

Graduation Project-2

“Seizure Detection”

Final Report

Submitted by:

Abdel-Malik Mohamed Sabreen

Adel Ahmed Samir

Lojaine AlaaElDin ElMahdy

Mirna HossamElDin

Mohamed Hany Tawfik

Omneia Osama Elshaer

Supervised by:

Dr. Hassan Mostafa

CUFE

Communications and Computer

Engineering (CCE-E)

Credit Hours System

Spring 2018

Senior-2 Level

Graduation Project-2

CCEN-481

i

Acknowledgement

We would like to show our extreme gratitude and thankfulness for all who helped us in our

graduation project throughout a whole year. The outstandingly continuous support has extremely

helped us to demonstrate our research project at the best possible way till the end. We can never

miss the chance to describe our sincere thanks to them as a mark of recognition and appreciation.

We would like to thank:

• Dr. Hassan Mostafa

• Eng. Mostafa Mahmoud

• Eng. Mohamed Adel

ii

iii

Executive Summary

Epilepsy is a condition in which the patient has recurrent seizures. Seizure is defined as an

abnormal disorder discharging of the nerve cells, resulting in a temporary disturbance of

sensory and mental function. Seizures could cause damage to the body and might lead to death

in critical cases.

This thesis discusses a seizure detection algorithm to treat seizures by implanting a chip in

the patient’s brain and detecting seizures and non-seizures periods.

The electrical activities of patients are recorded using Electroencephalogram (EEG) which

measures the voltage fluctuations of the brain. A classification method is needed to categorize

between seizures and non-seizures. The thesis provides a discussion of two algorithms for the

classification process by applying machine learning concepts using support vector machine

(SVM): Sequential Minimum Optimization and Gilbert’s Algorithm.

 The main scope of the solution to the problem of seizure detection is researching,

implementing and analyzing Gilbert’s algorithm in SVM.

MATLAB code of the modified algorithm was implemented on the dataset and the

performance measurements were obtained and compared to the previous used algorithm SMO.

After getting satisfying results, block diagram of the overall system was designed for the next

stage of implementing RTL (Register Transfer Level) phase. In the RTL phase, maping the

code and the design architecture to the VHDL and Verilog hardware descriptive language is

done. Some improvements in the MATLAB code have been added.

Finally, burning the training algorithm and the classification code on the FPGA has been

used in proving the concept of detecting seizures successfully with an acceptable accuracy

and sensitivity using Gilbert’s Algorithm.

iv

v

Contents

Acknowledgement .. i

Executive Summary ... iii

Contents ... v

List of Figures ... ix

List of Tables .. xi

1 Introduction: From Brain to Train ... 1

1.1 Project Overview .. 2

1.2 Relevance .. 2

1.3 Engineering Approach .. 3

1.4 Use of FPGA .. 4

1.5 Users Of The Project .. 4

1.6 Road map to the sections of the report ... 4

2 Biomedical Background: Human Brain and Epilepsy ... 5

2.1 Human Brain and Nervous System .. 5

2.2 Seizure definition .. 8

3 EEG: Bio-signal Processing .. 10

3.1 Types of EEG ... 10

3.2 Normal EEG ... 11

3.3 Epileptic EEG ... 13

3.4 Periods of EEG Signals .. 14

3.5 Extracted Features from EEG Signals .. 14

 Energy ... 15

vi

 Coastline .. 15

 Hjorth Variance Parameter .. 15

4 Classification: Seizrue or non-siezure?.. 16

4.1 Seizure Detection .. 17

 Pre-processing ... 17

 Feature Extraction ... 18

 Feature Selection ... 18

 Feature Classification .. 19

4.2 Seizure Prediction ... 19

 Definition .. 20

 Regularization ... 20

 Decision Function ... 21

4.3 Prediction Survey ... 23

 Introduction ... 23

 Statistical versus algorithmic approaches ... 24

 Summary ... 25

5 Machine Learning: Finding the Optimal Model .. 26

5.1 Importance of Machine Learning ... 27

5.2 Uses of Machine Learning .. 28

5.3 How it works? ... 29

 Supervised Learning .. 29

 Unsupervised Learning ... 30

 How Do You Decide Which Machine Learning Algorithm to Use? 30

5.4 Machine Learning and Seizure Detection .. 31

5.5 Dataset .. 31

vii

6 Support Vector Machines: Large margin classifiers ... 33

6.1 SVM’s Hyperplane ... 33

6.2 Computing the maximum margin ... 34

6.3 The kernel ... 35

7 Training of Support Vector Machine .. 36

7.1 SMO Algorithm .. 36

 Find and choose alpha ... 37

 Choosing Lagrange multiplier 2 .. 37

 Optimizing Lagrange multiplier 1 & 2 ... 38

 SMO Block diagram.. 40

 SMO Performance Results .. 40

7.2 Gilbert’s Algorithm .. 41

 How does the algorithm work? ... 44

 Overview of Gilbert’s Algorithm .. 46

 Gilbert’s Algorithm results ... 47

8 Migration to hardware .. 48

8.1 Block Diagram .. 49

8.2 VHDL-Verilog code ... 49

8.3 Finite State Machine ... 50

9 FPGA .. 52

9.1 FPGA Vs ASIC .. 53

9.2 Function of FPGA in the design ... 53

9.3 FPGA virtues .. 54

9.4 FPGA in use (Altera) .. 55

9.5 Simulation and Synthesis.. 57

viii

9.6 Power Analysis ... 58

 Thermal power .. 58

 Static Power... 58

 Dynamic Power ... 58

 Power Calculations .. 58

10 Design Highlights ... 60

10.1 Fixed Point Conversion... 60

10.2 Contact Vector Entity ... 61

10.3 Exponential using LUT ... 61

10.4 Booth-Multiplier ... 62

11 Results ... 63

11.1 Minimum Requirements for a candidate algorithm .. 64

11.2 MATLAB and RTL Simulation results .. 64

 Case: Patient (1)... 65

 Case: Patient (3)... 66

 Case: Patient (5)... 67

11.3 Discussion and Analysis of the results.. 68

11.4 Resources usage .. 68

11.5 Power Analysis Results... 69

12 Conclusion .. 70

 Future Work ... 71

13 Achievements ... 72

13.1 Achievements .. 72

13.2 Awards .. 73

Recommendations: .. xii

ix

Appendix .. 1

13.3 alphabetaMem ... 1

13.4 CacheAcc .. 8

13.5 cacheAvg_1... 10

13.6 Kernel_block ... 12

13.7 Norm_avg ... 15

13.8 NormCalculate .. 18

13.9 Wk_calculate... 22

13.10 exp_lut... 24

References ... A

List of Figures

Figure 1.1 Project Levels ... 3

Figure 2.1 Neuron .. 6

Figure 2.2 EPSP and IPSP ... 7

Figure 2.3 Brain major lobes .. 8

Figure 2.4 Depolarization and Repolarization ... 9

Figure 3.1 EEG Electrodes ... 11

Figure 3.2 Normal EEG Signals .. 12

Figure 3.3 Normal EEG Signals .. 12

Figure 3.4 Epileptic EEG Signals .. 13

Figure 4.1 Seizure Detection Overview ... 17

Figure 4.2 Seizure Prediction Overview .. 19

Figure 4.3 Over-fitting curve vs. Regularized curve in predictability 20

Figure 4.4 prediction with pre-defined threshold ... 24

file:///D:/Engineering/Graduation%20Project/GP2%20Thesies/Gp2-Thesis-Master.docx%23_Toc515900247
file:///D:/Engineering/Graduation%20Project/GP2%20Thesies/Gp2-Thesis-Master.docx%23_Toc515900251
file:///D:/Engineering/Graduation%20Project/GP2%20Thesies/Gp2-Thesis-Master.docx%23_Toc515900252
file:///D:/Engineering/Graduation%20Project/GP2%20Thesies/Gp2-Thesis-Master.docx%23_Toc515900253
file:///D:/Engineering/Graduation%20Project/GP2%20Thesies/Gp2-Thesis-Master.docx%23_Toc515900254
file:///D:/Engineering/Graduation%20Project/GP2%20Thesies/Gp2-Thesis-Master.docx%23_Toc515900255
file:///D:/Engineering/Graduation%20Project/GP2%20Thesies/Gp2-Thesis-Master.docx%23_Toc515900257

x

Figure 5.1 Machine learning techniques include both unsupervised and supervised learning 29

Figure 6.1 Linear Support Vector Machine ... 34

Figure 7.1 the constraints displayed in two dimensions .. 38

Figure 7.2 SMO Block Diagram .. 40

Figure 7.3 Different Kernel Performance of SMO for patient 5 .. 40

Figure 7.4 From left to right, worst to best separating hyperplane (according to the maximum

margin) ... 41

Figure 7.5 The convex hull of the two classes ... 42

Figure 7.6 Minkawski of un-intersected shapes ... 43

Figure 7.7 secant convex hull S which denotes the Minkowski set difference of U and V 43

Figure 7.8 Linear steps iterations for reaching the point closest to the origin 44

Figure 7.9 Iteration steps of Gilbert Algorithm ... 45

Figure 7.10 Gilbert's Algorithm Flow .. 46

Figure 7.11 Gilbert's Results .. 47

Figure 8.1 Block diagram ... 49

Figure 9.1 DE10-Nano Development Kit .. 55

Figure 9.2 Example of waveform simulation using ModelSim .. 57

Figure 11.1 Feature space of a complex patient ... 63

Figure 11.2 Patient 1 VHDL Hyperplane .. 65

Figure 11.3 Patient 1 MATLAB Hyperplane ... 65

Figure 11.4 Patient 3 VHDL Hyperplane .. 66

Figure 11.5 Patient 3 MATLAB Hyperplane ... 66

Figure 11.7 Patient 5 VHDL Hyperplane .. 67

Figure 11.6 Patient 5 MATLAB Hyperplane ... 67

Figure 12.1 Regional semi-finalist in the Innovate FPGA contest sponsored by Intel 73

Figure 12.2 Regional finalist in the Innovate FPGA contest sponsored by Intel 73

file:///D:/Engineering/Graduation%20Project/GP2%20Thesies/Gp2-Thesis-Master.docx%23_Toc515900259
file:///D:/Engineering/Graduation%20Project/GP2%20Thesies/Gp2-Thesis-Master.docx%23_Toc515900261
file:///D:/Engineering/Graduation%20Project/GP2%20Thesies/Gp2-Thesis-Master.docx%23_Toc515900264
file:///D:/Engineering/Graduation%20Project/GP2%20Thesies/Gp2-Thesis-Master.docx%23_Toc515900264
file:///D:/Engineering/Graduation%20Project/GP2%20Thesies/Gp2-Thesis-Master.docx%23_Toc515900265
file:///D:/Engineering/Graduation%20Project/GP2%20Thesies/Gp2-Thesis-Master.docx%23_Toc515900266
file:///D:/Engineering/Graduation%20Project/GP2%20Thesies/Gp2-Thesis-Master.docx%23_Toc515900267
file:///D:/Engineering/Graduation%20Project/GP2%20Thesies/Gp2-Thesis-Master.docx%23_Toc515900269
file:///D:/Engineering/Graduation%20Project/GP2%20Thesies/Gp2-Thesis-Master.docx%23_Toc515900273
file:///D:/Engineering/Graduation%20Project/GP2%20Thesies/Gp2-Thesis-Master.docx%23_Toc515900274
file:///D:/Engineering/Graduation%20Project/GP2%20Thesies/Gp2-Thesis-Master.docx%23_Toc515900275
file:///D:/Engineering/Graduation%20Project/GP2%20Thesies/Gp2-Thesis-Master.docx%23_Toc515900276
file:///D:/Engineering/Graduation%20Project/GP2%20Thesies/Gp2-Thesis-Master.docx%23_Toc515900277
file:///D:/Engineering/Graduation%20Project/GP2%20Thesies/Gp2-Thesis-Master.docx%23_Toc515900278
file:///D:/Engineering/Graduation%20Project/GP2%20Thesies/Gp2-Thesis-Master.docx%23_Toc515900279
file:///D:/Engineering/Graduation%20Project/GP2%20Thesies/Gp2-Thesis-Master.docx%23_Toc515900280
file:///D:/Engineering/Graduation%20Project/GP2%20Thesies/Gp2-Thesis-Master.docx%23_Toc515900281
file:///D:/Engineering/Graduation%20Project/GP2%20Thesies/Gp2-Thesis-Master.docx%23_Toc515900282
file:///D:/Engineering/Graduation%20Project/GP2%20Thesies/Gp2-Thesis-Master.docx%23_Toc515900283

xi

List of Tables

Table 4-1 Prediction Techniques ... 23

Table 9-1 Specs of DE10-Nano systems .. 56

Table 11-1 Classification Module Resources Utilization .. 68

Table 11-2 Gilbert Training Module Resources Utilization .. 69

Table 11-3 Power Dissipation Results ... 69

1

Introduction : From Brain to Train

Epilepsy has been around for centuries. In the past, in many societies, people with Epilepsy

were believed to be possessed by demons and were often burned. Other societies thought that they

had weak or inferior minds. In the late 1800s, Dr. John Hughlings Jackson, a British neurologist,

discovered Epilepsy and how it affected the human brain. He found the main characteristics of

Epilepsy that led him to discover this disorder. Dr. Jackson also found out that Epilepsy causes

seizures and what the seizures do to the individual [1].

Developing different methods of treatment has never ended. Medication remains the most

common treatment for people with Epilepsy. However, people diagnosed with Epilepsy aim for

Epilepsy with no seizures with no side effects. If you are on a good drug, you’re likely to have

good control of your seizures and you might not even know that there are better approaches out

there. When medicines don’t work, you can choose the Epilepsy surgery track which is good also

for people who are in the early stages of the disease. In 2001, a study proved that 60% of people

who did the surgery had no seizures, while, 8% of people who had taken the best medication but

didn’t get surgery got the same results. When medication and surgeries don’t work, implantable

devices play a good role in Epilepsy treatment.

One of these devices is: The Vagus Nerve Stimulation (VNS). It prevents seizures by sending

regular pulses to the brain via vagus nerve. This device is implanted in the chest, powered by a

small battery under the skin of the chest and a wire from the device is wound around the vagus

2

nerve in the neck. The other stimulator is called NeuroPace which is the scope of our project in

which the device sends out pulses at a certain interval with the aid of electrodes placed on the

surface of the brain. By simulating an EEG signals and sensing their pattern, electrical pulses that

disrupt their patterns are fired up. [4]

This introductory chapter will describe an overview of the project, its relevance to our studies

and the engineering approach in the project. Furthermore, reasons beyond using FPGA in the

project and the users of the project are discussed. Finally, a roadmap of the chapters that will follow

throughout this thesis is given.

1.1 Project Overview

Epilepsy is a neurological disorder caused by abnormal electrical discharges in the brain.

Approximately 0.7% of the world population suffers from epileptic seizures. More than 50 million

people are affected by Epilepsy worldwide with more than 2.2 million in the US [2]. As a

consequence, treatment costs about $9.6 billion annually for direct medical care of epileptic

patients in US such as anti-convulsive medication and resistive surgery [3]. However, these

traditional methods for dealing with Epilepsy do not give efficient solution for this disease.

Epilepsy changes the brain state to an abnormal state that causes seizure periods to the

patients. Seizures could cause drastic damage to the body and even more critical situations where

it could lead to death. A solution for this problem is required and it is the scope of this project.

1.2 Relevance

Our project is somehow relevant to some courses that we studied throughout our study in the

Communications and Computer Engineering Department in Cairo University. We studied

MATLAB and it was very essential in dealing with features obtained from the patients’ dataset.

Moreover, Electronics-2 course provided us with the basics of digital design using CMOS

transistors. Linear Algebra courses were helpful in understanding Machine Learning concepts.

Last but not least, Computer Architecture course was exceptionally beneficial in developing our

skills in designing the hardware block diagram that was converted to RTL then implemented on

FPGA to produce the chip we target.

3 Chapter 1 Introduction

1.3 Engineering Approach

A solution to the problem is to build a chip that will be implanted in the patient’s brain. The

target of this chip is to employ Machine Learning (ML) algorithms to be able to detect a seizure

for any patient and hence trigger electric stimuli that will be able to retrieve the brain back to its

normal conditions as illustrated in Figure 1.

Three main aspects need to be considered to maintain acceptable results:

• Chip accuracy: Building and employing new Machine Learning algorithm that best fits the

seizure detection problem.

• Chip power consumption: Lower power consumption rates are targeted in this project than ever.

• Chip Area: The chip will be implanted at the subject brain; therefore, area is one of the most

important aspects.

Figure 1.1 Project Levels

The middle layer (feature extraction and decision layer) is the main interest of the required

design problem. The techniques of this layer are to first build an effective Machine Learning

algorithm that is able to efficiently detect a seizure from the readings of the EEG signal (electric

signals of the brain) using [MATLAB] tool. Then, this algorithm will be mapped to low level

4

hardware descriptive language to be able to define its hardware layout and simulation using

[ModelSim] simulation tool.

Eventually FPGA mapping for the HDL code is conducted to produce the end product of the

project.

1.4 Use of FPGA

An FPGA device is targeted because of its runtime reconfigurability, which allows the design

to adapt to different types of input data (practical to the diversity problem of epilepsy). The use of

FPGA device would effectively aid the online training of the SVM especially as it is considered a

large-scale classification problem; hence, taking advantage of the FPGA resources maximizing its

utilization would prove very helpful for the design problem.

1.5 Users Of The Project

The project is aimed to serve people who are suffering from epilepsy. The targeted users will

be medical institutes (e.g. hospitals), medical industry and the end user product would be epileptic

patients.

1.6 Road map to the sections of the report

The chapters are organized in a sequence that makes it easy to the reader to understand our

project. Chapter 2 describes the medical background needed to know the behavior of epileptic

seizures. Chapters 3 and 4 describe how the signals obtained from patients’ brains are processed

and converted to features that are classified eventually to seizure or non-seizure signals. Chapters

5, 6 and 7 describe basics of machine learning, the Support Vector Machine (SVM) that is the

classifier of seizure and non-seizure points and special algorithms implementing SVM. Chapters

8 and 9 describe our mapping to hardware along with the use of FPGA. Chapters 10, 11 and 12

discuss our results obtained in our work throughout the project along with our recommendations

and conclusion. Ultimately, there design codes are attached in the appendix.

2

Biomedical Background:

Human Brain and Epilepsy

This chapter will discuss the human brain and the nervous system very briefly so as to grasp

the biomedical idea beyond the project. Furthermore, seizure definition is introduced from a

biomedical perspective.

