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Executive Summary  

 

Epilepsy is a condition in which the patient has recurrent seizures. Seizure is defined as an 

abnormal disorder discharging of the nerve cells, resulting in a temporary disturbance of 

sensory and mental function. Seizures could cause damage to the body and might lead to death 

in critical cases.  

This thesis discusses a seizure detection algorithm to treat seizures by implanting a chip in 

the patient’s brain and detecting seizures and non-seizures periods. 

The electrical activities of patients are recorded using Electroencephalogram (EEG) which 

measures the voltage fluctuations of the brain.  A classification method is needed to categorize 

between seizures and non-seizures. The thesis provides a discussion of two algorithms for the 

classification process by applying machine learning concepts using support vector machine 

(SVM): Sequential Minimum Optimization and Gilbert’s Algorithm. 

 The main scope of the solution to the problem of seizure detection is researching, 

implementing and analyzing Gilbert’s algorithm in SVM.  

MATLAB code of the modified algorithm was implemented on the dataset and the 

performance measurements were obtained and compared to the previous used algorithm SMO. 

After getting satisfying results, block diagram of the overall system was designed for the next 

stage of implementing RTL (Register Transfer Level) phase. In the RTL phase, maping the 

code and the design architecture to the VHDL and Verilog hardware descriptive language is 

done. Some improvements in the MATLAB code have been added.  

Finally, burning the training algorithm and the classification code on the FPGA has been 

used in proving the concept of detecting seizures successfully with an acceptable accuracy 

and sensitivity using Gilbert’s Algorithm. 
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1  

Introduction :  From Brain to Train 

 

 

Epilepsy has been around for centuries. In the past, in many societies, people with Epilepsy 

were believed to be possessed by demons and were often burned. Other societies thought that they 

had weak or inferior minds. In the late 1800s, Dr. John Hughlings Jackson, a British neurologist, 

discovered Epilepsy and how it affected the human brain. He found the main characteristics of 

Epilepsy that led him to discover this disorder. Dr. Jackson also found out that Epilepsy causes 

seizures and what the seizures do to the individual [1].  

 

Developing different methods of treatment has never ended. Medication remains the most 

common treatment for people with Epilepsy. However, people diagnosed with Epilepsy aim for 

Epilepsy with no seizures with no side effects. If you are on a good drug, you’re likely to have 

good control of your seizures and you might not even know that there are better approaches out 

there. When medicines don’t work, you can choose the Epilepsy surgery track which is good also 

for people who are in the early stages of the disease. In 2001, a study proved that 60% of people 

who did the surgery had no seizures, while, 8% of people who had taken the best medication but 

didn’t get surgery got the same results. When medication and surgeries don’t work, implantable 

devices play a good role in Epilepsy treatment. 

One of these devices is: The Vagus Nerve Stimulation (VNS). It prevents seizures by sending 

regular pulses to the brain via vagus nerve. This device is implanted in the chest, powered by a 

small battery under the skin of the chest and a wire from the device is wound around the vagus 
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nerve in the neck. The other stimulator is called NeuroPace which is the scope of our project in 

which the device sends out pulses at a certain interval with the aid of electrodes placed on the 

surface of the brain. By simulating an EEG signals and sensing their pattern, electrical pulses that 

disrupt their patterns are fired up. [4]  

This introductory chapter will describe an overview of the project, its relevance to our studies 

and the engineering approach in the project. Furthermore, reasons beyond using FPGA in the 

project and the users of the project are discussed. Finally, a roadmap of the chapters that will follow 

throughout this thesis is given.  

 

1.1 Project Overview 

Epilepsy is a neurological disorder caused by abnormal electrical discharges in the brain. 

Approximately 0.7% of the world population suffers from epileptic seizures. More than 50 million 

people are affected by Epilepsy worldwide with more than 2.2 million in the US [2]. As a 

consequence, treatment costs about $9.6 billion annually for direct medical care of epileptic 

patients in US such as anti-convulsive medication and resistive surgery [3]. However, these 

traditional methods for dealing with Epilepsy do not give efficient solution for this disease.  

 

Epilepsy changes the brain state to an abnormal state that causes seizure periods to the 

patients. Seizures could cause drastic damage to the body and even more critical situations where 

it could lead to death. A solution for this problem is required and it is the scope of this project.  

 

1.2 Relevance 

Our project is somehow relevant to some courses that we studied throughout our study in the 

Communications and Computer Engineering Department in Cairo University. We studied 

MATLAB and it was very essential in dealing with features obtained from the patients’ dataset. 

Moreover, Electronics-2 course provided us with the basics of digital design using CMOS 

transistors. Linear Algebra courses were helpful in understanding Machine Learning concepts. 

Last but not least, Computer Architecture course was exceptionally beneficial in developing our 

skills in designing the hardware block diagram that was converted to RTL then implemented on 

FPGA to produce the chip we target.  
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1.3 Engineering Approach 

A solution to the problem is to build a chip that will be implanted in the patient’s brain. The 

target of this chip is to employ Machine Learning (ML) algorithms to be able to detect a seizure 

for any patient and hence trigger electric stimuli that will be able to retrieve the brain back to its 

normal conditions as illustrated in Figure 1.  

Three main aspects need to be considered to maintain acceptable results:  

• Chip accuracy: Building and employing new Machine Learning algorithm that best fits the 

seizure detection problem.  

• Chip power consumption: Lower power consumption rates are targeted in this project than ever.  

• Chip Area: The chip will be implanted at the subject brain; therefore, area is one of the most 

important aspects.  

 

 

Figure 1.1 Project Levels 

The middle layer (feature extraction and decision layer) is the main interest of the required 

design problem. The techniques of this layer are to first build an effective Machine Learning 

algorithm that is able to efficiently detect a seizure from the readings of the EEG signal (electric 

signals of the brain) using [MATLAB] tool. Then, this algorithm will be mapped to low level 
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hardware descriptive language to be able to define its hardware layout and simulation using 

[ModelSim] simulation tool.  

Eventually FPGA mapping for the HDL code is conducted to produce the end product of the 

project. 

 

1.4 Use of FPGA  

An FPGA device is targeted because of its runtime reconfigurability, which allows the design 

to adapt to different types of input data (practical to the diversity problem of epilepsy). The use of 

FPGA device would effectively aid the online training of the SVM especially as it is considered a 

large-scale classification problem; hence, taking advantage of the FPGA resources maximizing its 

utilization would prove very helpful for the design problem.  

 

1.5 Users Of The Project  

The project is aimed to serve people who are suffering from epilepsy. The targeted users will 

be medical institutes (e.g. hospitals), medical industry and the end user product would be epileptic 

patients. 

 

1.6 Road map to the sections of the report 

The chapters are organized in a sequence that makes it easy to the reader to understand our 

project. Chapter 2 describes the medical background needed to know the behavior of epileptic 

seizures. Chapters 3 and 4 describe how the signals obtained from patients’ brains are processed 

and converted to features that are classified eventually to seizure or non-seizure signals. Chapters 

5, 6 and 7 describe basics of machine learning, the Support Vector Machine (SVM) that is the 

classifier of seizure and non-seizure points and special algorithms implementing SVM. Chapters 

8 and 9 describe our mapping to hardware along with the use of FPGA. Chapters 10, 11 and 12 

discuss our results obtained in our work throughout the project along with our recommendations 

and conclusion. Ultimately, there  design codes are attached in the appendix.  



 

 

2  

Biomedical Background: 

Human Brain and Epilepsy  

 

This chapter will discuss the human brain and the nervous system very briefly so as to grasp 

the biomedical idea beyond the project. Furthermore, seizure definition is introduced from a 

biomedical perspective.   

 

2.1 Human Brain and Nervous System 

The human nervous system is the most magnificent part of the human body, resembling a 

software. It is responsible for interpreting sensory information received from the environment so 

that humans can behave as humans do. It has the brain and the spinal cord as the two main parts 

of it. The human nervous system is composed of millions of neurons, they are small nerve cells 

that helps the flow of electric pulse inside the human body. These pulses traveling in our bodies 

are not only electrical; they are rather electrical and chemical. This makes the chemistry in the 

brain much more complex and interesting. 

We are going to investigate the operation of the flow of pulse through the brain, but on a cell 

level. This chapter is dedicated to presenting concepts necessary to understand the brain as a 

system. 
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It is the neurons that are responsible for the processing and transmission of information. 

Neurons come in many different shapes and sizes, but they are composed of four basic structures: 

dendrites, soma or cell body, axon and synaptic terminals. 

 

 

 

       The neuron consists of dendrites where it receives input. The input then travels through the 

cell body in which decisions about firing an action is done, that results in mostly movement. The 

output is then fired through the axons. Each neuron is not connected directly to the other, however, 

there are gaps between them, and connected by the synapse. 

This fired action is called action potential. The process includes both chemical and electrical 

reactions. It first occurs at the synapse. These synapses contain a lot of neurotransmitters that are 

triggered by the calcium ions when electric pulse is passing. The neurotransmitters move from the 

pre-synapse of a cell to the gates of the post synaptic cell, in which it stimulates the sodium gates, 

opening them. By opening the sodium gate, more sodium ions flow inside the post synaptic cell, 

making it more positively charged than its neutral state. The positively charged sodium ions flow 

inside the neuron till it reaches the cell body, that’s responsible for the decision of firing the action 

potential. The cell body accumulates all the inputs, and compares the electric signal to a certain 

threshold, giving us two possible types of action potentials: Excitatory and inhibitory action 

potentials.  

Excitatory, is when the signal is more than the threshold value, allowing action potential to be 

fired. Inhibitory, is when the signal is much less than the threshold value, so no action potential is 

fired. A single Inhibitory post-synaptic potential typically has a larger effect than a single 

Figure 2.1 Neuron 
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excitatory post-synaptic potential because inhibitory synapses tend to form closer to the soma. 

However, the total number of EPSPs is greater than IPSPs and thus the effects level out. The 

balance of incoming IPSPs and EPSPs on a single neuron determines whether the post-synaptic 

cell fires an action potential. The following figure shows the effect of the EPSP and IPSP on the 

depolarization and repolarization process. 

 

Figure 2.2 EPSP and IPSP 

This phenomenon can only happen because of the cell membrane, which is under normal 

conditions, impermeable to fluids. The presence of gates allows the transmission of ions through 

this membrane. 

According to these decisions done by the cell body the output is determined that travels 

through the axon in a form of electric pulse. These electric pulses are maintained by the different 

concentrations of sodium ions inside and outside the cell, thus allowing this electric flow till it 

reaches the synapse at the output, repeating again the function of synapse in transmitting the signal. 

There are many different types of gates, for example: Voltage-gated ions gates that open or close 

according to the differences in voltage between the inside and the outside of the neuron. When a 

certain threshold is reached, the gates open allowing the ions to flow and generate the action 

potential. 
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2.2 Seizure definition 

Till this moment, no one has exactly proven why a person can have a seizure and another one 

doesn’t. Seizure is a neurological disorder caused by structural abnormalities of the brain. 

 

Figure 2.3 Brain major lobes 

  

Each region of the brain has its own task. The different functional regions of the cortex 

(temporal lobe, parietal lobe, occipital lobe, frontal lobe) are responsible for motor control as well 

as cognitive and memory functions. Understanding the initiation of a seizure may lead to the ability 

to predict its onset. That’s why we had to understand how the brain works and the different parts 

of it. 
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Figure 2.4 Depolarization and Repolarization 

 

As shown in the previous figure, the normal operation is the depolarization of the cell, where 

the voltage increases because of the entry of the sodium. Then, repolarization occurs by the 

opening of the potassium channel until it reaches the complete repolarization and the cell becomes 

in its normal state again.  

This happens in the axon until it gets to the synapse. This synapse sends a neurotransmitter to 

the neighbor synapse and it keeps moving from one to the other till it gets to the brain. In seizure, 

the depolarization occurs, but the repolarization doesn’t, which keeps the cell in its abnormal state 

due to the lack of inhibitory neurotransmitters. If this gets to the parietal lobe, which is responsible 

for the movement, the patient may have epilepsy. 

 

The next chapter will focus on describing EEG signals which are signals that are extracted 

from the epileptic patients’ brains.   

 

 

  



 

 

3  

EEG: Bio-signal Processing 

 

This chapter focuses on describing the EEG and its role in diagnosing epilepsy. In the brain, 

neurons exploit chemical reaction to generate electricity to control different bodily actions and this 

ongoing electrical activity can be recorded graphically which is popularly known as 

Electroencephalogram (EEG). 

 EEG is a well-accepted tool for epileptic seizure prediction/detection that can measure the 

voltage fluctuations of the brain. EEG has high temporal resolution. This means that it can capture 

fast changes in current flows. Meanwhile, EEG has poor spatial resolution which means that 

measurements are limited by the number of electrodes, their placement and properties of the head.  

 

3.1 Types of EEG 

There are two types of EEG to consider: 

❖ Scalp EEG: 

In Scalp EEG, recordings are heavily attenuated. It is used as a preliminary step to more detailed 

intra-cranial records.  
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❖ Intra-Cranial EEG:  

In Intra-Cranial EEG, recordings can be taken from: 

o Cortical electrodes (placed on Cortex)  

o Depth electrodes (penetrate to sub-cortical systems such as the thalamus) 

Intra-cranial records are often obtained for pre-surgical analysis to determine regions of the 

brain to be resected. Such procedures are relatively rare and data of this nature are more difficult 

to obtain. The difference between normal and epileptic EEG signals will be explained in the next 

two sections. 

 

3.2  Normal EEG 

The Normal EEG visually recognizes general patterns that exist consistently in the majority 

of the population. Absence of such patterns does not imply abnormality. EEG alone is not 

sufficient alone for diagnosis of epilepsy. The following figures show different Normal EEG 

signals for different states of alertness.  The voltage magnitude in each channel is shown relative 

to each other. In (a) an example of an awake alpha rhythm shows the 10Hz activity present in only 

Figure 3.1 EEG Electrodes 
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some (posterior) channels. In contrast to the slow waveforms of sleep stages in (b) and (c), the 

awake EEG shows a lot more variability between channels, demonstrating the more global nature 

of sleep versus awake states.  

 

 

 

 

 

Figure 3.3 Normal EEG Signals 

Figure 3.2 Normal EEG Signals 
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3.3 Epileptic EEG 

The variability between epilepsies means that there is no single epileptic EEG. For example, 

inter-seizure periods can be as short as a few seconds or as long as years. The following figures 

show a sample Epileptic EEG signal.  They are an example of a complete seizure of approximately 

110 seconds duration, with its start and end as marked. The magnitude of the EEG during a seizure 

is much larger than that preceding it. We notice that the seizure evolves over time, with changes 

in morphology as well as fundamental frequency. We also notice the artifact that occurs at about 

the 73rd second. This is an example of electrodes becoming temporarily disconnected. The different 

time periods of EEG signals are discussed in the next section.  

 

 

Figure 3.4 Epileptic EEG Signals 
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3.4 Periods of EEG Signals 

EEG signals from an epileptic patient can be divided into five periods or stages: 

o Non-seizure Period  

o Ictal Period 

o Preictal Period 

o Post-ictal Period 

o Interictal Period 

Non-seizure period is the period when no epileptic syndrome is visible.  

Ictal period is the actual seizure period, normally duration is 1 to 3 minutes.  

Preictal period is 30 to 60 minutes before ictal period.  

Post-ictal period is 30 to 60 minutes after ictal period.  

Interictal period is the period between post-ictal period to pre-ictal period of the immediate 

next ictal. Some portion of the interictal period, which does not have any epileptic syndrome, can 

be defined as a non-seizure period.  

Prediction and detection of seizures by analyzing ictal, pre-ictal, and interictal could alert a 

patient of the next seizure and also could lead to better treatment and safety. In order to be able to 

perform signal processing on the EEG signals to do seizure detection, some features need to be 

extracted. The different relevant features are discussed in the next section.  

 

3.5 Extracted Features from EEG Signals 

After removal of noise in the pre-processing stage (will be discussed in details later), certain 

features from the EEG signals are extracted. The features that are extracted belong to time domain. 

These time domain features give numerical indication to the visual patterns observed from the 

EEG signals such as the increase in amplitude, increase in frequency during epileptic events. These 

features are statistical elaborations that are very important in quantifying the EEG signals for 

classification.  

The features that are going to be discussed now are as follows: 

1) Energy 

2) Coastline 

3) Hjorth Variance Parameter  
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 Energy   

This feature calculates average energy of the EEG signal. This is done by averaging the 

instantaneous energy. This is done because instantaneous energy is not of much significance as 

the average energy which is more useful because it is done over a mean behavior. A sliding window 

is used to calculate the instantaneous energy. The window is of size N while K is the window 

number of size N.  

The following two equations represent the instantaneous energy and average energy 

respectively: 

𝐸[𝑖] = 𝑥2(𝑖)  

 

(3.1) 

𝐸𝑎𝑣𝑔[𝑘] =
1

𝑁
∑ 𝐸(𝑖 + (𝑘 − 1)𝑁)𝑁
𝑖=1      (3.2) 

 

 Coastline  

This feature calculates the sum of the absolute value of the distance between two successive 

data points. The coastline is calculated using the following equation:  

𝐶𝐿(𝑘) =∑𝑎𝑏𝑠(𝑥[𝑖 + (𝑘 − 1)𝑁] − 𝑥[𝑖 − 1 + (𝑘 − 1)𝑁])

𝑁

𝑖=1

 (3.3) 

                                         

 Hjorth Variance Parameter   

This feature calculates the variance of the EEG signal amplitude. The variance is a window 

of N samples is calculated and averaged to obtain the mean variance. Hjorth variance parameter is 

calculated as follows: 

𝑉𝑎𝑟[𝑘] =
1

𝑁
∑(𝑥[𝑖 + (𝑘 − 1)𝑁] − 𝜇𝑘)

2

𝑁

𝑖=1

 (3.4) 

𝜇𝑘 =
1

𝑁
∑𝑥[𝑖 + (𝑘 − 1)𝑁]

𝑁

𝑖=1

 (3.5) 

                   

In the next chapter, it will be discussed how classification is done using the features calculated. 

