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“Indeed, those who have believed and done righteous deeds – indeed, We will not
allow to be lost the reward of any who did well in deeds.”

The Holy Quran, Surat Al Kahf 30
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Abstract

This thesis presents the graduation project work done in the analog layout
automation tool. The team was academically sponsored by ONE Lab, Cairo
University and industrially by Si-Vision, Synopsys Inc. The tool presented
in this work aims to greatly cut down the time needed by the analog layout
designer in finalizing his first top routing iteration. The tool employs inno-
vative solutions adopted from literature and modified such that it fits the
requirements.
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Chapter 1

Introduction

1.1 Motivation

ICs are becoming more complex and highly integrated to meet the new tech-
nologies requirements. Gradually transforming to what is called SoCs. Elec-
tronic Design Automation (EDA) tools are thus required to handle the dif-
ficult design rules associated with smaller technology nodes, as well as the
tight circuit performance constraints.

Many state-of-the-art EDA tools have shown success in the digital do-
main. However, more efforts are still needed for Analog/Radio Frequency
(RF) circuits due to their high performance sensitivity to the various layout
design reliability and integrity concerns. Moreover, the inherent error-prone
manufacturing process representing another obstacle to overcome.

The analog layout synthesis problem has attracted considerable interest
for the past several decades. Unfortunately, it has not seen widespread adop-
tion by circuit layout designers as a feasable solution. The traditional percep-
tion has been that the these tools’ results are unable to match the expert de-
signer, both in terms of his ability to comprehend and implement specialized
layout tricks, and in terms of the variety of topologies with circuit-specific
constraints.

Rule-based methods is the direct approach, and it was considered as first
generation approaches. However, distilling the layout designer’s experience
and notion of the circuits in hand into a limited set of rules can be challeng-
ing. In recent years, the analog layout design landscape has shifted tides
in several ways more favorable for automation, some of which are listed as
follows:

• Fixed pitch design rules and Manhattan routing approach in modern
nm technology nodes has opened opportunity windows for incorpo-
rating rule-based procedures.

• More analog blocks are required in integrated systems making it more
of a repetitive task with the same design considerations and reliability
issues mitigation techniques.

• The advancements in the field of algorithms and the available compu-
tation powers to tackle such automation problem.

The aforementioned reasons provide opportunities for solving the analog
layout automation problem in a manner that was not previously possible.
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FIGURE 1.1: Area Vs. Effort of Chip

Even for high-performance blocks, although automatically generated layouts
are unlikely to meet all the specifications, they will considerably reduce the
iterations between circuit optimization and layout. Such cases are where lay-
out generation is the primary bottleneck.

Fig 1.2 draws comparison between the analog and digital partitions of a
typical IC. It is clear that although the digital partition comprises around 70%
of the chip’s area, it only requires around 30% of the exerted effort. On the
other hand, the analog partition is the opposite in terms of area and effort.

This implies that the market requires an analog layout automation tool to
help in cutting down the time and effort needed in the layout design process.
The market naturally requires the tool to offer innovative and computation-
ally simple solutions for the various analog layout considerations such as
route matching, current capability handling, routes variable width, assign-
ing metal layers to signal types, lack of standard cells and others.
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1.2 Full Tool Overview

FIGURE 1.2: Full Tool Overview.

In the last few years a lot of work in the layout synthesis task of ana-
log integrated circuits has been performed to automate the layout ,that work
emerged from universities ,some found their way into commercial EDA tools
but unfortunately these tools are still far away from reality and this is due to
the fact that the design of analog circuits is complex as there is countless in-
teractions between them and going to smaller technology nodes makes the
task harder as the design rules becomes more complex, and the interactions
impact becomes greater. Layout generation and verification process flow
consists of the following main steps given the schematic and the technol-
ogy node the layout engineer does the floor planning then routing followed
by physical verification ,PEX and finally post layout automation.

