

AUTOMOBILE SECURITY SYSTEM BASED

ON FACE RECOGNITION AND CAN BUS

SECURITY IMPLEMENTATION

By

Ahmed Rahmy Mohamed

Amira Mostafa Mohamed

Eman Alaa El-din Zarif

Mohamed Ahmed Mohamed

Rokia Sayed Abdlmonem

A Graduation Project Report Submitted to

Faculty of Engineering at Cairo University

in Partial Fulfillment of the Requirements for the

Degree of Bachelor of Science

in

Electronics and Electrical Communications Engineering

Under Supervision of

Dr. Ahmed Hussein

Dr. Hassan Mostafa

Faculty of Engineering, Cairo University

Giza, Egypt

August 2020

ii

Table of Contents

Table of Contents ... ii

List of Tables .. vi

List of Figures .. vii

List of Abbreviations .. ix

Acknowledgments... xi

Abstract……………………………………………………………………………… xii

Chapter 1: Introduction .. 1

1.1 Motivation ... 1

1.2 Problem Definition .. 3

1.2.1 Car Theft .. 3

1.2.2 CAN Security ... 3

1.3 Solution ... 5

1.4 Organization .. 6

Face Recognition ... 7

Chapter 2: Background and Related Work .. 7

2.1 Neural Networks ... 7

2.1.1 Overview .. 7

2.1.2 Forward and Backward Propagation .. 8

2.1.3 Activation Functions .. 9

2.1.4 Cost Function ... 11

2.2 Convolutional Neural Networks.. 12

2.3 Convolutional Neural Network Layers ... 12

2.3.1 Convolutional Layer .. 12

2.3.2 Pooling layer .. 13

2.3.3 Fully connected layer ... 14

2.4 Classic Architectures ... 15

iii

2.4.1 LeNet-5 .. 15

2.4.2 AlexNet .. 15

2.4.3 VGG-16.. 16

Chapter 3: System Design ... 18

3.1 Pre-trained Model .. 19

3.1.1 Face Detection ... 20

3.1.2 Embedding extraction .. 21

3.1.3 Training the model ... 22

3.1.4 Recognizing faces .. 23

3.2 ResNet ... 24

3.2.1 Overview .. 24

3.2.2 Network Architecture... 24

3.3 VGGFace2 Dataset .. 29

3.4 Training ... 31

3.4.1 One Shot Learning ... 31

3.5 Binary Cross Entropy Loss Function .. 33

3.6 Model Design and Hyperparameters ... 34

3.6.1 Adam Optimizer... 34

3.6.2 Learning Rate ... 35

3.6.3 Batch Size .. 35

3.6.4 Number of Epochs ... 36

3.7 Liveness Detection .. 37

3.7.1 Eye Blink Detection ... 38

Chapter 4: Simulations and Results ... 41

4.1 Implementation on Nvidia Jetson TX2 Board... 41

4.1.1 Overview .. 41

4.1.2 Implementation of the Pre-trained Model .. 42

iv

4.2 Model and Architecture ... 44

4.2.1 Model ... 44

4.2.2 Architecture.. 45

4.3 Datasets and Preprocessing ... 46

4.3.1 LFW (Labeled Faces in the Wild) ... 46

4.3.2 VGGFace2 ... 46

4.4 Software and Hardware Platforms .. 48

4.4.1 Google Colaboratory .. 48

4.4.2 Graphics Processing Unit (GPU) ... 48

4.5 Eye Blink Detection .. 49

CAN Bus Security.. 50

Chapter 5: Background and Related Work .. 50

5.1 History ... 50

5.2 CAN Properties and Details .. 50

5.3 CAN Bus Vulnerabilities .. 53

5.4 Related work ... 55

5.4.1 VeCURE .. 55

5.4.2 CaCAN ... 56

5.4.3 VuLCAN .. 57

5.4.4 CANAuth ... 57

5.4.5 WooAuth .. 58

Chapter 6: System Design ... 60

6.1 SHA-1.. 61

6.1.1 Overview .. 61

6.1.2 Advantages (why chosen) .. 62

6.1.3 Reduction ... 63

6.2 AES ... 63

v

6.2.1 Overview .. 63

6.2.2 How the algorithm works [24]: .. 64

6.2.3 Key expansion process:.. 67

6.2.4 Advantages (why chosen) .. 69

6.2.5 Reduction ... 69

6.3 Parts of the system... 69

6.3.1 Anti-replay counters... 69

6.3.2 Authentication .. 70

6.3.3 Encryption .. 71

6.4 System operation ... 72

Chapter 7: Simulations and Results ... 76

Chapter 8: Conclusion and Future Work ... 80

8.1 Conclusion ... 80

8.2 Future Work .. 81

References…………………………………………………………………………… 83

vi

List of Tables

Table 3-1: Detailed Description of all ResNet-34 Layers and their Parameters 27

Table 3-2: Statistics for recent public face datasets ... 29

Table 3-3: Types of representation attacks .. 37

Table 5-1: CAN bus vulnerabilities and resulting attacks ... 54

Table 5-2: Evaluation of cryptography solutions according to identified requirements

.. 59

Table 5-3: Evaluation of authentication solutions according to identified requirements

.. 59

Table 6-1: Summary of selected hash functions based on MD4 62

Table 6-2: upper bounds on strength of selected hash functions 63

Table 6-3: AES memory usage and cycles .. 69

Table 7-1: Time measurments ... 78

vii

List of Figures

Figure 1-1: Number of motor vehicle theft offences recorded in England and Wales

from 2002/03 to 2018/19 ... 3

Figure 1-2: The hacked Jeep .. 4

Figure 1-3: Proposed system .. 5

Figure 2-1: Neural Network ... 7

Figure 2-2: Forward and Backward Propagation ... 9

Figure 2-3: Types of Activation Functions .. 10

Figure 2-4: Cost Function vs. number of iterations ... 11

Figure 2-5: Convolutional Neural Network ... 12

Figure 2-6: Convolution Operation .. 13

Figure 2-7: Max Pooling .. 14

Figure 2-8: Fully Connected Layers .. 14

Figure 2-9: LeNet-5 Architecture .. 15

Figure 2-10: AlexNet Architecture .. 16

Figure 2-11: VGG-16 Architecture .. 17

Figure 3-1: Pre-trained Model Pipeline ... 19

Figure 3-2: Embedding Extraction ... 22

Figure 3-3: Triplet Training ... 22

Figure 3-4: Network Architectures. Left: VGG-19 model. Middle: Plain Network.

Right: Residual Network.. 26

Figure 3-5: Identity Block .. 28

Figure 3-6: Convolutional Block ... 28

Figure 3-7: (a-b) VGGFace2 poses and ages’ statistics. (c-j) example images for eight

subjects with different ethnicities. ... 30

Figure 3-8: One Shot Learning .. 31

Figure 3-9: Siamese Network .. 32

Figure 3-10: Impact of Learning Rate on Gradient Descent .. 35

Figure 3-11: Number of Epochs vs. Training and Testing Error 36

Figure 3-12: Eye Landmarks ... 39

Figure 3-13: Changing eye aspect ratio ... 40

Figure 4-1: Nvidia Jetson TX2 Board .. 42

Figure 4-2: Nvidia Jetson Connections .. 43

viii

Figure 4-3: Results of the Pre-trained Model .. 43

Figure 5-1: CAN network vs. conventional network ... 50

Figure 5-2: Standard CAN data frame ... 51

Figure 5-3: Standard CAN remote frame... 51

Figure 5-4: CAN error frame ... 52

Figure 5-5: Standard ID vs. Extended ID .. 52

Figure 5-6: Communication between low trust group and high trust group in VeCURE

.. 56

Figure 5-7: CaCAN frame ... 57

Figure 5-8: Transmission of data bit for normal CAN and CAN+ protocols 58

Figure 6-1: Basic concept of AES algorithm ... 64

Figure 6-2: Structure of data and key .. 65

Figure 6-3: Substitute bytes operation ... 65

Figure 6-4: Shift rows operation .. 66

Figure 6-5: Mix columns operation ... 66

Figure 6-6: Add round key operation... 67

Figure 6-7: First column generation .. 68

Figure 6-8: 2 to 4 columns generation ... 68

Figure 6-9: Modified extended ID field ... 71

Figure 6-10: flow chart of the initial key distribution phase 73

Figure 6-11: Car operation phase ... 75

Figure 7-1: Pre-driving session performance with frequency...................................... 79

ix

List of Abbreviations

IOT Internet of things

V2V Vehicle to vehicle

V2X Vehicle to infrastructure

DAS Driver assistance system

ECU Electronic control unit

GPS Global positioning system

CAN Controller area network

OBD On-board diagnostics

DLC Data length code

CRC Cyclic redundancy check

EOF End of frame

DOS Denial of service

MAC Message authentication code

SHA Secure hash algorithm

MD Message digest algorithm

AES Advanced encryption standard

DES Data encryption standards

NIST National institute for standards and technology

CNN Convolutional neural network

ReLU Rectified linear unit

FC Fully connected

x

GPU Graphics processing unit

ILSVRC ImageNet Large Scale visual Recognition Challenge

MAC Multiply and accumulate

EAR Eye aspect ratio

AI Artificial intelligence

Tanh Tangent Hyperbolic function

HOG Histogram of Oriented Gradients

CPU Central processing unit

MMOD Maximum-Margin Object Detector-

FLOPs Floating point operations per second

SNN Siamese neural network

SDK Software development kit

BSP Board support package

ML Machine learning

LFW Labeled faces in the wild

xi

Acknowledgments

We are using this opportunity to express our gratitude to all who helped us in

our graduation project and trusted us in doing great work with their guidance and

advice.

First of all, we would like to thank our supervisors Dr. Ahmed Hussein and Dr. Hassan

Mostafa for their following up to check our work, giving us their assistance generously

all the time and their suggestions to clear up any obstacles faced us during the project

work.

Secondly, we would like to thank Eng. Mohamed Abdou, Senior Algorithms Engineer

and Deep Learning Researcher at Valeo Egypt, for providing us his valuable experience

and his time to help us overcome any problems faced.

Thirdly, we would like to thank Eng. Abdelrahman Hussein, Research Assistant at ONE

Lab for his regular following up and putting us in the right way to complete our work.

Finally, we would like to thank our families and friends for their unlimited support,

faith in us and in what we are capable of doing.

xii

Abstract

Automobile security is a demanding field of enhancement. High theft rates side

by side with the new cyber threats for in-vehicle network have directed the attention

towards applying new technologies to leverage car security. For this reason, a system

is proposed using face recognition to identify the car driver, and also to apply security

concepts to controller area network (CAN) to secure the communication between

vehicle parts.

1

Chapter 1: Introduction

1.1 Motivation

When future and its technologies are mentioned no one can omit the fact that

the two most developing and promising technologies that keeps people looking forward

to what is new: are machine/deep learning and internet of things (IOT). Those

technologies are being gradually added to every and each factor of our modern lives.

Creating machines that think have been a dream for a long time. Now computers are

told what to do, breaking big problems up into many small, precisely defined tasks that

the computer can easily perform. By contrast, we don’t tell the computer how to solve

our problem. Instead, it learns from observational data, figuring out its own solution to

the desired problem. That’s how machine learning is introduced.

Deep learning is a subset of machine learning in artificial intelligence (AI) that has

networks capable of learning from data without external interfering, these networks are

called neural networks. In recent years, neural networks have won numerous contests

in pattern recognition, and currently provide the best solutions to many problems in

computer vision, speech recognition, and natural language processing.

Among different types of deep neural networks, convolutional neural networks (CNNs)

have been most extensively used with visual document tasks, specifically image-related

problems such as classification or scene parsing because the convolution operation captures

the 2D nature of images, also it was reported that learning process using CNN for image

classification was "surprisingly fast", and one of the reasons that made usage of CNNs

has increased in the last few years was that datasets of Large Scale Visual Recognition

Challenge (ILSVRC) [1] have become available for training and validation.

Face recognition is one of CNNs applications that has been from the most challenging

and attractive areas of computer vision. Face recognition is a method of identifying or

verifying the identity of a person using their face. Hence, people in photos, video, or in

real-time can be identified using face recognition systems. In the near future, face

recognition technology will likely become more widely spread. It may be used to track

individuals’ movements out in the world.

https://www.investopedia.com/terms/m/machine-learning.asp

2

Internet of things made the idea of having far things monitored and under control come

true. Remaining at your own seat you can check on your house, your car, your business

and whatever that concerns you, and even have the ability to manipulate them over the

air. IOT is also employed in many industrial applications where it gives the machines

in factories the ability to communicate and exchange data.

The idea is to add connectivity to all objects and also give them the ability to process

data that they send and receive. This opens the door to a vast range of new applications

that was only defined as imagination before. Smart city is an application in which IOT

connects city objects together in order to control traffic, water distribution and various

city related problems. Smart farming introduces the same concept to manage farms.

IOT can also be used to monitor goods being transmitted and shipped all over the world.

Trucks and buses owners can also monitor their fleets by only setting in front of a

computer screen.

