C classes would be as follows. C’ independent binary 

classification problems is set (C’=2). Sum up the loss over the different binary problems 

is applied: The gradients of every binary problem are summed up to backpropagate, 

and the losses to monitor the global loss. s1 and t1 are the score and the ground truth 

label for the class C1, which is also the class Ci in C. The score and the ground truth 

label of the class C2 are s2=1 − s1 and t2=1 − t1, which is not a “class” in the original 

problem with C classes, but a class is created to set up the binary problem with C1=Ci. 

We can understand it as a background class.  

The loss can be expressed as: 

 

Where f() is the sigmoid function. It can also be written as:  
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3.6 Model Design and Hyperparameters  

Hyperparameters are all the training variables set manually with a pre-

determined value before starting the training, we can also consider the model design 

components as part of the hyperparameters set which will be illustrated as follows: 

3.6.1 Adam Optimizer 

Adam is an optimization algorithm that can be used for training deep neural 

networks to update CNN weights. It’s considered different to Stochastic gradient 

descent which have a fixed learning rate for all weight updates and the learning rate 

does not change during training. Adam is described as combining the advantages of two 

other extensions of stochastic gradient descent. Specifically: 

 Adaptive Gradient Algorithm (AdaGrad): that maintains a per-parameter 

learning rate that improves performance on problems with sparse gradients. 

 Root Mean Square Propagation (RMSProp): that also maintains per-parameter 

learning rates that are adapted based on the average of recent magnitudes of the 

gradients for the weight. This means the algorithm does well on online and non-

stationary problems. 

Adam uses the squared gradients to scale the learning rate like RMSprop and it takes 

advantage of momentum by using moving average of the gradient instead of gradient 

itself like SGD with momentum [10]. 

Using Adam or non-convex optimization has a lot of attractive benefits as follows: 

 Straightforward to implement. 

 Invariant to diagonal rescale of the gradients. 

 Computationally efficient. 

 Little memory requirements. 

 Appropriate for non-stationary objectives. 

 Well suited for problems that are large in terms of data and/or parameters. 

 Appropriate for problems with very noisy/or sparse gradients. 

That’s why it’s chosen to be used in our model. 
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3.6.2 Learning Rate 

The length of a step in the gradient descent mechanism is usually referred to as 

learning rate. If the search space was to be visualized as a 3D surface, the learning rate 

is the length of a step taken towards a minimum point of the surface. Learning rate is 

extremely important because it is the core of the learning process. A high learning rate 

makes the ML model converge very fast after learning for a short time but later, it does 

not improve at all or even worse, diverges. If the learning rate is too small, the ML 

model will converge very slowly and eventually it will reach the optimum. The value 

of learning rate is determined by tuning then choosing the most suitable value as 

illustrated in Figure 3-10. A default value for the learning rate is 0.1 or 0.01, and this 

may represent a good starting point for training a model. So, the chosen value of 

learning rate in model is 0.01. 

 

Figure 3-10: Impact of Learning Rate on Gradient Descent 

3.6.3 Batch Size 

Batch size refers to the number of training examples utilized in one iteration. 

The batch size can be one of three options: 

 Batch mode: where the batch size is equal to the total dataset which in turn 

makes the iteration and epoch values the same. 

 Mini-batch mode: where the batch size is greater than one training example but 

less than the total dataset size. Batch size usually is chosen as a number that can 

be divided into the total dataset size. 
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 Stochastic mode: where the batch size is equal to one training example. 

Therefore the gradient and the neural network parameters are updated after each 

sample. 

Batch size is a slider on the learning process since small values give a learning process 

that converges quickly at the cost of noise in the training process while large values 

give a learning process that converges slowly with accurate estimates of the error 

gradient. A good default for batch size might be 32 which is used in our model. 

3.6.4 Number of Epochs 

The number of epochs will decide how many times the weights of the network 

will be changed. When the number of epochs used to train a neural network model is 

more than necessary, the training model learns patterns that are specific to sample data 

to a great extent. This makes the model incapable to perform well on a new dataset. 

This model gives high accuracy on the training set but fails to achieve good accuracy 

on the test set. In other words, the model suffers from overfitting. When the number of 

epochs is less than necessary, the training model doesn’t learn enough from the dataset 

which makes the model gives low accuracy on both training and test set and the model 

suffers from underfitting. So, the number of epochs should be set as high as possible 

and terminate the training when validation error start increasing as shown in Figure 

3-11. The number of epochs is traditionally large, often hundreds or thousands. In the 

model, for LFW dataset the number of epochs was 100 with a step size of 68 and for 

VGGFace2 dataset the number of epochs was 1500 with a step size of 100. 

 

Figure 3-11: Number of Epochs vs. Training and Testing Error 
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3.7 Liveness Detection  

Many companies are now considering biometric face recognition as viable 

security solution that machine learning engineers can deliver. This innovative 

technology is showing great promise but also it does have weakness due to the 

increasing of cybercrime in our increasingly digital world. Paper photographs, 

screenshots, or 3D facial reconstruction can be easily found and used to spoof facial 

recognition software, that’s why it’s important to have anti-spoofing systems in place 

to reduce theft and mitigate fraud.  

In order for face biometrics to fully gain widespread acceptance as a safer form of 

authentication, it is important to differentiate between a real live face and an attempt to 

hack the system with an artificial representation of a face, so automated detection of 

attacks and specifically liveness detection has become necessary for any system based 

on biometric face recognition. This section discusses the need for liveness, how it 

works, and approaches. 

 

The most popular face anti-spoofing technique: 

Most face spoofing attacks which known as presentation attacks use 2D or 3D (static 

or dynamic) to hack the system as shown in Table 3-3. 

Table 3-3: Types of representation attacks 

 

 

Type of representation attack Static Dynamic 

2D Photographs, flat paper 
Screen video or several 

photographs in a sequence. 

3D 3D prints, sculptures, or masks 

Sophisticated robots to 

reproduce expressions, 

complete with makeup 
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Nowadays, there is a technological limitation so 2D is more popular than 3D 

representation attacks and it is important to focus on the techniques that prevent these 

attacks. 

3.7.1 Eye Blink Detection 

Blinking detection considers one of liveness detection techniques which is 

incredibly accurate, so it is very important to implement and use it in this project. 

Human blinking can be an easy way to determine if it is a photo attack or not, as it can 

distinguish between real-life faces and faces on a photo. If the eye at some point is 

detected open then closed then open, it means that the person has blinked and the 

program authorize the person as trusted. 

Eye Blink Detection can be implemented using two techniques: 

3.7.1.1 Deep learning features: Convolutional neural network 

In this method blink detection problem is considered as a binary classification 

problem by training a CNN to recognize which is a closed eye and which is open, after 

that a function can be built which tries to find a closed-open-closed pattern in the eyes 

status history to recognize a blink. 

This technique is implemented but with unsatisfying accuracy because it needs a large 

dataset, and the images available for this kind of training is limited, so it was needed to 

find other method that have good accuracy to use. 

3.7.1.2 Eye aspect ratio (EAR) 

To build this blink detector, a metric called eye aspect ratio need to be calculated 

first. In this part eye aspect ratio will be discussed, how it can be used to determine if a 

person is blinking or not during video frames. 

To know what eye aspect ratio means, facial landmarks detection should be applied first 

to localize the important regions of the face, but in terms of blink detection only two 

facial structures are important-the eyes [11]. 

After applying facial landmarks detection and localize the region of the eyes, each eye 

is found to be represented by 6 (x, y) coordinates. 
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Figure 3-12: Eye Landmarks 

Based on Figure 3-12, there is a relation between the width and the height of the eye, 

this relation is called eye aspect ratio and can be explained as the following equation: 

𝐸𝐴𝑅 =
‖𝑝2 − 𝑝6‖ + ‖𝑝3 − 𝑝5‖

2‖𝑝1 − 𝑝4‖
 

Where p1, p2…p6 are 2D facial landmarks locations. 