The methodology presented in this thesis focuses on the global router block
which is part of a full layout automation tool. Before starting to talk about
it the main block flow , lets take a closer look to the other blocks of the full
tool that are mentioned earlier in the layout generation and verification pro-
cess flow . So the first block is schematic reader , from its name all it does is
identifying what is inside the block such as current mirrors, differential pairs
, capacitors ,resistors and single transistors, and of course this block will per-
form this task given the schematic and the technology node. Next block is
the placer and this block flow is as follow : Matching Pattern generator and
Floor planner.
To understand the matching pattern generator ,let’s take a closer look to the
matching process itself.
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Matching is the process of creating similar environment for a set of transis-
tors so they exhibit the same electrical properties and that guarantee that
the desired functionality are not altered . There are two types of mismatch
:systematic mismatch that one is due to non uniform thermal distribution
during fabrication process ,it can be solved by proper layout techniques ,best
device matching so as to be as close as possible , the second type is random
mismatch the error resulting from that one can’t be identified or controlled
while implementing the layout ,it will happen during the fabrication and the
reasons behind that are the non uniform etch rate ,the doping and finally
the wafer itself .Regarding the wafer problems are due to the mask misalign-
ment problems. The matching pattern is done applying techniques such as
interdigitation and common centroid where Interdigitation means that the
devices are distributed in an interleaved manner it’s more preferred for diff
pairs as it guarantees that both transistors see the same process variations so
they’d be matched under all conditions on the other hand common centroid
techniques the devices are symmetrically laid out about a certain axis so as
to have a common center this method is common for current mirrors and
capacitors it increases matching. It is worth mentioning that dummies are
used to balance the effects on the lateral transistors ,they may be used as well
to shield all around the devices in smaller and more sensitive technologies,
they are used as well to combat the LOD effect and the well proximity effect
as well.
The LOD effect it occurs as a result of the device characteristics variations
according to the distance of its gates from the diffusion edges so dummies
are added to cancel this effect by making both distances the same. The well
proximity effect is due to the variation of performance for transistors that
are placed close to the well edge than the ideally placed ones that is caused
during the ion implantation step when the ion beam is tilted causing non
uniform ion distribution on the transistors that are closed to the well edge so
dummy placement solves this issue as well.
The Floor planner block is very important ,analog mask designers must be
involved in the floor planning not only it saves time but makes signal flow
more efficient specially when the floorplan is very convoluted ,wires all over
the place which introduce coupling mechanisms as well as parasitics and
this will for sure affects the circuit performance. So the blocks relative posi-
tioning must be done so as to make sure the floorplan is driven by the fol-
lowing prominent concerns: pin-out, block placement and signal flow. A
good choice of pin-out could reduce parasitics and help the mask designer
produce a clean layout. Regarding the block placement part ,it will help to
understand how the top level assembly will be performed so the main goal is
to keep the inter-block wires as short as possible and to avoid wires running
all around the chip. Once a clean and satisfying floorplan is ready ,the signal
flow part becomes more easier .Now , the way of thinking about the signal
flow depends on what are the concerns, so in case of worrying about how the
internal blocks talk to each other then the insides will drive the pin out but if
the main concern is about how the pins interact and connect with each other
, then the pins will drive how the blocks are placed inside. One major thing
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to think about while working on the chip floorplan is the wiring , the area
needed for wiring is quite important , that matter needs to be discussed with
the circuit designer so as to be informed about the area needed for differ-
entiall signals ,for special symmetry or perhaps for additional isolation .The
B*trees is the algorithm used to implement an automated floorplanner.

Before directly talking about the next step which is routing , lets take a
look into some of the important concepts in routing :

• Parasitic capacitance which is unavoidable and unwanted and may severely
limit the performance specially at high frequencies ,they are common
solutions in order to decrease capacitance such as reduce the wire length
so as to reduce the overlap between the wires and substrate ,go to
higher metal layer away from the substrate ,use minimum metal width
and maximum oxide thickness.

• Electromigration that happens when using thin metals that can no longer
bear high current density consequently atoms get displaced from their
original positions causing voids in the metal layer .Ways to solve this
problem : widen the wire to reduce current density ,reduce the fre-
quency ,lower the supply voltage , keep the wirelength short.

• Antenna effect that takes place due to plasma etching charge accumu-
lation over a thin gate metal wire which leads to oxide breakdown ,that
why there is an antenna rule that defines the max metal area to gate ox-
ide area to avoid the damage and according to that rule the voltage that
the gate can put up with will be calculated .In order to solve antenna
effect ,high level metal jumpers and antenna diodes are used.

AntennaRule =
Metal area

Gate oxide area
α

Q
C

(1.1)

V =
Q
C

(1.2)

• Supply noise which might ruin your IC ,decoupling capacitors between
the power and ground rails are used , using separate supplies for each
domain is a solution as well.

• Parasitic resistance which is determined by calculating the sheet resis-
tance of each metal layer ,and it must be suitable with the required volt-
age drops , in order to reduce it one of the tips is using wider metals
,higher metals levels and metal stack as the parallel equivalent is the
smallest resistance.

