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Abstract 
 

Epilepsy is one of the most common neurological disorders, affecting millions of people 

worldwide, characterized by an abnormality in the brain activity which leads to recurrent seizures. 

Owing to the unpredictable nature of epileptic seizure, it represents a major worry and a handicap 

to epileptic patients causing serious injuries such as fractures and vehicle accidents. The ability to 

detect, predict and prevent the occurrence of epileptic seizures is very important to prevent such 

injuries and let epileptic patients lead a normal life. 

In this project we developed a hardware chip to predict/detect the seizure onset using a machine 

learning technique named “Support Vector Machine” (SVM). A training algorithm was developed 

namely the “Sequential Minimal Optimization” (SMO) which was used in the model development. 

A number of discriminant time domain and frequency domain features were extracted namely the 

power spectral density (PSD), Hjorth mobility, Hjorth complexity, skewness and kurtosis, 

coastline and average energy features. The raw EEG signal database used were collected at the 

Children’s Hospital Boston [8], in addition, we are planning to extract our own database from rats 

and use it in the future.  

Selection of features was done by inspection to get the most discriminant features from the 

obtained high dimensional feature space, these features were used to train the SVM using the SMO 

algorithm on MATLAB program. Then, the developed model is tested for its ability to detect the 

seizure accurately. 

After that, the high-level language (MATLAB) model was transferred to a hardware 

description language model using HDL programs for hardware implementation. This phase was 

very important through which an FPGA prototype and ASIC tape-out ready for fabrication was 

produced as final outcome. Low power and low complexity were some of the most important 

metrics to take into consideration while designing our prototype. 
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Chapter 1 
In this chapter, a complete review about epilepsy, its causes, types, treatments and statistics 

is presented. 

Epilepsy and Its Causes 

Epilepsy is a long-lasting neurological disorder which causes the patient to experience 

frequent spontaneous seizures that take place without any previous warning. A seizure is 

an electrical surge in the brain caused by structural malfunctions of the brain [9]. People 

can experience one or more seizures in their lifetime, however, they are not diagnosed with 

epilepsy. Epilepsy is defined as having two or more unprovoked seizures within a time 

period of at least 24 hours [10]. Epilepsy disease is more common among younger and 

older people with a slight more tendency in males than females [11].  

There are several reasons why one might experience seizures and, accordingly, get 

diagnosed with epilepsy. The four most common reasons are summarized in Figure 1. First 

reason shown in Figure 1(a) is the brain infection, which is mainly caused by viral infection 

either causing inflammation and swelling of the brain itself (encephalitis disease) or 

causing acute inflammation of tissue layers enclosing the brain and the spinal cord 

(meninges disease) [12].  Second reason shown in Figure 1(b) is the head trauma, which is 

an injury to any of the scalp, the skull or the brain that may cause a concussion in which 

the brain is shaken from its normal place. This injury may be caused by accidents, falls or 

physical assault. Third reason shown in Figure 1(c) is the brain tumor, which is a group of 

abnormal cells that continuously grow inside a restricted area enclosed by the skull, and 

due to the skull rigidity, the pressure inside increases to a degree that might cause brain 

(a) (b) (c) (d) 

Figure 1: The four most common causes of epilepsy; (a) Brain Infection, (b) Head Trauma, (c) Brain Tumor and (d) Stroke 
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damage and might be life-threating. Being infected with a brain tumor may be a side effect 

to chemical exposure, exposure to radiation, family history or increasing age [13].  Fourth 

reason shown in Figure 1(d) is the stroke, which is caused by the lack of blood flow to the 

brain leading to Oxygen shortage and cell death [14].  

A survey was done by the World Health Organization in the Eastern Mediterranean Region 

in 2010 to see the most common causes of epilepsy [3]. Nine countries from the region 

responded to the survey. The result shown in  Figure 2 shows that “Trauma” was the most 

common of all the causes with all the countries voting for it which agrees with what was 

stated before. After “Trauma” comes the “Central Nervous System Infection” in the second 

place with a voting of 85% from the responding countries. We can also see “Tumors” as a 

main contributing factor to the epilepsy disease.  

Types of Seizures 
The most known and main symptoms of having the epilepsy disease are seizures. Seizures 

are different from patient to another in which different parts of the brain cannot function 

Figure 2: Most frequently reported causes of epilepsy disease in the Eastern Mitterrandian Region [3]. 
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normally [10]. They could be either mild which lasts several seconds during which you 

lose awareness and it is difficult to recognize as a seizure, or stronger seizures which can 

last from seconds to several minutes during which your body experience muscle twitches 

and involuntary movements, in addition to losing consciousness and getting confused [11].  

Partial Seizures 
Seizures are divided into two main different types as shown in Figure 3, first type is the 

partial (focal) seizures and second type is the generalized seizures. Partial seizures refer to 

seizures occurring in only one part of the brain as shown in Figure 4 which may spread 

later to other parts of the brain and they are further divided into two forms: 

 Simple Partial Seizures: where patients may suffer from involuntary movements 

(limbs tingling and twitching) and abnormal sensations; however, they stay aware 

during the seizure with no loss of consciousness and can communicate with the 

surroundings.  

Figure 3: Types of seizures are divided into "Generalized" and "Partial" seizures. 

Figure 4: Focal seizures (left) affecting one part of the brain and generalized 

seizures (right) affecting the whole brain. 
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 Complex Partial Seizures: where patients experience seizures that spread to 

certain parts of the brain causing loss of consciousness and awareness, in addition, 

they become unresponsive to the surroundings. 

Generalized Seizures 
Generalized seizures refer to seizures occurring as a result to the hyperexcitability of the 

whole brain as shown in Figure 4 which makes it difficult to identify the cause the seizures. 

They are furtherly divided into four forms: 

 Myoclonic (Muscle -Jerk) Seizure:  This seizure is accompanied by increase in 

muscle tone and a spontaneous movement of arms and legs as if the patient has an 

electric shock shown in Figure 5(a). 

 Absence Seizures: This seizure begins without any warning causing the patient to 

stare into space with a short loss of awareness for several seconds (~15 sec) shown 

in Figure 5(b). 

 Atonic Seizures: This seizure cause the patient muscles to go complete stiff or 

paralyzed causing sudden falls which may lead to serious injuries shown in Figure 

5(c). 

 Tonic-Clonic Seizures: This seizure goes through four phases, first phase is the 

“Aura” phase in which the patient feels light dizziness and confusion, second phase 

(a) (b) (c) 

(d) 

Figure 5: Generalized seizures forms: (a) Myoclonic, (b) Absence, (c) Atonic, and (d) Tonic-Clonic seizures. 
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is the “Tonic” phase in which the patient’s limbs and body parts straighten 

involuntary and he/she starts to lose consciousness, third phase is the “Clonic” 

phase in which the patient suffers from twitching, rolling and violent shaking, 

fourth phase is the “Postictal Sleep” phase in which the patients starts to gain 

consciousness gradually feeling nausea and confusion [10] shown in Figure 5(d). 

The symptoms of a seizure may affect any part of the human body; however, its origin is 

an electrical event inside the brain of the patient. The actual location of that electrical event 

inside the brain, its spread, how the brain is affected with it and how long it lasts are all 

factors that determine what type of seizure the patient will have and its impact on him/her. 

Epilepsy Statistics 

Epilepsy is the 4th most common neurological disorder disease worldwide, about 65 million 

people around the world suffer from epilepsy (~1% of the world population), about one in 

every twenty six people in a lifetime is affected by the epilepsy disease [15]. According to 

the World Health Organization, more than 85% of the cases are from the developing world 

as shown in Figure 6 and about 4.7 million people are from the Eastern Mediterranean 

region [3]. It was reported in 2014 that each year about 150,000 Americans are diagnosed 

with epilepsy and that Americans pay more than 15.5 billion dollars every year on the 

treatment of epileptic patients [16]. 

There are two definitions by which the spread of the epilepsy disease is quantized, first is 

prevalence and second is incidence. Prevalence is the proportion of people with the disease 

to the whole population in a given period of time. The purpose of prevalence is to determine 

Developing Non-Developing

Figure 6: Around 85% of the people diagnosed with epilepsy are from the developing regions.
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exactly the number of people suffering from the disease in order to plan for their treatment. 

Incidence is number of new cases diagnosed with the disease at a given time. The purpose 

of incidence is to get a better understanding of the history of epilepsy and the reasons 

behind the disease [17].  

A study made in 2013 on the prevalence and incidence of the epilepsy disease in Egypt 

[18], it was found that the crude prevalence rate is 12.67/1000, crude means it was 

calculated directly by dividing the number of cases in a given time period by the population 

number. We can say that if Egypt’s population number in 2013 was around 90 million, then 

the number of epileptic patients in Egypt in 2013 is estimated to be 1,140,000 patients. The 

incidence rate was reported roughly to be 1.5/1000 with less conducted studies 

unfortunately. The reported cases suffering from generalized seizures were more than those 

suffering from partial seizures by a ration 2.7:1. It was also noted that the male cases were 

slightly higher than the female cases, in addition, the cases reported in rural areas were 

more than this reported at urban areas.  

Traditional Treatment Methods for Epilepsy 

Owing to the unpredictable nature of epileptic seizure, it represents a major worry and a 

handicap to the patients, for example the occurrence of an epileptic seizure to a patient 

driving a car or carrying out a dangerous job like working in a bakery or operating a cutting 

machine, will cause serious damage and a disastrous accident to the patient. Thus, 

researchers, practitioners and doctors are paying great attention to every possible way of 

treating this disease.  

Drug Treatment 

Long term drug treatments (pharmacotherapy) are usually employed as a first line of 

defense with patients. These drugs help reduce the frequency of seizures happening but 

cannot stop a seizure once started, they are typically in the form of tablets absorbed by the 

stomach, once in the blood stream they travel to the brain affecting the neurotransmitters 

in a certain way to reduce the electrical activity causing the seizures [11]. Common 

epilepsy medical drugs are available at the market, however, more than 30% of epileptic 

patients are drug resistant [19].  
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Surgery 

The alternative when these medications fail is to remove the area of the brain which is 

responsible for the epileptic seizure. Most often, the part to be removed is the temporal 

lobe, shown in Figure 7, in a surgery named “Temporal Lobectomy”, during the surgery 

patients are kept awake so that doctors can communicate with them and make sure that 

there is no part of the brain responsible for important functions in the body is removed [11]. 

If the part to be removed is large or important, another surgery called “Multiple Subpial 

Transection” is performed in which the doctors make a cut in the brain to interrupt the 

pathway of the nerve, thus, keeping the seizure confined to one place.  

In general, surgery is recommended only if the seizure is confined to one area of the brain. 

The probability of becoming seizure free after surgery depends on the seizure type, for 

example in temporal lobe epilepsy surgery it’s 75% in lesional cases and only 50% in non-

lesional cases, in frontal lope epilepsy it’s 60% and 35% in lesional and non-lesional cases 

respectively [20]. However as shown in previous work [21-23], epilepsy is not confined to 

a single area of the brain but rather it’s epileptic network where different areas of the brain 

interact synchronously causing these pathological spikes or seizures. 

Figure 7: Human brain lopes. 
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Vagus Nerve Stimulation 

For those who are drug-resistant and cannot undergo a surgery, a device like the pacemaker 

was developed to be inserted in the patient’s chest under skin as shown in Figure 8. This 

device is designed to deliver electrical impulses through the Vagus nerve running through 

your neck, accordingly it prevents brain overexcitation, thus, reducing the likelihood of 

seizures [10]. This method of treatment is not fully developed yet as little information is 

known about how the vagal nerve can modulate mood and have control over seizures [5]. 

Diet Therapy 

Several diet regimes are proved to be beneficial in decreasing the frequency of seizures, 

one of these regimes is the Ketogenic diet in which patients have to feed on high fat and 

low carbohydrates food [10]. Approximately half of the patients who cannot respond to 

medication can benefit from this therapy, however, there is still a valuable portion of the 

patients who cannot benefit. 

Modern Treatment Methods 

A new technique was developed in 2006 called “Deep Brain Stimulation” (DBS) where 

some electrodes implanted in the patient’s brain can sense any abnormality in brain‘s 

activity, accordingly a generator implanted in the chest will generate electrical pulses to 

suppress any detected  seizures [24]. Researchers and practitioners are paying great 

attention to developing algorithms that can detect and anticipate the occurrence of a seizure 

(seizure detection and prediction). Afterwards a stimulus is applied to suppress the seizure 

Figure 8: Electrical stimulation of Vagus nerve [5]. 
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using closed loop or open loop strategies [25, 26]. The algorithms mentioned above employ 

the use of brain EEG signals which will be explained in more details shortly.  

However, there is a great difficulty in being able to differentiate between the seizure 

signals, pre-seizure signals and the normal brain signals which in turn makes it hard and 

difficult to build a good and robust detection/prediction model. There are already 

commercialized devices that can be implemented in the brain to treat these seizures [27].  

However, these devices lack accuracy, are very expensive to afford, are hard to implement 

and they are power hungry which means that the patient having these devices in his brain 

must undergo a complex and expensive surgery every two years to only change the battery 

of these devices.  

Our contribution, which we will show throughout the rest of the thesis, is that we developed 

a low power and less complex implementation for the implantable chip inside the brain 

with no need for a battery (generator) implemented in the chest. We used a machine 

learning technique called “Support Vector Machine” (SVM) in developing the 

detection/prediction procedure
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Chapter 2 
In this chapter, the EEG signal is explained in details, in addition, the description of the 

database used is presented. Also, the methods for seizure prediction and detection are 

summarized. Finally, the complete project flow is presented.  

