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Chapter 1: Introduction 
 

1.1 MOTIVATION   
 

Currently, we see a strong need to memory-dominated Applications such as Big Data, IoT, Cloud-

Data Centers, Machine Learning etc.…, Thus Dynamic Random-Access Memories (DRAMs) play 

a large role in compute platforms. Over the last years, the number of DRAM standards specified 

by the JEDEC Solid State Technology Association has been growing rapidly. The most recent 

DRAM standard is DDR5, which was released in mid-2020, because of the large number of new 

features, system designers are either challenged to adopt the new standard or they can move on 

with well-established standards like DDR4.If DDR5 is a potential candidate for a specific 

application, a further challenge is the configuration of the DDR5 subsystem, which is the 

configuration of the DDR5 subsystem, which features a lot of parameter choices. Fast and accurate 

simulation models are mandatory to explore the new features and compare different configurations. 

1.2 DRAM BACKGROUND AND DDR5 
 

In this section we introduce the basic terminology of DRAM devices and their controllers and give 

an overview on the new features of the DDR5 standard. 

1.2.1 DRAM Basics 

 

 

Figure 1: DRAM Architecture [1]. 

As shown in Figure 1, DRAM can be organized in a multi-hierarchical fashion of DIMMs, 

channels, physical ranks, devices, logical ranks, bank groups, banks, memory arrays, sub arrays, 

rows, and columns. Several DRAM channels can be connected to the Multi-Processor System on 

Chip (MPSoC). These channels are completely in-dependent of each other and have separate 

command/address and data buses. A channel can be composed of one or multiple physical ranks, 

which are sharing the data and command/address bus. A Dual Inline Memory Module (DIMM) is 

a small PCB that accommodates several DRAM devices, which work completely synchronously. 

One single device is called ×161 if it has an I/O data width of 16 bit. A DIMM is assembled for 
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instance out of four ×16 devices in order to have a total I/O data width n = 64 bit (called ×64). 

While the I/O data width is usually very limited, inside the DRAM a lot of data can be fetched or 

stored in parallel. However, the time between consecutive internal data accesses is very long due 

to the optimization for storage density, while the interface can be operated on much higher 

frequencies. To align this mismatch DRAM uses a so-called prefetching technique. For read large 

chunks of data are concurrently fetched to the interface and then transferred in one burst to the 

re1pronunciation: by-sixteen quester, for a write the process is reversed. In addition, data is 

transferred at the doubled interface frequency (double data rate, short DDR). Current devices such 

as DDR4 use an 8n prefetch architecture, where n is the I/O data width, 8 the Burst Length (BL) 

and 8n the number of bits for an internal data transfer. That means with each DRAM access the 

total amount of data received or delivered is BL·n = 8·64 bit = 512 bit = 64 B, which is the usual 

cache line size in today’s computing systems. In combination with interface frequencies up to 1600 

MHz or pin transfer rates up to 3200 MT/s (mega transfers per second) DDR4 reaches a maximum 

bandwidth of 25.6 GB/s per channel. Each device itself can consist of several 3D-stacked logical 

ranks, which can form several bank groups that include several banks. The concept of bank groups 

was introduced with DDR5 and DDR4 in order to reduce the bank switching times to support a 

seamless burst behavior at high data rates and therefore a high bandwidth. All banks in a whole 

channel can be used concurrently (so  called bank parallelism). However, there are some constraints 

due to the shared buses. Each bank usually consists of 212 to 218 rows, and each row can usually 

store 512B to 2KB of data in its columns. A memory controller is composed of a front end and a 

back end. The front end performs arbitration and scheduling of incoming read and write requests, 

whereas the task of the back end is to translate these incoming requests into a sequence of DRAM 

commands, which have to be orchestrated with respect to the current state of the device. To access 

data in a row of a certain bank, an activate (ACT) command must be issued by the controller before 

any column access, i.e., read (RD) or write (WR) commands, can be executed. The ACT command 

opens an entire row of the memory array, which is transferred into the bank’s row buffer [2]. It 

acts like a small cache that stores the most recently accessed row of the bank. The latency of a 

memory access to a bank largely varies depending on the state of this row buffer. If a memory 

access targets the same row as the currently cached row in the buffer (called row hit), it results in 

a low latency and low energy memory access. 

 



DDR5 SDRAM Memory Controller Design and Verification 
 

PAGE | 14  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2 : Bandwidth Evolution of DRAM Standards [1]. 

Whereas, if a memory access targets a different row as the current row in the buffer (called row 

miss), it results in a higher latency and energy consumption. If a certain row in a bank is active it 

must first be precharged (PRE) before another row can be activated. In addition to the normal RD 

and WR commands, there exist read and write commands with an integrated auto-precharge (RDA, 



DDR5 SDRAM Memory Controller Design and Verification 
 

PAGE | 15  
 

WRA). If auto-precharge is selected, the row being accessed will be precharged automatically at 

the end of the read or write access. Because a DRAM cell uses a capacitor with leakage effects for 

data storage, it usually has to be refreshed every 64ms to retain the data stored in it. Modern 

DRAMs are equipped with an all-bank refresh (REFab) command to perform this operation 

automatically on all banks of a rank in parallel. However, a prerequisite is that all banks are in a 

precharged state. This can be achieved by issuing a special all-bank precharge (PREab) command 

in advance. In addition to the commands, each DRAM standard defines a set of timing 

dependencies, which are temporal constraints that must be satisfied between issued commands. 

For example, between two ACT commands to the same bank the timing dependency tRC (row 

cycle time) must be satisfied. Timing dependencies can also exist on other hierarchies of the 

DRAM, e.g., between commands to the same bank group, to the same logical/physical rank or to 

different logical/physical ranks. The selection of a DRAM subsystem usually has three main 

dimensions: bandwidth, latency, and capacity. Bandwidth is the amount of data that can be 

transferred between DRAM and a computational unit within a given time. As shown in Figure 2, 

the maximum theoretical DRAM bandwidth is limited to the number of data pins times the 

interface pin data rate (number of accesses per time per pin). Latency is the time that it takes to 

complete an access. In fact, latency helps bandwidth, but not vice versa [4]. For instance, lower 

DRAM latency results in more accesses per time, and therefore higher bandwidth, whereas 

increasing the number of data pins increases the bandwidth without decreasing latency. In realistic 

scenarios, the full theoretical bandwidth is never reached due to many timing dependencies, 

interference between different requests, and refresh. The actual achieved bandwidth for a specific 

application is called sustainable bandwidth. 

 

1.2.2 DDR5 Standard 
 

With the development of a new DRAM standard generation there are always several key 

parameters that should be enhanced, e.g., bandwidth, power consumption, and device capacity. 

Figure 3 shows a comparison between key parameters of the new DDR5 standard and its 

predecessor DDR4. In the following we will also describe the most important differences in more 

detail. For a higher bandwidth DDR5 raises the maximum pin data rate to 8400 MT/s compared to 

3200 MT/s for DDR4. Because the frequency of internal data accesses stays more or less the same 

as a result of the capacity- and cost optimized architecture, the prefetch was incremented from 8n 

to 16n. When using the same 64-bit-wide data bus for one channel as all previous DDR generations, 

this would  result in 128 B of transferred data per access. However, since the usual cache line size 

of modern processors is only 64 B, the data bus of each DDR5 DIMM is split up into two 

independent channels of 32-bit width. That way only 64 B of data are transferred per access. 

Theoretical transfer rates then reach a maximum of 33.6 GB/s per channel and 67.2 GB/s per 

DIMM compared to 25.6 GB/s per channel/DIMM for DDR4, as shown in Figure 2. At the same 

time supply voltages are reduced from 1.2 V to 1.1 V for an improved power consumption. The 

maximum number of banks per device increases from 16 to 32 distributed over 8 instead of 4 bank 

groups, the total capacity of a single device from 16 Gb to 64 Gb. In addition, up to 16 instead of 

8 devices can now be stacked in a three-dimensional fashion (logical ranks)3. This enables stack 

capacities of up to 512 Gb (max. 16 × 32 Gb or 8 × 64 Gb because of limited address bits). One 
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problem that always arises with higher device capacities is the increased refresh overhead, because 

each cell still has to be refreshed approximately every 64 ms, as a consequence, either the controller 

has to issue refresh commands more frequently or the individual refresh cycles take a longer time. 

Since all banks of a rank cannot be accessed during an all-bank refresh, it can lead to significant 

performance drops. To overcome this problem, DDR5 introduces same-bank refresh (REFsb) and 

associated same-bank precharge (PREsb) commands as an alternative to all-bank refresh (REFab) 

and all-bank precharge (PREab) commands. When issuing them, only one bank in each bank group 

of the target rank is refreshed and inaccessible, while all other banks can still process incoming 

read and write requests. Most modern DRAM controllers use advanced reordering techniques for 

an improved performance so they can try to hide the same-bank refresh by sending requests to 

other banks in the meantime. Finally, DDR5 devices implement an on-die error correction to 

improve the data integrity[2]. 

1.3 HIGH COMPLEXITY AND THE NEED FOR VERIFICATION 

With advanced and complex features, there is a need for meticulous verification. Memories have 

a vast set of configurations that allow them to operate at various data rates with different densities. 

Further, these can be combined with a vast set of features such as Self-Refresh, Auto Refresh, 

Cyclic Redundancy Check (CRC), Post Package Repair, Maximum Power Saving Mode (MPSM), 

training across different settings of latencies and speeds. The permutation and combinations of 

these variables can grow exponentially across different memory vendors as each of these memory 

Figure 3: Comparison of DDR4 and DDR5 Key Parameters [3]. 
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vendors offer 100s of part numbers. As you can imagine, it can easily become a daunting 

experience for verification engineers to verify a memory subsystem. 

DDR5 DIMMs adds more challenges. For example, in order to achieve higher power efficiency, 

voltage is reduced from 1.2V to 1.1V which brings additional complexity for DIMM vendors 

around noise immunity. Higher speeds raise data integrity concerns which need precise training 

results. This creates the need for careful verification, as modeling of real-world scenarios and 

visualization of those scenarios going into wire level toggling would consume a lot of time. 

Measuring verification progress through functional coverage is equally important as the 

verification of design features. Also, performance analysis is extremely important for memories. 

These add a few extra cycles in the verification flow. 

1.4 THESIS SCOPE 
 

1.Design of DDR5 SDRAM Memory Controller based on JEDEC79-5 Standard. 

2.Verification of DDR5 SDRAM Memory Controller using Python Language especially CoCotb 

library (new trend method in verification). 

 

1.5 THESIS ORGANIZATION 
 

The structure of the thesis is as follows: 

• Chapter 2: This Chapter discusses the design of DDR5 SDRAM Memory Controller. 

• Chapter 3: This Chapter presents an introduction to Cocotb and discusses The Verification 

Methodology. 

• Chapter 4: This chapter outlines the results of Block level verification phase.  

• Chapter 5: A Comparison between UVM Verification and A Cocotb Verification is 

discussed in this chapter. 

• Chapter 6: This chapter outlines the results of Top-level verification phase.  

• Chapter 7: The chapter consists of the conclusions and details possible future work
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Chapter 2: Design 
 

2.1 OVERVIEW  

In this chapter, we will discuss design of DDR5 SDRAM Controller. Our design will interface 

with CPU and DDR5 SDRAM Memory as shown in Figure 4: 

 

Figure 4: Big Picture of Design. 

to interface with CPU, we followed Native Interface and to interface with DDR5 SDRAM 

Memory we followed JEDEC79-5 Standard. For DDR5 SDRAM Memory, we chose x16 

Configuration with 3.2GHZ input clock frequency. This choice will affect the values of timing 

parameters as we will illustrate. Not all the features of DDR5 SDRAM Memory in JEDEC79-5 

Standard are scoped in our project. To choose features that will be implemented in our design, 

we divided features into three sections: 

2.1.1 Basic Features 

➢ Initialization 

➢ Activation 

➢ Precharge 

➢ Reading  

➢ Writing 

➢ Auto Precharge 

➢ Burst 

➢ Self-Refreshing 
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➢ Mode Register Operations 

2.1.2 Optional Features 

➢ On-Die ECC (Check Memory Error) 

➢ DDR5 ECC Transparency and Error Scrub 

➢ CRC (Check Bus Error)  

➢ Write Pattern Command 

➢ Refreshing  

➢ Power Down Mode  

2.1.3 Excluded Features 
All modes related to testing, training modes such as ZQ Calibration, Read Training, Change 

Clock Frequency, etc. 

2.2 SCOPE OF OUR DESIGN 

As a first step in design, we started our design by basic features mentioned above 

in section 2.1.1 and after we verify these operations, we will extend our project 

based on available time with other optional features of DDR5. There are also some 

modes we mentioned in section 2.1.3 we excluded them as there are related if we 

completed our design as a product and we need to test it in hardware so we 

excluded them from our design as we will not reach in our project to fabrication. 

To implement basic features these are the memory commands that will be used: 

➢ Activate (ACT)  

➢ Precharge (PREpb)  

➢ Read (RD) 

➢ Read w/Auto Precharge (RDA) 

➢ Write (WR)  

➢ Write w/Auto Precharge (WRA) 

➢ Mode Register Write (MRW) 

➢ Self_Refresh Entry (SRE)  

➢ NOP  
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➢ Deselect (DES)  

 

2.3 INPUTS AND OUTPUTS OF TOP MODULE 
After we chose features that will be implemented, we could determine inputs and outputs of our 

design from Native interface and JEDEC79-5 standard as shown in Figure 5: 

 

Figure 5 : Inputs and Outputs of Top Module. 

The description of each input is shown in Table 1, and also description of each output is shown 

in Table 2: 

 

 

Table 1: Inputs of Top Module [4] 

Signal Description 

CK_t, CK_c 

Differential clock of DDR5 SDRAM, all address and control input 

signals are sampled on the crossing of the positive edge of CK_t and 

negative edge of CK_c. 

Ctrl_Reset 
Control signal from CPU to controller to issue the initialization sequence 

to memory. It’s active high reset 

Ctrl_Read Read request (active high). 

Ctrl_Write Write request (active high). 

Ctrl_Burst 
When 1 defines alternate read/write burst mode (BC8) and when 0 

defines default BL16 mode. 
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Ctrl_Auto 

When asserted high along with Ctrl_Read or Ctrl_Write, causes the 

command to be issued as read with auto-precharge and write with auto-

precharge, respectively. 

Ctrl_ADD[30:0] Address that data will be read from memory or written in memory. 

Ctrl_DataIn[255:0] Data that will be written in memory during writing operation. 

CK_double 

Clock that has double frequency of SDRAM clock, DQS signals will be 

generated with positive edge of this clock, also data from memory will 

be sampled also on the positive edge of this clock 

 

Table 2: Outputs of Top Module [5] 

Signal Description 

Reset_n 

Active low asynchronous reset: reset is active when reset_n is low, and 

inactive when reset_n is high. reset_n must be high during normal 

operation and takes some values during initialization sequence. 

CS_n 

Chip Select: all commands are masked when CS_n is registered high. 

For one cycle commands (CS_n=0), for two cycle commands (CS_n=0 

for first cycle, CS_n=1 for second cycle). 

CA[13:0] 

Command/Address Inputs: CA signals provide the command and 

address inputs according to the command truth table in JEDEC79-5 

standard section 4.1 Table 241. 

DQ[15:0] Data Input/Output: Bi-directional data bus 

 

DQS_t,DQS_c 

Data Strobe: output with read data, input with write data. Edge-aligned 

with read data, centered in write data. DDR5 SDRAM supports 

differential data strobe only and does not support single-ended. 

Ctrl_DataOut[255:0] Data will be delivered from memory to CPU. 

Ctrl_Busy 

Control signal is sent to CPU to tell it to stop sending reading or 

writing requests as FIFO of commands became full or when there is 

initialization or self refresh for memory. 

 

 Assumptions & Notes 

1. We assume that Physical address that comes from CPU (Ctrl_ADD) will be 31 bit and address 

mapping will be one to one mapping as shown in Figure 6: 

 

Figure 6: Address Mapping [5]. 
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2. According to Native Interface data bus (Ctrl_DataIn, Ctrl_DataOut) is eight times the width of 

the SDRAM device data bus (DQ) but for simplicity we made data bus (Ctrl_DataIn, 

Ctrl_DataOut) is 16 times the width of the SDRAM device data bus (DQ) as default BL.  

2.4 OPERATION OF CONTROLLER 
To know blocks and detailed block diagram of our design, we could get this by defining 

operation of our design. We can summarize operation of memory controller in five points as 

follow [7]: 

1. Memory controller is responsible for queuing requests from CPU like read and write requests 

and also responsible for scheduling these requests to choose which request will be executed. 

2. It’s responsible for decoding these requests into memory commands and issue these 

commands to memory keeping timing constraints between these commands according to period 

of clock of SDRAM. 

3. In case of read request, it’s responsible for getting data from memory to CPU and vice versa in 

write request. 

4. As we talk about dynamic memory so it will need refresh every certain time, memory 

controller is responsible for issuing self-refresh sequence to memory. 

5.  Memory controller is also responsible for issuing initialization sequence to memory. 

From red highlighted keywords we can know which blocks that we need in our design to achieve 

operation of DDR5 SDRAM Controller: 

Queuing: Command_Address_FIFO, Write_Data_FIFO 

Decoding: Command_Decoder 

Memory Commands: Command_FSM 

Timing Constraints: Counters 

Self-Refresh Sequence: Self Refresh_FSM 

Initialization Sequence: Initialization_FSM 

So, block diagram of our design will be as shown in Figure 7 [8]: 
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Figure 7: Block Diagram of Top Module. 

2.5 DESIGN IN DETAIL 

2.5.1. Command_Decoder 

2.5.1.1. Block Diagram 

 

                                                           Figure 8: Block Diagram of Command Decoder. 

2.5.1.2. List of Inputs and Outputs 
Table 3: Inputs of Command Decoder 

Signal Description 

Ctrl_Reset 
Control signal from CPU to controller to issue the initialization sequence 

to the SDRAM. It’s active high reset 

CK_t, CK_c 

Differential clock of DDR5 SDRAM, all address and control input signals 

are sampled on the crossing of the positive edge of CK_t and negative 

edge of CK_c 

Bank_Group[1:0] Bank group address, it is Ctrl_ADD[1:0] 

Ctrl_Read Read request (active high) 

Ctrl_Write Write request (active high) 
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Ctrl_Burst 
When 1 defines alternate read/write burst mode (BC8 ) and when 0 

defines default BL16 mode 

Ctrl_Auto 

When asserted high along with Ctrl_Read or Ctrl_Write, causes the 

command to be issued as read with auto-precharge and write with auto-

precharge, respectively 

CMD_Done When 1 defines that command has been executed 

Reset_Done When 1 defines that initialization sequence has been executed 

SR_Done When 1 defines that self-refresh sequence has been executed 

Data_Transfer_Write 
Input signal from command FSM, when 1 defines that we need to set 

WR_Data_RD_En high to write data from WR_Data_FIFO to memory 

tREFI 
Flag signal of self-refresh counter to issue the self-refresh sequence to 

memory 

CMD_FIFO_Empty Empty flag of Command_Address FIFO 
 

Table 4: Outputs of Command Decoder 

Signal Description 

CMD_FIFO_RD_En Active high read enable of Command_Address_FIFO 

CMD_FIFO_WR_En Active high write enable of Command_Address_FIFO 

WR_Data_RD_En Active high read enable of Write_Data_FIFO 

WR_Data_WR_En Active high write enable of Write_Data_FIFO 

CMD[2:0] 
Defines type of command (read/write) that will be executed 

by Command_FSM. 