The numerator of the equation describes the height of the eye coordinates and computes 

the length of the vertical axis, while the dominator describes the width and computes 

the horizontal axis of the eye, weighting the dominator because there is two sets of 

vertical points but only one set of horizontal points. 

Based on this equation, the eye aspect ratio will fall to zero while the eye is closed but 

it will be approximately constant while the eye is open, so that this equation can show 

if a blink is taking place, as shown in Figure 3-13. 

Using this equation, determining if a person is blinking has become very simple, also it 

helps us to avoid image processing techniques which have unsatisfying accuracy 
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Figure 3-13: Changing eye aspect ratio 

 

Figure 3-13 (left) shows a fully open eye, the eye aspect ratio here would be relatively 

large and it would be approximately constant over time. However, once the person close 

his eye, the eye aspect ratio falls to approach zero. 
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Chapter 4: Simulations and Results 

In this chapter, the results of the work are presented and discussed, how the face 

recognition and blink detection are implemented. First five sections discuss the 

implementation of face recognition and the results, the last section discusses blink 

detection. All of these will be discussed as follows: 

 Implementation of the pre-trained model on Nvidia Jetson TX2 board. 

 How the model works and framework used. 

 The preprocessing applied on the datasets. 

 Platforms used to run face recognition model. 

 Implementation and results of eye blink detection. 

 

4.1 Implementation on Nvidia Jetson TX2 Board 

4.1.1 Overview 

Jetson TX2 in Figure 4-1, is the fastest, most power-efficient embedded AI 

computing device. It’s built around an NVIDIA Pascal™-family GPU and loaded with 

8GB of memory and 59.7GB/s of memory bandwidth. It offers a variety of standard 

hardware interfaces which make it easy to integrate a wide range of products into it. It 

is pre-flashed with a Linux development environment. It also supports NVIDIA 

Jetpack, a complete SDK that includes the BSP, libraries for deep learning, computer 

vision, GPU computing, multimedia processing, and much more [12]. 
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Figure 4-1: Nvidia Jetson TX2 Board 

 

4.1.2 Implementation of the Pre-trained Model 

At first, Nvidia Jetson was connected to the required modules as shown in 

Figure 4-2. Packages of the pre-trained model were installed on Jetson such as dlib and 

face_recognition libraries. External webcam was connected to Jetson. Then the model 

was loaded into Jetson and started running. Jetson received frames from webcam to 

pass them to the model, which in turn processed these frames to recognize them 

showing results on screen as in Figure 4-3 with accuracy of 96%.  

The reason why an external webcam was used although Jetson has an internal camera 

that while using this camera, the processing time was about 15 seconds which caused a 

large delay and non-real time operation. On the other hand, the external webcam results 

a duration time before capturing of 5 seconds while processing time was about 0.5 

second per frame. 
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Figure 4-2: Nvidia Jetson Connections 

 

 

Figure 4-3: Results of the Pre-trained Model 
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4.2 Model and Architecture 

4.2.1 Model  

As mentioned before, this model is built using Siamese Network by entering 

two inputs in the same architecture and then comparing the output of each one, so that: 

 Output is 1 if the inputs are for the same person.  

 Output is 0 if the inputs are for different persons.  

The model was written using: 

 Keras framework. 

 Model class which helps in using multiple inputs in the same network and then 

combining the outputs. 

How the model works: 

1. A base architecture is built, after that two inputs which are referred to as a pair 

of images are entered to the same base architecture. 

2. Each branch outputs the embedding. 

3. The two embeddings are combined together and their difference is obtained by 

absolute difference or by equilidean distance.  

Equilidean distance   d(p,q)  = √(𝑝1 − 𝑞1)2 + (𝑝2 − 𝑞2)2 + ⋯ + (𝑝𝑛 − 𝑞𝑛)2       (1)                      

Absolute difference d(p,q)= ∑ (𝑝𝑘 − 𝑞𝑘)𝑛
𝑘=1    for embedding of size n.                     (2)  

4. The output of the difference equation is passed to a sigmoid function to output 

1 for the same person, 0 for different persons.  
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4.2.2 Architecture 

For the base architecture, more than one architecture have been tested: 

4.2.2.1 ResNet-34  

We have built ResNet-34 architecture by ourselves, the following points will 

show how we have built it: 

 This architecture has been built using sequential class. 

 There are two main blocks that were built for ResNet-34: 

1) Convolutional block: 

o Convolutional block is a stack of convolutional layers for the 

same number of filters followed by batch normalization layers 

with activation function ReLU. 

o Shortcut is performed to the input of the first layer to be added 

to the output of last layer in the block to overcome gradient 

descent vanishing problem. 

o Output size of this block is same as its input size.  

2) Identity block 

o Identity block is same as convolutional block but in case the 

output size is different from input size. 

o If the size of output of last layer is not the same size of the input 

to first layer, a convolution layer is added to the shortcut to 

manage the input to be added to the output. 

 The output of the last block is passed by a fully connected layer to get 

embedding. 

4.2.2.2 ResNet-50  

 It is a pre-trained architecture from keras over ImageNet dataset. 

 There are two options for using this architecture: 

1) Using the weights directly. 

2) Training the architecture using transfer learning. 

 We trained the model on our dataset by transfer learning  using the same weights 

but different fully connected layer to achieve our objective. 
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4.3 Datasets and Preprocessing 

4.3.1 LFW (Labeled Faces in the Wild)  

It consists of 2200 pairs of images for training (1100 same identity and 1100 

different identities) and a vector of 2200 labels (1 for same identity pair and 0 for 

different identities) and 1000 pair for testing (500 same identity and 500 different 

identities) and a vector of 1000 labels (1 for same identity pair and 0 for different 

identities). The images are cleared and contains only the face and shoulders. The dataset 

has no images of very low resolution or wrong labels. 

For the preprocessing images, resizing has been performed on the dataset to have the 

intended size of the input of the model. The images were prepared to be fed to the model 

by collecting them in a list of two NumPy arrays (as two inputs) and a NumPy array of 

ones and zeros (as the labels). The indices have been shuffled (same shuffle for the two 

inputs and the labels arrays’ indices) in order to train the model correctly 

The model was trained on LFW dataset using Keras framework by method “fit” and the 

accuracy was 99% for the training and 70% for the validation which clearly shows that 

the model has overfitting issue which encourages us to search for a larger dataset to 

overcome this problem. 

Note that full LFW dataset can be downloaded as directories, each directory contains 

person’s images but will need to form them in pairs and label them. 

4.3.2 VGGFace2 

It consists of more than 3 million images of more than 8000 identity as a training 

data and about 250k images of a 500 identity as a testing data. 

The data in the form of directories, each directory refers to an identity and contains the 

images of this person. The images are in different sizes and can have more than one 

face in the image for the same person or for other persons in the background 

For the preprocessing; first, face detection has been performed on the whole dataset to 

crop the images around the faces only using the mentioned pre-trained model in chapter 

3. Then, number of wrong label data was very small relative to the number of images 

for the whole dataset and the face detection model finished the job of removing the very 

low-resolution images as it couldn’t detect the faces in it. 
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Then, a function has been created to make pairs from all combinations of the images 

for the same identity’s pairs and it randomly creates different identities’ pairs of the 

same number of the same identity’s pairs to make the data balanced. All the data is in 

the form of list of two NumPy arrays as two inputs and one array has ones and zeros 

for the labels as 1 refers to same identity and 0 refers to different identities but 

unfortunately the number of pairs was very huge and it wasn’t reliable. So, this function 

can help in case of small data as it won’t waste any images. 