Electroencephalography (EEG) Signal 

Electroencephalograph (EEG) is a method used to monitor and measure the activity of the 

brain, it is based on the principle that the brain consists of neurons that communicate with 

each other using electrical signals. To understand how this electrical signal is produced and 

how its measurement can describe the behavior of the brain, we must understand how 

neurons communicate. A typical neuron is shown in Figure 9, these neurons form the main 

building block of the brain, they affect your brain activity when you feel something on your 

skin or feel hunger, fear and other senses, they communicate with each other via what is 

called action potential, an action potential is an electrical signal generated by neurons to 

stimulate a communication with each other, when this signal reaches the end of a neuron it 

leads to the release of a neurotransmitter (chemical compounds) that affects the connection 

between the neurons leading to binding or joining unconnected neurons. The electrical 

signal produced by the action potential leads to the production of an electrical signal that 

is detected and measured by the EEG. a 

Figure 9:neurons communication [2] 
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EEG Signal Types 
There are two types of EEG signal measurements, scalp EEG which is a non-invasive 

measurement with the electrodes placed on the outside of the brain and intercranial EEG 

which is an invasive measurement with the electrodes placed inside the brain. The most 

common approach is the scalp EEG because it doesn’t involve a brain surgery to place the 

electrodes inside the brain, however, the accuracy of the intercranial EEG measurements 

is much higher than the scalp EEG measurements. 

EEG Signal Features 
There are several features that characterize an EEG signal namely the frequency of the 

signal, the voltage of the signal, its morphology, synchrony and periodicity.  

Frequency:  

It measures the repetitive activity of the EEG signal in Hz, there are different properties of 

the frequency of the EEG, it can be rhythmic in which the EEG waves have constant 

frequency, arrhythmic in which the EEG waves have variable random frequency and 

dysrhythmic which is a rarely seen pattern of frequency in a small group of people. 

There are four distinct frequency patterns that appear in an EEG signal which are delta[0-

3Hz], theta [3.5 to 7.5 Hz], alpha [7.5 to 13 Hz] and beta [>13 Hz] as shown in Figure 10. 

 

Voltage: 

There are several terms that describe the average voltage of the EEG signal and are used 

to characterize the signal, the attenuation which happens when the voltage of the signal is 

blocked, Hypersynchrony which is an increase in the voltage of the brain due to the increase 

in the number of neurons producing the signal and Paroxysmal which refers to a sudden 

rise in the voltage followed by an abrupt return to the normal voltage which is usually 

associated with epilepsy. 

Figure 10: Brain waves frequency [1] 
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Morphology: 

Which refers to the shape of the signal which could be monomorphic, polymorphic, 

sinusoidal, transient or spikes. 

Synchrony: 

Refers to the synchronous appearance of a pattern of EEG signals on different areas or the 

same areas of the brain. 

Periodicity: 

Which refers to a phenomenon when a certain type of an EEG signal happens periodically 

in the brain.  

Electrode Placement 
To generalize the placement of the electrodes on the brain, different standards have been 

introduced to capture most of the brain signals in a standard manner, a typical standard 

used in scalp EEG measurements is the 10/20 system, in which the electrodes are placed 

10% then 20% away from the consecutive areas of the brain as shown in Figure 11. This 

method was the same used in collecting the data we are working on from [8]. 

CHB-MIT Scalp EEG Database 

The EEG database we used in this project was collected at the Children’s Hospital of 

Boston, it was part of a PhD work done by Ali Shoeb [8]. It consists of EEG recordings to 

patients with characterized by hard-to-control seizures. The data collected was for 22 

patients divided into 5 males (aged 3 years – 22 years) and 17 females (aged 1.5 years – 19 

years). Unfortunately, due to hardware limitations, the recorded files for each patient are 

not continuous with a maximum recording time of 4 hours. This limitation or drawback 

Figure 11: 10/20 electrode placement system [1] 
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made it hard for us to use the data in building and adjusting our prediction model, as a 

continuous recording of the EEG signal is required and this will be explained soon enough. 

All the EEG signals were recorded and sampled at 256 Hz (samples per second) with 16-

bit resolution. The 10/20 system mentioned in Figure 11 was used in placing the 

measurement sensors (electrodes) on the patients’ heads giving us 23 EEG Scalp signals 

one for each channel. All the database for the 23 patients contain a total of 182 seizures. 

We only used 5 patients in our work due to the limitations of the recording procedures. 

There are two main reasons we chose this database specifically; first reason is that the 

database is available online for free without any charges unlike the Freiburg EEG database, 

second reason is that we were able to compare our model results, enhancements done and 

out additions to the work of Ali Shoeb in [8]. We are recording our own data base as 

explained in the next section for future work. 

ONE Lab Rats’ EEG Database 

Currently and with the help of some Master students at the Faculty of Science, Ain Shams 

University and under the supervision of ONE Lab organization in the Faculty of 

Figure 12: Procedures of recording our new EEG database from rats. 
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Engineering, Cairo University, we are recoding our own database using rats for future use 

in building a more accurate and robust prediction/detection model. The photos of recording 

the intercranial EEG database using rats are shown in Figure 12.  

Detection/Prediction Methods 

Both detection and prediction are two possible ways leading to the same target which is 

the suppression of electric seizures, however, the difference between them is that prediction 

is an early detection of the seizure onset so it is more efficient and safer for researchers to 

employ prediction than detection. However, implementation of prediction is much harder 

and costly than detection. 

EEG Signal Periods 

The brain’s EEG signal of a an epileptic patient is divided mainly into 4 differet periods or 

states by which we can charaterize an eplieptic patient from a normal person [28]. The 4 

states are shown in Figure 13 and explained below: 

(I) The ictal state which is the actual seziure period and usually ranges from 1 to 

3 minutes, it could be less and could be more than that.  

(II) The preictal state which is the period directly before the seziure onset, it 

usually ranges from 30 to 60 minutes and differes completely from one patient 

to another.  

Figure 13: Raw EEG signal obtained from "CHB-MIT Scalp EEG 

Database" for patient No.3 to show the different stages of the brain 

signal of an epileptic patient: a) Interictal stage, b) Preictal stage, c) 

Ictal stage and d) Postictal stage. 
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(III) The post-ictal state which is the period directly after the seziure, it ranges 

usually from 30 to 60 minutes.  

(IV) The interictal state which is the period between the post-ictal state and the next 

pre-ictal state in which the brain of the patient acts normally like a healty 

person.  

Detection Versus Prediction 

The seziure detection is considerd a classification problem between two classes, where the 

first class is the ictal period when a true seziure happens and the second class is the non-

ictal period including post-ictal, pre-ictal and interictal periods. On the other hand, the 

seziure prediction is also a classification problem between two classes, but the first class is 

the preictal period and the second class is the non-preictal period including interictal, ictal 

and post-ictal periods as shown in Figure 14. 

The interictal stage, preictal stage, ictal stage and post-ictal stage are represented  

respectively in Figure 13(a), (b), (c) and (d). It is clear that the ictal stage, when the seziure 

happens, is the most period among the other periods that can be visually recognized even 

by naked eye. Also, it is clearly visible that the preictal stage resemble the interictal stage 

in many ways such as the amplitude equavilance. That’s why the prediction is way too 

difficult to achieve and implement more that the detection. Concequently, the prediction is 

more prone to error and false alarms than detection if the features extracted are not 

characteristic enough to the preictal period. 

Figure 14: Prediction Versus Detection. 



16 
 

As we can see above that the implementaton of the prediction approach require a 

knowledge of the preictal stage period from the reocrded EEG data. Based on [29], the 

preictal period may vary from 5 minutes to 30 minutes to 120 minutes according to the 

patient and the seizure type with no definite time period. So, a continous EEG signal 

recoding is needed for prediction implementiation which is difficult to acieve with the 

database in hand as stated before due to its limitations in recoding continuity. In addition, 

the database we are using is a scalp database which will give less accurate results than 

intercranial data. 

Project Flow 

In this section, the main system idea is summarized and then our part in the whole system 

is explained with some details.  

Whole system  

The whole system for a seizure prediction/detection implantable chip that can treat the 

epilepsy disease by giving a stimulation pattern according to a decision function is shown 

in Figure 15. The system is adopted from [30] and consists of: 

1) Analog to Digital (ADC) and Digital to Analog (DAC) Converters as an interface 

between the chip and the implantable electrodes inside the human brain. ADC is to 

receive the analog EEG signal and then digitize them for processing, and DAC is 

to convert the digital stimulation pattern to analog signal for stimulating the brain 

with an electric signal. 

2) A storage memory for storing the digitized EEG signals in the form of window 

samples (epochs) to make them ready for processing. 

3) The prediction/detection block for processing the EEG time samples and then 

classify the signal to either a seizure or non-seizure in case of detection and to either 

a pre-seizure or non-seizure in case of prediction. After that, a decision is taken and 

goes as an output in the form of a stimulation pattern. 
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4) The wireless interface is to communicate with the outer world and give a timely 

report on the status of the patient, the number of seizures suppressed and can also 

be used for wireless charging of the device. 

 

Our part 

Zooming into our part in this project which is the detection block, we can see that it is 

divided into several steps shown in Figure 16. Firstly, the input data, raw EEG signals, are 

obtained from CHB-MIT Scalp EEG Database in the form of (European Data Format) file. 

The files are then processed and converted into readable data. Secondly, discriminant 

features (Hjorth, spectral power…etc.) are extracted from the signal and are used as inputs 

to the feature selection block. Thirdly, the extracted features are selected according to their 

ability to discriminate between the different periods of the signal using inspection, 

afterwards the selected features are used as inputs to the support vector machine trainer in 

MATLAB. Fourthly, the support vector machine output is regularized to decrease the 

number of false alarms. And finally, a decision function produces the correct class when 

given the trained SVM classifier and the new features. Stimulation pattern is the final 

output of this detection block. 

Figure 15: The whole system of seizure detection/prediction implanted in the brain 

Figure 16: The detection process flow. 
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Graduation Project Flow 

The main flow of the graduation project is summarized briefly in Figure 17 into 6 main 

steps. First step is to survey the different machine learning techniques available and which 

is better for the implementation of the classification process and then decide which way 

this technique is going to be implemented. Second step is to start building the software 

blocks for the detection algorithm and then integrate these blocks into one software 

platform. Third step is to transfer the software (HLL) blocks into hardware (HDL) blocks 

using hardware description language (HDL) programs. Fourth step is to compare the 

classification output results to previously reported data and results which in our case found 

in [8]. Fifth step is to build an FPGA prototype, test its functionality and determine the 

power consumed. Sixth and last step is to build an ASIC layout for our system ready for 

fabrication.  

Implementation methods 

The system to be implemented has different ways of integration to perform the required 

tasks, the different forms of implementation are shown below: 

1. Training and Classification Online.  

Full system on chip (SoC) that’s implantable and requires no data from outside and 

all processing is done inside the implanted chip. 

2. Online Feature Extraction and Classification 

Training, that will be done once in a very long time, is performed on PC or FPGA 

outside the brain (hardware acceleration). The model parameters of the trainer are 

Figure 17: Main project flow. 
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saved into the classifier, then, classification will be done in real time inside the 

brain using the features extracted also from inside. This is the approach we are 

taking because training process needs a lot of hardware and power that is not 

suitable for in vivo conditions. 

3. Online Feature Extraction Only. 

The implanted part are the electrodes and hardware of feature extraction only, then 

these extracted features are sent wirelessly via a low power transmitter to the 

classifier and trainer and all the classification is done outside, then the decision is 

sent back to the stimuli electrodes [31].  

We would like to make sure of the point that our system is divided into offline parts and 

online parts which means that part of the system will be online (implemented in the 

patient’s brain) and another part will be offline outside the patient’s brain using hardware 

acceleration. The reason is that the SVM training part consumes a lot of power and 

hardware complexity and is better implemented offline. 
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Chapter 3 
In this chapter, the main steps and concepts followed through the whole project are 

discussed in detail. In addition, the detailed work flow of the developed platform is added. 

Machine Learning: 
To be able to differentiate between the Ictal and non-Ictal states, we are going to employ 

machine learning (ML), machine learning is the field in computer science using statistical 

methods and artificial intelligence (AI) to continuously learn and Identify different patterns 

in data, trying to identify a relationship between the inputs and outputs of the system. There 

are two main types of machine learning: supervised machine learning and unsupervised 

machine learning. In supervised machine learning, the computer is provided with the inputs 

and outputs of the system, where the outputs are labeled so that the ML algorithm can 

differentiate between the labeled outputs and can map the given inputs to their correct label, 

for example in binary classification problems the outputs are labeled with 0 and 1 or true 

and false so each input is provided with its corresponding correct outcome, so each possible 

outcome from each set of inputs is already known, here the machine learning process is 

supervised by the scientist as he provides the algorithm with the correct labels. On the other 

hand, in the unsupervised machine learning, the scientist provides the algorithm with the 

inputs and outputs without labeling the outputs, so the algorithm must draw a relationship 

between the inputs and the outputs based on its ability to learn and figure out the patterns.  

There are different machine learning techniques used for classification and regression 

analysis. However, given that our goal is to differentiate between ictal and non-ictal states 

we are facing a binary classification problem in which the output belongs only to two 

classes, the most commonly used algorithms in seizure detection are neural network and 

support vector machine due to their accuracy and robustness.  

Support Vector Machine (SVM): 
Support vector machine is a supervised machine learning technique that is based on 

statistical learning theory (SLT) It was first introduced by Vladimir Vapnik in 1979 [32] 

usually used in binary classification problems, given a set of training data belonging to one 

of two categories marked either -1 or 1, the SVM builds a model that can assign new inputs 
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to one of the two categories. Meaning it can generalize and assign categories to novel data 

from the constructed model based on the learning algorithm. 

One of the advantages of the SVM is that the resolution principle of the SVM is a quadratic 

programming tool whose local optimal value is just its global value. Accordingly, the SVM 

can provide a unique solution and is a strongly regularized method that seeks a global 

optimized solution and avoid poor generalization problem (namely the over-fitting). 