CMD_FSM_Enable Active high enable of Command_FSM 

INIT_FSM_Enable Active high enable of Initialization_FSM 

SR_FSM_Enable Active high enable of Self Refresh_FSM 

Same_Bank_Group 
When 1 defines that bank group address of current command 

is the same as address of previous command 

Memory_Busy 

When 1 indicates that memory in initialization or self-refresh 

sequence. When 0 indicates that memory in normal operation 

(reading or writing) 

 

2.5.1.3 Operation 
Command Decoder is the brain of our design, we can say it’s the controller of our controller so it 

will be responsible for four points as follow: 

A. Decode Processor Commands: 

Command Decoder decodes processor commands based on control signals from CPU 

(Ctrl_Read, Ctrl_Write, Ctrl_Burst, Ctrl_Auto) and sets signal CMD with code equivalent to the 

decoded command, the description of each processor command and it’s equivalent code are 

shown in Table 5: 
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Table 5: Description of Processor Commands 

Command Description CMD 

Read Read operation with default BL16 mode 000 

Write Write operation with default BL16 mode 001 

Read_With_AutoPrecharge 

Read operation with autoprecharge with default BL16 

mode 

010 

Write_With_AutoPrecharge 
Write operation with autoprecharge with default BL16 

mode 

011 

Read_Burst Read operation with BC8 mode 100 

Write_Burst Write operation with BC8 mode 101 

Read_Burst_AutoPrecharge Read operation with autoprecharge with BC8 mode  110 

Write_Burst_AutoPrecharge Write operation with autoprecharge with BC8 mode  111 

The decoded command based on control signals from CPU is shown in Table 6: 

Table 6: Decoding of Processor Commands 

Decoded Command Ctrl_Read Ctrl_Write Ctrl_Burst Ctrl_Auto 

Read 1 0 0 0 

Write 0 1 0 0 

Read_With_AutoPrecharge 1 0 0 1 

Write_With_AutoPrecharge 0 1 0 1 

Read_Burst 1 0 1 0 

Write_Burst 0 1 1 0 

Read_Burst_AutoPrecharge 1 0 1 1 

Write_Burst_AutoPrecharge 0 1 1 1 

 

 Assumption & Notes: 

As we saw that we have four control signals so we have 16 combinations of values, we showed 

only in Table 6 eight of them but the last eight combination will have Ctrl_Read=1 and 

Ctrl_Write=1 and this is an error from CPU and unintentional but our design deals with this error 

by decoding this case as read command as a default command but don’t store this command in 

Command_Address_FIFO. 

 

B. Detect Same Bank Group: 

Bank_Group signal represents bank group address; Command Decoder compares this address 

with address of previous command and set Same_Bank_Group signal high if they are equal. We 

need Same_Bank_Group signal in our design as the value of timing parameters between memory 

commands depends on if the two commands have the same bank group address or not. 
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C. Enable FSM: 

As we made three separate FSMs (Command, Initialization, Self-Refresh), so we made three 

enable signals (CMD_FSM_Enable, INIT_FSM_Enable, SR_FSM_Enable) to choose only one 

FSM to work and disable the other two FSMs during working of the selected FSM. There is also 

signal called Memory_Busy must be set high during working of INIT_FSM or SR_FSM. We can 

say that we have three operations Initialization, Self-Refresh and Normal Operation (reading and 

writing), so we should set priority for executing these operations. Priority of enabling them will 

be in this order: Initialization - Self Refresh - Normal. The description of each enable signal is 

shown in Table 7: 

 

 

 

 

Table 7: Description of Enable Signals of Finite State Machines 

Signal Description 

INIT_FSM_Enable 

Command Decoder should set this signal high when comes from CPU 

Ctrl_Reset signal then set it low to disable INIT_FSM after Reset_Done 

becomes high noting that Reset_Done will be input from INIT_FSM that is 

raised high when initialization sequence finishes. When INIT_FSM_Enable 

becomes high, Memory_Busy signal is raised high 

SR_FSM_Enable 

Command Decoder should set this signal high when comes from self-refresh 

counter tREFI signal, then set it low to disable SR_FSM after SR_Done 

becomes high noting that SR_Done will be input from SR_FSM that is 

raised high when self-refresh sequence finishes. When SR_FSM_Enable 

becomes high,Memory_Busy signal is raised high 

CMD_FSM_Enable 

Command Decoder should set this signal high when reading enable of 

Command_Address_FIFO becomes high then set it low to disable 

CMD_FSM after Memory_Busy comes high or CMD_Done becomes high 

noting that CMD_Done will be input from CMD_FSM that is raised high 

when command finishes. When CMD_FSM_Enable becomes 

high,Memory_Busy signal is set low 

 

D. Read &Write Enable Signals for FIFOs: 

Command decoder here will be responsible for driving values of enable signals of FIFOs. The 

description of each enable signal is shown in Table 8: 
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Table 8: Description of Enable Signals of FIFOs 

Signal Description 

CMD_FIFO_RD_En 

Command Decoder will set this enable signal high when 

Command_Address_FIFO is not empty and there isn’t initialization or 

self-refresh process running (i.e., Memory_Busy=0) and pervious 

command has been executed. Command Decoder will set this signal low 

in the next cycle of setting it high. 

CMD_FIFO_WR_En 

Command Decoder will set this signal high when comes from CPU read or 

write request, so Command Decoder will decode this request to command 

and set this enable signal high to store this command in 

Command_Address_FIFO and to handle error that we said before comes 

read and write request in the same time, Command Decoder will ignore 

this by not storing this command by disable this write enable signal in this 

case. Command Decoder will also set this signal low in the next cycle of 

setting it high. 

WR_Data_RD_En 

We defined signal called Data_Write_Transfer comes from 

Command_FSM as output of WRITING_DATA state to indicate that we 

need activate WR_Data_RD_En to store this data in memory so Command 

Decoder will set read enable of Write_Data_FIFO high when this signal is 

raised high and set it low when this signal is lowered low. 

WR_Data_WR_En 

Command Decoder will act also as CMD_FIFO_WR_En signal but this 

time, it will set this signal high when the request is write to store data that 

comes with write request in Write_Data_FIFO and also will set it low in 

the next cycle of setting it high. 

 

 Assumption & Notes 

Command Decoder set these enable signals low in the next cycle of setting it high to avoid 

unwanted read or write operation from FIFO, this thing isn’t applied on WR_Data_RD_En signal 

as we don’t want to disable reading from Write_Data_FIFO in next cycle ,we need read from it 

more than one cycle as memory takes data from controller with width of DQ bus(16 bit) and 

can’t take 256 bit in one cycle. So, Write_Data_Transfer signal will be responsible for setting 

this enable signal low when transfer data from controller to memory finishes. 
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2.5.2 Command_Address_FIFO 

2.5.2.1 Block Diagram 

 

Figure 9: Block Diagram of Command_Address_FIFO. 

2.5.2.2 List of Inputs & Outputs 
Table 9: Inputs of Command_Address_FIFO. 

Signal Description 

CMD_FIFO_Reset 
Active high reset signal for FIFO, it’s raised high when initialization 

sequence finishes. 

CK_t,Ck_c 

Differential clock of DDR5 SDRAM, all address and control input 

signals are sampled on the crossing of the positive edge of CK_t and 

negative edge of CK_c. 

CMD[2:0] Decoded Command comes from Command Decoder. 

Ctrl_ADD[30:0] Address that data will be read from memory or written in memory. 

CMD_FIFO_RD_En Read enable signal of FIFO comes from Command Decoder. 

CMD_FIFO_WR_En write enable signal of FIFO comes from Command Decoder. 

 

Table 10: Outputs of Command_Address_FIFO 

Signal Description 

FIFO OUT[33:0] 
Output of FIFO that contains information stored in FIFO (CMD and 

Ctrl_ADD concatenated) 

CMD_FIFO_FULL Flag when 1 defines that FIFO is full. 

CMD_FIFO_Empty Flag when 1 defines that FIFO is empty. 

 

2.5.2.3. Operation 

Command decoder receives from CPU command every clock cycle but to execute the command 

by memory it needs more than one clock cycle as speed of CPU differs from speed of memory. 

Memory also does internal operations and features (i.e., self-refresh, Initialization, etc.), so 

memory can't always handle processor commands only. So, to avoid ignoring commands or drop 

of commands from CPU, we will store these commands and their related addresses from CPU in 



DDR5 SDRAM Memory Controller Design and Verification 
 

PAGE | 29  
 

storage then after we finish command, we will take the next from storage to execute it and so on. 

We followed a simple policy First Come First Serve (FIFO) in scheduling and selecting which 

command will be executed. There are other polices that can achieve high performance than this 

policy but they will be more complex in implementation. 

 

 Assumption & Notes 

FIFO_OUT [33:31] represents CMD and FIFO_OUT [30:0] represents Ctrl_ADD. 

 

2.5.3 Write_Data_FIFO 

2.5.3.1 Block Diagram 

 

Figure 10: Block Diagram of Write_Data_FIFO 

 

 

2.5.3.2 List of Inputs & Outputs 
Table 11: Inputs of Write_Data_FIFO 

Signal Description 

CK_t,CK_c 

Differential clock of DDR5 SDRAM,all address and control input signals 

are sampled on the crossing of the positive edge of CK_t and negative 

edge of CK_c 

Ctrl_DataIn[255:0] 
Data comes from CPU that will be written in memory during writing 

operation 

WR_Data_RD_En Read enable signal of FIFO comes from Command Decoder  

WR_Data_WR_En Write enable signal of FIFO comes from Command Decoder  
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Table 12: Outputs of Write_Data_FIFO 

Signal 
Description 

FIFO_WR_Data[255:0] Output of FIFO that contains data stored in FIFO to store it in memory 

 

2.5.3.3 Operation 
As we discussed before why we need FIFO and answered this question that we need it to store 

information that comes from CPU to used it later ,in Command_Address_FIFO we store 

command and address.It’s still data need to be stored when write request comes  then we made 

Write_Data_FIFO and here comes question why we used two FIFOs instead of only one and we 

can answer this question that we need to read data from controller to store it in memory in time 

differs from time of reading command and address so we will need two read enables so we made 

better a seperate FIFO for data 

2.5.4 Calculation of Depth of FIFOs 
FIFO depth calculation is a critical phase in the design which needs to consider the worst case in 

all aspects and to do some assumptions [6]: 

 Assumptions 

1. Burst length (No. of data items to be transferred) = 120  

2. Write frequency (Processor frequency) = 3.2 GHz 

3. Reading frequency (Memory frequency) = 3.2 GHz 

4. Command execution in 30 cycles (worst case) 

 Calculations: 

➢ Time required to write one data = 
1

3.2𝐺𝐻𝑧
 = 0.3125ns 

➢ Time required to read one data (execute command) =30* 
1

3.2𝐺𝐻𝑧
 = 9.375ns 

➢ Time required to write all the data in the burst = 120*0.3125 = 37.5ns 

➢ Number of data items can be read in a duration of 37.5ns = 
37.5𝑛𝑠

9.375𝑛𝑠
 = 4 

➢ The remaining no. of information to be stored in the FIFO = 120 – 4 = 116  

Then, the minimum depth of the FIFO in our case should be equal 116.In our code for 

simplicity we used depth=16 but in practical we should use depth as we mentioned. 
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2.5.5 Counters 

2.5.5.1 Block Diagram 

 

Figure 11: Block Diagram of Counters. 

2.5.5.2 Operation 

There are timing parameters in our design, then we used this block that contains some counters 

to count these parameters. Each Counter has Enable to enable counting when we enter certain 

state and want to count some parameters, after we reached value of timing parameter that we 

count it, counter outputs a flag indicates that counting has finished and after finishing counting, 

reset input to counter is raised high to reset counter. 

2.5.5.3 List of Timing Parameters 
Table 13: Initialization Timing Parameters [5] 

Timing Parameter Symbol Value 

Minimum reset_n low time after completion 

of voltage Ramp 
tINIT1 200 µs 

Minimum cs_n low time before reset_n high tINIT2 10 ns 

Minimum cs_n low time after reset_n high tINIT3 4 ms 

Minimum time for dram to register exit on 

cs_n with cmos 
tINIT4 2 µs 

Minimum cycles required after cs_n high tINIT5 3 nCK 

Minimum time from exit reset to first valid 

configuration command 
tXPR 2 µs 

Minimum delay from MRR or MRW 

command to any other valid command 
tMRD max (14ns, 16nCK) 

ZQ Calibration Time tZQCAL 1 µs 

ZQ Calibration Latch Time tZQLAT max(30ns,8nCK) 
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Table 14: Activate Timing Parameters [5]. 

Timing Parameter Symbol Value 

ACT to Precharge 

command delay 
tRAS 32 ns 

ACT to ACT Command 

delay to same bank group 
tRRD_L Max(8nCK, 5ns) 

ACT to ACT Command 

delay to different bank 

group 

tRRD_S 8nCK 

 

Table 15: Precharge Timing Parameters [5]. 

Timing Parameter Symbol Value 

Precharge delay tRP 13.750 ns 

 

Table 16: Reading Timing Parameters [5]. 

Timing Parameter Symbol Value 

Minimum Read to Read 

command delay for same 

bank group 

tCCD_L_slr Max(8nCK, 5ns) 

Minimum Read to Read 

command delay for 

different bank group 

tCCD_S_slr 8 nCK 

Minimum Read to Write 

command delay for same 

bank group 

tCCD_L_RTW_slr 20 ns 

Minimum Read to Write 

command delay for 

different bank group 

tCCD_S_RTW_slr 15 ns 

Internal Read command 

to Precharge command 

delay 

tRTP Max(12nCK, 7.5ns) 

 

Table 17: Writing Timing Parameters [5]. 

Timing Parameter Symbol Value 

Minimum Write to Write 

command delay for same 

bank group 

tCCD_L_WR_slr Max(32nCK , 20ns) 

Minimum Write to Write 

command delay for 

different bank group 

tCCD_S_WR_slr 8 nCK 
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Minimum Write to Read 

command delay for same 

bank group 

tCCD_L_WTR_slr 20 ns 

Minimum Write to Read 

command delay for 

different bank group 

tCCD_S_WTR_slr 15 ns 

 

Table 18: Self-Refresh Timing Parameters [5]. 

Timing Parameter Symbol Value 

Command pass disable 

delay 
tCPDED 5 ns 

Self-Refresh CS_n low 

Pulse width 
tCSL 10 ns 

Self-Refresh exit CS_n 

high 
tCASRX 0 

Self-Refresh exit CS_n 

High Pulse width 
tCSH_SRExit 13 ns 

Self-Refresh exit CS_n 

Low Pulse width 
tCSL_SRExit 3 nCK 

Exit Self-Refresh to next 

valid command NOT 

requiring a DLL 

tXS 2µs 

Time interval between 

two selfrefresh 

operations 

tREFI 3.9 µs 

 

 Assumption &Notes 

1. These values of timing parameters are listed in JEDEC79-5 standard in section 3.3.1 

Table 11, Table 329, Table 20, Table 467, Table 520, Table 481 and Table 525. 

2. Our counters count in unit of clock cycles, so we needed to convert these values of timing 

parameters to form of multiple of clock cycles by dividing value of timing parameter /clock 

period 

3. Enable and reset signals comes from FSMs blocks. 

4. Outputs of these counters will be mainly inputs to FSMs blocks. 

5. As we discussed before that each counter for timing parameter has reset, enable and flag 

that indicated counting has finished. Naming that we use here for reset signal of timing 

parameter counter is named by name of timing parameter and “Reset” word attached to it(for 
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ex: tINIT1_Reset) ,the same thing for enable signal but “En” word is attached to it(for 

ex:tINIT1_En) and for flag has name as the name of timing parameter(for ex:tINIT1). 

2.5.6 Command_FSM 

2.5.6.1 Block_Diagram 

 

Figure 12: Block Diagram of Command_FSM 

2.5.6.2 List of Inputs and Outputs 
Table 19: Inputs of Command_FSM 

Signal Description 

CK_t, CK_c 

Differential clock of DDR5 SDRAM, all address and control input signals 

are sampled on the crossing of the positive edge of CK_t and negative edge 

of CK_c. 

CK_double 

Clock that has double frequency of SDRAM clock, DQS signals will be 

generated with positive edge of this clock, also data from memory will be 

sampled also on the positive edge of this clock. 

Ctrl_ADD[31:0] Address that data will be read from memory or written in memory. 

FIFO_WR_Data[15:0] Output of write_data_FIFO. 

CMD_FSM_Enable Enable signal of Command_FSM comes from Command Decoder. 

Same_Bank_Group Flag signal comes from Command Decoder. 

CMD[2:0] Decoded commend comes from Command Decoder. 

Counter_Flags 
Activate parameters, Percharge parameters, Read Parameters-Write 

parameters. 
Table 20: Outputs of Command_FSM 

Signal Description 

Ctrl_DataOut[255:0] Data will be delivered from memory to CPU 

CA[13:0] 

Command/Address Inputs: CA signals provide the command and address 

inputs according to the Command Truth Table in standard section 4.1 

Table 241 
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CS_n 

Chip Select: all commands are masked when cs_n is registered high. for 

one cycle commands (cs_n=0), for two cycle commands (cs_n=0 for first 

cycle,cs_n=1 for second cycle). 

CMD_Done When 1 defines that command has been executed  

Data_Transfer_Write 

When 1 defines that we need to set WR_Data_RD_En high to write data 

from WR_Data_FIFO to memory. 

DQ[15:0] Data Input/Output: Bi-directional data bus. 

DQS_t,DQS_c 

Data Strobe: output with read data, input with write data. Edge-aligned 

with read data, centered in write data. DDR5 SDRAM supports 

differential data strobe only and does not support single-ended. 

Counter_Enable_Signals, 

Counter_Reset_Signals 

Activate parameters -Percharge Parameters-Read Parameters-Write 

parameters. 

 

2.5.6.3 Operation 

This block will be responsible for implementing finite state machine that controls normal 

operation of memory (reading and writing), the simplified state diagram that describes reading 

and writing operation is shown in JEDEC79-5 standard in section 3.1 and Figure 13 shows this 

simplified state diagram. 
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Figure 13: Simplified State Diagram, JEDEC Reference [5]. 

With help of this simplified state diagram and timing diagrams in JEDEC79-5 standard section 4.7 

and section 4.8 that describes reading and writing operation and the pattern of preamble and 

postamble of these operations and these timing diagrams are shown in Figure 14 and Figure 15. 

