
Information Engineering and Technology Faculty

The German University in Cairo

UVM for RISC-V processors

Bachelor Thesis

Author: Walaa Samy Ghareeb Hussein Bondok

Supervisor: Dr. Mohamamed Abdelghany

Co-Supervisor: Dr.Hassan Moustafa

Sponsored by : Si-Vision

Submission date: July 25 th, 2020

This is to certify that:

(i) the thesis comprises only my original work towards the Bachelor degree,

(ii) due acknowledgement has been made in the text to all other material used.

–––––––––––––––––––––

Walaa Samy

May st, 2020

ii

Abstract

The Verification methodology of modern processor designs is an enormous chal-

lenge. As processor design complexity increases, System-level verification of such

large designs has become a significant challenge for a verification engineer. A

proper verification environment can bring out bugs that one may never expect

in the design. This thesis presents a configurable verification environment for

RISC-V processors.The methodology used for verification is based on the Univer-

sal Verification Methodology (UVM), a class library written in the System Verilog

language. The thesis describes how the verification of a RISC-V processor uses

the powerful tools of UVM. The target processors has been successfully verified

and the coverage goals are met. The effort has been documented in this paper in

detail.

iii

Acknowledgement

I’m really thankful to Allah who gave me power and the ability to work on it and

providing me with persistence, patience and commitment to finish my project,

I want to thank everyone who was always supportive through-out my five years

journey.

I would first like to thank my thesis advisor and co-superviser Dr. Mohammed

Abdelghany and Dr. Hassan Moustafa for leading me and giving me the support I

will always be grateful for being one of your students and especially in my bachelor

project. An exceptional appreciation to my supervisers from Si-Vision,Eng Hussein

Galal for his help, supporting, and his valuable advices and professional guidance

during the duration of my bachelor thesis, and a special thanks to Eng.Sameh

ElAshery who the first one introduced UVM and System Verilog to me in an

inspiring way ,He consistently gave me his guidance and teached me how to reach

my goal on my own and provide me with the most suitable, productive ideas

to accomplish a successful project at the end. I would like to thank my family

for their unconditional support and love,specially my sister Dr. Mona Samy and

her husband Dr.Mahmoud Hassan they always pushed me forward to be a better

person and got my back whatever happens to be successful and satisfied. I take

this opportunity to express the profound gratitude to my fiance’ Eng.Abdelrahman

Elhamalawy who helped me to reach my potential . Thank you for your support

iv

,kindness and willingness to make this process easier. I would like to thank my

dormmates who shared with me all the stressful moments Special thanks to Nesrin

,Alyaa and sarah. A very last thank you to Dr.Ashraf Mansour, the prime founder

of the German University in Cairo ,who awarded me scholarship to study my

bachelor degree in GUC. thank you to people who made the university a very nice

place and had too much memories with, for all the Doctors, TAs who taught me

a lot throughout my five years journey as they made the GUC the best place and

really I will always remember and be proud of.

–––––––––––––––––––––

Walaa Samy

July 25th, 2020

v

Contents

1 Introduction 1

1.1 Motivation . 1

1.2 Contributions . 2

1.3 Organization and Notations . 2

2 Literature Review 3

2.1 Introduction . 3

2.2 verification . 3

2.3 Directed test . 4

2.4 Hardware Verification Languages 5

2.5 UVM . 5

2.6 RISC-V processors . 6

3 UVM Verification Hierarchy 8

3.1 UVM Environment . 8

3.2 UVM Test . 11

3.3 UVM Testbench Top . 12

3.4 UVM Phasing . 13

3.5 UVM Transaction Level Communication Protocol 14

vi

4 System Architecture 15

4.1 Instruction Fetch . 16

4.2 Instruction Decode and Execute . 17

4.2.1 Instruction Decode Block . 17

4.2.2 Execute Block . 18

4.2.3 Exceptions and Interrupts 19

4.2.4 Signals Description . 20

5 Test Methodology and Results 24

5.1 Ibex Verification Plan . 25

5.2 Random Instruction Generator . 26

5.3 Ibex Interface . 27

5.4 Ibex transaction . 28

5.5 Ibex sequence library . 28

5.6 Ibex virtual sequence library . 29

5.7 Ibex virtual sequencer and Ibex sequencer 30

5.8 Ibex Agent . 30

5.9 Ibex scoreboard . 35

5.10 Ibex coverage . 39

5.10.1 Functional coverage . 39

5.10.2 Code coverage . 44

5.11 Ibex environment . 45

5.12 Ibex base test . 46

5.13 Ibex Top . 46

5.14 Test the configurability of the verification environment 46

vii

6 Conclusions and Future Works 49

A Source Code 53

viii

List of Figures

2.1 General Architecture of Risc-V SOC. 7

3.1 UVM Test Hierarchy . 11

3.2 UVM Test Top Component. 12

4.1 Ibex architecture. 15

4.2 Instruction Fetch (IF) stage. 16

4.3 Instruction Decode and Execute. 17

5.1 Ibex UVM Verification Environment Architecture. 25

5.2 Instruction Generator communication with UVM Environment. . . 26

5.3 Test bench components connection through the interface 27

5.4 UVM Sequence and Driver Communication. 29

5.5 Driving instruction Agent by Test 1. 31

5.6 Driving data memory Agent by Test 2. 31

5.7 analysis FIFO Connection. 35

5.8 Functional Covergae Loop. 39

5.9 Coverage groups percentage result 40

5.10 code coverage results by test 1 . 44

5.11 code coverage results by test 2. 44

ix

5.12 code coverage results by test 1. 45

5.13 code coverage results by test 2. 45

5.14 RI5CY processor Architecture . 47

5.15 UVM Architecture for RI5CY processor 48

x

List of Tables

4.1 Signals Description

5.1 Signals Driving

5.2 Signals checking

5.3 Signals Coverage

xi

List of Acronyms

API Application Programming Interface

ALU Arithmetic logic unit

CSRs Control and Status Registers

CISC complex instruction set computer

DPI Direct Programming Interface

DUT Device under test

EX Instruction Execute Stage

FIFO First In, First Out

FPGA Field programmable gate array

HDL Hardware description language

HVL Hardware Verification language

ID Instruction Decode Stage

IF Instruction Fetch Stage

IG Instruction Generator

ISA Instruction set architecture

LSU Load/Store Unit

MIE Machine interrupt-enable register.

Mstatus Machine-mode status register

OVM Open Verification Methodology

PC Program counter

Risc-V Reduced-instruction-set Computing

TLM Transactional Level Modeling

UVM Universal Verification Methodology

xii

Chapter 1

Introduction

1.1 Motivation

Verification is a major obstacle in creating the final product and it is the most

important component in any chip design. The main goal of verification is to make

sure that the design meets the functional requirements as specified in the spec-

ification. this thesis presents verification environment used for the validation of

RISC-V processors with variable instruction set architectures. All verification sys-

tem components are configured using a configuration database. The verification

environment extensively validates the operation of RISC-v processors with the

micro-architecture Model of the RISC-v processor implemented in Verilog Lan-

guage, and an Random Instruction Generator designed in System verilog which

generates random instruction sequences. The verification environment provides a

robust control and monitoring environment to validate the cycle by cycle operation

of the processor and aid in debug in case of failures

1

1.2 Contributions

For this thesis Ibex RISC-V processor have been chosen to verifiy but with generic

implementation of verification environment to enable us later to verify different

RISC-V processors similar but challengingly different systems . this environment

able to verify these different designs with minimal effort to show the benefit and

potential of such a system. The thesis will show that the UVM can be useful for

building a configurable framwork to test different disgns implementations at the

same time addressing its features of the methodology efficient.

1.3 Organization and Notations

The rest of the thesis is organized as follows. Chapter 2 provides bibliographical

Research . Chapter 3 provides a background on verification environment. Chapter

4 provides an overview of processor architecture .Chapter 5 present the test meth-

dology and results. Chapter 6 draws the conclusions and suggests some future

works.

2

Chapter 2

Literature Review

2.1 Introduction

To understand the need for building a verification framework we need to look into

how the methods for testing have developed over time. Before looking at the de-

velopment of different methodologies, let’s first examine the concept of verification

and the target processor.

2.2 verification

Verification is simply the process of making sure the design does what it is supposed

to do according to a specification. It has essentially two tasks; providing input

stimulus that is able to control the design into all possible states, and be able to

observe how the design responds. Verification is not just testing, but testing to

the extent that you can be confident of the correctness of a design. However, there

is no way to completely verify a design, except for really small designs, because

3

of the increasingly large number of possibilities. Thus we require methods that

can provide as good as possible confidence that the verification is satisfactory.

Verification is commonly done through simulation where you either create a model

that behaves according to the specification for comparison, or specify directly the

expected states/values at a given time.

2.3 Directed test

Directed testing is a quick and easy way to write simple tests for new designs and

is often used during the initial stages to test specific cases. It requires little to no

overhead and allows for direct targeting of expected signal transitions. For small

designs this is an efficient way to write basic tests for early checking of correctness,

but with increasing complexity and the need for exhaustive testing to confidently

verify a design, this method requires significantly more effort to write and quickly

becomes a tedious task. While it is still possible to create a solid set of tests this

way, it usually requires significant effort to setup and maintain the code. It is also

hard to reuse any part of a test being written for a specific design. Another major

limitation is the human factor, meaning that we are only able to test the limited

set of cases that is conceivable. Though clever minds can think of the most likely

problems and take special conditions into account, there may still be a huge set of

unknown combinations potentially creating bugs that would be difficult to imagine.

Together with the rapid increase in design efficiency it soon became necessary to

find better methods for testing and verification. This is what led to the creation

of dedicated verification languages and more structured methodologies. It also

became necessary with dedicated verification engineers to handle this part of the

process.

4

2.4 Hardware Verification Languages

To meet the needs of verification engineers several HVLs was created, the most

widely known of these being e , Vera/OpenVera , SystemC and SystemVerilog .

Domain-specific languages like e and Vera provided several efficient verification

features later improved with OpenVera and assertion based verification. SystemC

using the C++ library provide an all domain language and is a generalpurpose

programming approach to hardware description and verification, and serves as a

contrast to SystemVerilog that is based on a HVL .

2.5 UVM

Building upon the already extensive library of SystemVerilog, UVM adds a com-

prehensive library of classes to help increase standardization and interoperability.

