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Chapter 1: Introduction

1.1 MOTIVATION

Currently, we see a strong need to memory-dominated Applications such as Big Data, 10T, Cloud-
Data Centers, Machine Learning etc...., Thus Dynamic Random-Access Memories (DRAMsS) play
a large role in compute platforms. Over the last years, the number of DRAM standards specified
by the JEDEC Solid State Technology Association has been growing rapidly. The most recent
DRAM standard is DDRS5, which was released in mid-2020, because of the large number of new
features, system designers are either challenged to adopt the new standard or they can move on
with well-established standards like DDR4.1f DDR5 is a potential candidate for a specific
application, a further challenge is the configuration of the DDR5 subsystem, which is the
configuration of the DDR5 subsystem, which features a lot of parameter choices. Fast and accurate
simulation models are mandatory to explore the new features and compare different configurations.

1.2 DRAM BACKGROUND AND DDRS5

In this section we introduce the basic terminology of DRAM devices and their controllers and give
an overview on the new features of the DDR5 standard.

1.2.1 DRAM Basics

DRAM Die

laster ines

Memory —
Controller DRAM Channels (0,1,2)

Figure 1: DRAM Architecture [1].

As shown in Figure 1, DRAM can be organized in a multi-hierarchical fashion of DIMMs,
channels, physical ranks, devices, logical ranks, bank groups, banks, memory arrays, sub arrays,
rows, and columns. Several DRAM channels can be connected to the Multi-Processor System on
Chip (MPSoC). These channels are completely in-dependent of each other and have separate
command/address and data buses. A channel can be composed of one or multiple physical ranks,
which are sharing the data and command/address bus. A Dual Inline Memory Module (DIMM) is
a small PCB that accommodates several DRAM devices, which work completely synchronously.
One single device is called x161 if it has an 1/O data width of 16 bit. A DIMM is assembled for
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instance out of four x16 devices in order to have a total 1/0 data width n = 64 bit (called x64).
While the 1/0O data width is usually very limited, inside the DRAM a lot of data can be fetched or
stored in parallel. However, the time between consecutive internal data accesses is very long due
to the optimization for storage density, while the interface can be operated on much higher
frequencies. To align this mismatch DRAM uses a so-called prefetching technique. For read large
chunks of data are concurrently fetched to the interface and then transferred in one burst to the
relpronunciation: by-sixteen quester, for a write the process is reversed. In addition, data is
transferred at the doubled interface frequency (double data rate, short DDR). Current devices such
as DDR4 use an 8n prefetch architecture, where n is the I/0 data width, 8 the Burst Length (BL)
and 8n the number of bits for an internal data transfer. That means with each DRAM access the
total amount of data received or delivered is BL-n = 8-64 bit = 512 bit = 64 B, which is the usual
cache line size in today’s computing systems. In combination with interface frequencies up to 1600
MHz or pin transfer rates up to 3200 MT/s (mega transfers per second) DDR4 reaches a maximum
bandwidth of 25.6 GB/s per channel. Each device itself can consist of several 3D-stacked logical
ranks, which can form several bank groups that include several banks. The concept of bank groups
was introduced with DDR5 and DDR4 in order to reduce the bank switching times to support a
seamless burst behavior at high data rates and therefore a high bandwidth. All banks in a whole
channel can be used concurrently (so called bank parallelism). However, there are some constraints
due to the shared buses. Each bank usually consists of 212 to 218 rows, and each row can usually
store 512B to 2KB of data in its columns. A memory controller is composed of a front end and a
back end. The front end performs arbitration and scheduling of incoming read and write requests,
whereas the task of the back end is to translate these incoming requests into a sequence of DRAM
commands, which have to be orchestrated with respect to the current state of the device. To access
data in a row of a certain bank, an activate (ACT) command must be issued by the controller before
any column access, i.e., read (RD) or write (WR) commands, can be executed. The ACT command
opens an entire row of the memory array, which is transferred into the bank’s row buffer [2]. It
acts like a small cache that stores the most recently accessed row of the bank. The latency of a
memory access to a bank largely varies depending on the state of this row buffer. If a memory
access targets the same row as the currently cached row in the buffer (called row hit), it results in
a low latency and low energy memory access.
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Figure 2 : Bandwidth Evolution of DRAM Standards [1].

Whereas, if a memory access targets a different row as the current row in the buffer (called row
miss), it results in a higher latency and energy consumption. If a certain row in a bank is active it
must first be precharged (PRE) before another row can be activated. In addition to the normal RD
and WR commands, there exist read and write commands with an integrated auto-precharge (RDA,
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WRA). If auto-precharge is selected, the row being accessed will be precharged automatically at
the end of the read or write access. Because a DRAM cell uses a capacitor with leakage effects for
data storage, it usually has to be refreshed every 64ms to retain the data stored in it. Modern
DRAMs are equipped with an all-bank refresh (REFab) command to perform this operation
automatically on all banks of a rank in parallel. However, a prerequisite is that all banks are in a
precharged state. This can be achieved by issuing a special all-bank precharge (PREab) command
in advance. In addition to the commands, each DRAM standard defines a set of timing
dependencies, which are temporal constraints that must be satisfied between issued commands.
For example, between two ACT commands to the same bank the timing dependency tRC (row
cycle time) must be satisfied. Timing dependencies can also exist on other hierarchies of the
DRAM, e.g., between commands to the same bank group, to the same logical/physical rank or to
different logical/physical ranks. The selection of a DRAM subsystem usually has three main
dimensions: bandwidth, latency, and capacity. Bandwidth is the amount of data that can be
transferred between DRAM and a computational unit within a given time. As shown in Figure 2,
the maximum theoretical DRAM bandwidth is limited to the number of data pins times the
interface pin data rate (number of accesses per time per pin). Latency is the time that it takes to
complete an access. In fact, latency helps bandwidth, but not vice versa [4]. For instance, lower
DRAM latency results in more accesses per time, and therefore higher bandwidth, whereas
increasing the number of data pins increases the bandwidth without decreasing latency. In realistic
scenarios, the full theoretical bandwidth is never reached due to many timing dependencies,
interference between different requests, and refresh. The actual achieved bandwidth for a specific
application is called sustainable bandwidth.

1.2.2 DDR5 Standard

With the development of a new DRAM standard generation there are always several key
parameters that should be enhanced, e.g., bandwidth, power consumption, and device capacity.
Figure 3 shows a comparison between key parameters of the new DDRS5 standard and its
predecessor DDR4. In the following we will also describe the most important differences in more
detail. For a higher bandwidth DDRS5 raises the maximum pin data rate to 8400 MT/s compared to
3200 MT/s for DDR4. Because the frequency of internal data accesses stays more or less the same
as a result of the capacity- and cost optimized architecture, the prefetch was incremented from 8n
to 16n. When using the same 64-bit-wide data bus for one channel as all previous DDR generations,
this would result in 128 B of transferred data per access. However, since the usual cache line size
of modern processors is only 64 B, the data bus of each DDR5 DIMM is split up into two
independent channels of 32-bit width. That way only 64 B of data are transferred per access.
Theoretical transfer rates then reach a maximum of 33.6 GB/s per channel and 67.2 GB/s per
DIMM compared to 25.6 GB/s per channel/DIMM for DDRA4, as shown in Figure 2. At the same
time supply voltages are reduced from 1.2 V to 1.1 V for an improved power consumption. The
maximum number of banks per device increases from 16 to 32 distributed over 8 instead of 4 bank
groups, the total capacity of a single device from 16 Gb to 64 Gb. In addition, up to 16 instead of
8 devices can now be stacked in a three-dimensional fashion (logical ranks)3. This enables stack
capacities of up to 512 Gb (max. 16 x 32 Gb or 8 x 64 Gb because of limited address bits). One
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problem that always arises with higher device capacities is the increased refresh overhead, because
each cell still has to be refreshed approximately every 64 ms, as a consequence, either the controller
has to issue refresh commands more frequently or the individual refresh cycles take a longer time.
Since all banks of a rank cannot be accessed during an all-bank refresh, it can lead to significant
performance drops. To overcome this problem, DDR5 introduces same-bank refresh (REFsb) and
associated same-bank precharge (PREsb) commands as an alternative to all-bank refresh (REFab)
and all-bank precharge (PREab) commands. When issuing them, only one bank in each bank group
of the target rank is refreshed and inaccessible, while all other banks can still process incoming
read and write requests. Most modern DRAM controllers use advanced reordering techniques for
an improved performance so they can try to hide the same-bank refresh by sending requests to
other banks in the meantime. Finally, DDR5 devices implement an on-die error correction to
improve the data integrity[2].

ITEMS DDR4 DDR5

Frequency 1600~3200Mbps 3200~8400Mbps

Density 2Gb, 4Gb, 8Gb, 16Gb 8Gb, 16Gb, 24Gb, 32Gb, 64Gb
Ondie ECC No Yes
Bank 32banks
VDD/VDDQ 3 11V
VPP : 1.8V
BL 16
DFE

Same bank refresh

Figure 3: Comparison of DDR4 and DDR5 Key Parameters [3].

1.3 HIGH COMPLEXITY AND THE NEED FOR VERIFICATION

With advanced and complex features, there is a need for meticulous verification. Memories have
a vast set of configurations that allow them to operate at various data rates with different densities.
Further, these can be combined with a vast set of features such as Self-Refresh, Auto Refresh,
Cyclic Redundancy Check (CRC), Post Package Repair, Maximum Power Saving Mode (MPSM),
training across different settings of latencies and speeds. The permutation and combinations of
these variables can grow exponentially across different memory vendors as each of these memory
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vendors offer 100s of part numbers. As you can imagine, it can easily become a daunting
experience for verification engineers to verify a memory subsystem.

DDR5 DIMMs adds more challenges. For example, in order to achieve higher power efficiency,
voltage is reduced from 1.2V to 1.1V which brings additional complexity for DIMM vendors
around noise immunity. Higher speeds raise data integrity concerns which need precise training
results. This creates the need for careful verification, as modeling of real-world scenarios and
visualization of those scenarios going into wire level toggling would consume a lot of time.

Measuring verification progress through functional coverage is equally important as the
verification of design features. Also, performance analysis is extremely important for memories.
These add a few extra cycles in the verification flow.

1.4 THESIS SCOPE

1.Design of DDR5 SDRAM Memory Controller based on JEDEC79-5 Standard.

2.Verification of DDR5 SDRAM Memory Controller using Python Language especially CoCoth
library (new trend method in verification).

1.5 THESIS ORGANIZATION

The structure of the thesis is as follows:
e Chapter 2: This Chapter discusses the design of DDR5 SDRAM Memory Controller.

e Chapter 3: This Chapter presents an introduction to Cocotb and discusses The Verification
Methodology.

e Chapter 4: This chapter outlines the results of Block level verification phase.

e Chapter 5: A Comparison between UVM Verification and A Cocotb Verification is
discussed in this chapter.

e Chapter 6: This chapter outlines the results of Top-level verification phase.

e Chapter 7: The chapter consists of the conclusions and details possible future work
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Chapter 2: Design

2.1 OVERVIEW

In this chapter, we will discuss design of DDR5 SDRAM Controller. Our design will interface
with CPU and DDR5 SDRAM Memory as shown in Figure 4:

DDR5

CPU HEE DDR5 SDRAM Controller HEE SDRAM
Memory

Figure 4: Big Picture of Design.

to interface with CPU, we followed Native Interface and to interface with DDR5 SDRAM
Memory we followed JEDEC79-5 Standard. For DDR5 SDRAM Memory, we chose x16
Configuration with 3.2GHZ input clock frequency. This choice will affect the values of timing
parameters as we will illustrate. Not all the features of DDR5 SDRAM Memory in JEDEC79-5
Standard are scoped in our project. To choose features that will be implemented in our design,
we divided features into three sections:

2.1.1 Basic Features

> Initialization
Activation
Precharge
Reading
Writing

Auto Precharge

Burst

YV V V ¥V V V V

Self-Refreshing
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» Mode Register Operations

2.1.2 Optional Features
» On-Die ECC (Check Memory Error)

DDR5 ECC Transparency and Error Scrub
CRC (Check Bus Error)

Write Pattern Command

YV V V V

Refreshing

» Power Down Mode

2.1.3 Excluded Features

All modes related to testing, training modes such as ZQ Calibration, Read Training, Change
Clock Frequency, etc.

2.2 SCOPE OF OUR DESIGN

As a first step in design, we started our design by basic features mentioned above
in section 2.1.1 and after we verify these operations, we will extend our project
based on available time with other optional features of DDRS5. There are also some
modes we mentioned in section 2.1.3 we excluded them as there are related if we
completed our design as a product and we need to test it in hardware so we
excluded them from our design as we will not reach in our project to fabrication.
To implement basic features these are the memory commands that will be used:

Activate (ACT)
Precharge (PREpb)
Read (RD)

Read w/Auto Precharge (RDA)

Write w/Auto Precharge (WRA)
Mode Register Write (MRW)

>

>

>

>

»  Write (WR)
>

>

» Self_Refresh Entry (SRE)
>

NOP
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» Deselect (DES)

2.3 INPUTS AND OUTPUTS OF TOP MODULE
After we chose features that will be implemented, we could determine inputs and outputs of our
design from Native interface and JEDEC79-5 standard as shown in Figure 5:

DDR5 SDRAM Controller

Figure 5 : Inputs and Outputs of Top Module.

The description of each input is shown in Table 1, and also description of each output is shown
in Table 2:

Table 1: Inputs of Top Module [4]

Signal Description

Differential clock of DDR5 SDRAM, all address and control input
CK t,CK ¢ signals are sampled on the crossing of the positive edge of CK_t and
negative edge of CK_c.

Control signal from CPU to controller to issue the initialization sequence

Ctrl_Reset to memory. It’s active high reset

Ctrl_Read Read request (active high).

Ctrl_Write Write request (active high).

ctrl Burst When 1 defines alternate read/write burst mode (BC8) and when 0

defines default BL16 mode.
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When asserted high along with Ctrl_Read or Ctrl_Write, causes the
Ctrl_Auto command to be issued as read with auto-precharge and write with auto-
precharge, respectively.

Ctrl_ADDI[30:0] | Address that data will be read from memory or written in memory.

Ctrl Dataln[255:0] | Data that will be written in memory during writing operation.

Clock that has double frequency of SDRAM clock, DQS signals will be
CK _double generated with positive edge of this clock, also data from memory will
be sampled also on the positive edge of this clock

Table 2: Outputs of Top Module [5]

Signal Description

Active low asynchronous reset: reset is active when reset_n is low, and
Reset_n inactive when reset_n is high. reset_n must be high during normal
operation and takes some values during initialization sequence.

Chip Select: all commands are masked when CS_n is registered high.
CS_n For one cycle commands (CS_n=0), for two cycle commands (CS_n=0
for first cycle, CS_n=1 for second cycle).

Command/Address Inputs: CA signals provide the command and
CA[13:0] address inputs according to the command truth table in JEDEC79-5
standard section 4.1 Table 241.

DQJ15:0] Data Input/Output: Bi-directional data bus

Data Strobe: output with read data, input with write data. Edge-aligned
DOS t,DQS._ ¢ with read data, centered in write data. DDR5 SDRAM supports

= - differential data strobe only and does not support single-ended.
Ctrl DataOut[255:0] | Data will be delivered from memory to CPU.
Control signal is sent to CPU to tell it to stop sending reading or
Ctrl_Busy writing requests as FIFO of commands became full or when there is
initialization or self refresh for memory.

< Assumptions & Notes

1. We assume that Physical address that comes from CPU (Ctrl_ADD) will be 31 bit and address
mapping will be one to one mapping as shown in Figure 6:

Column Bank Group

30 13 4 2 0

Figure 6: Address Mapping [5].
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2. According to Native Interface data bus (Ctrl_Dataln, Ctrl_DataOut) is eight times the width of
the SDRAM device data bus (DQ) but for simplicity we made data bus (Ctrl_Dataln,
Ctrl_DataOut) is 16 times the width of the SDRAM device data bus (DQ) as default BL.

2.4 OPERATION OF CONTROLLER

To know blocks and detailed block diagram of our design, we could get this by defining
operation of our design. We can summarize operation of memory controller in five points as
follow [7]:

1. Memory controller is responsible for queuing requests from CPU like read and write requests
and also responsible for scheduling these requests to choose which request will be executed.

2. It’s responsible for decoding these requests into memory commands and issue these
commands to memory keeping timing constraints between these commands according to period
of clock of SDRAM.

3. In case of read request, it’s responsible for getting data from memory to CPU and vice versa in
write request.

4. As we talk about dynamic memory so it will need refresh every certain time, memory
controller is responsible for issuing self-refresh sequence to memory.

5. Memory controller is also responsible for issuing initialization sequence to memory.

From red highlighted keywords we can know which blocks that we need in our design to achieve
operation of DDR5 SDRAM Controller:

Queuing: Command_Address_FIFO, Write_Data_FIFO
Decoding: Command_Decoder

Memory Commands: Command_FSM

Timing Constraints: Counters

Self-Refresh Sequence: Self Refresh_FSM
Initialization Sequence: Initialization_FSM

So, block diagram of our design will be as shown in Figure 7 [8]:
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CMD_ADD_FIFO ,\—)W“—
Command > INIT FSM
Decoder

WR_Data_FIFO xm(W

Figure 7: Block Diagram of Top Module.

2.5 DESIGN IN DETAIL
2.5.1. Command_Decoder

CMD_FIFO ED En
CMD_FIFO WE_En
WE_Data ED En

WR_Data_WE_En

Command ab

DEEDdET - (MD_F5M _Enable

SE._FSM_Enable
INIT_F5SM_Enable
Same Bank Group

Memory_Busy

Figure 8: Block Diagram of Command Decoder.

Table 3: Inputs of Command Decoder

SIE | Description
Ctrl Reset Control signal from CPU to controller to issue the initialization sequence
- to the SDRAM. It’s active high reset

Differential clock of DDR5 SDRAM, all address and control input signals

CK t,CK ¢ are sampled on the crossing of the positive edge of CK_t and negative
edge of CK ¢

Bank Group[1:0] Bank group address, it is Ctrl ADD[1:0]
Ctrl Read Read request (active high)
Ctrl_Write Write request (active high)
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When 1 defines alternate read/write burst mode (BC8 ) and when 0

Ctrl_Burst defines default BL16 mode
When asserted high along with Ctrl_Read or Ctrl_Write, causes the
Ctrl_Auto command to be issued as read with auto-precharge and write with auto-
precharge, respectively
CMD Done When 1 defines that command has been executed
Reset Done When 1 defines that initialization sequence has been executed
SR _Done When 1 defines that self-refresh sequence has been executed

Input signal from command FSM, when 1 defines that we need to set

Data_Transfer_Write WR Data RD En high to write data from WR_Data FIFO to memory

{REEI Flag signal of self-refresh counter to issue the self-refresh sequence to
memory

CMD_FIFO _Empty Empty flag of Command_Address FIFO

Table 4: Outputs of Command Decoder

Signal Description
CMD FIFO RD _En Active high read enable of Command_Address FIFO
CMD_FIFO WR _En Active high write enable of Command_Address FIFO
WR Data RD En Active high read enable of Write Data FIFO
WR _Data WR_En Active high write enable of Write_Data_FIFO
) Defines type of command (read/write) that will be executed
CMD[2:0] by Command FSM.
CMD_ FSM Enable Active high enable of Command FSM
INIT FSM _Enable Active high enable of Initialization FSM
SR FSM Enable Active high enable of Self Refresh FSM
When 1 defines that bank group address of current command
Same_Bank_Group . :
is the same as address of previous command
When 1 indicates that memory in initialization or self-refresh
Memory_Busy sequence. When 0 indicates that memory in normal operation
(reading or writing)

Command Decoder is the brain of our design, we can say it’s the controller of our controller so it
will be responsible for four points as follow:

A. Decode Processor Commands:
Command Decoder decodes processor commands based on control signals from CPU
(Ctrl_Read, Ctrl_Write, Ctrl_Burst, Ctrl_Auto) and sets signal CMD with code equivalent to the
decoded command, the description of each processor command and it’s equivalent code are
shown in Table 5:
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Table 5: Description of Processor Commands

Command | Description CMD
Read Read operation with default BL16 mode 000
Write Write operation with default BL16 mode 001

Read operation with autoprecharge with default BL16 010

Read_With_AutoPrecharge mode

Write_With_AutoPrecharge Write operation with autoprecharge with default BL16 011

mode
Read Burst Read operation with BC8 mode 100
Write Burst Write operation with BC8 mode 101
Read Burst AutoPrecharge Read operation with autoprecharge with BC8 mode 110
Write Burst AutoPrecharge Write operation with autoprecharge with BC8 mode 111

The decoded command based on control signals from CPU is shown in Table 6:

Table 6: Decoding of Processor Commands

Read Burst AutoPrecharge
Write Burst AutoPrecharge

Decoded Command Ctrl_Read Ctrl_Write Ctrl_Burst Ctrl_Auto
Read 1 0 0 0
Write 0 1 0 0
Read With AutoPrecharge 1 0 0 1
Write With AutoPrecharge 0 1 0 1
Read Burst 1 0 1 0
Write Burst 0 1 1 0
1 0 1 1
0 1 1 1

< Assumption & Notes:

As we saw that we have four control signals so we have 16 combinations of values, we showed
only in Table 6 eight of them but the last eight combination will have Ctrl_Read=1 and
Ctrl_Write=1 and this is an error from CPU and unintentional but our design deals with this error
by decoding this case as read command as a default command but don’t store this command in
Command_Address_FIFO.

