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Abstract  

Convolutional neural networks (CNN) are the closest image recognition systems to 

humans’ eyes with rising classification accuracy above 90%. This is motivating the 

development of their overall performance to fit in real time applications. Graphics 

processing units (GPUs) are very commonly used in the acceleration of CNNs due to 

their high speed and accuracy, but their high-power consumption is a very serious 

limitation. The most promising replacement is the Field Programmable Gate Arrays 

(FPGA) but with speed and accuracy limitations. This thesis presents a compromising 

FPGA based implementation to speed up the CNNs and keep a low power consumption. 
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Chapter 1. 

Introduction 

       This thesis introduces optimized hardware implementation of the VGG convolution 

neural network on FPGA platform. In addition, the optimizations and design techniques 

used can further get modified to build a platform for all CNNs architectures. 

1.1. Future of neural networks  

       Human brain never failed to impress all sciences with its abilities and powers. 

Although its complexity and the relatively slow switching activity of its neurons, it can 

process information incredibly faster than any electrical machine. This is due to the 

highly parallel processing techniques performed by the neural networks which is based 

on dividing the information into many pieces that gets processed individually.  

       Artificial Neural Networks (ANN) are brain inspired systems designed to solve 

highly-complex problems. They use same processing techniques as the human brains in 

which weights are given to the pieces of information based on how much they affect the 

final results. This is achieved by dividing the network into interconnected layers of 

processing, each is built of large number of simple processing block. This makes ANNs 

excel in feature extraction and classifications of complex nonlinear functions. ANN 

weights are developed through long process of training on previously known datasets. 

More surprisingly, ANNs can successfully extract main features from data not used in 

training process. In other words, ANNs can do accurate predictions of unknown data 

without any restrictions on the size of distribution of it. As a result, ANNs became widely 

used in many applications as Self-driving cars, Weather forecasting, image recognition 

and data analysis. 

       Convolution Neural Networks (CNNs) are the most used type of ANNs in visual 

recognition and image classification. Among all ANNs, CNNs use special processing 

units that sweep many convolution kernels with different weights over the input image to 

capture the main two-dimensional features existed. In addition, these convolution kernels 

have small dimensions compared with the dimensions of input images which results in 
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having fewer parameters to be learned and stored compared with the huge parameters of 

interconnected neurons of ANNs. As a result, CNNs gained large popularity recently 

especially with the availability of many powerful processing units and training datasets as 

ImageNet Large Scale Visual Recognition Competition (ILSVRC) [1] and COCO dataset 

[2]. 

       Although the convolution kernels reduced the overall number of parameters of the 

network, CNNs still use over 100 million parameters to achieve high accuracies [3]. Also, 

they need powerful processing units to be able to perform the huge parallel computations 

and data reuse processes. Graphic Processing Units (GPUs) are the most powerful 

platform for such complex algorithms but with very high cost in terms of power. 

Recently, CNNs become widely used in real-time embedded systems requiring platforms 

with high speed, small area and very low power consumption which are not achievable in 

GPUs. Power problems of GPUs and CPUs arise from their generality, no matter how 

direct the process is, it must be translated into set of instructions, then fetched from 

memory, executed by the general hardware and the stored back in the memory. 

Therefore, specific platforms for CNNs with higher resources for parallelism and 

pipelining are needed. 

       Dedicated hardware implementations are always faster than GPUs which made 

Application Specific Integrated Circuit (ASIC) and Field Programmable Gate Array 

(FPGA) platforms more promising for neural networks. Although ASICs are better than 

FPGA based implementations in terms of area, power and speed, their high cost and 

complex, time consuming design flow makes them less favorable in this area. In addition, 

FPGAs have a great degree of flexibility as they can be reconfigured -statically and 

dynamically. 

       In addition to their flexibility, modern FPGAs have very powerful features that 

incredibly boost the performance CNNs. First, they have embedded CPUs that could be 

used to implement the area hungry parts of the hardware. In addition, they offer high 

degree of freedom for parallelism and pipelining. Also, they have relatively large 

embedded memories along with the flexibility to use external memories -but with speed 

cost. Those features gave FPGA based CNNs an increasing popularity recently. 
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       However, there are limiting tradeoffs in FPGA designs that need to be solved. 

Firstly, usage of embedded CPU greatly boosts the speed but is very power inefficient for 

embedded systems. Also, speed is very degraded by the slow connections to external 

memories which are needed due to the limited internal memories. Those bottlenecks are 

making it vital for CNN designs to adopt optimization techniques that reduce the number 

of computations and parameters without affecting the overall accuracy of the network. 

1.2. Problems to be solved  

       Deep CNNs are greatly needed in embedded systems, smartphones, wearable 

electronics and self-driving cars. In order to achieve efficient real-time performance, they 

should have small latency, high throughput along with low power consumption. In 

addition, Higher accuracy is required, and this is achieved by the long training process 

that need huge amount of data. Also, high accuracies limit the possibility of parameter 

pruning which means massive memories are needed. 

       Memory and Power problems are not a big concern in the training process as it is 

done only once to evaluate the parameters, so it could take place on GPUs or computers, 

then the resulting parameters get transferred to the optimized CNN platform. However, 

during the classification phase these problems are very critical. Three main platforms are 

the candidates for accelerating CNNs: GPUs, ASICs and FPGAs. 

       ASIC designs are fully customized to the computations needed so they achieve the 

highest speed with minimum power consumption. In addition, massive memories could 

be designed with very high speed to account for the deepest CNN. However, the design 

process, synthesis and fabrication are very complex and expensive in terms of time and 

finances. 

       On the other hand, Soft-Ware based platforms (GPUs and CPUs) require very easy 

design flow and are not very expensive. Also, their high speed and large memories makes 

them very powerful engines for training process. However, their massive power 

consumption is critical in classification process as mainly the target systems are battery-

dependent. 
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       FPGAs seem to be the solution for this trade-off. In comparison with ASICs and 

GPUs, they are less expensive and simpler to program and reconfigure. In addition, they 

provide low power consumption and high throughput. also, FPGAs offer many resources 

like Block Random Access Memories (BRAMs), Arithmetic Logic Units (ALUs) and 

CPUs. 

       The main problem of FPGAs is that their internal memories are not large enough to 

store all the parameters needed for such huge parallel processing units. External 

memories solve this problem but their limited bus size, read and write speed greatly 

degrade the throughput of the CNN which is the main target for real-time applications. 

1.3. introduced solution  

       FPGAs are programmable and very flexible which allow implementing several 

optimization techniques to reach the target performance. This thesis is targeting lower 

power consumption, low external memory access along with high speed. In order to 

achieve this purpose, several optimization techniques were used.  

       First, parallel processing is used to speed up the performance of all layers. Along 

with pipelining techniques to allow for higher clock frequency and in turn higher 

throughput. 

       Second, data reuse techniques were used to lower the internal BRAMs access which 

will save much power and in turn lower the external memory access which is also time 

and power consuming. 