Implementing IOT connectivity to vehicles was indeed a great addition to automotive

domain. Making the vehicle connected, it can be monitored and even can be given

commands remotely. Furthermore, employing a large number of connected cars and all

the sensors they have, they can be a vital source of collecting data from every part of

the world. In this era of artificial intelligence and big data, this data collection network

formed by connected cars can lead to a huge growth in data available for training

machine learning models or data analytics purposes.

IOT does not only connect a car to the internet, it also introduces V-2-V (vehicle to

vehicle communication) and V-2-X (vehicle to infrastructure). When cars on the road

are interconnected they can give each other information about which is the best route

to take for a certain destination, locate congestions and even avoid accidents.

3

1.2 Problem Definition

1.2.1 Car Theft

Car theft is one of the major problems facing car owners. According to statistics

a chart of the number of motor vehicles thefts reported in England and whales across

time is depicted below in Figure 1-1. This chart gives an intuition of the losses sustained

by car owners due to car thefts, which is actually more severe in other parts of the world

rather than England [2]

Automotive industry is now revolutionized by new technologies leading to new trends

e.g. autonomous driving and smart driver assistant systems (DAS). However, the

security of automobiles did not experience as much development as other automotive

aspects. More attention has to be directed to employing new technologies such as

artificial intelligence in building more mature and reliable car security systems.

Figure 1-1: Number of motor vehicle theft offences recorded in England and Wales from 2002/03 to

2018/19

1.2.2 CAN Security

Recently, after the increasing interest in IOT, connected vehicles, V-2-V

(vehicle to vehicle) and V-2-X (vehicle to infrastructure) technologies, a new car

security threat came to light. This new threat gained huge attention after an incident in

which two security researchers -named Charlie Miller and Chris Valasek- were able to

4

remotely manipulate a number of functions in a modern Jeep vehicle shown in Figure

1-2, and they were also able to stop its engine on a highway. They aimed to reveal the

vulnerabilities in the car. This was not their first attempt to hack a vehicle; they were

also able to manipulate a Toyota Prius and a Ford Escape after they gained wired

connection to the internal CAN bus of both (through the OBD II port in the vehicles)

[3].

Figure 1-2: The hacked Jeep

 In vehicle controller area network (CAN) is the network dedicated for the operating

electronic control units (ECU) to communicate. This network is the medium for

transmitting all the critical commands among car ECUs. However, when CAN network

was first designed at 1983 by Robert Bosch, the only concern was to guarantee reliable

data transfer between car ECUs under the real time constrains defined by car

performance specs. The fact that the cars will evolve to be communicating devices,

besides being transportation means, was not then taken into consideration. The moment

science thought of connecting a vehicle to internet or to other vehicles, a huge surface

of vulnerabilities appeared. These vulnerabilities made CAN bus security a demanding

field of enhancement.

Besides the importance of preventing CAN bus attacks to car owner’s safety and

security in general. It is particularly important when intending to design anti-theft car

security system, because if an attacker is able to hack the network, the attacker will

obviously be able to counter whatever measures the security system will take to prevent

the robbery.

5

1.3 Solution

The proposed solution introduces a security system to stand against car theft

attempts. System parts are illustrated in Figure 1-3. The system is based mainly on

equipping the vehicle with face recognition module to define the person in front of the

wheel, and make sure it is the authorized owner. In case it is not, the car will then have

connection to the owner’s cell phone to have the permission to move. In case it is not

the car owner, and not someone trusted by the car owner the car may then lock itself,

and contact the police station if needed. The car will also be equipped with GPS module

to give the owner the ability to track his car through his mobile phone, and to define

its’ location in case of emergencies.

For the purpose of in-vehicle network security the proposed solution starts first at

analyzing the defined threat model in CAN bus. This threat model analysis will result

in a solid knowledge of CAN bus common security attacks. Then, countermeasures will

be added to the communication system on CAN bus to eliminate or limit the ability of

those attacks.

Figure 1-3: Proposed system

6

1.4 Organization

The following chapters will discuss the work done to achieve the proposed

system for improved vehicles security. The two major points of investigation and

discussion in this system will be the face recognition module and the in-vehicle network

security module. Each of them will be discussed separately and in details. The flow will

include the face recognition module in chapters 2, 3 and 4 starting from some basic

knowledge about the deployed technology, literature survey, system details, reached

results and some suggested future work to improve the system.

Then CAN security system will be discussed in chapters 5, 6 and 7 which will expose

basic info about in-vehicle CAN and the communication nature in the network, study

the previous work in the domain, state the proposed system elements, describe system

performance and point to some future work in the way to more developed CAN bus

security system.

7

Face Recognition

Chapter 2: Background and Related Work

2.1 Neural Networks

2.1.1 Overview

Neural networks are multi-layer networks of neurons that we use to classify

things, make predictions, etc. It’s called a neural network as it works similarly to the

human brain’s neural network. A “neuron” is considered a mathematical function that

collects and classifies information based on a specific architecture. A typical neural

network consists of input layer, hidden layers and output layer as shown in Figure 2-1.

The input layer collects input patterns. The output layer has classifications according to

input pattern. Hidden layers tune the input weightings until the margin of error is

minimal.

Figure 2-1: Neural Network

8

2.1.2 Forward and Backward Propagation

Forward propagation is the operation of the calculation and storage of

intermediate variables for the neural network from the input layer to the output layer

[4]. In the forward propagation, the weights and bias are initialized randomly in the

beginning. Then the weighted sum of activation and bias (z) is calculated. After

obtaining z, the activation function can be applied to it which will be discussed later.

𝑧 = 𝐼𝑛𝑝𝑢𝑡𝑖 × 𝑤𝑖 + 𝑏

Backpropagation is the method of calculating the gradient of neural network

parameters. Therefore, the method traverses the network, from the output to the input

layer. We can define a cost function that measures how good our neural network

performs which will be discussed in detail later. For a certain input, and desired output,

y, the cost of a specific training example can be calculated as the square of the

difference between the network’s output and the desired output, that is:

𝐶𝑘 = (𝑂𝑢𝑡𝑝𝑢𝑡 − 𝑦)2

The overall cost of a training set is the average of the individual cost functions of the

data in the training set. For the purpose of improving the performance of the neural

network on the training examples, the weights and bias are tuned, and hopefully, lower

the total cost. In order to know how much the specific weights and bias affect the total

cost, the partial derivatives of the total cost with respect to the weights and bias are

calculated using the chain rule. Then the weights and bias are updated like this

𝑤𝑖 = 𝑤𝑖 − 𝛼 𝑑𝑤𝑖

𝑏 = 𝑏 − 𝛼 𝑑𝑏

where 𝛼 is the learning rate. After finishing the first iteration of the backward

propagation. The forward propagation can be proceeded, calculate the cost, and then go

back to the backward propagation again as shown in Figure 2-2.

9

Figure 2-2: Forward and Backward Propagation

2.1.3 Activation Functions

Neural network activation functions are a significant component of deep

learning. Activation functions are mathematical equations that determine the output of

neural network like yes or no. They map the resulting values in between 0 to 1 or -1 to

1 etc. (depending upon the function). Activation functions introduce non-linearity into

the output of a neuron and the purpose of non-linearity in a neural network is to produce

a nonlinear decision boundary via non-linear combinations of the weight and inputs.

Activation functions also affect greatly on the ability of neural network to converge and

the convergence speed, or in some cases, they might prevent neural networks from

converging in the first place [5]. They are applied after the hidden layers and the output

layer. Types of activation functions as shown in Figure 2-3 are:

10

2.1.3.1 Sigmoid Function

It is a function which has a graph that looks like ‘S’ shaped graph. It is represented by

this equation:

𝜎(𝑧) =
1

1 + 𝑒−𝑧

where 𝜎(𝑧) is between 0 and 1. It is usually used in output layer of a binary

classification due to its range.

2.1.3.2 Tanh Function

This function works almost always better than sigmoid function. It is actually

mathematically shifted version of the sigmoid function and also known as Tangent

Hyperbolic function. It is represented by this equation:

tanh(𝑧) =
𝑒𝑧 − 𝑒−𝑧

𝑒𝑧 + 𝑒−𝑧

where tanh(𝑧) is between -1 and 1. It is usually used in hidden layers of a neural

network as its values lies between -1 to 1 hence the mean for the hidden layer comes

out be 0 or very close to it. This increases the capability of learning for the next layer.

2.1.3.3 ReLU Function

It stands for Rectified linear unit. It is the most widely used activation function. Since,

it is used in almost all the convolutional neural networks. It is represented by this

equation:

𝑅(𝑧) = max (0, 𝑧)

where 𝑅(𝑧) is between 0 and ∞. It is less computationally expensive than tanh and

sigmoid because it involves simpler mathematical operations.

Figure 2-3: Types of Activation Functions

11

2.1.4 Cost Function

A cost function is a method to determine the error between the output of the

network and the given target value. Cost function is expressed as the square of

difference between the predicted value and the actual one. It can be estimated by

running the model iteratively in order to compare the actual values against the estimated

predictions.

The purpose of cost function is to be minimized as shown in Figure 2-4, then returned

value is usually called cost, loss or error. The goal is to find the values of model

parameters for which cost function return as small number as possible, and the way to

do that is by using gradient descent which is an efficient optimization algorithm that

attempts to find a local or global minima of a function. Gradient descent enables a

model to learn the direction that the model should take in order to reduce errors. As the

model iterates, it gradually converges towards a minimum where the parameters

produce little or zero changes in the loss.

Figure 2-4: Cost Function vs. number of iterations

12

2.2 Convolutional Neural Networks

Convolutional Neural Networks are so similar to ordinary Neural Networks.

They are made up of neurons that have learnable weights and biases. Each neuron is

fed with some inputs, performs a dot product and optionally follows it with an activation

function. And they are finished with a loss function (e.g. SVM/Softmax) on the last

fully-connected layer [6].

So what changes? CNN architectures make the explicit assumption that the inputs are

visual data such as images. A CNN is composed of two basic parts which are feature

extraction and classification as shown in Figure 2-5. Feature extraction includes many

convolution layers that can be followed by max-pooling and an activation function. The

classifier usually consists of fully connected layers.

Figure 2-5: Convolutional Neural Network

2.3 Convolutional Neural Network Layers

2.3.1 Convolutional Layer

The convolutional layer is the basic building block of a Convolutional Neural

Network. It is the first layer that extract features from an input image using convolution

operation that utilizes small squares of input data in order to learn features of image. It

is a mathematical operation that is applied on two inputs such as image matrix and a

filter.

The convolutional layer’s parameters consist of a set of learnable filters. Every filter

has width and height smaller than the width and the height of input volume, but has the

same number of channels. For example, the first layer of CNN might have size 5x5x3

which means that the input image is RGB or has 3 channels.

13

Figure 2-6: Convolution Operation

During the forward pass in Figure 2-6, we slide and convolve each filter across the

width and height of the input volume and compute dot products between the entries of

the filter and the input at any position. And then a 2-dimensional activation map will

be produced that gives the responses of that filter at every spatial position. Every filter

will produce some type of visual feature such as a blotch of some color or edge of some

orientation on the first layer, or eventually wheel-like patterns or entire honeycomb on

higher layers of the network.

2.3.2 Pooling layer

Section of pooling layers will lower the number of parameters when the images

are too large. Spatial pooling also known as subsampling or downsampling which

reduces each map’s dimensionality but retains important details.

Spatial pooling can be of different types:

 Max Pooling

 Average Pooling

 Sum Pooling

Max pooling as shown in Figure 2-7 is taken from the rectified feature map as the largest

dimension. The pooling units may also perform other functions, such as average

pooling, or even L2-norm pooling, in addition to max pooling. Average pooling has

often been used traditionally but recently has fallen out of favor in contrast with the

max pooling system, which has been shown to perform better in practice.

14

Figure 2-7: Max Pooling

2.3.3 Fully connected layer

This layer is called as fully connected layer as it connects every neuron in one layer to

every neuron in another layer.

Figure 2-8: Fully Connected Layers

In Figure 2-8, the feature map matrix will be converted as vector (x1, x2, x3 and x4).

With the fully connected layers, these features are combined together to create a model.

Finally, an activation function such as softmax or sigmoid is applied to classify the

outputs.

15

2.4 Classic Architectures

2.4.1 LeNet-5

LeNet-5, a 7-layer convolutional network by LeCun et al in 1998 that classifies

digits. Several banks used it to recognize hand-written numbers on checks digitized in

32x32 pixel greyscale input images. The LeNet-5 architecture is constrained by the

availability of computing resources. Since, the ability to process higher resolution

images requires larger and more convolutional layers [7]. The architecture consists of

two sets of convolutional and average pooling layers, followed by a fully-connected

convolutional layer, then a fully-connected layer and finally a softmax classifier as

shown in Figure 2-9.