• Coupling noise between blocks and here shielding plays a major role
and this shielding can be done using guard rings ,it could lateral or all
around depending on the available area.
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All the previous problems has to be taken into consideration , it has to
be mentioned that a good layout designer has to go back and forth from
floor planning to routing as they are tightly connected and they affect one
another . Now comes the router block turn, this one is divided into block
level router , global router. Lets take a closer look to the block level router
, after finishing the matching patterns and the floorplan of the block itself ,
it’s time to do the internal block routing that targets minimum route sizing
, symmetry specially for the differential signals and minimum parasitics as
well so as to have a satisfying performance. To be able to automate the in-
terconnections between the devices a netlist is given to be able to find the
path between different nets using pathfinder algorithms which are part of
the maze algorithms that is used in routing automation. The basic concept
of the approach is to make a connection between two terminals avoiding any
obstacles which in that case are other devices and wires .This is implemented
usually by using a grid like to avoid DRC violation . Another approach can
be used such as template based techniques that uses a pre-defined template
that has the relative positions and interconnection of devices. It has to be
mentioned that wiring symmetry is very critical specially in the routing of
differential circuits. So to achieve complete symmetry for differential circuits
,symmetrical placement and symmetrical routing should be satisfied . The
global router which is the thesis scope its goal is to place routes between dif-
ferent blocks taking into our considerations the same constraints mentioned
earlier in the block router. A quick look to block flow diagram that will be
discussed later on in details ,the block flow starting from signal identifier
and classifier which identifies pin pairs having the same net name ,it classi-
fies the signal according to its type and each signal is prioritized so supply
signal comes first followed by current signals then voltage signals and finally
the digital signals . The second block is the channel estimator its role is to de-
tect the vertical and the horizontal channels and the intersections between
them ,the following block is the node builder that virtually allocate pins to
the channel intersections called nodes by means of proximity, the next block
is the shortest path finder its goal is to virtually allocate the routing paths to
nets using Dijkstra routing algorithms and finally the detailed router its role
is to find the routes placement coordinates and its output is an executable
TCL script that will place the physical routes .

1.2.1 Schematic/Tech. File Reader (Parser)

1.2.2 Placer

An automatic placement tool should produce solutions similar to manual
layouts in density and performance In order to reduce parasitics have bet-
ter process variations on different conditions, placement of analog devices
must be made taking simultaneously many requirements into consideration.
Which appears in the form of symmetry, matching and proximity constraints,
allied to the multitude of possible device implementations, with different
sizes and aspect ratios, make the analog placement task hard to automate.
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Furthermore, these constraints must be strictly satisfied while attempting to
minimize several objectives, such as chip area, interconnect length or par-
asitic impact. This is fundamental as the attainable routing quality and,
most of the parasitic effects and consequent post-layout circuit’s performance
degradation are set once a placement solution is fixed.

1.2.3 Router

Routing is one of the final steps in analog layout synthesis. Net-list doesn’t
provide information about how the device’s terminal should be connected,
because analog circuits performance dependent on layout parasitics and needs
more attention than digital the quality of routing is very critical in the circuit
performance.

Input:

• Routing region: multi-layer rectangle

• Obstacles: size/location

• Pins: location

• Net-list

Output:

• Routed paths for all nets

Constraints:

• Routing resources

• Connection rules

• Design rules

routing problem is usually solved by using a two-stage approach of global
routing followed by detailed routing due to its complexity. Global routing
first partitions the routing region into channels then decides for each net
while optimizing a certain cost function the whole path given the resources
ex. (total channel width and signal type), while the detailed router assigns
the actual wires and vias in these channels.

The detailed routing algorithms are classified into:

• Grid-based routing

• Gridless routing

For grid-based routing, a routing grid is superimposed on the routing re-
gion, and then the detailed router finds routing paths in the grid and the
gridlines are called wire pitch which is defined as larger than or equal min-
imum wire width and spacings sum,while the The gridless detailed routing
model does not follow the grid-based model.so we can use different wire
widths and spacing
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Chapter 2

Literature Review

In this section, some of the milestones in the analog layout generation, along
with some recent tools, will be reviewed. In the earliest approaches, pro-
cedural module generation techniques coded the entire layout of a circuit
in a software tool, which would generate the target layout for the parame-
ters attained during sizing. This parametric representation of the layout is
fully developed by the designer, either by a procedural language or a graphi-
cal user interface (GUI). ALSYN employs fast procedural algorithms that are
controlled through a database of structures and attributes. Although fast,
these methods lack the flexibility to accommodate wide changes, making the
cost of introducing a new design task relatively high and technology migra-
tions may force complete cells redesign.