2.1 Human Brain and Nervous System

The human nervous system is the most magnificent part of the human body, resembling a

software. It is responsible for interpreting sensory information received from the environment so

that humans can behave as humans do. It has the brain and the spinal cord as the two main parts

of it. The human nervous system is composed of millions of neurons, they are small nerve cells

that helps the flow of electric pulse inside the human body. These pulses traveling in our bodies

are not only electrical; they are rather electrical and chemical. This makes the chemistry in the

brain much more complex and interesting.

We are going to investigate the operation of the flow of pulse through the brain, but on a cell

level. This chapter is dedicated to presenting concepts necessary to understand the brain as a

system.

6

It is the neurons that are responsible for the processing and transmission of information.

Neurons come in many different shapes and sizes, but they are composed of four basic structures:

dendrites, soma or cell body, axon and synaptic terminals.

 The neuron consists of dendrites where it receives input. The input then travels through the

cell body in which decisions about firing an action is done, that results in mostly movement. The

output is then fired through the axons. Each neuron is not connected directly to the other, however,

there are gaps between them, and connected by the synapse.

This fired action is called action potential. The process includes both chemical and electrical

reactions. It first occurs at the synapse. These synapses contain a lot of neurotransmitters that are

triggered by the calcium ions when electric pulse is passing. The neurotransmitters move from the

pre-synapse of a cell to the gates of the post synaptic cell, in which it stimulates the sodium gates,

opening them. By opening the sodium gate, more sodium ions flow inside the post synaptic cell,

making it more positively charged than its neutral state. The positively charged sodium ions flow

inside the neuron till it reaches the cell body, that’s responsible for the decision of firing the action

potential. The cell body accumulates all the inputs, and compares the electric signal to a certain

threshold, giving us two possible types of action potentials: Excitatory and inhibitory action

potentials.

Excitatory, is when the signal is more than the threshold value, allowing action potential to be

fired. Inhibitory, is when the signal is much less than the threshold value, so no action potential is

fired. A single Inhibitory post-synaptic potential typically has a larger effect than a single

Figure 2.1 Neuron

7 Chapter 2 Biomedical Background

excitatory post-synaptic potential because inhibitory synapses tend to form closer to the soma.

However, the total number of EPSPs is greater than IPSPs and thus the effects level out. The

balance of incoming IPSPs and EPSPs on a single neuron determines whether the post-synaptic

cell fires an action potential. The following figure shows the effect of the EPSP and IPSP on the

depolarization and repolarization process.

Figure 2.2 EPSP and IPSP

This phenomenon can only happen because of the cell membrane, which is under normal

conditions, impermeable to fluids. The presence of gates allows the transmission of ions through

this membrane.

According to these decisions done by the cell body the output is determined that travels

through the axon in a form of electric pulse. These electric pulses are maintained by the different

concentrations of sodium ions inside and outside the cell, thus allowing this electric flow till it

reaches the synapse at the output, repeating again the function of synapse in transmitting the signal.

There are many different types of gates, for example: Voltage-gated ions gates that open or close

according to the differences in voltage between the inside and the outside of the neuron. When a

certain threshold is reached, the gates open allowing the ions to flow and generate the action

potential.

8

2.2 Seizure definition

Till this moment, no one has exactly proven why a person can have a seizure and another one

doesn’t. Seizure is a neurological disorder caused by structural abnormalities of the brain.

Figure 2.3 Brain major lobes

Each region of the brain has its own task. The different functional regions of the cortex

(temporal lobe, parietal lobe, occipital lobe, frontal lobe) are responsible for motor control as well

as cognitive and memory functions. Understanding the initiation of a seizure may lead to the ability

to predict its onset. That’s why we had to understand how the brain works and the different parts

of it.

9 Chapter 2 Biomedical Background

Figure 2.4 Depolarization and Repolarization

As shown in the previous figure, the normal operation is the depolarization of the cell, where

the voltage increases because of the entry of the sodium. Then, repolarization occurs by the

opening of the potassium channel until it reaches the complete repolarization and the cell becomes

in its normal state again.

This happens in the axon until it gets to the synapse. This synapse sends a neurotransmitter to

the neighbor synapse and it keeps moving from one to the other till it gets to the brain. In seizure,

the depolarization occurs, but the repolarization doesn’t, which keeps the cell in its abnormal state

due to the lack of inhibitory neurotransmitters. If this gets to the parietal lobe, which is responsible

for the movement, the patient may have epilepsy.

The next chapter will focus on describing EEG signals which are signals that are extracted

from the epileptic patients’ brains.

3

EEG: Bio-signal Processing

This chapter focuses on describing the EEG and its role in diagnosing epilepsy. In the brain,

neurons exploit chemical reaction to generate electricity to control different bodily actions and this

ongoing electrical activity can be recorded graphically which is popularly known as

Electroencephalogram (EEG).

 EEG is a well-accepted tool for epileptic seizure prediction/detection that can measure the

voltage fluctuations of the brain. EEG has high temporal resolution. This means that it can capture

fast changes in current flows. Meanwhile, EEG has poor spatial resolution which means that

measurements are limited by the number of electrodes, their placement and properties of the head.

3.1 Types of EEG

There are two types of EEG to consider:

❖ Scalp EEG:

In Scalp EEG, recordings are heavily attenuated. It is used as a preliminary step to more detailed

intra-cranial records.

11 Chapter 3 EEG

❖ Intra-Cranial EEG:

In Intra-Cranial EEG, recordings can be taken from:

o Cortical electrodes (placed on Cortex)

o Depth electrodes (penetrate to sub-cortical systems such as the thalamus)

Intra-cranial records are often obtained for pre-surgical analysis to determine regions of the

brain to be resected. Such procedures are relatively rare and data of this nature are more difficult

to obtain. The difference between normal and epileptic EEG signals will be explained in the next

two sections.

3.2 Normal EEG

The Normal EEG visually recognizes general patterns that exist consistently in the majority

of the population. Absence of such patterns does not imply abnormality. EEG alone is not

sufficient alone for diagnosis of epilepsy. The following figures show different Normal EEG

signals for different states of alertness. The voltage magnitude in each channel is shown relative

to each other. In (a) an example of an awake alpha rhythm shows the 10Hz activity present in only

Figure 3.1 EEG Electrodes

 12

some (posterior) channels. In contrast to the slow waveforms of sleep stages in (b) and (c), the

awake EEG shows a lot more variability between channels, demonstrating the more global nature

of sleep versus awake states.

Figure 3.3 Normal EEG Signals

Figure 3.2 Normal EEG Signals

13 Chapter 3 EEG

3.3 Epileptic EEG

The variability between epilepsies means that there is no single epileptic EEG. For example,

inter-seizure periods can be as short as a few seconds or as long as years. The following figures

show a sample Epileptic EEG signal. They are an example of a complete seizure of approximately

110 seconds duration, with its start and end as marked. The magnitude of the EEG during a seizure

is much larger than that preceding it. We notice that the seizure evolves over time, with changes

in morphology as well as fundamental frequency. We also notice the artifact that occurs at about

the 73rd second. This is an example of electrodes becoming temporarily disconnected. The different

time periods of EEG signals are discussed in the next section.

Figure 3.4 Epileptic EEG Signals

 14

3.4 Periods of EEG Signals

EEG signals from an epileptic patient can be divided into five periods or stages:

o Non-seizure Period

o Ictal Period

o Preictal Period

o Post-ictal Period

o Interictal Period

Non-seizure period is the period when no epileptic syndrome is visible.

Ictal period is the actual seizure period, normally duration is 1 to 3 minutes.

Preictal period is 30 to 60 minutes before ictal period.

Post-ictal period is 30 to 60 minutes after ictal period.

Interictal period is the period between post-ictal period to pre-ictal period of the immediate

next ictal. Some portion of the interictal period, which does not have any epileptic syndrome, can

be defined as a non-seizure period.

Prediction and detection of seizures by analyzing ictal, pre-ictal, and interictal could alert a

patient of the next seizure and also could lead to better treatment and safety. In order to be able to

perform signal processing on the EEG signals to do seizure detection, some features need to be

extracted. The different relevant features are discussed in the next section.

3.5 Extracted Features from EEG Signals

After removal of noise in the pre-processing stage (will be discussed in details later), certain

features from the EEG signals are extracted. The features that are extracted belong to time domain.

These time domain features give numerical indication to the visual patterns observed from the

EEG signals such as the increase in amplitude, increase in frequency during epileptic events. These

features are statistical elaborations that are very important in quantifying the EEG signals for

classification.

The features that are going to be discussed now are as follows:

1) Energy

2) Coastline

3) Hjorth Variance Parameter

15 Chapter 3 EEG

 Energy

This feature calculates average energy of the EEG signal. This is done by averaging the

instantaneous energy. This is done because instantaneous energy is not of much significance as

the average energy which is more useful because it is done over a mean behavior. A sliding window

is used to calculate the instantaneous energy. The window is of size N while K is the window

number of size N.

The following two equations represent the instantaneous energy and average energy

respectively:

𝐸[𝑖] = 𝑥2(𝑖)

(3.1)

𝐸𝑎𝑣𝑔[𝑘] =
1

𝑁
∑ 𝐸(𝑖 + (𝑘 − 1)𝑁)𝑁
𝑖=1 (3.2)

 Coastline

This feature calculates the sum of the absolute value of the distance between two successive

data points. The coastline is calculated using the following equation:

𝐶𝐿(𝑘) =∑𝑎𝑏𝑠(𝑥[𝑖 + (𝑘 − 1)𝑁] − 𝑥[𝑖 − 1 + (𝑘 − 1)𝑁])

𝑁

𝑖=1

 (3.3)

 Hjorth Variance Parameter

This feature calculates the variance of the EEG signal amplitude. The variance is a window

of N samples is calculated and averaged to obtain the mean variance. Hjorth variance parameter is

calculated as follows:

𝑉𝑎𝑟[𝑘] =
1

𝑁
∑(𝑥[𝑖 + (𝑘 − 1)𝑁] − 𝜇𝑘)

2

𝑁

𝑖=1

 (3.4)

𝜇𝑘 =
1

𝑁
∑𝑥[𝑖 + (𝑘 − 1)𝑁]

𝑁

𝑖=1

 (3.5)

In the next chapter, it will be discussed how classification is done using the features calculated.

Detection and prediction techniques will be elaborated in details.

4

Classification:

Seizrue or non-siezure?

This chapter’s focus is the classification between seizure and non-seizure periods in EEG

signals. The classification can be done using either seizure detection or seizure prediction.

Detection differs from prediction due to the following reasons. One thing is that a prediction model

is required to classify correctly between preictal and interictal periods while a detection model

should classify accurately between ictal and non-seizure or interictal periods. Seizure prediction is

harder than seizure detection because the similarity between ictal and interictal signals is much

higher than that of preictal and interictal signals.

Conceptually, seizure detection and seizure prediction are different. Seizure detection

technique only knows the presence of a seizure when the characteristics of a seizure have appeared

in the biologic signals being monitored. On the other hand, seizure prediction technique estimates

the beginning of a seizure before it actually starts.

The following section will focus on seizure detection technique including the steps done to

accurately do classification with Seizure detection.

17 Chapter 4 Classification

4.1 Seizure Detection

Seizure detection includes four stages:

o Pre-processing

o Feature Extraction

o Feature Selection

o Feature Classification

 Pre-processing

In the previous chapter we mentioned the mechanism of EEG and how it records the signals

that are to be studied to detect seizures. However, the produced signals from the EEG are noised

and disturbed. Hence, a pre-processing step is exploited in order to eliminate the influence of

disturbance (i.e. artifacts). The artifact can be divided into two parts; one is physiological artifact

that came from the body and another is non-physiological artifact that comes from environment

and instruments. There are several types of physiological artifacts such as muscle artifact, pulse

artifact and eye blinking artifact. The non-physiological artifacts are power line artifact and sweat

artifact (i.e. water, minerals, and lactate so on). Notch filter can be used to remove line noise

interference. Wavelet transform is an efficient denoising technique that is introduced to the non-

linear and non-stationary EEG signals.

Figure 4.1 Seizure Detection Overview

 18

 Feature Extraction

Now we have the clear EEG signals that are ready to be examined to detect seizures. For the

sake of classification, relevant features are needed to be extracted from EEG signals. As the studies

of researchers pointed to the problem of applying highly optimized algorithms to small, selected

datasets, because the results cannot be reproduced on unselected, larger datasets; it is important to

use real time classification techniques for detection purposes for actual applications. Therefore,

feature extraction is considered a key to the performance of a classifier. The calculated features

are fed into the standard support vector machine (SVM) for classification purposes and that will

be discussed in a later chapter.

Two algorithms that are used in feature extraction will be considered. They are DWT which

stands for Discrete Wavelet Transform and EMD which stands for Empirical Mode

Decomposition.

DWT is similar to the Fourier transform. It is applied on EEG signals to decompose the signal

into several scales to get information about frequency components which present and enhance the

information about the signal for further processing. The relative wavelet statistical feature

coefficient is computed in time domain. The extracted relative wavelet energy features are passed

to classifiers for the classification purpose. It captures both frequency and location information

(location in time). Mathematically, the wavelet will correlate with the signal if the unknown signal

contains information of similar frequency.

EMD is used with nonlinear and nonstationary signal analysis. This technique breaks the

signal into various finite small number of components called Intrinsic Mode Functions (IMFs). It

is more preferable as this decomposition technique depends on local characteristics of dataset

instead of pre-defined basis functions. Therefore, it is considered highly efficient and adaptive

unlike the Fourier transform that converts the input signal from domain to another.

 Feature Selection

Feature selection is a technique that removes the irrelevant features from the feature set and

selects the most relevant ones. As we mentioned before, in some applications it might be desired

to pick a subset of the original features rather then find a mapping that uses all of the original

features. The benefits of finding this subset of features could be in saving cost of computing

unnecessary features as well as saving cost of sensors. Principle Component Analysis (PCA) and

Independent Component Analysis (ICA) can be used for dimensionality reduction of the features.

19 Chapter 4 Classification

 Feature Classification

After feature selection, we take the output from the feature selection to the classifier. The role

of the classifier is to determine the patient’s state, having a seizure or not. The main idea is to

indicate a hyperplane that helps in classifying the signal coming from the feature selection. Using

machine learning algorithms, a hyperplane can be detected. These machine learning details will be

covered in the next chapter.

Feature extraction, analysis, and classification of EEG signals are still challenging issues for

researchers due to the variations of the brain signals. Variations of EEG signals depend on different

brain locations, number of channels, and different patterns of signals from different people.

Another challenge for epileptic seizure detection/prediction from EEG signals is to get reasonable

accuracy for real time applications.

The following section will focus on seizure prediction technique including the steps done to

accurately do classification with Seizure prediction.

4.2 Seizure Prediction

 Seizure detection includes six stages:

o Pre-processing

o Feature Extraction

o Feature Selection

o Feature Classification

o Regularization

o Decision Function

It is clear that the first four stages are identical to that of seizure detection while the last two

stages are specific to seizure prediction only.

Figure 4.2 Seizure Prediction Overview

 20

 Definition

The predictor is a detector but the difference is the time in which the measurements are taken.

The prediction is discovering the probability of having the disease before detecting it. Apart from

“predicting” itself, predictor could be employed to save the power only if we guaranteed having a

lower power consumption than the detector. The detector is working continuously so it consumes

high power as it works on very complex equations. The proposed solution is that we can turn off

the detector while turning on the predictor. When the predictor predicts having a seizure, it could

send triggers to the detector and then the detector could be on again to proceed. The prediction

block has two more blocks than the detector which are regularization and decision function.

 Regularization

To separate between 2 types of data after classification, the over-fitting concept can be used.

Over-fitting is separating two sets of data based on existing classified data. It guarantees 100%

separation between the two data sets, but it doesn’t introduce predictability. In order to introduce

predictability, a regularized curve is convenient to predict that a certain data sets most probably

they belong to seizure. However, it does not guarantee 100% separation. The following figure

shows the separation between two data sets by an over-fitting curve and a regularized curve.

Figure 4.3 Over-fitting curve vs. Regularized curve in predictability

21 Chapter 4 Classification

 Decision Function

 Our goal is to employ a new machine learning that best fits the seizure detection problem; thus,

three main aspects are considered in our project:

1. Chip accuracy:

 A classification output of an EEG signal might not provide accurate predicted results; thus,

sometimes a decision function can be formulated based on the combined classification output of

different time-window of an EEG signal or a number of EEG signals in different channels.

For the seizure detection, a number of criteria (such as accuracy, sensitivity, and specificity) are

used to verify the classification outcome. Accuracy is determined as an overall performance

measurement; however, we mostly care about the sensitivity.

The accuracy, sensitivity and specificity are defined as follows where TP is true positive, TN is

true negative, FP is false positive, and FN is false negative:

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 𝑥 100 (4.1)

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 𝑥 100

(4.2)

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =
𝑇𝑁

𝑇𝑁 + 𝐹𝑃
 𝑥 100

(4.3)

Where accuracy is defined as the number of correctly detected seizures and non-seizures from the total number

of seizures and non-seizures cases, sensitivity is defined as the number of correctly detected seizures from the

total number of seizures and specificity is defined as the number of correctly detected non-seizures from the total

number of non-seizures.

 22

After optimizing those criteria by multiple iterations over the classification and taking feedback to

the decision function, the performance of epileptic seizure prediction can be measured by

measuring the prediction accuracy and false prediction rate.

Prediction accuracy =
𝑁𝑆

𝑁𝐴
 𝑥 100

(4.4)

False prediction rate =
NF

NT
 x 100

(4.5)

Where Ns is the number of correctly predicted seizures, Na is the total number of seizures, NF is the number of

inaccurately predicted seizures and NT is the total time of EEG signals.

2. Chip Power consumption:

 Having high sensitivity detection leads to consuming higher power due to the number of

triggering indicating the existence of seizures.

Low consumption rate is a need to save the battery life in the chip that will be implanted in the

patient's brain.

Changing the battery frequently has two main disadvantages:

- High cost of the battery

- Increase in the number of times of the surgical interference operation for replacing the

battery

An optimization of the RTL design architecture of Gilbert’s algorithm helps in lowering the chip

power consumption rate.

3. Chip Area:

 A control in the size of the chip area is needed as the chip will be implanted in the subject’s

brain. Having a small area size is controlled by a good and an optimized RTL design architecture.