       In order to lower the computation s power, approximate computations were used. 

Floating numbers are of constant length of minimum of 32 bits with no restrictions of the 

length of fractions. This makes floating representation accurately represent the extremely 

small of large numbers which leave no option for simplifying the operations on floating 

numbers. Instead of accurate, floating-point representation of numbers, fixed-point 

representation was used. In which, all numbers are represented wit constant lengths for 

fraction and for the whole number. This quantization saves a lot of computational power 

with very small reduction in the accuracy of the overall network. Along with the 

Rectified Linear Unite layers which also help in power reduction by setting the negative 
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values to zero after each convolution layer. Negative values are commonly existed    

especially in deeper layers of the CNN, as main features get represented with positive 

values and higher weights while absence of features is represented by negative, close-to-

zero values. By setting these values to zero, ReLU layers help in skipping large amount 

of computations [4]. 

       Moreover, we used same Hardware architecture to perform all the layers of the same 

type no matter the differences in their parameters. This helped to save a lot of power and 

area to be used in building distributed memories to reduce external memory access.  

1.4. Organization of coming chapters 

       This thesis introduces new accelerated FPGA based implementation of the VGG 

neural network but first we will discuss some literature view of CNNs and move to the 

VGG algorithms and implementation and then to the proposed implementation and the 

results. 

       Chapter 2. discusses an overview about ANNs and CNNs and their building layers 

then it moves to the VGG network and provide a comparative study between it and other 

popular CNN algorithms. After that, the specifications and mathematical functions of 

different layers of the VGG are explained. Also, it explains how the training process 

takes place and then move to an overview about the FPGAs, their architecture, design 

flow, available resources and how they are used to accelerate the CNNs. 

       Chapter 3. explains the software-based algorithm of VGG which was used for the 

training process. It also discussed the approximate representation of numbers used, 

datasets used in training and the achieved accuracy. In addition, it provides information 

on the format of the input parameters to the Hard-ware implementation. 

       Chapter 4. starts with the proposed optimization techniques used in the design and 

then explain in details the architectures of each layer and memory and the top integration 

of them all.  

       Chapter 5. represents the verification of the designed hard-ware in comparison with 

the SW results. In addition to explaining the reached performance of the network in terms 
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of power, speed and area. Also, a comparative study with the previous VGG 

implementation is presented.  

       Chapter 6. provide a brief overview of the thesis and the reached conclusions. It 

introduces some ideas for future works in the same field. 
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Chapter 2. 

Background and previous work 

 

2.1. CNNs  

2.1.1 Artificial Neural Networks overview  

       ANN are mathematically modeled by a set of algorithms to mimic the human brain.  

It is inspired by the human brain interactions and designed mainly for patterns’ 

recognition. The human brain can recognize voices and images in few milliseconds and 

we are usually do this without even knowing how it works but this is not the case when it 

comes to machine learning. Those patterns must be numerically expressed in vectors so; 

all real-life date must be translated into numbers and vectors so that the network can deal 

with them and recognize them. Foe example, RGB images consist of pixels, each pixel is 

a number describing its color code from 1 which is white to 256 which is dark green [5]. 

Any change of any number will lead to another image. ANN can classify and group data 

according to similarities among the inputs after training them on some specific datasets 

[5]. This can be used on many applications like face detection, image classifications, 

figure print pattern recognition, voice recognition and so many others. 

2.1.2. Convolutional Neural Networks overview  

       CNN is one of the most popular ANN and named after the mathematical operation, 

convolution [5]. It is built by main blocks called layers each layer is responsible for some 

cascading mathematical operations that lead to finally recognize whatever the input is, 

depending on the training and the dataset. Those layers are: convolution and ReLU layer, 

pooling layer, fully connected layer and soft-max layer. We will explain them in detail in 

the next section.  
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2.2. VGG Network overview  

       The VGG neural network is the first deep network, more than 8 layers, among the 

convolutional neural networks as shown in figure (1). It was done by Karen Simonyan 

and Andrew Zisserman and named after Visual Geometry Group (VGG), Department of 

Engineering Science, University of Oxford. The main objective of this work was to study 

the effect of convolutional network depth on its accuracy in the large-scale image 

recognition setting [5]. They got the first and the second places in the localization and 

classification tracks respectively in ImageNet Challenge 2014 after their improvement 

over AlexNet by replacing large kernel-sized filters (11 and 5 in the first and second 

convolutional layer, respectively) with multiple 3×3 kernel-sized filters one after another. 

Which is the smallest size to capture the notion of left/right, up/down, center. They 

evaluated 2 models, 16 and 19 weight layers which can classify images into 1000 object 

categories, such as cars, pens, T-shirts, and many animals. We used VGG16 model which 

was trained for weeks using NVIDIA Titan Black GPU’s by Simonyan and Andrew 

Zisserman. 

 

Figure 1: ImageNet Large Scale Visual Recognition Challenge. [5] 
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2.3. comparative study  

       Among all CNNs, VGG network has many advantages in terms of accuracy, speed 

and power. 

 

Figure 2: Comparison of top-1 accuracy and operations between the different architectures [6]. 

       As shown in figure (2), VGG network has the highest memory and the most 

operations [G-Ops] compared with other architectures and has a satisfying top-1 

accuracy percentage compared to other deep networks as shown in figure (3) which can 

be considered as disadvantages, according to [6].   

 

Figure 3: Comparison of top-1 accuracy between the different architectures adopted from[6]. 
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Figure 4:  Comparison of forward time per image and batch size between the different architectures adopted from  [6]. 

       As shown in figure (4), VGG network has the longest forward time per image (delay) 

compared with other architectures with the same batch size, which can be considered as 

disadvantages, according to [6].   

 

Figure 5: Comparison of net power consumption and batch size between the different architectures adopted from [6]. 

       As shown in figure (5), VGG network has the lowest power consumption compared 

with other architectures with the same batch size, which can be considered as one of its 

advantages, according to [6]. 
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2.4. VGG architecture  

      Karen Simonyan and Andrew Zisserman in [5] worked on six configurations for the 

VGG architecture listed below in table (1) named from A to E. Starts with configuration 

A with 11 weight layers (8 conv. layers and 3 FC. Layers) then configuration B with 13 

weight layers (10 conv. layers and 3 FC. Layers) increasing the number of conv. layers as 

they go until they reach deeper configuration which is E with 19 weight layers (16 conv. 

layers and 3 FC. Layers). The number of channels is increased by a factor of 2 as they go 

deeper staring from 64 channel in the very first conv. layers until they reach 512 

channels. The number of parameters is also increased by increasing the number of layers 

as shown in table (2). [5]  

Table 1. ConvNet configurations [5] 

 

Table 2.  Number of parameters [5].  

