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Abstract

This graduation project discusses the implementation of chains for multi-standards
communication (3G, LTE, and WIFI) on a dynamically and partially reconfigurable
heterogeneous platform FPGA ZYNQ board. Implementation results highlight the
benefit of considering an FPGA platform like (ZYNQ board) that supports efficiently

intensive computation components.

The implementation of the desired chains for multi-standards communication proves
the availability of Partial Dynamic Reconfiguration technology to support efficiently
Software Defined Radio. This project aims to implement the transmitter and receiver
chains for the three standards (Wi-Fi, 3G and LTE). Then reconfigure the FPGA by

the desired chain on the fly without the need for resetting.

This technique depends on the new technology Partial Dynamic Reconfiguration
(PDR) which is introduced by XILINX. The new technology is expected to save area,
power and cost of communication devices and increases the speed of switching and
reconfiguring the FPGA.

During the project, experience is gained in HDL & MATLAB modelling of the
transmitter and receiver blocks of the three standards, building a system on chip that
consists of: Micro-blaze processor IP, ICAP IP and system Ace IP to enable partial
configuration and other peripherals. Thus enable the communication with PC while
testing the reconfiguration on separate blocks and finally testing the reconfiguration

of the entire standards chains.
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Introduction

In this thesis we are going to prove the concept of the availability for using partial

dynamic reconfiguration in implementing software defined radio. The thesis flow will

go as following.

1.1 Organization of the thesis

Chapter 1 provides an overview of the communication system blocks, introduces
the idea of the SDR followed by explaining briefly the PDR concept and discusses
the project flow through the previous years.

Throughout Chapter 2, 3, 4, and 5 we will go deep in the implemented standards’
transmitter and receiver (3G, Wi-Fi, LTE, and 2G). Those chapters introduce the
architectures of the standards chains (Receiver and transmitter), implementation of
the HDL codes, illustrating the challenges, mentioning each block implementation
and any modification done. Each implementation is done giving the all data rates
combinations, where complete system design is performed, obtaining different

blocks’ specifications and expected non-idealities.

Chapter 6 covers the testing part, functional verification of the chain blocks using

MATLAB codes, sources of errors and fixed point simulation.

Chapter 7 covers the used FPGA (ZynQ board), the FPGA testing environment,

1/O files and methods used to interface with PC (Hardware Implementation).

Chapter 8 discusses the PDR configuration methods, difference between them,
their advantages and disadvantages, also, each chain implementation using one RP,
switching between different chains.

Chapter 9 concludes our achievements and results through a year full of team
work, enthusiasm, hard work and research. Also, it includes our conclusion and
proposes the potentials expected in the upcoming years and improvements that are
the next step for the projects fellows.



1.2 Motivation

In the last two decades, there has been tackling efforts from both the technological
and industrial fields on how to increase the connectivity among people. The
communication standards are being developed and upgraded to satisfy the speed
and the time to handle connectivity among the users whose number is increasing
with time. Consequently, this leads to the existence of different communication
standards, but as a drawback the radio frequency spectrum is not utilized in an
efficient way [1, 2], where the communication bands are not used simultaneously
at the same time. The research in the radio spectrum utilization leads to two
approaches to solve this problem, the first approach is the 1A which is an antenna
array technology that uses spatial beamforming and signal processing algorithms to
cancel interference and reuse of the space resources [3]. IA depends on the DPC
technique. The second approach is the CR which dynamically configures the user
terminals, to utilize the radio spectrum that is not used, depending on the available
wireless channels detected without interfering with the other users. In other words,
CR is considered a way of managing the radio spectrum in an efficient way and it

can be developed using the SDR technique [4, 5].

Generally, in a MSCS there exist two major problems, the utilization of the radio
spectrum pointed to in the previous paragraph and utilization of hardware. As each
standard has its own transceiver this leads to high cost, large area, high power
consumption and low battery life. In the same time, the development of the central
base stations and the users’ devices changes tremendously to adapt to the new
technologies and support the old ones. Developing hardware, upgrading and
redistributing costs money and effort. These two major problems, unutilized radio
spectrum and waste in hardware, lead to start searching to find a new way of reusing
(reconfiguring) the same set of hardware to operate the old and new technologies.
The utilization of the radio resources and the physical hardware resources can be
done by offloading data transmitted between the different communication systems,
and in the same time reconfiguring the hardware resources or reordering them to
switch from a standard to another. The SDR is a way of radio system
implementation using software, which is used to form different waveforms. These
waveforms allow the system to switch among different communication standards.

The motivation of the SDR came from the existence of some physical layer blocks

2



has the same functionality in the different communication systems like (GSM,
UMTS, LTE, etc....). Note that, these standards are not used at the same time which
allows their hardware resources and radio spectrum resources to be used in a more
efficient way. Also, the switching among the different waveforms should be
dynamic, more or less in real time. The PDR is a technique used in the (FPGA),
which allows hardware real time reconfigurable computing system. The PDR can
be adopted using its capability of dynamically changing and partially configured,
to implement real time SDR system.

1.3 Communication system

Figure 1-1 shows the main blocks in a modern communication system. It is
composed of a DSP unit, digital and analog converters (DAC, ADC), RF front end
and antenna. Because of achieving high data rates by processing communication
signal digitally using software, which is more easily to develop, distribute and
upgrade, the digital transceivers penetrates the traditional analog transceivers by
pushing the digital and analog converters towards the antenna and pulling the
communication systems more to software design on a given hardware. However,
this work will concentrate on the DSP block whereas a brief description for each

block is presented as follows:

e Digital Signal Processing Block: In the transmitter, this block is responsible
for signal adaptation to be sent over a channel. Signal adaptation includes
encryption, error correction coding schemes, modulation and further more.
Whereas in the receiver this block is responsible for extracting the original
information sent, by reconstructing the signal using demodulation, decoding
and decryption. This block increases the flexibility of the radio development.

e DAC/ADC Blocks: Analog and digital converters used to transfer the signal
between the analog domain and digital domain. Using ADC, the received signal
is being digitized to be processed digitally using the DSP block. The digital
representation depends on the sampling rate that leads to some information loss.
While the DAC is reconstructing the signal to nearly the original one.

e RF Front End Block: It is the classical block that contains the LNA, filters and
PA. Where this block is the most challenging block in the SDR development.



e Antenna: generally, the antenna is a passive device used to capture the
electromagnetic waves from the surrounding media, and converts it to an
electrical signal. The antenna design complexity varies from a single antenna to
multiple antenna arrays. Where the smart antenna is an antenna array that uses
the signal processing algorithms to locate the direction of signal arrival. And the
reconfigurable antenna is capable of changing its frequency for adaptable

systems.

Tx Direction

Digiial Signal — —D—AC— — — +— RFFront End j7Antenna

Processing ADC

-~

Rx Direction
Figure 1-1: Simple communication system

1.4 Software Defined Radio (SDR)

1.4.1 SDR by Definition

The daily usage of communication standards is increasing. Phone calls, accessing
the internet, sharing data and controlling devices are examples of modern
communication usage. The devices held these standards vary in shape, functionality
and the way of usage like mobile phones, wireless routers, smart chips, smart
metering and even more. Although it is not easy to invent a generic device that can
do everything, but it is achievable to manage the way of communication between
them all. Zooming into this big picture to find adaptable communicating device to
communicate the language (communication standard) of the other device. This
adaptation is easier to be done through software defined modules, where these
modules can change functionality by using the software. The SDR term defined by
wireless innovation forum (formerly SDR forum) as “Radio in which some or all of

the physical layer functions are Software Defined”.



1.4.2 Benefits and costs of SDR

There are many benefits of using SDR that it can be used in different industries

and applications, hereby listing some of this advantages:

Interoperability: An SDR can seamlessly communicate with multiple
incompatible radios or act as a bridge between them. Interoperability was a
primary reason for the US military’s interest in, and funding of, SDR for the
past 30 years. Different branches of the military and law enforcement use
dozens of incompatible radios, hindering communication during joint
operations. A single multi-channel and multi-standard SDR can act as a
translator for all the different radios.

Efficient use of resources under varying conditions (Adaptability): An SDR
can adapt the waveform to maximize a key metric. For example, a low-power
waveform can be selected if the radio is running low on battery. A high-
throughput waveform can be selected to quickly download a file. By choosing
the appropriate waveform for every scenario, the radios can provide a better

user experience.

Opportunistic frequency reuse (CR): An SDR can take advantage of
underutilized spectrum. If the owner of the spectrum is not using it, an SDR can
‘borrow’ the spectrum until the owner comes back. This technique has the

potential to dramatically increase the amount of available spectrum.

Updateability: An SDR can be upgraded in the field to support the latest
communications standards. This capability is especially important to radios with
long life cycles such as those in military and aerospace applications. For
example, a new cellular standard can be rolled out by remotely loading new
software into an SDR base station, saving the cost of new hardware and the

installation labor.

Costless: An SDR can be adapted for use in multiple markets and for multiple
applications. Economies of scale come into play to reduce the cost of each
device. For example, the same radio can be sold to cell phone and automobile
manufacturers. Just as significantly, the cost of maintenance and training is

reduced.



e Reusability: The software modules implemented for a given standard for a
product can be used with another product. That decreases the time and effort for

building the same modules in other devices.

e Remote upgrading: Modules can be loaded and upgraded remotely without

returning back to the lab.

The flexibility of the SDR comes with some disadvantages which are not related
to the idea itself but it is related to the design complexity. It takes too much time
and effort from engineers to develop different waveforms that can be adopted with

the same set of hardware.

1.4.3 SDR platforms
The digital signal processing part in the communications system can be carried
on different hardware platforms such as GPP, DSP and FPGA.

GPP is a microprocessor that is optimized for a powerful computing but

consumes more power, it can be used in laboratories for research purpose.

DSP is a microprocessor that is less power consumption than GPP but its
development is more difficult than the GPP, it is used in most of the cellular

terminals and base stations.

FPGA is a microchip that can be configured by the user for a certain purpose,
which makes it the best solution for implementing hardware blocks without unused

logic gates.

1.5 Field Programmable Gate Arrays

One of the FPGA capabilities that is developed in the last decade is the PDR. This
technique allows the FPGA to be configured partially and dynamically without
switching off the system. This high flexibility of the FPGA allows it to be used in
the hardware realization for SDR implementation. PDR helps in cost and resources
reduction on the FPGA chip, providing a flexibility where a system can dynamically
be configured without shutting it down. Moreover, this reconfiguration is done to a
specific part instead of entire chip reconfiguration. Figure 1.2 illustrates a simple
idea behind the PDR technique used in the modern FPGAs. Figure 1.2.a shows the



full configuration of the FPGA that an application consumes more area. Figure 1-
2.b shows that the size of the application can be reduced by using PDR technique.
i.e., if this application has different blocks not used at the same time so these
modules can be time multiplexed. Each module can be loaded to function for a
certain period of time then another module to be loaded. Figure 1-2.c shows that
using PDR increases the size of the FPGA theoretically to realize more applications
than regular FPGA configuration, this leads to more utilization of the FPGA
resources. By applying the concept of the Partial Reconfiguration in the Software
Defined Radio, it will result in a full reconfigurable wireless system which will be

demonstrated through the thesis.

Bl

Dynamic Dynamic Dynamic
Module | | Module ) ) )

Module Module Module <;t>
/ A2
Al A A A B |

Dynamic —
Module
C cl

Static Module Static Static
Module A3 Module Module

a b

Figure 1-2: (a) Shows full FPGA configuration; (b) PDR technique to realize same

system; (c) Shows how the FPGA size increased theoretically

1.5.1 FPGAVSASIC
As described before, FPGA is a pre-manufactured silicon device with high
flexibility and capability to be configured to realize different applications developed
by a designer. They are programmed using HDL like VHDL or Verilog. So, it is
naturally different from an ASIC, which is a circuit designed for a specific

application with no reconfiguration capabilities.

An ASIC not only lacks the configurability feature, but also requires a long design
cycle, and high start-up engineering cost compared to an FPGA. On the other side,
FPGAs trade the extra area, power consumption, and delay for its unique feature.
“Typically, FPGAs occupy larger area and dissipate more switching power than

ASIC standard cells by factors of 20-30x and 10x, respectively.
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From marketing prospective, FPGAs are used for small volume products need to
be sold faster, where ASICs are used for large volume products, but the non-
recurring engineering cost in the ASICs make their cost as a function of production
volume in a flatter way than the FPGA. Figure 1-3 shows that the FPGA units used
in market shifted to higher volumes domain. The reduction in the FPGA values is

due to extending the FPGA functionality through reconfiguration.

i ——— Standard cell ASIC
@ —— FPGA
=, - = FPGA with 33% saving by
o using reconfiguration 33%
=2 saving
g
L)
7))
o
Q
-
04

0 2000 4000 6000 8000 10,000 12,000
Volume [units]

Figure 1-3: Value vs volume for ASIC and FPGA [6]

1.5.2 What is inside the FPGA?
CLBs: includes Registers and LUTSs. They are the building blocks of the FPGA.
Each Xilinx ZynQ device contains arrays of CLBs, each ZynQ CLB has two slices,
and each slice has four LUTs and four Flip Flops. Combinatorial logic is
implemented using LUTS, they can implement any 6-input combinatorial function
of the user choice, with a cost of delay. Noting that, complexity of combinatorial

function does not matter as long as it depends on six inputs or less. Flip Flops can
be programmed to be latch, SR, JK, or D Flip Flops. Also, one carry chain is

available per slice for arithmetic purpose; it helps to secure fast propagation of carry

bit to nearby cells, which means it improves the speed. Moreover, it saves LUTS.

Dedicated Blocks: Like DSPs, which acts as an arithmetic logic unit, RAM

blocks, PCle core.



Input/output Blocks: with programmable standard functionality, like
LVCMOS, LVPECL, and PCI. In fact, each bank can support several standards as

long as they share the same reference voltage, or output voltage.

Routing: a combination of programmable and dedicated routing lines, use
switching matrices connect lines from any source to any destination. Constrains can

be applied.

Clocking Resources: like PLL which removes clock errors, and DCM. The
dedicated clock trees balance the skew and minimize the delay. Thirty-two separate

clock networks are available in ZynQ FPGA as shown in Figure 1-4.

Configurable

logic blocks A HHHHHEHHHRHEHH
. = eeacacaaa:
Dedicated [==] aepeaaga::
blocks o @ .-.l...'.-';‘:
COGapttaap@aaa:
Input and Sa uu.'...l.%ﬁ’
output blocks Saleacsalacalle:
Caeeeacceeeaa=

RO 00000300

Routing ; x * Clocking

Resources

Figure 1-4: FPGA Internal structure

1.6 Project flow through the previous years

1.6.1 Internship Summer 2014

This was the first attempt in implementing SDR consisting. Most of the chain
blocks of the three different chains (3G, Wi-Fi and LTE) were eliminated to make
it simpler to implement what is important to prove the concept of PDR used to

develop an SDR.

The chosen blocks were only implemented using VHDL & they were as

following:

> In 3G: Convolutional Encoder, Rate Half & Rate Third.
> In Wi-Fi: Convolutional Encoder, Rate Half.



» In LTE: Convolutional Encoder, Rate Third.

1.6.2 Graduation Project 2015
In this year, the objective was to design, simulate, and implement DPR system
for SDR on FPGAs which was met by investigating and modeling on two different

steps.

The first step by implementing PDR system for convolutional encoders used in
different communication standards 3G, LTE and WIFI (completing the internship
work). Where the convolutional encoders initially not exist on the chip but stored
in external memory and loaded on demand. This PDR design for the convolutional
encoder was compared to conventional convolutional encoder system, where all
encoders existed on the same chip. They were compared with respect to area, power,
latency and memory. The results showed that PDR implementation consumes less
power and area when compared to the normal design. Whereas the normal design
had less memory and latency.

The second step was to implement ideal communication chains for 3G, LTE and
WIFI using PDR technique where swapping occurs among different blocks for
implemented encoders, modulation, FFT and DFT used in these standards. This
produces a reconfigurable system that can adapt different communication standards.
Using PDR shows an improvement in area and power consumption with fewer extra

memory and latency when compared to the normal static implementation.

These designs of both steps were implemented on Xilinx FPGA kit XUPV5-
LX110T.

1.6.3 Graduation Project 2016

In this year, the progress continued & the following results were achieved.

e HDL and MATLAB implementation of 3G full transmitter and some of receiver
blocks.

e HDL and MATLAB implementation of WI-FI full transmitter.

e HDL and MATLAB implementation of some of LTE transmitter blocks.

e Building a test framework to Verify of HDL implementation.

e Implementation of the three chains on the FPGA (Virtex 5).
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Generating and proving the concept of multiple RPs by implementing it on a

simple example.

Debugging the FPGA results using Chipscope.
Building a system on chip (SOC) with input and output files.

Reducing the total area and resources needed for implementation of the three
standards.

Reducing the total power of the system as they eliminated the static and sleep
mode power consumed by the idle chains.

Reducing reconfiguration overhead by reconfigure each internal block of the
chain after finishing its function. This is a kind of pipelining as there wasn’t any
need to wait until all frame data was generated to reconfigure each internal block
of the chain.

11



2.1

3G Chain

Introduction

By the late 1990s, the very success of GSM was again raising questions about the
future need for yet more spectrum. The GSM community was initially focused on
developing GSM circuit and packet switched data services. It was limited to
maximum data rates of less than 50 kbps and neither can support video telephony.
There was an obvious potential evolution towards a wider bandwidth CDMA
system. The aim was to develop a radio system capable of supporting up to 2 Mbps
data rates. The global WCDMA specification activities were combined into a 3GPP
that aimed to create the first set of specifications by the end of 1999, called Release
99.

The early WCDMA networks offered some benefits for the end users including
data rate up to 384 kbps in uplink and in downlink and simultaneous voice and data
then the HSPA network has appeared where its efficiency has improved
considerably especially with Ethernet-based transport and compact new base
stations with simple installation, low power consumption and fast capacity
expansion. HSPA evolution also includes a number of features that can enhance the
spectral efficiency. QoS differentiation is utilized to control excessive network
usage to keep users happy also during the busy hours. HSPA evolution includes
features that cut down the power consumption considerably and also improve the
efficiency of small packet transmission in the HSPA radio networks.

2.1.1 Physical layer & Frame structure

There are seven types of uplink dedicated physical channels, the uplink DPDCH,
the uplink DPCCH, the uplink S-DPCCH, the uplink DPCCH2, the uplink E-
DPDCH, the uplink E-DPCCH and the uplink HS-DPCCH [7].
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Each frame consists of 5 sub-frames; each sub-frame consists of 3 slots so the
frame consists of 15 slots. The Length of the frame corresponds to 38400 chips.

Chip Rate is 3.84 Mcps so Frame Length is 10ms as shown in Figure 2-1 [7].

. Dafa
DPDCH Ny bifs
Taiot = 2560 chips, N g = 10*2 ¥ bits (k=0..6) "
- Pilot TFCI FBI TPC
DPCCH Npaor bis Necr bits N 5, bits N rpc. bits
) Tsiot = 2560 chips, 10 bits i
. Pilot TPC
DPCCH2 Ny Dits Nrec  bits
Taor =2560 clups, 10 bits
Pilot j
S_DPCCH N;_]m blts I\:".::E. bﬂs
T Ttor= 23560 chips, 10 bits
Slot#0) | Slot#1 | Slot#2 | Slot#3 Slot #1 Slot #14
Subframe #0 Subframe #1 Subframe #2 Subframe #3 Subframe #4
1 subframe = 2 ms
+———F

* 1 radio frame: T ;= 10 ms —

Figure 2-1: 3G Frame structure

The length of a Slot of DPDCH corresponds to 2560 chips. Ndata (number of data
bits in the slot) =10 * 2X. The parameter k is related to the spreading factor SF where
SF =256 / 2%, In uplink: SF range is from 256 down to 4 so k range is from 6 down
to 0 SO Ndata range is from 10 to 640 bits. Slot of DPCCH: fixed SF of 256 and
contains 10 bits. DPCCH has four fields: Pilot, TFCI, FBI, and TPC, size of each
field is not fixed and defined in the table shown in Figure 2-2 [8].
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Slot Channel Bit Channel 3!{th| SF Bits/ Bits/ Npilcl Ntpe Nrecr | Nem | Transmitted
Form Rate (kbps) Rate (ksps) Frame Slot slots per
at #i radio frame
0 15 15 256 150 10 6 2 2 0 15
0A 15 15 256 150 10 5 2 3 0 10-14
0B 15 15 256 150 10 4 2 4 0 89
1 15 15 256 150 10 8 2 0 0 8-15
2 15 15 256 150 10 5 2 2 1 15
2A 15 15 256 150 10 4 2 3 1 10-14
2B 12 13 256 150 10 3 2 4 1 89
3 12 15 256 150 10 7 2 0 1 8-15
4 19 15 256 150 10 6 4 0 0 8-15
5 15 15 256 150 10 6 2 2* 0 8-15

Figure 2-2: DPCCH Field

TFCI used for bit rate control, channel decoding, interleaving parameters for
every DPDCH frame. FBI used for transmission diversity in the DL. TPC used for

inner loop power control commands. TPC Bit Patterns are defined in Figure 2-3 [8].

TPC|Bit Pattern Transmitter power
1 1111 11111111 1
00 0000 00000000 0

Figure 2-3: Bit patterns of TPC

2.2 3G Transmitter PHY Block Diagram

As discussed in section 1.6.3, the graduation project team was able to implement
the HDL codes for all transmitter blocks but the HDL codes were not synthesizable
as each block needed more resources than the available resources by the FPGA. The
main resource consumer was the memories that exist within each block for either
operational or synchronization purposes. This problem was solved by rewriting all
memories HDL codes to match Xilinx Vivado HDL coding technique for memory
without changing the memory interface within the block or the block functionality.
Rewriting the codes allowed the Xilinx Vivado synthesizer to recognize the HDL
code as RAM, either a block RAM or a dedicated RAM according to the memory
size. In case of block RAM, a B-RAM resource is reserved. However, in case of

dedicated RAM, a LUT resource is reserved and programed as RAM.

Transmitter of 3G consists of several blocks as shown in Figure 2-4. In the
following sub-sections, each block of the chain is explained in more details _
illustrating its basic idea, showing its interfaces, connections, inputs & outputs &

presenting its LUT utilization_.
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CRC [ )Segmentation| _ 4 Encoder [ ) Concatenation

Mapper (| Spreading { | Interleaving "

Figure 2-4: 3G Transmitter full chain blocks
2.2.1 CRC attachment

CRC process is provided on transport blocks for error detection in which the
entire block is used to calculate the CRC parity bits for each transport block. Instead
of adding just one bit to a block of data, several bits are added. The size of the CRC
is 24, 16, 12, 8 or O bits and it is signaled from higher layers _depending on the
channel_ what CRC size that should be used [9]. CRCs are typically implemented
in hardware as a linear feedback shift register where its equations are shown in

Table 2-1.

Table 2-1: Types of CRC

CRC Mode Equation
CRC24 gCRCE:i(D) =DULDBLDE+LDIAD 41
CRC16 gereig(D) =D+ D2+ D+
CRC12 gerenn(D) =D+ DU+ D3+ D2+ D +1
CRCS gereg(D)=D8+ D7+ D!+ D3 +D+1

The top controlled module of CRC is as shown in Figure 2-5, A detailed CRC
module is as shown in Figure 2-6, and the pins description of the controlled module

is shown in Table 2-2.
crc

clk data_out
data_in finished
enable flag
reset num_after crc[13:0]
valid_in valid_out

top_controlled_crc_3g
Figure 2-5: Top controlled CRC
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crc

clk

data_out

finished

clk

fifo cre

clk data_out

data_in data_in

data_out data_bit flag flag

enable re

finished reset num_after_crc[13:0] num_after_crc(13:0]

we - ) top_crc_3g )
valid_in gumny. o
Figure 2-6: Top controlled CRC from inside
Table 2-2: pins description of CRC
PIN Description
data in The input bits to the block
data_out The output data of the block
enable This signal indicates that the next block (Segmentation) is
ready to have data
finished This signal indicates that the CRC block is ready for a
new frame
Flag This signal indicates that the num_after crc is valid
num_after crc | This signal indicates that total number of bits after CRC
valid_in This signal indicates that the current data in is valid data
valid out This signal indicates that the current data out is valid
data

Finally, the LUT utilization of the CRC block is shown in Figure 2-7.

e Fom————— fomm———— Fomm e fomm———— +
| Site Type | Used | Fixed | Available | Util% |
e et $o————- Fom————— Fomm e o +
| Slice LUTs* | 139 | 0| 53200 | 0.26 |
| LUT as Logic | 137 | 0| 53200 | 0.26 |
I LUT as Memory I 2 | 0| 17400 | 0.01 |
I LUT as Distributed RAM | 27 0| I I
| LUT as Shift Register | 0| 0| I I
| Slice Registers I 97 | 0| 106400 | 0.09 |
| Register as Flip Flop | 97 | 0| 106400 | 0.09 |
| Register as Latch | 0 | 0| 106400 | 0.00 |
| F7 Muxes | 0| 0| 26600 | 0.00 |
| F&8 Muxes | 0| 0| 13300 | 0.00 |
et to————- fo————— Fomm o +

Figure 2-7: CRC LUT utilization
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2.2.2 Segmentation

Segmentation of the bit sequence from transport block concatenation is
performed if Xi (the number of bits input to the segmentation) > Z (for convolutional
coding: Z =504 & for turbo coding: Z =5114). The code blocks after segmentation
are of the same size. The number of code blocks on TrCH ‘i’ is denoted by Ci. If,
Xi, is not a multiple of Ci, filler bits are added to the beginning of the first block
where the filler bits are always set to 0. Number of code blocks is gotten through
the following relation: Ci= E] [9].

The top controlled module of Segmentation is as shown in Figure 2-8, A detailed
Segmentation module is as shown in Figure 2-9, and the pins description of the

controlled module is shown in Table 2-3.

segmentation
clk block index[6:01
clk_fast block size[12:01
data_in data_out
flag finished
num_after_crc[13:0] flag_filler
reset num_blocks[6:0]
segmentation_type valid_out
valid_in
valid_in_encoder

top_segmentation_3g

Figure 2-8: Top controlled Segmentation

clk 9
clk_fast| i
fifo
clk] block_index[6:0] block_index[6:0]
clk| clk_fast block_size[12:0] block_size[12:0]
data_in data_in| data_out data_in data_out data_out
re valid_out flag finished finished
reset num_after_crc[13:0 flag_filler flag_filler
we| reset num_blocks[6:0] inum_blocks[6:0]
segmentation_ram jon_type valid_out \valid_out
valid_in valid_out_buffer
valid_in_encoder
fsm_segmentation_3g
flag
num_after_crc[13:0]
reset
segmentation_type
valid_in
valid_in_encoder

top_segmentation_3g

Figure 2-9: Top controlled Segmentation from inside
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Table 2-3: pins description of Segmentation

PIN Description
block index This signal indicates the index for the block being
transmitted to the encoder
block size This signal indicates the number of bits included in each
block after performing the segmentation process
clk fast Connected to the clk_spreading signal to increase the speed
for the division required to generate the number of blocks
produced
data in The input bits to the block
data_out The output bits of the block
finished This signal indicates that the segmentation block is ready for
the new frame
flag This signal from the CRC indicates that the num_after cre is
ready to be read by the segmentation block
flag filler This signal 15 used for the encoder such that it does not read

the extra zero filler bit that remains on the bus while moving
from state to another inside the code. Consequently, this
reserve that valid out signal to remain always one within the
data block
num_after crc This signal from the CRC indicates the total number of data
bits plus concatenated CRC bits

num_blocks This signal indicates the total number of blocks output from
the segmentation process

segmentation type This signal 15 used to differentiate between Convolutional
Encoder “07 or Turbo Encoder “17
valid in encoder | This signal indicates that the next block (Encoder) 1s ready to

have data
valid in This signal indicates that current data_in is valid data
valid out This signal indicates that current data out is valid data

Finally, the LUT utilization of the Segmentation block is shown in Figure 2-10.

o $o———— pom————— et fom————— +
| Site Type | Used | Fixed | Available | Utils |
e $o———— pom————— pomm e -
| Slice LUTs* | 2840 | 0 | 53200 | 5.34 |
I LUT as Logic | 2840 | 01 53200 | 5.34 |
I LUT as Memory | 0| 0 | 17400 | 0.00 |
| Slice Registers | 118 | 01 106400 | 0.11 |
| Register as Flip Flop | 99 | 0 | 106400 | 0.09 |
| Register as Latch | 19 | 0| 106400 | 0.02 |
| F7 Muxes | 53 | 0| 26600 | 0.20 |
| F& Muxes | 4 | 0| 13300 | 0.03 |
e $mm——— pom————— e e -

Figure 2-10: Segmentation LUT utilization
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2.2.3 Encoder
Convolutional codes with constraint length 9 and coding rates 1/3 and 1/2 are
defined. The configuration of the convolutional coder is presented in Figure 2.11,
Figure 2.12. Output from the rate 1/3 convolutional coder shall be done in the order
output0, outputl, output2, outputO, outputl, output 2, output O, ..., output 2. Output
from the rate 1/2 convolutional coder shall be done in the order output 0, output 1,

output O, output 1, output O... output 1 [9].

Y ) =@+@+~@I

v Y Y Qutput 0

t Go = 561 (octal)

r

p \d ‘L -~ _ ‘} Y Output 1

=T = = - T T © G, = 753 (octal)

Figure 2-11: Rate 1/2 Convolutional encoder

Input
(D rD}~{DHDf—~D}D—~DhDhm
1 ] _ -~ _ _ _ Qutput 0
— - - > L = * Gy = 557 (octal)

v ' )
b A n

=

= _ Qutput 1
- " G, = 663 (octal)

! ! 5 %, Output 2
G, = 711 (octal)

Figure 2-12: Rate 1/3 Convolutional encoder
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For correct operation, 8 tail bits with binary value 0 shall be added to the end of
the code block before encoding. Also, the initial value of the shift register of the

coder shall be "all 0" when starting to encode the input bits.