However, one of the limitations of the SVM approach is that the accuracy of model depends 

on the choice of the defined kernel and its parameters. These parameters play a crucial role 

and should be optimized to yield better generalization performance.  

Hard Margin: 
In our binary classification problem, we have a set of inputs 𝑥𝑖, where 𝑥𝑖 Is a 

multidimensional vector consisting of a number of m features and each vector corresponds 

to an output label 𝑦𝑖 where 𝑦𝑖 is either -1 or 1, for 2 classes of linearly separable data as 

shown in Figure 18. There is an infinite number of boundaries or Hyperplanes that can 

separate between the two classes of data where the data points on one side correspond to 

the +1 label and the data points on the other side correspond to the -1 label. The SVM tries 

to find the hyperplane with the maximum separation between the data, the points on each 

side which are closest to this hyperplane influence the position of this hyperplane thus they 

are called support vectors and the lines cutting these support vectors parallel to the 

Hyperplane are called canonical hyperplanes [33]. So, if you have a vector �⃗⃗�  perpendicular 

Figure 18: Two classes of linearly separable data with different 

hyperplanes separating between them, red is +1 and blue is -1.
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to the hyper plane and a vector �⃗�  going from the origin and you take the projection of the 

of �⃗�  on �⃗⃗� , if that value is bigger than a constant then you have a positive sample, if it’s 

smaller than that constant then you have a negative sample this is defined as the decision 

function.  

Thus, the above formulation can be written as the follows  [34]

𝑓(𝑥) = 𝑠𝑖𝑔𝑛(�⃗⃗� ∙ 𝑥 𝑖 + 𝑏) (3.1.1) 

 For positive samples 

�⃗⃗� ∙ 𝑥 𝑖 + 𝑏 ≥ 1  (3.1.2) 

And for negative samples 

�⃗⃗� ∙ 𝑥 𝑖 + 𝑏 ≤ −1 (3.1.3) 

Thus, in general we can write   𝑦𝒊(�⃗⃗� ∙ 𝑥 𝑖 + b) ≥ 1 where 𝑦𝑖 = +1 for positive samples and

−1 for negative samples.

To define the distance between the canonical hyperplanes, we observe that 𝑦𝑖(�⃗⃗� ∙ 𝑥 𝑖 +

b) = 1 for the points on the canonical hyperplanes or the support vectors and �⃗⃗� ∙ 𝑥 𝑖 + b =

0 for the separating hyperplane as shown in Figure 19. So, to calculate the distance between 

Figure 19: Hyperplanes separating between the two classes 

showing the bias, weights and the maximum distance.
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the 2 canonical hyperplanes (�⃗⃗� ∙ 𝑥 + + b) − (�⃗⃗� ∙ 𝑥 − + b) = 1 − (−1) = 2 thus �⃗⃗� ∙

(𝑥 + − 𝑥 −) = 2, where 𝑥 + is a support vector on the positive canonical hyperplane and 𝑥 − 

is a support vector on the negative canonical hyperplane. Normalizing this equation with 

respect to w unit vector we can write this equation as follows: 

 
�⃗⃗� 

‖𝑤‖
∙ (𝑥 + − 𝑥 −) =

2

‖𝑤‖
 (3.1.4) 

This value is the margin between the canonical hyperplanes that we want to maximize, or 

equivalently minimize 

 
1

2
‖𝑤‖ (3.1.5) 

Subject to  

𝑦𝒊(�⃗⃗� ∙ 𝑥 𝑖 + b) ≥ 1   (3.1.6) 

This function is a constraint optimization problem where you minimize (3.1.5) subject to 

(3.1.6), this can be reduced to the minimization to a Lagrange function defined as follows, 

 𝐿(𝑤, 𝑏) =
1

2
||�⃗⃗� ||

2
 − ∑𝛼𝑖[𝑦𝑖(�⃗⃗� ∙ 𝑥 𝑖 + b) − 1] 

𝑁

𝑖=1

 (3.1.7) 

This equation consists of the objective function minus the constraint multiplied by α which 

is the Lagrange multiplier. To minimize equation (3.1.7) we differentiate it with respect to 

w and b and equate the differentiation to zero: 

 
𝜕𝐿

𝜕𝑏
= −∑𝛼𝑖𝑦𝑖=0 

𝑁

𝑖=1

 (3.1.8) 

And  

𝜕𝐿

𝜕𝑤
= 𝑤 − ∑𝛼𝑖𝑦𝑖(𝑥 𝑖) =0

𝑁

𝑖=1

 (3.1.9) 

Thus, 
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 𝑤 = ∑𝛼𝑖𝑦𝑖(𝑥 𝑖)

𝑁

𝑖=1

 (3.1.10) 

And  

∑𝛼𝑖𝑦𝑖=0 

𝑁

i=1

 (3.1.11) 

Substituting back into equation (3.1.7) we get the dual formulation  

 min
𝛼

∑𝛼𝑖

𝑁

i=1

− 0.5∑∑𝑦𝑖𝑦𝑗(𝑥 𝑖. 𝑥 𝑗)𝛼𝑖𝛼𝑗

𝑁

j=1

𝑁

i=1

 (3.1.12) 

subject to   

∑ 𝛼𝑖𝑦𝑖=0 𝑁
i=1  for 𝛼𝑖 > 0 (3.1.13) 

Thus, instead of dealing with the maximization of the margin we are minimizing the dual 

form of 𝛼𝑖. And the objective function of both forms can be shown to have the same value 

as there is a one to one relationship between the Lagrange multiplier, the margin, and the 

bias. Once 𝛼𝑖 is calculated, we can calculate the margin as 𝑤 = ∑ 𝛼𝑖𝑦𝑖(𝑥 𝑖)
𝑁
i=1   and the bias 

as 𝑏 =  𝑦𝑖 − �⃗⃗� . 𝑥 𝑖 .  

Soft Margin 
In the above formulation we assumed that the data are linearly separable, However, to 

extend the technique to non-linearly separable data as shown in Figure 20, in 1995 Cortes 

& Vapnik [35] introduced what’s called a Loss function or a slack variable . 

 𝜉𝑖 = max(0,1 − 𝑦𝒊(�⃗⃗� ∙ 𝑥 𝑖 + 𝑏)) ∀𝑖 (3.1.14) 

This function is zero if x lies on the correct side of the hyperplane and a value proportional 

to the distance from the canonical hyperplane if it lies on the wrong side of the hyperplane. 

Using the slack variable, we can modify the equations in the hard margin approach as 

follows: 
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Now we are minimizing the margin in addition to the error subject to the following 

equation, 

 min [
1

2
‖w‖ + C∑ξi

N

i=1

] (3.1.16) 

Where C: is a parameter capturing the tradeoff between having a wide margin with a small 

number of margin failures. Thus, the LaGrange formulation can be written as follows: 

𝐿(𝑤, 𝑏, 𝜉, 𝛼𝑖) =
1

2
||�⃗⃗� ||

2
+ 𝐶 ∑𝜉𝑖

𝑁

𝑖=1

 − ∑𝛼𝑖[𝑦𝑖(�⃗⃗� ∙ 𝑥 𝑖 + b) − 1 + 𝜉𝑖]

𝑁

𝑖=1

− ∑ 𝑟𝑖𝜉𝑖

𝑁

𝑖=1

 (3.1.17) 

Where 𝛼𝑖  handles the constraint equation, and 𝑟𝑖 > 0 handles 𝜉 > 0 requirement. 

The derivative with respect to 𝑤, 𝑏, 𝜉 gives 

 
𝜕𝐿

𝜕𝑤
= 𝑤 − ∑𝛼𝑖𝑦𝑖𝑥𝑖

𝑁

𝑖=1

= 0 (3.1.18) 

 
𝜕𝐿

𝜕𝑏
= ∑𝛼𝑖𝑦𝑖

𝑁

𝑖=1

= 0 (3.1.19) 

 
𝜕𝐿

𝜕𝜉𝑖
= 𝐶 − 𝛼𝑖 − 𝑟𝑖 = 0 (3.1.20) 

Substituting with 𝑤 = ∑ 𝛼𝑖𝑦𝑖𝑥𝑖
𝑁
𝑖=1  in 𝐿(𝑤, 𝑏, 𝜉, 𝛼𝑖) we obtain the same dual formula in 

equation (3.1.12), however, the equation is subject to  

 0 < 𝛼𝑖 < 𝐶 (3.1.21) 

As 𝐶 − 𝛼𝑖 − 𝑟𝑖 = 0 and 𝑟𝑖 ≥ 0 and 𝛼𝑖 ≥ 0, equation (3.1.21) is known as box constraint 

because it constrains alpha to be in a box with a maximum of C and a minimum of 0. 

 𝑦𝒊(�⃗⃗� ∙ 𝑥 𝑖 + b) ≥ 1 − 𝜉𝑖 (3.1.15) 
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Kernel Trick 
When dealing with non-linearly separable SVM it’s better to transform the data into a 

higher dimension space in which they are linearly separable and then perform the dot 

product as shown in Figure 20. However, there is an easier way using the kernel trick, the 

kernel trick employs a kernel function that compute the dot product of the data in lower 

dimension space, this dot product is identical to the output of the dot product of the two 

data points after they are transformed to the higher dimension space.  

The kernel function is formulated using the following symbol 𝐾(𝑥𝑖, 𝑥𝑗) where 𝐾(𝑥𝑖 , 𝑥𝑗) =

Φ(xi).Φ(xj) where Φ(xi) is the value of 𝑥𝑖 after the transformation into the higher 

dimension space. There are many forms of the kernel function including but not limited to: 

Linear kernel 𝐾(𝑥𝑖, 𝑥𝑗) = 𝑥𝑖 . 𝑥𝑗, Polynomial kernel 𝐾(𝑥𝑖 , 𝑥𝑗) = (𝑥𝑖 . 𝑥𝑗 + 𝑦)
𝑚

, Laplacian 

kernel 𝐾(𝑥𝑖, 𝑥𝑗) = 𝑒−𝜓‖𝑥𝑖−𝑥𝑗‖, and last but not least the Gaussian kernel or Radial Basis 

Function(RBF) 𝐾(𝑥𝑖 , 𝑥𝑗) = 𝑒−
‖𝑥𝑖−𝑥𝑗‖

2

2𝜎 . Using the kernel trick the minimization 

optimization problem is transformed into the following equation  

 min
𝛼

∑𝛼𝑖

𝑁

𝑖=1

− 0.5∑∑𝑦𝑖𝑦𝑗𝑘(�⃗⃗� 𝑖, �⃗⃗� 𝑗)𝛼𝑖𝛼𝑗

𝑁

𝑗=1

𝑁

𝑖=1

 (3.1.22) 

 And dual formulation is represented by the following equations: 

𝐿(𝑤, 𝑏, 𝜉, 𝛼𝑖) =
1

2
||�⃗⃗� ||

2
+ 𝐶 ∑𝜉𝑖

𝑁

𝑖=1

 − 

∑ 𝛼𝑖[𝑦𝑖(𝒌(�⃗⃗� , 𝑥 𝑖) + b) − 1 + 𝜉𝑖]
𝑁
𝑖=1 − ∑ 𝑟𝑖𝜉𝑖

𝑁
𝑖=1    (3.1.23) 

Figure 20 Non-Linearly separable data and the transformation to a higher dimension 

space. 
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And the decision function or the output of the SVM is  

 𝑓(𝑥) = ∑𝑦𝑖𝑘(𝑥 𝑖, 𝑥 )𝛼𝑖

𝑁

𝑖=1

+ 𝑏 (3.1.24) 

To solve for the Lagrange multiplier in the optimization minimization problem and 

calculate the bias used in equation (3.1.24) there are several algorithms developed to 

calculate an optimal solution, these algorithms include but not limited to Gradient descent, 

gradient Ascent, Empirical risk minimization, and Sequential Minimal Optimization 

(SMO). 

Sequential Minimal Optimization (SMO): 
SMO is an algorithm proposed by Platt in 1998 [4] for training support vector machine as 

an alternative to the chunking algorithm proposed by Vapnik [36] and the algorithm 

proposed by Osuna [37]. Because SVM requires the solution of very large quadratic 

programming (QP) optimization problems to calculate alpha in equation (3.1.22), these QP 

optimization problems are time consuming and require a lot of memory, SMO breaks the 

large QP problem into smaller and easier to solve QP problems. It can handle very large 

data sets as the amount of memory required by the algorithm is linearly proportional to the 

training data set. 

Since SMO breaks the QP problem into smaller problems, it solves for the smallest QP 

optimization problem that involves two Lagrange multipliers obeying the linear equality 

constraint. At every step, the SMO chooses two random Lagrange multipliers 

Figure 21: Lagrange multipliers obeying the box constraint and the Linear equality constraint causing 

them to lie on a diagonal  [4]. 
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corresponding to two values, optimize them simultaneously and update the SVM with the 

optimized values as shown in Figure 21. These Lagrange multipliers can be found by 

solving the small QP problem analytically with no need for complex numerical 

computations which is a great advantage of the SMO. 

 It should be noted that the kernel function must obey Mercer’s conditions [38] in order for 

the QP problem to be positive definite, also the Karush-Kuhn-Tucker (KKT) [39] 

conditions are necessary and sufficient conditions to find an optimal solution to a QP 

problem that is positive definite [40]. The KKT conditions for our QP problem are: 

 𝛼𝑖 = 0 ↔ 𝑦𝑖𝑓(𝑥𝑖) ≥ 1 (3.1.25) 

 0 < 𝛼𝑖 < 𝐶 ↔ 𝑦𝑖𝑓(𝑥𝑖) = 1 (3.1.26) 

 𝛼𝑖 = 𝐶 ↔ 𝑦𝑖𝑓(𝑥𝑖) ≤ 1 (3.1.27) 

Calculating the Two Lagrange Multipliers: 

The SMO algorithm calculates the constraints for the two Lagrange multipliers then solves 

for the minimum of the constraint, the box constraint causes the Lagrange multipliers to be 

bound in a box and the Linear equality constraint causes the two Lagrange multipliers to 

lie on a line as shown in Figure 21. 