Detection and prediction techniques will be elaborated in details.   



 

 

4  

Classification: 

Seizrue or non-siezure? 

  

This chapter’s focus is the classification between seizure and non-seizure periods in EEG 

signals. The classification can be done using either seizure detection or seizure prediction. 

Detection differs from prediction due to the following reasons. One thing is that a prediction model 

is required to classify correctly between preictal and interictal periods while a detection model 

should classify accurately between ictal and non-seizure or interictal periods. Seizure prediction is 

harder than seizure detection because the similarity between ictal and interictal signals is much 

higher than that of preictal and interictal signals. 

Conceptually, seizure detection and seizure prediction are different. Seizure detection 

technique only knows the presence of a seizure when the characteristics of a seizure have appeared 

in the biologic signals being monitored. On the other hand, seizure prediction technique estimates 

the beginning of a seizure before it actually starts.  

 

The following section will focus on seizure detection technique including the steps done to 

accurately do classification with Seizure detection.  
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4.1 Seizure Detection  

Seizure detection includes four stages: 

o Pre-processing 

o Feature Extraction 

o Feature Selection 

o Feature Classification 

 

 

 Pre-processing  

In the previous chapter we mentioned the mechanism of EEG and how it records the signals 

that are to be studied to detect seizures. However, the produced signals from the EEG are noised 

and disturbed. Hence, a pre-processing step is exploited in order to eliminate the influence of 

disturbance (i.e. artifacts). The artifact can be divided into two parts; one is physiological artifact 

that came from the body and another is non-physiological artifact that comes from environment 

and instruments. There are several types of physiological artifacts such as muscle artifact, pulse 

artifact and eye blinking artifact. The non-physiological artifacts are power line artifact and sweat 

artifact (i.e. water, minerals, and lactate so on). Notch filter can be used to remove line noise 

interference. Wavelet transform is an efficient denoising technique that is introduced to the non-

linear and non-stationary EEG signals.   

 

 

Figure 4.1 Seizure Detection Overview 
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 Feature Extraction 

Now we have the clear EEG signals that are ready to be examined to detect seizures. For the 

sake of classification, relevant features are needed to be extracted from EEG signals. As the studies 

of researchers pointed to the problem of applying highly optimized algorithms to small, selected 

datasets, because the results cannot be reproduced on unselected, larger datasets; it is important to 

use real time classification techniques for detection purposes for actual applications. Therefore, 

feature extraction is considered a key to the performance of a classifier. The calculated features 

are fed into the standard support vector machine (SVM) for classification purposes and that will 

be discussed in a later chapter.  

Two algorithms that are used in feature extraction will be considered. They are DWT which 

stands for Discrete Wavelet Transform and EMD which stands for Empirical Mode 

Decomposition.  

DWT is similar to the Fourier transform. It is applied on EEG signals to decompose the signal 

into several scales to get information about frequency components which present and enhance the 

information about the signal for further processing. The relative wavelet statistical feature 

coefficient is computed in time domain. The extracted relative wavelet energy features are passed 

to classifiers for the classification purpose. It captures both frequency and location information 

(location in time). Mathematically, the wavelet will correlate with the signal if the unknown signal 

contains information of similar frequency.   

EMD is used with nonlinear and nonstationary signal analysis. This technique breaks the 

signal into various finite small number of components called Intrinsic Mode Functions (IMFs). It 

is more preferable as this decomposition technique depends on local characteristics of dataset 

instead of pre-defined basis functions. Therefore, it is considered highly efficient and adaptive 

unlike the Fourier transform that converts the input signal from domain to another.   

 Feature Selection 

Feature selection is a technique that removes the irrelevant features from the feature set and 

selects the most relevant ones. As we mentioned before, in some applications it might be desired 

to pick a subset of the original features rather then find a mapping that uses all of the original 

features. The benefits of finding this subset of features could be in saving cost of computing 

unnecessary features as well as saving cost of sensors. Principle Component Analysis (PCA) and 

Independent Component Analysis (ICA) can be used for dimensionality reduction of the features. 
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 Feature Classification  

After feature selection, we take the output from the feature selection to the classifier. The role 

of the classifier is to determine the patient’s state, having a seizure or not. The main idea is to 

indicate a hyperplane that helps in classifying the signal coming from the feature selection. Using 

machine learning algorithms, a hyperplane can be detected. These machine learning details will be 

covered in the next chapter.  

Feature extraction, analysis, and classification of EEG signals are still challenging issues for 

researchers due to the variations of the brain signals. Variations of EEG signals depend on different 

brain locations, number of channels, and different patterns of signals from different people. 

Another challenge for epileptic seizure detection/prediction from EEG signals is to get reasonable 

accuracy for real time applications. 

The following section will focus on seizure prediction technique including the steps done to 

accurately do classification with Seizure prediction.  

 

4.2 Seizure Prediction   

 Seizure detection includes six stages: 

o Pre-processing 

o Feature Extraction 

o Feature Selection 

o Feature Classification  

o Regularization 

o Decision Function  

It is clear that the first four stages are identical to that of seizure detection while the last two 

stages are specific to seizure prediction only.  

 

Figure 4.2 Seizure Prediction Overview 
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  Definition 

The predictor is a detector but the difference is the time in which the measurements are taken. 

The prediction is discovering the probability of having the disease before detecting it. Apart from 

“predicting” itself, predictor could be employed to save the power only if we guaranteed having a 

lower power consumption than the detector. The detector is working continuously so it consumes 

high power as it works on very complex equations. The proposed solution is that we can turn off 

the detector while turning on the predictor. When the predictor predicts having a seizure, it could 

send triggers to the detector and then the detector could be on again to proceed. The prediction 

block has two more blocks than the detector which are regularization and decision function. 

 

 Regularization  

To separate between 2 types of data after classification, the over-fitting concept can be used. 

Over-fitting is separating two sets of data based on existing classified data. It guarantees 100% 

separation between the two data sets, but it doesn’t introduce predictability. In order to introduce 

predictability, a regularized curve is convenient to predict that a certain data sets most probably 

they belong to seizure. However, it does not guarantee 100% separation. The following figure 

shows the separation between two data sets by an over-fitting curve and a regularized curve. 

 

  

 

 

 

 

 

  

 

Figure 4.3 Over-fitting curve vs. Regularized curve in predictability 
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 Decision Function 

 Our goal is to employ a new machine learning that best fits the seizure detection problem; thus, 

three main aspects are considered in our project: 

 

1. Chip accuracy: 

  A classification output of an EEG signal might not provide accurate predicted results; thus, 

sometimes a decision function can be formulated based on the combined classification output of 

different time-window of an EEG signal or a number of EEG signals in different channels. 

For the seizure detection, a number of criteria (such as accuracy, sensitivity, and specificity) are 

used to verify the classification outcome. Accuracy is determined as an overall performance 

measurement; however, we mostly care about the sensitivity. 

The accuracy, sensitivity and specificity are defined as follows where TP is true positive, TN is 

true negative, FP is false positive, and FN is false negative: 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 𝑥 100 (4.1) 

 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 𝑥 100 

 

(4.2) 

 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =
𝑇𝑁

𝑇𝑁 + 𝐹𝑃
 𝑥 100 

 

(4.3) 

 

Where accuracy is defined as the number of correctly detected seizures and non-seizures from the total number 

of seizures and non-seizures cases, sensitivity is defined as the number of correctly detected seizures from the 

total number of seizures and specificity is defined as the number of correctly detected non-seizures from the total 

number of non-seizures. 
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After optimizing those criteria by multiple iterations over the classification and taking feedback to 

the decision function, the performance of epileptic seizure prediction can be measured by 

measuring the prediction accuracy and false prediction rate. 

Prediction accuracy =
𝑁𝑆

𝑁𝐴
 𝑥 100 

 

(4.4) 

False prediction rate =
NF

NT
 x 100 

 

(4.5) 

Where Ns is the number of correctly predicted seizures, Na is the total number of seizures, NF is the number of 

inaccurately predicted seizures and NT is the total time of EEG signals.  

 

2. Chip Power consumption: 

  Having high sensitivity detection leads to consuming higher power due to the number of 

triggering indicating the existence of seizures. 

Low consumption rate is a need to save the battery life in the chip that will be implanted in the 

patient's brain. 

Changing the battery frequently has two main disadvantages: 

- High cost of the battery 

- Increase in the number of times of the surgical interference operation for replacing the 

battery 

An optimization of the RTL design architecture of Gilbert’s algorithm helps in lowering the chip 

power consumption rate. 

 

3. Chip Area: 

  A control in the size of the chip area is needed as the chip will be implanted in the subject’s 

brain. Having a small area size is controlled by a good and an optimized RTL design architecture. 

 

The next section will show the results obtained on different seizure prediction techniques in a 

survey dedicated to seizure prediction only. 
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4.3  Prediction Survey 

 Introduction 

All predicting models try to find out reliable measures as precursors of impending seizures. 

The measures should have strong correlation with the preictal stage of epilepsy cycle, to be able 

to predict the seizure before it happens. Most of the prediction techniques published up to now use 

a so-called moving window analysis in which some (linear or non-linear) characterizing measure 

is calculated from a window of EEG data with a pre-defined length, then the subsequent window 

of EEG is analyzed, and so forth.  

Depending on whether the employed measure is used to characterize a single EEG channel or 

relations between two or more channels. The duration of these analysis windows usually ranges 

between 10 and 40 s. 

 We can categorize the EEG features into three main groups of univariates, bivariate, and 

multivariate. It was conducted a comprehensive review comparing most univariate and bivariate 

techniques and showed some intended results but none of them has succeeded in a reliable seizure 

prediction. Each group of univariates, bivariate and multivariate can be divided into two groups of 

linear and nonlinear measures.  

Table 4-1 Prediction Techniques 

Univariate 

linear 

Univariate 

non-linear 

Bivariate 

linear 

Non-linear 

Bivariate 

Statistical 

moments 

Largest 

Lyapunov 

exponent 

Maximum 

linear cross-

correlation. 

Non-linear 

interdependence. 

Characteristics of 

the 

autocorrelation 

function 

Estimate of an 

effective correlation 

dimension 

 

Conditional 

probability-based 

index 

Hjorth parameters 
Dynamic similarity 

index 
 

Index based on 

Shannon entropy. 

Spectral band 

power 

Algorithmic 

complexity 
 

Phase 

synchronization. 
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 Statistical versus algorithmic approaches 

 A statistical design is retrospective by nature and compares the amplitude distributions of the 

characterizing measures from the inter-ictal with those from the assumed pre-ictal period in one 

way or another. We use this design for investigating and comparing the potential predictive 

performance of different characterizing measures under different conditions. 

 On the other hand, an algorithmic analysis uses a design that produces a time-resolved output 

(i.e. an output for every point of a time profile). With respect to practical application, the algorithm 

should ideally be prospective, we can understand from this that its output for a given time should 

be a function of the information available at this time. Prediction algorithms usually employ certain 

thresholds. If the time profile of a characterizing measure crosses the threshold, the algorithm 

produces an alarm. This alarm can be either true or false, depending on whether it is actually 

followed by a seizure or not. For this distinction, it is necessary to define a prediction horizon 

which is the period after an alarm within which a seizure is expected. If an alarm is followed by a 

seizure within the prediction horizon, it is classified as a true alarm (true positive), otherwise it is 

regarded as a false alarm (false positive).  

Figure 4.4 prediction with pre-defined threshold 
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 Summary  

For a general comparison between the univariate and bivariate, univariate measures are 

sensitive to those changes only before a seizure in relation to the period immediately preceding 

these changes. However, bivariate measures were found to reflect changes in dynamics on a longer 

time scale starting hours before a seizure. Despite various models have been proposed for seizure 

prediction, most of them focused on the univariate measures from individual EEG channels. 

The next chapter will introduce some essential machine learning concepts that were needed 

in the project. Afterwards, it will use these concepts to show their role in seizure detection.  

 



 

 

 

5  

Machine Learning: 

Finding the Optimal Model 

 

Machine learning is a data analytics technique that teaches computers to do what comes 

naturally to humans: learning from experience. Machine learning algorithms use computational 

methods to “learn” information directly from data without relying on a predetermined equation as 

a model. The algorithms adaptively improve their performance as the number of samples available 

for learning increases. From another perspective, Machine learning could be considered as a 

method of data analysis that automates analytical model building. It is a branch of artificial 

intelligence based on the idea that systems can learn from data, identify patterns and make 

decisions with minimal human intervention.  

Throughout this chapter, machine learning is discussed in conceptual depth to a certain extent 

while abstracting the mathematical models and theories from the reader so that the following 

chapters can be easily followed and understood.   

In section 1, the importance of machine learning is illustrated. In section 2, several uses of 

machine learning are discussed. Followed in section 3 by the major concepts and theories of how 

machine learning works. In section 4 machine learning is projected upon the seizure detection 

problem. Eventually, in section 5 the training data-set is explained. 
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5.1 Importance of Machine Learning 

Machine learning has several very practical applications that drive the kind of real problem 

solving – such as time and money savings – that have the potential to dramatically impact the 

solution to a certain problem. At Interactions in particular, Machine Learning introduced 

tremendous impact within the customer care industry, whereby machine learning is allowing 

people to get things done more quickly and efficiently. Through Virtual Assistant solutions, 

machine learning automates tasks that would otherwise need to be performed by a live agent – 

such as changing a password or checking an account balance. This frees up valuable agent time 

that can be used to focus on the kind of customer care that humans perform best: high touch, 

complicated decision-making that is not as easily handled by a machine.  

 

Machine learning has made dramatic improvements in the past few years, but it is still very 

far from reaching human performance. Many times, the machine needs the assistance of human to 

complete its task. 

 

From another prospective, and from where the previous chapter left, Machine Learning proves 

its importance in efficient solving for a classification problem. In contrast to the “fixed” threshold 

detection mentioned earlier, machine learning is able to provide more “flexible” and “adaptive” 

classification parameters. These specs allow machine learning algorithms for classification to 

provide better performance and results.  
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5.2 Uses of Machine Learning 

 

Financial services 

Banks and other businesses in the 

financial industry use machine learning 

technology for two key purposes: to 

identify important insights in data and 

prevent fraud. The insights can identify 

investment opportunities, or help 

investors know when to trade. 

 

 Government 

Government agencies such as public safety 

and utilities have a particular need for 

machine learning since they have multiple 

sources of data that can be mined for 

insights. Analyzing sensor data, for 

example, identifies ways to increase 

efficiency and save money.  

Health care 

Machine learning is a fast-growing trend 

in the health care industry, thanks to the 

advent of wearable devices and sensors 

that can use data to assess a patient's 

health in real time. The technology can 

also help medical experts analyze data to 

identify trends or red flags that may lead 

to improved diagnoses and treatment. 

 

 Marketing and sales 

Websites recommending items you might 

like based on previous purchases are using 

machine learning to analyze your buying 

history – and promote other items you'd be 

interested in.  

Oil and gas 

Finding new energy sources. Analyzing 

minerals in the ground. Predicting refinery 

sensor failure. Streamlining oil 

distribution to make it more efficient and 

cost-effective. The number of machine 

learning use cases for this industry is vast 

– and still expanding. 

 Transportation 

Analyzing data to identify patterns and 

trends is key to the transportation industry, 

which relies on making routes more 

efficient and predicting potential problems 

to increase profitability. 
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5.3 How it works? 

Machine learning uses two types of techniques: supervised learning, which trains a model on 

known input and output data so that it can predict future outputs, and unsupervised learning, which 

finds hidden patterns or intrinsic structures in input data. 

 Supervised Learning 

Supervised machine learning builds a model that makes predictions based on evidence in the 

presence of uncertainty. A supervised learning algorithm takes a known set of input data and 

known responses to the data (output/labels) and trains a model to generate reasonable predictions 

for the response to new data.  

Supervised learning uses classification and regression techniques to develop predictive 

models. Where in the context of this project, classification is applied to seizure detection problem 

to classify between seizure and none seizure points from the processing of the EEG signal. 

Classification techniques predict discrete responses—for example, whether an email is genuine or 

spam, or whether a tumor is cancerous or benign. Classification models classify input data into 

categories. Typical applications include medical imaging, speech recognition, and credit scoring. 

Classification is best employed if the data can be tagged, categorized, or separated into specific 

groups or classes.  

Figure 5.1 Machine learning techniques include both unsupervised and supervised learning 



    30 

 

 

Common algorithms for performing classification include support vector machine (SVM)-

discussed in chapter 6- , boosted and bagged decision trees, k-nearest neighbor, Naïve Bayes, 

discriminant analysis, logistic regression, and neural networks. 

Regression techniques predict continuous responses—for example, changes in temperature or 

fluctuations in power demand. Typical applications include electricity load forecasting and 

algorithmic trading. Regression -on the other hand- is best employed when working with a data 

range or if the nature of the responses is a real number, such as temperature or the time until failure 

for a piece of equipment. 

