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Abstract

The objective of this thesis is to carry out an ASIC Physical Design of the

RISC-V based CV32E40P (RI5CY) PULP “Parallel Ultra-Low Power”

Core. The aim of the RI5CY core is to satisfy the computational demands

of IoT applications achieving higher code density, performance, and

energy efficiency

The project aims to deliver the GDSII file by going through the

RTL-to-GDSII flow. “NANGATE 45 nm” PDK was used through the

flow. The core was implemented with three different synthesis flows

(Topographical, Flat and Hierarchical) using Synopsys Design Compiler,

followed by all main steps of Place & Route flow using Synopsys IC

Compiler. Formal equivalence checking is performed after PnR process to

ensure that both Pre-layout netlist and Post-layout netlist exhibit the same

behavior using Synopsys Formality tool, and then Post-layout STA is

done with Synopsys PrimeTime to ensure that design meets all timing

requirements at a wide range of PDK operating corners. Finally, results

were compared between the three implementation flows based on timing,

area, power and synthesis runtime.
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Chapter 1

Introduction

This chapter introduces the basic knowledge and brief background of topics related to

this thesis. It also describes the objective behind this thesis and a map for this

documentation in order to make it easier to navigate through different topics covered

by it.

1.1 Motivation

Recently, there has been a shift towards open source hardware. The reason behind the

increase in demand for open source hardware is that open specifications maximize the

ability of programmers to take advantage of hardware features when optimizing

software-defined solutions. Open hardware can also be more extensible and

maximizes the ability of third-party programmers and partners to work with a given

device [1].

Open hardware will also help to drive IoT adoption by creating a foundation for

building low-cost, low-power, portable IoT solutions. The idea behind IoT is to have a

network of computing devices, vehicles, embedded systems with sensors etc which

generate, exchange and process data intelligently and continuously. About 50
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billion devices are estimated to be connected with IoT by 2020, up from about 200

million in the year 2000 and 10 billion in 2013 [2].

RISC-V began in 2010 at the University of California, Berkeley along with many

volunteer contributors. It is now growing rapidly as it is projected that 62.4 billion

RISC-V CPU cores will be sold in 2025 which is about 6% of the overall CPU core

market. RISC-V has broken down barriers in the semiconductor industry, bringing

together different companies, industries, and geographies for open collaboration [3].

The Parallel Ultra Low Power (PULP) Platform started as a joint effort between the

Integrated Systems Laboratory (IIS) of ETH Zürich and Energy-efficient Embedded

Systems (EEES) group of the University of Bologna in 2013 to explore new and

efficient architectures for ultra-low-power processing. PULP initiative aims to

develop an open, scalable hardware and software research and development platform

with the goal to break the energy efficiency barrier within a power envelope of a few

milliwatts, as well as satisfy the computational demands of IoT applications requiring

flexible processing of data streams generated by multiple sensors, such as

accelerometers, low-resolution cameras, microphone arrays and vital signs monitors.

They take an open-source approach based on the open-source RISC-V instruction set

architecture [4].
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1.2 RISC-V Architecture

RISC-V (pronounced "risk-five") is an open standard instruction set architecture

(ISA) based on established reduced instruction set computer (RISC) principles. Being

open source unlike most ISA; the RISC-V ISA delivers a new level of free, extensible

software and hardware freedom on architecture. A number of companies are offering

or have announced RISC-V hardware, open source operating systems with RISC-V

support are available and the instruction set is supported in several popular software

toolchains.

In the case of RISC-V, only the ISA is standardized, leaving the microarchitecture and

implementation to the processor developer. RISC-V is designed with a small,

fixed-base ISA. It includes modular fixed-standard extensions that can be used with

the majority of code. This architecture enables the development of

application-specific extensions without needing to modify the standard ISA core. One

of the advantages of RISC-V is that developers can optimize code with minimal

memory needs and low power consumption while maintaining scalability and

compatibility for future designs. There is also the opportunity to develop extensions to

the basic ISA. A variety of security solutions have been developed to ensure secure

processing with RISC-V [5].

RISC-V has a modular design, consisting of alternative base parts, with added

optional extensions. The base specifies instructions (and their encoding), control flow,

registers (and their sizes), memory and addressing, logic (i.e., integer) manipulation,

and ancillaries. The base alone can implement a simplified general-purpose computer,
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with full software support, including a general-purpose compiler. RISC-V has 32 (or

16 in the embedded variant) integer registers, and, when the floating-point extension

is implemented, separate 32 floating-point registers. Except for memory access

instructions, instructions address only registers. Like many RISC designs, RISC-V is

a load–store architecture: instructions address only registers, with load and store

instructions conveying to and from memory. RISC-V segregates math into a minimal

set of integer instructions with add, subtract, shift, bitwise logic and

comparing-branches. The integer multiplication instructions include signed and

unsigned multiply and divide [5].
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1.3 RI5CY Core

CV32E40P is a 4-stage in-order 32-bit RISC-V processor core. The ISA of

CV32E40P has been extended to support multiple additional instructions including

hardware loops, post-increment load and store instructions and additional ALU

instructions that are not part of the standard RISC-V ISA. Figure 1.1 shows a block

diagram of the core [4].

Figure 1.1: Block Diagram of CV32E40P RISC-V Core [4]

CV32E40P is a standards-compliant 32-bit RISC-V processor. Many features in the

RISC-V specification are optional, and CV32E40P can be parametrized to enable or

19



disable some of them. CV32E40P supports the base instruction set: RV32I Base

Integer Instruction Set, version 2.1. In addition, the following standard instruction set

extensions are available.

Table 1.1: CV32E40P Standard Instruction Set Extensions [4]

Standard Extension Version Configurability

C: Standard Extension for Compressed

Instructions

2.0 always enabled

M: Standard Extension for Integer

Multiplication and Division

2.0 always enabled

Zicount: Performance Counters 2.0 always enabled

Zicsr: Control and Status Register

Instructions

2.0 always enabled

Zifencei: Instruction-Fetch Fence 2.0 always enabled

F: Single-Precision Floating-Point 2.2 optionally enabled based

on FPU parameter
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Also, the following custom instruction set extensions are available.

Table 1.2: CV32E40P Custom Instruction Set Extensions [4]

Custom Extension Version Configurability

Xcorev: CORE-V ISA Extensions

(excluding cv.elw)

1.0 optionally enabled based on

PULP_XPULP parameter

Xpulpcluster: PULP Cluster

Extension

1.0 optionally enabled based on

PULP_CLUSTER

parameter

Xpulpzfinx: PULP Share Integer (X)

Registers with Floating Point (F)

Register Extension

1.0 optionally enabled based on

PULP_ZFINX parameter

CV32E40P has a 4-stage in-order completion pipeline, the 4 stages are [4]:

● Instruction Fetch (IF)

Fetches instructions from memory via an aligning prefetch buffer, capable of

fetching 1 instruction per cycle if the instruction side memory system allows.

The IF stage also pre-decodes RISC-V compressed (RVC) instructions into

RV32I base instructions.
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● Instruction Decode (ID)

Decodes fetched instruction and performs required registerfile reads. Jumps

are taken from the ID stage.

● Execute (EX)

Executes the instructions. The EX stage contains the ALU, Multiplier and

Divider. Branches (with their condition met) are taken from the EX stage.

Multi-cycle instructions will stall this stage until they are complete. The ALU,

Multiplier and Divider instructions write back their result to the register file

from the EX stage. The address generation part of the load-store-unit (LSU) is

contained in EX as well.

● Writeback (WB)

Writes the result of Load instructions back to the register file.

The following figure shows the CV32E40P Pipeline.

Figure 1.2: CV32E40P Pipeline [4]
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Some instructions have a variable time which means that the instruction takes a

minimum of 1 cycle and a maximum of 32 cycles. The cycle counts assume zero stall

on the instruction-side interface and zero stall on the data-side memory interface.
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1.4 Thesis Objective

The global semiconductor market has gone through tremendous growth due to the

increasing consumption of consumer electronics devices across the globe. However,

due to the challenges in overcoming the chip shortage and manufacturing limits in

addition to high competition, it has been demanding to design faster, smaller and more

complex devices.

The objective of our project is to carry out the digital implementation of RISC-V core

on open PULP by going through the complete ASIC physical design from RTL to

GDSII Implementation Flow. We went through all steps of design flow including

synthesis, floorplanning, placement and routing (PnR), static timing analysis (STA)

and equivalence checking. Also, we explored multiple design flows (Flat,

Hierarchical and Topographical). Finally, we analyzed the results of each flow with

respect to PPA (Power, Performance, Area).

We used the open source RTL of RISC-V based CV32E40P (RI5CY) core as a

starting point. “NANGATE 45 nm” PDK was used throughout the flow. Synopsys

tools were used to implement our work. Design Compiler (DC) was used for

synthesis, followed by Synopsys IC Compiler (ICC) for PnR. Formal equivalence

checking is performed after the PnR process using Synopsys Formality tool. Finally,

post-layout STA is done with Synopsys PrimeTime.
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1.5 Thesis Organization

This thesis documentation is divided into five chapters. Chapter1 is an introductory

chapter that covers some background knowledge that is needed throughout this

documentation which includes a short description of RISC-V ISA, in addition to an

introduction to PULP RI5CY core. Also, it covers the thesis objective and this thesis

organization.

In chapter two, a survey of the state of the art concerning the RISC-V cores is

introduced. It presents a market and literature review of the design. It also includes an

overview of the tools and techniques needed to build the state of the art system in

addition to the technical approach. It also explains the project design including

constraints, technical specifications and the block diagram of the design.

Chapter three describes the ASIC flow including synthesis, floorplan, placement,

CTS, outing, STA, design validation, and chip finishing.

Chapter four describes the attempt to implement RI5CY core using different synthesis

flows based on the methodologies mentioned in chapter three. It also shows the core

differences between the three flows. In addition, it shows a step by step

implementation of each flow and a guide for the tools used.

Chapter five gathers all the achieved results at each step of the three flows. These

results include the achieved timing, the power consumption, the chip area, the

congestion, etc.
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Chapter six concludes the work done throughout the thesis comparing between the

three design flows. Also, future work and possible modifications are presented.
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Chapter 2

Literature Review

2.1 Market

The first commercial RISC-V processor, the Freedom E310 was released by SiFive

back in 2016 [3]. Freedom E310 is a 32-bit 320 MHz microcontroller designed for

small and low power applications. Since then, the market for RISC-V cores has

expanded leading to more powerful multi cores out of order processors capable of

performing high demand tasks such as deep learning or running servers and data

centers. The RISC-V entered the SoC FPGA market in 2020 when microchip

announced PolarFire SoC, the first-ever hard-core RISC-V processor inside an FPGA

[3]. The scene for RISC-V cores has become more and more competitive as big

companies as well as new startups are jumping on the open ISA train. Many

companies have established themselves as the go-to for RISC-V cores that span a

wide range of applications and we will discuss some of these companies.
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Codasip

Codasip is a RISC-V processor IP provider. They provide a wide range of RISC-V

standard processors for a variety of applications and requirements. Their lineup

consists of Small and Low power processors, for light embedded applications, more

powerful high-performance cores suitable for more demanding embedded

applications, and single or multi core application processors capable of running Linux

systems[6]. Their products are divided in 4 series with each one spanning a

performance region as shown in the figure 1.