Figure 2-9: LeNet-5 Architecture

2.4.2 AlexNet

AlexNet is a Deep Convolutional Neural Network (CNN) for image

classification that won the ILSVRC-2012 competition and achieved a winning top-5

test error rate of 15.3%, compared to 26.2% achieved by the second-best entry, named

after Alex Krizhevsky, who was the first author of the paper describing this work. The

network had a very similar architecture as LeNet-5 but was deeper, with more filters

per layer, and with stacked convolutional layers.

AlexNet has 5 convolutional layers and 3 fully connected layers. And between them,

there are some pooling and activation layers. AlexNet input starts with 227×227×3

images. And then the first layer applies a set of 96 of 11×11 filters with a stride of 4.

And because it uses a large stride of 4, the dimensions shrinks to 55×55. And then it

applies max pooling with a 3×3 filter and a stride of 2. So this reduces the volume to

27×27×96, and then it performs a 5×5 same convolution, same padding, so it ends up

http://yann.lecun.com/exdb/publis/pdf/lecun-98.pdf

16

with 27×27×276. Followed by max pooling again, this reduces the height and width to

13. And then another same convolution, so same padding. So it’s now 13×13×384.

And then 3×3, same convolution again. Then 3×3, same convolution. Then max pool,

brings it down to 6×6×256. If all these numbers are multiplied, 6×6×256, that’s 9216.

And then finally, it has a few fully connected layers that uses a softmax to output which

one of classes the object could be as shown in Figure 2-10. AlexNet had about 60

million parameters.

Figure 2-10: AlexNet Architecture

AlexNet made a number of changes that helped in developing networks that came after

such as using ReLU instead of Tanh to add non-linearity which accelerates the speed

by 6 times at the same accuracy, using dropout instead of regularization to handle

overfitting, and using spatial pooling to reduce the size of network which reduces the

top-1 and top-5 error rates by 0.4% and 0.3%, respectively.

2.4.3 VGG-16

VGG-16 is a convolutional neural network by K. Simonyan and A. Zisserman

from the University of Oxford. VGG-16 achieves 92.7% top-5 test accuracy in

ImageNet, which is a dataset of over 14 million images. VGG-16 model was one of the

famous models submitted to ILSVRC-2014. It makes improvement over AlexNet by

replacing large kernel-sized filters with multiple 3×3 kernel-sized filters.

http://www.image-net.org/challenges/LSVRC/2014/results

17

The input to conv1 layer is of fixed size 224×224 RGB image. The image is passed

through a stack of convolutional layers, where the filters were used with a very small

receptive field 3×3. Convolution filters of 1×1 is also utilized in one of the

configurations, which can be considered as a linear transformation of the input

channels. The convolution stride is fixed to 1 pixel. Spatial pooling is done by five max-

pooling layers, which follow some of the convolutional layers. Max-pooling is

performed over a 2×2 window, with stride 2. Three Fully-Connected layers follow a

stack of convolutional layers followed by a softmax layer. All hidden layers are

equipped with the rectification non-linearity as shown in Figure 2-11. The network

contains almost 140 million parameters.

Figure 2-11: VGG-16 Architecture

18

Chapter 3: System Design

Face recognition is the task of making a positive identification of face in a photo

or video against a pre-existing database of faces. It begins with detecting and

distinguishing human faces from other objects in the image and then works on

identification of those detected faces.

Face recognition technology based on CNN has become the main method adapted in

the field of face recognition, so we use convolutional Siamese network for face

recognition which is one of the most popularly one-shot learning algorithms.

In our project we first tried a pre-trained face recognition model, then we build our

model to achieve the objective of identification before sending the required result over

communication protocol.

In this chapter, we will discuss the models we used in face recognition, how they work

and our contribution to make them fit the objective of face identification. We also will

discuss the liveness detection and our chosen technique to make sure there is a live

person in front of the camera. So the flow of work will be as follow:

 First, a pre-trained model for face recognition have been applied

 We started to build our model from scratch and we did our best to achieve the

best accuracy, so we can summarize our work in some points:

 Choosing the CNN architecture which achieve high accuracy.

 Choosing the dataset which the model can be trained on.

 Dividing the dataset into pairs (positive and negative pairs)

 Using one shot learning to train the pairs of images.

 Choosing similarity function to compute similarity between input

images.

 Choosing activation function that turns the output to 0 or 1.

 Implementing the liveness detection using eye blink detection technique.

All previous points will be discussed in this chapter.

19

3.1 Pre-trained Model

This pre-trained model uses dlib liberary to perform face recognition. It uses

ResNet network with 29 conv layers which is essentially a version of the ResNet-34

network. And it has accuracy of 99.38% on the standard Labeled Faces in the Wild

benchmark.

To build face recognition system, first face detection should be performed, and then

face embedding would be extracted from each face using deep learning. The next step

is to train face recognition model on the embedding and finally recognize faces in

images or in a video stream.

Figure 3-1: Pre-trained Model Pipeline

As shown in Figure 3-1, dlib liberary and deep learning are applied together to:

1. Detect faces

2. Compute 128-d face embedding to quantify a face

3. Train the network

4. Recognize faces in images and video streams

20

3.1.1 Face Detection

Face detection is a necessary step before applying face recognition as it is

important to feed the network with person’s face cropped without any objects around

him, which makes the model to work efficiently.

Face detector in this model is applied using dlib library, it is divided into two methods:

3.1.1.1 HoG Face Detector in Dlib

This is a widely used model of face detection, based on HoG and SVM features.

The model is built out of 5 HOG filters: front looking, left looking, right looking, front

looking but rotated left, and a front looking but rotated right. The training dataset

consists of 2825 images from the LFW dataset. The pros of this method can be

explained as follows:

1. Fastest method on CPU

2. Works very well for frontal and slightly non-frontal faces

3. Light-weight model as compared to the other three.

4. Works under small occlusion

This approach essentially works in most cases except for those cases that will be

discussed below:

Cons

1. The major drawback is that it does not detect small faces as it is trained for

minimum face size of 80×80. Thus, the face size must be more than that in the

application. You can however, train your own face detector for smaller sized

faces. The bounding box often excludes part of forehead and even part of chin

sometimes.

2. Does not work very well under substantial occlusion

3. Does not work for side face and extreme non-frontal faces, like looking down

or up.

21

3.1.1.2 CNN Face Detector in Dlib

This approach uses a CNN based Maximum-Margin Object Detector (MMOD).

The training process is very easy for this system, and you do not need a large amount

of data to train a custom object detector. It uses a dataset manually labeled, consisting

of images from various datasets like ImageNet, PASCAL VOC, VGG, WIDER, Face

Scrub. It contains 7220 images.

Pros

1. Works for different face orientations

2. Robust to occlusion

3. Works very fast on GPU

4. Very easy training process

Cons

1. Very slow on CPU

2. The bounding box is even smaller than the HoG detector

However, the model gives the user the ability to choose one of these two methods

depending on his requirements or his application.

3.1.2 Embedding extraction

Deep learning works with face recognition by using a technique called deep

metric learning. In deep learning, it’s known that the network is trained to output a

classification or a label for that image.

However, deep metric learning is different, instead of trying to output a single label,

the network is outputting a real-valued feature vector. For the dlib face recognition

network, the feature vector used to quantify the face is 128-d.

After detecting the face from the given images and initializing the parameters, the

network extracts the 128-diminsion encoding for each face in the images as shown in

Figure 3-2.

22

Figure 3-2: Embedding Extraction

3.1.3 Training the model

Training the network is done using triplets, two of these images are of the same

person and third image is a random face from the dataset and is a different person as

shown in Figure 3-3.

Figure 3-3: Triplet Training

23

First, the network constructs the 128-dimension embedding for each face. From there,

the general idea is to learn the weights of the neural network so that the 128-d

embedding of the same person will be closer to each other and farther from the third

embedding.

3.1.4 Recognizing faces

Now, the model becomes ready to recognize faces from any image by

quantifying the face and extracting 128-d face embedding, then comparing it with all

faces embedding in the database to know if this person is one of the known faces or not.

24

3.2 ResNet

Researchers observed that when it comes to convolutional neural networks “the

deeper the better”. However, it’s been noticed that after some depth, the performance

degrades and accuracy gets saturated. To overcome this problem, a deep residual

learning framework is introduced which is also called ResNet. The chosen CNN

architecture for training is ResNet due to its high accuracy which is needed in face

recognition application to identify people correctly.

3.2.1 Overview

Deep Residual Network is almost similar to the networks which have

convolution, pooling, activation and fully-connected layers stacked one over the other.

The only construction to the simple network to make it a residual network is the identity

connection between the layers which will be discussed later. ResNet won 1st place in

the ILSVRC 2015 classification competition with top-5 error rate of 3.57% (An

ensemble model) and also won the 1st place in ILSVRC and COCO 2015 competition

in ImageNet Detection, ImageNet localization, Coco detection and Coco segmentation.

There are multiple versions of ResNet architectures such as ResNet-34, ResNet-50 and

ResNet-152 etc. but the choice is on ResNet-34 and ResNet-50 since they are not very

deep so they can avoid overfitting. ResNet-34 has top-1 error rate of 21.84% and top-5

error rate of 5.71% while ResNet-50 has top-1 error rate of 20.74 % and top-5 error rate

of 5.25% on ImageNet validation set.

3.2.2 Network Architecture

ResNet-34 consists of 34 layers and 21.8 million parameters. It consists of

convolutional layers, average pooling and a fully connected layer and has 3.6 billion

FLOPs (multiply-adds).

To illustrate the architecture well, two models are described as follows:

Plain Network: This network (Figure 3-4, middle) is based on VGG nets (Figure 3-4,

left). The convolutional layers mostly contains 3x3 filters and follow two simple design

rules:

 The number of filters is doubled if the feature map size is halved to preserve

the time complexity per layer.

25

 The layers have the same number of filters for the same output feature map

size.

Convolutional layers that have a stride of 2 are responsible of downsampling in the

network. The network ends with a global average pooling layer and a 1000-way fully-

connected layer with softmax. The total number of weighted layers is 34. It is noticed

that the plain model has fewer filters and lower complexity than VGG nets since

number of FLOPs is only 18% of VGG-19 (19.6 billion FLOPs).

Residual Network: Based on the above plain network, shortcut connections are

inserted (Figure 3-4, right) which turn the network into its counterpart residual version.

The identity shortcuts can be directly used when the input and output are of the same

dimensions (solid line shortcuts in Figure 3-4). When the dimensions increase (dotted

line shortcuts in Figure 3-4) [8].

Each layer contains parameters which are composed of weights and biases and are

needed in convolution operation, detailed description of layers and parameters are given

in Table 3-1 where the image input size is 224×224×3 and batch normalization is

applied right after each convolution and before activation.

26

Figure 3-4: Network Architectures. Left: VGG-19 model. Middle: Plain Network. Right: Residual

Network

27

Table 3-1: Detailed Description of all ResNet-34 Layers and their Parameters

ID Layer Name Layer Type Kernel Stride Padding Output Size #Params

1 Conv1 Convolution 7×7 2 3 112×112×64 9.728K

Pool1 Max Pooling 3×3 2 1 56×56×64 -

2 Conv2_a1 Convolution 3×3 1 1 56×56×64 37.184K

3 Conv2_a2 Convolution 3×3 1 1 56×56×64 37.184K

4 Conv2_b1 Convolution 3×3 1 1 56×56×64 37.184K

5 Conv2_b2 Convolution 3×3 1 1 56×56×64 37.184K

6 Conv2_c1 Convolution 3×3 1 1 56×56×64 37.184K

7 Conv2_c2 Convolution 3×3 1 1 56×56×64 37.184K

8 Conv3_a1 Convolution 3×3 2 1 28×28×128 83.2K

9 Conv3_a2 Convolution 3×3 1 1 28×28×128 148.096K

10 Conv3_b1 Convolution 3×3 1 1 28×28×128 148.096K

11 Conv3_b2 Convolution 3×3 1 1 28×28×128 148.096K

12 Conv3_c1 Convolution 3×3 1 1 28×28×128 148.096K

13 Conv3_c2 Convolution 3×3 1 1 28×28×128 148.096K

14 Conv3_d1 Convolution 3×3 1 1 28×28×128 148.096K

15 Conv3_d2 Convolution 3×3 1 1 28×28×128 148.096K

16 Conv4_a1 Convolution 3×3 2 1 14×14×256 330.24K

17 Conv4_a2 Convolution 3×3 1 1 14×14×256 591.104K

18 Conv4_b1 Convolution 3×3 1 1 14×14×256 591.104K

19 Conv4_b2 Convolution 3×3 1 1 14×14×256 591.104K

20 Conv4_c1 Convolution 3×3 1 1 14×14×256 591.104K

21 Conv4_c2 Convolution 3×3 1 1 14×14×256 591.104K

22 Conv4_d1 Convolution 3×3 1 1 14×14×256 591.104K

23 Conv4_d2 Convolution 3×3 1 1 14×14×256 591.104K

24 Conv4_e1 Convolution 3×3 1 1 14×14×256 591.104K

25 Conv4_e2 Convolution 3×3 1 1 14×14×256 591.104K

26 Conv4_f1 Convolution 3×3 1 1 14×14×256 591.104K

27 Conv4_f2 Convolution 3×3 1 1 14×14×256 591.104K

28 Conv5_a1 Convolution 3×3 2 1 7×7×512 1.31584M

29 Conv5_a2 Convolution 3×3 1 1 7×7×512 2.361856M

30 Conv5_b1 Convolution 3×3 1 1 7×7×512 2.361856M

31 Conv5_b2 Convolution 3×3 1 1 7×7×512 2.361856M

32 Conv5_c1 Convolution 3×3 1 1 7×7×512 2.361856M

33 Conv5_c2 Convolution 3×3 1 1 7×7×512 2.361856M

Avg_pool Average Pooling 7×7 1 0 1×1×512 -

34 1000-d_fc Fully Connected - - - 1000 513K

28

3.2.2.1 Identity Block

The identity block is the standard block used in ResNets, and corresponds to the

case where the input activation has the same dimension as the output activation. To

illustrate the different steps of what happens in a ResNet’s identity block, Figure 3-5

shows the individual steps as the lower path is the main path, and the upper path is the

shortcut path which skips 2 layers.