The top controlled module of Encoder is as shown in Figure 2-13, A detailed
Encoder module is as shown in Figure 2-14, and the pins description of the

controlled module is shown in Table 2-4.

convolutional

c_in[6:0 =
ck|]
clk2 | c_out[6:0]
data_in = — data_out
enable| __|finished
flag_filler ] valid_out

reset

valid_in

top_controlled_encoder_3g

Figure 2-13: Top controlled Encoder
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convolutional

(]
encoder
c_in[6:0] dk_in lc_out([6:0]
dk dk_out serial_out ldata_out
clk2 [ ‘ convo_in valid_out
fifo { reset!
valid_in
ok top_encoder_3g
data_in data_in
enable re data_out
reset| _|finished [finished
valid_in] _|valid_out |valid_out
flag_filler valid_out finished
reset \ ve
valid in dummy_fifo_mod
c_outl i
0 c_out0_i c_out_reg
u P
RTL_EQ TL_AND g0 250
temp_reg
RTL_LATCH
D[6:0] Q60
RTL_LATCH
top_controlled_encoder_3g
Figure 2-14: Top controlled Encoder from inside
Table 2-4: pins description of Encoder
PIN Description
cin This signal indicates the number of code blocks from the
segmentation
c_out This signal indicates the number of code blocks
clk2 Clock of the serial output from the block
data_in The input bits to the block
data_out The output bits of the block
enable This signal indicates that the next block (Concatenation) is
ready to have data
finished | This signal indicates that the encoder block is ready for the new
frame
flag_ filler This signal from segmentation
valid in This signal indicates that current data_in is valid data
valid out This signal indicates that current data_out is valid data

Finally, the LUT utilization of the Encoder block is shown in Figure 2-15.

e o Fomm——— o o +
| Site Type | Used | Fixed | Available | Utils |
ettt e o o e +
| Slice LUTs* | 24 | 0| 53200 | 0.186 |
| LUT as Logic | 284 | o | 53200 | 0.16 |
| LUT as Memory I o | o | 17400 | 0.00 |
| Slice Registers I 75 | o | 106400 | 0.07 |
| Register as Flip Flop | 61 | 0| 106400 | 0.06 |
| Register as Latch | 14 | o | 106400 | 0.01 |
| F7 Muxes | o | o | 26600 | 0.00 |
| F& Muxes | o | o | 13300 | 0.00 |
ettt o o o ————— o +

Figure 2-15: Encoder LUT utilization
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2.2.4 Code block concatenation

The input bit sequence for the code block concatenation block are the sequences
erk, forr=0....,C-1land k = 0...., Er-1. The output bit sequence from the code
block concatenation block is the sequence f« for k = 0...., G-1 where if we set “k
=0 & r =0 then by looping with condition “r < C” with incrementing the r value
by one “r =r +1” & set “j = 0” then by looping with condition “j < E+”, with
incrementing the k & j values by one “k =k +1 & j =j +1” & performing the
following “fx = er;”. The code block concatenation consists of sequentially

concatenating the rate matching outputs for the different code blocks [9].

The top controlled module of concatenation is as shown in Figure 2-16, and the

pins description of the controlled module is shown in Table 2-5.

Concatination

C[6:0 L
clk | data_out
data_in finished
enable valid_out
reset]
valid_in

top_code_block_concatenation_3g

Figure 2-16: Top controlled Concatenation

Table 2-5: pins description of Concatenation

PIN Description
c This signal indicates the number of code blocks from the
segmentation block
data in The input bits to the block
data out The output bits of the block
enable This signal indicates that the next block (Interleaver) 1s
ready to have data
finished This signal indicates that the Concatenation block is
ready to have a new frame
valid in This signal indicates that current data in is valid data
valid_out This signal indicates that current data_out 1s valid data

21




Finally, the LUT utilization of the Concatenation block is shown in Figure 2-17.

e et Fo——— Fom————— o Fom————— +
| Site Type | Used | Fixed | Available | Util% |
e fm———— o ———— Fmm o -
| Slice LUTs* | 97 | o | 53200 | 0.18 |
| LUT as Legic | 97 | o | 53200 | 0.18 |
| LUT as Memory | 0 | 0 | 17400 | 0.00 |
| Slice Registers I 72 | 0 | 106400 | 0.07 |
| Register as Flip Flop | 72 | o | 106400 | 0.07 |
| Register as Latch | 0 | 0 | 106400 | 0.00 |
| F7 Muxes I 0 | 0 | 26600 | 0.00 |
| F&8 Muxes | 0 | 0 | 13300 | 0.00 |
e $o———— o ———— o o ———— +

Figure 2-17: Concatenation LUT utilization

2.2.5 Interleaving
Interleaving is a way to re-arrange data in a non-contiguous way to make it stand
burst errors. These types of errors can destroy many bits in a row and make it hard
to recover using FEC coding, since these expects the errors to be more uniformly
distributed. This method is popular because it is a less complex and cheaper way to
handle burst errors than directly increasing the power of the error correction scheme

where interleaving causes increasing the performance of decoding [9].

The main disadvantage of using interleaving techniques is that increases latency
because the entire interleaved block must be received before the packets can be
decoded. Interleaving period equals to TTI which determines then number of
columns in the interleaving matrix (10, 20, 40, 80ms => 1, 2, 4, 8 columns).

The top controlled module of Interleaving is as shown in Figure 2-18, A detailed
Interleaving module is as shown in Figure 2-19, and the pins description of the

controlled module is shown in Table 2-6.

interleaving

clk
data_in data_out
enable _ | finished
reset __ | valid_out

Lti[6:0

valid_in

top_controlled_interleaver_3g

Figure 2-18: Top controlled Interleaving
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interleaving

clk i
interleaver

data_in
enable clk
reset fifo data_in data_out data_out
tti[6:0] reset valid_out
clk tti[6:0]
data_in valid_in
fe data_out top_interleaving_block_3g
reset finished finished
valid_in valid_in \valid_out valid_out
valid_out_finished
we
dummy_fifo_mod_HD917

top_controlled_interleaver_3g

Figure 2-19: Top controlled Interleaving from inside

Table 2-6: pins description of Interleaving

PIN Description
data_in The input bits to the block
data_out The output bits of the block
enable This signal indicates that the next block (Spreading &

Scrambling) is ready to have data

finished This signal indicates that the Interleaving block is ready to
have a new frame

valid in This signal indicates that current data_in 1s valid data
valid_out This signal indicates that current data_out is valid data

tti Transmission Time Interval
possible values are: 10, 20, 40, and 80

Finally, the LUT utilization of the Interleaving block is shown in Figure 2-20.

e o tom————— fomm fom————— +
I Site Type | Used | Fixed | Available | Utils |
Fom $o———— $omm———— fommm e e +
| Slice LUTs* | 916 | o | 53200 | 1.72 |
| LUT as Logic | 916 | 0| 53200 | 1.72 |
| LUT as Memory I 0| 0| 17400 | 0.00 |
| Slice Registers | 387 | 0| 106400 | 0.38 |
| Register as Flip Flop | 387 | 0 | 106400 | 0.36 |
| Register as Latch | 0| 0| 106400 | 0.00 |
| F7 Muxes | 0| 0| 26600 | 0.00 |
| F& Muxes | 0| 0| 13300 | 0.00 |
e to———— e fomm e Fom————— +

Figure 2-20: Interleaving LUT utilization
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2.2.6 Spreading and Scrambling

Spreading is applied to the physical channels. It consists of two operations

e Channelization operation: increase the bandwidth of the signal using
fully orthogonal codes called channelization codes to not interfere with
each other. Every data is transformed into number of chips. The number
of chips per data symbol is called the SF. The channelization codes are
picked from the code tree as shown in Figure 2-21 [10].

e Scrambling operation: Scrambling code is applied to the spread signal
and doesn’t affect the signal bandwidth. The scrambling code can be a
long code (a Gold code with 38400chips) or a short code (256 chips) the
long code is used if the BS uses a Rake receiver and the short code is

used if multiuser detector and interference cancellation receivers are

used in BS.
w=(L1Ly |
Canzo=(1.1) |
C¢h41—(1 1.-1.-1)
Caio0=(1
Camrm (-1l [
c‘dlg-l: (1‘-1) .....................................
Canas= (1-1.-1.1) S
o SF=2 SF=4

Figure 2-21: Code-tree for generation of Orthogonal Spreading Factor codes

The top controlled module of Spreading is as shown in Figure 2-22, A detailed
Spreading module is as shown in Figure 2-23, and the pins description of the

controlled module is shown in Table 2-7.

spreading_scrambling

clk

data_in

enable data_out
n[23:0] finished
reset valid_out
sf[8:0]
valid_in

top_controlled_spreading_scrambling_3g
Figure 2-22: Top controlled Spreading
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spreading_scrambling

clk u 5
P spreading
enable : clk
fifo
n(23:0] data_inI
clk n[23:0] data_out data_out
data_in data_out reset valid_out
re finished sf[8:0]
reset reset valid_out valid_in
we top_spreadingScrambling_3g
dummy_fifo_HD921 finished
valid_out
Sf(8:0]
valid_in
top_controlled_spreading_scrambling_3g
Figure 2-23: Top controlled Spreading from inside
Table 2-7: pins description of Spreading
PIN Description
data_in The input bits to the block
data_out The output bits of the block
enable This signal indicates that the next block (Mapper) is ready to
have data
finished | This signal indicates that the Spreading block is ready to have a
new frame
n The signal indicates scrambling sequence number
sf The signal indicates the number of chips per data symbol
valid in The signal indicates the current data_in is valid data
valid out The signal indicates that current data_out is valid data

Finally, the LUT utilization of the Spreading block is shown in Figure 2-24.

Slice LUTs*

LUT as

Logic

LUT as Memory
LUT as Distributed RAM

Slice Registers
Register as Flip Flop
Register as Latch

F7 Muxes
F8 Muxes

|
|
I
|
| LUT as Shift Register
I
I
I
I
|

106400
106400
108400
26600
13300

Figure 2-24: Spreading LUT utilization
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2.2.7 Modulation (Mapper)

Modulation is the process by which information (e.g. bit stream) is transformed
into sinusoidal waveform. A sinusoidal wave has three features those can be
changed - phase, frequency and amplitude- according to the given information and
to the used modulation technique. BPSK modulation technique is used according to
the desired data rate. The bits are mapped to complex-valued modulation symbol
d= (I +j Q). In BPSK, a single bit is mapped to a complex-valued modulation

symbol according to Table 2-8 [10].

Table 2-8: BPSK mapping

b(i) I Q
o | /N2 | V2
1 | =12 | —1/\2

The top controlled module of Modulation is as shown in Figure 2-25, A detailed
Modulation module is as shown in Figure 2-26, and the pins description of the

controlled module is shown in Table 2-9.

Mapper
clk finished
data_in mod_out_im[11:0]
enable mod_out_re[11:0]
reset valid_out
valid_in

top_controlled_mapper_3g
Figure 2-25: Top controlled Modulation

Mapper

clk n
fifo -
inished
inis
clk
; mapper
data_in data_in data_out
enable re finished ck mod_out_im{11:0] mod_out_im{11:0]
reset reset valid_out conv_valid_in mod_out_re[11:0] mod_out_re[11:0]
valld:in we mod_in mod_valid_out valid_out
dummy_fifo_HD925 mod_rst
mapper_bpskMod_3g

top_controlled_mapper_3g

Figure 2-26: Top controlled Modulation from inside
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Table 2-9: pins description of Modulation

PIN Description

data_in The input bits to the block

enable This signal indicates that the next block is ready to have data

finished This signal indicates that the Mapper block is ready to have a new

frame

mod out_im The modulated imaginary part of the input
mod_out Re The modulated real part of the input

valid_in The signal indicates that current data_in is valid data

Finally, the LUT utilization of the Modulation block is shown in Figure 2-27.

e $o———— Fom————
| Site Type | Used | Fixed
et s to————— Fom————
| Slice LUTs* | 71 | 0
| LUT as Logic I 89 | 0
| LUT as Memory | 2 | 0
| LUT as Distributed RAM | 2 1 0
| LUT as Shift Register | 0 | 0
| Slice Registers I 41 | 0
| Register as Flip Flop I 41 | 0
| Register as Latch | 0 | 0
| F7 Muxes | 0| 0
| F8 Muxes I 01 0
e $o———— Fom————

106400
106400
106400
26600
13300

Figure 2-27: Modulation LUT utilization
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The LUT utilization of the 3G transmitter full chain is shown in Figure 2-28.

et e o Fom————
| Site Type | Used | Fixed
e Fo———— f——————
| Slice LUTs* | 4568 | 0
| LUT as Logic | 4582 | 0
I LUT as Memory | e | 0
| LUT as Distributed RAM | 6 | 0
| LUT as Shift Register | 0 | 0
| Slice Registers | 940 | 0
| Register as Flip Flop | 883 | 0
| Register as Latch | 57 | 0
| F7 Muxes I 63 | 0
| F& Muxes | 4 | 0
et o fom————

106400
106400
106400
26600
13300

Figure 2-28: 3G transmitter full chain LUT utilization
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2.3 3G Receiver PHY Block Diagram

The main target of the receiver is to retrieve the same data send before transmitter
so it consists of the blocks shown in Figure 2-29. The same procedure is performed
in the receiver blocks as in the transmitter blocks where in the following sub-
sections, each block of the chain is explained in more details _ illustrating its basic
idea, showing its interfaces, connections, inputs & outputs & presenting its LUT

utilization_.
| ‘ o ‘ De- ‘ De-
De-Mapper [ »{De-Spreading | > . il ;
; B ‘ Interleaving [ | Concatenation
_‘ De- ‘
De-CRC 9 K | Decoder
Segmentation |V

Figure 2-29: 3G Receiver full chain blocks

2.3.1 De-Modulation (De-Mapper)

It is the first block of the receiver that receives the real and imaginary data of the
channel which came in the form of 12 bits divided to 9 bits representing the fraction
part and 3 bits representing the real part. The main target of the block is to receive
these data symbols, specify the decision region and convert these symbols to a

stream of bits.

As discussed in section 2.2.7, In 3G we have only a BPSK mapper with a
constellation not on the axis as shown in Table 2-8. So the equation of the decision
region will be y = —x where if y > —x the output will be 0 and if y < —x the output
will be 1.

The top controlled module of De-Modulation is as shown in Figure 2-30, A
detailed De-Modulation module is as shown in Figure 2-31, and the pins description

of the controlled module is shown in Table 2-10.
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prm e $mmm——- e o e +
| Site Type | Used | Fixed | Available | Util$ |
e - - tommm - tomm———e +
| Slice LUTs* | FEESE | 0| 53200 | .22 |
| LUT as Logic I 99 | 0| 53200 | .19 |
| LUT as Memory | 16 | 0| 17400 | 09 |
I LUT as Distributed RAM | 16 | 0 | I I
| LUT as Shift Register | 0| 0| I |
| Slice Registers | 60 | 0 | 106400 | 0.06 |
| Register as Flip Flop | 60 | 0| 106400 | 0.06 |
| Register as Latch | 0| 0| 106400 | 0.00 |
| F7 Muxes I 0| 0| 26600 | 0.00 |
| F& Muxes I 0| 0| 13300 | 0.00 |
prm - - tomm e tomm———- +
demapper
clk n
demapper_ram top_demapper
clk clk
data_in_imag[11:0] data_in_imag[11:0] data_out_imag[11:0] imag_data[11:0] data_out data_out
data_in_real[11:0] data_in_real[11:0) data_out_real[11:0] real_data[11:0] valid_out valid_out
enable re valid_out reset
reset reset ‘ valid_in
valid_in we top_demapper_3g
demapper_dummy_ram_3g
top_controlled_demapper_3g
Figure 2-31: Top controlled De-Modulation from inside
Table 2-10: pins description of De-Modulation
PIN Description
data_in_imag The imaginary part of the input bits to the block
data_in_real The real part of the input bits to the block
data_out The output data in the form of stream of bits
enable This signal indicates that the next block (De-Spreading)
is ready to have data
valid in The signal indicates that the current data_in either real or
imaginary is valid data
valid_out The signal indicates that current data_out is valid data

Finally, the LUT utilization of the De-Modulation block is shown in Figure 2-32.
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e o fom———— Fom $o————— +
| Site Type | Used | Fixed | Available | Util$ |
e $o————— fomm——— e +
| Slice LUTs* | “EES: | 0 | 53200 | 0.22 |
I LUT as Logic I 99 | a | 53200 | .19 |
| LUT as Memory I 16 | 0 | 17400 | 0.09 |
I LUT as Distributed RAM | 16 | 0 | |

| LUT as Shift Register | 0| 0 | |

| Slice Registers | 60 | 0 | 106400 | 0.08 |
| Register as Flip Flop | 60 | 0 | 106400 | 0.086 |
| Register as Latch | 0| 0| 106400 | 0.00 |
| F7 Muxes | 0| 0 | 26600 | 0.00 |
| F& Muxes I 0| 0| 13300 | 0.00 |
o $o————- fom————- Fomm pom————- +

Figure 2-32: De-Modulation LUT utilization
2.3.2 De-Spreading and De-Scrambling

De-Spreading and De-Scrambling block consists of two operations

e Descrambling operation: one of the advantages of the scrambling codes
that if we multiply the data with the scrambling data square we retrieve
the same data. So in the descrambling process we multiply the data out
from the De-Mapper with the same scrambling code of the transmitter by
using the same scrambling sequence number (n).

e De-Spreading operation: multiply the data out from the De-Scrambler
with a periodically repeated sequence of (1, 1, -1, 1) which is the same as
the spreading code, we repeat these sequence with a number equal k where
k= SF/4 this is because we transmit only one DPDCH. Then we integrate
the data by increasing a signed register count when the output of
multiplying with the spreading code is one and decreasing count when the
output of multiplying with the spreading code is zero. So after we receive
bits equal to SF we decide if the output will be 1 or 0 and we store this
value in a data out register to be out while calculating the count and decide

what the next bit is.

The top controlled module of De-Spreading is as shown in Figure 2-33, A detailed
De-Spreading module is as shown in Figure 2-34, and the pins description of the
controlled module is shown in Table 2-11.
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despread_descramble

clk
data_in

enable data_out
n(23:0] finished
reset valid_out
sf[8:0]
valid_in

top_controlled_despreading_descrambling_3g
Figure 2-33: Top controlled De-Spreading

despread_descramble

clk n
= top_despreading_descrambling_3g
data_in
Ll despread_fifo_3g clk
n[23:0] data_in
clk n[23:0] data_out data_out
data_in data_out reset valid_out
re finished sf[8:0]
reset reset valid_out valid_in
we top_despreading_descrambling_3g
dummy_ram_3g finished
valid_out
sf[8:0]
valid_in
ke top_controlled_despreading_descrambling_3g
Figure 2-34: Top controlled De-Spreading from inside
Table 2-11: pins description of De-Spreading
PIN Description
data_in The input bits to the block
data_out The output data of the block
enable This signal indicates that the next block (De-Interleaver) is
ready to have data
finished This signal indicates that the Spreading block is ready to have a
new frame
n This signal indicates the scrambling sequence number
sf This signal indicates the number of chips per data symbol
valid_in The signal indicates that the current data_in is valid data
valid out The signal indicates that the current data_out is valid data
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Finally, the LUT utilization of the De-Spreading block is shown in Figure 2-35.

o Fo———— Fom————— Fomm Fom———— +
| Site Type | Used | Fixed | Available | Utils |
St fo———— Fomm——— e pom————— +
| Slice LUTs* | 148 | 0 | 53200 | 0.28 |
| LUT as Logic | 14é | 0 | 53200 | 0.27 |
| LUT as Memory I 2 | 0| 17400 | 0.01 |
| LUT as Distributed RAM | 2 | 0 | | |
| LUT as Shift Register | 01 o | I I
| Slice Registers | 142 | 0 | 106400 | 0.13 |
| Register as Flip Flop e K 52 0 | 106400 | 0.11 |
| Register as Latch | 24 | 0 | 106400 | 0.02 |
| F7 Muxes | 0 | 0 | 26600 | 0.00 |
| F& Muxes | 0 | 0 | 13300 | 0.00 |
o to————- Fom———— fomm to————— +

Figure 2-35: De-Spreading LUT utilization
2.3.3 De-Interleaving

De-Interleaver is the block which re-arranges the received bits to repeal the

impact of the Interleaver. The De-Interleaver block diagram is shown in Figure 2-

f output
Iggtl;t ) ) data
RadioFrame Second —— RadioFrame First
Segmentation Deinterleaver Concatenation Deinterleaver

Figure 2-36: Block diagram of De-Interleaving

Radio Frame segmentation separates the input data into different frames
depending on the value of “TTI”. Table 12-2 shows the relationship between TTI

and Number of frames.

Table 2-12: The relationship between TTI and Number of frames

TTI Number of frames
10 1
20 2
40 4
80 8

Then every frame enters the second De-Interleaver to be re-arranged. It’s to be
noted that the second De-Interleaver is the reverse block of the second Interleaver
in the transmitter where the number of columns of the interleaving matrix in the

transmitter is 30. The columns of the matrix are numbered 0, 1, 2... 29 from left to
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right. So, we add dummy bits in the receiver to make the data multiple of 30 to be
the same as in the transmitter. Then, data with dummy bits is interleaved again using
second Interleaver which is also implemented inside the main de-Interleaver.
Finally, columns of the memory saving the interleaved data with dummy bits are

arranged in the following arrangement

{col(0),col(12),col(25),col(6),col(18),col(3),col(15),col(26),col(9),col(22),
col(2),col(13),col(24),col(7),col(19),col(4),col(16),col(29),col(10),col(21),
col(1),col(14),col(27),col(8),col(20),col(5),col(17),0cl(28),col(11),col(23)}

Dummy bits are thrown out, and only data bits are getting out to the Radio frame

concatenation.

Radio frame concatenation adds up the bits from different frames according to
TTI to be fed to first de-Interleaver, as first de-Interleaver is inter-frame de-

Interleaver.

In first de-Interleaver, number of columns is equal to number of frames. Data is
written row by row, and then column permutation is done according to Table 2-13.

Finally, data is read column by column.

Table 2-13: Columns arrangement in first de-Interleaving

TTI Permutation
10 Col (1)
20 Col (1), Col (2)
40 Col (1), Col (3), Col (2), Col (4)
80 Col (1), Col (5), Col (3), Col (7), Col (2), Col (6), Col (4), Col (8)

The top controlled module of De-Interleaver is as shown in Figure 2-37, A
detailed De-Interleaver module is as shown in Figure 2-38, and the pins description

of the controlled module is shown in Table 2-14.
deinterleaver

clk

data_in

enable data_out

mod_symbols_number[15:0] finished

reset valid_out
tti[6:0]
valid_in

top_controlled_deinterleaver_3g
Figure 2-37: Top controlled De-Interleaving
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clk

top_deinterleaver_3g
data_in
enable clk
dummy_ram_3g
mod_symbols_number[15:0] data_in
clk mod_symbols_number(15:0] data_out data_out
data_in data_out reset valid_out
re finished tti[6:0]
reset. reset. valid_out valid_in
e top_deinterleaver_3g
dummy_ram_3g_HD1 finished
valid_out

tti[6:0)

valid_in

top_controlled_deinterleaver_3g

Figure 2-38: Top controlled De-Interleaving from inside

Table 2-14: pins description of De-Interleaving

Pin Description
data_in The input data to the block
data_out The output data of the block
enable This signal indicates that the next block (De-

Concatenation) 1s readyv to have data
finished This signal indicates that the De- Interleaver is ready to

have data
valid in This signal indicates that current data_in 1s valid
valid out This signal indicates that current data_out 1s valid
tt1 Transmission Time Interval

Finally, the LUT utilization of the De-Interleaver block is shown in Figure 2-39.

e Sttt R $om———— Fomm $-————— -
I Site Type | Used | Fixed | Available | Util$ |
e Fom——— o e Fomm———— -
| Slice LUTs* | 926 | 0| 53200 | 1.74 |
| LUT as Logic | 924 | 0 | 53200 | 1.74 |
| LUT as Memory | 2 | 0 | 17400 | 0.01 |
| LUT as Distributed RAM | 2 | 0| I

I LUT as Shift Register | 01 01 I

| Slice Registers | 444 | 0 | 106400 | 0.42 |
I Register as Flip Flop | 412 | 0 | 106400 | 0.39 |
| Register as Latch | 32 | 0 | 106400 | 0.03 |
| F7 Muxes | 9=} 0 | 26600 | 0.02 |
| F& Muxes | 01 0 | 13300 | 0.00 |
o Fom——— $omm———— Fomm e Fomm———— +

Figure 2-39: De-Interleaving LUT utilization
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2.3.4 De-Concatenation
De-concatenation has the same concept as the Segmentation but with different z
values where de-concatenation of the bit sequence is performed if Xi>Z. The code

blocks after de- concatenation are of the same size.

To retrieve the same data before transmitter and as the data from segmentation is
multiplied by the encoder rate so we calculate Z according to Table 2-15.

Table 2-15: how to calculate Z

Y Description
504*2=1008 Convolutional coding and coding rate = /4
5114*2=10228 Turbo coding and coding rate =12
504*3=1582 Convolutional coding and coding rate = 1/3
5114*3=15342 Turbo coding and coding rate = 1/3

The bits output from code block segmentation, for Ci # 0, are denoted by oir,
0iry, 0irs... oirk where i is the TrCH number, r is the code block number, and K; is

the number of bits per code block.

Number of code blocks: Cj = [%] ,Number of bits in each code block

(applicable for Ci # 0 only):

if Xi <40 and Turbo coding is used, then K; = 40
_ X

else Ki = [C_,]

end if

Number of filler bits: Yi = Ci * K - X;

--Insertion of filler bits

fork=1toY; Oilk=0 end for
fork=Yi+ltoKi  Oix= Xi, (K-Yj) end for
-- Segmentation (De-Concatenation)

r=2

while r < C;j

for k = 1 to K Oirk= Xi, (k+(r-1)-Ki-Yi) end for
r=r+l

end while
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The top controlled module of De-Concatenation is as shown in Figure 2-40, A
detailed De-Concatenation module is as shown in Figure 2-41, and the pins

description of the controlled module is shown in Table 2-16.

deconcatenation

clk
data_in data_out
enable finished
reset num_blocks[6:0]

total_no_of bits[13:0]

valid_out

valid_in

top_deconcatenation_3g

Figure 2-40: Top controlled De-Concatenation

deconcatenation

clk ﬂ &m
fifo
clk block_index([6:0] block_index[6:0] n/c
clk; clk_fast block_size[12:0] Iblock_size[12:0] njc
data_in data_in \data_out data_in data_out data_out
re \valid_out flag finished finished
\' reset num_after_crc[13:0] Iflag_filler flag_filler njc
| we reset num_blocks[6:0] Inum_blocks[6:0]
segmentation_fam jon_type, valid_out valid_out
valid_in \valid_out_buffer valid_out_buffer njc
enable valid_in_encoder J_—‘
reset fsm_deconcationation_3g
total_no_of_bits[13:0] L.
valid_in =

top_deconcatenation_3g

Figure 2-41: Top controlled De-Concatenation from inside

Table 2-16: pins description of De-Concatenation

Pin Description
data in The input data to the block
data out The output data of the block
enable This signal indicates that the next block (Decoder)
15 ready to have data
finished This signal indicates that the De-Concatenation 1s

ready to have data

num_Blocks

This signal indicates the total number of blocks
output from the de-concatenation process

total no of bits

This signal indicates the total number of bits
entering the block

valid in

This signal indicates that current data in 1s valid

valid out

This signal indicates that current data out 1s valid
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Finally, the LUT utilization of the De-Concatenation block is shown in Figure 2-
42,

e to————- tomm——— e e fomm———— -
| Site Type | Used | Fixed | Available | Utils |
e e fomm——— fomm fomm——— +
| Slice LUTs* | 2787 | 0| 53200 | 5.24 |
| LUT as Logic | 2787 | 0| 53200 | 5.24 |
I LUT as Memory I 0| 0| 17400 | 0.00 |
| Slice Registers | 118 | 0 | 106400 | 0.11 |
| Register as Flip Flop | 99 | 0 | 106400 | 0.09 |
| Register as Latch | 19 | 0 | 106400 | 0.02 |
| F7 Muxes | 53 | 0| 26600 | 0.20 |
| F& Muxes | 4 | 0| 13300 | 0.03 |
e to———— fomm Fomm e fom———— +

Figure 2-42: De-Concatenation LUT utilization

2.3.5 Decoder

Decoder block is responsible for detecting the error in the received bit stream
with the help of the redundant bits added by the encoder. After that decoder either
requests retransmission or starts correcting received bit stream according to its type.
Decoder starts correcting the received bit stream after detecting errors. Several
algorithms exist to decode convolutional codes: trellis (Viterbi) decoders,
sequential (Fano) decoders, stack decoders...etc. However, Viterbi decoders has
optimum performance in terms of error correction, as it provides maximum
likelihood (ML). Thus, in the decoder implemented for the 3G receiver chain, a

Viterbi decoder is used.

Viterbi Algorithm (Maximum Likelihood Decoding)

« It is one type of Convolution Decoding. It is used to correct the error.
» This Viterbi Algorithm fully based on the Trellis structure.
* This Decoding has two major pads:

-Metric Value: It’s like a hamming distance i.e., number of bits to be
changed and this value is added to a previous node metric value also this

value is called metric value.

- Survivor path or active path: In each node, after the 2nd stage, two paths

will be entering. This node has two metric values. The path with lower
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metric value is retained and the other path is discard. This retained path is

called a survivor path or an active path.

Algorithm Steps

» Step (1): First stage and second stage is like a trellis. Finding the metric
value for each node (Metric value to be found with help of received bits by
comparing them with the coded bits). In Initial node metric value becomes

zero. This step is illustrated in Figure 2-43.

1) 0on 2)
[ o >0 >0

Figure 2-43: Algorithm Step 1
* Step (2): After the 2nd stage each node receiving two paths. Each path has
a single metric value therefore after the second state each node has 2 metric

values. This step is illustrated in Figure 2-44.

(0) 00 (1) 00 (2) 00 4

Figure 2-44: Algorithm Step 2
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» Step (3): Finding the survivor path with help of minimum metric value
(Minimum metric path only retained others are discard). This step is

illustrated in Figure 2-45.

01 10 11

0
0
. \ " \.\
\'\4‘-" ‘-\Jm
0 0 0 0

Figure 2-45: Algorithm Step 3
* Step (4): Step (2) and Step (3) are repeated until the received bit sequence

stop. This step is illustrated in Figure 2-46.

01 10 11 10 00 00

00 2) 00 o

Figure 2-46: Algorithm Step 4

* Step (5): Finally find the active path. This active path code word is the
corrected code word and find the original message sequence. This step is
illustrated in Figure 2-47.
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Received Code : 01 10 11 10 1] 00

Corrected Code: 11 10 1 L 00 00

)
-

Figure 2-47: Algorithm Step 5

Hardware Modeling of Viterbi Algorithm:

In order to implement the pre-mentioned algorithm, the operation of the
algorithm needs to be modelled to several hardware sub-blocks, each performs
a certain function that contributes in the whole algorithm operation. The Viterbi

algorithm is modelled as:

1- Serial to Parallel (S2P): This is implemented as a memory, which stores he

input bit stream (serial bits) and outputs them in pairs of 2 bits (input code).

2- Branch Metric Generator (BMG): At this block the received data symbols
are compared with the ideal outputs of the encoder from the transmitter to
compute the hamming distance. Hamming distance is defined as the
number of bits in the received data the does not match the ideal outputs of

the encoder from the transmitter.

3- Add Compare Selection (ACS): This block adds the computed hamming
distance, by BMG, to the pre-calculated path metric. Then, it compares
between the path metrics of the paths entering the same node and selects

the lowest.

4- Metric Memory: This memory is the memory that the path metrics are
stored after each stage. It is composed of 2 RAMs one for storing and the
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other for reading. At the end of the received bit stream, metric memory

computes the state with the lowest path metric.

5- Survivor Memory: This memory is the memory that the survivor paths are
stored after each stage. After the determination of the last state of the active
path. It computes the previous states of the active path.

6- Trace Back: This block receives the last state in the active path. Then, it
sends the state to the survivor memory and receives the previous state of
the active path. After that, it computes the last bit in the corrected stream
and saves it in a stack. This operation is repeated until the corrected bit
stream is all stored in the stack. Then it starts reading for the stack to output

the corrected bit stream.