The next section will show the results obtained on different seizure prediction techniques in a

survey dedicated to seizure prediction only.

23 Chapter 4 Classification

4.3 Prediction Survey

 Introduction

All predicting models try to find out reliable measures as precursors of impending seizures.

The measures should have strong correlation with the preictal stage of epilepsy cycle, to be able

to predict the seizure before it happens. Most of the prediction techniques published up to now use

a so-called moving window analysis in which some (linear or non-linear) characterizing measure

is calculated from a window of EEG data with a pre-defined length, then the subsequent window

of EEG is analyzed, and so forth.

Depending on whether the employed measure is used to characterize a single EEG channel or

relations between two or more channels. The duration of these analysis windows usually ranges

between 10 and 40 s.

 We can categorize the EEG features into three main groups of univariates, bivariate, and

multivariate. It was conducted a comprehensive review comparing most univariate and bivariate

techniques and showed some intended results but none of them has succeeded in a reliable seizure

prediction. Each group of univariates, bivariate and multivariate can be divided into two groups of

linear and nonlinear measures.

Table 4-1 Prediction Techniques

Univariate

linear

Univariate

non-linear

Bivariate

linear

Non-linear

Bivariate

Statistical

moments

Largest

Lyapunov

exponent

Maximum

linear cross-

correlation.

Non-linear

interdependence.

Characteristics of

the

autocorrelation

function

Estimate of an

effective correlation

dimension

Conditional

probability-based

index

Hjorth parameters
Dynamic similarity

index

Index based on

Shannon entropy.

Spectral band

power

Algorithmic

complexity

Phase

synchronization.

 24

 Statistical versus algorithmic approaches

 A statistical design is retrospective by nature and compares the amplitude distributions of the

characterizing measures from the inter-ictal with those from the assumed pre-ictal period in one

way or another. We use this design for investigating and comparing the potential predictive

performance of different characterizing measures under different conditions.

 On the other hand, an algorithmic analysis uses a design that produces a time-resolved output

(i.e. an output for every point of a time profile). With respect to practical application, the algorithm

should ideally be prospective, we can understand from this that its output for a given time should

be a function of the information available at this time. Prediction algorithms usually employ certain

thresholds. If the time profile of a characterizing measure crosses the threshold, the algorithm

produces an alarm. This alarm can be either true or false, depending on whether it is actually

followed by a seizure or not. For this distinction, it is necessary to define a prediction horizon

which is the period after an alarm within which a seizure is expected. If an alarm is followed by a

seizure within the prediction horizon, it is classified as a true alarm (true positive), otherwise it is

regarded as a false alarm (false positive).

Figure 4.4 prediction with pre-defined threshold

25 Chapter 4 Classification

 Summary

For a general comparison between the univariate and bivariate, univariate measures are

sensitive to those changes only before a seizure in relation to the period immediately preceding

these changes. However, bivariate measures were found to reflect changes in dynamics on a longer

time scale starting hours before a seizure. Despite various models have been proposed for seizure

prediction, most of them focused on the univariate measures from individual EEG channels.

The next chapter will introduce some essential machine learning concepts that were needed

in the project. Afterwards, it will use these concepts to show their role in seizure detection.

5

Machine Learning:

Finding the Optimal Model

Machine learning is a data analytics technique that teaches computers to do what comes

naturally to humans: learning from experience. Machine learning algorithms use computational

methods to “learn” information directly from data without relying on a predetermined equation as

a model. The algorithms adaptively improve their performance as the number of samples available

for learning increases. From another perspective, Machine learning could be considered as a

method of data analysis that automates analytical model building. It is a branch of artificial

intelligence based on the idea that systems can learn from data, identify patterns and make

decisions with minimal human intervention.

Throughout this chapter, machine learning is discussed in conceptual depth to a certain extent

while abstracting the mathematical models and theories from the reader so that the following

chapters can be easily followed and understood.

In section 1, the importance of machine learning is illustrated. In section 2, several uses of

machine learning are discussed. Followed in section 3 by the major concepts and theories of how

machine learning works. In section 4 machine learning is projected upon the seizure detection

problem. Eventually, in section 5 the training data-set is explained.

27 Chapter 5 Machine Learning

5.1 Importance of Machine Learning

Machine learning has several very practical applications that drive the kind of real problem

solving – such as time and money savings – that have the potential to dramatically impact the

solution to a certain problem. At Interactions in particular, Machine Learning introduced

tremendous impact within the customer care industry, whereby machine learning is allowing

people to get things done more quickly and efficiently. Through Virtual Assistant solutions,

machine learning automates tasks that would otherwise need to be performed by a live agent –

such as changing a password or checking an account balance. This frees up valuable agent time

that can be used to focus on the kind of customer care that humans perform best: high touch,

complicated decision-making that is not as easily handled by a machine.

Machine learning has made dramatic improvements in the past few years, but it is still very

far from reaching human performance. Many times, the machine needs the assistance of human to

complete its task.

From another prospective, and from where the previous chapter left, Machine Learning proves

its importance in efficient solving for a classification problem. In contrast to the “fixed” threshold

detection mentioned earlier, machine learning is able to provide more “flexible” and “adaptive”

classification parameters. These specs allow machine learning algorithms for classification to

provide better performance and results.

 28

5.2 Uses of Machine Learning

Financial services

Banks and other businesses in the

financial industry use machine learning

technology for two key purposes: to

identify important insights in data and

prevent fraud. The insights can identify

investment opportunities, or help

investors know when to trade.

 Government

Government agencies such as public safety

and utilities have a particular need for

machine learning since they have multiple

sources of data that can be mined for

insights. Analyzing sensor data, for

example, identifies ways to increase

efficiency and save money.

Health care

Machine learning is a fast-growing trend

in the health care industry, thanks to the

advent of wearable devices and sensors

that can use data to assess a patient's

health in real time. The technology can

also help medical experts analyze data to

identify trends or red flags that may lead

to improved diagnoses and treatment.

 Marketing and sales

Websites recommending items you might

like based on previous purchases are using

machine learning to analyze your buying

history – and promote other items you'd be

interested in.

Oil and gas

Finding new energy sources. Analyzing

minerals in the ground. Predicting refinery

sensor failure. Streamlining oil

distribution to make it more efficient and

cost-effective. The number of machine

learning use cases for this industry is vast

– and still expanding.

 Transportation

Analyzing data to identify patterns and

trends is key to the transportation industry,

which relies on making routes more

efficient and predicting potential problems

to increase profitability.

29 Chapter 5 Machine Learning

5.3 How it works?

Machine learning uses two types of techniques: supervised learning, which trains a model on

known input and output data so that it can predict future outputs, and unsupervised learning, which

finds hidden patterns or intrinsic structures in input data.

 Supervised Learning

Supervised machine learning builds a model that makes predictions based on evidence in the

presence of uncertainty. A supervised learning algorithm takes a known set of input data and

known responses to the data (output/labels) and trains a model to generate reasonable predictions

for the response to new data.

Supervised learning uses classification and regression techniques to develop predictive

models. Where in the context of this project, classification is applied to seizure detection problem

to classify between seizure and none seizure points from the processing of the EEG signal.

Classification techniques predict discrete responses—for example, whether an email is genuine or

spam, or whether a tumor is cancerous or benign. Classification models classify input data into

categories. Typical applications include medical imaging, speech recognition, and credit scoring.

Classification is best employed if the data can be tagged, categorized, or separated into specific

groups or classes.

Figure 5.1 Machine learning techniques include both unsupervised and supervised learning

 30

Common algorithms for performing classification include support vector machine (SVM)-

discussed in chapter 6- , boosted and bagged decision trees, k-nearest neighbor, Naïve Bayes,

discriminant analysis, logistic regression, and neural networks.

Regression techniques predict continuous responses—for example, changes in temperature or

fluctuations in power demand. Typical applications include electricity load forecasting and

algorithmic trading. Regression -on the other hand- is best employed when working with a data

range or if the nature of the responses is a real number, such as temperature or the time until failure

for a piece of equipment.

 Unsupervised Learning

Unsupervised learning finds hidden patterns or intrinsic structures in data. It is used to draw

inferences from datasets consisting of input data without labeled responses.

Clustering is the most common unsupervised learning technique. It is used for exploratory

data analysis to find hidden patterns or groupings in data. Applications for cluster analysis include

gene sequence analysis, market research, and object recognition.

For example, if a cell phone company wants optimize the locations where they build cell

phone towers, they can use machine learning to estimate the number of clusters of people relying

on their towers. A phone can only talk to one tower at a time, so the team uses clustering algorithms

to design the best placement of cell towers to optimize signal reception for groups, or clusters, of

their customers.

Common algorithms for performing clustering include k-means and k-medoids, hierarchical

clustering, Gaussian mixture models, hidden Markov models, self-organizing maps, fuzzy c-means

clustering, and subtractive clustering.

 How Do You Decide Which Machine Learning Algorithm to Use?

Choosing the right algorithm can seem overwhelming—there are dozens of supervised and

unsupervised machine learning algorithms, and each takes a different approach to learning.

Here are some guidelines on choosing between supervised and unsupervised machine

learning: Choose supervised learning if you need to train a model to make a prediction--for

31 Chapter 5 Machine Learning

example, the future value of a continuous variable, such as temperature or a stock price, or a

classification—for example, identify makes of cars from webcam video footage.

Choose unsupervised learning if you need to explore your data and want to train a model to

find a good internal representation.

5.4 Machine Learning and Seizure Detection

Seizure Detection problem is clearly a classification problem, where features extracted from

the EEG signal need to be classified into either seizure or non-seizure point and hence take a

suitable action. This is where machine learning is obviously present to introduce better

performance.

5.5 Dataset

As mentioned in previous sections, Supervised Machine Learning problems include the data

entries labels (or corresponding classes) for the training process. There exist several epilepsy

datasets in which they offer the EEG signals collected from different patients with corresponding

information about seizure periods. This dataset is fed to the SVM training algorithm to be able to

test and measure performance of the training algorithm.

This database, collected at the Children’s Hospital Boston, consists of EEG recordings from

pediatric subjects with intractable seizures. Subjects were monitored for up to several days

following withdrawal of anti-seizure

medication in order to characterize

their seizures and assess their

candidacy for surgical intervention.

23 cases were taken from both

genders with each case containing

between 9 and 42 continuous EDF

files from a single subject.

EDF is a simple and flexible format for

exchange and storage of multichannel biological

and physical signals. In most cases, the EDF files

contain 1 hour of digitized EEG signals retrieved

from 23 channels. See figure 5.2.

 32

The dataset we used was an essential part in the project flow. The dataset is the core thing in

which we classify seizure vs. non-seizure points using the Support Vector Machine (SVM). Hence,

the dataset helped us in successfully obtaining accurate classification results. It is noteworthy to

mention that ONE LAB is considering obtaining their own dataset to be used in similar projects in

the foreseeable future in order to have more accurate results.

The following chapter will focus on defining the Support Vector Machine (SVM) classifier

which is a very important topic in the classification between seizure and non-seizure EEG signals.

Figure 5.2 Dataset Details

6

Support Vector Machines:

Large margin classifiers

This chapter’s focus is the SVM. There are two sections in this chapter. Section 1 defines the

SVM’s hyperplane and its role in classification. Section 2 illustrates how the maximum margin

that is needed to perform classification is computed.

6.1 SVM’s Hyperplane
The support vector machine SVM is a machine learning algorithm used to obtain the

optimized maximum margin around a hyperplane needed for classification process. That’s why

SVM is called “large margin classifier”. Maximum margin defines the maximum distance between

the hyperplane center and the closest point to the plane which define the support vector (Xn). The

support vector plays a significant role in supporting the plane as they participate in the definition

of the separation hyperplane and in achieving the margin by computing the maximum distance

between the Xn points and the hyperplane.

 34

Figure 6.1 Linear Support Vector Machine

SVM is a hyperplane that separates a set of positive examples from a set of negative examples

which represents with maximum margin (see figure 6.1). In the linear case, the margin is defined

by the distance of the hyperplane to the nearest of the positive and negative examples.

6.2 Computing the maximum margin
The formula for the output of a linear SVM is

 u w x b=  −
 

, (6.1)

Where w is the normal vector to the hyperplane and x is the input vector. The separating hyperplane is the plane

u=0. The nearest points lie on the planes u = 1.

The margin m is thus

 m
w

=
1

2|| ||
. (6.2)

Maximizing margin can be expressed via the following optimization problem:

 min || || () , ,
,



  
w b

i iw y w x b i
1

2

2 1subject to  −   (6.3)

Where xi is the ith training example and yi is the correct output of the SVM for the ith training example. The value

yi is +1 for the positive examples in a class and –1 for the negative examples. [9]

35 Chapter 6 SVM

6.3 The kernel

In machine learning, kernel methods are a class of algorithms for pattern analysis, whose best-

known member is the support vector machine (SVM). The general task of pattern analysis is to

find and study general types of relations (for example clusters, correlations, classifications) in

datasets. For many algorithms that solve these tasks, the data in raw representation have to be

explicitly transformed into feature vector representations via a user-specified feature map: in

contrast, kernel methods require only a user-specified kernel, i.e., a similarity function over pairs

of data points in raw representation. [16]

Kernel methods owe their name to the use of kernel functions, which enable them to operate

in a high-dimensional, implicit feature space without ever computing the coordinates of the data

in that space, but rather by simply computing the inner products between the images of all pairs of

data in the feature space. This operation is often computationally cheaper than the explicit

computation of the coordinates. This approach is called the "kernel trick". Kernel functions have

been introduced for sequence data, graphs, text, images, as well as vectors.

Some of the popular kernels:

- Fisher kernel

- Graph kernels

- Kernel smoother

- Polynomial kernel

- Radial basis function kernel (RBF)

- String kernels

The next chapter will elaborate two SVM algorithms that are useful for the classification

problem which are Sequential Minimal Optimization (SMO) and Gilbert’s algorithm. They are

related to seizure detection not seizure prediction.

7

Training of Support Vector Machine

This chapter has two main sections. Section 1 describes in details the SMO algorithm.

Likewise, chapter 2 illustrates deeply Gilbert’s algorithm. It is noteworthy to say that Gilbert’s

algorithm was chosen to be implemented in our project as the SVM classifier.

7.1 SMO Algorithm

Sequential Minimal Optimization or SMO is an algorithm for training support vector machine.

Training a Support Vector Machine (SVM) requires the solution of a very large quadratic

programming (QP) optimization problem. QP is an example of optimization problem that takes a

certain form. Solving QP must identify the inequality and equality constrains “upper and lower

bound”. However, problems can get every large with thousands of variables and constrains, change

over time this is especially important in real time optimization and take much time for calculations.

Not to mention that the quadratic form involves a matrix that has a number of elements equal

to the square of the number of training examples. This matrix cannot be fit into 128 Megabytes if

there are more than 4000 training examples.

Since SMO breaks the large QP into smaller QP problem that can be solved analytically in

QP steps. Therefore, it avoids the calculation of matrices as known in the equation of QP in

MATLAB. SMO scales somewhere between linear and quadratic unlike chunking SVM that scales

37 Chapter 7 Training of SVM

between linear and cubic. Therefore, the SMO was considered a suitable algorithm for

classification as it’s faster.

 Find and choose alpha

First, we need to find alpha using Lagrange equation which is the QP problem that the SMO

algorithm will solve:

Then, we choose alpha that violates KKT conditions:

C is the penalty of error, which we as designers choose its value to see how much the tolerance is

we can work with. If this C is too large, we get back to the ideal case where there is no margin.

 Choosing Lagrange multiplier 2

By choosing 1 and calculating its error E1, Lagrange multiplier 2 is chosen from the inner

loop of the algorithm. We choose Lagrange multiplier 2that maximizes the error difference from

the set of alphas. Choosing Lagrange multiplier 2 that satisfies UY=1 & 0 < 2< C.

 38

 Optimizing Lagrange multiplier 1 & 2

Because there are only two multipliers, the constraints can be easily displayed in two

dimensions like the figure shown below. After choosing Lagrange multiplier that defines the

inequality constraints, we need to set lower and higher limit of a box that defines the equality

constraint. The bound constraints cause the Lagrange multipliers to lie within a box, while the

linear equality constraint causes the Lagrange multipliers to lie on a diagonal line.

We will choose 2 that satisfies the minimum objective function.

For y1 not equal y2, L H C C= − = + −max(,), min(,).0 2 1 2 1   

For y1 equal y2, L C H C= + − = +max(,), min(,).0 2 1 2 1   

The second derivative of the objective function along the diagonal line can be expressed as:

 = + −K x x K x x K x x(,) (,) (,).
     

1 1 2 2 1 22

Under normal circumstances, the objective function will be positive definite, there will be a

minimum along the direction of the linear equality constraint, and  will be greater than zero. In

this case, SMO computes the minimum along the direction of the constraint:

  


2 2
2 1 2new = +

−y E E()
,

Figure 7.1 the constraints displayed in two dimensions

39 Chapter 7 Training of SVM

As a next step, the constrained minimum is found by clipping the unconstrained minimum to he

ends of the line segment:

∝2
new, clipped =

{

𝐻 , 𝑖𝑓 ∝2
new≥ H;

 ∝2

new , 𝑖𝑓 𝐿 ≤∝2
new≤ H;

𝐿 , 𝑖𝑓 ∝2
new≤ 𝐿.

The value of 1 is computed from the new, clipped, 2:    1 1 2 2

new new,clipped= + −s().

Thus, we have chosen the optimized 2 that satisfies the minimum objective function which will

be the nearest point to the center of the contour lines of the objective function.

The classification can now be accomplished by computed the weighting vector W, the threshold b

and updating the hyperplane equation.

   
w y x b w x yi

i

N

i i k k= =  − 
=


1

0 , .for some k

Then, we return to the data set and choose the points that satisfy the hyperplane equation and its

UY >1 to set its alpha equal to zero. Now, we succeeded to exclude the points that have their

Lagrange multiplier equal zero and thus can be excluded from the next iterations.

We apply the KKT conditions again for the next iterations till all alphas satisfy the KKT conditions

and we reach the optimized hyperplane equation.