Figure 2.1: Codasip Processors Series [6]

Codasip provides 11 processor configuration to suit the customers applications from

the small and low power L10 to A70XP-MP that has 4 cores and supports floating

Point operations and Atomic instructions[6]. Aside from the wide variety of

processors specs, Codasip provides another layer of customization through their

unique EDA toolset, Codasip Studio[6]. Codasip Studio is a fast and easy highly
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automated tool to modify RISC-V cores. Codasip processors can be deployed as is or

can be further customized to create a unique processor that perfectly fits the customer

application. Codasip Studio enables the user to change the microarchitecture features

of the design to create custom instructions or add standard RISC-V extensions.

Codasip Studio also allows the user to create their customized HDK and SDK as well

as to verify the edited core.

Figure 2.2: Codasip Processors [6]
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SiFive

SiFive is one of the pioneers of RISC-V instruction set architecture processors. Its

products include a wide variety of cores, SoCs, Ips and development boards. SiFive IP

cores span a wide range of applications from low-power small area embedded

microcontrollers to high-performance multicore heterogeneous application processors

[7]. SiFive lineup consists of 5 series and 3 types of cores E, S and U. E cores are low

power 32- bit cores suitable for IoT and low power embedded applications. S cores

are 64-bit cores that are used for more demanding applications such as machine

learning[7]. U cores are 64-bit application cores used in datacenters and are capable of

running Linux. SiFive also provides custom cores through their SiFive Core Designer.

SiFive Core Designer enables the customer to use one of the available processors

configured for common use cases as a starting point and modify and edit the core to

suit his specific application[7].

Figure 2.3: SiFive processors [7]
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Andes Technology

Andes Technology is a Taiwanese embedded CPU cores supplier and one of the

founding members of RISC-V International Association. Andes cores uses V5

architecture which is a new family of AsdeStar that is fully compliant with

RISC-V[8]. It adds new features to RISC-V such as Andes Performance Extension

which can speed up common program sequences such as memory access and

branches. Another advantage of V5, is code size compaction through CoDense, stack

overflow and underflow detection through StackSafe and frequency and power

scaling through PowerBrake[8]. Andes also provides a software development

environment that offers RISC-V compilers and a comprehensive GUI-based

development environment. Moreover, Andes provides hardware development

environment solutions consisting of an FPGA development board,

Arduino-compatible Corvette-F1 board and an ICE debugger[8]. Andes RISC-V

processors are divided into three series, A-series, A/D-series and V-series.

Figure 2.4: Andes processors [8]
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2.2 Literature Review

In literature, the implementation of ASIC RISC-V processors has been a hot topic

over the past decade since its design at the University of California, Berkeley.

Researchers have been trying to push the processor’s limits and are continuously

trying to optimize it for various applications and enhance its performance. S. Kumar

in [9] main goal was power optimization. He tried utilizing different techniques to

reduce power consumption. He worked on three different designs, a design without a

low power approach, a design with clock gating and clock tree optimization, and a

design with Multi-Vth, Multi-Supply voltage, and power shut-off along with the

previous techniques. His third design produced the best results with a total power

consumption of 2.415 W and a total area of 2374572.1 mm2. He used Encounter RTL

Compiler for the synthesis stage to generate the gate-level netlist, Cadence Encounter

Digital Implementation System for the back-end flow. In [10] Spanish and Mexican

academic institutions designed and fabricated the preDRAK processor, a RISC-V

general-purpose processor capable of booting Linux systems. They used the CMOS

65nm technology in their ASIC implementation, they used Cadence Genus for the

synthesis. As for the physical design and back-end, they used Cadence’s Innovus

along with Mentor Calibre for DRC. The estimated power consumption after place

and route is 344 mW and a total chip area is 3.57 mm2. Multiple literature works tried

to compare the ASIC and FPGA implementation of the processor. In [11], the main

goal was to design RISC-V accelerators for post-quantum cryptography. The design

was implemented on both FPGA and ASIC. The ASIC implementation only got

through till the synthesis stage. Compared to the PULPino origins design, the cell area

and combinatorial logic were increased by 64, 522 mm2. and 9, 969 mm2
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respectively. However, the increase didn’t have much impact on the total area as the

memory area, which was the highest contribution, remained the same. As for the

power consumption, they used The Switching Activity Interchange Format (SAIF) for

accurate dynamic power calculations. They used Cadence’s Incisive Enterprise

Simulator and Cadence power analyzer Joules. The design had higher total power

consumption due to the increased area, but the lower energy consumption overall. In

[12] they fabricated a 64-bit dual-core RISC-V processor with custom vector

accelerators using 45 nm technology. The dual-core RISC-V processor achieves a

maximum clock frequency of 1.3 GHz at 1.2 V and peak energy efficiency of 16.7

double-precision GFLOPS/W at 0.65 V with an area of 3 mm2. They used Synopsys

design compiler and IC compiler for the physical design flow. They used Multi-Vth

libraries and SRAM-based memory cells. They used a bottom-up approach reducing

the tool's runtime. They also used PrimeTime and Formality for the final signoff steps

of static timing analysis and formal verification. As for the power consumption, it

ranges from 300 mW to 430 mW at 1 V depending on the processor activity, and

scales from 40 mW at 0.65 V up to 960 mW at 1.2 V.
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Chapter 3

ASIC Physical Design Flow

3.1 Introduction

The ASIC physical design flow starts with the synthesis of the HDL into the standard

target technology, followed by verification of the synthesized design checking that the

mapped gates are working as they were intended to. The next stage is to perform

floorplanning and determine the design and chip area and an initial estimate for the

cells’ locations. After floorplanning, the power network is synthesized and power rails

are added to deliver the required power to the design. Then, cells and macros are

placed all over the chip’s area trying to have a good congestion control and meeting

the timing requirements in the process. After the placement stage, the design is routed

and cells are connected to each other the way it’s described in the netlist. The design

then goes through static timing analysis checking that timing is met. As a final step,

the design is checked for clean LVS & DRC errors before the GDSII file is outputted

[13].
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3.2 Synthesis

Synthesis is the process of transforming the design’s RTL into a synthesized

gate-level netlist. The synthesis is performed in three steps. First, the translation

where the tool transforms the RTL into boolean equations. Second, logic optimization

which minimizes the boolean expression. The third and final step is mapping, where

the optimized logic is mapped into the target library generating a gate-level netlist.

The synthesis also inserts clock gating cells and DFT logic into the design if specified

[14].

Figure 3.1: Synthesis Flow [14]
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Inputs

RTL Files [14]

They contain the design abstraction modeling the synchronous flow of signals

described in HDL such as VHDL, Verilog, SystemVerilog.

Libraries & Files [14]

● Physical Library

○ It contains standard cells, macros, and information regarding their

shapes, sizes, orientation, and layout geometries.

● Timing Library

○ It contains the standard cells and macros timing information such as

gate delays and delay models.

● Technology Files

○ They contain the technology design rule constraints, physical, and

electrical parameters, resistance and capacitance values of metal layers

and vias.

● TLU+ Files
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○ They contain the RC coefficients for accurate RC extraction models

and net delay calculations. They take the effect of width, spacing,

density, and temperature into consideration.

● Milkyway Library

○ It’s a library storing all the design files starting from synthesis till the

design’s signoff. It holds the physical information such as cell

placements and routing directions along with the width and height

dimensions.

Design constraints [14]

Constraints are rules and instructions the tool has to follow during synthesis

translation, optimization and mapping to ensure that the design will meet its specific

specifications and fabrication requirements. Constraints can be classified into design

rule constraints and optimization constraints.

● Design Rule Constraints

○ They are the constraints dictated by the fabrication foundry. Those

constraints entail process, voltage, and temperature operating

conditions. Wire-load model for resistance and capacitance estimation.

Maximum capacitance, transition time, and fanout along with clock

uncertainty. System interface constraints which include constraints

imposed by the outside logic driving and receiving data from the

design such as input and output delays. By default, the design rule
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constraints are prioritized over the optimization constraints by the

synthesis tool.

● Optimization Constraints

○ They are the constraints specified by the designer for his design to

meet its goals. The designer can either choose those constraints for

example to tighten further the capacitive and fanout constraints or to

optimize the design by describing the design area, timing, and power

goals. The designer can set clock definitions, timing exceptions,

multi-voltage constraints, and specific types of standard cells to

perform the logic mapping. Since design rule constraints have

precedence, the tool can violate area and delay constraints to meet the

ones with higher priority.
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Outputs [14]

Netlist

It’s a description of the design elements and their connectivity. The netlist contains

combinational and sequential instances of the standard cells and macros with their

ports and interconnection details. The netlist acts as the input for the PnR tool

performing floorplanning, placement, and routing.

Constrain File

It contains the design constraints acting as an input for the PnR tool.

Reports

After synthesis is complete, different reports can be generated to report the design’s

area, power, timing, constraints, and quality of results.

Figure 3.2: Design Compiler Inputs & Outputs [14]

39



3.3 Floorplanning

Introduction

Floorplanning is the first step of place and route (PnR) flow after the netlist is

generated where the designer specifies roughly where each part of his design will be

located on the chip die. The PnR stage aims at having a verified layout that can be

fabricated. Chip planning deals with large modules such as caches, embedded

memories, and intellectual property (IP) cores that have known areas, fixed or

changeable shapes, and possibly fixed locations [13]. When modules are not clearly

specified, chip planning relies on netlist partitioning which is prior to floorplanning.

There are two styles of implementation in floorplanning. For small to medium ASIC

designs, the flat approach has better area usage as there is no need to reserve an area

around each block for power connections. However, for very large designs it is better

to follow a hierarchical approach in order to optimize each sub-block independently

[14].

Before the floorplanning stage, the design is split into individual circuit modules. A

module becomes a rectangular block after it is assigned dimensions or a shape. These

blocks can be either hard or soft. The dimensions and areas of hard blocks are fixed.

For a soft block, the area is fixed but the aspect ratio can be changed [15]. The entire

arrangement of blocks, including their positions, is called a floorplan. The

floorplanning stage ensures that every chip module is assigned a shape and a location,

so as to facilitate gate placement it also makes sure that every pin that has an external

connection is assigned a location so that internal and external nets can be routed. The
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last step of floorplanning is the power network which ensures that every cell in the

design is connected to power and ground. The following flowchart (Figure 3.3) shows

the steps of floorplanning.