 

       The main building blocks of VGG or any CNN are the feature extractor part and 

recognizer part. This thesis proposes an optimized implementation for the VGG-16 

architecture shown in figure (6) below: 
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Figure 6: VGG-16 layers. Adopted from [11] 

       As the architecture in figure (6) shows, ReLU layer is not shown for brevity, the first 

stack of two 3x3 conv. layers act as an effective receptive field of 5x5, without the spatial 

pooling in between, and the next stack of three 3x3 conv. layers act as an effective 

receptive field of 7x7. -So, this architecture does the same job of the other architectures 

and achieved top-1 accuracy of 70.5% and top-5 accuracy of 90% with only 3x3 filters 

which reduces the number of parameters by 81%. i.e. 3x3 filter has 3(32C2) = 27C2 

parameters but with 7x7 filter, the number of parameters will be 72C2 =49C2 while C is 

the number of channels in each conv. layer[5]. They also incorporate three non-linear 

rectification layers instead of a single one, which makes the decision function more 

discriminative. [5] Those are the main reasons why we selected this architecture to study.    

 

Figure 7: VGG layers adopted from [11] 
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2.4.1. Convolutional layer  

       Convolution layer is the very first layer in the network and works as the feature 

extractor. The 3x3 weight matrix is initialized to extract certain features from the image 

and run across the image pixels or matrix so that it reaches each pixel once to result into a 

convolved output that is ready to be cascaded to the nest layer for further operations [9]. 

Each output pixel is obtained by adding the values obtained by element wise 

multiplication of the weight matrix and its number of moving strides, for example, 

highlighted 3*3 part of the input image for the first output pixel as shown in figure (8). 

[9] The convolution layer output dimensions differ from the input due to the convolution 

process as the output depth is dependent of the number of filters of the layer and the 2D 

dimensions depend on the stride movement. All filters sweep over the entire input image 

in all the dimensions. If the filter window moves by one pixel at a time this is called 1x1 

stride.  

 

Figure 8: Convolution operation. [9] 

       As claimed, the main purpose of the convolution is to extract the main features and 

edges from image. For visualization of the process, Figure (9) shows the outputs of many serial 

convolution functions on the test image in figure (10). 
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Figure 9: Test Image of ImageNet dataset 

 

Figure 10: extraction of main features by consecutive convolutions 
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     The CONV layer’s parameters consist of a set of learnable filters. The VGG-16 

network consists of 13 conv/ layers. The input to the first conv layer is a fixed-size 224 x 

224 x 3 (RGB) image which was preprocessed by subtracting the mean RGB value from 

each pixel [5]. The image is then passed through the stack of conv. layers where they 

used 3x3 filters or 1x1 filters which can be considered as a linear transformation of the 

input channels followed by non-linearity [5]. The stride movement of all layers is fixed to 

be 1 pixel. The spatial padding is chosen such that the resolution is kept preserved i.e. 1 

pixel for 3x3 convolution layers [5]. The most memory consumption is in the early 

layers; as their feature maps contain 224x224x46pixel = 3.2M pixel. However, it has the 

smallest number of parameters due to small number of filters; the first layer for example 

has 3x3x64=1728 parameter [6].  

2.4.2. ReLU Layer  

       ReLU stands for Rectified Linear Unit and it is used to introduce non-linearity to the 

system after each convolution layer because the element-wise matrix multiplication and 

addition that was done in the convolution stage are linear operation and each real-life date 

is non-linear. So, this will make it easier for the model to generalize or adapt with variety 

of data to best fit its representation and to differentiate between the outputs. The ReLU 

function is done by eliminating all the unwanted negative-valued features and replace 

them with zero by applying the activation function max (0, x). It is now used instead of 

other non-linear functions like sigmoid and tanh for more computational efficiency. The 

ReLU function plot is shown in figure (11).  

       As the convolution layers in CNN only output positive values for existence of 

features, a large amount of RELU outputs will be zero and do not have to be used for 

further computations [14]. As a result, ReLU function has a powerful role in reducing the 

computational power by skipping many computations due to the zero-valued pixels. 
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Figure 11: Plot of ReLU function outputs  

2.4.3 Pooling layer 

       This layer follows some of the conv. layers to reduce the spatial size of the 

representation to reduce the number of parameters and computation in the network, and 

hence to also control overfitting.  It can be done by more than one way but the most 

commonly used one is by taking the maximum of each filter size of the input volume, in 

our case it is 2x2 applied with a stride of 2 which down samples the input volume by 2 in 

both width and height but the depth remain unchanged, decreasing the 75% of the 

activation. Figure (12) illustrates the max pooling operation.  

 

Figure 12: Max-Pooling operation explanation. 

       This is the following layer after the conv. layers. The VGG network contains 5 max 

pooling layers each one is between two successive conv. layers. The pooling here is done 
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by the most common way in CNN which is taking the maximum of each number of 

pixels which is 4 pixels because filter size is 2x2 with a stride of 2. The input is down 

sampled by 2 with the same depth dimensions discarding 75% of the activations. 

       Max-pooling layer also contributes a lot to power-consumption optimization by 

reducing the feature-map dimensions without any loss of the important features. Figure 

(13) shows the max-pooling output of the image in figure (9) and as seen, pooling 

successfully kept all the important features and edges that are needed for classifying the 

image. 

 

Figure 13: output of Max-Pooling of the image in figure (9) 

2.4.4. Fully connected layer 

       In FC layers, every node is fully connected to every activation node in both the next 

layer and the previous layer just similar to the way that the neurons are fully connected in 

the brain neural network as shown in figure (14). 
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       The most common drawback in this layer is that it has the highest number of 

parameters that need a lot of complex computations in both modes of operation; training 

and classification so that, the most commonly used number of FC layers is three [8]. The 

only difference between FC layers and conv. layers is that FC layers have more 

parameters than conv. layers and the neurons in the conv. layer is connected only to a 

local region in the input. However, both have identical functionality of dot products and 

addition, there for the can be implemented with same hardware [8]. 

 

Figure 14: Fully-Connected layers structure.  

       In VGG-16, the first two FC layers have 4096 neurons each, the third performs 1000- 

way ILSVRC classification and thus contains 1000 channels (one for each class) [5]. 

Unlike the earlier conv. layers; those last layers have the highest number of parameters 

reaching around 4096x1000=4096000 parameters per layer. However, they have the 

lowest memory consumption for feature maps of 1x1x4096=4096. All numbers of 

parameters and memory consumption are reported in table (2).  

2.4.5. Soft Max layer 

       Soft-max is the layer that decides the class which the input image belongs to. It takes 

its inputs from the Fully Connected layer’s outputs and assign a value for each class that 

differ in range from 0 to 1.0 and corresponds to the class probability. The summation of 

those probabilities will add up to 1.  
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For an input vector 𝑋 = (𝑥1 + 𝑥2 + ⋯ + 𝑥𝑘) ∈ 𝑅   where 𝑘 is the total number of 

classes. 