 40

 SMO Block diagram

Figure 7.2 SMO Block Diagram

 SMO Performance Results

Figure 7.3 Different Kernel Performance of SMO for patient 5

41 Chapter 7 Training of SVM

7.2 Gilbert’s Algorithm

In 1966, Gilbert algorithm was introduced to the machine learning field. In 2000, it has been

used as a support vector machine but it had slow convergence time. In 2005, Gilbert had been

modified to solve this slow rate of convergence and this is the algorithm that will be used the

seizure detection. As we mentioned before that the Support Vector Machines are obtained by

solving a constrained quadratic programming problem (SVM QP). Since the SVM QP problem is

often too large for standard solvers, SVM specific training algorithms are used which provides

decomposition of the full SVM QP problem into subproblems. Such algorithms are SMO

(mentioned in the previous sections) and Gilbert’s algorithm. Recently, various research works

approach the SVM training from a geometric view of the problem. These proposed methods are

based on the application of a nearest point algorithm “Gilbert’s Algorithm” to the geometric

expression of the SVM training problem.

Since the objective of SVM is to construct a separating hyperplane w · x − b = 0 to attain maximum

separation between the classes as shown in figure (7.4).

Gilbert’s algorithm uses the concept of Minkowski set difference. Given two convex

representing the two classes of positive and negative seizures, the normal to the separating

hyperplane
2

||w∗||
 can be obtained ||u*-v*|| as both points u* and v* are the closest points on

the two convex of the two classes as shown in figure (7.5).

Figure 7.4 From left to right, worst to best separating hyperplane (according to the maximum margin)

 42

The problem of finding the minimum distance between two convex hulls is known as the nearest

point problem (NPP). Gilbert’s algorithm is one of the first algorithms suggested for solving NPP.

It is applied on the secant convex hull S which denotes the Minkowski set difference of U and V,

where U and V are the convex hulls of each class of training data.

 S= {s: s = u − v, u ∈ U, v ∈ V}: Yu = 1, Yv = -1.
The solution to the SVM problem is the point s*, which belongs to the secant convex hull’s perimeter

and is closest to the origin. Gilbert’s Algorithm locates the point of a convex hull closest to the origin

with recurring linear steps. knowing that s*=u*- v* as shown in figure (7.6).

Figure 7.5 The convex hull of the two classes

43 Chapter 7 Training of SVM

Figure 7.7 secant convex hull S which denotes the

Minkowski set difference of U and V

Figure 7.6 Minkawski of un-intersected shapes

 44

Figure 7.8 Linear steps iterations for reaching the point closest to the origin

 How does the algorithm work?

The algorithm stars form a random point wk-1, where k is defined as the total number of

iterations, then it allocates the point g*(- wk-1), whose projection in the direction of -wk-1 is the

closest to the origin. This point lies on the secant’s perimeter.

The goal is to find a point that lie on this segment and can be the closest to the origin.

Therefore, there are three cases for this point, it can be the old point wk-1, the new point g*(- wk-1)

or a point that lie on the segment between the two mentioned points. In order to identify which

case, two parameters called top and bot need to be calculated.

Thus, g*(- wk-1) is the point of S that maximizes the inner product with wk-1. This value can be

computed by finding g*U and g*V which are the points u and v of classes U and V respectively that

maximize the inner products -wk-1 . u and wk-1 . v:

g*(-wk-1) = g*u(-wk-1) – g*v (wk-1).

Then it allocates the point wk which lies on the segment [wk-1, g*(-wk-1)] closet to the origin which

may not be part of the secant.

𝑤𝑘 = {

𝑤𝑘−1 , 𝑖𝑓 𝑡𝑜𝑝 ≤ 0
𝑔 ∗ (−𝑤𝑘−1) , 𝑖𝑓 𝑏𝑜𝑡 ≤ 𝑡𝑜𝑝

𝑤𝑘−1 + 𝜆(𝑔 ∗ (−𝑤𝑘−1) − 𝑤𝑘−1) , 𝑒𝑙𝑠𝑒

, Where: top=−𝑤𝑘−1 . (𝑔 ∗ (−𝑤𝑘−1) − 𝑤𝑘−1)

 bot= ||(𝑔 ∗ (−𝑤𝑘−1) − 𝑤𝑘−1||2

 λ =
𝑡𝑜𝑝

𝑏𝑜𝑡
 <1

45 Chapter 7 Training of SVM

 In the case of top less than bot which defines a point between the old and new point, a circle

of radius bot and having the origin as the center could be assumed. The difference in the distance

between the bot and the bot is the Lamda. Thus, from wk-1, a distance Lamda on the segment

towards g*(- wk-1) defines the point wk. These steps are repeated till convergence.

The terminating condition of Gilbert’s is selecting the same point wk again in a following

iteration.

 According to our research, a modified version of Gilbert’s Algorithm for the fast computation

of the Support Vector Machine hyperplane was introduced by computing the angles instead of the

norms. This modification seemed to converge faster to s*. This operation is done by computing

(wk ·s∗)/(|| wk|| ||s∗||) instead of || wk -s*||.

Figure 7.9 Iteration steps of Gilbert Algorithm

 46

 Overview of Gilbert’s Algorithm

1. Choose a point w1in S.
2. Identify the point g*(- w1) in S closest to the origin in the direction of - w1.
3. Identify the point w2 on the line from w1to g*(- w1) closest to the origin.
4. Repeat 2-3.
5. s* = limk→∞ wk.

The following figure (7.10) shows the modified version of Gilbert’s Algorithm.

Figure 7.10 Gilbert's Algorithm Flow

47 Chapter 7 Training of SVM

 Gilbert’s Algorithm results

In order to obtain a satisfied result, a parameter “C ~” is controlled. By default, in Gilbert’s

Algorithm, C~ is set to ‘1’, which gives non-promising results as less than 60% of accuracy.

 With a c~ = 0.0016, a better performance is obtained. The following figure (7.11) shows

the obtained statistics of different patients from the available data set and shows their

sensitivity, specificity and accuracy.

Figure 7.11 Gilbert's Results

The following chapter will explain how Gilbert’s algorithm was implemented as hardware in RTL

stage. In other words, it describes how the migration to hardware was done.

8

Migration to hardware

Proving the high efficiency of the MATLAB code is just the beginning. The main objective

of the project is to implement a single chip, that will be implanted in the brain of the patient. To

achieve this goal, all you need to do is to map your MATLAB code, to a block diagram, showing

the digital logic circuit of your algorithm. register-transfer level (RTL) is a design abstraction

which models a synchronous digital circuit in terms of the flow of digital signals (data) between

hardware registers, and the logical operations performed on those signals. This is used in Hardware

Description Language(HDL) like VHDL and Verilog, which are languages used to create high

level representation of a circuit from which lower-level representations and ultimately actual

wiring can be derived as we will see in the next chapter where we will show the FPGA

implementation.

49 Chapter 8 Migration to hardware

8.1 Block Diagram

Figure 8.1 Block diagram

 As shown, the block diagram is showing the memories, caches, the inputs and the outputs of

each block. This is a very important step because, the design is the basic document we will get

back to, when writing the VHDL code. This is why we needed to give this step the sufficient time,

and make sure the design is correct.

8.2 VHDL-Verilog code

Implementing the block diagram using VHDL and Verilog was our main work for a long time.

When writing the code, we had to think about the next phase which is the FPGA, so we needed to

make sure that our code is synthesizable. What synthesizability means is that the code could be

mapped to a hardware circuit. For example, most FPGAs do not support floating point numbers,

so we had to use a trick where we scale up the floating numbers to make it an integer number that

can be represented easily and then we scale down the result to understand what the real number

was. Also, some operations are not synthesizable, like dividing 2 different numbers, so we couldn’t

just use the division sign in VHDL, but we needed to implement a divider component by ourselves

to perform this task. Also, one of the toughest component is the kernel, which requires exponential

 50

calculations. Exponential with random base and exponent is also not synthesizable, so we had to

use the LUTs (Look up Tables). We also needed Finite State Machine (FSM) in our code. This is

a very important topic so we will consider it in the following section.

8.3 Finite State Machine

The full code is in the appendix. The following code was tested on altera Cyclone V FPGA

and checked for synthesizability.

51 Chapter 8 Migration to hardware

-

Norm and

lamda

calculation

 reset

Cache1

And Cache2

Get min

and max

CV
Caches

Accumulation

Alpha Beta

Memory

R

ese

t=1

Write

new points

Caches

Average

Point

repeated=1

Cos

error

Classification

Cos

error >

0.9

 Idle

9

FPGA

Field Programmable Gate Array (FPGA) is an integrated circuit designed to be configured by

a customer or a designer after manufacturing; hence the term "field-programmable". The FPGA

configuration is generally specified using a hardware description language (HDL), The most

common HDL languages are VHDL, Verilog and System Verilog. In our design we used VHDL

and Verilog. (See appendices for design codes).

FPGAs contain an array of programmable logic elements, and a hierarchy of reconfigurable

interconnections that allow the blocks to be "wired together", like many logic gates that can be

inter-wired in different configurations. Logic blocks can be configured to perform complex

combinational functions, or merely simple logic gates. In most FPGAs, logic blocks also include

memory elements, which may be simple flip-flops or more complete blocks of memory.

While this chapter discusses the FPGA -which is used in this project-, it is important to

mention another class of a -somehow- similar device which is ASIC. ASIC -standing for

Application Specific Integrated Circuits- is similar to FPGA but it lacks the -general purpose-

features. It is Integrated Circuit (IC) that is customized to perform certain task once it is fabricated.

Throughout this chapter, a more detailed comparison between FPGA and ASIC is held in

section 9.1. In section 9.2 the functions of FPGA in this project design is listed and discussed.

Followed in section 9.3 by an overview of the basic features and virtues that allowed the FPGA to

be a potential candidate for this project. In section 9.4, the details of the used Altera FPGA device

53 Chapter 9 FPGA

alongside with its design specs are listed. Where eventually, in section 9.5, the process of

programming the FPGA and general considerations are discussed.

9.1 FPGA Vs ASIC

The translation of the architecture into a register transfer level description in HDL allows

hardware designers to consider the design at the appropriate level of abstraction. It’s here that a

major advantage of FPGA over ASIC can be found. It’s good for prototyping and has a low volume

designs as cost would be less. It’s also a faster time to market. No layout and manufacturing steps

needed. That’s why it’s preferable to map the design into FPGA before ASIC where the last needs

longer design time to take care of all manufacturing steps as it’s once manufactured, it would need

to spin again a new chip in case of bugs. Then, the ASIC would come its role next to be better for

its lower power, lower unit costs and faster than FPGA with higher performance.

9.2 Function of FPGA in the design

In this project, the need of FPGA is very critical to boost the performance of our design. As

the FPGA can perform the SVM training on the data much faster than the CPU. This is due to the

dividable nature of the algorithm used. The capability of the FPGA to provide a high level of

parallelism is employed to solve the training problem in parallel chunks yielding much faster

training.

In the development phase, Assigning the training function to the FPGA off-loads it from the

CPU. Leaving the CPU to process performance measurements simultaneously using the updated

parameters that the FPGA provides. This could be done by passing the continuously

updated training parameters from the FPGA to the CPU, allowing for hardware acceleration.

FPGA is very suitable in this design for its ability of reconfiguration. This is employed in the

algorithms methods that we have for further future expansion. (That is; to store all the training

algorithms on the chip and reconfigure to the currently required as explained previously). So, it’s

more efficient to consider this vision in the current development phase.

The FPGA enables high processing of data, as it’s needed in Gilbert algorithm to help the fast

convergence of data point, hence, allowing faster response.

 54

The concept of implanting Gilbert algorithm involves dealing with multiple memories and

data accumulation, that the FPGA gives a great advantage as it support fast memory access.

9.3 FPGA virtues

The need to use Field Programmable Gate Array (FPGA) in this design was essential. An

FPGA has the feature that it can be reprogrammed to perform a different function other than that

it was initially intended to. FPGAs are very quick in processing our data as they have an

outstanding digital processing performance. Furthermore, utilizing multichannel synchronization

and processing is not a difficult task when using an FPGA. In other words, FPGA helps us adapt

the design parameters to the required performance because of its beneficial re-

programmability and re-configurability.

Intel FPGA is well suited in the processing of the data used with high speed and high channel

density signals for two main reasons:

• ease of multichannel synchronization and processing

• impressive digital processing performance

55 Chapter 9 FPGA

9.4 FPGA in use (Altera)

The FPGA device used in this project was provided by

Altera - an Intel business unit. DE10-Nano development board

(figure 9.1) from terasiC was used to develop and test the

proposed design.

The FPGA fabric on-board of the DE10-Nano is a Cyclone

V series which offers a low cost and power consumption.

The Development kit supports not only the FPGA but offers

the ability to employ HPS (Hard Processor System) in the design

as well.

In the following tables some of the major specs of the

FPGA and the HPS are listed to account for the device

utilization in later chapters. However, it is important to note that

the design of this project targeted the FPGA fabric only with no

major role for the HPS.

Acquisition of
Altera by Intel

On Dec. 28, 2015 – Intel

Corporation a (“Intel”)

announced that it has completed

the acquisition of Altera

Corporation (“Altera”) a leading

provider of field-programmable

gate array (FPGA) technology.

The acquisition complements

Intel’s leading-edge product

portfolio and enables new classes

of products in the high-growth

data center and Internet of Things

(IoT) market segments.

“Altera is now part of Intel,

and together we will make the

next generation of

semiconductors not only better

but able to do more,” said Brian

Krzanich, Intel CEO. “We will

apply Moore’s Law to grow

today’s FPGA business, and

we’ll invent new products that

make amazing experiences of the

future possible – experiences like

autonomous driving and

machine learning.”

Figure 9.1 DE10-Nano Development Kit

 56

Table 9-1 Specs of DE10-Nano systems

Specs. Hard Processor System FPGA

 Processor Programmable logic

Dual-core ARM* Cortex*-A9 MPCore

processor at 800 MHz

Neon™ media-processing engine with

double-precision floating point unit

32 KB L1 instruction cache

32 KB L1 data cache

512 KB shared L2 cache

Logic elements (LE): 110KLE

5,570 kilobits memory

224 18 x 19 multipliers

112 variable precision DSP blocks

6 phased-locked loops (PLL)

145 User defined I/O

Memory FPGA I/O interfaces

64 KB on-chip SRAM

1 GB DDR3 SDRAM (32-bit data)

8 GB microSD* flash memory card

2 push buttons

4 slide switches

8 LEDs

Three 50 MHz clock sources from

the clock generator

Two 40-pin expansion headers with

diode protection

One Arduino expansion header

(Arduino UNO* R3 compatibility),

8-channel, 12-bit A/D converter, 500

ksps, 4-pin serial peripheral

interface (SPI)

Processor I/O

1 gigabit ethernet PHY with RJ45

connector

1 USB 2.0 On-The-Go (OTG) port, USB

Micro-AB connector

microSD* card interface and socket

Accelerometer (I2C interface plus

interrupt)

UART to USB, USB Mini-B connector

Warm reset button, cold reset button

One user button and one user LED

57 Chapter 9 FPGA

9.5 Simulation and Synthesis

The process of programming the FPGA includes several stages that allow the final design to

come into light. Of course, starting with block diagram designing that marks the high-level

implementation of the main entities of the design. Code generation is conducted next using

VHDL/Verilog. A critical step is followed which is the gate-level simulation of the design. Using

Altera-ModelSim. ModelSim simulates and shows the different waveforms of different signals

and the user should verify that the output signals are correct against the input signals (figure 9.2).

Testbenches could be used in this context, where they can automate the testing input scenarios and

compare them to the expected outputs and assert warnings and error messages in case of error in

the simulation.

If the simulations are successful, the next stage takes place which is “Synthesis”. Synthesis is

the ability for the HDL code to map into the targeted FPGA. There exist several synthesis tools.

In this project Quartus Prime is used to conduct the synthesis process. Finally, after successful

synthesis binary programming stream is transmitted to the FPGA programmer to program it.

Testing the final design on the FPGA and repeating the loop again for optimization and meeting

the performance parameters.

Figure 9.2 Example of waveform simulation using ModelSim

 58

9.6 Power Analysis

One of the most important aspects of the design is to calculate the power of the RTL and

try to optimize it as much as you need.

 Thermal power

Thermal power is the component of total power that is dissipated within the device

package. Designers need to consider the thermal power in determining whether they need to

deploy thermal solutions on the FPGA, such as heat sinks, to keep the internal die-junction

temperature within the recommended operating conditions.

 Static Power

 Static power is the power consumed by a device due to leakage currents when there is no

activity or switching in the design. Therefore, this type of power is independent of the actual

design. This data can be extracted from the FPGA device data sheet.

 Dynamic Power

 This is the power consumed through device operation caused by internal nodes in the

FPGA toggling. That is, the charging and discharging of capacitive loads in the logic array

and routing. The main variables affecting dynamic power are capacitance charging, supply

voltage, and clock frequency. Dynamic power is design dependent and is heavily influenced

by the users RTL style.

 Power Calculations

To calculate the thermal power dissipation, all you need to do is to compile your files and

go to Processing => Start => Start Power Analyzer. If you check the power analyzer report,

you will find the dynamic power equals 0, which makes sense because till this point, there is

no clock or any signals going through the components of the design, so there is no dynamic

power.

To calculate the dynamic power, you will need to generate Value Change Dump (VCD)

which is a standard file that contains all the simulation waveform information that is useful

59 Chapter 9 FPGA

for debugging simulation. It contains all the signals in the design. Also, you will need a

testbench which simulates the clock and the initial values of all the inputs. To compile your

testbench, go to Assignments => Settings => Simulation, add your testbench and mark

Generate VCD. Now, the dynamic power will be generated.

The next chapter will be specified to the main results we obtained from our project. It will

also include a conclusion of all what has been done throughout the entire course of the project

highlighting the important results that have been reached.

10
Design Highlights

 Throughout the developments of this project several design highlights stood out and

deserved to be pointed out on a dedicated chapter to mark their contribution to the project

development.

10.1 Fixed Point Conversion

One of the many benefits of an FPGA-based solution is the ability to implement a mathematical

algorithm in the best possible manner for the problem at hand. For example, if response time is

critical, then we can pipeline the stages of mathematics. But if accuracy of the result is more

important, more bits can be used to ensure the achieving of the desired precision. Of course, many

modern FPGAs also provide the benefit of embedded multipliers and DSP slices, which can be

used to obtain the optimal implementation in the target device.

There are two methods of representing numbers within a design, fixed- or floating-point number

systems. Fixed-point representation maintains the decimal point within a fixed position, allowing

for straightforward arithmetic operations. The major drawback of the fixed-point system is that to

represent larger numbers or to achieve a more accurate result with fractional numbers

The normal way of representing the split between integer and fractional bits within a fixed-point

number is x,y where x represents the number of integer bits and y the number of fractional bits.