The library is coded entirely in SystemVerilog source code, enabling not only a

highly standardized structure, but also provides the freedom to choose the most

appropriate tools for the given task. This makes the UVM a powerful toolkit

for verification. Some of the most important advantages of using UVM are de-

scribed below. Constraint random UVM makes efficient use of the constrain-

random functionality enabled by SystemVerilog, and builds its transactions based

on this. Single class hierarchy The classes in UVM are all expanded from a single

root class, ‘uvm object’, enabling key functionality to be available throughout all

the components. Object factory The factory is the central mechanism for creat-

ing objects or components. By registering objects with the factory, we enable a

fully configurable hierarchy that can be modified with specialized implementations

at run-time. Configuration/resource database One of the most important facili-

5

ties of UVM is a resource database that makes configurations globally accessible.

This allows test specific configurations to be added to the testbench independently.

Phases The different class threads running in a UVM environment are coordinated

using a phase based execution, ensuring proper ordering of events. Prewritten code

As all the classes used in a UVM environment are predefined with significant func-

tionality, there is less work left to the user for each implementation. This is just

a brief overview of the advantages, as more detailed information will be discussed

when implementing the different classes in Chapter 3

2.6 RISC-V processors

Arm dominates the microprocessor architecture business, as its licensees have

shipped 150 billion chips to date and are shipping 50 billion more in the next

two years. But RISC-V is challenging that business with an open source ecosys-

tem of its own, based on a new kind of processor architecture that was created by

academics and is royalty free ,the figure below [Figure 1]show general architecture

of Risc-v SOC. RISC-V started in 2010 at the University of California at Berkeley

Par Lab Project, which needed an instruction set architecture that was simple,

efficient, and extensible and had no constraints on sharing with others. Krste

Asanovic (a founder of SiFive), Andrew Waterman, Yunsup Lee, and David Pat-

terson created RISC-V and built their first chip in 2011. In 2014, they announced

the project and gave it to the community. RISC-V is the newest addition to the

risc instruction set architectures family. It’s an open-source modern ISA, capable

of scaling from small embedded systems up to large servers and mainframe com-

puters. The design and verification of a 64-bit RISC-V compliant general-purpose

microprocessor is described along this thesis. The first part of the thesis follows

6

the development of a basic single cycle implementation, supporting the 42 inte-

ger instruction required by the RISC-V ISA. The design was implemented on an

ALTERA DE1-SoC FPGA development kit, achieving a clock rate of 55 MHz.

Various techniques were used to improve the design performance and capabilities.

The final design is a five stage pipelined micro-architecture with split cache, sup-

porting integer, atomic, single and double precision floating point, multiplication

and division instructions. The FPGA implementation was able to achieve a clock

rate of up to 140 MHz with a power consumption of 122 mW.

Figure 2.1: General Architecture of Risc-V SOC.

7

Chapter 3

UVM Verification Hierarchy

The UVM methodology is as a portable, open-source library from the Accellera

Systems Initiative, and it should be compatible with any HDL simulator that sup-

ports SystemVerilog. UVM is also based on the OVM library which provides some

background and maturity to the methodology. A key feature of UVM includes

re-usability though the UVM API and guidelines for a standard verification envi-

ronment. The environment is easily modifiable and understood by any verification

engineer that understands the methodology behind it.

3.1 UVM Environment

A top-level UVM environment encompasses agent and scoreboard components and

most often, other environments in its hierarchy. It groups several of the critical

components of the test bench so that they could easily be configured at one place in

any stage if needed. It can have multiple agents for different interfaces and multiple

scoreboards for checks on the different type of data transactions. This way, the

environment can enable/disable different verification components for specific tasks

8

.

• UVM Agent

A UVM agent comprises of the sequencer, driver and the monitor of an in-

terface. Multiple agents could be used to drive multiple interfaces, and they

are all connected to the test-bench through the environment component. A

UVM agent could be active or passive. Active agents include a driver and

have the ability to drive signals, but passive agents only have the monitor

and cannot drive pins. Even though a passive agent consists of the monitor

only, it is vital to maintaining the level of abstraction that UVM promises

and to maintain its structure by having all agents in the environment and

not sub-components like monitors by themselves. By default, the agent is

considered active, but this could be changed using the set() method of the

UVM configuration database.

• UVM sequence item

A UVM sequence item is the most fundamental component of the UVM hi-

erarchy. It is a transaction that contains data items, methods, and may also

contain the constraints imposed on them. A sequence item is the smallest

transaction that can happen in a verification environment.

• UVM sequence

A UVM sequence is a collection of transactions, also called the sequence

items. A sequence gives us the ability to use the sequence item as per our

requirements and to use as many sequence items as we want. The main job

9

of a sequence is to generate transactions and pass them to the sequencer.

• UVM sequencer

A sequencer acts as a medium between the sequence items and the driver to

control the flow of transactions from multiple sequences. A TLM interface

enables communication between the driver and the sequencer.

• UVM driver

A UVM Driver is a component class where the transaction-level sequence

item meets the DUT clock/ bit/ pin-level activities. Driver pulls sequences

from sequencer as inputs, then converts those sequences into bit-level ac-

tivities, and finally drive the data onto the DUT interface according to the

standard interface protocol. The functionality of driver is restricted to send

the appropriate data to the DUT interface. Driver can well off course moni-

tor the transmitted data, but that violates modularity aspects of UVM.

• UVM Monitor

A UVM monitor looks at the pin level activity of the DUT and converts it

back into transactions to send it to other components for further analysis.

Generally, the monitor processes transactions like coverage collection and

logging before sending them to scoreboards. .

• UVM Scoreboard

10

The scoreboard collects the transactions from the monitor and performs

checks to verify if the collected data matches the expectation or not. The

expectation generally comes from a golden reference model often written in

languages such as C/C++ and interfaced with the test bench through Direct

Programming Interface(DPI).

3.2 UVM Test

A UVM test is a top-level component that encapsulates all the test-specific infor-

mation as shown in figure 1. The functions of the test component are- instantiating

the environment, configuring it and invoking sequences through it. In test benches

where there are multiple focus tests, a base test is first written extending from the

uvm test class that instantiates the top-level environment and all the other focus

tests are extended from this base test for more specific testing

Figure 3.1: UVM Test Hierarchy .

11

3.3 UVM Testbench Top

The UVM testbench typically includes one or more instantiations design under

test modules and interfaces which connect the DUT with the testbench. Transac-

tion Level Modeling (TLM) interfaces in UVM provide communication methods

for sending and receiving transactions between components. A UVM Test is dy-

namically instantiated at run-time, allowing the UVM testbench to be compiled

once and run with many different tests

Figure 3.2: UVM Test Top Component.

12

3.4 UVM Phasing

Phasing is an essential feature of UVM methodology where different phases collect,

run and process data to avoid run-time conflicts. Phases are a group of callback

methods which could be tasks or functions. All the phases in UVM can be grouped

into three main categories which are discussed below.

• Build The methods in a build phase enable us to build all the components

and connect them. These are executed at the start of the simulation. All

methods in this phase are functions only and hence execute in zero simulation

time.

• Connect The connect phase connects UVM subcomponents of a class. Con-

nect phase is executed from the bottom up. In this phase, the testbench

components are connected using TLM connections. Agent connect phase

would connect the monitor to the scoreboard.

• Run The run phase is the main execution phase, actual simulation of code

will happen here. Run phase is a task and it will consume simulation time.

The run phases of all components in an environment run in parallel. Any

component can use either the run phase or the 12 individually scheduled

phase. This phase starts at time 0. It is a better practice to use normal run

phase task for drivers, monitors and scoreboards.

13

3.5 UVM Transaction Level Communication Pro-

tocol

Transaction refers to a class object that includes necessary information needed

for communication between two components. Simple example could be a read

or write transaction on a bus. Transaction-level modeling (TLM) is an approach

that consists of multiple processes communication with each other by sending

transaction back and forth through channels. The channels could be FIFO or

mailbox or queue. The advantages of TLM are it abstracts time, abstracts data

and abstracts function.

• Basic Transaction Level Communication

TLM is basis for modularity and reuse in UVM. The communication hap-

pens through method calls. A TLM port specifies the API or function call

that needs to be used. A TLM export supplies the implementation of the

methods. Connections are between ports and exports and not between com-

ponents. The ports and exports are parameterized by the transaction type

being communicated .

• Analysis ports and Exports

Analysis ports supports communication between one to many components.

These are primarily used by coverage collectors and scoreboards. The analy-

sis port contains analysis exports connected to it. When a UVM component

class calls analysis port write method, then the analysis port iterates through

the lists and calls write method of appropriate connected export. Similar to

that of TLM FIFO Analysis ports also extends the feature to support mul-

tiple transaction.

14

Chapter 4

System Architecture

Ibex is a 2-stage 32 bit RISC-V processor core. Ibex has been designed to be small

and efficient. the core is configurable to support four ISA configurations. Figure

1 shows a block diagram of the core.

Figure 4.1: Ibex architecture.

15

4.1 Instruction Fetch

The Instruction Fetch (IF) stage of the core is able to supply one instruction to the

Instruction-Decode (ID) stage per cycle if the instruction cache or the instruction

memory is able to serve one instruction per cycle.

Instructions are fetched into a prefetch buffer . This buffer simply fetches

instructions linearly until it is full. The instructions themselves are stored along

with the Program Counter (PC) they came from in the fetch FIFO . A localparam

DEPTH gives a configurable depth which is set to 3 by default.

The top-level of the instruction fetch controls the prefetch buffer (in particular

flushing it on branches/jumps/exception and beginning prefetching from the ap-

propriate new PC) and supplies new instructions to the ID/EX stage along with

their PC. Compressed instructions are expanded by the IF stage so the decoder

can always deal with uncompressed instructions (the ID stage still receives the

compressed instruction for placing into mtval on an illegal instruction exception).

Figure 4.2: Instruction Fetch (IF) stage.

16

4.2 Instruction Decode and Execute

The Instruction Decode and Execute stage takes instruction data from the instruc-

tion fetch stage (which has been converted to the uncompressed representation in

the compressed instruction case). The instructions are decoded and executed all

within one cycle including the register read and write. The stage is made up of

multiple sub-blocks which are described below.

Figure 4.3: Instruction Decode and Execute.

4.2.1 Instruction Decode Block

The Instruction Decode (ID) controls the overall decode/execution process. It

contains the muxes to choose what is sent to the ALU inputs and where the write

data for the register file comes from. A small state machine is used to control

multi-cycle instructions.