7- Control Unit: All previous blocks’ functions are controlled in timing and

operation by this unit.

8- Clock conversion block: In some system, like 3G, encoder steps down the
frequency of the output. Hence, decoder is expected to step up the
frequency to preserve normal operation. This block is modelled as a
memory at which data is store with normal clock of operation. However,
the data will be read using the required clock of operation of the next block.
This block also performs the operation of tail bits’ removal for the

implemented decoder.

This model is illustrated in Figure 2-48.

CTL Signals | Memory
— Address

Mertric
Memory
_________________ A
INPUT: | Y | ourpur:
Code ' Distance LonestSe | DecodeOut
} » e ~| > e e
; BMG ACS Traceback | |
CTL Signals CTL Signals CTL Signals |
I —» —> —> |
I [
l A |
{ ] SURVIVORS |
| — . Data l
CTL Signals Survivor |
| CONTROL | ——————» |
| I
l |
' [
| [

Figure 2-48: Hardware Modeling of Viterbi Algorithm
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Sequence of HW operation:

1- Store data in S2P.

2- Get one input code word.

3- Calculating the hamming distance (branch metric).

4- Reading the previous path metric for all the states from the Metric Memory.
5- Add the branch metric to the path metric for the old state.

6- Compare the sums for paths arriving at the new state (there are only two
such paths incoming).

7- Select the path with the smallest value which is called the survivor path. If

both path Metrics are equal, then any one is chosen.

8- Writing the survivor path in survivor memory unit to be used in the trace

back process.
9- Writing the new path metric in metric memory unit

10- When the sliding window reaches its end then begins the trace back

process.

Design Specification:

In practical implementation of the Viterbi algorithm, it requires very big
memories. So in order to decrease the size of memories required, the operation
is segmented. At which, after few stages, a trace back operation is performed to
compute the current active path. Hence, it clears the memory of the stored data
and allows the algorithm to resume. The number of stages after which trace back
is performed is referred to as trace-back length. Also, in order to decrease the
latency of the decoder, states are modelled into 16 group. Each group contains
16 state.

«Clkmin for operation = 15 ns

e Code rate =%
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«  Constraint length (k) =9

*  Number of states = 256

»  Trace-back length = 64

«  Survivor Memory size = 2k x Trace-back length = 512 x 64
*  Metric Memory size = 2 x 192 x 16.

«  Maximum input stream = 1024 bit.

The top controlled module of Decoder is as shown in Figure 2-49, and the pins

description of the controlled module is shown in Table 2-17.
decoder

RESET|
cin[6:0] 5 _cout[6:0]
ck| __|data_out
clk_out| __|finished
data_in| __|valid_out
enable|
valid_il_

top_controlled_viterbi
Figure 2-49: Top controlled Decoder

Table 2-17: pins description of Decoder

Pin Description
cin It is the number of code blocks computed by de-concatenation
clk out | It is the clock with which output bits should be sent to the next block
cout | It is the number of code blocks computed by de-concatenation. It is a
7-bit bus
data_in The input data to the block
data_out The output data of the block
enable | This signal indicates that the next block (De-Segmentation) is ready
to have data
finished | This signal indicates that the De-Concatenation is ready to have data
valid in This signal indicates that current data_in is valid
valid out This signal indicates that current data_out is valid
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Finally, the LUT utilization of the Decoder block is shown in Figure 2-50.

Fm et fom————- Fom - +
| Site Type | Used | Fixed | Available | Util$ |
e fom———- Fomm———— Fom $o—————- +
| Slice LUTs* | 1790 | 0| 53200 | 3.38 |
| LUT as Logic | 1261 | 0 | 53200 | 2.37 |
| LUT as Memory | 529 | 01 17400 | 3.04 |
I LUT as Distributed RAM | 529 | 0| |

| LUT as Shift Register | g | 0| |

| Slice Registers | 582 | 0| 106400 | 0.55 |
| Register as Flip Flop | 588 | 0 | 106400 | 0.53 |
I Register as Latch | 14 | 0 | 106400 | 0.01 |
| F7 Muxes | 43 | 0| 26600 | 0.1¢& |
| F& Muxes | 16 | 0 | 13300 | 0.12 |
e fo————— fomm———— R $om————— +

Figure 2-50: Decoder LUT utilization

2.3.6 De-Segmentation
De-Segmentation has the same design & implementation as the concatenation
block explained in section 2.2.4. The top controlled module of De-Segmentation is
as shown in Figure 2-51, and the pins description of the controlled module is shown
in Table 2-18.

desegmentation
C[6:0]
bits_number[15:0]
clk data_out
data_in finished
enable valid_out

mod_symbols_number[15:0]

reset

valid_in

top_desegmentation
Figure 2-51: Top controlled De-Segmentation

Table 2-18: pins description of De-Segmentation

Pin Description
C It 1s the number of code blocks computed by de-concatenation
(decoder forwards it to the de-segmentation)

data_in The input data to the block
data_out The output data of the block

enable | This signal indicates that the next block (De-CRC) is ready to have

data

fimshed | This signal indicates that the De-Segmentation is ready to have data
valid in This signal indicates that current data in is valid
valid out This signal indicates that current data_out 1s valid
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Finally, the LUT utilization of the De-Segmentation block is shown in Figure 2-
52.

o Fom———- pomm———- e $omm +
| Site Type | Used | Fixed | Available | Utils |
et $o———— $o————— fomm fom - -
| Slice LUIs* | 143 | 0| 53200 | 0.27 |
| LUT as Logic | 143 | 0| 53200 | 0.27 |
| LUT as Memory I 01 01 17400 | 0.00 |
| Slice Registers | 72 | 0| 106400 | 0.07 |
| Register as Flip Flop | 72 | 0| 106400 | 0.07 |
I Register as Latch | 0| 0| 106400 | 0.00 |
| F7 Muxes | 0| 0| 26600 | 0.00 |
| F& Muxes | 0| 0| 13300 | 0.00 |
R o fo————— fomm fom———— +
Figure 2-52: De-Segmentation LUT utilization
2.3.7 De-CRC

CRC check process (De-CRC) is provided for error check in which the entire

received block is used to calculate the CRC parity bits for each received block.

We receive the total number of bits and subtract the CRC bits number from it and
generate CRC parity bits by equations shown in Table 2-1 for only total number of
bits _ CRC bits.

Finally, we compare these generated bits with the last bits received and decide
out if this data was right or wrong. The data is wrong if there is any mismatch in

the comparison.

The top controlled module of De-CRC is as shown in Figure 2-53, A detailed De-
CRC module is as shown in Figure 2-54, and the pins description of the controlled

module is shown in Table 2-19.

decrc
+
bits_number[15:0]
clk - data_out
data_in _|error_check
__|finished
reset __|valid_out
valid_in

top_controlled_decrc_3g
Figure 2-53: Top controlled De-CRC
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decrc

-

- ldata_out
leror_check
bits_number(15:0] ffinished
ck decrc
fifo
bits_ number(15:0}/ data_out
ck ck lemror_check
data_in data_in data_out data_bit
finished finished
reset| reset| valid_out reset valid_out Ivalid_out
valid_in we! valid_in
ummy_fifo top_decrc_3g
top_controlled_decrc_3g
Figure 2-54: Top controlled De-CRC from inside
Table 2-19: pins description of De-CRC
Pin Description
bits number| This signal indicates the total number of bits entering the block
data in The input data to the block
data out The output data of the block
error_check This signal indicates the result of comparison between the
generated bits from the block with the last bits received
finished This signal indicates that the De-CRC is ready to have data
valid in This signal indicates that current data_in is valid
valid out This signal indicates that current data out is valid

e et fo————— +
| Site Type | Used |
e ettt e fom———- +
| Slice LUTs* | 188 |
I LUT as Logic | 186 |
| LUT as Memory | 2 |
| LUT as Distributed RAM | 2 |
| LUT as Shift Register | 0 |
| Slice Registers | 116 |
| Register as Flip Flop | 11e |
I Register as Latch | 0 |
| F7 Muxes | 0|
| F& Muxes | 0 |
o et Fomm———

106400
106400
106400
26600
13300

Figure 2-55: De-CRC LUT utilization

46

+ ———— — = — = — — 4 — +

Finally, the LUT utilization of the De-CRC block is shown in Figure 2-55.




The LUT utilization of the 3G receiver full chain is shown in Figure 2-56.

e o fom————
| Site Type | Used | Fixed
e Fom———- Fom— -
| Slice LUTs* | €417 | Q
| LUT as Logic | 5866 | 0
I LUT as Memory | 551 | 0
| LUT as Distributed RAM | 551 | 0
| LUT as Shift Register | 0| 0
| Slice Registers | 1579 | 0
| Register as Flip Flop | 1490 | 0
| Register as Latch | g9 | 0
| F7 Muxes | 105 | 0
| F& Muxes | 20 | 0
e Fomm——- o

106400
106400
106400
26600
13300

Figure 2-56: 3G receiver full chain LUT utilization

+ — = - - - - — = — — 4+ — +
w
(=1
]

The utilization report of the 3G full chain is shown in Figure 2-57.

i

’ :

i i

T T

T T

| Used | Fixed | Available | Util$ |

[ Site Type | Used | Fixed | Available | Utils || Site Type

| Slice L0Ts* | 10493 | 0| 53200 [ 19.72 | | Block RMM Tile | 20| 0| 140 | 14.29 |
| IUT as Logic | 9934 | 0] 53200 | 18.67 || paMB36/FIFO* | 12 | 0] 140 | 8.57 |
| LT as Memory | 5591 01 1M001 321 1|  RAMBIEL only | 12 | | | |
| I0T as Distributed RAM | 557 0| | || RMMBIS | 161 0] 20 5.7
| LUT as Shift Register | 2| 01 | I RAMBIGEL only | 16 | | |

| Slice Registers | 2531 | 0] 106400 | 2.38 |+ $ + + + :
| Registeras FlipFlop | 2379 | 0| 106400 | 2.24 |+ TR t t t

| Register a3 Latch | 15| 0| 106400 | 0.4 || Site Type | Used | Fixed | Available | Utilf |

| 7 Muxes | 1281 0] 26600 0.48 |* t f ’ ; t

| 8 Muxes | 240 01 13301 0.8 DSBs I8 0 201 .21

+ + + + ' +| DSP4BEl only | 5| |

4

4 1
T

" "

T

T

Figure 2-57: 3G full chain utilization report

47

T T



3.1

3.1

WI-FI Chain

Introduction

WLAN technology and the WLAN industry date back to the mid-1980s when the
FCC first made the RF spectrum available to industry. During the 1980s and early
1990s, growth was relatively slow. Today, however, WLAN technology is
experiencing tremendous growth. The key reason for this growth is the increased
bandwidth made possible by the IEEE 802.11 standard [10].

The IEEE initiated the 802.11 project in 1990 with a scope “to develop a MAC
and PHY specification for wireless connectivity for fixed, portable, and moving
stations within an area.” In 1997, IEEE first approved the 802.11 international
interoperability standards. In 1999, the IEEE ratified the 802.11a and the 802.11b
wireless networking communication standards. The goal was to create a standards-
based technology that span multiple physical encoding types, frequencies, and
applications. The 802.11a standard uses OFDM to reduce interference. This
technology uses the 5 GHz frequency spectrum and can process data at nearly up to
54 Mbps [10].

.1 Physical Layer of 802.11a

The IEEE 802.11a standard specifies an OFDM PHY that splits an information
signal across 52 separate subcarriers to provide transmission of data at a rate of 6,
9, 12, 18, 24, 36, 48, or 54 Mbps where the 6, 12, and 24 Mbps data rates are
mandatory. Four of the subcarriers are pilot subcarriers that the system uses as a
reference to disregard frequency or phase shifts of the signal during transmission
where a pseudo binary sequence is sent through the pilot sub-channels to prevent
the generation of spectral lines. the remaining 48 subcarriers provide separate
wireless pathways for sending the information in a parallel fashion. The resulting
subcarrier frequency spacing is 0.3125 MHz (for a 20 MHz bandwidth with 64

possible subcarrier frequency slots) [10].
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Also in the 802.11a standard, the primary purpose of the OFDM PHY is to
transmit MPDUs as directed by the 802.11 MAC layer. The OFDM PHY is divided
into two elements: The PLCP and the PMD sublayers [10].

3.1.2 PPDU frame structure

The PSDU of the 802.11a is converted to a PPDU. The PSDU of the 802.11a is
provided with a PLCP preamble and header to create the PPDU. Figure 3-1 shows
the format for the PPDU including the OFDM PLCP preamble, OFDM PLCP
header, PSDU, Tail bits, and Pad bits. The PLCP header contains the following
fields: RATE, a reserved bit, LENGTH, an even parity bit, 6 Tail bits and the
SERVICE field. In terms of modulation, the LENGTH, RATE, reserved bit, and
parity bit (with 6 zero tail bits appended) constitute a separate single OFDM symbol
denoted as SIGNAL. The SERVICE field of the PLCP header and the PSDU (with
6 zero tail bits and pad bits appended) denoted as DATA are transmitted at the data
rate described in the RATE field and may constitute multiple OFDM symbols [10].

[ PLCP Header [
[t L
RATE |Reserved| LENGTH| Parity | Tail | SERVICE , Tail :
Abits | 1bit | 12bite | 1bit | 6bits| 16 bits PSDU 6 bits |24 Bits
T~ - Coded/OFDM | Coded/OFDM |
~, (BPSK.r=12) | (RATE is indicated in SIGNAL) |
- > |
PLCP Preamble SIGNAL DATA

12 Symbols  |One OFDM Symbol Variable Number of OFDM Symbols

Figure 3-1: PPDU frame format

3.1.2.1 PLCP preamble field
The PLCP preamble field acquire the incoming OFDM signal and train and
synchronize the demodulator. The PLCP preamble is BPSK-OFDM modulated at 6
Mbps using convolutional encoding rate R=1/2 [10].

3.1.2.2 SIGNAL field
These OFDM training symbols shall be followed by the SIGNAL field, which
contains the RATE and the LENGTH fields of the TXVECTOR (PSDU). The
RATE field conveys information about the type of modulation and the coding rate
as used in the rest of the packet. The encoding of the SIGNAL single OFDM symbol
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shall be performed with BPSK modulation of the subcarriers and using

convolutional coding at R = % [10].

The encoding procedure, which includes convolutional encoding, interleaving,
modulation mapping processes, pilot insertion, and OFDM modulation, follows the
steps that used for transmission of data with BPSK-OFDM modulated at coding rate
1/2. The contents of the SIGNAL field are not scrambled [10].

The SIGNAL field shall be composed of 24 bits, as illustrated in Figure 5.2. The
four bits 0 to 3 (R1-R4) shall encode the RATE. Bit 4 shall be reserved for future
use. Bits 5-16 shall encode the LENGTH field of the TXVECTOR, with the LSB
being transmitted first (the length of the PSDU, this length represent the number of
octets in the PSDU). A continuation is a parity bit and 6 tail bits. The tail bits are
set to "zeros" to facilitate a reliable and timely detection of the RATE and LENGTH
fields [10].

RATE LENGTH SIGNAL TAIL
(4 bits) (12 bits) (6 bits)

Rl R2 R3 R4| R|LSB MSB| P 1070”0 0" ~0" ~0”
| O[T |2[3|4]5]6 |7 |8 |9 [10]11]12 |13 |14 |15 [16 |17 |18 |19 |20 |21 | 2223

Transmit Order

-
Figure 3-2: SIGNAL field bit assignment

In summary, the tail bits in the SIGNAL symbol enable decoding of the RATE
and LENGTH fields immediately after the reception of the tail bits. The RATE and
LENGTH fields are required for decoding the DATA part of the packet [10].

3.1.2.3 DATA field

The DATA field contains the SERVICE field, the PSDU, the TAIL bits, and the
PAD bits, if needed. All bits in the DATA field are scrambled. The first 16 bits (7
null bits used for the scrambler initialization and 9 null bits reserved for future use)
for the SERVICE field. A continuation is the PSDU. A continuation is a 6 tail bits
and pad bits. The tail bits containing Os are appended to the PPDU to ensure that
the convolutional encoder returns to the zero state where this procedure improves
the error probability of the convolutional decoder, which relies on future bits when
decoding and which may be not be available past the end of the message and the

pad bits are used as guards for the PPDU frame [10].
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3.2 802.11a Transmitter PHY Block Diagram

As discussed in section 1.6.3, the graduation project team was able to implement
the HDL codes for all transmitter blocks but the HDL codes were not synthesizable
as each block needed more resources than the available resources by the FPGA. The
main resource consumer was the memories that exist within each block for either

operational or synchronization purposes.

This problem was solved by rewriting all memories HDL codes to match Xilinx
Vivado HDL coding technigue for memory without changing the memory interface
within the block or the block functionality. Rewriting the codes allowed the Xilinx
Vivado synthesizer to recognize the HDL code as RAM, either a block RAM or a
dedicated RAM according to the memory size. In case of block RAM, a B-RAM
resource is reserved. However, in case of dedicated RAM, a LUT resource is

reserved and programed as RAM.

Transmitter of WI-FI consists of several blocks as shown in Figure 3-3. In the
following sub-sections, each block of the chain is explained in more details _
illustrating its basic idea, showing its interfaces, connections, inputs & outputs &
presenting its LUT utilization_.

: ~.| Convolutional |
Scrambler - e Puncture [~ ) Interleaver
encoder ‘
Preamble |4 | IFFT || Modulation | ,
Addition |V | Modulation (V| mapper

Figure 3-3: WI-FI Transmitter full chain blocks
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3.2.1 Scrambler
Scrambler is used to randomize the service, PSDU, pad and data patterns to
prevent long sequences of 1s or Os to keep synchronization. The frame synchronous

scrambler uses the generator polynomial S(x) as follows:
S =x+x+1

This generator polynomial S(x) can be represented as shown in Figure 3-4.

Data In
[
XT x8 Xx° l Xt X2 X2 X!
A B
Descrambled
Data Out

Figure 3-4: Data Scrambler

According to the initial state the scrambler will generate 127-bit sequence then it
will return to its initial state. The same scrambler is used to scramble the transmitted
data and descramble the received data The seven LSBs of the SERVICE field will
be set to all zeros prior to scrambling to enable estimation of the initial state of the

scrambler in the receiver.

The top controlled module of Scrambler is as shown in Figure 3-5, A detailed
Scrambler module is as shown in Figure 3-6, and the pins description of the

controlled module is shown in Table 3-1.

scrambler

clk

data_in] __|data_out
enable| __|finished
reset| __|valid_out

valid_in

topcontrolled_scrambler_wifi

Figure 3-5: Top controlled Scrambler
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dk

scrambler

data_in

fifo
Q[10:0] D[11:0]

scrambler

S 10[3:0]

unter_req[7][3:0]

D[1L:0
0[3:0
dk| l0r10:0]

unter_reg[11][3:0]

data_out fifo| 5

enable

lata_out

unter_reg[15](3:0

reset|

| unter_reg[15:0]
valid_out fifo| jata_out

[data_out

header_length_rt a‘ta_outireg | - valid_out_re L 0f heéder)engthﬁreg[zjio
2= oL
dummy_fifo_82 top_Scrambler_wifi
topcontrolled_scrambler_wifi ===
Figure 3-6: Top controlled Scrambler from inside
Table 3-1: pins description of Scrambler
PIN Description
data in The input bits to the block
data out The output data of the block
enable | This signal indicates that the next block (Encoder) is ready to
have data
finished | This signal indicates that the Scrambler block is ready for a
new frame
valid i | This signal indicates that the current data_in is valid data
valid out | This signal indicates that the current data_out is valid data

Finally, the LUT utilization of the Scrambler block is shown in Figure 3-7.

o $o——— $o———— Fom Fo————— +
| Site Type | Used | Fixed | Available | Util% |
e o $o———— fomm fo———— +
| Slice LUTs* | 138 | 0 | 53200 | 0.26 |
| LUT as Logic | 138 | 0| 53200 | 0.28 |
| LUT as Memory | 2 | 0| 17400 | 0.01 |
I LUT as Distributed RAM | 2 | 0| I I
| LUT as Shift Register | 0 | 0| | |
| Slice Registers | g0 | 0| 106400 | 0.08 |
| Register as Flip Flop | g0 | 0| 106400 | 0.08 |
| Register as Latch | 0| 0| 106400 | 0.00 |
| F7 Muxes | 0| 0| 26600 | 0.00 |
| F& Muxes | 0| 0| 13300 | 0.00 |
o e Fo————— Fomm fo————— +

Figure 3-7: Scrambler LUT utilization
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3.2.2 Convolutional Encoder

The DATA field, composed of SERVICE, PSDU, tail, and pad parts, shall be
coded with a convolutional encoder of coding rate R = 1/2, 2/3, or 3/4,
corresponding to the desired data rate. The convolutional encoder shall use the
industry-standard generator polynomials, g0 = 1338 and g1 = 1718, of rate R = 1/2,
as shown in Figure 3-8. The bit denoted as “A” shall be output from the encoder
before the bit denoted as “B.” Higher rates are derived from it by employing
“puncturing.” Puncturing is a procedure for omitting some of the encoded bits in
the transmitter (thus reducing the number of transmitted bits and increasing the
coding rate) and inserting a dummy “zero” metric into the convolutional decoder
on the receive side in place of the omitted bits. The encoder is followed by parallel

to serial block to transmit the encoded bits to the puncture [2].

{T)@h *  Output Data A
M 1 \\_\\Rx

Input Data Ty, Ty ' To ™ T T Ty 9

= 1-\V//,i/0:t—p,m Data B

f .
Figure 3-8: Convolutional Encoder (K=7)

The top controlled module of Encoder is as shown in Figure 3-9, A detailed
Encoder module is as shown in Figure 3-10, and the pins description of the

controlled module is shown in Table 3-2.

encoder

clk

ck out| __|data_out

data_in] __|finished

enable | ] valid_out
reset|

valid_in

top_convo_wifi

Figure 3-9: Top controlled Encoder
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encoder

clk n
encoder
clk_out
fifo Q
clk data_out data_out
clk data_out clk_out valid_out
data_in data_in data_out_reg reset
enable enable finished valid_out_fifo
reset reset valid_out_fifo topmodule_convolutionHalf_wifi
valid_in valid_in finished
dummy_fifo valid_out
top_convo_wifi
Figure 3-10: Top controlled Encoder from inside
Table 3-2: pins description of Encoder
PIN Description
clk out Clock of the parallel output
data in The mput bifs to the block
data_out The output bits of the block
enable This signal indicates that the next block (Puncture) is ready to
have data
finished | This signal indicates that the Encoder block is ready for the new
frame
valid in This signal indicates that current data in is valid data
valid out This signal indicates that current data_out is valid data

Finally, the LUT utilization of the Encoder block is shown in Figure 3-11.

Slice LUTs*
LUT as Logic
LUT as Memory

LUT as Distributed RAM

Slice Registers
Register as Flip Flop
Register as Latch

F7 Muxes

F&8 Muxes

|
|
|
|
| LUT as Shift Register
|
|
|
|
|

+
|
+
|
|

2 1
|
I
|
|
|
|
|
+

- —— - — = = = = —

106400
106400
106400
26600
13300

Figure 3-11: Encoder LUT utilization
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3.2.3 Puncture

If the system could only change the data rate by adjusting the constellation size,
and not the code rate, a very large number of different rates would be difficult to
achieve as the number of constellations and the number of points in the largest
constellation would grow very quickly. Another solution would be to implement
several different convolutional encoders with different rates and change both the
convolutional code rate and constellation. However, this approach has problems in
the receiver that would have to implement several different decoders for all the
codes used. Puncturing is a very useful technique to generate additional rates from

a single convolutional code.

The basic idea behind puncturing is to not transmit some of the output bits from
the convolutional encoder, thus increasing the rate of the code and inserting a
dummy zero metric into the convolutional decoder on the receive side in place of
the omitted bits, hence only one encoder/decoder pair is needed to generate several
different code rates. The puncture pattern is specified by the Puncture vector
parameter in the mask. The puncture vector is a binary column vector. A 1 indicates
that the bit in the corresponding position of the input vector is sent to the output
vector, while a 0 indicates that the bit is removed. There are two types of punctures
in WI-FI standard: (2/3) and (3/4) according to the data rate.

The top controlled module of Puncture is as shown in Figure 3-12, and the pins

description of the controlled module is shown in Table 3-3.

puncturer

clk

data_in| __|data_out
~ enable| __[finished
reset| __|valid_out
valid_in |

top_puncturer_wifi

Figure 3-12: Top controlled Puncture
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Table 3-3: pins description of Puncture

PIN Description
data_in The input bits to the block
data out The output bits of the block
enable | This signal indicates that the next block (Interleaver) is ready to
have data
finished | This signal indicates that the Puncture block is ready for the
new frame
valid in This signal indicates that current data_in is valid data
valid out This signal indicates that current data out is valid data

Finally, the LUT utilization of the Puncture block is shown in Figure 3-13.

e o o o ——————— Fo—————— +
| Site Type | Used | Fixed | Available | Utils |
P o o o —————— o +
| Slice LUTs* | 165 | o | 53200 | 0.31 |
| LUT as Logic | 1€3 | 0 | 53200 | 0.31 |
| LUT as Memory | 21 o | 17400 | 0.01 |
| LUT as Distributed RAM | 2: | o | | |
I LUT as Shift Register | a | a | | I
| Slice Registers I 2209 | o | 106400 | 0.10 |
I Register as Flip Flop | 7109} o | 106400 | 0.10 |
| Register as Latch I 0 | 0 | 106400 | 0.00 |
| F7 Muxes | o | o | 26600 | 0.00 |
| F& Muxes | o | o | 13300 | 0.00 |
L +o————— o o ————— to—————— +

Figure 3-13: Puncture LUT utilization

3.2.4 Interleaver
All encoded data bits shall be interleaved by a block Interleaver with a block size
corresponding to the number of bits in a single OFDM symbol. The Interleaver is
defined by a two-step permutation. The first permutation ensures that adjacent
coded bits are mapped onto nonadjacent subcarriers. The second ensures that
adjacent coded bits are mapped alternately onto less and more significant bits of the

constellation and, thereby, long runs of low reliability (LSB) bits are avoided.

The top controlled module of Interleaver is as shown in Figure 3-14, and the

pins description of the controlled module is shown in Table 3-4.
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interleaver

clk

data_in data_out
enable finished
reset valid_out
valid_in

top_interleaver_wifi

Figure 3-14: Top controlled Interleaver

Table 3-4: pins description of Interleaver

PIN Description
data in The mput bits to the block
data_out The output bits of the block

enable This signal indicates that the next block (Mapper) 1s
ready to have data

finished | This signal indicates that the Interleaver block 1s ready
to have a new frame

valid in This signal indicates that current data_in is valid data

valid out | This signal indicates that current data_out is valid data

Finally, the LUT utilization of the Interleaver block is shown in Figure 3-15.

e $o————- $om———— Fomm fom————— +
| Site Type | Used | Fixed | Available | Util$ |
e o Fmm————— Fom Fom———— -
| Slice LUTIs* | 176 | 0| 53200 | 0.33 |
| LUT as Logic | 176 | 0| 53200 | 0.33 |
| LUT as Memory | 0| 0| 17400 | 0.00 |
| Slice Registers | 124 | 0 | 106400 | 0.12 |
I Register as Flip Flop | 124 | 0 | 106400 | 0.12 |
| Register as Latch | 0| 0| 106400 | 0.00 |
| F7 Muxes | 0| 0| 26600 | 0.00 |
| F&8 Muxes | 0| 0| 13300 | 0.00 |
e Fo————— pomm Fomm e +

Figure 3-15: Interleaver LUT utilization
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3.2.5 Modulation Mapper
Modulation is the process by which information (e.g. bit stream) is transformed

into sinusoidal waveform. A sinusoidal wave has three features those can be

changed _phase, frequency and amplitude_ according to the given information and
to the used modulation technique. In 802.11a Phase Shift Keying (BPSK, QPSK)
and Quadrature Amplitude Modulation (16-QAM, 64-QAM) modulation
techniques are used according to the desired data rate as described in the following

equation: d = (I + j Q) * Kmod Where Kmog IS the normalization factor and is used in

to achieve the same average power for all mappings. It depends on the base
modulation mode where for BPSK, Kmod = 1, for QPSK, Kmod = 1/4/2 , for 16-QAM,
Kmod = 1710, for 64-QAM, Kmod = 1//40.

Every modulation mode has a modulation specified in the standard as shown in

Figure 3-16.
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Figure 3-16: Modulation constellations for BPSK, QPSK, 16-QAM, and 64-QAM
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The top controlled module of Mapper is as shown in Figure 3-17, A detailed
Mapper module is as shown in Figure 3-18, and the pins description of the

controlled module is shown in Table 3-5.

mapper
clk finished
data_in last_sym
enable mod_out_im[11:0]
reset mod_out_re[11:0]
valid_in re_out
valid_out

topControlled_bpskMapper_wifi
Figure 3-17: Top controlled Mapper

mapper

2] s
out_shift_reg_reg[0]_i_2
ok R
E
LR Q
D
FDCE
finished
last_sym
fifo mapper
mod_out_im[11:0]
dk DOBDO DOBDO imod_out_re[11:0]
data_in data_in finished | 1 dk| mod_out_im[10:0] =
enable enable last_sym_reg | out_shift_reg_reg[0] i_2 mod_out_re[10:0] re_out
resetl  reset| _|re_out | reset valid_out valid_out
valid_in valid_in| valid_out_fifo valid_out_fifol
_ |write_address_reg[13] || top_mapper_wifi
mapper_fifo
topControlled_bpskMapper_wifi
Figure 3-18: Top controlled Mapper from inside
Table 3-5: pins description of Mapper
PIN Description
data_in The input bits to the block
enable This signal indicates that the next block (IFFT

Modulation) 1s ready to have data
finished This signal indicates that the Mapper block 1s ready to

have a new frame

mod _out_im The modulated imaginary part of the input
mod out Re The modulated real part of the input
valid in This signal indicates that current data in 1s valid data
valid out This signal indicates that current data_out 1s valid data
last_sym This signal indicates that the Mapper marks to the
IFFT that these patch of symbols are the last patch to
be processed

60



Finally, the LUT utilization of the Mapper block is shown in Figure 3-19.
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| Slice LUTs* |
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Figure 3-19: Mapper LUT utilization

3.2.6 IFFT Modulation

WIFI uses orthogonal frequency division multiplexing for modulation, An
OFDM signal consists of a number of closely spaced modulated carriers as shown
in Figure 3-20, those carriers are orthogonal so the receiver could demodulate them,
OFDM systems are very sensitive to frequency offset and ISI because any error in
the received signal affects all carriers and all data so a guard interval is used between
OFDM symbols, In this guard signal we insert a cyclic prefix of the symbol to

106400
26600
13300

- —— - = = = = 4 — 4
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. .
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o o o
o
wm

o oo
o o
o o

compensate for any synchronization problems with in the receiver [11].

(a)

IO AKX X1 xx ;i 1 X000

(b)

Figure 3-20: (a) Spectrum of a single subcarrier of the OFDM signal,
(b) Spectrum of the OFDM signal

The important parameters for the OFDM modulation system are the number of
subcarriers used within the bandwidth, the cyclic prefix and where to insert pilot
signals. Inverse fast Fourier transform is used for the modulation operation, as
specified by the IEEE 802.11a, 64-point IFFT is used with symbol duration of 4 us
in the 20 MHz operation of the standard. The symbol time consists of a 3.2 us
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symbol and 0.8 us for the cyclic prefix, the timing of the OFDM frame is as shown

in Figure 3-21 [11].