The Softmax function 𝑆 is calculated through the following equation  

 

𝑆(𝑥𝑖) =  
𝑒𝑥𝑖

∑ 𝑒
𝑥𝑗𝑗=𝑘

𝑗=1

     Where   𝑗 = 1,2,3, … , 𝑘                    (1)  

       Figure (15) shows an example of normalization of the inputs [0.1, 1, 2] into 

the probability distribution that predicts the category or the class of the input 

image. In the shown example we have an output probability of [0.1, 0.2, 0.7] 

which means that the input image belongs to the third class by a 70 percent 

probability. 

 

Figure 15: Soft-Max probability distribution 

Softmax function is a normalized exponential function that enlarges the 

probability of the highest score class in order to be distinguishable from other 

classes, and this relation is clearly shown in figure (16). 

 

Figure 16: Plot of Soft-Max function score. [10] 

[0.1,1,2] Softmax [0.1,0.2,0.7]
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       In VGG network, Soft-max layer consists of 1000 channels. It gives the classification 

depending on the highest probability using the soft max function which 

is 𝜎(𝑧)𝑖
𝑒𝑧𝑖

∑ 𝑒
𝑧𝑗 𝑘

𝑗=1

 𝑓𝑜𝑟 𝑗 = 1, … . , 𝑘 𝑎𝑛𝑑 𝑧 = (𝑧1, … … , 𝑧𝑘)𝜖 𝑅𝑘 that gives a very high 

probability for the most commonly appeared classes and gives a very small probability 

for the rarely appeared classes.  

 

2.4.6. Classification experiments results 

       Karen Simonyan and Andrew Zisserman reported the accuracies of VGG 

implementations with different depths in [5]. As observed in table (3), top-1 and top-5 

error are decreased as we go deeper from 11 layers in configuration A until they reach 19 

layers in configuration E. That is configuration D was selected in this thesis to be 

implement, with top-1 error that reaches 25.6% and top-5 error of 8.1%. 

Table 3. top 1 and top 5 error percentages of different VGGs [5] 

 

       From table 4. TOTAL memory of 24M * 4 bytes ~= 96MB / image needed is to store 

138M parameters without accounting for biases. 
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Table 4. Number of parameters and needed memories for the layers outputs 

Layer Type Channels Filter 

size 

Memory Parameters 

1 Conv. 64 3x3 224*224*64=3.2M (3*3*3) *64 = 

1,728 

2 Conv. + 

max 

pool 

64 3x3 224*224*64=3.2M 

+112*112*64=800K 

(3*3*64) *64 = 

36,864 

3 Conv. 128 3x3 112*112*128=1.6M (3*3*64) *128 

= 73,728 

4 Conv. + 

max 

pool 

128 3x3 112*112*128=1.6M  

+ 56*56*128=400K 

(3*3*128) *128 

= 147,456 

5 Conv. 256 3x3 56*56*256=800K (3*3*128) *256 

= 294,912 

6 Conv. 256 3x3 56*56*256=800K (3*3*256) *256 

= 589,824 

7 Conv. + 

max 

pool 

256 3x3 56*56*256=800K 

+28*28*256=200K 

(3*3*256) *256 

= 589,824 

8 Conv. 512 3x3 28*28*512=400K (3*3*256) *512 

= 1,179,648 

9 Conv. 512 3x3 28*28*512=400K (3*3*512) *512 

= 2,359,296 

10 Conv. + 

max 

pool 

512 3x3 28*28*512=400K 

+14*14*512=100K 

(3*3*512) *512 

= 2,359,296 

11 Conv. 512 3x3 4*14*512=100K (3*3*512) *512 

= 2,359,296 

12 Conv. 512 3x3 4*14*512=100K (3*3*512) *512 

= 2,359,296 

13 Conv. + 

max 

pool 

512 3x3 4*14*512=100K 

+7*7*512=25K 

(3*3*512) *512 

= 2,359,296 

14 FC. 4096 - 4096 7*7*512*4096 

= 102,760,448 

15 FC. 4096 - 4096 4096*4096 = 

16,777,216 

16 Output + 

softmax 

1000 - 1000 4096*1000 = 

4,096,000 
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2.5. Training process  

       Like human brains, CNNs need a training period in order to formulate accurate 

parameter values for better classification. The training process is done by back 

propagation. Back propagation can be done in 4 steps: The first step is to take the training 

image and pass it through the whole network layers. This is called forward pass. All the 

initialized weights are randomly generated with no preferences to any of them, so the 

network need more information so that it can tell the classification. This leads us to the 

next step of the pack propagation which is loss function. The most common way to make 

the loss function is by mean squared error which is 𝐸 = ∑
1

2
(actual – predicted )2. The 

predicted output of the CNN must have a minimized error in order to function correctly. 

This can be done by optimizing the weight values that directly contribute in the loss 

function. The next step is back-word pass that get the most contributing weights that 

affect the loss or the error and reduce them. Then the last step is to update the weights.    

2.6 FPGAs 

       Field Programmable Gate Array (FPGA) is a customer configurable Integrated 

Circuit (IC) that can be programmed and reprogrammed after manufacturing, 

consequently; it takes an advantage over the Application Specific Integrated Circuit 

(ASIC) as it can be updated and reconfigured. FPGAs configured by hardware 

description languages (HDL) which are Verilog and VHDL. This configuration is stored 

in a volatile Random-Access Memory (RAM), consequently, it is lost every time the 

power supply disconnected, and the FPGA needs to be configured again when the power 

supply is available.   

2.6.1. FPGA architecture  

       FPGA consists of three main components shown in Figure (17): 

• Programmable Logic Blocks 

The programmable logic block provides basic computation and storage elements used 

to implement the needed function. It is further decomposed to sub-components like 

Lookup tables (LUTs), Multiplexers and Flipflops.  
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Modern FPGAs contain a heterogeneous mixture of different blocks like RAM 

blocks, ALUs, and digital signal processing (DSP) blocks which perform operations 

such as multiplication, Moreover DSP is widely used in CNN. 

• Programmable Interconnects 

The programmable routing establishes a connection between logic blocks and 

Input/Output blocks to complete a user-defined design unit. 

• Programmable Input/Output Blocks 

The programmable I/O pads are used to interface the logic blocks and routing 

architecture to the external components. These cells consume a large portion of the 

FPGA’s area. 

 

Figure 17: FPGA architecture. adopted from [15] 

2.6.2. Design Flow  

       The FPGA design flow is graphically represented in Figure (18) and it consists of six 

stages: design entry, design synthesis, design implementation, device programming and 

design verification. 
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Figure 18: FPGA design flow. adopted from [16] 

Design Entry  

       The design entry is done in different techniques like schematic based, hardware 

description language (HDL) and a combination of both. Selection of a method depends 

on the design and designer, if the designer wants to deal with hardware, then the 

schematic entry is a good choice, but if the designer thinks the design in an algorithmic 

way, then the HDL is the better choice. The schematic based entry gives the designer a 

greater visibility and control over the hardware. 

Design Synthesis   

       This process translates VHDL code into a device netlist format. The design synthesis 

process will check the code syntax and analyze the hierarchy of the design architecture. 

This ensures the design optimized for the design architecture. The netlist is saved as 

Native Generic Circuit (NGC) file. 