• Controller The Controller contains the state machine that controls the

17

overall execution of the processor. It is responsible for:

1-Handling core startup from reset

2-Setting the PC for the IF stage on jump/branch

3-Dealing with exceptions/interrupts (jump to appropriate PC, set 4-relevant

CSR values)

5-Controlling sleep/wakeup on WFI

• Decoder The decoder takes uncompressed instruction data and issues ap-

propriate control signals to the other blocks to execute the instruction.

• Register File Ibex has either 31 or 15 32-bit registers if the RV32E extension

is disabled or enabled, respectively. Register x0 is statically bound to 0 and

can only be read, it does not contain any sequential logic.

The register file has two read ports and one write port, register file data

is available the same cycle a read is requested. There is no write to read

forwarding path so if one register is being both read and written the read

will return the current value rather than the value being written.

4.2.2 Execute Block

The execute block contains the ALU and the multiplier/divider blocks, it does

little beyond wiring and instantiating these blocks.

• Arithmetic Logic Unit (ALU) The Arithmetic Logic Logic (ALU) is

a purely combinational block that implements operations required for the

Integer Computational Instructions and the comparison operations required

for the Control Transfer Instructions in the RV32I RISC-V Specification.

18

• Control and Status Register Block The CSR contains all of the CSRs

(control/status registers). Any CSR read/write is handled through this

block.

• Load-Store Unit (LSU) The Load-Store Unit (LSU) of the core takes care

of accessing the data memory. Loads and stores of words (32 bit), half words

(16 bit) and bytes (8 bit) are supported.

Any load or store will stall the ID/EX stage for at least a cycle to await

the response (whether that is awaiting load data or a response indicating

whether an error has been seen for a store).

4.2.3 Exceptions and Interrupts

Ibex implements trap handling for interrupts and exceptions according to the

RISC-V Privileged Specification, version 1.11.

When entering an interrupt/exception handler, the core sets the mepc CSR to

the current program counter and saves mstatus.MIE to mstatus.MPIE. All excep-

tions cause the core to jump to the base address of the vector table in the mtvec

CSR. Interrupts are handled in vectored mode, i.e., the core jumps to the base

address plus four times the interrupt ID. Upon executing an MRET instruction,

the core jumps to the program counter previously saved in the mepc CSR and

restores mstatus.MPIE to mstatus.MIE.

The base address of the vector table is initialized to the boot address (must be

aligned to 256 bytes, i.e., its least significant byte must be 0x00) when the core is

booting. The base address can be changed after bootup by writing to the mtvec

CSR. For more information, see the Control and Status Registers documentation.

19

The core starts fetching at the address made by concatenating the most signif-

icant 3 bytes of the boot address and the reset value (0x80) as the least significant

byte. It is assumed that the boot address is supplied via a register to avoid long

paths to the instruction fetch unit.

4.2.4 Signals Description

The following table descries each signal with its direction and in the next chapter

will specify which component in UVM environment that is responsible for drive it

.

20

21

22

23

Table 4.1 Signals Description

Chapter 5

Test Methodology and Results

A testbench is a network of verification components designed to check whether the

RTL implementation meets the design specification or not . The general steps to

verify a design are: generate inputs, reset DUT, configure the DUT, run the test,

capture outputs, verify the correctness, report the errors and provide possible so-

lutions. This chapter discusses about the architecture of the proposed verification

architecture in detail. Fig.5.1 shows the architecture and the various components

that are a part of it.

24

Figure 5.1: Ibex UVM Verification Environment Architecture.

5.1 Ibex Verification Plan

verification plan addresses the items to be verified, checked and covered .the veri-

fication plan for Ibex processor will address the items to be verified, including the

ISA, the IOs, environment (e.g., ISA mix, memory types,operations etc). it also

addresses how the items that need to be verified will be checked . the following

sections include tables shows the extracting items with its methodology to verify,

cover and check .

25

5.2 Random Instruction Generator

By extracting processor design specifications from their respective standard files ,

the input instructions are generated by the Instruction Generator as seen in Figure

5.2. The IG generates random sequences of instructions and is coded in System

Verilog.. The IG generates instruction of a particular kind like only the data

manipulation instructions, branch instructions, data transfer instructions or any

other valid combination can be created.Apart from generating random sequences

of instructions, the IG also executes every instruction and writes the computed

result in the respective virtual sequence component .

Figure 5.2: Instruction Generator communication with UVM Environment.

26

5.3 Ibex Interface

The Interface construct in System Verilog is a bundle of wires that contain con-

nectivity which encapsulates the communication between blocks check figure 5.3.

The interface consists of all the input and output ports from the DUT. The input

ports of DUT are only the Clock and Reset and the rest of the input ports and

output ports of DUT. The logic type is used in declaring the signals so it can be

driven from procedural statements. The interface is instantiated in the top module

as a virtual interface . One of the main advantages of using interface is that when

a new signal is added it can be declared only once in the interface and can be

accessed by higher level modules with the right reference path.

Figure 5.3: Test bench components connection through the interface .

27

5.4 Ibex transaction

The data flows through the testbench from component to component in the form

of packets called as transaction class or sequence item. Three Ibex sequence item

classes are created by extending the uvm sequence item class .the first one for

driving instruction set and communicate with the core as instruction memory and

the other for driving data memory instructions and the last one for driving inter-

rupt signals. The transaction packets consists of configuration inputs to dedicate

the type of instruction and control inputs (error bit, valid bit and fetch enable

bit) and control knobs. Then register the class and properties to factory using

uvm object utils macro. A constructor function is defined for the sequence item.

Randomization is applied to sequence items with proper constraints to each class

.

5.5 Ibex sequence library

The user-defined Ibex sequence classes use uvm sequence as its virtual base class.

These classes are parameterized class with the parameter being one of the Ibex

sequence items classes . Body() method is called, and code within this method gets

executed when the sequence is run. Within the body() the data of sequence items

are constrained randomized and Then start item is called to begin the interaction

with the sequencer. At this point the sequencer halts the execution of the sequence

until the driver is ready. Once the driver is ready, the sequencer causes start item

to return. Once start item has returned, then this sequence has been granted

permission to use the driver. After the transaction has been randomized, and the

data values set, it is sent to the driver for processing using finish item. Finish item

28

should really be called execute item. At this time, the driver gets the transaction

handle and will execute it. Once the driver calls item done (), then finish item will

return and the transaction has been executed figure 5.4 shows the communication

between Sequence and Driver through the sequencer .

Figure 5.4: UVM Sequence and Driver Communication.

5.6 Ibex virtual sequence library

This library contains multiple classes each class declare one or more of Ibex se-

quence that can be driven parallel or sequential and it is very important as it used

to handle drive two different agents in the same time or sequential .

29

5.7 Ibex virtual sequencer and Ibex sequencer

Ibex virtual sequencer is the component that contains all sequencers which exists

in the whole environment. the role of sequencer class is to run the sequences. The

sequencer has a built-in port called sequence item export to communicate with

the driver. Through this port, the sequencer can send a request item to the driver

and receive a response item from the driver. This class is parameterized with Ibex

sequence items used .

5.8 Ibex Agent

The agent encompasses the sequencer, driver and the monitor classes of the Ibex

test bench architecture. This class connects the TLM interface between the se-

quencer and the driver that is vital to allow the flow of transactions to the driver.

Ibex environment contains three Active agents each drive and monitor different

signals or different inputs to the Dut you can check the following table 5.1 that

shows the signals and how to drive and the main component in UVM environment

that is responsible for drive it.

The first agent is called instruction agent it is responsible to diver and monitor

the instructions related to mathematical ,logical ,branching and jumping signals

.the sequencer in this agent is parameterized by instruction sequence item class

.the second agent is data memory agent which deal with the Dut as a data memory

by providing the proper value for the corresponding address . this agent is only

drive and monitor load and store instructions. the last agent is interrupt agent

and its role to drive different interrupt signals and provide different scenarios of

driving on the Dut . all of these agents are controled by their configuration objects

30

in the upper layer, the following waveforms describe signals driving by test(1) that

targeting instruction agent ,check figure 5.5,and figure 5.6 that targeting data

memory agent .

Figure 5.5: Driving instruction Agent by Test 1.

Figure 5.6: Driving data memory Agent by Test 2.

31

32

33

34

Table 5.1 Signals Driving

5.9 Ibex scoreboard

Ibex scoreboard is the component which has transaction level checkers to verify the

functional correctness of a given DUT. Scoreboard class is extended from the uvm

scoreboard base class.Three TLM analysis FIFOs are connected to the monitor

and this way called Twitter pattern system check the following figure 5.7 .

Figure 5.7: analysis FIFO Connection.

In the run phase, the input packet and the output packet is retrieved from the

monitor and once deliver to scoreboad it will be connect with analysis fifos suitable

with transaction type . the checking happen through calling an external function

in scoreboard class that work as reference model and compare the resulting output

with the actual output from the Dut, the following table 5.2 that shows the signals

and how to check and the main component in UVM environment that is responsible

for drive it.

35

36

37

38

Table 5.2 Signals Checking

5.10 Ibex coverage

5.10.1 Functional coverage

Functional coverage is essential to any verification plan,and a way to tell the effec-

tiveness of the test plan. Functional coverage is done by creating multiple coverage

groups each is responsible for cover specific inputs and outputs from the Dut Figure

8 shows the mechanism of Functional Coverage

Figure 5.8: Functional Covergae Loop.

I created seven coverage groups ,three groups for instructions related to dif-

ferent operations deal with Alu .two groups for data memory instructions related

to load and store data by using data memory . one group for cover interrupt

signals.the last group for transitions between different instructions.Figure 9 states

the coverage percentage Results , and then there is a table 5.3 describe signals

coverage items .

39

Figure 5.9: Coverage groups percentage result .

40

41

42

43

Table 5.3 Signals Coverage

43

5.10.2 Code coverage

Code coverage tracks information such what lines of code or expression or block

have been exercised. However, code coverage is not exhaustive and cannot detect

conditions that not present in the code. To address these deficiencies, we go for

functional coverage.Figure 5.10 and figure 5.12 show the coverage resulting from

test 1 ,and figure 5.11 and figure 5.13 show the coverage resulting from test 2.

Figure 5.10: code coverage results by test 1 .

Figure 5.11: code coverage results by test 2.

44

Figure 5.12: code coverage results by test 1.