For example, 8,8 represents 8 integer bits and 8 fractional bits, while 16,0 represents 16 integer

and 0 fractional.

61 Chapter 10 Design Highlights

The number of integer bits required depends upon the maximum integer value the number is

required to store, while the number of fractional bits will depend upon the accuracy of the final

result. In order to add, subtract or divide, the decimal points of both numbers must be aligned. This

is done by either multiply the number with more integer bits by 2X or divide the number with the

fewest integer bits by 2X. Division, however, will reduce the accuracy and may lead to a result

that is outside the allowable tolerance. Since all numbers are stored in base-two scaling, scaling

the number up or down can be easily done shifting one place to the left or right for each power of

2 required to balance the two decimal points. Therefore, adding together two numbers that are

scaled 8,8 and 9,7, the 9,7 number can be either scaled up by a factor of 21 or the 8,8 format can

be scaled down to a 9,7 format, if the loss of a least-significant bit is acceptable.

10.2 Contact Vector Entity

In the development of the design main entities, Contact Vector entity was responsible to

accumulate history of the processed points and check for each new point entry if it was repeated.

If so, the algorithm terminates from the first termination condition.

Memory RAM Blocks were used to save the current history of the processed points. However, the

highlight of the entity that when a new point is written into the CV Memory, a CV monitor entity

starts searching for this point in a descending manner (i.e. from down the memory to the top). This

approach showed improved convergence time, since most probably and near convergence

iterations, the repeated points tend to be successive. That is both repeated points would occupy

recent memory addresses. Searching the memory from top to down in such case would consume

much more clock cycles to find that the repeated point was in the preceding address of the just

added point.

10.3 Exponential using LUT

As mentioned in chapter 6, the Kernel used in the design is RBF kernel. RBF kernel includes the

calculation of exp function. Exponential functions are often hard to implement and uses high

device resources. A proposed approach to building the exp(x) entity was to find the Taylor series

for the exp(x) function. However, it was found that for an accepted accuracy in the desired range

of the input argument “x” up to 27 terms of the series were required! Of course, such high number

 62

of terms would eat up most of the device resources specially the DSP blocks that would

accommodate the multiplication and factorial of the different terms.

An alternative approach to this issue was to use the LUT. Look Up Tables are elements inside

the FPGA that would map certain input to certain outputs. MATLAB used to generate a look up

table for exp(x). Hence, the exp entity was designed such that it represents a ROM loaded with the

values of exp(x) where x is interpreted as the address of the memory. In more simple way, this

means that going to address “x” in the LUT memory, the value of exp(x) is stored.

This approach is much more effective resources wise were it proves better performance than

the Taylor series approach, however that was traded off with more memory block consumption. A

case in which the targeted FPGA total memory of around 5 Mb could accommodate the design

entire memories easily.

10.4 Booth-Multiplier

The design included plenty of multiplication operations. Multiplication operations often maps

to DSP slices when synthesizing. Therefore, and to not fully depend on the target DSP slices

number (often not so many are there) and to give more chances for smaller area, Booth-Multipliers

were used. Booth-Multipliers are multiplication entities that employ booth algorithm to find the

multiplication of two inputs. Booth multipliers are known for their fast calculations, the output is

calculated in combinational logic (i.e. in the same clock cycle that the inputs change, the output

changes accordingly).

11
Results

In this chapter the detailed results of the project proposed algorithm and design are discussed.

The results were obtained from simulating the data of 4 patients from the given dataset. Which

were reduced from 10 patients. This reduction arose because of the complex feature space of the

remaining 6 cases as shown in the following figure.

Figure 11.1 Feature space of a complex patient

 64

The complexity of such a case, is that the seizure and none-seizure points are not easily

separable -On another context both classes are nearly fully overlapping-. In such situations the

algorithms performance deteriorates unexpectedly and the results they produce are not accurate

enough, hence eliminated from design development cycle.

However, several solutions to overcome this problem were employed. For instance, but not

limiting RBF Kernel was replaced instead of the Linear kernel which allowed for higher dimension

separation. Another approach was in sweeping against a design parameter 𝐶̃ till producing

satisfying results.

11.1 Minimum Requirements for a candidate algorithm

For the SVM Training algorithms to be a potential candidate, they must satisfy the

performance parameters (previously mentioned in section 4.2.3) minimum requirement of 80%

each. If the simulations (using MATLAB) fulfilled this condition, then the algorithm is qualified

to start the RTL development loop.

At the final stage of the RTL processes, the results of the gate-level simulations are tested and

the performance parameters are re-calculated and verified to meet their MATLAB simulation

counterparts within a certain percentage of accepted error. The error percentage between the

MATLAB Simulations and Gate-Level simulations is present due several factors such as the fixed-

point conversion step (see Design Highlights).

11.2 MATLAB and RTL Simulation results

Primary MATLAB simulation results are discussed in this context for different patients.

Compared to the RTL simulation of the same patient cases.

It’s important to note that the RTL simulation results are obtained by feeding the training

parameters that are calculated from the ModelSim RTL simulation into the MATLAB algorithm

simulation.

65 Chapter 11 Results

 Case: Patient (1)

81

82

83

84

85

86

87

88

89

MATLAB Simulations VHDL

Pateint 1

Sensitivity Specificity Accuracy

Figure 11.3 Patient 1

MATLAB Hyperplane

Figure 11.2 Patient

1 VHDL Hyperplane

 66

 Case: Patient (3)

85.5

86

86.5

87

87.5

88

88.5

89

MATLAB Simulations VHDL

Pateint 3

Sensitivity Specificity Accuracy

Figure 11.5

Patient 3 MATLAB

Hyperplane

Figure 11.4

Patient 3 VHDL

Hyperplane

67 Chapter 11 Results

 Case: Patient (5)

0

20

40

60

80

100

120

MATLAB Simulations VHDL

Pateint 5

Sensitivity Specificity Accuracy

Figure 11.7

Patient 5 MATLAB

Hyperplane

Figure 11.6

Patient 5 VHDL

Hyperplane

 68

11.3 Discussion and Analysis of the results

From observing the previous figures, patient 1 and patient 3 RTL simulations gave promising

results that were close to the results obtained from MATLAB simulations.

Since feature space of both patient 1 and 3 are less overlapping. And although, some

approximations were carried out in simulating RTL the algorithm could find the proper support

vectors to draw the hyperplane in between. On the other hand, seizure and non-seizure points of

patient 5 are more overlapping in the feature space which caused more complexions in finding the

proper margin in the presence of the approximations. Hence, gave lower results in comparison

with MATLAB simulation. This is obvious from the previous hyperplane figure (11.7) which tends

to be favoring non-seizure points. This shift to the upside towards distant seizure points introduced

severe error which reflected on the performance parameters.

11.4 Resources usage

The project design is divided into two main modules, the Training Module and Classification

Module. The training module function is to provide the “W” and “b” (i.e. the training parameters)

of the SVM. Whereas in Classification module it uses these parameters to conduct the online

classification of the extracted points.

Table 11-1 Classification Module Resources Utilization

Revision Name Main

Top-level Entity Main

Family Cyclone V

Device 5CSEBA6U23I7

Logic Utilization (in ALMs) 256/41,910 (<1%)

Total Registers 169

Total Pins 12/314 (4%)

Total Block Memory Bits 100,800/5,662,720 (2%)

Total DSP Blocks 15/112 (13%)

69 Chapter 11 Results

Table 11-2 Gilbert Training Module Resources Utilization

Revision Name Main

Top-level Entity Integration_final

Family Cyclone V

Device 5CSEBA6U23I7

Logic Utilization (in ALMs) 9,186/41,910 (22%)

Total Registers 1014

Total Pins 18/314 (6%)

Total Block Memory Bits 250,320/5,662,720 (4%)

Total DSP Blocks 12/112 (12%)

From the previous tables, table 11-1 illustrates the resources usage of the classification entity.

As seen the logic utilization is less than 1% of the FPGA ALMs. This low utilization of the ALMs

is due to the fact that the Classification module employed DSP blocks instead of logic to calculate

the classification equation. On the other hand, the ALMs utilization in the Gilbert Integration

module is much more (22%). This is due to using a -designed from scratch- entities to perform

most of algorithm calculations.

11.5 Power Analysis Results

The power analysis both design entities are conducted after successful and high confidence

estimation using sufficient toggle rates provided by testbenches.

Table 11-3 Power Dissipation Results

Power Type Training Classification

Total Thermal Power Dissipated 526.52 mW 477.75 mW

Core Dynamic Thermal Power Dissipated 103.03 mW 53.10 mW

Core Static Thermal Power Dissipation 413.45 mW 412.78 mw

12
Conclusion

In the thesis, the problem of seizure detection using support vector machine (SVM) was

addressed to classify between seizures and non- seizures classes. The SVM goal is to be able to

draw an accurate hyperplane between the two classes to categorize the signals of a patient’s brain

to be correctly detected.

One of the main contributions of our work is to express this task with a new algorithm that

could give a better performance than previous implemented algorithms. This algorithm is called

“Gilbert’s Algorithm”.

A discussion of Sequential Minimum Optimization (SMO) method as SVM classification

method in training the data has been provided with its results. This was an important stage in the

understanding of the detection problem.

The main focus of the thesis was proving that Gilbert’s Algorithm - the geometrical approach

used long time ago in few applications - is able to be a good classifier for seizure detection

problems. The analysis leads to the following conclusions:

• At first, the obtained results were not satisfying; the sensitivity did not exceed 69.5652 %.

• Various trials were carried on in order to improve this percentage along the other

measurements such as changing the kernel and increasing the training hours.

• Finally, improving the sensitivity to 90% was managed with high specificity and accuracy

by changing a parameter “𝐶̃” to 0.0016 and the kernel to Radial Basis Function (RBF).

71 Chapter 12 Conclusion

These findings provide a potential mechanism for employing Gilbert’s Algorithm on an

embedded chip that will be implanted in the subject brain. Hence, triggering electric stimuli that

will be able to retrieve the brain back to its normal state.

Before manufacturing the chip, a proof of concept is preferred to be done using FPGA due to

its beneficial re-programmability and re-configurability. Burning Gilbert’s training algorithm and

classifier on FPGA is done successfully. This is very much the key component in future attempts

to build the chip using ASIC technology.

 Future Work

Many optimizations have been left for the future work to obtain the optimal minimum power

by analyzing it on Quartus Prime tool for the FPGA used. The target of the chip is to consume a

low power that the battery can survive long periods. This is could be done by modifying and

optimizing each module and different parts of the VHDL code till reaching an acceptable power

without loss of accuracy and performance. This is desirable in the seizure detection problem for

the following stage: the ASIC stage.

Future work concerns deeper analysis in the ASIC field in order to build the chip that would

contribute in seizure elimination.

A future vision in the design problem is to store all the candidate training algorithms in the

chip and use partial dynamic reconfiguration to let the chip use what is currently optimum. (i.e.

Low power required? -> reconfigure to Algorithm-1, Fast Training required? -> reconfigure to

Algorithm-2).

72

13
Achievements

This chapter is intended to highlight our achievements throughout a period of nearly nine

months of work to do the project at the best possible way. Furthermore, the awards we

received are documented and shown below.

13.1 Achievements

These are achievements related to certain benchmarks or highlights we successfully

accomplished throughout the project course. They are related to direct tasks fulfillment and

they represent a chronological progress since the beginning of our work. Our achievements

are shown as follows:

❖ Understanding problem definition and Medical background beyond epilepsy

❖ Studying Machine learning concepts we needed

❖ SVM using SMO algorithm Research and Simulation

❖ SVM using Gilbert's algorithm Research

❖ Matlab code simulation for Gilbert's algorithm

❖ Modification of the Matlab code to reach an acceptable performance

❖ Design architecture of hardware block diagram

❖ Mapping the Matlab code to VHDL and Verilog hardware descriptive language

❖ Implementing the VHDL and Verilog files in the RTL phase

❖ FPGA mapping and burning

73 Chapter 13 Achievements

❖ Detecting seizure and non-seizure on FPGA having our Matlab code results

❖ Getting power analysis to our design on FPGA

13.2 Awards

This section is concerned with different awards that we were honored to receive throughout

our graduation project period. Our awards are listed as follows:

❖ Qualification as a regional semi-finalist in the Innovate FPGA contest sponsored

by Intel in 31st January 2018.

❖ Qualification as a regional finalist in the Innovate FPGA contest sponsored by Intel

in 31st May 2018.

❖ Receiving a fund by ITAC in 25th March 2018.

❖ Winning the first place in EECE Department Day for preparing the best poster for

competing Graduation Project teams in 14th April 2018.

Figure 13.1 Regional semi-finalist in the Innovate FPGA

contest sponsored by Intel

Figure 13.2 Regional finalist in the Innovate FPGA contest

sponsored by Intel

xii

Recommendations:

We have dedicated this to anyone interested in doing similar projects to our one to consider

the following points. Although it may seem obvious, it is very important to indicate the importance

of having a substantial background of programming skills using Matlab. Moreover, it is very

advisable to learn basic machine learning concepts as they are fundamental in the project progress.

Furthermore, it will be a great advantage to practice reading some scientific papers in advance of

project beginning to enhance the analytical skills of understanding new information. Another very

beneficial advice is to extremely improve RTL skills whether using VHDL or Verilog. Last but

not least, it is recommended to get some knowledge on FPGA, its functionality and operation

because it is the step in which the design is mapped to a real physical chip.

Appendix

VHDL/Verilog Codes:

13.3 alphabetaMem

Library ieee;

use ieee.std_logic_1164.all;

use ieee.numeric_std.all;

Entity alphabetaMem is

Generic (Addr_Width : integer := 4;

 Data_Width : integer := 16;

 n : integer := 16);

port(

 clk : in std_logic;

 reset: in std_logic;

 WkSelect: in std_logic_vector(1 downto 0);

 lamda: in std_logic_vector(n-1 downto 0);

 CV_Point_address: in std_logic_vector(Addr_Width-1 downto 0);

CVcounter: in unsigned(16-1 downto 0);

 Datacounter: in unsigned(16-1 downto 0);

 weight_one: in std_logic_vector(Data_Width-1 downto 0);

average_enable: in std_logic;

 copyTobackUp_enable: in std_logic;

 read_enable_norm_avg: in std_logic;

 read_enable_BackUp: in std_logic;

 alpha_beta_wake_up: in std_logic;

 First_Run: in std_logic; Out_alphabeta_average: out

std_logic_vector(Data_Width-1 downto 0);

 OutBackUp: out std_logic_vector(Data_Width-1 downto 0)

);

end entity alphabetaMem;

architecture arch_alphabeta_Mem of alphabetaMem is

--------------------COMPONENTS INST:-------------------

component data_Memory is

 Generic (

 DATA_Mem_WIDTH: integer := 16;

 MeM_DEPTH: integer := 16

);

port (

 clk : in std_logic;

 write_enable : in std_logic;

 read_enable : in std_logic;

 2

 address : in std_logic_vector(MeM_DEPTH-1 downto 0);

 datain : in std_logic_vector(DATA_Mem_WIDTH-1 downto 0);

 dataout : out std_logic_vector(DATA_Mem_WIDTH-1 downto 0)

);

end component data_Memory;

Component BoothTop is

port(

 M: in std_logic_vector(15 downto 0);

 Q: in std_logic_vector(15 downto 0);

 Z: out std_logic_vector(31 downto 0)

);

end Component BoothTop;

component divider is

generic(input_width: integer:=30);

port(

 Q: in std_logic_vector(input_width-1 downto 0);

 M: in std_logic_vector(input_width-1 downto 0);

 Quo: out std_logic_vector(input_width-1 downto 0);

 Remi: out std_logic_vector(input_width-1 downto 0)

);

end component;

TYPE State_type IS (OldPoint, NewPoint, SegmentPoint,Accumulation,

CalcAvg,idle,ReadAlphaNew,CopyToBckUp,ReadBckUp); -- Define the states

SIGNAL State : State_Type;

TYPE State_type_acc IS (read_acc,write_acc); -- Define the states

SIGNAL State_acc : State_Type_acc;

TYPE State_type_avg IS (read_avg,write_avg); -- Define the states

SIGNAL State_avg : State_Type_avg;

TYPE Alpha_Beta_Switch is (state_on,state_off);

SIGNAL Switch_ab : Alpha_Beta_Switch;

SIGNAL reg_trigger: std_logic;

SIGNAL write_enable_alphabeta: std_logic;

SIGNAL read_enable_alphabeta: std_logic;

SIGNAL sigAddress: std_logic_vector(Addr_Width-1 downto 0);

SIGNAL accCounter: unsigned(16-1 downto 0);

SIGNAL address_alphabeta: std_logic_vector(Addr_Width-1 downto 0);

SIGNAL sigCVcounter: unsigned(16-1 downto 0);

SIGNAL R_W: std_logic; --Flag bit, when 0 => Read , when 1 => Write

SIGNAL siglamda: std_logic_vector(n-1 downto 0);

SIGNAL sigDataout32: std_logic_vector((2*Data_Width)-1 downto 0);

-----------------------------FSM------------------------------------

signal Data_in_FSMtoM: std_logic_vector(Data_Width-1 downto 0);

signal Data_out_MtoFSM: std_logic_vector(Data_Width-1 downto 0);

-------------------------------acc--avg-------------------------------

SIGNAL Data_in_Acc_Avg: std_logic_vector(Data_Width-1 downto 0);

SIGNAL Data_in_Acc_Avg_sig: std_logic_vector(Data_Width-1 downto 0);

SIGNAL Data_out_Acc_Avg: std_logic_vector(Data_Width-1 downto 0);

3 Appendix

signal write_enable_Acc_Avg: std_logic;--write enable for acc_avg mem

signal read_enable_Acc_Avg: std_logic;--write enable for acc_avg mem

SIGNAL first_accumulation: std_logic; -- =1-> first time to accum

SIGNAL first_copyToBackup: std_logic;

signal address_Acc_Avg:std_logic_vector(Addr_Width-1 downto 0);

SIGNAL sigRead_enable_avg: std_logic;

SIGNAL address_Acc_Avg_sequen: unsigned(Addr_Width-1 downto 0);

SIGNAL sigDataout_div: std_logic_vector(Data_Width-1 downto 0);

SIGNAL Acc_flag: std_logic;

SIGNAL sum_acc_MtoFSM: std_logic_vector(Data_Width-1 downto 0);

----------------------Backup---

SIGNAL write_enable_BackUp: std_logic;