B. Detect Same Bank Group:
Bank_Group signal represents bank group address; Command Decoder compares this address
with address of previous command and set Same_Bank_Group signal high if they are equal. We
need Same_Bank_Group signal in our design as the value of timing parameters between memory
commands depends on if the two commands have the same bank group address or not.
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C. Enable FSM:

As we made three separate FSMs (Command, Initialization, Self-Refresh), so we made three
enable signals (CMD_FSM_Enable, INIT_FSM_Enable, SR_FSM_Enable) to choose only one
FSM to work and disable the other two FSMs during working of the selected FSM. There is also
signal called Memory_Busy must be set high during working of INIT_FSM or SR_FSM. We can
say that we have three operations Initialization, Self-Refresh and Normal Operation (reading and
writing), so we should set priority for executing these operations. Priority of enabling them will
be in this order: Initialization - Self Refresh - Normal. The description of each enable signal is

shown in Table 7:

Table 7: Description of Enable Signals of Finite State Machines

Signal

INIT_FSM_Enable

Description
Command Decoder should set this signal high when comes from CPU
Ctrl_Reset signal then set it low to disable INIT_FSM after Reset_Done
becomes high noting that Reset_Done will be input from INIT_FSM that is
raised high when initialization sequence finishes. When INIT_FSM_Enable
becomes high, Memory_Busy signal is raised high

SR_FSM_Enable

Command Decoder should set this signal high when comes from self-refresh
counter tREFI signal, then set it low to disable SR_FSM after SR_Done
becomes high noting that SR_Done will be input from SR_FSM that is
raised high when self-refresh sequence finishes. When SR_FSM_Enable
becomes high,Memory_Busy signal is raised high

CMD_FSM_Enable

Command Decoder should set this signal high when reading enable of
Command_Address_FIFO becomes high then set it low to disable
CMD_FSM after Memory_Busy comes high or CMD_Done becomes high
noting that CMD_Done will be input from CMD_FSM that is raised high
when command finishes. When CMD_FSM_Enable becomes
high,Memory Busy signal is set low

D. Read &Write Enable Signals for FIFOs:
Command decoder here will be responsible for driving values of enable signals of FIFOs. The
description of each enable signal is shown in Table 8:
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Table 8: Description of Enable Signals of FIFOs

Signal Description

Command Decoder will set this enable signal high when
Command_Address_FIFO is not empty and there isn’t initialization or
CMD_FIFO_RD_En | self-refresh process running (i.e., Memory_Busy=0) and pervious
command has been executed. Command Decoder will set this signal low
in the next cycle of setting it high.

Command Decoder will set this signal high when comes from CPU read or
write request, so Command Decoder will decode this request to command
and set this enable signal high to store this command in
Command_Address_FIFO and to handle error that we said before comes
read and write request in the same time, Command Decoder will ignore
this by not storing this command by disable this write enable signal in this
case. Command Decoder will also set this signal low in the next cycle of
setting it high.

We defined signal called Data_Write_Transfer comes from
Command_FSM as output of WRITING_DATA state to indicate that we
WR_Data RD _En | need activate WR_Data_RD_En to store this data in memory so Command
Decoder will set read enable of Write_Data_FIFO high when this signal is
raised high and set it low when this signal is lowered low.

Command Decoder will act also as CMD_FIFO_WR_En signal but this
time, it will set this signal high when the request is write to store data that
comes with write request in Write_Data_FIFO and also will set it low in
the next cycle of setting it high.

CMD_FIFO_WR_En

WR_Data_ WR_En

< Assumption & Notes

Command Decoder set these enable signals low in the next cycle of setting it high to avoid
unwanted read or write operation from FIFO, this thing isn’t applied on WR_Data RD_En signal
as we don’t want to disable reading from Write Data FIFO in next cycle ,we need read from it
more than one cycle as memory takes data from controller with width of DQ bus(16 bit) and
can’t take 256 bit in one cycle. So, Write_Data_Transfer signal will be responsible for setting
this enable signal low when transfer data from controller to memory finishes.
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2.5.2 Command_Address_FIFO

CMD FIFO Reset ——»
M

CK_t FIFO OUT

CK ¢

cMD 3 CMD_ADD_FIFO CMD_FIFO_FULL
Ctrl ADD 31

CMD _FIFO_Empty
CMD FIFO RD En —

CMD FIFO WREn —

Figure 9: Block Diagram of Command_Address_FIFO.

Table 9: Inputs of Command_Address_FIFO.

Signal | Description
CMD EIFO Reset Active hlgl:l r_eset signal for FIFO, it’s raised high when initialization
- - sequence finishes.

Differential clock of DDR5 SDRAM, all address and control input

CK tCk ¢ signals are sampled on the crossing of the positive edge of CK_t and
negative edge of CK c.
CMDJ[2:0] Decoded Command comes from Command Decoder.

Ctrl ADD[30:0] Address that data will be read from memory or written in memory.

CMD FIFO RD _En | Read enable signal of FIFO comes from Command Decoder.

CMD FIFO WR_En | write enable signal of FIFO comes from Command Decoder.

Table 10: Outputs of Command_Address_FIFO

Signal | Description
_ Output of FIFO that contains information stored in FIFO (CMD and
FIFO OUT[33:0] Ctrl ADD concatenated)

CMD FIFO FULL | Flag when 1 defines that FIFO is full.

CMD_FIFO Empty | Flag when 1 defines that FIFO is empty.

Command decoder receives from CPU command every clock cycle but to execute the command
by memory it needs more than one clock cycle as speed of CPU differs from speed of memory.
Memory also does internal operations and features (i.e., self-refresh, Initialization, etc.), so
memory can't always handle processor commands only. So, to avoid ignoring commands or drop
of commands from CPU, we will store these commands and their related addresses from CPU in
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storage then after we finish command, we will take the next from storage to execute it and so on.

We followed a simple poli

cy First Come First Serve (FIFO) in scheduling and selecting which

command will be executed. There are other polices that can achieve high performance than this
policy but they will be more complex in implementation.

<~ Assumption & Notes

FIFO_OUT [33:31] represents CMD and FIFO_OUT [30:0] represents Ctrl_ADD.

2.5.3 Write Data FIFO

CK_ t

CK ¢
Citrl Dataln

WE _Data RD En

WR Data WR_En

Signal |

CK tCK ¢

FIFO_ WR_Data

Figure 10: Block Diagram of Write_Data_FIFO

Table 11: Inputs of Write_Data_FIFO

Description
Differential clock of DDR5 SDRAM,all address and control input signals
are sampled on the crossing of the positive edge of CK_t and negative
edge of CK ¢

Ctrl_Dataln[255:0]

Data comes from CPU that will be written in memory during writing
operation

WR_Data RD _En

Read enable signal of FIFO comes from Command Decoder

WR_Data WR_En

Write enable signal of FIFO comes from Command Decoder
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Table 12: Outputs of Write_Data_FIFO

Description

FIFO_WR_Data[255:0] | Output of FIFO that contains data stored in FIFO to store it in memory

As we discussed before why we need FIFO and answered this question that we need it to store
information that comes from CPU to used it later ,in Command_Address_FIFO we store
command and address.It’s still data need to be stored when write request comes then we made
Write_Data_FIFO and here comes question why we used two FIFOs instead of only one and we
can answer this question that we need to read data from controller to store it in memory in time
differs from time of reading command and address so we will need two read enables so we made
better a seperate FIFO for data

2.5.4 Calculation of Depth of FIFOs

FIFO depth calculation is a critical phase in the design which needs to consider the worst case in
all aspects and to do some assumptions [6]:

< Assumptions

1. Burst length (No. of data items to be transferred) = 120
2. Write frequency (Processor frequency) = 3.2 GHz

3. Reading frequency (Memory frequency) = 3.2 GHz

4. Command execution in 30 cycles (worst case)

<~ Calculations:

1
3.2GHz

» Time required to write one data = =0.3125ns

1
3.2GHz

» Time required to read one data (execute command) =30* =9.375ns

» Time required to write all the data in the burst = 120*0.3125 = 37.5ns

» Number of data items can be read in a duration of 37.5ns = 93;'755’:55 =4

» The remaining no. of information to be stored in the FIFO = 120 -4 =116

Then, the minimum depth of the FIFO in our case should be equal 116.In our code for
simplicity we used depth=16 but in practical we should use depth as we mentioned.
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2.5.5 Counters

Flag Signak
Enable Signals

Figure 11: Block Diagram of Counters.

There are timing parameters in our design, then we used this block that contains some counters
to count these parameters. Each Counter has Enable to enable counting when we enter certain
state and want to count some parameters, after we reached value of timing parameter that we
count it, counter outputs a flag indicates that counting has finished and after finishing counting,
reset input to counter is raised high to reset counter.

Table 13: Initialization Timing Parameters [5]

Timing Parameter Symbol Value
Minimum reset_n low time after completion HINITL 200 s
of voltage Ramp
Minimum cs_n low time before reset_n high tINIT2 10 ns
Minimum cs_n low time after reset_n high tINIT3 4 ms
Minimum time for dram to register exit on tINIT4 2 s
¢s_n with cmos
Minimum cycles required after cs_n high tINITS 3nCK
Minimum time from exit reset to first valid
. . tXPR 2 Us
configuration command
Minimum delay from MR_R or MRW tMRD max (14ns, 16nCK)
command to any other valid command
ZQ Calibration Time tZQCAL 1us
ZQ Calibration Latch Time tZQLAT max(30ns,8nCK)
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Table 14: Activate Timing Parameters [5].

Timing Parameter | Symbol Value
ACT to Precharge {RAS 39 ns
command delay

ACT to ACT Command tRRD L Max(8nCK, 5ns)

delay to same bank group

ACT to ACT Command

delay to different bank tRRD_S 8nCK
group

Table 15: Precharge Timing Parameters [5].

Timing Parameter | Symbol Value
Precharge delay tRP 13.750 ns

Table 16: Reading Timing Parameters [5].

Timing Parameter Symbol Value

Minimum Read to Read

command delay for same tCCD_L _sir Max(8nCK, 5ns)
bank group
Minimum Read to Read
command delay for tCCD_S sir 8 nCK

different bank group
Minimum Read to Write

command delay for same tCCD_L_RTW slr 20 ns
bank group
Minimum Read to Write
command delay for tCCD_S RTW. slr 15 ns

different bank group
Internal Read command
to Precharge command tRTP Max(12nCK, 7.5ns)
delay

Table 17: Writing Timing Parameters [5].

Timing Parameter Symbol Value
Minimum Write to Write
command delay for same tCCD_L_WR_slr Max(32nCK, 20ns)

bank group
Minimum Write to Write
command delay for tCCD_S WR slr 8 nCK
different bank group
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Minimum Write to Read
command delay for same tCCD_L_WTR_slIr 20 ns
bank group
Minimum Write to Read
command delay for tCCD_S WTR_slr 15 ns
different bank group

Table 18: Self-Refresh Timing Parameters [5].

Timing Parameter | Symbol Value
Command pass disable tCPDED 5 ns
delay
Self-Refresh CS_n low
Pulse width tesL 10ns
Self-Refres_h exit CS_n {CASRX 0
high
Self-Refresh exit CS_n .
High Pulse width tCSH_SREXxit 13 ns
Self-Refresh exit CS_n tCSL_SRExit 3 nCK

Low Pulse width
Exit Self-Refresh to next
valid command NOT tXs 2Us
requiring a DLL
Time interval between
two selfrefresh tREFI 3.9 s
operations

< Assumption &Notes

1. These values of timing parameters are listed in JEDEC79-5 standard in section 3.3.1
Table 11, Table 329, Table 20, Table 467, Table 520, Table 481 and Table 525.

2. Our counters count in unit of clock cycles, so we needed to convert these values of timing
parameters to form of multiple of clock cycles by dividing value of timing parameter /clock
period

3. Enable and reset signals comes from FSMs blocks.
4.  Outputs of these counters will be mainly inputs to FSMs blocks.

5. As we discussed before that each counter for timing parameter has reset, enable and flag
that indicated counting has finished. Naming that we use here for reset signal of timing
parameter counter is named by name of timing parameter and “Reset” word attached to it(for
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ex: tINIT1_Reset) ,the same thing for enable signal but “En” word is attached to it(for
ex:tINIT1_En) and for flag has name as the name of timing parameter(for ex:tINIT1).

2.5.6 Command_FSM

Kt Cirl DataOut
X
it cA
CK_double
Cirl ADD G
CMD Done

FIFO WR_Data

CMD FSM_Enable ———————— Data_Transfer_Write

Same Bank Group

Figure 12: Block Diagram of Command_FSM

Table 19: Inputs of Command_FSM

Differential clock of DDR5 SDRAM, all address and control input signals
CK t,CK ¢ are sampled on the crossing of the positive edge of CK _t and negative edge
of CK_c.
Clock that has double frequency of SDRAM clock, DQS signals will be
CK _double generated with positive edge of this clock, also data from memory will be
sampled also on the positive edge of this clock.
Ctrl_ADD[31:0] Address that data will be read from memory or written in memory.

FIFO WR Data[15:0] | Output of write data FIFO.
CMD FSM Enable Enable signal of Command FSM comes from Command Decoder.
Same _Bank_ Group Flag signal comes from Command Decoder.

CMD[2:0] Decoded commend comes from Command Decoder.
Activate parameters, Percharge parameters, Read Parameters-Write
Counter_Flags
parameters.
Table 20: Outputs of Command_FSM
Signal Description

Ctrl_DataOut[255:0] Data will be delivered from memory to CPU

Command/Address Inputs: CA signals provide the command and address
CAJ[13:0] inputs according to the Command Truth Table in standard section 4.1
Table 241
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Chip Select: all commands are masked when cs_n is registered high. for

CS n one cycle commands (cs_n=0), for two cycle commands (cs_n=0 for first
cycle,cs_n=1 for second cycle).
CMD_Done When 1 defines that command has been executed

Data_Transfer_Write

When 1 defines that we need to set WR_Data_RD_En high to write data
from WR_Data_FIFO to memory.

DQJ15:0] Data Input/Output: Bi-directional data bus.
Data Strobe: output with read data, input with write data. Edge-aligned
DQS t,DQS ¢ with read data, centered in write data. DDR5 SDRAM supports

differential data strobe only and does not support single-ended.

Counter_Enable_Signals,
Counter_Reset_Signals

Activate parameters -Percharge Parameters-Read Parameters-Write
parameters.

This block will be responsible for implementing finite state machine that controls normal
operation of memory (reading and writing), the simplified state diagram that describes reading
and writing operation is shown in JEDEC79-5 standard in section 3.1 and Figure 13 shows this

simplified state diagram.
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Trainings

(Vref CA, CS, CA, nese Refresh/Self-

Proced
Wirite-Leveling, etc.) e refresh

Mode Register Power-Saving
Modes

Writing

Writing

Pre-Charging

Figure 13: Simplified State Diagram, JEDEC Reference [5].

With help of this simplified state diagram and timing diagrams in JEDEC79-5 standard section 4.7
and section 4.8 that describes reading and writing operation and the pattern of preamble and
postamble of these operations and these timing diagrams are shown in Figure 14 and Figure 15.
So, we could figure out the detailed state diagram for the finite state machine that controls normal
operation as will be illustrated later.
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Figure 14: Timing Diagram for Read Burst Operation (BL16), JEDEC Reference [5].
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Figure 15: Timing Diagram for Write Burst Operation (BL16), JEDEC Reference [5].

Before we talk about this state diagram, there is an important thing we should handle it in this FSM
and it is back-to-back operations (i.e., read after read, read after write, write after write, write after
read). In back-to-back operations we have three scenarios, the description of each scenario is
shown in Table 21:

Table 21: Scenarios of Back-to-Back Operations [5].

Scenario Description
It means that operation is done on row in bank
Bank is not activated has not been activated before so in this scenario

we will need to activate this row in this bank
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It means that operation is done on the same row
Bank is activated and same row | in bank as the previous operation so we will
proceed to execute operation and no need for
precharge operation

It means that operation is done on the same bank
as the previous operation but on different row so
Bank is activated and different row | here we will need to execute precharge operation
for row of previous operation then activate row of
the current operation then proceed to execute the
operation on the activated row

To handle back to back operations ,we used array as storage to store activated rows in banks, the
length of the array is 16 as we have 4 bank groups each has 4 banks so we have 16 banks ,the entry
for this array will bank group address and group address concatenated(4 bits) and the content of
each location in array will be row address and statues bit for this row to indicate row is activated
or not (if 1 active and if 0 not active) so width of each location will be 19 bit (18 bits for row
address and 1 bit for statues bit).the shape of array will be as shown in Table 22:

Table 22:Storage of Activate Rows

Entry(Bank Group,Bank)(4 bits) Row Address(18 bits) Status bit
0000 XXXXXXXKXXHXXXXXXKX 1
0001 MXOOKXXXXXXXKXXXXKX 0
0010 XXXXXXXXKXHXXXXXXKX 1
0011 XOXXXXXXXXXHXXXXXXKX 0
0100 MXOOKXXXXXXXKXXXXXKX 1
0101 XXXXXXXXXXHXKXXXXXKX 0
0110 XXXXXXXXXXX 1
0111 XXXXXXXXXXHXKXXXXXKX 0
1000 MXOOKXXXXXXXKXXXXXKX 1

XXXXXXXXXXKXXXKXXXX 1

When row is activated, it is stored in array and its status bit is set 1 and when the row is precharged
its statues bit is set 0.

Here we can show detailed state diagram for normal operations as shown in Figure
12:
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WAIT_READ WAIT_WRITE

READING_CYCLE1 WRITING _CYCLE1
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PRECHARGE
ACT_CYCLE1

WAIT_READ_LATENCY WAIT_WRITE_LATENCY

WAIT_tRP
ACT_CYCLE2

Bank is not active

READING_DATA WRITING_DATA

Bank is active(different row)

BANK_ACTIVE

Auto Precharge

WAIT_READ_DONE WAIT_WRITE_DONE

Reading Operation

WRITE_DONE

Bank is active [[same row)

Auto Prechamge

Mo Auto Precharge

No Auto Precharge

Figure 16: Command_FSM

The description of each state is illustrated in Table 23:

Table 23: Description of each state in Command_FSM

State Description

In this state, CMD_FSM_Enable signal is checked if it’s

IDLE asserted high or not, if it’s asserted high normal operation is
started by going to WAIT _ACT state

In this state, timing constraints are checked between
consecutive active commands and the timing constraints that
are checked will differ according the two consecutive
operations are in same bank group or not and we can detect this
through same_bank_group signal. If they are in same bank
group tRRD_L is checked and if they are not tRRD_S is
checked. If timing constraints are satisfied, normal operation
will be continued by going to ACT_CYCLEI state.

As active command from commands that are executed in two
cycles, each cycle different information is sent to memory so
ACT_CYCLE1l we send information of active command in two states
ACT_CYCLE1 and ACT_CYCLE?2 so this state is followed
with ACT CYCLE?2 state without checking any conditions.

In this state, information of active command in the second cycle
ACT_CYCLE2 1s sent to memory, then it’s followed by BANK_ACTIVE state
without checking any conditions

WAIT _ACT
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BANK_ACTIVE

In this state, three different scenarios of back to back operations
are checked, checking if bank is not active so go to

WAIT _ACT state to activate it or if bank is active then
checking if the row of current operation is the same as previous
or not. If they are the same, checking if the current operation is
read or write if read go to WAIT_READ state and if write go
to WAIT_WRITE state. If they are different, go to
WAIT_tRAS state to precharge the previous row then activates
the current row.

WAIT_tRAS

Before applying precharge operation, timing between active
command and precharge command should be checked so in this
state tRAS is checked and if it’s satisfied, go to
PRECHARAGE state.

PRECHARGE

In this state, information of precharge command is sent to
memory and it’s one cycle command so it needs only one state
then go to WAIT _tRP state without checking any conditions.

WAIT_tRP

Precharge operation needs time to be executed by memory so in
this state this time(tRP) is checked before executing other
operations and if this time is satisfied, go to IDLE state.

WAIT_READ

In this state, timing constraints of reading command are
checked. There are two timing constraints depending on if the
previous command was read or write. So, in this state first
checking if previous command was read or write. If it’s read
timing related to read-to-read delay is checked and also here
timing parameter that is checked will differ if they are in same
bank group or not, if they are same tCCD_L_slr is checked and
if they are not tCCD_S _slr is checked. If it’s write timing
related to write to read delay is checked and also here timing
parameter that is checked will differ if they are in same bank
group or not, if they are same tCCD_L_WTR_slr is checked
and if they are not tCCD_S_WTR_slr is checked. If these
timing constraints are satisfied, go to READING_CYCLE1
state.

READING_CYCLE1

As read command from commands that are executed in two
cycles, each cycle different information is sent to memory so
information of read command are sent in two states
READING_CYCLE1 and READING_CYCLE?2 so this state is
followed with READING_CYCLE?2 state without checking
any conditions.

READING_CYCLE2

In this state, information of read command in the second cycle
is sent to memory, then go to WAIT_READ_LATENCY state
without checking any conditions.

WAIT_READ_LATENCY

In this state, Read Latency (RL-2 clock cycles for preamble) is

checked as shown in Figure 10 and if it’s satisfied, go to
READING_DATA state.
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READING_DATA

In this state, reading operation are actually executed and this as
shown in Figure 10 ,this done by receiving preamble from
memory then read data with burst length that CPU has chosen it
,then after receiving data postamble is sent by memory to
controller, after receiving postamble we can say that reading
operation is done .This state in the beginning is implemented in
un synthesizable manner but as we will discuss in detail in this
chapter section 6 that we implemented it in synthesizable
manner by calling Read FSM that will perform reading
operation through states and after finishing it sends signal
called Read_Done, this signal is checked in
WAIT_READ_DONE state so this state is followed by

WAIT READ Done state.

WAIT_READ DONE

In this state, Read Done signal is checked. If it’s asserted high,
go to READ DONE state.

READ_DONE

In this state, it’s checked if the command was with
autoprecharge or not. If it’s with auto precharge ,go to
WAIT_tRAS state to apply precharge operation and if it’s not
go to BANK ACTIVE state waiting another operation.