Figure 3.3: Floorplan Flowchart [14]
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Floorplan

The objective of the floorplan stage is to optimize both the locations and the aspect

ratios of the individual blocks. It also tries to minimize the area and shape of the

global bounding box and keep its aspect ratio close to the given target value. It is also

important to optimize the total wire length and the signal delays. It is also important to

make sure that routing is possible and the IR drop will be within an acceptable range

[13].

The inputs to the floorplanning stage include [17]:

1. The netlist defines all design elements and connections that are generated from

the synthesis stage. It is a Verilog or VHDL format.

2. The library files (.lib or .lef) and the TLU+ file are technology-specific files

that determine the timing information of each of the standard cells in the

library at different corners in addition to the metal layers and the DRC of

them. Also, the TLU+ file is used to specify the RC model of the

corresponding metal layers and vias.

3. The constraints file that outputs from the synthesis in SDC format contains the

timing constraints and other constraints.

4. It is optional to use a DEF file format that defines the floorplan in case it is

made by third-party software or in case it is made by the synthesis tool in case

of topographical flow.

The floorplan has to be constrained in order to output the optimum results that meet

the design requirements. These constraints include the chip and core aspect ratio, chip
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utilization which is the percentage of the area of the core that is used by standard cells

and macros, row configuration and cell orientation, core to IO pad spacing, and

blockage management. Standard cell rows can have various configurations by having

a gap between each cell row or flipping every two rows together, etc [15]. The

spacing between IO pads or core is used for inputs and outputs placement or power

rings. The following figure (Figure 3.4) shows the defined floorplan.

Figure 3.4: Floorplan Definition [13]
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IO Pads Placement

Pads are circuits that translate the signal levels used in the ASIC core to the signal

levels used outside the ASIC. Additionally, the pads circuits clamp signals to the

power and ground rails to limit the voltage at the external connection to the ASIC

pads. There are several types of pads in the design such as signal IO pads, power

pads, corner pads, and filler cells. It is important to place the pads in a way such that

the connection length between the pad and the target component of the pad is

minimized [14]. It is a good approach to place macrocells around chip periphery as

shown on Figure 3.5 so that chip area will be clustered. Also, the connection of fixed

IO ports should be taken into consideration.

Figure 3.5: Macrocell Placement [14]
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3.4 Power Network

The next step is to build the power grid. The objective of the power network is to

supply power to all parts of the design. There are several levels of power distribution.

Trunks are used to connect between power pads and power rings. Power rings are

VDD and VSS rings that are formed around the core and macrocells. They are used to

supply power and are usually made of thick metals in order to reduce the power

dissipation, guarantee good connectivity and keep the thin lower metal layers for

signal routing. The top two metal layers are usually used because each metal layer has

one preferred direction that most of its routes are routed in that direction [13].

After inserting the power rings, the power stripes are inserted in order to distribute

power from the design to the rest of the core area. Power stripes are vertical metal

wires that are placed over the core area and are connected to the power rings. After

creating the stripes, power rails are inserted which are used to supply power to the

standard cells. The connection between the power rails and the standard cells is done

through abutment, where standard cells have their power pins at the top and bottom of

the cell, and power rails are placed at the top and bottom of each cell row, so when

those cells are placed on the rows they automatically get connected to the power grid

[15]. Power rails are connected to both the ring and the stripes to ensure even power

distribution along the rail length. Metal vias are inserted between the metal layers,

rings, grid, and rails. Figure 3.6 shows the components of the power network.
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Figure 3.6: Power Network [14]

The ideal power distribution aims at maintaining a stable voltage to each cell of the

design with little noise and IR drop. Other important factors are to avoid wear out due

to self-heat or electromigration. It is also important to consume little chip area and

routing and make the layout out easy to fabricate. A UPF file may be inserted before

the power network step in order to define the power intent of the design [15].

There are several methods to improve the noise immunity and keep the voltage level

stable within the core area. These methods include using decoupling capacitors to

separate the routing of power signals. Other methods may use level shifters, retention

registers, or power switches [14].
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3.5 Placement

Introduction

Placement is one of the most critical steps in ASIC flow. Placement seeks to

determine the locations of standard cells or logic elements within each block inside

the rows that were created during placement while addressing optimization objectives.

The goal of placement is to minimize the total wirelength and make the design

routable while giving a good performance and minimizing the total power and heat

dissipation. It is also important to minimize the congestion of cells and pins and

minimize the cell density. Placement has three main steps: global placement, detailed

placement and legalization. The inputs of placement are the same as the floorplan in

addition to adding the DEF file which includes the floorplan and power network

information [17].

Global Placement

When the floorplan is first created, standard cells are in a floating state. This means

that they are placed arbitrarily in the ASIC core and have not been assigned to a fixed

location within the standard cell rows. At this time one can partition the standard cell

area and assign a group of cells to these partitions, or simply group a set of standard

cells. Global placement often neglects specific shapes and sizes of placeable objects

and does not attempt to align their locations with valid grid rows and columns. Some
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overlaps are allowed between placed objects, as the emphasis is on judicious global

positioning and overall density distribution. The global placer engine uses the

information of the design hierarchy (if available) to place related standard cells close

to each other to reduce both timing and congestion as much as possible. Usually the

global placement process is done in iterations, the quality of the placement improves

proportionally with the increase of this number of iterations [13].

Figure 3.7: Global / Coarse Placement [14]

Detailed Placement & Legalization

Legalization is performed before or during detailed placement. It seeks to align

placeable objects with rows and columns, make sure it does not violate any DRC rule,

and remove overlap while trying to minimize displacements from global placement

locations as well as impacts on interconnect length and circuit delay. Detailed
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placement incrementally improves the location of each standard cell by local

operations (e.g., swapping two objects) or shifting several objects in a row to create

room for another object. Detail placement algorithms are executed to refine placement

based on congestion, timing, and/or power requirements [13].

Figure 3.8: Detailed / Legalized Placement [14]
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3.6 CTS

Clock Tree Synthesis is a process with which we aim that the clock gets distributed

evenly to all sequential elements in the design[11].

Figure 3.9: Clock Tree[13]

The main target of CTS is to minimize the skew and latency and also to meet the

design constraints such as Maximum transition, Maximum load capacitance and

Maximum Fanout. Clock tree can be built by clock tree inverters so as to maintain the

exact transition (duty cycle) and clock tree balancing is done by clock tree buffers.
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Figure 3.10: Difference Between Buffered and Unbuffered[13]

Checklist before CTS:

● Placement is completed and optimized.

● Power & Ground (PG) nets are pre-routed.

● Estimated congestion – Acceptable.

● Estimated Max trans/Cap - No violations.

● High Fan-out Nets are synthesized with buffers (clocks are not buffered

● still).

Checklist after CTS:

● Skew report.

● Clock tree report.

● Timing reports for setup and hold.

● Power and area report

The main problems with CTS is that the clock is power hungry, also the clock can

have electromigration on one of its nets. The crosstalk is another problem too. We

should be aware of the noise as the clock is considered a strong aggressor and it might

need shielding.
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Figure 3.11: Clock Skew[13]

The skew of the clock is the main factor we aim to solve by CTS. We can have

positive or negative skew whether the clock is late or early. It is important to

remember that we have Local skew which is the difference between the clock arrival

of two consecutive pins and Global Skew which is the max insertion delay and min

insertion delay of any flip flop in the design.

Figure 3.12: Clock Jitter[11]

Clock Jitter can also be a problem in the design. Mainly, It is the difference between

clock periods and it is either random jitter or deterministic jitter and It is affected by

temperature, crosstalk and voltage variations[10].
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3.7 Routing

Routing is the most important and longest stage in which we convert the logical routes

to physical ones. The main target of routing is to assign exact paths between the

interconnections of the standard cells. Applying the constraints such as transition,

skew and capacitance makes it very difficult for the tool to achieve the target outcome

and that’s why it takes a lot of time.

Figure 3.13: Routing[13]

Routing starts with global routing in which the design is logically routed. In this

stage, The tool aims to find the shortest path without caring about the DRC errors. It

also avoids the congested areas.
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Figure 3.14: Global routing[13]

The second stage is track assignment. After the design is logically routed, These

routes are assigned for each track which has a specific layer and geometry. It does not

care for DRC rules too however It aims to minimize vias and also be timing aware in

the routing.

Tha last stage is detailed routing in which the nets are physically routed in. It

performs using the DRC rules.

Figure 3.15: Detailed routing[13]
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Now the design is finally routed, It is important to check if the physical design works

correctly or not and this happens through the checks below.

Checklist before routing:

● All cells should be placed legally

● Clock Tree structure should be defined

● NDRs

Checklist after routing:

● LVS

● DRC

● Other design constraints such as Congestion and Timing

After that, We will be ready to output the GDS file and then sign off to the foundry.

55



3.8 Static Timing Analysis

3.8.1 Introduction

Static timing analysis or STA is a method that is used to verify that the design meets

the timing requirements. Unlike other circuit simulations such as spice, STA is not

concerned with simulating the functionality of the design under different test cases; its

sole focus is the timing which makes it faster[13]. STA also gives better timing

predictions as it checks the worst-case timing for all possible logic passes in the

design. The static part of STA arises from the fact that the analysis of the design is

done statically without applying any inputs or any change of data[13]. This is opposed

to dynamic timing analysis, which is used to verify the functionality of the design by

changing its inputs and observing its outputs.

Design constraints such as timing, area and power are the base on which the digital

design is formed. While area and power can be of most importance in many designs,

they are not a threat to the chip operation. Chips intended for smaller areas or less

power consumption can still run just fine and perform the desired functionality. On

the other hand, if the chip timing is not met it cannot function correctly at the desired

clock. Here comes the role of STA which is to make sure that the data is present at the

inputs of every synchronous device at the clock edge, under all possible conditions.
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3.8.2 Importance of STA

The importance of STA is present in each stage of the ASIC backend flow. In

synthesis, the synthesis tools perform static timing analysis to determine which cells

are chosen to implement the RTL[14]. In the mapping stage of the synthesis, logic

gates are translated to actual physical gates from the provided technology library[14].