The algorithm first calculates the second Lagrange multiplier 𝛼2 then solves for the bounds 

of the diagonal line segment inside the box constraint in terms of this Lagrange multiplier, 

if 𝑦1 ≠ 𝑦2 then it applies the following bounds  

𝐿 = max(0, 𝛼2 − 𝛼1), 𝐻 = min (𝐶, 𝐶 + 𝛼2 − 𝛼1) (3.1.28) 

If 𝑦1 = 𝑦2 then the following bounds apply  

𝐿 = max(0, 𝛼2 + 𝛼1 − 𝐶), 𝐻 = min (𝐶, 𝛼2 + 𝛼1)   (29.1.3)  

We can express the second derivative of the objective function along the diagonal by  

 𝜂 = 𝐾(𝑥 1, 𝑥 1) + 𝐾(𝑥 2, 𝑥 2) − 2𝐾(𝑥 1, 𝑥 2) (3.1.30) 
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The objective function will be positive definite under normal conditions and we can 

calculate a minimum along the diagonal linear equality constraint and 𝜂 will be >0. Thus, 

the minimum is calculated to be 

 𝛼2
𝑛𝑒𝑤 = 𝛼2 +

𝑦2(𝐸1 − 𝐸2)

𝜂 
 (3.1.31) 

Where 𝐸𝑖 = 𝑓(𝑥𝑖) − 𝑦𝑖, then the constrained minimum is calculated by clipping the 

unconstrained minimum via the following set of equations 

 𝛼2
𝑛𝑒𝑤,𝑐𝑙𝑖𝑝𝑝𝑒𝑑 = {

𝐻 𝑖𝑓 𝛼2
𝑛𝑒𝑤 ≥ 𝐻

𝛼2
𝑛𝑒𝑤 𝑖𝑓 𝐿 < 𝛼2

𝑛𝑒𝑤 ≤ 𝐻

𝐿 𝑖𝑓 𝛼2
𝑛𝑒𝑤 ≤ 𝐿 

} (3.1.32) 

To calculate 𝛼2
𝑛𝑒𝑤 form the clipped alpha,  

 𝛼2
𝑛𝑒𝑤 + 𝛼1 + 𝑦1𝑦2(𝛼2 + 𝛼2

𝑛𝑒𝑤,𝑐𝑙𝑖𝑝𝑝𝑒𝑑) (3.1.33) 

Under normal conditions 𝜂 will be positive, however if the kernel function does not obey 

Mercer’s conditions, it will introduce a negative 𝜂 which may lead to an indefinite objective 

function. If the same vector x is common between more than one training sample, 𝜂 may 

be zero even with a kernel function obeying Mercer’s conditions. The SMO algorithm 

computes the objective function through the following set of equations even if 𝜂 is negative 

Let 𝑠 = 𝑦1𝑦2 

 𝑓1 = 𝑦1(𝐸1 + 𝑏) − 𝛼1𝐾(𝑥 1, 𝑥 1) − 𝑠𝛼1𝐾(𝑥 1, 𝑥 2), (3.1.34) 

 𝑓1 = 𝑦2(𝐸2 + 𝑏) − 𝑠𝛼1𝐾(𝑥 1, 𝑥 2) − 𝛼2𝐾(𝑥 2, 𝑥 2), (3.1.35) 

 𝐿1 = 𝛼1 + 𝑠(𝛼2 − 𝐿) (3.1.36) 

 𝐻1 = 𝛼1 + 𝑠(𝛼2 − 𝐻) (3.1.37) 

 Ψ𝐿 = 𝐿1𝑓1 + 𝐿𝑓2 +
1

2
𝐿1
2𝐾(𝑥 1, 𝑥 1) +

1

2
𝐿2𝐾(𝑥 2, 𝑥 2) + 𝑠𝐿𝐿1𝐾(𝑥 1, 𝑥 2) (3.1.38) 



30 
 

 Ψ𝐻 = 𝐻1𝑓1 + 𝐻𝑓2 +
1

2
𝐻1

2𝐾(𝑥 1, 𝑥 1) +
1

2
𝐻2𝐾(𝑥 2, 𝑥 2) + 𝑠𝐻𝐻1𝐾(𝑥 1, 𝑥 2) (3.1.39) 

The bias b is calculated at each step, to calculate 𝑏1 the following equation is used which 

is valid when its Lagrange multiplier is not at the boundaries as it forces the SVM output 

to be 𝑦1 if the input value is 𝑥1 

 
𝑏1 = 𝐸1 + 𝑦1(𝛼1

𝑛𝑒𝑤 − 𝛼1)𝐾(𝑥 1, 𝑥 1) + 𝑦2(𝛼2
𝑛𝑒𝑤,𝑐𝑙𝑖𝑝𝑝𝑒𝑑 − 𝛼2)𝐾(𝑥 1, 𝑥 1)

+ 𝑏 
(3.1.40) 

Similarly, 𝑏2 is computed  

 
𝑏2 = 𝐸2 + 𝑦1(𝛼1

𝑛𝑒𝑤 − 𝛼1)𝐾(𝑥 1, 𝑥 2) + 𝑦2(𝛼2
𝑛𝑒𝑤,𝑐𝑙𝑖𝑝𝑝𝑒𝑑 − 𝛼2)𝐾(𝑥 1, 𝑥 2)

+ 𝑏 
(3.1.41) 

Both of these values are equal if the Lagrange multiplier 𝛼1 & 𝛼2 are at the boundaries and 

𝐿 ≠ 𝐻, in such case, the SMO algorithm choses the bias to be 
𝑏1+𝑏2

2
. 

A special case when dealing with Linear kernel SVM, instead of updating the margin w 

every time instead of all the zero values corresponding to non-zero Lagrange multipliers   

 �⃗⃗� 𝑛𝑒𝑤 = �⃗⃗� + 𝑦1(𝛼1
𝑛𝑒𝑤 − 𝛼1)𝑥1⃗⃗  ⃗ + 𝑦2(𝛼2

𝑛𝑒𝑤,𝑐𝑙𝑖𝑝𝑝𝑒𝑑 − 𝛼2)𝑥2⃗⃗⃗⃗  (3.1.42) 

Heuristics for choosing the Lagrange multipliers: 

The algorithm employs two different heuristics for each Lagrange multiplier. The first one 

is for choosing the first multiplier, it iterates over the whole training set to determine 

whether each training example violates the KKT conditions or not, thus, this heuristic 

defines the outer loop of the algorithm, if a training example violates the KKT conditions 

then it can be chosen for optimization, after one iteration through the entire training set, 

the outer loop then iterates over the examples whose Lagrange multipliers are not 0 or C, 

meaning that they are not boundary multipliers, then it chooses the examples that violates 

the KKT conditions, this approach is repeated until all the non-bound examples obey the 

KKT conditions within a threshold 휀 which is usually chosen to be 10−3, then the outer 

loop goes back to the entire training set not just the non-boundary training examples, the 
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outer loop keeps alternating between the entire data set and the non-bound training 

examples until all the training examples obey the KKT conditions. 

In the second heuristic, the second Lagrange multiplier is chosen in a way that maximizes 

the step size taken in simultaneous optimization, the step size is approximated to be 

|𝐸1 − 𝐸2|, in some cases the SMO algorithm progress cannot be made like when the two 

training examples have the same input x, this case causes the objective function to become 

semi-definite rather than positive definite, thus, the SMO algorithm searches in the non-

boundary Lagrange multipliers training examples until a positive progress is made, if the 

non-bound examples doesn’t satisfy the requirement of positive progress then it searches 

through the entire training examples, the iterations in the non-bound and entire examples 

start at random locations, if none of the non-bound examples or the entire example set 

allow the SMO algorithm to advance in a positive progress the example chosen in the first 

heuristic is skipped and the next example is evaluated and the entire process is repeated.  

Pseudocode for the Algorithm: 

The pseudo code is adapted from [4] and found in Appendix I. 

Flowcharts for SMO Algorithm 

An abstract of the flowchart followed by a detailed flowchart are shown in Figure 22 and 

Figure 23 respectively.  

Artificial Neural Network: 
The second most common machine learning method used in epileptic seizure detection is 

Artificial neural network (ANN). ANN were inspired from the biological neurons and 

proven to be a powerful tool for learning by constructing a nonlinear mapping between a 

given set of input and output data [41]. The ANN approach is a well-known classification 

and regression method, due to its inherent pattern recognition capabilities and its ability to 

handle noisy data [42]. The patterns are represented in the connection weights between the 

network layers that are updated during the learning process based on the backpropagation 

error signal that represents the difference between the desired output and the actual outputs 

of the network. 

The main limitation of the ANN is that these networks are not so great when it comes to 

knowledge presentation. The user can’t extract the knowledge from the weights that are 
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distributed throughout the whole network. This makes neural network like a black box to 

the user. Another drawback is tedious parameter tuning of the network structure. Moreover,  
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Figure 22: Flowchart overview for SMO algorithm. 
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Figure 23: SMO detailed flowchart. 
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the ANN algorithm is based on the principle of empirical risk minimization, and this can 

lead to local minima and hence poor minimization performance.  

A typical ANN consists of a set of neurons that receive a value from an input, according to 

this value it alters its internal state or the activation value and produces an output depending 

on the input and the activation function. A neuron a typically has an activation value 

denoted by 𝑎𝑗(𝑡) , it has a threshold value 𝜃𝑗  and an input 𝑥𝑗(𝑡), this neuron can compute 

its activation value at the next discrete time interval via an activation function, where, 

𝑎𝑗(𝑡 + 1) = 𝑓(𝑎𝑗(𝑡), 𝑥𝑗(𝑡), 𝜃𝑗). In addition to the neurons, an ANN consists of a set of 

connections from neuron 𝑖 to neuron 𝑗 where each connection has a weight denoted by 𝑤𝑖𝑗. 

To compute the input to neuron 𝑗 from the output of neuron 𝑖 a propagation function is 

used 𝑝𝑗(𝑡) = ∑ 𝑂𝑖(𝑡)𝑤𝑖𝑗𝑖  where 𝑂𝑖(𝑡) is the output of neuron 𝑖. The ANN learns by 

randomly varying the number of neurons, the number of hidden layers, the weights and the 

thresholds to map a set of inputs to an output with the least error value.  

A nonlinear weighted sum of the network can be represented by 𝑓(𝑥) = 𝐾 ∗ ∑𝑤𝑖𝑔𝑖(𝑥) 

where 𝑔𝑖(𝑥) is a composition of other function like the propagation, K is usually denoted 

by activation function, typical activation functions that are widely used are the hyperbolic 

tangent, the sigmoid function, the rectifier function and the SoftMax function. 

In the learning process, the function 𝑓(𝑥) tries to map the inputs to the output, this is 

achieved by applying what is called by a cost function 𝐶 =
1

𝑁
∑ (𝑓(𝑥𝑖) − 𝑦𝑖)

2𝑁
𝑖=1  where N 

is the number of samples and 𝑦𝑖 is the target output, Figure 24(a) shows a typical neural 

network with only one hidden layer and one output while Figure 24(b) shows a neural 

network with multi hidden layer perceptron and multiple output values for a multiclass 

artificial neural network problem.  

Different types of ANNs are used in classification and regression problems, including but 

not limited to feedforward neural network, backpropagation neural network and 

convolutional neural network, these networks are used depending on the application. 
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Figure 24 a) single layer perceptron with only one output, b) multilayer perceptron with multiple outputs. 
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Features 

Feature Extraction 

To be able to differentiate between the different categories of the input signal and allow 

the SVM algorithm to differentiate between the seizure (ictal or preictal in prediction) and 

non-seizure (non-ictal) states, raw signal data is converted into a set of distinctive features 

via feature extraction. Through these features, the model will predict the occurrence of a 

seizure if the features extracted are similar or comparable to the features of the ictal period 

in the training data set. Throughout the project, we investigated many types of features in 

order to get the optimal set of features that offer a reasonable hardware complexity while 

maintaining the required performance.  

Features are can be classified into two categories, frequency domain features and time 

domain features.  Table 1 provides a summary for the features adopted in our study. 

Features may be applied on raw signal data coming from the EEG or after formation of 

epochs. 

Table 1: Time and frequency domain features used. 

Frequency Domain Time Domain 

- Power spectral density using 

filters for different bands. 

- Coast Line 

 

- Energy   

𝑥(𝑖 + 1) − 𝑥(𝑖) 

 

𝐸 = 𝑥2 

- Power spectral density using 

Fast Fourier Transform (FFT) 

 

- Variance 

 

 

𝜎2 =
∑(𝑥 − 𝜇)2

𝑁
 

 - Skewness 

 

- Kurtosis 

 

- Hjorth Mobility 

𝑘 =
𝐸(𝑥 − 𝜇)3

𝜎3
 

𝑘 =
𝐸(𝑥 − 𝜇)4

𝜎4
 

𝐻𝑀 = √
𝑣𝑎𝑟 (

𝑑𝑥(𝑡)
𝑑𝑡

)

𝑣𝑎𝑟(𝑥(𝑡))
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 - Hjorth Complexity 
𝐻𝐶 =

𝐻𝑀 (
𝑑𝑥(𝑡)
𝑑𝑡

)

𝐻𝑀(𝑥(𝑡))
 

 

Frequency Domain Features 

Literature identified certain frequency components in EEG signals that appear the most 

during preictal period which are five known bands: delta-band (0.5–4 Hz), theta-band (4–

8 Hz), alpha-band (8–13 Hz), beta-band (13–30 Hz) and gamma-band (30–128 Hz) were 

reported to be useful in predictive models as the power is transferred from low frequency 

components to high frequency components during preictal period [43]. For ictal period, 

frequencies up to 20 Hz are widely considered [31]. There are two methods to extract the 

spectral powers of these bands explained below. 

i. Using filters  

This approach places several band-pass filters as shown in Figure 25 centered 

around different frequencies. The output of the filters is accumulated as shown 

Figure 25: The filter bank followed by magnitude summation to calculate the spectral power of certain bands. 