Then, a generator function was created to make a batch of pairs randomly while 

training. By this way, it won’t need very large memory as the batch is divided into 2 

halves; one for the same identity’s pairs and the other the other for different identities’ 

pairs. The pairs were in the form of list of two NumPy arrays that act as two inputs arrays 

and one array has ones and zeros for the labels as 1 refers to same identity and 0 refers 

to different identities This function doesn’t return and runs a while true loop and it 

yields a batch of pairs. Both of the two functions shuffle the indices before passing the 

arrays of the pairs and the labels. 

Then, a function has been created to separate the data into parts and train on each part 

in case of small memory by passing the model, the parameters and the dataset path. The 

function separates the paths randomly to collections of paths then it starts to train the 

model on each part separately by calling the method “fit_generator” from Keras. 

Finally, the method fit_generator accesses the generator function which in turn will give 

it the batch of training and validation samples to train and validate the model. 

Unfortunately, an issue has been faced that in this case the models can’t learn and its 

training and validation accuracy stay at 50% and many solutions have been tried 

without any results and the last solution to be tried in the future work is to train the 

model using a small general subset of the data (about 20k images) to figure out what 

will happen and if this also doesn’t result in different results, another solution will be 

tried which is augmentation to LFW dataset in order to increase the dataset samples. 
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4.4 Software and Hardware Platforms 

4.4.1 Google Colaboratory 

It is one of the most famous free cloud services to help spread machine learning 

education and research. It is a Jupyter notebook environment that doesn’t require any 

type of setup in order to use and runs completely in the cloud. It also supports many 

popular machine learning libraries such as Keras, Tensorflow and OpenCV. 

As a programmer, the following can be performed using Google Colab. 

 Document your code that supports mathematical equations 

 Write and execute code in Python 

 Import/Save notebooks from/to Google Drive 

 Free Cloud service with free GPU 

 Create/Upload/Share notebooks 

 Import external datasets 

 Import/Publish notebooks from GitHub 

Thus for these reasons, it was used for training and testing the model but there were 

some issues that affected training the model such as: 

 Runtime restarting 

 Limited resources (GPU/RAM/Disk) 

4.4.2 Graphics Processing Unit (GPU)  

It is a specialized electronic circuit designed to rapidly manipulate and alter 

memory to accelerate the creation of images in a frame buffer intended for output to a 

display device. It performs parallel operations. Although it is used for 2D data as well 

as for zooming and panning the screen, a GPU is essential for smooth decoding and 

rendering of 3D animations and video. For the issues that were mentioned before in 

google colab, a fast GPU was needed to speed up the training. So it was acquired from 

ONE Lab to use Nvidia GeForce RTX 2080 Ti that has high performance represented in: 

 Interface: PCI Express x16 3.0 

 Cores: 4352 Units 

 Core Clocks: Boost: 1755 MHz 

 Memory Size: 11 GB 
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 Memory Speed: 14 Gbps 

GPU was connected to CPU to provide interfacing using operating system, and because 

of that, there was a struggle that the code runs on CPU instead of GPU which obstructed 

training the model but this issue was solved by some changes in code. 

4.5 Eye Blink Detection 

As mentioned in the previous chapter, eye aspect ratio method is one of the 

methods used to detect blinking which is incredibly accurate and fast. 

In this part, a Python, OpenCV, and dlib code were written to: 

 Perform facial landmark detection.  

 Detect blinks in video streams. 

This code defines two constants: 

 First constant for eye aspect ratio threshold which is the maximum value needed 

to indicate blink, this value is set to 0.3. 

 Second one to indicate number of successive frames with an eye aspect ratio 

less than EAR threshold that must happen in order for a blink to be registered, 

this value is set to 3. 

The total number of blinks is computed by the code by counting how many times three 

consecutive frames with closed eyes are occurred.  

By comparing the number of actual blinks that can be noticed in multiple videos and 

the total number of blinks that resulted from the code, we concluded that the accuracy 

of this code is approximately equal to 100%. 
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CAN Bus Security 

Chapter 5: Background and Related Work 

5.1 History 

At the beginning of Electronification of automobiles and due to the increase of 

customer wished features for modern vehicles, automotive manufacturers recognized 

that the coordination between car ECUs could enhance the functionality of vehicles 

greatly. This communication was first performed by a dedicated physical connection 

for each signal that requires transmission, which increased wiring effort and limited 

data exchange. The introduction of controller area network (CAN) was the solution out 

of this dilemma. Figure 5-1 shows a visual comparison between the old wiring scheme 

and the CAN bus network used in modern vehicles. 

 

Figure 5-1: CAN network vs. conventional network 

 

5.2 CAN Properties and Details 

Controller Area Network (CAN) is a serial multi-master event driven network 

that allows one sender at a time. CAN is based on broadcasting, while using sender ID 

to perform arbitration and priority schemes. Data transmission rate is up to 1Mbit/s. It 

comes in two data rates: low-speed CAN which supports data rate up to 125Kbit/s and 

high-speed CAN which supports data rate up to 1Mbit/s. 
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CAN frames exist in three types: data frame, remote frame and error frame. CAN Data 

frame is used to transmit user data. It can hold a maximum payload of 8 bytes in the 

data field. The data field is then framed by other fields important for the operation of 

the CAN protocol. Those fields include message identifier (ID), data length code 

(DLC), cyclic redundancy check sequence (CRC sequence), end of frame (EOF) and 

RX acknowledgment field. The standard CAN frame is depicted in Figure 5-2. 

 

Figure 5-2: Standard CAN data frame 

 

CAN remote frame (shown in Figure 5-3) have the same structure as the data frame 

except it misses the data field. The remote frame is sent to request user data from 

another ECU. The third type of CAN frames is CAN error frame (depicted in Figure 

5-4). It is sent to indicate an error during communication. It consists of error flag and 

error delimiter.   

 

Figure 5-3: Standard CAN remote frame 
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Figure 5-4: CAN error frame 

 

Communication in CAN network is based on content-related addressing. Instead of 

giving IDs to the communicating nodes, the data and remote frames are given the IDs. 

The broadcasting nature enables a message to be visible to all connected nodes, but 

each receiver is independently responsible for selecting the messages to receive by the 

internal acceptance filter. This filtering process is based on the frame ID. 

The ID of a CAN frame can exist in two formats based on two modes of operation: 

standard ID mode in which the ID field consists of 11 bits, and extended ID mode in 

which the ID field consists of the standard 11 bits ID field as the base ID, and an 

additional field of 18 bits called the extended ID. The difference between standard ID 

field and extended ID field is illustrated in Figure 5-5.The extended ID mode is mainly 

for the purpose of future expanding. The number of messages is expected to increase, 

which corresponds to more message IDs needed.   

 

Figure 5-5: Standard ID vs. Extended ID 
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The ID field is also responsible for arbitration and prioritization. When more than one 

entity tries to access the bus simultaneously logical “0” is the dominant over logical 

“1”; which means an entity writing 0 at a time will overwrite the other if it was writing 

1. Based on the previous rule, bit wise arbitration occurs and the frame with lower ID 

will dominate the bus and the other sender has to wait. As a consequence, the priority 

scheme for the CAN protocol gives higher priority to messages with lower ID value 

[13]. 

CAN bus provides high reliability and speed for real time applications. In addition it is 

a lightweight and robust protocol. The decentralization of operation is also one of CAN 

bus advantages, which guarantees network availability and prevents single point of 

failure. Those aforementioned properties are of great importance while dealing with 

safety critical applications. On the other hand CAN bus suffers from a wide attack 

surface. In the next section the CAN bus vulnerabilities will be discussed. 

 

5.3 CAN Bus Vulnerabilities 

As mentioned before CAN bus was not mainly designed to stand against attacks. 

It was designed when CAN attack threats were not of a great possibility. Nowadays, 

the new technological trends in automotive domain dictate that CAN bus endurance 

against attacks is now a must. Security analysis of the CAN network have been 

performed to define the probable attacks and vulnerabilities as a first step in the way to 

secure CAN [14]. 

From security point of view a secure communication should meet those five criteria: 

 Data Integrity: this mean that the data is received exactly as it was sent 

without being altered in the communication channel. 