Design Implementation 

       The design Implementation consists of three consecutive processes illustrated in 

Figure (19): 
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1) Translate  

       This process combines all the input netlists to the 

logic design file which is saved as NGD (Native Generic 

Database) file. Here the ports are assigned to the physical 

elements like pins, switches in the design. 

2) Map 

       Mapping divides the circuit into sub-blocks such that 

they can be fit into the FPGA logic blocks. Thus this 

process fits the logic defined by NGD into 

the combinational Logic Blocks, Input-Output Blocks and 

then generates an NCD file, which represents the design 

mapped to the components of FPGA. 

3) Place and Route  

       The routing process places the sub-blocks from the mapping process into the logic 

block according to the constraints and then connects the logic blocks. 

Device Programming  

The routed design must be loaded into the FPGA. This design must be converted into a 

format supported by the FPGA. The routed NCD file is given to the BITGEN program, 

which generates the BIT file. This BIT file is configured to the FPGA. 

Design Verification  

The design is verified through the following steps: 

1) Behavioral Simulation 

       Behavioral simulation is the first of all the steps that occur in the hierarchy of the 

design. This is performed before cheap lace dresses the synthesis process to verify the 

RTL code. 

       In this process, the signals and variables are observed and further, the procedures 

and functions are traced, and breakpoints are set. 

 

 

Figure 19: design implementation 

https://www.edgefx.in/digital-logic-circuits/
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2) Functional Simulation   

       Functional simulation is performed post-translation simulation. It gives the 

information about the logical operation of the circuit. 

3) Static Time Analysis  

       This is done post mapping. Post map timing report gives the signal path delays. 

After place and route, timing report takes the timing delay information. This provides 

a complete timing summary of the design. 
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Chapter 3.  

Software implementation  

       Training a hardware configuration as large as a 16-layer deep VGG network can be 

quite exhaustive computationally and in terms of area. A clever approach to cut down the 

costs is to perform training on the exact software version of the required network, then 

plug-in the results directly in the hardware memories. Therefore, in order to evaluate the 

performance and accuracy of our VGG hardware implementation, we had implemented a 

pre-trained model [3] and employed its weights and biases in our design. 

3.1. Datasets used for training  

       ImageNet is a large dataset of approximately 22k classes, amounting in total to more 

than 15M labeled images. The images were collected from the web and manually labelled 

by the aid of Amazon Mechanical Turk. An annual competition, called the ImageNet 

Large-Scale Visual Recognition Challenge (ILSVRC) is being held since 2010 to test the 

performance of the different ConvNets designed every year. The competition is based on 

a sub-set of the ImageNet dataset, where the ConvNet performances are evaluated for 

top-1 and top-5 errors. 

       Training and evaluation of the pre-trained VGG ConvNet architecture was carried 

out on the ILSVRC-2012 dataset. The dataset is composed of 1000 classes and 

partitioned into 3 categories; 1.3M training images, 50k validation images, and 100k test 

images with class labels. The architecture was tested in the ILSVRC 2012 to 2014 

challenges. 

3.1.1 Image padding 

       As we apply the convolution, the output volume shrinks by a factor of the stride 

number, in case of using a 3x3 stride it will be reduced by a factor of 3x3. There are some 

considerations that should be taken, like making the receptive field fit the diminutions of 

the input volume to make sure that there is no any missed data. In case of miss fitting, 

zero padding is added as a border around the image pixels as indicated in figure (20) and 

its size is determined by fitting the resolution and the stride size of the convolution. The 
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padding size is determined by the next equation 𝑍𝑒𝑟𝑜 𝑝𝑎𝑑𝑑𝑖𝑛𝑔 =  
(𝑘−1)

2
, while k is the 

filter size. In our case of 3x3 filter size, the padding size is 1x1.  

 

Figure 20: visualization of zero-padding 

The formula of the output size for any conv. layer is given by 𝑂 =
(𝑊−𝐾+2𝑃)

𝑆
+ 1  while O 

is the output size, w is the output height/length, p is the padding, k is the filter size and s 

is stride.  

3.2. Training details  

       The VGG in [3]was trained using mini-batch gradient descent and backpropagation 

with momentum. Batch size and momentum of 256 and 0.9, respectively, were chosen for 

training with an L2 regularization coefficient of 5. 10−4 for weight decay. Momentum is 

normally used to keep the fluctuations in weight change to a minimal during training to 

prevent a noisy output. The L2 regularization coefficient is an important hyper-

parameter, as well, in determining the proper fitting of the results to the input data. If this 

coefficient is set to zero, the results may over-fit. On the other hand, if it is set to a very 

large value, under-fitting would occur.  

       The learning rate, which defines almost the most important hyper-parameter, was 

initially set to 10−2 and was manually decreased each time the accuracy saturated until 
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the accuracy reached a maximum value after 3 external interferences. Also, for the fully-

connected layers drop-out regularization was performed with a drop-out ratio of 0.5, 

which entails the optimum fitting for the results. Learning was eventually stopped after 

74 epochs, constituting to 370k iterations in total. 

       Weight initialization can be challenging in deep networks, as bad initialization can 

set the gradient to unsuitable values at the early stages which may lead to the exploration 

of undesired solution spaces that are far from the optimal weights. This situation could 

result in slow convergence or even no convergence at all to the desired solution space 

with the optimal results. In order to address this problem, the authors in [3] designed 

multiple ConvNet architectures with roughly the same structure but removed some 

replicated layers to produce shallower versions of the same network. They designed an 

11-layer VGG, which was shallow enough to initialize randomly and still produce 

satisfying results. The weights that gave the best accuracy for the 11-layer VGG were 

used to initialize the first 4 Convolution layers and the last 3 fully-connected layers in the 

16-layer VGG, while the intermediate layers were given a random normal sampling. The 

biases, however, were initialized with zero, which was enough to allow good 

convergence. 

3.3. Fixed point back ground  

       With the increasing complexity of ConvNet architectures, bigger computational 

capacity and memory resources are required for hardware implementation. To mitigate 

this problem, fixed-point notation is used for memory storage and arithmetic 

computations of pixels and weights instead of floating-point notation. As seen in figure 

(21) , the fixed-point representation divides a word length (n) into a sign bit, a fixed 

integer component and a fixed fractional component. 

 

Figure 21: Fixed-Point representation of numbers 
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       The maximum and minimum values that can be stored in a word of x bits and y scale 

factor (exponent) are -2𝑥−1/2𝑦, and (2𝑥−1 − 1)/2𝑦, respectively. In short, a word is 

stored in two’s complement format but with fixed radix point positioning. This gives the 

advantage of storing values in memory and performing arithmetic operations in integer 

form, thus enhancing the hardware performance.  