Since the technology library has a wide selection of cells with different delays and

sizes the decision to choose one over the other to implement the logic might come

down to the timing constraint. In Pnr, STA is of most importance as it will determine

where the cells are placed, how the cells are routed and how critical nets, such as the

clock, are routed[14]. In the placement stage, if the STA shows that the timing of a

certain path is not met the placement tool will try to place the cells in that path closer

to each other thus reducing the length and the delay of the wire connecting them. If

the timing is violated in the routing stage the tool will give higher priority to routing

the path that has timing problems in order to guarantee that it will be solved. The

same happens in the clock tree synthesis where the tool constantly checks to make

sure that the skew of the added clock tree will not cause timing problems. Despite the

fact that these tools constantly do STA, using a specialized sign-off timing analysis

tool is essential to ensure that the design will work at the intended clock speed.
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3.8.3 How it’s done

To understand how STA works we should first introduce the timing-sensitive digital

components. Flip-Flops (FF) and latches are the storage data elements of all digital

designs. Flip-flops are edge-triggered devices, meaning that their operation is

dependent on the existence of a synchronized signal we call the clock. When the clock

changes from 0 to 1 (positive edge) the FF stores the value at its input D and makes

that value available at its output Q.

Figure 3.16: D Flip-Flop[13]

To ensure the correct functionality of the FF some timing constraints have to be

considered. First is the setup-time, the data cannot change any later than this time

before the clock edge. Hold-time, data cannot change during this time after the clock

edge. Time to Q, which is the time required for the data captured at D to be present at

Q. One other factor that affects the timing of FF is related to the clock which is the
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skew. Skew is the phenomenon in which the same clock signal arrives at different

times for different circuit components. While the skew is pounded, it is not possible to

know if it is positive or negative at any particular point.

Figure 3.17: D Flip-Flop Timing[14]

For circuit shown in figure 3.18, in order to ensure its correct functionality, change of

data at the output of FF1, as a result of the clock edge, has to propagate to the input of

FF2 before the next clock edge.

Figure 3.18: Digital Circuit[14]
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3.8.4 Setup Check

The time diagram shown in figure 3.19 represents the timing requirement of the

circuit. The data goes through the combinational logic with some delay t-logic and the

output of the combinational logic is at the input of the second flip-flop, FF2. The

change in value at FF2. D must occur before the arrival of the clock edge arriving at

FF2, by at least an amount equal to the setup time requirement t-setup for the

flip-flop. The difference between the arrival of the clock edge at FF1 and its arrival at

FF2 is donated by t-skew. The amount of time by which the timing constraint is met is

called the slack of the timing.

Figure 3.19: Setup Timing Check[14]

The following equation represents the clock required for the design not to have setup

time violations. If the clock is larger than the right-hand side, we have a positive

slack, and this means that the design can run at a higher speed. If the slack is negative

the timing cannot be met and modification to the design or clock speed has to be done

for the design to function correctly.

60



Figure 3.20: Setup Time Equation[14]

3.8.5 Hold Check

The timing diagram in figure #, shows the hold violation check. This hold check

makes sure that the data will remain the same during and after the arrival of the clock

edge by at least the hold time of the FF in order to be captured correctly. The newly

captured data at FF1 might lead to a change in the logic output and If the logic delay

of the circuit is too short this change might happen during the capturing of data at the

second FF. This will cause the FF to have an unpredictable state.

Figure 3.21: Hold Timing Equation[14]

61



The following equation shows the condition that ensures that the digital path doesn’t

have a hold violation.

Figure 3.22: Hold Time Equation[14]

It should be noted that the clock speed is not a parameter in this equation. This is due

to the fact that the hold violation is caused by the delay of the logic cells between the

FFs being too small to guarantee the data stability during the FF data capture time.

The cell delay and the hold time of the FF are determined by the technology library

and are not a function of the clock speed.

The fact that the hold violation is independent of the clock speed makes it much more

dangerous than the setup violation. If the design has been fabricated with a setup

violation it will not work at the desired speed but reducing the clock will make the

design function correctly. On the other hand, if a fabricated design has a hold

violation, it will not work correctly under any given clock.
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3.8.6 Timing report

To check whether the design meets the timing we use the report_timing command

with the -delay_type min or max for setup and hold checks. The resulting timing

report is similar to the following.

Figure 3.23: Timing Report
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1- Header

The header contains the start point and the endpoint of the timing path. These points

can be either a register, an input pin or an output pin. Subsequently, there exist four

different types of timing paths as shown in the figure.

Figure 3.24: Types of Timing Paths[14]

The header also contains information about path groups and the type of the path, max

for setup paths and min for hold paths.

2- Data arrival section

This section contains the delays that affect the data in the path which add up to the

time at which the data arrive.
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3- Data required section

In this section the details of the required time for the path in order to avoid timing

violation.

4- Slack

The slack is given by the difference between the arrival time and the required time. If

the slack is positive the timing is met and not timing violations are possible.
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Chapter 4

Project Implementation

4.1 Flat, Hirerachiel and Topographical flows.

There are three different approaches to the ASIC physical implementation, flat,

hierarchical and topographical. The flat design flow is based on dissolving the

boundaries between the different modules of the design. This allows for more logic

optimization that wasn’t previously possible at the boundaries. This flow results in the

best-optimized logic for area, power and speed. This approach, however, suffers from

long runtime as the tool’s optimization algorithms run longer as space or optimization

expands. This approach is best suited for smaller ASIC designs as it can give optimal

results.

The hierarchical flow tries to do the opposite of the flat by keeping the hierarchy of

the design intact. This allows the tools to optimize the logic within the modules but

not on the boundaries. This flow is suitable for large designs where the sub-systems

are designed and optimized individually. The following figure shows the difference

between these two approaches.
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Figure 4.1 : Hierarchical VS Flat

In order to understand the significance of the topographical, we need to discuss how

timing analysis is done. For a timing analysis to be accurate the cell delay, as well as

the wire delay, should be known. The cell delay is available in the standard cells

library files but what about the wire delay? Pre-layout the tools can only guess the

length of the wire since the cells haven’t been placed yet. The tool uses what is known

as the Wire load model to estimate the wire delay. A library usually has different wire

load models for different design sizes. As the size of the design, cells are placed

further apart leading to longer wires. Given data extracted from similar-sized designs

with the same technology and nets fanout, the EDA tools are able to predict the wire

delays that will result after the layout. The tools then optimize the design based on

these predictions. The wire load model is based on a statistical average and is not

specific for any design. This leads to inaccurate timing results and in ultra-deep

submicron designs as the effects of the parasitics become more relevant the wire load

model fails to deliver enough accuracy.
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To overcome the problems of the wire load model the topographical technology is

used. This technology aims to deliver a much better estimation of the wire delays.

This is done by doing the synthesis over two runs. The first run is done to produce a

starting netlist that is used to perform an initial floorplan placement for the cells. In

the second synthesis run the physical information from the Milkyway database is then

used to accurately predict the wire delays which produces much more accurate results.

This flow is summarized in the following figure.

Figure 4.2: Topographical Flow[14]
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4.2 Synthesis

Design Setup

The cv32e40p project utilizes new SystemVerilog constructs, syntax, and semantics

which the old standards don't accommodate [4]. Therefore, the SystemVerilog 2009

standard is set as the first step in the design compiler synthesis script using set

hdlin_sverilog_std 2009. The SystemVerilog 2009 standard merges the Verilog 2005

and SystemVerilog 2005 standards and adds additional extensions beyond them [16].

We then need to define the library files with (.db) file extension. It is possible to do

that by setting the application variables link_library and target_library to the library

files path. This can be done using the command: set_app_variable. Both those

commands specify the design and technology libraries, respectively, to be used whilst

compiling the design. The design library is then mapped into a UNIX directory to

store intermediate design representations using the define_design_lib command [16].

In order to run the design in topographical mode, the milkyway library should be

created and the TLUPlus files need to be inserted. we create the milkyway library that

holds all the design files using the create_mw_lib command. This command has an

argument (-technology) where the technology file with file extension (.tf) is defined.

For inserting the parasitics files TLUPlus files (for parasitics extraction), we set the

arguments: (-max_tluplus, -min_tluplus & tech2itf_map) using set_tlu_plus_files

command [17].
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The design HDL source files are then specified using the analyze command which

translates and stores the design intermediate format in the design library specified

before. The cv32e40p design uses clock gating cells, but only a simulation module for

those cells was provided with the HDL, and they advised us to use the gating cells

provided by the technology library we are working with. As a result, the standard

clock gating cells were analyzed as well and their instances were added in the HDL

design files. The cv32e40p also gave us the freedom of choosing between

implementing the design using flip flop registers or latches. Because synthesis tools,

in general, don’t always handle latches properly, and whilst being asynchronous, they

create difficulties in timing analysis and routing delays. This might lead the design to

fail meeting the timing requirements and fail under PVT variations while increasing

the design size, timing glitches, and oscillations. As a result, we chose the flip flop

registers and analyzed their files as latches.
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Build & Compilation [16]

Design-Build

After setting the Verilog standards, defining target libraries, and analyzing the

design’s HDL files we start by building the design from the intermediate formats

saved in the design library using the elaborate command. The command

current_design is then used to set the working design, then check_design is used to

check the internal design representation for consistency and issues errors if the design

has severe problems and the compiler can’t accept it, or warnings acting as

informative messages which don’t necessarily indicate a problem.

The constraints (.tcl) file is then read, interpreted, and evaluated using source

command. Then the link command is used to link and resolve the design references. In

order for the design to be functional, it must be connected to all of the library

components and designs it references to be located and linked to the current design.

The link command uses the link_library and search_path variables along with the

local_link_library design attribute to resolve those design references by looking in the

files specified by those commands and linking them.

Design Compilation

Logic-level & gate-level synthesis and optimization are done by the compile

command. Optimization trades off between timing and area constraints to provide the

smallest circuit design meeting the timing requirements, operating at the required

speed. In the optimization process, both design rule constraints & optimization
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constraints are considered, but precedence and priority are given to the design rule

constraints.

The compile command can take multiple optimization arguments which allows it to

prioritize certain constraints over others.

● -no_map

○ Doesn’t map the design to the specified target technology. It just

represents the design in its generic boolean equations and flip flops.

● -map_effort

○ It specifies the relative CPU computational time the tool spends in the

mapping phase of the synthesis.

● -area_effort

○ It specifies the relative CPU computational time the tool spends in the

area recovery phase of the synthesis.

● -power_effort

○ It specifies the relative CPU computational time the tool spends in the

power recovery phase of the synthesis.

● -gate_clock

○ It enables clock gating optimization by the automatic insertion and

removal of the clock gates from the design. The optimization can be

based on the switching activity and the dynamic power consumption of

the used registers.

● -incremental_mapping

○ Allows incremental optimization to the design constraints based on

previous runs.
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● -exact_map

○ It performs an exact mapping of the design’s sequential elements.

Under normal conditions, sequential units surrounded by logic

elements may be used if their behaviour resembles the HDL. This

argument specifies that an exact match must be used.