Figure 5.13: code coverage results by test 2.

5.11 Ibex environment

Ibex environment is a container component containing three different agents, score-

board and coverage . It is created using uvm env virtual base class. In the build

phase components within the environment are instantiated and configured using

its configuration objects. And in the connect phase, the connections are made

45

between components.

5.12 Ibex base test

The test class is created by extending the uvm test class. Then the class is regis-

tered to factory using uvm component utils macro. In the build phase, the lower

level Ibex environment class is created and configured by its the configuration ob-

ject and the same for the agent classes ,coverage and scoreboard . this class is

extended by any test by running specific virtual sequence .

5.13 Ibex Top

The top-level module is responsible for integrating the testbench module with the

device under test. This module instantiates the interface which is wired with Ibex

core The top module also generates the clock and registers the interface into the

config database so that other subscribing blocks can retrieve. Finally, the module

calls the run test function which starts to run the uvm root.

5.14 Test the configurability of the verification

environment

To increase the configurability of the verification system I defined the constraints

of randomization items as soft and this feature enable us to violate these con-

straints or override them in any sequence used ,in addition the implementation

of this environment that has been described in the previous sections enable us to

disable any component or add any new one in the upper layer of the environment

46

and without going into details of how these components communicate with each

other and this is done just using configuration objects which is created for each

agent.another feature,I defined three macros for each agent in configuration file

which enable us to to handle driving two different agents in the same time ,se-

quential or just only one .the same for the number of bits used I defined parameter

to dedicate bit sizes 32-bit or 64-bit ,I tried to test all of these features by test

different core with the same verification environment like RI5CY processor, is one

of pulp family but slightly different from Ibex as it is 32 bit 4-stage core with

floating point unit,with two different methods.Figure 5.14 show the design archi-

tecture for RI5CY core ,Figure 5.15 show UVM Architecture for RI5CY processor

First method,I used the instruction agent and some of sequence classes to drive

RI5CY core with adding the different signals . Second method, One of the main

advantage of UVM is Creating each components using factory enables them to

be overridden in different tests or environments without changing underlying code

base ,I uesd this feature to override instruction agent created for Ibex processor

with customized one for RI5CY processor.

Figure 5.14: RI5CY processor Architecture .

47

Figure 5.15: UVM Architecture for RI5CY processor .

48

Chapter 6

Conclusions and Future Works

A configurable SystemVerilog verification environment for 32 bit RISC-V proces-

sors is developed in this work, and this verification environment is used for the

validation of RISC-V processors with variable instruction set architectures. All ver-

ification system components are configured using an configuration object classes

in the Test Bench . The verification environment extensively validates the opera-

tion of Ibex RISC-V processor with the micro-architecture Model of the RISC-V

processor implemented in System verilog, and an intelligent Instruction Genera-

tor class designed in System verilog which generates instruction sequences. The

verification environment provides a robust control and monitoring environment to

validate the end to end operation of the processor and aid in debug in case of

failures. The test bench can be configured based on the following processor char-

acteristics: Processor Architecture , instruction word size (32 or 64-bit), number

of registers (32 or 64 registers), and type of instructions. The instruction set is

classified into three types: Data manipulation, Data transfer, and Flow control

instructions. The Interface, Driver, Environment, Test case, and main Test are

the major test bench components used to build the test bench

49

framework. The Interface connects the processors (DUT) with the test bench,

the Driver is used to drive the DUT’s input signals, the Environment encapsulates

the Driver and Test case and is responsible for the flow of operation in the top

module. The Test module is the top module that comprises of the clock generator,

instances of DUT, interface and the test case. It consists of all the tasks required

to perform the processor verification. The research presented in this paper has a

lot of scope for future work. Some of the possible ideas that can be developed are

presented below:

• Verification of RISC processors with higher bit sizes e.g., 16-bit, or

even 128-bit datapath can be implemented with minimal modifi-

cations in the verification system design as bit size is configurable.

• Functional Coverage can be done to create the widest possible

range of stimuli with all sort of instruction combinations.

• USing UVM Register Abstraction Layer that provides a standard

base class libraries that enable users to implement the object-

oriented model to access the DUT registers and memories .

50

Bibliography

[1] UVM–1.2–User–Guide–and–Reference–Manual.

http://www.accellera.org/activities/vip, 2015.

[2] A. Traber, “RI5CY core: Datasheet,” ETH Zurich and University of Bologna,

2016.

[3] M. Ghoneima, “Reusable processor verification methodology based on UVM.”

[4] S. Sutherland and T. Fitzpatrick, “UVM rapid adoption: A practical subset

of UVM,” 2015.

[5] C. E. Cummings, “OVM/UVM scoreboards-fundamental architectures,”

2013.

[6] Valtrix Technologies Pvt. Ltd. (October 2017) RISC-V cpu test plan,revision

1.0. [Online]. Available: http://valtrix.in/announcements/ riscv-test-plan

[7] A. Waterman, Y. Lee, D. A. Patterson and K. Asanovic, “The RISC-V In-

struction Set Manual, Volume I: Base User-Level ISA,” 13 May 2011. [Online].

Available: https://www2.eecs.berkeley.edu/Pubs/TechRpts/2011/EECS-

2011-62.pdf.

51

[8] A. Waterman, Y. Lee, D. A. Patterson, and K. Asanovi, “The risc-v instruc-

tion set manual. volume 1: User-level isa, version 2.0,” CALIFORNIA UNIV

BERKELEY DEPT OF ELECTRICAL ENGINEERING AND COMPUTER

SCIENCES, Tech. Rep., 2014

[9] RISC-V Foundation, “RISC-V History,” RISC-V Foundation, [Online]. Avail-

able: https://riscv.org/risc-v-history/. [Accessed 12 Dec. 2019].

[10] A. Waterman, Y. Lee, R. Avizienis, H. Cook, D. Patterson and K. Asanovic,

“The RISC-V instruction set,” in IEEE Hot Chips 25 Symposium (HCS),

Stanford, CA, USA, 2013

[11] SiFive, Inc., “Freedom Studio User Manual,” SiFive, Inc., 2

Aug. 2019. [Online]. Available: https://static.dev.sifive.com/dev-

tools/FreedomStudio/2019.08/freedom-studio-manual-4.7.2-2019-08-2.pdf.

[Accessed 12 Dec. 2019].

52

Appendix A

Source Code

c l a s s i n s t r g e n ;

s t a t i c b i t [3 1 : 0] d e coded in s t r ;

s t a t i c func t i on b i t [3 1 : 0] opcode f (b i t [3 8 : 0]

en coded in s t r) ;

begin

case (encoded in s t r [3 8 : 3 5])

4 ’ b0000 : r e turn r t (encoded in s t r [3 4 : 0]) ; // R ∗∗

4 ’ b0001 : r e turn i t (encoded in s t r [3 4 : 0]) ; // I ∗∗

4 ’ b0010 : r e turn s t (encoded in s t r [3 4 : 0]) ; // S ∗∗

4 ’ b0011 : r e turn b t (encoded in s t r [3 4 : 0]) ; // b ∗∗

4 ’ b0100 : r e turn l u t (encoded in s t r [3 4 : 0]) ;

4 ’ b0101 : r e turn au t (encoded in s t r [3 4 : 0]) ;

53

4 ’ b0110 : r e turn j t (encoded in s t r [3 4 : 0]) ;

4 ’ b0111 : r e turn j r t (encoded in s t r [3 4 : 0]) ;

4 ’ b1000 : r e turn i l t (encoded in s t r [3 4 : 0]) ;

d e f a u l t : r e turn r t (encoded in s t r [3 4 : 0]) ;

endcase

end

endfunct ion

//−−−

s t a t i c func t i on b i t [3 1 : 0] r t (b i t [3 4 : 0] r i n s t r) ;

begin

case (r i n s t r [1 9 : 1 6])

4 ’ b0000 : begin de coded in s t r [14 : 12]=3 ’ d0 ;

d e coded in s t r [31 : 25]=7 ’ d0 ; end //add

4 ’ b0001 : begin de coded in s t r [14 : 12]=3 ’ d0 ;

d e coded in s t r [31 : 25]=7 ’ d32 ; end // sub

4 ’ b0010 : begin de coded in s t r [14 : 12]=3 ’ d1 ;

d e coded in s t r [31 : 25]=7 ’ d0 ; end // s l l

4 ’ b0011 : begin de coded in s t r [14 : 12]=3 ’ d2 ;

d e coded in s t r [31 : 25]=7 ’ d0 ; end // s l t

4 ’ b0100 : begin de coded in s t r [14 : 12]=3 ’ d3 ;

d e coded in s t r [31 : 25]=7 ’ d0 ; end // s l t u

4 ’ b0101 : begin de coded in s t r [14 : 12]=3 ’ d4 ;

54

decoded in s t r [31 : 25]=7 ’ d0 ; end // xor

4 ’ b0110 : begin de coded in s t r [14 : 12]=3 ’ d5 ;

d e coded in s t r [31 : 25]=7 ’ d0 ; end // s r l

4 ’ b0111 : begin de coded in s t r [14 : 12]=3 ’ d5 ;

d e coded in s t r [31 : 25]=7 ’ d32 ; end // s ra

4 ’ b1000 : begin de coded in s t r [14 : 12]=3 ’ d6 ;

d e coded in s t r [31 : 25]=7 ’ d0 ; end // or

4 ’ b1001 : begin de coded in s t r [14 : 12]=3 ’ d7 ;

d e coded in s t r [31 : 25]=7 ’ d0 ; end //and

d e f a u l t : begin de coded in s t r [14 : 12]=3 ’ d0 ;

d e coded in s t r [31 : 25]=7 ’ d0 ; end

endcase

de coded in s t r [1 9 : 1 5] =r i n s t r [3 4 : 3 0] ;

d e coded in s t r [2 4 : 2 0] =r i n s t r [2 9 : 2 5] ;

d e coded in s t r [1 1 : 7] =r i n s t r [2 4 : 2 0] ;

d e coded in s t r [6 : 0]=7 ’ b0110011 ; // opcode

re turn decoded in s t r ;

end

endfunct ion

//−−

//−−

s t a t i c func t i on b i t [3 1 : 0] i t (b i t [3 4 : 0] r i n s t r) ;

55

begin

case (r i n s t r [1 9 : 1 6])