 

 Unsupervised Learning 

Unsupervised learning finds hidden patterns or intrinsic structures in data. It is used to draw 

inferences from datasets consisting of input data without labeled responses. 

Clustering is the most common unsupervised learning technique. It is used for exploratory 

data analysis to find hidden patterns or groupings in data. Applications for cluster analysis include 

gene sequence analysis, market research, and object recognition. 

For example, if a cell phone company wants optimize the locations where they build cell 

phone towers, they can use machine learning to estimate the number of clusters of people relying 

on their towers. A phone can only talk to one tower at a time, so the team uses clustering algorithms 

to design the best placement of cell towers to optimize signal reception for groups, or clusters, of 

their customers. 

Common algorithms for performing clustering include k-means and k-medoids, hierarchical 

clustering, Gaussian mixture models, hidden Markov models, self-organizing maps, fuzzy c-means 

clustering, and subtractive clustering. 

 

 How Do You Decide Which Machine Learning Algorithm to Use? 

Choosing the right algorithm can seem overwhelming—there are dozens of supervised and 

unsupervised machine learning algorithms, and each takes a different approach to learning. 

Here are some guidelines on choosing between supervised and unsupervised machine 

learning: Choose supervised learning if you need to train a model to make a prediction--for 
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example, the future value of a continuous variable, such as temperature or a stock price, or a 

classification—for example, identify makes of cars from webcam video footage. 

Choose unsupervised learning if you need to explore your data and want to train a model to 

find a good internal representation. 

 

5.4 Machine Learning and Seizure Detection 

Seizure Detection problem is clearly a classification problem, where features extracted from 

the EEG signal need to be classified into either seizure or non-seizure point and hence take a 

suitable action. This is where machine learning is obviously present to introduce better 

performance.  

 

5.5 Dataset 

As mentioned in previous sections, Supervised Machine Learning problems include the data 

entries labels (or corresponding classes) for the training process. There exist several epilepsy 

datasets in which they offer the EEG signals collected from different patients with corresponding 

information about seizure periods. This dataset is fed to the SVM training algorithm to be able to 

test and measure performance of the training algorithm.  

 

This database, collected at the Children’s Hospital Boston, consists of EEG recordings from 

pediatric subjects with intractable seizures. Subjects were monitored for up to several days 

following withdrawal of anti-seizure 

medication in order to characterize 

their seizures and assess their 

candidacy for surgical intervention.  

23 cases were taken from both 

genders with each case containing 

between 9 and 42 continuous EDF 

files from a single subject.  

EDF is a simple and flexible format for 

exchange and storage of multichannel biological 

and physical signals. In most cases, the EDF files 

contain 1 hour of digitized EEG signals retrieved 

from 23 channels. See figure 5.2. 
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The dataset we used was an essential part in the project flow. The dataset is the core thing in 

which we classify seizure vs. non-seizure points using the Support Vector Machine (SVM). Hence, 

the dataset helped us in successfully obtaining accurate classification results. It is noteworthy to 

mention that ONE LAB is considering obtaining their own dataset to be used in similar projects in 

the foreseeable future in order to have more accurate results. 

 

The following chapter will focus on defining the Support Vector Machine (SVM) classifier 

which is a very important topic in the classification between seizure and non-seizure EEG signals.  

 

 

Figure 5.2 Dataset Details 
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Support Vector Machines:  

Large margin classifiers  

 

This chapter’s focus is the SVM. There are two sections in this chapter. Section 1 defines the 

SVM’s hyperplane and its role in classification. Section 2 illustrates how the maximum margin 

that is needed to perform classification is computed.  

6.1 SVM’s Hyperplane 
The support vector machine SVM is a machine learning algorithm used to obtain the 

optimized maximum margin around a hyperplane needed for classification process. That’s why 

SVM is called “large margin classifier”. Maximum margin defines the maximum distance between 

the hyperplane center and the closest point to the plane which define the support vector (Xn). The 

support vector plays a significant role in supporting the plane as they participate in the definition 

of the separation hyperplane and in achieving the margin by computing the maximum distance 

between the Xn points and the hyperplane. 
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Figure 6.1 Linear Support Vector Machine 

SVM is a hyperplane that separates a set of positive examples from a set of negative examples 

which represents with maximum margin (see figure 6.1).  In the linear case, the margin is defined 

by the distance of the hyperplane to the nearest of the positive and negative examples.   

 

6.2 Computing the maximum margin  
The formula for the output of a linear SVM is 

 u w x b=  −
 

, (6.1) 

Where w is the normal vector to the hyperplane and x is the input vector.  The separating hyperplane is the plane 

u=0.  The nearest points lie on the planes u = 1.   

The margin m is thus 

 m
w

=
1

2|| ||
. (6.2) 

Maximizing margin can be expressed via the following optimization problem: 

 min || || ( ) , ,
,



  
w b

i iw y w x b i
1

2

2 1subject to  −    (6.3) 

Where xi is the ith training example and yi is the correct output of the SVM for the ith training example. The value 

yi is +1 for the positive examples in a class and –1 for the negative examples. [9] 
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6.3 The kernel 

In machine learning, kernel methods are a class of algorithms for pattern analysis, whose best-

known member is the support vector machine (SVM). The general task of pattern analysis is to 

find and study general types of relations (for example clusters, correlations, classifications) in 

datasets. For many algorithms that solve these tasks, the data in raw representation have to be 

explicitly transformed into feature vector representations via a user-specified feature map: in 

contrast, kernel methods require only a user-specified kernel, i.e., a similarity function over pairs 

of data points in raw representation. [16] 

Kernel methods owe their name to the use of kernel functions, which enable them to operate 

in a high-dimensional, implicit feature space without ever computing the coordinates of the data 

in that space, but rather by simply computing the inner products between the images of all pairs of 

data in the feature space. This operation is often computationally cheaper than the explicit 

computation of the coordinates. This approach is called the "kernel trick". Kernel functions have 

been introduced for sequence data, graphs, text, images, as well as vectors. 

Some of the popular kernels: 

- Fisher kernel 

- Graph kernels 

- Kernel smoother 

- Polynomial kernel 

- Radial basis function kernel (RBF) 

- String kernels 

 

The next chapter will elaborate two SVM algorithms that are useful for the classification 

problem which are Sequential Minimal Optimization (SMO) and Gilbert’s algorithm. They are 

related to seizure detection not seizure prediction. 
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Training of Support Vector Machine 

 

This chapter has two main sections. Section 1 describes in details the SMO algorithm. 

Likewise, chapter 2 illustrates deeply Gilbert’s algorithm. It is noteworthy to say that Gilbert’s 

algorithm was chosen to be implemented in our project as the SVM classifier.  

 

7.1 SMO Algorithm 

Sequential Minimal Optimization or SMO is an algorithm for training support vector machine. 

Training a Support Vector Machine (SVM) requires the solution of a very large quadratic 

programming (QP) optimization problem. QP is an example of optimization problem that takes a 

certain form. Solving QP must identify the inequality and equality constrains “upper and lower 

bound”. However, problems can get every large with thousands of variables and constrains, change 

over time this is especially important in real time optimization and take much time for calculations. 

Not to mention that the quadratic form involves a matrix that has a number of elements equal 

to the square of the number of training examples.  This matrix cannot be fit into 128 Megabytes if 

there are more than 4000 training examples. 

Since SMO breaks the large QP into smaller QP problem that can be solved analytically in 

QP steps. Therefore, it avoids the calculation of matrices as known in the equation of QP in 

MATLAB. SMO scales somewhere between linear and quadratic unlike chunking SVM that scales 



37 Chapter 7       Training of SVM  
 

 

between linear and cubic. Therefore, the SMO was considered a suitable algorithm for 

classification as it’s faster.  

 

 Find and choose alpha 

First, we need to find alpha using Lagrange equation which is the QP problem that the SMO 

algorithm will solve: 

 

 

Then, we choose alpha that violates KKT conditions: 

 

C is the penalty of error, which we as designers choose its value to see how much the tolerance is 

we can work with. If this C is too large, we get back to the ideal case where there is no margin.  

 Choosing Lagrange multiplier 2 

By choosing 1 and calculating its error E1, Lagrange multiplier 2 is chosen from the inner 

loop of the algorithm. We choose Lagrange multiplier 2that maximizes the error difference from 

the set of alphas. Choosing Lagrange multiplier 2 that satisfies UY=1 &  0 < 2< C.   
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 Optimizing Lagrange multiplier 1 & 2 

Because there are only two multipliers, the constraints can be easily displayed in two 

dimensions like the figure shown below. After choosing Lagrange multiplier that defines the 

inequality constraints, we need to set lower and higher limit of a box that defines the equality 

constraint. The bound constraints cause the Lagrange multipliers to lie within a box, while the 

linear equality constraint causes the Lagrange multipliers to lie on a diagonal line. 

 

We will choose 2 that satisfies the minimum objective function. 

For y1 not equal y2, L H C C= − = + −max( , ), min( , ).0 2 1 2 1     

For y1 equal y2, L C H C= + − = +max( , ), min( , ).0 2 1 2 1     

The second derivative of the objective function along the diagonal line can be expressed as: 

 = + −K x x K x x K x x( , ) ( , ) ( , ).
     

1 1 2 2 1 22  

Under normal circumstances, the objective function will be positive definite, there will be a 

minimum along the direction of the linear equality constraint, and  will be greater than zero.  In 

this case, SMO computes the minimum along the direction of the constraint:

  


2 2
2 1 2new = +

−y E E( )
,  

Figure 7.1 the constraints displayed in two dimensions 
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As a next step, the constrained minimum is found by clipping the unconstrained minimum to he 

ends of the line segment: 

∝2
new, clipped =

{
 
 

 
 

𝐻    , 𝑖𝑓    ∝2
new≥ H;

   
     ∝2

new , 𝑖𝑓    𝐿 ≤∝2
new≤ H;

𝐿    , 𝑖𝑓       ∝2
new≤ 𝐿.

 

The value of 1 is computed from the new, clipped, 2:    1 1 2 2

new new,clipped= + −s( ). 

Thus, we have chosen the optimized 2 that satisfies the minimum objective function which will 

be the nearest point to the center of the contour lines of the objective function. 

The classification can now be accomplished by computed the weighting vector W, the threshold b 

and updating the hyperplane equation.  

   
w y x b w x yi

i

N

i i k k= =  − 
=


1

0 , .for some k  

Then, we return to the data set and choose the points that satisfy the hyperplane equation and its 

UY >1 to set its alpha equal to zero. Now, we succeeded to exclude the points that have their 

Lagrange multiplier equal zero and thus can be excluded from the next iterations. 

We apply the KKT conditions again for the next iterations till all alphas satisfy the KKT conditions 

and we reach the optimized hyperplane equation.  
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 SMO Block diagram 

 

Figure 7.2 SMO Block Diagram 

 SMO Performance Results 

 

Figure 7.3 Different Kernel Performance of SMO for patient 5 
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7.2 Gilbert’s Algorithm 

In 1966, Gilbert algorithm was introduced to the machine learning field. In 2000, it has been 

used as a support vector machine but it had slow convergence time. In 2005, Gilbert had been 

modified to solve this slow rate of convergence and this is the algorithm that will be used the 

seizure detection. As we mentioned before that the Support Vector Machines are obtained by 

solving a constrained quadratic programming problem (SVM QP). Since the SVM QP problem is 

often too large for standard solvers, SVM specific training algorithms are used which provides 

decomposition of the full SVM QP problem into subproblems. Such algorithms are SMO 

(mentioned in the previous sections) and Gilbert’s algorithm. Recently, various research works 

approach the SVM training from a geometric view of the problem. These proposed methods are 

based on the application of a nearest point algorithm “Gilbert’s Algorithm” to the geometric 

expression of the SVM training problem.  

Since the objective of SVM is to construct a separating hyperplane w · x − b = 0 to attain maximum 

separation between the classes as shown in figure (7.4).   

 
Gilbert’s algorithm uses the concept of Minkowski set difference. Given two convex 

representing the two classes of positive and negative seizures, the normal to the separating 

hyperplane 
2

||w∗|| 
 can be obtained ||u*-v*|| as both points u* and v* are the closest points on 

the two convex of the two classes as shown in figure (7.5). 

Figure 7.4 From left to right, worst to best separating hyperplane (according to the maximum margin) 
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The problem of finding the minimum distance between two convex hulls is known as the nearest 

point problem (NPP). Gilbert’s algorithm is one of the first algorithms suggested for solving NPP. 

It is applied on the secant convex hull S which denotes the Minkowski set difference of U and V, 

where U and V are the convex hulls of each class of training data. 

 S= {s: s = u − v, u ∈ U, v ∈ V}: Yu = 1, Yv = -1. 
The solution to the SVM problem is the point s*, which belongs to the secant convex hull’s perimeter 

and is closest to the origin. Gilbert’s Algorithm locates the point of a convex hull closest to the origin 

with recurring linear steps. knowing that s*=u*- v* as shown in figure (7.6). 

 
 
 

 

 

Figure 7.5 The convex hull of the two classes 
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Figure 7.7 secant convex hull S which denotes the 

Minkowski set difference of U and V 

Figure 7.6 Minkawski of un-intersected shapes 
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Figure 7.8 Linear steps iterations for reaching the point closest to the origin 

 How does the algorithm work? 

The algorithm stars form a random point wk-1, where k is defined as the total number of 

iterations, then it allocates the point g*(- wk-1), whose projection in the direction of -wk-1 is the 

closest to the origin. This point lies on the secant’s perimeter.   

The goal is to find a point that lie on this segment and can be the closest to the origin. 

Therefore, there are three cases for this point, it can be the old point wk-1, the new point g*(- wk-1) 

or a point that lie on the segment between the two mentioned points. In order to identify which 

case, two parameters called top and bot need to be calculated. 

Thus, g*(- wk-1) is the point of S that maximizes the inner product with wk-1. This value can be 

computed by finding g*U and g*V which are the points u and v of classes U and V respectively that 

maximize the inner products -wk-1 . u and wk-1 . v:     

g*(-wk-1) = g*u(-wk-1) – g*v (wk-1). 

Then it allocates the point wk which lies on the segment [wk-1, g*(-wk-1)] closet to the origin which 

may not be part of the secant. 

 

𝑤𝑘 = {

𝑤𝑘−1                                                                              ,   𝑖𝑓 𝑡𝑜𝑝 ≤ 0
𝑔 ∗ (−𝑤𝑘−1)                                            ,   𝑖𝑓 𝑏𝑜𝑡 ≤ 𝑡𝑜𝑝

𝑤𝑘−1 + 𝜆(𝑔 ∗ (−𝑤𝑘−1) − 𝑤𝑘−1)                  , 𝑒𝑙𝑠𝑒  
 

, Where:          top=−𝑤𝑘−1 . (𝑔 ∗ (−𝑤𝑘−1) − 𝑤𝑘−1)  

                    bot= ||(𝑔 ∗ (−𝑤𝑘−1) − 𝑤𝑘−1||2 

     λ   =  
𝑡𝑜𝑝

𝑏𝑜𝑡
 <1 
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 In the case of top less than bot which defines a point between the old and new point, a circle 

of radius bot and having the origin as the center could be assumed. The difference in the distance 

between the bot and the bot is the Lamda. Thus, from wk-1, a distance Lamda on the segment 

towards g*(- wk-1) defines the point wk. These steps are repeated till convergence. 

The terminating condition of Gilbert’s is selecting the same point wk again in a following 

iteration.  

 According to our research, a modified version of Gilbert’s Algorithm for the fast computation 

of the Support Vector Machine hyperplane was introduced by computing the angles instead of the 

norms. This modification seemed to converge faster to s*. This operation is done by computing 

(wk ·s∗)/(|| wk|| ||s∗||) instead of  || wk -s*||.  

 

 

 

 

 

 

 

 

 

 

Figure 7.9 Iteration steps of Gilbert Algorithm 
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 Overview of Gilbert’s Algorithm 

1. Choose a point w1in S. 
2. Identify the point g*(- w1) in S closest to the origin in the direction of - w1. 
3. Identify the point w2 on the line from w1to g*(- w1) closest to the origin. 
4. Repeat 2-3. 
5. s* = limk→∞ wk. 

 
 

The following figure (7.10) shows the modified version of Gilbert’s Algorithm. 

 
Figure 7.10 Gilbert's Algorithm Flow 
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 Gilbert’s Algorithm results 

 

In order to obtain a satisfied result, a parameter “C ~” is controlled. By default, in Gilbert’s 

Algorithm, C~ is set to ‘1’, which gives non-promising results as less than 60% of accuracy. 

 With a c~ = 0.0016, a better performance is obtained. The following figure (7.11) shows 

the obtained statistics of different patients from the available data set and shows their 

sensitivity, specificity and accuracy. 

 

Figure 7.11 Gilbert's Results 

 

The following chapter will explain how Gilbert’s algorithm was implemented as hardware in RTL 

stage. In other words, it describes how the migration to hardware was done.  



 

 

8  

Migration to hardware 

 

Proving the high efficiency of the MATLAB code is just the beginning. The main objective 

of the project is to implement a single chip, that will be implanted in the brain of the patient. To 

achieve this goal, all you need to do is to map your MATLAB code, to a block diagram, showing 

the digital logic circuit of your algorithm. register-transfer level (RTL) is a design abstraction 

which models a synchronous digital circuit in terms of the flow of digital signals (data) between 

hardware registers, and the logical operations performed on those signals. This is used in Hardware 

Description Language(HDL) like VHDL and Verilog, which are languages used to create high 

level representation of a circuit from which lower-level representations and ultimately actual 

wiring can be derived as we will see in the next chapter where we will show the FPGA 

implementation. 
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8.1 Block Diagram 

Figure 8.1 Block diagram 

 As shown, the block diagram is showing the memories, caches, the inputs and the outputs of 

each block. This is a very important step because, the design is the basic document we will get 

back to, when writing the VHDL code. This is why we needed to give this step the sufficient time, 

and make sure the design is correct. 