 

 Authentication: all entities participating in the communication should be 

detected authentic or trusted.   

 

  Confidentiality: the data transmitted on the communication channel should be 

secure against intruders who try to overhear it 
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 Availability: to assure that the system is available for communication 

throughout different circumstances. 

 

  Nonrepudiation:  the security solution should prove that the parties in the 

communication cannot deny the authenticity of the message that was organized.  

 

Applying those criteria to CAN-bus the main drawbacks are Lack of authentication and 

data confidentiality. Sending bare data on the broadcasting communication channel 

opens the door in front of sniffing attacks in which an attacker can listen to the 

messages, record them and define the different content and relate it to different vehicle 

functionalities. Now the attacker knows exactly what message to send if a certain action 

is wished. This side by side with the fact that the CAN protocol don’t naturally concern 

with sender identification, instead it uses message identification. An intruder can 

broadcast a spoofed message on the bus which the other nodes can hear and act upon. 

Moreover, replay attack can be launched in which the attacker sends a recorded 

message repeatedly to force a certain action in the car. One of the other critical attacks 

in CAN network is Denial of service attack (DOS) this attack addresses the CAN 

arbitration and priority scheme. The attacker can send a malicious message with high 

priority ID repeatedly in order to occupy the bus. This can result in a system failure. 

Table 5-1 contains the main attacks in the CAN threat model and the system 

vulnerability leading to it. 

 

Table 5-1: CAN bus vulnerabilities and resulting attacks 

Attack System vulnerability 

Sniffing attack Lack of confidentiality 

Spoofed messaged injection Lack of authentication 

Replay attack No message freshness guarantee 

Denial of service attack The arbitration and priority scheme 
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5.4 Related work 

Securing in vehicle CAN communication against attacks has gained strong 

interest over the last few years. Many researches were conducted to find reasonable 

ways to secure communications over the CAN network without losing the main 

advantages of this communication protocol. This matter was found to have many 

tradeoffs between maintaining the reliability and real time constrains of the unsecured 

CAN network which we cannot compromise in automotive domain, and achieving high 

levels of security at the same time. This chapter will discuss some of the related work 

introduced in this topic. 

 

5.4.1 VeCURE 

VeCURE was one of the proposed methods to apply CAN bus security concepts 

[15]. This method assumes that the main adversary goal is to inject spoofed messages 

and let the receiver believe it is from a legitimate ECU; to fool the car to perform a 

certain action based on the spoofed message, or to start a replay attack –DOS attack is 

not covered in this method-. All the work is under the assumption that the sources of 

attack are compromised ECU or through the OBD-II port. 

The suggested method VeCURE categorizes the connected ECUs to Low trust group 

and high trust group based on what they are connected to. If an ECU is a suspicious 

node based on the assumed sources of attacks, it is in the low trust group and the rest 

are in the high trust group. The high trust group nodes share a secret key 𝐾ℎ which is 

not known to the low trust group. This secret key is used to generate message 

authentication code for each message between the high trust group members, which 

allow them to communicate securely to each other. The communication pattern allowed 

by the trust group based authentication is shown in Figure 5-6. To prevent replay attacks 

the message authentication code generated is a function of a counter called message 

counter. Message counter is a counter defined for each message and is updated at sender 

and receiver each successful transmission of this message; to guarantee message 

freshness.  
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To overcome the issue of message authentication code calculation delay pre-calculation 

of the heavy computational part is performed, so it is ready even before it is needed. 

The idea of using shared key introduced is also useful when it comes to the cost of key 

distribution, while it is not as secure as using private keys. This method uses an extra 

frame with each message frame for authentication, which is considered a large added 

overhead that lowers the overall performance. Another disadvantage is that this method 

doesn’t address overhearing and data confidentiality. 

 

Figure 5-6: Communication between low trust group and high trust group in VeCURE 

5.4.2 CaCAN 

Centralized authentication system for CAN – CaCAN – is one of the methods 

proposed for the purpose of CAN security [16]. This method uses an extra node which 

they name HMAC-CAN controller. The HMAC-CAN controller monitors the bus to 

guarantee transmission of authentic messages only and destroy unauthentic messages. 

This method is similar to VeCURE in the idea of using message authentication code 

(MAC). It also uses message counters to guarantee messages freshness. The MAC –

part of HMAC and part of the message counter- are transmitted with the message 

payload. The frame fields for this method are depicted in Figure 5-7. Although the 

overhead here is better than in case of sending a separate authentication frame, but the 

fact that part of the payload must be freed means that the usual CAN messages with 8 

bytes payload should be modified or separated into two frames. This method did not 

consider message confidentiality, and adding additional node is not advisable when 

considering the backward compatibility with systems that already exist. 
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Figure 5-7: CaCAN frame 

5.4.3 VuLCAN 

The VuLCAN method uses secure computing concepts [17]. It uses Sancus 

which is a light-weight and open source for trusted computing for IOT. Sancus forces 

that private data section can only be accessed by its corresponding code section, and it 

employs a three level key hierarchy using an embedded cryptographic core. It also 

forces that Critical application software is included in the protection domain so that it 

is anti-tampering. 

This method guarantees authenticity by a separate frame sent before the data frame, this 

frame includes 64-bits message authentication code. The message authentication code 

is constructed using ID, payload and anti-replay counters. Data confidentiality is 

considered and data is protected using encryption with 128-bits symmetric key. While 

the secure computation concepts lead to more secure system, but this adds complexity 

to the system. The complexity will in turn lead to more computation and delays. This 

method is also obviously far from backward compatibility.  

 

5.4.4 CANAuth 

CANAuth method suggests using CAN+ standards [ [18]. CAN+ concept 

(illustrated in Figure 5-8) is to use the duration between sampling instances for each 

transmitted bit to transmit excess bits –usually authentication bits- with higher 

transmission rate. Message authentication code is transmitted over CAN+ achieving 

authentication with zero additional overhead compared to original unsecure CAN. 

CANAuth also consider message confidentiality by using encryption. Using CAN+ 

solves some of the strict tradeoffs in the issue of CAN security, but this protocol is still 

not used and will require modification in the CAN controller. 
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Figure 5-8: Transmission of data bit for normal CAN and CAN+ protocols 

 

5.4.5 WooAuth 

WooAuth [19] guaranteed authenticity by using message authentication code 

(MAC), and data confidentiality by using encryption. To guarantee message freshness 

message counters are used. The MAC Is sent in the extended ID field and the CRC 

field, which is an acceptable overhead. The MAC generated in a way to guarantee the 

integrity of data and can replace the CRC in data validity check.  

This method uses long term symmetric key distributed between ECUs to calculate 

system variables e.g. message authentication codes and encryption keys. The 

distribution of those long term keys happens once at the start of each driving session. 

This process happens when ECUs take turns to communicate to a gateway node and 

share a random number with it, calculate MAC and key based on the shared numbr, and 

then verify that the MAC and key were identical after calculations at both the gateway 

and the ECU it perform key distribution with. This scheme guarantees that no errors 

happen in the initial key distribution phase which will mean failure in the 

communication between ECUs while the driving session.  

 Towards more security they perform periodic refreshment for the encryption keys 

during the driving session, but the process of key refreshment actually stops the 

communication on the bus for the period of refreshment protocol, which may not be the 

best practice when it comes to the strict real time requirements of automotive CAN bus. 

Although WooAuth is considered one of the most successful CAN security introduced 

methods with high security level, it lacks backward compatibility because of the added 

gateway node.  
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Eventually a comparison between the most popular proposed CAN security solutions 

was held. Table 5-2 shows the system evaluation for introduced encryption methods 

[20]. Table 5-3 shows the system evaluation for introduced authentication schemes and 

the resulting security level [21].  

WooAuth has shown the best results the only drawback was that it is incompatible with 

existing CAN network due to the added gateway node. Adding more hardware needs 

changes in the in vehicle network.  