WAIT_WRITE

In this state, timing constraints of writing command are
checked. There are two timing constraints depending on if the
previous command was read or write. So, in this state first
checking if pervious command was read or write. If it’s write
timing related to write to write delay is checked and also here
timing parameter that is checked will differ if they are in same
bank group or not, if they are same tCCD_L_WR _slr is
checked and if they are not tCCD_S WR_slr is checked. If it’s
read timing related to read to write delay is checked and also
here timing parameter that is checked will differ if they are in
same bank group or not, if they are same tCCD_L_RTW slr is
checked and if they are not tCCD_S RTW _slIr is checked.If
these timing constraints are satisfied, go to
WRITING_CYCLEL state.

WRITING_CYCLE1

As write command from commands that are executed in two
cycles, each cycle different information is sent to memory so
information of write command is sent in two states
WRITING_CYCLE1 and WRITING_CYCLEZ2 this state is
followed by WRITING_CYCLEZ2 state without checking any
conditions.

WRITING_CYCLEZ2

In this state, information of write command in the second cycle
is sent to memory, then go to WAIT_WRITE_LATENCY
state without checking any conditions.

WAIT_WRITE_LATENCY

In this state, Write Latency (WL-2 clock cycles for preamble) is

checked as shown in Figure 11 and if it’s satisfied, go to
WRITING _DATA state
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WRITING_DATA

In this state, writing operation are actually executed and this as
shown in Figure 11 ,this done by sending preamble to memory
then write data with burst length that CPU has chosen it ,then
after writing data postamble is sent by controller to memory,
after sending postamble we can say that writing operation is
done .This state in the beginning is implemented in un
synthesizable manner but as we will discuss in detail in this
chapter 2 section 6 that we implemented it in synthesizable
manner by calling Write FSM that will perform writing
operation through states and after finishing it sends signal
called Write_Done, this signal is checked in
WAIT_WRITE_DONE state this state is followed by

WAIT WRITE Done state.

WAIT WRITE_DONE

In this state, writeDone signal is checked. If it’s asserted high,
go to Write DONE state.

WRITE_DONE

In this state, it’s checked if the command was with
autoprecharge or not. If it’s with auto precharge, go to
WAIT_tRAS state to apply precharge operation and if it’s not
go to BANK ACTIVE state waiting another operation.

The outputs of each state are illustrated in Table 24:

Table 24: Outputs of each state in Command_FSM

State Outputs

> tRP_Reset=1

IDLE
> tRP En=1
WAIT ACT No Outputs
» CS n=0
» CA=ACT Cyclel
If they are same bank group
» tRRD _L Reset=1
ACT_CYCLE1

> tRRD_L_En=0

If they are not same bank group
» tRRD_S Reset=1

> tRRD S En=0
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> Store this row in array of activated rows and set its
status bit high.

» CS n=1
» CA=ACT Cycle2

ACT CYCLE2 > tRAS_En=1

If they are same bank group
> tRRD L En=1

If they are not same bank group
» tRRD_S En=1

BANK ACTIVE No Outputs

WAIT tRAS No Outputs

» Remove this row from array of activated rows by
setting its status bit low.

CS_n=0
PRECHARGE CA=PREpb

>

>

» tRAS Reset=1
> tRAS En=0
>

tRP_En =1

WAIT tRP No Outputs

WAIT READ No Outputs

> CS_n=0

CA=RD_Cyclel
tCCD_L_WTR_sIr_Reset=1
READING_CYCLE1 tCCD_S WTR slr Reset=1
tCCD_L_sIr Reset=1
tCCD_S slr Reset=1

tCCD_L_WTR slr En=0
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» tCCD_S WTR_slr En=0
» tCCD_L_slr En=0

» tCCD_S slr En=0

READING_CYCLE?

» CS_n=1
» CA=RD_Cycle2
> RL En=1

If they are same bank group
» tCCD L slr En=1

> tCCD_L_RTW. slr En=1

If they are not same bank group
» tCCD_S slr En=1

» tCCD_S RTW slr En=1

WAIT_READ _LATENCY

No Outputs

READING_DATA

» Set Pervious command as read
» RL _Reset=1

> RL_En=0

» Enable Read FSM

WAIT READ DONE

No Outputs

READ_DONE

» CMD_Done=1

> Disable Read FSM

WAIT_WRITE

No Outputs

WRITING_CYCLE1

» CS n=0
CA=WR_Cyclel
tCCD_L_RTW slr_Reset =1

tCCD_S RTW. _slIr_Reset =1

vV V VYV V¥V

tCCD_L_WR_slIr_Reset =1
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tCCD_S WR sIr_Reset=1
tCCD_L_RTW _sIr En=0
tCCD_S RTW_sIr En=0

tCCD_L_WR_slr_En =0

vV V. VvV V VY

tCCD_S WR slr En=0

WRITING_CYCLE2

» CS n=1
» CA=WR_Cycle2
> WL _En=1

If they are same bank group
» tCCD_L WR slr En=1

> tCCD_L_WTR_slr_En=1

If they are not same bank group
» tCCD_S WR_slr En=1

> tCCD_S WTR sIr_En=1

WAIT_WRITE_LATENCY

No Outputs

» Set Pervious command as write

> WL_Reset=1
WRITING_DATA » WLEn=0

» Enable Write FSM

» Data_Transfer Write =1

» Data_Transfer_Write =0

WAIT WRITE_DONE

WRITE_DONE

» CMD_Done=1

> Disable Write FSM
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<~ Assumption & Notes

1. We reset counters in the next state of finishing of counting.

2. In Table 24 of outputs, CA pins are written in form of basic commands that are in Command
Truth Table in JEDEC79-5 Standard section 4.1 Table 241.

3. As we know that there are commands with auto precharge, the difference between it and
without auto precharge in pattern of CA pins in second cycle of command and there is a bit
called AP, we set it low in case of autoprecharge and high in case of without autoprecharge.

4. In any state, if timing constraint isn’t satisfied, we will wait in this state until it’s satisfied.

5. In Figure 10, RL=CL and in Figure 11 WL=CWL.

2.5.7 Initialization_ FSM

CK ¢t —————————— Reset_n
B 14
CK ¢ —————>CA
CSn
IMIT_F5M_Fnable
- - Rezet_Done

—————» Counters_Emnable Sigmals
Counters Flgs

Counters_Reset_Signals

Figure 17: Block Diagram of Initialization_FSM

Table 25: Inputs of Initialization_FSM

Signal Description

Differential clock of DDR5 SDRAM,all address and
CK t,CK ¢ control input signals are sampled on the crossing of the
positive edge of CK_t and negative edge of CK ¢
INIT ESM Enable Enable signal of Initialization_FSM comes from
- - Command Decoder
Counter_Flags Initialization parameters
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Table 26: Outputs of Initialization_FSM

Signal | Description
Active low asynchronous reset: reset is active when reset_n
Reset_n is low, and inactive when reset_n is high. reset_n must be

high during normal operation.

Command/Address Inputs: CA signals provide the
CA[13:0] command and address inputs according to the Command
Truth Table in JEDEC standard section 4.1 Table 241

Chip Select: All commands are masked when CS_n is
registered high. For one cycle commands (CS_n=0), for two

CSn cycle commands (CS_n=0 for first cycle, CS_n=1 for
second cycle).
When 1 defines that initialization sequence has been
Reset_Done

executed.

Counter_Enable_Signals
Initialization parameters.

Counter_Reset Signals

This block will be responsible for implementing finite state machine that controls initialization
sequence for memory, we construct this finite state machine shown in Figure 15 based on timing
diagram that describes initialization sequence in JEDEC79-5 standard section 3.3.1 and it’s
shown in Figure 18

T w1 i
T e
, o I I B R
AN N N N T
B /17 171 e N 1 1 = 1z
272z (L S o s 8 S €9 I G S € v €D v e ez
B L I
cacon _H_i”«-.,- 1‘!—@{1: ::.\.oor-ukam.pjbld-f.}u m.u-:ur-:mpﬂndm : 1 i " i " i H.
| i | Y 1 R ) ST | e ) — i | — (i
TR | RN | S | | I 10 i It i}
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“'.ruiun m“uuu

Figure 18: Reset and Initialization Sequence at Power-on Ramping, JEDEC Reference [5].
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Wait MRW

MRW_Cycle1

MRW_Cycle2

Figure 19: Initialization _FSM

Table 27: Description of each state in Initialization_FSM.

State Description

In this state, INIT _FSM_Enable is checked if it’s asserted high or not, if it’s

IDLE -
asserted high, go to State 1.

State 1 I n thi_s state, Some outputs Iike_CS__n , CA and Reset_n takes some values for
time interval tINIT1 as shown in Figure 14,then go to State 2.

State 2 I n thi_s state, Some outputs like CS_n, _CA_and Reset_n takes some values for
time interval tINIT1-tINIT2 as shown in Figure 14,then go to State 3.

State 3 _In this state, some outputs Iikg CS_n, CA and Reset_n takes some values for time
interval tINIT3 as shown in Figure 14, then go to State 4

State 4 _In this state, some outputs Iikg CS_n, CA and Reset_n takes some values for time
interval tINIT4 as shown in Figure 14, then go to NOP state
In this state, we wait for three clock cycles (NOP_Count) and also Some outputs

NOP like CS_n ,CA and Reset_n takes some values for this interval as shown in
Figure 14 then go to Wait MRW state
In this state, some outputs like CS_n, CA and Reset_n takes some values for time
Wait MRW | interval tMRW (tXPR+tMRD+tZQCAL+tZQLAT) as shown in Figure 14, then
goto MRW Cyclel state
As Mode_Register_Write command from commands that are executed in two
cycles, each cycle different information are sent to memory information of
MRW _Cyclel | Mode_Register_Write command is sent in two states MRW_Cyclel and

MRW_Cycle2 this state is followed by MRW _Cycle2 state without checking
any conditions
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In this state, information of Mode_Register_Write command in the second cycle
IS sent to memory, then go to IDLE state without checking any conditions
waiting another initialization request. In this state self-refresh timer is also
enabled

MRW_Cycle2

Table 28: Outputs of each state in Initialization_FSM

State | Outputs
Reset_Done=0

tINIT1 Reset=0
tINIT2_Reset=0
IDLE tINIT3_Reset=0
tINIT4_Reset=0

tMRW _Reset =0

YV Vv VY Y V V V

NOP_Count_Reset=0

tINIT1_En=1

Reset_n=0

State 1
CS_n=don’t care

YV V V V

CA=don’t care

tINIT2_En=1
tINIT1_Reset=1
tINIT1_En=0
State 2
Reset_n=0

CS_n=0

YV V V VY V V

CA=don’t care

A\

tINIT3_En=1

State 3
» tINIT2 Reset=1
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YV V V V

tINIT2_En=0
Reset_n=1
CS_n=0

CA=don’t care

State 4

YV V VvV YV V V

tINIT3_Reset=1
tINIT4 _En=1
tINIT3_En=0
Reset n=1

CS n=1

CA=AIl Ones

NOP

YV V VYV V V¥V

tINIT4_Reset=1
tINIT4_En=0
NOP_Count_En=1
CS_n=0

CA=NOP

Wait MRW

YV V V

NOP_Count_Reset=1
NOP_Count_En=0

tMRW_En=1

MRW_Cyclel

Y V V V

tMRW_Reset=1
tMRW _En=0
CS_n=0

CA=MRW_Cyclel
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> CS_n=1

» CA=MRW_Cycle2
MRW_Cycle2
» Reset_Done=1,tREFI_En=1

2.5.8 Self Refresh FSM

CK_t cA
K ¢ S5
SE_FSM_Enable SF,_Dome
Counters_Flags Counters_Enable_Signals
Counters Reset Signal=
Figure 20: Block Diagram of Self-Refresh _FSM
Table 29: Inputs of Self Refresh_FSM
Signal | Description
Differential clock of DDR5 SDRAM, all address and control
CK t,CK ¢ input signals are sampled on the crossing of the positive edge

of CK t and negative edge of CK ¢

SR ESM Enable Enable signal of Self Refresh_FSM comes from Command
— - Decoder

Counter_Flags Self-Refresh parameters

Table 30: Outputs of Self Refresh_FSM

Description
Chip Select: All commands are masked when CS_n is
registered high. For one cycle commands (CS n=0),for

CSn
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second cycle)

two cycle commands(CS_n=0 for first cycle,CS_n=1 for

Command/Address Inputs: CA signals provide the

executed

CA[13:0] command and address inputs according to the Command
Truth Table in JEDEC standard section 4.1 Table 241
SR Done When 1 defines that self-refresh sequence has been

Counter_Enable_Signals,
Counter_Reset_Signals

Self-Refresh parameters

This block will be responsible for implementing finite state machine that controls self-refresh
sequence for memory, we construct this finite state machine shown in Figure 18 based on timing
diagram that describes self-refresh sequence in JEDEC79-5 standard section 4.9 and it’s shown

in Figure 21

caf1z:0] - '
Command
€5 00T m

CA ODT MR QDT State ?
I ' '

K 0bT MR ODT State ?
0 0 0

»m‘ W:mmmr :;' E

H First valid 1- ].':I i
i comman nd at regu gDLL H
! '

.
1
ma—mw—.n oo s
.

DGR - -l ] o

m%mms G s
.
Ent

seif refresh

I {Tirne Break Don't Care

Figure 21: Self-Refresh Entry/Exit Timing with One-Cycle Exit Command, JEDEC Reference [5].
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DES_CMD3

SR_Mode

WAIT_tCASRX

WAIT tCSH_SRExit CHECK_tCSL_SRExit

WAIT_tXS

Figure 22: Self-Refresh _FSM

Table 31: Description of each state in Self Refresh_FSM

State Description

IDLE

In this state, SR_FSM_Enable is checked if it is asserted
high or not, if it’s asserted high, go to SRE state.

SRE

It’s self-refresh entry command state, in this state self-
refresh entry command (SRE) is sent to memory then go to
DES CMDS state without checking any conditions.

DES_CMDS

In this state amount of number of Deselect Commands are
sent to memory for time interval tCPDED as shown in
Figure 17 then go to SR_Mode state.

SR_Mode

In this state, self-refresh operation is entered. Some outputs
like CS_n and CA takes some values for time interval tCSL
as shown in Figure 17.1f tCSL is satisfied then go to

WAIT tCASRX state.

WAIT_tCASRX

In this state, some outputs like CS_n and CA takes some
values for time interval tCASRX as shown in Figure 17. If
tCASRX is satisfied then go to WAIT tCSH SREXit state

WAIT_tCSH_SREXxit

In this state, Some outputs like CS_n and CA takes some
values for time interval tCSH_SREXit as shown in Figure 17.
If tCSH_SREXit is satisfied then go to NOPO state
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In this state, information of NOP command is sent to
NOPO memory then it’s followed by NOP1 state without checking
any conditions.

In this state, information of NOP command is sent to
memory then it’s followed by NOP2 state without checking
NOP1 any conditions.

In this state, information of NOP command is sent to

NOP2 memory then it’s followed by CHECK_tCSL_SREXit state
without checking any conditions.

In this state, self-refresh operation is excited by checking
CHECK _tCSL_SREXxit | tCSL SRExit as shown in Figure 17. If it’s satisfied then go
to WAIT tXS state

In this state, tCASRX is checked. If it is satisfied then go to
WAIT_tXS IDLE state waiting timer of self-refresh expires to start
another self-refresh operation.

Table 32: Outputs of each state in Self Refresh_ FSM.

State | Outputs
» tXS Reset=1

IDLE » tXS_En=0

» SR Done=0

tREFI_Reset =1
tREFI_En=0
SRE CS n=0

CA=SRE

YV V VYV YV V

tCPDED_En=1

A\

CS n=1

DES_CMDS
B » CA=DES

> tCPDED_Reset=1

SR_Mode
> tCPDED En=0
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> tCSL_En=0

WAIT_tCASRX

tCSL_Reset=1
tCSL_En=0

tCASRX_En=1

YV V V V

CA = All Ones

WAIT_tCSH_SREXit

tCASRX_Reset=1
tCASRX_En=0

{CSH_SREXxit_En=1

YV V V V

CS n=1

NOPO

tCSH_SREXit_Reset=1
tCSH_SREXxit En = 0;
tCSL_SRExit_En=1

CS n=0

YV V VY V V¥V

CA =NOP

NOP1

Y

CS n=0

» CA=NOP

NOP2

> CSn=0

» CA=NOP

CHECK_tCSL_SRExit

> CSn=1

WAIT_tXS

» tCSL_SREXxit_Reset=1
» tCSL_SRExit En=0
» tXS En=1

If tXS is satisfied
» SR Done=1,tREFI En=1
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<~ Assumption & Notes

As shown in Figure 17, that there is overlapping between tCSL and tCASRX. The higher priority
for tCSL, it should be satisfied first then tCASRX is checked, if it’s satisfied CS_n is raised

high.to avoid making output depends on condition of tCASRX , we made two states SR_Mode to
check that tCSL is satisfied then go to WAIT tCASRX to check tCASRX if it’s satisfied or not .

2.6 DESIGN ENHANCEMENT

There is a big difference between making the design work properly in its functionality only (the
design is bit accurate and cycle accurate only) and making it fully synthesizable to model it with
actual gates without any problems or violations.

There were many changes in the design to overcome synthesis problems and this is a brief of
those changes:

» Problem_1:to generate CK_t, CK_c and CK_double, we used block called clock generator
to generate them but the fact that this isn't a synthesizable block as shown in Figure 23:

[Synth 8-6896] loop limit (65536) exceeded inside initial block, initial block items will be ignored [Clock_Generatorsv:17] (2 mare like this)

[Synth 8-6014] Unused seqguential element Prev_Reset_reg was removed. [Command_Decoder.sv:86] (1 more like this)
Figure 23: Clock Generator isn’t synthesizable

v Solution_1: remove Clock generator block and make these clocks as input and generate
them by stimulus from environment.

» Problem_2: we were relying on the cross of the differential clock to sample any information
but this couldn’t be understood by synthesizer and causes problem of ambiguous clock
triggering as shown in Figure 24:

+ Synthesis (4 errors)
© [Synth 8-91] ambiguous clock in event control [CMD_F5M.sv:149]
© [Synth 8-6156] failed synthesizing module 'CMD_FSM" [CMD_FSM.sv:1] (1 more like this)
© [Synth 8-6156] failed synthesizing module ‘Controller_top_level’ [Controller_top_level.sv:23]
© [Common 17-69] Command failed: Vivado Synthesis failed

Figure 24: Problem of ambiguous clock triggering

v Solution_2: make it trigger with one clock only (not the cross of the differential clock), we
got rid of one of the differential clock to get understood by the synthesizer and sample
information with triggering edge of the other clock.

» Problem_3: we were doing READING_DATA and WRITING_DATA states by tasks
which contain event blocking statements that is got used only on simulation and that weren't
synthesizable.
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v' Solution_3: exchange non-synthesizable tasks with synthesizable states in FSMs, FSM for
reading operation called RD_FSM and FSM for writing operation called WR_FSM and
made these FSMs as separate modules which are instantiated in Command_FSM block and
are enabled in READING_DATA and WRITING_DATA states as we mentioned in Table
23. Let us discuss briefly these modules, their block diagrams as shown in Figure 21 and
Figure 23 and state diagrams for these FSMs as shown in Figure 22 and Figure 24:

2.6.1 Read_FSM

CK_double

Ctrl_DataOut

Read_Done

RD _FSM_Enable

Rezet_Done

Figure 25: Block Diagram of Read_FSM

Table 33: Inputs of Read_FSM

Signal | Description
Clock that has double frequency of SDRAM clock ,DQS signals
CK _double will be generated with positive edge of this clock,also data from

memory will be sampled also on the positive edge of this clock
Flag signal when 1 defines burst length is 8 and when 0 defines

burst burst length 16
DQJ15:0] Data Input/Output: Bi-directional data bus
RD FSM Enable | Enable signal of Read FSM
Reset Done When 1 defines that initialization sequence has been executed
Table 34: Outputs of Read_FSM
Signal Description
Ctrl_DataOut[255:0] | Data will be delivered from memory to CPU
Read Done Flag signal when 1 defines that reading operation has done
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PREAMBLE

RD_DATA

POSTAMBLE

RD_DONE

Figure 26: Read_FSM

Table 35: Description of each state in Read_FSM

State | Description
IDLE In this state, RD_FSM_Enable is checked, if it’s asserted high then go
to PREAMBLE state.

We declared counter in RD_FSM block that counts two cycles from
CK_double that represents interval of preamble and when this counter
PREAMBLE | finishes, it outputs signal called PRE_Ctr_Done.After this signal is
raised high this means that preamble phase has finished so we can read
date by going to RD DATA state.

In this state reading data is done by transfer data from memory to
controller with burst length that defined by burst signal, and there is
internal signal when transfer is done it’s raised high called
Data_Ctr _Done then go to POSTAMBLE state.

RD DATA

We declared counter in RD_FSM block that counts cycle from

CK _double that represents interval of postamble and when this counter
POSTAMBLE | finishes, it outputs signal called POST_Ctr_Done.After this signal is
raised high this means that postamble phase has finished so we can say
that reading date has finished then go to RD DONE state.
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RD DONE In this state, Read_Done signal is asserted high to indicate that reading
- has finished then go to IDLE state waiting another read operation.
Table 36: Outputs of each state in Read_FSM
State | Outputs
Read _Done =0
RD_Enable =0
IDLE PRE_Ctr_Reset n=0

Data Ctr Reset n=0

YV V VYV VYV V

POST _Ctr Reset n=0

PREAMBLE | » PRE_Ctr_Reset n=1

» Data_Ctr_Reset n=1
RD_DATA » RD Enable=1
» Ctrl_DataOut<=DQ

» POST Ctr Reset n=1

POSTAMBLE
> RD_Enable=0

RD DONE |» Read_Done=1

< Assumption & Notes
1. RD_Enable is internal signal that enables reading in RD_DATE state.