4 ’ b0000 : begin de coded in s t r [14 : 12]=3 ’ d0 ;

d e coded in s t r [31 : 20]= r i n s t r [1 5 : 4] ; end // addi

4 ’ b0001 : begin de coded in s t r [14 : 12]=3 ’ d2 ;

d e coded in s t r [31 : 20]= r i n s t r [1 5 : 4] ; end // s l t i

4 ’ b0010 : begin de coded in s t r [14 : 12]=3 ’ d3 ;

d e coded in s t r [31 : 20]= r i n s t r [1 5 : 4] ; end // s l t i u

4 ’ b0011 : begin de coded in s t r [14 : 12]=3 ’ d4 ;

d e coded in s t r [31 : 20]= r i n s t r [1 5 : 4] ; end // x o r i

4 ’ b0100 : begin de coded in s t r [14 : 12]=3 ’ d6 ;

d e coded in s t r [31 : 20]= r i n s t r [1 5 : 4] ; end // o r i

4 ’ b0101 : begin de coded in s t r [14 : 12]=3 ’ d7 ;

d e coded in s t r [31 : 20]= r i n s t r [1 5 : 4] ; end // andi

4 ’ b0110 : begin de coded in s t r [14 : 12]=3 ’ d1 ;

d e coded in s t r [31 : 20]={7 ’ d0 , r i n s t r [8 : 4] } ; end // s l l i

4 ’ b0111 : begin de coded in s t r [14 : 12]=3 ’ d5 ;

d e coded in s t r [31 : 20]={7 ’ d0 , r i n s t r [8 : 4] } ; end // s r l i

4 ’ b1000 : begin de coded in s t r [14 : 12]=3 ’ d5 ;

d e coded in s t r [31 : 20]={7 ’ d32 , r i n s t r [8 : 4] } ; end // s r a i

//4 ’ b1001 : begin decoded in s t r [14 : 12]=3 ’ d7 ;

d e coded in s t r [31 : 25]=7 ’ d0 ; end //and

d e f a u l t : begin de coded in s t r [14 : 12]=3 ’ d0 ;

d e coded in s t r [31 : 20]= r i n s t r [1 5 : 4] ; end // addi

56

endcase

de coded in s t r [1 9 : 1 5] =r i n s t r [3 4 : 3 0] ; // r s1

de coded in s t r [1 1 : 7] =r i n s t r [2 4 : 2 0] ; // rd

decoded in s t r [6 : 0]=7 ’ b0010011 ; // opcode

re turn decoded in s t r ;

end

endfunct ion

//−−

//−−

s t a t i c func t i on b i t [3 1 : 0] s t (b i t [3 4 : 0] r i n s t r) ;

begin

case (r i n s t r [1 9 : 1 6])

4 ’ b0000 : begin de coded in s t r [14 : 12]=3 ’ d0 ;

d e coded in s t r [31 : 25]= r i n s t r [1 5 : 9] ; d e coded in s t r

[11 : 5]= r i n s t r [8 : 4] ; end // sb

4 ’ b0001 : begin de coded in s t r [14 : 12]=3 ’ d1 ;

d e coded in s t r [31 : 25]= r i n s t r [1 5 : 9] ; d e coded in s t r

[11 : 5]= r i n s t r [8 : 4] ; end // sh

4 ’ b0010 : begin de coded in s t r [14 : 12]=3 ’ d2 ;

d e coded in s t r [31 : 25]= r i n s t r [1 5 : 9] ; d e coded in s t r

[11 : 5]= r i n s t r [8 : 4] ; end //sw

57

d e f a u l t : begin de coded in s t r [14 : 12]=3 ’ d0 ;

d e coded in s t r [31 : 25]= r i n s t r [1 5 : 9] ; d e coded in s t r

[11 : 5]= r i n s t r [8 : 4] ; end // sb

endcase

de coded in s t r [1 9 : 1 5] =r i n s t r [3 4 : 3 0] ; // r s1

de coded in s t r [2 4 : 2 0] =r i n s t r [2 9 : 2 5] ; // r s2

de coded in s t r [6 : 0]=7 ’ b0100011 ; // opcode

re turn decoded in s t r ;

end

endfunct ion

//−−

//−−

s t a t i c func t i on b i t [3 1 : 0] b t (b i t [3 4 : 0] r i n s t r) ;

begin

case (r i n s t r [1 9 : 1 6])

4 ’ b0000 : begin de coded in s t r [14 : 12]=3 ’ d0 ;

d e coded in s t r [31]= r i n s t r [1 1] ;

d e coded in s t r [7]= r i n s t r [1 0] ;

d e coded in s t r [30 : 25]= r i n s t r [9 : 4] ;

d e coded in s t r [11 : 8]= r i n s t r [3 : 0] ; end

//beq

58

4 ’ b0001 : begin de coded in s t r [14 : 12]=3 ’ d1 ;

d e coded in s t r [31]= r i n s t r [1 1] ;

d e coded in s t r [7]= r i n s t r [1 0] ;

d e coded in s t r [30 : 25]= r i n s t r [9 : 4] ;

d e coded in s t r [11 : 8]= r i n s t r [3 : 0] ; end

//bnq

4 ’ b0010 : begin de coded in s t r [14 : 12]=3 ’ d4 ;

d e coded in s t r [31]= r i n s t r [1 1] ;

d e coded in s t r [7]= r i n s t r [1 0] ;

d e coded in s t r [30 : 25]= r i n s t r [9 : 4] ;

d e coded in s t r [11 : 8]= r i n s t r [3 : 0] ; end

// b l t

4 ’ b0011 : begin de coded in s t r [14 : 12]=3 ’ d5 ;

d e coded in s t r [31]= r i n s t r [1 1] ;

d e coded in s t r [7]= r i n s t r [1 0] ;

d e coded in s t r [30 : 25]= r i n s t r [9 : 4] ;

d e coded in s t r [11 : 8]= r i n s t r [3 : 0] ; end

// bge

59

4 ’ b0100 : begin de coded in s t r [14 : 12]=3 ’ d6 ;

d e coded in s t r [31]= r i n s t r [1 1] ;

d e coded in s t r [7]= r i n s t r [1 0] ;

d e coded in s t r [30 : 25]= r i n s t r [9 : 4] ;

d e coded in s t r [11 : 8]= r i n s t r [3 : 0] ; end

// b l tu

4 ’ b0101 : begin de coded in s t r [14 : 12]=3 ’ d7 ;

d e coded in s t r [31]= r i n s t r [1 1] ;

d e coded in s t r [7]= r i n s t r [1 0] ;

d e coded in s t r [30 : 25]= r i n s t r [9 : 4] ;

d e coded in s t r [11 : 8]= r i n s t r [3 : 0] ; end

//bgeu

endcase

de coded in s t r [1 9 : 1 5] =r i n s t r [3 4 : 3 0] ; // r s1

de coded in s t r [2 4 : 2 0] =r i n s t r [2 9 : 2 5] ; // r s2

de coded in s t r [6 : 0]=7 ’ b1100011 ; // opcode

re turn decoded in s t r ;

end

endfunct ion

60

//−−

//−−

s t a t i c func t i on b i t [3 1 : 0] l u t (b i t [3 4 : 0] r i n s t r) ;

begin

de coded in s t r [3 1 : 1 2] =r i n s t r [1 9 : 0] ; //imm

decoded in s t r [1 1 : 7] =r i n s t r [2 4 : 2 0] ; // rd

decoded in s t r [6 : 0]=7 ’ b0110111 ; // opcode

re turn decoded in s t r ;

end

endfunct ion

//−−

//−−

s t a t i c func t i on b i t [3 1 : 0] au t (b i t [3 4 : 0] r i n s t r) ;

begin

de coded in s t r [3 1 : 1 2] =r i n s t r [1 9 : 0] ; //imm

decoded in s t r [1 1 : 7] =r i n s t r [2 4 : 2 0] ; // rd

decoded in s t r [6 : 0]=7 ’ b0010111 ; // opcode

61

r e turn decoded in s t r ;

end

endfunct ion

//−−

//−−

s t a t i c func t i on b i t [3 1 : 0] j t (b i t [3 4 : 0] r i n s t r) ;

begin

de coded in s t r [3 1 : 1 2] =r i n s t r [1 9 : 0] ; //imm

decoded in s t r [1 1 : 7] =r i n s t r [2 4 : 2 0] ; // rd

decoded in s t r [6 : 0]=7 ’ b1101111 ; // opcode

re turn decoded in s t r ;

end

endfunct ion

//−−

//−−

s t a t i c func t i on b i t [3 1 : 0] j r t (b i t [3 4 : 0] r i n s t r) ;

begin

62

decoded in s t r [1 9 : 1 5] =r i n s t r [3 4 : 3 0] ; // r s1

de coded in s t r [3 1 : 2 0] =r i n s t r [1 5 : 4] ; //imm 12 b i t

de coded in s t r [1 4 : 1 2] =3’b0 ; // funct3

de coded in s t r [1 1 : 7] =r i n s t r [2 4 : 2 0] ; // rd

decoded in s t r [6 : 0]=7 ’ b1100111 ; // opcode

re turn decoded in s t r ;

end

endfunct ion

//−−

//−−

s t a t i c func t i on b i t [3 1 : 0] i l t (b i t [3 4 : 0] r i n s t r) ;

begin

case (r i n s t r [1 9 : 1 6])

4 ’ b0000 : begin de coded in s t r [14 : 12]=3 ’ d0 ;

d e coded in s t r [31 : 20]= r i n s t r [1 5 : 4] ; end // lb

4 ’ b0001 : begin de coded in s t r [14 : 12]=3 ’ d1 ;

d e coded in s t r [31 : 20]= r i n s t r [1 5 : 4] ; end // lh

4 ’ b0010 : begin de coded in s t r [14 : 12]=3 ’ d2 ;

d e coded in s t r [31 : 20]= r i n s t r [1 5 : 4] ; end // lw

4 ’ b0011 : begin de coded in s t r [14 : 12]=3 ’ d4 ;

d e coded in s t r [31 : 20]= r i n s t r [1 5 : 4] ; end // lbu

4 ’ b0100 : begin de coded in s t r [14 : 12]=3 ’ d5 ;