Figure 3-5: Identity Block

3.2.2.2 Convolutional Block

The ResNet convolutional block is the second block type. This type of block is

used when the input and output dimensions don’t match up. The difference with the

identity block is the existence of a convolutional layer in the shortcut path as shown in

Figure 3-6. This convolutional layer is used to resize the input in order to make the

input and output dimensions match up in the final addition needed to add the shortcut

value back to the main path.

Figure 3-6: Convolutional Block

ResNet-50 is similar to ResNet-34, but each 2-layer block in the 34-layer is replaced

with a 3-layer block, resulting in a 50-layer ResNet and it has 25.6 million parameters.

29

3.3 VGGFace2 Dataset

Datasets are an integral part of the field of machine learning. In computer vision,

face images have been used extensively to develop facial recognition systems, face

detection, and many other applications that use images of faces. Table 3-2 shows the

comparison of several face datasets. The chosen dataset for training is VGGFace2

which is a large-scale face recognition dataset. Images are downloaded from Google

Image Search and have large variations in pose, age, illumination, ethnicity and

profession as shown in Figure 3-7. The dataset contains 3.31 million faces of more than

9000 identities, with an average of 362.6 images for each identity. It contains images

from identities spanning a wide range of different ethnicities, accents, professions and

ages. All face images are captured "in the wild", with pose and emotion variations and

different lighting and occlusion conditions [9]. The dataset is divided into two parts:

one for training which contains 8631 classes, and the other is for test which contains

500 classes.

Table 3-2: Statistics for recent public face datasets

Datasets # of identities # of images year

LFW 5, 749 13, 233 2007

YTF 1, 595 3, 425 videos 2011

CelebFaces+ 10, 177 202, 599 2014

CASIA-WebFace 10, 575 494, 414 2014

IJB-A 500 5, 712 images, 2, 085 videos 2015

IJB-B 1, 845 11, 754 images, 7, 011 videos 2017

IJB-C 3, 531 31, 334 images, 11, 779 videos 2018

VGGFace 2, 622 2.6 M 2015

MegaFace 690, 572 4.7 M 2016

MS-Celeb-1M 100, 000 10 M 2016

UMDFaces 8, 501 367, 920 2016

UMDFaces-Videos 3, 107 22, 075 videos 2017

VGGFace2 9, 131 3.31 M 2018

https://en.wikipedia.org/wiki/Computer_vision
https://en.wikipedia.org/wiki/Facial_recognition_system
https://en.wikipedia.org/wiki/Face_detection
https://en.wikipedia.org/wiki/Face_detection

30

Figure 3-7: (a-b) VGGFace2 poses and ages’ statistics. (c-j) example images for eight subjects with

different ethnicities.

31

3.4 Training

3.4.1 One Shot Learning

In the previous chapter, we talked about Convolutional Neural Network and

how it works. In this section, we will discuss using CNN to apply face recognition.

One of the challenges that faces us that we need to recognize a person given one single

image for the person’s face, but historically, deep learning algorithms can’t work well

if we have only one training example. So we have to use one shot learning and similarity

function to do this job.

The main idea of one shot learning based on computing similarity between the input

image and all images in the database to recognize which person in the database is more

likely to be the same person in the input image as shown in Figure 3-8. A good way to

do this is to use a Siamese network: through a sequence of convolutional, pooling and

fully connected layers, we end up with a feature vector of let’s say 128 numbers.

Figure 3-8: One Shot Learning

32

3.4.1.1 Siamese Neural Network (SNN)

Siamese Networks are a type of Neural Networks which have multiple instance

of the same model by sharing same architecture and same weights. Siamese Network

solves the problem when we need to add or remove new persons to the data, in

Traditional Neural Network we have to update the neural network and retrain it on the

new dataset. On the other hand, SNN uses similarity function to compare the encodings

of the two images as shown in Figure 3-9. Thus we can learn it to know if they are the

same persons or not.

Figure 3-9: Siamese Network

Goal of learning SNN

In deep neural network the word learn means to get the parameters well so that it gives

a good encodings of the picture.

We can learn the parameter so that:

‖𝑓(𝑥(1)) − 𝑓(𝑥(2))‖2 is small if the two input images are the same person

‖𝑓(𝑥(1)) − 𝑓(𝑥(2))‖2 is large if the two input images are different person

33

3.5 Binary Cross Entropy Loss Function

Binary cross entropy is a loss function that is used in binary classification tasks

as it answers questions with only two choices as “A or B” as in our case “same person

or different persons” so it’s chosen to be used formally. This loss is equal to the average

of the categorical cross entropy loss on many two-category tasks. Also called sigmoid

Cross-Entropy loss. It is a sigmoid activation plus a Cross-Entropy loss. Unlike softmax

loss it is independent for each vector component (class), meaning that the loss computed

for every CNN output vector component is not affected by other component values.

That’s why it is used for multi-label classification, where the insight of an element

belonging to a certain class should not influence the decision for another class.

The binary cross entropy loss function calculates the loss of an example by computing

the following average:

The pipeline for each one of the C classes would be as follows. C’ independent binary

classification problems is set (C’=2). Sum up the loss over the different binary problems

is applied: The gradients of every binary problem are summed up to backpropagate,

and the losses to monitor the global loss. s1 and t1 are the score and the ground truth

label for the class C1, which is also the class Ci in C. The score and the ground truth

label of the class C2 are s2=1 − s1 and t2=1 − t1, which is not a “class” in the original

problem with C classes, but a class is created to set up the binary problem with C1=Ci.

We can understand it as a background class.

The loss can be expressed as:

Where f() is the sigmoid function. It can also be written as:

34

3.6 Model Design and Hyperparameters

Hyperparameters are all the training variables set manually with a pre-

determined value before starting the training, we can also consider the model design

components as part of the hyperparameters set which will be illustrated as follows:

3.6.1 Adam Optimizer

Adam is an optimization algorithm that can be used for training deep neural

networks to update CNN weights. It’s considered different to Stochastic gradient

descent which have a fixed learning rate for all weight updates and the learning rate

does not change during training. Adam is described as combining the advantages of two

other extensions of stochastic gradient descent. Specifically:

 Adaptive Gradient Algorithm (AdaGrad): that maintains a per-parameter

learning rate that improves performance on problems with sparse gradients.

 Root Mean Square Propagation (RMSProp): that also maintains per-parameter

learning rates that are adapted based on the average of recent magnitudes of the

gradients for the weight. This means the algorithm does well on online and non-

stationary problems.

Adam uses the squared gradients to scale the learning rate like RMSprop and it takes

advantage of momentum by using moving average of the gradient instead of gradient

itself like SGD with momentum [10].

Using Adam or non-convex optimization has a lot of attractive benefits as follows:

 Straightforward to implement.

 Invariant to diagonal rescale of the gradients.

 Computationally efficient.

 Little memory requirements.

 Appropriate for non-stationary objectives.

 Well suited for problems that are large in terms of data and/or parameters.

 Appropriate for problems with very noisy/or sparse gradients.

That’s why it’s chosen to be used in our model.

35

3.6.2 Learning Rate

The length of a step in the gradient descent mechanism is usually referred to as

learning rate. If the search space was to be visualized as a 3D surface, the learning rate

is the length of a step taken towards a minimum point of the surface. Learning rate is

extremely important because it is the core of the learning process. A high learning rate

makes the ML model converge very fast after learning for a short time but later, it does

not improve at all or even worse, diverges. If the learning rate is too small, the ML

model will converge very slowly and eventually it will reach the optimum. The value

of learning rate is determined by tuning then choosing the most suitable value as

illustrated in Figure 3-10. A default value for the learning rate is 0.1 or 0.01, and this

may represent a good starting point for training a model. So, the chosen value of

learning rate in model is 0.01.

Figure 3-10: Impact of Learning Rate on Gradient Descent

3.6.3 Batch Size

Batch size refers to the number of training examples utilized in one iteration.

The batch size can be one of three options:

 Batch mode: where the batch size is equal to the total dataset which in turn

makes the iteration and epoch values the same.

 Mini-batch mode: where the batch size is greater than one training example but

less than the total dataset size. Batch size usually is chosen as a number that can

be divided into the total dataset size.

36

 Stochastic mode: where the batch size is equal to one training example.

Therefore the gradient and the neural network parameters are updated after each

sample.

Batch size is a slider on the learning process since small values give a learning process

that converges quickly at the cost of noise in the training process while large values

give a learning process that converges slowly with accurate estimates of the error

gradient. A good default for batch size might be 32 which is used in our model.

3.6.4 Number of Epochs

The number of epochs will decide how many times the weights of the network

will be changed. When the number of epochs used to train a neural network model is

more than necessary, the training model learns patterns that are specific to sample data

to a great extent. This makes the model incapable to perform well on a new dataset.

This model gives high accuracy on the training set but fails to achieve good accuracy

on the test set. In other words, the model suffers from overfitting. When the number of

epochs is less than necessary, the training model doesn’t learn enough from the dataset

which makes the model gives low accuracy on both training and test set and the model

suffers from underfitting. So, the number of epochs should be set as high as possible

and terminate the training when validation error start increasing as shown in Figure

3-11. The number of epochs is traditionally large, often hundreds or thousands. In the

model, for LFW dataset the number of epochs was 100 with a step size of 68 and for

VGGFace2 dataset the number of epochs was 1500 with a step size of 100.

Figure 3-11: Number of Epochs vs. Training and Testing Error

37

3.7 Liveness Detection

Many companies are now considering biometric face recognition as viable

security solution that machine learning engineers can deliver. This innovative

technology is showing great promise but also it does have weakness due to the

increasing of cybercrime in our increasingly digital world. Paper photographs,

screenshots, or 3D facial reconstruction can be easily found and used to spoof facial

recognition software, that’s why it’s important to have anti-spoofing systems in place

to reduce theft and mitigate fraud.

In order for face biometrics to fully gain widespread acceptance as a safer form of

authentication, it is important to differentiate between a real live face and an attempt to

hack the system with an artificial representation of a face, so automated detection of

attacks and specifically liveness detection has become necessary for any system based

on biometric face recognition. This section discusses the need for liveness, how it

works, and approaches.

The most popular face anti-spoofing technique:

Most face spoofing attacks which known as presentation attacks use 2D or 3D (static

or dynamic) to hack the system as shown in Table 3-3.

Table 3-3: Types of representation attacks

Type of representation attack Static Dynamic

2D Photographs, flat paper
Screen video or several

photographs in a sequence.

3D 3D prints, sculptures, or masks

Sophisticated robots to

reproduce expressions,

complete with makeup

38

Nowadays, there is a technological limitation so 2D is more popular than 3D

representation attacks and it is important to focus on the techniques that prevent these

attacks.

3.7.1 Eye Blink Detection

Blinking detection considers one of liveness detection techniques which is

incredibly accurate, so it is very important to implement and use it in this project.

Human blinking can be an easy way to determine if it is a photo attack or not, as it can

distinguish between real-life faces and faces on a photo. If the eye at some point is

detected open then closed then open, it means that the person has blinked and the

program authorize the person as trusted.

Eye Blink Detection can be implemented using two techniques:

3.7.1.1 Deep learning features: Convolutional neural network

In this method blink detection problem is considered as a binary classification

problem by training a CNN to recognize which is a closed eye and which is open, after

that a function can be built which tries to find a closed-open-closed pattern in the eyes

status history to recognize a blink.

This technique is implemented but with unsatisfying accuracy because it needs a large

dataset, and the images available for this kind of training is limited, so it was needed to

find other method that have good accuracy to use.

3.7.1.2 Eye aspect ratio (EAR)

To build this blink detector, a metric called eye aspect ratio need to be calculated

first. In this part eye aspect ratio will be discussed, how it can be used to determine if a

person is blinking or not during video frames.

To know what eye aspect ratio means, facial landmarks detection should be applied first

to localize the important regions of the face, but in terms of blink detection only two

facial structures are important-the eyes [11].

After applying facial landmarks detection and localize the region of the eyes, each eye

is found to be represented by 6 (x, y) coordinates.