3.3.1. Fixed point arithmetic operations  

       The choice of a radix point for the results of an arithmetic operation is a designer’s 

choice. Therefore, we preprocessed the input weights and biases to our ConvNet design 

to a standard fixed-point representation having a word length of 17 bits and a fractional 

length of 9 bits. For fixed-point addition, this approach allows the radix point of 2 

different words to align easily, giving the result the same radix point. A fixed-point adder 

is employed to truncate additional bits and put the result in standard form, which is the 

same as the input’s, for additional computations. For fixed-point multiplication, however, 

the operation performed is exactly the same as two’s complement multiplication. A fixed-

point multiplier is employed to determine the radix point of the result and then truncate it 

to put it in standard form for further operations. Here, truncation also serves as a means to 

simplify computation and save area and power in our design. 

3.2. Software Accuracy results  

       The 16-layer pre-trained VGG we used from [3] was evaluated in the ILSVRC-2014 

challenge and won second place with a top-5 test error of 7.3%, as referenced in Table 

(5). A test error of 7.3% was obtained from the combination and averaging of the results 

from the 7 VGG networks of different number of layers designed in the paper, which had 

enhanced the results due to the compatibility and similarity of the structures of the 7 

topologies. The error was enhanced to 6.8% the following year by combining the results 

of 2 nets only. As seen in table 1, the VGG network surpasses the performance of the all 

the ConvNets designed before the time of the competition in 2014, except for 

GoogleLeNet. The best performance for GoogleLeNet outperformed the best 

performance for VGG by only 0.1%. On the contrary, if the test errors of both 
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configurations are to be compared relative to the performance of only one net, VGG 

would surpass by 0.9%. 

Table 5. As represented in [3], A comparison with the state of the art in ILSVRC-

2014 classification 

 

3.3. Preparing data for Hardware implementation  

       The Pre-trained VGG in [3] takes in images of fixed dimensions 224x224. In order to 

do that we re-scaled some ImageNet images isotopically until the smaller side of the 

images reached 224 pixels, then we cropped them with the required fixed dimension from 

the center of the images. Also, to be able to store an image in the RAM memory of an 

FPGA, the image has to undergo flattening, such that it is stored in a one-dimensional 

array, each containing one pixel. An image with dimensions 224x224x3 becomes of 

dimensions 150,528x1 in the memory cells. Using Matlab, we unfolded the input image 

by unrolling the pixels of each of the 3 RGB channels, one after the other, as shown in  
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3.4. Summary 

       This chapter presented the Soft-Ware implementation of the VGG network which this 

thesis aims to implement on FPGA. The soft-ware implementation was used for the training 

process as it has more memory resources to account for the massive-parameters and FMs. 

All the mathematical operations were held in Fixed-Point representation in order to  expect 

same accuracy results as the HW .

Channel 1 - 

Pixel 1 Channel 1 - 

Pixel 2 --- 

Channel 2 - 

Pixel 1 Channel 2 - 

Pixel 2 --- 

Channel 3 - 

Pixel 1 Channel 3 - 

Pixel 2 --- 

Figure 22: Image flattening in memory 
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Chapter 4. 

 Hardware Architecture  

4.1. Proposed approach  

       Our proposed design aims to reach optimization between speed and power 

consumption through the following techniques:  

4.1.1 use of local memory architectures  

       The proposed design takes one input picture at a time and does not support real time 

flow of images. The input image is read from external memory and stored in local 

memory and all the generated Feature maps from all the layers will get stored in local 

cashes to be used as input for the following layer. All weights and biases of convolution 

filters and Fully connected layer neurons are Previously loaded from the external memory 

to local different memories.  

       The use of local memories limited the external memory access to only the loading 

state at the start. External memory access consumes a lot of energy and connections and 

limits the speed of the CNN. Despite the larger area introduced by local memories, they 

saved a lot of energy and time as their accessing is much easier and faster. 

4.1.2 reusing feature map pixels  

       As the convolution and Fully connected layers require reading the feature map once 

for each filter or neuron, Reuse technique was applied to lower the memory access. Each 

pixel is used for multiple filters’ kernel and neurons at the same time to lower the number 

of recalling the data. This helped reducing the energy consumption of those large layers. 

4.1.3 stationery outputs  

       All the intermediate calculations results are stored inside the layers not in the 

memory caches. Only the final outputs of the layers are stored in the memory. This saved 

a lot memory access -for intermediate results and partial sums- and hence saved a lot of 

power. 
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4.1.4 fixed point representations of numbers  

All the calculations of the entire network are carried in fixed point format to avoid 

numbers inflation and lower the memory capacity. All numbers are represented as 17 bits 

binary numbers and all the mathematical operations results are quantized to 17 bits. 

4.2. Top architecture  

 

Figure 23: System-level Design of VGG-16 

       Figure (23) depicts the top architecture for our VGG-16 design. It consists of 3 main 

blocks, which perform convolution, max-pooling and soft-max operation. Since the 

operation of the fully-connected layers is similar to that of the convolution’s but with 

different data arrangement, both are designed to operate on the same hardware and 

switching between them is governed by the controller. 
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       The data path contains 2 main memories, in which the feature maps are stored. The 

image to be evaluated is initially installed in one of these memories through muxing 

between the input from the external memory and the output of the previous network 

stages. The feature map memory to be read from is selected through a mux for max-

pooling and further selection is undergone for extracting only one pixel, if the operation 

to be performed is convolution, fully-connected or soft-max. Two Additional memories 

are used to store the weights and biases of the filters.  

       Due to the large memory requirement for the filters of the 16 layers, new weights and 

biases need to be written periodically from an external memory. 

4.2.1 Control unit  

The top control block is responsible for controlling the flow of data between CNN layers 

and memories. It is implemented as a finite state machine with one state for each layer of 

the VGG including one start state in which all the weights, bias and FM memories get 

initialized from the external memory. When all computation of a layer is finished, it 

sends a finished signal to the controller to move on to the next layer. It also controls the 

sources of weights and bias whether it comes from filters memory or FC memory. 

 

4.3. Convolution layer and ReLU  

Convolution layer is the main building block of all CNNs and the most critical layer in 

the VGG network. As illustrated in section (2.4.1.) the mechanism of the layer to 

convolve the input feature map with number of filters, each of them sweeps over the 

entire feature map. Each filter has specific kernel dimension, stride, weights and bias. In 

VGG network, all the filters have window of 3 x 3 x depth of the input feature map and 

they all have one stride movement and zero padding. All the other parameters of 

convolution layers are illustrated in table 6. 
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Table 6. The Parameters of the convolution layers of VGG-16 network 