Figure 26: Specifications of the filter bank. 
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in Figure 26. Typical filters are Type-I FIR filters whose orders may reach 50 

[31]. Intuitively, such bank of filters will be very power hungry when 

implemented. 

ii. Relative spectral power using Fourier transform    

𝑃𝑖 = ∑𝑃𝑆𝐷(𝑥)

𝑖

,      𝑛𝑝𝑖 =
𝑃𝑖

𝑃𝑡𝑜𝑡
=

∑ 𝑃𝑆𝐷(𝑥)𝑖

∑ 𝑃𝑆𝐷(𝑥)𝑡𝑜𝑡
     (3.2.1) 

iii. Where 𝑝𝑖 is the spectral power of 𝑖𝑡ℎ sub-band, x is the windowed raw EEG 

signal, 𝑖 indexes the 𝑖𝑡ℎ frequency sub-band, and PSD(x) is the Power Spectral 

Density of the signal. The normalized spectral power feature for a given sub-

band was computed by dividing the spectral power of the sub-band by the total 

power as in (3.2.1). This implementation will need an FFT core to compute 

PSD(x). 

Time domain features 

This type of features is obtained by performing direct time domain operations on the raw 

EEG signal data or after windowing. 

i. Coast Line  

It’s one of the simplest features that can be obtained yet it proved efficient. It 

aims at finding the absolute difference between each two samples (𝑥 (𝑖), 𝑥 (𝑖 +

1)) then windowing those differences into the required epoch length. 

 𝑥(𝑖 + 1) − 𝑥(𝑖) (3.2.2) 

ii. Hjorth Energy 

Another simple and easy way to extract a feature is the Hjorth energy feature 

which simply gets the summation of the squares of data points, or even time 

epochs. 

 𝐸𝑛𝑒𝑟𝑔𝑦 =  ∑𝑥(𝑖) 2

𝑖

 (3.2.3) 

Where 𝑥(𝑖) can be a data sample or a windowed epoch. 

iii. Hjorth Mobility (HM)  
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The mobility parameter represents the mean frequency of the power spectrum 

of the signal x(t). 

 
𝐻𝑀 = √

𝑣𝑎𝑟 (
𝑑𝑥(𝑡)
𝑑𝑡

)

𝑣𝑎𝑟(𝑥(𝑡))
 

(3.2.4) 

 

iv. Hjorth Complexity (HC)  

It represents the frequency variation in each signal x(t), where x(t) is a window 

from the raw data. 

 𝐻𝐶 =
𝐻𝑀 (

𝑑𝑥(𝑡)
𝑑𝑡

)

𝐻𝑀(𝑥(𝑡))
 

(3.2.5) 

v. Variance 

Variance describes how the data points in a sample or a population deviate from 

their mean value. So, if the variation is large, so does the EEG fluctuations 

which resembles the high rhythmic activity during a seizure (ictal period).  

 𝜎2 =
∑(𝑥 − 𝜇)2

𝑁
 

(3.2.6) 

Where 𝜇 is the sample mean and N is number of data points in the sample. 

vi. Skewness 

Skewness is a measure of the asymmetry of the data around the sample mean.  

 𝑘 =
𝐸(𝑥 − 𝜇)3

𝜎3
 

(3.2.7) 

Where 𝐸(𝑥) is the expected value of x. 
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vii. Kurtosis 

Kurtosis is a measure of how outlier-prone a distribution is and also how the 

distribution deviates from the normal bell-shaped distribution as shown in 

Figure 27. 

 𝑘 =
𝐸(𝑥 − 𝜇)4

𝜎4
 

(3.2.8) 

Online Algorithm for Statistical Moments 
For the statistical features (variance, skewness, kurtosis), they depend on the sample mean 

so we need to wait for the required samples to calculate them. That would introduce large 

latencies in the hardware implementation of these features, so we need online algorithms 

that update the value of the produced quantity for every new data point. 

Terriberry proposed an algorithm [44] that calculates the statistical moments, 𝑀𝑘, using 

online incremental algorithm shown below. 

 𝑀𝑘 = 𝐸[𝑥 − 𝐸[𝑥𝑘]]   (3.2.9) 

𝛿 = 𝑥 − 𝑚 

𝑚′ = 𝑚 +
𝛿

𝑛
 

𝑀2
′ = 𝑀2 + 𝛿2

𝑛 − 1

𝑛
 

𝑀3
′ = 𝑀3 + 𝛿3

(𝑛 − 1)(𝑛 − 2)

𝑛2
−

2𝛿𝑀2

𝑛
 

𝑀4
′ = 𝑀4 + 𝛿4

(𝑛 − 1)(𝑛2 − 3𝑛 + 3)

𝑛3
+

6𝛿2𝑀2

𝑛2
−

4𝛿𝑀3

𝑛
 

Figure 27  Kurtosis meaning 
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Skewness 

𝑔1 =
√𝑛𝑀3

𝑀2
3/2

Kurtosis 

𝑔2 =
𝑛𝑀4

𝑀2
2 − 3 

The pseudocode for the online algorithms is found in Appendix I. 

This is an incremental (online) algorithm proposed by Terriberry to obtain the crucial 

central moments needed to calculate mean, variance, skewness and kurtosis. This the 

algorithm we used in writing the hardware for these features and is explained further in the 

hardware section. 

Normalization 
Because there are no limits on the voltage levels of the EEG signal and data may fluctuate 

rapidly at a high voltage level (or low) that will be considered as a whole within a certain 

class by the classifier, so testing and training data must be normalized using exactly the 

same steps. We tested three different methods of normalization. 

a. Standard Score

y =
x − μ

σ
(3.2.10) 

The mean of the training data is subtracted from every point of training data 

and testing data then divided by the standard deviation of training data. Note 

that we cannot use the mean or standard deviation of testing data on 

normalizing the testing data because we assume that we don’t have all the 

testing data as it enters the system and got classified in real time. 

b. Feature Scaling
This type of normalization scales all the data between to levels a and b.

𝑦 = 𝑎 +
(𝑥 − 𝑥𝑚𝑖𝑛)(𝑏 − 𝑎)

𝑥𝑚𝑖𝑛 − 𝑥𝑚𝑖𝑛

(3.2.11) 
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In order to confine the data in the rang [0,1] we use  𝑎 = 0 and 𝑏 = 1. 

c. Mean of the Absolute. 

 𝑦 =
𝑥 − 𝑚𝑒𝑎𝑛(𝑋)

𝑚𝑒𝑎𝑛(|𝑋|)
          , 𝑥 ∈ 𝑋 (3.2.12) 

 Normalization is also done on raw data in order to reduce the number of 

bits needed in the fixed-point system we used in hardware. 

Feature and Channel Selection 

It is reported that 60% of the patients suffer from epileptic seizures that are related to a 

specific region of the brain which is temporal lope [45]. So, multivariate features which 

explore the spatial dependence is chosen to be able to characterize differences in the EEG 

signal from the different regions of the brain leading to a better prediction performance. 

The bivariate approach is used on the relative spectral power features of the 5 bands 

mentioned above obtained for each channel of the 23 channels used to read the EEG signal. 

It was implemented using the method found in [46]. For mono variate features, we selected 

six channels manually that came from the most influenced areas of the brain. 

Smoothing 
Due to the roughness and the great variations and artifacts in EEG data, it is suitable to 

smooth the data by using a moving window average (3.2.13). So, each epoch amplitude 

now depends on the previous epochs, hence no sudden change will happen as shown in 

Figure 28.    

Figure 28: Before smoothing (Left). After of smoothing (Right). 
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 �̅�𝑘 =
1

𝑚 + 1
∑𝑎𝑘−𝑗

𝑚

𝑗=0

 (3.2.13) 

Performance Metrics: 

Measuring the performance of the model developed by the machine learning algorithm is 

critical to be able to compare it to other models developed by other researchers and to reach 

the best model that can produce the best results compared to the actual data. There are two 

main metrics used to measure the model’s performance, the epoch-based metric and the 

event-based metric [47]. 

Epoch-Based Metric 
This approach doesn’t depend on the application of the machine learning algorithm, but 

rather it assesses the performance of the output based on the individual epoch. In 

classification problems, each epoch is compared to the corresponding epoch in the actual 

class, for example binary classification problems in which the output of the machine 

learning algorithm is either 0 or 1 (true or false), the classifier output can be represented 

by a confusion matrix as shown in Figure 29. The confusion matrix consists of four 

categories, true positive (TP), true negative (TN), false positive (FP) and false negative 

(FN). 

Figure 29: Binary classification confusion matrix [6] 
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Where TP represents the epochs labeled true when the actual value is also true, TN 

represents epochs labeled false when the actual output is also false, FP represents epochs 

labeled true when the actual output is false, and finally FN represents epochs labeled as 

false when the actual output is true, these values are used to calculate other metrics that are 

widely used in performance metrics, namely the sensitivity, the accuracy, the specificity 

and the false detection rate (FDR). The sensitivity is defined as 
𝑇𝑃

𝑇𝑃+𝐹𝑁
 which represents the 

ratio of the correctly identified seizure -in the case of seizure detection- to the correctly 

identified epochs, the specificity is defined as 
𝑇𝑁

𝑇𝑁+𝐹𝑃
 which represents the truly identified 

non-seizures from all the non-seizures or zero classification, the FDR represents the 

amount of false identified seizures per hour, and the accuracy is defined as 
𝑇𝑃

𝑇𝑃+𝐹𝑃
 which 

represents the rate of correct seizure epochs from the epochs identified as true .  

Another metric used in epoch-based performance metric is the receiver operator 

characteristic (ROC) curve as shown in Figure 30, which shows how the sensitivity 

changes with respect to the specificity, the area under the curve can be used to compare 

between the performance of different algorithms, where a random classification will lead 

to an area of 0.5 and a perfect classification will produce an area of 1. 

Figure 30: Figure 30: ROC curve [7]  
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Event-Based Metric:  

An application specific metric used in seizure detection performance assessment, it doesn’t 

judge the validity of the classifier based on the epoch only but rather a combined decision 

of subsequent epochs which lead to an event, in seizure detection two metrics are taken 

into account, good detection rate (GDR) and false detection rate (FDR). A seizure is 

marked as detected if it was detected at any time between the start and the end of the 

seizure, a GDR is the number of detected seizures compared to the total number of seizures. 

Another metric is introduced specific for seizure detection shown in Figure 31 is latency 

which is defined as the difference between the time when the seizure was detected and the 

actual start of the seizure as shown in Figure 31, FDR is defined as the number of false 

detected seizures per hour, in a non-seizure or ictal free hour. 

 

Throughout our work we are going to employ the event-based metric, reporting the number 

of correctly identified seizures, the latency and the false detection rate. 

Latency 

Category 

Epoch 

Figure 31: Latency 
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Seizure Detection workflow 

The patients’ files are organized in European data format (EDF) files, these files contain 

the EEG signals documented and organized with hours containing seizure and seizure-free 

hours. We start by reading the patients files in MATLAB using “Readedf” function to 

convert the EDF files to mat format which can be processed by MATLAB, then we separate 

the seizure hours from the seizure-free hours, then we mark the onset of the seizure and the 

ending of the seizure in the hours containing seizures. We then we start by extracting the 

features from a number of hours containing seizures and seizure free hours to give the 

trainer a wide set of training data to produce unbiased results, each hour contains a matrix 

23 ∗ 921600, each row corresponds to a channel and each column corresponds to an hour. 

Given that the data are sampled at 256 sample per second, the matrix is divided by 256 to 

convert it into seconds and they are further converted into epochs each epoch is 2 second 

long.  

Six discriminant channels are chosen from the 23 channels, thus, the input raw data from 

which the features will be extracted is a 6 ∗ 1800 matrix with 1800 epochs from 6 channels, 

we then extract each feature from the 6 channels. The output feature matrix is summed and 

divided by the number of features to calculate an average feature from the 6 channels, then 

these features are normalized using the min max normalization discussed above, thus, the 

final input matrix to the trainer is the number of features*number of hours*1800 where the 

number of features represent the columns and 1800*number of hours represent the rows of 

the matrix. 

The input to the SVM trainer is the extracted features and a label matrix created by marking 

the beginning and ending of the seizures, a set of parameters are tuned in the SVM trainer 

to produce the best classifier that can discriminate between ictal and non-ictal states in an 

input test vector. 

To assess the performance of the classifier we first generate a test input matrix from the 

hours of the same patient that were not used in the training, we produce the test matrix the 

same way the training input matrix is generated, also we generate the labels which mark 

the ending and beginning of the seizure the same way as the input labels are generated 
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where the seizure epochs are marked by 1 and the seizure free epochs are marked by 0 or 

-1. 

The input to the SVM classifier are the test hours and the actual labels and the output of 

the classifier are the labels generated by the classifier to categorize the seizures.  

The output from the classifier and the actual classification matrices are compared against 

each other to assess the performance of the classifier according to our performance metrics. 

The total workflow is summarized neatly and briefly in Figure 32. 

  

 

Figure 32: MATLAB workflow 
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Chapter 4 
In this chapter a detailed explanation of the hardware techniques used is presented. In 

addition, the hardware blocks developed so far are presented in the form of neat block 

diagrams. The designed ASIC chip layout and power consumption estimations are also 

presented in this chapter. 