63

decoded in s t r [31 : 20]= r i n s t r [1 5 : 4] ; end // lhu

d e f a u l t : begin de coded in s t r [14 : 12]=3 ’ d0 ;

d e coded in s t r [31 : 20]= r i n s t r [1 5 : 4] ; end // lb

endcase

de coded in s t r [1 9 : 1 5] =r i n s t r [3 4 : 3 0] ; // r s1

de coded in s t r [1 1 : 7] =r i n s t r [2 4 : 2 0] ; // rd

decoded in s t r [6 : 0]=7 ’ b0000011 ; // opcode

re turn decoded in s t r ;

end

endfunct ion

//−−

//−−

/∗ i n i t i a l

begin

opcode f (38 ’ b000 00001 00010 00011 0011 0000000000000000

) ;

64

$d i sp l ay (”%b” , de coded in s t r) ;

end∗/

endc l a s s

c l a s s w 2 c ;

s t a t i c b i t [3 8 : 0] i n s t r 2 g e n ;

//−−−

//−−−

s t a t i c func t i on b i t [3 8 : 0] t rans fo rmer (s t r i n g

encoded in s t r) ;

begin

case (encoded in s t r . subs t r (0 , 0))

” r ” : r e turn r de (encoded in s t r) ; // R ∗∗

” i ” : r e turn i d e (encoded in s t r) ; // I ∗∗

” s ” : r e turn s de (encoded in s t r) ; // S ∗∗

”b ” : re turn b de (encoded in s t r) ; // b ∗∗

”u ” : re turn u de (encoded in s t r) ;

”w” : re turn w de (encoded in s t r) ;

” j ” : r e turn j d e (encoded in s t r) ;

”a ” : r e turn a de (encoded in s t r) ;

65

” l ” : r e turn l d e (encoded in s t r) ;

d e f a u l t : r e turn r de (encoded in s t r) ;

endcase

end

endfunct ion

//−−−

//−−−

s t a t i c func t i on b i t [3 8 : 0] r de (s t r i n g r i n s t r) ;

begin

s t r i n g s u b s t r ;

b i t [3 1 : 0] temp ;

i n s t r 2 g e n [3 8 : 3 5] =4’b0000 ;

s u b s t r=r i n s t r . subs t r (11 ,12) ; // take r s1 no i n s i d e

s t r i n g

$d i sp l ay (”%s ” , s u b s t r) ;

temp=s u b s t r . a t o i () ;

// trans form s t r i n g to i n t e g e r a s s i g n to bin

i n s t r 2 g e n [3 4 : 3 0] =temp [4 : 0] ; // r s1 // a s s i g n the segment

that in c lude the value needed

$d i sp l ay (”%b” , temp) ;

s u b s t r=r i n s t r . subs t r (15 ,16) ;

$d i sp l ay (”%s ” , s u b s t r) ;

66

temp=s u b s t r . a t o i () ;

i n s t r 2 g e n [2 9 : 2 5] =temp [4 : 0] ; ; // r s2

$d i sp l ay (”%b” , temp) ;

s u b s t r=r i n s t r . subs t r (7 , 8) ;

$d i sp l ay (”%s ” , s u b s t r) ;

temp=s u b s t r . a t o i () ;

i n s t r 2 g e n [2 4 : 2 0] =temp [4 : 0] ; // rd

$d i sp l ay (”%b” , temp) ;

case (r i n s t r . subs t r (1 , 4))

”add ” : i n s t r 2 g e n [19 : 16]=4 ’ d0 ; // R ∗∗

”sub ” : i n s t r 2 g e n [19 : 16]=4 ’ d1 ; // I ∗∗

” s l l ” : i n s t r 2 g e n [19 : 16]=4 ’ d2 ; // S ∗∗

” s l t ” : i n s t r 2 g e n [19 : 16]=4 ’ d3 ; // b ∗∗

” s l t u ” : i n s t r 2 g e n [19 : 16]=4 ’ d4 ;

” xor ” : i n s t r 2 g e n [19 : 16]=4 ’ d5 ;

” s r l ” : i n s t r 2 g e n [19 : 16]=4 ’ d6 ;

” s ra ” : i n s t r 2 g e n [19 : 16]=4 ’ d7 ;

” or ” : i n s t r 2 g e n [19 : 16]=4 ’ d8 ;

”and ” : i n s t r 2 g e n [19 : 16]=4 ’ d9 ;

d e f a u l t : i n s t r 2 g e n [19 : 16]=4 ’ d0 ;

endcase

67

r e turn i n s t r 2 g e n ;

end

endfunct ion

//−−−

//−−−

//−−−

//−−−

s t a t i c func t i on b i t [3 8 : 0] i d e (s t r i n g r i n s t r) ;

begin

s t r i n g s u b s t r ;

b i t [3 1 : 0] temp ;

i n s t r 2 g e n [3 8 : 3 5] =4’b0001 ;

s u b s t r=r i n s t r . subs t r (11 ,12) ; // take r s1 no i n s i d e

s t r i n g

$d i sp l ay (”%s ” , s u b s t r) ;

temp=s u b s t r . a t o i () ;

// trans form s t r i n g to i n t e g e r a s s i g n to bin

i n s t r 2 g e n [3 4 : 3 0] =temp [4 : 0] ; // r s1 // a s s i g n the segment

that in c lude the value needed

$d i sp l ay (”%b” , temp) ;

s u b s t r=r i n s t r . subs t r (7 , 8) ;

68

$d i sp l ay (”%s ” , s u b s t r) ;

temp=s u b s t r . a t o i () ;

i n s t r 2 g e n [2 4 : 2 0] =temp [4 : 0] ; // rd

$d i sp l ay (”%b” , temp) ;

s u b s t r=r i n s t r . subs t r (14 , r i n s t r . l en ()−1) ;

$d i sp l ay (”%s ” , s u b s t r) ;

temp=s u b s t r . a t o i () ;

i n s t r 2 g e n [1 5 : 4] =temp [1 1 : 0] ; //imm

$d i sp l ay (”%b” , temp) ;

case (r i n s t r . subs t r (1 , 5))

” addi ” : i n s t r 2 g e n [19 : 16]=4 ’ d0 ;

” s l t i ” : i n s t r 2 g e n [19 : 16]=4 ’ d1 ;

” s l t i u ” : i n s t r 2 g e n [19 : 16]=4 ’ d2 ;

” x o r i ” : i n s t r 2 g e n [19 : 16]=4 ’ d3 ;

” o r i ” : i n s t r 2 g e n [19 : 16]=4 ’ d4 ;

” andi ” : i n s t r 2 g e n [19 : 16]=4 ’ d5 ;

” s l l i ” : i n s t r 2 g e n [19 : 16]=4 ’ d6 ;

” s r l i ” : i n s t r 2 g e n [19 : 16]=4 ’ d7 ;

” s r a i ” : i n s t r 2 g e n [19 : 16]=4 ’ d8 ;

d e f a u l t : i n s t r 2 g e n [19 : 16]=4 ’ d0 ;

endcase

69

r e turn i n s t r 2 g e n ;

end

endfunct ion

//−−−

//−−−

//−−−

//−−−

s t a t i c func t i on b i t [3 8 : 0] s de (s t r i n g r i n s t r) ;

begin

s t r i n g s u b s t r ;

b i t [3 1 : 0] temp ;

i n s t r 2 g e n [3 8 : 3 5] =4’b0010 ;

s u b s t r=r i n s t r . subs t r (5 , 6) ; // take r s1 no i n s i d e s t r i n g

$d i sp l ay (”%s ” , s u b s t r) ;

temp=s u b s t r . a t o i () ;

// trans form s t r i n g to i n t e g e r a s s i g n to bin

i n s t r 2 g e n [3 4 : 3 0] =temp [4 : 0] ; // r s1 // a s s i g n the segment

that in c lude the value needed

$d i sp l ay (”%b” , temp) ;

70

s u b s t r=r i n s t r . subs t r (9 , 10) ; // take r s1 no i n s i d e s t r i n g

$d i sp l ay (”%s ” , s u b s t r) ;

temp=s u b s t r . a t o i () ;

// trans form s t r i n g to i n t e g e r a s s i g n to bin

i n s t r 2 g e n [2 9 : 2 5] =temp [4 : 0] ; // r s2 // a s s i g n the segment

that in c lude the value needed

$d i sp l ay (”%b” , temp) ;

s u b s t r=r i n s t r . subs t r (12 , r i n s t r . l en ()−1) ;

$d i sp l ay (”%s ” , s u b s t r) ;

temp=s u b s t r . a t o i () ;

i n s t r 2 g e n [1 5 : 4] =temp [1 1 : 0] ; //imm

$d i sp l ay (”%b” , temp) ;

case (r i n s t r . subs t r (1 , 2))

” sb ” : i n s t r 2 g e n [19 : 16]=4 ’ d0 ;

” sh ” : i n s t r 2 g e n [19 : 16]=4 ’ d1 ;

”sw ” : i n s t r 2 g e n [19 : 16]=4 ’ d2 ;

d e f a u l t : i n s t r 2 g e n [19 : 16]=4 ’ d0 ;

endcase

re turn i n s t r 2 g e n ;

71

end

endfunct ion

//−−−

//−−−

//−−−

//−−−

s t a t i c func t i on b i t [3 8 : 0] b de (s t r i n g r i n s t r) ;

begin

s t r i n g s u b s t r ;

b i t [3 1 : 0] temp ;

i n s t r 2 g e n [3 8 : 3 5] =4’b0011 ;

s u b s t r=r i n s t r . subs t r (7 , 8) ; // take r s1 no i n s i d e s t r i n g

$d i sp l ay (”%s ” , s u b s t r) ;

temp=s u b s t r . a t o i () ;

// trans form s t r i n g to i n t e g e r a s s i g n to bin

i n s t r 2 g e n [3 4 : 3 0] =temp [4 : 0] ; // r s1 // a s s i g n the segment

that in c lude the value needed

$d i sp l ay (”%b” , temp) ;

s u b s t r=r i n s t r . subs t r (11 ,12) ; // take r s1 no i n s i d e

s t r i n g

72

$d i sp l ay (”%s ” , s u b s t r) ;

temp=s u b s t r . a t o i () ;

// trans form s t r i n g to i n t e g e r a s s i g n to bin

i n s t r 2 g e n [2 9 : 2 5] =temp [4 : 0] ; // r s2 // a s s i g n the segment

that in c lude the value needed

$d i sp l ay (”%b” , temp) ;

s u b s t r=r i n s t r . subs t r (14 , r i n s t r . l en ()−1) ;