8.2 VHDL-Verilog code 

Implementing the block diagram using VHDL and Verilog was our main work for a long time. 

When writing the code, we had to think about the next phase which is the FPGA, so we needed to 

make sure that our code is synthesizable. What synthesizability means is that the code could be 

mapped to a hardware circuit. For example, most FPGAs do not support floating point numbers, 

so we had to use a trick where we scale up the floating numbers to make it an integer number that 

can be represented easily and then we scale down the result to understand what the real number 

was. Also, some operations are not synthesizable, like dividing 2 different numbers, so we couldn’t 

just use the division sign in VHDL, but we needed to implement a divider component by ourselves 

to perform this task. Also, one of the toughest component is the kernel, which requires exponential 
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calculations. Exponential with random base and exponent is also not synthesizable, so we had to 

use the LUTs (Look up Tables). We also needed Finite State Machine (FSM) in our code. This is 

a very important topic so we will consider it in the following section. 

 

8.3 Finite State Machine 

The full code is in the appendix. The following code was tested on altera Cyclone V FPGA 

and checked for synthesizability. 
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FPGA 

 

Field Programmable Gate Array (FPGA) is an integrated circuit designed to be configured by 

a customer or a designer after manufacturing; hence the term "field-programmable". The FPGA 

configuration is generally specified using a hardware description language (HDL), The most 

common HDL languages are VHDL, Verilog and System Verilog. In our design we used VHDL 

and Verilog. (See appendices for design codes). 

FPGAs contain an array of programmable logic elements, and a hierarchy of reconfigurable 

interconnections that allow the blocks to be "wired together", like many logic gates that can be 

inter-wired in different configurations. Logic blocks can be configured to perform complex 

combinational functions, or merely simple logic gates. In most FPGAs, logic blocks also include 

memory elements, which may be simple flip-flops or more complete blocks of memory. 

While this chapter discusses the FPGA -which is used in this project-, it is important to 

mention another class of a -somehow- similar device which is ASIC. ASIC -standing for 

Application Specific Integrated Circuits- is similar to FPGA but it lacks the -general purpose- 

features. It is Integrated Circuit (IC) that is customized to perform certain task once it is fabricated.  

Throughout this chapter, a more detailed comparison between FPGA and ASIC is held in 

section 9.1. In section 9.2 the functions of FPGA in this project design is listed and discussed. 

Followed in section 9.3 by an overview of the basic features and virtues that allowed the FPGA to 

be a potential candidate for this project. In section 9.4, the details of the used Altera FPGA device 
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alongside with its design specs are listed. Where eventually, in section 9.5, the process of 

programming the FPGA and general considerations are discussed.  

9.1 FPGA Vs ASIC 

The translation of the architecture into a register transfer level description in HDL allows 

hardware designers to consider the design at the appropriate level of abstraction. It’s here that a 

major advantage of FPGA over ASIC can be found. It’s good for prototyping and has a low volume 

designs as cost would be less. It’s also a faster time to market. No layout and manufacturing steps 

needed. That’s why it’s preferable to map the design into FPGA before ASIC where the last needs 

longer design time to take care of all manufacturing steps as it’s once manufactured, it would need 

to spin again a new chip in case of bugs. Then, the ASIC would come its role next to be better for 

its lower power, lower unit costs and faster than FPGA with higher performance. 

9.2 Function of FPGA in the design 

In this project, the need of FPGA is very critical to boost the performance of our design. As 

the FPGA can perform the SVM training on the data much faster than the CPU. This is due to the 

dividable nature of the algorithm used. The capability of the FPGA to provide a high level of 

parallelism is employed to solve the training problem in parallel chunks yielding much faster 

training. 

In the development phase, Assigning the training function to the FPGA off-loads it from the 

CPU. Leaving the CPU to process performance measurements simultaneously using the updated 

parameters that the FPGA provides. This could be done by passing the continuously 

updated training parameters from the FPGA to the CPU, allowing for hardware acceleration. 

FPGA is very suitable in this design for its ability of reconfiguration. This is employed in the 

algorithms methods that we have for further future expansion. (That is; to store all the training 

algorithms on the chip and reconfigure to the currently required as explained previously). So, it’s 

more efficient to consider this vision in the current development phase. 

The FPGA enables high processing of data, as it’s needed in Gilbert algorithm to help the fast 

convergence of data point, hence, allowing faster response.   
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The concept of implanting Gilbert algorithm involves dealing with multiple memories and 

data accumulation, that the FPGA gives a great advantage as it support fast memory access. 

9.3 FPGA virtues 

The need to use Field Programmable Gate Array (FPGA) in this design was essential. An 

FPGA has the feature that it can be reprogrammed to perform a different function other than that 

it was initially intended to. FPGAs are very quick in processing our data as they have an 

outstanding digital processing performance. Furthermore, utilizing multichannel synchronization 

and processing is not a difficult task when using an FPGA. In other words, FPGA helps us adapt 

the design parameters to the required performance because of its beneficial re-

programmability and re-configurability.  

Intel FPGA is well suited in the processing of the data used with high speed and high channel 

density signals for two main reasons: 

• ease of multichannel synchronization and processing 

• impressive digital processing performance 
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9.4 FPGA in use (Altera) 

The FPGA device used in this project was provided by 

Altera - an Intel business unit. DE10-Nano development board 

(figure 9.1) from terasiC was used to develop and test the 

proposed design.   

 

The FPGA fabric on-board of the DE10-Nano is a Cyclone 

V series which offers a low cost and power consumption.  

The Development kit supports not only the FPGA but offers 

the ability to employ HPS (Hard Processor System) in the design 

as well.  

In the following tables some of the major specs of the 

FPGA and the HPS are listed to account for the device 

utilization in later chapters. However, it is important to note that 

the design of this project targeted the FPGA fabric only with no 

major role for the HPS.  

 

Acquisition of 
Altera by Intel 

On Dec. 28, 2015 – Intel 

Corporation a (“Intel”) 

announced that it has completed 

the acquisition of Altera 

Corporation (“Altera”) a leading 

provider of field-programmable 

gate array (FPGA) technology. 

The acquisition complements 

Intel’s leading-edge product 

portfolio and enables new classes 

of products in the high-growth 

data center and Internet of Things 

(IoT) market segments. 

“Altera is now part of Intel, 

and together we will make the 

next generation of 

semiconductors not only better 

but able to do more,” said Brian 

Krzanich, Intel CEO. “We will 

apply Moore’s Law to grow 

today’s FPGA business, and 

we’ll invent new products that 

make amazing experiences of the 

future possible – experiences like 

autonomous driving and 

machine learning.” 

 

 

 

Figure 9.1 DE10-Nano Development Kit 
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Table 9-1 Specs of DE10-Nano systems 

Specs. Hard Processor System FPGA 

 Processor Programmable logic 

Dual-core ARM* Cortex*-A9 MPCore 

processor at 800 MHz 

Neon™ media-processing engine with  

double-precision floating point unit 

32 KB L1 instruction cache 

32 KB L1 data cache 

512 KB shared L2 cache 

Logic elements (LE): 110KLE 

5,570 kilobits memory 

224 18 x 19 multipliers 

112 variable precision DSP blocks 

6 phased-locked loops (PLL) 

145 User defined I/O 

Memory FPGA I/O interfaces 

64 KB on-chip SRAM 

1 GB DDR3 SDRAM (32-bit data) 

8 GB microSD* flash memory card  

2 push buttons 

4 slide switches 

8 LEDs 

Three 50 MHz clock sources from 

the clock generator 

Two 40-pin expansion headers with 

diode protection 

One Arduino expansion header 

(Arduino UNO* R3 compatibility),  

8-channel, 12-bit A/D converter, 500 

ksps, 4-pin serial peripheral 

interface (SPI) 

 

 

 

 

Processor I/O 

1 gigabit ethernet PHY with RJ45 

connector 

1 USB 2.0 On-The-Go (OTG) port, USB 

Micro-AB connector 

microSD* card interface and socket 

Accelerometer (I2C interface plus 

interrupt) 

UART to USB, USB Mini-B connector 

Warm reset button, cold reset button 

One user button and one user LED 
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9.5 Simulation and Synthesis 

The process of programming the FPGA includes several stages that allow the final design to 

come into light. Of course, starting with block diagram designing that marks the high-level 

implementation of the main entities of the design. Code generation is conducted next using 

VHDL/Verilog. A critical step is followed which is the gate-level simulation of the design. Using 

Altera-ModelSim. ModelSim simulates and shows the different waveforms of different signals 

and the user should verify that the output signals are correct against the input signals (figure 9.2). 

Testbenches could be used in this context, where they can automate the testing input scenarios and 

compare them to the expected outputs and assert warnings and error messages in case of error in 

the simulation.  

If the simulations are successful, the next stage takes place which is “Synthesis”. Synthesis is 

the ability for the HDL code to map into the targeted FPGA. There exist several synthesis tools. 

In this project Quartus Prime is used to conduct the synthesis process. Finally, after successful 

synthesis binary programming stream is transmitted to the FPGA programmer to program it. 

Testing the final design on the FPGA and repeating the loop again for optimization and meeting 

the performance parameters.  

Figure 9.2  Example of waveform simulation using ModelSim 
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9.6 Power Analysis 

 

One of the most important aspects of the design is to calculate the power of the RTL and 

try to optimize it as much as you need.  

 Thermal power 

Thermal power is the component of total power that is dissipated within the device 

package. Designers need to consider the thermal power in determining whether they need to 

deploy thermal solutions on the FPGA, such as heat sinks, to keep the internal die-junction 

temperature within the recommended operating conditions.  

 Static Power 

 Static power is the power consumed by a device due to leakage currents when there is no 

activity or switching in the design. Therefore, this type of power is independent of the actual 

design. This data can be extracted from the FPGA device data sheet. 

 Dynamic Power 

 This is the power consumed through device operation caused by internal nodes in the 

FPGA toggling. That is, the charging and discharging of capacitive loads in the logic array 

and routing. The main variables affecting dynamic power are capacitance charging, supply 

voltage, and clock frequency. Dynamic power is design dependent and is heavily influenced 

by the users RTL style. 

 Power Calculations 

To calculate the thermal power dissipation, all you need to do is to compile your files and 

go to Processing => Start => Start Power Analyzer. If you check the power analyzer report, 

you will find the dynamic power equals 0, which makes sense because till this point, there is 

no clock or any signals going through the components of the design, so there is no dynamic 

power.  

To calculate the dynamic power, you will need to generate Value Change Dump (VCD) 

which is a standard file that contains all the simulation waveform information that is useful 
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for debugging simulation. It contains all the signals in the design. Also, you will need a 

testbench which simulates the clock and the initial values of all the inputs. To compile your 

testbench, go to Assignments => Settings => Simulation, add your testbench and mark 

Generate VCD. Now, the dynamic power will be generated. 

 

The next chapter will be specified to the main results we obtained from our project. It will 

also include a conclusion of all what has been done throughout the entire course of the project 

highlighting the important results that have been reached. 
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Design Highlights 

 

 Throughout the developments of this project several design highlights stood out and 

deserved to be pointed out on a dedicated chapter to mark their contribution to the project 

development.   

10.1  Fixed Point Conversion 

One of the many benefits of an FPGA-based solution is the ability to implement a mathematical 

algorithm in the best possible manner for the problem at hand. For example, if response time is 

critical, then we can pipeline the stages of mathematics. But if accuracy of the result is more 

important, more bits can be used to ensure the achieving of the desired precision. Of course, many 

modern FPGAs also provide the benefit of embedded multipliers and DSP slices, which can be 

used to obtain the optimal implementation in the target device. 

There are two methods of representing numbers within a design, fixed- or floating-point number 

systems. Fixed-point representation maintains the decimal point within a fixed position, allowing 

for straightforward arithmetic operations. The major drawback of the fixed-point system is that to 

represent larger numbers or to achieve a more accurate result with fractional numbers 

The normal way of representing the split between integer and fractional bits within a fixed-point 

number is x,y where x represents the number of integer bits and y the number of fractional bits. 

For example, 8,8 represents 8 integer bits and 8 fractional bits, while 16,0 represents 16 integer 

and 0 fractional. 
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The number of integer bits required depends upon the maximum integer value the number is 

required to store, while the number of fractional bits will depend upon the accuracy of the final 

result. In order to add, subtract or divide, the decimal points of both numbers must be aligned. This 

is done by either multiply the number with more integer bits by 2X or divide the number with the 

fewest integer bits by 2X. Division, however, will reduce the accuracy and may lead to a result 

that is outside the allowable tolerance. Since all numbers are stored in base-two scaling, scaling 

the number up or down can be easily done shifting one place to the left or right for each power of 

2 required to balance the two decimal points. Therefore, adding together two numbers that are 

scaled 8,8 and 9,7, the 9,7 number can be either scaled up by a factor of 21 or the 8,8 format can 

be scaled down to a 9,7 format, if the loss of a least-significant bit is acceptable. 

10.2  Contact Vector Entity 

In the development of the design main entities, Contact Vector entity was responsible to 

accumulate history of the processed points and check for each new point entry if it was repeated. 

If so, the algorithm terminates from the first termination condition.  

Memory RAM Blocks were used to save the current history of the processed points. However, the 

highlight of the entity that when a new point is written into the CV Memory, a CV monitor entity 

starts searching for this point in a descending manner (i.e. from down the memory to the top). This 

approach showed improved convergence time, since most probably and near convergence 

iterations, the repeated points tend to be successive. That is both repeated points would occupy 

recent memory addresses. Searching the memory from top to down in such case would consume 

much more clock cycles to find that the repeated point was in the preceding address of the just 

added point.    

10.3  Exponential using LUT 

As mentioned in chapter 6, the Kernel used in the design is RBF kernel. RBF kernel includes the 

calculation of exp function. Exponential functions are often hard to implement and uses high 

device resources. A proposed approach to building the exp(x) entity was to find the Taylor series 

for the exp(x) function. However, it was found that for an accepted accuracy in the desired range 

of the input argument “x” up to 27 terms of the series were required! Of course, such high number 
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of terms would eat up most of the device resources specially the DSP blocks that would 

accommodate the multiplication and factorial of the different terms.  

An alternative approach to this issue was to use the LUT. Look Up Tables are elements inside 

the FPGA that would map certain input to certain outputs. MATLAB used to generate a look up 

table for exp(x). Hence, the exp entity was designed such that it represents a ROM loaded with the 

values of exp(x) where x is interpreted as the address of the memory. In more simple way, this 

means that going to address “x” in the LUT memory, the value of exp(x) is stored.  

This approach is much more effective resources wise were it proves better performance than 

the Taylor series approach, however that was traded off with more memory block consumption. A 

case in which the targeted FPGA total memory of around 5 Mb could accommodate the design 

entire memories easily. 

10.4  Booth-Multiplier 

The design included plenty of multiplication operations. Multiplication operations often maps 

to DSP slices when synthesizing. Therefore, and to not fully depend on the target DSP slices 

number (often not so many are there) and to give more chances for smaller area, Booth-Multipliers 

were used. Booth-Multipliers are multiplication entities that employ booth algorithm to find the 

multiplication of two inputs. Booth multipliers are known for their fast calculations, the output is 

calculated in combinational logic (i.e. in the same clock cycle that the inputs change, the output 

changes accordingly). 



 

 

11  
Results 

 

In this chapter the detailed results of the project proposed algorithm and design are discussed. 

The results were obtained from simulating the data of 4 patients from the given dataset. Which 

were reduced from 10 patients. This reduction arose because of the complex feature space of the 

remaining 6 cases as shown in the following figure.  

Figure 11.1 Feature space of a complex patient 
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The complexity of such a case, is that the seizure and none-seizure points are not easily 

separable -On another context both classes are nearly fully overlapping-. In such situations the 

algorithms performance deteriorates unexpectedly and the results they produce are not accurate 

enough, hence eliminated from design development cycle.  

However, several solutions to overcome this problem were employed. For instance, but not 

limiting RBF Kernel was replaced instead of the Linear kernel which allowed for higher dimension 

separation. Another approach was in sweeping against a design parameter 𝐶̃ till producing 

satisfying results. 

11.1  Minimum Requirements for a candidate algorithm 

For the SVM Training algorithms to be a potential candidate, they must satisfy the 

performance parameters (previously mentioned in section 4.2.3) minimum requirement of 80% 

each. If the simulations (using MATLAB) fulfilled this condition, then the algorithm is qualified 

to start the RTL development loop.  

At the final stage of the RTL processes, the results of the gate-level simulations are tested and 

the performance parameters are re-calculated and verified to meet their MATLAB simulation 

counterparts within a certain percentage of accepted error. The error percentage between the 

MATLAB Simulations and Gate-Level simulations is present due several factors such as the fixed-

point conversion step (see Design Highlights).    

11.2  MATLAB and RTL Simulation results 

Primary MATLAB simulation results are discussed in this context for different patients. 

Compared to the RTL simulation of the same patient cases. 

It’s important to note that the RTL simulation results are obtained by feeding the training 

parameters that are calculated from the ModelSim RTL simulation into the MATLAB algorithm 

simulation. 