So, we could figure out the detailed state diagram for the finite state machine that controls normal 

operation as will be illustrated later. 
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Figure 14: Timing Diagram for Read Burst Operation (BL16), JEDEC Reference [5]. 

 

Figure 15: Timing Diagram for Write Burst Operation (BL16), JEDEC Reference [5]. 

Before we talk about this state diagram, there is an important thing we should handle it in this FSM 

and it is back-to-back operations (i.e., read after read, read after write, write after write, write after 

read). In back-to-back operations we have three scenarios, the description of each scenario is 

shown in Table 21: 

Table 21: Scenarios of Back-to-Back Operations [5]. 

Scenario Description 

Bank is not activated 

It means that operation is done on row in bank 

has not been activated before so in this scenario 

we will need to activate this row in this bank 
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Bank is activated and same row 

 

It means that operation is done on the same row 

in bank as the previous operation so we will 

proceed to execute operation and no need for 

precharge operation  

Bank is activated and different row 

 

It means that operation is done on the same bank 

as the previous operation but on different row so 

here we will need to execute precharge operation 

for row of previous operation then activate row of 

the current operation then proceed to execute the 

operation on the activated row 

 

To handle back to back operations ,we used array as storage to store activated rows in banks, the 

length of the array is 16 as we have 4 bank groups each has 4 banks so we have 16 banks ,the entry 

for this array will bank group address and group address concatenated(4 bits) and the content of 

each location in array will be row address and statues bit for this row to indicate row is activated 

or not (if 1 active and if 0 not active) so width of each location will be 19 bit (18 bits for row 

address and 1 bit for statues bit).the shape of array will be as shown in Table 22: 

 

Table 22:Storage of Activate Rows 

Entry(Bank Group,Bank)(4 bits) Row Address(18 bits) Status bit 

0000 xxxxxxxxxxxxxxxxxx 1 

0001 xxxxxxxxxxxxxxxxxx 0 

0010 xxxxxxxxxxxxxxxxxx 1 

0011 xxxxxxxxxxxxxxxxxx 0 

0100 xxxxxxxxxxxxxxxxxx 1 

0101 xxxxxxxxxxxxxxxxxx 0 

0110 xxxxxxxxxxxxxxxxxx 1 

0111 xxxxxxxxxxxxxxxxxx 0 

1000 xxxxxxxxxxxxxxxxxx 1 

. 

. 

. 

xxxxxxxxxxxxxxxxxx 1 

 

When row is activated, it is stored in array and its status bit is set 1 and when the row is precharged 

its statues bit is set 0. 

Here we can show detailed state diagram for normal operations as shown in Figure 

12: 
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Figure 16: Command_FSM 

The description of each state is illustrated in Table 23: 

Table 23: Description of each state in Command_FSM 

State Description 

IDLE 

In this state, CMD_FSM_Enable signal is checked if it’s 

asserted high or not, if it’s asserted high normal operation is 

started by going to WAIT_ACT state 

WAIT_ACT 

In this state, timing constraints are checked between 

consecutive active commands and the timing constraints that 

are checked will differ according the two consecutive 

operations are in same bank group or not and we can detect this 

through same_bank_group signal. If they are in same bank 

group tRRD_L is checked and if they are not tRRD_S is 

checked. If timing constraints are satisfied, normal operation 

will be continued by going to ACT_CYCLE1 state. 

ACT_CYCLE1 

As active command from commands that are executed in two 

cycles, each cycle different information is sent to memory so 

we send information of active command in two states 

ACT_CYCLE1 and ACT_CYCLE2 so this state is followed 

with ACT_CYCLE2 state without checking any conditions. 

ACT_CYCLE2 

In this state, information of active command in the second cycle 

is sent to memory, then it’s followed by BANK_ACTIVE state 

without checking any conditions 
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BANK_ACTIVE 

In this state, three different scenarios of back to back operations 

are checked, checking if bank is not active so go to 

WAIT_ACT state to activate it or if bank is active then 

checking if the row of current operation is the same as previous 

or not. If they are the same, checking if the current operation is 

read or write if read go to WAIT_READ state and if write go 

to WAIT_WRITE state. If they are different, go to 

WAIT_tRAS state to precharge the previous row then activates 

the current row. 

WAIT_tRAS 

Before applying precharge operation, timing between active 

command and precharge command should be checked so in this 

state tRAS is checked and if it’s satisfied, go to 

PRECHARAGE state. 

PRECHARGE 

In this state, information of precharge command is sent to 

memory and it’s one cycle command so it needs only one state 

then go to WAIT_tRP state without checking any conditions. 

WAIT_tRP 

Precharge operation needs time to be executed by memory so in 

this state this time(tRP) is checked before executing other 

operations and if this time is satisfied, go to IDLE state. 

WAIT_READ 

In this state, timing constraints of reading command are 

checked. There are two timing constraints depending on if the 

previous command was read or write. So, in this state first 

checking if previous command was read or write. If it’s read 

timing related to read-to-read delay is checked and also here 

timing parameter that is checked will differ if they are in same 

bank group or not, if they are same tCCD_L_slr is checked and 

if they are not tCCD_S_slr is checked. If it’s write timing 

related to write to read delay is checked and also here timing 

parameter that is checked will differ if they are in same bank 

group or not, if they are same tCCD_L_WTR_slr is checked 

and if they are not tCCD_S_WTR_slr is checked. If these 

timing constraints are satisfied, go to READING_CYCLE1 

state. 

READING_CYCLE1 

As read command from commands that are executed in two 

cycles, each cycle different information is sent to memory so 

information of read command are sent in two states 

READING_CYCLE1 and READING_CYCLE2 so this state is 

followed with READING_CYCLE2 state without checking 

any conditions. 

READING_CYCLE2 

In this state, information of read command in the second cycle 

is sent to memory, then go to WAIT_READ_LATENCY state 

without checking any conditions. 

WAIT_READ_LATENCY 

In this state, Read Latency (RL-2 clock cycles for preamble) is 

checked as shown in Figure 10 and if it’s satisfied, go to 

READING_DATA state. 
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READING_DATA 

In this state, reading operation are actually executed and this as 

shown in Figure 10 ,this done by receiving preamble from 

memory then read data with burst length that CPU has chosen it 

,then after receiving data postamble is sent by memory to 

controller, after receiving postamble we can say that reading 

operation is done .This state in the beginning is implemented in 

un synthesizable manner but as we will discuss in detail in this 

chapter section 6 that we implemented it in synthesizable 

manner by calling Read FSM that will perform reading 

operation through states and after finishing it sends signal 

called Read_Done, this signal is checked in 

WAIT_READ_DONE state so this state is followed by 

WAIT_READ_Done state. 

WAIT_READ_DONE 
In this state, Read_Done signal is checked. If it’s asserted high, 

go to READ_DONE state. 

READ_DONE 

In this state, it’s checked if the command was with 

autoprecharge or not. If it’s with auto precharge ,go to 

WAIT_tRAS state to apply precharge operation and if it’s not 

go to BANK_ACTIVE state waiting another operation. 

WAIT_WRITE 

In this state, timing constraints of writing command are 

checked. There are two timing constraints depending on if the 

previous command was read or write. So, in this state first 

checking if pervious command was read or write. If it’s write 

timing related to write to write delay is checked and also here 

timing parameter that is checked will differ if they are in same 

bank group or not, if they are same tCCD_L_WR_slr is 

checked and if they are not tCCD_S_WR_slr is checked. If it’s 

read timing related to read to write delay is checked and also 

here timing parameter that is checked will differ if they are in 

same bank group or not, if they are same tCCD_L_RTW_slr is 

checked and if they are not tCCD_S_RTW_slr is checked.If 

these timing constraints are satisfied, go to 

WRITING_CYCLE1 state. 

WRITING_CYCLE1 

As write command from commands that are executed in two 

cycles, each cycle different information is sent to memory so 

information of write command is sent in two states 

WRITING_CYCLE1 and WRITING_CYCLE2 this state is 

followed by WRITING_CYCLE2 state without checking any 

conditions. 

WRITING_CYCLE2 

In this state, information of write command in the second cycle 

is sent to memory, then go to WAIT_WRITE_LATENCY 

state without checking any conditions. 

WAIT_WRITE_LATENCY 

In this state, Write Latency (WL-2 clock cycles for preamble) is 

checked as shown in Figure 11 and if it’s satisfied, go to 

WRITING_DATA state 
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WRITING_DATA 

In this state, writing operation are actually executed and this as 

shown in Figure 11 ,this done by sending preamble to memory 

then write data with burst length that CPU has chosen it ,then 

after writing data postamble is sent by controller to memory, 

after sending postamble we can say that writing operation is 

done .This state in the beginning is implemented in un 

synthesizable manner but as we will discuss in detail in this 

chapter 2 section 6 that we implemented it in synthesizable 

manner by calling Write FSM that will perform writing 

operation through states and after finishing it sends signal 

called Write_Done, this signal is checked in 

WAIT_WRITE_DONE state this state is followed by 

WAIT_WRITE_Done state. 

WAIT_WRITE_DONE 
In this state, write_Done signal is checked. If it’s asserted high, 

go to Write_DONE state. 

WRITE_DONE 

In this state, it’s checked if the command was with 

autoprecharge or not. If it’s with auto precharge, go to 

WAIT_tRAS state to apply precharge operation and if it’s not 

go to BANK_ACTIVE state waiting another operation. 

 

The outputs of each state are illustrated in Table 24: 

Table 24: Outputs of each state in Command_FSM 

State Outputs 

IDLE 

➢ tRP_Reset = 1 

➢ tRP_En = 1 

WAIT_ACT No Outputs 

ACT_CYCLE1 

➢ CS_n = 0  

➢ CA = ACT_Cycle1 

If they are same bank group 

➢ tRRD_L_Reset = 1 

➢ tRRD_L_En = 0 

If they are not same bank group 

➢ tRRD_S_Reset = 1 

➢ tRRD_S_En = 0 
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ACT_CYCLE2 

➢ Store this row in array of activated rows and set its 

status bit high. 

➢ CS_n = 1  

➢ CA = ACT_Cycle2 

➢ tRAS_En =1 

If they are same bank group 

➢ tRRD_L_En = 1 

If they are not same bank group 

➢ tRRD_S_En = 1 

BANK_ACTIVE No Outputs 

WAIT_tRAS No Outputs 

PRECHARGE 

➢ Remove this row from array of activated rows by 

setting its status bit low. 

➢ CS_n=0 

➢ CA=PREpb 

➢ tRAS_Reset = 1 

➢  tRAS_En = 0  

➢  tRP_En = 1 

WAIT_tRP No Outputs 

WAIT_READ No Outputs 

READING_CYCLE1 

➢ CS_n=0 

➢ CA=RD_Cycle1 

➢ tCCD_L_WTR_slr_Reset= 1 

➢  tCCD_S_WTR_slr_Reset = 1  

➢  tCCD_L_slr_Reset = 1 

➢  tCCD_S_slr_Reset = 1 

➢  tCCD_L_WTR_slr_En = 0 
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➢  tCCD_S_WTR_slr_En = 0 

➢  tCCD_L_slr_En = 0 

➢  tCCD_S_slr_En = 0 

READING_CYCLE2 

➢ CS_n=1 

➢ CA=RD_Cycle2 

➢ RL_En = 1 

If they are same bank group 

➢ tCCD_L_slr_En = 1 

➢ tCCD_L_RTW_slr_En = 1 

If they are not same bank group 

➢ tCCD_S_slr_En = 1 

➢ tCCD_S_RTW_slr_En = 1 

WAIT_READ_LATENCY No Outputs 

READING_DATA 

➢ Set Pervious command as read 

➢ RL_Reset = 1 

➢  RL_En = 0 

➢ Enable Read FSM 

WAIT_READ_DONE No Outputs 

READ_DONE 

➢ CMD_Done=1 

➢ Disable Read FSM 

WAIT_WRITE No Outputs 

WRITING_CYCLE1 

➢ CS_n=0 

➢ CA=WR_Cycle1 

➢ tCCD_L_RTW_slr_Reset = 1 

➢ tCCD_S_RTW_slr_Reset =1  

➢ tCCD_L_WR_slr_Reset = 1 
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➢  tCCD_S_WR_slr_Reset = 1  

➢  tCCD_L_RTW_slr_En = 0 

➢  tCCD_S_RTW_slr_En = 0  

➢  tCCD_L_WR_slr_En =0  

➢  tCCD_S_WR_slr_En = 0  

WRITING_CYCLE2 

➢ CS_n=1 

➢ CA=WR_Cycle2 

➢ WL_En = 1 

If they are same bank group 

➢ tCCD_L_WR_slr_En = 1 

➢ tCCD_L_WTR_slr_En =1 

If they are not same bank group 

➢ tCCD_S_WR_slr_En =1 

➢ tCCD_S_WTR_slr_En =1 

WAIT_WRITE_LATENCY No Outputs 

WRITING_DATA 

➢ Set Pervious command as write 

➢ WL_Reset = 1 

➢  WL_En = 0 

➢ Enable Write FSM 

➢ Data_Transfer_Write = 1 

WAIT_WRITE_DONE ➢ Data_Transfer_Write = 0 

WRITE_DONE 

➢ CMD_Done=1 

➢ Disable Write FSM 
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 Assumption & Notes 

1. We reset counters in the next state of finishing of counting. 

2. In Table 24 of outputs, CA pins are written in form of basic commands that are in Command 

Truth Table in JEDEC79-5 Standard section 4.1 Table 241. 

3. As we know that there are commands with auto precharge, the difference between it and 

without auto precharge in pattern of CA pins in second cycle of command and there is a bit 

called AP, we set it low in case of autoprecharge and high in case of without autoprecharge. 

4. In any state, if timing constraint isn’t satisfied, we will wait in this state until it’s satisfied. 

5. In Figure 10, RL=CL and in Figure 11 WL=CWL. 

 

2.5.7 Initialization_FSM 

2.5.7.1 Block Diagram 

 

Figure 17: Block Diagram of Initialization_FSM 

 

2.5.7.2 List of Inputs and Outputs 
 

Table 25: Inputs of Initialization_FSM 

Signal Description 

CK_t, CK_c 

Differential clock of DDR5 SDRAM,all address and 

control input signals are sampled on the crossing of the 

positive edge of CK_t and negative edge of CK_c 

INIT_FSM_Enable 
Enable signal of Initialization_FSM comes from 

Command Decoder 

Counter_Flags Initialization parameters 
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Table 26: Outputs of Initialization_FSM 

Signal Description 

Reset_n 

Active low asynchronous reset: reset is active when reset_n 

is low, and inactive when reset_n is high. reset_n must be 

high during normal operation. 

CA[13:0] 

Command/Address Inputs: CA signals provide the 

command and address inputs according to the Command 

Truth Table in JEDEC standard section 4.1 Table 241 

CS_n 

Chip Select: All commands are masked when CS_n is 

registered high. For one cycle commands (CS_n=0), for two 

cycle commands (CS_n=0 for first cycle, CS_n=1 for 

second cycle). 

Reset_Done 
When 1 defines that initialization sequence has been 

executed. 

Counter_Enable_Signals

, 

Counter_Reset_Signals 

Initialization parameters. 

 

2.5.7.3 Operation 

This block will be responsible for implementing finite state machine that controls initialization 

sequence for memory, we construct this finite state machine shown in Figure 15 based on timing 

diagram that describes initialization sequence in JEDEC79-5 standard section 3.3.1 and it’s 

shown in Figure 18 

 

Figure 18: Reset and Initialization Sequence at Power-on Ramping, JEDEC Reference [5]. 
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Figure 19: Initialization _FSM 

 

Table 27:  Description of each state in Initialization_FSM. 

State Description 

IDLE 
In this state, INIT_FSM_Enable is checked if it’s asserted high or not, if it’s 

asserted high, go to State 1 . 

State 1 
In this state, Some outputs like CS_n , CA and Reset_n takes some values for 

time interval tINIT1 as shown in Figure 14,then go to State 2. 

State 2 
In this state, Some outputs like CS_n , CA and Reset_n takes some values for 

time interval tINIT1-tINIT2 as shown in Figure 14,then go to State 3. 

State 3 
In this state, some outputs like CS_n, CA and Reset_n takes some values for time 

interval tINIT3 as shown in Figure 14, then go to State 4 

State 4 
In this state, some outputs like CS_n, CA and Reset_n takes some values for time 

interval tINIT4 as shown in Figure 14, then go to NOP state 

NOP 

In this state, we wait for three clock  cycles (NOP_Count) and also Some outputs 

like CS_n ,CA and Reset_n takes some values for this interval as shown in 

Figure 14 then go to Wait_MRW state 

Wait_MRW 

In this state, some outputs like CS_n, CA and Reset_n takes some values for time 

interval tMRW (tXPR+tMRD+tZQCAL+tZQLAT) as shown in Figure 14, then 

go to MRW_Cycle1 state 

MRW_Cycle1 

As Mode_Register_Write command from commands that are executed in two 

cycles, each cycle different information are sent to memory information of 

Mode_Register_Write command is sent in two states MRW_Cycle1 and 

MRW_Cycle2 this state is followed by MRW_Cycle2 state without checking 

any conditions 
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MRW_Cycle2 

In this state, information of Mode_Register_Write command in the second cycle 

is sent to memory, then go to IDLE state without checking any conditions 

waiting another initialization request. In this state self-refresh timer is also 

enabled 
 

 

Table 28: Outputs of each state in Initialization_FSM 

State Outputs 

IDLE 

➢ Reset_Done=0 

➢ tINIT1_Reset=0 

➢ tINIT2_Reset=0 

➢ tINIT3_Reset=0 

➢ tINIT4_Reset=0 

➢ tMRW_Reset = 0 

➢ NOP_Count_Reset=0 

State 1 

➢ tINIT1_En=1 

➢ Reset_n=0 

➢ CS_n=don’t care 

➢ CA=don’t care 

State 2 

➢ tINIT2_En=1 

➢ tINIT1_Reset=1 

➢ tINIT1_En=0 

➢ Reset_n=0 

➢ CS_n=0 

➢ CA=don’t care 

State 3 

➢ tINIT3_En=1 

➢ tINIT2_Reset=1 
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➢ tINIT2_En=0 

➢ Reset_n=1 

➢ CS_n=0 

➢ CA=don’t care 

State 4 

➢ tINIT3_Reset=1 

➢ tINIT4_En=1 

➢ tINIT3_En=0 

➢ Reset_n=1 

➢ CS_n=1 

➢ CA=All Ones 

NOP 

➢ tINIT4_Reset=1 

➢ tINIT4_En=0 

➢ NOP_Count_En=1 

➢ CS_n=0 

➢ CA=NOP 

Wait_MRW 

➢ NOP_Count_Reset=1 

➢ NOP_Count_En=0 

➢ tMRW_En=1 

MRW_Cycle1 

➢ tMRW_Reset=1 

➢ tMRW_En=0 

➢ CS_n=0 

➢ CA=MRW_Cycle1 
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MRW_Cycle2 

➢ CS_n=1 

➢ CA=MRW_Cycle2 

➢ Reset_Done=1,tREFI_En =1 

 

2.5.8 Self Refresh_FSM 

2.5.8.1 Block Diagram 
 

 

Figure 20: Block Diagram of Self-Refresh _FSM 

2.5.8.2 List of Inputs and Outputs 
 

Table 29: Inputs of Self Refresh_FSM 

Signal Description 

CK_t, CK_c 

Differential clock of DDR5 SDRAM, all address and control 

input signals are sampled on the crossing of the positive edge 

of CK_t and negative edge of CK_c 

SR_FSM_Enable 
Enable signal of Self Refresh_FSM comes from Command 

Decoder 

Counter_Flags Self-Refresh parameters 
 

Table 30: Outputs of Self Refresh_FSM 

Signal Description 

CS_n 
Chip Select: All commands are masked when CS_n is 

registered high. For one cycle commands (CS_n=0),for 
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two cycle commands(CS_n=0 for first cycle,CS_n=1 for 

second cycle) 

CA[13:0] 

Command/Address Inputs: CA signals provide the 

command and address inputs according to the Command 

Truth Table in JEDEC standard section 4.1 Table 241 

SR_Done 
When 1 defines that self-refresh sequence has been 

executed 

Counter_Enable_Signals, 

Counter_Reset_Signals 
Self-Refresh parameters 

 

2.5.8.3 Operation 

This block will be responsible for implementing finite state machine that controls self-refresh 

sequence for memory, we construct this finite state machine shown in Figure 18 based on timing 

diagram that describes self-refresh sequence in JEDEC79-5 standard section 4.9 and it’s shown 

in Figure 21 

 

Figure 21: Self-Refresh Entry/Exit Timing with One-Cycle Exit Command, JEDEC Reference [5]. 
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Figure 22: Self-Refresh _FSM 

 

Table 31: Description of each state in Self Refresh_FSM 

State Description 

IDLE 
In this state, SR_FSM_Enable is checked if it is asserted 

high or not, if it’s asserted high, go to SRE state. 