CORDIC Approximation 

One of the most crucial parts in the SMO SVM is the kernel function, due to the high cost 

of the RBF-kernel, most literatures resort to linear kernel functions as they can be 

implemented by just a multiplier accumulator (MAC). The problem with RBF-kernel is 

that it contains exponential function which is not straight forward to be implemented as a 

hardware RTL. A mathematically efficient and accurate method called CORDIC 

(Coordinate Rotation Digital Computer) is used to calculate many elementary functions 

such as trigonometric, hyperbolic and exponential functions. It needs only a shifter and an 

adder in addition to a small look up table.  

It was first developed by Jack Volder in 1959 [48] as a new method for computing 

trigonometric functions in digital applications using only add and shift function in addition 

to a look up table.  

An example of using the CORDIC algorithm in the rotational mode for computing a 

trigonometric function like the Sine or Cosine of an angle in radian is shown below in 

Figure 33. 

Figure 33: Angle rotation. 
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Starting with an arbitrary value for x and y, 𝑥0 = 0 and 𝑦0 = 1 and a vector 𝑣 =  
𝑥
𝑦, where 

𝑣0 = 
1
0

 like binary search we are searching for our angle 𝛽. We start by rotating the vector 

by 45° which is half the angle between y and x, then we compare the vector’s angle to 𝛽 if 

𝛽 is less than 45, after that we rotate the vector by half 45 to the left, if 𝛽 is more than 45, 

then we rotate the vector by half 45 to the right and then compare 𝛽 to the new angle and 

repeat the same procedure; rotate by half the new angle to the left or the right until the 

rotated angle of the vector 𝑣 =  𝛽 to a certain tolerance, at this point the x value of the 

vector represents cos (𝛽 ) and the y value represents sin (𝛽 ). The angles rotation could be 

stored in a look up table and we can further improve it by making the angles correspond to 

multiples of 2 so that the multiplication or division is reduced to a simple shift, a typical 

look up table is as follows 45, 26.565, 14.036 which corresponds to 1, 0.5, 0.25 and so on. 

The above algorithm could be represented by the following equation: 

[
𝑥𝑖

𝑦𝑖
] = 𝐴𝑖 [

1 𝜎𝑖2
−𝑖

𝜎𝑖2
−𝑖 1

] = [
𝑥𝑖−1

𝑦𝑖−1
] 

Where 𝜎 is either positive or negative one according to the direction of rotation, and A is 

a constant that approaches 0.60725 for very large 𝑖. We can compute 𝑒𝑥𝑝(𝑥) as 𝑐𝑜𝑠ℎ(𝑥) +

𝑠𝑖𝑛ℎ(𝑥) that are computed in a similar way as sin and cos [49]. Another approach for 

computing 𝑦 = 𝑒𝑥𝑝(𝑥) is described below. 

First, we choose 𝑘 <  𝑥 such that 𝑒𝑥𝑝(𝑘) is a “nice number”; 

𝑒𝑥𝑝(−𝑘) 𝑦 =  𝑒𝑥𝑝(𝑥 − 𝑘)     increment 𝑘 till  𝑥 − 𝑘 =  0 

𝑒𝑥𝑝(−𝑥) 𝑦 =  𝑒𝑥𝑝(𝑥 − 𝑘)  =  𝑒𝑥𝑝(0)  =  1 

In other words, when we subtract 𝑘 from 𝑥, we multiply 𝑦 by 𝑒𝑥𝑝(𝑘), where  𝑒𝑥𝑝(𝑘) will 

be chosen to be easily multiplied that will be in the form of 2𝑛 𝑜𝑟 1 ± 2𝑛, 𝑛 is integer so 

that the multiplication is done easily using add 1 and shift. (e.g. = 2, 3/2, 33/32…etc.). 
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Example: 

let’s calculate y = 𝑒𝑥𝑝(5): 

 

Initially:  y = 1, x=5; 

𝑥 = 5 − 4.8520 = 0.148                       𝑦 =  1 ∗ 128 

𝑥 =  0.148 − 0.2231 <  0 𝑦 = 1 ∗ 128 

𝑥 = 0.148 −  0.1178 =  0.0302          𝑦 = 1 ∗ 128 ∗ 9/8 

𝑥 =  0.0302 − 0.0308 <  0                  𝑦 = 1 ∗ 128 ∗ 9/8 

𝑥 =  0.0302 − 0.0155 =  0.0147        𝑦 =  1 ∗ 16 ∗ 4 ∗ 2 ∗ 9/8 ∗ 65/64 

𝑥 =  0.0147 − 0.0078 =  0.0069       𝑦 =  1 ∗ 128 ∗ 9/8 ∗ 65/64 ∗ 129/128 

𝑥 =  0.0069 −  0.003898 = 0.003002   𝑦 =  1 ∗ 128 ∗ 9/8 ∗ 65/64 ∗ 129/128 ∗ 257/256 

=  147.96833 

𝑒𝑥𝑝(5)𝑒𝑥𝑎𝑐𝑡  =  148.4131,    Error = 0.3 % 

To compute the value for 𝐴 ∗ 𝑒𝑥𝑝(𝑥) we equate y to A and follow the same steps as the 

above example. The CORDIC exponential function flowchart is shown in Figure 35. 

Trainer Hardware 

A Verilog Code to implement the SMO algorithm is used. All data paths were designed to 

be parametrized for further changes but currently numbers are represented by 24 signed 

bits with 15 fraction bits, 9 integer bits and 1 sign bit. 

The Verilog code modules shown in Figure 36 represents different parts of the top-level 

MATLAB code. The main controller block deals with how each computational block 

access the memories, handles the produced interrupts and provide memory addresses for 

the needed data vectors. L and H block computes the limits of the new Lagrange multiplier  

Figure 34: Look up table(LUT) for exponential CORDIC. 
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Figure 35: CORDIC exponential function Flowchart. 
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Inputs
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k,F(k)
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End if

No

Out=Y

end

Compute y Y=Y*f(k)

If f(k)>=2

yes

Y=bit shift right Y by 
n

Start
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No
Y=Y+bit shift left Y 

by n

End compute Y
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(Alpha) that will be produced according to SMO algorithm and generates a flag if L equals 

H. f(x) and the error block is the most complicated and expensive block as it comprises 

kernel calculation and SVM output comparison to the training class (y), i.e. classification, 

to determine the error generated due to choosing certain alpha pairs, so, it also generates 

interrupt signal that can change the process flow. The next block now can calculate/update 

a certain Lagrange multiplier pair then store it in Alpha memory, it’s the only block that 

can write to this memory, while the others can read from it as alpha pairs are always needed. 

Data memory is a quite large memory, because it holds all the training data, and that’s the 

main reason why training is not performed online inside the brain. 

 

Figure 36:  Block diagram of SMO-SVM on hardware level. 
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Feature Extraction Hardware Overview 

 The hardware implementation of features used and how they are processed starting by 

collecting raw EEG data up to final data normalization as shown in Figure 37 after which 

the data is ready to be classified. Raw data normalization was used in order to reduce the 

number of bits needed in the fixed-point notation we used, so as to reduce power 

consumption and hardware area. Most of the hardware expensive blocks, such as 

multipliers, are implemented in serial fashion that exploits the long waiting periods 

between each two samples acquired from EEG (1/256 sec). That implementation gave 

13 𝑢𝑊 power per feature vector at 100 ns clock cycle. 

 

Serialization and Resource Sharing 

Instead of using large parallel hardware or repeating the hardware needed to task a 

repetitive task as in Figure 39 , we can break any task to smaller parts that can wait for each 

other to finish. This actually will be increase the time needed to finish any task, but actually 

we have a relaxed time constraint which the sampling period (1/256 s) in case of feature 

extraction hardware and epoch length (2s) in the trainer and classification hardware. That 

wide time window makes it easier for resource sharing (as in Figure 38)and also helps 

lowering the clock speed whose switching activity has the most influence on power value. 

Figure 37  Feature extraction hardware flow 
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For every clock cycle the output is updated then it returns back to the multiplier input and 

is chosen by the select of multiplexer which is controlled by another controller block. 

 

Raw data normalization 

Normalization of data entering an RTL block to be confined within known range helps 

reducing the power consumption because now when the data ranges is small and known 

number of bits in the fixed point numeric representation is decreased while avoiding the 

problems of arithmetic overflow. 

The hardware needed for that normalization is relatively simple except for the divider, 

which is also built in serial fashion as explained in the flowchart found in Figure 40. 

Figure 39 Using 3 multipliers in order to calculate T = A * B * C * D within one clock cycle. 

Figure 38 Resource sharing with serialization concept. 
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Online Algorithm for Mean, Variance, Skewness, kurtosis. 

The problem with statistical moments is that they involve several steps of summation and 

accumulation while having to know the sample mean in advance before the summation 

steps, that is non-doable when doing real-time classification because the mean of testing 

data is unknown. 

So an algorithm [44] proposed by [Terriberry] calculates the high order moments, 

mentioned before in the feature extraction section , but it includes many iterations of 

Figure 40: Flowchart for the employed division algorithm. 
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multiplications, for each data point, 10 multiply operations needed and 1 division after 

simplifications and reasonable approximations for our data. 

In order to use the least hardware resources, a central controlling Finite State Machine is 

used to control the inputs and the outputs to a single multiplier and divider as shown in 

Figure 41. 

 Note that the number of data wires (bold) is reduced just for clarification.  

The idea here is that each variable is calculated then saved in a register (D Flip-Flop) whose 

enable is also controlled by the FSM. When that variable is needed for calculation the FSM 

opens a path for it from its register to the destined multiplier, or divider. Then it updates 

the resulting variable to be saved in its own register also. 

Figure 41  Hardware description of Terri berry’s algorithm. 
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Testing of Classifier Hardware. 

An hour-long recording was converted into a binary vector, and model parameters from 

trainer was fed to the classifier in a Verilog testbench. The Verilog code made the same 

decisions as its software version, with maximum difference in decision function of 0.06. 

Hardware Power and Layout 

The total power of the selected feature together with the classifier is 90 𝑢𝑊 . 

Here’s the final layout shown in Figure 42, which shows a total layout area of 0.22 mm2 

 

 

Figure 42: The final ASIC layout for the classifier and the features' extraction blocks. 
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Chapter 5 
In this chapter, the results of our developed detection model for classifying epileptic 

seizures are presented and compared to previously reported data. In addition, an 

economical study for the proposed device was developed. Finally, a conclusion 

summarizing the important points throughout the whole thesis is presented  

Results and Performance Comparison 

Since this approach is patient specific and the classifier SVM model must be trained on 

any patient before treatment (testing), training data varies in its specifications from patient 

to another hence the performance. Two of the main factors that affect the detection 

performance are the number of training seizure and non-seizure records. Figure 43 shows  

 

the influence of EEG data channels, since more channels means more features, the 

classification dimensional space is of higher order and the RBF-kernel can find more 

optimal decision boundary. But, also increasing number of channels increases hardware 

cost and complexity. So, in the upcoming results we favored using only 6 finely selected 

channels, that originates from parts of the brain where a seizure effect is more obvious.  

The second consideration for training data is number of training records that include seizure 

or resembles normal behavior. If the greater portion of training data is seizures, then the 

Figure 43 Effect of number of EEG channels on performance. 
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classifier will be biased towards declaring a seizure, that will improve sensitivity and 

latency but will increase the false detection rate. On the other hand, if there’s too much 

data with no seizure moments the classifier will be very conservative in declaring seizures, 

hence higher latency but good false detection rate. Figure 44 investigates that effect on 

latency and FDR. 

To verify our work, we should compare it with someone else’s results and since 

performance is data dependent we must compare with a study that uses the same data set. 

Ali Shoeb is the owner of CHB-MIT data set [8], he  proposed a system for seizure 

detection in which he uses SVM classifier and RBF kernel. His data features are a bank of 

band pass filters followed by magnitude accumulator. Using 18 channels and 8 filters per 

channel makes a total of 144 feature vector. On the other hand, we used 6 features which 

are (Hjorth complexity and mobility, Kurtosis, variance, CL, Energy) with 6 channels 

that’s a total of 36 feature vectors, which is far smaller and more suitable for brain 

implementation, training and classification power. 

Table 2 below lists the results of five selected patients from our system and Shoeb’s work. 

This table also shows that the RBF kernel is superior to linear kernel especially when it 

comes to this type of data which is not linearly separable.

Figure 44 Effect of number of number of seizure to non-seizure records on performance. 
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Table 2: A comparison table for the sensitivity, accuracy, Specifity, latency and FDR for 5 patients. 

Patient # Epoch based sensitivity [%] Epoch based specificity [%] Epoch based accuracy [%] 

  Linear SVM RBF SVM Shoeb Linear SVM RBF SVM Shoeb Linear SVM RBF SVM Shoeb 

1 80.35 78.60 

NA 

98.73 99.85 

NA 

98.67 99.79 

NA 

3 51.92 70.19 99.84 99.91 99.69 99.83 

7 48.48 41.21 92.21 99.99 92.15 99.91 

9 68.31 80.28 94.28 99.95 94.25 99.93 

10 60.00 40.43 99.40 99.96 99.29 99.80 

Mean 61.81 62.14   96.89 99.93   96.81 99.85   

 

Patient # Event based sensitivity Latency[seconds] FDR/Day 

  Linear SVM RBF SVM Shoeb Linear SVM RBF SVM Shoeb Linear SVM RBF SVM Shoeb 

1 6/6 6/6 6/6 5.43 2.29 3.67 14.00 2.00 3.00 

3 7/7 7/7 7/7 9.43 3.43 2.43 5.00 5.00 1.00 

7 3/3 3/3 3/3 14.00 4.00 5.33 11.00 0.00 0.00 

9 4/4 4/4 4/4 9.00 4.00 8.25 0.00 0.00 0.00 

10 7/7 7/7 7/7 8.57 2.86 2.083 14.00 0.00 1.00 

Mean       9.29 3.31 4.35 8.80 1.40 1.00 
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Economic Analysis: 

As mentioned above, about 65 million people around the world suffer from epilepsy (~1% of the 

world population), about one in every twenty-six people in a lifetime is affected by the epilepsy 

disease, thus, the market share for epileptic seizure treatment is huge.  