39

Figure 3-12: Eye Landmarks

Based on Figure 3-12, there is a relation between the width and the height of the eye,

this relation is called eye aspect ratio and can be explained as the following equation:

𝐸𝐴𝑅 =
‖𝑝2 − 𝑝6‖ + ‖𝑝3 − 𝑝5‖

2‖𝑝1 − 𝑝4‖

Where p1, p2…p6 are 2D facial landmarks locations.

The numerator of the equation describes the height of the eye coordinates and computes

the length of the vertical axis, while the dominator describes the width and computes

the horizontal axis of the eye, weighting the dominator because there is two sets of

vertical points but only one set of horizontal points.

Based on this equation, the eye aspect ratio will fall to zero while the eye is closed but

it will be approximately constant while the eye is open, so that this equation can show

if a blink is taking place, as shown in Figure 3-13.

Using this equation, determining if a person is blinking has become very simple, also it

helps us to avoid image processing techniques which have unsatisfying accuracy

40

Figure 3-13: Changing eye aspect ratio

Figure 3-13 (left) shows a fully open eye, the eye aspect ratio here would be relatively

large and it would be approximately constant over time. However, once the person close

his eye, the eye aspect ratio falls to approach zero.

41

Chapter 4: Simulations and Results

In this chapter, the results of the work are presented and discussed, how the face

recognition and blink detection are implemented. First five sections discuss the

implementation of face recognition and the results, the last section discusses blink

detection. All of these will be discussed as follows:

 Implementation of the pre-trained model on Nvidia Jetson TX2 board.

 How the model works and framework used.

 The preprocessing applied on the datasets.

 Platforms used to run face recognition model.

 Implementation and results of eye blink detection.

4.1 Implementation on Nvidia Jetson TX2 Board

4.1.1 Overview

Jetson TX2 in Figure 4-1, is the fastest, most power-efficient embedded AI

computing device. It’s built around an NVIDIA Pascal™-family GPU and loaded with

8GB of memory and 59.7GB/s of memory bandwidth. It offers a variety of standard

hardware interfaces which make it easy to integrate a wide range of products into it. It

is pre-flashed with a Linux development environment. It also supports NVIDIA

Jetpack, a complete SDK that includes the BSP, libraries for deep learning, computer

vision, GPU computing, multimedia processing, and much more [12].

42

Figure 4-1: Nvidia Jetson TX2 Board

4.1.2 Implementation of the Pre-trained Model

At first, Nvidia Jetson was connected to the required modules as shown in

Figure 4-2. Packages of the pre-trained model were installed on Jetson such as dlib and

face_recognition libraries. External webcam was connected to Jetson. Then the model

was loaded into Jetson and started running. Jetson received frames from webcam to

pass them to the model, which in turn processed these frames to recognize them

showing results on screen as in Figure 4-3 with accuracy of 96%.

The reason why an external webcam was used although Jetson has an internal camera

that while using this camera, the processing time was about 15 seconds which caused a

large delay and non-real time operation. On the other hand, the external webcam results

a duration time before capturing of 5 seconds while processing time was about 0.5

second per frame.

43

Figure 4-2: Nvidia Jetson Connections

Figure 4-3: Results of the Pre-trained Model

44

4.2 Model and Architecture

4.2.1 Model

As mentioned before, this model is built using Siamese Network by entering

two inputs in the same architecture and then comparing the output of each one, so that:

 Output is 1 if the inputs are for the same person.

 Output is 0 if the inputs are for different persons.

The model was written using:

 Keras framework.

 Model class which helps in using multiple inputs in the same network and then

combining the outputs.

How the model works:

1. A base architecture is built, after that two inputs which are referred to as a pair

of images are entered to the same base architecture.

2. Each branch outputs the embedding.

3. The two embeddings are combined together and their difference is obtained by

absolute difference or by equilidean distance.

Equilidean distance d(p,q) = √(𝑝1 − 𝑞1)2 + (𝑝2 − 𝑞2)2 + ⋯ + (𝑝𝑛 − 𝑞𝑛)2 (1)

Absolute difference d(p,q)= ∑ (𝑝𝑘 − 𝑞𝑘)𝑛
𝑘=1 for embedding of size n. (2)

4. The output of the difference equation is passed to a sigmoid function to output

1 for the same person, 0 for different persons.

45

4.2.2 Architecture

For the base architecture, more than one architecture have been tested:

4.2.2.1 ResNet-34

We have built ResNet-34 architecture by ourselves, the following points will

show how we have built it:

 This architecture has been built using sequential class.

 There are two main blocks that were built for ResNet-34:

1) Convolutional block:

o Convolutional block is a stack of convolutional layers for the

same number of filters followed by batch normalization layers

with activation function ReLU.

o Shortcut is performed to the input of the first layer to be added

to the output of last layer in the block to overcome gradient

descent vanishing problem.

o Output size of this block is same as its input size.

2) Identity block

o Identity block is same as convolutional block but in case the

output size is different from input size.

o If the size of output of last layer is not the same size of the input

to first layer, a convolution layer is added to the shortcut to

manage the input to be added to the output.

 The output of the last block is passed by a fully connected layer to get

embedding.

4.2.2.2 ResNet-50

 It is a pre-trained architecture from keras over ImageNet dataset.

 There are two options for using this architecture:

1) Using the weights directly.

2) Training the architecture using transfer learning.

 We trained the model on our dataset by transfer learning using the same weights

but different fully connected layer to achieve our objective.

46

4.3 Datasets and Preprocessing

4.3.1 LFW (Labeled Faces in the Wild)

It consists of 2200 pairs of images for training (1100 same identity and 1100

different identities) and a vector of 2200 labels (1 for same identity pair and 0 for

different identities) and 1000 pair for testing (500 same identity and 500 different

identities) and a vector of 1000 labels (1 for same identity pair and 0 for different

identities). The images are cleared and contains only the face and shoulders. The dataset

has no images of very low resolution or wrong labels.

For the preprocessing images, resizing has been performed on the dataset to have the

intended size of the input of the model. The images were prepared to be fed to the model

by collecting them in a list of two NumPy arrays (as two inputs) and a NumPy array of

ones and zeros (as the labels). The indices have been shuffled (same shuffle for the two

inputs and the labels arrays’ indices) in order to train the model correctly

The model was trained on LFW dataset using Keras framework by method “fit” and the

accuracy was 99% for the training and 70% for the validation which clearly shows that

the model has overfitting issue which encourages us to search for a larger dataset to

overcome this problem.

Note that full LFW dataset can be downloaded as directories, each directory contains

person’s images but will need to form them in pairs and label them.

4.3.2 VGGFace2

It consists of more than 3 million images of more than 8000 identity as a training

data and about 250k images of a 500 identity as a testing data.

The data in the form of directories, each directory refers to an identity and contains the

images of this person. The images are in different sizes and can have more than one

face in the image for the same person or for other persons in the background

For the preprocessing; first, face detection has been performed on the whole dataset to

crop the images around the faces only using the mentioned pre-trained model in chapter

3. Then, number of wrong label data was very small relative to the number of images

for the whole dataset and the face detection model finished the job of removing the very

low-resolution images as it couldn’t detect the faces in it.

47

Then, a function has been created to make pairs from all combinations of the images

for the same identity’s pairs and it randomly creates different identities’ pairs of the

same number of the same identity’s pairs to make the data balanced. All the data is in

the form of list of two NumPy arrays as two inputs and one array has ones and zeros

for the labels as 1 refers to same identity and 0 refers to different identities but

unfortunately the number of pairs was very huge and it wasn’t reliable. So, this function

can help in case of small data as it won’t waste any images.

Then, a generator function was created to make a batch of pairs randomly while

training. By this way, it won’t need very large memory as the batch is divided into 2

halves; one for the same identity’s pairs and the other the other for different identities’

pairs. The pairs were in the form of list of two NumPy arrays that act as two inputs arrays

and one array has ones and zeros for the labels as 1 refers to same identity and 0 refers

to different identities This function doesn’t return and runs a while true loop and it

yields a batch of pairs. Both of the two functions shuffle the indices before passing the

arrays of the pairs and the labels.

Then, a function has been created to separate the data into parts and train on each part

in case of small memory by passing the model, the parameters and the dataset path. The

function separates the paths randomly to collections of paths then it starts to train the

model on each part separately by calling the method “fit_generator” from Keras.

Finally, the method fit_generator accesses the generator function which in turn will give

it the batch of training and validation samples to train and validate the model.

Unfortunately, an issue has been faced that in this case the models can’t learn and its

training and validation accuracy stay at 50% and many solutions have been tried

without any results and the last solution to be tried in the future work is to train the

model using a small general subset of the data (about 20k images) to figure out what

will happen and if this also doesn’t result in different results, another solution will be

tried which is augmentation to LFW dataset in order to increase the dataset samples.

48

4.4 Software and Hardware Platforms

4.4.1 Google Colaboratory

It is one of the most famous free cloud services to help spread machine learning

education and research. It is a Jupyter notebook environment that doesn’t require any

type of setup in order to use and runs completely in the cloud. It also supports many

popular machine learning libraries such as Keras, Tensorflow and OpenCV.

As a programmer, the following can be performed using Google Colab.

 Document your code that supports mathematical equations

 Write and execute code in Python

 Import/Save notebooks from/to Google Drive

 Free Cloud service with free GPU

 Create/Upload/Share notebooks

 Import external datasets

 Import/Publish notebooks from GitHub

Thus for these reasons, it was used for training and testing the model but there were

some issues that affected training the model such as:

 Runtime restarting

 Limited resources (GPU/RAM/Disk)

4.4.2 Graphics Processing Unit (GPU)

It is a specialized electronic circuit designed to rapidly manipulate and alter

memory to accelerate the creation of images in a frame buffer intended for output to a

display device. It performs parallel operations. Although it is used for 2D data as well

as for zooming and panning the screen, a GPU is essential for smooth decoding and

rendering of 3D animations and video. For the issues that were mentioned before in

google colab, a fast GPU was needed to speed up the training. So it was acquired from

ONE Lab to use Nvidia GeForce RTX 2080 Ti that has high performance represented in:

 Interface: PCI Express x16 3.0

 Cores: 4352 Units

 Core Clocks: Boost: 1755 MHz

 Memory Size: 11 GB

49

 Memory Speed: 14 Gbps

GPU was connected to CPU to provide interfacing using operating system, and because

of that, there was a struggle that the code runs on CPU instead of GPU which obstructed

training the model but this issue was solved by some changes in code.

4.5 Eye Blink Detection

As mentioned in the previous chapter, eye aspect ratio method is one of the

methods used to detect blinking which is incredibly accurate and fast.

In this part, a Python, OpenCV, and dlib code were written to:

 Perform facial landmark detection.

 Detect blinks in video streams.

This code defines two constants:

 First constant for eye aspect ratio threshold which is the maximum value needed

to indicate blink, this value is set to 0.3.

 Second one to indicate number of successive frames with an eye aspect ratio

less than EAR threshold that must happen in order for a blink to be registered,

this value is set to 3.

The total number of blinks is computed by the code by counting how many times three

consecutive frames with closed eyes are occurred.

By comparing the number of actual blinks that can be noticed in multiple videos and

the total number of blinks that resulted from the code, we concluded that the accuracy

of this code is approximately equal to 100%.

50

CAN Bus Security

Chapter 5: Background and Related Work

5.1 History

At the beginning of Electronification of automobiles and due to the increase of

customer wished features for modern vehicles, automotive manufacturers recognized

that the coordination between car ECUs could enhance the functionality of vehicles

greatly. This communication was first performed by a dedicated physical connection

for each signal that requires transmission, which increased wiring effort and limited

data exchange. The introduction of controller area network (CAN) was the solution out

of this dilemma. Figure 5-1 shows a visual comparison between the old wiring scheme

and the CAN bus network used in modern vehicles.

Figure 5-1: CAN network vs. conventional network

5.2 CAN Properties and Details

Controller Area Network (CAN) is a serial multi-master event driven network

that allows one sender at a time. CAN is based on broadcasting, while using sender ID

to perform arbitration and priority schemes. Data transmission rate is up to 1Mbit/s. It

comes in two data rates: low-speed CAN which supports data rate up to 125Kbit/s and

high-speed CAN which supports data rate up to 1Mbit/s.

51

CAN frames exist in three types: data frame, remote frame and error frame. CAN Data

frame is used to transmit user data. It can hold a maximum payload of 8 bytes in the

data field. The data field is then framed by other fields important for the operation of

the CAN protocol. Those fields include message identifier (ID), data length code

(DLC), cyclic redundancy check sequence (CRC sequence), end of frame (EOF) and

RX acknowledgment field. The standard CAN frame is depicted in Figure 5-2.

Figure 5-2: Standard CAN data frame

CAN remote frame (shown in Figure 5-3) have the same structure as the data frame

except it misses the data field. The remote frame is sent to request user data from

another ECU. The third type of CAN frames is CAN error frame (depicted in Figure

5-4). It is sent to indicate an error during communication. It consists of error flag and

error delimiter.