‘ 8+8=16us 4
10x08=8ps | 2x08+2x32=80us [ 08+32=40ps | 08+32=40ps| 08+32=40ps
T T AN T N L — NP
[ttty ts b5t b7 tg to tig) GRI T, | T, GI|SIGNALTGI| Datal | GI| Data2
A £ O W T M T ! AN ' A ;

» &

; : P e, |
Channel and Fine Frequency =~ RATE SERVICE+DATA DATA

Offset Estimation LENGTH

> 4 » <
Coarse Freq.
Offset Estimation
Timing Synchromze

" Signal Detect,

AGC, Drveraity
Selection

Figure 3-21: OFDM training structure

The single OFDM symbol contains 48 data symbols from the mapper, contains
4 pilot symbols, 11 null symbol and null input at DC, this mapping is shown in the
below function where K is the logical subcarrier number and M(k) is the frequency
offset index, the frequency offset index mapping to the IFFT inputs is shown in
Figure 3-22 [11].

Null — | 0 (¢ B B

P — = A ] R

g | 2 2] o

(k=26 0<k<s4 — —

| k-25 5 <k<17 46 26 Frr 26 | —

M) { k-24 18 <k <23  Null —{ 27 5 ) I

= Null —— S
| k-23 24 <k<29 %0 - o

kk 22 30 <k <42 #26 — 38 3 g |

k-21 43 <k <47 = == ——

#2 —1 62 62 ——

#1 — 63 63 ——

Figure 3-22: frequency offset index function & inputs and outputs of the IFFT

Pilots are inserted at subcarriers -21, -7, 7, 21. So, the final mapping of the 64

subcarrier is as shown in Figure 3-23 [11].

dg dy P_yids di7P7djg dpDC dyy  dyPr dyp dyp Pyjdyz  dyy
i i i |
| | | |
eee : eme : cae ceme : eme : ooe
| | | |
| | 1 | |
226 91 o7 0 B 21 26

Figure 3-23: Final 64 subcarrier mapping

The hardware circuit implementation needs an IFFT circuit, we used the Xilinx

LogiCORE IP Fast Fourier Transform v7.1, and the IP has many options we used
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the pipelined streaming 1/0O to ensure continuous output to comply with the standard

requirements.

The top controlled module of IFFT Modulation is as shown in Figure 3-24, and

the pins description of the controlled module is shown in Table 2-6.

ifft_module

clk
clk_div
ifft_start enable
last_symbol preample_st
mapper_ready sample_im[11:0
reset sample_real[11:0
sym im[11:0 valid_out
sym_re 11:0
valid_in

top_ifft_controller_wifi

Figure 3-24: Top controlled IFFT Modulation

Table 3-6: pins description of IFFT Modulation

PIN Description
clk_div clock of the output
ifft start This signal indicates that the IFFT is ready to receive data

last symbol | This signal indicates that the Mapper marks to the IFFT that
these patch of symbols are the last patch to be processed
mapper_ready | This signal indicates that the Mapper starts to input symbols

to its pipeline
sample im Imaginary output data of the block
sample re Real output data of the block
sym_im Imaginary input data to the block
Sym_re Real input data to the block
valid_in This signal indicates that current data_in is valid data
valid out This signal indicates that current data_out 1s valid data

Finally, the LUT utilization of the IFFT Modulation is shown in Figure 3-25.

o ———— - Fm————— Fm————————— - =
I Site Type | Used | Fixed | Available | Utils |
Fm————— F————— Fm————— Fm—————————— F—————— +
| Slice LUTIs* | 188¢€ | o 1 53200 | 3.55 |
| LUT as Logic | 1282 | o | 53200 | 2.43 |
| LUT as Memory | 594 | o | 17400 | 3.41 |
I LUT as Distributed RAM | 84 | o 1 I

| LUT as Shift Register | 530 | o | | |
| Slice Registers | 1810 | o | 106400 | 1.70 |
I Register as Flip Flop | 1810 | o | 10€400 | 1.70 |
I Register as Latch I o | o | 10€400 | 0.00 |
| F7 Muxes I 27} o 1 26600 | 0.10 |
| F& Muxes | o | o | 13300 | 0.00 |
e +———— +—————— Fmm——————— +—————— +

Figure 3-25: IFFT Modulation LUT utilization
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3.2.7 Preamble
In WI-FI 802.11a, The PLCP Preamble field is used for synchronization. It
consists of 10 short symbols and two long symbols that are shown in Figure 3-21.
The timings described in this sub-clause and shown in Figure 3-21 are for 20 MHz
channel spacing. They are doubled for half-clocked (i.e., 10 MHz) channel spacing
and are quadrupled for quarter-clocked (i.e., 5 MHz) channel spacing.

Figure 3-21 shows the OFDM training structure (PLCP preamble), where t1 to
t10 denotes short training symbols and T1 and T2 denote long training symbols.
The total training length is 16us. The dashed boundaries in the figure denote
repetitions due to the periodicity of the inverse Fourier transform. The PLCP

preamble shall be transmitted using an OFDM modulated fixed waveform.

The top controlled module of Preamble is as shown in Figure 3-26, A detailed
Preamble module is as shown in Figure 3-27, and the pins description of the
controlled module is shown in Table 2-7.

preamble

clk __|enable_ifft

reset pre_im[11:0]
valid_in pre_re[11:0]

valid_out

top_preamble_wifi

Figure 3-26: Top controlled Preamble

preamble

clk enable_ifft
reset

QULL0)
Qi) [ K

clk _|data_out_im_reg[11][11:0) done_S _lpre_im{11:0] pre_im[11:0]
L

reset| done_S } 1 pre_im_reg[11] 0[11:0] pre_re[11:0] pre_re[11:0]

valid_in valid_in done_reg_0 reset. valid_out valid_out

enable_ifft ‘ reset_0

valid_out_S valid_out_S

short_preabmle long_preabmle

top_preamble_wifi

Figure 3-27: Top controlled Preamble from inside
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Table 3-7: pins description of Preamble

PIN Description
enable ifft | This signal used to enable the [FFT Modulation block in order
to output data
pre_im The imagmary part of the Preamble
pre_re The real part of the Preamble
valid in The signal indicates that current data in is valid data
valid_out This signal indicates that current data_out is valid data

Finally, the LUT utilization of the Preamble block is shown in Figure 3-28.

e $o———— $o————— Fom fo————— -
| Site Type | Used | Fixed | Awvailable | Utils |
e R $o————— o to————— +
| Slice LUTIs* | 123 | 0| 53200 | 0.23 |
| LUT as Legic | 123 | 0| 53200 | 0.23 |
| LUT as Memory | 0| 0| 17400 | 0.00 |
| Slice Registers | 57 | 0| 106400 | 0.05 |
| Register as Flip Flop | 57 | 0| 106400 | 0.05 |
| Register as Latch | 0 | 0 | 106400 | 0.00 |
| F7 Muxes | 1] 0| 26600 | <0.01 |
| F& Muxes | 0 | 0| 13300 | 0.00 |
e $o———— Fo—————- fomm fo—————— -

Figure 3-28: Preamble LUT utilization

The LUT utilization of the WI-FI transmitter full chain is shown in Figure 3-29.

e Fo————= $om———— Fmmmm————— o -
I Site Type | Used | Fixed | Available | Util% |
e o e pomm o +
| Slice LUTs* | 2559 | 0 | 53200 | 4.81 |
| LUT as Logic | 1961 | 0 | 53200 | 3.69 |
| LUT as Memory | 598 | 0| 17400 | 44 |
| LUT as Distributed RAEM | g | 0 | | |
I LUT as Shift Register | 530 | 0 | | |
| Slice Registers | 2207 | 0| 106400 | 2.07 |
I Register as Flip Flop | 2207 | 0 | 106400 | 2.07 |
| Register as Latch | 0| 0 | 106400 | 0.00 |
| F7 Muxes | g | 0 | 26600 | 0.11 |
| F8& Muxes | 0 | 0 | 13300 | 0.00 |
e e e Fommm $omm +

Figure 3-29: WI-FI transmitter full chain LUT utilization
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3.3 802.11a Receiver PHY Block Diagram

The main target of the receiver is to retrieve the same data send before transmitter
so it consists of the blocks shown in Figure 3-30. The same procedure is performed
in the receiver blocks as in the transmitter blocks where in the following sub-
sections, each block of the chain is explained in more details _ illustrating its basic
idea, showing its interfaces, connections, inputs & outputs & presenting its LUT

utilization_.
‘ x
Packet | | FFT | |
o - . | De-Mapper [ ) De-Interleaver
Divider [ i Modulation [ Pl ‘ | oL
'\
De-Scrambler | Decoder (| De-Puncture |

Figure 3-30: WI-FI Receiver full chain blocks

3.3.1 Packet Divider
It is the first block of the receiver that receives the real and imaginary data of the
channel which came in the form of 12 bits divided to 9 bits representing the fraction
part and 3 bits representing the real part. The main target of the block is to receive
these data symbols, store them, remove preamble from them and deliver the rest to
the next block (FFT Modulation).

The top controlled module of Packet Divider is as shown in Figure 3-31, and the
pins description of the controlled module is shown in Table 3-8.

packet_div

clk data_out im[11:0
data_in_im[11:0 data_out_re[11:0
data_in_re[11:0 last_symbol

reset valid_out

valid_in

packet_divider

Figure 3-31: Top controlled Packet Divider

66



Table 3-8: pins description of Packet Divider

Pin Description
data_in_im Imaginary input data to the block
data_in re Real input data to the block

data_out_im Imaginary output data of the block
data_out_re Real output data of the block

last symbol | This signal indicates that Packet Divider marks to the FFT that these
patch of symbols are the last patch to be processed
valid_in This signal indicates that current data_in is valid

valid_out This signal indicates that current data_out is valid

Finally, the LUT utilization of the Packet Divider block is shown in Figure 3-32.

e o e fomm e -
| Site Type | Used | Fixed | Available | Utils |
e Fom - $omm———— Fom e fomm————— +
| Slice LUTs* | 27 | 0| 53200 | 0.05 |
I LUT as Logic | 27 | 0 | 53200 | 0.05 |
| LUT as Memory | 0| 0 | 17400 | 0.00 |
| Slice Registers | 45 | 0 | 106400 | 0.04 |
| Register as Flip Flop | 45 | 0| 106400 | 0.04 |
| Register as Latch I 0| 0 | 106400 | 0.00 |
| F7 Muxes I 0| o | 26600 | 0.00 |
| F& Muxes I 0 | 0| 13300 | 0.00 |
Fom et e fo—————- -

Figure 3-32: Packet Divider LUT utilization
3.3.2 FFT Modulation
As specified in section 3.2.6, WIFI uses orthogonal frequency division
multiplexing for modulation where the hardware circuit implementation needs an
FFT circuit, we used the Xilinx LogiCORE IP Fast Fourier Transform v7.1 as in

the transmitter.

The first challenge is to make the data received from the Packet Divider block
ready to enter the FFT core without the cyclic prefix, and to control the pipelining
process such that the latency reduces as much as possible, so a FFT controller is

needed to control the whole process.

The FFT controller contains the FFT core and four RAMSs with size 64 x 12 where
two RAMs are used for the real part & the other two RAMSs are used for the
imaginary part and concerning the RAM size, the FFT core receives 64 inputs with

length of 12 bits. The RAM purpose is to store the input data without cyclic prefix
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and maintain the process of pipelining as when a RAM is getting an input, the other
one delivers its data to the FFT core. This process is a continuous one till a last
symbol flag is raised from the packet divider which is an indication that there is no
more data to process on. While the reading and writing processes of the RAMs are
being on, the FFT core is producing its output to the next block (De-Mapper).

The top controlled module of FFT Modulation is as shown in Figure 3-33, and

the pins description of the controlled module is shown in Table 3-9.

control_fft

clk

data_in_imagl 11:0 | data_out_imac_;[ll :0]

data&real[ll:O] data_out_ real[11:0]
last_symbol special_index[5:0]
reset valid_out
valid_in

fft_controller
Figure 3-33: Top controlled FFT Modulation

Table 3-9: pins description of FFT Modulation

Pin Description
data_in imag Imaginary input data to the block
data_in real Real input data to the block
data_out imag Real output data of the block
data_out real Imaginary output data of the block

last symbol | This signal indicates that Packet Divider marks to the FFT that

these patch of symbols are the last patch to be processed

special index | This signal used in the De-Mapper to define the pilots and nulls
valid in This signal indicates that current data in is valid
valid_out This signal indicates that current data_out is valid
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Finally, the LUT utilization of the FFT Modulation block is shown in Figure 3-
34.

e - Fom————— Fom o ———— +
| Site Type | Used | Fixed | Available | Utils |
e $om——— o Fom Fom————— +
| Slice LUTs* | 2072 | 0| 53200 | 3.89 |
| LUT as Logic | 1472 | 0| $3200 | 2.77 |
| LUT as Memory | €00 | 0 | 17400 | 3.45 |
I LUT as Distributed RAM | 64 | 0| I |
| LUT as Shift Register | 536 | 0 | I I
| Slice Registers | 203¢& | 0 | 106400 | 1.91 |
| Register as Flip Flop | 203& | 0 | 106400 | 1.91 |
| Register as Latch | 0 | 0 | 106400 | 0.00 |
| F7 Muxes | 26 | 0| 26600 | 0.10 |
| F& Muxes | 0| 0 | 13300 | 0.00 |
Fmm o o o e -

Figure 3-34: FFT Modulation LUT utilization

3.3.3 De-Mapper
It receives the real and imaginary data from the FFT Modulation block which
came in the form of 12 bits divide to 9 bits represent the fraction part and 3 bits
represent the real part. The main target of the block is to receive these data symbols,
specify the decision region and convert these symbols to a stream of bits.

As specified in section 3.2.5, 802.11a Phase Shift Keying (BPSK, QPSK) and
Quadrature Amplitude Modulation (16-QAM, 64-QAM) modulation techniques are
used where the decision regions are shown in Figure It's to be noted the .35-364-

QAM modulation technique isn’t included.
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Figure 3-35: Decision regions of De-Mapper
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The block design is a bit more different than any usual De-Mapper design where
it contains three main blocks. So, a controller is required to organize the signaling

flow.

The first block is a stack controller which contains four stacks where two are used
for real part and the other two for imaginary part to maintain the pipelining process
(De-mapping while the FFT core is working). The reason for using stack structure
not RAM is to cancel the transmitter effect where in the Mapper, the input data was
reversed (stored up-down then read down-up). So, a stack is used with size 48 x 12
as the output of the FFT core is in the form of 64 data blocks and 18 sample aren’t

needed in the De-Mapper which are 4 pilots and 14 null.

The second block is the main De-Mapper block which decode the symbols into
bits through the decision regions according to the modulation scheme used in the

transmitter.

The third block is a large RAM used to store the whole data as the next block
(De-Interleaver) needs all the frame data to be ready to work properly.

Three clocks are being used in the de-mapping process to maintain the pipelining
process.

1. The first clock is the normal FFT clock (system clock divided by 10) for
BPSK de-mapping.

2. The second clock is the output clock (system clock divided by 4) to speed
up the de-mapping process in case of the modulation scheme QPSK
where the De-Mapper needs more time than in the case of BPSK to
decode the symbols correctly.

3. The third clock is the fastest clock in the system which is the decoder
clock (system clock divided by 2) to speed up the de-mapping process in
case of 16 QAM.

The top controlled module of De-Mapper is as shown in Figure 3-36, A detailed
De-Mapper module is as shown in Figure 3-37, and the pins description of the

controlled module is shown in Table 3-10.
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demapper

clk

clk_decoder

clk_output

data_in_imag 11:0|_

data_in_real[11:0]

last_symbol

reset

special_index[5 :0]

valid_in

__|data_out

_|valid_out

top_demap

Figure 3-36: Top controlled De-Mapper

demapper
ck 8
clk_decoder Aot
ck_outpu] | i
stack_control ‘ % decoddk
clk J cl;_output_ |data_out
data_in_imag[11:0]; data_in_imag[11:0]; \data_out_imag[11:0] | data in_imag[11:0] _|valid_out ram_demapper
data_in_real[11:0] data_in_real[11:0 \data_out_real[11:0] data_in_real[11:0]
last_symbol| last_symbol stop_flag reset k!
reset reset valid_out valid_in clk_decoder
special_index[5:0] specia\_index[S:gH_ top_demapper_wifi clk_output |data_out |data_out
valid_in valid_in d data_in| |valid_out |valid_out
L L
stack_controller i
=l reset|
top_ram_demap
top_demap
Figure 3-37: Top controlled De-Mapper from inside
Table 3-10: pins description of De-Mapper
Pin Description
clk decoder | Used for de-mapping in case of 16 QAM modulation scheme
clk_output Used for de-mapping in case of QPSK modulation scheme
data_in imag Imaginary input data to the block
data in real Real input data to the block
last symbol | This signal indicates that Packet Divider marks to the FFT that
these patch of symbols are the last patch to be processed
special index | This signal used in the De-Mapper to define the pilots and nulls
valid in This signal indicates that current data in is valid
data_out The output data of the block
valid out This signal indicates that current data_out is valid
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Finally, the LUT utilization of the De-Mapper block is shown in Figure 3-38.

e o $o————— Fomm o +
| Site Type | Used | Fixed | Available | Util$ |
e sttt Fomm e Fomm e Fom +
| Slice LUTs* | 342 | 0| 53200 | 0.84 |
I LUT as Logic | 32¢ | 0| 53200 | 0.61 |
| LUT as Memory | 16 | 0| 17400 | 0.09 |
I LUT as Distributed RAM | 16 | 0| |

| LUT as Shift Register | 0| 0| I

| Slice Registers | 210 | 0| 106400 | 0.20 |
| Register as Flip Flop | 210 | 0| 106400 | 0.20 |
| Register as Latch | 01 01 106400 | 0.00 |
| F7 Muxes | 0| 0| 26600 | 0.00 |
| F& Muxes | 0| 0| 13300 | 0.00 |
o $om———- $om————- Fomm e $om————- +

Figure 3-38: De-Mapper LUT utilization

3.3.4 De-Interleaver
The de-Interleaver, which performs the inverse relation to the Interleaver, is also
defined by two permutations. Here the index of the original received bit before the
first permutation shall be denoted by (j); (d) shall be the index after the first and
before the second permutation; and (e) shall be the index after the second
permutation, just prior to delivering the coded bits to the convolutional (Viterbi)
decoder (if de-puncture isn’t used).

The first permutation is defined by the rule:

CBPS

d = s * Floor (é) + (j + Floor (16 * )) mods j=0,1.. Negps—1

The second permutation is defined by the rule:

e = 16*d—(Nchs—1)*Floor(16* ) d=0,1..,Negps—1

CBPS

These permutations represent the inverse equations to the permutation equations

in the Interleaver of the transmitter.

The value of s is determined by the number of coded bits per subcarrier, Nsrsc,

according to:

NE'PE-'C

5 = max (

1)
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The top controlled module of De-Interleaver is as shown in Figure 3-39, and

the pins description of the controlled module is shown in Table 3-11.

deinterleaver

clk

data_in data_out

enable

reset valid_out

valid_in

top_deinterleaver_wifi

Figure 3-39: Top controlled De-Interleaver

Table 3-11: pins description of De-Interleaver

PIN Description

data_in The input bits to the block

data_out The output bits of the block

enable | This signal indicates that the next block (De-puncture) is

ready to have data
finished | This signal indicates that the De-Interleaver is ready to have
anew frame

valid in This signal indicates that current data in is valid data

valid out| This signal indicates that current data_out is valid data

Finally, the LUT utilization of the De-Interleaver block is shown in Figure 3-40.

Fom +-———— $o————— e $o————— -
| Site Type | Used | Fixed | Available | Utils |
o fom———— Fomm————— et fom————— +
| Slice LUTs* | 346 | 0| 53200 | 0.85 |
| LUT as Logic | 346 | 0 | 53200 | 0.85 |
| LUT as Memory | 0 | 0 | 17400 | 0.00 |
| Slice Registers | 2327 | 0| 106400 | 0.12 |
I Register as Flip Flop | 127 | 0 | 106400 | 0.12 |
| Register as Latch I 0| 0 | 106400 | 0.00 |
| F7 Muxes I 0| 0 | 26600 | 0.00 |
| F& Muxes | 0| 0 | 13300 | 0.00 |
e +-————- o Fomm - $om— - +

Figure 3-40: De-Interleaver LUT utilization
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3.3.5 De-Puncture
De-Puncture is the reverse block of puncture. De-Puncture adds dummy bits in
the position of removed bits by puncture. The positions of removed bits are
determined in the standard in the puncture vector which is a binary column vector
as explained in section 3.2.3. Figure 3-41 shows the procedure of puncture and de-
puncture of rate 3/4. Figure 3-42 shows the procedure of puncture and de-puncture
of rate 2/3.

Punctured Coding (r = 3/4)

X | x| xs | x| %7 [ x4

t

Ap | Ay | As| As| Agl As| Ag| A7 Ag

Encoded Data I:l Stolen Bit
By | B, | B, |B;| By |Bs|Bg| B, | Bg olen Bt

ht

A4B3‘A_/,‘B5

Source Data ‘ Xo ‘ X, ‘ X5

Bit Stolen Data

(sent/received dala]‘ AJ BU‘ A1|B2

AdRe| Ay

. Ag | Al As | Ay | Ayl As | Ag | A7 | A
Bit Inserted Data 0 ! . 3 ol b a - I:l Inserted Dummy Bit
By | By | B, | By | By | Bs | Bg | By | Bg

Decoded Data

‘YU‘Y}‘E@ Y3‘Y4‘YS|YE3‘YY‘YS‘

Figure 3-41: De-Puncture 3/4 rate procedure

Punctured Coding (r = 2/3)

Source Data ‘Xg ‘ Xl‘ X2| X3 ‘X4 ‘ Xs ‘

Encoded Data

Ag | Ar | Ay | Ay | A4 | As
B;

Bit Stolen Data
(sent/received data)

aJso [ a] Bl ] A 5] A

Bit Inserted Data Ag A Ay

A A
4 > I:l Inserted Dummy Bit

A
By | B, | B, | By| By| Bs

Decoded Data

‘3’0‘3’1‘}’2|Y3‘3’4‘3’5

Figure 3-42: De-Puncture 2/3 rate procedure
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The top controlled module of De-Puncture is as shown in Figure 3-43, and the

pins description of the controlled module is shown in Table 3-12.

depuncturer
clk
data_in data_out
enable finished
reset valid_out
valid_in

top_depuncturer_wifi

Figure 3-43: Top controlled De-Puncture

Table 3-12: pins description of De-Puncture

Pin Description
data_in The 1nput data to the block
data_out The output data of the block

enable | This signal indicates that the next block (Decoder) 1s ready to have data

finished This signal indicates that the De-puncture 1s ready to have data
valid in This signal indicates that current data_in 1s valid
valid_out This signal indicates that current data_out 1s valid

Finally, the LUT utilization of the De-Puncture block is shown in Figure 3-44.

e Fmm——— Fomm Fomm Fomm +
| Site Type | Used | Fixed | Available | Util$ |
o Fo———— e e R +
| Slice LUTs* | 185 | 0| 53200 | 0.31 |
| LUT as Logic | 163 | 0| 53200 | 0.31 |
| LUT as Memory | 2 | 0| 17400 | 0.01 |
| LUT as Distributed RAM | 2 | 0| | |
I LUT as Shift Register | 0| 0| I |
| Slice Registers | 109 | 0| 106400 | 0.10 |
| Register as Flip Flop | 109 | 0| 106400 | 0.10 |
| Register as Latch | 0| 0| 106400 | 0.00 |
| F7 Muxes | 0 | 0| 26600 | 0.00 |
| F& Muxes | 0| 01 13300 | 0.00 |
e et e T Fo———— o R pomm +

Figure 3-44: De-Puncture LUT utilization
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3.3.6 Viterbi Decoder
Viterbi Decoder is the reverse block of the convolutional encoder. The block
design is the same as that described in section 2.3.5, the only differences exist in
that the used convolutional encoder has K=7 so as the Viterbi decoder here which
decreases the number of the states to 64 other than 256, also in this design there is

no tail bit removing.

The top controlled module of Viterbi decoder is as shown in Figure 3-45, and the

pins description of the controlled module is shown in Table 3-13.

decoder
RESET
clk data_out
data_in finished
enable valid_out
valid_in

top_controlled_viterbi

Figure 3-45: Top controlled Decoder

Table 3-13: pins description of Decoder

Pin Description
data_in The mnput data to the block
data_out The output data of the block
enable | This signal indicates that the next block (De-Scrambler) 1s ready to have
finished This signal indicates that th:agecoder 1s ready to have data
valid in This signal indicates that current data_in 1s valid
valid_out This signal indicates that current data_out 1s valid

Finally, the LUT utilization of the Viterbi Decoder block is shown in Figure 3-
46.
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ettt $om———= R fommmm e +
| Site Type | Used | Fixed | Available | Utils |
o et o oo fommm—— +
| Slice LUTs* | 895 | 0 | 53200 | 1.68 |
I LUT as Logic | €38 | 0| 53200 | 1.20 |
| LUT as Memory | 257 | 0 | 17400 | 1.48 |
| LUT as Distributed RAM | 257 | 0| |

| LUT as Shift Register | 0| 0| I

| Slice Registers | 259 | 0| 106400 | 0.24 |
I Register as Flip Flop | 259 | 0| 106400 | 0.24 |
I Register as Latch | 0| 0| 106400 | 0.00 |
| F7 Muxes | g | 0 | 26600 | 0.03 |
| F& Muxes | 2 | 0| 13300 | 0.02 |
e o= Fomm Fomm Fommm +

Figure 3-46: Decoder LUT utilization

3.3.7 De-Scrambler

The block design is the same as that described in section 3.2.1.

The top controlled module of De-Scrambler is as shown in Figure 3-47, and the

pins description of the controlled module is shown in Table 3-14.

descrambler
clk [
data_in s | data_out
] finished
reset| ] valid_out
valid_in

topcontrolled_descrambler_wifi

Figure 3-47: Top controlled De-Scrambler

Table 3-14: pins description of De-Scrambler

Pin Description
data_in The mput data to the block
data out The output data of the block
finished | This signal indicates that the De-Serambler 15 ready to have data
valid in This sipnal indicates that current data in 1s valid
valid out This signal indicates that current data_out 1 valid
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Finally, the LUT utilization of the De-Scrambler block is shown in Figure 3-48.

o Fomm——- Fomm———— Fomm $om———— +
| Site Type | Used | Fixed | Available | Utils |
+-—- - - ————t— e o Fom Fom———— +
| Slice LUTs* | 138 | 0| 53200 | 0.286 |
| LUT as Logic | 136 | 0| 53200 | 0.26 |
| LUT as Memory | 2 | 0| 17400 | 0.01 |
| LUT as Distributed RAM | 2 | 0 | | |
| LUT as Shift Register | 0| 0| | I
| Slice Registers | g0 | 0| 106400 | 0.08 |
| Register as Flip Flop | g0 | 0| 106400 | 0.08 |
| Register as Latch | 0| 0| 106400 | 0.00 |
| F7 Muxes | 0| 0| 26600 | 0.00 |
| F& Muxes | 0| 0| 13300 | 0.00 |
o Fomm—— fomm Fomm Fomm———— +

Figure 3-48: De-Scrambler LUT utilization

The LUT utilization of the WI-FI receiver full chain is shown in Figure 3-49.

DSP4EEL only | 18

e o Fom————— Fomm o +
| Site Type | Used | Fixed | Available | Utils$ |
e +o————- Fo————— Fomm e +
| Slice LUTs* | 3807 | 0| 53200 | 7.16é |
| LUT as Logic | 2932 | 0| 53200 | 5.51 |
| LUT as Memory | 875 | 0 1 17400 | 5.03 |
| LUT as Distributed RAM | 339 | 0| | |
| LUT as Shift Register | 536 | 0| | |
| Slice Registers | 2737 | 0| 106400 | 2.57 |
| Register as Flip Flop | 2737 | 0 | 106400 | 2.57 |
I Register as Latch | 0| 0| 106400 | 0.00 |
| F7 Muxes | 34 | 0| 26600 | 0.13 |
| F& Muxes | 2 | 0| 13300 | 0.02 |
e et L +o————- tom———— Fomm o +
Figure 3-49: WI-FI receiver full chain LUT utilization
The utilization report of the WI-FI full chain is shown in Figure 3-50.
| Site Type | Used | Fixed | Available | Util$ || Site Type | Used | Fixed | Available | Util$ |
| Slice LUTs* | 6380 | 0| 53200 | 11.99 || Block RAM Tile | 7.5 | 0| 140 | 5.36 |
| LUT as Logic | 4907 | 01 53200 | 9.22 || RAMB3G/FIFO* | 4| 0| 140 | 2.86 |
| LUT as Memory | 1473 | 01 17400 | B.47 || RAMB36EL only | 4 | | | |
| LUT as Distributed RAM | 407 | 0| | || RAMBLE ¢ 98 0| 280 | 2.50 |
[ LUT as Shift Register | 1066 | 01 | Il RAMBIGEL only | 7 | | | |
| Slice Registers | 4945 | 0 106400 | 4.85 |+ + + + + +
| Register as Flip Flop | 4945 | 01 106400 | 4.65 | + t + + + +
|  Register as Latch [ 0] 0| 106400 | 0.00 | |  Site Type | Used | Fixed | Available | Util$ |
| F7 Muxes | 62| 01 26600 | 0.23 | ¢ t t ¢ -
| F& Muxes | 2] 01 13300 | 0.02 | | DSPs | 18| | 8.18 |
t . f - t | | | |

01 220
|

Figure 3-50: WI-FI full chain utilization report
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LTE Chain

4.1 Introduction

LTE is a standard for high-speed wireless communication for mobile phones and
data terminals, based on the GSM/EDGE and UMTS/HSPA technologies. It
increases the capacity and speed using a different radio interface together with core
network improvements. It’s a next generation mobile system from the 3GPP with a
focus on wireless broadband. LTE is based on OFDM with CP in the downlink, and
on SC-FDMA with CP in the uplink. It supports both FDD and TDD duplex modes

for transmission on paired and unpaired spectrum.

4.1.1 Frame structure
The first frame structure is for FDD and the second one is for TDD (Only FDD
is discussed in this thesis). FDD is dividing the frequency into different subcarriers.

The distribution of frequencies is as follow:

e 12 sub-carriers per every sub-channel.
e Sub-channel BW is 180KHz
e Subcarrier BW is 15KHz

The distribution for the frame per one subcarrier is shown in Figure 4-1.

Y

< One radio frame - 10ms

#0 1 #1 #2 2= eemeeccccccccsaees #18 #19
I
e me
‘* OFDM symbols inaslot T TTTmseeen L >
#0 #1 #2 #3 #4 #5 #6
. e
“ 0000 s
< OFDM symbols >~y
a
. '
Cyclic ¥ -
prefix
copying

Figure 4-1: LTE Frame structure for FDD
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The subcarrier is divided into frames. The time for one frame is 10msec. The
frame is divided into sub-frame each with duration 1msec. the sub-frame is divided
into two slots. The slot carries the OFDM symbol where the symbol contains both
the samples plus the CP. The number of bits per sample depends on the modulation
technique used; it may be 16QAM-64QAM ...... etc.