Convolution layers Input feature map Output feature map 
Number of 

filters 
Filter size 

Conv1 224 x 224 x 3 224 x 224 x 64 64 3 x 3 x 3 

Conv2 224 x 224 x 64 224 x 224 x 64 64 3 x 3 x 64 

Conv3 112 x 112 x 64 112 x 112 x 128 128 3 x 3 x 64 

Conv4 112 x 112 x 128 112 x 112 x 128 128 3 x 3 x 128 

Conv5 65 x 65 x 128 56 x 65 x 256 256 3 x 3 x 128 

Conv6 65 x 65 x 256 56 x 65 x 256 256 3 x 3 x 256 

Conv7 65 x 65 x 256 56 x 65 x 256 256 3 x 3 x 256 

Conv8 28 x 28 x 256 28 x 28 x 512 512 3 x 3 x 256 

Conv9 28 x 28 x 512 28 x 28 x 512 512 3 x 3 x 512 

Conv10 28 x 28 x 512 28 x 28 x 512 512 3 x 3 x 512 

Conv11 14 x 14 x 512 14 x 14 x 512 512 3 x 3 x 512 

Conv12 14 x 14 x 512 14 x 14 x 512 512 3 x 3 x 512 

Conv13 14 x 14 x 512 14 x 14 x 512 512 3 x 3 x 512 

 

       Despite the differences in parameters of convolution layers, they could be 

implemented using same building blocks and a control unite as indicated in figure (24). 
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Figure 24: architecture of convolution+ReLu layer. all green signals are outputs of the conv_control unit 
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4.3.1 Convolution Building Block 

 

Figure 25 convolution building lock 

       The building block consists of a multiplier and accumulative adder. Together they 

perform the process of multiplying each pixel with its corresponding weight and add all 

the multiplication results together. When all the multiplications are finished, the 

accumulated result is added to the bias and get passed to the ReLU block which pass the 

positive results and pass zero for any negative result. During the accumulation, the reset 

signal is set to low and is set to high once the accumulation is finished to get the block 

ready for the next window. This building block calculates the output of one filter window 

convolution and is swept over the input feature map to produce one layer of the output 

feature map. 

4.3.2 Reuse convolution architecture for FC  

       As noticed from sections (2.4.1 and 2.4.4.) the operation of of fully connected layers 

is similar to that of the convolution. The first FC layer for example, We can think of it as 

a convolution layer with 4096 filters and kernel window of 7x7. For this reason, In the 

proposed design we used the same hardware for both the convolution and FC layers 

which saved huge amount of area and power.  

       In addition, Parallelism and pipelining techniques are applied to the hardware 

architecture to speed up the CNN. 

4.3.3 Convolution Control unit 

       The conv_en and FC_en signals control the operation of the architecture as indicated 

in the table 7. 
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Table 7. Enable signals values corresponding to which layer of FC or convolution 

layer is to be performed 

Conv_en FC_en function 

0 00 Layer disabled (reset = 1) 

0 01 First FC layer 

0 10 Second FC layer 

0 11 Third FC layer 

1 xx Convolution layer 

  

       When the architecture operates as a convolution layer. The conv_control block takes 

as input the input FM depth to control the reset signal of the register after accumulation 

of one window and adds one to the output count. It takes also the width of input FM and 

number of filters to be calculated to calculate when the layer will be finished and output 

the conv_finished signal to enable the next layer.  

       when it operates as FC layer the conv_control calculate the accumulate and repeat 

conditions according to which layer of FC is to operate. 

4.3.4 Convolution layer architecture  

       In the architecture of the Convolution layer in figure (24), we used 64 parallel units 

of the building block to reuse the feature map input pixels for 64 filters at the same time. 

Together, they correspond to 64 filter convolutions. Their number was chosen as it is the 

greatest common divisor of all convolution layers filters number. As a result, one 

hardware architecture is used for all the convolution layers but with different accumulate 

and repeat conditions.  

       The number of building blocks could be increased to speed up large convolution 

layers, but this of course will add more area that is unused when it operates for small 

convolution layers with smaller number of filters.  
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4.4. Max Pooling layer  

       As illustrated before, Pooling layers are used to down convert the feature map 2-D 

size without major loss of the features used for classification. In the case of VGG 

network, the pooling is done by taking the maximum between each 4 inputs as illustrated 

in figure (12). 

       The max-pool building block takes the four pixels’ window in a serial way. So that, it 

consists of comparator that compare two words and output the maximum of the, with the 

output of the comparator connected to one of its inputs as in figure (26). In, this way, 

after four clock cycles the value stored in the register is equal to the maximum of the 

input window. Reset signal is used to reset the register value to zero before each window 

processing. 

 

Figure 26: Max-Pool Building Block 

 

4.4.1. Max-pool Parallelism  

       In order to speed up the process which is our target of this design. Also, in order to 

match the output bus with that of the convolution layer to be able to store them in same 

memory, 64 parallel max-pool blocks were used as shown in figure(27).  

       The max-pool layer also output an output_count signal to allow the memory control 

to increment the address of the memories for storing the next outputs. In addition to 

finished_signal which enable the next layer of the network. The Max-Pool control block 

output these two signals using input information about the layer input FM dimensions. 
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Figure 27: Max-Pool architecture 
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4.5. Soft-max Layer  

       Soft-max function is simply consists of three main mathematical operations which 

are exponential, addition and division. The hardware implementation of those 

mathematical operations is not as simple as their mathematical meaning especially for 

both exponential and division functions. Moreover, in order to achieve those functions, 

valid approximations and simpler functions are used to get a high accuracy output with 

low power consumption and high speed. The hardware implementation of those functions 

is briefly explained in the following sections. 

4.5.1 Exponential implementation 

       A low power hardware implementation of exponential is proposed by Shaik [16] 

using Taylor Series expansion. Taylor series represents any function by an infinite 

addition of diffrentiated terms of the function at any given value. Equation (2)  shows the 

representation of any real function 𝑓(𝑥) at an arbitrary value 𝑥 = 𝑎. 

𝑓(𝒙) = 𝑓(𝑎) + 𝑓′(𝑥 − 𝑎) +
𝑓′′(𝑎)

2!
(𝑥 − 𝑎)2 + ⋯ +

𝑓𝑛(𝑎)

𝑛!
(𝑥 − 𝑎)𝑛         (2) 

Substituting 𝑓(𝑥) = 𝑒𝑥 in Equation (2) leads to Equation (23  

𝑒𝑥 = 𝑒𝑎[1 + (𝑥 − 𝑎) +
1

2
(𝑥 − 𝑎)2 +

1

6
(𝑥 − 𝑎)3 +

1

24
(𝑥 − 𝑎)4 +

1

120
(𝑥 − 𝑎)5

+
1

720
(𝑥 − 𝑎)6]         (3) 

Taking (𝑥 − 𝑎) as a common factor and rearrange will result Equation (4)  

𝑒𝑥 = 𝑒𝑎 [1 + (𝑥 − 𝑎) (1 + (𝑥 − 𝑎) (
1

2
+ (𝑥 − 𝑎) (

1

6
+ (𝑥 − 𝑎) (

1

24
+ (𝑥 − 𝑎) (

1

120
+

1

720
(𝑥 − 𝑎))))))]        (4)  
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Using many reduction steps, we got Equation (5)   

𝑒𝑥 = 𝑒𝑎(𝑐0 + 𝑐1𝑥 + 𝑐2𝑥2 + 𝑐3𝑥3 + 𝑐4𝑥4 + 𝑐5𝑥5)             (5) 

Where the coefficient values are calculated in table 8. 