The use of template approaches, which define the relative position and in-
terconnection of devices, is a common practice. A template-based generation
is used by Intellectual Property Reuse-based Analog IC Layout (IPRAIL) to
automatically extract the knowledge embedded in an already made layout,
and use it for retargeting. Layout retargeting is the process of generating a
layout from an existing layout. The main target is to conserve most of the
design choices and knowledge of the source design, while migrating it an-
other given technology, update specifications or attempt to optimize the old
design.

In order to retain the knowledge of the designer but without forcing an
implicit definition, LAYGEN [1] tool for example, uses a template-based ap-
proach to guide the layout generation. ALADIN also allow designers to inte-
grate their knowledge into the synthesis process. While ALG uses the same
knowledge-based principle, allowing the designer to interact with the tool in
different phases, leaving to the discretion of the designer if the final layout is
obtained almost full automatically or by designer directives.

Zhang et al. developed a tool that automatically conducts performance
constrained parasitic-aware retargeting and optimization of analog layouts.
Performance sensitivities with respect to layout parasitics are first determined,
and then the algorithm applies a sensitivity model to control parasitic-related
layout geometries, by directly constructing a set of performance constraints
subject to maximum performance deviation due to parasitics.

The optimization-based layout generation approaches consist of synthe-
sizing the layout solution using optimization techniques according to some
cost functions, with a higher level of abstraction. The simulated anneal-
ing and genetic algorithms are the most common choice for solving analog
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FIGURE 2.1: Classification of analog tools based on generation
techniques

device-level placement problems, beyond their flexibility in terms of incre-
mental addition of new functionalities; they are relatively easy to implement.

Several publications were reviewed to conduct the literature review. Pa-
pers in [2] - [3] - [4] - [5] - [6] - [7]. Analog Layout Synthesis [8] book was
particularly helpful. Also books in [9] and [10] were reviewed. Moreover,
publications in [11] - [12] - [13] - [1] - [14] - [15] were reviewed.

In Fig. 2.1, a classification of the analog tools presented in this section
based on generation techniques is presented, and a summary of the advan-
tages of each technique is also highlighted. A summary of the description
and functional specifications of the referred tools is presented on Fig. 3.1,
while on Fig. 2.3 technical specifications and few observations are reported
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FIGURE 2.2: Overview of layout generation tools, part I
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FIGURE 2.3: Overview of layout generation tools, part II
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Chapter 3

Proposed Global Router Flow

3.1 Introduction

FIGURE 3.1: Proposed Global Router Flow Block Diagram

The proposed flow aims at presenting a novel approach to the analog
layout automation problem. Previous work reviewed in Chapter 2 proved
to lack the essence of how the analog layout designer thinks and resorted to
purely, brute--force mathematical solutions instead.

This work’s solution revolves around that missing essence. Two main
characteristics of the proposed solution are:

• The tool partitions the problem into smaller, more clear sub problems.

• The tool then finds consistent procedures for the individual sub prob-
lems.

These characteristics are in conformity with how a typical layout designer
would approach such a problem.

It is worth mentioning that the purpose of this tool is not a click-to-layout
automation. Rather, it is an aiding tool for the layout designer in his tedious,
time-consuming task.

A key objective of the tool is cutting down required time to laying out
the top design. The designer can in turn tune the individual modules’ input,
allowing him to explore the feasible solution space, and create a wider room
for himself to optimize it. Finally, the designer chooses a solution that best
fits his needs. The tool will help accelerate the sign-off process by boosting
the layout design-circuit design feedback loop.

Python scripting language was used for prototyping the tool. Its huge
open-source community as well as its easy syntax made it the perfect choice.
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Synopsys Custom Compiler design tool custom TCL scripting language was
also used for interfacing the main Python script with the tool for implement-
ing the final output.

The proposed flow in Fig.3.1 can be summarized as follows:

• Tool Inputs:

– Floorplanner output .txt file describing the top floorplan blocks’
bounding boxes relative to the top hierarchy origin.

– Floorplanner output .txt file describing the pins locations relative
to the top origin.

– .cdl file. A Custom Compiler file describing the top floorplan elec-
trically. i.e. net names associated to which blocks.

• Tool Modules:

1. Signal Identifier and Classifier (.cdl Reader)

– Inputs:
∗ .cdl File

– Outputs:
∗ Categorized list of:

· Net names.
· Net type (Supply, Voltage, Current, Digital Control).
· Net width, pre-assigned by circuit designer.

2. Channel Estimator

– Inputs:
∗ Floorplanner’s output describing block’s bounding boxes

relative to the top.
– Outputs:

∗ Vertical and horizontal channels bounding boxes.
∗ Nodes bounding boxes. Nodes being defined as: The in-

tersection between two or more horizontal and vertical
channels.