● -no_design_rule

○ It terminates the compile option before fixing the design rule

violations. This allows us to see the results in the constraints report

before fixing the violations.

● -only_design_rule

○ It performs only design rule fixing, thus, mapping optimizations aren’t

performed.

● -no_hold_time

○ It performs only hold time fixes, without fixing the design rule

violations.

● -scan

○ It takes into account the DFT and scan insertion by replacing the

sequential elements by scan flip flops.

● -top

○ It only fixes design rules violation & top-level timing violations

without mapping the design.

● -boundry_optimization

○ It optimizes across all hierarchical boundaries of the design as shown

below.
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Figure 4.3: Boundary Optimizations [14]
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Flat Flow

The compile command, by default, maps and optimizes the design with hierarchical

levels and boundaries. The compile command can synthesize and optimize a flat

design, using different ungrouping options as shown below.

● -ungroup_all

○ It collapses all hierarchical levels and their boundaries

● -auto_ungroup area | delay

○ If the area option is specified, it favours ungrouping the small

hierarchical regions in the design for better area recovery.

○ If the delay option is specified, it performs automatic ungrouping for

hierarchies which are more likely to improve the overall design timing.

Another command which can be used for logic & gate synthesis and optimization is

the compile_ultra command where it performs a high-effort compile on the design for

better Quality of Results (QoR). The compile_ultra command by default enables all

the optimization ultra features, ungroups all hierarchies, and performs hierarchical

boundary optimizations. It also uses -timing_high_effort & -area_high_effort options

by default. The command follows strategies intended to prioritize the design’s area on

the compilation run-time. The compile_ultra command has similar features to the

compile command with some options of its own.

● -no_auto_ungroup

○ It disables automatic ungrouping and preserves all hierarchies.

● -no_seq_output_inversion
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○ By default, the compile_ultra command inverts the sequential elements

during mapping and optimization. This argument disables sequential

output inversion.

● -no_boundry_optimization

○ It disables any boundary optimizations that were to be automatically

performed.

● -retime

○ It uses adaptive retime algorithms to further improve timing delays.

● -self_gating

○ It enables XOR self-gating insertion into the design.
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Topographical Mode [17]

In order to synthesize the design in the topographical mode, the design has to go

through two synthesis passes. At first, the design is synthesized with the design rule

and optimization constraints to create an initial netlist. The netlist is then sent to ICC

where real parasitic capacitance and resistance are calculated instead of using wire

load models, then a floorplan with physical constraints is generated. The design is

then sent back to go through the second pass synthesis where the floorplan constraints

are used to create a more optimized netlist.

The compile_ultra command should be used in the second pass of topographical mode

with -spg option. -spg enables physical guidance and congestion optimization.

Congestion optimization reduces routing-related congestion. Physical guidance

enables Design Compiler Graphical to save coarse placement information and pass

this coarse placement information to IC Compiler. With this coarse placement, IC

Compiler can begin the implementation flow with the place_opt command. It no

longer needs to recreate the coarse placement.
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Reports [16]

After the design compilation is complete, we start viewing different design reports to

check area, timing and power along with other design metrics.

● report_area

○ It displays the area statistics for the current design. It reports

combinantional, non-combiantiona, and total area along with the

number of cells in the design.

● report_resources

○ It lists the resources (arithmetic and comparator units) & data path

blocks (path containing more than one resource) in the current design.

● report_timing

○ It displays the design timing information. It displays the worst setup

path in the design by default along with its startpoint, endpoint, and

various other info.

● report_power

○ It calculates and reports the static and dynamic power of the design.

The command uses the user-annotated switching activity to calculate

the net switching power, cell internal power, and cell leakage power.

● report_qor

○ It displays the quality of results statistics and information for the

current design. It reports timing-path group, cell count, design’s area,

static power, design-rule violations, and compile-time details.

● report_constraint

○ It displays all of the design rule and optimization violations in the

design.
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Outputs [16]

After the design is compiled and synthesized, the write_sdc command is used to

output a Synopsys Design Constraints file which can be used as an input constraint for

the ICC and PrimTime. The synthesis netlist is then written using the write command

with -format verilog & -output arguments to be used by ICC in the PnR stage.
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4.3 Floorplanning

Design Setup

Floorplanning is the first step of the PnR flow. In the beginning, the environment

should be set up and the input files must be provided.

First, we need to define the library files with the (.db) file extension. It is possible to

do that by setting the application variables link_library and target_library to the

library files path. This can be done using the command: set_app_variable [17]. After

that, we create the Milkyway library that holds all the design files. This is done using

the command: create_mw_lib. This command has an argument (-technology) where

the technology file with file extension (.tf) is defined. For topographical flow, there is

no need to create a new Milkyway library as it was already created in the previous

steps. To open the Milkyway library, the command open_mw_lib is used [17].

For inserting the parasitics files TLUPlus files (for parasitics extraction), we set the

arguments: (-max_tluplus, -min_tluplus & tech2itf_map) using set_tlu_plus_files

command. To read the netlist (.v or .vhd) that is generated by the synthesis stage, the

import_designs command is used. The constraints file that is generated after synthesis

(.tcl or .sdc) is read using source or read_sdc commands. By this step, the design

setup is done and it is possible to move to floorplanning.
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Floorplanning

The floorplan specifies a position for each macrocell or module within the design. It

also assigns the pins of the design according to the positions of the cells within the

design.

The first step is to define the constraints of the floorplan using the create_floorplan

command. Here are the arguments of this command that define the floorplan [17]:

-control_type Specifies how the core area of the floorplan is sized. The

possible options are aspect_ratio (default), width_and_height

or boundary (based on PnR boundary).

-core_aspect_ratio Specifies the aspect ratio of the floorplan.

-core_utilization Specifies the utilization for the core area (the total  area  of

the core occupied by all standard cells and macro cells

divided by the total core area).

-core_width/height Specifies the dimensions of the core area

-left/right/bottom/t

op_io2core

Specifies the distance between the core area and the IO pads.

-no_double_back Specifies that the command  places pairs of cell rows without

flipping one row in each pair.
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It is a rule of thumb for ASIC designs to start the first row of cells from the bottom

and to flip the first row.

In order to place hard macros or leaf cells, the command create_fp_placement is used.

This command can be optimized for congestion or timing. Standard cells should not

have the attribute placed after the floorplan.
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4.4 Power Network

Power mesh generation is a very critical step in the flow as it connects each cell on

the design to the power and ground pins. As mentioned in the previous chapter, the

power network consists of trunks, power rings, power straps, power rails, and vias.

Usually, the routing of the power network is done in the top two metal layers as they

are the widest layer which is suitable for better IR drop and voltage level [13]. In

order to set the layers for routing, set_ignored_layers with option -max_routing_layer.

If the design has ten routing layers, then we set the maximum routing layer to 8

leaving the top two layers for power routing.

The logical power and ground connections are defined using the command

derive_pg_connection with arguments: -power_pin, -ground_pin, -power_net &

-ground_net.

To define the power network, the command set_fp_rail_constraints is used. Here are

the main arguments of the command [17]:

For ring constraints:

-set_ring To add power ring constraints.

-horizontal/vertica

l_ring_layer

Specifies the horizontal/vertical metal layers for the power

ring.

-ring_spacing Specifies the spacing between the core rings (in microns).
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-ring_width Specifies the width of the power rings (in microns).

-ring_offset Specifies the  offset  from the I/O pads to the power rings (in

microns).

-extend_strap There are three ways to extend the core ring: core_ring

(default) extends the power straps to the existing core ring,

boundary extends the power straps to the top-level cell

boundary and creates power pins, pad_ring extends the power

straps to an existing pad ring.

For power straps constraints:

-add_layer To add power strap layer constraints (mutually exclusive to

-set_ring).

-layer Specifies the layer on which to  create  the  power grid.

-direction Specify the direction for the  power  and  ground wires

(vertical or horizontal).

-max_strap Controls the  power strap density by setting the maximum

number of straps (default is 128).

-min_strap Controls the  power strap density by setting the minimum

number of straps (default is 16).

-max_pitch Specifies the maximum pitch (in microns). This option is
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mutually exclusive to -max_strap and -min_strap options.

-min_pitch Specifies the minimum pitch (in microns). This option is

mutually exclusive to -max_strap and -min_strap options.

-max_width Specifies  the  maximum  width  of the power wires (in

microns).

-min_width Specifies the minimum width of the  power  wires (in

microns).

-spacing Constrains the spacing between the power and ground wires.

The options are minimum spacing  with the minimum

keyword (default), interleaving spacing with the interleaving

keyword, or explicitly  specifying  the  distance in  microns.

The power virtual pads should be placed using the create_fp_virtual_pad command. It

may also be specified using the GUI. It is a rule of thumb to place one pair of IO

power pads every four to sex signal pads. The option -net is used to specify the name

of the power or ground net [17].

In order to synthesize the power networks based on the user-specified constraints, the

synthesize_fp_rail command is used. -nets option is used to specify the power and

ground nets. The voltage supply is specified using the -voltage_supply option. It is

also possible to define the target voltage drop and the power budget using the options

-target_voltage_drop and -power_budget. After that, the command commit_fp_rail is

used to commit the power network based on the power network synthesis results [17].
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The next step is to connect standard cell power and ground pins to the power and

ground rings and straps and to connect power and ground rails in the standard cells.

This is done using the command preroute_standard_cells. There are many options

that can be used with this command. For example, -fill_empty_rows is used to fill all

rows, even those without cells, with power and ground rails. remove_floating_pieces

is used to remove floating, unconnected rail segments [17].

After committing the power network, it is needed to analyze it for voltage (IR) drop

and electromigration (EM) on the specified power and ground nets. This is done using

the analyze_fp_rail command. -nets option is used to specify the power and ground

nets. Also, -power_budget and -voltage_supply are used to specify the power budget

and the voltage supply [17].

After the power network and before global placement, it is possible to add tab cells

using the command add_tap_cell_array. This command adds tap cells to the design,

forming a two-dimensional array structure. A TAP cell is a special non-logic cell with

a well tie, substrate tie, or both. Tap cells are typically used when most or all standard

cells in the library contain no substrate or well taps [14]. The design rules typically

specify a distance limit from every transistor of a standard cell to a well or substrate

tie. Tap cells are inserted before global placement so that all standard cells that are

subsequently placed can satisfy the distance limit.

The flat and hierarchical flow have no differences after the synthesis stage. However,

the topographical flow uses the information gathered until this stage such as deep
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submicron effects and interconnect parasitics in order to have accurate estimates of

resistance and capacitance that are necessary to calculate path delays in synthesis

without the need for wire load model-based timing approximations. For this reason,

the write_def or write_floorplan command is used to save the floorplan information in

(.def) or (.fp) format in order to be used in the second pass of synthesis in

topographical mode.