65 Chapter 11      Results  
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  Case: Patient (3) 
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  Case: Patient (5) 
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11.3  Discussion and Analysis of the results 

From observing the previous figures, patient 1 and patient 3 RTL simulations gave promising 

results that were close to the results obtained from MATLAB simulations. 

Since feature space of both patient 1 and 3 are less overlapping. And although, some 

approximations were carried out in simulating RTL the algorithm could find the proper support 

vectors to draw the hyperplane in between. On the other hand, seizure and non-seizure points of 

patient 5 are more overlapping in the feature space which caused more complexions in finding the 

proper margin in the presence of the approximations. Hence, gave lower results in comparison 

with MATLAB simulation. This is obvious from the previous hyperplane figure (11.7) which tends 

to be favoring non-seizure points. This shift to the upside towards distant seizure points introduced 

severe error which reflected on the performance parameters. 

11.4  Resources usage 

The project design is divided into two main modules, the Training Module and Classification 

Module. The training module function is to provide the “W” and “b” (i.e. the training parameters) 

of the SVM. Whereas in Classification module it uses these parameters to conduct the online 

classification of the extracted points.      

Table 11-1 Classification Module Resources Utilization 

Revision Name Main 

Top-level Entity Main 

Family Cyclone V 

Device 5CSEBA6U23I7 

Logic Utilization (in ALMs) 256/41,910 (<1%) 

Total Registers 169 

Total Pins 12/314 (4%) 

Total Block Memory Bits 100,800/5,662,720 (2%) 

Total DSP Blocks 15/112 (13%) 
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Table 11-2 Gilbert Training Module Resources Utilization 

Revision Name Main 

Top-level Entity Integration_final 

Family Cyclone V 

Device 5CSEBA6U23I7 

Logic Utilization (in ALMs) 9,186/41,910 (22%) 

Total Registers 1014 

Total Pins 18/314 (6%) 

Total Block Memory Bits 250,320/5,662,720 (4%) 

Total DSP Blocks 12/112 (12%) 

 

From the previous tables, table 11-1 illustrates the resources usage of the classification entity. 

As seen the logic utilization is less than 1% of the FPGA ALMs. This low utilization of the ALMs 

is due to the fact that the Classification module employed DSP blocks instead of logic to calculate 

the classification equation. On the other hand, the ALMs utilization in the Gilbert Integration 

module is much more (22%). This is due to using a -designed from scratch- entities to perform 

most of algorithm calculations.  

11.5  Power Analysis Results 

The power analysis both design entities are conducted after successful and high confidence 

estimation using sufficient toggle rates provided by testbenches. 

Table 11-3 Power Dissipation Results 

Power Type Training Classification 

Total Thermal Power Dissipated 526.52 mW 477.75 mW 

Core Dynamic Thermal Power Dissipated 103.03 mW 53.10 mW 

Core Static Thermal Power Dissipation 413.45 mW 412.78 mw 



 

 

12  
Conclusion 

 

In the thesis, the problem of seizure detection using support vector machine (SVM) was 

addressed to classify between seizures and non- seizures classes. The SVM goal is to be able to 

draw an accurate hyperplane between the two classes to categorize the signals of a patient’s brain 

to be correctly detected. 

One of the main contributions of our work is to express this task with a new algorithm that 

could give a better performance than previous implemented algorithms. This algorithm is called 

“Gilbert’s Algorithm”. 

A discussion of Sequential Minimum Optimization (SMO) method as SVM classification 

method in training the data has been provided with its results. This was an important stage in the 

understanding of the detection problem. 

The main focus of the thesis was proving that Gilbert’s Algorithm - the geometrical approach 

used long time ago in few applications - is able to be a good classifier for seizure detection 

problems. The analysis leads to the following conclusions:  

• At first, the obtained results were not satisfying; the sensitivity did not exceed 69.5652 %. 

• Various trials were carried on in order to improve this percentage along the other 

measurements such as changing the kernel and increasing the training hours. 

• Finally, improving the sensitivity to 90% was managed with high specificity and accuracy 

by changing a parameter “𝐶̃” to 0.0016 and the kernel to Radial Basis Function (RBF). 
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These findings provide a potential mechanism for employing Gilbert’s Algorithm on an 

embedded chip that will be implanted in the subject brain. Hence, triggering electric stimuli that 

will be able to retrieve the brain back to its normal state.  

Before manufacturing the chip, a proof of concept is preferred to be done using FPGA due to 

its beneficial re-programmability and re-configurability. Burning Gilbert’s training algorithm and 

classifier on FPGA is done successfully. This is very much the key component in future attempts 

to build the chip using ASIC technology.  

 

 Future Work 

Many optimizations have been left for the future work to obtain the optimal minimum power 

by analyzing it on Quartus Prime tool for the FPGA used. The target of the chip is to consume a 

low power that the battery can survive long periods. This is could be done by modifying and 

optimizing each module and different parts of the VHDL code till reaching an acceptable power 

without loss of accuracy and performance. This is desirable in the seizure detection problem for 

the following stage: the ASIC stage. 

Future work concerns deeper analysis in the ASIC field in order to build the chip that would 

contribute in seizure elimination. 

A future vision in the design problem is to store all the candidate training algorithms in the 

chip and use partial dynamic reconfiguration to let the chip use what is currently optimum. (i.e. 

Low power required? -> reconfigure to Algorithm-1, Fast Training required? -> reconfigure to 

Algorithm-2). 
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13  
Achievements 

 

This chapter is intended to highlight our achievements throughout a period of nearly nine 

months of work to do the project at the best possible way. Furthermore, the awards we 

received are documented and shown below.  

13.1  Achievements  

These are achievements related to certain benchmarks or highlights we successfully 

accomplished throughout the project course. They are related to direct tasks fulfillment and 

they represent a chronological progress since the beginning of our work. Our achievements 

are shown as follows: 

❖ Understanding problem definition and Medical background beyond epilepsy  

❖ Studying Machine learning concepts we needed 

❖ SVM using SMO algorithm Research and Simulation  

❖ SVM using Gilbert's algorithm Research 

❖ Matlab code simulation for Gilbert's algorithm 

❖  Modification of the Matlab code to reach an acceptable performance 

❖ Design architecture of hardware block diagram 

❖ Mapping the Matlab code to VHDL and Verilog hardware descriptive language 

❖ Implementing the VHDL and Verilog files in the RTL phase  

❖ FPGA mapping and burning  
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❖ Detecting seizure and non-seizure on FPGA having our Matlab code results 

❖ Getting power analysis to our design on FPGA 

13.2  Awards 

This section is concerned with different awards that we were honored to receive throughout 

our graduation project period. Our awards are listed as follows: 

❖ Qualification as a regional semi-finalist in the Innovate FPGA contest sponsored 

by Intel in 31st January 2018. 

❖ Qualification as a regional finalist in the Innovate FPGA contest sponsored by Intel 

in 31st May 2018.  

❖ Receiving a fund by ITAC in 25th March 2018. 

❖ Winning the first place in EECE Department Day for preparing the best poster for 

competing Graduation Project teams in 14th April 2018.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 13.1 Regional semi-finalist in the Innovate FPGA 

contest sponsored by Intel 

Figure 13.2 Regional finalist in the Innovate FPGA contest 

sponsored by Intel 



 

xii 
 

Recommendations:  

We have dedicated this to anyone interested in doing similar projects to our one to consider 

the following points. Although it may seem obvious, it is very important to indicate the importance 

of having a substantial background of programming skills using Matlab. Moreover, it is very 

advisable to learn basic machine learning concepts as they are fundamental in the project progress. 

Furthermore, it will be a great advantage to practice reading some scientific papers in advance of 

project beginning to enhance the analytical skills of understanding new information. Another very 

beneficial advice is to extremely improve RTL skills whether using VHDL or Verilog. Last but 

not least, it is recommended to get some knowledge on FPGA, its functionality and operation 

because it is the step in which the design is mapped to a real physical chip.  



 

 

Appendix 

VHDL/Verilog Codes: 

13.3 alphabetaMem 

Library ieee; 

use ieee.std_logic_1164.all; 

use ieee.numeric_std.all; 

 

 

Entity alphabetaMem is 

Generic (Addr_Width    : integer := 4; 

     Data_Width    : integer := 16; 

        n      : integer := 16); 

port( 

    clk : in std_logic; 

    reset: in std_logic;  

    WkSelect: in std_logic_vector(1 downto 0); 

    lamda: in std_logic_vector(n-1 downto 0); 

    CV_Point_address: in std_logic_vector(Addr_Width-1 downto 0);    

CVcounter: in unsigned(16-1 downto 0); 

    Datacounter: in unsigned(16-1 downto 0); 

    weight_one: in std_logic_vector(Data_Width-1 downto 0);    

average_enable: in std_logic;  

    copyTobackUp_enable: in std_logic;     

    read_enable_norm_avg: in std_logic;  

    read_enable_BackUp: in std_logic; 

    alpha_beta_wake_up: in std_logic;  

    First_Run: in std_logic;    Out_alphabeta_average: out 

std_logic_vector(Data_Width-1 downto 0); 

    OutBackUp: out std_logic_vector(Data_Width-1 downto 0) 

     

); 

end entity alphabetaMem; 

 

architecture arch_alphabeta_Mem of alphabetaMem is 

 

--------------------COMPONENTS INST:------------------- 

component data_Memory is 

    Generic ( 

    DATA_Mem_WIDTH: integer := 16; 

    MeM_DEPTH: integer := 16 

); 

 

port (  

    clk         : in std_logic; 

    write_enable    : in std_logic; 

    read_enable     : in std_logic; 
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    address     : in std_logic_vector(MeM_DEPTH-1 downto 0); 

    datain      : in std_logic_vector(DATA_Mem_WIDTH-1  downto 0); 

 

    dataout     : out std_logic_vector(DATA_Mem_WIDTH-1 downto 0) 

); 

end component data_Memory; 

 

Component BoothTop is 

port( 

    M: in std_logic_vector(15 downto 0); 

    Q: in std_logic_vector(15 downto 0); 

    Z: out std_logic_vector(31 downto 0) 

); 

end Component BoothTop; 

 

component divider is 

generic(input_width: integer:=30); 

port( 

 

    Q: in std_logic_vector(input_width-1 downto 0); 

    M: in std_logic_vector(input_width-1 downto 0); 

    Quo: out std_logic_vector(input_width-1 downto 0); 

    Remi: out std_logic_vector(input_width-1 downto 0) 

); 

end component; 

----------------------------------------------------------------------- 

TYPE State_type IS (OldPoint, NewPoint, SegmentPoint,Accumulation, 

CalcAvg,idle,ReadAlphaNew,CopyToBckUp,ReadBckUp );  -- Define the states 

SIGNAL State : State_Type; 

 

TYPE State_type_acc IS (read_acc,write_acc);  -- Define the states 

SIGNAL State_acc : State_Type_acc; 

 

TYPE State_type_avg IS (read_avg,write_avg);  -- Define the states 

SIGNAL State_avg : State_Type_avg; 

 

TYPE Alpha_Beta_Switch is (state_on,state_off); 

SIGNAL Switch_ab : Alpha_Beta_Switch; 

 

------------ 

SIGNAL reg_trigger: std_logic; 

SIGNAL write_enable_alphabeta: std_logic; 

SIGNAL read_enable_alphabeta: std_logic; 

SIGNAL sigAddress: std_logic_vector(Addr_Width-1 downto 0); 

SIGNAL accCounter: unsigned(16-1 downto 0); 

SIGNAL address_alphabeta: std_logic_vector(Addr_Width-1 downto 0); 

SIGNAL sigCVcounter: unsigned(16-1 downto 0); 

SIGNAL R_W: std_logic; --Flag bit, when 0 => Read , when 1 => Write 

SIGNAL siglamda: std_logic_vector(n-1 downto 0); 

SIGNAL sigDataout32: std_logic_vector((2*Data_Width)-1 downto 0); 

-----------------------------FSM------------------------------------ 

signal Data_in_FSMtoM: std_logic_vector(Data_Width-1 downto 0); 

signal Data_out_MtoFSM: std_logic_vector(Data_Width-1 downto 0); 

-------------------------------acc--avg------------------------------- 

SIGNAL Data_in_Acc_Avg: std_logic_vector(Data_Width-1 downto 0); 

SIGNAL Data_in_Acc_Avg_sig: std_logic_vector(Data_Width-1 downto 0); 

SIGNAL Data_out_Acc_Avg: std_logic_vector(Data_Width-1 downto 0); 
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signal write_enable_Acc_Avg: std_logic;--write enable for acc_avg mem 

signal read_enable_Acc_Avg: std_logic;--write enable for acc_avg mem 

SIGNAL first_accumulation: std_logic; -- =1-> first time to accum  

SIGNAL first_copyToBackup: std_logic;  

signal address_Acc_Avg:std_logic_vector(Addr_Width-1 downto 0); 

SIGNAL sigRead_enable_avg: std_logic; 

SIGNAL address_Acc_Avg_sequen: unsigned(Addr_Width-1 downto 0); 

SIGNAL sigDataout_div: std_logic_vector(Data_Width-1 downto 0); 

SIGNAL Acc_flag: std_logic; 

SIGNAL sum_acc_MtoFSM: std_logic_vector(Data_Width-1 downto 0); 

----------------------Backup----------------------------------------- 

SIGNAL write_enable_BackUp: std_logic; 

SIGNAL address_backup:std_logic_vector(Addr_Width-1 downto 0); 

SIGNAL address_backup_sequen: unsigned(Addr_Width-1 downto 0); 

SIGNAL Data_in_BckUp:std_logic_vector(Data_Width-1 downto 0); 

signal first_run_sel: std_logic;   --- to mux ; 

signal first_run_in: std_logic; -----  off the first sig  

--------------------------------------------------------------------- 

Begin 

first_run_in<= first_run when first_run_sel='1' else  

        '0'; 

State<= ReadAlphaNew when read_enable_norm_avg='1' else 

    CopyToBckUp when copyTobackUp_enable='1' else 

    ReadBckUp when read_enable_BackUp='1' else 

    CalcAvg when average_enable='1' and Acc_flag='0' else 

    Accumulation when Acc_flag='1' else 

    SegmentPoint when WkSelect= "00" and average_enable='0' and 

Acc_flag='0' else 

    OldPoint when WKSelect="10" and average_enable='0' and Acc_flag='0' 

and First_Run_in='0' else 

    NewPoint when ((WKSelect="11" and average_enable='0' and 

Acc_flag='0') or First_Run_in='1')  else 

    idle; 

Data_in_Acc_Avg_sig<= 

std_logic_vector(resize(signed(Data_out_MtoFSM(Data_Width-1 downto 5)),16) 

) when first_accumulation='1' else 

         Data_in_Acc_Avg; 

         

siglamda<= std_logic_vector("0100000000" - (signed (lamda))); 

multipI: BoothTop port map(siglamda,Data_out_MtoFSM,sigDataout32); 

-----------------------DIVIDER --------------------- 

div: divider generic map(input_width=>16) port 

map(Data_out_Acc_Avg,std_logic_vector(CVcounter),sigDataout_div); 

 

Memory_Alphabeta: data_Memory generic map (DATA_Mem_WIDTH => 

Data_Width,MeM_DEPTH=>Addr_Width) port map(clk,write_enable_alphabeta, 

read_enable_alphabeta, address_alphabeta,Data_in_FSMtoM,Data_out_MtoFSM); 

Memory_Acc_Average: data_Memory generic map (DATA_Mem_WIDTH => 

Data_Width,MeM_DEPTH=>Addr_Width) port map(clk,write_enable_Acc_Avg, 

sigRead_enable_avg, address_Acc_Avg,Data_in_Acc_Avg_sig,Data_out_Acc_Avg); 

Memory_BackUp: data_Memory generic map (DATA_Mem_WIDTH => 

Data_Width,MeM_DEPTH=>Addr_Width) port map(clk,write_enable_BackUp, 

read_enable_BackUp, address_backup,Data_out_Acc_Avg,OutBackUp); 

Out_alphabeta_average<=Data_out_Acc_Avg; 

reg_trigger<= average_enable or copyTobackUp_enable or 

read_enable_norm_avg or 

        read_enable_BackUp or alpha_beta_wake_up; 
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main_Proc:  process(clk,sigAddress,sigDataout32,reset,reg_trigger) is 

  begin 

    if(reset='1') then 

        sigAddress<=(others=>'0'); 

        sigCVcounter<=(others=>'0'); 

        address_alphabeta<=(others=>'0'); 

        state_acc<=read_acc; 

        state_avg<=read_avg; 

        accCounter<=(others=>'0'); 

        first_accumulation<='1'; 

        R_W<='0'; 

        address_Acc_Avg_sequen<=(others=>'0'); 

        address_backup_sequen<=(others=>'0'); 

        Acc_flag<='0'; 

        address_backUp<=(others=>'0'); 

        Switch_ab<=state_off; 

        first_run_sel<='1';  

         

    end if; 

     

    if rising_edge(clk) THEN  

CASE Switch_ab IS 

    when state_off=> 

      if(reg_trigger='1') then 

            Switch_ab<=state_on; 

        else 

            Switch_ab<=state_off; 

            accCounter<=(others=>'0'); 

            address_backup_sequen<=(others=>'0'); 

            address_alphabeta<=(others=>'0'); 

        end if; 