3. Node Builder

– Inputs:
∗ Floorplanner’s output describing the pins locations rela-

tive to the top.
∗ Channel Estimator’s output.

– Output:
∗ Associating pins to nodes by means of proximity.

4. Shortest Path Finder

– Inputs:
∗ Channel Estimator’s output.
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∗ Node Builder’s output.
– Outputs:

∗ Virtual allocation of channels to nets on a shortest path
basis.

∗ The procedure adopts the Dijkstra routing algorithm to the
analog layout global routing problem.

∗ Nets are allocated to channels in the following order:
· Supply nets.
· Sensitive voltage nets.
· Sensitive current nets.
· Digital control nets.

5. Detailed Router

– Inputs:
∗ Node Builder’s output
∗ Shortest Path Finder’s output.

– Outputs:
∗ TCL script executed from within Synopsys Custom Com-

piler tool to physically place the routes and their associ-
ated vias.

• Tool output:

– A feasible routed top layout solution that is based on typical ana-
log layout designers insights.

The tool concept is promising, and naturally is still in its early stages.
Nevertheless, this work can be perceived as a successful proof of concept.
This work further needs optimization to the code architecture on both the
implementation and data structures fronts. In addition to that, for a more
realistic representation of the layout designer insight, the tools needs several
features addition.
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3.2 Signal Identifier and Classifier (.cdl Reader)

The role of that block is as Follow:

• Identifies pin pairs having the same net name.

• Classifies and prioritize the identified pin pairs by their signal type ac-
cording to the following criteria:[Supply, Voltage, Current, Digital Con-
trol].

The input to that block is a Cdl file : The Required format is as follow:

[Xblockints signalType _ signalName _ widthInMicroMeter]

Example:

FIGURE 3.2: Cdl Example

By using Python File handling to extract the needed information from the
file and then the following output is obtained: Output Text Format:

[signal_name _ netWidth _ signalPriorty]

The signal priority can be easily determined by knowing the signal type ,sup-
ply takes the highest priority followed voltage then current and finally digital
control. Digital control signal is a noisy signal , voltage signal is noise sensi-
tive and the current signal acts like as a shield that protects the voltage signal
from digital control signal. So the supply takes a weight that corresponds to
its priority which is the highest its priority weight is :4 followed by the volt-
age with priority equals :3 then the current will be :2 and finally the digital
control priority which is:1 The cdl reader along with the floor planner output
are the input to the next block which is the channel estimator.
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3.3 Channel Estimator

Adhering to the basis upon which the tool was implemented, this module
represents a corner stone. The Channel Estimator module is responsible for
identifying and reporting the routing channels’ bounding boxes given the
blocks’ bounding boxes. Bounding boxes being defined as the bottom left
and top right corners coordinates. The module is independent of the pre-
vious one, Signal Identifier and Classifier module, and thus both can run
simultaneously.

The Channel Estimator algorithm represents the first contribution in this
work. Owing to the fact that no prior work, as far as the conducted literature
review went, adopted the same approach of partitioning the problem as this
work does. Moreover, no prior work introduced clear definitions of routing
channels, not to mention utilized it.

The algorithm employs Python’s Numpy library. Not only does Numpy
arrays offer useful functions, but also offer strong visual representation, mak-
ing the debugging process effortless.

In the current implementation, the algorithm assumes that all blocks in
the top layout, prohibit the whole metal stack from crossing over it. This is a
simplification to ease the coding process, but far from reality. Typically some
non-noise sensitive blocks allow high metal layers i.e. above Metal 5, to cross
over.

This simplification allows for single definition of the routing channels.
The typical case is the existence of several routing channels definitions for
each metal layer group sharing the same properties as to which blocks allow
them to cross over.

The algorithm can identify routing channels’ bounding boxes relative to
the top origin, either with zero or non-zero offset. Moreover, it can only deal
with both integer and floating-point values of blocks’ bounding boxes.

A core step of the algorithm relies on computing a grid resolution for the
layout, defined as the GCD of two other GCD values, one along the blocks’
x-coordinates and the other along the y-coordinates.

The algorithm generally prefers a GCD value greater than one along both
axis so that array sizes are small and can be processed easily by the machine
running the tool.

Flowcharts depicted in Figures [3.3, 3.4, 3.5, 3.6] present an illustrative
view of the algorithm. Fig. 3.3 shows a bird’s eye view of the algorithm. The
reader surely notices that the algorithm repeatedly calls several procedures,
namely: getLocations, handleCrossOverlaps, handleOverlaps in which Fig-
ures [3.4, 3.5, 3.6] provide flowcharts summarizing the procedure core re-
spectively.