As shown in Figure 4-2, the resources of the LTE are divided horizontally to 12
different frequencies represent the subcarriers of LTE. Each frequency is divided
into small blocks where the small block represents a symbol and every 7 successive

symbols represent a time slot.

COne slat T

-
- -
# -

SC- FDMA symbols

Resource Block

T symbois X 12 subcoarmers (short TP or

# ppmibeis X 12 subcarmers (lang CF

"um SUDCArNeTs
12 subcamers

\ Resource element

L]

Figure 4-2: Resource elements in LTE

To adjust synchronization and to see the effect of channel on data being

transmitted, reference signals are embedded within the data during transmission as
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shown in Figure 4-3. Moreover, the reference signal is used during the usage of

MIMO antennas concept.

12 Subcariers ————————y
1

A

A

R R

R R

—

Figure 4-3: Reference signals positions in LTE frame

4.2 LTE Transmitter PHY Block Diagram

Since in our project we are working on a kit that holds only one port for antenna.
Therefore, the main concept of LTE that consider in MIMO technique is not used.

So, the transmitter block diagram can be represented as shown in Figure 4-4.

Twbo || Rate |—_
encoder Matching [~

1

CRC [ ) Segmentation [

|

SC-FDMA IL Mapper i Scrambler aConcatenanon

'

Figure 4-4: LTE Transmitter full chain blocks

In the following sub-sections, each block of the chain is explained in more details
_illustrating its basic idea, showing its interfaces, connections, inputs & outputs &

presenting its LUT utilization_.
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4.2.1 CRC attachment
The CRC block in LTE is the same as in 3G, stated in section 2.2.1 except the
polynomial generator which is different than 3G. The polynomial generator

equation is

gCRCZ4A(D): D24+ D23+ D18 + D17 + D14 + Dll + DlO + D7+ D6 + D5 + D4+ D3 +D +1
or gcrc24e(D) =D* + D@+ D+ D°+D + 1

or gcrc16(D) =D + D2+ D5 + 1 or gecres(D) =D+ D’ +D*+ D3+ D + 1

However, only gcrcasa(D) is implemented. The top controlled module of CRC is
as shown in Figure 4-5, A detailed CRC module is as shown in Figure 4-6, and the

pins description of the controlled module is shown in Table 4-1.

crc

clk data_out
data_in
enable num_after_crc[13:0]
reset valid_num
valid_in valid_out
top_crc_4g

Figure 4-5: Top controlled CRC

cre

data_out

cre

clk
data_in clk data_out
enable data_in —Lnum_after crc[13:0] num_after_crc[13:0]
reset reset valid_num valid_num
valid_in valid_in valid_out valid_out

top24_crc_4g

top_crc_4g

Figure 4-6: Top controlled CRC from inside

82



Table 4-1: pins description of CRC

PIN Description

data in The input bits to the block
data out The output data of the block

enable This signal indicates that the next block (Segmentation) is

ready to have data
valid_num This signal indicates that the num_after crc is valid
num_after crc | This signal indicates that total number of bits after CRC
valid in This signal indicates that the current data in is valid data
valid out This signal indicates that the current data out is valid
data

Finally, the LUT utilization of the CRC block is shown in Figure 4-7.

e +om———- o e Fomm——— +
| Site Type | Used | Fixed | Available | Utils |
e to———— R et fomm———— +
| Slice LUTs* | g9 | 0 | 53200 | 0.17 |
| LUT as Logic | g9 | 0| 53200 | 0.17 |
| LUT as Memory | 0| 0| 17400 | 0.00 |
| Slice Registers | 79 0| 106400 | 0.07 |
| Register as Flip Flop | 75 | 0| 106400 | 0.07 |
| Register as Latch | 0| 0| 106400 | 0.00 |
| F7 Muxes | 11 0| 26600 | <0.01 |
| F& Muxes | 0| 0| 13300 | 0.00 |
e to————- fomm——— e et to—m——— +

Figure 4-7: CRC LUT utilization

4.2.2 Code block Segmentation
The input bit sequence to the code block segmentation is denoted
by:by, b1, b, .....bg_1. If B is larger than the maximum code block size Z,
segmentation of the input bit sequence is performed and an additional CRC
sequence of L = 24 bits is attached to each code block. The maximum code block
size (Z) is 6144 and the minimum code block size (Z) is 40.

Total number of code blocks C is determined by the following algorithm:

ifB<=Z L=0 Number of code blocks: C =1 B' =B
else L=24 C=[B/(Z-L)] B' =B+C. L
end if
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The bits output from code block segmentation, for C! = 0, are denoted by: Co,
Cr1, Croy ..o , Crr-1) Where 1 is the code block number and K; is the number of bits
for the code block number r.

First segmentation size: K+ = minimum K in Table 2-4 such that C*K > B'

ifC=1 Number of code blocks with length K+ isC+ =1, K. =0,C-=0

else if C > 1 Second segmentation size: K. = max. K such that K < K.
AK=K+-K.

Number of segments of size K: C. = [MJ

AK

Number of segments of size K+: C+=C - C.
Blocks with size K- are out first then Blocks with K+

The sequence Cro, Cr1, Cra, ........ , Cr(kr-L-1) IS used to calculate the
CRC parity bits pro, pri, Pr2, «-eveee... , PrL-1y with the generator
polynomial gcre2as(D) = D+ DZ + D8+ D>+ D + 1.

end if
Filler bits number added to the first block beginning: F = C.*K, + C*K*B

if B <40 Filler bits are added to the beginning of the code block.

Table 4-2: K Values

1 K 1 K 1 k

1 2 5 32 9 512
2 4 6 64 10 1024
3 g 7 128 11 2048
4 16 8 256 12 4096

This table is simplified version of full k table in standard to simplify the
implementation of Segmentation and turbo encoder and also we assumed Z equal
4096 instead of 6144.

For example: if number of input data bits (B) = 8000
The number of blocks (C)=[ 8000 / (4096 —24) ] = 2
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B'=B + C * L=8000+2*24=8048

K+ = minimum K in Table 2-4 Error! Reference source not

found. such that K > 4024 = 4096
K-= maximum K such that K < 4096 = 2048

A K =4096 — 2048 = 2048

8192 — 8048J _

Number of segments of size K.: C. = l 018

Number of segments of size K+: C+=2-0=2

F=2%*4096+0* 2048 8408 = 144

First block (r=0)
144 filler 3928 bits fromb,, to bzgy 24

bits CRC
bits
Second block (r=1)
4072 bits from b3g,g to b7g99 24
CRC
bits

Segmentation is implemented as a FSM where Figure 4-8 shows the state diagram

of

reset
WValid_in=1 Walid_num=1

. <>

add_read Valid_in=0

=add write Count_filler=0 & C=1

First_oneblock
- Count_filler=0 & Cl!=1 & C_ =0
Count_filler=0 & Cl!=1 & C_ =0

encoder_walid_in=—=1

add_read=k -L -F E& r=ic-1)
e
addr_read

add_read=k+ -L -F

== expacted_addr

r=—c-1

Figure 4-8: Segmentation State Diagram

The top controlled module of Segmentation is as shown in Figure 4-9, A detailed
Segmentation module is as shown in Figure 4-10, and the pins description of the

controlled module is shown in Table 4-3.
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segmentation

BI 13:0
clk c[2:0
clk_fifo_seg data_out
data_in
encoder_valid_in k[12:0]
reset r[2:0
valid_in valid_out
valid_num

top_segmentation_4g

Figure 4-9: Top controlled Segmentation

(c[2:0]
B[13:0] crc
clk| data_out_INST_0
== T clk {data_out
clk_fifo_seg 10 —
= & f data_bit data_out ¥
sm 11
reset| _|valid_out wn2
B[13:0]! c[2:0] valid_in’
ok _|data_bit_ac topac24_segmentation_4g
clk_fifo_seg| _|data_out
data_in’ data_in k[12:0] k[12:0]
encoder_valid_in| encoder_valid_in| _ 2:0] r{2:0]
—_— e e — vaid_out_INST_0
valid_in valid_in valid_out yﬁ_ alid_out
valid_num valid_num 1
—1 B 11
fsm_segmentation_4g L2
top_segmentation_4g
Figure 4-10: Top controlled Segmentation from inside
Table 4-3: pins description of Segmentation
Pin Description
data_in Input data to block
valid in Indicates that mput data is valid

encoder valid in

Enable signal to segmentation block

Total number of bits coming from CRC block

valid num Indicates that B is valid
data_out Output data of the indexed block
C Number of blocks
R Index of output code block
K Number of bits per clock
valid_out Indicates that data_out is valid
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Finally, the LUT utilization of the Segmentation block is shown in Figure 4-11.

e Fom——— $om———— e Fo————— +
| Site Type | Used | Fixed | Available | Utils |
Fm +o———— Fom———— e fomm——— +
| Slice LUTs* | 538 | 0| 53200 | 1.01 |
| LUT as Logic | 538 | 0| 53200 | 1.01 |
| LUT as Memory | 0| 0| 17400 | 0.00 |
| Slice Registers | 220 | 0| 106400 | 0.21 |
I Register as Flip Flop | 220 | 0| 106400 | 0.21 |
| Register as Latch | 0 | 0 | 106400 | 0.00 |
| F7 Muxes I 2 | 0| 26600 | <0.01 |
| F&@ Muxes I 1 i 0 | 13300 | <0.01 |
e fom——— $om———— e fom +

Figure 4-11: Segmentation LUT utilization

4.2.3 Turbo Encoder
The scheme of turbo encoder is a PCCC with two 8-state constituent encoders
and one turbo code internal Interleaver. The coding rate of turbo encoder is 1/3. The
structure of turbo encoder is illustrated in Figure 4-12. The transfer function of the
8-state constituent code for the PCCC is:

G(D) = [1,21233] Where go(D) = 1+D%+D? & g1(D) = 1+D+D3
0

The initial value of the shift registers of the 8-state constituent encoders shall be

all zeros when starting to encode the input bits.
The output from the turbo encoder is d\”'= x, & d\"=z, & d?P=z,,

For k=0,1,2, ..., K-1. If the code block to be encoded is the 0-th code block and
the number of filler bits is greater than zero, i.e., F > 0, then the encoder shall set ck
=0,k =0, ..., (F-1) at its input and shall set '’ = NULL, k =0, ..., (F-1) and d'"
=NULL, k=0, ..., (F-1) at its output.

The bits input to the turbo encoder are denoted by co, C1, C2, C3, ..., Ck1, and the
bits output from the first and second 8- state constituent encoders are denoted by zo,
21,722,273, ..., Zx1and zo', 21, 22', Z3', ...., zk-1' respectively. The bits output from the
turbo code internal Interleaver are denoted by co', c1', 2/, €3, ...., ck-1" and these bits
are to be the input to the second 8-state constituent encoder.
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Trellis termination for turbo encoder

Trellis termination is performed by taking the tail bits from the shift

register feedback after all information bits are encoded. Tail bits are padded

after the encoding of information bits.

The first three tail bits shall be used to terminate the first constituent
encoder (upper switch of Figure 4-12 in lower position) while the second
constituent encoder is disabled. The last three tail bits shall be used to

terminate the second constituent encoder (lower switch of Figure 12-4 in

lower position) while the first constituent encoder is disabled.

The transmitted bits for trellis termination shall then be:

0 _ .
di: =Xg. dyy =Zgq-
dy =

49 —x

© e 4O _
K

. -
+2 =Xk Qg3 =Lk

I

[y . (L - ! .
Ik gy =Xgs2. dgiy =2k - dghs = Xk

(2 '

@ _ @ )
Xga1- Ao =Ign- diiy =Xga1- dgis =k

Ik o
1st constituent encoder 2
k
A (] ) >
'+ 'le_
Ct ~
}4. df » D » D /L: D
d—ﬁ
Output
Input
Turbo code internal i
intereaver 2nd constituent encoder Z
Output
»(F) »P—>
A
c; T
}& (-TI-) » D ——» D /L D
()«
X

\V

Figure 4-12: Structure of rate 1/3 turbo encoder
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Turbo Code Internal Interleaver

The bits input to the turbo code internal Interleaver are denoted by co, C1,
..., Ck where K is the number of input bits. The bits output from the turbo

code internal Interleaver are denoted by co', c1', C2, C3', ..., ck-1.
The relationship between the input and output bits is as follows:
C'i’= Cl_[(i)a i:0, 1, ey (K-l)

where the relationship between the output index i and the input index [ [(i)

satisfies the following quadratic form: [](i) = (f1*i + f1*i%) mod K.

The parameters depend on the block size K and are summarized in Figure
4-14. The turbo encoder with even K numbers thus the division would be

synthesizable.

The top controlled module of Segmentation is as shown in Figure 4-13, and the
pins description of the controlled module is shown in Table 4-4.

turbo
ck| D[12:0]
c1[2:0] i c[2:0]
data_in| do
enable| dl
k[12:0]| d2
reset| finished
rif2:0]] interleaver_wait
valid_in| r[2:0]
valid_out

top_turbo_4g
Figure 4-13: Top controlled Turbo Encoder
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Figure 4-14: Turbo code internal Interleaver parameters
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Table 4-4: pins description of Turbo Encoder

Pin Description
C This signal indicates the number of code blocks
cl This signal indicates the number of code blocks from the
segmentation
D This signal indicates the block size after turbo encoder
do The output data of the block [Turbo output (0)]
dl The output data of the block [Turbo output (1)]
d2 The output data of the block [Turbo output (2)]
data_in The input data to the block
enable | This signal indicates that the next block (Rate matching) is ready to
have data
Finished This signal indicates that the Encoder is ready to have data
k This signal indicates the block size of data
T This signal indicates the block index as output
rl This signal indicates the block index as input
valid in This signal indicates that current data in is valid
valid out This signal indicates that current data out is valid

Finally, the LUT utilization of the Turbo Encoder block is shown in Figure 4-15.

P +———— o Fmm e o +
| Site Type | Used | Fixed | Availabkle | TUtil% |
b - oo mmmm - +
| S5lice LUTs* | 438 | o 53200 | 0.82 |
| LUT as Logic | 438 | ol 53200 | 0.82 |
| LUT a3 Memory | ol ol 17400 | 0.00 |
| Slice Begiaters | 211 | ol 106400 | 0.20 |
| Register as Flip Flop | 173 | o1 106400 | 0O.lg |
| Begister as Latch | 38 | a | 106400 | 0.04 |
| EF7 Muxes | 0] 0] 2ae600 | 0.00 |
| F& Muxes | a | a | 13300 | Q.00 |
e e T - oo mmmm - +

Figure 4-15: Turbo Encoder LUT utilization

4.2.4 Rate matching for turbo coded transport channels
The rate matching for turbo coded transport channels is defined per coded block
and consists of interleaving the three information bit streams d,((o), d,((l) and d,((z),

followed by the collection of bits and the generation of a circular buffer as depicted

in Figure 16-4.
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The bit stream d,(\,_o) is interleaved according to the sub-block Interleaver

defined in section 4.2.41 with an output sequence defined as

S L C U C
The bit stream d,(\,_l) is interleaved according to the sub-block Interleaver

defined in section 4.2.4.1 with an output sequence defined as

(1 _f1) (1) (1)
Vp oWy sy e Vg g

The bit stream d,(\,_z) is interleaved according to the sub-block Interleaver

defined in section 4.2.4.1 with an output sequence defined as

(zy _(2) - (2} (zy

¥y ,vl‘ 2Ty """""”.J-:,!—r
0) (0
d! v
k } Sub-block koo
interleaver T
virtual circular
buffer
1) i) €
d’ y - y - ;
k Sub-block Vi o Bit Wi Bit selection
] interleaver "1 collection and pruning )
2 (2)
d® v
k Sub-block k
) interleaver )

Figure 4-16: Rate matching for turbo coded transport channels

4.2.4.1 Sub-block Interleaver

The bits input to the block Interleaver are denoted by
dP,d®,a?, ......,dP  where D is the number of bits. The output bit
sequence from the block interleaver is derived as follows:

1. Assign CIS ,i0ck = 32 to be the number of columns of the matrix. The
columns of the matrix are numbered 0,1,2, .....,CT¢ . ,,cx — 1 from left to
right.

2. Determine the number of rows of the matrix RIS, ;... by finding minimum

integer RTC, .10, Such that:

TC TC
D<= Rsubblock * Usubblock
The rows of rectangular matrix are numbered 0,1,2, ....., RIS, — 1 from
top to bottom.
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3-R_sT1fbblock * Coepprock > D, then Np = RIG ok * Coipproc — D dummy
bits are padded such that y, = <NULL> fork = 0,1,2,.....,Np — 1. Then,

YNpop = d,(f) ,k=0,1, ..., D-1, and the bit sequence y, is written into the

RIS piocke * CC p1ock Matrix row by row starting with bit y0 in column 0 of
row O:

Yo ) ¥ Yo
“aubblock
Y i Y Y e Y, e
Caubblock C mbﬁ!uxk"’l c mbh.'ari.""g 2 aibblock -1
Yoo i Yoo I Vi .1c Vo aC
(Rsubblock D Caubblock (Rubblock 1*Cagblack 1 (RabbtockD*Caubblock+2 (Rsubblock*C subblock 1)

4. For d™® and d{": Perform the inter-column permutation for the matrix based
on the pattern P(j) that is shown in Table 5-4, where P(j) is the original
column position of the j™ permuted column. After permutation of the

columns, the inter-column permuted (RZS, 1iock * CoSopiock ) Matrix is equal
to

Ye() Vg Ve Yoot

el AIC
F J((' subblock _I]H'.mbf)kn'i'

Yo oneTC Yo otc Yoo etC
P(O)H' subblock '”(1)+(‘ mbblock ")(2]_('.mbmri'

y 1 v Y v qC y i 0 Yo i T
Py _(x\rrhbu'm k_l)ﬂ subblock K 1]-(R.thl'm'k_1)K('.wa)h’h'.(' PO Rbbiock It subblack fl(t'.mﬁf)\'m'& Ik Rubblock C subblack

5. The output of the block Interleaver is the bit sequence read out column by

column from the inter-column permuted (RIS, i0ck * CoSobiock ) Matrix.

The bits after sub-block interleaving are denoted by

oo o vl where v(Y  corresponds 10 o), v

— T ; T
corresponds to yp(0)+ .. and kn - (Rsubb!ock * C.«mbb!ock:]-

Cabblock
).
Ford,™:

1. The output of the sub-block Interleaver is denoted by

e I I 2 (2 _
Vg sVy sV seeee eV g Where v = ¥oq and where

k
(k) = (F‘ (Flaar (n‘—)) +CI8 oo * (kmod RIS, )+ 1)mad k.,
subblock

The permutation function P is defined in Table 4-5.

Table 4-5: Inter-column permutation pattern for sub-block Interleaver

Number of columns Inter-column permutation pattern
\1C wie )
¢ subblock <P (0> P (1) ---- P (( .\'ubhl’m‘k_l) -

<0, 16,8, 24,4,20,12, 28, 2,18, 10, 26, 6, 22, 14, 30,

52 1,17,9,25,5,21,183,29,3,19,11,27,7,23, 15,31 >
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4.2.4.2 Bit Collection
The input bits to the bit collection block is the output bits from the three sub-
block Interleaver and the block output can be represented by virtual circular buffer

as shown in Figure 4-16.

The circular buffer of length &, = 3x_ for the r' coded block is generated as

follows:

We = v¥ Fork=01, ...k, —1

T

Wi sz = vy FOrk=01,...K, —1

Wi +2041 = ”::2} Fork=o01, ...k, —1

4.2.4.3 Bit selection
It is the last block in the block diagram of the rate matching, the block has its
input from the output of the bit collection as shown in Figure 4-16 and it is used to
remove the dummy bits from the bit collection output according to the following

calculations:

Denote the soft buffer size for the r-th code block by N, bits. For UL-SCH,
MCH, SL-SCH and SL-DCH transport channels N, = K,,.

Define by G the total number of bits available for the transmission of one

transport block.

Denoting by E the rate matching output sequence length for the r'" coded block,
and rv;4, the redundancy version number for this transmission (rv;4, = 0), the rate

matching output bit sequenceise, , k=0, 1, ..., E-1.

Set G' = G/(N;.Q,,) where Q,, is equal to 2 for QPSK, 4 for 16QAM, 6 for
64QAM and 8 for 256QAM and where N, = 2 for transmit diversity.

Set y =G' mod C , where C is the number of code blocks from segmentation

section.
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fr=C—-y—1 Set E = N,. Q,,. Floor(G'/C)
else Set E = N;. Q.. ceil(G'/C)

end if

Set kO = Rglfbblock' (2 Ceil (le—(:b> . T'Ul-dx + 2)

subblock
Setk=0andj=0
while k <E

If W(k0+j)mod Ncp # < NULL >

€x = W(ky+j)mod Ngp,

k=k+1
endif
j=j+1
end while

The top controlled module of Rate matching is as shown in Figure 4-17, and the

pins description of the controlled module is shown in Table 4-6.

rateMatching
|
C[15:0
D[12:0]]
V=B"0000000000000010" N_prb[15:0
V=B"0010" Qm[3:0
ck Col15:0]
do concat_wait
di data_out
d2 finished
enable valid_out
interleaver_wait
r[15:0
reset
valid_in

top_rateMatching_4g
Figure 4-17: Top controlled Rate matching
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Table 4-6: pins description of Rate matching

Fin Description
do.d1.d2 Input data from encoder
valid in Indicates that mput data is valid
enable Enable signal
D Total number in code block after encoding
data_out Output data of the indexed block
C.Co Number of code blocks
r Index of input code block

interleaver wait | Indicates that data in should be neglected as
encoder 18 busy

valid out Indicates that output data is valid
concat wait Indicates that data out should be neglected as
rate matching is busy
finished Block finished and can receive new data
Qm Indicates number of bits per symbol (Ex.: Qm =
2 1f QPSK 1s used)
N prb Number of resource blocks assigned to user

Finally, the LUT utilization of the Rate matching block is shown in Figure 4-18.

et fom———- pomm———— fomm fmm———— -
I Site Type | Used | Fixed | Available | Utils |
e fom———- Fomm————- e fom - -
| Slice LUTs* | 3627 | 0| 53200 | 6&.82 |
| LUT as Logic | 3627 | 0| 53200 | &.82 |
| LUT as Memory | 01 01 17400 | 0.00 |
| Slice Registers | 587 | 0| 106400 | 0.55 |
I Register as Flip Flop | 555 | 0| 106400 | 0.52 |
I Register as Latch I 32 | 01 106400 | 0.03 |
| F7 Muxes I 0| 0| 26600 | 0.00 |
| F& Muxes [ 0| 0| 13300 | 0.00 |
Fom e o tomm e -

Figure 4-18: Rate matching LUT utilization
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4.2.5 Code block concatenation

The block design is the same as that described in section 2.2.4.

The top controlled module of concatenation is as shown in Figure 4-19, and the

pins description of the controlled module is shown in Table 4-7.
CBC
CilS:O L

clk

concat wait| | data_out

data_in L _finished
enable valid_out
reset

valid_in

top_codeBlockConcatenation_4g
Figure 4-19: Top controlled Concatenation

Table 4-7: pins description of Concatenation

PIN Description
C This signal indicates the number of code blocks from the
segmentation block
data in The nput bits to the block
data out The output bits of the block
enable This signal indicates that the next block ( Scrambler ) is
ready to have data
finished This signal indicates that the Concatenation block is
ready to have a new frame
valid in This signal indicates that current data in is valid data
valid out This signal indicates that current data_out 1s valid data

Finally, the LUT utilization of the Concatenation block is shown in Figure 4-20.

e Fo———— fom————- Fomm e +
| Site Type | Used | Fixed | Available | Util$ |
e fo———— Fm————— Fomm Fo————— +
| Slice LUTIs* | 110 | 0| 53200 | 0.21 |
| LUT as Logic | 110 | 0| 53200 | 0.21 |
| LUT as Memory | 0| 0| 17400 | 0.00 |
| Slice Registers | 73 | 0| 106400 | 0.07 |
| Register as Flip Flop | 73 | 0| 106400 | 0.07 |
| Register as Latch | 0| 0| 106400 | 0.00 |
| F7 Muxes | 01 01 26600 | 0.00 |
| F& Muxes | 0| 0| 13300 | 0.00 |
Fom o Fomm——— Fomm fomm +

Figure 4-20: Concatenation LUT utilization
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4.2.6 Scrambler
Scrambler is used to randomize the bits, prevent long sequences of 1s or 0s to

keep synchronization.

For each code-word g, the block of bits b@(0), ..., b@ (Mit®-1), where Mpit@ is
the number of bits transmitted in code-word g on the physical uplink shared channel
in one sub-frame, shall be scrambled with a UE-specific scrambling sequence prior
to modulation, resulting in a block of scrambled bits b™@(0), ..., b™@ (Mpi®-1)

according to the following pseudo code:

Seti=0
While i < M@
if b@(i) =x // ACK/INACK or Rank Indication placeholder bits
b~(q)(i) =1
else

if b@@{)=y // ACK/NACK or Rank Indication repetition placeholder
/I bits

b~@(i) = b™@)(j-1)

else  // Data or channel quality coded bits, Rank Indication coded bits
/I or ACK/NACK coded bits

b~@(i) = (b@(i) + c@(i)) mod 2
end if
end if
=i+l

end while

For simplicity we assume that b™@(i) = (b@(i) + c@(i)) mod 2.
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The Pseudo-random sequences here are defined by a length-31 Gold sequence.

The output sequence c(n) of length Mpn, wheren =0, 1, ..., Mpn -1, is defined by
c(n) = (x1(n + N¢) + x2(n + N¢)) mod 2
x1(n + 31) = (xa(n + 3) + x1(n)) mod 2
X2(n + 31) = (X2(n + 3) + X2(n + 2) + X2(n + 1) + X2(n)) mod 2

where N¢ = 1600 and the first m-sequence shall be initialized with x1(0) =1, x1(n)
=0,n=1, 2, ..., 30. The initialization of the second m-sequence is denoted by Cinit
where Cinit =52, x, (i) * 2¢ with the value depending on the application of the

sequence. Finally, the scrambling sequence generator shall be initialized with
Cinit = NrnT1 . 214 + q. 213 + floor(ns/ 2) . 2° + Nip

At the start of each sub-frame where nrnTi corresponds to the RNTI associated

with the PUSCH transmission, ns is the index of the sub-frame & Np is the cell ID.

The top controlled module of Scrambler is as shown in Figure 4-21, A detailed
Scrambler module is as shown in Figure 4-22, and the pins description of the
controlled module is shown in Table 4-8.

scrambler

V=B"0001" N_ID_Cell[3:0]

V=B"000000001" N_Sub_fr{8:0]

V=B"0000000000000001" RNTI[15:0]

clk — data_out
data_in finished
enable valid_out

reset

valid_in

valid_in_C

top_scrambler_4g

Figure 4-21: Top controlled Scrambler
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scrambler

-
buT
V=B"0001" N_ID_Cell[3:0] V=B"0001" N_ID Ce_ll@_

V=B"000000001" N_Sub_fr(8:0] N_Sub_fr{7:0]
V=B"0000000000000001" RNTI[15:0] V=B"0000000000000001" RNTI[15:0] data_out data_out
ck ok finished finished
data_in data_in valid_out valid_out

enable reset

reset ‘ valid_in

valid_in ’ valid_in_C

valid_in_C ‘ scrambler_scrambler_4g

top_scrambler_4g

Figure 4-22: Top controlled Scrambler from inside

Table 4-8: pins description of Scrambler

Pin Description
data_in Input data from rate matching
valid_in Indicates that input data is valid
N ID Cell, MAC layer parameters
RNTLN Sub fr
data out Output data of the indexed block
valid in ¢ Indicates that MAC layer parameters are valid
valid out Indicates that output data is valid
Finished Block finished and can receive new data
N prb Number of resource blocks assigned to user
Enable Enable signal
Finally, the LUT utilization of the Scrambler block is shown in Figure 4-23.
ettt Fo————- $omm - Fomm e Fomm—— - +
| Site Type | Used | Fixed | Available | Util$ |
o tmmm—mm mmmm e Hommmm tmmm e +
| Slice LUTs* | 441 | 01 53200 | 0.83 |
| LUT as Legic | 441 | 0| 53200 | 0.83 |
| LUT as Memory | 0| 0| 17400 | 0.00 |
| Slice Registers | 222 | 01 106400 | 0.21 |
| Register as Flip Flop | 222 | 0| 106400 | 0.21 |
| Register as Latch | 0| 0| 106400 | 0.00 |
| F7 Muxes I 0| 0| 26600 | 0.00 |
| F& Muxes I 0| 0| 13300 | 0.00 |
e et tomm——— Fommm e Fommmm tmmm e +

Figure 4-23: Scrambler LUT utilization
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4.2.7 Mapper
The block design is the same as that described in section 2.2.7. the only

differences exist in that the used modulation scheme is QPSK not BPSK.

The top controlled module of Mapper is as shown in Figure 4-24, A detailed
Mapper module is as shown in Figure 4-25, and the pins description of the
controlled module is shown in Table 4-9.

top_mapper_lte

clk finished
data_in last_sym
enable mod_out_im[13:0]
reset mod_out_re[13:0]
valid_in
valid_out

topControlled_gpskMapper_4g
Figure 4-24: Top controlled Mapper

top_mapper_lte
ck| '
fifo finished
a— llast_sym
data_in da!afi: z:ftz(: ‘ apper
enable| reset] llast_sym_reg DOBDO,
_ feset] reset_flag_reg e_o ck Imod_out_im[13:0
valid_in| valid_in |valid_out_fifo o out_shift_reg_reg[0]i 2| Imod_out re[13:0
Jwrite_address reg[13] out_shift_reg_reg(0]_i 2 et
mapper_fifo_4g valid_out fifo| ‘ o
fR Q top_mapper_dg L
FDCE
topControlled_qpskMapper_dg
Figure 4-25: Top controlled Mapper from inside
Table 4-9: pins description of Mapper
Pin Description
data_in The mnput data to the block
enable This signal indicates that the next block (SC-FDMA) is ready to
have data
finished This signal indicates that the Mapper 1s ready to have data
last sym | This signal indicates that these patch of symbols are the last to be
processed
mod out im The imaginary data output of the block
mod out re The real data output of the block
valid in This signal indicates that the input data is valid data
valid out This signal indicates that the output data 1s valid data
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Finally, the LUT utilization of the Mapper block is shown in Figure 4-26.

e e o Fom Fomm +
| Site Type | Used | Fixed | Available | Utils |
et Fomm—— ettt Fom e Fomm +
| Slice LUTs* | g0 | 0 | 53200 | 0.15 |
| LUT as Logic | g0 | 0 | 53200 | 0.15 |
| LUT as Memory | 0| 0| 17400 | 0.00 |
| Slice Registers | €9 | 0| 106400 | 0.08 |
| Register as Flip Flop | 69 | 0| 106400 | 0.06 |
| Register as Latch I 0| 0| 106400 | 0.00 |
| F7 Muxes | 0| 0| 26600 | 0.00 |
| F& Muxes | 0 | 0 | 13300 | 0.00 |
o o fomm e Fomm———— +

Figure 4-26: Mapper LUT utilization

4.2.8 SC-FDMA
LTE uplink uses SC-FDMA which is a modified form of the OFDM with similar
throughput performance and complexity, SC-FDMA is viewed as DFT-coded
OFDM where time-domain symbols are transformed to frequency domain symbols
and then go through the standard OFDM modulation as shown in Figure 4-27.

e 12x15K=180KHz ) Frequency

12x15K=180KHz
Multiple Subcarriers Single Carrier
Resource Block Resource Block

Figure 4-27: OFDMA vs SC-FDMA

SC-FDMA has all the advantages of OFDM like robustness against multi-path
signal propagation, the block diagram for the SC-FDMA is shown in Figure 4-28.