$d i sp l ay (”%s ” , s u b s t r) ;

temp=s u b s t r . a t o i () ;

i n s t r 2 g e n [1 5 : 4] =temp [1 1 : 0] ; //imm

$d i sp l ay (”%b” , temp) ;

case (r i n s t r . subs t r (1 , 4))

”beq ” : i n s t r 2 g e n [19 : 16]=4 ’ d0 ;

”bnq ” : i n s t r 2 g e n [19 : 16]=4 ’ d1 ;

” b l t ” : i n s t r 2 g e n [19 : 16]=4 ’ d2 ;

”bge ” : i n s t r 2 g e n [19 : 16]=4 ’ d3 ;

” b l tu ” : i n s t r 2 g e n [19 : 16]=4 ’ d4 ;

”bgeu ” : i n s t r 2 g e n [19 : 16]=4 ’ d5 ;

d e f a u l t : i n s t r 2 g e n [19 : 16]=4 ’ d3 ;

endcase

73

r e turn i n s t r 2 g e n ;

end

endfunct ion

//−−−

//−−−

//−−−

//−−−

s t a t i c func t i on b i t [3 8 : 0] u de (s t r i n g r i n s t r) ;

begin

s t r i n g s u b s t r ;

b i t [3 1 : 0] temp ;

i n s t r 2 g e n [3 8 : 3 5] =4’b0100 ;

s u b s t r=r i n s t r . subs t r (6 , 7) ;

$d i sp l ay (”%s ” , s u b s t r) ;

temp=s u b s t r . a t o i () ;

i n s t r 2 g e n [2 4 : 2 0] =temp [4 : 0] ; // rd

$d i sp l ay (”%b” , temp) ;

74

s u b s t r=r i n s t r . subs t r (9 , r i n s t r . l en ()−1) ;

$d i sp l ay (”%s ” , s u b s t r) ;

temp=s u b s t r . a t o i () ;

i n s t r 2 g e n [1 9 : 0] =temp [1 9 : 0] ; //imm

$d i sp l ay (”%b” , temp) ;

r e turn i n s t r 2 g e n ;

end

endfunct ion

//−−−

//−−−

//−−−

//−−−

s t a t i c func t i on b i t [3 8 : 0] w de (s t r i n g r i n s t r) ;

begin

s t r i n g s u b s t r ;

b i t [3 1 : 0] temp ;

i n s t r 2 g e n [3 8 : 3 5] =4’b0101 ;

75

s u b s t r=r i n s t r . subs t r (8 , 9) ;

$d i sp l ay (”%s ” , s u b s t r) ;

temp=s u b s t r . a t o i () ;

i n s t r 2 g e n [2 4 : 2 0] =temp [4 : 0] ; // rd

$d i sp l ay (”%b” , temp) ;

s u b s t r=r i n s t r . subs t r (11 , r i n s t r . l en ()−1) ;

$d i sp l ay (”%s ” , s u b s t r) ;

temp=s u b s t r . a t o i () ;

i n s t r 2 g e n [1 9 : 0] =temp [1 9 : 0] ; //imm

$d i sp l ay (”%b” , temp) ;

r e turn i n s t r 2 g e n ;

end

endfunct ion

//−−−

//−−−

//−−−

//−−−

76

s t a t i c func t i on b i t [3 8 : 0] j d e (s t r i n g r i n s t r) ;

begin

s t r i n g s u b s t r ;

b i t [3 1 : 0] temp ;

i n s t r 2 g e n [3 8 : 3 5] =4’b0110 ;

s u b s t r=r i n s t r . subs t r (6 , 7) ;

$d i sp l ay (”%s ” , s u b s t r) ;

temp=s u b s t r . a t o i () ;

i n s t r 2 g e n [2 4 : 2 0] =temp [4 : 0] ; // rd

$d i sp l ay (”%b” , temp) ;

s u b s t r=r i n s t r . subs t r (9 , r i n s t r . l en ()−1) ;

$d i sp l ay (”%s ” , s u b s t r) ;

temp=s u b s t r . a t o i () ;

i n s t r 2 g e n [1 9 : 0] =temp [1 9 : 0] ; //imm 20 b i t

$d i sp l ay (”%b” , temp) ;

r e turn i n s t r 2 g e n ;

end

endfunct ion

//−−−

77

//−−−

//−−−

//−−−

s t a t i c func t i on b i t [3 8 : 0] a de (s t r i n g r i n s t r) ;

begin

s t r i n g s u b s t r ;

b i t [3 1 : 0] temp ;

i n s t r 2 g e n [3 8 : 3 5] =4’b0111 ;

s u b s t r=r i n s t r . subs t r (11 ,12) ; // take r s1 no i n s i d e

s t r i n g

$d i sp l ay (”%s ” , s u b s t r) ;

temp=s u b s t r . a t o i () ;

// trans form s t r i n g to i n t e g e r a s s i g n to bin

i n s t r 2 g e n [3 4 : 3 0] =temp [4 : 0] ; // r s1 // a s s i g n the segment

that in c lude the value needed

$d i sp l ay (”%b” , temp) ;

s u b s t r=r i n s t r . subs t r (7 , 8) ;

$d i sp l ay (”%s ” , s u b s t r) ;

temp=s u b s t r . a t o i () ;

78

i n s t r 2 g e n [2 4 : 2 0] =temp [4 : 0] ; // rd

$d i sp l ay (”%b” , temp) ;

s u b s t r=r i n s t r . subs t r (14 , r i n s t r . l en ()−1) ;

$d i sp l ay (”%s ” , s u b s t r) ;

temp=s u b s t r . a t o i () ;

i n s t r 2 g e n [1 5 : 4] =temp [1 1 : 0] ; //imm 12 b i t

$d i sp l ay (”%b” , temp) ;

r e turn i n s t r 2 g e n ;

end

endfunct ion

//−−−

//−−−

//−−−

//−−−

s t a t i c func t i on b i t [3 8 : 0] l d e (s t r i n g r i n s t r) ;

begin

79

s t r i n g s u b s t r ;

b i t [3 1 : 0] temp ;

i n s t r 2 g e n [3 8 : 3 5] =4’b1000 ;

s u b s t r=r i n s t r . subs t r (10 ,11) ; // take r s1 no i n s i d e

s t r i n g

$d i sp l ay (”%s ” , s u b s t r) ;

temp=s u b s t r . a t o i () ;

// trans form s t r i n g to i n t e g e r a s s i g n to bin

i n s t r 2 g e n [3 4 : 3 0] =temp [4 : 0] ; // r s1 // a s s i g n the segment

that in c lude the value needed

$d i sp l ay (”%b” , temp) ;

s u b s t r=r i n s t r . subs t r (6 , 7) ;

$d i sp l ay (”%s ” , s u b s t r) ;

temp=s u b s t r . a t o i () ;

i n s t r 2 g e n [2 4 : 2 0] =temp [4 : 0] ; // rd

$d i sp l ay (”%b” , temp) ;

s u b s t r=r i n s t r . subs t r (13 , r i n s t r . l en ()−1) ;

$d i sp l ay (”%s ” , s u b s t r) ;

temp=s u b s t r . a t o i () ;

i n s t r 2 g e n [1 5 : 4] =temp [1 1 : 0] ; //imm 12 b i t

$d i sp l ay (”%b” , temp) ;

80

case (r i n s t r . subs t r (1 , 3))

” lb ” : i n s t r 2 g e n [19 : 16]=4 ’ d0 ;

” lh ” : i n s t r 2 g e n [19 : 16]=4 ’ d1 ;

” lw ” : i n s t r 2 g e n [19 : 16]=4 ’ d2 ;

” lbu ” : i n s t r 2 g e n [19 : 16]=4 ’ d3 ;

” lhu ” : i n s t r 2 g e n [19 : 16]=4 ’ d4 ;

d e f a u l t : i n s t r 2 g e n [19 : 16]=4 ’ d0 ;

endcase

re turn i n s t r 2 g e n ;

end

endfunct ion

//−−−

//−−−

//−−−

81

//−−−

/∗ i n i t i a l

begin

t rans fo rmer (” l lw $19 $22 99”) ;

$d i sp l ay (”%b” , i n s t r 2 g e n) ;∗/

//end

endc l a s s

\ l s t s e t{%

b r e a k l i n e s=true

}

‘ i f n d e f i n s t r a g e n t c o n f i g

82

‘ d e f i n e i n s t r a g e n t c o n f i g

//−−

// i n s t r a g e n t c o n f i g

//−−

c l a s s i n s t r a g e n t c o n f i g extends uvm object ;

loca lparam s t r i n g s m y c o n f i g i d = ” m conf ig

” ;

loca lparam s t r i n g s n o c o n f i g i d = ”no c o n f i g

” ;

// f a c t o r y r e g i s t r a t i o n macro

‘ u v m o b j e c t u t i l s (i n s t r a g e n t c o n f i g)

// agent c o n f i g u r a t i o n

uvm act ive pass ive enum i s a c t i v e = UVM ACTIVE;

// v i r t u a l i n t e r f a c e handle :

v i r t u a l i b e x i f m vi f ;

// v a r i a b l e s

83

i n t unsigned symbol count ;

//−−

// new

//−−

f unc t i on new(s t r i n g name = ” i n s t r a g e n t c o n f i g ”) ;

super . new(name) ;

endfunct ion : new

//−−

// Get c o n f i g u r a t i o n

//−−

s t a t i c func t i on i n s t r a g e n t c o n f i g g e t c o n f i g (

uvm component c) ;

i n s t r a g e n t c o n f i g t ;

i f (! uvm conf ig db #(i n s t r a g e n t c o n f i g) : : get (c , ”” ,

s m y c o n f i g i d , t)) begin

‘ uvm error (s n o c o n f i g i d , $ s f o rmat f (” no c o n f i g

a s s o c i a t e d with %s ” , s m y c o n f i g i d))

re turn n u l l ;

end

84

r e turn t ;

endfunct ion // g e t c o n f i g

endc l a s s : i n s t r a g e n t c o n f i g

‘ e n d i f

\ l s t s e t{%

b r e a k l i n e s=true

}

‘ i f n d e f i n s t r a g e n t

‘ d e f i n e i n s t r a g e n t

//−−

// i n s t r a g e n t

//−−

c l a s s i n s t r a g e n t extends uvm agent ;

// f a c t o r y r e g i s t r a t i o n macro

‘ uvm component uti ls (i n s t r a g e n t)

// c o n f i g u r a t i o n ob j e c t

i n s t r a g e n t c o n f i g m conf ig ;