The algorithm defines several entities to deal with:

• Vertical Channels: defined as rectangles along the y-axis.

• Horizontal Channels: defined as rectangles along the x-axis.

• Nodes: defined as intersection between two or more channels of op-
posinte orientation.
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The target is to correctly identify and handle overlaps between those entities.
The algorithm also identifies two overlap types:

• Cross-Overlaps: defined as channels reported in either orientation, at
the same time it completely lies within a reported channel of the oppo-
site orientation.

• Overlaps: defined as portions of channels getting reported more than
once.

Cross-Overlaps are handled differently, depending on the input type, if
the input is channels or nodes. As for channels, "handleCrossOverlap" pro-
cedure require a channel of a certain orientation to lie completely within an-
other of the opposite orientation. The procedure then discards the shorter of
the two cross-overlapping channels.

On the other hand, the procedure doesn’t require nodes to lie within each
other and suffice with just the cross-overlapping nodes being intersected.
The procedure then decides which node spans more length in its orienta-
tion(taller fit criteria), and trims the overlapping one.

The Channel Estimator algrithm handles self overlaps on a wider fit basis.
During the identification, if portions of channels get identified more than
once, it is considered an overlap. The overlapping portion takes one of two
forms:

• The overlap portion lies completely within another wider channel.

• The overlap portion lies inside another wider channel, but protrudes
from it.

Either case results in that the wider channel stays intact while the overlap-
ping channel gets trimmed.

This work used the provided Fig. 3.7 as the reference example and im-
plemented the algorithm to correctly identify it’s channels and nodes. The
example was particularly helpful as it covered almost all overlapping cases.
Figures 3.8 through 3.9 visually presents the algorithm in work. The figures
uses the following color code:

• Orange: Analog blocks.

• Green : Vertical Channels.

• Blue : Horizontal Channels.

• White/Violet : Nodes.

To further verify and test the algorithm, three more test cases were evalu-
ated depicted in Figures 3.10 through 3.12. Fig. 3.10 represents a block level
layout, i.e. an Opamp or an LNA circuit. Implying that the proposed global
routing flow can be applied on both an inter-level and/or intra-level layout
seamlessly. Naturally, the proposed flow requires that in case of intra-level
routing, devices must be matched, placed and internally routed.
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This work considers Fig. 3.11 the main test case for the rest of the flow.
Having simple enough geometry, as clear from the figure, it is easy to debug
in succeeding modules. Making it a perfect candidate for the proof of concept
test case.

Until now, computing grid resolution for floating point coordinates re-
sults in huge array sizes, exceeding 1 GB even with boolean representation
of elements, corresponding to prolonged run time (about 2 min in worst test
case scenario, Fig. 3.12). Therefore, all coordinates are trimmed off their float-
ing point part, sacrificing room for about 3 to 6 routes based on calculations
from advanced nodes PDKs.

Late stage testing revealed the runtime bottleneck becomes apparent for
array sizes exceeding 500× 500 elements. However, further inspection of the
algorithm identified the single code block resulting in the bottleneck, caused
by two nested loops on the generated numpy array representing the layout
(see Fig. 3.4). This work leaves optimization and/or re-implementation for
the coming years.

In Fig 3.14 the algorithm’s output format is shown. It’s structure is as
follows column wise:

1. Channel orientation.

2. Bottom left X coordinate.

3. Bottom left Y coordinate.

4. Top right X coordinate.

5. Top right Y coordinate.

To conclude, the Channel Estimator algorithm represents the first contri-
bution to this work, which is inherently a contribution by itself. It can handle
various geometries of layout, both on top and intra-block level as evident
from the presented test cases. Suffering from one, clearly identified, bottle-
neck that takes the algorithm about 2 to 3 mins. in certain special cases. When
compared to counter digital automation tools, some scripts can take hours to
finish. So, although the algorithm suffers from a bottleneck, it offers a decent
performance.
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FIGURE 3.3: Channel Estimator Flowchart
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FIGURE 3.4: getLocations Procedure Flowchart
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FIGURE 3.5: handleCrossOverlaps Procedure Flowchart
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FIGURE 3.6: handleOverlaps Procedure Flowchart
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FIGURE 3.7: Channel Estimator Algorithm Visualized - Starting
Point
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FIGURE 3.10: Channel Estimator Algorithm Visualized - Ex-
tended Usage Example
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FIGURE 3.14: Channel Estimator Algorithm - OutputFormat
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3.4 Node Builder

Now that we have the channel Bbox, orientation and the node Bbox from the
channel estimator block, and the pin numbers and positions from the floor
planner block, what expected from that block is to give the following inputs
to its succeeding modules:

• The shortest Path finder:

– Channel length, width and orientation between each node pair.