SRE 

It’s self-refresh entry command state, in this state self-

refresh entry command (SRE) is sent to memory then go to 

DES_CMDS state without checking any conditions. 

DES_CMDS 

In this state amount of number of Deselect Commands are 

sent to memory for time interval tCPDED as shown in 

Figure 17 then go to SR_Mode state. 

SR_Mode 

In this state, self-refresh operation is entered. Some outputs 

like CS_n and CA takes some values for time interval tCSL 

as shown in Figure 17.If tCSL is satisfied then go to 

WAIT_tCASRX state. 

WAIT_tCASRX 

In this state, some outputs like CS_n and CA takes some 

values for time interval tCASRX as shown in Figure 17. If 

tCASRX is satisfied then go to WAIT_tCSH_SRExit state 

WAIT_tCSH_SRExit 

In this state, Some outputs like CS_n and CA takes some 

values for time interval tCSH_SRExit as shown in Figure 17. 

If tCSH_SRExit is satisfied then go to NOP0 state 
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NOP0 

In this state, information of NOP command is sent to 

memory then it’s followed by NOP1 state without checking 

any conditions. 

NOP1 

In this state, information of NOP command is sent to 

memory then it’s followed by NOP2 state without checking 

any conditions. 

NOP2 

In this state, information of NOP command is sent to 

memory then it’s followed by CHECK_tCSL_SRExit state 

without checking any conditions. 

CHECK_tCSL_SRExit 

In this state, self-refresh operation is excited by checking 

tCSL_SRExit as shown in Figure 17. If it’s satisfied then go 

to WAIT_tXS state 

WAIT_tXS 

In this state, tCASRX is checked. If it is satisfied then go to 

IDLE state waiting timer of self-refresh expires to start 

another self-refresh operation. 
 

Table 32: Outputs of each state in Self Refresh_FSM. 

State Outputs 

IDLE 

➢ tXS_Reset = 1 

➢ tXS_En = 0 

➢ SR_Done = 0 

SRE 

➢ tREFI_Reset = 1 

➢ tREFI_En = 0 

➢ CS_n = 0 

➢ CA = SRE 

➢ tCPDED_En=1 

DES_CMDS 

➢ CS_n = 1 

➢ CA = DES 

SR_Mode 

➢ tCPDED_Reset=1 

➢ tCPDED_En = 0 
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➢ tCSL_En=0 

WAIT_tCASRX 

➢ tCSL_Reset=1 

➢ tCSL_En = 0 

➢ tCASRX_En=1 

➢ CA = All Ones 

WAIT_tCSH_SRExit 

➢ tCASRX_Reset=1 

➢ tCASRX_En = 0 

➢ tCSH_SRExit_En=1 

➢ CS_n = 1 

NOP0 

➢ tCSH_SRExit_Reset=1 

➢ tCSH_SRExit_En = 0; 

➢ tCSL_SRExit_En=1 

➢ CS_n = 0 

➢ CA = NOP 

NOP1 

➢ CS_n = 0 

➢ CA =NOP 

NOP2 

➢ CS_n = 0 

➢ CA = NOP 

CHECK_tCSL_SRExit ➢ CS_n = 1 

WAIT_tXS 

➢ tCSL_SRExit_Reset=1 

➢ tCSL_SRExit_En = 0 

➢ tXS_En = 1 

If tXS is satisfied 

➢ SR_Done = 1 , tREFI_En = 1 
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 Assumption & Notes 

As shown in Figure 17, that there is overlapping between tCSL and tCASRX. The higher priority 

for tCSL, it should be satisfied first then tCASRX is checked, if it’s satisfied CS_n is raised 

high.to avoid making output depends on condition of tCASRX , we made two states SR_Mode to 

check that tCSL is satisfied then go to WAIT_tCASRX to check tCASRX if it’s satisfied or not . 

2.6 DESIGN ENHANCEMENT 

There is a big difference between making the design work properly in its functionality only (the 

design is bit accurate and cycle accurate only) and making it fully synthesizable to model it with 

actual gates without any problems or violations. 

There were many changes in the design to overcome synthesis problems and this is a brief of 

those changes: 

➢ Problem_1:to generate CK_t, CK_c and CK_double, we used block called clock generator 

to generate them but the fact that this isn't a synthesizable block as shown in Figure 23: 

 

Figure 23: Clock Generator isn’t synthesizable 

✓ Solution_1: remove Clock generator block and make these clocks as input and generate 

them by stimulus from environment. 

➢ Problem_2: we were relying on the cross of the differential clock to sample any information 

but this couldn’t be understood by synthesizer and causes problem of ambiguous clock 

triggering as shown in Figure 24: 

 

Figure 24: Problem of ambiguous clock triggering 

✓ Solution_2: make it trigger with one clock only (not the cross of the differential clock), we 

got rid of one of the differential clock to get understood by the synthesizer and sample 

information with triggering edge of the other clock. 

➢ Problem_3: we were doing READING_DATA and WRITING_DATA states by tasks 

which contain event blocking statements that is got used only on simulation and that weren't 

synthesizable. 
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✓ Solution_3: exchange non-synthesizable tasks with synthesizable states in FSMs, FSM for 

reading operation called RD_FSM and FSM for writing operation called WR_FSM and 

made these FSMs as separate modules which are instantiated in Command_FSM block and 

are enabled in READING_DATA and WRITING_DATA states as we mentioned in Table 

23. Let us discuss briefly these modules, their block diagrams as shown in Figure 21 and 

Figure 23 and state diagrams for these FSMs as shown in Figure 22 and Figure 24: 

2.6.1 Read_FSM 

2.6.1.1 Block Diagram 

 

Figure 25: Block Diagram of Read_FSM 

 

2.6.1.2 List of Inputs and Outputs 
Table 33: Inputs of Read_FSM 

Signal Description 

CK_double 

Clock that has double frequency of SDRAM clock ,DQS signals 

will be generated with positive edge of this clock,also data from 

memory will be sampled also on the positive edge of this clock 

burst 
Flag signal when 1 defines burst length is 8 and when 0 defines 

burst length 16 

DQ[15:0] Data Input/Output: Bi-directional data bus 

RD_FSM_Enable Enable signal of Read FSM 

Reset_Done When 1 defines that initialization sequence has been executed 
 

Table 34: Outputs of Read_FSM 

Signal Description 

Ctrl_DataOut[255:0] Data will be delivered from memory to CPU 

Read_Done Flag signal when 1 defines that reading operation has done 
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2.6.1.3 Operation 

 

Figure 26: Read_FSM 

Table 35: Description of each state in Read_FSM 

State Description 

IDLE 
In this state, RD_FSM_Enable is checked, if it’s asserted high then go 

to PREAMBLE state. 

PREAMBLE 

We declared counter in RD_FSM block that counts two cycles from 

CK_double that represents interval of preamble and when this counter 

finishes, it outputs signal called PRE_Ctr_Done.After this signal is 

raised high this means that preamble phase has finished so we can read 

date by going to RD_DATA state. 

RD_DATA 

In this state reading data is done by transfer data from memory to 

controller with burst length that defined by burst signal, and there is 

internal signal when transfer is done it’s raised high called 

Data_Ctr_Done then go to POSTAMBLE state. 

POSTAMBLE 

We declared counter in RD_FSM block that counts cycle from 

CK_double that represents interval of postamble and when this counter 

finishes, it outputs signal called POST_Ctr_Done.After this signal is 

raised high this means that postamble phase has finished so we can say 

that reading date has finished then go to RD_DONE state. 
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RD_DONE 
In this state, Read_Done signal is asserted high to indicate that reading 

has finished then go to IDLE state waiting another read operation. 
 

Table 36: Outputs of each state in Read_FSM 

State Outputs 

IDLE 

➢ Read_Done = 0 

➢ RD_Enable = 0 

➢ PRE_Ctr_Reset_n = 0 

➢ Data_Ctr_Reset_n = 0 

➢ POST_Ctr_Reset_n = 0 

PREAMBLE ➢ PRE_Ctr_Reset_n = 1 

RD_DATA 

➢ Data_Ctr_Reset_n = 1 

➢ RD_Enable = 1 

➢ Ctrl_DataOut<=DQ 

POSTAMBLE 

➢ POST_Ctr_Reset_n = 1 

➢ RD_Enable = 0 

RD_DONE ➢ Read_Done = 1 

 Assumption & Notes 

1. RD_Enable is internal signal that enables reading in RD_DATE state. 

2. PRE_Ctr_Reset_n and POST_Ctr_Reset_n are reset signals for preamble and postamble 

counters respectively. 

3. Data_Ctr_Reset_n is rest signal for counter that counts burst length. 
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2.6.2 Write_FSM 

2.6.2.1 Block Diagram 

 

Figure 27: Block Diagram of Write_FSM 

 

2.6.2.2 List of Inputs and Outputs 
Table 37: Inputs of Write_FSM 

Signal Description 

CK_t One of differential clock of SDRAM DDR5 

CK_double 

Clock that has double frequency of SDRAM clock ,DQS signals 

will be generated with positive edge of this clock,also data from 

memory will be sampled also on the positive edge of this clock 

burst 
Flag signal when 1 defines burst length is 8 and when 0 defines 

burst length 16 

FIFO_WR_Data[255:0] Data that will be written in memory 

WR_FSM_Enable Enable signal of Write FSM 

Reset_Done When 1 defines that initialization sequence has been executed 

 

Table 38: Outputs of Write_FSM 

Signal Description 

DQ[15:0] Data Input/Output: Bi-directional data bus 

Write_Done Flag signal when 1 defines that writing operation has done 

DQS_t,DQS_c 

Data Strobe: output with read data, input with write data. Edge-

aligned with read data, centered in write data.DDR5 SDRAM 

supports differential data strobe only and does not support 

single-ended. 
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2.6.2.3 Operation 

 

Figure 28: Write_FSM 

Table 39: Description of each state in Write_FSM 

State Description 

IDLE 
In this state, WR_FSM_Enable is checked, if it’s asserted high then go 

to PREAMBLE state. 

PREAMBLE 

We declared counter in RD_FSM block that counts two cycles from 

CK_double that represents interval of preamble and when this counter 

finishes, it outputs signal called PRE_Ctr_Done.After this signal is 

raised high this means that preamble phase has finished so we can 

write date by going to WR_DATA state. 

WR_DATA 

In this state writing data is done by transfer data from controller to 

memory with burst length that defined by burst signal, and there is 

internal signal when transfer is done it’s raised high called 

Data_Ctr_Done then go to POSTAMBLE state. 

POSTAMBLE 

We declared counter in WR_FSM block that counts cycle from 

CK_double that represents interval of postamble and when this counter 

finishes, it outputs signal called POST_Ctr_Done.After this signal is 
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raised high this means that postamble phase has finished so we can say 

that writing date has finished then go to WR_DONE state. 

WR_DONE 
In this state, write_Done signal is asserted high to indicate that writing 

has finished then go to IDLE state waiting another write operation. 
 

Table 40: Outputs of each state in Write_FSM 

State Outputs 

IDLE 

➢ Write_Done =0 

➢ WR_Enable = 0 

➢ PRE_Ctr_Reset_n = 0 

➢ Data_Ctr_Reset_n = 0 

➢ POST_Ctr_Reset_n = 0 

PREAMBLE 

➢ PRE_Ctr_Reset_n = 1 

➢ DataIn_LD = 1 

WR_DATA 

➢ PRE_Ctr_Reset_n = 1 

➢ Data_Ctr_Reset_n = 1 

➢ WR_Enable = 1 

➢ DQ_Transfer_En = 1 

➢ DQ<=Ctrl_DataOut 

POSTAMBLE 

➢ PRE_Ctr_Reset_n = 1 

➢ POST_Ctr_Reset_n = 1 

➢ WR_Enable = 0 

➢ DQ_Transfer_En <= 0 

WR_DONE ➢ Write_Done = 1 
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 Assumption & Notes 

1. WR_Enable is internal signal that enables writing in RD_DATE state. 

2. PRE_Ctr_Reset_n and POST_Ctr_Reset_n are reset signals for preamble and postamble 

counters respectively. 

3. Data_Ctr_Reset_n is rest signal for counter that counts burst length. 

4. DataIn_LD is signal that loads data from WR_Data_FIFO to register called DataIn. 

5. DQ_Transfer_En is signal that enables transfer from DataIn register to DQ during WR_DATA 

state. 

➢ Problem_4: due to the fact that there are many features the memory doing them and our 

controller handling them so there are many blocks drive the same signal based on what 

operation is handled like CA signal which leads to synthesis problem (multiple driven) as 

shown in Figure 29: 

 

Figure 29: Multiple Driven Problem. 

✓ Solution_4:by putting MUX before multiple driven signals and select the right output based 

on select lines that come from a decoder that decodes internal signals. So we added to blocks 

in our design Selection Decoder and MUX used in Top Module before multiple driven 

signals, let us discuss Selection Decoder block. 
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2.6.3 Selection Decoder 

2.6.3.1 Block Diagram 

 

Figure 30: Block Diagram of Selection_Decoder. 

2.6.3.2 List of Inputs and Outputs 
Table 41: Inputs of Selection Decoder. 

Signal Description 

INIT_FSM_Enable Active high enable of Initialization_FSM 

SR_FSM_Enable Active high Enable of Self Refresh_FSM 

CMD_FSM_Enable Active high Enable of CMD_FSM 
 

Table 42: Outputs of Selection Decoder. 

Signal Description 

Sel[1:0] 
Selection signal that will be selection signal for multiplexers 

that are placed before multiple driven signals 

 

2.6.3.3 Operation 
Table 43: Operation of Selection Decoder. 

Enable Signal Sel 

INIT_FSM_Enable 0 

SR_FSM_Enable 1 

CMD_FSM_Enable 2 

 

➢ Problem_5: inferring latches, we don’t need latches in our design due to the complexity of 

calculating timings of latches at synthesis tools (checking timing violations is very 

complex). 
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✓ Solution_5: we remove all latches and either return them to their equivalent combinational 

logic at the case of unintentional latches or exchange it with registers at the case of using it 

as storing element. 

➢ Problem_6: sometimes synthesis tools remove registers due to they think that these registers 

will never be used. 

✓ Solution_6: we added a load signal for registers that may be removed to make the tool 

understand that it actually used when this load gets activated then register a new value. 

➢ Problem_7: clock cycle uncertainty between blocks in top module. 

✓ Solution_7: we made a global initialization for all blocks and counters based on 

initialization feature of memory and also made counters to be aligned in counting with other 

blocks. 

➢ Problem_8: Reset signals have not highest priority in counters and other blocks. 

✓ Solution_8: we redefined all counters and blocks and chose to model counters with global 

reset, set priority counters to get instantiated with the optimized version of it after synthesis 

and that is by putting asynchronous reset at the top with the highest priority then even counts 

incrementing the counter when enabled or keeps the old one. 

➢ Problem_9: There are bits in address vector may be removed by tool as it thinks that they 

won’t be used and this due to that not all bits in Address vector, defined by the standard, is 

used in our design. 

✓ Solution_9: we needed to redefine address vector to make all its bits get used from the 

design and not letting the tool to remove any signal with its own. 

➢ Problem_10: there are non-synthesizable statements on System-Verilog HDL like wildcard 

equality operator “= = =” 

✓ Solution_10: we exchanged all these statements with synthesizable statement like logical 

equality operator “= =”. 

Some of these problems that we discussed are shown in Figure 31: 
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Figure 31: Some Problems of Synthesis. 

Finally, all problems were solved and the design get synthesized properly. And the schematic 

from synthesis tool is shown in Figure 32: 

 

 Assumption &Notes 

1. We used System Verilog HDL to describe our design. 

2. Tools that we used in design through project Vivado ,Modelsim,etc. 

3. There are changes in design based on bugs that verification found will be discussed later. 

 

   

Figure 32: Schematic from Synthesis Tool (Vivado). 
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Chapter 3: Introduction to Cocotb  

3.1 INTRODUCTION  
 

Modern system-on-chip (SoC) designs have been evolving towards heterogeneous compositions 

of general purpose and specialized computing fabrics as Dennard scaling has ended and Moore’s 

law has slowed. This heterogeneity makes the already difficult work of SoC design and verification 

much more difficult. Multiple generations of open-source hardware modelling frameworks have 

attempted to address the growing complexity of hardware design and verification. Comprehensive, 

productive, and open-source verification procedures that decrease our necessary to build 

completely validated hardware blocks are a critical missing component in the open-source 

hardware ecosystem. Verification of open-source hardware has numerous substantial hurdles as 

compared to closed-source hardware. Closed source hardware, for starters, is typically owned and 

maintained by firms with specialized verification teams. These verification engineers often have a 

lot of expertise with constraint-based random testing using commercial System Verilog simulators 

utilizing a universal verification methodology (UVM). Open-source hardware teams, on the other 

hand, typically use an agile test-driven design method borrowed from the open-source software 

community, in which the designer is also responsible for writing the tests. Furthermore, due to the 

high learning curve and limited support in existing open-source tools, open-source hardware teams 

seldom employ the UVM-based method. Instead of replicating closed-source hardware testing 

frameworks, the open-source hardware industry deliberately needs an alternate way for verifying 

open-source hardware. The top-down approach offered by UVM does not work well for complex 

multimedia IP blocks like image signal processing pipeling, video codec, neural processing unit 

etc. due to the algorithmic/system architecture complexity. An SoC chain can contain more than 

20 blocks, which a verification testbench is expected to handle. There is a need for SoC DV to be 

able to take a portion of the IP DV environment and be able to re-run valid semi-randomized 

scenarios at SoC level. To fully address SoC-level verification, a solution must extend from UVM 

and allow for vertical (IP to SoC) reuse and horizontal (verification engine portability) reuse. A 

solution must provide a way to capture, share, and automatically amplify use cases to speed test-

case creation and leverage fast verification engines. 