SIGNAL address_backup:std_logic_vector(Addr_Width-1 downto 0);

SIGNAL address_backup_sequen: unsigned(Addr_Width-1 downto 0);

SIGNAL Data_in_BckUp:std_logic_vector(Data_Width-1 downto 0);

signal first_run_sel: std_logic; --- to mux ;

signal first_run_in: std_logic; ----- off the first sig

Begin

first_run_in<= first_run when first_run_sel='1' else

 '0';

State<= ReadAlphaNew when read_enable_norm_avg='1' else

 CopyToBckUp when copyTobackUp_enable='1' else

 ReadBckUp when read_enable_BackUp='1' else

 CalcAvg when average_enable='1' and Acc_flag='0' else

 Accumulation when Acc_flag='1' else

 SegmentPoint when WkSelect= "00" and average_enable='0' and

Acc_flag='0' else

 OldPoint when WKSelect="10" and average_enable='0' and Acc_flag='0'

and First_Run_in='0' else

 NewPoint when ((WKSelect="11" and average_enable='0' and

Acc_flag='0') or First_Run_in='1') else

 idle;

Data_in_Acc_Avg_sig<=

std_logic_vector(resize(signed(Data_out_MtoFSM(Data_Width-1 downto 5)),16)

) when first_accumulation='1' else

 Data_in_Acc_Avg;

siglamda<= std_logic_vector("0100000000" - (signed (lamda)));

multipI: BoothTop port map(siglamda,Data_out_MtoFSM,sigDataout32);

-----------------------DIVIDER ---------------------

div: divider generic map(input_width=>16) port

map(Data_out_Acc_Avg,std_logic_vector(CVcounter),sigDataout_div);

Memory_Alphabeta: data_Memory generic map (DATA_Mem_WIDTH =>

Data_Width,MeM_DEPTH=>Addr_Width) port map(clk,write_enable_alphabeta,

read_enable_alphabeta, address_alphabeta,Data_in_FSMtoM,Data_out_MtoFSM);

Memory_Acc_Average: data_Memory generic map (DATA_Mem_WIDTH =>

Data_Width,MeM_DEPTH=>Addr_Width) port map(clk,write_enable_Acc_Avg,

sigRead_enable_avg, address_Acc_Avg,Data_in_Acc_Avg_sig,Data_out_Acc_Avg);

Memory_BackUp: data_Memory generic map (DATA_Mem_WIDTH =>

Data_Width,MeM_DEPTH=>Addr_Width) port map(clk,write_enable_BackUp,

read_enable_BackUp, address_backup,Data_out_Acc_Avg,OutBackUp);

Out_alphabeta_average<=Data_out_Acc_Avg;

reg_trigger<= average_enable or copyTobackUp_enable or

read_enable_norm_avg or

 read_enable_BackUp or alpha_beta_wake_up;

 4

main_Proc: process(clk,sigAddress,sigDataout32,reset,reg_trigger) is

 begin

 if(reset='1') then

 sigAddress<=(others=>'0');

 sigCVcounter<=(others=>'0');

 address_alphabeta<=(others=>'0');

 state_acc<=read_acc;

 state_avg<=read_avg;

 accCounter<=(others=>'0');

 first_accumulation<='1';

 R_W<='0';

 address_Acc_Avg_sequen<=(others=>'0');

 address_backup_sequen<=(others=>'0');

 Acc_flag<='0';

 address_backUp<=(others=>'0');

 Switch_ab<=state_off;

 first_run_sel<='1';

 end if;

 if rising_edge(clk) THEN

CASE Switch_ab IS

 when state_off=>

 if(reg_trigger='1') then

 Switch_ab<=state_on;

 else

 Switch_ab<=state_off;

 accCounter<=(others=>'0');

 address_backup_sequen<=(others=>'0');

 address_alphabeta<=(others=>'0');

 end if;

 when state_on=>

 CASE State IS

 when OldPoint=>

 write_enable_alphabeta<='0';

 read_enable_alphabeta<='1';

 sigRead_enable_avg<=read_enable_Acc_Avg

 Acc_flag<='1';

 state_avg<=read_avg;

 when NewPoint=>

 if accCounter < Datacounter then

 sigAddress<= std_logic_vector(unsigned(sigAddress)+1);

 Data_in_FSMtoM<=(others=>'0');

 write_enable_alphabeta<='1';

 accCounter<= accCounter+1;

 address_alphabeta<=sigaddress;

 elsif accCounter= Datacounter then

 Data_in_FSMtoM<= weight_one;

 accCounter<= accCounter+1;

 address_alphabeta<= CV_Point_address;

 elsif accCounter=(Datacounter)+1 then

 write_enable_alphabeta<='0';

 accCounter<=(others=>'0');

 address_alphabeta<=(others=>'0');

 sigAddress<=(others=>'0');

5 Appendix

 sigRead_enable_avg<=read_enable_Acc_Avg;

 if(First_Run_in='1') then

 Acc_flag<='0';

 first_run_sel<='0';

 switch_ab<=state_off;

 else

 Acc_flag<='1';

 state_avg<=read_avg;

 end if;

 end if;

 when SegmentPoint=>

 if accCounter < Datacounter then

 if R_W = '0' then --if read operation:

 write_enable_alphabeta<='0';

 read_enable_alphabeta<='1';=

 address_alphabeta<=sigAddress;

 R_W <= '1';

 elsif R_W ='1' then -- if write operation

 write_enable_alphabeta<='1';

 read_enable_alphabeta<='0';

 Data_in_FSMtoM<=sigDataout32(23 downto 8);

 sigAddress<= std_logic_vector(unsigned(sigAddress)+1);

 accCounter<=accCounter+1;

 address_alphabeta<=sigAddress;

 R_W <= '0'; -- Next operation is Read

 end if;

 elsif accCounter=Datacounter then

 write_enable_alphabeta<='1';

 read_enable_alphabeta<='1';

 accCounter<=accCounter+1;

 address_alphabeta<=CV_Point_address;

 elsif accCounter = (Datacounter+1) then

 if (weight_one(weight_one'HIGH)='0') then

 Data_in_FSMtoM<= std_logic_vector(unsigned

(Data_out_MtoFSM) + unsigned (lamda(8 downto 0)&"0000")); -- (4,12)+(8,8)

 else

 Data_in_FSMtoM<= std_logic_vector(unsigned

(Data_out_MtoFSM) - unsigned (lamda(8 downto 0)&"0000"));

 end if;

 write_enable_alphabeta<='1';

 accCounter<=(others=>'0');

 read_enable_alphabeta<='1';

 sigRead_enable_avg<='1';

 sigAddress<=(others=>'0');

 Acc_flag<='1';

 state_acc<=read_acc;

 end if;

 WHEN CalcAvg=>

 case state_avg IS

 WHEN read_avg=>

 if accCounter < Datacounter then

 write_enable_Acc_Avg<='0';

 sigRead_enable_avg<='1';

 address_Acc_Avg<=sigaddress;

 state_avg<= write_avg;

 else

 state_avg<= read_avg;

 6

 sigRead_enable_avg<='0';

 write_enable_Acc_Avg<='0';

 Switch_ab<=state_off;

 end if;

 WHEN write_avg=>

 if accCounter <Datacounter then

 write_enable_Acc_Avg<='1';

 sigRead_enable_avg<='0';

 address_Acc_Avg<=sigaddress;

 Data_in_Acc_Avg<=(

sigDataout_div(sigDataout_div'HIGH)&sigDataout_div(9 downto 0)&"00000");

 sigAddress<= std_logic_vector(unsigned (sigAddress)+1);

 accCounter<=accCounter+1;

 state_avg<= read_avg;

 else

 state_avg<= read_avg;

 sigRead_enable_avg<='0';

 write_enable_Acc_Avg<='0';

 Switch_ab<=state_off;

 end if;

 end case;

 WHEN Accumulation =>

 case state_acc IS

 WHEN read_acc=>

 if accCounter < Datacounter then

 write_enable_alphabeta<='0';

 write_enable_Acc_Avg<='0';

 address_alphabeta<=sigaddress;

 address_Acc_Avg<=sigaddress;

 read_enable_alphabeta<='1';

 sigRead_enable_avg<='1';

 state_acc<= write_acc;

 else

write_enable_Acc_Avg<='0';

read_enable_alphabeta<='0';

 sigRead_enable_avg<='0';

 accCounter<=(others=>'0');

 sigAddress<=(others=>'0');

 first_accumulation<='0';

 Acc_flag<='0';

 Switch_ab<=state_off;

 end if;

 WHEN write_acc=>

 if accCounter < Datacounter then

 Data_in_Acc_Avg<=std_logic_vector(

signed(Data_out_Acc_Avg) + resize(signed(Data_out_MtoFSM(Data_Width-1

downto 5)),16));

write_enable_Acc_Avg<='1';

 sigaddress<= std_logic_vector(unsigned (sigAddress)+1);

 accCounter<=accCounter+1;

 state_acc<= read_acc;

 else -- accu finished

 state_acc<= read_acc;

 write_enable_Acc_Avg<='0';

 read_enable_alphabeta<='0';

 sigRead_enable_avg<='0';

7 Appendix

 accCounter<=(others=>'0');

 sigAddress<=(others=>'0');

 first_accumulation<='0';

 Acc_flag<='0';

 Switch_ab<=state_off;

 end if;

 end case;

 WHEN ReadAlphaNew =>

 if(read_enable_norm_avg='1' and accCounter<Datacounter)

then

 sigRead_enable_avg<='1';

 address_backup_sequen<= address_backup_sequen+1;

address_Acc_Avg<=std_logic_vector(address_backup_sequen);

 accCounter<= accCounter+1;

 else

 address_Acc_Avg_sequen<=(others=>'0');

 Switch_ab<=state_off;

 end if;

 WHEN CopyToBckUp=>

 if(copyTobackUp_enable='1' and accCounter<Datacounter)

then

 sigRead_enable_avg<='1';

 write_enable_BackUp<='1';

 address_backup_sequen<= address_backup_sequen+1;

address_Acc_Avg<=std_logic_vector(address_backup_sequen);

address_backUp<=std_logic_vector(address_backup_sequen);

 accCounter<=accCounter+1;

 else

 address_backup_sequen<=(others=>'0');

 Switch_ab<=state_off;

 end if;

 WHEN ReadBckUp=>

 if(read_enable_BackUp='1' and accCounter<Datacounter)

then

 address_backup_sequen<= address_backup_sequen+1;

address_backUp<=std_logic_vector(address_backup_sequen);

 accCounter<=accCounter+1;

 else

 address_backup_sequen<=(others=>'0');

 Switch_ab<=state_off;

 end if;

 WHEN idle=>

 sigAddress<=(others=>'0');

 sigCVcounter<=(others=>'0');

 address_alphabeta<=(others=>'0');

 state_acc<=read_acc;

 state_avg<=read_avg;

 accCounter<=(others=>'0');

 first_accumulation<='1';

 R_W<='0';

 address_Acc_Avg_sequen<=(others=>'0');

 address_backup_sequen<=(others=>'0');

 Acc_flag<='0';

 8

 Switch_ab<=state_off;

 WHEN others =>

 end CASE;

end Case;

 end if;

end process;

end architecture arch_alphabeta_Mem;

13.4 CacheAcc

Library ieee;

use ieee.std_logic_1164.all;

use ieee.numeric_std.all;

Entity cacheAcc_1 is

Generic (CacheAcc_Width : integer := 27; --27 bit(15,12)

 Cache_Width : integer := 23;--23 bit (11,12)

 address_width:integer :=16);

port (

 clk : in std_logic;

 write_enable_cachAcc1 : in std_logic;

 read_enable_cachAcc1 : in std_logic;

 datain_cachAcc1 : in std_logic_vector(Cache_Width-1 downto 0);

 DataOut_cachAcc1:out std_logic_vector(CacheAcc_Width-1 downto 0);

 reg_reset_chachAcc1: in std_logic;

 reg_enable_cahcAcc1: in std_logic;

 MuxDataIN_SeclAcc1 : in std_logic

);

end entity cacheAcc_1;

architecture cacheAcc_arch_1 of cacheAcc_1 is

component data_Memory is

 Generic (

 DATA_Mem_WIDTH: integer := 16;

 MeM_DEPTH: integer := 16

);

port (clk : in std_logic;

write_enable : in std_logic;

read_enable : in std_logic;

address: in std_logic_vector(MeM_DEPTH-1 downto 0);

datain : in std_logic_vector(DATA_Mem_WIDTH - 1 downto 0);

dataout : out std_logic_vector(DATA_Mem_WIDTH - 1 downto 0)

);

end component;

--

component N_bitfulladder is

Generic (n : integer := 16);

port

(a,b:in std_logic_vector(n-1 downto 0);

f:out std_logic_vector(n-1 downto 0);

cout:out std_logic

9 Appendix

);

end component;

component reg is

generic(n:integer);

port(

 clk,rst,wenable:in std_logic;

 d:in std_logic_vector(n-1 downto 0);

 q:out std_logic_vector(n-1 downto 0)

);

end component;

-

component mux2x1 is

Generic (n:integer);

port(

d1:in std_logic_vector(n-1 downto 0);

d2:in std_logic_vector(n-1 downto 0);

s:in std_logic;

q:out std_logic_vector(n-1 downto 0)

);

end component;

-

signal Sig_datain_cachAcc1:std_logic_vector(CacheAcc_Width-1 downto

0);--data coming from cache

signal addressIn_cacheAcc1 :std_logic_vector(address_width-1 downto

0);--address in direct to memory

signal addreIncreas_cahceAcc1 :std_logic_vector(address_width-1 downto

0); --address after increment

signal dataAcc_cachAcc1 :std_logic_vector(CacheAcc_Width-1 downto 0);

signal DataOutSignal_cachAcc1 :std_logic_vector(CacheAcc_Width-1

downto 0);

signal cout_10: std_logic;

signal dataAcc_MuxOut_cachAcc1 :std_logic_vector(CacheAcc_Width-1

downto 0); --signal after Mux before data in coming data or accu. data

begin

Sig_datain_cachAcc1<=datain_cachAcc1(datain_cachAcc1'High)&datain_cachA

cc1(datain_cachAcc1'High)&datain_cachAcc1(datain_cachAcc1'High)&datain_cac

hAcc1(datain_cachAcc1'High)&datain_cachAcc1;

dataAcc_cachAcc1<=std_logic_vector(signed

(Sig_datain_cachAcc1)+signed(DataOutSignal_cachAcc1));--27 bit(15,12)

 adderIcreasing:N_bitfulladder generic map(n => address_width) port

map(addressIn_cacheAcc1,"0000000000000001", addreIncreas_cahceAcc1,

cout_10);

 regggg : reg generic map(n => address_width) port

map(clk,reg_reset_chachAcc1,reg_enable_cahcAcc1,addreIncreas_cahceAcc1,add

ressIn_cacheAcc1);

 cacheAcc_MeMo : data_Memory generic map(DATA_Mem_WIDTH=>

CacheAcc_Width,MeM_DEPTH=>address_width)port

map(clk,write_enable_cachAcc1,

read_enable_cachAcc1,addressIn_cacheAcc1,dataAcc_MuxOut_cachAcc1,DataOutSi

gnal_cachAcc1);

 10

 MuxDataIn : mux2x1 generic map(n => CacheAcc_Width) port

map(Sig_datain_cachAcc1,dataAcc_cachAcc1,MuxDataIN_SeclAcc1,dataAcc_MuxOut

_cachAcc1);

DataOut_cachAcc1<=DataOutSignal_cachAcc1;

end architecture cacheAcc_arch_1;

13.5 cacheAvg_1

Library ieee;

use ieee.std_logic_1164.all;

USE IEEE.numeric_std.all;

Entity cacheAvg_1 is

Generic (n : integer := 16;

 CacheAcc_Width : integer := 27;

 CacheAvg_Width : integer := 16;

 address_width:integer :=16);

port (

 clk : in std_logic;

 write_enable_cachAvg1 : in std_logic;

 read_enable_cachAvg1 : in std_logic;

 datain_cachAvg1 : in std_logic_vector(CacheAcc_Width-1

downto 0);

 DataOut_cachAvg1 :out std_logic_vector(CacheAvg_Width-1

downto 0);

 reg_reset_chachAvg1 : in std_logic;

 reg_enable_cahcAvg1 : in std_logic;

 Avg_Counter : in unsigned(n-1 downto 0);

 addreMuxOut_cachAvg_b:out std_logic_vector(address_width-1 downto 0);

end entity cacheAvg_1;

architecture cacheAvg_1_arch of cacheAvg_1 is

component data_Memory is

 Generic (

 DATA_Mem_WIDTH: integer := 16;

 MeM_DEPTH: integer := 16

);

port (clk : in std_logic;

write_enable : in std_logic;

read_enable : in std_logic;

address: in std_logic_vector(MeM_DEPTH-1 downto 0);

datain : in std_logic_vector(DATA_Mem_WIDTH - 1 downto 0);

dataout : out std_logic_vector(DATA_Mem_WIDTH - 1 downto 0)

);

end component;

--

component N_bitfulladder is

Generic (n : integer := 16);

port

(a,b:in std_logic_vector(n-1 downto 0);

f:out std_logic_vector(n-1 downto 0);

11 Appendix

cout:out std_logic

);

end component;

--

component reg is

generic(n:integer);

port(

 clk,rst,wenable:in std_logic;

 d:in std_logic_vector(n-1 downto 0);

 q:out std_logic_vector(n-1 downto 0)

);

end component;

component mux2x1 is

Generic (n:integer);

port(

d1:in std_logic_vector(n-1 downto 0);

d2:in std_logic_vector(n-1 downto 0);

s:in std_logic;

q:out std_logic_vector(n-1 downto 0)

);

end component;

Component divider is

Generic (input_width : integer := 16);

port(

 Q: in std_logic_vector(input_width-1 downto 0);

 M: in std_logic_vector(input_width-1 downto 0);

 Quo: out std_logic_vector(input_width-1 downto 0);

 Remi: out std_logic_vector(input_width-1 downto 0)

);

end Component divider;

signal addressIn_cacheAvg1 :std_logic_vector(address_width-1 downto 0);

signal addreIncreas_cahceAvg1 :std_logic_vector(address_width-1 downto

0);

signal addreMuxOut_cachAvg1 :std_logic_vector(address_width-1 downto

0);

signal Divided_Avg_value:std_logic_vector(CacheAcc_Width-1 downto 0);

signal overF :std_logic;

signal cout: std_logic;

signal Remn: std_logic_vector(CacheAcc_Width-1 downto 0);

signal SigAvg_Counter :std_logic_vector(CacheAcc_Width-1 downto 0);

begin

SigAvg_Counter<=std_logic_vector("00000000000"&Avg_Counter);