– Pins associated to each node.

• The detailed router:

– Channel length, width and orientation between each node pair.

– Pins associated to which interface of the node/channel.

– Pins coordinates on each interface.

All the node builder does is to virtually allocate the pins positions on the
node interface .So first of all according to the channel orientation we start by
allocating the pins on the corresponding channel interface if vertical the pins
will be allocated right and left ,if horizontal the pins will be allocated to the
top or to the bottom so the channel orientation determines which coordinates
will be compared. In both cases ,the X and Y range should be checked to cor-
rectly allocate the channel. After allocating the pins on the channel interfaces
,for the general case where the channel is surrounded by nodes from the left
,right or from top ,down ,the distance from the pin to the node is calculated
the minimum distance is chosen and then the pin is assigned to the nearest
interface .For the special case where the channel has a node to the top or at
the bottom , the pins are dragged to the corresponding interface immediately.
The following example in Fig 3.15.
And the Final output file is giving in this text file fomat in Fig 3.16.
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FIGURE 3.15: Pins allocated to node D interface

FIGURE 3.16: Final Nodebuilder output
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3.5 Shortest path finder

The shortest path finder module is the heart of the tool. The algorithm en-
ables the whole flow to accomplish its hard task of implementing the analog
layout designer’s way of thinking into a procedure.

The single most important constraint on analog layout routing in general
is minimizing the parasitics. Other constraints include matching between
sensitive nets as well as shielding them from noisy signals.

Analog routers face several challenges that separate them from their dig-
ital counter part. Variable widths and the need to assign metal layers to spe-
cific net types and define an order by which those nets get routed are the
most critical of the aforementioned challenges.

This leads us to defining the objectives of the shortest path finder algo-
rithm.

• Perform virtual routing. i.e. Allocation

• Maintaining minimum parasitics and minimum wire loads. i.e. short-
est path by means of modified Dijkstra shortest path algorithm.

• Define an order by which nets are virtually routed. [Supply, Voltage,
Current, Digital Control]

• Follow Manhattan routing scheme. [Even – Odd metal layers]

• Assign metal layers to net types in the following order.

1. Supply net are assigned to M6 and M7.

2. Sensitive nets(Voltage) are assigned to M4, M5 and rest of M6.

3. Noncritical nets (Current) are assigned to rest of M4, M5 and both
M2, M3.

4. Noisy nets (Digital Controls) are assigned to rest of M2 and M1.

The reasons behind why the algorithm employs Dijkstra shortest path al-
gorithm is due to several facts. Firs of all, it is classified as a proactive routing
algorithm, meaning it is always updated with the status of the graph. It is
table based i.e. all nodes know the path to all other nodes in the graph, and
with the proper implementation (Python dictionaries) table access is simple
and fast. And finally Dijkstra is a well established algorithm making it easy
to find an already implemented and optimized version.

The algorithm faced several challenges that needed addressing. The fact
that Dijkstra can only deal with 2D graphs and the algorithm requirement
of representing the metal stack in the design created the need for adjusting
the graph implementation to be 3D. Moreover, Dijkstra fails when dealing
with negative weight edges, this case can easily happen as more routes get
allocated to the same metal layer in any channel, eventually leaving no space
in the metal layer for further allocation i.e. channel width in a specific metal
layer equals to zero.



34 Chapter 3. Proposed Global Router Flow

By proper conditioning both the main algorithm and Dijkstra procedure
this implementation was able to overcome these limitations. As mentioned,
the algorithm implements the graph data structure in a way such that it en-
ables representing the metal stack, overcoming the first limitation.

Fig 3.17 explains the conditioning employed to overcome the second lim-
itation and enable proper allocation process. Channels are checked if avail-
able during the allocation process. In addition to that, the algorithm makes
sure that the assigned metal layer has enough space to accommodate the net
in turn.

In case the "sufficient width" condition fails, metal layer is made tem-
porarily unavailable. Dijkstra is then called and routing table is updated
with a new path. Dijkstra procedure implementation is modified such that
even if the assigned metal layer has insufficient width or became unavail-
able mid-allocation, it allows for a single lower metal layer dive of the net
maintaining shortest path and consequently minimum parasitics.

Nodes are removed from graph if three conditions are true.

1. Node exists in graph.

2. All associated nets are virtually routed successfully.

3. All connected metal layers to the node are unavailable.

The algorithm fails upon satisfying three conditions.