     

    when state_on=> 

        CASE State IS 

            when OldPoint=> 

                write_enable_alphabeta<='0'; 

                read_enable_alphabeta<='1'; 

                sigRead_enable_avg<=read_enable_Acc_Avg 

                Acc_flag<='1'; 

                state_avg<=read_avg;    

            when NewPoint=>  

                if accCounter < Datacounter then 

                 sigAddress<= std_logic_vector(unsigned(sigAddress)+1); 

                    Data_in_FSMtoM<=(others=>'0'); 

                    write_enable_alphabeta<='1'; 

                    accCounter<= accCounter+1; 

                    address_alphabeta<=sigaddress;                     

                elsif accCounter= Datacounter then 

                    Data_in_FSMtoM<= weight_one;  

                    accCounter<= accCounter+1; 

                    address_alphabeta<= CV_Point_address;  

                elsif accCounter=(Datacounter)+1 then 

                    write_enable_alphabeta<='0'; 

                    accCounter<=(others=>'0'); 

                    address_alphabeta<=(others=>'0'); 

                    sigAddress<=(others=>'0'); 
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                    sigRead_enable_avg<=read_enable_Acc_Avg; 

                    if(First_Run_in='1') then 

                        Acc_flag<='0'; 

                        first_run_sel<='0'; 

                        switch_ab<=state_off; 

                    else 

                        Acc_flag<='1'; 

                        state_avg<=read_avg; 

                    end if;  

                end if;  

            when SegmentPoint=> 

                if accCounter < Datacounter then 

                    if R_W = '0' then --if read operation:   

                        write_enable_alphabeta<='0'; 

                        read_enable_alphabeta<='1';= 

                        address_alphabeta<=sigAddress;   

                        R_W <= '1';  

                    elsif R_W ='1' then -- if write operation 

                        write_enable_alphabeta<='1'; 

                        read_enable_alphabeta<='0';  

                        Data_in_FSMtoM<=sigDataout32(23 downto 8); 

                 sigAddress<= std_logic_vector(unsigned(sigAddress)+1); 

                        accCounter<=accCounter+1; 

                        address_alphabeta<=sigAddress; 

                        R_W <= '0'; -- Next operation is Read 

                    end if; 

                elsif accCounter=Datacounter then 

                    write_enable_alphabeta<='1'; 

                    read_enable_alphabeta<='1';  

                    accCounter<=accCounter+1; 

                    address_alphabeta<=CV_Point_address; 

    elsif accCounter = (Datacounter+1) then              

                    if (weight_one(weight_one'HIGH)='0') then 

                        Data_in_FSMtoM<= std_logic_vector(unsigned 

(Data_out_MtoFSM) + unsigned (lamda(8 downto 0)&"0000")); -- (4,12)+(8,8)  

                    else 

                        Data_in_FSMtoM<= std_logic_vector(unsigned 

(Data_out_MtoFSM) - unsigned (lamda(8 downto 0)&"0000")); 

                    end if; 

 write_enable_alphabeta<='1';  

                    accCounter<=(others=>'0'); 

                    read_enable_alphabeta<='1'; 

                    sigRead_enable_avg<='1'; 

                    sigAddress<=(others=>'0');  

                    Acc_flag<='1'; 

                    state_acc<=read_acc;  

                end if;  

            WHEN CalcAvg=> 

                case state_avg IS 

                    WHEN read_avg=>  

                        if accCounter < Datacounter then 

                        write_enable_Acc_Avg<='0'; 

                        sigRead_enable_avg<='1'; 

                        address_Acc_Avg<=sigaddress; 

                        state_avg<= write_avg; 

                        else 

                        state_avg<= read_avg; 
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                        sigRead_enable_avg<='0'; 

                        write_enable_Acc_Avg<='0'; 

                        Switch_ab<=state_off; 

                        end if; 

                    WHEN write_avg=> 

                        if accCounter <Datacounter then 

                        write_enable_Acc_Avg<='1'; 

                        sigRead_enable_avg<='0'; 

                        address_Acc_Avg<=sigaddress; 

                        Data_in_Acc_Avg<=( 

sigDataout_div(sigDataout_div'HIGH)&sigDataout_div(9 downto 0)&"00000"); 

           sigAddress<= std_logic_vector(unsigned (sigAddress)+1); 

                        accCounter<=accCounter+1; 

                        state_avg<= read_avg; 

                        else 

                        state_avg<= read_avg; 

                        sigRead_enable_avg<='0'; 

                        write_enable_Acc_Avg<='0'; 

                        Switch_ab<=state_off; 

                        end if; 

                end case; 

            WHEN Accumulation  => 

                case state_acc IS      

                    WHEN read_acc=> 

                        if accCounter < Datacounter then 

                        write_enable_alphabeta<='0'; 

                        write_enable_Acc_Avg<='0'; 

                        address_alphabeta<=sigaddress; 

                        address_Acc_Avg<=sigaddress; 

                        read_enable_alphabeta<='1'; 

                        sigRead_enable_avg<='1';  

                        state_acc<= write_acc; 

                        else 

write_enable_Acc_Avg<='0';                                                      

read_enable_alphabeta<='0'; 

                        sigRead_enable_avg<='0'; 

                        accCounter<=(others=>'0'); 

                        sigAddress<=(others=>'0'); 

                        first_accumulation<='0'; 

                        Acc_flag<='0'; 

                        Switch_ab<=state_off; 

                        end if; 

 

                    WHEN write_acc=> 

                        if accCounter < Datacounter then 

                        Data_in_Acc_Avg<=std_logic_vector(  

signed(Data_out_Acc_Avg) + resize(signed(Data_out_MtoFSM(Data_Width-1 

downto 5)),16)  ); 

write_enable_Acc_Avg<='1'; 

    sigaddress<= std_logic_vector(unsigned (sigAddress)+1);  

                        accCounter<=accCounter+1; 

                        state_acc<= read_acc; 

                        else -- accu finished 

                        state_acc<= read_acc; 

                        write_enable_Acc_Avg<='0'; 

                  read_enable_alphabeta<='0'; 

                        sigRead_enable_avg<='0'; 
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                        accCounter<=(others=>'0'); 

                        sigAddress<=(others=>'0'); 

                        first_accumulation<='0'; 

                        Acc_flag<='0'; 

                        Switch_ab<=state_off; 

                        end if; 

                end case; 

            WHEN ReadAlphaNew => 

                if(read_enable_norm_avg='1' and accCounter<Datacounter) 

then 

                    sigRead_enable_avg<='1'; 

                    address_backup_sequen<= address_backup_sequen+1; 

address_Acc_Avg<=std_logic_vector(address_backup_sequen); 

                    accCounter<= accCounter+1; 

                else 

                    address_Acc_Avg_sequen<=(others=>'0'); 

                    Switch_ab<=state_off; 

         

                end if; 

            WHEN CopyToBckUp=> 

                if(copyTobackUp_enable='1' and accCounter<Datacounter) 

then 

                    sigRead_enable_avg<='1'; 

                    write_enable_BackUp<='1'; 

                    address_backup_sequen<= address_backup_sequen+1; 

address_Acc_Avg<=std_logic_vector(address_backup_sequen); 

address_backUp<=std_logic_vector(address_backup_sequen); 

 accCounter<=accCounter+1; 

                else 

                    address_backup_sequen<=(others=>'0'); 

                    Switch_ab<=state_off;  

                end if; 

                    WHEN ReadBckUp=> 

                if(read_enable_BackUp='1' and accCounter<Datacounter) 

then 

         

                    address_backup_sequen<= address_backup_sequen+1; 

                    

address_backUp<=std_logic_vector(address_backup_sequen); 

                    accCounter<=accCounter+1; 

                else 

                    address_backup_sequen<=(others=>'0'); 

                    Switch_ab<=state_off; 

         

                end if; 

            WHEN idle=> 

        sigAddress<=(others=>'0'); 

        sigCVcounter<=(others=>'0'); 

        address_alphabeta<=(others=>'0'); 

        state_acc<=read_acc; 

        state_avg<=read_avg; 

        accCounter<=(others=>'0'); 

        first_accumulation<='1'; 

        R_W<='0'; 

        address_Acc_Avg_sequen<=(others=>'0'); 

        address_backup_sequen<=(others=>'0'); 

        Acc_flag<='0'; 
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        Switch_ab<=state_off; 

            WHEN others => 

        end CASE; 

end Case; 

    end if; 

                 

end process; 

end architecture arch_alphabeta_Mem; 

 

 

 

13.4 CacheAcc 

Library ieee; 

use ieee.std_logic_1164.all; 

use ieee.numeric_std.all; 

 

Entity cacheAcc_1 is 

Generic (CacheAcc_Width : integer := 27; --27 bit(15,12) 

     Cache_Width : integer := 23;--23 bit (11,12) 

    address_width:integer :=16); 

port ( 

     clk : in std_logic; 

     write_enable_cachAcc1 : in std_logic; 

         read_enable_cachAcc1 : in std_logic; 

         datain_cachAcc1 : in std_logic_vector(Cache_Width-1 downto 0); 

 

     DataOut_cachAcc1:out std_logic_vector(CacheAcc_Width-1 downto 0); 

 

         reg_reset_chachAcc1: in std_logic; 

         reg_enable_cahcAcc1: in std_logic;  

        MuxDataIN_SeclAcc1  : in std_logic 

); 

end entity cacheAcc_1; 

 

architecture cacheAcc_arch_1 of cacheAcc_1 is 

component data_Memory is 

    Generic ( 

    DATA_Mem_WIDTH: integer := 16; 

    MeM_DEPTH: integer := 16 

    ); 

port ( clk : in std_logic; 

write_enable : in std_logic; 

read_enable : in std_logic; 

address: in std_logic_vector(MeM_DEPTH-1 downto 0); 

datain : in std_logic_vector(DATA_Mem_WIDTH - 1  downto 0); 

dataout : out std_logic_vector(DATA_Mem_WIDTH - 1 downto 0) 

); 

end component; 

------------------------------------------------------------------ 

component N_bitfulladder is 

Generic (n : integer := 16); 

port 

(a,b:in std_logic_vector(n-1 downto 0); 

f:out std_logic_vector(n-1 downto 0); 

cout:out std_logic 
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); 

end component; 

----------------------------------------------------------------------- 

component reg is 

generic(n:integer); 

port( 

    clk,rst,wenable:in std_logic; 

    d:in std_logic_vector(n-1 downto 0); 

    q:out std_logic_vector(n-1 downto 0) 

); 

end component; 

-----------------------------------------------------------------------

- 

component mux2x1 is 

Generic (n:integer); 

port( 

d1:in std_logic_vector(n-1 downto 0); 

d2:in std_logic_vector(n-1 downto 0); 

s:in std_logic; 

q:out std_logic_vector(n-1 downto 0) 

); 

end component; 

-----------------------------------------------------------------------

- 

signal Sig_datain_cachAcc1:std_logic_vector(CacheAcc_Width-1 downto 

0);--data coming from cache 

signal addressIn_cacheAcc1 :std_logic_vector(address_width-1 downto 

0);--address in direct to memory 

signal addreIncreas_cahceAcc1 :std_logic_vector(address_width-1 downto 

0); --address after increment 

signal dataAcc_cachAcc1 :std_logic_vector( CacheAcc_Width-1 downto 0);  

signal DataOutSignal_cachAcc1 :std_logic_vector( CacheAcc_Width-1 

downto 0); 

signal cout_10: std_logic; 

 

signal dataAcc_MuxOut_cachAcc1 :std_logic_vector( CacheAcc_Width-1 

downto 0); --signal after Mux before data in coming data or accu. data 

begin 

 

Sig_datain_cachAcc1<=datain_cachAcc1(datain_cachAcc1'High)&datain_cachA

cc1(datain_cachAcc1'High)&datain_cachAcc1(datain_cachAcc1'High)&datain_cac

hAcc1(datain_cachAcc1'High)&datain_cachAcc1; 

dataAcc_cachAcc1<=std_logic_vector(signed 

(Sig_datain_cachAcc1)+signed(DataOutSignal_cachAcc1));--27 bit(15,12) 

 

  adderIcreasing:N_bitfulladder generic map(n => address_width) port 

map(addressIn_cacheAcc1,"0000000000000001", addreIncreas_cahceAcc1, 

cout_10); 

  regggg    : reg generic map(n => address_width) port 

map(clk,reg_reset_chachAcc1,reg_enable_cahcAcc1,addreIncreas_cahceAcc1,add

ressIn_cacheAcc1); 

  cacheAcc_MeMo : data_Memory generic map(DATA_Mem_WIDTH=> 

CacheAcc_Width,MeM_DEPTH=>address_width)port 

map(clk,write_enable_cachAcc1, 

read_enable_cachAcc1,addressIn_cacheAcc1,dataAcc_MuxOut_cachAcc1,DataOutSi

gnal_cachAcc1); 
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  MuxDataIn : mux2x1 generic map(n => CacheAcc_Width) port 

map(Sig_datain_cachAcc1,dataAcc_cachAcc1,MuxDataIN_SeclAcc1,dataAcc_MuxOut

_cachAcc1);  

DataOut_cachAcc1<=DataOutSignal_cachAcc1; 

end architecture cacheAcc_arch_1; 

 

13.5 cacheAvg_1 

 

Library ieee; 

use ieee.std_logic_1164.all; 

USE IEEE.numeric_std.all; 

 

Entity cacheAvg_1 is 

Generic (n : integer := 16; 

    CacheAcc_Width : integer := 27; 

    CacheAvg_Width : integer := 16; 

    address_width:integer :=16); 

port ( 

     clk : in std_logic; 

     write_enable_cachAvg1 : in std_logic; 

         read_enable_cachAvg1  : in std_logic; 

         datain_cachAvg1       : in std_logic_vector(CacheAcc_Width-1 

downto 0); 

     DataOut_cachAvg1      :out std_logic_vector(CacheAvg_Width-1 

downto 0); 

         reg_reset_chachAvg1   : in std_logic; 

         reg_enable_cahcAvg1   : in std_logic; 

     Avg_Counter           : in unsigned(n-1 downto 0); 

 

  addreMuxOut_cachAvg_b:out std_logic_vector(address_width-1 downto 0); 

end entity cacheAvg_1; 

 

architecture cacheAvg_1_arch of cacheAvg_1 is 

component data_Memory is 

    Generic ( 

    DATA_Mem_WIDTH: integer := 16; 

    MeM_DEPTH: integer := 16 

    ); 

port ( clk : in std_logic; 

write_enable : in std_logic; 

read_enable : in std_logic; 

address: in std_logic_vector(MeM_DEPTH-1 downto 0); 

datain : in std_logic_vector(DATA_Mem_WIDTH - 1  downto 0); 

dataout : out std_logic_vector(DATA_Mem_WIDTH - 1 downto 0) 

); 

end component; 

------------------------------------------------------------------ 

component N_bitfulladder is 

Generic (n : integer := 16); 

port 

(a,b:in std_logic_vector(n-1 downto 0); 

f:out std_logic_vector(n-1 downto 0); 
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cout:out std_logic 

); 

end component; 

-------------------------------------------------------------------- 

component reg is 

generic(n:integer); 

port( 

    clk,rst,wenable:in std_logic; 

    d:in std_logic_vector(n-1 downto 0); 

    q:out std_logic_vector(n-1 downto 0) 

); 

end component; 

----------------------------------------------------------------- 

component mux2x1 is 

Generic (n:integer); 

port( 

d1:in std_logic_vector(n-1 downto 0); 

d2:in std_logic_vector(n-1 downto 0); 

s:in std_logic; 

q:out std_logic_vector(n-1 downto 0) 

); 

end component; 

----------------------------------------------------------------- 

Component divider is 

Generic (input_width : integer := 16); 

port( 

    Q: in std_logic_vector(input_width-1 downto 0); 

    M: in std_logic_vector(input_width-1 downto 0); 

    Quo: out std_logic_vector(input_width-1 downto 0); 

    Remi: out std_logic_vector(input_width-1 downto 0) 

); 

end Component divider; 

--------------------------------------------------------------- 

 

signal addressIn_cacheAvg1 :std_logic_vector(address_width-1 downto 0); 

signal addreIncreas_cahceAvg1 :std_logic_vector(address_width-1 downto 

0); 

signal addreMuxOut_cachAvg1 :std_logic_vector(address_width-1 downto 

0);  

signal Divided_Avg_value:std_logic_vector(CacheAcc_Width-1 downto 0); 

signal overF :std_logic; 

signal cout: std_logic; 

signal Remn: std_logic_vector(CacheAcc_Width-1 downto 0); 

 

signal SigAvg_Counter :std_logic_vector(CacheAcc_Width-1 downto 0); 

 

begin 

SigAvg_Counter<=std_logic_vector("00000000000"&Avg_Counter); 

 

LABLE_Division: divider generic map(input_width=>CacheAcc_Width) port 

map(datain_cachAvg1,SigAvg_Counter,Divided_Avg_value,Remn); 

 

 LABLE_AddreInc   :N_bitfulladder generic map(n => address_width) port 

map(addressIn_cacheAvg1,"0000000000000001", addreIncreas_cahceAvg1, cout); 

 

 LABLE_Avg        : data_Memory generic 

map(DATA_Mem_WIDTH=>CacheAvg_Width,MeM_DEPTH=>address_width) port 
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map(clk,write_enable_cachAvg1, 

read_enable_cachAvg1,addressIn_cacheAvg1,Divided_Avg_value(20 downto 

5),DataOut_cachAvg1); 

 LABLE_Reg_Avg    : reg generic map(n => address_width) port 

map(clk,reg_reset_chachAvg1,reg_enable_cahcAvg1,addreIncreas_cahceAvg1,add

ressIn_cacheAvg1); 