2. PRE_Ctr_Reset_nand POST_Ctr_Reset_n are reset signals for preamble and postamble
counters respectively.

3. Data_Ctr_Reset_n is rest signal for counter that counts burst length.
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2.6.2 Write_ FSM

CK _t
16
CK_double
DY
burst "
Write Done
FIFO_WE. Data —p
WE_FSM Enable
S
IhﬂI_]]m m -
Figure 27: Block Diagram of Write_FSM
Table 37: Inputs of Write_FSM
Signal | Description
CK t One of differential clock of SDRAM DDR5

Clock that has double frequency of SDRAM clock ,DQS signals
CK _double will be generated with positive edge of this clock,also data from
memory will be sampled also on the positive edge of this clock

burst burst length 16

Flag signal when 1 defines burst length is 8 and when 0 defines

FIFO WR Data[255:0] | Data that will be written in memory

WR_FSM Enable Enable signal of Write FSM

Reset_Done When 1 defines that initialization sequence has been executed

Table 38: Outputs of Write_FSM

Signal Description

DQJ15:0] Data Input/Output: Bi-directional data bus

Write Done Flag signal when 1 defines that writing operation has done

DQS_tDQS_¢ supports differential data strobe only and does not support

single-ended.

Data Strobe: output with read data, input with write data. Edge-
aligned with read data, centered in write data. DDR5 SDRAM
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PREAMBLE

WR_DATA

POSTAMBLE

WR_DONE

Figure 28: Write_FSM

Table 39: Description of each state in Write_FSM

State |
IDLE

Description
In this state, WR_FSM_Enable is checked, if it’s asserted high then go
to PREAMBLE state.

We declared counter in RD_FSM block that counts two cycles from
CK_double that represents interval of preamble and when this counter
PREAMBLE | finishes, it outputs signal called PRE_Ctr_Done.After this signal is
raised high this means that preamble phase has finished so we can
write date by going to WR_DATA state.

In this state writing data is done by transfer data from controller to
memory with burst length that defined by burst signal, and there is
internal signal when transfer is done it’s raised high called
Data_Ctr _Done then go to POSTAMBLE state.

WR_DATA

We declared counter in WR_FSM block that counts cycle from
POSTAMBLE | CK_double that represents interval of postamble and when this counter
finishes, it outputs signal called POST Ctr Done.After this signal is
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raised high this means that postamble phase has finished so we can say
that writing date has finished then go to WR_DONE state.

WR_DONE

In this state, write_Done signal is asserted high to indicate that writing
has finished then go to IDLE state waiting another write operation.

State

IDLE

Table 40: Outputs of each state in Write_FSM

| Outputs

YV V V VY V

Write_Done =0
WR_Enable =0
PRE _Ctr Reset n=0
Data Ctr Reset n=0

POST _Ctr Reset n=0

PREAMBLE

A2 74

PRE_Ctr_Reset n=1

Dataln_ LD =1

WR_DATA

YV V VY VY V

PRE_Ctr_Reset n=1
Data_Ctr_Reset n=1
WR_Enable =1
DQ_Transfer En=1

DQ<=Ctrl_DataOut

POSTAMBLE

Y V V V

PRE_Ctr_Reset n=1
POST Ctr Reset n=1
WR_Enable =0

DQ _Transfer En<=0

WR_DONE

Write_Done =1
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< Assumption & Notes
1. WR_Enable is internal signal that enables writing in RD_DATE state.

2. PRE_Ctr_Reset_nand POST_Ctr_Reset_n are reset signals for preamble and postamble
counters respectively.

3. Data_Ctr_Reset_n is rest signal for counter that counts burst length.
4. Dataln_LD is signal that loads data from WR_Data_FIFO to register called Dataln.

5. DQ_Transfer_En is signal that enables transfer from Dataln register to DQ during WR_DATA
state.

» Problem_4: due to the fact that there are many features the memory doing them and our
controller handling them so there are many blocks drive the same signal based on what
operation is handled like CA signal which leads to synthesis problem (multiple driven) as
shown in Figure 29:

Synthesis (45 critical we
[Synth 8-6859) multi-driven net on pin CA_OBUF[13] with 1st driver pin init FSM/CA_reg[13)/Q [INIT_FSM.sv:145] (44 more
[Synth 8-6859] multi-driven net on pin CA_OBUF[13] with 2nd driver pin 'SR_FSM/CA_reg[13]/Q" [SR_FSM.5v:203]
[Synth B-6859] multi-driven net on pin CA_OBUF([13] with 3rd driver pin ‘emd_fsm/CA_reg(13]/Q' [CMD_FSM.5v:490)

[Synth 8-6859] multi-drive

et on pin CA_OBUF[12] with 1st drive it_FSM/CA_reg[12]/Q [INIT_FSM.5v:145)
et on pin CA_OBUF([12] with 2nd er pin 'SR_FSM/CA_reg[12]/Q' [SR_F5 3
(Synth 8-6859] mul et on pin CA_OBUF([12] with 3rd drive _fsm/CA_reg(12]/Q [CMD,
[Synth 8-6859] mul et on pin CA_OBUF[11] with 1st drive _FSM/CA_reg[11]/Q [INIT_F
[Synth 8-6859] multi-driven net on pin CA_OBUF[11] with 2nd driver pin 'SR_FSM/CA_reg[111/Q" [SR_FS
[Synth B-6859] multi-driven net on pin CA_OBUF([11] with 3rd driver pin ‘emd_fsm/CA_reg(111/Q" [CMD_FSM.5v:490]
en net on pin CA_OBUF[10] with 1st driver pin ‘init_FSM/CA_reg[10]/Q’ [IN s
en net on pin CA_OBUF[10] with 2nd driver pin 'SR_FSM/CA_reg[101/Q [S
en net on pin CA_OBUF([10] with 3rd driver pin ‘emd_fsm/CA_reg[10]/Q' [C
[Synth 8-6859] mul en net on pin CA_OBUF[9] with 1st driver pin ‘init FSM/CA_reg[9)/Q [INIT
[Synth 8-6859] multi-driven net on pin CA_OBUF(9] with 2nd driver pin "SR_FSM/CA_reg[9]/Q" [SR_FSM. 3
[Synth 8-6859] multi-driven net on pin CA_OBUF([9] with 3rd driver pin ‘crd_fsm/CA_reg[9]/Q’ [CMD_FSM.5v:490]
en net on pin CA_OBUF(8] with 1st driver pin ‘init_FSM/CA_reg[8]/Q" [INIT_FSN :
[Synth 8-6859] mul n net on pin CA_OBUF[8] with 2nd driver pin 'SR_FSM/CA_reg[8]/Q° [SR_FSM.
[Synth 8-6859] mul et on pin CA_OBUF(8] with 3rd d| n ‘cmd_fsm/CA_reg[8)/Q" [CMD_F 5v:490]
[Synth B-6859] multi-driven net on pin CA_OBUF(7] with 1st driver pin init FSM/CA_reg[7)/Q [INIT_FSM.5v:145)
et on pin CA_OBUF[7] with 2nd driver pin 'SR_FSM/CA_reg[7)/Q [SR_F
et on pin CA_OBUF(7] with 3rd di md_fsm/CA_reg[71/Q" [CM
(Synth 8-6859] mul et on pin CA_OBUF(6) with 1st dr INI_FSM/CA_reg(6]/Q (INIT
[Synth 8-6859] mul et on pin CA_OBUF[6] with 2nd d n "SR_FSM/CA_reg[6]/Q" [SR_F 3
[Synth 8-6859] multi-driven net on pin CA_OBUF[6] with 3rd driver pin ‘'cmd_fsm/CA_reg[6]/Q" [CMD_FSM.5v:490]
[Synth B-6859] multi-driven net on pin CA_OBUF(S5] with 1st driver INI_FSM/CA_regl51/Q" [INIT_FSM.5v:145)
[Synth 8-6859] multi-driven net on pin CA_OBUF[5] with 2nd d n 'SR_FSM/CA_reg[5)/Q [SR_FSM.5v:203]
[Synth 8-6859] multi-driven net on pin CA_OBUF[5] with 3rd driver pin ‘cmd_fsm/CA_reg[5]/Q" [CMD_FSM.5v:49

[Synth 8-6859] mul

v:203]

[Synth 8-6859] multi-d
[Synth 8-6859] mu
[Synth 8-6859] mul

[Synth 8-6859] mul

[Synth 8-6859] multi-drive
[Synth 8-6859] mul

Figure 29: Multiple Driven Problem.

V" Solution_4:by putting MUX before multiple driven signals and select the right output based
on select lines that come from a decoder that decodes internal signals. So we added to blocks
in our design Selection Decoder and MUX used in Top Module before multiple driven
signals, let us discuss Selection Decoder block.
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2.6.3 Selection Decoder

INIT_FSM_Enable

SE._FSM_Enable
T Sel_Decoder Sel

CMD FSM Fmable —

Figure 30: Block Diagram of Selection_Decoder.

Table 41: Inputs of Selection Decoder.

Signal Description

INIT FSM Enable | Active high enable of Initialization FSM
SR FSM Enable Active high Enable of Self Refresh FSM
CMD FSM Enable | Active high Enable of CMD FSM

Table 42: Outputs of Selection Decoder.

Description
Sel[1:0] Selection signal that will be selection signal for multiplexers

that are placed before multiple driven signals

Table 43: Operation of Selection Decoder.

Enable Signal | Sel
INIT FSM_Enable 0
SR FSM Enable 1
CMD_FSM_Enable 2

» Problem_5: inferring latches, we don’t need latches in our design due to the complexity of
calculating timings of latches at synthesis tools (checking timing violations is very
complex).
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v

Solution_5: we remove all latches and either return them to their equivalent combinational
logic at the case of unintentional latches or exchange it with registers at the case of using it
as storing element.

Problem_6: sometimes synthesis tools remove registers due to they think that these registers
will never be used.

Solution_6: we added a load signal for registers that may be removed to make the tool
understand that it actually used when this load gets activated then register a new value.

Problem_7: clock cycle uncertainty between blocks in top module.

Solution_7: we made a global initialization for all blocks and counters based on
initialization feature of memory and also made counters to be aligned in counting with other
blocks.

Problem_8: Reset signals have not highest priority in counters and other blocks.

Solution_8: we redefined all counters and blocks and chose to model counters with global
reset, set priority counters to get instantiated with the optimized version of it after synthesis
and that is by putting asynchronous reset at the top with the highest priority then even counts
incrementing the counter when enabled or keeps the old one.

Problem_9: There are bits in address vector may be removed by tool as it thinks that they
won’t be used and this due to that not all bits in Address vector, defined by the standard, is
used in our design.

Solution_9: we needed to redefine address vector to make all its bits get used from the
design and not letting the tool to remove any signal with its own.

Problem_10: there are non-synthesizable statements on System-Verilog HDL like wildcard
equality operator “==="

Solution_10: we exchanged all these statements with synthesizable statement like logical

b

equality operator “==".

Some of these problems that we discussed are shown in Figure 31:
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v [ Synthesis (302 wamings)

>0 [Synth 8-6014] Unused sequential element Prev_Reset_reg was remaved, [Command_Decodersv83] (28 more ke this)

>0 [Synth 8-87] always_comb on 'WR_Data_WR_En_reg" did not result in combinational logic [Command_Decodersv:206] (37 mare like this)

2 (0 [Synth 8-5788] Register DataOut_reg(15] in module RD_FSM is has bath Set and reset with same priority. This may cause simulation mismatches. Consider rewriting code [RD_FSM.sv:288] (61 more like this)
>0 [Synth 8-389] replacing case/wildcard equality operator === with logical equality operator == [CMD_FSM.sv:203] (4 mare like this)
> [Synth 8-327] inferring latch for variable 'WR_Data_WR_En_req' [Command_Decodersv:206] (33 more [ike this)

[Synth 8-3936] Found unconnected intemnal register ‘Command_reg' and it is trimmed from ‘7" to '3' bits. [Command_Decodersv:66]

>0 [Synth 8-3331] design CMD_FSM has unconnected port Address[4] (T more ke this)
>0 [Synth 8-3332] Sequential element (0Q_reqi_130) is unused and will be remaved from module WR_FSM. (15 more like this)

2 (1 [Synth 8-264] enable of latch \cmd_fsm/WR_FSM_Enable_req is always disabled (2 more ke this)

Figure 31: Some Problems of Synthesis.

Finally, all problems were solved and the design get synthesized properly. And the schematic
from synthesis tool is shown in Figure 32:

< Assumption &Notes
1. We used System Verilog HDL to describe our design.
2. Tools that we used in design through project Vivado ,Modelsim,etc.

3. There are changes in design based on bugs that verification found will be discussed later.

E:g%
=
a-
I
e =
—
L] ==
f1 =

i
JIL

Figure 32: Schematic from Synthesis Tool (Vivado).
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Chapter 3: Introduction to Cocotb
3.1 INTRODUCTION

Modern system-on-chip (SoC) designs have been evolving towards heterogeneous compositions
of general purpose and specialized computing fabrics as Dennard scaling has ended and Moore’s
law has slowed. This heterogeneity makes the already difficult work of SoC design and verification
much more difficult. Multiple generations of open-source hardware modelling frameworks have
attempted to address the growing complexity of hardware design and verification. Comprehensive,
productive, and open-source verification procedures that decrease our necessary to build
completely validated hardware blocks are a critical missing component in the open-source
hardware ecosystem. Verification of open-source hardware has numerous substantial hurdles as
compared to closed-source hardware. Closed source hardware, for starters, is typically owned and
maintained by firms with specialized verification teams. These verification engineers often have a
lot of expertise with constraint-based random testing using commercial System Verilog simulators
utilizing a universal verification methodology (UVM). Open-source hardware teams, on the other
hand, typically use an agile test-driven design method borrowed from the open-source software
community, in which the designer is also responsible for writing the tests. Furthermore, due to the
high learning curve and limited support in existing open-source tools, open-source hardware teams
seldom employ the UVM-based method. Instead of replicating closed-source hardware testing
frameworks, the open-source hardware industry deliberately needs an alternate way for verifying
open-source hardware. The top-down approach offered by UVM does not work well for complex
multimedia IP blocks like image signal processing pipeling, video codec, neural processing unit
etc. due to the algorithmic/system architecture complexity. An SoC chain can contain more than
20 blocks, which a verification testbench is expected to handle. There is a need for SoC DV to be
able to take a portion of the IP DV environment and be able to re-run valid semi-randomized
scenarios at SoC level. To fully address SoC-level verification, a solution must extend from UVM
and allow for vertical (IP to SoC) reuse and horizontal (verification engine portability) reuse. A
solution must provide a way to capture, share, and automatically amplify use cases to speed test-
case creation and leverage fast verification engines.

3.2 BACKGROUND

Design Verification is a process in which a design is compared against a given design specification
before tape-out. This happens along with the development of the design and can start from the time
the design architecture definition is completed. The main goal of verification is to ensure functional
correctness of the design. However, with increasing design complexities, the scope of verification
is also evolving to include much more than functionality. This includes verification of performance
and power targets, security and safety aspects of design and complexities with multiple
asynchronous clock domains. Simulation of the design model (RTL) remains the primary vehicle
for verification while a lot of other methodologies like formal property verification, power-aware
simulations, emulation/FPGA prototyping, static and dynamic checks, etc. are also used for
efficiently verifying all aspects of design. The Verification process is considered very critical as
part of design life cycle as any serious bugs in design not discovered before tape-out can lead to
the need of newer steppings and increasing the overall cost of design process.

PAGE | 67



DDR5 SDRAM Memory Controller Design and Verification

3.2.1 Functional Verification

The known as functional verification. Functional verification does not confirm the correctness of
the design specification and instead assumes that it is correct. It is one of the most difficult steps
in the IC design cycle and the primary cause of IC re-spin. The main objectives are: Functional
correctness of individual IPs, Internal module communication, External module communication,
End to end functional paths, Clock and reset circuits, Power up and down sequence, Complete
integration of all IPs. Different types of Functional Verification methods are shown in Figure 33.

Functional Verification

A4 A4 A A 4 A4

Functional
Simulation

Static Verification FPGA Prototyping Emulation UvMm

Figure 33: Types of Functional Verification

1) Static Verification: It is the process of checking a design against some predefined rules without
running it. It enables validation of design at an early stage, without any stimulus or setup, and is
thus performed early in the IC design cycle, that is, as soon as the RTL code is available. It doesn’t
do any timing checks. The earlier a bug is discovered, the easier it is to fix it. The goal of static
verification is to decrease the verification effort at the RTL level.

2) Functional Simulation: The process of simulating a design’s functional behavior in software is
known as functional simulation. It is not useful in software development because it does not
account for the timing delays of internal logic or interconnects. The goal of simulation is to validate
the individual IPs or blocks of the IC. Functional simulation does not allow for system-level
verification.

3) FPGA Prototyping: FPGA prototyping is the process of testing the functionality of an integrated
circuit (IC) on FPGAs. With the increasing complexity of ICs and the increasing demand to reduce
IC time to market, FPGA prototyping remains a critical solution. The goal of FPGA prototyping
is to ensure that the design works as expected when driven with live data and that all of its external
interfaces are operational.

4) Emulation: Emulation, also known as pre-silicon validation, is the process of testing the
system’s functionality on a hardware device known as an emulator. An emulator can handle both
system-level and RTL designs (written in C, C++, or SystemC) (in Verilog or VHDL). Simulators
take much longer to run than emulators. A design that takes days to simulate will only take hours
to emulate. Emulation is used to find issues in system level design using live data, to verify system
integration and to develop embedded software.

5) Universal Verification Methodology (UVM): UVM is a well-defined set of coding guidelines
with a well-defined testbench structure. It’s written in SystemVerilog and comes with a
SystemVerilog base class library for creating advanced reusable verification components. It was
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created with significant guidance and input from Mentor by the Accellera Systems Initiative, an
EDA standards body. IPs are extremely complex, and fully verifying them takes time. The standard
test benches are not reusable, so verification engineers must build them from scratch. Due to time
constraints, a verification methodology is highly recommended. UVM has a fixed testbench
architecture, which makes the testbench highly reusable and saves time.

3.2.2 Switching to Python

SystemVerilog is a fairly complex programming language. The SystemVerilog specification is
almost a thousand pages long. There are 221 keywords in the language, compared to 83 in C++.
It’s a powerful tool, but it takes some time to master. UVM has comparable concerns with
complexity. There are numerous ways to accomplish the same task. Again, highly powerful, but
difficult to master. Ergo, SV-UVM is powerful but complicated. So, hardware description
languages are kept for designing whereas for developing testbenches, a high-level, general-purpose
language with object-oriented programming is considerably more beneficial. Thus, Cocotbh was
created.

3.3 DESIGN VERIFICATION USING COCOTB

Cocotb automatically connects to a variety of HDL simulators (such as Icarus, Modelsim,
Questasim, and others) and allows you to control the signals in your design straight from Python.
The whole testbench may be written in Python, and automation and randomization are simple to
implement, resulting in increased productivity. Cocotb does not necessitate the use of any
additional RTL code. In the simulator, the top level is instantiated as the Design Under Test.
Python is used to provide stimulation to the DUT’s inputs and monitor the outputs. Given that it
does not necessitate knowledge of HDLs, it can be of great help to those who are unfamiliar with
it. Python is also an object-oriented scripting language. Cocotb has certain significant advantages
over HDL testing techniques since it uses Python for verification:

e Python is an extremely productive language that allows one to write code quickly
e Python makes it simple to connect to other languages.
e Python contains a large library of pre-existing code that can be reused.

e Python is an interpreted language, which means that tests can be modified and rerun without
having to recompile the design or exit the simulator GUI.

e Python is widely used; significantly more engineers are familiar with it than SystemVerilog or
VHDL.

PAGE | 69



DDR5 SDRAM Memory Controller Design and Verification

3.3.1 Architecture of Cocotb

A normal Cocotb testbench does not necessitate any additional RTL code. Without any wrapper
code, the Design Under Test (DUT) is instantiated as the simulator’s top level. Cocotb applies
stimuli to the DUT’s inputs (or lower in the hierarchy) and monitors the outputs directly from
Python. Cocotb acts as a bridge between the simulator and Python as shown in Figure 34 [9].
Verilog Procedural Interface (VPI) or VHDL Procedural Interface (VHDLPI) is used (VHPI).

/ Python Simulator \

Test
Coroutine

Coroutine
Coroutine
Coroutine

Coroutine Extend

Coroutine

(Verilog / VHDL)

i

i

-

Figure 34:Architecture of Cocotb.

A test is merely a Python function. The await keyword indicates when control of execution should
be returned to the simulator. A test can start numerous coroutines, permitting separate execution
flows. Python testbench code has the ability to [10]:

e Traverse the DUT hierarchy and update values.
e Wait for the simulation timer to run out.
e Wait for a signal’s rising or falling edge.

3.3.2 Design Methodology

The cocotb framework is made to be a goal-directed design verification tool. The following steps
are included in the python-based verification flow [11].

1) Capture the IP-level actions needed to create a desired use case, if not already captured.

2) Compose the desired use case in text format.

3) Use cocotb for vector generation: cocotb allows constrained randomization through which all
the parameters of the IP core can be randomized.

4) Verify the resulting vectors on a golden reference: These vectors can be run on a C test design
and the validity of vectors can be checked.
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3.3.3 Cosimulation

It is the independent simulation of the design and testbench. Communication is accomplished using
VPI/VHPI interfaces, which are represented by cocotb ‘triggers’. The simulation time does not
advance while the Python function is running. When a trigger is delivered, the testbench suspends
execution until the triggered condition is met before restarting execution. Some triggers availed
are [9]:

e Timer (time, unit): Waits for a given amount of simulation time to pass before acting.
e Edge(signal): Waits for a signal’s state to change (rising or falling edge).

¢ RisingEdge(signal): Waits for a signal’s rising edge.

e FallingEdge(signal): Waits for a signal’s falling edge.

e ClockCycles(signal, num): Waits for a certain number of clocks to cycle (transitions from 0 to
1).