Table 5-2: Evaluation of cryptography solutions according to identified requirements 

 

Table 5-3: Evaluation of authentication solutions according to identified requirements 
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Chapter 6: System Design 

Our proposed system aims to fill the gaps in CAN bus security; in order to have 

more secure and safe   in-vehicle communication system that is ready to be connected 

to the outer world through WIFI, GSM, Bluetooth, etc… 

The proposed system collects the most successful aspects in the previously mentioned 

and evaluated methods. WooAuth is the start point of the introduced solution. Mainly, 

some of WooAuth concepts are adopted with more simplification, and with the 

avoidance of the extra added node. 

Starting from the pre-discussed threat model for CAN bus, the proposed system is based 

on some assumptions: 

Assumptions:  

 Initially stored secrets are stored in anti-tampering memory and cannot be read 

or change by intruder.   

 Tampering the code running on the ECUs is not easily possible  

 Threats come from an external node attached to the bus or through OBD 

connected device-which may have access to WIFI, GPS, GSM or Bluetooth 

 

The main countermeasures concluded from the previous work are authentication, 

encryption and anti-replay counters. Those three measures stand against most of the 

vital attacks that threaten CAN bus security. In our proposed system SHA-1 hashing 

algorithm is used to generate authentication codes, encryption keys. AES algorithm is 

used for encryption and decryption of data. In the next section the discussion of SHA-

1 algorithm and AES algorithm is held. The reasons behind choosing them and some 

introduced modifications are also discussed. 
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6.1 SHA-1    

6.1.1 Overview 

Secure Hash Algorithm -1 (SHA-1) [22] was proposed by U.S. National 

Institute for Standards and technology (NIST). Hashing functions are mainly used to 

map variable size input data to a fixed size code. In SHA-1 this operation is based on 

performing many bit-wise operations using the input data to alter a number of initially 

defined variables (five variables, 32-bits each) called chaining variables. The values of 

the chaining variables after running the hash are the hashing result. The input to SHA-

1 is usually blocks of data with large size and the output is 160 bits dictated by the 

defined standard. The operations from input to output are standardized by four stages.  

To measure the quality of any hashing function some properties were defined:  

 Preimage resistance:  

Means that for an output y, it is computationally infeasible to find any input 𝑥𝑜 

that hashes to y (i.e. 𝑥𝑜 such that h(𝑥𝑜)=y is not feasible to calculate). 

  

 2nd-preimage resistance: 

Means that it is computationally infeasible to find any second input  𝑥1 that have 

the same hash value y as 𝑥𝑜 ( i.e. 𝑥1 to achieve that h(𝑥1 ) = h(𝑥𝑜) is not feasible 

to calculate) 

 

 Collision resistance: 

Means that it is computationally infeasible to find any two distinct inputs x, 𝑥𝑜 

which hash to the same output, (i.e. such that h(𝑥) = h(𝑥𝑜) ). 

 

The SHA-1 algorithm is considered good when it comes to the pre-mentioned 

requirements for a hash function. It is not considered the strongest when we talk about 

the data hashing applications for example. There are more sophisticated algorithms for 

data hashing -and other hashing applications- which is based on more complicated 

operations and in turn needs more computational resources.    
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In our system SHA-1 is not used for message -data- hashing. It may be said that the 

hashing function is used here as random code generator. This decision was based on 

two properties of SHA-1:  

 SHA-1 is a one way hashing function i.e. the adversary cannot know the input 

given the output –which is important for the inputs of the hash function to 

remain secret -. 

 SHA-1 output changes significantly with a bit or a few bits change in the input.  

 

Starting from this different utilization for SHA-1 function, the properties which gain 

the most concern in our system are preimage and 2nd-preimage resistance; because the 

output of the hashing function -which is used to define the secrets that the system 

members share - is needed to be impossible to guess by any intruder. This is also 

defended by the fact that SHA-1 is a one way function. The collision possibility is not 

a great concern for our system.  

6.1.2 Advantages (why chosen) 

Choosing between the different hash functions the main concern was the speed; 

because as mentioned before for our system some hashing functions properties can be 

compromised, but we can never compromise the speed of the algorithm under the 

limited resources of embedded ECUs in automotive real time applications. 

Comparing SHA-1 to other algorithms of the same family, it appears in Table 6-1 that 

SHA-1 is better –most importantly - in speed. Also it is better in collision and preimage 

resistance as shown in Table 6-2. 

 

Table 6-1: Summary of selected hash functions based on MD4 

 

 

Hash function Relative speed 

MD4 1.00 

MD5 0.68 

SHA-1 0.28 
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Table 6-2: upper bounds on strength of selected hash functions 

Hash function Preimage Collision 

MDC-2 2. 282 2. 254 

MDC-4  2109 4. 254 

Merkle  2112  256 

MD4  2128  264 

MD5  2128  264 

SHA-1  2160  280 

 

6.1.3 Reduction 

SHA-1 is mainly designed to deal with large input blocks of data. In our case 

we use the hashing function to serve as random number generator to generate 

unpredictable codes, so there is no data to perform hashing on. Instead, the available 

variables in the system will be given to the hashing algorithm as an input. As a result a 

size reduction in the input to SHA-1 algorithm was necessary.  

The size reduction for hashing function in most of the traditional applications of hashing 

will lead to severe impact on the definition of the hashing function and will weaken its 

strength. While here the function is used just to generate random codes, so the size 

reduction will not be very harmful and it will also lead to faster computation which is 

desired whenever real time applications are mentioned.  

6.2 AES 

6.2.1 Overview 

Advanced Encryption Standard (AES) was announced by the National Institute 

of Standards and Technology (NIST) in November 2001 [23]. First there was the Data 

Encryption Standard (DES) which was published in the 1970s. The DES algorithm has 

a symmetric-key encryption/decryption with a key of 56 bits length, which was the 

main disadvantage of the DES as it makes it insecure and vulnerable. Electronic 
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Frontier Foundation in collaboration with distributed.net managed to publicly break a 

DES key in 22 hours and 15 minutes due to its short key length in addition to 

weaknesses in cypher. DES has been withdrawn as a standard by NIST. To determine 

which algorithm would follow DES, NIST called for different algorithm proposals as a 

competition and the best of all was the new AES or Rijndael (named after its inventor) 

that won because of its security, ease of implementation and low memory requirements. 

AES also has a symmetric-key encryption/decryption which means that the same key 

is used in either encryption or decryption of the digital data. AES has three versions 

with different key lengths: 128, 192 and 256 bits, all have a fixed block of data with 

128 bits length as an input and an output. We will consider the 128 bits key length in 

our work. 

6.2.2 How the algorithm works [24]:  

1- AES algorithm (in Figure 6-1) 

It consists of 10 rounds of encryption (12 rounds for 192-bits key and 14 rounds 

for 256-bits key). The 128 bit key is expanded to 11 versions called round keys 

with 128 bits length each. Each round includes transformation using the 

corresponding round key to ensure the security.  

 

Figure 6-1: Basic concept of AES algorithm 
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Starting with an initial round during which the first round key is XORed with the plain 

text, nine equal rounds follow. Each round will be consisting of the following 

operations:  

 Substitute bytes 

 Shift rows 

 Mix columns  

 Add round key 

The tenth round is similar to rounds one to nine, but the Mix columns step is omitted. 

These four operations are explained in details in the following sections but first the 

structured key and input data phase should be illustrated during which the data (state) 

and the key are structured in 4x4 matrix of bytes as follows in Figure 6-2: 

 

Figure 6-2: Structure of data and key 

2- Substitute bytes: 

One of the major reasons of the security of the AES is that byte substitution is 

not linear (illustrated in Figure 6-3). This operation is considered with 

substituting the data bytes with the corresponding values from a table named 

the substitution box (SBox). 