—\|  Sub-Carrier -
—/| Mapping
Figure 4-28: SC-FDMA block diagram

Symbols 1 DFT IFFT [ CP Insertion =)
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The IFFT subcarriers are grouped into sets of 12 sub-carriers, each group is called
a resource block. The main advantage of SC-FDMA is the low PAPR of the
transmitted signal, PAPR is a big concern for user equipment, as PAPR relates to
the power amplifier efficiency as low PAPR allows the power amplifier to operate
close to the saturation region resulting in high efficiency that is why SC-FDMA is

the preferred technology for user terminals.

we chose the 128-point IFFT to facilitate our testing process, we also chose the
extended cyclic prefix. So, for our 128 point IFFT we have 32 cyclic prefix and our
sampling frequency is 1.92 MHz.

The top controlled module of SC-FDMA is as shown in Figure 4-29, A detailed
SC-FDMA module is as shown in Figure 4-30, and the pins description of the
controlled module is the same as that in section 3.2.6 where the different pins are
start_rb and num_of rbs, start_rb defines the starting resource block that will be
used, and num_of rbs defines the number of resource blocks to use and the
IFFT clk is 1.92 MHz.

sc_fdma

clk

clk_fast
data_in_im[13:0 data_out_im[11:0
data_in_re[13:0 data_out _re[11:0

last_sym finished

V=B"010" num_of_rbs[2:0 valid_out

V=B"001" rbs_start[2:0]

reset

valid_in

top_ofdm_4g

Figure 4-29: Top controlled SC-FDMA

sc_fdma

B8
ifft_module
clk clk
clk_fast clk_fast
data_in_im[13:0] data_in_im[13:0] __|data_out im[11:0] data_out_im[11:0]
data_in_re[13:0] data_in_re[13:0] —ldata_ou t re[11:0] data_out_re[11:0]
last_sym last_sym finished finished
V=B"010" num_of_rbs[2:0] V=B"010" num_of _rbs[2:0] valid_out valid_out
V=B"001" rbs_start[2:0] V=B"001" rbs_start[2:0]
reset reset
valid_in valid_in
LTE_mod_top

top_ofdm_4g

Figure 4-30: Top controlled SC-FDMA from inside
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We notice from Figure 4-29 that data_in_re, data_in_im is 14-bit width (5 bits
for the integer part and 9 for the fraction part), this is because the fixation problem
to reduce the error which will be illustrated Chapter 6. We also notice that the
data_out_re, data_out_im are 12-bit width and not 14 as the input and this is because
the DFT and IFFT cores we used are generated for 12-bit width and to be used for
14-bit width we have to regenerate the cores again which need license for that. So,
we generate 14-bit width data from the de-Mapper and take the most 12 bit and this
is also illustrated in Chapter 6.

In our implementation, we used Xilinx IP LogiCORE Discrete Fourier
Transform, the pin interface is shown Figure 4-31, the DFT module transform size
is reconfigurable by the pin called size, the desired transformation size is decided
as the required number of resource blocks the core indicates that it is ready to accept
a new frame of data by setting RFFD high. When RFFD is high, data input may be
started by setting FD_IN high for one or more cycles. Data is input via XN_RE and
XN_IM. It should be provided over N cycles without interruption. Data input and
output are complex and in natural order. FD_OUT signals when the core starts data
output and DATA_VALID signals when data on XK_RE and XK_IM is valid.

DFT Engine
FORWARD -
SIZE - * DATA VALID
XN RE z 3 XK RE
XN_IM XK _IM
FD IN -
RFFD = FD OUT

oLk —=] 3l £ :
SCLA —e Intermediate I
CE—» | buffer

Figure 4-31: The pin interface of the used Xilinx IP LogiCORE DFT

Note that FD_IN is ignored while RFFD is low, and so FD_IN can be kept high
for multiple cycles. FD_IN is accepted on the first cycle that RFFD is high, if
FD_IN is set permanently high, then the core will start a new frame of data input as

soon as the core is ready, this arrangement provides maximum transform
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throughput. Alternatively, RFFD may be connected directly to FD_IN to achieve
the same behavior. The first element of input data should be provided on the same
cycle that the core starts to receive data, that is, the first cycle in which both FD_IN
and RFFD are high, the IFFT module is explained more in Section 3.3.2.

The encoding of the size parameter that we used is shown in Table 4-10.

Table 4-10: The size parameter Encoding

Time to
Process
Slze N M p Q Latency C, | Perlod Cy | 1200
(Blnary) (Radix-2) | (Radix-3) | (Radix-5) | Cycles Cycles | Polnts, us
(at 245.76
MHz)
0 12 2 1 75 62 25.28
1 24 3 1 122 109 2222
2 36 2 2 152 130 18.90
3 48 4 1 178 163 16.63

Our SC-FDMA module contains a 48-register memory, reconfigurable DFT
module and 128-point IFFT module, when the mapper is ready to send data we
buffer the symbols in the memory then we set the DFT size to the required size,
then we start inputting symbols to the DFT and after it finishes it writes its output
to the memory then we input the symbols for the IFFT. Each LTE frames consists
of 6 sub frames, the third sub frame of each frame is dedicated for demodulation
reference signal, in our implementation we assumed the demodulation reference

signal to be all ones, and it should be improved in later designs.

Finally, the LUT utilization of the SC-FDMA block is shown in Figure 4-32.

e Fom———— Fomm e Fomm——— +
| Site Type | Used | Fixed | Available | Utils |
ittt $om———- Fomm———- e Fomm———- +
| Slice LUTs* | 2620 | o | 53200 | 4.92 |
| LUT as Logic | 1773 | 0| 53200 | .33 |
| LUT as Memory | 847 | 0| 17400 | 4.87 |
| LUT as Distributed RAM | 176 | 01 | |
| LUT as Shift Register | 671 | 0| | |
| Slice Registers | 2350 | 0| 106400 | 2.21 |
| Register as Flip Flop | 2350 | 0| 106400 | 2.21 |
| Register as Latch | 0 | 0 | 106400 | 0.00 |
| F7 Muxes | 102 | 0| 26600 | 0.38 |
| F& Muxes | 0| 0| 13300 | 0.00 |
ettt o tom———— fomm tom———— +

Figure 4-32: SC-FDMA LUT utilization

105



The LUT utilization of the LTE transmitter full chain is shown in Figure 4-33.

R Fom———- fomm Fomm Fom———— +
| Site Type | Used | Fixed | Available | Util$ |
et o o o Fo—m +
| Slice LUTs* | 8179 | 01 53200 | 15.37 |
| LUT as Logic | 7332 | 0|1 53200 | 13.78 |
| LUT as Memory | 847 | 0| 17400 | 4.87 |
| LUT as Distributed RAM | 176 | 0| | I
| LUT as Shift Register | &71 | 0| | |
| Slice Registers | 3846 | 0| 106400 | 3.61 |
| Register as Flip Flop | 3776 | 0| 106400 | 3.55 |
| Register as Latch | 70 | 0| 106400 | 0.07 |
| F7 Muxes | 107 | 0| 26600 | 0.40 |
| F& Muxes | 0|l 01 13300 | 0.00 |
e Fom————- fomm———- Fomm e pomm——— +

Figure 4-33: LTE transmitter full chain LUT utilization

4.3 LTE Receiver PHY Block Diagram

The main target of the receiver is to retrieve the same data send before transmitter

S0 it consists of the blocks shown in Figure 4-34.

LIE De-Mapper | De- | be
De-Modulator e-Miappe Scrambler Concatenation

Rate De-

De-CRC De-Segmentation | Decoder .
Matching

Figure 4-34: LTE Receiver full chain blocks

4.3.1 LTE De-modulator
LTE demodulator is the first block in the receiving chain. It is supposed to counter
the effect of SC-FDMA in transmitter. SC-FDMA is implemented by the block

diagram shown in Figure 4-29.

The algorithm of operation of the block can be simply explained using the flow

chart in Figure 4-35.

The top controlled module of LTE De-modulator is as shown in Figure 4-36, and

the pins description of the controlled module is shown in Table 4-11.
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Idle state

Multiply output of IDFT by blk_exp
and divide by N=24 and output data

Save data

Multiply by N=128 input data to
IDFT

Start reading from memory at address 32 to
remove CP and set start =1

()
o
Effes
e =
g
o

FFT_finished_w
=1?

Save output of FFT

Figure 4-35: LTE De-modulator flow chart

LTE_demad_DUT

|
oik_div
datain_im{11:0 _daaout im{11:0]
datan 11: Joxaout ref11:0]
ast_symbol [rnsshaed
num_of 20| vakd_out
rbs _stant{2:0]]
reset
valid_in
LTE_demod_top

Figure 4-36: Top controlled LTE De-modulator

Table 4-11: pins description of LTE De-modulator

Pin Description
clk div Slow clock for operation of IFFT = 50 nsec
datain_im The imaginary data input to the block
datain_re The real data input to the block
dataout_im The imaginary data output from the block
dataout re The real data output from the block
finished This signal indicates that the LTE de-Modulator is ready to have
data
last_symbol | This signal indicates that these patch of symbols are the last to be
processed
num_of rbs | This signal indicates the number of resource blocks mapped to the
user
rbs_start This signal indicates the starting resource block of the user
valid in This signal indicates that the input data is valid data
valid_out This signal indicates that the output data is valid data
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Finally, the LUT utilization of the LTE De-modulator block is shown in Figure
4-37.

o Fomm et Fomm e fommm 4
| Site Type | Used | Fixed | Available | Utils |
o +om——— o e o 4
| Slice LUTs* | 2777 | 0| 53200 | 5.22 |
I LUT as Logic | 189¢ | 0| 53200 | 3.56 |
| LUT as Memory | 881 | 0| 17400 | 5.06 |
| LUT as Distributed RAM | 216 | 0| | |
| LUT as Shift Register | 665 | 0| | |
| Slice Registers | 2232 | 0| 106400 | 2.10 |
| Register as Flip Flop | 2231 | 0| 106400 | 2.10 |
| Register as Latch | X | 0| 106400 | <0.01 |
| F7 Muxes | 90 | 0| 26600 | 0.34 |
| F& Muxes I 0| 0| 13300 | 0.00 |
L N T S - . - 4

Figure 4-37: LTE De-modulator LUT utilization

4.3.2 De-Mapper
According to the 3GPP standard, LTE supports the following modulation

schemes:
« QPSK *16-QAM
* 64-QAM *256-QAM
However, as explained in section 4.2.7, only QPSK modulation scheme is

implemented with the following mapping described in Table 4-12.

Table 4-12: QPSK modulation scheme
b(@),b(i+1) I Q

00 /2 | /2
01 145 | ~1f+Z
10 ~1/\2 | V2
11 A3 | ~12

In the LTE receiver chain, data is processed in soft form (symbols), at which the

hard decision is done in decoder. Hence, the de-Mapper implemented should
support soft in and soft out data. At which the de-Mapper is supposed to calculate

the log likelihood probability of the soft input according to this equation:

d0
P(bit = 1|input) = logloa
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At which d0 and d1 are the summation of distances from all symbols containing
bit = 0 and the summation of distances from all symbols containing bit = 1

respectively as shown in Figure 4-38.

do dl

Figure 4-38: De-Mapper Soft Decision Concept

ao ao
According to this equation, if d0 > d1 = ke 1->logqo ke 0.

Positive Probability are more likely to be 1. As the number is more positive, it is
more likely to be 1 than 0. Similarly, it can be proven that negative Probability are
more likely to be 0 than 1.

For simplicity in the implemented de-Mapper, since the 1st bit is only dependent
on the in-phase component and the 2nd bit is only dependent on the quadrature
component. Output data will represent the same value of the symbol multiplied by
either 1 or -1 with respect to the required signs of P (1) or P (0).

The top controlled module of De-Mapper is as shown in Figure 4-39, and the pins
description of the controlled module is shown in Table 4-13.

U1

ck|

data in _im[11:0]

data in_re[11:0 data out[11:0]
enable| _|valid_out

last_sym}|
reset|
valid_in|

top_demapper_gpsk_4g
Figure 4-39: Top controlled De-Mapper
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Table 4-13: pins description of De-Mapper

Pin Description
data in im The imaginary data input to the block
data in re The real data input to the block
data_out The data output from the block
enable | This signal indicates that the next block (De-Scrambler) 1s ready to
have data
last sym | This signal indicates that these patch of symbols are the last to be
processed
valid in This signal indicates that the input data is valid data
valid out This signal indicates that the output data is valid data

Finally, the LUT utilization of the De-Mapper block is shown in Figure 4-40.

Site Type | Used | Fixed | Available | Util$ |
—————————————————————————— e e
Slice LUIs* | g1 | 0| 53200 | 0.15 |
LUT as Logic | g1 | 0| 53200 | 0.1S5 |
LUT as Memory | 0| 0| 17400 | 0.00 |
Slice Registers | 65 | 0| 106400 | 0.086 |
Register as Flip Flop | 65 | 0| 106400 | 0.08& |
Register as Latch | g} 0| 106400 | 0.00 |

F7 Muxes | 0| 0| 26600 | 0.00 |
F& Muxes | 0| 0| 13300 | 0.00 |

Figure 4-40: De-Mapper LUT utilization

4.3.3 De-Scrambler
Typical de-Scrambling in receiver chains, should have the same implementation
of the scrambling block of the transmitter. However, in case of LTE chain, the data

is processed in symbols. So, bitwise operation on the symbol is not possible.

In this case, data will be multiplied by -1 (2°s compliment is performed) in case
the polynomial output is 1. It will pass unchanged if the polynomial output is 0.
This can be illustrated by the following example in Figure 4-41.

* Example:

* Scramblerinput: 1010 * Descrambler Input: P(1) P(0) P(1) P(0)
A

* PolynomialGen.: 1001 * Polynomial Gen.: 1 0 0 1

* Scrambler Output:0 0 1 1 * Descrambler Output: -P(1) P(0) P(1) -P(0)

Figure 4-41: De-Scrambler operation
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The top controlled module of De-Scrambler is as shown in Figure 4-42, and the

pins description of the controlled module is shown in Table 4-14.

DUT
N_ID Ceil[3:0
N_Sub fr[8:0] B[13:0]
RNTI[15:0] _data out| 11:0|
clk finished
data in[11:0] last_bit
reset valid_out
valid_in
valid_in_C
descrambler_descrambler_4g

Figure 4-42: Top controlled De-Scrambler

Table 4-14: pins description of De-Scrambler

Pin Description
B Number of output bits by the block
data_in The soft input data to the block
data out The data output from the block
finished This signal indicates that the De-Scrambler is ready to have data
last bit The last symbol outputted by the block
N ID Cell| Parameter sent by MAC layer to help in calculating scrambling
polynomial
N Sub fr Parameter sent by MAC layer to help in calculating scrambling
polynomial
RNTI Parameter sent by MAC layer to help in calculating scrambling
polynomial
valid in This signal indicates that the input data is valid data
valid in C valid in for C_initial parameters
valid out This signal indicates that the output data is valid data

Finally, the LUT utilization of the De-Scrambler block is shown in Figure 4-43.

I o T s . 2 oo > =t
| Site Type | Used | Fixed | Available | Util$ |
R e Fomm——— Fommm——— fom o +
| Slice LUTs* | 489 | 0| 53200 | 0.92 |
| LUT as Logic | 489 | 01 53200 | 0.92 |
| LUT as Memory | 0| 0| 17400 | 0.00 |
| Slice Registers | 270 | 0| 106400 | 0.25 |
| Register as Flip Flop | 270 | 0| 106400 | 0.25 |
| Register as Latch | 0| 0| 106400 | 0.00 |
| F7 Muxes | 0| 01 26600 | 0.00 |
| F& Muxes I 0| 0| 13300 | 0.00 |
o e o o +om———— +

Figure 4-43: De-Scrambler LUT utilization
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4.3.4 De-Concatenation
This block is the inverse of the concatenation block which is has same function

of the segmentation block with a few modifications to the method of operation to

adapt to the puncturing that took place in rate matching as well as the symbol

processing.

4.3.5 De-Segmentation
De-Segmentation has the same design & implementation as the concatenation
block explained in section 2.2.4, the only difference exists in that it contains a De-
CRC block inside it to contour the effect of CRC block found in the Segmentation

block explained in section 4.2.2.

The top controlled module of De-Segmentation is as shown in Figure 4-44, and

the pins description of the controlled module is shown in Table 4-15.

desegmentation_4g

block_size| 12:0| ke

c[2:0

clk
data_bits[15:0]] __|data_out

data_in| _|valid_out _

enable|

reset|

valid_in

top_desegmentation
Figure 4-44: Top controlled De-Segmentation

Table 4-14: pins description of De-Segmentation

Pin Description
C It 1s the number of code blocks computed by de-concatenation
(decoder forwards it to the de-segmentation)

data_in The input data to the block

data_out The output data of the block

enable | This signal indicates that the next block (De-CRC) is ready to have

data

finished | This signal indicates that the De-Segmentation is ready to have data
valid in This signal indicates that current data in is valid
valid out This signal indicates that current data_out 1s valid
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Finally, the LUT utilization of the De-Segmentation block is shown in Figure 4-
45.

o fom——- e R $omm -
| Site Type | Used | Fixed | Available | Utils |
et P o e e $om———— +
| Slice LUTIs* | 178 | 0| 53200: | ©.33 )
| LUT as Logic | 178 | 0| 53200 | 0.33 |
| LUT as Memory | 0| 0| 17400 | 0.00 |
| Slice Registers | 95 | 0 | 106400 | 0.09 |
I Register as Flip Flop | 95 | 0 | 106400 | 0.09 |
| Register as Latch | g 0| 106400 | 0.00 |
| F7 Muxes | 0| 0| 26600 | 0.00 |
| F&8 Muxes | 0| 0| 13300 | 0.00 |
F $o———- $omm——— pomm - $mm————- +

Figure 4-45: De-Segmentation LUT utilization

4.3.6 De-CRC

De-CRC has the same design & implementation as the De-CRC block explained
in section 2.3.7, the only difference exists in the used polynomial where the used
one here is similar to the one used in the transmitter explained in section 4.2.1.

The top controlled module of De-CRC is as shown in Figure 4-46, and the pins
description of the controlled module is shown in Table 4-16.

DECRC_4g
bits_number(15:0]
clk __|data_out
data_in __|error_check
enable __|finished
reset __|valid_out
valid_in

top_decrc_4g
Figure 4-46: Top controlled De-CRC

Table 4-16: pins description of De-CRC

Pin Description
bits number| This signal indicates the total number of bits entermg the block
data_in The input data to the block
data_out The output data of the block
error_check This signal indicates the result of comparison between the
generated bits from the block with the last bits received
finished This signal indicates that the De-CRC 1s ready to have data
valid in This signal indicates that current data_in is valid
valid out This signal indicates that current data_out is valid
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Finally, the LUT utilization of the De-CRC block is shown in Figure 4-47.

fom e s B e R +
| Site Type | Used | Fixed | Available | Utils |
| Slice LUTs* i 23t | 01 53200 | 0.25 |
| LUT as Logic I 231 | 0| 53200 | 0.25 |
| LUT as Memory | 0| 0| 17400 | 0.00 |
| Slice Registers | 93 | 0| 106400 | 0.09 |
| Register as Flip Flop | 93 | 0| 106400 | 0.09 |
| Register as Latch | 2 B 0| 106400 | 0.00 |
| F7 Muxes | 0| 0| 26600 | 0.00 |
| F&8 Muxes | 0| 0| 13300 | 0.00 |
+- -—— -—= -——+ -—+ ——tmm $o————— +

Figure 4-47: De-CRC LUT utilization
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GSM Chain

5.1 Introduction

GSM is a standard developed by the ETSI to describe the protocols for 2G digital
cellular networks used by mobile phones, first deployed in Finland in December 1991.
As of 2014, it has become the de facto global standard for mobile communications —

with over 90% market share, operating in over 219 countries and territories.

2G networks developed as a replacement for 1G analog cellular networks, and the
GSM standard originally described as a digital, circuit-switched network optimized for
full duplex voice telephony. This expanded over time to include data communications,
first by circuit-switched transport, then by packet data transport via GPRS and EDGE.

5.2 GSM Transmitter PHY Block Diagram

Transmitter of GSM consists of several blocks as shown in Figure 5-1. In the
following sub-sections, each block of the chain is explained in more details _
illustrating its basic idea, showing its interfaces, connections, inputs & outputs &

presenting its LUT utilization_.

260 50

CRC

Attachment Ta”":rf bts Convolutional
Reordering SO Burst

Interleaver .
Formation

GMSK D EE]
Modulation Encoding

Figure 5-1: GSM Transmitter full chain blocks
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5.2.1 CRC Attachment, Bit Tailing & Reordering

5211 CRC
CRC process is provided on transport blocks for error detection in which the
entire block is used to calculate the CRC parity bits for each transport block. Instead
of adding just one bit to a block of data, several bits are added. The size of the CRC
is 3 bits. These parity bits are added to the 50 bits, known as class 1 for FR,
according to a degenerate (shortened) cyclic code (53, 50), using the generator

polynomial:
gD)=D*+D+1

5.2.1.2 Bit Tailing & Reordering
The output of CRC (53 bits) is reordered with the next 132 bits of the information
bits from the 260 bits resulting from source encoding. After Tailing bits are

attached, according to the next equation:
u(k) =d(2k), fork=0,1,...,90
u(184-k) = d(2k+1), fork=0,1, .., 90
u(91+k) = p(k), fork =0, 1, 2
u(k) = 0, for k = 185, 186, 187, 188 (tail bits)

where, u(k) denotes the output of bit tailing and reordering block, d(k) denotes
information bits from source coding, p(k) denotes parity bits attached by CRC. The

rest of the information bits pass without processing or reordering.

The top controlled module of CRC Attachment, Bit Tailing & Reordering is as
shown in Figure 5-2, and the pins description of the controlled module is shown in
Table 5-1.

Finally, the LUT utilization of the CRC Attachment, Bit Tailing & Reordering

block is shown in Figure 5-3.
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clk

data_in
enable
reset

valid_in

data_out

valid_out

Figure 5-2: Top controlled CRC Attachment, Bit Tailing & Reordering

Table 5-1: pins description of CRC Attachment, Bit Tailing & Reordering

Pin

Description

clk Operation clock of the block. It should be set to 6.4 psec to

achieve the output rate according to standard.

reset Ensures that all registers are set to zero at the start of the
operation.
data_in The mput data from the source encoding, its length is

always 260 bits for every 20 msec speech.

enable | It indicates that the next block is ready to receive new data

from this block.

valid in | A signal that indicates that the input is valid for processing.

data out | The output data from the block. Its length should be equal

to 267 bits.
valid out A signal that indicates that the output is valid for
processing.
o e e o St e & e o e e e E 1
| Site Type | Used | Fixed | Available | Util$ |
e Fo————— o Fom Fomm———— 4
| Slice LUTs* |. 235 | 0| 53200 | 0.44 |
| LUT as Logic F 208 | 0| 53200 | 0.38 |
| LUT as Memory | 32 | 0 | 17400 | 0.18 |
| LUT as Distributed RAM | 32: | 0| |
| LUT as Shift Register | 0 | 0| |
| Slice Registers | 100 | 0| 106400 | 0.09 |
| Register as Flip Flop | 100 | 0| 106400 | 0.09 |
| Register as Latch | 0 | 0| 106400 | 0.00 |
| F7 Muxes | 20 | 0| 26600 | 0.08 |
| F&8 Muxes | 0 | 0| 13300 | 0.00 |
b e e e e . e e e e . s . . . . . . . . . . . . I I N . N A —— e e e e . d

Figure 5-3: CRC Attachment, Bit Tailing & Reordering LUT utilization
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5.2.2 Encoder
Coding is the process of adding redundant data to give the receiver the ability for
FER (correcting received data without need for retransmission). In GSM standard,
a convolutional code is introduced with constraint length 5 and coding rate %. The
block diagram of the encoder is shown in Figure 5-4. Input to the encoder according
to the standard is 189 bits while the other 78 bits pass un-coded to make the length
of the output 456 bits.

Input
P!

Qutput 0
Go =31 (octal)

4

>

Qutput 1
G; =33 (octal)

Figure 5-4: Convolutional Encoder block diagram

The top controlled module of Encoder is as shown in Figure 5-5, and the pins

description of the controlled module is shown in Table 5-2.
Encoder

clk
clk_out | | data_out
data_in valid_out
enable | | wait_flag
reset |
_valid_in}
top_convo_2g

Figure 5-5: Top controlled Encoder
Finally, the LUT utilization of the Encoder block is shown in Figure 5-6.

o e e e T T ETTT T — T +
| Site Type | Used | Fixed | Available | Utils |
e o e B e +
| Slice LUTIs* | 87 | 0| 53200 | 0.16 |
I LUT as Logic | 85 | 0| $3200 | 0.16 |
| LUT as Memory | 2 | 0| 17400 | 0.01 |
| LUT as Distributed RAM | ~ 0| | |
| LUT as Shift Register | 0| 0| | |
| Slice Registers | 59 | 0|l 106400 | 0.06 |
I Register as Flip Flop | 59 | 0| 106400 | 0.06 |
I Register as Latch | 0| 01 106400 | 0.00 |
| F7 Muxes I 0| 0| 26600 | 0.00 |
| F& Muxes | 0| 0| 13300 | 0.00 |
e o e o o +

Figure 5-6: Encoder LUT utilization
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Table 5-2: pins description of Encoder

Pin Description

clk Input clock of the block. It should be set to 6.4 psec to
achieve the output rate according to standard.

clk out | Output clock of the block. It should be set to half the input
clock for correct operation of the block, 3.2 psec.

reset Ensures that all registers are set to zero at the start of the
operation.
data 1n The mput data from the source encoding.
enable | It indicates that the next block is ready to receive new data
from this block.
valid in | A signal that indicates that the input 1s valid for processing.
data_out The output data from the block.
valid out A signal that indicates that the output 1s valid for
processing.

wait flag A signal that is set to high during the period, at which
valid out is high to indicate that specific bits are not valid
for processing to ensure that output bit length 1s 456 bits.

5.2.3 Interleaver

Interleaving is a way to re-arrange data in a non-contiguous way to make it stand
burst errors. These types of errors can destroy many bits in a row and make it hard
to recover using FEC coding, since these expects the errors to be more uniformly
distributed. This method is popular because it is a less complex and cheaper way to
handle burst errors than directly increasing the power of the error correction scheme
and interleaving cause increasing the performance of decoding as shown in Table
5-3.

Table 5-3: Without VS with interleaving

Without interleaving With interleaving
Transmitted Bits : Transmitted Bits :
b0 bl b2 b3 b4 bS b6 b7 b8 b0 bl b2 b3 b4 b5 b6 b7 b8
Received Bits : Interleaved Bits :
b0 bl b2 b3 xx x b7 b8 b0 b3 b6 bl b4 b7 b2 b5 b8
(x indicates to error in bit) Received Bits :
b0 b3 b6 bl x x x b5 b8

De-interleaved Bits:
b0 bl xb4 bSb6x b8
Burst errors Distributed errors
hard to recover

The main disadvantage of interleaving techniques is increasing latency because

the entire interleaved block must be received before the packets can be decoded.
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In GSM standard, Interleaver receives 465 bits which are written in a form of
8x57 matrix row by row. Then, it is read column by column as shown in Figure 5-
7. Hence, the output data that should be read are 1, 9, 17...449, 2, 10 ... 450...

57 bits

Figure 5-7: Data Matrix

According to standard, data should be mapped to burst in form of a column from
2 different segments to decrease the losses of packets to 12.5%. However, for

simplicity, it is implemented that data is mapped to burst in the following form:
1st & 5th — 2nd & 6th -3rd & 7th -4th & 8th.

The top controlled module of Interleaver is as shown in Figure 5-8, and the pins

description of the controlled module is shown in Table 5-4.

Interleaver

clk

enable data_out
reset | valid_out

valid_in

wait_signal

Figure 5-8: Top controlled Interleaver

Finally, the LUT utilization of the Interleaver block is shown in Figure 5-9.
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Table 5-4: pins description of Interleaver

Pin Description
clk Operation clock of the block. It should be set to 3.2 usec.
reset Ensures that all registers are set to zero at the start of the
operation.
data in The input data from the encoder block
enable It ndicates that the next block 1s ready to receive new
data from this block.
valid in A signal that indicates that the input 1s valid for
processing.
wait signal | A signal that indicates that this input is not to saved.
data out The output data from the block.
valid out A signal that indicates that the output 1s valid for
processing.
e Fmmm Fomm Fmmmm Fmmm +
| Site Type | Used | Fixed | Available | Utils |
e o Fmmm o m o +
| Slice LUTs* | 174 | 0| 53200 | 0.33 |
| LUT as Logic | 158 | 0| 53200 | 0.30 |
| LUT as Memory | 16 | 0| 17400 | 0.09 |
| LUT as Distributed RAM | 16 | 0| | |
| LUT as Shift Register | 0| 01 | |
| Slice Registers | 44 | 0| 106400 | 0.04 |
| Register as Flip Flop | 44 | 0| 106400 | 0.04 |
| Register as Latch | 0 | 0| 106400 | 0.00 |
| F7 Muxes | A9 0| 26600 | 0.07 |
| F& Muxes | 2 | 0| 13300 | 0.02 |
e e o e e +

Figure 5-9: Interleaver LUT utilization

5.2.4 Burst formation and multiplexing
This block is essentially responsible for the time division. It receives 114 bit from
Interleaver, then it starts forming the burst as mentioned in Table 5-5. It is
implemented as in Figure 5-10 and is operated according the flow chart shown in
Figure 5-11.

Table 5-5: Burst formation

Bit Number (BN) Length of field Contents of field
0 -2 3 tail bits
3 -60 58 encrypted bits (e0 . e57)
61 - 86 26 training sequence bits
87 - 144 58 encrypted bits (e58 . el15)
145 - 147 3 tail bits
148 - 156 8,25 guard period (bits)
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Stealing bit

input
RAM

(contains

114 bits)

TXZ XN

Xy XA

FACCH

Training

Sequence
Generator

controller

Control
Signals

Figure 5-10: Burst formation and multiplexing Block diagram

It should be noted that if steal flag is 1, FACCH is sent instead of the data segment
in the burst. Also, 1250 is chosen according to the clock of the block (3.2 psec).
Hence, 1250*3.2usec = 4 msec and 156.25*3.2usec = 0.5 msec.