87



4.5 Placement

Placement is the next step after finishing the power network. However, for

topographical flow, it is done directly after the second synthesis pass. Thus, it is

needed to set up the design as mentioned previously in the floorplanning section. In

addition to that, it is needed to read the floorplan file of coarse placement information

generated from the synthesis tool [15]. This is done using the read_floorplan

command.

Before starting the placement process, it is necessary to do some pre-placement

checks. To check physical constraints, the check_physical_constraints command is

used to provide information about possible errors in the input. It checks for cell areas

in hardbound, correct layers in the library against those in the floorplan, resistance,

and capacitance for different route layers, narrow placement areas in the floorplan,

legal sites for library cells in the floorplan, etc. Also, the check_physical_design

-stage pre_place_opt command is used to check that the floorplan and netlist data are

ready and the design constraints are set [17].

In order to generate a legally placed netlist, the command place_opt is used. This

command can be optimized for area, congestion, power, or DFT using the options:

-area_recovery, -optimize_dft, -congestion, and -power. For topographical mode, the

-spg option must be used in order to enable features of using Synopsys Physical Guide

information from the Synopsys Design Compiler tool. The compile_ultra command in

Design Compiler needs to run with the same option. With the -spg option, the
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place_opt uses Design Compiler's Physical Guide information to guide optimization

[16].

It is possible to use the psynopt command after the initial placement in order to

perform incremental timing-driven logic optimization with placement legalization.

This command optimizes for setup time by default, but it has options that make it

possible to optimize on area, power, congestion, hold time, and design rules.

After placement, the command check_legality is used to check the legality of the

placement and report any violations. If there are any violations, the

legalize_placement command can be used to perform placement legalization on the

current design after the coarse placement has already been performed.

Before moving to the CTS stage, tie cells are inserted in order to tie unused inputs to

logic high or logic low using tie-high or tie-low cells. This is done by first defining

the tie pins group and using the command connect_tie_cells in order to tie them.
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4.6 CTS

Clock tree synthesis is done after placement in order to connect each flip flop of the

design to the clock signal. Before going through CTS, some checks should be made.

Mainly, the check_physical_design -stage pre_clock_opt command is used to check

the same items as pre_place_opt. In addition, the design must be placed and the clock

constraints must be set. The command check_clock_tree is used for common

problems that might adversely impact clock tree synthesis in order to make sure that

the design is ready to enter the CTS stage.

Most importantly, the design should be constrained as needed. So, the set_driving_cell

command is used to set attributes on the clock input port of the current design to

specify the library cell that drives the clock. The option -lib_cell is used to specify the

driving buffer cell. Some other parameters should be inputted to the constraints

through set_clock_tree_options such as Target skew, Max Fanout, Max Capacitance,

Max Transition. The below table shows some options for this command. We also used

the command define_routing_rule to define the Non-default-rules (NDR) and the

metal layers that will be used for CTS.

-clock_trees Specifies the clock trees on which to set the specified clock

tree  options.

-layer_list Specifies the layers that can be used for routing the clock nets

in  the  specified  clock  trees.
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-target_early_dela

y

Specifies  the minimum insertion delay constraint in

nanoseconds for the specified clock trees.

-target_skew Specifies the desired value for maximum skew in

nanoseconds  for the specified clock trees.

-max_capacitance Specifies the maximum capacitance design rule constraint in

main library units for the specified clock trees.

-max_transition Specifies  the maximum transition time design rule constraint

in the main library unit for the buffers and inverters used.

-max_fanout Specifies the maximum fanout  design  rule  constraint for

the cells in the specified clock trees.

-buffer_relocation Enables  and  disables  buffer relocation on the specified

clock trees during the clock tree optimization.

-buffer_sizing Enables  or  disables buffer sizing on the specified clock trees

during the clock tree optimization.

-gate_relocation Enables or disables gate relocation on the specified clock

trees during the clock tree optimization.

-gate_sizing Enables or disables gate sizing on the specified clock trees

during the clock tree optimization.

The first stage of CTS is the synthesis by the command clock_opt -only_cts

-no_clock_route which will synthesize the clock tree but without routing so it has
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faster runtime. The second stage is optimization using the command clock_opt

-only_psyn -no_clock_route. The designer might consider focusing on fixing hold

violations by the command set_fix_hold [all_clocks]. The third stage is Clock Tree

routing by using route_group -all_clock_nets. Also optimization can be done with

clock_opt -only_psyn -congestion. Timing and congestion analyses are made between

the stages to ensure the target is achieved.
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4.7 Routing

Routing of signal nets is done after CTS. Before the routing stage, Spare cells should

be added to the design using the command insert_spare_cells -lib_cell {NOR2_X4

NAND2_X4}. Spare cells are used with ECO to provide new functions to a design that

exhibits post-production problems. If not used, they are tied to VDD or VSS to help

avoid electrostatic discharge, ground, or power bounce. The command

check_routeability is then used to check the design is ready to be routed.

Defining the routing constraints starts by setting the wire delay model with the

command set_delay_calculation_options. It selects the delay model as Arnoldi or

Elmore in addition to the effort for post-route designs. To set the routing options, the

command set_route_options is used. Its options can specify the weight of timing,

congestion, and power in the stages of routing: global routing, track assignment, and

detailed routing. To define the signal integrity options that are used for analysis or

optimization, the command set_si_options is used. It may state whether the cross-talk

between signals or the minimum delta delay is considered or not.

Routing starts with route_auto command. It performs global routing, track

assignment, detail routing, and search and repair in one step. Then, route_opt which

does global routing and post route optimization on the design. The options of this

command can specify the focus of the optimization such as timing, power, area,

crosstalk, etc. Also, detailed routing can be done using the command route_zrt_detail

which helped reduce LVS and DRC greatly after using it many times. It was also

effective to use focal_opt -drc_nets all, focal_opt -drc_pins all to reduce DRC errors.
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Mainly, it performs post-route optimization to fix setup, hold, or logical design rule

constraint (DRC) violations on the design. The selected optimization is referred to as

the focal metric. Also, the psynopt command can be used to perform incremental

preroute or post-route synthesis on the current design.

Sometimes, it is a good idea to remove all short nets and reroute them in order to

solve short violations. This can be done by removing the group of all short nets within

the design and rerouting them using eco routing. The commands to do this are as

follows:

foreach_in_collection net [get_attribute [get_drc_errors -filter {type == "Short"}]

nets] {

if {[sizeof_collection [get_nets $net] ]} {

if {[sizeof_collection [get_nets -quiet -filter "net_type!=power &&

net_type!=ground" $net ] ]} {

if {[sizeof_collection [get_vias -quiet -of_objects [get_nets $net] ] ] } {

remove_via [get_vias -of_objects [get_nets $net] ] }

if {[sizeof_collection [get_net_shapes -quiet -of_objects [get_nets $net] ] ] } {

remove_net_shape [get_net_shapes -of_objects [get_nets $net] ] }

}

}

}

route_zrt_eco -open_net_driven true -utilize_dangling_wires true -reroute

modified_nets_first
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To verify the routing, verify_zrt_route and verify_lvs are used. There are many other

routing commands that can be used but the one that made a more significant change

was route_zrt_eco -open_net_driven true -reuse_existing_global_route true -reroute

which helped decrease open nets drastically.
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4.8 STA

PrimeTime is a sign-off timing analysis tool that is used to ensure that the design

meets the timing requirements[18]. It is used in post-layout STA to verify that the

intended clock speed for the design is met at a wide range of PDK process

corners[18]. The operation of PrimeTime can be categorized into three main points;

Setup, Violations Fixing and Applying modifications. These points and the details of

PrimeTime operation are thoroughly discussed in this section.

4.8.1 Setup

In this stage, we provide PrimeTime with the needed inputs such as the Technology

Library, the Verilog netlist, the constraints file and the extracted parasitics[18]. We

also specify the design clock so that PrimeTime can use its delays to accurately

provide a timing report.

The first step in using PrimeTime is to specify the Technology Library to be used. For

every PDK there exists a wide range of corners that tries to estimate the expected

variations in the manufacturing process as well as the operating environment

temperature and voltage. These variations become more significant in smaller

technologies. The manufacturing process variations are classified into three

categories: slow-slow, typical-typical, and fast-fast process[14]. Indicated by the

naming, the fast-fast corner results in the fastest logic with the lowest cell delay while

the slow-slow corner gives the worst delay for the cells[14]. The variation in

temperature has also a great effect on the design performance as in high temperatures
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the cells have higher delays than in lower temperatures[14]. For the PDK Nangate that

we are using in this project, there are five available temperatures which are -40, 0, and

125 °C. The last possible variation is the operating voltage. The voltage has a great

effect on the cell speed as higher voltage leads to lower delay. Nangate comes with

two different voltage variants 0.95V and 1.25V. After choosing the desired library that

contains the delay information for the combination of these three possible variations,

we import it using the set link_path command[18].

set link_path “/library_path/NangateOpenCellLibrary_ff1p25v0c.db"

In this example, we import the fast-fast, 1.25V and 0 °C libraries which we will use in

this specific test.

The next step is to provide a gate-level netlist that contains the standard cell used in

the design and their connections. This comes in the form of a Verilog netlist from

ICC. The command read_verilog is used and the path for the netlist is specified as

shown in the following example[18].

read_verilog "../outputs/${design}_icc.v"

We then link the gates in the netlist to the standard cells in the technology file through

the link command.

Next, we specify the timing constraints for the design. These constraints are the same

as the ones used in the Synthesis and PNR. This is done through sourcing the

constraints file similar to what we have done previously.

97



We then provide the parasitics file extracted from the physical layout in ICC. Since

these parasitics are only an estimation for the RC resulting from the wires and

physical layout, we have a best-case and a worst-case scenario[18]. The best-case

results lead to a faster design which is relevant for calculating possible hold time

violations[18]. On the other hand, the worst parasitics lead to longer delays which in

turn causes setup time violations. The min or max parasitics file is chosen based on

the type of timing violation we want to check in the test. To import the SPEF file that

contains the parasitics information we use the read_parasitics command[18].

read_parasitics ../../Pnr/output/${design}.spef.max

In this example, we load the SPEF file that contains the max parasitic information

indicating that the desired timing violations that we want to check are the setup time.

Lastly, we specify the propagated clock that PrimeTime will use for STA calculation.

Since the clock tree is synthesized in PNR we can accurately measure its skew and

delays of the clock. This step is important because without it, PrimeTime will use an

ideal clock with no skew or it will use clock uncertainty if specified in the constraints

file. Doing so will result in inaccurate timing reports and subsequently missing critical

time violations or reporting non-existing ones. To use the synthesised clock, we use

the command set_propagated_clock and specify the clock net like so[18].

set_propagated_clock [get_clocks clk_i]
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4.8.2 Violations Fixing

After finishing the setup stage, we will check if the design correctly meets the timing

requirements. If it doesn’t, PrimeTime provides a synthesis engine that can suggest

modifications to the design netlist in order to solve the setup or the hold violations.