Figure 5-3: Standard CAN remote frame

52

Figure 5-4: CAN error frame

Communication in CAN network is based on content-related addressing. Instead of

giving IDs to the communicating nodes, the data and remote frames are given the IDs.

The broadcasting nature enables a message to be visible to all connected nodes, but

each receiver is independently responsible for selecting the messages to receive by the

internal acceptance filter. This filtering process is based on the frame ID.

The ID of a CAN frame can exist in two formats based on two modes of operation:

standard ID mode in which the ID field consists of 11 bits, and extended ID mode in

which the ID field consists of the standard 11 bits ID field as the base ID, and an

additional field of 18 bits called the extended ID. The difference between standard ID

field and extended ID field is illustrated in Figure 5-5.The extended ID mode is mainly

for the purpose of future expanding. The number of messages is expected to increase,

which corresponds to more message IDs needed.

Figure 5-5: Standard ID vs. Extended ID

53

The ID field is also responsible for arbitration and prioritization. When more than one

entity tries to access the bus simultaneously logical “0” is the dominant over logical

“1”; which means an entity writing 0 at a time will overwrite the other if it was writing

1. Based on the previous rule, bit wise arbitration occurs and the frame with lower ID

will dominate the bus and the other sender has to wait. As a consequence, the priority

scheme for the CAN protocol gives higher priority to messages with lower ID value

[13].

CAN bus provides high reliability and speed for real time applications. In addition it is

a lightweight and robust protocol. The decentralization of operation is also one of CAN

bus advantages, which guarantees network availability and prevents single point of

failure. Those aforementioned properties are of great importance while dealing with

safety critical applications. On the other hand CAN bus suffers from a wide attack

surface. In the next section the CAN bus vulnerabilities will be discussed.

5.3 CAN Bus Vulnerabilities

As mentioned before CAN bus was not mainly designed to stand against attacks.

It was designed when CAN attack threats were not of a great possibility. Nowadays,

the new technological trends in automotive domain dictate that CAN bus endurance

against attacks is now a must. Security analysis of the CAN network have been

performed to define the probable attacks and vulnerabilities as a first step in the way to

secure CAN [14].

From security point of view a secure communication should meet those five criteria:

 Data Integrity: this mean that the data is received exactly as it was sent

without being altered in the communication channel.

 Authentication: all entities participating in the communication should be

detected authentic or trusted.

 Confidentiality: the data transmitted on the communication channel should be

secure against intruders who try to overhear it

54

 Availability: to assure that the system is available for communication

throughout different circumstances.

 Nonrepudiation: the security solution should prove that the parties in the

communication cannot deny the authenticity of the message that was organized.

Applying those criteria to CAN-bus the main drawbacks are Lack of authentication and

data confidentiality. Sending bare data on the broadcasting communication channel

opens the door in front of sniffing attacks in which an attacker can listen to the

messages, record them and define the different content and relate it to different vehicle

functionalities. Now the attacker knows exactly what message to send if a certain action

is wished. This side by side with the fact that the CAN protocol don’t naturally concern

with sender identification, instead it uses message identification. An intruder can

broadcast a spoofed message on the bus which the other nodes can hear and act upon.

Moreover, replay attack can be launched in which the attacker sends a recorded

message repeatedly to force a certain action in the car. One of the other critical attacks

in CAN network is Denial of service attack (DOS) this attack addresses the CAN

arbitration and priority scheme. The attacker can send a malicious message with high

priority ID repeatedly in order to occupy the bus. This can result in a system failure.

Table 5-1 contains the main attacks in the CAN threat model and the system

vulnerability leading to it.

Table 5-1: CAN bus vulnerabilities and resulting attacks

Attack System vulnerability

Sniffing attack Lack of confidentiality

Spoofed messaged injection Lack of authentication

Replay attack No message freshness guarantee

Denial of service attack The arbitration and priority scheme

55

5.4 Related work

Securing in vehicle CAN communication against attacks has gained strong

interest over the last few years. Many researches were conducted to find reasonable

ways to secure communications over the CAN network without losing the main

advantages of this communication protocol. This matter was found to have many

tradeoffs between maintaining the reliability and real time constrains of the unsecured

CAN network which we cannot compromise in automotive domain, and achieving high

levels of security at the same time. This chapter will discuss some of the related work

introduced in this topic.

5.4.1 VeCURE

VeCURE was one of the proposed methods to apply CAN bus security concepts

[15]. This method assumes that the main adversary goal is to inject spoofed messages

and let the receiver believe it is from a legitimate ECU; to fool the car to perform a

certain action based on the spoofed message, or to start a replay attack –DOS attack is

not covered in this method-. All the work is under the assumption that the sources of

attack are compromised ECU or through the OBD-II port.

The suggested method VeCURE categorizes the connected ECUs to Low trust group

and high trust group based on what they are connected to. If an ECU is a suspicious

node based on the assumed sources of attacks, it is in the low trust group and the rest

are in the high trust group. The high trust group nodes share a secret key 𝐾ℎ which is

not known to the low trust group. This secret key is used to generate message

authentication code for each message between the high trust group members, which

allow them to communicate securely to each other. The communication pattern allowed

by the trust group based authentication is shown in Figure 5-6. To prevent replay attacks

the message authentication code generated is a function of a counter called message

counter. Message counter is a counter defined for each message and is updated at sender

and receiver each successful transmission of this message; to guarantee message

freshness.

56

To overcome the issue of message authentication code calculation delay pre-calculation

of the heavy computational part is performed, so it is ready even before it is needed.

The idea of using shared key introduced is also useful when it comes to the cost of key

distribution, while it is not as secure as using private keys. This method uses an extra

frame with each message frame for authentication, which is considered a large added

overhead that lowers the overall performance. Another disadvantage is that this method

doesn’t address overhearing and data confidentiality.

Figure 5-6: Communication between low trust group and high trust group in VeCURE

5.4.2 CaCAN

Centralized authentication system for CAN – CaCAN – is one of the methods

proposed for the purpose of CAN security [16]. This method uses an extra node which

they name HMAC-CAN controller. The HMAC-CAN controller monitors the bus to

guarantee transmission of authentic messages only and destroy unauthentic messages.

This method is similar to VeCURE in the idea of using message authentication code

(MAC). It also uses message counters to guarantee messages freshness. The MAC –

part of HMAC and part of the message counter- are transmitted with the message

payload. The frame fields for this method are depicted in Figure 5-7. Although the

overhead here is better than in case of sending a separate authentication frame, but the

fact that part of the payload must be freed means that the usual CAN messages with 8

bytes payload should be modified or separated into two frames. This method did not

consider message confidentiality, and adding additional node is not advisable when

considering the backward compatibility with systems that already exist.

57

Figure 5-7: CaCAN frame

5.4.3 VuLCAN

The VuLCAN method uses secure computing concepts [17]. It uses Sancus

which is a light-weight and open source for trusted computing for IOT. Sancus forces

that private data section can only be accessed by its corresponding code section, and it

employs a three level key hierarchy using an embedded cryptographic core. It also

forces that Critical application software is included in the protection domain so that it

is anti-tampering.

This method guarantees authenticity by a separate frame sent before the data frame, this

frame includes 64-bits message authentication code. The message authentication code

is constructed using ID, payload and anti-replay counters. Data confidentiality is

considered and data is protected using encryption with 128-bits symmetric key. While

the secure computation concepts lead to more secure system, but this adds complexity

to the system. The complexity will in turn lead to more computation and delays. This

method is also obviously far from backward compatibility.

5.4.4 CANAuth

CANAuth method suggests using CAN+ standards [[18]. CAN+ concept

(illustrated in Figure 5-8) is to use the duration between sampling instances for each

transmitted bit to transmit excess bits –usually authentication bits- with higher

transmission rate. Message authentication code is transmitted over CAN+ achieving

authentication with zero additional overhead compared to original unsecure CAN.

CANAuth also consider message confidentiality by using encryption. Using CAN+

solves some of the strict tradeoffs in the issue of CAN security, but this protocol is still

not used and will require modification in the CAN controller.

58

Figure 5-8: Transmission of data bit for normal CAN and CAN+ protocols

5.4.5 WooAuth

WooAuth [19] guaranteed authenticity by using message authentication code

(MAC), and data confidentiality by using encryption. To guarantee message freshness

message counters are used. The MAC Is sent in the extended ID field and the CRC

field, which is an acceptable overhead. The MAC generated in a way to guarantee the

integrity of data and can replace the CRC in data validity check.

This method uses long term symmetric key distributed between ECUs to calculate

system variables e.g. message authentication codes and encryption keys. The

distribution of those long term keys happens once at the start of each driving session.

This process happens when ECUs take turns to communicate to a gateway node and

share a random number with it, calculate MAC and key based on the shared numbr, and

then verify that the MAC and key were identical after calculations at both the gateway

and the ECU it perform key distribution with. This scheme guarantees that no errors

happen in the initial key distribution phase which will mean failure in the

communication between ECUs while the driving session.

 Towards more security they perform periodic refreshment for the encryption keys

during the driving session, but the process of key refreshment actually stops the

communication on the bus for the period of refreshment protocol, which may not be the

best practice when it comes to the strict real time requirements of automotive CAN bus.

Although WooAuth is considered one of the most successful CAN security introduced

methods with high security level, it lacks backward compatibility because of the added

gateway node.

59

Eventually a comparison between the most popular proposed CAN security solutions

was held. Table 5-2 shows the system evaluation for introduced encryption methods

[20]. Table 5-3 shows the system evaluation for introduced authentication schemes and

the resulting security level [21].

WooAuth has shown the best results the only drawback was that it is incompatible with

existing CAN network due to the added gateway node. Adding more hardware needs

changes in the in vehicle network.

Table 5-2: Evaluation of cryptography solutions according to identified requirements

Table 5-3: Evaluation of authentication solutions according to identified requirements

60

Chapter 6: System Design

Our proposed system aims to fill the gaps in CAN bus security; in order to have

more secure and safe in-vehicle communication system that is ready to be connected

to the outer world through WIFI, GSM, Bluetooth, etc…

The proposed system collects the most successful aspects in the previously mentioned

and evaluated methods. WooAuth is the start point of the introduced solution. Mainly,

some of WooAuth concepts are adopted with more simplification, and with the

avoidance of the extra added node.

Starting from the pre-discussed threat model for CAN bus, the proposed system is based

on some assumptions:

Assumptions:

 Initially stored secrets are stored in anti-tampering memory and cannot be read

or change by intruder.

 Tampering the code running on the ECUs is not easily possible

 Threats come from an external node attached to the bus or through OBD

connected device-which may have access to WIFI, GPS, GSM or Bluetooth

The main countermeasures concluded from the previous work are authentication,

encryption and anti-replay counters. Those three measures stand against most of the

vital attacks that threaten CAN bus security. In our proposed system SHA-1 hashing

algorithm is used to generate authentication codes, encryption keys. AES algorithm is

used for encryption and decryption of data. In the next section the discussion of SHA-

1 algorithm and AES algorithm is held. The reasons behind choosing them and some

introduced modifications are also discussed.

61

6.1 SHA-1

6.1.1 Overview

Secure Hash Algorithm -1 (SHA-1) [22] was proposed by U.S. National

Institute for Standards and technology (NIST). Hashing functions are mainly used to

map variable size input data to a fixed size code. In SHA-1 this operation is based on

performing many bit-wise operations using the input data to alter a number of initially

defined variables (five variables, 32-bits each) called chaining variables. The values of

the chaining variables after running the hash are the hashing result. The input to SHA-

1 is usually blocks of data with large size and the output is 160 bits dictated by the

defined standard. The operations from input to output are standardized by four stages.

To measure the quality of any hashing function some properties were defined:

 Preimage resistance:

Means that for an output y, it is computationally infeasible to find any input 𝑥𝑜

that hashes to y (i.e. 𝑥𝑜 such that h(𝑥𝑜)=y is not feasible to calculate).

 2nd-preimage resistance:

Means that it is computationally infeasible to find any second input 𝑥1 that have

the same hash value y as 𝑥𝑜 (i.e. 𝑥1 to achieve that h(𝑥1) = h(𝑥𝑜) is not feasible

to calculate)

 Collision resistance:

Means that it is computationally infeasible to find any two distinct inputs x, 𝑥𝑜

which hash to the same output, (i.e. such that h(𝑥) = h(𝑥𝑜)).

The SHA-1 algorithm is considered good when it comes to the pre-mentioned

requirements for a hash function. It is not considered the strongest when we talk about

the data hashing applications for example. There are more sophisticated algorithms for

data hashing -and other hashing applications- which is based on more complicated

operations and in turn needs more computational resources.

62

In our system SHA-1 is not used for message -data- hashing. It may be said that the

hashing function is used here as random code generator. This decision was based on

two properties of SHA-1:

 SHA-1 is a one way hashing function i.e. the adversary cannot know the input

given the output –which is important for the inputs of the hash function to

remain secret -.

 SHA-1 output changes significantly with a bit or a few bits change in the input.