Controller
idle

counter+1

counter+1 counter
selection =00 <148?

|- - counter+1 counter
selection =10 <145?
counter+1
selection =11

controller
ON

counter
=1250?

counter=0 §

Yes counter+1
selection =00

counter+1 counter

selection =01 <87?

counter Yes counter+1
<60? selection =10 No counter+1

] selection =11
Figure 5-11: Burst formation and multiplexing Flow chart
The top controlled module of Burst formation and multiplexing is as shown in

Figure 5-12, and the pins description of the controlled module is shown in Table 5-
6.
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Burst_formation

FACCH_burst
ck|
data_in | | data_out
enable| __|valid_out
reset

steal_frame_flag

valid_in

top_burst_formation_2g

Figure 5-12: Top controlled Burst formation and multiplexing

Table 5-6: pins description of Burst formation and multiplexing

Pin Description
clk Operation clock of the block. It should be set to 6.4 psec
to achieve the output rate according to standard.
reset Ensures that all registers are set to zero at the start of the
operation.
data_in The input data from the source encoding, its length is
always 260 bits for every 20 msec speech.
enable It indicates that the next block is ready to receive new
data from this block.
valid in A signal that indicates that the input is valid for
processing.
FACCH Input from MAC layer
Stealing_bit | Input from MAC layer to indicate whether TrCH i1s sent
on burst or FACCH
data out The output data from the block. Its length should be
equal to 267 bits.
valid out A signal that indicates that the output is valid for
processing.

Finally, the LUT utilization of the Burst formation and multiplexing block is

shown in Figure 5-13.

o - ————pmmm - o B o +
| Site Type | Used | Fixed | Available | Utils |
o Fommm e Fomm fomm +
| Slice LUTs* | 144 | 0| 53200 | 0.27 |
| LUT as Logic | 128 | 0| 53200 | 0.24 |
| LUT as Memory | 16 | 0 | 17400 | .09

| LUT as Distributed RAM | 16 | 0| | |
| LUT as Shift Register | 0| 0| I |
| Slice Registers | 46 | 0| 106400 | 0.04 |
| Register as Flip Flop | 46 | 0| 106400 | 0.04 |
| Register as Latch | 0| 0| 106400 | 0.00 |
| F7 Muxes I 9 | 0 | 26600 | 0.03 |
| F& Muxes | [+ N 0| 13300 | 0.00 |
e S m—————— e —— e +

Figure 5-13: Burst formation and multiplexing LUT utilization
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5.2.5 Differential Encoding & GMSK Modulation
In GMSK Modulation, data is supposed to pass through a differential encoder
then it is converted to NRZ form where it passes through a Gaussian filter to shape
the data with continuous phase then it passes through RF modulation as shown in

Figure 5-14.

input

—————

001000000000

4 Register

111000000000

Figure 5-14: Modulation Block diagram

In the implemented system, data is outputted with NRZ form since the Gaussian
filter changed signal to analog which is out of the scope of our project. Differential

encoding block should perform the function below:
di = di @ di-1, (di € {0,1})
Then it is converted to NRZ with this formula:
o= 1-2*d;

The top controlled module of Modulation is as shown in Figure 5-15, and the

pins description of the controlled module is shown in Table 5-7.
Modulator

k|

data_in data_out{11:0]
ﬂ | | valid_out
_reset|

differential_encoding_modulation_2g
Figure 5-15: Top controlled Modulation
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Table 5-7: pins description of Modulation

Pin Description
clk Operation clock of the block.
reset Ensures that all registers are set to zero at the start of the
operation.
data m The nput data from burst formation and multiplexing.
enable | It indicates that the next block 1s ready to receive new data
from this block.

valid mn | A signal that indicates that the input 1s valid for processing.
data out | The output data from the block. It is a 12-bit bus symbol.
valid out A signal that indicates that the output 1s valid for
processing.

Finally, the LUT utilization of the Modulation block is shown in Figure 5-16.

Fom et e Fomm $-—————- -
| Site Type | Used | Fixed | Available | Util$ |
pom et o e e +
| Slice LUTIs* | 21 01 53200 | <0.01 |
| LUT as Logic | 2 | 0| 53200 | <0.01 |
| LUT as Memory | 0| 0| 17400 | 0.00 |
| Slice Registers | i T | 0| 106400 | <0.01 |
| Register as Flip Flop | X 3 0| 106400 | <0.01 |
| Register as Latch | 0| 0| 106400 | 0.00 |
| F7 Muxes I 0| 01 26600 | 0.00 |
| F8 Muxes | 0| 0| 13300 | 0.00 |
o e e e tomm e Fo—————- +

Figure 5-16: Modulation LUT utilization

The LUT utilization of the GSM transmitter full chain is shown in Figure 5-17.

B tom——— o ———— e o +
| Site Type | Used | Fixed | Available | Util$ |
e o o e o +
| Slice LUIs* | €47 | 0| 53200 | 1522 |
| LUT as Logic | 581 | 0| 53200 | 1.09 |
| LUT as Memory | 66 | 0| 17400 | 38 |
| LUT as Distributed RAM | 86 | 0 | | |
| LUT as Shift Register | 0| 0| | |
| Slice Registers | 241 | 0| 106400 | 0.23 |
| Register as Flip Flop | 241 | 0 | 106400 | 0.23 |
| Register as Latch | 0| 0| 106400 | 0.00 |
| F7 Muxes | 54 | 01 26600 | 0.20 |
| F& Muxes | 3| 0| 13300 | 0.02 |
e St o o fomm o +

Figure 5-17: GSM transmitter full chain LUT utilization
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5.3 GSM Receiver PHY Block Diagram

Receiver of GSM consists of several blocks as shown in Figure 5-18. In the
following sub-sections, each block of the chain is explained in more details _
illustrating its basic idea, showing its interfaces, connections, inputs & outputs &

presenting its LUT utilization_.

Tailing bits
N
Reordering RESET Burst De-

De-Interleaver

Formation

GMSK Differential
DE-Modulation Decoding

Figure 5-18: GSM Receiver full chain blocks

5.3.1 GMSK De-Modulation & Differential Decoding
Data is modulated and reshaped with the Gaussian filter which is out of the scope
of this project. Then differential decoding is performed as in Figure 5-19. It should
be noted that error is accumulative in differential decoding & symbols are converted

to hard bits through the sign of the symbol.

Input[1l] (sign bit)

Register

Figure 5-19: Differential decoding Block diagram

The top controlled module of De-Modulation is as shown in Figure 5-20, and the

pins description of the controlled module is shown in Table 5-8.

Finally, the LUT utilization of the De-Modulation block is shown in Figure 5-21.
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demodulator

dk
data_in data_out
enable valid_out

reset

valid_in

differential_decoding_demodulation_2g
Figure 5-20: Top controlled De-Modulation

Table 5-8: pins description of De-Modulation

Pin Description
clk Operation clock of the block.
reset Ensures that all registers are set to zero at the start of the
operation.
data in The input data
enable | It indicates that the next block 1s ready to receive new data
from this block.

valid m | A signal that indicates that the input 1s valid for processing.
data out | The output data from the block. It is a 12-bit bus symbol.

valid out A signal that indicates that the output is valid for
processing.
oo fomm - fomm Fomm e Fommm -
| Site Type | Used | Fixed | Available | Util$ |
e fom——— fomm e e Fomm e +
| Slice LUTs* | 2 | 0| 53200 | <0.01 |
| LUT as Logic | 2 | 0 | 53200 | <0.01 |
I LUT as Memory | 01 0| 17400 | 0.00 |
| Slice Registers | 1] 0| 106400 | <0.01 |
| Register as Flip Flop | x: ) 0| 106400 | <0.01 |
| Register as Latch | 0| 0| 106400 | 0.00 |
| F7 Muxes | 0| 0| 26600 | 0.00 |
| F& Muxes | 0| 0| 13300 | 0.00 |
R Fomm o m e +

Figure 5-21: De-Modulation LUT utilization

5.3.2 Burst De-formation
This block performs the inverse function of the Burst formation and multiplexing
block in the transmitter. The top controlled module of Burst De-formation is as
shown in Figure 5-22, and the pins description of the controlled module is shown
in Table 5-9.
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burst_deformation

FACCH_burst
dk
data_in data_out
enable _valid_out

reset

steal_frame_flag

valid_in

top_deburst_formation_2g
Figure 5-22: Top controlled Burst De-formation

Table 5-9: pins description of Burst De-formation

Pin Description
clk Operation clock of the block. It should be set to 6.4
usec to achieve the output rate according to
standard.
reset Ensures that all registers are set to zero at the start
of the operation.
data in The input data to the block.
enable It indicates that the next block is ready to receive
new data from this block.
valid in A signal that indicates that the input is valid for
processing.
FACCH burst Input from MAC layer
Steal frame flag| Input to indicate whether TrCH is sent on burst or
FACCH from the transmitter
data out The output data from the block.
valid out A signal that indicates that the output is valid for
processing.

Finally, the LUT utilization of the Burst De-formation block is shown in Figure
5-23.

+ + +-—- + -- —4mmm +
| Site Type | Used | Fixed | Available | Util$ |
+ + + e e +
| Slice LUTs* | 78 | 01 53200 | 0.15 |
| LUT as Logic | 78 | 0| 53200 | 0.15 |
| LUT as Memory | 0| 01 17400 | 0.00 |
| Slice Registers | 37 | 0| 106400 | 0.03 |
| Register as Flip Flop | 3% | 0| 106400 | 0.03 |
| Register as Latch | 01 0| 106400 | 0.00 |
| F7 Muxes | 01 0| 26600 | 0.00 |
| F& Muxes | 0| 01 13300 | 0.00 |
+- + e + ———t
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5.3.3 De-Interleaver
This block counters the effect caused by the Interleaver in the transmitter in order
to deliver the data successfully to the decoder. The top controlled module of De-
Interleaver is as shown in Figure 5-24, and the pins description of the controlled

module is shown in Table 5-10.

deinterleaver

ck

data_in|
enable data_out
reset valid_out

valid_in|

wait_signal

top_controlled_deinterleaver_2g
Figure 5-24: Top controlled De-Interleaver

Table 5-10: pins description of De-Interleaver

Pin Description
clk Operation clock of the block. It should be set to 3.2 usec.
reset Ensures that all registers are set to zero at the start of the
operation.
data_in The nput data
enable It indicates that the next block 1s ready to receive new
data from this block.
valid 1n A signal that indicates that the input 1s valid for
processing.
wait signal A signal that indicates that this input is not to saved.
data_out The output data from the block.
valid out A signal that indicates that the output is valid for
processing.

Finally, the LUT utilization of the De-Interleaver block is shown in Figure 5-25.

+———————————— e ——————— +———— +—————— ——————————— +————— +
| Site Type | Used | Fixed | Available | Utils |
——————— $———— +————— ———————— - +
| Slice LUTs* | 179 | o | 53200 | 0.34 |
| LUT as Logic | 163 | 0o | 53200 | 0.3% |
I LUT as Memory | 16 | o | 17400 | 0.09 |
| LUT as Distributed RAEM | 16 | o | |

I LUT as Shift Register I o | o | |

| Slice Registers I 48 | o | 106400 | 6.05 1
I Register as Flip Flop I 48 | o | 106400 | 0.05 |
| Register as Latch I o | (s I 106400 | 0.00 |
| F7 Muxes | 20 | 0 | 26600 | 0.08 |
| F& Muxes | 2 1 o 1 13300 | 0.02 |
+———————————————————————————— F———— +———— —————————— +————— +

Figure 5-25: De-Interleaver LUT utilization
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5.3.4 Decoder
Viterbi Decoder is the reverse block of the convolutional encoder. The block
design is the same as that described in section 2.3.5, the only differences exist in
that the used convolutional encoder has K=5 so as the Viterbi decoder here which

decreases the number of the states to 16 other than 256.

5.3.5 Re-ordering & De-CRC

The block design is similar to that of the transmitter explained in section 5.2.1.
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Verification Methodology

6.1 Functional Verification

Functional Verification is very important to check that HDL implementations
outputs are identical to expected outputs, we implemented MATLAB models for all

transmitter and receiver blocks to use as a reference models.

Verification methodology is based on equivalence checking between HDL Model
and MATLAB Model, we setup testing framework consists of Verilog testbench,
MATLAB testbench and Perl script.

Figure 6-1 shows the functional verification procedure; first Verilog testbench
generates random input bits and store it in a file and also save the output data bits
from all blocks in different files, MATLAB testbench read the input file and also
save the output data bits from all blocks in different files, Perl script compare these

files and generate output comparison file.

Verilog Testbench

HDL Model

Random input

MATLAB Testbench

Output _matlab model Output _hdl model

[ Comparison Script ]

Correct or Wrong

Figure 6-1: Functional Verification procedure
To cover different cases, we change number of bits and also number of successive

frames to check that every block can reset its state after frame finished and process

next frame correctly.
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6.2 Sources of Noise

The receiver of any communication chain should counter what happened in the
transmitter, in a way to be able to correct various error types. Error can be
introduced by interference, lack of synchronization, fixation error...etc. However,

in the scope of this project, only 3 main contributors of noise are considered.

6.2.1 Noise
Noise can be defined as an unwanted signal that is introduced to the receiver. This
noise can be internal which is the thermal noise of the electric components or

external. Since, it is a random signal

It is modelled using AWGN. This error can be partially corrected using decoder

block in the receiver.

For Wi-Fi chain, Figure 6-2 shows the SNR vs BER for the modulation scheme
“BPSK” while Figure 6-3 shows the SNR vs BER for the modulation scheme
“QPSK”.

0 5 10 15 20 25
SNR (db)

Figure 6-2: Wi-Fi SNR vs BER for BPSK “Noise error”

Wi-Fi Chain-SNR vs BER (QPSK)

10° i L
0 5 10 15 20 25
SNR (db)

Figure 6-3: Wi-Fi SNR vs BER for QPSK “Noise error”
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For 2G chain, Figure 6-4 shows the SNR vs BER for the modulation scheme
“GMSK?”, for 3G chain, Figure 6-5 shows the SNR vs BER for the modulation
scheme “BPSK” & finally for LTE chain, Figure 6-6 shows the SNR vs BER for
the modulation scheme “QPSK”.

SNRvs BER

oers

SNR(db)

Figure 6-4: 2G SNR vs BER “Noise error”

3G Chain-SNR vs BER

3
-10 9 E) 7 )

-5 4 -3 2 -1 0
SNR (db)
Figure 6-5: 3G SNR vs BER for BPSK “Noise error”
o LTE BER vs SNR
10 - T -
S
& 10
L e o e e e e e e
10? | I i I i
0 1 2 4 5 6

3
SNR(db)

Figure 6-6: LTE SNR vs BER for QPSK “Noise error”
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6.2.2 Channel Effect

Channel can be defined as the physical medium of transmission. It can be either
wired or wireless. However, in all mobile systems, channel of concern is the
wireless model. Wireless channels suffer from 3 main issues: Path loss, Shadowing,
Multi-path fading. Hence, channel can be divided into slow & fast fading in time
according to the Doppler spread. It can also be divided into flat and frequency
selective channel according to the coherence bandwidth. This introduces a major
error for the received signal.

The errors introduced by channel effect can be compensated if the signal is
divided by the channel. Hence, to compensate the channel effect, a channel

estimation block is required.

For 2G chain, Figure 6-7 shows that 26 of every fame are specified to channel
estimation. Hence, channel estimation block is implemented & the result (SNR vs
BER) is shown in Figure 6-8 while in Figure 6-9, the result is shown for an
implemented theoretical equalizer block.

user
Training data
3 bits 57 bits 1 26 bits 1 57 bits 3
- :

Figure 6-7: 2G frame

SNRvs BER

SNR(db)

Figure 6-8: 2G SNR vs BER for Channel Estimation Block “channel error”
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For 3G chain, Implementation of channel estimation is 3G is relatively impossible

since the transmitter chain contains no pilots.

SNRvs BER

102 i { i i i
0 2 N 6 8 10 12
SNR(db)

Figure 6-9: 2G SNR vs BER for Theoretical Equalizer Block “channel error”

For LTE chain, A reference signal (chosen 1 for simplicity), is sent over all
relevant sub-carriers every 7 sub-frames, this is called block pilot. Hence, the

channel estimator works fine at slow fading channel.

Channel estimation block is implemented & also, theoretical equalizer block is
implemented and the result (SNR vs BER) is shown in Figures 6-10, 6-11
respectively for flat fading channel and in Figures 6-12, 6-13 respectively for

frequency selective channel.

LTE BERvs SNR ‘mviememed channel estimator

BER

SNR(db)
Figure 6-10: LTE SNR vs BER for Channel Estimation Block “flat channel error”
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SNR(db)
Figure 6-11: LTE SNR vs BER for Theoretical Equalizer Block “flat channel error”
, LTE BER v8 SNR |,rc1 e chamel estimstor
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Figure 6-12: LTE SNR vs BER for Channel Estimation Block “selective channel error”
. LTE BER VS SNR |y coannet esimator
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Figure 6-13: LTE SNR vs BER for Theoretical Equalizer Block “selective channel error”
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Finally, for Wi-Fi chain, Pilots is sent on every sub-frame at fixed subcarriers,
which is a good thing to estimate channel at this point. For the rest of the points,
linear interpolation is performed. Channel estimation block is implemented & also,

theoretical equalizer block is implemented and the result (SNR vs BER) is shown
in Figures 6-14, 6-15 respectively.

SNR (db)

Figure 6-15: Wi-Fi SNR vs BER for Theoretical Equalizer Block “channel error”
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6.2.3 Fixation Error

For the LTE and Wi-Fi chains, we faced a problem that in the transmitter a
complex mathematical operation is done on mapped symbols. The problem is the
mapped symbols are represented in decimal fixed-point representation. This is not
a problem for the MATLAB simulation but for the HDL codes as the hardware
implementation will deal with bits rather than decimal numbers. The problem is
number of bits is limited to represent these numbers so a tradeoff between number
of bits and accepted error takes place.

We have to take a limited number of bits representing these decimal numbers,
three bits representing the integer part and nine bits representing the fraction part
were acceptable to deal with as the corresponding error is -73.6749 dB for the total

number of symbols and -172.14 dB for each symbol.

In the WIFI transmitter, the IFFT block does complex mathematical operations
which result in some errors due to the approximation done on the mapped bits and
according to Figure 6-16, the error is acceptable for the chosen representation rather
than the others shown. Also, for the WIFI receiver, the previous representation was
useful as the error accumulated from the FFT in the receiver is accepted to deal with
and we could fix these errors in the de-Mapper such that the decoder handles the
noise errors only. Finally, the receiver error alone = - 64.305 dB & the whole acc-
umulated error = -58.608 dB.

EEEEEEY:
X% oxoxox o0

1 L L 1 L 1 L
74 Gk 7B s 78 79 8 8.1
SMR

Figure 6-16: Results of Wi-Fi <16-QAM?” fraction part fixation

For LTE chain, the situation is a bit different and more complex as the SC-FDMA
contains 2 complex blocks (DFT-IFFT) so the error will be accumulated and be

larger which made us increase the number of bits representing the sample to 14 bits.
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The representation is a bit different as the first complex block is DFT, it introduces
output with large decimal numbers so we made the representation as follow: five
bits representing the integer part and nine bits representing the fraction part and we
have got -54.78 dB from the output of the DFT block and -68.9 dB from the IFFT
Block for each symbol which is acceptable to deal with in the receiver.

The problem is for all the symbols the error is -30.21 dB which is very large and
hard to deal with but this is due to the DFT and IFFT cores working on twelve bits
and to have it work on fourteen bits, we have to regenerate the cores which needs
license for that so we get the 14 bits /sample output from the mapper and take the
most twelve bits to use it as an input for the core so we neglected two fraction bits

which is the cause of this large error.

At the receiver data is received with five bits representing the integer part and
seven bits representing the fraction part, which increases fixation error. Data is
inputted to FFT Core, which introduces a high fixation error. Then, data is
multiplied by N (N=128) to satisfy the required output according to the LogiCORE
FFT block. This introduces an overflow error which was compensated by increasing
size to 17. It should be noted that data is divided by N in IDFT. Finally, the receiver
error alone = -12.0713 dB & the whole accumulated error = -9.8306 dB
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7.1

Hardware Environment

Introduction

The FPGA is an IC that is electrically programmed to execute a certain
application. It initially has no functionality to operate before it is programmed.
FPGA is formed from a combination of transistors that are connected in a specific
way. Applying an external voltage to these transistors it will operate certain
functionality. This combination of transistors called LUTs [12]. Each group of
LUTs forms a PLB. These PLB blocks have been developed through many years.
Recent FPGAs has different types of PLB functionality such as memory blocks that
can store data for internal operations, multipliers for complex arithmetic operations,
and general PLBs that is used to implement general functions from simple 2-bit
adder to a complete microprocessor unit. The internal heterogeneity of FPGA PLBs
is shown in Figure 7-1. The FPGA internal routing consists of wires and
programmable switches that allow the connections among the PLBs, memory
blocks, multipliers and 1/0O ports. These connections are developed for best data
routing and latency, sometimes with different characteristics varies from the
shortest path to the fastest one. Also, there is a dedicated network of connections

that takes care of clock distribution and reset signals for achieving low skew.

o
T

\ —_
“imaraonmect |0 {3 L L 030 VO Blocks
DO O OO
Derlerles €3 €3 €20
: 0 3 2 £33 O
€3 O 3 O3 30
0 c2oogr

Logic Blocks
Figure 7-1: Field Programmable Gate Arrays
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The LUT size is measured by its number of inputs such as an LUT has 3 inputs
will be named as 3-LUT. The number of LUTSs in the PLB may be of equal size or
mixture of different sizes. There are three different major techniques used to
program the FPGA LUTSs: Anti-Fuse Flash, look up table and SRAM programming
technologies [13]. The advantages of the Anti-Fuse and Flash over the SRAM, they
are non-volatile and occupies a small area. While the SRAM is easily
reprogrammed and use the standard CMOS process technology so SRAM has
become the dominant approach to program the FPGA LUTSs, but till now there is
no technique that can combine the best of them all.

7.2 Softcore and Hardcore processors

Current FPGAs has IP blocks; these IPs are standard libraries which are
optimized and developed to facilitate the FPGA development. An engineer can drag
and drop certain functionality instead of building the new block from scratch. IPs
like accumulators, bus interfaces, encoders ... etc. The microprocessors are
considered one of the important IP core. There are two types of microprocessors,
softcore and hardcore. The softcore processor like Micro Blaze by Xilinx is
implemented using the FPGA logic gates [14]. The hardcore processor like
PowerPC by IBM is fabricated in the core of the IC of the FPGA chip and connected
to FPGA fabric as shown in Figure 7-2. The main concern of the softcore processor
is its limitation in speed, around 200 MHz, also, it takes many resources on the
FPGA. Where there are some advantages of using softcore processor like modifying
it for specific requirements, customizing instructions and multiple core system. On
the other hand, using hardcore processor can achieve higher processing speeds more
than 1GHz. Hence, the hardcore processor has its own fabric in the FPGA chip it
doesn’t occupy resources on the FPGA fabric which allows the full usage for the
FPGA. The disadvantage of the hardcore is its fixed architecture that can’t be
modified. ZynQ series by Xilinx is a perfect example of the current SoC chips; it
combines ARM dual-core or quad-core microprocessor in a PS with Xilinx FPGA
fabric as a PL [15].

141



Meuwory Multplecy Mewooy Multuplier

PLE N LA Mi s 1B s 1B B Mm LB M ’ l B FLE LB FLB

MEB Mm MB Mi s ’ B P i ™MB ’ MEB Mm MB M ’ l "B LB ™MB FLB

FLB M FLB M FLS \ ’ 1B FL3 i ' 1B ‘ PLB Mm [ FlLE M ‘ \ FLB FL3 ’ ’ FLB { FLB

1§ | 1 1} 1 |

PLE | |36 [ PLE lv i ns“nu; PLE “pw ';-15 Mm || PLB || M Hme PLB || PLB ’pu|

F1LB 'v:,-i'nail\ré:vla”ns’ Fl'—\HPlF ‘P’IB Mm |P‘1F, .\"’[P'IF FI'—IHPIF. {F( ‘
' |

[ 1§ |

PLB l 2 ms” yuHm', PLE “yu 'yu« Mm || PLB || M IIPLL PLE PLL l '

FLB PLS || PiB | |FLB | | F1B PLB ||PLB || P1B | |PLB
Hardeore Processor e co— Co—
! B [ FLB | |PLB ’ PLB ||PLB

PL‘ pio || v ||ps || ps | pes
b

Figure 7-2: Softcore and Hardcore processor

As shown in Figure 7-2 (a), the shaded part represents the implementation of
softcore processor on the FPGA logic it acquires some of the available resources
like PLBs, memory and multiplier blocks and as shown in Figure 7-2 (b) Hardcore
processor fabricated beside the FPGA fabric [15].

7.3 ZYNQ Board (ZC702)

7.3.1 Introduction to the board

The ZC702 evaluation board for the XC72020 AP SoC provides a hardware
environment for developing and evaluating designs targeting the Zynq®XC72020-
1CLG484C device [16]. The ZC702 board provides features common to many
embedded processing systems, including DDR3 component memory which is used
in this project to save the partial bit stream files and input test files for the 3 systems,
atri-mode Ethernet PHY, general purpose I/O, and two UART interfaces which one
of them is used to display the options and other data and signals on the terminal and
also to input signaling to the PS as will be illustrated in Section 7.3.2. The ZC702
board features are listed in ug850-zc702. Figure 7-3 illustrates the ZC702 block
diagram while Figure 7-4 gives a description in form of a high level block diagram.

The PS integrates two ARM Cortex™-A9 MP Core™ application processors,
AMBA interconnect, internal memories, external memory interfaces, and
peripherals including USB, Ethernet, SPI, SD/SDIO, 12C, CAN, UART, and GPIO
[16]. The PS runs independently of the PL and boots at power-up or reset.
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Figure 7-3: ZC702 evaluation board block diagram

Processing Memory Programmable
System Interfaces ——_— Logic
(PS) I (PL)
l
y 1
-——
Appﬂcaﬁml L]
input Outpus Processor Unit (APU) —le | Common
| Perpherals !
i Interconnect : Custom 3
- '
High-Bandwidth i Peripherals !
AMBA® AXI Interfaces 3 4 —_—t tmm S
1 A
| el gl gl = |
. Common Accelerators !
: Custom Accelerators :
L] 1
e e e e - -

Figure 7-4: ZC702 high level block diagram

7.3.2 CLB Overview
The 7-series CLB provides advanced, high-performance FPGA logic:

* Real 7-input LUT technology

e Dual LUTS5 (5-input LUT) option

 Distributed Memory and Shift Register Logic capability
« Dedicated high-speed carry logic for arithmetic functions
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« Wide multiplexers for efficient utilization

CLBs are the main logic resources for implementing sequential as well as
combinatorial circuits. Each CLB element is connected to a switch matrix for access
to the general routing matrix shown in Figure 7-5. A CLB element contains a pair
of slices [17].

> Slice(1)

Switch
Matrix

|

<}:|:j> Slice(0)
|

I

R

I e s ‘el Sl G i Gl S el S Ganel S b

CIN CIN
Figure 7-5: CLB Configuration

The LUTs in 7 series FPGAs can be configured as either a 7-input LUT with one
output, or as two 5-input LUTSs with separate outputs but common addresses or logic
inputs. Each 5-input LUT output can optionally be registered in a flip-flop. Four
such 7-input LUTs and their eight flip-flops as well as multiplexers and arithmetic
carry logic form a slice, and two slices form a CLB. Four flip-flops per slice (one
per LUT) can optionally be configured as latches. In that case, the remaining four

flip-flops in that slice must remain unused.

Approximately two-thirds of the slices are SLICEL logic slices and the rest are
SLICEM, which can also use their LUTs as distributed 74-bit RAM or as 32-bit
shift registers (SRL32) or as two SRL17s. Modern synthesis tools take advantage
of these highly efficient logic, arithmetic, and memory features. Expert designers

can also instantiate them.

Figure 7-7 illustrates the ZynQ ps7 internal structure which is considered a main

block where its rule is explained in Section 7.4.

144



Zyng-7000 All Programmable SoC
7o Processing System
Peripherals icati i
p! | » c|oc|$ | | — | SWDT Application Processor Unit
usB eneration FPU and NEON Engine FPU and NEON Engine
usB | | 2x USB ARM Cortex-A9 ARM Cortex-A9
. MMU P MMU P
Gige | | 2x GigE PS System- CPU CPU
GigE 2x SD Level 32 KB 32KB 32KB 32 KB
SD Control I-Cache D-Cache I-Cache D-Cache
Do | | 1o Regs
SD | GIC I Snoop Controller, AWDT, Timer e
SDIO (K] ' ;
GPIO | |« |« DMAB . 512 KB L2 Cache & Controller
Ol UART Channel
= UART | | Iy i
o ocM | 256K
125G .| Interconnect | SRAM y
12C Memory
SPI Central Interfaces
SPI Interconnect
DDR2/3,
v CoreSight DDR3L,
< interfaces | Components épDDRZ
SRAW/ - A ontroller
NOR
¢ [ DAP
ONFI 1.0 L 4 4
NAND = DevC Programmable Logic to
Q-SPI T Memory Interconnect
CTRL
‘ IRX. 1 1 1
EMIO General-Purpose DMA IRQ | Config High-Performance Ports ACP
XADC
12-Bit ADC Ports Sync AES/ "
SHA Programmable Logic
SelectlO
Notes: "L Resources|
1) Arrow direction shows control (master to slave)
2) Data flows in both directions: AX| 32-Bit/64-Bit, AX| 64-Bit, AXI 32-Bit, AHB 32-Bit, APB 32-Bit, Custom

Figure 7-7: The ZynQ ps7 internal structure diagram

The most important resources of the board are listed in Table 7-1 and this is why

we used this board for our application [16].

Table 7-1: ZynQ board important resources

Resource Available
LUT 53200
BRAM 140
DSP 220
FF 106400
I/O pins 484

7.3.3 AXI Protocols
One big advantage of the ZynQ chip over a lot of other FPGAs is that it offers an
integration between the hardware part (PL) and the software part (PS) [18]. ZynQ

provides nine primary AXI interfaces between the PS and the PL, as shown in
Figure 7-7:

1) 4 x HP Ports (used for DMA connections)
2) 4 x GP Ports (used for other connections in our design)
3) 1x ACP
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Figure 7-7: primary AXI interfaces between the PS and the PL

7.3.3.1 AXI4-Stream Interface

The AXI Stream (AXIS) interface is the simplest AXI interface used to connect
a master port in a hardware module to a slave port in another module. The interface
uses a half-duplex or a unidirectional channel which means that the data is only

transmitted in one direction; from master to slave. The most commonly used signals

in this interface can be found in Table 7-2 [19].