 

addreMuxOut_cachAvg_b<=addreMuxOut_cachAvg1; 

end architecture cacheAvg_1_arch;  
 

 

13.6 Kernel_block 

LIBRARY IEEE; 

USE IEEE.std_logic_1164.all; 

USE IEEE.numeric_std.all; 

 

 

ENTITY Kernel_block IS  

Generic (n : integer := 17); 

PORT ( 

clk,reset : in std_logic; 

------------inputs--------------------------------------------------- 

Feature1_Class1_Data  : in std_logic_vector(n-1 downto 0);   --fx1 

Feature2_Class1_Data  : in std_logic_vector(n-1 downto 0);   --fx2 

Feature3_Class1_Data  : in std_logic_vector(n-1 downto 0);   --fx3 

 

Feature1_Class2_Data  : in std_logic_vector(n-1 downto 0);   --fy1 

Feature2_Class2_Data  : in std_logic_vector(n-1 downto 0);   --fy2 

Feature3_Class2_Data  : in std_logic_vector(n-1 downto 0);   --fy3 

 

----------------------Kernel Relative Point Features Reg Signals-------

--------------- 

reg_reset_Kernel_RelativePoint_F    : in std_logic; 

reg_enable_Kernel_RelativePoint_F   : in std_logic; 

--------------------Kernel class Features Reg Signals------------------

------- 

Kernal_classF_Mux_Selc: in std_logic; 

reg_reset_Kernel_classF    : in std_logic; 

reg_enable_Kernel_classF   : in std_logic; 

 

 

--------------------------------------------------------------------- 

Output_final: out std_logic_vector(15 downto 0); -- (4,12) 

OutCountSig: out std_logic; 

Count_TostartRead: out std_logic_vector (2 downto 0) 

 ); 

 

END ENTITY Kernel_block; 

 

ARCHITECTURE Arch_Kernel_block OF Kernel_block IS 

 

--------------------------------------------------------------------- 

component B4_Kernel is 

Generic (n : integer := 17); 

port ( 
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clk : in std_logic; 

 

Feature1_Class1_Data  : in std_logic_vector(n-1 downto 0);   --fx1 

Feature2_Class1_Data  : in std_logic_vector(n-1 downto 0);   --fx2 

Feature3_Class1_Data  : in std_logic_vector(n-1 downto 0);   --fx3 

 

Feature1_Class2_Data  : in std_logic_vector(n-1 downto 0);   --fy1 

Feature2_Class2_Data  : in std_logic_vector(n-1 downto 0);   --fy2 

Feature3_Class2_Data  : in std_logic_vector(n-1 downto 0);   --fy3 

 

----------------------Kernel Relative Point Features Reg Signals----- 

reg_reset_Kernel_RelativePoint_F   : in std_logic; 

reg_enable_Kernel_RelativePoint_F  : in std_logic; 

 

Kernal_RelativePoint_Mux_3Feature_Selc : in std_logic_vector(1 downto 

0);  

--------------------Kernel class Features Reg Signals------------------

------- 

Kernal_classF_Mux_Selc: in std_logic; 

 

reg_reset_Kernel_classF    : in std_logic; 

reg_enable_Kernel_classF   : in std_logic; 

 

Kernal_class_Mux_3Feature_Selc : in std_logic_vector(1 downto 0); 

 

Kernal_classFeature_Mux_dataOut: out std_logic_vector(n-1 downto 0); 

Kernal_RelativePoint_Mux_dataOut:out std_logic_vector(n-1 downto 0) 

 

); 

end component B4_Kernel; 

--------------------------------------------------------------------- 

component reg is 

generic(n:integer:=16); 

port(clk,rst,wenable:in std_logic; 

d:in std_logic_vector(n-1 downto 0); 

q:out std_logic_vector(n-1 downto 0) 

); 

end component; 

---------------------------------------------------------------- 

component exp_lut is 

port( 

  i_x            : in  std_logic_vector( 15 downto 0);  --(4,12) 

  o_exp          : out std_logic_vector( 15 downto 0)); --(4,12) 

end component exp_lut; 

------------------------------------------------------------- 

signal count_3 : std_logic_vector(2 downto 0); 

signal Kernal_classFeature_Mux_dataOutSig : std_logic_vector(n-1 downto 

0);   

signal Kernal_RelativePoint_Mux_dataOutSig : std_logic_vector(n-1 

downto 0);    

signal Kernal_output :  std_logic_vector(15 downto 0);  

signal Kernal_ADDOutput_accuml : std_logic_vector(36 downto 0);  

signal Reg_buffer1,Reg_buffer2,Reg_buffer3 :  std_logic ;  

signal difference : std_logic_vector(17 downto 0); 

----------------------------------------------------------------------- 

signal Kernal_class_Mux_3Feature_Selc_sig: std_logic_vector(1 downto 0);  
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signal Kernal_RelativePoint_Mux_3Feature_Selc_sig:  std_logic_vector(1 

downto 0);  

signal sqred : std_logic_vector(35 downto 0); 

signal Negative_Squared: signed(36 downto 0); 

signal conc_for_Neg:std_logic_vector( 15 downto 0); 

begin 

input :B4_Kernel generic map 

(n=>17)portmap(clk,Feature1_Class1_Data,Feature2_Class1_Data,Feature3_Clas

s1_Data ,Feature1_Class2_Data,Feature2_Class2_Data ,Feature3_Class2_Data 

,reg_reset_Kernel_RelativePoint_F,reg_enable_Kernel_RelativePoint_F,Ker

nal_RelativePoint_Mux_3Feature_Selc_sig,Kernal_classF_Mux_Selc,reg_reset_K

ernel_classF,reg_enable_Kernel_classF,Kernal_class_Mux_3Feature_Selc_sig,K

ernal_classFeature_Mux_dataOutSig,Kernal_RelativePoint_Mux_dataOutSig); 

 

difference<=std_logic_vector(signed(Kernal_classFeature_Mux_dataOutSig(

Kernal_classFeature_Mux_dataOutSig'HIGH)&Kernal_classFeature_Mux_dataOu

tSig)- 

signed(Kernal_RelativePoint_Mux_dataOutSig(Kernal_RelativePoint_Mux_dat

aOutSig'HIGH)&Kernal_RelativePoint_Mux_dataOutSig));  

sqred<= std_logic_vector(signed(difference)*signed(difference));   

Negative_Squared <= to_signed(0,37) - signed( Kernal_ADDOutput_accuml 

); 

conc_for_Neg<=std_logic_vector(Negative_Squared(Negative_Squared'HIGH)&

Negative_Squared(26 downto 12)) when signed(Negative_Squared)>(-117440512) 

        else "1000111111100100";  

Exp: exp_lut port map ( conc_for_Neg ,  Kernal_output ); 

 

process(clk,reset,reg_enable_Kernel_classF) 

begin  

     

    if reset='1' then 

    count_3<="000"; 

    Kernal_ADDOutput_accuml <= (others=>'0'); 

     

    elsif (rising_edge(clk))then 

        Reg_buffer1<=reg_enable_Kernel_classF;  -- staling part 

        Reg_buffer2<= Reg_buffer1; 

        if(Reg_buffer2='1')then  

             Kernal_ADDOutput_accuml 

<=std_logic_vector('0'&signed(sqred)+signed(Kernal_ADDOutput_accuml));  

            count_3 <= std_logic_vector(unsigned(count_3)+1); 

        end if; 

        if count_3="011"then 

        count_3<="000"; 

         Kernal_ADDOutput_accuml <= (others=>'0'); 

        end if;  

    end if; 

  end process;  

Kernal_class_Mux_3Feature_Selc_sig<= count_3(1 downto 0); 

Kernal_RelativePoint_Mux_3Feature_Selc_sig<=count_3(1 downto 0) ;  

OutCountSig <='1' when  count_3="011" else 

          '0' ; 

Output_final <= Kernal_output when count_3="011"; 

Count_TostartRead<=count_3; 

--in CU every time count =3 , el CU teb3at signal reset       

END Arch_Kernel_block; 
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13.7 Norm_avg 

 

Library ieee; 

use ieee.std_logic_1164.all; 

use ieee.numeric_std.all; 

 

Entity Norm_avg is 

Generic (Data_Width : integer := 16); 

port ( 

clk: in std_logic; 

DataOut_cachAvg1 :in std_logic_vector(Data_Width-1 downto 0); 

DataOut_cachAvg2 :in std_logic_vector(Data_Width-1 downto 0); 

Mux_Select_Avg1_or_Avg2: in std_logic; 

i_Old_alphabeta:in std_logic_vector(Data_Width-1 downto 0); 

j_Old_alphabeta:in std_logic_vector(Data_Width-1 downto 0); 

i_new_alphabeta:in std_logic_vector(Data_Width-1 downto 0); 

j_new_alphabeta:in std_logic_vector(Data_Width-1 downto 0); 

Mux_Select_alpha: in std_logic_vector(1 downto 0); 

Reg_reset_AvgNorm : in std_logic; 

Reg_Enable_AvgNorm : in std_logic; 

Mux_Select_AvgNorm_Que_in: in std_logic; 

Reset_fifo_AvgNorm: in std_logic; 

WriteEnable_fifo_AvgNorm: in std_logic; 

ReadEnable_fifo_AvgNorm: in std_logic; 

FifoEmpty_fifo: out std_logic; 

FifoFull_fifo: out std_logic; 

Reg_reset_Queu_AvgNorm : in std_logic; 

Reg_Enable_Queu_AvgNorm : in std_logic; 

Reset_square : in std_logic; 

Last_Termination_condition:out std_logic_vector(1 downto 0)); 

end entity Norm_avg; 

 

architecture Norm_avg_arch of Norm_avg is 

component reg is 

generic(n:integer); 

port( 

    clk,rst,wenable:in std_logic; 

    d:in std_logic_vector(n-1 downto 0); 

    q:out std_logic_vector(n-1 downto 0) 

); 

end component; 

----------------------------------------------------------------- 

component mux2x1 is 

Generic (n:integer); 

port( 

d1:in std_logic_vector(n-1 downto 0); 

d2:in std_logic_vector(n-1 downto 0); 

s:in std_logic; 

q:out std_logic_vector(n-1 downto 0) 

); 

end component; 

----------------------------------------------------------------- 
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component fifo2 is 

    generic (m: integer:=16); 

    Port (  

            Clk          : in std_logic; 

            Reset    : in std_logic; 

            WriteEnable  : in std_logic; 

            ReadEnable   : in std_logic; 

            DataIn       : in std_logic_vector(m-1 downto 0); 

            DataOut      : out std_logic_vector(m-1 downto 0); 

                FifoEmpty    : out std_logic; 

            FifoFull     : out std_logic 

        ); 

END component; 

----------------------------------------------------------------- 

Component sqrt32 is 

port( 

clk: in  std_logic; 

rdy:out std_logic; 

reset:in  std_logic; 

x:in std_logic_vector(31 downto 0); 

acc:out std_logic_vector(15 downto 0) 

); 

end Component sqrt32; 

-------------------------------------------------------------- 

component mux4x1 is 

Generic (n:integer); 

port( 

d1:in std_logic_vector(n-1 downto 0); 

d2:in std_logic_vector(n-1 downto 0); 

d3:in std_logic_vector(n-1 downto 0); 

d4:in std_logic_vector(n-1 downto 0); 

s:in std_logic_vector(1 downto 0); 

q:out std_logic_vector(n-1 downto 0)); 

end component; 

----------------------------------------------------------------- 

Component divider is 

Generic (input_width : integer := 16); 

port( 

    Q: in std_logic_vector(input_width-1 downto 0); 

    M: in std_logic_vector(input_width-1 downto 0); 

    Quo: out std_logic_vector(input_width-1 downto 0); 

    Remi: out std_logic_vector(input_width-1 downto 0) 

); 

end Component divider; 

----------------------------------------------------------------- 

Component comparator is 

Generic (n : integer := 16); 

port(   In1 : IN std_logic_vector(n-1 downto 0);--top 

    In2 : IN std_logic_vector(n-1 downto 0); --bot 

        Y : out std_logic_vector(1 downto 0) 

     

     

); 

end Component; 

----------------------------------------------------------------- 

signal SigFromMuxTOQueuIN:std_logic_vector(Data_Width-1 downto 0);  

signal SigModi_AvgNorm:std_logic_vector(Data_Width-1 downto 0); 
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signal choosen_dataout_cachAvg:std_logic_vector(Data_Width-1 downto 0); 

signal MultpOut_to_add_AvgNorm:std_logic_vector((2*Data_Width)-1 downto 

0); 

signal Add_to_Reg_AvgNorm:std_logic_vector((2*Data_Width)-1 downto 0);  

signal AddReg_to_Multp_AvgNorm:std_logic_vector((2*Data_Width)-1 downto 

0);  

signal alphaBeta_muxOut:std_logic_vector(Data_Width-1 downto 0);  

signal DataOut_Queue_avgNorm:std_logic_vector(Data_Width-1 downto 0); 

signal regQueu_DataOut:std_logic_vector(Data_Width-1 downto 0); 

signal avgNorm1_Multp_avgNorm2:std_logic_vector((2*Data_Width)-1 downto 

0); 

signal singoutSquare:std_logic; 

signal squareRoot_dataout:std_logic_vector(Data_Width-1 downto 0); 

signal squareReg_dataOut:std_logic_vector(Data_Width-1 downto 0);  

signal remOfDivision:std_logic_vector(Data_Width-1 downto 0); 

signal rdy:std_logic; 

signal Modifi_squareRoot_dataout:std_logic_vector(Data_Width-1 downto 

0);  

signal coserror:std_logic_vector(Data_Width-1 downto 0); 

 

begin 

MultpOut_to_add_AvgNorm <= std_logic_vector( 

signed(choosen_dataout_cachAvg) * signed(alphaBeta_muxOut));--32 bit 

(13,19) 

Add_to_Reg_AvgNorm      <= std_logic_vector( 

signed(MultpOut_to_add_AvgNorm) + signed(AddReg_to_Multp_AvgNorm));--32 

bit(13,19)  

avgNorm1_Multp_avgNorm2 <= std_logic_vector( signed(regQueu_DataOut) * 

signed(DataOut_Queue_avgNorm)); --16 bit (7,9)+ 16 bit (7,9 --32bit(14,18) 

 

SigModi_AvgNorm<=AddReg_to_Multp_AvgNorm(25 downto 10) ; --16 bit (7,9) 

downscaled from 32 bit (13,19)  

 

Modifi_squareRoot_dataout<="000000000"&squareRoot_dataout(15 downto 

9);-- 16 bit (16,0) 

 

LABLE_MUX4_alphaBeta: mux4x1 generic map(n => Data_Width) port 

map(i_Old_alphabeta,j_Old_alphabeta,i_new_alphabeta,j_new_alphabeta, 

                                Mux_Select_alpha,alphaBeta_muxOut);  

 

LABLE_MUX2_cacheAvg: mux2x1 generic map(n => Data_Width) port 

map(DataOut_cachAvg1,DataOut_cachAvg2, 

                                

Mux_Select_Avg1_or_Avg2,choosen_dataout_cachAvg); 

 

LABLE_AddToReg_AvgNorm:reg generic map(n => 2*Data_Width) port 

map(clk,Reg_reset_AvgNorm,Reg_Enable_AvgNorm,Add_to_Reg_AvgNorm,AddReg_to_

Multp_AvgNorm); 

 

LABLE_Queue:fifo2 generic map(m => Data_Width) port 

map(clk,Reset_fifo_AvgNorm,WriteEnable_fifo_AvgNorm,ReadEnable_fifo_AvgNor

m,SigFromMuxTOQueuIN,DataOut_Queue_avgNorm, 

                    FifoEmpty_fifo,FifoFull_fifo); 

 

LABLE_QueReg_ToQueIN: mux2x1 generic map(n =>  Data_Width) port 

map(SigModi_AvgNorm,DataOut_Queue_avgNorm, 
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Mux_Select_AvgNorm_Que_in,SigFromMuxTOQueuIN); 

 

LABLE_Queue_Reg:reg generic map(n => Data_Width) port 

map(clk,Reg_reset_Queu_AvgNorm,Reg_Enable_Queu_AvgNorm,DataOut_Queue_avgNo

rm,regQueu_DataOut); 

 

LABLE_queue_to_square:sqrt32 port 

map(clk,rdy,Reset_square,avgNorm1_Multp_avgNorm2,squareRoot_dataout); -- 

16 bit(7,9) 

LABLE_SquareRoot_Division:divider generic map(input_width => Data_Width) port 

map(SigModi_AvgNorm,Modifi_squareRoot_dataout,coserror,remOfDivision);--16 

bit(7,9)/ 16 bit(16,0)--16 bit(7,9) 

LABLE_Last_Termination_condition:comparator generic map(n => 

Data_Width) port 

map(coserror,"0000001000000000",Last_Termination_condition); --01 

cosserror >1  00&10 cosserror<1 

 

end architecture Norm_avg_arch; 
 

 

13.8 NormCalculate 

 

 

LIBRARY IEEE; 

USE IEEE.std_logic_1164.all; 

USE IEEE.numeric_std.all; 

 

ENTITY NormCalculate IS  

Generic (Feature_Width : integer := 17; 

     Ctild_Width : integer := 10; 

     Norm_Width : integer := 23;  

         Cache_Width : integer := 23; 

        n     : integer := 16 

);   

PORT ( 

                     clk  : in std_logic; 

             Reset_fifo_Norm_wkblock  : in std_logic; 