 

Figure 6-3: Substitute bytes operation 
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3- Shift rows: 

Processes for shifting the different rows of the 4x4 matrix constructed (Figure 

6-4). The first row is left unchanged, the second is shifted one byte to the left, 

the third is shifted two bytes to the left and the fourth is shifted 3 bytes to the 

left. 

 

Figure 6-4: Shift rows operation 

 

4- Mix columns: 

Opposed to the shift rows operation, now working on the columns of the matrix 

is considered (Figure 6-5). This maybe the most complex operation for software 

implementation. As a principle only matrix multiplication is needed. But in 

order to make this operation reversible, the normal addition and multiplication 

is not used. Instead Galois field operations are used. Without going into 

mathematical details, the most important part to know about Galois field is that 

the addition corresponds to XOR operation and the multiplication corresponds 

to more complex equivalent. 

 

Figure 6-5: Mix columns operation 
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5- Add round key: 

A simple process (in Figure 6-6) considering XORing each byte of the data with 

the corresponding from the expanded round key. 

 

 

Figure 6-6: Add round key operation 

 

 

6.2.3 Key expansion process: 

As mentioned before the 128-bits original key is expanded into eleven 128-bits round 

keys. To compute key (n+1) from key (n) two steps are performed: 

1- Compute the new first column of the next round key (Figure 6-7):  first all the 

bytes from the old fourth column are substituted by the bytes substitution 

process. Then they are shifted vertically by one byte and XORed to the old first 

column and that results in generating the first new column.  
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Figure 6-7: First column generation 

 

 

2- New column 2 to 4 are calculated as:  

 [new second column] = [new first column] XOR [old second column] 

 [new third column] = [new second column] XOR [old third column] 

 [new fourth column] = [new third column] XOR [old fourth column] 

This process is shown in Figure 6-8. 

 

Figure 6-8: 2 to 4 columns generation 

 

For the decryption process, all the before introduced steps are reversed using the RBox 

(reverse box) instead of the SBox.  
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6.2.4 Advantages (why chosen) 

The AES is now the worldwide most used standard due to its high level of 

security and efficient data encryption. Its large key length makes it immune against the 

hacking attacks, in addition to its complex operation discussed before, which makes it 

so hard to track back and break. Also its acceptable usage of the memory and the 

processing unit as shown in Table 6-3 makes it so efficient for a lot of applications. 

Table 6-3: AES memory usage and cycles 

 

6.2.5 Reduction 

As mentioned before the AES works on fixed 128-bits block of data as an input 

and an output. For the CAN bus with variable data size and maximum data length of 64 

bits we had to modify the AES software implementation to accept variable input data 

length, and to generate variable data length output. Working with the same 

implementation without modifying the data size leads to wrong output so although that 

modification may affect the memory usage and the cycles needed (not much) but it’s 

necessary and still acceptable for our system.  

6.3 Parts of the system 

As mentioned before the system proposed here consists of three main elements 

to face most of the defined attacks. Those three elements are message counter –anti 

replay counter-, ECUs authentication and data encryption. 

6.3.1 Anti-replay counters 

Replay attack as defined previously is when the attacker uses a message that 

was legally sent on the bus and repeat sending it to force a certain action. In our system 

this legally sent message will be properly encrypted and authenticated as it came from 

an authorized sender at the first place. As a result, there is no reason for the receiver to 

suspect the message or even define the happening attack.  
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A powerful solution is to use message counters for each message. This message counter 

will be synchronized at sender and receiver and incremented every successful 

transmission. This counter should be sent within every message -in the extended ID 

field-. When the receiver gets a message with a certain ID, it checks the counter value 

in it and compares it to the value stored at the receiver. If the value is less than or equal 

to the stored counter value associated with this message, then it is obviously an old 

message used by an attacker. In this case the repeated message will be dropped and the 

attacker will not be able to force the action meant by this message.  

In our proposed system 8-bits message counter is associated with each message. The 

counter is resetted to zero every driving session and the related counter is sent with 

every message in the extended ID field of the CAN frame. 

6.3.2 Authentication  

Authentication is necessary for communicating parties to guarantee the source 

of each message. CAN bus nature is based on message ID, and there is nothing to define 

the sender’s identity. This opens the door in front of an intruder to send legitimate 

messages as If they come from their original source.  

To guarantee authenticity it is necessary for the receiver to be able to verify the sender’s 

identity. In order to achieve this, the proposed system defines an authentication code 

for each communicating pair. This authentication code is an 8-bit code shared between 

sender and receiver and is considered as a signature to guarantee that the message 

originates from a trusted sender. This 8-bit authentication code is sent within every 

message frame in the extended ID field side by side with the message counter. The 

receiver checks the authentication code received and compares it with the stored 

authentication code associated with the trusted message sender. If the message doesn’t 

originate from its trusted sender, the receiver knows it is an attack and drops this frame. 

Most of the published papers in CAN bus security depend on message wise 

authentication code, in which a code is generated for each transmitted message and is 

based on the transmitted data. This approach needs to perform calculations on each 

message frame, which may lead to a significant delay. As mentioned before those 

delays are not really welcomed in real time automotive applications. 
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We instead chose the computationally light option of generating authentication code 

for each sender and receiver pair at the beginning of each driving session, and use this 

fixed 8-bit code for the rest of the driving session. The idea that the authentication code 

is fixed is not as powerful as having a message based varying code, but having the 

message counter by its side the total 16-bits of MAC and message counter will be 

changed each transmitted message. Moreover, those 16 bits will be sent in an encrypted 

form. This will guarantee that during the lifetime of a driving session it will not be easy 

for an adversary to reveal the encryption key, authentication code and message counter 

-all three of them- to be able then to launch an attack. This is acceptable because the 

data rate limitation of the CAN bus also limits the adversary capabilities when trying 

to attack the system.    

 

The proposed solution is based on operating the CAN protocol in extended mode. The 

modifications made on the extended ID field are illustrated in Figure 6-9. 

 

Figure 6-9: Modified extended ID field 

 

6.3.3 Encryption 

Data confidentiality means not to be able to overhear the data transmitted on the 

bus, which is of an increasing importance because of the demanding automotive 

applications that may contain personal user information. 

Depriving the adversary from the ability to easily overhear what is being transmitted 

on the bus not only guarantees data confidentiality, but it also makes it difficult for an 

adversary to launch other types of attacks. All CAN bus mentioned attacks start at the 

ability of attacker to monitor the communication and define the frames associated with 

each task in the automobile. After monitoring the bus for a sufficient time the adversary 

will usually be able to define the structure of the frame and the variables in each type 

of messages to manipulate the task associated with this message. Blocking this way 
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against the attacker will make it hard for an adversary to reveal the secrets in the CAN 

messages and how exactly they are functioning, which will greatly lower the possibility 

of attacks. The adversary will need first to reveal the encryption key which is a time 

and resources extensive task, especially when using AES algorithm for encryption. 

At the beginning of a new driving session each communicating pair generates 

encryption key to use during this session. This key is used to encrypt data at the sender 

and decrypt it at the receiver.  

6.4 System operation   

Each part of the system was previously discussed separately. The flow of 

operation will put those pieces together to form a complete security approach for in 

vehicle CAN bus. First of all, initial key storing phase needs to be held once in the 

automobile fabrication process. Then, at the beginning of every driving session each 

sender and receiver communicates to define an authentication code and encryption key 

to communicate with during the session. At the end of the second phase the vehicle is 

ready to operate in a secure manner under the security measures taken. A refreshment 

process for the long term stored information is also held at each driving session. In the 

following, each phase will be separately discussed. 

 

Phase 1: Initial key storing phase 

At the car manufacturing and ECUs programming process each ECU in the 

vehicle will hold two secrets in a sealed long-term memory which is assumed not to be 

manipulatable by intruders. The two secret keys are: 

 Initial session key: a global key of 128 bit is stored in all car ECUs and is 

changed from a vehicle to another. 