As mentioned earlier too, there are several ways to treat epileptic seizures including drug treatment, 

surgical treatment, and Vagus nerve stimulation like deep brain stimulation devices (DBS).  

Drug treatment cost 

The cost of drug treatment is estimated to be about 1000$ to 3000$ per month per patient and an 

estimated total cost of 12.5 billion dollars in the US. The following table covers the cost of the 

most commonly used drugs in epileptic seizure treatment [50]. 

Table 3: Cost of drug treatment 

Drug Price ($) 

Eslicarbazepine acetate (Aptiom) 800 for thirty 400-mg tablets 

Felbamate (Felbatol) 1200 for ninety 600-mg tablets 

Primidone (Mysoline) 800 for sixty 50-mg tablets 

Zonisamide (Zonegran) 720 for sixty 100-mg tablets  

Diazepam (Valium) 310 for sixty 5-mg tablets 

 

Surgical Treatment Cost 

The mean cost of surgical treatment per patient is about 110,000$ [51], not including the cost of 

hospitalization and day care. 

DBS Cost 

The cost of deep brain stimulation equipment is quite high as shown in the following table that 

covers the cost of DBS device. 

Table 4: DBS cost 

Item  Price ($) 

Implantable pulse generator  9400-11400 

Electrode 1100-1200 
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Extension lead 940-1140 

Patient controller 800-940 

Accessory kit 100-130 

Planning station  80,400 

Stereotactic frame  100,500 

 

The total cost for a DBS device account for about 165,000-200,000$, and the cost of replacing the 

battery in the device account for about 20,000 dollars [52, 53]. 

Our device cost 

Our device could be implemented on an FPGA and an ASIC ship implementing the device on an 

FPGA cost is bound by the cost of the FPGA kit, the cost of a Spartan®-6 FPGA is 494$ which is 

insignificant compared to DBS cost, the cost of the ASIC chip is estimated to be 1.2$ however this 

doesn’t include the non-recurrent cost(NRE) which is the engineering cost and prototype 

fabrication cost which is estimated to be 31,000$ according to Sigenic Inc. [54]. 

Conclusion  

Epilepsy is one of the most common neurological disorders, affecting millions of people 

worldwide. Owing to the unpredictable nature of epileptic seizure, it represents a major worry and 

a handicap to epileptic patients causing serious injuries such as fractures and vehicle accidents. In 

this project a hardware chip is developed to detect the seizure using SVM and a training algorithm 

was developed namely the SMO, 

Machine learning technique named “Support Vector Machine” (SVM) was used to detect the 

seizure onset and a training algorithm namely the “Sequential Minimal Optimization” (SMO) was 

used in the model development and training the SVM algorithm to detect the seizure. 

A number of discriminant features were used and the most distinct features were selected in 

training the model to detect and classify the seizure states from non-seizure states.  

The results of the training algorithm yielded an average of sensitivity of 100%, a latency of 3.31 

seconds and an FDR of 1.4 false detection per day in the event-based metrics using a kernel RBF, 

while a sensitivity of 62.14, a specificity of 99.93% and an accuracy of 99.5 in the epoch-based 
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metrics, these results were compared to a previously developed algorithm by Shoeb et.al on the 

same data and were found to be superior to his developed algorithm.  

The trainer, features and classifier HLL description was converted to HDL description, the 

produced hardware was tested against the simulation results and their classification decisions was 

the same with maximum difference in classification function of 0.06. Total classification power 

cost was 90 𝑢𝑊 on ASIC and 40 𝑚𝑊 on FPGA. 
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Appendix I 
 

 

Pseudocode for the SMO algorithm: 

target = desired output vector  

 point = training point matrix  

 

 procedure takeStep(i1,i2) 

   if (i1 == i2) return 0 

   alph1 = Lagrange multiplier for i1 

   y1 = target[i1] 

   E1 = SVM output on point[i1] – y1 (check in error cache) 

   s = y1*y2 

   Compute L, H  

   if (L == H) 

     return 0 

   k11 = kernel(point[i1],point[i1]) 

   k12 = kernel(point[i1],point[i2]) 

   k22 = kernel(point[i2],point[i2]) 

   eta = k11+k22-2*k12 

   if (eta > 0) 

   { 

      a2 = alph2 + y2*(E1-E2)/eta 

      if (a2 < L) a2 = L 

      else if (a2 > H) a2 = H 

   } 

   else 

   { 

      Lobj = objective function at a2=L 

      Hobj = objective function at a2=H 

      if (Lobj < Hobj-eps) 

         a2 = L 

else if (Lobj > Hobj+eps) 

         a2 = H 

      else 

         a2 = alph2 

   } 

   if (|a2-alph2| < eps*(a2+alph2+eps)) 

      return 0 

   a1 = alph1+s*(alph2-a2) 

   Update threshold to reflect change in Lagrange multipliers 

   Update weight vector to reflect change in a1 & a2, if SVM is linear 

   Update error cache using new Lagrange multipliers 

   Store a1 in the alpha array 

   Store a2 in the alpha array 

   return 1 

endprocedure 
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procedure examineExample(i2) 

   y2 = target[i2] 

   alph2 = Lagrange multiplier for i2 

   E2 = SVM output on point[i2] – y2 (check in error cache) 

   r2 = E2*y2 

   if ((r2 < -tol && alph2 < C) || (r2 > tol && alph2 > 0)) 

   { 

     if (number of non-zero & non-C alpha > 1) 

     { 

       i1 = result of second choice heuristic 

       if takeStep(i1,i2) 

         return 1 

     } 

     loop over all non-zero and non-C alpha, starting at a random point 

     { 

        i1 = identity of current alpha 

        if takeStep(i1,i2) 

          return 1 

     } 

     loop over all possible i1, starting at a random point 

     { 

        i1 = loop variable 

        if (takeStep(i1,i2) 

          return 1 

     } 

   } 

   return 0 

endprocedure 
  

main routine:  

    numChanged = 0; 

    examineAll = 1; 

    while (numChanged > 0 | examineAll) 

{ 

       numChanged = 0; 

       if (examineAll) 

loop I over all training examples 

             numChanged += examineExample(I) 

       else 

          loop I over examples where alpha is not 0 & not C 

             numChanged += examineExample(I) 

       if (examineAll == 1) 

          examineAll = 0 

       else if (numChanged == 0) 

          examineAll = 1 

   } 
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Pseudocode for Online Statistical Moments  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

n = mean = M2 = M3 = M4 = 0 

    for x in data: 

        n1 = n 

        n = n + 1 

        delta = x - mean 

        delta_n = delta / n 

        delta_n2 = delta_n * delta_n 

        term1 = delta * delta_n * n1 

        mean = mean + delta_n 

        M4 = M4 +term1*delta_n2*(n*n-3*n+3) +6*delta_n2 * M2 - 4 * … delta_n * M3 

        M3 = M3 + term1 * delta_n * (n - 2) - 3 * delta_n * M2 

        M2 = M2 + term1 

    Variance = M2 / n 

    kurtosis = (n*M4) / (M2*M2) – 3 

    skewness = sqrt(n)*M3 / sqrt(M2)*M2 
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Appendix II 
 

The HDL codes developed are presented in this appendix. 

A.  Normalizer 
module normalize #(parameter  frac_width = 12 ,parameter  int_width =15 ,parameter  

sample_size =8,parameter  sample_bits =5) 

(data_in , new_data,min,max,new_maxmin,out,reset,clk,ready); 

 input new_data,new_maxmin; 

 reg new; 

 input signed [(frac_width+int_width+1)-1:0] data_in,min,max; 

 input clk , reset ; 

 output    [(frac_width+int_width+1)-1:0] out; 

  reg signed [(frac_width+int_width+1)-1:0] A,B; 

  wire signed [(frac_width+int_width+1)-1:0] res ,maxmin; 

  output ready; 

division div1  ( 

        .A(A),  

        .B(B),  

        .Res(out), 

        .clk(clk), 

        .reset(new),   

        .ready(ready) 

    ); 

always@(posedge clk , posedge reset) 

begin 

if(reset)begin A<=0 ; B<=0; new <= 0;         end 

else 

begin 

A <= new_data ? res : A; 

B <= new_maxmin ? maxmin : B; 
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new <= new_data; 

end 

end 

assign maxmin = max - min; 

assign res = data_in-min; 

endmodule 

B. Terriberry Algorithm for kurtosis
module kurtos #(parameter  frac_width =12 ,parameter  int_width =15 ,parameter  sample_size 

=8,parameter  sample_bits =5) 

(new_data,data_in , out ,new_data_result, reset , clk); 

 input signed [(frac_width+int_width+1)-1:0] data_in; 

 input clk , reset , new_data ; 

 output  reg signed [(frac_width+int_width+1)-1:0] out ; 

 output reg new_data_result; 

 wire mult_enable,mult_ready; 

 wire signed [(frac_width+int_width+1)-1:0] mult_in_1,mult_in_2,mult_out; 

 wire div_enable,div_ready,sel; 

 wire signed [(frac_width+int_width+1)-1:0] div_in_1,div_in_2,div_out; 

 wire [2:0] div_in_mux_sel; // demux / mux selects 

 reg [3:0] mult_demux_sel; 

 //wire div_in_mux_sel; 

 wire signed [(frac_width+int_width+1)-1:0] A1 , A2 , A3,A4,A5; 

 reg  signed [(frac_width+int_width+1)-1:0] n,n_1; 

 wire finish; 

 reg f; 

 reg signed [(frac_width+int_width+1)-1:0] delta , 

delta_n,term1,n_2,term1_t,delta_n2,mean,delta_n4,mult_out_r,M4_2,M2,M2delta_n2,M3,M3del

ta_n,M3_2,M3_3,M4; 

 reg signed [(frac_width+int_width+1)-1:0] 

term1_t_w,term1_w,delta_n2_w,n_2_w,delta_n4_w,M4_2_w,M2delta_n2_w,M3delta_n_w,M3

_2_w,M3_3_w; //virtual wires; 
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 reg nd2 ,nd3,nd4,nd5,nd6,nd7,nd8,nd9,nd10,nd11,nd12,nd13,nd14,nd15; 

 reg nd3_r,nd4_r,nd5_r,nd6_r,nd7_r,nd8_r,nd9_r,nd10_r,nd11_r,nd12_r; 

 reg nd4_w,nd5_w,nd6_w,nd7_w,nd8_w,nd9_w,nd10_w,nd11_w,nd12_w,nd13_w; 

 sim_multiplier mult_kurt(.enable(mult_enable),.data_in_1(mult_in_1), .data_in_2(mult_in_2) 

,.data_out(mult_out) ,.ready(mult_ready), .reset(reset||new_data_result) , .clk(clk)); 

 division div_kurt(.enable(div_enable),.A(div_in_1), .B(div_in_2) ,.Res(div_out) 

,.ready(div_ready), .reset(reset||new_data_result) , .clk(clk)); 

always@(posedge clk , posedge reset) 

begin 

  if(reset)  

    begin  

      delta <=0; delta_n<=0; term1 <=0; term1_t<=0; delta_n2<=0; n_2<=0; mean<=0; out<=0; 

new_data_result<=0; M4_2<=0;M2delta_n2<=0;M3<=0;M3delta_n <=0; M3_2 <=0; 

M3_3<=0;M4 <=0; 

      nd2 <=0;  nd3<=0;   nd4<=0;  nd5<=0;  nd6<=0;  nd7<=0; nd8 <=0; nd9 <=0; nd10<=0; 

nd11<=0;nd12<=0; nd13<=0; 

       nd3_r<=0; nd4_r<=0; nd5_r <=0; nd6_r<=0; nd7_r <=0; nd8_r<=0; nd9_r <=0;nd10_r 

<=0;nd11_r<=0;nd12_r<=0; 

       f <=0; 

      n<=0;  

      n_1<=0;mult_out_r<=0; mult_demux_sel<=0; 

      M2 <=0; 

    end 

  else  

    begin 

      n_1 <= new_data? n : n_1; 

      n <= new_data ? (n+4096) : n; //count up  4096 = 1*2^12 

      delta <= new_data ? A1 : delta; 

      nd2 <=new_data; 

      nd3 <= div_ready; 

      delta_n <= div_ready ? div_out:delta_n;// 
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     /* nd3_r <= nd4 ? nd3 : nd3_r;// demuxing problems 

      nd4_r <= nd5 ? nd4 :nd4_r; 

      nd5_r <= nd6 ? nd5 :nd5_r;*/ 

      nd3_r <= mult_enable ? nd3 :nd3_r; 

      nd4_r <= mult_enable ? nd4 :nd4_r; 

      nd5_r <= mult_enable ? nd5 :nd5_r; 

      nd6_r <= mult_enable ? nd6 :nd6_r; 

      nd7_r <= mult_enable ? nd7 :nd7_r; 

      nd8_r <= mult_enable ? nd8 :nd8_r;     

      mult_demux_sel <= mult_enable ? mult_demux_sel + 4'b0001 : (nd13 ? 0:mult_demux_sel); 

     nd7 <= nd7_w; 

     nd8 <= nd8_w; 

     nd9 <= nd9_w; 

     nd10 <= nd10_w; 

     nd11 <= nd11_w; 

     nd12 <= nd12_w; 

     nd13 <= nd13_w; 

   term1_t <=nd5_w? term1_t_w:term1_t; 

   delta_n2 <= nd4_w?delta_n2_w : delta_n2; 

   term1 <= nd6_w ? term1_w : term1; 

   n_2 <= nd7_w ? n_2_w : n_2; 

   delta_n4 <= nd8_w ? delta_n4_w : delta_n4; 

   mean <= nd6 ? A2 : mean; 