Starting from this different utilization for SHA-1 function, the properties which gain

the most concern in our system are preimage and 2nd-preimage resistance; because the

output of the hashing function -which is used to define the secrets that the system

members share - is needed to be impossible to guess by any intruder. This is also

defended by the fact that SHA-1 is a one way function. The collision possibility is not

a great concern for our system.

6.1.2 Advantages (why chosen)

Choosing between the different hash functions the main concern was the speed;

because as mentioned before for our system some hashing functions properties can be

compromised, but we can never compromise the speed of the algorithm under the

limited resources of embedded ECUs in automotive real time applications.

Comparing SHA-1 to other algorithms of the same family, it appears in Table 6-1 that

SHA-1 is better –most importantly - in speed. Also it is better in collision and preimage

resistance as shown in Table 6-2.

Table 6-1: Summary of selected hash functions based on MD4

Hash function Relative speed

MD4 1.00

MD5 0.68

SHA-1 0.28

63

Table 6-2: upper bounds on strength of selected hash functions

Hash function Preimage Collision

MDC-2 2. 282 2. 254

MDC-4 2109 4. 254

Merkle 2112 256

MD4 2128 264

MD5 2128 264

SHA-1 2160 280

6.1.3 Reduction

SHA-1 is mainly designed to deal with large input blocks of data. In our case

we use the hashing function to serve as random number generator to generate

unpredictable codes, so there is no data to perform hashing on. Instead, the available

variables in the system will be given to the hashing algorithm as an input. As a result a

size reduction in the input to SHA-1 algorithm was necessary.

The size reduction for hashing function in most of the traditional applications of hashing

will lead to severe impact on the definition of the hashing function and will weaken its

strength. While here the function is used just to generate random codes, so the size

reduction will not be very harmful and it will also lead to faster computation which is

desired whenever real time applications are mentioned.

6.2 AES

6.2.1 Overview

Advanced Encryption Standard (AES) was announced by the National Institute

of Standards and Technology (NIST) in November 2001 [23]. First there was the Data

Encryption Standard (DES) which was published in the 1970s. The DES algorithm has

a symmetric-key encryption/decryption with a key of 56 bits length, which was the

main disadvantage of the DES as it makes it insecure and vulnerable. Electronic

64

Frontier Foundation in collaboration with distributed.net managed to publicly break a

DES key in 22 hours and 15 minutes due to its short key length in addition to

weaknesses in cypher. DES has been withdrawn as a standard by NIST. To determine

which algorithm would follow DES, NIST called for different algorithm proposals as a

competition and the best of all was the new AES or Rijndael (named after its inventor)

that won because of its security, ease of implementation and low memory requirements.

AES also has a symmetric-key encryption/decryption which means that the same key

is used in either encryption or decryption of the digital data. AES has three versions

with different key lengths: 128, 192 and 256 bits, all have a fixed block of data with

128 bits length as an input and an output. We will consider the 128 bits key length in

our work.

6.2.2 How the algorithm works [24]:

1- AES algorithm (in Figure 6-1)

It consists of 10 rounds of encryption (12 rounds for 192-bits key and 14 rounds

for 256-bits key). The 128 bit key is expanded to 11 versions called round keys

with 128 bits length each. Each round includes transformation using the

corresponding round key to ensure the security.

Figure 6-1: Basic concept of AES algorithm

65

Starting with an initial round during which the first round key is XORed with the plain

text, nine equal rounds follow. Each round will be consisting of the following

operations:

 Substitute bytes

 Shift rows

 Mix columns

 Add round key

The tenth round is similar to rounds one to nine, but the Mix columns step is omitted.

These four operations are explained in details in the following sections but first the

structured key and input data phase should be illustrated during which the data (state)

and the key are structured in 4x4 matrix of bytes as follows in Figure 6-2:

Figure 6-2: Structure of data and key

2- Substitute bytes:

One of the major reasons of the security of the AES is that byte substitution is

not linear (illustrated in Figure 6-3). This operation is considered with

substituting the data bytes with the corresponding values from a table named

the substitution box (SBox).

Figure 6-3: Substitute bytes operation

66

3- Shift rows:

Processes for shifting the different rows of the 4x4 matrix constructed (Figure

6-4). The first row is left unchanged, the second is shifted one byte to the left,

the third is shifted two bytes to the left and the fourth is shifted 3 bytes to the

left.

Figure 6-4: Shift rows operation

4- Mix columns:

Opposed to the shift rows operation, now working on the columns of the matrix

is considered (Figure 6-5). This maybe the most complex operation for software

implementation. As a principle only matrix multiplication is needed. But in

order to make this operation reversible, the normal addition and multiplication

is not used. Instead Galois field operations are used. Without going into

mathematical details, the most important part to know about Galois field is that

the addition corresponds to XOR operation and the multiplication corresponds

to more complex equivalent.

Figure 6-5: Mix columns operation

67

5- Add round key:

A simple process (in Figure 6-6) considering XORing each byte of the data with

the corresponding from the expanded round key.

Figure 6-6: Add round key operation

6.2.3 Key expansion process:

As mentioned before the 128-bits original key is expanded into eleven 128-bits round

keys. To compute key (n+1) from key (n) two steps are performed:

1- Compute the new first column of the next round key (Figure 6-7): first all the

bytes from the old fourth column are substituted by the bytes substitution

process. Then they are shifted vertically by one byte and XORed to the old first

column and that results in generating the first new column.

68

Figure 6-7: First column generation

2- New column 2 to 4 are calculated as:

 [new second column] = [new first column] XOR [old second column]

 [new third column] = [new second column] XOR [old third column]

 [new fourth column] = [new third column] XOR [old fourth column]

This process is shown in Figure 6-8.

Figure 6-8: 2 to 4 columns generation

For the decryption process, all the before introduced steps are reversed using the RBox

(reverse box) instead of the SBox.

69

6.2.4 Advantages (why chosen)

The AES is now the worldwide most used standard due to its high level of

security and efficient data encryption. Its large key length makes it immune against the

hacking attacks, in addition to its complex operation discussed before, which makes it

so hard to track back and break. Also its acceptable usage of the memory and the

processing unit as shown in Table 6-3 makes it so efficient for a lot of applications.

Table 6-3: AES memory usage and cycles

6.2.5 Reduction

As mentioned before the AES works on fixed 128-bits block of data as an input

and an output. For the CAN bus with variable data size and maximum data length of 64

bits we had to modify the AES software implementation to accept variable input data

length, and to generate variable data length output. Working with the same

implementation without modifying the data size leads to wrong output so although that

modification may affect the memory usage and the cycles needed (not much) but it’s

necessary and still acceptable for our system.

6.3 Parts of the system

As mentioned before the system proposed here consists of three main elements

to face most of the defined attacks. Those three elements are message counter –anti

replay counter-, ECUs authentication and data encryption.

6.3.1 Anti-replay counters

Replay attack as defined previously is when the attacker uses a message that

was legally sent on the bus and repeat sending it to force a certain action. In our system

this legally sent message will be properly encrypted and authenticated as it came from

an authorized sender at the first place. As a result, there is no reason for the receiver to

suspect the message or even define the happening attack.

70

A powerful solution is to use message counters for each message. This message counter

will be synchronized at sender and receiver and incremented every successful

transmission. This counter should be sent within every message -in the extended ID

field-. When the receiver gets a message with a certain ID, it checks the counter value

in it and compares it to the value stored at the receiver. If the value is less than or equal

to the stored counter value associated with this message, then it is obviously an old

message used by an attacker. In this case the repeated message will be dropped and the

attacker will not be able to force the action meant by this message.

In our proposed system 8-bits message counter is associated with each message. The

counter is resetted to zero every driving session and the related counter is sent with

every message in the extended ID field of the CAN frame.

6.3.2 Authentication

Authentication is necessary for communicating parties to guarantee the source

of each message. CAN bus nature is based on message ID, and there is nothing to define

the sender’s identity. This opens the door in front of an intruder to send legitimate

messages as If they come from their original source.

To guarantee authenticity it is necessary for the receiver to be able to verify the sender’s

identity. In order to achieve this, the proposed system defines an authentication code

for each communicating pair. This authentication code is an 8-bit code shared between

sender and receiver and is considered as a signature to guarantee that the message

originates from a trusted sender. This 8-bit authentication code is sent within every

message frame in the extended ID field side by side with the message counter. The

receiver checks the authentication code received and compares it with the stored

authentication code associated with the trusted message sender. If the message doesn’t

originate from its trusted sender, the receiver knows it is an attack and drops this frame.

Most of the published papers in CAN bus security depend on message wise

authentication code, in which a code is generated for each transmitted message and is

based on the transmitted data. This approach needs to perform calculations on each

message frame, which may lead to a significant delay. As mentioned before those

delays are not really welcomed in real time automotive applications.

71

We instead chose the computationally light option of generating authentication code

for each sender and receiver pair at the beginning of each driving session, and use this

fixed 8-bit code for the rest of the driving session. The idea that the authentication code

is fixed is not as powerful as having a message based varying code, but having the

message counter by its side the total 16-bits of MAC and message counter will be

changed each transmitted message. Moreover, those 16 bits will be sent in an encrypted

form. This will guarantee that during the lifetime of a driving session it will not be easy

for an adversary to reveal the encryption key, authentication code and message counter

-all three of them- to be able then to launch an attack. This is acceptable because the

data rate limitation of the CAN bus also limits the adversary capabilities when trying

to attack the system.

The proposed solution is based on operating the CAN protocol in extended mode. The

modifications made on the extended ID field are illustrated in Figure 6-9.

Figure 6-9: Modified extended ID field

6.3.3 Encryption

Data confidentiality means not to be able to overhear the data transmitted on the

bus, which is of an increasing importance because of the demanding automotive

applications that may contain personal user information.

Depriving the adversary from the ability to easily overhear what is being transmitted

on the bus not only guarantees data confidentiality, but it also makes it difficult for an

adversary to launch other types of attacks. All CAN bus mentioned attacks start at the

ability of attacker to monitor the communication and define the frames associated with

each task in the automobile. After monitoring the bus for a sufficient time the adversary

will usually be able to define the structure of the frame and the variables in each type

of messages to manipulate the task associated with this message. Blocking this way

72

against the attacker will make it hard for an adversary to reveal the secrets in the CAN

messages and how exactly they are functioning, which will greatly lower the possibility

of attacks. The adversary will need first to reveal the encryption key which is a time

and resources extensive task, especially when using AES algorithm for encryption.

At the beginning of a new driving session each communicating pair generates

encryption key to use during this session. This key is used to encrypt data at the sender

and decrypt it at the receiver.

6.4 System operation

Each part of the system was previously discussed separately. The flow of

operation will put those pieces together to form a complete security approach for in

vehicle CAN bus. First of all, initial key storing phase needs to be held once in the

automobile fabrication process. Then, at the beginning of every driving session each

sender and receiver communicates to define an authentication code and encryption key

to communicate with during the session. At the end of the second phase the vehicle is

ready to operate in a secure manner under the security measures taken. A refreshment

process for the long term stored information is also held at each driving session. In the

following, each phase will be separately discussed.

Phase 1: Initial key storing phase

At the car manufacturing and ECUs programming process each ECU in the

vehicle will hold two secrets in a sealed long-term memory which is assumed not to be

manipulatable by intruders. The two secret keys are:

 Initial session key: a global key of 128 bit is stored in all car ECUs and is

changed from a vehicle to another.

 ECU number: a unique 64 bits key assigned as identification to each ECU.

Those stored keys will be used to generate authentication code and encryption keys in

phase 2.

73

Phase 2: Authentication code and encryption key distribution

Starting from the stored secrets each communicating pair (transmitter of a

certain message and the intended receiver for this message) generates a common

identification code that the transmitter will attach to the message to let the receiver

know it is authentic, as well as encryption key to communicate with.

The flow chart of authentication and key distribution phase is illustrated in Figure 6-10.

The phase starts when the sender retrieves its own unique ECU number, encrypts it with

the initial key stored at all ECUs and transmits it to the receiver. The receiver gets the

encrypted transmitter ECU number, decrypts it and both the sender and receiver will

use the initial stored global key and the ECU number of the transmitter as inputs to our

reduced SHA-1 function. SHA-1 function will perform one way –not reversible-bit

wise operations using these inputs. The output of SHA-1 comes as 160 bits which will

then be divided into 8 bits as the authentication code (MAC) and 128 bit encryption

key. The last 32 bits of the 160 bit output will be used as a random number; this random

number is needed in the process of stored keys refreshment.

Figure 6-10: flow chart of the initial key distribution phase

Now both sender and receiver should have generated the same authentication code and

encryption key. There exists a possibility that an error may occur in the ECU number

74

transmission, the encryption or the SHA-1 algorithm that may result in different

authentication code and encryption key at sender and receiver. In this case those two

entities will not be able to communicate through the driving session, which is not

acceptable. To overcome this issue a check happens to guarantee that the generated

secrets are identical.