To check the timing, we first use the command update_timing which updates timing

for the current design[18]. Then we use the report_timing command and provide it

with the type of violation we want to check[18]. We use max to check for setup

violations and min to check for hold violations. The type of violation desired to be

checked must match the SPEF parasitic file as previously discussed. If the slack is

zero or positive then there is no need for adjustments and the timing is met. If the

timing is not met, modifications to the design netlist are required.

In order to fix the timing violation, we used the command fix_eco_timing. PrimeTime

resolves the Setup Fixing by upsizing the cells which in turn decrease their delay and

improve setup slack[18]. The drawback of this solution is that it increases the area of

the cells which might cause problems in the layout. Restrictions on the resizing of the

cells can be imposed to limit the increase in the area using the

eco_alternative_area_ratio_threshold setting. To solve the hold violations PrimeTime

uses cell downsizing or puffer insertion or both this is done in order to add delay and

improve hold slack. The fix_eco_timing command has multiple options and settings

that help the user to solve the timing violations without causing further problems[18].

Some of these settings are:

-type fixing_type Specifies the desired fixing type setup or hold.
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-methods method_list Specifies a fixing method type which include

size_cell,

insert_buffer_at_load_pins and insert_buffer. Either

one or multiple of them can be  used.

-slack_lesser_than

-slack_greater_than

Specifies that only those paths with a slack less or

greater than the slack_limit option are to be fixed.

-setup_margin

-hold_margin

Specifies an additional fixing margin to be applied to

setup or the hold slack. By default, the setup margin

is zero.

-buffer_list Specifies the list of allowable buffers from the

technology library to be used for hold fixing.

-ignore_drc If the time violating path contains DRC error

PrimeTime will not try to solve the timing problem in

that bath. This argument is used to override this

behavior so that the DRC error is ignored and prime

time would prioritize the timing fix.
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4.8.3 Applying modifications

After PrimeTime makes modifications to the netlist, we would need to write them into

ICC so the layout would be adjusted. To do so, we use the write_changes which

outputs the netlist changes that have been made to the design since it was linked[17].

write_changes -format icctcl -output ./ecol.tcl

In the previous command, the output is formatted as icctcl which is a TCL script for

ICC. We then run the TCL script on ICC which applies the changes by resizing

existing cells or adding buffers. The added cell placement will need to be legalized

and modifications to the routing are done through the route_eco command[17]. We

then extract the netlist and the parasitics from the modified physical design and run it

through PrimeTime again. Ideally, the violations would be fixed however multiple

iterations might be needed. Finally, after fixing all the setup and holding time for a

certain corner, further tests are done to make sure the design meets the timing

requirements under all conditions.
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4.9 Finishing, Checks & Outputs

After routing the signal nets, some last finishing and checks are made before the

generation of the GDSII file. Finishing the design includes adding filler cells and

tieng spare cells to VDD or VSS. The timing checks are done using STA tools as

explained in the previous section. The physical validation includes design rule check

(DRC), layout versus schematic (LVS), electrical rule check (ERC) and lithography

process.
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Chapter 5

Results

5.1 Flat Flow

5.1.1 Synthesis

As previously discussed, the Design Compiler can perform more optimizations on the

flat design flow compared to the hierarchical. This is due to the possibility of

boundary optimizations between modules. To explore this advantage, multiple

incremental runs were performed while we were tightening the timing constraints to

push the tool to give the best results. After multiple iterations a clock period of 2.2 ns

was reached which corresponds to 454.54 MHz. The following figure 5.1 represents

the timing report for the most critical path.
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Figure 5.1 : Flat Timing Report

The expected total power consumption of the design is 1.3414 mW. Only 23.2% of

that power is consumed by the clock network while 31.9 % and 44.9% are consumed

by the combinational logic and the registers respectively. The power consumption is

summarized in the following report (figure 5.2).

Figure 5.2: Flat Power Report
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The total of the design is about 0.0335 mm2. The majority of this area or about 58.5%

is dedicated to combinational logic. The following figure 5.3 of the area report

summarizes this data.

Figure 5.3 : Flat Area Report
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5.1.2 Floorplan

We used a floorplan with 25% core utilization. An Incremental floorplan placement

was needed to decrease the congestion. Following are figures for the floorplan (figure

5.4), the timing reports (figure 5.5 and 5.6) and the congestion map (figure 5.7) after

this stage.

Figure 5.4: Flat Floorplan
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Figure 5.5: Floorplan Timing Report Max    Figure 5.6: Floorplan Timing Report Min

Figure 5.7: Flat Floorplan Congestion Map
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5.1.3 Power Network

For creating the power network, we used the top five metal layers to create the power

straps then we connected the cells to the power rails. Using metals from 6 to 10 for

power straps helped to decrease the overall IR drop. We also used an interleaving

pattern for metal 6, 7, and 8 power straps to allow for more routing tracks on these

metal layers. Doing so helped to decrease the congestion while maintaining a good

power distribution. Follows are the figures showing the power network IR drop

distribution (figures 5.8 and 5.9) as well as timing (figures 5.10 and 5.11) and

congestion (figure 5.12) after creating the power network.

Figure 5.8: Power Network

108



Figure 5.9: Power Network Summary

Figure 5.10: Power Timing Report Max    Figure 5.11: Power Timing Report Min

Figure 5.12: Power Network Congestion
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5.1.4 Placement

The main goal of the placement step was to reach a legalized detailed placement for

the cells that achieve the minimum congestion while maintaining good timing. To

achieve this goal several incremental placements focused on fixing the congestion

was needed as initial placement had some congestion problems. The following figures

show the final congestion map (figure 5.13) and the timing reports (figures 5.14 and

5.15) after the placement.

Figure 5.13: Placement Congestion
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Figure 5.14: Placement Timing Report Max

Figure 5.15: Placement Timing Report Min
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5.1.5 Clock Tree Synthesis

The clock tree was created with a target skew of less than 0.5ns and max fanout of 10.

We also used non default rules or NDR for the clock tree routing. We used double the

spacing and the metal width for metals 3 to 6. This is done to ensure the quality of the

clock tree as a golden signal. Following are the CTS routing (figure 5.16), the timing

reports (figures 5.17 and 5.18) and congestion (figure 5.19) reports.

Figure 5.16: CTS Routing
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Figure 5.17: CTS Timing Report Max Figure 5.18: CTS Timing Report Min

Figure 5.19: CTS Congestion Map
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5.1.6 Routing

The routing was done using the commands previously discussed in chapter 5 with the

goal of achieving the best timing while maintaining a relatively low DRC and LVS

violation count. The following figures show the final routing results (figure 5.20) and

the DRC (figure 5.21) and LVS (figure 5.22) reports.

Figure 5.20: Routing

Figure 5.21: DRC Report
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Figure 5.22: LVS Report
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5.1.7 Prime Time

We ran the PrimeTime with the fast-fast corner and the min parasitic to check for the

design hold violations. After going through the process discussed in detail in chapter 5

section 8, our design was able to pass the hold violation test with the worst path

having a positive slack of 0.04 ns as shown in the following timing report in figure

5.23.

Figure 5.23: PrimeTime Timing Report Min

We were also able to obtain a clean setup report when using the slow-slow corner with

the max parasitic. The following timing report in figure 5.24 shows that the timing

was met with 0.01ns positive slack.
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Figure 5.24: PrimeTime Timing Report Max
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5.2 Hierarchical Flow

5.2.1 Synthesis

After the flow we have gone through in the previous chapter, Power, area, and Timing

Results have been outputted.

For Power, The synthesis achieved total power of 139uW

Figure 5.25: Hierarchical Synthesis Power Report

While area of 29374 has been achieved

Figure 5.26: Hierarchical Synthesis Area Report
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This was under the constraints mentioned above and most importantly with clock 2.61

which means the processor runs with 383 MHz.

Figure 5.27: Hierarchical Synthesis Timing Report
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5.2.2 Floorplan

In the floorplan stage, Where the cells are placed initially, The difference between

Hierarchical and Flat appears when viewing the chip. It makes it obvious that the

Hierarchical flow preserves the hierarchy of the design where each module is given a

certain space unlike the flat flow.

Figure 5.28: Hierarchical Hierarchy Graph

Figure 5.29: Hierarchical Floorplan
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Figure 5.30: Hierarchical Floorplan Setup Timing Report

Figure 5.31: Hierarchical Floorplan Hold Timing Report
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5.2.3 Power Network

In the Power stage, It is important to analyze two important factors to modify the

power constraints and layers which are IR Drop and Electromigration. For our design,

We have reached Max IR drop 9.926 mV and Maximum wire EM: 8.167e+01 A/cm,

layer metal9  and Maximum Via EM: 6.965e+05 A/cm_square, layer via5.

Figure 5.32: Hierarchical Power Drop
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5.2.4 Placement

In the Placement stage, The goal is to reach a good congestion map with minimizing

the hot spots. It is very important so we can minimize the DRC and LVS errors and

also the routing runtime.

Figure 5.33: Hierarchical GRC

Figure 5.34: Hierarchical Placement Setup Timing Report
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Figure 5.35: Hierarchical Placement Hold Timing Report
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5.2.5 Clock Tree Synthesis

The clock tree was created with a target skew of less than 0.5ns and max fanout of 10.

We also used non default rules or NDR for the clock tree routing. We used double the

spacing and the metal width for metals 3 to 6. This is done to ensure the quality of the

clock tree as a golden signal. Following are the CTS routing and the timing reports

and congestion reports. We also analyzed the setup and hold to consider fixing them

while creating the tree.

Figure 5.36: Hierarchical Clock Tree
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Figure 5.37: Hierarchical CTS Setup Timing Report

Figure 5.38: Hierarchical CTS  Hold Timing Report
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5.2.6 Routing

In the final stage, The design is routed and the congestion got a little better with our

repeating commands.

Figure 5.39: Hierarchical Routing Congestion
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Figure 5.40: Hierarchical Routing

The main important results of routing are DRC and LVS reports. For DRC, We have

reached 180 errors. For LVS, We have reached 132 errors

Figure 5.41: Hierarchical LVS Report
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5.2.7 Primetime

PrimeTime is the industry standard for static timing analysis. We used it to calculate

exactly the figures of setup and hold and check if there are any violations. We used

the fast-fast corner and the min parasitic to check for the design hold violations. But

for the setup time analysis, We used slow slow corner and the max parasitic. After

going through the process discussed in detail in chapter 5 section 8, our design was

able to pass the hold violation test with the worst path having a positive slack of 0.01

ns for hold and setup as shown in the following timing reports

Figure 5.42: Hierarchical PrimeTime Setup Timing Report

Figure 5.43: Hierarchical PrimeTime Hold Timing Report
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5.3 Topographical Flow.