           WriteEnable_fifo_Norm_wkblock  : in std_logic; 

        ReadEnable_fifo_Norm_wkblock  : in std_logic; 

 

             FifoEmpty_fifo_Norm_wkblock  : out std_logic;  

              FifoFull_fifo_Norm_wkblock  : out std_logic;  

 

                   reg_reset_WkBlock  : in std_logic; 

              reg_enable_WkBlock  : in std_logic; 

 

 

                Ctilde        : in std_logic_vector(Ctild_Width-1 

downto 0);  

            Feature1_Class1_Data  : in std_logic_vector(Feature_Width-1 

downto 0);    
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                        Feature2_Class1_Data  : in 

std_logic_vector(Feature_Width-1 downto 0);    

            Feature3_Class1_Data  : in std_logic_vector(Feature_Width-1 

downto 0);    

 

            Feature1_Class2_Data  : in std_logic_vector(Feature_Width-1 

downto 0);    

                        Feature2_Class2_Data  : in 

std_logic_vector(Feature_Width-1 downto 0);    

            Feature3_Class2_Data  : in std_logic_vector(Feature_Width-1 

downto 0);    

 

            Select_Norm_queueIn   : in std_logic; 

 

                Cache_i_max   : IN std_logic_vector(Cache_Width-1 

downto 0); 

                                Cache_j_min   : IN 

std_logic_vector(Cache_Width-1 downto 0); 

                    WkSelect      : OUT std_logic_vector(1 downto 0); 

                                      lamda   : OUT std_logic_vector(n-

1 downto 0); 

                max_min_enable: in std_logic 

             

                     ); 

 

END ENTITY NormCalculate; 

 

 

ARCHITECTURE Arch_NormCalculate OF NormCalculate IS 

 

Component DotProduct IS  

Generic (Feature_Width: integer := 16);   

PORT ( 

    Input1  : in std_logic_vector(Feature_Width-1 downto 0); 

    Input2  : in std_logic_vector(Feature_Width-1 downto 0); 

    Input3  : in std_logic_vector(Feature_Width-1 downto 0); 

    Input4  : in std_logic_vector(Feature_Width-1 downto 0); 

    Input5  : in std_logic_vector(Feature_Width-1 downto 0); 

    Input6  : in std_logic_vector(Feature_Width-1 downto 0); 

    Result  : out std_logic_vector((2*Feature_Width)+1 downto 0) 

); 

end Component ; 

------------------------------------------------------------------ 

Component mux2x1 is 

Generic (n:integer); 

port( 

d1:in std_logic_vector(n-1 downto 0); 

d2:in std_logic_vector(n-1 downto 0); 

s:in std_logic; 

q:out std_logic_vector(n-1 downto 0) 

); 

end Component; 

------------------------------------------------------------------- 

Component fifo2 is 

    generic (m: integer:=16); 

    Port (  

            Clk          : in std_logic; 
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            Reset    : in std_logic; 

            WriteEnable  : in std_logic; 

            ReadEnable   : in std_logic; 

            DataIn       : in std_logic_vector(m-1 downto 0); 

            DataOut      : out std_logic_vector(m-1 downto 0); 

                FifoEmpty    : out std_logic; 

            FifoFull     : out std_logic 

        ); 

END Component; 

---------------------------------------------------------------------- 

Component Wk_calculate is 

Generic ( 

    Feature_Width   : integer := 16;  

    Cache_Width : integer := 16;  

    Norm_Widht  : integer := 23;  

    n       : integer := 16 

); 

port(   

    Cache_i_sig : IN signed(Cache_Width-1 downto 0);-- (4,12) 

        Cache_j_sig : IN signed(Cache_Width-1 downto 0); --(4,12) 

    Wknorm2 : IN signed(Norm_Widht-1 downto 0); --(12,8) 

    Norm2sij: IN signed(Norm_Widht-1 downto 0); --(12,8) 

    WkSelect: OUT std_logic_vector(1 downto 0); 

    lamda   : OUT std_logic_vector(n-1 downto 0); 

    Wk : OUT std_logic_vector(Norm_Widht-1 downto 0); 

    max_min_enable: in std_logic 

);  

     

end Component ; 

---------------------------------------------------------------------- 

Component reg is 

generic(n:integer:=16); 

port(clk,rst,wenable:in std_logic; 

d:in std_logic_vector(n-1 downto 0); 

q:out std_logic_vector(n-1 downto 0) 

); 

end Component; 

--------------------------------------------------------------------- 

 

signal X_Squared              : std_logic_vector((2*Feature_Width)+1 

downto 0); --36 bits (12,24) 

signal Y_Squared              : std_logic_vector((2*Feature_Width)+1 

downto 0); 

signal X_times_Y              : std_logic_vector((2*Feature_Width)+1 

downto 0); 

signal Two_times_X_times_Y    : std_logic_vector(Feature_Width+2 downto 

0); --20 bit (13,7) 

signal NormCalculated         : std_logic_vector(Feature_Width+4 downto 

0);--22 bit(14,8)  

signal Two_Divide_Ctilde      : std_logic_vector(Ctild_Width downto 0);  

 

signal NormOfDot_toMux        : std_logic_vector(Norm_Width-1 downto 

0); 

signal Sig_Wk_new_point_norm  : std_logic_vector(Norm_Width-1 downto 

0); 

signal MuxOfNorm_ToQueue      : std_logic_vector(Norm_Width-1 downto 

0); 
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signal NormQueueRegIn_Wkblock  : std_logic_vector(Norm_Width-1 downto 

0); 

 

signal NormQueueRegOut_NormOld  : std_logic_vector(Norm_Width-1 downto 

0);  

 

BEGIN 

Two_times_X_times_Y <=X_times_Y(X_times_Y'HIGH downto 

Feature_Width)&'0';  

NormCalculated <= std_logic_vector( 

signed("00"&X_Squared(X_Squared'HIGH downto Feature_Width-1))  

                  + signed("00"&Y_Squared(Y_Squared'HIGH downto 

Feature_Width-1))  

                  - 

signed(Two_times_X_times_Y(Two_times_X_times_Y'High)&Two_times_X_times_Y(T

wo_times_X_times_Y'HIGH downto 0)&'0') ); -- 21 bit(13,8)--->22(14,8) 

 

Two_Divide_Ctilde <= Ctilde&'0';--11 bit 

 

NormOfDot_toMux <= std_logic_vector( 

signed(NormCalculated(NormCalculated'High)&NormCalculated) + 

signed("0000"&Two_Divide_Ctilde&"00000000") ); 

LABEL1: DotProduct generic map (Feature_Width =>17) port map 

(Feature1_Class1_Data, Feature1_Class1_Data, Feature2_Class1_Data, 

Feature2_Class1_Data, Feature3_Class1_Data, Feature3_Class1_Data, 

X_Squared); --(10,24) 

LABEL2: DotProduct generic map (Feature_Width =>17) port map 

(Feature1_Class2_Data, Feature1_Class2_Data, Feature2_Class2_Data, 

Feature2_Class2_Data, Feature3_Class2_Data, Feature3_Class2_Data, 

Y_Squared); --(10,24) 

LABEL3: DotProduct generic map (Feature_Width =>17) port map 

(Feature1_Class1_Data, Feature1_Class2_Data, Feature2_Class1_Data, 

Feature2_Class2_Data, Feature3_Class1_Data, Feature3_Class2_Data, 

X_times_Y); --(10,24) => (10,6) 

    

LABEL4: mux2x1 generic map(n=>Norm_Width) port map 

(Sig_Wk_new_point_norm 

,NormOfDot_toMux,Select_Norm_queueIn,MuxOfNorm_ToQueue); --(15,8) 

LABEL5: fifo2 generic map(m=>Norm_Width) port map 

(clk,Reset_fifo_Norm_wkblock,WriteEnable_fifo_Norm_wkblock,ReadEnable_fifo

_Norm_wkblock,MuxOfNorm_ToQueue,NormQueueRegIn_Wkblock,FifoEmpty_fifo_Norm

_wkblock,FifoFull_fifo_Norm_wkblock); 

LABEL6: Wk_calculate generic map (Feature_Width=> 

Feature_Width,Cache_Width=> Cache_Width,Norm_Widht=>Norm_Width,n=>n)port 

map 

(signed(Cache_i_max),signed(Cache_j_min),signed(NormQueueRegOut_NormOld),s

igned(NormQueueRegIn_Wkblock),WkSelect 

,lamda,Sig_Wk_new_point_norm,max_min_enable); 

LABEL7: reg generic map(n=>Norm_Width)port 

map(clk,reg_reset_WkBlock,reg_enable_WkBlock,NormQueueRegIn_Wkblock,NormQu

eueRegOut_NormOld); 

 

 

END Arch_NormCalculate; 
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13.9 Wk_calculate 

 

Library ieee; 

Use ieee.std_logic_1164.all; 

USE ieee.numeric_std.all;  

 

Entity Wk_calculate is 

Generic ( 

    Feature_Width   : integer := 17;  

    Cache_Width : integer := 23;  

    Norm_Widht  : integer := 23;  

    n       : integer := 16 

); 

port(   

    Cache_i_sig: IN signed(Cache_Width-1 downto 0);-- (11,12) 

        Cache_j_sig : IN signed(Cache_Width-1 downto 0); --(11,12) 

    Wknorm2 : IN signed(Norm_Widht-1 downto 0); --(15,8) 

    Norm2sij: IN signed(Norm_Widht-1 downto 0); --(15,8) 

    WkSelect: OUT std_logic_vector(1 downto 0); 

    lamda   : OUT std_logic_vector(n-1 downto 0); 

    Wk : OUT std_logic_vector(Norm_Widht-1 downto 0); 

    max_min_enable: in std_logic 

  

);  

     

end entity Wk_calculate ; 

 

Architecture Wk_calculate_arch of Wk_calculate is 

 

-------COMPONENTS: ------ 

Component comparator is 

Generic (n : integer := 16); 

port(   In1 : IN std_logic_vector(n-1 downto 0);--top 

    In2 : IN std_logic_vector(n-1 downto 0); --bot 

        Y : out std_logic_vector(1 downto 0) 

     

     

); 

end Component comparator; 

 

Component divider is 

Generic (input_width : integer := 16); 

port( 

    Q: in std_logic_vector(input_width-1 downto 0); 

    M: in std_logic_vector(input_width-1 downto 0); 

    Quo: out std_logic_vector(input_width-1 downto 0); 

    Remi: out std_logic_vector(input_width-1 downto 0) 

); 

end Component divider; 

Component BoothTop is 

port( 

    M: in std_logic_vector(15 downto 0); 

    Q: in std_logic_vector(15 downto 0); 

    Z: out std_logic_vector(31 downto 0) 
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); 

end Component BoothTop; 

 

--------------------------- 

 

SIGNAL wksijmul2sig: signed(Cache_Width downto 0); --24 bit (12,12) 

SIGNAL sigTop: signed(Cache_Width+3 downto 0);--27 bit(15,12) 

 

SIGNAL sigWksij: signed(Cache_Width-1 downto 0);--23 bit (11,12) 

SIGNAL sigBot:  signed(Cache_Width+3 downto 0);--27 bit(15,12) 

SIGNAL siglamda: std_logic_vector(34 downto 0); 

SIGNAL mulLamdaTop: std_logic_vector(42 downto 0); 

SIGNAL onSegPt: std_logic_vector(Norm_Widht-1 downto 0); 

SIGNAL remainder: std_logic_vector(34 downto 0); 

SIGNAL sigWkSelect: std_logic_vector(1 downto 0); 

 

signal Cast_sigTop:std_logic_vector(Cache_Width+3 downto 0); 

signal Cast_sigBot:std_logic_vector(Cache_Width+3 downto 0);--27 

signal test:std_logic_vector(Cache_Width+3 downto 0); 

 

signal Div_Cast_sigTop:std_logic_vector(34 downto 0); 

signal Div_Cast_sigBot:std_logic_vector(34 downto 0); 

 

signal sigtestWknorm2 :signed(Cache_Width+3 downto 0); 

signal Cache_i: signed(Cache_Width-1 downto 0);-- (11,12) 

signal Cache_j: signed(Cache_Width-1 downto 0);-- (11,12) 

 

Signal Square_sigTop: std_logic_vector(53 downto 0); --sigTop 27 bit 

then squared 54 bit (53 downto 0)(30,24) 

Signal Reminder_squareTop: std_logic_vector(53 downto 0);  

Signal SquareDiv_Bot: std_logic_vector(53 downto 0); --(30,24)-->(15,8) 

signal Top2_Bot:std_logic_vector(53 downto 0); --54 bit(46,8) and 

downnto 16 bit (15,8) 

 

 

 

Begin 

 

Cache_i<= Cache_i_sig when max_min_enable='1'; 

Cache_j<= Cache_j_sig when max_min_enable='1'; 

 

 

sigWksij <= Cache_i - Cache_j; --23 bit (11,12) 

 

test<=std_logic_vector( resize(sigWksij,27)); 

 

sigtestWknorm2<= Wknorm2&"0000"; 

 

sigTop <= sigtestWknorm2 - signed(test); --27 bit(15,12) 

 

Cast_sigTop<=std_logic_vector(sigTop); 

 

wksijmul2sig <=  sigWksij&'0'; --23(11,12) *2 24(12,12) 

 

sigBot <= (Wknorm2&"0000")- resize(wksijmul2sig,27) + 

(Norm2sij&"0000");--27 bit (15,12) 

Cast_sigBot<=std_logic_vector(sigBot); 
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--============================================ 

Square_sigTop<=std_logic_vector(sigTop*sigTop);--squared signal (30,24) 

SquareDiv_Bot<=std_logic_vector("00000000000000000000000"&Cast_sigBot&"

0000");--(38,16) 

--============================= COMPARISION: 

CompTopBot: 

comparatorgenericmap(n=>27)portmap(Cast_sigTop,Cast_sigBot,sigWkSelect); 

 

--============================= DIVIDER (find lamda): 

Div_Cast_sigTop<=std_logic_vector(Cast_sigTop&"00000000"); 

Div_Cast_sigBot<=std_logic_vector("00000000"&Cast_sigBot); 

 

siglamdaport: divider generic map(input_width => 35) port 

map(Div_Cast_sigTop,Div_Cast_sigBot,siglamda,remainder);  

 

sigSquare: divider generic map(input_width => 54) port 

map(Square_sigTop,SquareDiv_Bot,Top2_Bot,Reminder_squareTop);  

 

lamda<=siglamda(15 downto 0); 

onSegPt<= std_logic_vector(Wknorm2 - signed(Top2_Bot(22 downto 0))); -- 

 

--============================= MULTIPLIXER 

WKSelect <= sigWkSelect;  

 

Wk  <= onSegPt when sigWKSelect = "00" else 

     std_logic_vector(Wknorm2) when sigWKSelect = "10" else 

     std_logic_vector(Norm2sij) when sigWKSelect = "11" else 

     (others=>'0'); 

 

 

end Wk_calculate_arch; 

 

 

13.10 exp_lut 

 

library IEEE; 

use IEEE.std_logic_1164.all; 

use IEEE.numeric_std.all; 

entity exp_lut is 

port( 

  i_x            : in  std_logic_vector( 15 downto 0);  --(4,12) 

  o_exp          : out std_logic_vector( 15 downto 0)); --(4,12) 

end exp_lut; 

architecture rtl of exp_lut is 

 

constant C_LUT_DEPTH    : integer := 14338;   

constant C_LUT_BIT      : integer := 16;   

 

type t_lut_exp is array(0 to C_LUT_DEPTH-1) of integer range 0 to 

(2**C_LUT_BIT); 

constant C_LUT_ADDR_OFFSET         : unsigned(15 downto 0):= 

to_unsigned(28672,16); 
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signal lut_addr                    : signed(14 downto 0); 

signal lut_preaddr                 : signed(15 downto 0); 

signal lut_value                   : std_logic_vector(C_LUT_BIT-1 

downto 0); 

 

constant C_LUT_EXP : t_lut_exp :=( 

 

0,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,

3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,

4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,

4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,

4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,

4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,

4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,

4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,

4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,

5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,

5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,

5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,

5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,

5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,

6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,

6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,

6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,

6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,

7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,

7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,

7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,

7,7,7,7,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,

8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,

8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,

8,8,8,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,

9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,

9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,

9,9,9,9,9,9,9,9,9,9,9,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,1

0,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,

10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10

,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,1

0,10,10,10,10,10,10,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,

11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11

,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,1

1,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,12,12,12,

12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12

,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,1

2,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,

12,12,12,12,12,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13

,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,1

3,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,

13,13,13,13,13,13,13,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14

,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,1

4,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,

14,14,14,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15

,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,1

5,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,16,16,16,16,16,

16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16

,……, --generated using MATLAB script); 
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begin 

 

lut_preaddr <= signed(C_LUT_ADDR_OFFSET) + signed(i_x); -- Input + 

28672 

 

lut_addr   <=   to_signed(C_LUT_DEPTH-1,15) when signed(i_x) > 0 else -

-outputs exp(0) if the i/p > 0 

        lut_preaddr(15 downto 1)+1 when 

lut_preaddr(lut_preaddr'HIGH)='0' else --outputs exp(i/p) if i/p [-7,0] 

        (others=>'0'); --outputs zero if i/p < -7 

 

 o_exp     <= lut_value; 

 lut_value <= 

std_logic_vector(to_signed(C_LUT_EXP(to_integer(lut_addr)),C_LUT_BIT)); 

 

 

end rtl; 
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