For this check, after the two ECUs get done with the SHA-1 they use the outputs

generated (MAC, Encryption key and random number) in an identical bit wise operation

at sender and receiver. The result of this bit wise operation (verification bit sequence)

is then sent back from receiver to sender. The sender checks the received value with the

generated value, if equal the communication succeeded, if not the process needs to be

repeated.

It worth mentioning that this method is followed so as not to transmit any of the secrets

(session encryption key and message authentication code) on the communication bus.

The only transmitted secret is the ECU number which is transmitted in an encrypted

manner, and will shortly be updated before being used in the next driving session.

All communicating pairs take turns to generate, share and verify a MAC and a key to

use through the starting driving session. This approach may be time consuming but it

is also acceptable to happen once at the beginning of each driving session.

Phase 3: Car operation

After finishing the second phase of key distribution and authentication, the

vehicle is ready to normally operate. The communication between ECUs now happens

in a secure manner following this pattern of operation shown in Figure 6-11. The sender

adds the message authentication code and the message counter in the extended ID field.

The message is then encrypted using the session key and sent. The receiver receives the

message, decrypts it and then extracts the MAC and counter from the extended ID field.

If the MAC is identical to the pre-shared MAC, the message is authentic. If the counter

value is one count incremented from the last stored value, the message is fresh and not

a replay message. The authentic fresh messages are accepted, while the rest is

discarded. The operation will keep going this way until the end of the driving cycle.

75

Figure 6-11: Car operation phase

Initial key & ECU number update

To increase security, the lifetime of the long-term memory stored variables

(initial key and ECU number) is defined to be one driving session. Those two variables

are updated as soon as they are used. The update phase is performed using a bit wise

operation (computationally light weight) between the old values and the random value

generated in the SHA-1 output for each driving session.

76

Chapter 7: Simulations and Results

After defining the countermeasures to be taken to secure our CAN network, and

defining how exactly each part of the system will function. The next step was the

software implementation and evaluation for the system. Software C implementation

code was written performing all the phases of our system operation. The chosen target

was Tiva™ TM4C123GH6PM Microcontroller ARM Cortex-M4F Based.

To evaluate the system performance many essential factors should be evaluated. Now

we will go through these factors with concerning our system:

1- Backward compatibility:

Means that the proposed system is compatible with the existing systems and

could be easily integrated with the existing automotive networks. Our system

didn’t require any modified hardware, and depends only on software

implementation so it could be easily integrated with the existing automotive

environment with only software modification-achieving backward

compatibility.

2- Confidentiality and integrity of the data:

As mentioned before one of the most important requirements of the system is to

guarantee the integrity of the data -that it’s not manipulated-, in addition to the

confidentiality of the data -that it’s considered private between its sender and

the interested receivers so that no other one could sniff and extract information.

By the encryption/decryption process the confidentiality is guaranteed since

there is not anyone that can understand the data except who has the key to

decrypt it. Integrity is also guaranteed through the authentication and

encryption/decryption processes, and the data is vulnerable only for the

communication drops and not for anyone to manipulate it, as in this case it

would turn into unacceptable data by the receiver.

77

3- Authentication:

As mentioned before the most important factor to resist message injection

attacks is to have an authentication protocol existing in the network. With that

protocol, every node can recognize its sender, and accept data only from those

who are trusted. With our authentication protocol explained previously, every

node has a MAC that is known by its receivers, so no any other data from nodes

that are not authenticated would be acceptable.

4- Replay attack resistance:

Using the message counter in our system made the freshness of messages in the

system guaranteed. Every node has the last value of the message counter and

shall not accept any similar message with equal or lower counter value, so our

system is immune against replay attack as any un-updated message shall not be

accepted.

5- Repair and maintenance:

As the whole system is only software based architecture, it can easily be tested,

repaired and guaranteed for maintenance. Also any future improvements in the

hardware and specially CAN controllers could be used for our benefit as the

system doesn’t rely on any specific hardware so it’s compatible with any chance

for enhancement.

6- Overhead:

The overhead added by our system is considered to be at the start of the driving

session only -in the phase of authentication and key distribution-. After that

phase no overhead packets is generated in the data transfer phase as we used the

extended ID for the MAC and no need for any specified packets for the security

reason. The only added overhead will be the time for the encryption and

decryption of the messages, but it is still in the acceptable range so we can say

the system is overhead free.

78

7- Real-time performance:

Here is the most important system evaluation factor as there is no real-time

performance vulnerability allowed in the automotive industry, because a very

small delay could lead to a dramatic end. So that was our first concern in our

implementation to reach the very optimized software.

Code composer studio was used to debug and measure the performance of the

introduced software. The computation time of AES and SHA-1 was measured

in clock cycles. Then the whole pre-driving protocol of authentication duration

was measured also in clock cycles, and here are the results:

 AES algorithm : 12.5k cycles for encryption, 18k cycles for decryption

 SHA-1 algorithm: 15k cycles

 The total pre-driving session phase: 156k cycles in a single connection

between one sender and one receiver.

 To have better intuition of those numbers, the clock cycles was used to calculate

the computation time in milliseconds for different crystal frequencies –different

ECUs computational power-. For variable frequency ranges the needed time

tabulated in Table 7-1.

Table 7-1: Time measurments

Frequency 8 MHz 24 MHz 48 MHz 250 MHz

AES encryption 1.56 ms 0.52 ms 0.26 ms 0.05 ms

AES decryption 2.25 ms 0.75 ms 0.375 ms 0.072 ms

SHA-1 1.875 ms 0.625 ms 0.3125 ms 0.06 ms

Pre-driving session 19.5 ms 6.5 ms 3.25 ms 0.624 ms

79

As shown in Table 7-1, the higher ECU crystal frequency will lead to better timing

performance. For the pre-driving session protocol in authentication and key distribution

phase the timing of the process between each sender and receiver is graphed in terms

of crystal frequency in Figure 7-1.

Figure 7-1: Pre-driving session performance with frequency

The pre-driving session added time is needed only once through the whole driving

session at its beginning. The previous time measurements are for single TX-RX

configuration and should be generalized on a real automotive network environment.

The real-time results even if on a single TX-RX scale, are very promising as only some

time needed at the start of the driving session, would lead to a secure communication

for the whole driving session. The AES added time is applied to all messages during

the driving session. Having reasonable crystal and good performing controller, the real-

time performance will be very promising and will have efficient results in the real

world.

80

Chapter 8: Conclusion and Future Work

8.1 Conclusion

In this thesis, we introduced a security system to stand against car theft attempts,

which is based mainly on three modules:

 Face recognition module which defines the person in front of the wheel, and

makes sure it is the authorized owner.

 Liveness detection to make sure that there is a live person in front of the camera.

 CAN bus security to limit the ability of those attacks.

Face recognition part was discussed in details, showing the pipeline of our work and

the effort to achieve best performance and best accuracy. Our model also was discussed

in details, the architecture used, the dataset which we train the model on and the

framework used in training. So, as a result we have a complete face recognition system

starting from capturing and preprocessing frames, applying face recognition on it and

comparing with identities in the database, then take the action of having the permission

to move or lock the car. The system has also the ability to add or remove trusted persons.

For liveness detection, it was shown that it is implemented using eye aspect ratio

algorithm which is real-time and incredibly accurate.

Controller area network security will keep being a field to improve and enhance. It

needs extensive testing to fill in all the gaps that may happen while applying the security

concepts. It is also needed to find the optimal point at which sufficient security is

achieved within the accepted alteration to the system performance.

81

8.2 Future Work

For a car security system, face recognition model should have high accuracy as

possible to prevent thieves from accessing the engine also it should be general as

possible to recognize any face since people can be different in age, skin color, etc. Also

it should recognize faces from multi poses with high accuracy to be fast as possible.

These reasons encourage to train on smaller dataset then to increase it or to use

augmentation on small dataset in order to increase the number of samples.

On the other hand, the liveness detection is considered a security system for the face

recognition itself as it prevents hacking this system using an image of the owner, but

unfortunately it depends on an algorithm that uses eye blinking which might be passed

through a video of the owner. So, from here it needs to be enhanced to be unable to be

passed using images or videos.

So for the face recognition part we can conclude the future work as:

 Training on smaller part of vggface2 dataset then increasing it, train the model

for a large amount of time or training on augmented LFW pairs dataset.

 Liveness detection enhancement.

In CAN bus security the tradeoffs between security level and fast performance will

always exist. As previously stated the real time requirements of an automobile cannot

be compromised. A car with no strict real time reactions can be a death machine.

Starting from this point the proposed CAN bus security solution was built adopting the

simplest ways to achieve security requirements. Till now, no proposed CAN bus

security method can claim to achieve both very high security level and sufficient real

time performance.

Our method chose to cure the most common vulnerabilities of CAN network with a

simple way first, and then to build up from this point. What needs to be done next is to

test the proposed system extensively in a real vehicle environment, to define points of

strengths and weaknesses and to give an intuition on how much computation can be

added to achieve better security without rendering the real time performance. Some

additional work can also be done to cover more attack surface.

82

It is eventually obvious that with the existing hardware CAN bus security will always

suffer from limitations. Some future hardware modifications in CAN controller can be

a really good step to have more flexibility and to achieve really sufficient security levels

that enable car owners to drive securely with their connected cars. It cannot be denied

that hardware modification will badly affect the backward compatibility and may lead

to the need of huge system modifications, but on the other hand it will leave more room

for security improvements which is really demanding in the field of connected cars.

 We can conclude the future work as:

 Testing the performance in a real vehicle environment.

 Denial of service attack solution.

 Considering future CAN controller modifications.

83

References

[1] "ImageNet Large Scale Visual Recognition Competition (ILSVRC)," Image-

net.org, 2017. [Online]. Available: http://www.image-

net.org/challenges/LSVRC/.

[2] "statista," 2007. [Online]. Available: statista.com.

[3] C. Miller and C. Valasek, "Adventures in Automotive Networks and Control

Units," 2014.

[4] "Trustpilot," 2018. [Online]. Available: https://tech.trustpilot.com/forward-and-

backward-propagation-5dc3c49c9a05.

[5] "towards data science," 2017. [Online]. Available:

https://towardsdatascience.com/activation-functions-neural-networks-

1cbd9f8d91d6.

[6] "CS231n," [Online]. Available: https://cs231n.github.io/convolutional-

networks/.

[7] "Analytics Vidhya," [Online]. Available: https://medium.com/analytics-

vidhya/cnns-architectures-lenet-alexnet-vgg-googlenet-resnet-and-more-

666091488df5.

[8] K. He, X. Zhang, S. Ren and J. Sun, "Deep Residual Learning for Image

Recognition," 2015.

[9] Q. Cao, L. Shen, W. Xie, O. M. Parkhi and A. Zisserman, "VGGFace2: A

dataset for recognising faces across pose and age," in IEEE International

Conference on Automatic Face & Gesture Recognition, 2018.

[10] "Machine Learning Mastry," 2017. [Online]. Available:

https://machinelearningmastery.com/adam-optimization-algorithm-for-deep-

learning/.

84

[11] "pyimagesearch," 2017. [Online]. Available:

https://www.pyimagesearch.com/2017/04/24/eye-blink-detection-opencv-

python-dlib/.

[12] "NVIDIA," 2017. [Online]. Available:

https://developer.nvidia.com/embedded/jetson-tx2-developer-kit.

[13] "Vector E-learning," 2010. [Online]. Available: https://elearning.vector.com/.

[14] O. Avatefipour and H. Malik, "State-of-the-Art Survey on In-Vehicle Network

Communication “CAN-Bus” Security and Vulnerabilities," 2018.

[15] Q. Wang and S. Sawhney, "VeCure: A Practical Security Framework to Protect

the CAN Bus of Vehicles," 2014.

[16] R. Kurachi and Y. Matsubara, "CaCAN - Centralized Authentication System in

CAN," 2016.

[17] J. V. Bulck, J. T. Mühlberg and F. Piess, "VulCAN: Efficient Component

Authentication and Software Isolation forAutomotive Control Networks," 2017.

[18] A. V. Herrewege, D. Singelee and I. Verba, "CANAuth - A Simple, Backward

Compatible Broadcast Authentication Protocol for CAN bus," 2011.

[19] S. Woo, H. J. Jo and D. H. Lee, "A Practical Wireless Attack on the Connected

Car and Security Protocol for In-Vehicle CAN," 2015.

[20] M. Gmiden, M. H. Gmiden and H. Trabelsi, "Cryptographic and Intrusion

Detection System for automotive CAN bus: Survey and contributions," in

International Multi-Conference on Systems, Signals & Devices (SSD'19), 2019.

[21] N. Nowdehi, A. Lautenbach and T. Olovsson, "In-vehicle CAN message

authentication: An evaluation based on industrial criteria," 2017.

[22] A. J. Menezes, P. C. v. Oorschot and S. Vanstone, "Hash Functions and Data

Integrity," in Handbook of Applied Cryptography, 1996, pp. 321-376.

85

[23] National Institute of Standards and Technology, "Announcing the Advanced

Encryption Standard (FIPS PUB 197)," 2001.

[24] U. Kretzschmar, "AES128 – A C Implementation for Encryption and

Decryption," 2009.