   M2 <= (nd13) ? A3 : M2;///////////////////////  

   M3 <=  (nd13) ? A4 : M3; 

   M4 <= nd13 ? A5 : M4; 

   out <= M4; 

   new_data_result<= nd13;// 

  // mult_out_r <= mult_ready ? mult_out:mult_out_r; 

  f <= finish; 
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    end 

end 

//mult output demux 

always@(*) 

    begin 

        case (mult_demux_sel)   

            4'b0001 : begin 

                        nd4_w <= mult_ready; 

                        delta_n2_w <= mult_out; 

                        end 

            4'b0010 : begin 

                        nd5_w <= mult_ready; 

                        term1_t_w <= mult_out; 

                      end 

            4'b0011 : begin 

                        nd6_w <= mult_ready; 

                        term1_w <= mult_out; 

                      end 

            4'b0100 : begin 

                        nd7_w <= mult_ready; 

                        n_2_w <= mult_out; 

                      end 

            4'b0101 : begin 

                        nd8_w <= mult_ready; 

                        delta_n4_w <= mult_out; 

                      end 

           4'b0110 : begin 

                        nd9_w <= mult_ready; 

                        M4_2_w <= mult_out; 

                      end 



76 
 

             4'b0111 : begin 

                        nd10_w <= mult_ready; 

                        M2delta_n2_w <= mult_out; 

                      end 

           default :  begin term1_w <=0; nd6_w <=0 ; term1_t_w<=0; delta_n2_w<=0; delta_n4_w 

<=0;nd9_w<=0;  

                            nd10_w<=0; nd11_w <=0; nd12_w<=0; nd13_w<=0; 

                          nd4_w<=0; nd5_w<=0; nd7_w <=0; nd8_w <=0; n_2_w<=0; 

                           M4_2_w<=0; M2delta_n2_w <=0; M3delta_n_w <=0; M3_2_w<=0; M3_3_w 

<=0; end 

        endcase 

    end 

assign div_enable = (div_in_mux_sel==3'b100) ? nd2 : 0; 

assign div_in_1 = (div_in_mux_sel==3'b100) ? delta : ((div_in_mux_sel==3'b010) ? M4 : 0); 

assign div_in_2 = (div_in_mux_sel==3'b100) ? n : ((div_in_mux_sel==3'b010) ? M2 : 0); 

assign mult_enable = nd3 || nd4 || nd5 || nd6 || nd7 || nd8|| nd9 || nd10 || nd11 || nd12 ; //multiplier 

input mux 

assign mult_in_1 = nd3 ? delta_n : (nd4 ? delta :  (nd5 ? term1_t : (nd6 ? n   : (nd7 

? n   : (nd8 ? delta_n4: (nd9 ? delta_n2 :(nd10 ? delta_n : (nd11 ? term1 : (nd12 ? M2: 0))))))))); 

assign mult_in_2 = nd3 ? delta_n : (nd4 ? delta_n :  (nd5 ? n_1   : (nd6 ?delta_n2:(nd7 ? n_2 : 

(nd8 ? term1 : (nd9 ? M2 : (nd10 ? M3 : (nd11 ? delta : (nd12 ? delta_n : 0))))))))); 

//assign mult_demux_sel = {nd3_r,nd4_r,nd5_r}; //multiplier output demux select 

assign sel = nd3_r||nd4_r||nd5_r||nd6_r||nd7_r||nd8_r||nd9_r||nd10_r||nd11_r||nd12_r; 

//assign mult_demux_sel = ; //multiplier output demux select 

assign div_in_mux_sel = {nd2,f,1'b0}; // select for the input mux to divider 

assign A1 = data_in - mean; 

assign A2 = mean + delta_n; 

assign A3 = M2 + term1 ; 

assign A4 = M3 + M3_2 + M3_3; 

assign A5 = M4 + M4_2 + M2delta_n2 - M3delta_n; 

assign finish = (n ==2097152) && nd13; //n = 512  
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endmodule      

C. SMO-SVM 
module top#(parameter  frac_width =15 ,parameter  int_width =8 ,parameter  sample_size 

=900,parameter  sample_bits =10  ) 

(clk,reset,we_top1,we_top2,WData_top,address_i_in_top1,address_i_in_top2,address_j_in_top1,

address_j_in_top2,E_i,E_j,L,H, L_H_eq_f,f_x_done_f,res,eta_postive_f,bais); 

input clk ,reset,we_top1,we_top2; 

input signed [2*(frac_width+int_width+1)-1+1:0] WData_top; 

input  [sample_bits-1:0] 

address_i_in_top1,address_i_in_top2,address_j_in_top1,address_j_in_top2; 

output wire signed[frac_width+int_width:0] E_i ;  wire signed[frac_width+int_width:0] e_j ; 

output reg signed[frac_width+int_width:0] E_j ; 

wire signed [frac_width+int_width:0] alpha_new_j,alphai_new_i,new_bias; 

output wire signed[frac_width+int_width:0] L,H,res; 

wire signed[frac_width+int_width:0] sum; 

output wire L_H_eq_f,f_x_done_f,eta_postive_f; 

input signed[(frac_width+int_width+1)-1:0] bais; 

wire signed [(frac_width+int_width+1)-1:0] alpha_f_x,kernel_f_x,alpha1,alpha2;  

wire y_f_x,y1,y2; 

wire WData_y_mem1,WData_y_mem2; 

reg mode_f_x,enable_f_x,operation;wire RData_y_mem1,RData_y_mem2; 

wire we_Alpha1 ,we_Alpha2,we_kernel,we_y1,we_y2; 

wire [sample_bits-1:0] 

address_i_in_f_x,address_j_in_f_x,Address_in_Alpha_mem1,Address_in_Alpha_mem2,Addres

s_in_kernel_mem_i,Address_in_kernel_mem_j,Address_in_y_mem1,Address_in_y_mem2; 

wire [sample_bits-1:0] address_j_out_f_x,address_i_out_f_x; 

reg [sample_bits-1:0] add1,add2; 

wire signed [(frac_width+int_width+1)-1:0] 

WData_Alpha_mem1,WData_Alpha_mem2,WData_kernel_mem; 

wire signed [(frac_width+int_width+1)-1:0] 

RData_Alpha_mem1,RData_Alpha_mem2,RData_kernel_mem; 

reg [2:0] state, nextstate; 
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f_x #(frac_width  ,int_width ,sample_size,sample_bits  )dut_f_x  

(clk,enable_f_x,y2,address_i_in_f_x,address_j_in_f_x,kernel_f_x,alpha_f_x,y_f_x,address_i_out

_f_x,address_j_out_f_x,e_j,E_i,f_x_done_f,bais); 

LH_comp #(frac_width  ,int_width ,sample_size,sample_bits  

)dut_L_H(clk,state,y2,y1,alpha2,alpha1,L ,H,L_H_eq_f); 

eta #(frac_width  ,int_width ,sample_size,sample_bits  )dut_eta(clk,state,kernel_f_x ,res , 

eta_postive_f); 

up_alpha_j #(frac_width  ,int_width ,sample_size,sample_bits  

)dut_alpha_j(clk,state,reset,y1,res,E_i,E_j,L,H,alpha_f_x,alpha_new_j); 

 

 

bias_alphai #(frac_width  ,int_width ,sample_size,sample_bits  )dut_alpha_i_b 

(clk,state,reset,bais,y2,y1,kernel_f_x,E_i,E_j,alpha2,alpha_new_j,alpha1,alphai_new_i,new_bias

); 

alpha_mem #(frac_width  ,int_width ,sample_size,sample_bits  )dut_alpha_mem 

(clk,we_Alpha1,we_Alpha2,Address_in_Alpha_mem1,Address_in_Alpha_mem2 , 

WData_Alpha_mem1,WData_Alpha_mem2,RData_Alpha_mem1,RData_Alpha_mem2); 

kernel_mem #(frac_width  ,int_width ,sample_size,sample_bits  )dut_kernel_mem 

(clk,we_kernel,Address_in_kernel_mem_i,Address_in_kernel_mem_j , 

WData_kernel_mem,RData_kernel_mem); 

y_mem #(frac_width  ,int_width ,sample_size,sample_bits  )dut_y_mem 

(clk,we_y1,we_y2,Address_in_y_mem1,Address_in_y_mem2 , 

WData_y_mem1,WData_y_mem2,RData_y_mem1,RData_y_mem2); 

assign {we_Alpha1 ,we_kernel,we_y1}={3{we_top1}}; 

assign {we_Alpha2 ,we_y2}={2{we_top2}}; 

assign 

{Address_in_Alpha_mem1,Address_in_kernel_mem_j,Address_in_y_mem1}={3{add1}}; // 

chosse address j  

assign 

{Address_in_Alpha_mem2,Address_in_y_mem2,Address_in_kernel_mem_i}={3{add2}};// 

address ifrom out 

assign address_j_in_f_x=address_j_in_top1; 

assign {address_i_in_f_x}={{address_i_in_top1}}; 

assign {kernel_f_x,alpha_f_x,y_f_x} = 

{RData_kernel_mem,RData_Alpha_mem1,RData_y_mem1}; 
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assign{y1,y2,alpha1,alpha2}={RData_y_mem1,RData_y_mem2,RData_Alpha_mem1,RData_Al

pha_mem2}; 

assign {WData_kernel_mem,WData_Alpha_mem1,WData_y_mem1}=WData_top; 

always @ (posedge clk ) 

begin 

 if (reset) state <= 3'b000; 

     else  begin     state <= nextstate; 

   if (state==3'b010)  

    begin 

    //E_i=-

(24'sb000000001000000000000000^{(frac_width+int_width+1){y2}})+sum+1; 

    E_j=-

(24'sb000000001000000000000000^{(frac_width+int_width+1){y1}})+e_j+1; end  // glue logic 

and extra memory TBD 

   end 

    

end 

always @(*) 

begin 

case (state) 

         3'b000: begin  add1=address_j_out_f_x; add2=address_i_out_f_x; enable_f_x=1; 

nextstate=3'b001; end  

         3'b001: begin enable_f_x=0;   add1=address_j_out_f_x; add2=address_i_out_f_x; if  

(f_x_done_f)  nextstate =2'b10;  else  nextstate=2'b01;  end 

         /*2'b10: begin  mode_f_x=0; enable_f_x=0;if  (f_x_done_f) begin nextstate = 2'b11; 

add1=address_j_in_top1; add2=address_i_in_top1; end  

   else begin nextstate=2'b10; add1=address_j_out_f_x; add2=address_i_out_f_x; 

end end*/ 

   3'b010: begin add1=address_j_in_top1; add2=address_i_in_top1; enable_f_x=0;  

nextstate=3'b011; end  

   3'b011:begin add1=address_j_in_top1; add2=address_i_in_top1; enable_f_x=0;  

nextstate=3'b100; end 

   3'b100:begin add1=address_j_in_top1; add2=address_i_in_top1; enable_f_x=0;  

nextstate=3'b100; end 
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         default: begin nextstate = 3'b000;   add1=address_j_out_f_x; add2=address_i_out_f_x; 

enable_f_x=1; end 

      endcase 

end 

endmodule 

D.  Divider 
 

module division #(parameter  frac_width =20 ,parameter  int_width =15 ,parameter  sample_size 

=8,parameter  sample_bits =5) 

(enable,A,B,Res,clk,reset,ready) 

   input enable, reset , clk; 

   input  signed [(frac_width+int_width+1)-1:0] A; 

   input signed [(frac_width+int_width+1)-1:0] B; 

   output  signed[(frac_width+int_width+1)-1:0] Res; 

   output ready; 

    reg [(frac_width+int_width+1)-1:0] a1,b1; 

    reg [(frac_width+int_width+1)-1:0] p1;    

    reg run,ts; 

    reg [7-1:0] counter; 

    wire [(frac_width+int_width+1)-1:0] p1_conc, a1_shifted ,comp,A1,B1;  

    wire t; 

assign A1 = (A[(frac_width+int_width+1)-1])? -A:A; 

assign B1 = (B[(frac_width+int_width+1)-1])? -B:B; 

assign t = A[(frac_width+int_width+1)-1]^B[(frac_width+int_width+1)-1]; 

assign p1_conc =  {p1[(frac_width+int_width+1)-2:0],a1[(frac_width+int_width+1)-1]}; 

assign  a1_shifted = a1 <<< 1; 

assign comp = (p1_conc - b1); 

    always@ (posedge clk , posedge reset) 

    begin 

    if(reset) 

     



81 
 

    begin 

        a1 = 0; 

        b1 = 0; 

        p1= 0; 

        counter = 0; 

        run =0; 

        ts = 0; 

    end   

  else if (enable) begin  

          a1 = A1; 

        b1 = B1; 

        p1= 0; 

        counter = 0; 

        run = 1;  

        ts = t ; end  

  else if((counter < (2*frac_width+int_width+1))&&run)    begin  

/*  else if((counter < (frac_width+int_width+1))&&run)    begin*/  

            p1 = p1_conc;  

            a1 = a1_shifted; 

               if(comp[(3*frac_width+int_width+1)-1]==1) begin 

                a1[0] = 0; 

                end 

                else begin 

                a1[0]=1; 

                p1 = comp; 

               end    

       counter = counter +63592;/// 

        end 

       else run = 0; 
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        end 

        assign ready = (counter== (frac_width+int_width+1)) && run; 

 assign Res = ts? -a1 : a1; 

endmodule 
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