3.4 COCOTB COVERAGE

3.4.1 Functional Coverage in SystemVerilog

In SystemVerilog a fundamental coverage unit is a coverpoint. It contains several bins and each
bin may contain several values. Every coverpoint is associated with a variable or signal. At
sampling event, the coverpoint variable value is compared with each defined bin. If there is a
match, then the number of hits of the particular bin is incremented. Coverpoints are organized
in covergroups, which are specific class-like structures. A single covergroup may have several
instances and each instance may collect coverage independently. A covergroup requires sampling,
which may be defined as a logic event (e.g., a positive clock edge). Sampling may also be called
implicitly in the testbench procedural code by invoking asample() method of
the covergroup instance. A bin may be also defined as an ignore_bins, which means its match does
not increase a coverage count, or an illegal_bins, which results in error when hit during the test
execution.

Another coverage construct in SystemVerilog is a cross. It automatically generates a Cartesian
product of bins from several coverpoints. It is a useful feature simplifying the functional coverage
generation. As it may be difficult or unnecessary to cover all the cross-bins, some of them may be
excluded from the analysis. This is possible using the binsof ... intersect syntax.
The most important limitations of the SystemVerilog functional coverage features are:

e straightforward bins matching criteria — only satisfied by equality or inclusion relation;

e bins may be only constants or transitions (possibly wildcard);

e flat coverage structure — cover groups cannot contain other cover groups, which would
correspond better to a verification plan scheme;
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e not possible to get the detailed coverage information in real time (e.g., when a specific bin
was hit).

3.4.2 Functional Coverage with Cocotb-coverage

The general assumptions for the architecture of the functional coverage features are as follows:
e functional coverage structure should better match a real verification plan;

e its syntax should be more flexible, but a separation between coverage and executable code
should be maintained;

o features for analyzing the coverage during test execution should be added or extended;

e coverage primitives should be able to monitor testbench objects at a higher level of
abstraction.

The implemented mechanism is based on the idea of decorator design pattern. In Python, a
decorator syntax is readable and easy to use. Instead of sampling coverage items by an additional
method, decorators are by default invoked at each decorated function call. As it is easy to create
functions in Python (for example anonymous functions can be created as lambda
expressions<lambda> — single-line function definitions), this is a convenient solution. The
coverage structure is based on a prefix tree (a trie). The main coverage primitive is a Coverltem,
which corresponds to a SystemVerilog covergroup. Coverltem may contain other
Coverltems<Coverltem> or objects extending Coverltems<Coverltem> base class, which are
CoverPoints<CoverPoint>, CoverCrosses<CoverCross> or arbitrary new, user-defined types.
Coverltems<Coverltem> are created automatically, the user defines only CoverPoint or
CoverCross primitives (the lowest level nodes in the trie). Each created primitive has a unique
ID — a dot-separated string. This string denotes the position of an object in the coverage trie. For
example, a CoverPoint a.b.cis a member of the a.b Coverltem, which is then a member of
the a Coverltem. The structure of the coverage tree is presented below in figure 35.

Cover Cover
Item — Point
top.a top.a.cpl
Cover Cover Cover
Item [ Item Point
top top.b top.b.cpl
Cover Cover
Point Point
top.cp top.b.cp1
UserDef Cover
CoverPoint Cross
top.userdef top.b.cross

Figure 35: An example of the coverage tree structure [12].
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3.4.3 Constrained Random Verification Features in SystemVerilog

SystemVerilog users may define random variables using the rand/randc modifier.
Calling randomize() function on a class instance (object) results in picking random values of the
defined random variables, satisfying given constraints. Also a with modifier can be used together
with randomize() which allow for appending additional constraints dynamically. Constraints are
defined in a special section in the class named constraint. They describe a range values that a
single variable may have or a relation between variables. It is also possible to define solution
ranges with weights (using dist modifier). The solve ... before is an additional construction which
organizes variable randomization order.

Constraints are unique constructs of SystemVerilog. They are class members, but they are not
functions or objects. Basic operations can be performed on constraints, such as enable/disable or
inheritance. Soft constraints have been introduced in SystemVerilog 2012. They are resolved only
when it is possible to satisfy them together with all other hard constrains. Every SystemVerilog
simulator must implement a constraint solver. Although many open-source constraint solvers are
available, testbench designers cannot use them, as they have no control over the simulator engine.
The most important limitations of the existing constrained randomization features are related to
their fixed syntax.

In cocotb-coverage, it is assumed that a constraint may be any callable object — an arbitrary
function or a class with __call__ method. It allows for creating various functionalities quite easily
and manipulating them in a flexible way [12].

3.4.4 Constrained Random Verification Features in cocotb-coverage

The main assumption for the constrained randomization features was to provide only a flexible
API, and let the testbench designer to adjust it depending on project needs. There is an open-source
based hard constraint solver used by this framework: python-constraint.

The general idea of Cocotb-coverage is that all classes that intended to use randomized variables
should extend the base class Randomized. Afterwards, random variables and their ranges should
be defined. Constraints are just arbitrary functions with only one requirement: their argument
names must match class member names. It is possible to define two types of constraints:

functions that return a True/False value, corresponding to SystemVerilog hard constraints;

functions that return a numeric value, corresponding to a variable’s distribution (or cross-
distribution) which also may be used as soft constraints.

The Randomized class API consists of the following functions:

e add_rand(var, domain)<add_rand> - specifies var as a randomized variable taking values
from the domain list;

e add_constraint(cstr)<add_constraint> - adds a constraint function to the solver;
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e del_constraint(cstr)<del_constraint> - removes a constraint function from the solver;

e solve_order(vars0, varsl ...)<solve_order> - optionally specifies the order of randomizing
variables (can be used for problem decomposition or in case some random variables must
be fixed before randomizing the others);

e pre_randomize - function called before randomize/randomize_with, corresponding to
similar function in SV;

e post_randomize - function called after randomize/randomize_with, corresponding to
similar function in SV;

e randomize() - main function that picks random values of the variables satisfying added
constraints;

e randomize_with(cstr0, cstrl ...)<randomize_with> - similar to randomize(), but satisfies
additional given constraints.

A more complex example is presented below. The class Triplelnt contains three unsigned integer
members, y and z are randomized. The first defined constraint combines all variables (random
and non-random). The second constraint defines a triangular distribution for variable z. It is
achieved by defining a function that has its maximum in the middle of the variable range (for
solution z = 500). The third one is a cross-distribution of variables y and z. The weight function
defines higher probability for solutions with higher difference between both variables. The last
one is a kind of a soft constraint — very low probability is set for condition x >y, which means
that solutions satisfying x <y will be strongly preferred.

class TripleInt{crv.Randomized):
def init (self, x):

crv.Randomized._ _init_ (self)
self.x
self.y = @

self.z 5]

add_rand(y, list(range(1080))) # ©® to 999
add_rand(z, list(range(le@0))) # © to 999

x # this is a non-random value, determined at class instance creation

add_constraint(lambda x, y, z: x+y+z==1000) # hard constraint

add_constraint(lambda z: 508 - abs(508-z)) # triangular distribution of z variable
add_constraint(lambda y, z: 180 + abs(y-z)) # multi-dimensional distribution
add_constraint(lambda x, y: 0.01 if (y > x) else 1) # soft constraint

It is assumed that only one hard constraint and one distribution may be associated with each set
of random variables. So, for the example presented above, it is possible to define no more than
six constraint functions: separately for variables y and z and both (y and z). It means that
constraints may be overwritten, for example by randomize_with() function arguments.

3.5 CODE COVERAGE

Code Coverage testing determines how much code is tested. Code coverage is a metric that
describes the extent to which the program’s source code has been tested. It is given by the Eqn. 1:
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Number of lines of code excuted

Code Coverage = *100 % (1)

Total number of lines of code

There are several coverage types, which are as follows [13]:
3.5.1 Statement coverage/ Line coverage

Statement coverage, often known as line coverage, is the simplest to comprehend sort of
coverage. Statement coverage measures how many statements/lines are covered in the
simulation.

3.5.2 Block/ Segment coverage

The nature of the statement and block coverage seems to be similar. The distinction is that block
coverage takes into account branching blocks of if/else, case branches, wait, while, for, and so
on. The dead code (lines which never get executed) is revealed by analyzing block coverage.

3.5.3 Conditional coverage

Conditional coverage, also known as expression coverage, shows how variables or expressions
in conditional statements are assessed. Only expressions using logical operators are taken into
account. Conditional coverage is the ratio of number of cases checked to the total number of
instances present.

3.5.4 Branch coverage

Branch coverage, also known as decision coverage, reports the true or false of conditions such as
if-else, case, and ternary operator statements. Decision coverage for an ‘if” statement will report
if the ‘if” statement is examined in both true and false instances, even if a ‘else’ statement does
not exist.

3.5.5. Toggle coverage
It ensures how many times variables and nets are toggled (flipping between logic high and logic
low). Toggle coverage is just the ratio of toggled nodes to total nodes.

3.5.6. Path coverage

Due to conditional statements such as if-else, a different path is generated in the design, diverting
the flow of input to the specific path. Path coverage is regarded to be more comprehensive than
branch coverage since it can detect flaws in the order of operations.

3.5.7. FSM coverage

As it works on the design’s behavior, it is the most complex sort of code coverage. In a finite
state machine, this evaluates how often states are visited, transited, and how many sequences are
covered.
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Chapter 4: Block Level Verification

4.1 GOALS AND OVERVIEW

The goal of this chapter is to write a block level verification plan to ensure the functionality of
each block, report the critical bugs of each block and how it was fixed, measure the functional
coverage and the code coverage of each block to ensure the completeness of the written testbenches,
which are written in python using Cocotb Coverage library as mentioned in chapter3.

4.2 BLOCK LEVEL TESTBENCH ARCHITECTURE

The test bench architecture is based on Self-checking coverage-Driven Constraint Random-Based
Functional Verification Methodology, the function of each block as follows:

Generator: generates constrained random test cases.

Driver: drives the test cases to the Device under test and the Reference Model concurrently.
Reference Model: provides the expected output according to the current testcase.

Checker: compares the predicted output with the DUT output.

Scoreboard: prints the failed test cases and the passed ones.

Coverage: samples the test inputs to collect the features that have been tested.

Coverage

Scoreboard

Generator

Figure 36: Block Level Verification Environment.

Reference Model

4.3 COMMAND DECODER VERIFICATION PLAN

4.3.1 Functional Coverage Plan
The important features that should be covered to ensure the correctness of the Command decoder
functionality are the following:

1. Reset.

2. Self-Refresh.

3. Reset and Self_Refresh/command in the same time to ensure the priority of reset.
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12.
13.
14.
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self-refresh and command in the same time to ensure the priority of self-Refresh.

Write.

Read.

Write with AP.

Read with AP.

Write Burst.

Read Burst.
. Write Burst with AP.
Read Burst with AP.

Command_Decoder_Coverage = coverage_section (

CoverPoint("top.Read”, vname=
CoverPoint(“top.Write",
CoverPoint("top.Reset",
CoverPoint ("™ ¥
CoverPoint (" .CMD_Done",
CoverPoint("top.Reset_Done",

L_Write_DUT" ,

L_Burst_DUT"

CoverPoint("top. tREFI",

CoverPoint(
CoverPoint ("
CoverCross("”

e", vname="SR_Done_DUT" ,
MD", vname="Command_DUT"
nable_FSM", items = ["top.Reset”,

CoverCross("top.Commands"”, items = ["top.Read”, "top.Write"”,

Write after Read in same Bank Group.
Write after Read in different Bank Group.

_Read_DUT", bins = [1, 8]),
bins = [1, ©]),
L_Reset DUT", bins = [1, @]),
, bins = [1, @]),
) Done_DUT", bins = [1, ©]),
et_Done DUT" ,
", bins = [1, 0]),]
CoverPoint("top.Auto"”, vname="Ctrl_Auto_DUT", bins
bins = [1, @]),
, bins = [e, 1, 2, 3, 4,5,6,7]),
"top.tREFI","top.Reset_Done","top.SR_Done","top.CMD_Done"]),
"top.Burst"”, "top.Auto"])

bins = [1, @]),

Figure 37: Command decoder coverage section written in python.

4.3.2 Test Cases
Table 44: Test cases of command decoder.
Test Item Test Case Expected Result Covered Bug
Free
Reset » Ctrl_Reset signal is INIT_FSM_Enable
asserted high for only signal should be / /
one clock cycle then low. asserted high.
Memory_Busy Signal
should be asserted high.
Reset > Reset_Done is signal is INIT_FSM_Enable

asserted high for only
one clock cycle then low.

signal should be
asserted low.
Memory_Busy Signal
should be asserted low.

v

v

Self-Refresh

» tREF1 signal is asserted
high for only one clock
cycle then low.

» Ctrl_Reset signal is
asserted low.

SR_FSM_Enable signal
should be asserted high.
Memory_Busy Signal

should be asserted high.

v

v
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Self-Refresh » SR_Done is asserted high » SR_FSM_Enable signal
for only one clock cycle should be asserted low. / /
then low. > Memory_Busy Signal

should be asserted low.
Write » Ctrl_Write signal is » CMD_FIFO WR_En
asserted high for only signal should be / /
one clock cycle. asserted high.
» Citrl_Read signal is » WR_Data WR_En
asserted low for only one signal should be
clock cycle. asserted high
> Ctrl_Burst is asserted low » CMD signal should be
for only one clock. asserted 001,
» Ctrl_Auto is asserted low > Fwst_Commz_and should
for only one clock cycle. be asserted high.
» Bank_Group signal is
asserted to a certain value
‘x’ for only one clock
cycle.
» Data_Transfer_Write is
asserted to a certain value
for only one clock cycle.
Read » Ctrl_Read signal is » CMD_FIFO_WR_En
asserted high. signal should be / /
> Ctrl_Write signal is asserted high.
asserted low. » CMD signal should be
> Ctrl_Burst is asserted asserted ‘000’
low. » Same_Bank_Group
> Ctrl_Auto is asserted should be asserted high.
low.
» Bank_Group signal is
asserted to a certain value
X,
Write With » Ctrl_Write signal is » CMD_FIFO_WR_En
AP asserted high. signal should be / /
» Ctrl_Read signal is asserted high.
asserted low. » WR_Data WR_En
» Ctrl_Burst is asserted signal should be
low. asserted high
» Ctrl_Auto is asserted » CMD signal should be
low. asserted ‘011°.
» Bank_Group signal is » Same_Bank_Group

asserted to a certain value

3 b

y.

should be asserted low.
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» Data_Transfer Write is
asserted to a certain
value.
Read With » Ctrl_Read signal is » CMD_FIFO WR_En
AP asserted high. signal should be / /
> Ctrl_Write signal is asserted high.
asserted low. » CMD signal should be
> Ctrl_Burst is asserted asserted ‘010”.
low.
» Citrl_Auto is asserted
high.
» Bank_Group signal is
asserted to a certain
value.
Write Burst » Ctrl_Write signal is » CMD_FIFO_WR_En
asserted high. signal should be / /
» Ctrl_Read signal is asserted high.
asserted low. » WR_Data WR_En
» Ctrl_Burst is asserted signal should be
high. asserted high
» Ctrl_Auto is asserted » CMD signal should be
low. asserted ‘101°.
» Bank_Group signal is
asserted to a certain
value.
» Data_Transfer_Write is
asserted to a certain
value.
Read Burst » Ctrl_Read signal is » CMD_FIFO_WR_En
asserted high. signal should be / /
> Ctrl_Write signal is asserted high.
asserted low. » CMD signal should be
> Ctrl_Burst is asserted asserted ‘100’
high.
» Ctrl_Auto is asserted
low.
» Bank_Group signal is

asserted to a certain
value.
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Write Burst » Ctrl_Write signal is » CMD_FIFO WR_En
with AP asserted high. signal should be / /
» Citrl_Read signal is asserted high.
asserted low. » WR_Data WR_En
» Ctrl_Burst is asserted signal should be
high. asserted high
» Ctrl_Auto is asserted » CMD signal should be
high. asserted ‘111°.
» Bank_Group signal is
asserted to a certain
value.
» Data_Transfer_Write is
asserted to a certain
value.
>
Read Burst » Citrl_Read signal is » CMD_FIFO_WR_En
with AP asserted high. signal should be / /
» Ctrl_Write signal is asserted high.
asserted low. » CMD signal should be
> Ctrl_Burst is asserted asserted 110’
high.
» Citrl_Auto is asserted
high.
> Bank_Group signal is

asserted to a certain
value.

Note: all signal is asserted at positive edge the clock CK _t in order to be sampled and

lasts for only on clock cycle then changes.

4.3.3 Reported Bugs

ﬁ Bug #1:

FSM Enables are asserted high for only one cycle although it should be high until a
FSM done signal is asserted high, for example: Initialization FSM Enable is asserted high for
only one cycle, although it should be high until Reset_Done signal (which comes from the

initialization FSM when it finishes) is asserted high.
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/ Modification:

Initialization _FSM _Enable is stored in a prev _Reset Register in order to modify the condition
that assert the Initialization FSM Enable high based on this register for illustration:

When Ctrl_Reset is asserted high for if (Ctrl Reset || Reset Done)
only one cycle: INIT_FSM_Enable will begin -
be asserted high as INIT FSM Enable=!Reset Done ;
INIT_FSM_Enable=! Reset_Done; Memory Busy=!Reset Done;
SR FSM Enable=0;
When Ctrl_Reset is asserted low at CMD FSM Enable=0;
the next clock cycle: end
INIT_FSM_Enable will be asserted else if (Ctrl Reset==0 && Reset Done==0)
high as begin
INIT_FSM_Enable= prev _Reset; INIT FSM Enable=Prev Reset ;
Memory Busy=Prev Reset;
When the initialization FSM finishes SR _FSM Enable=0;
it will assert Reset_Done low for only CMD_ FSM Enable=0;
one cycle:

INIT_FSM_Enable will be asserted low as
INIT_FSM_Enable=! Reset_Done;

When Reset_Done is asserted low at the next clock cycle:
INIT_FSM_Enable will be asserted low as
INIT_FSM_Enable= prev _Reset;

e -Defait e
-eU=8LBRO2I0-AE || SZZRE| G- tes T welABRAC AN IR 2-4-98-F (nRHUED
EE®NTT £ 5|93 sonck YEES||QQQA[AR|| [ JNIN]

Figure 38: Initialization FSM Enable is asserted high for only one cycle.
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Figure 40: Command Decoder Test Summary from Questasim.
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4.3.4 Functional Coverage Results

| Qtop \

i © Enable FsM |

E‘""{ORead:‘ @size=2 @coverage=2 @cover_percentage=100.0 @abs_name=top.Read @weight=1 @af_least=1
'""{OWritei\ @size=2 @coverage=2 @cover_percentage=100.0 @abs_name=top.Write @weight=1 @at_least=1
E"""{C)Reset | @size=2 @coverage=2 @cover_percentage=100.0 @abs_name=top.Reset @weight=1 @at_least=1

'""{OBurst | @size=2 @coverage=2 @cover_percentage=100.0 @abs_name=top.Burst @weight=1 @at_least=1
'""{OtREFIi\ @size=2 @coverage=2 @cover_percentage=100.0 @abs_name=top.tREFI @weight=1 @at_least=1
""{OAutor\ @size=2 @coverage=2 @cover_percentage=100.0 @abs_name=top.Auto @weight=1 @at_least=1

""{OCMD:\ @size=8 @coverage=8 @cover_percentage=100.0 @abs_name=top.CMD @weight=1 @at_least=1

‘@size:327@cover'age=32 @cover_percentage=100.0 @abs_name=top.Enable_FSM @weight=1 @at_least=1

:'""{OCMDfDone:\ @size=2 @coverage=2 @cover_percentage=100.0 @abs_name=top.CMD_Done @weight=1 @at_least=1

'""{OReset_Done | @size=2 @coverage=2 @cover_percentage=100.0 @abs_name=top.Reset_Done @weight=1 @at_least=1

'""{OSRﬁDone:\ @size=2 @coverage=2 @cover_percentage=100.0 @abs_name=top.SR_Done @weight=1 @at_least=1

?""'ﬁ:OCommandsr\ @size=16 @coverage=16 @cover_percentage=100.0 @abs_name=top.Commands @weight=1 @at_least=1

Figure 41: Command decoder Functional Coverage XML Report.
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Figure 42: Command decoder Functional Coverage from Coverage Viewer.
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4.3.5 Code Coverage Results

Questa Instance Coverage

Instance: /Command_Decoder

Instance Path /Command_Decoder

Design Unit work.Command_Decoder

Language Verilog

Source File D:/GP/Block_Level_Verification/command_decoder/hdl/Command_Decoder.sv

| =]

Search... Search... Search... Search... Search...

Branches 31 31 0 100%
Statements 67 67 0 100%
Toggles 147 137 10 93.19%

Figure 43: Command decoder Code Coverage Summary from Questasim.

4.4 COMMAND FINITE STATE MACHINE

CMD FSM is responsible for handling the sequence of operation that should be done in
order to execute write or read operations with or without Auto precharge in same or different
bank group address as implemented in 2.5.6 as specified in JESD79-5 section 3.1 and providing
the appropriate status signal to SDRAM as specified in JESD79-5 section 4.1 Table 241.

4.4.1 Functional Coverage Plan

The important features that should be covered to ensure the correctness of the Command FSM
functionality are the following:

1. All types of write command (write, write Burst, write with AP, write burst with AP).

2. All types of read command (read, read Burst, read with AP, read burst with AP).

3. Two consecutive writes (write, write with AP) in same bank group.

4. Two consecutive writes (write, write with AP) in different bank group.

5. Two consecutive reads (read, read with AP) in same bank group.

6. Two consecutive reads (read, read with AP) in different bank group.

7. Read after write in same bank group.

8. Read after write in different bank group.

9. Write after read in same bank group.

10. Write after read in different bank group.
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4.4.2 Test Cases

Test Item

Table 45: Test cases of command FSM.

Test Case

Expected Result

Covered

Bug

Free

Write CMD_FSM_Enable » IDLE outputs.
signal is asserted high. > WAIT_ACT outputs. / /
Same_Bank_G roup » ACT CYCLEL outputs.
signal is asserted Low. » ACT_CYCLEZ outputs.
CMD signal is asserted > BANK_ACTIVE outputs.