LABLE_Division: divider generic map(input_width=>CacheAcc_Width) port

map(datain_cachAvg1,SigAvg_Counter,Divided_Avg_value,Remn);

 LABLE_AddreInc :N_bitfulladder generic map(n => address_width) port

map(addressIn_cacheAvg1,"0000000000000001", addreIncreas_cahceAvg1, cout);

 LABLE_Avg : data_Memory generic

map(DATA_Mem_WIDTH=>CacheAvg_Width,MeM_DEPTH=>address_width) port

 12

map(clk,write_enable_cachAvg1,

read_enable_cachAvg1,addressIn_cacheAvg1,Divided_Avg_value(20 downto

5),DataOut_cachAvg1);

 LABLE_Reg_Avg : reg generic map(n => address_width) port

map(clk,reg_reset_chachAvg1,reg_enable_cahcAvg1,addreIncreas_cahceAvg1,add

ressIn_cacheAvg1);

addreMuxOut_cachAvg_b<=addreMuxOut_cachAvg1;

end architecture cacheAvg_1_arch;

13.6 Kernel_block

LIBRARY IEEE;

USE IEEE.std_logic_1164.all;

USE IEEE.numeric_std.all;

ENTITY Kernel_block IS

Generic (n : integer := 17);

PORT (

clk,reset : in std_logic;

------------inputs---

Feature1_Class1_Data : in std_logic_vector(n-1 downto 0); --fx1

Feature2_Class1_Data : in std_logic_vector(n-1 downto 0); --fx2

Feature3_Class1_Data : in std_logic_vector(n-1 downto 0); --fx3

Feature1_Class2_Data : in std_logic_vector(n-1 downto 0); --fy1

Feature2_Class2_Data : in std_logic_vector(n-1 downto 0); --fy2

Feature3_Class2_Data : in std_logic_vector(n-1 downto 0); --fy3

----------------------Kernel Relative Point Features Reg Signals-------

reg_reset_Kernel_RelativePoint_F : in std_logic;

reg_enable_Kernel_RelativePoint_F : in std_logic;

--------------------Kernel class Features Reg Signals------------------

Kernal_classF_Mux_Selc: in std_logic;

reg_reset_Kernel_classF : in std_logic;

reg_enable_Kernel_classF : in std_logic;

Output_final: out std_logic_vector(15 downto 0); -- (4,12)

OutCountSig: out std_logic;

Count_TostartRead: out std_logic_vector (2 downto 0)

);

END ENTITY Kernel_block;

ARCHITECTURE Arch_Kernel_block OF Kernel_block IS

component B4_Kernel is

Generic (n : integer := 17);

port (

13 Appendix

clk : in std_logic;

Feature1_Class1_Data : in std_logic_vector(n-1 downto 0); --fx1

Feature2_Class1_Data : in std_logic_vector(n-1 downto 0); --fx2

Feature3_Class1_Data : in std_logic_vector(n-1 downto 0); --fx3

Feature1_Class2_Data : in std_logic_vector(n-1 downto 0); --fy1

Feature2_Class2_Data : in std_logic_vector(n-1 downto 0); --fy2

Feature3_Class2_Data : in std_logic_vector(n-1 downto 0); --fy3

----------------------Kernel Relative Point Features Reg Signals-----

reg_reset_Kernel_RelativePoint_F : in std_logic;

reg_enable_Kernel_RelativePoint_F : in std_logic;

Kernal_RelativePoint_Mux_3Feature_Selc : in std_logic_vector(1 downto

0);

--------------------Kernel class Features Reg Signals------------------

Kernal_classF_Mux_Selc: in std_logic;

reg_reset_Kernel_classF : in std_logic;

reg_enable_Kernel_classF : in std_logic;

Kernal_class_Mux_3Feature_Selc : in std_logic_vector(1 downto 0);

Kernal_classFeature_Mux_dataOut: out std_logic_vector(n-1 downto 0);

Kernal_RelativePoint_Mux_dataOut:out std_logic_vector(n-1 downto 0)

);

end component B4_Kernel;

component reg is

generic(n:integer:=16);

port(clk,rst,wenable:in std_logic;

d:in std_logic_vector(n-1 downto 0);

q:out std_logic_vector(n-1 downto 0)

);

end component;

--

component exp_lut is

port(

 i_x : in std_logic_vector(15 downto 0); --(4,12)

 o_exp : out std_logic_vector(15 downto 0)); --(4,12)

end component exp_lut;

signal count_3 : std_logic_vector(2 downto 0);

signal Kernal_classFeature_Mux_dataOutSig : std_logic_vector(n-1 downto

0);

signal Kernal_RelativePoint_Mux_dataOutSig : std_logic_vector(n-1

downto 0);

signal Kernal_output : std_logic_vector(15 downto 0);

signal Kernal_ADDOutput_accuml : std_logic_vector(36 downto 0);

signal Reg_buffer1,Reg_buffer2,Reg_buffer3 : std_logic ;

signal difference : std_logic_vector(17 downto 0);

signal Kernal_class_Mux_3Feature_Selc_sig: std_logic_vector(1 downto 0);

 14

signal Kernal_RelativePoint_Mux_3Feature_Selc_sig: std_logic_vector(1

downto 0);

signal sqred : std_logic_vector(35 downto 0);

signal Negative_Squared: signed(36 downto 0);

signal conc_for_Neg:std_logic_vector(15 downto 0);

begin

input :B4_Kernel generic map

(n=>17)portmap(clk,Feature1_Class1_Data,Feature2_Class1_Data,Feature3_Clas

s1_Data ,Feature1_Class2_Data,Feature2_Class2_Data ,Feature3_Class2_Data

,reg_reset_Kernel_RelativePoint_F,reg_enable_Kernel_RelativePoint_F,Ker

nal_RelativePoint_Mux_3Feature_Selc_sig,Kernal_classF_Mux_Selc,reg_reset_K

ernel_classF,reg_enable_Kernel_classF,Kernal_class_Mux_3Feature_Selc_sig,K

ernal_classFeature_Mux_dataOutSig,Kernal_RelativePoint_Mux_dataOutSig);

difference<=std_logic_vector(signed(Kernal_classFeature_Mux_dataOutSig(

Kernal_classFeature_Mux_dataOutSig'HIGH)&Kernal_classFeature_Mux_dataOu

tSig)-

signed(Kernal_RelativePoint_Mux_dataOutSig(Kernal_RelativePoint_Mux_dat

aOutSig'HIGH)&Kernal_RelativePoint_Mux_dataOutSig));

sqred<= std_logic_vector(signed(difference)*signed(difference));

Negative_Squared <= to_signed(0,37) - signed(Kernal_ADDOutput_accuml

);

conc_for_Neg<=std_logic_vector(Negative_Squared(Negative_Squared'HIGH)&

Negative_Squared(26 downto 12)) when signed(Negative_Squared)>(-117440512)

 else "1000111111100100";

Exp: exp_lut port map (conc_for_Neg , Kernal_output);

process(clk,reset,reg_enable_Kernel_classF)

begin

 if reset='1' then

 count_3<="000";

 Kernal_ADDOutput_accuml <= (others=>'0');

 elsif (rising_edge(clk))then

 Reg_buffer1<=reg_enable_Kernel_classF; -- staling part

 Reg_buffer2<= Reg_buffer1;

 if(Reg_buffer2='1')then

 Kernal_ADDOutput_accuml

<=std_logic_vector('0'&signed(sqred)+signed(Kernal_ADDOutput_accuml));

 count_3 <= std_logic_vector(unsigned(count_3)+1);

 end if;

 if count_3="011"then

 count_3<="000";

 Kernal_ADDOutput_accuml <= (others=>'0');

 end if;

 end if;

 end process;

Kernal_class_Mux_3Feature_Selc_sig<= count_3(1 downto 0);

Kernal_RelativePoint_Mux_3Feature_Selc_sig<=count_3(1 downto 0) ;

OutCountSig <='1' when count_3="011" else

 '0' ;

Output_final <= Kernal_output when count_3="011";

Count_TostartRead<=count_3;

--in CU every time count =3 , el CU teb3at signal reset

END Arch_Kernel_block;

15 Appendix

13.7 Norm_avg

Library ieee;

use ieee.std_logic_1164.all;

use ieee.numeric_std.all;

Entity Norm_avg is

Generic (Data_Width : integer := 16);

port (

clk: in std_logic;

DataOut_cachAvg1 :in std_logic_vector(Data_Width-1 downto 0);

DataOut_cachAvg2 :in std_logic_vector(Data_Width-1 downto 0);

Mux_Select_Avg1_or_Avg2: in std_logic;

i_Old_alphabeta:in std_logic_vector(Data_Width-1 downto 0);

j_Old_alphabeta:in std_logic_vector(Data_Width-1 downto 0);

i_new_alphabeta:in std_logic_vector(Data_Width-1 downto 0);

j_new_alphabeta:in std_logic_vector(Data_Width-1 downto 0);

Mux_Select_alpha: in std_logic_vector(1 downto 0);

Reg_reset_AvgNorm : in std_logic;

Reg_Enable_AvgNorm : in std_logic;

Mux_Select_AvgNorm_Que_in: in std_logic;

Reset_fifo_AvgNorm: in std_logic;

WriteEnable_fifo_AvgNorm: in std_logic;

ReadEnable_fifo_AvgNorm: in std_logic;

FifoEmpty_fifo: out std_logic;

FifoFull_fifo: out std_logic;

Reg_reset_Queu_AvgNorm : in std_logic;

Reg_Enable_Queu_AvgNorm : in std_logic;

Reset_square : in std_logic;

Last_Termination_condition:out std_logic_vector(1 downto 0));

end entity Norm_avg;

architecture Norm_avg_arch of Norm_avg is

component reg is

generic(n:integer);

port(

 clk,rst,wenable:in std_logic;

 d:in std_logic_vector(n-1 downto 0);

 q:out std_logic_vector(n-1 downto 0)

);

end component;

component mux2x1 is

Generic (n:integer);

port(

d1:in std_logic_vector(n-1 downto 0);

d2:in std_logic_vector(n-1 downto 0);

s:in std_logic;

q:out std_logic_vector(n-1 downto 0)

);

end component;

 16

component fifo2 is

 generic (m: integer:=16);

 Port (

 Clk : in std_logic;

 Reset : in std_logic;

 WriteEnable : in std_logic;

 ReadEnable : in std_logic;

 DataIn : in std_logic_vector(m-1 downto 0);

 DataOut : out std_logic_vector(m-1 downto 0);

 FifoEmpty : out std_logic;

 FifoFull : out std_logic

);

END component;

Component sqrt32 is

port(

clk: in std_logic;

rdy:out std_logic;

reset:in std_logic;

x:in std_logic_vector(31 downto 0);

acc:out std_logic_vector(15 downto 0)

);

end Component sqrt32;

--

component mux4x1 is

Generic (n:integer);

port(

d1:in std_logic_vector(n-1 downto 0);

d2:in std_logic_vector(n-1 downto 0);

d3:in std_logic_vector(n-1 downto 0);

d4:in std_logic_vector(n-1 downto 0);

s:in std_logic_vector(1 downto 0);

q:out std_logic_vector(n-1 downto 0));

end component;

Component divider is

Generic (input_width : integer := 16);

port(

 Q: in std_logic_vector(input_width-1 downto 0);

 M: in std_logic_vector(input_width-1 downto 0);

 Quo: out std_logic_vector(input_width-1 downto 0);

 Remi: out std_logic_vector(input_width-1 downto 0)

);

end Component divider;

Component comparator is

Generic (n : integer := 16);

port(In1 : IN std_logic_vector(n-1 downto 0);--top

 In2 : IN std_logic_vector(n-1 downto 0); --bot

 Y : out std_logic_vector(1 downto 0)

);

end Component;

signal SigFromMuxTOQueuIN:std_logic_vector(Data_Width-1 downto 0);

signal SigModi_AvgNorm:std_logic_vector(Data_Width-1 downto 0);

17 Appendix

signal choosen_dataout_cachAvg:std_logic_vector(Data_Width-1 downto 0);

signal MultpOut_to_add_AvgNorm:std_logic_vector((2*Data_Width)-1 downto

0);

signal Add_to_Reg_AvgNorm:std_logic_vector((2*Data_Width)-1 downto 0);

signal AddReg_to_Multp_AvgNorm:std_logic_vector((2*Data_Width)-1 downto

0);

signal alphaBeta_muxOut:std_logic_vector(Data_Width-1 downto 0);

signal DataOut_Queue_avgNorm:std_logic_vector(Data_Width-1 downto 0);

signal regQueu_DataOut:std_logic_vector(Data_Width-1 downto 0);

signal avgNorm1_Multp_avgNorm2:std_logic_vector((2*Data_Width)-1 downto

0);

signal singoutSquare:std_logic;

signal squareRoot_dataout:std_logic_vector(Data_Width-1 downto 0);

signal squareReg_dataOut:std_logic_vector(Data_Width-1 downto 0);

signal remOfDivision:std_logic_vector(Data_Width-1 downto 0);

signal rdy:std_logic;

signal Modifi_squareRoot_dataout:std_logic_vector(Data_Width-1 downto

0);

signal coserror:std_logic_vector(Data_Width-1 downto 0);

begin

MultpOut_to_add_AvgNorm <= std_logic_vector(

signed(choosen_dataout_cachAvg) * signed(alphaBeta_muxOut));--32 bit

(13,19)

Add_to_Reg_AvgNorm <= std_logic_vector(

signed(MultpOut_to_add_AvgNorm) + signed(AddReg_to_Multp_AvgNorm));--32

bit(13,19)

avgNorm1_Multp_avgNorm2 <= std_logic_vector(signed(regQueu_DataOut) *

signed(DataOut_Queue_avgNorm)); --16 bit (7,9)+ 16 bit (7,9 --32bit(14,18)

SigModi_AvgNorm<=AddReg_to_Multp_AvgNorm(25 downto 10) ; --16 bit (7,9)

downscaled from 32 bit (13,19)

Modifi_squareRoot_dataout<="000000000"&squareRoot_dataout(15 downto

9);-- 16 bit (16,0)

LABLE_MUX4_alphaBeta: mux4x1 generic map(n => Data_Width) port

map(i_Old_alphabeta,j_Old_alphabeta,i_new_alphabeta,j_new_alphabeta,

 Mux_Select_alpha,alphaBeta_muxOut);

LABLE_MUX2_cacheAvg: mux2x1 generic map(n => Data_Width) port

map(DataOut_cachAvg1,DataOut_cachAvg2,

Mux_Select_Avg1_or_Avg2,choosen_dataout_cachAvg);

LABLE_AddToReg_AvgNorm:reg generic map(n => 2*Data_Width) port

map(clk,Reg_reset_AvgNorm,Reg_Enable_AvgNorm,Add_to_Reg_AvgNorm,AddReg_to_

Multp_AvgNorm);

LABLE_Queue:fifo2 generic map(m => Data_Width) port

map(clk,Reset_fifo_AvgNorm,WriteEnable_fifo_AvgNorm,ReadEnable_fifo_AvgNor

m,SigFromMuxTOQueuIN,DataOut_Queue_avgNorm,

 FifoEmpty_fifo,FifoFull_fifo);

LABLE_QueReg_ToQueIN: mux2x1 generic map(n => Data_Width) port

map(SigModi_AvgNorm,DataOut_Queue_avgNorm,

 18

Mux_Select_AvgNorm_Que_in,SigFromMuxTOQueuIN);

LABLE_Queue_Reg:reg generic map(n => Data_Width) port

map(clk,Reg_reset_Queu_AvgNorm,Reg_Enable_Queu_AvgNorm,DataOut_Queue_avgNo

rm,regQueu_DataOut);

LABLE_queue_to_square:sqrt32 port

map(clk,rdy,Reset_square,avgNorm1_Multp_avgNorm2,squareRoot_dataout); --

16 bit(7,9)

LABLE_SquareRoot_Division:divider generic map(input_width => Data_Width) port

map(SigModi_AvgNorm,Modifi_squareRoot_dataout,coserror,remOfDivision);--16

bit(7,9)/ 16 bit(16,0)--16 bit(7,9)

LABLE_Last_Termination_condition:comparator generic map(n =>

Data_Width) port

map(coserror,"0000001000000000",Last_Termination_condition); --01

cosserror >1 00&10 cosserror<1

end architecture Norm_avg_arch;

13.8 NormCalculate

LIBRARY IEEE;

USE IEEE.std_logic_1164.all;

USE IEEE.numeric_std.all;

ENTITY NormCalculate IS

Generic (Feature_Width : integer := 17;

 Ctild_Width : integer := 10;

 Norm_Width : integer := 23;

 Cache_Width : integer := 23;

 n : integer := 16

);

PORT (

 clk : in std_logic;

 Reset_fifo_Norm_wkblock : in std_logic;

 WriteEnable_fifo_Norm_wkblock : in std_logic;

 ReadEnable_fifo_Norm_wkblock : in std_logic;

 FifoEmpty_fifo_Norm_wkblock : out std_logic;

 FifoFull_fifo_Norm_wkblock : out std_logic;

 reg_reset_WkBlock : in std_logic;

 reg_enable_WkBlock : in std_logic;

 Ctilde : in std_logic_vector(Ctild_Width-1

downto 0);

 Feature1_Class1_Data : in std_logic_vector(Feature_Width-1

downto 0);

19 Appendix

 Feature2_Class1_Data : in

std_logic_vector(Feature_Width-1 downto 0);

 Feature3_Class1_Data : in std_logic_vector(Feature_Width-1

downto 0);

 Feature1_Class2_Data : in std_logic_vector(Feature_Width-1

downto 0);

 Feature2_Class2_Data : in

std_logic_vector(Feature_Width-1 downto 0);

 Feature3_Class2_Data : in std_logic_vector(Feature_Width-1

downto 0);

 Select_Norm_queueIn : in std_logic;

 Cache_i_max : IN std_logic_vector(Cache_Width-1

downto 0);

 Cache_j_min : IN

std_logic_vector(Cache_Width-1 downto 0);

 WkSelect : OUT std_logic_vector(1 downto 0);

 lamda : OUT std_logic_vector(n-

1 downto 0);

 max_min_enable: in std_logic

);

END ENTITY NormCalculate;