 ECU number: a unique 64 bits key assigned as identification to each ECU. 

Those stored keys will be used to generate authentication code and encryption keys in 

phase 2. 
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Phase 2: Authentication code and encryption key distribution 

Starting from the stored secrets each communicating pair (transmitter of a 

certain message and the intended receiver for this message) generates a common 

identification code that the transmitter will attach to the message to let the receiver 

know it is authentic, as well as encryption key to communicate with. 

The flow chart of authentication and key distribution phase is illustrated in Figure 6-10. 

The phase starts when the sender retrieves its own unique ECU number, encrypts it with 

the initial key stored at all ECUs and transmits it to the receiver. The receiver gets the 

encrypted transmitter ECU number, decrypts it and both the sender and receiver will 

use the initial stored global key and the ECU number of the transmitter as inputs to our 

reduced SHA-1 function. SHA-1 function will perform one way –not reversible-bit 

wise operations using these inputs. The output of SHA-1 comes as 160 bits which will 

then be divided into 8 bits as the authentication code (MAC) and 128 bit encryption 

key.  The last 32 bits of the 160 bit output will be used as a random number; this random 

number is needed in the process of stored keys refreshment. 

 

Figure 6-10: flow chart of the initial key distribution phase 

Now both sender and receiver should have generated the same authentication code and 

encryption key. There exists a possibility that an error may occur in the ECU number 
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transmission, the encryption or the SHA-1 algorithm that may result in different 

authentication code and encryption key at sender and receiver. In this case those two 

entities will not be able to communicate through the driving session, which is not 

acceptable. To overcome this issue a check happens to guarantee that the generated 

secrets are identical.   

For this check, after the two ECUs get done with the SHA-1 they use the outputs 

generated (MAC, Encryption key and random number) in an identical bit wise operation 

at sender and receiver. The result of this bit wise operation (verification bit sequence) 

is then sent back from receiver to sender. The sender checks the received value with the 

generated value, if equal the communication succeeded, if not the process needs to be 

repeated. 

It worth mentioning that this method is followed so as not to transmit any of the secrets 

(session encryption key and message authentication code) on the communication bus. 

The only transmitted secret is the ECU number which is transmitted in an encrypted 

manner, and will shortly be updated before being used in the next driving session. 

All communicating pairs take turns to generate, share and verify a MAC and a key to 

use through the starting driving session. This approach may be time consuming but it 

is also acceptable to happen once at the beginning of each driving session. 

 

Phase 3: Car operation 

After finishing the second phase of key distribution and authentication, the 

vehicle is ready to normally operate. The communication between ECUs now happens 

in a secure manner following this pattern of operation shown in Figure 6-11. The sender 

adds the message authentication code and the message counter in the extended ID field. 

The message is then encrypted using the session key and sent. The receiver receives the 

message, decrypts it and then extracts the MAC and counter from the extended ID field.  

If the MAC is identical to the pre-shared MAC, the message is authentic. If the counter 

value is one count incremented from the last stored value, the message is fresh and not 

a replay message. The authentic fresh messages are accepted, while the rest is 

discarded. The operation will keep going this way until the end of the driving cycle. 



75 

 

 

Figure 6-11: Car operation phase 

 

Initial key & ECU number update 

To increase security, the lifetime of the long-term memory stored variables 

(initial key and ECU number) is defined to be one driving session. Those two variables 

are updated as soon as they are used.  The update phase is performed using a bit wise 

operation (computationally light weight) between the old values and the random value 

generated in the SHA-1 output for each driving session. 
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Chapter 7: Simulations and Results 

After defining the countermeasures to be taken to secure our CAN network, and 

defining how exactly each part of the system will function. The next step was the 

software implementation and evaluation for the system. Software C implementation 

code was written performing all the phases of our system operation. The chosen target 

was Tiva™ TM4C123GH6PM Microcontroller ARM Cortex-M4F Based.  

To evaluate the system performance many essential factors should be evaluated. Now 

we will go through these factors with concerning our system: 

1- Backward compatibility: 

Means that the proposed system is compatible with the existing systems and 

could be easily integrated with the existing automotive networks. Our system 

didn’t require any modified hardware, and depends only on software 

implementation so it could be easily integrated with the existing automotive 

environment with only software modification-achieving backward 

compatibility.   

 

2- Confidentiality and integrity of the data: 

As mentioned before one of the most important requirements of the system is to 

guarantee the integrity of the data -that it’s not manipulated-, in addition to the 

confidentiality of the data -that it’s considered private between its sender and 

the interested receivers so that no other one could sniff and extract information. 

By the encryption/decryption process the confidentiality is guaranteed since 

there is not anyone that can understand the data except who has the key to 

decrypt it. Integrity is also guaranteed through the authentication and 

encryption/decryption processes, and the data is vulnerable only for the 

communication drops and not for anyone to manipulate it, as in this case it 

would turn into unacceptable data by the receiver. 
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3- Authentication: 

As mentioned before the most important factor to resist message injection 

attacks is to have an authentication protocol existing in the network. With that 

protocol, every node can recognize its sender, and accept data only from those 

who are trusted. With our authentication protocol explained previously, every 

node has a MAC that is known by its receivers, so no any other data from nodes 

that are not authenticated would be acceptable. 

 

4- Replay attack resistance: 

Using the message counter in our system made the freshness of messages in the 

system guaranteed. Every node has the last value of the message counter and 

shall not accept any similar message with equal or lower counter value, so our 

system is immune against replay attack as any un-updated message shall not be 

accepted. 

 

5- Repair and maintenance:  

As the whole system is only software based architecture, it can easily be tested, 

repaired and guaranteed for maintenance. Also any future improvements in the 

hardware and specially CAN controllers could be used for our benefit as the 

system doesn’t rely on any specific hardware so it’s compatible with any chance 

for enhancement.  

 

6- Overhead: 

The overhead added by our system is considered to be at the start of the driving 

session only -in the phase of authentication and key distribution-. After that 

phase no overhead packets is generated in the data transfer phase as we used the 

extended ID for the MAC and no need for any specified packets for the security 

reason. The only added overhead will be the time for the encryption and 

decryption of the messages, but it is still in the acceptable range so we can say 

the system is overhead free. 
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7- Real-time performance: 

Here is the most important system evaluation factor as there is no real-time 

performance vulnerability allowed in the automotive industry, because a very 

small delay could lead to a dramatic end. So that was our first concern in our 

implementation to reach the very optimized software.  

Code composer studio was used to debug and measure the performance of the 

introduced software. The computation time of AES and SHA-1 was measured 

in clock cycles. Then the whole pre-driving protocol of authentication duration 

was measured also in clock cycles, and here are the results: 

 AES algorithm : 12.5k cycles for encryption, 18k cycles for decryption 

 SHA-1 algorithm: 15k cycles 

 The total pre-driving session phase: 156k cycles in a single connection 

between one sender and one receiver. 

         To have better intuition of those numbers, the clock cycles was used to calculate 

the computation time in milliseconds for different crystal frequencies –different 

ECUs computational power-. For variable frequency ranges the needed time 

tabulated in Table 7-1. 

 

Table 7-1: Time measurments 

Frequency 8 MHz 24 MHz 48 MHz 250 MHz 

AES encryption 1.56 ms 0.52 ms 0.26 ms 0.05 ms 

AES decryption 2.25 ms 0.75 ms 0.375 ms 0.072 ms 

SHA-1 1.875 ms 0.625 ms 0.3125 ms 0.06 ms 

Pre-driving session 19.5 ms 6.5 ms 3.25 ms 0.624 ms 
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As shown in Table 7-1, the higher ECU crystal frequency will lead to better timing 

performance. For the pre-driving session protocol in authentication and key distribution 

phase the timing of the process between each sender and receiver is graphed in terms 

of crystal frequency in Figure 7-1.  