1. Node exists in graph.

2. NOT All associated nets are virtually routed successfully.

3. All connected metal layers to the node are unavailable.

In Fig 3.18 the algorithm’s output format is shown. it follows the follow-
ing structure column wise:

1. Channel Identifier.

2. Net number.

3. Net width.

4. Assigned metal layer.

5. Columns 5 through 8 represent the channel Bbox.

6. Channel orientation.
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FIGURE 3.17: Shortest Path Finder Flowchart



36 Chapter 3. Proposed Global Router Flow

FIGURE 3.18: Shortest Path Finder - Output Format



3.6. Detailed Router 37

3.6 Detailed Router

As mentioned before the routing problem is usually solved by using a two-
stage approach of global routing followed by detailed routing due to its com-
plexity. In this section the proposed detailed routing algorithm will be pre-
sented for given channel.

This block job is to get the processed floor-plan from the previous blocks and
do the actual route placement with physical routes, its desired output is a
physical route to be placed in the tool by the appropriate scripting language
(ex:TCL for synopsys tools).
The detailed router consists of two main parts Channel router and Node
router (switch box).

The channel router: was made in order to connect the nodes with the pins
and route the pass-through routes in each channel the main difference be-
tween the channel router and the node builder that the node have 4 inter-
faces and need to connect the pins on those interfaces in general case while
the channel routing having only two interfaces to route the node router much
more complex and most of the found algorithms are gird based which will
have constant width which is not desired in analog layout ,A grid-less algo-
rithm is needed and this will be a part of the future work

• Required Inputs:

– Pins and their connected Nodes(Node Builder).

– Channel Coordinates ,length and it’s orientation(Channel Estima-
tor).

– Connected pins on each channel and their metal pairs(Shortest-
path finder).

• Required Output:

– TCL script for route placement.

The Algorithm:

• For each side

– For each pin

∗ Start by the nearest unconnected to its node interface.
∗ Extend Horizontal route using its width with the specified

Horizontal Metal.
∗ Extend Vertical route to the Node with the same width spaced

by DRC distance from the starting point.
∗ Update the starting point.

– For each of the pass-through Routes
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∗ Move DRC distance from the last left Vertical Metal and place
a vertical route with the channel length

∗ Update last left Vertical space

– Do axes Transmission to move the routes to the real channel origin
rotation if it was a horizontal one.

In order to understand the algorithm it’s better to take a visual Example in
Fig. 3.19 we start by taking the left pins to know which pin will go to which
node in this example we only have one node so the node builder will direct
all the pins to (Node A) starting by pin 1 a horizontal route extended from
the node with the required width.

The node builder the used algorithm was implemented from the greedy al-
gorithm in [16] and then modified such that the width is variable the main
problem that this algorithm is grid based which needed some modifications
and no covering the whole cases other algorithm was found more suitable
for the node routing [17] in the tool but will be implemented in future work.
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FIGURE 3.19: Illustrated example a) the channel with the pins
before routing

b) starting from the left side step by step drawing a horizontal
route then extending a vertical route to the desired node

c)routing the right side step by step.
d)The Final Routed channel
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Chapter 4

Conclusion and Future Work

By applying the given example in Fig 4.1 to the tool the resulting output is
giving in Fig 4.2 was verified and passed the DRC verification.

4.1 Conclusion

FIGURE 4.1: Numerical Example

The tool starts by taking the input floorplan and Cdl files. It then passes
them to the signal identifier to determine the pins and the signals priority.
The channel estimator takes the given floorplan and extract the channels and
nodes giving also the channel length and it’s orientation. The node builder
then takes this output from the channel estimator and determine which pin
goes to which node then passes it’s output to the shortest pass finder and
detailed router.

Finally after the shortest path finder finishes the virtual routing the actual
routing is performed using the detailed router exporting a tcl script for the
tool automatic placment in the desired tool as shown in Fig 4.2



4.2. Future Work 41

FIGURE 4.2: Final Output

4.2 Future Work

• Channel Estimator

– Handle L shape blocks due to floor planning.

– Solve the run time bottleneck for array sizes exceeding 500 × 500
element by optimizing the identified code block.

• Shortest Path Finder.

– Incorporate differential net signals, and (Supply, GND) pairs iden-
tification.

– Shielding considerations.

– Allocate a longer path in the assigned metal layer OR Allocate a
short path in the directly lower metal layer.

– Density Rule considerations.

– Add “No Star” connection feature.

• Detailed Router.

– Node Router.

– Handling similar pins on opposite interfaces of a channel.
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