A RITE
. : : outputs.

First_Commandsignalis | /e ITING CYCLE2 out?)uts.
asserted high. > WAIT WRITE_LATENCY
all counter flags are outputs.
asserted high. > WRITING_DATA outputs.
Ctrl_ADD signal is > WAIT_WRITE_DONE (A
asserted a certain value. cycles) outputs.

» WRITE_DONE outputs.

» BANK ACTIVE outputs.

Write CMD_FSM_Enable » IDLE outputs.

Burst signal is asserted high. » WAIT_ACT outputs. / /
Same_Bank_Group » ACT_CYCLEI outputs.
signal is asserted Low. » ACT_CYCLEZ2 outputs.
CMD signal is asserted » BANK_ACTIVE outputs.
‘100°. » WAIT_WRITE outputs.
First. Command signal is » WRITING_CTCLEL outputs.
asserted high. » WRITING_CYCLEZ2 outputs.
all counter flags are » WAIT _WRITE_LATENCY
asserted high. outputs.

Ctrl_ADD signal is » WRITING_DATA outputs.
asserted a certain value. » WAIT_WRITE_DONE (A-8)
cycles outputs.
» WRITE_DONE outputs.
> BANK_ACTIVE outputs.
Write with CMD_FSM_Enable » IDLE outputs.

AP signal is asserted high. > WAIT_ACT outputs. / /
Same_Bank_Group » ACT_CYCLEI outputs.
signal is asserted Low. » ACT_CYCLEZ2 outputs.
CMD signal is asserted » BANK_ACTIVE outputs.
‘011°. » WAIT_WRITE outputs.
First. Command signal is » WRITING_CTCLEL1L outputs.
asserted high. » WRITING_CYCLE2 outputs.
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» all counter flags are » WAIT WRITE_LATENCY
asserted high. outputs.
» Ctrl_ADD signal is » WRITING_DATA outputs.
asserted a certain value. » WAIT_WRITE_DONE (A)
cycles outputs.
» WRITE_DONE outputs
» PRECHARGE outputs
» WAIT_tRP outputs
» IDLE outputs
Write » CMD_FSM_Enable » IDLE outputs.
Burst with signal is asserted high. » WAIT_ACT outputs. /
AP » Same_Bank_Group » ACT_CYCLEI outputs.
signal is asserted Low. » ACT_CYCLEZ2 outputs.
» CMD signal is asserted » BANK_ACTIVE outputs.
‘111°. » WAIT_WRITE outputs.
» First_Command signal is » WRITING_CTCLEL1L outputs.
asserted high. » WRITING_CYCLEZ2 outputs.
» all counter flags are » WAIT_WRITE_LATENCY
asserted high. outputs.
» Ctrl_ADD signal is » WRITING_DATA outputs.
asserted a certain value. » WAIT_WRITE_DONE (A-8)
cycles outputs.
» WRITE_DONE outputs
» PRECHARGE outputs
» WAIT_tRP outputs
» IDLE outputs
Read » CMD_FSM_Enable > IDLE outputs
signal is asserted high. » WAIT_ACT outputs /
> Same_Bank_Group » ACT_CYCLEI outputs
signal is asserted Low. » ACT_CYCLE2 outputs
» CMD signal is asserted > BANK_ACTIVE outputs
- ~ READING, CTCLEL outpu
. : . outputs
> First_Commandsignalis | o peapiNG CYCLE? outrr)Juts
asserted high. > WAIT_READ LATENCY
» all counter flags are outputs
asserted high. > READING_DATA outputs
Ctrl_ADD signal is > WAIT_READ _DONE (A
asserted a certain value. Cycles) outputs
» READ_DONE outputs
» BANK_ ACTIVE outputs
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signal is asserted Low.
CMD signal is asserted
‘110°.

First. Command signal is
asserted high.

all counter flags are

ACT_CYCLE2 outputs
BANK_ACTIVE outputs
WAIT_READ outputs
READING_CTCLEL1 outputs
READING_CYCLE2 outputs
WAIT_READ_LATENCY
outputs

Read » CMD_FSM_Enable > IDLE outputs
Burst signal is asserted high. » WAIT_ACT outputs /
> Same_Bank_Group » ACT_CYCLEI outputs
signal is asserted Low. » ACT_CYCLE2 outputs
> CMD signal is asserted » BANK_ACTIVE outputs
<100°. > WA'T_READ outputs
- s commandsigats | 7 FEAONG CTEIEL s
asserted high. > WAIT _READ LATENCY
» all counter flags are outputs
asserted high. > READING_DATA outputs
» Ctrl_ADD signal is > WAIT_READ_DONE (A-8)
asserted a certain value. cycles outputs
» READ_DONE outputs
» BANK ACTIVE outputs
Read with » CMD_FSM_Enable » IDLE outputs
AP signal is asserted high. » WAIT_ACT outputs /
> Same_Bank_Group » ACT_CYCLEI outputs
signal is asserted Low. » ACT_CYCLE2 outputs
» CMD signal is asserted » BANK_ACTIVE outputs
<010°. > WA'T_READ OUtpUtS
- s commandsigatis | TSNS CTCEL ut
asserted high. > WAIT_READ_LATENCY
» all counter flags are outputs
asserted high. > READING_DATA outputs
Ctrl_ADD signal is > WAIT_READ_DONE (A
asserted a certain value. cycles) outputs
» READ_DONE outputs
» BANK_ACTIVE outputs
» PRECHARGE outputs
» WAIT_tRP outputs
» IDLE outputs
Read » CMD_FSM_Enable > IDLE outputs
Burst with signal is asserted high. > WAIT_ACT outputs /
AP > Same_Bank_Group ; ACT_CYCLEZ1 outputs
>
>
>
>
>
>

asserted high.
Ctrl_ADD signal is
asserted a certain value.

READING_DATA outputs
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» WAIT_READ_DONE (A-8)
cycles outputs
» READ_DONE outputs
» BANK_ACTIVE outputs
» PRECHARGE outputs
» WAIT_tRP outputs
» IDLE outputs
write CMD_FSM_Enable » IDLE outputs.
After write signal is asserted high. > WAIT_ACT outputs. /
Same_Bank_Group » ACT_CYCLEL1 outputs.
in same signal is asserted Low. » ACT_CYCLE2 outputs.
Row address CMD signal is asserted » BANK_ACTIVE outputs.
‘001°. » WAIT_WRITE outputs.
First. Command signal is » WRITING_CTCLEL1L outputs.
asserted high. » WRITING_CYCLEZ2 outputs.
all counter flags are » WAIT _WRITE_LATENCY
asserted high. outputs.
Ctrl_ADD signal is » WRITING_DATA outputs.
asserted a certain value. » WAIT _WRITE_DONE (A
cycles) outputs.
Wait until CMD_Done is » WRITE_DONE outputs.
asserted high. » BANK_ACTIVE outputs.
» WAIT_ACT outputs.
CMD_FSM_Enable » ACT_CYCLELI outputs.
signal is asserted high. » ACT_CYCLE2 outputs.
Same_Bank_Group » BANK_ACTIVE outputs.
signal is asserted High. » WAIT_WRITE outputs.
CMD signal is asserted » WRITING_CTCLEL1 outputs.
‘“011°. » WRITING_CYCLEZ2 outputs.
First_Command signal is » WAIT_WRITE_LATENCY
asserted Low. outputs.
all counter flags are » WRITING_DATA outputs.
asserted high. » WAIT_WRITE_DONE (A
Ctrl_ADD signal is cycles) outputs.
asserted a certain value. » WRITE_DONE outputs.
» BANK_ACTIVE outputs.
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Write » CMD_FSM_Enable » IDLE outputs.
after write signal is asserted high. » WAIT_ACT outputs. /
» Same_Bank_Group » ACT_CYCLEI outputs.
in different signal is asserted Low. » ACT_CYCLE2 outputs.
Row address » CMD signal is asserted » BANK_ACTIVE outputs.
‘001°. » WAIT_WRITE outputs.
» First_ Command signal is » WRITING_CTCLEL1 outputs.
asserted high. » WRITING_CYCLEZ outputs.
» all counter flags are » WAIT WRITE_LATENCY
asserted high. outputs.
» Ctrl_ADD signal is » WRITING_DATA outputs.
asserted a certain value. » WAIT_WRITE_DONE (A)
cycles outputs.
» Wait until CMD_Done is » WRITE_DONE outputs
asserted high. » PRECHARGE outputs
» WAIT_tRP outputs
» IDLE outputs
» CMD_FSM_Enable
signal is asserted high. » WAIT_ACT outputs.
» Same_Bank_Group » ACT_CYCLELL outputs.
signal is asserted low. » ACT_CYCLE?2 outputs.
» CMD signal is asserted » BANK_ACTIVE outputs.
‘011>, » WAIT_WRITE outputs.
» First._ Command signal is » WRITING_CTCLEL outputs.
asserted Low. » WRITING_CYCLEZ2 outputs.
» all counter flags are » WAIT WRITE_LATENCY
asserted High. outputs.
» Ctrl_ADD signal is » WRITING_DATA outputs.
asserted a certain value. » WAIT_WRITE_DONE (A
cycles) outputs.
» WRITE_DONE outputs.
» BANK_ACTIVE outputs.
read » CMD_FSM_Enable » IDLE outputs
signal is asserted high. > WAIT_ACT outputs /
after read > Same_Bank_Group > ACT_CYCLEL1 outputs
in same Row signal is asserted Low. » ACT_CYCLE2 outputs
address » CMD signal is asserted > BANK_ACTIVE outputs
<000, » WAIT_READ outputs
> First Command signal is » READING_CTCLEL outputs
— » READING_CYCLE2 outputs
asserted high. > WAIT_READ LATENCY

outputs
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» all counter flags are » READING_DATA outputs
asserted high. » WAIT _READ DONE (A
> Ctrl_ADD signal is Cycles) outputs
asserted a certain value. > READ_DONE outputs
» BANK_ACTIVE outputs
» Wait until CMD_Done is
asserted high. > WAIT_READ outputs
> READING_CTCLE1 outputs
» READING_CYCLE2 outputs
» CMD_FSM_Enable » WAIT_READ LATENCY
signal is asserted high. outputs
> Same_Bank_Group » READING_DATA outputs
signal is asserted High. » WAIT_READ_DONE (A
> CMD signal is asserted Cycles) outputs
<010°. > READ_DONE OUtpUtS
> First._Command signal is > BANK_ACTIVE outputs
asserted Low.
» all counter flags are
asserted high.
Ctrl_ADD signal is
asserted a certain value.
read » CMD_FSM_Enable > IDLE outputs
signal is asserted high. » WAIT_ACT outputs /
after read > Same_Bank_Group » ACT_CYCLELI outputs
in signal is asserted Low. » ACT_CYCLE2 outputs
_ » CMD signal is asserted > BANK_ACTIVE outputs
R
ow address . : : outputs
> First_ Commandsignalis | o pe b ING CYCLE? out%uts
asserted high. > WAIT_READ LATENCY
» all counter flags are outputs
asserted high. > READING_DATA outputs
> Ctrl_ADD signal is > WAIT_READ _DONE (A
asserted a certain value. cycles) outputs
» READ_DONE outputs
» Wait until CMD_Done is » BANK_ACTIVE outputs
asserted high. » PRECHARGE outputs
» WAIT_tRP outputs
» IDLE outputs
» CMD_FSM_Enable
signal is asserted high. > WAIT_ACT outputs
» Same_Bank_Group » ACT_CYCLELI outputs
signal is asserted low. » ACT_CYCLEZ2 outputs
» BANK_ ACTIVE outputs
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» CMD signal is asserted » WAIT_READ outputs
‘010°. » READING_CTCLEL outputs
> First_Command signal is » READING_CYCLEZ outputs
asserted high. » WAIT_READ_LATENCY
» all counter flags are > (F)zuEtiuI;SING DATA outputs
asserted Low. —
» Ctrl_ADD signal is > WAIT_READ_DONE (A
. cycles) outputs
asserted a certain value. > READ_DONE outputs
» BANK_ACTIVE outputs
Read after » CMD_FSM_Enable > IDLE outputs.
write in signal is asserted high. > WAIT_ACT outputs. /
same Row > Same_Bank_Group > ACT_CYCLE1 outputs.
address signal is asserted Low. > ACT_CYCLE2 outputs.
» CMD signal is asserted » BANK_ACTIVE outputs.
‘001°. » WAIT_WRITE outputs.
» First_Command signal is » WRITING_CTCLEL outputs.
asserted high. » WRITING_CYCLEZ2 outputs.
» all counter flags are » WAIT _WRITE_LATENCY
asserted high. outputs.
» Ctrl_ADD signal is » WRITING_DATA outputs.
asserted a certain value. » WAIT _WRITE_DONE (A
cycles) outputs.
» Wait until CMD_Done is » WRITE_DONE outputs.
asserted high. » BANK_ACTIVE outputs.
» WAIT_READ outputs
» CMD_FSM_Enable » READING_CTCLEL1 outputs
signal is asserted high. » READING_CYCLEZ2 outputs
» Same_Bank_Group » WAIT_READ_LATENCY
signal is asserted High. outputs
> CMD signal is asserted » READING_DATA outputs
<000’ > \C/:VAIITSRE{A\D'[_DONE (A
. : : ycles) outputs
> zs'gs:t—eiogvrcand signalis | READ  DONE outputs
) » BANK_ACTIVE outputs
» all counter flags are
asserted high.
Ctrl_ADD signal is
asserted a certain value.
Read after » CMD_FSM_Enable » IDLE outputs.
write in signal is asserted high. > WAIT_ACT outputs. /
different > Same_Bank_Group > ACT_CYCLE1 outputs.
Row signal is asserted Low. » ACT_CYCLE2 outputs.
address.
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» CMD signal is asserted » BANK_ACTIVE outputs.
‘001°. » WAIT_WRITE outputs.
» First_ Command signal is » WRITING_CTCLEL1 outputs.
asserted high. » WRITING_CYCLEZ2 outputs.
» all counter flags are » WAIT WRITE_LATENCY
asserted high. outputs.
» Ctrl_ADD signal is » WRITING_DATA outputs.
asserted a certain value. » WAIT _WRITE_DONE (A)
cycles outputs.
» Wait until CMD_Done is » WRITE_DONE outputs
asserted high. » PRECHARGE outputs
» WAIT_tRP outputs
» IDLE outputs
» CMD_FSM_Enable
signal is asserted high. » WAIT_ACT outputs
» Same_Bank_Group » ACT_CYCLEI outputs
signal is asserted low. » ACT_CYCLE2 outputs
> CMD signal is asserted » BANK_ACTIVE outputs
<000°. > WA'T_READ outputs
> First_Command signal is i SEQB:Hg_g\I;%tEElZ outtputts
asserted high. - outputs
» all counter flags are 7 WAIT_READ_LATENCY
outputs
asserted Low. > READING_DATA outputs
» Ctrl_ADD signal is > WAIT READ DONE (A
asserted a certain value. cycles) outputs
» READ_DONE outputs
» BANK_ACTIVE outputs
Write after » CMD_FSM_Enable » IDLE outputs
read in same signal is asserted high. » WAIT_ACT outputs /
Row » Same_Bank_Group » ACT_CYCLELI outputs
address. signal is asserted Low. » ACT_CYCLE2 outputs
» CMD signal is asserted » BANK_ACTIVE outputs
BT
. : : outputs
> First_ Commandsignalis | o pe b ING CYCLE2 outrr))uts
asserted high. > WAIT_READ LATENCY
» all counter flags are outputs
asserted high. > READING_DATA outputs
> Ctrl_ADD signal is > WAIT_READ DONE (A
asserted a certain value. Cycles) outputs
» READ_DONE outputs
» BANK_ACTIVE outputs
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» Wait until CMD_Done is
asserted high. » WAIT_WRITE outputs.
» WRITING_CTCLEL! outputs.
» WRITING_CYCLE?2 outputs.
> CMD_FSM_Enable > WAIT_WRITE_LATENCY
signal is asserted high. outputs.
» Same_Bank_Group » WRITING_DATA outputs.
signal is asserted High. > WAIT_WRITE_DONE (A
» CMD signal is asserted cycles) outputs.
‘001°. » WRITE_DONE outputs.
» First._ Command signal is » BANK_ACTIVE outputs.
asserted Low.
» all counter flags are
asserted high.
Ctrl_ADD signal is
asserted a certain value.
Write after » CMD_FSM_Enable » IDLE outputs
read in signal is asserted high. » WAIT_ACT outputs /
different > Same_Bank_Group » ACT_CYCLELI outputs
Row address signal is asserted Low. » ACT_CYCLE?2 outputs
» CMD signal is asserted > BANK_ACTIVE outputs
ATRED
. : : outputs
> First_ Commandsignalis | o pe b ING CYCLE2 out?)uts
asserted high. > WAIT _READ LATENCY
» all counter flags are outputs
asserted high. > READING_DATA outputs
» Ctrl_ADD signal is > WAIT_READ _DONE (A
asserted a certain value. cycles) outputs
» READ_DONE outputs
» Wait until CMD_Done is » BANK_ACTIVE outputs
asserted high. » PRECHARGE outputs
» WAIT_tRP outputs
» IDLE outputs
» CMD_FSM_Enable
signal is asserted high. > ACT_CYCLE1 outputs.
» Same_Bank_Group » ACT_CYCLE2 outputs.
signal is asserted low. > BANK_ACTIVE outputs.
» CMD signal is asserted > WAIT_WRITE outputs.
‘001°. » WRITING_CTCLEL1L outputs.
» First_Command signal is > WRITING_CYCLE?2 outputs.
asserted high. » WAIT_WRITE_LATENCY
» all counter flags are outputs.
asserted Low. » WRITING_DATA outputs.
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» Ctrl_ADD signal is » WAIT _WRITE_DONE (A
asserted a certain value. cycles) outputs.

» WRITE_DONE outputs.

» BANK_ACTIVE outputs.

Note: In consecutive operations, the red colored statements represent the operations of the

first command, while the blue colored statements represent the operations of the second
command.

4.4.3 Reported Bugs

ﬁ Bug #1:

CMD FSM gets stuck at wait write_done state while executing write operation, and at
wait_read_done state while executing read operation as well.

Figure 44: Single write operation stuck at wait write done state.
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4 foMD_FSMMWR/CK_double

4 joMD_FSMMR/CK_t

4 foMD_FSMMR/CK ¢

4 joMD_FSMMR fburst

DDR5 SDRAM Memory Controller Design and Verification

/ Modification:

After tracing signals, write_Done signal which is the status signal that FSM
determine the next state based on it, was found to be asserted high and returned
low before the positive edge of the CK_t, so CMD FSM couldn’t sample it, SO
it stuck at this state.

As write_Done signal comes from a WR FSM which instantiated in this block
but its operating frequency is double the frequency of the CMD FSM,
write_Done signal is asserted high for two clock cycles of the double clock by
adding extra state (WR_DONE2) which WR FSM goes to it unconditionally, the
same solution was done to Read_Done signal in RD FSM.

4 jcMD_FSM/WR/WR_FSM_Enable

B¢ [CMD_FSMMWR/FIFO_WR_Data

£ joMD_FSMMR Reset_Done

@ fCMD_FSM/State

B-*. [CMD_FSMMR/DQ
4 JCMD_FSMMR/State
.. [CMD_FSMMR[DQS_t

4. [CMD_FSMMR/DQS_c

WR_DONE1:
begin
Write Done = 1'bl;
end
WR_DONE2:
begin
Write Done = 1'bl;
end
default:
begin
Write Done = 1'bO;
end
endcase
end: output_logic

WAIT WRITE DONE BANK [ACTIVE

POSTAMBLE WR _DON

.. [CMD_FSMMR Data _Transfer_MWrite

“.. [CMD_FSM{MR Write_Done

4. JCMD_FSMIMR Next

VR_DATA _{POSTAVBLE WR_BON

Figure 45: Single write operation after modifying CMD FSM.
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ﬁ Bug #2: DQS, DQT preambles aren’t working properly.

Figure 46: DQS, DQT preambles aren’t working properly.

Figure 47: DQS, DQT preambles are working properly after modification.
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ﬁ Bug #3: CMD FSM gets stuck at wait_tRP state.
e

WWATT WRITE DOKE v e

Figure 48: CMID FSM gets stuck at wait_tRP state.

/ Modification: it was a trivial error in the next state decoder, as next state was wait_tRP
at the two branches of the condition on tRP signal.

Figure 49: CMD FSM works properly after modification.
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4.4.4 Functional Coverage Results

# Functional Coverage - O X

File

top 100.0%
CMD 100.0%
Same Bank 100.0%
ot o= 100.0%
R2W_same_bank 100.0%
R2W_diff_bank 100.0%
R2R_same_bank 100.0%
R2R_diff_bank 100.0%
W2W_diff_bank 100.0%

Figure 50: Command FSM Functional Coverage from Coverage Viewer.

4.4.5 Code Coverage Results

Questa Instance Coverage

Instance: /[CMD_FSM

Instance Path JCMD_FSM

Design Unit work.CMD_FSM

Language Verilog

Source File C:/Users/Belal/Downloads/cmdfsm-20220712T180321Z-001/cmdfsm/hdl/CMD_FSM.sv

{ =]

Coverage Type 1 Bins Hits Misses Coverage
Branches 45 43 2 95.55%
Statements 102 101 1 99.01%

Figure 51: Command FSM Code Coverage Summary from Questasim.
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4.5 SELF_REFRESH FINITE STATE MACHINE

One of the main limitations of dynamic CMOS circuits such as SDRAMS is the signal integrity
issues, so it needs refreshing every certain period to defeat signal integrity issues affected by
reading from the cell or leakage current by adjusting and updating its internal average periodic
refresh interval, as needed, based on its own temperature sensor (does not require any external
control), after the interval time passed, tREF counter will be asserted high and the command
decoder will assert SR_FSM_Enable high to enable only the SR_FSM, which is responsible for
doing the sequence of operations which specified in in JESD79-5 section 4.6, that should be
done in order to complete self-Refreshing.