ARCHITECTURE Arch_NormCalculate OF NormCalculate IS

Component DotProduct IS

Generic (Feature_Width: integer := 16);

PORT (

 Input1 : in std_logic_vector(Feature_Width-1 downto 0);

 Input2 : in std_logic_vector(Feature_Width-1 downto 0);

 Input3 : in std_logic_vector(Feature_Width-1 downto 0);

 Input4 : in std_logic_vector(Feature_Width-1 downto 0);

 Input5 : in std_logic_vector(Feature_Width-1 downto 0);

 Input6 : in std_logic_vector(Feature_Width-1 downto 0);

 Result : out std_logic_vector((2*Feature_Width)+1 downto 0)

);

end Component ;

--

Component mux2x1 is

Generic (n:integer);

port(

d1:in std_logic_vector(n-1 downto 0);

d2:in std_logic_vector(n-1 downto 0);

s:in std_logic;

q:out std_logic_vector(n-1 downto 0)

);

end Component;

Component fifo2 is

 generic (m: integer:=16);

 Port (

 Clk : in std_logic;

 20

 Reset : in std_logic;

 WriteEnable : in std_logic;

 ReadEnable : in std_logic;

 DataIn : in std_logic_vector(m-1 downto 0);

 DataOut : out std_logic_vector(m-1 downto 0);

 FifoEmpty : out std_logic;

 FifoFull : out std_logic

);

END Component;

--

Component Wk_calculate is

Generic (

 Feature_Width : integer := 16;

 Cache_Width : integer := 16;

 Norm_Widht : integer := 23;

 n : integer := 16

);

port(

 Cache_i_sig : IN signed(Cache_Width-1 downto 0);-- (4,12)

 Cache_j_sig : IN signed(Cache_Width-1 downto 0); --(4,12)

 Wknorm2 : IN signed(Norm_Widht-1 downto 0); --(12,8)

 Norm2sij: IN signed(Norm_Widht-1 downto 0); --(12,8)

 WkSelect: OUT std_logic_vector(1 downto 0);

 lamda : OUT std_logic_vector(n-1 downto 0);

 Wk : OUT std_logic_vector(Norm_Widht-1 downto 0);

 max_min_enable: in std_logic

);

end Component ;

--

Component reg is

generic(n:integer:=16);

port(clk,rst,wenable:in std_logic;

d:in std_logic_vector(n-1 downto 0);

q:out std_logic_vector(n-1 downto 0)

);

end Component;

signal X_Squared : std_logic_vector((2*Feature_Width)+1

downto 0); --36 bits (12,24)

signal Y_Squared : std_logic_vector((2*Feature_Width)+1

downto 0);

signal X_times_Y : std_logic_vector((2*Feature_Width)+1

downto 0);

signal Two_times_X_times_Y : std_logic_vector(Feature_Width+2 downto

0); --20 bit (13,7)

signal NormCalculated : std_logic_vector(Feature_Width+4 downto

0);--22 bit(14,8)

signal Two_Divide_Ctilde : std_logic_vector(Ctild_Width downto 0);

signal NormOfDot_toMux : std_logic_vector(Norm_Width-1 downto

0);

signal Sig_Wk_new_point_norm : std_logic_vector(Norm_Width-1 downto

0);

signal MuxOfNorm_ToQueue : std_logic_vector(Norm_Width-1 downto

0);

21 Appendix

signal NormQueueRegIn_Wkblock : std_logic_vector(Norm_Width-1 downto

0);

signal NormQueueRegOut_NormOld : std_logic_vector(Norm_Width-1 downto

0);

BEGIN

Two_times_X_times_Y <=X_times_Y(X_times_Y'HIGH downto

Feature_Width)&'0';

NormCalculated <= std_logic_vector(

signed("00"&X_Squared(X_Squared'HIGH downto Feature_Width-1))

 + signed("00"&Y_Squared(Y_Squared'HIGH downto

Feature_Width-1))

 -

signed(Two_times_X_times_Y(Two_times_X_times_Y'High)&Two_times_X_times_Y(T

wo_times_X_times_Y'HIGH downto 0)&'0')); -- 21 bit(13,8)--->22(14,8)

Two_Divide_Ctilde <= Ctilde&'0';--11 bit

NormOfDot_toMux <= std_logic_vector(

signed(NormCalculated(NormCalculated'High)&NormCalculated) +

signed("0000"&Two_Divide_Ctilde&"00000000"));

LABEL1: DotProduct generic map (Feature_Width =>17) port map

(Feature1_Class1_Data, Feature1_Class1_Data, Feature2_Class1_Data,

Feature2_Class1_Data, Feature3_Class1_Data, Feature3_Class1_Data,

X_Squared); --(10,24)

LABEL2: DotProduct generic map (Feature_Width =>17) port map

(Feature1_Class2_Data, Feature1_Class2_Data, Feature2_Class2_Data,

Feature2_Class2_Data, Feature3_Class2_Data, Feature3_Class2_Data,

Y_Squared); --(10,24)

LABEL3: DotProduct generic map (Feature_Width =>17) port map

(Feature1_Class1_Data, Feature1_Class2_Data, Feature2_Class1_Data,

Feature2_Class2_Data, Feature3_Class1_Data, Feature3_Class2_Data,

X_times_Y); --(10,24) => (10,6)

LABEL4: mux2x1 generic map(n=>Norm_Width) port map

(Sig_Wk_new_point_norm

,NormOfDot_toMux,Select_Norm_queueIn,MuxOfNorm_ToQueue); --(15,8)

LABEL5: fifo2 generic map(m=>Norm_Width) port map

(clk,Reset_fifo_Norm_wkblock,WriteEnable_fifo_Norm_wkblock,ReadEnable_fifo

_Norm_wkblock,MuxOfNorm_ToQueue,NormQueueRegIn_Wkblock,FifoEmpty_fifo_Norm

_wkblock,FifoFull_fifo_Norm_wkblock);

LABEL6: Wk_calculate generic map (Feature_Width=>

Feature_Width,Cache_Width=> Cache_Width,Norm_Widht=>Norm_Width,n=>n)port

map

(signed(Cache_i_max),signed(Cache_j_min),signed(NormQueueRegOut_NormOld),s

igned(NormQueueRegIn_Wkblock),WkSelect

,lamda,Sig_Wk_new_point_norm,max_min_enable);

LABEL7: reg generic map(n=>Norm_Width)port

map(clk,reg_reset_WkBlock,reg_enable_WkBlock,NormQueueRegIn_Wkblock,NormQu

eueRegOut_NormOld);

END Arch_NormCalculate;

 22

13.9 Wk_calculate

Library ieee;

Use ieee.std_logic_1164.all;

USE ieee.numeric_std.all;

Entity Wk_calculate is

Generic (

 Feature_Width : integer := 17;

 Cache_Width : integer := 23;

 Norm_Widht : integer := 23;

 n : integer := 16

);

port(

 Cache_i_sig: IN signed(Cache_Width-1 downto 0);-- (11,12)

 Cache_j_sig : IN signed(Cache_Width-1 downto 0); --(11,12)

 Wknorm2 : IN signed(Norm_Widht-1 downto 0); --(15,8)

 Norm2sij: IN signed(Norm_Widht-1 downto 0); --(15,8)

 WkSelect: OUT std_logic_vector(1 downto 0);

 lamda : OUT std_logic_vector(n-1 downto 0);

 Wk : OUT std_logic_vector(Norm_Widht-1 downto 0);

 max_min_enable: in std_logic

);

end entity Wk_calculate ;

Architecture Wk_calculate_arch of Wk_calculate is

-------COMPONENTS: ------

Component comparator is

Generic (n : integer := 16);

port(In1 : IN std_logic_vector(n-1 downto 0);--top

 In2 : IN std_logic_vector(n-1 downto 0); --bot

 Y : out std_logic_vector(1 downto 0)

);

end Component comparator;

Component divider is

Generic (input_width : integer := 16);

port(

 Q: in std_logic_vector(input_width-1 downto 0);

 M: in std_logic_vector(input_width-1 downto 0);

 Quo: out std_logic_vector(input_width-1 downto 0);

 Remi: out std_logic_vector(input_width-1 downto 0)

);

end Component divider;

Component BoothTop is

port(

 M: in std_logic_vector(15 downto 0);

 Q: in std_logic_vector(15 downto 0);

 Z: out std_logic_vector(31 downto 0)

23 Appendix

);

end Component BoothTop;

SIGNAL wksijmul2sig: signed(Cache_Width downto 0); --24 bit (12,12)

SIGNAL sigTop: signed(Cache_Width+3 downto 0);--27 bit(15,12)

SIGNAL sigWksij: signed(Cache_Width-1 downto 0);--23 bit (11,12)

SIGNAL sigBot: signed(Cache_Width+3 downto 0);--27 bit(15,12)

SIGNAL siglamda: std_logic_vector(34 downto 0);

SIGNAL mulLamdaTop: std_logic_vector(42 downto 0);

SIGNAL onSegPt: std_logic_vector(Norm_Widht-1 downto 0);

SIGNAL remainder: std_logic_vector(34 downto 0);

SIGNAL sigWkSelect: std_logic_vector(1 downto 0);

signal Cast_sigTop:std_logic_vector(Cache_Width+3 downto 0);

signal Cast_sigBot:std_logic_vector(Cache_Width+3 downto 0);--27

signal test:std_logic_vector(Cache_Width+3 downto 0);

signal Div_Cast_sigTop:std_logic_vector(34 downto 0);

signal Div_Cast_sigBot:std_logic_vector(34 downto 0);

signal sigtestWknorm2 :signed(Cache_Width+3 downto 0);

signal Cache_i: signed(Cache_Width-1 downto 0);-- (11,12)

signal Cache_j: signed(Cache_Width-1 downto 0);-- (11,12)

Signal Square_sigTop: std_logic_vector(53 downto 0); --sigTop 27 bit

then squared 54 bit (53 downto 0)(30,24)

Signal Reminder_squareTop: std_logic_vector(53 downto 0);

Signal SquareDiv_Bot: std_logic_vector(53 downto 0); --(30,24)-->(15,8)

signal Top2_Bot:std_logic_vector(53 downto 0); --54 bit(46,8) and

downnto 16 bit (15,8)

Begin

Cache_i<= Cache_i_sig when max_min_enable='1';

Cache_j<= Cache_j_sig when max_min_enable='1';

sigWksij <= Cache_i - Cache_j; --23 bit (11,12)

test<=std_logic_vector(resize(sigWksij,27));

sigtestWknorm2<= Wknorm2&"0000";

sigTop <= sigtestWknorm2 - signed(test); --27 bit(15,12)

Cast_sigTop<=std_logic_vector(sigTop);

wksijmul2sig <= sigWksij&'0'; --23(11,12) *2 24(12,12)

sigBot <= (Wknorm2&"0000")- resize(wksijmul2sig,27) +

(Norm2sij&"0000");--27 bit (15,12)

Cast_sigBot<=std_logic_vector(sigBot);

 24

--==

Square_sigTop<=std_logic_vector(sigTop*sigTop);--squared signal (30,24)

SquareDiv_Bot<=std_logic_vector("00000000000000000000000"&Cast_sigBot&"

0000");--(38,16)

--============================= COMPARISION:

CompTopBot:

comparatorgenericmap(n=>27)portmap(Cast_sigTop,Cast_sigBot,sigWkSelect);

--============================= DIVIDER (find lamda):

Div_Cast_sigTop<=std_logic_vector(Cast_sigTop&"00000000");

Div_Cast_sigBot<=std_logic_vector("00000000"&Cast_sigBot);

siglamdaport: divider generic map(input_width => 35) port

map(Div_Cast_sigTop,Div_Cast_sigBot,siglamda,remainder);

sigSquare: divider generic map(input_width => 54) port

map(Square_sigTop,SquareDiv_Bot,Top2_Bot,Reminder_squareTop);

lamda<=siglamda(15 downto 0);

onSegPt<= std_logic_vector(Wknorm2 - signed(Top2_Bot(22 downto 0))); --

--============================= MULTIPLIXER

WKSelect <= sigWkSelect;

Wk <= onSegPt when sigWKSelect = "00" else

 std_logic_vector(Wknorm2) when sigWKSelect = "10" else

 std_logic_vector(Norm2sij) when sigWKSelect = "11" else

 (others=>'0');

end Wk_calculate_arch;

13.10 exp_lut

library IEEE;

use IEEE.std_logic_1164.all;

use IEEE.numeric_std.all;

entity exp_lut is

port(

 i_x : in std_logic_vector(15 downto 0); --(4,12)

 o_exp : out std_logic_vector(15 downto 0)); --(4,12)

end exp_lut;

architecture rtl of exp_lut is

constant C_LUT_DEPTH : integer := 14338;

constant C_LUT_BIT : integer := 16;

type t_lut_exp is array(0 to C_LUT_DEPTH-1) of integer range 0 to

(2**C_LUT_BIT);

constant C_LUT_ADDR_OFFSET : unsigned(15 downto 0):=

to_unsigned(28672,16);

25 Appendix

signal lut_addr : signed(14 downto 0);

signal lut_preaddr : signed(15 downto 0);

signal lut_value : std_logic_vector(C_LUT_BIT-1

downto 0);

constant C_LUT_EXP : t_lut_exp :=(

0,3,

3,4,4,

4,

4,

4,

4,

4,

4,

4,4,4,4,5,

5,

5,

5,

5,

5,5,5,5,5,5,6,

6,

6,

6,

6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,

7,

7,

7,

7,7,7,7,8,

8,

8,

8,8,8,8,8,8,8,8,8,8,8,8,8,8,9,

9,

9,

9,9,9,9,9,9,9,9,9,9,9,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,1

0,10,

10,10

,10,1

0,10,10,10,10,10,10,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,

11,11

,11,1

1,12,12,12,

12,12

,12,1

2,12,

12,12,12,12,12,13

,13,1

3,13,

13,13,13,13,13,13,13,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14

,14,1

4,14,

14,14,14,15

,15,1

5,16,16,16,16,16,

16,16

,……, --generated using MATLAB script);

 26

begin

lut_preaddr <= signed(C_LUT_ADDR_OFFSET) + signed(i_x); -- Input +

28672

lut_addr <= to_signed(C_LUT_DEPTH-1,15) when signed(i_x) > 0 else -

-outputs exp(0) if the i/p > 0

 lut_preaddr(15 downto 1)+1 when

lut_preaddr(lut_preaddr'HIGH)='0' else --outputs exp(i/p) if i/p [-7,0]

 (others=>'0'); --outputs zero if i/p < -7

 o_exp <= lut_value;

 lut_value <=

std_logic_vector(to_signed(C_LUT_EXP(to_integer(lut_addr)),C_LUT_BIT));

end rtl;

A

References

[1] Epilepsy and Seizures - A Historical Perspective - Myths and Misconceptions. (n.d.).

Retrieved from http://science.jrank.org/pages/cma5hkecsy/Epilepsy-Seizures-Historical-

Perspective.html

[2] M. England, C. Liverman, A. Schultz, and L. Strawbridge, “Epilepsy across the spectrum:

Promoting health and understanding: A summary of the Institute of Medicine report,” Epilepsy

Behav., vol. 25, no. 2, pp. 266–276, Oct. 2012.

[3] D. Yoon, K. Frick, D. Carr, and J. Austin, “Economic impact of epilepsy in the United States,”

Epilepsia, vol. 50, no. 10, pp. 2186–2191, Oct. 2009.

[4] On the Frontline of Epilepsy Treatment. (n.d.). Retrieved from

https://www.webmd.com/epilepsy/frontline-epilepsy-treatment#2

[5] A. Varsavsky, I. Mareels & M. Cook. (2011). Epileptic Seizures and the EEG. New York:

CRC.

[6] A. Abo El-Makarem, A. Fouad, T. Kamel, K. Mohamed, M. Kamal El-Din & M. Abd El-

Rahman. (2016). Implantable Seizure Detector & Predictor. Cairo: Faculty of Engineering,

Cairo University.

[7] M. Parvez & M. Paul. (2016). Prediction and Detection of Epileptic Seizure. Australia:

Charles Sturt University.

[8] A. Shoeb. (2009, September). CHB-MIT Scalp EEG Database. Retrieved from

https://www.physionet.org/pn6/chbmit/

[9] J. Platt. (1998). Sequential Minimal Optimization: A Fast Algorithm for Training Support

Vector Machines. Microsoft Research.

 [10] P. Carney, S. Myers & J. Geyer. (2011, December 22). Seizure Prediction: Methods.

Retrieved from https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3233702/

B

[11] N. Moghim & D. Corne. (2014, June 9). Predicting Epileptic Seizures in Advance.

Retrieved from https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4049812/

[12] F. Mormann, R. Andrzejak, C. Elger & K. Lehnertz. (2006, August 10). Seizure

prediction: the long and winding road. Retrieved from

https://fenix.tecnico.ulisboa.pt/downloadFile/3779571469443/SeizurePrediction.pdf

[13] A. Aarabi, R. Fazel-Rezai & Y. Aghakhani. (2009). EEG Seizure Prediction: Measures

and Challenges. Minnesota: IEEE Engineering in Medicine and Biology.

[14] T. Maiwald, M. Winterhalder, R. Aschenbrenner-Scheibe, H. Voss, A. Schulze-Bonhage

& J. Timmer. (2004). Comparison of three nonlinear seizure prediction methods by means of

the seizure prediction characteristic. Freiburg: Freiburg Center for Data Analysis and

Modeling.

[15] M. Papadonikolakis & C. Bouganis. (n.d.). Efficient FPGA Mapping of Gilbert's

Algorithm for SVM Training on Large-scale Classification problems. London: Imperial

College London.

[16] Theodoridis, Sergios (2008). Pattern Recognition. Elsevier B.V. p. 203. ISBN

9780080949123.

[17] Intel Completes Acquisition of Altera. (2015, December 28). Retrieved from

https://newsroom.intel.com/news-releases/intel-completes-acquisition-of-altera/

[18] Machine Learning: What it is and why it matters. (n.d.). Retrieved from

https://www.sas.com/en_us/insights/analytics/machine-learning.html#machine-learning-

importance

[19] Simpson, P. (2010). FPGA Design: Best Practices for Team-based Design . San Jose:

Springer.

[20] Taylor, A. (2012, July 8). The basics of FPGA mathematics. Retrieved from

https://www.eetimes.com/document.asp?doc_id=1279807

[21] What Is Machine Learning? 3 things you need to know. (n.d.). Retrieved from

https://www.mathworks.com/discovery/machine-learning.html