 

Figure 7-1: Pre-driving session performance with frequency 

 

The pre-driving session added time is needed only once through the whole driving 

session at its beginning. The previous time measurements are for single TX-RX 

configuration and should be generalized on a real automotive network environment. 

The real-time results even if on a single TX-RX scale, are very promising as only some 

time needed at the start of the driving session, would lead to a secure communication 

for the whole driving session. The AES added time is applied to all messages during 

the driving session. Having reasonable crystal and good performing controller, the real-

time performance will be very promising and will have efficient results in the real 

world. 
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Chapter 8: Conclusion and Future Work 

8.1 Conclusion 

In this thesis, we introduced a security system to stand against car theft attempts, 

which is based mainly on three modules: 

 Face recognition module which defines the person in front of the wheel, and 

makes sure it is the authorized owner.   

 Liveness detection to make sure that there is a live person in front of the camera. 

 CAN bus security to limit the ability of those attacks. 

Face recognition part was discussed in details, showing the pipeline of our work and 

the effort to achieve best performance and best accuracy. Our model also was discussed 

in details, the architecture used, the dataset which we train the model on and the 

framework used in training. So, as a result we have a complete face recognition system 

starting from capturing and preprocessing frames, applying face recognition on it and 

comparing with identities in the database, then take the action of having the permission 

to move or lock the car. The system has also the ability to add or remove trusted persons. 

For liveness detection, it was shown that it is implemented using eye aspect ratio 

algorithm which is real-time and incredibly accurate. 

Controller area network security will keep being a field to improve and enhance. It 

needs extensive testing to fill in all the gaps that may happen while applying the security 

concepts. It is also needed to find the optimal point at which sufficient security is 

achieved within the accepted alteration to the system performance. 
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8.2 Future Work 

For a car security system, face recognition model should have high accuracy as 

possible to prevent thieves from accessing the engine also it should be general as 

possible to recognize any face since people can be different in age, skin color, etc. Also 

it should recognize faces from multi poses with high accuracy to be fast as possible.  

These reasons encourage to train on smaller dataset then to increase it or to use 

augmentation on small dataset in order to increase the number of samples. 

On the other hand, the liveness detection is considered a security system for the face 

recognition itself as it prevents hacking this system using an image of the owner, but 

unfortunately it depends on an algorithm that uses eye blinking which might be passed 

through a video of the owner. So, from here it needs to be enhanced to be unable to be 

passed using images or videos. 

So for the face recognition part we can conclude the future work as: 

 Training on smaller part of vggface2 dataset then increasing it, train the model 

for a large amount of time or training on augmented LFW pairs dataset. 

 Liveness detection enhancement. 

 

In CAN bus security the tradeoffs between security level and fast performance will 

always exist. As previously stated the real time requirements of an automobile cannot 

be compromised. A car with no strict real time reactions can be a death machine. 

Starting from this point the proposed CAN bus security solution was built adopting the 

simplest ways to achieve security requirements. Till now, no proposed CAN bus 

security method can claim to achieve both very high security level and sufficient real 

time performance. 

Our method chose to cure the most common vulnerabilities of CAN network with a 

simple way first, and then to build up from this point. What needs to be done next is to 

test the proposed system extensively in a real vehicle environment, to define points of 

strengths and weaknesses and to give an intuition on how much computation can be 

added to achieve better security without rendering the real time performance. Some 

additional work can also be done to cover more attack surface. 



82 

 

It is eventually obvious that with the existing hardware CAN bus security will always 

suffer from limitations. Some future hardware modifications in CAN controller can be 

a really good step to have more flexibility and to achieve really sufficient security levels 

that enable car owners to drive securely with their connected cars. It cannot be denied 

that hardware modification will badly affect the backward compatibility and may lead 

to the need of huge system modifications, but on the other hand it will leave more room 

for security improvements which is really demanding in the field of connected cars.  

 We can conclude the future work as:  

 Testing the performance in a real vehicle environment. 

 Denial of service attack solution.  

 Considering future CAN controller modifications.   

  



83 

 

References 

 

[1]  "ImageNet Large Scale Visual Recognition Competition (ILSVRC)," Image-

net.org, 2017. [Online]. Available: http://www.image-

net.org/challenges/LSVRC/. 

[2]  "statista," 2007. [Online]. Available: statista.com. 

[3]  C. Miller and C. Valasek, "Adventures in Automotive Networks and Control 

Units," 2014.  

[4]  "Trustpilot," 2018. [Online]. Available: https://tech.trustpilot.com/forward-and-

backward-propagation-5dc3c49c9a05. 

[5]  "towards data science," 2017. [Online]. Available: 

https://towardsdatascience.com/activation-functions-neural-networks-

1cbd9f8d91d6. 

[6]  "CS231n," [Online]. Available: https://cs231n.github.io/convolutional-

networks/. 

[7]  "Analytics Vidhya," [Online]. Available: https://medium.com/analytics-

vidhya/cnns-architectures-lenet-alexnet-vgg-googlenet-resnet-and-more-

666091488df5. 

[8]  K. He, X. Zhang, S. Ren and J. Sun, "Deep Residual Learning for Image 

Recognition," 2015.  

[9]  Q. Cao, L. Shen, W. Xie, O. M. Parkhi and A. Zisserman, "VGGFace2: A 

dataset for recognising faces across pose and age," in IEEE International 

Conference on Automatic Face & Gesture Recognition, 2018.  

[10]  "Machine Learning Mastry," 2017. [Online]. Available: 

https://machinelearningmastery.com/adam-optimization-algorithm-for-deep-

learning/. 



84 

 

[11]  "pyimagesearch," 2017. [Online]. Available: 

https://www.pyimagesearch.com/2017/04/24/eye-blink-detection-opencv-

python-dlib/. 

[12]  "NVIDIA," 2017. [Online]. Available: 

https://developer.nvidia.com/embedded/jetson-tx2-developer-kit. 

[13]  "Vector E-learning," 2010. [Online]. Available: https://elearning.vector.com/. 

[14]  O. Avatefipour and H. Malik, "State-of-the-Art Survey on In-Vehicle Network 

Communication “CAN-Bus” Security and Vulnerabilities," 2018.  

[15]  Q. Wang and S. Sawhney, "VeCure: A Practical Security Framework to Protect 

the CAN Bus of Vehicles," 2014.  

[16]  R. Kurachi and Y. Matsubara, "CaCAN - Centralized Authentication System in 

CAN," 2016.  

[17]  J. V. Bulck, J. T. Mühlberg and F. Piess, "VulCAN: Efficient Component 

Authentication and Software Isolation forAutomotive Control Networks," 2017.  

[18]  A. V. Herrewege, D. Singelee and I. Verba, "CANAuth - A Simple, Backward 

Compatible Broadcast Authentication Protocol for CAN bus," 2011.  

[19]  S. Woo, H. J. Jo and D. H. Lee, "A Practical Wireless Attack on the Connected 

Car and Security Protocol for In-Vehicle CAN," 2015.  

[20]  M. Gmiden, M. H. Gmiden and H. Trabelsi, "Cryptographic and Intrusion 

Detection System for automotive CAN bus: Survey and contributions," in 

International Multi-Conference on Systems, Signals & Devices (SSD'19), 2019.  

[21]  N. Nowdehi, A. Lautenbach and T. Olovsson, "In-vehicle CAN message 

authentication: An evaluation based on industrial criteria," 2017.  

[22]  A. J. Menezes, P. C. v. Oorschot and S. Vanstone, "Hash Functions and Data 

Integrity," in Handbook of Applied Cryptography, 1996, pp. 321-376. 



85 

 

[23]  National Institute of Standards and Technology, "Announcing the Advanced 

Encryption Standard (FIPS PUB 197)," 2001.  

[24]  U. Kretzschmar, "AES128 – A C Implementation for Encryption and 

Decryption," 2009. 

 

 

 

 

 

 

 

 

 

 

 