5.3.1 Synthesis (First Pass)

The first pass of synthesis is done to generate an initial netlist of the design in order to

be used by the ICC to estimate the parasitics and timing. Thus, the results of this pass

are an initial representation and may not show the actual characteristics of the design.

The slow-slow (SS) corner is used in this step. The topographical flow is synthesized

with hierarchical flavor.

Clocking gating is used in order to optimize the power of the design. The DC tool

automatically inserts clock gating cells by using -gate_clock option with the

compile_ultra command. -timing_high_effort option is used also in order to optimize

the timing of the design.

The total area used by the cells in the design is about 0.028 mm2. It is noted that the

area of the interconnects is not yet defined as the synthesis tool uses a wire load

model to estimate the parasitics of the interconnects which does not have an

estimation of the total interconnect area. The following figure (Figure 5.) shows a

summary of the area used and the distribution of it among components.
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Figure 5.44: Area Summary

Power consumption is mainly due to dynamic power (represented in cells

switching power and nets internal power) and leakage power. The total dynamic

power consumed by the design is 1.41 mW. The leakage power of the cells is 0.13

mW. The below figure (Figure 5.) shows the power consumption distribution of the

design.

Figure 5.45: Power Consumption Summary

The below figure (Figure 5.) shows how power is consumed among the various power

groups of the design.
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Figure 5.46: Power Consumption Groups

The synthesis tool constraints are tightened in order to achieve the best possible

frequency. The design could reach a clock period of 2 ns while not having any

violations. Setup time is more important to check at this stage as hold time gets better

in the PnR stage. The below figure (Figure 5.) shows one of the critical paths of the

design that meets the setup requirements.
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Figure 5.47: Setup Time Critical Path
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5.3.2 Floorplan

The below table (Table 5.1) shows the parameters used in the floorplan. The first row

of cells starts from the bottom and it is flipped which is a rule of thumb.

Table 5.1: Floorplan Parameters

Aspect Ratio 1

Core Utilization 0.25

IO to Core Clearance 12.4

The below graphs (Figure 5.48 and Figure 5.49) show the design hierarchy of the

floorplan.

Figure 5.48 : Design Hierarchy
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Figure 5.49: Design Modules
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5.3.3 Power Network

The parameters used in the topographical flow are specified in the below table (Table

5.2).

Table 5.2: Power Network Parameters

Voltage supply 1.1

Max IR mV 22

Power budget 500

Min width 2.5

Ring spacing 0.8

Ring width 5

Min/max strap 20/128

The most important factors in the power network are the IR drop and

electromigration. The maximum IR drop in the design is 7.916 mV. The maximum

wire electromigration is 74.9 A/cm.  The maximum via electromigration is 6.50186

A/cm2. The following graphs show the power network (Figure 5.), the congestion

map after the power network (Figure 5.), and the power summary of VDD and VSS

signals (Figure 5. and Figure 5.).
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Figure 5.50: Power Network

Figure 5.51: Congestion Map after Power Network
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Figure 5.52: VSS Signal Power Summary

Figure 5.53: VDD Signal Power Summary
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5.3.4 Synthesis (Second Pass)

The second pass of synthesis is done after the floorplan and power mesh generation. It

uses the (.def) file that is generated from the floorplan in order to optimize the netlist

and has a more accurate estimation of the parasitics and delays. The output results of

this pass are more representative of the actual merits of the design. The slow-slow

(SS) corner is used in this step.

The total area used by the cells in the design is about 0.03 mm2. The area increased a

little compared to the first pass. It is noted that the area of the interconnects is still not

yet defined. The below figure (Figure 5.54) shows a summary of the area used and the

distribution of it among components.

Figure 5.54: Area Summary

Power consumption is mainly due to dynamic power (represented in cells switching

power and nets internal power) and leakage power. The total dynamic power
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consumed by the design is 4.9 mW. The leakage power of the cells is 0.15 mW. This

is a notable increase compared to the first pass. The following figure shows the power

consumption distribution of the design.

Figure 5.55: Power Consumption Summary

The following figure (Figure 5.56) shows how power is consumed among the various

power groups of the design.

Figure 5.56: Power Consumption Groups

The timing is checked in order to know if the timing constraints are still met. The

below figure (Figure 5.57) shows one of the critical paths of the design that meets the

setup requirements.
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Figure 5.57: Setup Time Critical Path
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5.3.5 Placement

Placement is done after the second pass of synthesis. It uses the optimized floorplan

and netlist generated by the synthesis tool. It is important that all the cells within the

design are legally placed with good congestion. The design also should be routable

and meet the timing requirements. The following figures show the congestion map

(Figure 5.58) and timing reports of the design after placement (Figure 5.59 and Figure

5.60).

Figure 5.58: Congestion Map After Placement
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Figure 5.59: Setup Time Critical Path

Figure 5.60: Hold Time Critical Path
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5.3.6 Clock Tree Synthesis

The clock is a golden signal that should be connected to each flip flop in the design.

The clock tree is generated in order to connect the signal from the clock pins to the

cells while having minimum skew. It is also important to minimize the power as the

clock is a major source of power consumption in ASIC designs. Signal integrity and

clock routes congestion should be considered in order not to affect the design. The

following figures show the congestion map (Figure 5.61), the clock tree (Figure 5.62),

and the timing reports after CTS (Figure 5.63).

Figure 5.61: Congestion Map After CTS

144



Figure 5.62: Clock Tree

Figure 5.63: Setup Time Critical Path
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Figure 5.64: Hold Time Critical Path
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5.3.7 Routing

The routing was done using the commands previously discussed in chapter 5 with the

goal of achieving the best timing while maintaining a relatively low DRC and LVS

violation count. The following figures show the final routing results (Figure 5.65), the

congestion map (Figure 5.66), and the DRC (Figure 5.67), and LVS (Figure 5.68)

reports.

Figure 5.65: Routed Design
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Figure 5.66: Congestion Map After Routing

Figure 5.67: DRC Summary

Figure 5.68: LVS Summary
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5.3.8 PrimeTime

PrimeTime was run with the fast-fast corner and the min parasitic to check for the

design hold violations. After going through the process discussed in detail in chapter 5

section 8, our design was able to pass the hold violation test with the worst path

having a positive slack of 0.05 ns.

We were also able to obtain a clean setup report when using the slow-slow corner with

the max parasitic. The timing report shows that the timing was met with 0.00 ns

positive slack.
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Chapter 6

Conclusion & Future Work

6.1 Flows Comparison & Conclusion

After finishing the three flows, they are compared in order to understand the

advantages and disadvantages of each flow. Table 6.1 shows a comparison of the three

flows after synthesis in terms of runtime, total cell area, power consumption, and

clock period.

Table 6.1: Post-Synthesis Results

Hierarchical Flat
Topographical

(pass1)

Topographical

(pass2)

Runtime (mins) 2 5 2 3

Area 29374 33588.6 28166.47 29691.45

Dynamic

Power(mW)
1.2554 1.201 1.41 1.51

Leakage

Power(mW)
0.138 0.14 0.13 0.15
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Total Power

(mW)
1.39 1.341 1.54 1.66

Clock (ns) 2.61 2.2 2 2

As shown in the above table, the runtime is the worst in the flat flow. This is

reasonable as it tolerates the design as one huge module which complicates the

analysis. However, it should be noted that the synthesis runs twice in topographical

mode. This makes the total runtime of the topographical flow almost the same as the

flat flow.

The hierarchical flow has the best total cell area among the three flows. After the

hierarchical, comes the topographical then the flat. For the power, the flat flow is the

best. This is because the optimization between modules helps in having more

optimum results. The topographical flow could achieve the best clock period. The

iteration between ICC and DC returns the parasitics and delays information in the

coarse placement which helps make the netlist more optimized.

The previous results are initial estimations of the merits of the three flows. The

following table (Table 6.2) compares the three flows after layout which gives slightly

different results from the post-synthesis results. The topographical flow has the best

area in contrast to the post-synthesis result. The power has the same trend as the

post-synthesis outputs. The dynamic power depends on the frequency of the design.

Thus, power cannot show a replicable trend here as the frequencies of the three flows

are different.
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Table 6.2: Post-Layout Results

Hierarchical Flat Topographical

Technology(nm) 45 45 45

Area mm2 0.134 0.155 0.1326

Dynamic

Power(mW)

1.6 1.678 1.79

Leakage

Power(mW)

0.155 0.163 0.18

Total Power

(mW)

1.77 1.841 1.97

Clock (ns) 2.61 2.2 2

To conclude, it is recommended to use the topographical flow in hierarchical flavor in

case the ASIC designer aims for the best performance and area. The flat flow can be

used if the design is small enough so that the tool can optimize the whole design

without much effort. The hierarchical flow is recommended to be used in case the

runtime is important for the designer or if he wants to have a quick estimation of the

design merits. Also, the hierarchical flow should be used if power is critical in the

design.
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6.2 Future Work and Recommendations

Multi-mode multi-corner analysis

Multi-mode multi-corner (MMMC) simulations are essential to guarantee that the

design will work under different conditions and in different environments. The

Nangate PDK that we used didn’t provide or cover all the possible corners for the

expected operating condition of the design. The available temperature corners were at

temperatures -40, 0 and 125 °C which is far from the expected operating temperature

of a processor ranging from 25 to 80 °C. The PDK didn’t also provide the typical-

typical variation and only two variants of supply voltage at 0.95 and 1.25 voltage. We

would recommend the use of a PDK that supports a wider range of corners and modes

to match the intended design. We would also recommend the use of the MMMC flow

in synopsys ICC which helps to optimize the design placing and routing over different

corners which result in a more optimized design.

Implementing DFT

DFT or Design for testability is a design technique for post manufacturing testing. It

makes testing chips possible and cost-effective through adding additional circuitry to

the chip. The addition of this circuitry is done to the design netlist after the synthesis

phase. The added hardware adds overhead to the design which reduces its efficiency.

This degradation in performance is mainly due to leakage power of the added logic as

well as the wasted area. These tradeoffs become more relevant in submicron

technologies.
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Physical verification

We recommend the use of a specialized physical verification tool to solve DRC and

LVS violations. Depending on tools such as ICC to solve such problems is a tedious

job as the tool is not optimized for this kind of task. The best approach we found was

to minimize the number of DRC and LVS violations through the different routing

commands and using iterative improvements on each step in the PNR. The design

should be then imported to a specialized physical verification tool such as Synopsys

IC Validator to solve any remaining issues.
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