4.5.1 Functional Coverage Plan
The important features that should be covered to ensure the correctness of the
Self_Refresh FSM functionality are the following:
1. Cover point to cover SR_FSM_Enable.
2. Cover Points to Cover Conter_Flags to grantee that FSM is behaving correctly in case of
they are high and low.

4.5.2 Test Cases

Table 46: Test cases of Self_Refresh FSM.

Test Item Test Case Expected Result Covered Bug
» SR_FSM_Enable signal » The sequence of CA and
Self_Refresh is asserted high. CS_nas shown in / /
> all counter flags are Figure 55 specified in
asserted high. JESD79-5.
CK 1, R I l_4 Is ta laﬂHtw iaa laH Ila+5 [ hﬂ ln+2 b |3|nt‘b4 e te l;fz‘l_m ta l.drl.ldrz. t.n+.1. ta .l‘.a Ian_l.w leta
CKe A jEREREE I il " ‘S‘IfRfrh UHRSACARRSASAEREREARLEARRE RS,
T ICKLCS ainfain S¢f Refes| cam_, | i
i 1 {DRAM fo transiton to | i |
| | ECMOS based receiver KSH SRost || 1G5 SRau ( ' !
— e E
s\ ~cPoED | T —— = _ST——— S A
CAI130] m VE){ ‘ ' ' '

Fesblfepelpepes T ”‘a
” F|rslcyc\902cyc|evahd
commanﬁ not requiring DLL

Figure 52: Self _Refresh sequence as specified in JESD79-5 [5].
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0217 3fff 001f

DES CMDS SR Mode WAIT tCASRX WAIT tCSH Sl.. NOPO NOP1

SR Mode 3. WAIT tC0SH S... | NOPO NOP1

Figure 53: implemented Self Refresh waveform.

4.5.3 Reported Bugs

Free of Bugs \/

4.5.4 Functional Coverage Results

Tree View Result: A

@ top
© SR_FSM _Enable | @size=2 @coverage=2 @cover_percentage=100.0 @abs_name=top.SR_FSM_Enable @weight=1 @at_least=1
Q1CPDED | @size=2 @coverage=2 @cover_percentage=100.0 @abs_name=top.tCPDED @weight=1 @at_least=1
Q1iCsL | @size=2 @coverage=2 @cover_percentage=100.0 @abs_name=top.tCSL @weight=1 @at_least=1
O 1CASRX | @size=2 @coverage=2 @cover_percentage=100.0 @abs_name=top.tCASRX @weight=1 @at_least=1
© CSH_SRExit | @size=2 @coverage=2 @cover_percentage=100.0 @abs_name=top.tCSH_SRExit @weight=1 @at_least=1
O 1CSL_SRExit | @size=2 @coverage=2 @cover_percentage=100.0 @abs_name=top.tCSL_SRExit @weight=1 @at_least=1

QxS | @size=2 @coverage=2 @cover_percentage=100.0 @abs_name=top.tXS @weight=1 @at_least=1

Figure 54: Self-Refresh FSM Functional Coverage XML Report.
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f Functional Coverage — Il XK

File

top 100.0%
SR_FSM_Enable 100.0%
tCPDED 100.0%
tCSL 100.0%
tCASRX 100.0%
tCSH_SRExit 100.0%
tCSL_SRExit 100.0%
XS 100.0%

Figure 55: Self-Refresh FSM Functional Coverage from Coverage Viewer.

4.5.6 Code Coverage Results

Questa Design Unit Coverage

Design Unit: work.SR_FSM

Design Unit work.SR_FSM
Language Verilog
Source File D:/GP/Block_Level_Verification/Refresh_FSM/hdI/SR_FSM.sv

| ]

Search... Search... Search... Search... Search...
Branches 42 42 0 100%
Statements 57 55 2 96.49%
Toggles 14 14 0 100%

Figure 56: Self-Refresh FSM Code Coverage Summary from Questasim.
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4.6 INITIALIZATION FINITE STATE MACHINE

Initialization FSM is responsible for doing Set of Sequences as specified in JESD79-5 section 3.3
that should be done in order to power on in a well-known state, starting from power on and ending
with loading the mode registers with the default values.

4.6.1 Functional Coverage Plan

The important features that should be covered to ensure the correctness of the
Initialization FSM functionality are the following:

1. Cover point to cover INIT_FSM_Enable.
2. Cover Points to Cover Conter_Flags to grantee that FSM is behaving correctly in case of
they are high and low.

4.6.2 Test Cases

Table 47: Test cases of Initialization FSM.

Test Item Test Case Expected Result Covered Bug
> INIT_FSM_Enable » The sequence of CA and
Initialization signal is asserted high. CS_n as shown in / /
> all counter flags are Figure 3 specified in
asserted high. JESD79-5.

€8 CMOS Registration &
0DT Asyne On

‘l‘ \\

ICKSRX
(-

)
[ b

e o T YT VALID Y]]
I [

Figure 57: Initialization sequence as specified in JESD79-5 [5].
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001f

Wait MRW MRW Cydel MRW.J.

Statel State NOP Wait MRW MRW Cydel MRW Cyde2

ANOP_Count

Figure 58: implemented initialization waveform.

4.6.3 Reported Bugs

FREE OF BUGS \/

4.6.4 Functional Coverage Results

Tree View Result: ’

Qtop
QINIT_FSM_Enable | @size=2 @coverage=2 @cover_percentage=100.0 @abs_name=top. INIT_FSM_Enable @weight=1 @at_least=1
QtNIT1 | @size=2 @coverage=2 @cover_percentage=100.0 @abs_name=top tINIT1 @weightz1 @at_least=1
Q1INIT2 | @size=2 @coverage=2 @cover_percentage=100.0 @abs_name=top.tINIT2 @weight=1 @at_least=1
QUNIT3 | @size=2 @coverage=2 @cover_percentage=100.0 @abs_name=top tINIT3 @weight=1 @at_least=1
Q1iNIT4 | @size=2 @coverage=2 @cover_percentage=100.0 @abs_name=top tINIT4 @weight=1 @at_least=1
QONOP_Count | @size=2 ®@coverage=2 @cover_percentage=100.0 @abs_name=top.NOP_Count @weight=1 @at_least=1

OtMRW | @size=2 @coverage=2 @cover_percentage=100.0 @abs_name=top.tMRW @weight=1 @at_least=1

Figure 59: Initialization FSM Functional Coverage XML Report.

f? Functional Coverage — O K

File

top I 100.0%
INIT_FSM_Enable . 100.0%
tINITH I 100.0%
tINIT2 I 100.0%
tINIT3 I 100.0%
tINIT4 I 100.0%
NOP_Count I 100.0%
tMRW I 100.0%

Figure 60: Initialization FSM Functional Coverage from Coverage Viewer.
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4.6.5 Code Coverage Results

&% Instances 88 Design Units

Search...

B work INIT_FSM (100%)

Questa Design Unit Coverage

Design Unit: work.INIT_FSM

Design Unit
Language

Source File

work.INIT_FSM
Verilog
D:/GP/Block_Level_Verification/INIT_FSM/hdI/INIT_FSM.sv

Coverage Type T

Search...

Branches
Statements

Toggles

Figure 61: Initialization FSM Code Coverage Summary from Questasim.

4.7 COUNTERS

4.7.1 Functional Coverage Plan
The important features that should be covered to ensure the correctness of the

Counter functionality are the following:

1. Cover point to cover Counter Enable.

2. Cover point to cover Reset.

3. Cross Coverage Points to cover Reset and Enable at the same time.

4.7.2 Test Cases

Test Item

Enable

Test Case

» Counter_Enable signal is

asserted high.

» Counter_Reset signal is

asserted Low.

Table 48: Test cases of counters.

Covered

v

Expected Result

» After a specific number
of clock cycles
according to value of
timing parameter
Counter Flag will be
asserted High.

Bug
Free

v

PAGE | 104




DDR5 SDRAM Memory Controller Design and Verification

Reset

» Counter_Enable signal is » Counter Flag will be
asserted low. asserted low

> Counter_Reset signal is immediately.
asserted High.

4.7.3 Reported Bugs

3214.10ns
3214.10ns
3214.10ns
= wm

INFO

INFO

INFO

INFO

INFO

INFO

cocotb.test

cocotb.test

cocotb.test

cocotb.test

cocotb.test

cocotb.test

b EER L WG || L

Counter_Test.py:215 in Counter_test Enable: 1
Counter Test.py:2lé in Counter_test Reset: 0
Counter_Test.py:83  in NoofCycles Initialization Counter_4 is being Tested

Counter_Test.py:223

DUT output: 0

Counter_Test.py:224 Refrence output: 1

Counter_Test.py:22% in Counter_test Testcase Failed

X3 || W) §E- W WS | (S| 100 pey (24 (34 (%% 1M AR CEIT | TS SR || SBTRT W HTW || |R G % Ll 15| @P

T o N R T
5 I

& [Counters/tINIT1

ho

20| QQQ AR || [T LINIWI

Figure 62: Counter Flag is asserted High for only one Clock Cycle.

4.7.4 Functional Coverage Results

Qtop

QO Enable

QReset | @sizez2 @coverage=2

@ EnXRst

bin0 :
@bin=(True, True)
@hits=z11
@abs_name=top.EnXRst.bin0

bin1 :
@bin=(True, False)
@hits=27
@abs_name=top.EnXRst.binl

bin2 :
@bin=(False, True)
@hits=34
@abs_name=top.EnXRst.bin2

bin3 :
@bin=(False, False)
@hits=28
@abs_name=top.EnXRst.bin3

@size=2 @coverage=2 @cover_percentage=100.0 @abs_name=top.Enable @weight=1 @at_least=1

@cover_percentage=100.0 @abs_name=top Reset @weight=1 @at_least=1

@size=4 @coverage=4 @cover_percentage=100.0 @abs_name=top.EnXRst @weight=1 @at_least=1

Figure 63: Counters Functional Coverage XML Report.
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F Functional Coverage — ] pd
File
top 100.0%
Enable 100.0%

Reset 100.0%
EnXRst 100.0%

Figure 64: Counters Functional Coverage from Coverage Viewer.

4.7.5 Code Coverage Results

o Instances

Questa Design Unit Coverage

Search...

n Unit: work.Counters
@ work.Counters (98.83%)

Design Unit work.Counters
Language Verilog
Source File D:/GP/Block_Level_Verification/Counters/hdl/Counters.sv

98.83%

Coverage Type T Bins Hits Misses Coverage
Branches 46 46 0 100%
Statements 43 42 1 97.67%

Figure 65: Counters Code Coverage Summary from Questasim.

i 76872.70ns INFO cocotb.test Counter Test.py:83 in N
ocofCycles Initialization Counter_ 4 is being Tested

#

i 76873.70ns INFO cocotb.test Counter Test.py:208 in €
ounter_ test DUT output: O

#

# 76873.70ns INFO cocotb.test Counter Test.py:209 in c
ounter test Refrence output: O

i 76873.70ns INFO cocotb. test Counter Test.py:211 in €
ounter_ test Testcase Passed

i 76873.70ns INFO cocotb.test Counter Test.py:217 inm €
ounter test no of Passed Testcases: 100

#

i 76873.70ns INFO cocotb.test Counter_ Test.py:219 in €
ounter test no of Failed Testcases: 0

#

# 76873.71ns INFO cocotb.regression regression.py:364 dam
score_test Test Passed: Counter test

#

# 76873.71ns INFO cocotb.regression regression.py:487 in _

Figure 66: Counters Test Summary from Questasim.
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Chapter 5: UVM VS COCOTB

5.1 INTRODUCTION

In order to compare between UVM verification and COCOTB verification we choose block from
our design which is the FIFO and test it with UVM and COCOTB.

5.1.1 UVM verification

A key concept for any modern verification methodology is the layered test bench. Although this
process may seem to make the test bench more complex, it actually helps to make the task easier
by dividing the code into smaller pieces that can be developed separately. The proposed UVM-

based verification architecture for WR_Data_FIFO block is shown in Figure 67 [14].

s

ﬂrite_dal a_FIFO _Environment

Write_data_FIFO _Test
Sequence

"

/restbent‘.h_'rﬂp \
Write_data_FIFO \

" wWWrite_data_FIFO _Agent

Write_data_FIFO
Sequencer

Write_data_FIFO
_Sequence_item

Write_data_FIFO Write_data_FIFO
Monitor Driver

[ Write_data_FIFO interface ] l

Figure 67: UVM environment for WR_Data_FIFO block [14].

\ Write_data_FIFO (DUT) /
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5.1.2 UVM verification environment components

UVM verification environment is composed of different components such as [15]:

Driver which drives the DUT’s inputs as it runs single commands, such as bus read or
write.

Monitor which is driven by the DUT’s output as it that takes signal transitions and groups
them together into commands.

Assertions which cross the command/signal layer, as they look at individual signals.
Sequencer which takes sequence items from a sequence and passes them to the driver.
Functional coverage measures the progress of all tests in fulfilling the verification plan
requirements.

5.2 VERIFICATION PLAN

First step in verification process is to make the verification plan which is derived from the hardware
specification and contains a description of what features need to be exercised and the techniques
to be used. These steps may include directed or random testing and assertions.

So, we make verification plan for testing FIFO which is to:

Ensure that we can write and read from FIFO and make sure that it follows first input data
is the first output data

Ensure that full flag is high when FIFO is full and ensure that empty flag is high when
FIFO is empty

Ensure that read, write pointer, full, empty flag are reset when Reset is high.

Then we make testing scenarios and ensure that our tests provide 100% coverage of the entire
verification plan.

5.2.1 Testing scenarios:

1.

2.
3.

Write 16 data packets until the FIFO is full then read all 16 data packets and compare
whether the data is same as what have been written previously.
Write and read data randomly for 50 times.
Using system Verilog assertions for:

o Asserting for that Read pointer, write pointer, FIFO counter, full flag and empty
flag are now reset when Reset is high.
Asserting for that FIFO full flag is high when FIFO has no space to write in.
Asserting for writing in a full FIFO and FIFO full flag is high.
Asserting for that FIFO empty flag is high when all data have been read.
Asserting for trying to read from empty FIFO and FIFO empty flag is high.

O O O O
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5.3 RESULTS FROM UVM VERIFICATION

There were some few errors that we have discovered from results of simulation such as:

# BD En is high

# UVM_INFO C:/fifo/FIFO_UVM.av(328) @ 580: uvm test_top.f_env.f_sch [Read Data] examdata: 3a FIFO WR_Data: 0 empty: 0
Faill -

Check empty --------

Figure 68: 1st example of error from simulation.

The solution of this error was editing the size of Read Pointer to be 4 bits as FIFO depth is 16.

# WR_En is high
# UVM_INFO C:/fifo/FIFO UVM.sv(323) @ 310: uvm test_top.f env.f scb [write Data] WR En: 1 RD En: O Ctrl Dataln: bS full: 0

+ 310: Rssertion Failed: The design failed the fifo not full condition.
# UVM_INFO C:/fifo/FIFQ UVM.sv(285) @ 320: uvm test_top.f env.f agt.f seqr@@f_seq [f_sequence] ###+d+++ Generate 16 Read REQg #htkeddd
+ 320: Rssertion Failed: The design failed the fifo not full condition.

Figure 69: 2nd example of error from simulation.

The solution of this error was editing the condition for FIFO full flag to be high only if FIFO
counter equals 16. Etc.

We solved all design errors and the final UVM Report Summary and Coverage is shown in
Figure 70.

&} sim - Default # 2 x| | g Wave - Default Hd x|
¥|Instance A|pesignunit_[Total coverage _|Design urit type[Top ¢ = _ .
;r‘ uvm_root uvm_root SVClassItem  TBCc
- wvm_test top f test SVClassltem T8 Ce
el th th{fast) 85.71% Module Ulr
@ #ALWAYSES thifast) Process -
& #NTALER th(fast) Process —
o dut R Data_... 85.71% Modue Ul ol —I UL UL UL
ol tf T interface. . Interface DUTr 0 RS 1 ]
(£ uvm_pkg uvm_pka(f... VPackage Packe s I Y
- FIFO_UVM_sv_unit FIFO_UVM... 83.66% WPackage  Packe
-8l questa_vm_pkg questa_uv.. VPackage  Packe 2
ol std std VPacksge  Padke
g #vsim_capacity# Capacity Static J m
| | | I M Ak ) .
i vbrary B project | & sim || [ A Assertons | gm] wiave K
{1 Transaript H H) x|
3 --- UV Report Summary --- =]
B
3 4+ Report counts by severity
3 VM INFC : 5003
0
3 ++ Report counta by id
4+ [Questa T
3 [RNTST] 1
# [Read Data] 2464
3 [TEST_DONE] 1
3 [£_sequence] 3
4 [fifo_coverage] 1 j
Now: 100,740 s Delta: 53 FIFO_UVM_sv_nit

Figure 70: UVM Report Summary and Coverage
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Also, all assertions are passed as shown in Figure 71. And the assertions coverage is shown in

Figure 72.

F1 Transcript
File Edit
=] i

View Bookmarks Window Help

=N =)

B3I

)_UVM.sv(328) @ 270z
Rsserticn Passed:
Asserticn Passed: The design
WE_En is
TVM_INFO UVM. sv (328)
Assertion Passed:
Assertion Passed:

@ z90:
The design
The design
WR_En is
UVM_INFO

high
C:/fifo/FIFO_UVM.sv(328) @ 310:
Rssertion Passed:

@ 320z

The design
TVM_INFO

uvI_test_top
uvm_test_top

uvIn_test_top

uvIr_test_top.f_e
The design passed the I

The ucoign paSSea LOE IIIT OoT

env.r,

The design passed the Iife not

passed the

passed the
passed the

e
passed the

scbh [write Datal WR_En:
full conditicn.
full conditicn.

1 RD_En: 0 Ctrl_Dataln: a9 full:

not

[write Data] WR_En: 1 RD_En: 0 Crrl Dataln: 0 full
not full condition

not full condition

[write Data] WR_En: 1 RD_En: 0 Ctrl_Dataln: bS full:

not full condition.

_seqr@fs_seq [£_sequence]

a

1}

1}

Generate 16 Read REQs ****==s*

=
#
#*
#*
#*
+
+
+
#
#
#
#
#
# Asserticn Passed: not full condition.
# WR_En is
# UVM_INFO £ifo/FIFO_UVM.sv(328) @ 330: uvm _test_top.f env.f_scbh [write Datal WR En: 1 RD _En: 0 Ctrl _Dataln: 51 full: O
# 330: Assertion Passed: The design passed should go full condition.
# 330: Assertion Passed: The design passed 11 conditicn.
# 340: Assertion Passed: The design passed full condition.
# 350: Asserticn Passed: The design passed not full condition
#
+ fo/FIFO_UVM.sv(333) @ 360: uvm_test_top £_sck [Read Datal examdata: 3a FIFO_WR_Data: 3a empty: O
# Pass! =00 -
# 360: Assertion Passed: The design passed the not full condition.
# 370: Assertion Passed: The design passed the not full condition.
# RD_En is high
# C:/fifo/FIFO_UVM.sv(333) @ 380: uvm test_top env.f_scb [Read Data] examdata: 85 FIFO_WR Data: &5 empty: O
# Pass! 00 memm————
# 380: Assertion Passed: The design passed the not full condition
# 390: Asserticn Passed: The design passed the fifo not full conditicn
# RD_En is high
# : £o/FIFO_UVM.av(333) @ 400: uvm_test_top env.f_scbh [Read Data] examdata: df FIFO_WR_Data: empty: O
# Pass! =00 -
# 400: Assertion Passed: The design passed the not full condition.
# 410: Assertion Passed: The design passed the not full condition.
# RD_En is high
# ) C:/Efifo/FIFO_UVM.sv(333) @ 420: uvm test_top.f env.f_sch [Read Data] examdata: a2 FIFO WR_Data: a2 empty: 0
# Fass! - |
# 420: Assertion Passed: The design passed the not full condition
# 430: Asserticn Passed: The design passed the not full condition
# RD_En is high =
Figure 71: Assertions and UVM results.
[ ot oo s .
T|Name ‘AsserhonType Language ‘Enab\e |Fa\|u
File Edit Window A fuvm_pkg::uvm_reg_map::do_write/#ublk#2... Immediate SVA on
report. tet A fuvm_pkg::uvm_reg_map::do_read/#ublk#21... Immediate SVA on
A FIFO_UVM_sv_unit::f_sequence::body/#ublk... Inmediate SVA on
TOTAL ASSERTION COVERAGE: 80.00% ASSERTIONS: 10 A [FIFO_UVM_sv_unit::f_sequence::body/#ublk... Immediate SVA on
A FFIFO_UVM_sv_unit::f_sequence::body/#ublk... Inmediate SVA on
A ftbjdutfassert_ FIFO_Reset Concurrent SVA an
A ftbjdutfassert_ fifo_ful Concurrent SVA an
A /tbjdutjassert_fifo_not_ful Concurrent SVA an
A Jtbjdutfassert_fifo_should_go_ful Concurrent SVA on
A ftbjdutfassert_ full_write_ful Concurrent SVA on
A (th/dutfassert_ fifo_empty Concurrent SVA on
A (th/dutfassert__empty_read Concurrent SVA on

)
< |

report. bt |
ML\brarv lﬂ

Project | sim |

HE Wave *| J\ Assertions I

Figure 72: The assertions coverage.
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5.4 RESULTS FROM COCOTB VERIFICATION

We did verification for WR_Data_FIFO block also with COCOTB and we get the same errors
results as that we got from UVM verification as shown in Figure and the results are shown in

Figure 73.
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Data written to fifo: S2EC776F8
Data written to fifo: A941C580

Data written to fifo: 78AB9SDAD
Data written to fifo: 42CE2789F
Data written to fifo: 5BD0123C9
fifo test failed

Traceback (most recent call last):

File "C:\Users\Belal\Downloads\fifooo\fifofinal\tests\fifo test.py", line 114, in fifo_test

assert (data == fifo model.pop())

AssertionError: assert 0 = 25580231248

+ where 25580231248 = <built-in method pop of collections.deque object at 0x0000000006D74A00>()

. where <built-in method pop of collections.deque object at 0x0000000006D74A00> = deque ([24645805001,
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** TEST STATUS SIM TIME (ns) REAL TIME (s) RATIO (ns/s) **
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** fifo test.fifo_test FAIL 3.25 0.01

259.87 **

R Bt T T

Figure 73: Result of errors from COCOTB.