3.2 BACKGROUND  
 

Design Verification is a process in which a design is compared against a given design specification 

before tape-out. This happens along with the development of the design and can start from the time 

the design architecture definition is completed. The main goal of verification is to ensure functional 

correctness of the design. However, with increasing design complexities, the scope of verification 

is also evolving to include much more than functionality. This includes verification of performance 

and power targets, security and safety aspects of design and complexities with multiple 

asynchronous clock domains. Simulation of the design model (RTL) remains the primary vehicle 

for verification while a lot of other methodologies like formal property verification, power-aware 

simulations, emulation/FPGA prototyping, static and dynamic checks, etc. are also used for 

efficiently verifying all aspects of design. The Verification process is considered very critical as 

part of design life cycle as any serious bugs in design not discovered before tape-out can lead to 

the need of newer steppings and increasing the overall cost of design process. 
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3.2.1 Functional Verification  
 

The known as functional verification. Functional verification does not confirm the correctness of 

the design specification and instead assumes that it is correct. It is one of the most difficult steps 

in the IC design cycle and the primary cause of IC re-spin. The main objectives are: Functional 

correctness of individual IPs, Internal module communication, External module communication, 

End to end functional paths, Clock and reset circuits, Power up and down sequence, Complete 

integration of all IPs. Different types of Functional Verification methods are shown in Figure 33.  

Figure 33: Types of Functional Verification 

1) Static Verification: It is the process of checking a design against some predefined rules without 

running it. It enables validation of design at an early stage, without any stimulus or setup, and is 

thus performed early in the IC design cycle, that is, as soon as the RTL code is available. It doesn’t 

do any timing checks. The earlier a bug is discovered, the easier it is to fix it. The goal of static 

verification is to decrease the verification effort at the RTL level.  

2) Functional Simulation: The process of simulating a design’s functional behavior in software is 

known as functional simulation. It is not useful in software development because it does not 

account for the timing delays of internal logic or interconnects. The goal of simulation is to validate 

the individual IPs or blocks of the IC. Functional simulation does not allow for system-level 

verification.  

3) FPGA Prototyping: FPGA prototyping is the process of testing the functionality of an integrated 

circuit (IC) on FPGAs. With the increasing complexity of ICs and the increasing demand to reduce 

IC time to market, FPGA prototyping remains a critical solution. The goal of FPGA prototyping 

is to ensure that the design works as expected when driven with live data and that all of its external 

interfaces are operational.  

4) Emulation: Emulation, also known as pre-silicon validation, is the process of testing the 

system’s functionality on a hardware device known as an emulator. An emulator can handle both 

system-level and RTL designs (written in C, C++, or SystemC) (in Verilog or VHDL). Simulators 

take much longer to run than emulators. A design that takes days to simulate will only take hours 

to emulate. Emulation is used to find issues in system level design using live data, to verify system 

integration and to develop embedded software.  

5) Universal Verification Methodology (UVM): UVM is a well-defined set of coding guidelines 

with a well-defined testbench structure. It’s written in SystemVerilog and comes with a 

SystemVerilog base class library for creating advanced reusable verification components. It was 
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created with significant guidance and input from Mentor by the Accellera Systems Initiative, an 

EDA standards body. IPs are extremely complex, and fully verifying them takes time. The standard 

test benches are not reusable, so verification engineers must build them from scratch. Due to time 

constraints, a verification methodology is highly recommended. UVM has a fixed testbench 

architecture, which makes the testbench highly reusable and saves time. 

 

3.2.2 Switching to Python  
 

SystemVerilog is a fairly complex programming language. The SystemVerilog specification is 

almost a thousand pages long. There are 221 keywords in the language, compared to 83 in C++. 

It’s a powerful tool, but it takes some time to master. UVM has comparable concerns with 

complexity. There are numerous ways to accomplish the same task. Again, highly powerful, but 

difficult to master. Ergo, SV-UVM is powerful but complicated. So, hardware description 

languages are kept for designing whereas for developing testbenches, a high-level, general-purpose 

language with object-oriented programming is considerably more beneficial. Thus, Cocotb was 

created. 

3.3 DESIGN VERIFICATION USING COCOTB  
 

Cocotb automatically connects to a variety of HDL simulators (such as Icarus, Modelsim, 

Questasim, and others) and allows you to control the signals in your design straight from Python. 

The whole testbench may be written in Python, and automation and randomization are simple to 

implement, resulting in increased productivity. Cocotb does not necessitate the use of any 

additional RTL code. In the simulator, the top level is instantiated as the Design Under Test. 

Python is used to provide stimulation to the DUT’s inputs and monitor the outputs. Given that it 

does not necessitate knowledge of HDLs, it can be of great help to those who are unfamiliar with 

it. Python is also an object-oriented scripting language. Cocotb has certain significant advantages 

over HDL testing techniques since it uses Python for verification:  

• Python is an extremely productive language that allows one to write code quickly 

• Python makes it simple to connect to other languages.  

• Python contains a large library of pre-existing code that can be reused. 

 • Python is an interpreted language, which means that tests can be modified and rerun without 

having to recompile the design or exit the simulator GUI.  

• Python is widely used; significantly more engineers are familiar with it than SystemVerilog or 

VHDL. 
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3.3.1 Architecture of Cocotb 
 

A normal Cocotb testbench does not necessitate any additional RTL code. Without any wrapper 

code, the Design Under Test (DUT) is instantiated as the simulator’s top level. Cocotb applies 

stimuli to the DUT’s inputs (or lower in the hierarchy) and monitors the outputs directly from 

Python. Cocotb acts as a bridge between the simulator and Python as shown in Figure 34 [9]. 

Verilog Procedural Interface (VPI) or VHDL Procedural Interface (VHDLPI) is used (VHPI). 

Figure 34:Architecture of Cocotb. 

A test is merely a Python function. The await keyword indicates when control of execution should 

be returned to the simulator. A test can start numerous coroutines, permitting separate execution 

flows. Python testbench code has the ability to [10]:  

• Traverse the DUT hierarchy and update values.  

• Wait for the simulation timer to run out. 

 • Wait for a signal’s rising or falling edge. 

3.3.2 Design Methodology  
 

The cocotb framework is made to be a goal-directed design verification tool. The following steps 

are included in the python-based verification flow [11].  

1) Capture the IP-level actions needed to create a desired use case, if not already captured.  

2) Compose the desired use case in text format.  

3) Use cocotb for vector generation: cocotb allows constrained randomization through which all 

the parameters of the IP core can be randomized.  

4) Verify the resulting vectors on a golden reference: These vectors can be run on a C test design 

and the validity of vectors can be checked. 
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3.3.3 Cosimulation 
  

It is the independent simulation of the design and testbench. Communication is accomplished using 

VPI/VHPI interfaces, which are represented by cocotb ‘triggers’. The simulation time does not 

advance while the Python function is running. When a trigger is delivered, the testbench suspends 

execution until the triggered condition is met before restarting execution. Some triggers availed 

are [9]:  

• Timer (time, unit): Waits for a given amount of simulation time to pass before acting.  

• Edge(signal): Waits for a signal’s state to change (rising or falling edge).  

• RisingEdge(signal): Waits for a signal’s rising edge. 

 • FallingEdge(signal): Waits for a signal’s falling edge. 

 • ClockCycles(signal, num): Waits for a certain number of clocks to cycle (transitions from 0 to 

1). 

3.4 COCOTB COVERAGE  
 

3.4.1 Functional Coverage in SystemVerilog 
 

In SystemVerilog a fundamental coverage unit is a coverpoint. It contains several bins and each 

bin may contain several values. Every coverpoint is associated with a variable or signal. At 

sampling event, the coverpoint variable value is compared with each defined bin. If there is a 

match, then the number of hits of the particular bin is incremented. Coverpoints are organized 

in covergroups, which are specific class-like structures. A single covergroup may have several 

instances and each instance may collect coverage independently. A covergroup requires sampling, 

which may be defined as a logic event (e.g., a positive clock edge). Sampling may also be called 

implicitly in the testbench procedural code by invoking a sample() method of 

the covergroup instance. A bin may be also defined as an ignore_bins, which means its match does 

not increase a coverage count, or an illegal_bins, which results in error when hit during the test 

execution. 

Another coverage construct in SystemVerilog is a cross. It automatically generates a Cartesian 

product of bins from several coverpoints. It is a useful feature simplifying the functional coverage 

generation. As it may be difficult or unnecessary to cover all the cross-bins, some of them may be 

excluded from the analysis. This is possible using the binsof ... intersect syntax. 

The most important limitations of the SystemVerilog functional coverage features are: 

• straightforward bins matching criteria – only satisfied by equality or inclusion relation; 

• bins may be only constants or transitions (possibly wildcard); 

• flat coverage structure – cover groups cannot contain other cover groups, which would 

correspond better to a verification plan scheme; 
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• not possible to get the detailed coverage information in real time (e.g., when a specific bin 

was hit). 

3.4.2 Functional Coverage with Cocotb-coverage 
 

The general assumptions for the architecture of the functional coverage features are as follows: 

• functional coverage structure should better match a real verification plan; 

• its syntax should be more flexible, but a separation between coverage and executable code 

should be maintained; 

• features for analyzing the coverage during test execution should be added or extended; 

• coverage primitives should be able to monitor testbench objects at a higher level of 

abstraction. 

The implemented mechanism is based on the idea of decorator design pattern. In Python, a 

decorator syntax is readable and easy to use. Instead of sampling coverage items by an additional 

method, decorators are by default invoked at each decorated function call. As it is easy to create 

functions in Python (for example anonymous functions can be created as lambda 

expressions<lambda> – single-line function definitions), this is a convenient solution. The 

coverage structure is based on a prefix tree (a trie). The main coverage primitive is a CoverItem, 

which corresponds to a SystemVerilog covergroup. CoverItem may contain other 

CoverItems<CoverItem> or objects extending CoverItems<CoverItem> base class, which are 

CoverPoints<CoverPoint>, CoverCrosses<CoverCross> or arbitrary new, user-defined types. 

CoverItems<CoverItem> are created automatically, the user defines only CoverPoint or 

CoverCross primitives (the lowest level nodes in the trie). Each created primitive has a unique 

ID – a dot-separated string. This string denotes the position of an object in the coverage trie. For 

example, a CoverPoint a.b.c is a member of the a.b CoverItem, which is then a member of 

the a CoverItem. The structure of the coverage tree is presented below in figure 35. 

Figure 35: An example of the coverage tree structure [12]. 
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3.4.3 Constrained Random Verification Features in SystemVerilog 
 

SystemVerilog users may define random variables using the rand/randc modifier. 

Calling randomize() function on a class instance (object) results in picking random values of the 

defined random variables, satisfying given constraints. Also a with modifier can be used together 

with randomize() which allow for appending additional constraints dynamically. Constraints are 

defined in a special section in the class named constraint. They describe a range values that a 

single variable may have or a relation between variables. It is also possible to define solution 

ranges with weights (using dist modifier). The solve ... before is an additional construction which 

organizes variable randomization order. 

Constraints are unique constructs of SystemVerilog. They are class members, but they are not 

functions or objects. Basic operations can be performed on constraints, such as enable/disable or 

inheritance. Soft constraints have been introduced in SystemVerilog 2012. They are resolved only 

when it is possible to satisfy them together with all other hard constrains. Every SystemVerilog 

simulator must implement a constraint solver. Although many open-source constraint solvers are 

available, testbench designers cannot use them, as they have no control over the simulator engine. 

The most important limitations of the existing constrained randomization features are related to 

their fixed syntax. 

In cocotb-coverage, it is assumed that a constraint may be any callable object – an arbitrary 

function or a class with __call__ method. It allows for creating various functionalities quite easily 

and manipulating them in a flexible way [12]. 

 

3.4.4 Constrained Random Verification Features in cocotb-coverage 
 

The main assumption for the constrained randomization features was to provide only a flexible 

API, and let the testbench designer to adjust it depending on project needs. There is an open-source 

based hard constraint solver used by this framework: python-constraint. 

The general idea of Cocotb-coverage is that all classes that intended to use randomized variables 

should extend the base class Randomized. Afterwards, random variables and their ranges should 

be defined. Constraints are just arbitrary functions with only one requirement: their argument 

names must match class member names. It is possible to define two types of constraints: 

functions that return a True/False value, corresponding to SystemVerilog hard constraints; 

functions that return a numeric value, corresponding to a variable’s distribution (or cross-

distribution) which also may be used as soft constraints. 

The Randomized class API consists of the following functions: 

• add_rand(var, domain)<add_rand> - specifies var as a randomized variable taking values 

from the domain list; 

• add_constraint(cstr)<add_constraint> - adds a constraint function to the solver; 

https://github.com/python-constraint/python-constraint
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• del_constraint(cstr)<del_constraint> - removes a constraint function from the solver; 

• solve_order(vars0, vars1 ...)<solve_order> - optionally specifies the order of randomizing 

variables (can be used for problem decomposition or in case some random variables must 

be fixed before randomizing the others); 

• pre_randomize - function called before randomize/randomize_with, corresponding to 

similar function in SV; 

• post_randomize - function called after randomize/randomize_with, corresponding to 

similar function in SV; 

• randomize() - main function that picks random values of the variables satisfying added 

constraints; 

• randomize_with(cstr0, cstr1 ...)<randomize_with> - similar to randomize(), but satisfies 

additional given constraints. 

A more complex example is presented below. The class TripleInt contains three unsigned integer 

members, y and z are randomized. The first defined constraint combines all variables (random 

and non-random). The second constraint defines a triangular distribution for variable z. It is 

achieved by defining a function that has its maximum in the middle of the variable range (for 

solution z = 500). The third one is a cross-distribution of variables y and z. The weight function 

defines higher probability for solutions with higher difference between both variables. The last 

one is a kind of a soft constraint – very low probability is set for condition x > y, which means 

that solutions satisfying x ≤ y will be strongly preferred. 

It is assumed that only one hard constraint and one distribution may be associated with each set 

of random variables. So, for the example presented above, it is possible to define no more than 

six constraint functions: separately for variables y and z and both (y and z). It means that 

constraints may be overwritten, for example by randomize_with() function arguments. 

3.5 CODE COVERAGE  
 

Code Coverage testing determines how much code is tested. Code coverage is a metric that 

describes the extent to which the program’s source code has been tested. It is given by the Eqn. 1:  
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𝐶𝑜𝑑𝑒 𝐶𝑜𝑣𝑒𝑟𝑎𝑔𝑒 = 
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑙𝑖𝑛𝑒𝑠 𝑜𝑓 𝑐𝑜𝑑𝑒 𝑒𝑥𝑐𝑢𝑡𝑒𝑑

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑙𝑖𝑛𝑒𝑠 𝑜𝑓 𝑐𝑜𝑑𝑒 
  * 100 % (1)  

There are several coverage types, which are as follows [13]:  

3.5.1 Statement coverage/ Line coverage  
 

Statement coverage, often known as line coverage, is the simplest to comprehend sort of 

coverage. Statement coverage measures how many statements/lines are covered in the 

simulation.  

3.5.2 Block/ Segment coverage 
 

 The nature of the statement and block coverage seems to be similar. The distinction is that block 

coverage takes into account branching blocks of if/else, case branches, wait, while, for, and so 

on. The dead code (lines which never get executed) is revealed by analyzing block coverage.  

3.5.3 Conditional coverage 
 

 Conditional coverage, also known as expression coverage, shows how variables or expressions 

in conditional statements are assessed. Only expressions using logical operators are taken into 

account. Conditional coverage is the ratio of number of cases checked to the total number of 

instances present.  

3.5.4 Branch coverage  
Branch coverage, also known as decision coverage, reports the true or false of conditions such as 

if-else, case, and ternary operator statements. Decision coverage for an ‘if’ statement will report 

if the ‘if’ statement is examined in both true and false instances, even if a ‘else’ statement does 

not exist.  

3.5.5. Toggle coverage 
 It ensures how many times variables and nets are toggled (flipping between logic high and logic 

low). Toggle coverage is just the ratio of toggled nodes to total nodes.  

3.5.6. Path coverage  
Due to conditional statements such as if-else, a different path is generated in the design, diverting 

the flow of input to the specific path. Path coverage is regarded to be more comprehensive than 

branch coverage since it can detect flaws in the order of operations.  

3.5.7. FSM coverage   

As it works on the design’s behavior, it is the most complex sort of code coverage. In a finite 

state machine, this evaluates how often states are visited, transited, and how many sequences are 

covered. 
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Chapter 4: Block Level Verification  

4.1 GOALS AND OVERVIEW  
 
The goal of this chapter is to write a block level verification plan to ensure the functionality of 

each block, report the critical bugs of each block and how it was fixed, measure the functional 

coverage and the code coverage of each block to ensure the completeness of the written testbenches, 

which are written in python using Cocotb Coverage library as mentioned in chapter3. 

4.2 BLOCK LEVEL TESTBENCH ARCHITECTURE   
 

The test bench architecture is based on Self-checking coverage-Driven Constraint Random-Based 

Functional Verification Methodology, the function of each block as follows: 

Generator: generates constrained random test cases. 

Driver: drives the test cases to the Device under test and the Reference Model concurrently. 

Reference Model: provides the expected output according to the current testcase.  

Checker: compares the predicted output with the DUT output. 

Scoreboard: prints the failed test cases and the passed ones. 

Coverage: samples the test inputs to collect the features that have been tested. 

Figure 36: Block Level Verification Environment. 

4.3 COMMAND DECODER VERIFICATION PLAN 
 

4.3.1 Functional Coverage Plan  
The important features that should be covered to ensure the correctness of the Command decoder 

functionality are the following: 

1. Reset. 

2. Self-Refresh. 

3. Reset and Self_Refresh/command in the same time to ensure the priority of reset. 
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4. self-refresh and command in the same time to ensure the priority of self-Refresh. 

5. Write. 

6. Read. 

7. Write with AP. 

8. Read with AP. 

9. Write Burst. 

10. Read Burst. 

11. Write Burst with AP. 

12. Read Burst with AP. 

13. Write after Read in same Bank Group. 

14. Write after Read in different Bank Group. 

 
 

 

 

 

 

                      Figure 37: Command decoder coverage section written in python. 

4.3.2 Test Cases  
Table 44: Test cases of command decoder. 

Test Item  Test Case    Expected Result  Covered  Bug 
Free  

Reset ➢ Ctrl_Reset signal is 

asserted high for only 

one clock cycle then low. 