Table 8. Coefficient values as function of the constant a 

 

Equation (5) can be simplified into Equation (6)   

𝑒𝑥 = 𝑒𝑎(𝑐0 + 𝑥(𝑐1 + 𝑥(𝑐2 + 𝑥(𝑐3 + 𝑥(𝑐4 + 𝑐5𝑥)))))             (6) 

       As noticed from Equation (6)we can implement the exponent by only 6 multipliers and 5 

adders as illustrated in the architecture in figure (28) 
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Figure 28: Architecture of The Exponential module using Taylor Series 

4.5.2. Fixed-Point Divider 

       The basic idea of fixed-point divider is that the division is occurred using shifters, 

comparators, counters, and subtractors. The floating-point input dividend and divisor 

consist of three parts which are the sign bit, integer bits, and the floating bits. In our case, 

the sign bit is always positive because of the previous RELU layer is vanishing any 

negative numbers. The integer and floating bits of the quotient is calculated through the 

module in the following steps. First, the inputs are stored in registers with larger number 

of bits, consequently, an enlargement in the value of the inputs occurred, but the divisor 

has a bigger enlargement because it is stored in a larger register. Second, the comparator 

takes the previous values and checks if the dividend is bigger than or equal the divisor, 

and if so, the counter determines the index of the bit of the quotient that will be assigned 

to 1, Besides, the divisor will be subtracted from dividend and overwritten in the dividend 

[18] 

 

Figure 29: divider module 
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2.5.3. Soft-Max top architecture 

       Finally, the Soft-max architecture as in figure (30) contains data path and controller. 

The data path consists of four blocks; exponential block (EXP), memory block (MEM), 

fixed point adder block (adder), and the division block (DIV). The exponential module 

takes one input at a time and pass its output to be stored in predefined address in the 

memory, Moreover, the exponential output is added to all other exponent outputs by the 

adder in order to obtain the denominator of the Soft-max function. Thereafter, the divider 

takes each element in the memory and divides it on the summation of all exponentials 

that resulted from the adder. The controller module is working in two consecutive states. 

The first state disables the divider module and the reading from memory until all the 

inputs are went through the exponential, and EXP outputs are completely written in the 

specified address at MEM besides getting the sum of those outputs from adder. The 

second state disables EXP, writing on MEM, and adder in order to save power and keep 

the values in MEM and adder as they are. Furthermore, second state enables DIV until it 

calculates all probability distributions of the original inputs.        

 

Figure 30: Soft-Max top architecture 
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4.6. Memory architecture  

       Neural networks require very large memory storage capacity and especially the fully-

connected layers are considered the most exhaustive in terms of memory use due to the 

large number of weights per filter. For the feature map memory, the largest feature map 

produced during the entire VGG operation is the product of the first convolution layer, 

giving 224x 224 x 64 words, 17 bits each. Therefore, 2 memories of this size are 

required, one to be read from and the other to be written to simultaneously. 

       In this paper, Virtex UltraScale + FPGA is targeted for the design implementation. 

Therefore, there are 3 available on-chip memory types; distributed memory, Block RAM 

(BRAM) and Ultra RAM (URAM). Distributed memories are LUT-based, which makes 

them not in optimum design for data storage. Therefore, they are mostly designated to 

store relatively smaller data sizes. Here, BRAMs and URAMs are mainly used to store 

the feature maps and filter weights. 

4.6.1. Memory Types 

       There are two main types of FPGA memory used: 

4.6.1.1. Block RAM 

       According to [12], A BRAM in Virtex UltraScale + has a memory capacity of up to 

36Kbits. It can also be set up as 2 independent 18Kbits blocks or cascaded into a 64x1 

block using 2 blocks. Each block can be configured as 16Kx2, 8Kx4, 4Kx9, 2Kx18, 1Kx36 

or 512x72. BRAMs can be set up as synchronous/asynchronous and single/dual port, but 

in this design synchronous dual-port BRAMs were employed. 
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Figure 31: As represented in [12, Fig 1-1], a true-dual port design for RAM36 

       As shown in figure (31), a dual-port RAM takes in an input bus of 36 bits at 

DOA+DOPA, and outputs 36 bits on another independent port DOB+DOPB according 

the input addresses (ADDRA/ADDRB). Its synchronous behavior is governed by the 

clock (clkA/clkB) and the memory is enabled by (enA/enB), which is determined by the 

designer. 

4.6.1.2. Ultra-RAM 

       As stated in [13], A URAM block is a synchronous, single clock memory with two-

independent read and write ports. It has a fixed width of 72 bits and can store up to 

288Kbits. A URAM has nearly 8 times the storage capacity of a BRAM and multiple 

URAMs can be cascaded together along a column using designated cascading paths to 

form a larger memory. Also, Cascades within different columns can be linked together, 

while consuming minimal logic and delay if pipelined efficiently. 
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Figure 32: As represented in [13, Fig 2-1], a true-dual port design for RAM36 

       As seen in figure (32), Input is written into the memory from port DIN and output is 

read from DOUT. The memory operation enabled from EN and the addresses are 

recognized from ADDR ports. There is additionally an automatic power saving mode 

embedded in URAMs that gets activated by the SLEEP port. 
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4.6.1.3 Memory design 

 

Figure 33: 64 Processing engines with their adjacent feature map memories 

       In this thesis, parallelism of 64 processing engines is designed in order to perform 

convolution and max-pooling on 64 filters simultaneously. Accordingly, each processing 

engine is designed to have a memory at the input and one at the output each with a 

storage capacity of 224x224. In total 1664 BRAMs would be needed for one feature map 

memory. Since, the total number of BRAMs in this version of Virtex 7 UltraScale + is 

2688, it was not enough to accommodate both feature maps. The other feature map was, 

therefore, designed using URAMs, which required 832 blocks to build 64 memory units. 

The rest of the BRAMs were used to store the weights and biases of the 64 filters in use. 

An external memory would also be needed, as the data of one fully-connected layer alone 

can get as large as 7x7x512x4096. 

4.6.2. Memory optimizations 

4.6.2.1. Pipelining 

       In order to achieve the large memory requirement for VGG, each memory block was 

constructed from a cascade of multiple URAMs. URAMs are divided into columns and 

the routing paths of every cascade in contained within the column, saving area and 
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delays. Also, Pipelining of 3 cycles has been designed in order to enhance the 

performance of the cascade and reduce delays. 

4.6.2.2. memory Reuse 

       The feature map memories are overwritten after each layer is done, which allows the 

operation to run mostly on-chip, preventing delays and enhancing memory access rate. 

Filter weights only need to be updated by the end of each layer, which does not require 

interruption in the middle of the process. 

4.6.2.3. Parallelism 

       Sixty-four parallel memories are used in order to speed up the memory access rate 

and enhance the performance of the entire network. It is also needed to support the 

outputs of the processing elements, so that no processes need to be interrupted in order to 

save or read data. 
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