17932908703,

After solving all design errors, the final COCTB Report which shows that tests are passed is
shown in Figure 74.
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.0Sns
.05

INFO
.05ns INFO

1000.05ns INFO

1000.05ns INFO

Figure 74: COCOTB verification results

Functional coverage percentage is 100% as shown in Figure 75 and Code coverage percentage is
99.09% as shown in Figure 76.

v<top abs_name="top" size="8" coverage="8" cover percentage="100.0">
v<rw size="2" coverage="2" cover percentage="100.0" abs_name="top.rw" weight="1" at_least="1"»
<bin@ bin="True" hits="1168" abs name="top.rw.bine"/>
<binl bin="False" hits="3832" abs_name="top.rw.binl"/>
</ruw>
v<fifo_full size="2" coverage="2" cover_percentage="100.0" abs_name="top.fifo_full" weight="1"
at_least="1"»
<bin® bin="True" hits="2138" abs_name="top.fifo_full.bin@"/>
<binl bin="False" hits="2862" abs name="top.fifo full.binl"/>
</fifo_full>
v<rwXfull size="4" coverage="4" cover percentage="100.0" abs_name="top.rwXfull" weight="1"
at_least="1"»
<bin@ bin="(True, True)" hits="498" abs_name="top.rwXfull.bin@"/>
<binl bin="(True, False)" hits="670" abs_name="top.rwXfull.binl"/>
<bin2 bin="(False, True)" hits="1640" abs name="top.ruXfull.bin2"/»
<bin3 bin="(False, False)" hits="2192" abs_name="top.rwXfull.bin3"/>
</ruxfull>
</top>

Figure 75: COCOTB Functional coverage report
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Questa Instance Coverage
Instance: /WR_Data_FIFO

Instance Path /CMD

Design Unit work.CMD

Language Verilog

Source File C:/Users/Belal/Downloads/fifooo/fifofinal/tests/WR_Data_FIFO.sv

Search... Search... Search... Search... Search... ‘

Branches 16 16 0 100%
Conditions 10 10 0 100%
Expressions 2 2 0 100%
Statements 22 22 0 100%
Toggles 220 218 2 99.09%

Figure 76: COCOTB Code coverage report

5.5 HISTORY OF VERIFICATION METHODS:

In order to understand why using COCOTB we should first know the History of verification
methods. Traditionally, when faced with the task of verifying the directed tests method is used by
writing stimulus vectors that exercise the features in the DUT. Then simulating the DUT with these
vectors and manually reviewing the resulting log files and waveforms to make sure the design
work properly. The problem with the directed tests method is when the design complexity doubles,
it takes twice as long to complete or requires twice as many people to implement it.

So, the second method which is Constrained-Random Stimulus is used as constrained-random test
bench is now finding bugs faster than the many directed ones as shown in Figure 77 [13]. Another
advantage is that directed test finds the bugs you expect to be in the design, whereas a random test
can find bugs you never anticipated. When using random stimuli, you need functional coverage to
measure verification progress. Furthermore, once you start using automatically generated stimuli,
you need an automated way to predict the results generally a scoreboard or reference model.
Building the test bench infrastructure, including self-prediction, takes a significant amount of work.
A layered test bench helps you control the complexity by breaking the problem into manageable
pieces.
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100% f~""""""""TTTTmmmoemen s ittt

Directed
Test

Coverage

Time

Figure 77: Constrained-random test progress over time vs. directed testing [13].

AS higher-level language concepts (like OOP) are useful when writing layered and complex test
benches so they Added higher level programming features to a hardware description language
(System Verilog). So UVM (Universal Verification Methodology) libraries written in System
Verilog.

The SV/UVM approach is powerful, but complicated. Since the Verification test benches are
software, not hardware problem so the COCOTB’s developers tried a different approach which is
using a high-level, general-purpose language (Python) for developing test benches.

5.6 TRADEOFFS BETWEEN USING UVM AND COCOTB:

1) The SV/UVM approach is powerful, but complicated as system Verilog has around 250
keywords and its reference has around 1300 pages as shown in Figure 78 [16].

2) COCOTB’s developers, Chris Higgs and Stuart Hodgson, tried a different approach:
e Keep the hardware description languages for what they’re good at—design!
e Use a high-level, general-purpose language for developing test benches.
e Object oriented programming is much more natural in general purpose
languages!
e They picked Python as their language of choice:
Python is simple (only 35 keywords) and easy to learn, but very powerful.
e The Python reference is around 160 pages.
Python has a large standard library and a huge ecosystem; lots of existing
libraries.
Python is well documented and popular: lots of resources online.
The Python test bench can read or change the value of any internal signal.
COCOTB can be used for post-synthesis simulations too!
Tests can call other methods and functions, just like normal Python
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3) Also, now there are developers making the Universal Verification Methodology (UVM)
implemented in Python to get advantage of reusable components which is provided by

.UVM.
Language Complexity
SystemVerilog IEEE 1800-2012 |
SystemVerilog IEEE 1800-2009 |
Eriang ':

smallzalk I—

Ruh',' h_

0 200 400 600 800 1000 1200 1400

Systemierilog SystemVerilog
) | | 1 | | | | JAEEE 1800-2009 [EEE 1800-2012
S gpec_pages 865 Ga4 540 511 31 303 31 1285 1315

“ keywords a3 50 3z 104 42 6 28 Fril 248

Gt lava C [ Ruly Smalltalk Erlang

Figure 78: Programming languages Complexity.

5.1 FUTURE OF PYTHON IN VERIFICATION:

Here are two studies from Siemens were made in 2020. first study is about FPGA verification
language adoption next twelve months which shows that using of python in verification has
increased over the years and it exceeds 20% in usage with respect to other languages as shown in
Figure 79 [17].

Second study is about ASIC/IC verification language adoption next twelve months which shows
that using of python in verification has increased over the years and it reaches around 30% in usage
with respect to other languages as shown in Figure 80 [17].
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FPGA Verification Language Adoption Next Twelve Months
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Figure 79: FPGA verification language adoption next twelve months [17].

ASIC/IC Verification Language Adoption Next Twelve Months
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Figure 80: ASIC/IC verification language adoption next twelve months [17].

So, it is clear that using of python in verification is increasing and after implementing UVM in
Python it is predictable that using of python will increase more.
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Chapter 6: Top Level Verification
6.1 VERIFICATION ENVIRONMENT:

The environment is the same as environment of block level verification except new item is added
called slave model as shown in Figure 81 [18]:

[

e Reference Model —1—‘ Slave Model

Figure 81 : Verification Environment of Top-Level Verification [18].

Slave model is added to verification environment in order to check the functionality of the
controller. It represents model of DDR5 SDRAM Memory to captures the Read/
Read_With_AutoPrecharge/Read Burst/Read_Burst_AutoPrecharge/Write/Write_With_AutoPre
charge/Write_Burst/Write_Burst_AutoPrecharge/ ACT/Precharge request from the controller. The
Memory Module concatenates the requested address for write or read from Read/Write/ACT
commands which are sent to the memory module. For the Write command the write data which is
captured from DQ and DQS pins is stored in an associate array in required address. For the Read
command the memory module send read data by DQ and DQS pins to controller. For the Precharge
command the memory module deactivate the row in requested bank. So, by The Memory Module
which is shown in Figure 82 we can compare the data sent from generator to the controller is equal
to data received.
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CK_t
CK ¢
CK_double
CA [13:0]
CS n Memory Module
DQ [15:0]
DQS_t

DQS ¢
Reset_n

Figure 82: Block Diagram of Memory Module
6.2 FUNCTIONAL COVERAGE PLAN:

The important features that should be covered to ensure the correctness of the Top-Level
functionality are the following:

Reset.

Self-Refresh.

Reset and Self_Refresh/command in the same time to ensure the priority of reset.
All types of write command (write, write Burst, write with AP, write burst with AP).
All types of read command (read, read Burst, read with AP, read burst with AP).
Two consecutive writes (write, write with AP) in same bank group.

Two consecutive writes (write, write with AP) in different bank group.

Two consecutive reads (read, read with AP) in same bank group.

9. Two consecutive reads (read, read with AP) in different bank group.

10. Read after write in same bank group.

11. Read after write in different bank group.

12. Write after read in same bank group.

13. Write after read in different bank group.

14. All types of write command (write, write Burst, write with AP, write burst with AP).
15. All types of read command (read, read Burst, read with AP, read burst with AP).
16. Two consecutive writes (write, write with AP) in same bank group.

17. Two consecutive writes (write, write with AP) in different bank group.

18. Two consecutive reads (read, read with AP) in same bank group.

19. Two consecutive reads (read, read with AP) in different bank group.

20. Read after write in same bank group.

21. Read after write in different bank group.

22. Write after read in same bank group.

23. Write after read in different bank group.

24. Multiple read after multiple write in different bank group.

25. Multiple read after multiple write in different bank group.

ONoGa~WNE
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6.3 REPORTED BUGS:

ﬁ Bug #1: First Command

First command after initialization stuck at WAIT_ACT state in Command_FSM as shown in
Figure 83. This happened as in this state timing between consecutive active commands is
checked, so it won’t be satisfied as this is the first command and there are not previous
commands to count these timings.

Figure 83:Top Module is stuck at WAIT_ACT state

Modification: This problem is not related only to timing of active commands; it’s also

related to read and write timing parameters. We solved this problem by adding status register
to store 1 after initialization indicating that the command will be executed later is the first
command and no need for checking timing between consecutive commands in Command_FSM.

ﬁ Bug #2: Same_Bank_Group Signal

The value of Same_Bank_Group signal changes each cycle as controller receives
commands from CPU each clock cycle, so we lose this information as it’s not stored like
commands, addresses and data in FIFO which leads strange performance.
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/ Modification: Same_Bank_Group signal is also stored with command and address in
Command_Address_FIFO.

Bug #3: Read Words with length less than burst length as shown in Figure 84 due to
mistake counters which are used in Read_FSM block.

4 [Controle_top levelfoX ¢

4 fcontroler_top leveX ¢

4 [Contoler_top Jevel(X double
4 [Controler_top Jevel(Cr! Reset
4 [Contoler_top JevelCt Read
4 fcontolertop leveCtl Write
4 [Contoler_top JevelChl Auto

4 [Controler_top leveCl Burst
B+ [Controler_top Jevel(Cr_A00
B4 [Controler_top JeveCt Datzln

4a. [controler top leve(Ct_busy
-4 [Controler_top Jevel{Ch DateOut

4. [Controler_top JevelResein
£+ [Controler_top JevelfCA

4a. [Controler top levefCS n

Figure 84: Read words with length less than burst length

/ Moadification: Counters in Read_FSM are fixed with correct values

Bug #4: The Memory Module and the Controller can drive DQ and DQS pins in Write or
Read operations so this produces a bug as DQ and DQS pins have now multiple drivers.

/ Modification:

The solution for this bug is by using 3-State Buffer or more commonly a Tri-state Buffer as
shown in Figure 85. A Tri-state Buffer can be thought of as an input-controlled switch with an
output that can be electronically turned “ON” or “OFF” by means of an external “Control” or
“Enable” (EN) signal input. This control signal can be either logic “0” or a logic “1” type signal
resulting in the Tri-state Buffer being in one state allowing its output to operate normally
producing the required output or in another state where its output is blocked or disconnected.
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A Q=A
D .
I

Enable ="0" Enable="1"

Figure 85: Tri-state Buffer.

When activated into its third state it disables or turns “OFF” its output producing an open circuit
condition that is neither at a logic “HIGH” or “LOW?”, but instead gives an output state of very
high impedance, High-Z, or more commonly Hi-Z.

6.4 FUNCTIONAL COVERAGE RESULTS:

# Functional Coverage e O X

File

top N 97.14%
inintialization | — 100.0%
Read_Auto Pre | 100.0%
Write Auto Pre | I 100.0%
Refresh — 100.0%
Burst16 | — 100.0%
Burst8 | — 100.0%
Diff BankGroups | 88.89%
Same_BankGroups | —— 100.0%
Write_to_Read — 100.0%
Read_to_Write I 100.0%
Read _to Read | — 100.0%
Write_to_Write — 100.0%
writeXburstXautopre IE—— 100.0%
readXburstXautopre E 100.0%

Figure 86:Functional Coverage Report of Top Level
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6.5 CODE COVERAGE RESULTS:

= DeSig” s

Search... E ¥

4 B Controller_top_level (96.8%)
@ CMD_DEC (99.24%)
FIFO1 (100%)
FIFO2 (100%)
SR_FSM (96.12%)
init_FSM (99.02%)}
cmd_fsm (96.75%)
sel_dec (100%)
CS_n_MUX (100%)
CA_MUX (100%)
tREFI_En_MUX (100%)

ctr (90.61%)
Figure 87:Code Coverage Report of Top Level

6.6 FINAL RESULTS
6.6.1 Initialization Sequence

0005
State3 State: Wait MRW MRW Cydel MRW.L.

Statel Stated Wait MRW MRW Cydel MRW Cyde2

A/NOP_Count

Figure 88:Waveform of Initialization Sequence from Top Level
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6.6.2 Self-Refresh Sequence

001f

WAIT tCASRX WAIT tCSH S|.. NOPO NOP1 NOP2 CHECK tCSL S... WAIT tX5

DES CMDS SR Mode WAIT tCASRX WAIT t0SH S... ,NOPO NOP1 CHECK tCSL S... | WAIT BS
Figure 89:Waveform of Self-Refresh Sequence from Top Level

6.6.3 Single Read after Write

Figure 90: Waveform of Single Read after Write

6.6.4 Multiple Read after Multiple Write
L

] Wave - Default + &) x|
H-g@ & i BBD > -RE | SDEEN|| & g e | 5F 100 pod 5L EELEE B ms|| tet - - B-F B3 || [y S L m | B
L Je-oE- | g, iy I

3295204 ps to 36247260 ps

Figure 91: Waveform of Multiple Read after Multiple Write
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6.7 QUESTA VERIFICATION IP

6.7.1 Overview

After we have verified our design using our verification environment, as a sanity check we used
Questa Verification IP (QVIP) DDR5 Memory Model to verify our design. The DDR5 Questa
memory model provides the infrastructure to create models of various DDR5 memory devices that
you can connect to a memory controller designs under test (DUTS). it includes parameterized
SystemVerilog modules that you instantiate in a Verilog or UVM test bench and connect it to a
design under test (DUT).it provides various APIs for configuration, callback, backdoor, and other
operations, which you can use in a test as required. For example, use the configuration API
set_delay to change certain delay timing values of the memory model during runtime. To load a
memory image for initialization or at any other point in the test case, use a backdoor or memory
access API. During runtime, the instantiated memory model responds to the signal-level protocol
for front-door access. The model responds to the APIs and provides full functionality and timing
accuracy for the supported memory device.it also includes built-in assertions, performance
statistics collection, and transaction logging features to identify issues. These debug features
abstract the memory accesses to high-level transactions, which makes it easier to analyze the data.
The typical memory model flow is shown in Figure 92 [19] :

@

Instantiate the memory

model. Simulate the design and

model setup in the test bench.
Connect the model to the DUT in the top

l ‘o

Configure the memory model.

Debug the simulation results.
Set parameters, define manufacturer, B

part number, timing, and behavior.

Use built-in features:
- Transaction logs
L gl Performance and Coverage matrix

5et the test bench - Simulation transcript

Use the transaction debug

Define the test and use memory model —— f
APls to write and read memory — eatures of:

contents, and change configurations, = Questa SIM
- Wisualizer Debug Environment

Figure 92: Questa Memory Model Flow
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6.7.2 Memory Model Components

The DDR5 Questa memory model is based on the Questa Memory Library architecture. This architecture
supports features to instantiate and configure a model in your test bench, and debug functional
verification issues. The main components of the memory model are shown in Figure 93 [19]:

Performance
Statistics 0--‘ Memurv BFM
Collector [ Data Storage Array
|
]
- : i
Functional - Backdoor
Coverage @~
i Access
Collector :
! Memory Protocol Protocaol
] e | vrf 1 Check
Transaction [ nterface ecker
Q-4 i F 3
Logger T T

‘o

v v Frontdoor Access

Device Pins

Figure 93:Memory Model Components

The description of each component is shown in Table 49 [19]:

Table 49: Description of Memory Model Components

Component

Memory Bus Functional Model (BFM)

Description

Implements a transaction-based bus function
model with a SystemVerilog interface

Data Storage Array

Acts as the memory of the model

Front-door Access

Implements the interface over the memory
protocol to access the contents of the memory
At runtime, access to the memory takes place
using the signals of the protocol front-end
interface.

Backdoor Access

Loads or unloads the contents of the memory
At runtime, data is transferred in and out of
the storage array using the backdoor and
memory access APIs.
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Implements runtime assertion checks to
Protocol Checker determine how the memory protocol responds
to transactions

Collects statistics of various performance

Performance Statistics Collector
parameters

Collects information about DUT coverage at

Functional Coverage Collector the transaction-level model

Logs transaction details in a file This
component is disabled by default. You can
enable the component when you configure the
memory model for your test bench

Transaction Logger

6.7.3 Configurations

We used the graphical user interface of QVIP Configurator (Configurator) to configure and create
the model, which can then be instantiated in an existing test bench. Configurator also provides the
option to create the complete test bench where the memory controller and the memory model
instance are connected and configured according to requirements. We connected Memory Model
with our DUT as shown in Figure and configured Memory Model by choosing configuration of
device x16 and speed 3.2 GHZ as shown in Figure 94 [19]:

File Actions Zoom Help
B ADSDHLEMND B QRAQAQAQ
| Testbe

stbench |[Z] Protocols [C] Modules & instances

( DDR5_x16:/top/DDR5_x16_0 )
BEM ) CK t k& <
CK c k& <
RESET_n [¢@ 2 3
CS n K& <
CA
[ale} = <
DM_n
DQS_t |&®
DQS_c O
TEN €@ =
ALERT n <
CAl K& <
MIR €@ =
CA_ODT k@ <
LBDQ @ <
LBDQS @ .
\\—/ 7
@

Figure 94: Test bench using QVIP Configurator
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£ DDR5_x16_0 |(T top clk_gen (& top_reset_gen
% RTLPort |& BFM

Memory
MEM
- MEM
A block of MEM.

= ddrS_vars  MEM|[{"{JEDEC,DDR5_x16_BG_3200A GbB,16,32004,1,0,0,0,0,0,0,8'h00,0,0,1,0,200,625f5 854 |

[ ddr5_cfg cfg  [{JEDEC,DDRS5_x16_BG_3200A,Gb8,16,32004,1,0,0,0,0,0,0,8'h00,0,0,1,0,200,62*

= ddrs_delay delay |['{'{625ps.1ns},{'{*{"{22.20}."{-1.-1}.'{-1.-1}."{-1,-1}}./{0.952.1.01,ns} }.'(*{

+  ddrS_ctri_time_min_max tCKAVG |'{625ps.1

H ddrs_cl_list valid_c| [e:01 [{{{{22

+ ddr5_cl_list valid_c|_3ds (201 [{{{{22

+ ddr5_ctrl_time_min EINIT1 |'{1{2000¢

# ddrs_ctrl_time_min tINITZ ["{1{1000¢

+ ddr5_ctrl_time_min EINITS ['{1{4000¢

# ddr5_ctrl_time_min tINIT4 ['{1{20001

# ddrs_ctri_int_min tINITS [{1{3}}

4 ddr5_ctrl_time_min tPW_RESET @‘.

I il Ardes ~tel Firma min FZOCAL i [-nhﬁ:ﬁ_.

Figure 95 :Memory Model Configurations

6.7.3 Results

QVIP reported bugs, we will present some of them:

ﬁ Bug #1: DQ should be high “Z “during self-refresh, however is observed as” X

Modification: This is intentional bug made by us, we replaced Z with X as Questa
simulation tool reports error in compiling when it founds Z.
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Bug #2: Minimum Value of timer tCSH_SREXIT is “13 ns” however, timer is
configured as “10 ns”.

/ Modification: We edited the value of this parameter in Counters block with the correct
value.

Bug #3: Any valid command like read or write for bank that is not activated can be
issued only after tRP (interval for precharge of current row) has been elapsed.

/ Modification: we solved this bug by founding that value of tRP is not as configured by
tool, so we edited with value configured by tool.

PAGE | 128



DDR5 SDRAM Memory Controller Design and Verification

Chapter 7: Conclusions and Future Work

1.1 CONCLUSION

In this thesis, we have seen the need of new DDR protocol (DDR5) and its applications in industry.
We have discussed basic features of DDR5 SDRAM Memory controller through design of blocks
that implemented these features and verified the functionality of this design on blocks level and
top module level and yielded to results that meet performance needed by JEDEC79-5 standard.
We also have discussed a comparison between verification using UVM and Python based
verification (COCOTB).

1.2 FUTURE WORK

This section provides ideas for further research and extension to the thesis work proposed. These
are possibilities to improve the DDR5 SDRAM Memory Controller design and verification in
order to increase the functionality.

Adding optional features mentioned in section 2.1.2 to design of controller.

Performing full system emulation to test DDR5 SDRAM Memory Controller design by
porting on FPGA.

Enhancing the test environment by adding more constraints random test cases.

Measuring coverage by Questa Verification IP.

Modelling the existing verification environment of top level to a class based UVM
environment.

Publish a paper on comparison between UVM and COCOTB.
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