 

➢ INIT_FSM_Enable 

signal should be 

asserted high. 

➢ Memory_Busy Signal 

should be asserted high. 

✓ ✓ 

Reset ➢ Reset_Done is signal is 

asserted high for only 

one clock cycle then low. 

➢ INIT_FSM_Enable 

signal should be 

asserted low. 

➢ Memory_Busy Signal 

should be asserted low. 

✓ ✓ 

Self-Refresh  ➢ tREF1 signal is asserted 

high for only one clock 

cycle then low. 

➢ Ctrl_Reset signal is 

asserted low. 

➢ SR_FSM_Enable signal 

should be asserted high. 

➢ Memory_Busy Signal 

should be asserted high. 
✓ ✓ 
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Self-Refresh ➢ SR_Done is asserted high 

for only one clock cycle 

then low. 

➢ SR_FSM_Enable signal 

should be asserted low. 

➢ Memory_Busy Signal 

should be asserted low. 
✓ ✓ 

Write ➢ Ctrl_Write signal is 

asserted high for only 

one clock cycle. 

➢ Ctrl_Read signal is 

asserted low for only one 

clock cycle. 

➢ Ctrl_Burst is asserted low 

for only one clock. 

➢ Ctrl_Auto is asserted low 

for only one clock cycle. 

➢ Bank_Group signal is 

asserted to a certain value 

‘x’ for only one clock 

cycle.  

➢ Data_Transfer_Write is 

asserted to a certain value 

for only one clock cycle. 

➢ CMD_FIFO_WR_En 

signal should be 

asserted high. 

➢ WR_Data_WR_En 

signal should be 

asserted high 

➢ CMD signal should be 

asserted ‘001’. 

➢ First_Command should 

be asserted high.   

 

 

 

 

 

✓ ✓ 

Read ➢ Ctrl_Read signal is 

asserted high. 

➢ Ctrl_Write signal is 

asserted low. 

➢ Ctrl_Burst is asserted 

low. 

➢ Ctrl_Auto is asserted 

low. 

➢ Bank_Group signal is 

asserted to a certain value 

‘x’.  

 

➢ CMD_FIFO_WR_En 

signal should be 

asserted high. 

➢ CMD signal should be 

asserted ‘000’. 

➢ Same_Bank_Group 

should be asserted high. 

 

 

 

 

 

✓ ✓ 

Write With 

AP 

➢ Ctrl_Write signal is 

asserted high. 

➢ Ctrl_Read signal is 

asserted low. 

➢ Ctrl_Burst is asserted 

low. 

➢ Ctrl_Auto is asserted 

low. 

➢ Bank_Group signal is 

asserted to a certain value 

‘y’.  

➢ CMD_FIFO_WR_En 

signal should be 

asserted high. 

➢ WR_Data_WR_En 

signal should be 

asserted high 

➢ CMD signal should be 

asserted ‘011’. 

➢ Same_Bank_Group 

should be asserted low. 

 

✓ ✓ 
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➢ Data_Transfer_Write is 

asserted to a certain 

value. 

 

Read With 

AP 

➢ Ctrl_Read signal is 

asserted high. 

➢ Ctrl_Write signal is 

asserted low. 

➢ Ctrl_Burst is asserted 

low. 

➢ Ctrl_Auto is asserted 

high. 

➢ Bank_Group signal is 

asserted to a certain 

value.  

 

➢ CMD_FIFO_WR_En 

signal should be 

asserted high. 

➢ CMD signal should be 

asserted ‘010’. 

 

 

✓ ✓ 

Write Burst  ➢ Ctrl_Write signal is 

asserted high. 

➢ Ctrl_Read signal is 

asserted low. 

➢ Ctrl_Burst is asserted 

high. 

➢ Ctrl_Auto is asserted 

low. 

➢ Bank_Group signal is 

asserted to a certain 

value.  

➢ Data_Transfer_Write is 

asserted to a certain 

value. 

 

➢ CMD_FIFO_WR_En 

signal should be 

asserted high. 

➢ WR_Data_WR_En 

signal should be 

asserted high 

➢ CMD signal should be 

asserted ‘101’. 

 

✓ ✓ 

Read Burst  ➢ Ctrl_Read signal is 

asserted high. 

➢ Ctrl_Write signal is 

asserted low. 

➢ Ctrl_Burst is asserted 

high. 

➢ Ctrl_Auto is asserted 

low. 

➢ Bank_Group signal is 

asserted to a certain 

value.  

 

➢ CMD_FIFO_WR_En 

signal should be 

asserted high. 

➢ CMD signal should be 

asserted ‘100’. 

 

✓ ✓ 
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Note: all signal is asserted at positive edge the clock CK_t in order to be sampled and 

lasts for only on clock cycle then changes.  

 

4.3.3 Reported Bugs  
 

Bug #1: 

FSM Enables are asserted high for only one cycle although it should be high until a  

FSM done signal is asserted high, for example: Initialization FSM Enable is asserted high for 

only one cycle, although it should be high until Reset_Done signal (which comes from the 

initialization FSM when it finishes) is asserted high. 

 
 
 
 

Write Burst  

with AP 

➢ Ctrl_Write signal is 

asserted high. 

➢ Ctrl_Read signal is 

asserted low. 

➢ Ctrl_Burst is asserted 

high. 

➢ Ctrl_Auto is asserted 

high. 

➢ Bank_Group signal is 

asserted to a certain 

value.  

➢ Data_Transfer_Write is 

asserted to a certain 

value. 

➢  

➢ CMD_FIFO_WR_En 

signal should be 

asserted high. 

➢ WR_Data_WR_En 

signal should be 

asserted high 

➢ CMD signal should be 

asserted ‘111’. 

 

✓ ✓ 

Read Burst  

with AP 

➢ Ctrl_Read signal is 

asserted high. 

➢ Ctrl_Write signal is 

asserted low. 

➢ Ctrl_Burst is asserted 

high. 

➢ Ctrl_Auto is asserted 

high. 

➢ Bank_Group signal is 

asserted to a certain 

value.  

➢ CMD_FIFO_WR_En 

signal should be 

asserted high. 

➢ CMD signal should be 

asserted ’110’. 

 

✓ ✓ 
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Modification: 
Initialization _FSM _Enable is stored in a prev _Reset Register in order to modify the condition 

that assert the Initialization FSM Enable high based on this register for illustration: 

 

When Ctrl_Reset is asserted high for 

only one cycle: INIT_FSM_Enable will 

be asserted high as  

  INIT_FSM_Enable=! Reset_Done; 

 

When Ctrl_Reset is asserted low at 

the next clock cycle: 

INIT_FSM_Enable will be asserted 

high as  

  INIT_FSM_Enable= prev _Reset; 

 

When the initialization FSM finishes 

it will assert Reset_Done low for only 

one cycle: 

INIT_FSM_Enable will be asserted low as  

  INIT_FSM_Enable=! Reset_Done; 

 

When Reset_Done is asserted low at the next clock cycle: 

INIT_FSM_Enable will be asserted low as  

  INIT_FSM_Enable= prev _Reset; 
 

Figure 38: Initialization FSM Enable is asserted high for only one cycle. 
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Figure 39: Initialization FSM Enable after modification. 

Figure 40: Command Decoder Test Summary from Questasim. 
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4.3.4 Functional Coverage Results  

Figure 41: Command decoder Functional Coverage XML Report. 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 42: Command decoder Functional Coverage from Coverage Viewer. 

 



DDR5 SDRAM Memory Controller Design and Verification 
 

PAGE | 84  
 

4.3.5 Code Coverage Results  

 

Figure 43: Command decoder Code Coverage Summary from Questasim. 

 

4.4 COMMAND FINITE STATE MACHINE 
 

CMD FSM is responsible for handling the sequence of operation that should be done in 

order to execute write or read operations with or without Auto precharge in same or different 

bank group address as implemented in 2.5.6 as specified in JESD79-5 section 3.1 and providing 

the appropriate status signal to SDRAM as specified in JESD79-5 section 4.1 Table 241. 

4.4.1 Functional Coverage Plan  

The important features that should be covered to ensure the correctness of the Command FSM 

functionality are the following: 

1. All types of write command (write, write Burst, write with AP, write burst with AP). 

2. All types of read command (read, read Burst, read with AP, read burst with AP). 

3. Two consecutive writes (write, write with AP) in same bank group. 

4. Two consecutive writes (write, write with AP) in different bank group. 

5. Two consecutive reads (read, read with AP) in same bank group. 

6. Two consecutive reads (read, read with AP) in different bank group. 

7. Read after write in same bank group. 

8. Read after write in different bank group. 

9. Write after read in same bank group. 

10. Write after read in different bank group. 
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4.4.2 Test Cases  
Table 45: Test cases of command FSM. 

Test Item  Test Case    Expected Result  Covered  Bug 
Free  

Write ➢ CMD_FSM_Enable 

signal is asserted high. 

➢ Same_Bank_Group 

signal is asserted Low.  

➢ CMD signal is asserted 

‘001’. 

➢ First_Command signal is 

asserted high. 

➢ all counter flags are 

asserted high. 

➢ Ctrl_ADD signal is 

asserted a certain value.  

➢ IDLE outputs. 

➢ WAIT_ACT outputs. 

➢ ACT_CYCLE1 outputs. 

➢ ACT_CYCLE2 outputs. 

➢ BANK_ACTIVE outputs. 

➢ WAIT_WRITE outputs. 

➢ WRITING_CTCLE1 outputs. 

➢ WRITING_CYCLE2 outputs. 

➢ WAIT_WRITE_LATENCY 

outputs.  

➢ WRITING_DATA outputs. 

➢ WAIT_WRITE_DONE (A 

cycles) outputs. 

➢ WRITE_DONE outputs. 

➢ BANK_ACTIVE outputs. 

✓ ✓ 

Write 

Burst 

➢ CMD_FSM_Enable 

signal is asserted high. 

➢ Same_Bank_Group 

signal is asserted Low.  

➢ CMD signal is asserted 

‘100’. 

➢ First_Command signal is 

asserted high. 

➢ all counter flags are 

asserted high. 

➢ Ctrl_ADD signal is 

asserted a certain value.  

 

➢ IDLE outputs. 

➢ WAIT_ACT outputs. 

➢ ACT_CYCLE1 outputs. 

➢ ACT_CYCLE2 outputs. 

➢ BANK_ACTIVE outputs. 

➢ WAIT_WRITE outputs. 

➢ WRITING_CTCLE1 outputs. 

➢ WRITING_CYCLE2 outputs. 

➢ WAIT_WRITE_LATENCY 

outputs.  

➢ WRITING_DATA outputs. 

➢ WAIT_WRITE_DONE (A-8) 

cycles outputs. 

➢ WRITE_DONE outputs. 

➢ BANK_ACTIVE outputs. 

✓ ✓ 

Write with 

AP 

➢ CMD_FSM_Enable 

signal is asserted high. 

➢ Same_Bank_Group 

signal is asserted Low.  

➢ CMD signal is asserted 

‘011’. 

➢ First_Command signal is 

asserted high. 

➢ IDLE outputs. 

➢ WAIT_ACT outputs. 

➢ ACT_CYCLE1 outputs. 

➢ ACT_CYCLE2 outputs. 

➢ BANK_ACTIVE outputs. 

➢ WAIT_WRITE outputs. 

➢ WRITING_CTCLE1 outputs. 

➢ WRITING_CYCLE2 outputs. 

✓ ✓ 
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➢ all counter flags are 

asserted high. 

➢ Ctrl_ADD signal is 

asserted a certain value.  

 

➢ WAIT_WRITE_LATENCY 

outputs.  

➢ WRITING_DATA outputs. 

➢ WAIT_WRITE_DONE (A) 

cycles outputs. 

➢ WRITE_DONE outputs 

➢ PRECHARGE outputs 

➢ WAIT_tRP outputs 

➢ IDLE outputs 

Write  

Burst with 

AP 

➢ CMD_FSM_Enable 

signal is asserted high. 

➢ Same_Bank_Group 

signal is asserted Low.  

➢ CMD signal is asserted 

‘111’. 

➢ First_Command signal is 

asserted high. 

➢ all counter flags are 

asserted high. 

➢ Ctrl_ADD signal is 

asserted a certain value.  

➢ IDLE outputs. 

➢ WAIT_ACT outputs. 

➢ ACT_CYCLE1 outputs. 

➢ ACT_CYCLE2 outputs. 

➢ BANK_ACTIVE outputs. 

➢ WAIT_WRITE outputs. 

➢ WRITING_CTCLE1 outputs. 

➢ WRITING_CYCLE2 outputs. 

➢ WAIT_WRITE_LATENCY 

outputs.  

➢ WRITING_DATA outputs. 

➢ WAIT_WRITE_DONE (A-8) 

cycles outputs. 

➢ WRITE_DONE outputs 

➢ PRECHARGE outputs 

➢ WAIT_tRP outputs 

➢ IDLE outputs 

✓ ✓ 

Read ➢ CMD_FSM_Enable 

signal is asserted high. 

➢ Same_Bank_Group 

signal is asserted Low.  

➢ CMD signal is asserted 

‘000’. 

➢ First_Command signal is 

asserted high. 

➢ all counter flags are 

asserted high. 

Ctrl_ADD signal is 

asserted a certain value. 

➢ IDLE outputs 

➢ WAIT_ACT outputs 

➢ ACT_CYCLE1 outputs 

➢ ACT_CYCLE2 outputs 

➢ BANK_ACTIVE outputs 

➢ WAIT_READ outputs 

➢ READING_CTCLE1 outputs 

➢ READING_CYCLE2 outputs 

➢ WAIT_READ_LATENCY 

outputs 

➢ READING_DATA outputs 

➢ WAIT_READ_DONE (A 

Cycles) outputs 

➢ READ_DONE outputs 

➢ BANK_ACTIVE outputs 

✓ ✓ 
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Read 

Burst 

➢ CMD_FSM_Enable 

signal is asserted high. 

➢ Same_Bank_Group 

signal is asserted Low.  

➢ CMD signal is asserted 

‘100’. 

➢ First_Command signal is 

asserted high. 

➢ all counter flags are 

asserted high. 

➢ Ctrl_ADD signal is 

asserted a certain value. 

➢ IDLE outputs 

➢ WAIT_ACT outputs 

➢ ACT_CYCLE1 outputs 

➢ ACT_CYCLE2 outputs 

➢ BANK_ACTIVE outputs 

➢ WAIT_READ outputs 

➢ READING_CTCLE1 outputs 

➢ READING_CYCLE2 outputs 

➢ WAIT_READ_LATENCY 

outputs 

➢ READING_DATA outputs 

➢ WAIT_READ_DONE (A-8) 

cycles outputs 

➢ READ_DONE outputs 

➢ BANK_ACTIVE outputs 

✓ ✓ 

Read with 

AP 

➢ CMD_FSM_Enable 

signal is asserted high. 

➢ Same_Bank_Group 

signal is asserted Low.  

➢ CMD signal is asserted 

‘010’. 

➢ First_Command signal is 

asserted high. 

➢ all counter flags are 

asserted high. 

Ctrl_ADD signal is 

asserted a certain value. 

➢ IDLE outputs 

➢ WAIT_ACT outputs 

➢ ACT_CYCLE1 outputs 

➢ ACT_CYCLE2 outputs 

➢ BANK_ACTIVE outputs 

➢ WAIT_READ outputs 

➢ READING_CTCLE1 outputs 

➢ READING_CYCLE2 outputs 

➢ WAIT_READ_LATENCY 

outputs 

➢ READING_DATA outputs 

➢ WAIT_READ_DONE (A 

cycles) outputs 

➢ READ_DONE outputs 

➢ BANK_ACTIVE outputs 

➢ PRECHARGE outputs 

➢ WAIT_tRP outputs 

➢ IDLE outputs 

✓ ✓ 

Read  

Burst with 

AP 

➢ CMD_FSM_Enable 

signal is asserted high. 

➢ Same_Bank_Group 

signal is asserted Low.  

➢ CMD signal is asserted 

‘110’. 

➢ First_Command signal is 

asserted high. 

➢ all counter flags are 

asserted high. 

Ctrl_ADD signal is 

asserted a certain value. 

➢ IDLE outputs 

➢ WAIT_ACT outputs 

➢ ACT_CYCLE1 outputs 

➢ ACT_CYCLE2 outputs 

➢ BANK_ACTIVE outputs 

➢ WAIT_READ outputs 

➢ READING_CTCLE1 outputs 

➢ READING_CYCLE2 outputs 

➢ WAIT_READ_LATENCY 

outputs 

➢ READING_DATA outputs 

✓ ✓ 
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➢ WAIT_READ_DONE (A-8) 

cycles outputs 

➢ READ_DONE outputs 

➢ BANK_ACTIVE outputs 

➢ PRECHARGE outputs 

➢ WAIT_tRP outputs 

➢ IDLE outputs 

write  

after write 

 in same 

Row address 

 

➢ CMD_FSM_Enable 

signal is asserted high. 

➢ Same_Bank_Group 

signal is asserted Low.  

➢ CMD signal is asserted 

‘001’. 

➢ First_Command signal is 

asserted high. 

➢ all counter flags are 

asserted high. 

➢ Ctrl_ADD signal is 

asserted a certain value.  

 

➢ Wait until CMD_Done is 

asserted high. 

 

 

➢ CMD_FSM_Enable 

signal is asserted high. 

➢ Same_Bank_Group 

signal is asserted High.  

➢ CMD signal is asserted 

‘011’. 

➢ First_Command signal is 

asserted Low. 

➢ all counter flags are 

asserted high. 

➢ Ctrl_ADD signal is 

asserted a certain value. 

➢ IDLE outputs. 

➢ WAIT_ACT outputs. 

➢ ACT_CYCLE1 outputs. 

➢ ACT_CYCLE2 outputs. 

➢ BANK_ACTIVE outputs. 

➢ WAIT_WRITE outputs. 

➢ WRITING_CTCLE1 outputs. 

➢ WRITING_CYCLE2 outputs. 

➢ WAIT_WRITE_LATENCY 

outputs.  

➢ WRITING_DATA outputs. 

➢ WAIT_WRITE_DONE (A 

cycles) outputs. 

➢ WRITE_DONE outputs. 

➢  BANK_ACTIVE outputs. 

 

➢ WAIT_ACT outputs. 

➢ ACT_CYCLE1 outputs. 

➢ ACT_CYCLE2 outputs. 

➢ BANK_ACTIVE outputs. 

➢ WAIT_WRITE outputs. 

➢ WRITING_CTCLE1 outputs. 

➢ WRITING_CYCLE2 outputs. 

➢ WAIT_WRITE_LATENCY 

outputs.  

➢ WRITING_DATA outputs. 

➢ WAIT_WRITE_DONE (A 

cycles) outputs. 

➢ WRITE_DONE outputs. 

➢  BANK_ACTIVE outputs. 

 

 

✓ ✓ 
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Write 

 after write 

 in different 

Row address 

➢ CMD_FSM_Enable 

signal is asserted high. 

➢ Same_Bank_Group 

signal is asserted Low.  