85

// e x t e r n a l i n t e r f a c e s

uvm ana lys i s por t #(i n s t r s e q i t e m) ap ;

// i n t e r n a l components

i n s t r m o n i t o r m inst r moni tor ;

i n s t r d r i v e r m i n s t r d r i v e r ;

i n s t r s e q u e n c e r m in s t r s equence r ;

//−−

// new

//−−

f unc t i on new(s t r i n g name = ” i n s t r a g e n t ” , uvm component

parent = n u l l) ;

super . new(name , parent) ;

endfunct ion : new

//−−

// bu i ld

//−−

86

v i r t u a l f unc t i on void bu i ld phase (uvm phase phase) ;

super . bu i ld phase (phase) ;

m conf ig = i n s t r a g e n t c o n f i g : : g e t c o n f i g (t h i s) ;

ap = new(” ap ” , t h i s) ;

m ins t r mon i tor = i n s t r m o n i t o r : : t ype id : : c r e a t e (”

m inst r mon i tor ” , t h i s) ;

i f (m conf ig . i s a c t i v e == UVM ACTIVE) begin

m i n s t r d r i v e r = i n s t r d r i v e r : : t ype id : : c r e a t e (”

m i n s t r d r i v e r ” , t h i s) ;

m in s t r s equence r = i n s t r s e q u e n c e r : : t ype id : :

c r e a t e (” m in s t r s equence r ” , t h i s) ;

end

endfunct ion : bu i ld phase

//−−

// connect

//−−

v i r t u a l f unc t i on void connect phase (uvm phase phase) ;

m ins t r mon i tor . ap . connect (ap) ;

m ins t r mon i tor . m vi f = m conf ig . m vi f ;

i f (m conf ig . i s a c t i v e == UVM ACTIVE) begin

m i n s t r d r i v e r . m vi f = m conf ig . m vi f ;

87

m i n s t r d r i v e r . s eq i t em por t . connect (

m in s t r s equence r . s eq i t em expor t) ;

end

endfunct ion : connect phase

endc l a s s : i n s t r a g e n t

‘ e n d i f

\ l s t s e t{%

b r e a k l i n e s=true

}

‘ i f n d e f i n s t r d r i v e r

‘ d e f i n e i n s t r d r i v e r

‘ i n c lude ”uvm setup/env/ i n s t r g e n . sv ”

import uvm pkg : : ∗ ;

//−−

// i n s t r d r i v e r

//−−

c l a s s i n s t r d r i v e r extends uvm driver #(i n s t r s e q i t e m) ;

// f a c t o r y r e g i s t r a t i o n macro

88

‘ uvm component uti ls (i n s t r d r i v e r)

// i n t e r n a l components

i n s t r s e q i t e m m in s t r s eq i t e m ;

// i n t e r f a c e

v i r t u a l i b e x i f m vi f ;

//−−

// new

//−−

f unc t i on new (s t r i n g name = ” i n s t r d r i v e r ” ,

uvm component parent = n u l l) ;

super . new(name , parent) ;

endfunct ion : new

//−−

// run

89

//−−

v i r t u a l task run phase (uvm phase phase) ;

// Reset or i n i t i a l i z e the DUT

f o r e v e r begin

s eq i t em por t . g e t nex t i t em (m i n s t r s eq i t em) ;

/////////////////////

f o rk

d r i v e i n s t r () ;

t ime out () ;

j o in any

d i s a b l e f o rk ;

s eq i t em por t . item done () ;

end // f o r e v e r begin

endtask // run phase

task d r i v e i n s t r () ;

@(posedge m vi f . c l k i) ;

begin

90

m vif . i n s t r r d a t a i <= i n s t r g e n : : opcode f

({m in s t r s eq i t e m . t y p e s e l ,

m in s t r s eq i t e m . rs1 ,

m in s t r s eq i t e m . rs2 ,

m in s t r s eq i t e m . rd ,

m in s t r s eq i t e m . funct ,

m in s t r s eq i t e m . imm,

m in s t r s eq i t e m . l e f t }) ;

m vi f . i n s t r g n t i <= m i ns t r s eq i t em .

i n s t r g n t i ;

// m vi f . i n s t r g n t i <= 1 ;

m vi f . i n s t r r v a l i d i <= m i ns t r s e q i t em .

i n s t r r v a l i d i ;

// m vi f . i n s t r r v a l i d i <=1;

// m vi f . i n s t r g n t i <= m in s t r s eq i t em .

i n s t r g n t i ;

// m vi f . i n s t r r d a t a i <= m in s t r s eq i t em .

i n s t r r d a t a i ;

m vi f . i n s t r e r r i <= m i ns t r s e q i t em .

i n s t r e r r i ;

end

/∗ $d i sp l ay (” m vi f . i n s t r r d a t a i %d” , m vi f .

91

i n s t r r d a t a i) ;

$d i sp l ay (” m vi f . i n s t r g n t i %d” , m vi f . i n s t r g n t i)

;

$d i sp l ay (” m vi f . i n s t r r v a l i d i %d” , m vi f .

i n s t r r v a l i d i) ;

$d i sp l ay (” m vi f . i n s t r e r r i %d” , m vi f . i n s t r e r r i)

;∗/

@(posedge m vi f . c l k i) ;

// @(posedge m vi f . c l k i) ;

endtask

task t ime out () ;

#1000000

$d i sp l ay (”OOOH : TIME OUT IN THE INSTR DRIVER”) ;

$d i sp l ay (” m vi f . i n s t r r e q o %b” , m vi f . i n s t r r e q o)

;

endtask

92

endc l a s s // i n s t r d r i v e r

‘ e n d i f

\ l s t s e t{%

b r e a k l i n e s=true

}

‘ i f n d e f i n s t r m o n i t o r

‘ d e f i n e i n s t r m o n i t o r

//−−

// i n s t r m o n i t o r

//−−

c l a s s i n s t r m o n i t o r extends uvm monitor ;

// f a c t o r y r e g i s t r a t i o n macro

‘ uvm component uti ls (i n s t r m o n i t o r)

// e x t e r n a l i n t e r f a c e s

uvm ana lys i s por t #(i n s t r s e q i t e m) ap ;

93

// i n t e r f a c e

v i r t u a l i b e x i f m vi f ;

//−−

// new

//−−

f unc t i on new (s t r i n g name = ” i n s t r m o n i t o r ” ,

uvm component parent = n u l l) ;

super . new(name , parent) ;

endfunct ion : new

//−−

// bu i ld

//−−

v i r t u a l f unc t i on void bu i ld phase (uvm phase phase) ;

super . bu i ld phase (phase) ;

ap = new(” ap ” , t h i s) ;

endfunct ion : bu i ld phase

94

//−−

// run

//−−

v i r t u a l task run phase (uvm phase phase) ;

i n s t r s e q i t e m mon ins t r s eq i t em ;

mon ins t r s eq i t em= i n s t r s e q i t e m : : t ype id : : c r e a t e

(” mon ins t r s eq i t em ”) ;

f o r e v e r begin

@(posedge m vi f . c l k i i f f m vi f . i n s t r r e q o

==1) ;

mon ins t r s eq i t em . i n s t r r d a t a i = m vi f

. i n s t r r d a t a i ;

mon ins t r s eq i t em . pc = m vi f . p c i f o ;

mon ins t r s eq i t em . mem data in =m vi f .

data com ;

mon ins t r s eq i t em . mem addr in =m vi f .

addr com ;

95

mon ins t r s eq i t em . i n s t r g n t i <=

m vif . i n s t r g n t i ;

mon ins t r s eq i t em . i n s t r r v a l i d i <=

m vif . i n s t r r v a l i d i ;

mon ins t r s eq i t em . i n s t r g n t i <=

m vif . i n s t r g n t i ;

mon ins t r s eq i t em . i n s t r r d a t a i <=

m vif . i n s t r r d a t a i ;

mon ins t r s eq i t em . i n s t r e r r i <=

m vif . i n s t r e r r i ;

mon in s t r s eq i t em . i n s t r a d d r o <=

m vif . i n s t r a d d r o ;

mon ins t r s eq i t em . f e t c h e n a b l e i

<= m vif . f e t c h e n a b l e i ;

mon in s t r s eq i t em . mem seq

<= m vif . mem if ;

/// data sampling

// mon txn . input a = m vi f . input a ;

ap . wr i t e (mon ins t r s eq i t em) ;

mon ins t r s eq i t em= i n s t r s e q i t e m : : t ype id

: : c r e a t e (” mon ins t r s eq i t em ”) ;

@(posedge m vi f . c l k i) ;

96

end // f o r e v e r

endtask // run phase

endc l a s s : i n s t r m o n i t o r

‘ e n d i f

\ l s t s e t{%

b r e a k l i n e s=true

}

‘ i f n d e f i n s t r s e q u e n c e r

‘ d e f i n e i n s t r s e q u e n c e r

//−−

// i n s t r s e q u e n c e r

//−−

c l a s s i n s t r s e q u e n c e r extends uvm sequencer #(

97

i n s t r s e q i t e m) ;

// d e c l a r a t i o n macros

‘ uvm component uti ls (i n s t r s e q u e n c e r)

//−−

// new

//−−

f unc t i on new(s t r i n g name , uvm component parent) ;

super . new(name , parent) ;

endfunct ion : new

endc l a s s : i n s t r s e q u e n c e r

‘ e n d i f

98

	Introduction
	Motivation
	Contributions
	Organization and Notations

	Literature Review
	Introduction
	verification
	 Directed test
	 Hardware Verification Languages
	UVM
	 RISC-V processors

	UVM Verification Hierarchy
	 UVM Environment
	UVM Test
	UVM Testbench Top
	UVM Phasing
	 UVM Transaction Level Communication Protocol

	System Architecture
	Instruction Fetch
	Instruction Decode and Execute
	Instruction Decode Block
	Execute Block
	Exceptions and Interrupts
	Signals Description

	Test Methodology and Results
	Ibex Verification Plan
	Random Instruction Generator
	Ibex Interface
	Ibex transaction
	Ibex sequence library
	Ibex virtual sequence library
	Ibex virtual sequencer and Ibex sequencer
	Ibex Agent
	Ibex scoreboard
	Ibex coverage
	Functional coverage
	Code coverage

	Ibex environment
	Ibex base test
	Ibex Top
	Test the configurability of the verification environment

	Conclusions and Future Works
	Source Code