➢ CMD signal is asserted 

‘001’. 

➢ First_Command signal is 

asserted high. 

➢ all counter flags are 

asserted high. 

➢ Ctrl_ADD signal is 

asserted a certain value.  

 

➢ Wait until CMD_Done is 

asserted high. 

 

 

➢ CMD_FSM_Enable 

signal is asserted high. 

➢ Same_Bank_Group 

signal is asserted low.  

➢ CMD signal is asserted 

‘011’’. 

➢ First_Command signal is 

asserted Low. 

➢ all counter flags are 

asserted High. 

➢ Ctrl_ADD signal is 

asserted a certain value. 

 

➢ IDLE outputs. 

➢ WAIT_ACT outputs. 

➢ ACT_CYCLE1 outputs. 

➢ ACT_CYCLE2 outputs. 

➢ BANK_ACTIVE outputs. 

➢ WAIT_WRITE outputs. 

➢ WRITING_CTCLE1 outputs. 

➢ WRITING_CYCLE2 outputs. 

➢ WAIT_WRITE_LATENCY 

outputs.  

➢ WRITING_DATA outputs. 

➢ WAIT_WRITE_DONE (A) 

cycles outputs. 

➢ WRITE_DONE outputs 

➢ PRECHARGE outputs 

➢ WAIT_tRP outputs 

➢ IDLE outputs 

 

➢ WAIT_ACT outputs. 

➢ ACT_CYCLE1 outputs. 

➢ ACT_CYCLE2 outputs. 

➢ BANK_ACTIVE outputs. 

➢ WAIT_WRITE outputs. 

➢ WRITING_CTCLE1 outputs. 

➢ WRITING_CYCLE2 outputs. 

➢ WAIT_WRITE_LATENCY 

outputs.  

➢ WRITING_DATA outputs. 

➢ WAIT_WRITE_DONE (A 

cycles) outputs. 

➢ WRITE_DONE outputs. 

➢  BANK_ACTIVE outputs. 

 

✓ ✓ 

read  

after read  

in same Row 

address 

 

➢ CMD_FSM_Enable 

signal is asserted high. 

➢ Same_Bank_Group 

signal is asserted Low.  

➢ CMD signal is asserted 

‘000’. 

➢ First_Command signal is 

asserted high. 

➢ IDLE outputs 

➢ WAIT_ACT outputs 

➢ ACT_CYCLE1 outputs 

➢ ACT_CYCLE2 outputs 

➢ BANK_ACTIVE outputs 

➢ WAIT_READ outputs 

➢ READING_CTCLE1 outputs 

➢ READING_CYCLE2 outputs 

➢ WAIT_READ_LATENCY 

outputs 

✓ ✓ 
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➢ all counter flags are 

asserted high. 

➢ Ctrl_ADD signal is 

asserted a certain value.  

 

➢ Wait until CMD_Done is 

asserted high. 

 

 

➢ CMD_FSM_Enable 

signal is asserted high. 

➢ Same_Bank_Group 

signal is asserted High.  

➢ CMD signal is asserted 

‘010’. 

➢ First_Command signal is 

asserted Low. 

➢ all counter flags are 

asserted high. 

Ctrl_ADD signal is 

asserted a certain value. 

➢ READING_DATA outputs 

➢ WAIT_READ_DONE (A 

Cycles) outputs 

➢ READ_DONE outputs 

➢ BANK_ACTIVE outputs 

 

➢ WAIT_READ outputs 

➢ READING_CTCLE1 outputs 

➢ READING_CYCLE2 outputs 

➢ WAIT_READ_LATENCY 

outputs 

➢ READING_DATA outputs 

➢ WAIT_READ_DONE (A 

Cycles) outputs 

➢ READ_DONE outputs 

➢ BANK_ACTIVE outputs 

 

read  

after read  

in  

different 

Row address 

➢ CMD_FSM_Enable 

signal is asserted high. 

➢ Same_Bank_Group 

signal is asserted Low.  

➢ CMD signal is asserted 

‘000’. 

➢ First_Command signal is 

asserted high. 

➢ all counter flags are 

asserted high. 

➢ Ctrl_ADD signal is 

asserted a certain value.  

 

➢ Wait until CMD_Done is 

asserted high. 

 

 

➢ CMD_FSM_Enable 

signal is asserted high. 

➢ Same_Bank_Group 

signal is asserted low.  

➢ IDLE outputs 

➢ WAIT_ACT outputs 

➢ ACT_CYCLE1 outputs 

➢ ACT_CYCLE2 outputs 

➢ BANK_ACTIVE outputs 

➢ WAIT_READ outputs 

➢ READING_CTCLE1 outputs 

➢ READING_CYCLE2 outputs 

➢ WAIT_READ_LATENCY 

outputs 

➢ READING_DATA outputs 

➢ WAIT_READ_DONE (A 

cycles) outputs 

➢ READ_DONE outputs 

➢ BANK_ACTIVE outputs 

➢ PRECHARGE outputs 

➢ WAIT_tRP outputs 

➢ IDLE outputs 

 

➢ WAIT_ACT outputs 

➢ ACT_CYCLE1 outputs 

➢ ACT_CYCLE2 outputs 

➢ BANK_ACTIVE outputs 

✓ ✓ 
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➢ CMD signal is asserted 

‘010’. 

➢ First_Command signal is 

asserted high. 

➢ all counter flags are 

asserted Low. 

➢ Ctrl_ADD signal is 

asserted a certain value. 

 

➢ WAIT_READ outputs 

➢ READING_CTCLE1 outputs 

➢ READING_CYCLE2 outputs 

➢ WAIT_READ_LATENCY 

outputs 

➢ READING_DATA outputs 

➢ WAIT_READ_DONE (A 

cycles) outputs 

➢ READ_DONE outputs 

➢ BANK_ACTIVE outputs 

Read after 

write in 

same Row 

address 

➢ CMD_FSM_Enable 

signal is asserted high. 

➢ Same_Bank_Group 

signal is asserted Low.  

➢ CMD signal is asserted 

‘001’. 

➢ First_Command signal is 

asserted high. 

➢ all counter flags are 

asserted high. 

➢ Ctrl_ADD signal is 

asserted a certain value.  

 

➢ Wait until CMD_Done is 

asserted high. 

 

 

➢ CMD_FSM_Enable 

signal is asserted high. 

➢ Same_Bank_Group 

signal is asserted High.  

➢ CMD signal is asserted 

‘000’. 

➢ First_Command signal is 

asserted Low. 

➢ all counter flags are 

asserted high. 

Ctrl_ADD signal is 

asserted a certain value. 

➢ IDLE outputs. 

➢ WAIT_ACT outputs. 

➢ ACT_CYCLE1 outputs. 

➢ ACT_CYCLE2 outputs. 

➢ BANK_ACTIVE outputs. 

➢ WAIT_WRITE outputs. 

➢ WRITING_CTCLE1 outputs. 

➢ WRITING_CYCLE2 outputs. 

➢ WAIT_WRITE_LATENCY 

outputs.  

➢ WRITING_DATA outputs. 

➢ WAIT_WRITE_DONE (A 

cycles) outputs. 

➢ WRITE_DONE outputs. 

➢  BANK_ACTIVE outputs. 

 

➢ WAIT_READ outputs 

➢ READING_CTCLE1 outputs 

➢ READING_CYCLE2 outputs 

➢ WAIT_READ_LATENCY 

outputs 

➢ READING_DATA outputs 

➢ WAIT_READ_DONE (A 

Cycles) outputs 

➢ READ_DONE outputs 

➢ BANK_ACTIVE outputs 

 

✓ ✓ 

Read after 

write in 

different 

Row 

address. 

➢ CMD_FSM_Enable 

signal is asserted high. 

➢ Same_Bank_Group 

signal is asserted Low.  

➢ IDLE outputs. 

➢ WAIT_ACT outputs. 

➢ ACT_CYCLE1 outputs. 

➢ ACT_CYCLE2 outputs. 
✓ ✓ 
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➢ CMD signal is asserted 

‘001’. 

➢ First_Command signal is 

asserted high. 

➢ all counter flags are 

asserted high. 

➢ Ctrl_ADD signal is 

asserted a certain value.  

 

➢ Wait until CMD_Done is 

asserted high. 

 

 

➢ CMD_FSM_Enable 

signal is asserted high. 

➢ Same_Bank_Group 

signal is asserted low.  

➢ CMD signal is asserted 

‘000’. 

➢ First_Command signal is 

asserted high. 

➢ all counter flags are 

asserted Low. 

➢ Ctrl_ADD signal is 

asserted a certain value. 

 

➢ BANK_ACTIVE outputs. 

➢ WAIT_WRITE outputs. 

➢ WRITING_CTCLE1 outputs. 

➢ WRITING_CYCLE2 outputs. 

➢ WAIT_WRITE_LATENCY 

outputs.  

➢ WRITING_DATA outputs. 

➢ WAIT_WRITE_DONE (A) 

cycles outputs. 

➢ WRITE_DONE outputs 

➢ PRECHARGE outputs 

➢ WAIT_tRP outputs 

➢ IDLE outputs 

 

➢ WAIT_ACT outputs 

➢ ACT_CYCLE1 outputs 

➢ ACT_CYCLE2 outputs 

➢ BANK_ACTIVE outputs 

➢ WAIT_READ outputs 

➢ READING_CTCLE1 outputs 

➢ READING_CYCLE2 outputs 

➢ WAIT_READ_LATENCY 

outputs 

➢ READING_DATA outputs 

➢ WAIT_READ_DONE (A 

cycles) outputs 

➢ READ_DONE outputs 

➢ BANK_ACTIVE outputs 

 

Write after 

read in same 

Row 

address. 

➢ CMD_FSM_Enable 

signal is asserted high. 

➢ Same_Bank_Group 

signal is asserted Low.  

➢ CMD signal is asserted 

‘000’. 

➢ First_Command signal is 

asserted high. 

➢ all counter flags are 

asserted high. 

➢ Ctrl_ADD signal is 

asserted a certain value.  

 

➢ IDLE outputs 

➢ WAIT_ACT outputs 

➢ ACT_CYCLE1 outputs 

➢ ACT_CYCLE2 outputs 

➢ BANK_ACTIVE outputs 

➢ WAIT_READ outputs 

➢ READING_CTCLE1 outputs 

➢ READING_CYCLE2 outputs 

➢ WAIT_READ_LATENCY 

outputs 

➢ READING_DATA outputs 

➢ WAIT_READ_DONE (A 

Cycles) outputs 

➢ READ_DONE outputs 

➢ BANK_ACTIVE outputs 

✓ ✓ 
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➢ Wait until CMD_Done is 

asserted high. 

 

 

➢ CMD_FSM_Enable 

signal is asserted high. 

➢ Same_Bank_Group 

signal is asserted High.  

➢ CMD signal is asserted 

‘001’. 

➢ First_Command signal is 

asserted Low. 

➢ all counter flags are 

asserted high. 

Ctrl_ADD signal is 

asserted a certain value. 

 

➢ WAIT_WRITE outputs. 

➢ WRITING_CTCLE1 outputs. 

➢ WRITING_CYCLE2 outputs. 

➢ WAIT_WRITE_LATENCY 

outputs.  

➢ WRITING_DATA outputs. 

➢ WAIT_WRITE_DONE (A 

cycles) outputs. 

➢ WRITE_DONE outputs. 

➢  BANK_ACTIVE outputs. 

 

Write after 

read in 

different 

Row address 

➢ CMD_FSM_Enable 

signal is asserted high. 

➢ Same_Bank_Group 

signal is asserted Low.  

➢ CMD signal is asserted 

‘000’. 

➢ First_Command signal is 

asserted high. 

➢ all counter flags are 

asserted high. 

➢ Ctrl_ADD signal is 

asserted a certain value.  

 

➢ Wait until CMD_Done is 

asserted high. 

 

 

➢ CMD_FSM_Enable 

signal is asserted high. 

➢ Same_Bank_Group 

signal is asserted low.  

➢ CMD signal is asserted 

‘001’. 

➢ First_Command signal is 

asserted high. 

➢ all counter flags are 

asserted Low. 

➢ IDLE outputs 

➢ WAIT_ACT outputs 

➢ ACT_CYCLE1 outputs 

➢ ACT_CYCLE2 outputs 

➢ BANK_ACTIVE outputs 

➢ WAIT_READ outputs 

➢ READING_CTCLE1 outputs 

➢ READING_CYCLE2 outputs 

➢ WAIT_READ_LATENCY 

outputs 

➢ READING_DATA outputs 

➢ WAIT_READ_DONE (A 

cycles) outputs 

➢ READ_DONE outputs 

➢ BANK_ACTIVE outputs 

➢ PRECHARGE outputs 

➢ WAIT_tRP outputs 

➢ IDLE outputs 

 

➢ ACT_CYCLE1 outputs. 

➢ ACT_CYCLE2 outputs. 

➢ BANK_ACTIVE outputs. 

➢ WAIT_WRITE outputs. 

➢ WRITING_CTCLE1 outputs. 

➢ WRITING_CYCLE2 outputs. 

➢ WAIT_WRITE_LATENCY 

outputs.  

➢ WRITING_DATA outputs. 

✓ ✓ 
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Note: In consecutive operations, the red colored statements represent the operations of the 

first command, while the blue colored statements represent the operations of the second 

command.  

 

 

 

 

4.4.3 Reported Bugs  
 

Bug #1: 

CMD FSM gets stuck at wait_write_done state while executing write operation, and at 

wait_read_done state while executing read operation as well. 

 

Figure 44: Single write operation stuck at wait write done state. 

 

➢ Ctrl_ADD signal is 

asserted a certain value. 

 

➢ WAIT_WRITE_DONE (A 

cycles) outputs. 

➢ WRITE_DONE outputs. 

➢  BANK_ACTIVE outputs. 
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Modification: 

 
After tracing signals, write_Done signal which is the status signal that FSM 

determine the next state based on it, was found to be asserted high and returned 

low before the positive edge of the CK_t, so CMD FSM couldn’t sample it, so 

it stuck at this state. 

As write_Done signal comes from a WR FSM which instantiated in this block 

but its operating frequency is double the frequency of the CMD FSM, 

write_Done signal is asserted high for two clock cycles of the double clock by 

adding extra state (WR_DONE2) which WR FSM goes to it unconditionally, the 

same solution was done to Read_Done signal in RD FSM. 

  

 

 

 

Figure 45: Single write operation after modifying CMD FSM. 
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Bug #2: DQS, DQT preambles aren’t working properly. 

Figure 46: DQS, DQT preambles aren’t working properly. 

 

 

 

Modification: The always block which generates DQS, is changed. 

 

  

 

 

                                      Figure 47: DQS, DQT preambles are working properly after modification. 
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Bug #3: CMD FSM gets stuck at wait_tRP state. 

Figure 48: CMD FSM gets stuck at wait_tRP state. 

 

 

Modification: it was a trivial error in the next state decoder, as next state was wait_tRP 

at the two branches of the condition on tRP signal.   

 
Figure 49: CMD FSM works properly after modification. 
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4.4.4 Functional Coverage Results  
  

                                    

 

Figure 50: Command FSM Functional Coverage from Coverage Viewer. 

 

 

4.4.5 Code Coverage Results  

 

               

Figure 51: Command FSM Code Coverage Summary from Questasim. 
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4.5 SELF_REFRESH FINITE STATE MACHINE 
 

 One of the main limitations of dynamic CMOS circuits such as SDRAMS is the signal integrity 

issues, so it needs refreshing every certain period to defeat signal integrity issues affected by 

reading from the cell or leakage current by adjusting and updating its internal average periodic 

refresh interval, as needed, based on its own temperature sensor (does not require any external 

control), after the interval time passed, tREF counter will be asserted high and the command 

decoder will assert SR_FSM_Enable high to enable only the SR_FSM, which is responsible for 

doing the sequence of operations which specified in in JESD79-5 section 4.6, that should be 

done in order to complete self-Refreshing. 

4.5.1 Functional Coverage Plan  

The important features that should be covered to ensure the correctness of the  

Self_Refresh FSM functionality are the following: 

1. Cover point to cover SR_FSM_Enable. 

2. Cover Points to Cover Conter_Flags to grantee that FSM is behaving correctly in case of 

they are high and low. 

 

4.5.2 Test Cases 
Table 46: Test cases of Self_Refresh FSM. 

 

 

Figure 52: Self_Refresh sequence as specified in JESD79-5 [5]. 

Test Item  Test Case    Expected Result  Covered  Bug 
Free  

   

Self_Refresh   

➢ SR_FSM_Enable signal 

is asserted high. 

➢ all counter flags are 

asserted high. 

 

➢ The sequence of CA and 

CS_n as shown in 

Figure 55 specified in 

JESD79-5. 
✓ ✓ 
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Figure 53: implemented Self_Refresh waveform. 

 

4.5.3 Reported Bugs  
         

           Free of Bugs  

 

 

4.5.4 Functional Coverage Results  
 

 

Figure 54: Self-Refresh FSM Functional Coverage XML Report. 
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Figure 55: Self-Refresh FSM Functional Coverage from Coverage Viewer. 

 

4.5.6 Code Coverage Results  

 

 

Figure 56: Self-Refresh FSM Code Coverage Summary from Questasim. 
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4.6 INITIALIZATION FINITE STATE MACHINE  
 

Initialization FSM is responsible for doing Set of Sequences as specified in JESD79-5 section 3.3 

that should be done in order to power on in a well-known state, starting from power on and ending 

with loading the mode registers with the default values. 

4.6.1 Functional Coverage Plan  
 

The important features that should be covered to ensure the correctness of the  

Initialization FSM functionality are the following: 

1. Cover point to cover INIT_FSM_Enable. 

2. Cover Points to Cover Conter_Flags to grantee that FSM is behaving correctly in case of 

they are high and low. 

4.6.2 Test Cases  
Table 47: Test cases of Initialization FSM. 

 

 

 

 

Figure 57: Initialization sequence as specified in JESD79-5 [5]. 

 

Test Item  Test Case    Expected Result  Covered  Bug 
Free  

   

Initialization    

➢ INIT_FSM_Enable 

signal is asserted high. 

➢ all counter flags are 

asserted high. 

 

➢ The sequence of CA and 

CS_n as shown in 

Figure 3 specified in 

JESD79-5. 
✓ ✓ 
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Figure 58: implemented initialization waveform. 

4.6.3 Reported Bugs  
 

             FREE OF BUGS  

4.6.4 Functional Coverage Results  
 

 

Figure 59: Initialization FSM Functional Coverage XML Report. 

 

 

 

 

 

 

 

 

Figure 60: Initialization FSM Functional Coverage from Coverage Viewer. 
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4.6.5 Code Coverage Results  
 

 

Figure 61: Initialization FSM Code Coverage Summary from Questasim. 

 

 4.7 COUNTERS 
 

4.7.1 Functional Coverage Plan  
The important features that should be covered to ensure the correctness of the  

Counter functionality are the following: 

1. Cover point to cover Counter Enable. 

2. Cover point to cover Reset. 

3. Cross Coverage Points to cover Reset and Enable at the same time. 

 

4.7.2 Test Cases  
Table 48: Test cases of counters. 

Test Item  Test Case    Expected Result  Covered  Bug 
Free  

Enable ➢ Counter_Enable signal is 

asserted high. 

➢ Counter_Reset signal is 

asserted Low. 

 

➢ After a specific number 

of clock cycles 

according to value of 

timing parameter 

Counter Flag will be 

asserted High. 

✓ ✓ 
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4.7.3 Reported Bugs  
 

 

 

Figure 62: Counter Flag is asserted High for only one Clock Cycle. 

4.7.4 Functional Coverage Results 
 

 

 

Figure 63: Counters Functional Coverage XML Report. 

Reset ➢ Counter_Enable signal is 

asserted low. 

➢ Counter_Reset signal is 

asserted High. 

➢ Counter Flag will be 

asserted low 

immediately. ✓ ✓ 
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Figure 64: Counters Functional Coverage from Coverage Viewer. 

4.7.5 Code Coverage Results 
 

    

Figure 65: Counters Code Coverage Summary from Questasim. 

           

Figure 66: Counters Test Summary from Questasim. 
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Chapter 5: UVM VS COCOTB  

5.1 INTRODUCTION 
 

In order to compare between UVM verification and COCOTB verification we choose block from 

our design which is the FIFO and test it with UVM and COCOTB. 

 

5.1.1 UVM verification 
 

A key concept for any modern verification methodology is the layered test bench. Although this 

process may seem to make the test bench more complex, it actually helps to make the task easier 

by dividing the code into smaller pieces that can be developed separately. The proposed UVM-

based verification architecture for WR_Data_FIFO block is shown in Figure 67 [14]. 

 

 
Figure 67: UVM environment for WR_Data_FIFO block [14]. 
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5.1.2 UVM verification environment components 
 

UVM verification environment is composed of different components such as [15]: 

• Driver which drives the DUT’s inputs as it runs single commands, such as bus read or 

write. 

• Monitor which is driven by the DUT’s output as it that takes signal transitions and groups 

them together into commands. 

• Assertions which cross the command/signal layer, as they look at individual signals. 

• Sequencer which takes sequence items from a sequence and passes them to the driver. 

• Functional coverage measures the progress of all tests in fulfilling the verification plan 

requirements. 

5.2 VERIFICATION PLAN 
 

First step in verification process is to make the verification plan which is derived from the hardware 

specification and contains a description of what features need to be exercised and the techniques 

to be used. These steps may include directed or random testing and assertions. 

 

So, we make verification plan for testing FIFO which is to: 

• Ensure that we can write and read from FIFO and make sure that it follows first input data 

is the first output data 

• Ensure that full flag is high when FIFO is full and ensure that empty flag is high when 

FIFO is empty  

• Ensure that read, write pointer, full, empty flag are reset when Reset is high.  

 

Then we make testing scenarios and ensure that our tests provide 100% coverage of the entire 

verification plan. 

 

5.2.1 Testing scenarios: 
 

1. Write 16 data packets until the FIFO is full then read all 16 data packets and compare 

whether the data is same as what have been written previously. 

2. Write and read data randomly for 50 times. 

3. Using system Verilog assertions for: 

o Asserting for that Read pointer, write pointer, FIFO counter, full flag and empty 

flag are now reset when Reset is high. 

o Asserting for that FIFO full flag is high when FIFO has no space to write in. 

o Asserting for writing in a full FIFO and FIFO full flag is high. 

o Asserting for that FIFO empty flag is high when all data have been read. 

o Asserting for trying to read from empty FIFO and FIFO empty flag is high. 
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5.3 RESULTS FROM UVM VERIFICATION 
 

There were some few errors that we have discovered from results of simulation such as: 

 

 

Figure 68: 1st example of error from simulation. 

 

The solution of this error was editing the size of Read Pointer to be 4 bits as FIFO depth is 16. 

 

 

Figure 69: 2nd example of error from simulation. 

 

The solution of this error was editing the condition for FIFO full flag to be high only if FIFO 

counter equals 16. Etc. 

 

We solved all design errors and the final UVM Report Summary and Coverage is shown in 

Figure 70. 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 70: UVM Report Summary and Coverage 
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 Also, all assertions are passed as shown in Figure 71. And the assertions coverage is shown in 

Figure 72. 

 

       

Figure 71: Assertions and UVM results. 

 

      

Figure 72: The assertions coverage. 
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5.4 RESULTS FROM COCOTB VERIFICATION 
 

We did verification for WR_Data_FIFO block also with COCOTB and we get the same errors 

results as that we got from UVM verification as shown in Figure and the results are shown in 

Figure 73. 

 

             

Figure 73: Result of errors from COCOTB. 

 

After solving all design errors, the final COCTB Report which shows that tests are passed is 

shown in Figure 74. 
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Figure 74: COCOTB verification results 

 

Functional coverage percentage is 100% as shown in Figure 75 and Code coverage percentage is 

99.09% as shown in Figure 76. 
 

 

Figure 75: COCOTB Functional coverage report 

 

 



DDR5 SDRAM Memory Controller Design and Verification 
 

PAGE | 113  
 

       

Figure 76: COCOTB Code coverage report 

 

5.5 HISTORY OF VERIFICATION METHODS: 
 

In order to understand why using COCOTB we should first know the History of verification 

methods. Traditionally, when faced with the task of verifying the directed tests method is used by 

writing stimulus vectors that exercise the features in the DUT. Then simulating the DUT with these 

vectors and manually reviewing the resulting log files and waveforms to make sure the design 

work properly. The problem with the directed tests method is when the design complexity doubles, 

it takes twice as long to complete or requires twice as many people to implement it. 

So, the second method which is Constrained-Random Stimulus is used as constrained-random test 

bench is now finding bugs faster than the many directed ones as shown in Figure 77 [13]. Another 

advantage is that directed test finds the bugs you expect to be in the design, whereas a random test 

can find bugs you never anticipated. When using random stimuli, you need functional coverage to 

measure verification progress. Furthermore, once you start using automatically generated stimuli, 

you need an automated way to predict the results generally a scoreboard or reference model. 

Building the test bench infrastructure, including self-prediction, takes a significant amount of work. 

A layered test bench helps you control the complexity by breaking the problem into manageable 

pieces. 
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Figure 77: Constrained-random test progress over time vs. directed testing [13]. 

 

AS higher-level language concepts (like OOP) are useful when writing layered and complex test 

benches so they Added higher level programming features to a hardware description language 

(System Verilog). So UVM (Universal Verification Methodology) libraries written in System 

Verilog. 

 

The SV/UVM approach is powerful, but complicated. Since the Verification test benches are 

software, not hardware problem so the COCOTB’s developers tried a different approach which is 

using a high-level, general-purpose language (Python) for developing test benches. 

 

 5.6 TRADEOFFS BETWEEN USING UVM AND COCOTB: 
 

1) The SV/UVM approach is powerful, but complicated as system Verilog has around 250 

keywords and its reference has around 1300 pages as shown in Figure 78 [16]. 

 

2) COCOTB’s developers, Chris Higgs and Stuart Hodgson, tried a different approach: 

● Keep the hardware description languages for what they’re good at–design! 

● Use a high-level, general-purpose language for developing test benches. 

● Object oriented programming is much more natural in general purpose 

languages! 

● They picked Python as their language of choice: 

Python is simple (only 35 keywords) and easy to learn, but very powerful.  

● The Python reference is around 160 pages. 

● Python has a large standard library and a huge ecosystem; lots of existing 

libraries. 

● Python is well documented and popular: lots of resources online. 

● The Python test bench can read or change the value of any internal signal. 

● COCOTB can be used for post-synthesis simulations too! 

● Tests can call other methods and functions, just like normal Python 
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3) Also, now there are developers making the Universal Verification Methodology (UVM) 

implemented in Python to get advantage of reusable components which is provided by 

UVM. 

     

Figure 78: Programming languages Complexity. 

 

5.7 FUTURE OF PYTHON IN VERIFICATION: 

Here are two studies from Siemens were made in 2020. first study is about FPGA verification 

language adoption next twelve months which shows that using of python in verification has 

increased over the years and it exceeds 20% in usage with respect to other languages as shown in 

Figure 79 [17]. 

Second study is about ASIC/IC verification language adoption next twelve months which shows 

that using of python in verification has increased over the years and it reaches around 30% in usage 

with respect to other languages as shown in Figure 80 [17]. 
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Figure 79: FPGA verification language adoption next twelve months [17]. 

 

       

Figure 80: ASIC/IC verification language adoption next twelve months [17]. 

 

So, it is clear that using of python in verification is increasing and after implementing UVM in 

Python it is predictable that using of python will increase more. 
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Chapter 6: Top Level Verification 

6.1 VERIFICATION ENVIRONMENT: 
 

The environment is the same as environment of block level verification except new item is added 

called slave model as shown in Figure 81 [18]: 

 

 

Figure 81 : Verification Environment of Top-Level Verification [18]. 

Slave model is added to verification environment in order to check the functionality of the 

controller. It represents model of DDR5 SDRAM Memory to captures the Read/ 

Read_With_AutoPrecharge/Read_Burst/Read_Burst_AutoPrecharge/Write/Write_With_AutoPre

charge/Write_Burst/Write_Burst_AutoPrecharge/ACT/Precharge request from the controller. The 

Memory Module concatenates the requested address for write or read from Read/Write/ACT 

commands which are sent to the memory module. For the Write command the write data which is 

captured from DQ and DQS pins is stored in an associate array in required address. For the Read 

command the memory module send read data by DQ and DQS pins to controller. For the Precharge 

command the memory module deactivate the row in requested bank. So, by The Memory Module 

which is shown in Figure 82 we can compare the data sent from generator to the controller is equal 

to data received. 
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Figure 82: Block Diagram of Memory Module 

6.2 FUNCTIONAL COVERAGE PLAN: 
 

The important features that should be covered to ensure the correctness of the Top-Level 

functionality are the following:  

1. Reset. 

2. Self-Refresh. 

3. Reset and Self_Refresh/command in the same time to ensure the priority of reset. 

4. All types of write command (write, write Burst, write with AP, write burst with AP).  

5. All types of read command (read, read Burst, read with AP, read burst with AP).  

6. Two consecutive writes (write, write with AP) in same bank group.  

7. Two consecutive writes (write, write with AP) in different bank group. 

8. Two consecutive reads (read, read with AP) in same bank group. 

9. Two consecutive reads (read, read with AP) in different bank group.  

10. Read after write in same bank group.  

11.  Read after write in different bank group. 

12. Write after read in same bank group.  

13. Write after read in different bank group. 

14. All types of write command (write, write Burst, write with AP, write burst with AP). 

15. All types of read command (read, read Burst, read with AP, read burst with AP). 

16. Two consecutive writes (write, write with AP) in same bank group.  

17. Two consecutive writes (write, write with AP) in different bank group. 

18. Two consecutive reads (read, read with AP) in same bank group. 

19. Two consecutive reads (read, read with AP) in different bank group.  

20. Read after write in same bank group. 

21. Read after write in different bank group. 

22. Write after read in same bank group.  

23. Write after read in different bank group. 

24. Multiple read after multiple write in different bank group. 

25. Multiple read after multiple write in different bank group. 
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6.3 REPORTED BUGS: 

 

Bug #1: First Command 

First command after initialization stuck at WAIT_ACT state in Command_FSM as shown in 

Figure 83. This happened as in this state timing between consecutive active commands is 

checked, so it won’t be satisfied as this is the first command and there are not previous 

commands to count these timings.  

 

 

Figure 83:Top Module is stuck at WAIT_ACT state 

 

Modification: This problem is not related only to timing of active commands; it’s also 

related to read and write timing parameters. We solved this problem by adding status register 

to store 1 after initialization indicating that the command will be executed later is the first 

command and no need for checking timing between consecutive commands in Command_FSM. 

 

 Bug #2: Same_Bank_Group Signal 

The value of Same_Bank_Group signal changes each cycle as controller receives 

commands from CPU each clock cycle, so we lose this information as it’s not stored like 

commands, addresses and data in FIFO which leads strange performance. 
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Modification: Same_Bank_Group signal is also stored with command and address in 

Command_Address_FIFO. 

 

Bug #3: Read Words with length less than burst length as shown in Figure 84 due to 

mistake counters which are used in Read_FSM block. 

 

 

Figure 84: Read words with length less than burst length 

 

Modification: Counters in Read_FSM are fixed with correct values 

 

Bug #4: The Memory Module and the Controller can drive DQ and DQS pins in Write or 

Read operations so this produces a bug as DQ and DQS pins have now multiple drivers. 

 

Modification: 

The solution for this bug is by using 3-State Buffer or more commonly a Tri-state Buffer as 

shown in Figure 85. A Tri-state Buffer can be thought of as an input-controlled switch with an 

output that can be electronically turned “ON” or “OFF” by means of an external “Control” or 

“Enable” (EN) signal input. This control signal can be either logic “0” or a logic “1” type signal 

resulting in the Tri-state Buffer being in one state allowing its output to operate normally 

producing the required output or in another state where its output is blocked or disconnected. 
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Figure 85: Tri-state Buffer. 

 

When activated into its third state it disables or turns “OFF” its output producing an open circuit 

condition that is neither at a logic “HIGH” or “LOW”, but instead gives an output state of very 

high impedance, High-Z, or more commonly Hi-Z. 

6.4 FUNCTIONAL COVERAGE RESULTS: 
 

 

Figure 86:Functional Coverage Report of Top Level 
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6.5 CODE COVERAGE RESULTS: 
 

 

Figure 87:Code Coverage Report of Top Level 

6.6 FINAL RESULTS 

6.6.1 Initialization Sequence 
 

 

Figure 88:Waveform of Initialization Sequence from Top Level 
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6.6.2 Self-Refresh Sequence 
 

 

Figure 89:Waveform of Self-Refresh Sequence from Top Level 

6.6.3 Single Read after Write 
 

 

Figure 90: Waveform of Single Read after Write 

6.6.4 Multiple Read after Multiple Write 

 

Figure 91: Waveform of Multiple Read after Multiple Write 



DDR5 SDRAM Memory Controller Design and Verification 
 

PAGE | 124  
 

6.7 QUESTA VERIFICATION IP 
 

6.7.1 Overview 
 

After we have verified our design using our verification environment, as a sanity check we used 

Questa Verification IP (QVIP) DDR5 Memory Model to verify our design. The DDR5 Questa 

memory model provides the infrastructure to create models of various DDR5 memory devices that 

you can connect to a memory controller designs under test (DUTs). it includes parameterized 

SystemVerilog modules that you instantiate in a Verilog or UVM test bench and connect it to a 

design under test (DUT).it provides various APIs for configuration, callback, backdoor, and other 

operations, which you can use in a test as required. For example, use the configuration API 

set_delay to change certain delay timing values of the memory model during runtime. To load a 

memory image for initialization or at any other point in the test case, use a backdoor or memory 

access API. During runtime, the instantiated memory model responds to the signal-level protocol 

for front-door access. The model responds to the APIs and provides full functionality and timing 

accuracy for the supported memory device.it also includes built-in assertions, performance 

statistics collection, and transaction logging features to identify issues. These debug features 

abstract the memory accesses to high-level transactions, which makes it easier to analyze the data. 

The typical memory model flow is shown in Figure 92 [19] : 

 

Figure 92: Questa Memory Model Flow 
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6.7.2 Memory Model Components 
The DDR5 Questa memory model is based on the Questa Memory Library architecture. This architecture 

supports features to instantiate and configure a model in your test bench, and debug functional 

verification issues. The main components of the memory model are shown in Figure 93 [19]: 

 

Figure 93:Memory Model Components 

 

The description of each component is shown in Table 49 [19]: 

 

Table 49: Description of Memory Model Components 

Component Description 

Memory Bus Functional Model (BFM) 
Implements a transaction-based bus function 

model with a SystemVerilog interface 

Data Storage Array Acts as the memory of the model 

Front-door Access 

Implements the interface over the memory 

protocol to access the contents of the memory 

At runtime, access to the memory takes place 

using the signals of the protocol front-end 

interface. 

Backdoor Access 

Loads or unloads the contents of the memory 

At runtime, data is transferred in and out of 

the storage array using the backdoor and 

memory access APIs. 
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Protocol Checker 

Implements runtime assertion checks to 

determine how the memory protocol responds 

to transactions 

Performance Statistics Collector 
Collects statistics of various performance 

parameters 

Functional Coverage Collector 
Collects information about DUT coverage at 

the transaction-level model 

Transaction Logger 

Logs transaction details in a file This 

component is disabled by default. You can 

enable the component when you configure the 

memory model for your test bench 

 

6.7.3 Configurations 

We used the graphical user interface of QVIP Configurator (Configurator) to configure and create 

the model, which can then be instantiated in an existing test bench. Configurator also provides the 

option to create the complete test bench where the memory controller and the memory model 

instance are connected and configured according to requirements. We connected Memory Model 

with our DUT as shown in Figure and configured Memory Model by choosing configuration of 

device x16 and speed 3.2 GHZ as shown in Figure 94 [19]: 

 

Figure 94: Test bench using QVIP Configurator 
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Figure 95 :Memory Model Configurations 

 

6.7.3 Results 

QVIP reported bugs, we will present some of them: 

 

Bug #1: DQ should be high “Z “during self-refresh, however is observed as” X”. 

 

 

Modification: This is intentional bug made by us, we replaced Z with X as Questa 

simulation tool reports error in compiling when it founds Z. 
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Bug #2: Minimum Value of timer tCSH_SREXIT is “13 ns” however, timer is 

configured as “10 ns”. 

 

Modification: We edited the value of this parameter in Counters block with the correct 

value. 

 

Bug #3: Any valid command like read or write for bank that is not activated can be 

issued only after tRP (interval for precharge of current row) has been elapsed. 

 

Modification: we solved this bug by founding that value of tRP is not as configured by 

tool, so we edited with value configured by tool. 
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Chapter 7: Conclusions and Future Work 

 

7.1 CONCLUSION 
In this thesis, we have seen the need of new DDR protocol (DDR5) and its applications in industry. 

We have discussed basic features of DDR5 SDRAM Memory controller through design of blocks 

that implemented these features and verified the functionality of this design on blocks level and 

top module level and yielded to results that meet performance needed by JEDEC79-5 standard. 

We also have discussed a comparison between verification using UVM and Python based 

verification (COCOTB). 

 

7.2 FUTURE WORK 
This section provides ideas for further research and extension to the thesis work proposed. These 

are possibilities to improve the DDR5 SDRAM Memory Controller design and verification in 

order to increase the functionality. 

⚫ Adding optional features mentioned in section 2.1.2 to design of controller. 

⚫ Performing full system emulation to test DDR5 SDRAM Memory Controller design by 

porting on FPGA. 

⚫ Enhancing the test environment by adding more constraints random test cases. 

⚫ Measuring coverage by Questa Verification IP. 

⚫ Modelling the existing verification environment of top level to a class based UVM 

environment. 

⚫ Publish a paper on comparison between UVM and COCOTB. 
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