Table 7-2: The most commonly used signals in AXI14-Stream interface

Signals | Driver | Description
Tvalid | Master | Indicates the validity of the data available in Tdata port.
Indicates that the slave 1s ready to receive data from the
Tready | Slave
master.
Tdata | Maste Data sent from master to slave. Indicates actual data
a %7 | sent when both Tvalid and Tready are high.
Indicates that the data available in Tdata line is the last
Tlast | Master | . ey .
piece of data in this transaction.
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Figure 7-8 shows a timing diagram for an AXI4-Stream interface. It shows a
simple write operation between a master and a slave port. The master is sending a
stream of data to the slave. At beginning the master puts the first piece of data on
the Tdata port and asserts the Tvalid signal. Then it waits for the slave to respond,
as soon as the slave replies by asserting the Tready signal, the master knows that
the slave has already received the first piece of data and therefore it changes the

value of Tdata to the second piece of data and so on.

oo LR SN 0 N VY O VY U O W O 1 O O N
[

TLAST

TVALID [ | | -
TREADY [ v , -
TDATA X PO [P Pz L P3___ X pPa L P5

Figure 7-8: AXI4-Stream interface timing diagram

7.3.3.2 AXI4-Lite Interface
The AXI Lite Interface is a memory mapped interface. It is more advanced than
AXI Stream as it supports both read and write operations. That’s why the channel
is considered to be full-duplex or bidirectional channel. This interface is used in
simple communication such as reading and writing control and status registers in

an IP core.

This interface has five channels: write address channel, write data channel, write
response channel, read address channel and read data channel. This interface
supports single beat read and write; which means only one memory position can be

read or written per request [19].

Figure 7-9 illustrates a single beat transaction through this interface and Figure
7-10 shows an AXI-4 Lite interface and the five channels used while Figure 7-11
shows a more detailed form of the AXI-4 Lite interface and the five channels used.

NN nnnmnmnm
Address — é 6 i 7

s ¢ b2

Data

Figure 7-9: Single beat transaction
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Figure 7-10: AXI-4 Lite interface and the five channels used

AXI Master Lite User IP
Design

axi_aclk ———» IPIC

axi_aresetn —§———9» A
v K Rd/Wr Req & Qualfiers

Al | | | BTN
Status Reply )
14

AXi4-Lite Master Read Address Channel

Re&ad
/1 I Write

AXi4-Lite Master Write Address Channel Controller

1
AXI‘-LEMWRMMMI(SZW)> Read Data (32-bits) >

AXI4 Bus

> AXI4-Lite Master Write Data Channel (32 bits) < Write Data (32-bits)

SE— ,
/

AXM4-Lite Master Write Response Channel

v
Figure 7-11: Detailed AXI-4 Lite interface and the five channels

7.3.33 AXl4
AXI4 is similar to AXI4-Lite interface with an additional functionality; which is
the full burst read/write transactions. The full burst functionality allows the AXI4
interface to meet the high-performance memory mapped requirements. The
interface can support a burst up to 257 data transfer cycles with just a single address,
which is very useful for heavy read write transactions, such as reading and writing
large data to memories [19].
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Figure 7-12 illustrates the burst data through this interface.

: 1 : 525

Address—’ .

Data

Figure 7-12: Burst data through AXI4 interface

7.4 Testing Environment

In this section, we are going to show the test environment used to test the SDR
systems at the same time. The testing methodology becomes even more complicated

when testing multi-clock systems, such as in our case (3G, WIFI, 4G).

In Figure 7-13, the testing environment used to test the three systems is shown
and in the next sub-sections, each component will be illustrated briefly.

DMA = Inputinterface —» WI-F| =) Outputinterface —1 DMA -+

— DMA [ Inputinterface =) 3@ ‘,‘M) DMA

" DMA ’_:\ Inputinterface b/‘ I_TE _:\ OUtpu‘Einterface 7;/ DMA I

a

Processing System

J ZynQ (—— DDR3 :

Figure 7-13: The testing environment

7.4.1 Processing System
It consists from 2 ARM processors and other peripherals such as Ethernet, SD
interface, 12C, SPI, etc.... as shown in Figure 7-14 [15].
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Figure 7-14: The Processing system in details

The PS unit is generally used for:

1) Set control variables to 1/0O interface.

2) Reading the .txt files containing the input data from the SD card and
store it to the DDR3 memory.

3) Send the data from DDR3 to the PL using the read channel DMA.

4) Collect the output data from the PL using the write channel DMA and
save it to the DDR3 memory. This data can be used later to be stores in
the SD card or send them to the PC using the JTAG.

5) If wanted, send debug data to PC using the UART.

7.4.2 Input and output interfaces
In multi-clock systems, such as in our case, the system may have different clock
than input or output clocks. The traditional design is to set a DMA with a clock for
input and another for output, and a third clock for the DUT itself [18]. This may

cause some issues:
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1) The ARM is limited to generate 4 clocks only. Consider inserting
another DUT to the system with another 3 clocks, the ARM cannot
generate 7 clocks.

2) As the number of clocks increases, the Vivado synthesize time
increases.

3) The clock routes in the FPGA floorplan are limited. As the clocks
increases, the more possibility for time violation to occur.
So, the testing environment is to overcome these three issues by taking
the advantage of using the AXI-stream signals: Tready, Tvalid, Tlast.

In our design, there is a problem that the system clock is different than the input
rate of the system and the output rate of the system as shown in Figure 7-15. So, we

had to put the input and output interface to solve this problem.

200 15.3
MHZ MHZ

o
sove oo

| |
WIFI WIFI 4G WIFI /4G 3G 3G 3G
encoder  Input Input  Output Output encoder Input

Figure 7-15: Difference problem of the system clock from the system ip & op rate

The Input and Output Interfaces are the key blocks in this environment. The idea
is that we want them to keep the data (whether input or output) fixed for some clock
cycles. As mentioned before, we will use the AXI-Stream signals (Tready, Tvalid,
Tlast) for this purpose.

Figure 7-17 illustrates the Input and Output Interfaces in more details.

7.4.2.1 Inputinterface
The input interface controls the flow of data using the “Tready” signal. The
Tready signal is an input to the DMA to say that the DUT is ready to receive signals.
For example, if we want to get input data at a clock 4 times less than the system
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clock, we simply set the Tready to be LOW for 3 clock cycles and HIGH for only

1 clock cycle.
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Figure 7-17: The Input and output interfaces

In case of input clock 8 times less than the system clock, we set the Tready LOW
for 7 clock cycles and HIGH for 1 clock cycle. This is done in hardware as shown
in Figure 7-17 using a counter called “Tready counter”. Note that the rate at which
the Tready set to HIGH is to be get from the ARM (software) via the master GP
port [18].

‘Cf”f ns

A AL W :
|

Figure 7-17: The timing diagram of input clock 8 times less than the system clock

The input interface has another function, which is re-setting the DUT. The idea
simply is to reset the DUT at the beginning of transmitting input data, or in other
words, when the “Tvalid” signal comes to HIGH. An FSM for that is shown in
Figure 7-17. The “reset_out” signal is active when the state is S1. The FSM takes
one clock cycle to produce the output, that is why we used the delay elements to
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delay the data stream to the DUT. Figure 7-18 represents the waveform for testing

the input interface in case of we want a rate of 4 and data length of 10.

14t 0]

B data Jength(31:0]

Figure 7-18: The timing diagram in case of a rate of 4 and data length of 10

Finally, the block diagram of the input interface is shown in Figure 7-19, and the

pin description is illustrated in Table 7-3.

input_interface_AXI_1

e - - | T S00_AXI |
i data_out[7:0] me—
w1 np S_AXIS_Input_Data ) |
- : valid_out——
—=500_axi_aclk 1
) resetn_outr——-
—s00_axi_aresetn '
Y |

Figure 7-19: The input interface block diagram

Table 7-3: Input interface pin description

Pin Description
S00 AXI Communication port with the processing system for
signaling

S AXIS Input Data Data port to transfer the data from the DDR to the
connected system

S00 axi aclock Clock of the input interface block
SO0 axi_aresetn Reset of the input interface block
Data out Output data from the input interface and transferred to the
connected system
Valid_out Indication that the data_out is valid data
Resetn_out Reset of the connected system
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7.4.2.2 Output interface

The output interface generates the “Tvalid” signal to be passed to the DMA in a
same manner as the input interface generates “Tready”. Another important signal is
the “Tlast”, which should be passed to the DMA to indicate the last data to be sent.
The length of data should be known previously, so that the environment can
generate this signal. Of course in case of SDR application, we can use the “finished”
signal generated from the last block instead of “last”, but for now take the “Tlast”
from the environment. “Tlast” is generated also using a counter, and

the data length is passed from the ARM to the environment to compare [18].

Finally, the block diagram of the output interface is shown in Figure 7-20, and

the pin description is illustrated in Table 7-4.

output_interface_ AXI_0

;
= 4L S00_AXI

—mm data_in[31:0]

—==valid_in M_AXIS_Output_Datadp i
——500_axi_aclk

s00_axi_aresetn

Figure 7-20: The output interface block diagram

Table 7-4: Output interface pin description

Pin Description
S00 AXI Communication port with the processing system for
signaling
Data in Output data from the system to be transferred to the
DDR
Valid in Indication that the data_in is valid data
S00 axi aclock Clock of the output interface block
SO0 axi aresetn Reset of the output interface block
M AXIS Output Data|  Data port to transfer the data from the connected
system to the DDR
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743 DMA

All ZynQ ports between PS and PL (HP, GP, ACP) are memory mapped AXI
interfaces, which needs a complicated control circuits to deal with. Fortunately,
Xilinx Vivado provides an IP core to deal with them to transfer high-burst data
between PL and PS, called AXI DMA. The AXI DMA is used to convert the data

sent via the AXI4 interfaces to be sent via the AXI-stream interfaces, which is much

easier to deal with [9]. The DMA can be either read or write channel, or both.

In Figures 4-21, 4-22 the DMAs (read channel x for input and write channel y

for output) are connected to the DUT via the AXI stream ports. They are connected

to the ARM via two different buses:

1) The GP bus. 2) The HP bus.
axi_dma_0
dkS_AXI_LITE M_AXI_MM2S df e
s_axi_lite_aclk M_AXIS_MM2S+k

et

m_axi_mm2s_aclk mm2s_prmry_reset_out_n

axi_resetn mm?2s_introut

AXI Direct Memory Access
Figure 7-21: First Direct Memory Access

) axi_dma_1
< b S_AXI_LITE
1 45S_AXIS_S2MM M_AXT_S2MM s f e
—s_axi_lite_aclk s2mm_prmry_reset_out_n
——m_axi_s2mm_aclk s2mm_introut
axi_resetn

AXI Direct Memory Access

Figure 7-22: Second Direct Memory Access
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The GP bus can access the S_AXI_LITE port of the DMA. This port is used to
program the control registers of the DMA and read the status register [18], which is
done in the C code run by the ARM. The ARM can send/receive data to/from DMAs
using the HP ports. Finally, Figure 7-23 shows the DMA test performed.

DMA Input interface DUT Output interface DMA

Figure 7-23: Direct Memory Access test

Finally, Figure 7-24 illustrates the flow chart of the software code used for the

testing environment illustrated in this section.
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Figure 7-24: Testing environment flow chart

7.5 Xilinx Vivado

Xilinx provides a very useful simulation and emulation tool called “Vivado” with
which you can run the whole design process shown in Figure 7-25. Attached with
the tool another tool for the software code part when ZYNQ PS is used which is the
SDK tool. We used this tool to implement our design and it’s not only used for the
whole design process but also used for the DPR flow as it supports the whole DPR
techniques and also provides IPs already designed with Xilinx but some of them
need license and this put us in a problem as illustrated previously in Section 4.2.8
for the DFT and IFFT cores.
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Figure 7-25: Digital design flow
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Dynamic Partial Reconfiguration

8.1 Introduction

Contents on the FPGA are erased when the system's power is turned off or
interrupted. So FPGA does not store the program on itself. Whenever you want to

use FPGA, you need to upload a program to it i.e. FPGA Configuration.
8.1.1 FPGA Configuration

8.1.1.1 Configuration Definition

Using a preliminary definition, a configuration isa complete FPGA design. That
means, everything on the chip is specified either to do a function, or nothing at all.
One can view the FPGA is a two-layered device, consists of a configuration
memory layer, and a logic layer Figure 8-1. The configuration, or the complete

design, stored on the configuration memory layer, will control the logic on the other

layer.

Configuration Memory Layer

Figure 8-1: FPGA Layers

8.1.1.2 Types of Configuration
There are three types of configuration of FPGAs:
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1. Fixed Configuration: where data is loaded from a memory at power-on, then
the configuration will remain fixed until the end of the FPGA cycle. This type
lacks efficiency, since all the possible functions needed to be done by the
FPGA must be specified in the configuration file from the beginning. On the
other side, the space and resources of the FPGA are limited. That adds
complexity to the design.

2. Partial Reconfiguration: Initial full bit file with a complete configuration is
loaded into the device at power-on. Whenever something to be altered, all
computations will stop, then a partial bit file concerned with the modification
in the original complete configuration is loaded. This time the reconfiguration
overhead time is reduced compared the previous type. In applications where
FPGAs are used as communication hub, they must be active all the time to
retain active links, so partial reconfiguration is not enough, as the
computations stop during loading the partial bit file.

3. Dynamic Partial Reconfiguration: Unlike the partial reconfiguration, while
the configuration layer on the FPGA is being modified, the logical layer
continues its normal operation, except for the circuit subjected to

modification. This reconfiguration overhead is limited to the circuit.

In our case, we are concerned with the Dynamic Partial Reconfiguration of the
FPGA.

8.1.2 DPR of the FPGA
DPR technology, introduced by XILINX, is a leading technology which allows a
run-time reconfiguration of a previously chosen partition in the design on the FPGA
to be reconfigurable with partial bitstream files as show in Figure 8-2. Those
bitstream files are stored in a memory to choose one of them to be loaded later into
of the reconfigurable partition on the FPGA when needed using one of different
access ports (ICAP, PCAP, JTAG, ...) to the configuration memory of the FPGA.

FPGA Ad.bit
A3 bit

A2 bit

Reconfig
Block "A"

Figure 8-2: The concept of DPR
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DPR technology takes place under some conditions which will be introduced
along with the different techniques used using different access ports to the

configuration memory later in section 8.2 & 8.3.

Thanks to DPR technology, SDR is escalating quickly as DPR offers many
advantages which will be very helpful in implementing a multi-standard SDR

system on a single chip which would be a new era in communication systems.

« Advantages:

1. Resource Utilization

Instead of using resources for each standard implemented in the

mobile, all implemented standards should use the same resources.
2. Upgradability

If a new update is added for a standard already implemented (like
the updates made for Wi-Fi standard 802.11n which is considered an
update for 802.11a) a partial bitstream file could be downloaded to
upgrade the mobile with the new update as long as the resources

reserved could support the new update.
3. Saving power

Since only one chain will be working at a time that will save more

power.
4. Save money
It is a result of resource utilization and saving power.

On the contrary, there are some challenges that is facing the DPR technology in

implementing multi-standard SDR.

« Challenges:

1. Reconfiguration time.

The device, communicating with the mobile, making a handover
from a standard to another should not notice the reconfiguration time
taken by the mobile.
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2. Configuration Memory.

Fast access memory with large capacity is needed to cover the whole
partial bitstream files needed to cover all the standards with their

Versions.

8.2 DPR Techniques

XILINX offers two different modes where each mode has different techniques
(Only common and familiar techniques are discussed not all of them), as shown in
Figure 8-3, for implementing DPR to transfer the bitstream file into the
configuration memory.

DPRﬁrMﬂc‘Jdes
i

External Internal
JTAG PCAIQ

”ICAP(
Figure 8-3: DPR Modes
8.2.1 External Mode

The partial bitstream files are loaded to the configuration memory through an
external source like JTAG cable, however, this is not recommended in
implementing SDR as it gives relatively high reconfiguration time as shown in
Table 8-1. The maximum theoretical BW JTAG can give is 66 Mbps which will
give a reconfiguration time of 75 msec. For a file of 5*10° bits (The reconfiguration
bitstream file for the whole FPGA is around 32*10° bits (4 MB)) in addition to the
time overhead taken to transfer the data from the source of JTAG to the
configuration memory which may take us to more than 150 msec., reconfiguration

time due to headers and check made on the stream. To have an intuition of the size

of generated partial bitstream files see section 8.3.
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8.2.2 Internal Mode
The reconfiguration takes place through an already implemented access port to
the configuration memory in PS side like PCAP or PL side like ICAP. A quick

system overview is shown in Figure 8-4.
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=i || DPR System

ICAP
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Configuration Memory

Figure 8-4: PS & PL Configuration

8.2.2.1 PCAP on PSside
Processor Configuration Access Port is an access port for the configuration

memory of the FPGA controlled by the processor to perform the configuration
process. The maximum theoretical BW using PCAP is given by Table 8-1 which is
400 MBY/s, however, the actual transfer rate through the PCAP is approximately 145
MB/s as the overall throughput is limited by the PS AXI interconnect. This

approximation is calculated under some assumptions could be found in [20] [21].

8.2.2.2 ICAP on PL side
Internal Configuration Access Port is an access port found in the PL used along

with a controller to perform dynamic reconfiguration process. The maximum

162



theoretical throughput of the ICAP is given by Table 8-1 which is 400 MB/s,
however, the type of controller used along with the ICAP determine the actual
throughput you can get. The more throughput to get, the more complex will be the
controller with higher resource utilization.

Table 8-1: Configuration modes in details

Confimration Mode Tipe Max Clock Data Width | Max Bandwidth
ICAP Intermal 100 MHEHZ 32-bat 400 MB/S
PCAP Internal 100 MHZ 32-bat 400 MBS
JTAG External 66 MHZ 1-bat £.25 MB/S

XILINX offers two IP controllers to use for reconfiguration so you only pass the
bitstream file to the IP through a software code running on the processor and it will

handle all the reconfiguration control and data signals:
1- AXI-HWICAP

This is a simple IP of a simple controller composed of an asynchronous
Read & Write FIFOs, control registers and a FSM along with ICAP used for

reconfiguration as shown in Figure 8-5.

AX14-Lite Slave Inteface

AX] HWICAP Core

AX14-Lite Slave Interface

? IPIC_IF
L e e eemce e e e e m—m e ————— e
L
IPIC_IF HWICAP
ICAP_Clk

Interrupt Control Unit - -
Read Write Y

Asynchrounous FIFOs
——p-| State Machine
5Z Register
CR Register I r
5R Register
WFW Register ICAP

IP2INTC_lprt

RFO Register

Figure 8-5: AXI-HWICAP Core

This IP core interfaces with the processor through AXI4-Lite interface. A

full description of how the core works could be found in [22].
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2- PRC

A more complex IP than AXI-HWICAP which depends on the concept of
a Virtual Socket. Where a virtual socket represents the reconfigurable
partition beside some logic blocks as shown in Figure 8-6 where these logic
blocks are used to isolate the reconfigurable partition from the static region
during reconfiguration process which would give better throughput. Also a
Fetch Path as shown in Figure 8-7 is used to transfer configuration bits from
the processor to the ICAP is allocated beside the virtual sockets noting that
the number of virtual sockets “N” represents the number of reconfigurable
partitions in your design if you have more than one. A full description of how

the core works could be found in [23].
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Figure 8-6: Partial Reconfiguration Controller

8.2.2.3 AXI-HWICAP & PRC Comparison
According to [24], it is shown in Figure 8-8 that AXI-HWICAP has lower average
resource utilization and lower average power consumption than PRC but very bad
average throughput. Those average results extracted from to different
reconfigurable partitions with different number of LUTS, as shown in Figure 8-9,

consequently different size of partial bitstream file size.
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Figure 8-7: Fetch Path Role
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Figure 8-9: AXI-HWICAP & PRC Comparison 2
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8.3 DPR Flow

In this section, XILINX DPR flow will be introduced through implementing a
multi-standard SDR system (3G, LTE, Wi-Fi) on a Single Reconfigurable Partition
using HW-ICAP IP core discussed in 8.2.2.2 with the help of Vivado & SDK
(Version: 2015.2) tools discussed in Section 7.5. Starting from the test environment
discussed in Section 7.4, the system will be modified by removing (3G, LTE, Wi-
Fi) blocks as shown in Figure 7-13 and putting only one block which will be the
reconfigurable with the reconfigurable modules (RMs) as shown in Figure 8-10,

where each RM represents one of the three chains that would be loaded into the

chosen floor-planned reconfigurable partition on the FPGA.

— DMA

|:(>| Input interface

1 DMA

1 DMA

Input interface

—
):> 5 Output interface = DMA
5 {
3| & j -
| & |-G 1| DMA
SH ¢
a0

i

Reconf

Input interface

DMA

ynQ

}:ﬁ> )‘:> Output interface ):D N
T Reconfig. Memory |C:: Interface ‘
ﬁ

Figure 8-10

8.3.1 Flow Steps

Flow chart shown in Figure 8-12 show the flow steps of the DPR flow where
from step 2 to step 11 are performed using Vivado while the last step (Step No. 12)

g

'y

DDR3

l«

: The modified testing environment

is where SDK is used to run our software “C” code on the processor.

83.1.1 Stepl

“Prepare a Black Box Top Module and prepare each RM to have the same /O

ports.”

Black Box Module is a module where you only define the input and output ports
of the module without performing any logic. This module will be used in the static

design (Reconfigurable Partition shown in Figure 8-10). This Black Box Module

will be modified later in the following steps with the RMs (3G, LTE, Wi-Fi).
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The top module of each RM must have the same module name and same input

and output ports of the Black Box Module.

Step 1:
Prepare a Black
Box Top Module
& prepare each
RM to have the

same /0 ports

Step 5:
Implement a
complete design
(static and one
RM per
RP) in context

Step 9:
Repeat Step 8
until all RMs are
implemented

—

Step 2:
Synthesize the
static and
Reconfigurable
Modules
separately

—

Step 6:
Remove RMs
from this design
and save a
static-only
design CP.

—

Step 10:
Runa
verification
utility (pr_verify)
on all
configurations

—

—

—

Step 3:
Create physical
constraints to

define the
reconfigurable
regions

Step 7:
Lock the static
placement and

routing

Step 11:
Create
bitstreams for
each
configuration

Step 4:

Set the
HD.RECONFIGUR
ABLE property
on each RP

U

—

Step 8:
Add new RMs to
the static design
and implement
this new
configuration

Figure 8-11: DPR flow

Step 12:
Software code
running on
processor

—

—

Example: If you have a RM originally with 3 Inputs, 5 Output and another RM

originally with 6 Input, 3 Outputs. The number of input & output ports of the black

box and the new top modules after modification should be maximum of each case,

then we should have 6 Input ports and 5 Output Ports as shown in Table 8-2 & the

top Module used is as shown in Figure 8-12.

Table 8-2: Top Module pins

Actual number of pins Modified number of pins
Input Output Input Output
RM 1 3 5 6 5
RM2 6 3 6 5
Black Box - - 6 5
wn
2 @]
3 =]
= Top Module s
© &

Figure 8-12: Black Box Module
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8.3.1.2 Step 2

“Synthesize the static and Reconfigurable Modules separately.”

In this step the static design of the DPR system is synthesized with the black box.
This will create a DCP file in <project_path>/project_name.runs/Synth. If you
opened the synthesized design you will get a critical warning that the tool could not

resolve a non-primitive black box cell.

Each RM (Standard Chain) is synthesized in a separate project but with

synthesize settings as shown in Figure 8-13:
1- BUFG =0, BUFG is a non-reconfigurable module

2- Added option “~mode out_of context” to define that this synthesized

block will be a part of a bigger design which is the static design in

our case.
gl*:ﬂ_;. Project Settings =
) Synthesis
@ Constraints
General Default constraint set: | ki constrs_1 (active) -
I,IE'.JUE
Options
Simulation §
) Strategy: A vivado Synthesis Defaults* (vivado Synthesis 2015) - | 3
Y
ﬁ c
\J} Description:
Elaboration
- OISO LTV s T - -~
@ fute 0 ]
~fanout_limit 10,000
IS -directive Default -
|> -fsm_extraction auto -
\ ~eep_equivalent_registers =
I tati
mpiementation -resource_sharing auto -
}1]: -contral_set_opt_threshold auto -
a0
-no_le =
Bitstream - O S
- -shreg_min_size 3
£|: -max_bram -1
I -max_dsp -1
- -cascade_dsp auto -
rMore Options™ -mode out_of_context |
Select an option above to see a description of it
[ oK ] [ Cancel Apply

Figure 8-13: Step 2 in details

Then generating the DCP of each synthesized RM.
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8.3.1.3 Step 3

“Create physical constraints (Pblocks) to define the reconfigurable regions.”

Open the static DCP generated in step 2 to do the floor-planning of the
Reconfigurable Partition, as shown in Figure 8-14, with resources which can cover
the resources needed by each RM. In this case we have only one reconfigurable

partition.

.. design_1_wrapper dep - [Hi/SDR Vivado_Projects/Transmitters_final/DPR_Project/project 1/project_Lruns/synth 2/design_1_wrapperdep] - Vivado 2015.2
Fle Edt Fow Tools Window Layout View Help

a0 3 # |5 G Q K| (G 210 Panning - K| @

Checkpoint Design - xc72020cig484 1

Netlist - Owx [ Package X | Device X
Nets (172
Leaf Cells (1)

Nets (171
Leaf Cells (4
) AXI_Peripheral_v1_0_S00_AXI_inst (AXI_Peripheral

]
514 fla 0 (desion L da 0 0) | (& Cel Properes... Ctrl+E

Ctrl+U
(] Metlist | & Device Constrg

Fioorpianring v
el Bropertics Select Lea Cells Ctrle Shift+§

o [ & Draw Pblock
H R_system 7 Hghlight Leaf Celis v e e

General | Properties | Statistics || 57 yopygoy 4

(i Properties Clock Regil

Messages & Mark Ctrl+M
S\ ¥ ® 1 critical warning EtiEShataM
a T

54 L@ [Project 1-475]

= [Device 21-403]

o [Project 1-5701 | #2]  Schematic Fa

0] @ [Project 1-486] Show Connectity CirteT ' instantiated as 'design_1_i/AXI_Peripheral_v1_0_1finst/R_System' [AXI Peripheral v1 0.v:106]
@ [Project 1-111] |
Y total of 250ing| & Show Herarchy 5

\\_=_ CFGLUTS => CFGLUTS {(SRLC32E, SRL16E): 100 instances

e (RAMDHVRAM[;Z;SET’”;S8-141 Step 3 in details
Noting that you can save this floor-planning performed using the Tcl command
“write_xdc<path>/file name” in Tcl console. So, you can use the Tcl command
“read_xdc<path>/file name” command next time instead of drawing Pblock each
time. Make sure the Pblock cover all the resource required by each RM. In our case
the maximum resources required goes to the LTE RM so if LTE RM fit into the
Pblock it would be guaranteed that 3G & Wi-Fi RMs will fit. That would be checked

in step 5. Pblock is chosen as shown in Figure 8-15.

Figure 8-15: Pblock in our project
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8.3.1.4 Step 4
“Set the HD. RECONFIGURABLE property on each Reconfigurable Partition.”

Run the Tcl command in Tcl console to define the cell which is still black box till
this step “set property HD.RECONFIGURABLE 1 [get cells design_1 i/
AXI_Peripheral vl 0 1/inst/R_System]”, the cell is defined as reconfigurable
module. Where “design 1 i/AXI Peripheral vl 0 1/inst/R System” is the cell

name in the design.

8.3.1.5 Step5

“Implement a complete design (static and one Reconfigurable Module per
Reconfigurable Partition) in context.”

Now, we read one of the RMs DCP generated in Step 2 in the Black Box cell. We
start with LTE just to make sure that Pblock cover all the resources needed by LTE
RM.

Tcl command: read_checkpoint -cell cell_name <4g_DCP_Path>/4g_synth.dcp

Check Pblock properties to guarantee that all required source by LTE RM are

available as shown in Figure 8-16.

Phlock Properties
|

(@ pblock_R_System

Physical Resource Estimates

Site Type Avalable  Required % Ut
slice LUTs 11200 10812 95.54
LUT a5 Logic 11200 9536  85.14
LUT as Memory 3000 1276 42.53
slice Registers 22400 8369  37.36
Register as Flip Flop 22400 8327  37.17
Register as Latch 22400 42 018
F7 Muxes 5600 114 2.04
F8 Muxes 2800 i 0.00
Block RAM Tile 30 18 60.00
RAMB36/FIFO 30 6 20,00
RAME 18 0 24 40,00
DsPs 40 3 7250
Carry Statistics
Number of carry chains Longest chain Carry height utilization

414 pblock_R_System/R_System/scrambler/DUT/temp_reg[3]_i_1 16.000% (8 CLEs)

Clock Report
Domain {(Module) Resource  Instances
CLK( ck_distribute_4g ) Local 3008
E[0]{ top_codeBlockConcatenation_4g ) Local 3
E[0]( top_interleaver1_dg) Local 18
FCLK_CLKD( processing_system7_v5_5_processing_system7 ) Global 10
WEA[D]{ fsm_segmentation_dg ) Local 18

dki1( ck_distribute_4g) Local 6718

General | Properties | Statistics | Cells | Connectivity | Rectangles

Figure 8-16: Pblock properties
Then Implement Design using the Three Tcl command “opt_design ,place_design
route_design” and Write the DCP of the implemented design as it will be used in

the generation of bitstreams in Step 12.
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8.3.1.6 Step6
“Remove Reconfigurable Modules from this design and save a static-only design

checkpoint.”

Remove LTE block from the Pblock to make it Black Box again by using the Tcl
command: “update_design -cell design_1 i/ AXI_Peripheral_ vl 0 1/ inst/
R_System -black box “.

Then write the DCP as this DCP represents the fully implemented and routed

static design that would be used later in the implementation of other RMs.

8.3.1.7 Step7

“Lock the static placement and routing.”

This step is not to change the static design routed and implemented during the

implementation of other RMs.

8.3.1.8 Step8
“Add new Reconfigurable Modules to the static design and implement this new

configuration.”

Read one of the other RMs DCP generated in Step 2 (3G or Wi-Fi) in the Black
Box cell. Implement the design and write the DCP of the implemented design as in
Step No. 5 of LTE.

8.3.1.9 Step9
“Repeat Step 8 until all Reconfigurable Modules are implemented.”

Update the cell to be black box again after 3G or Wi-Fi is implemented and
implement the other one.

8.3.1.10 Step 10
“Run a verification utility (pr_verify) on all configurations.”

Verify that the all the 3 implemented DCP are compatible in Step No. 5, 8 & 9
using the Tcl command: “pr_verify -initial <path>/4G_Implementation.dcp -
additional {<path>/3G_Implementation.dcp <path>/WiFi_Implementation.dcp }”
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8.3.1.11 Step 11
“Create bitstreams for each configuration.”

Create Full and Partial bitstreams.

8.3.1.12 Step 12

“Software code running on processor.”

Figure 8-4 shows the architecture of the Design and how the PL & PS in our
design are communicating where the DPR System shown in the Figure is as shown
in Figure 8-10. This architecture simplifies the understanding of the flow chart

describing the code used show in Figure 8-17 to run on the processor.

Fail Fail

DPR Success Interrupt Success Timer
Initialization Initialization Initialization

Done
Testsysté,;n _—
6l 86 Choose System
N3 ,3
a Wrong input
ne
?0 - No System to Test
Start 7 System already configured

EXIT!

Configuration

Figure 8-17: DPR flow chart
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8.3.2 DPR Results
The Generated bitstream for the reconfigurable partition in 8.3.1 is 617 KB which
mean it is around 5 Mbits.

All the gotten results is shown in Table 8-3 showing the configuration time & the

power.

Table 8-3: DPR results

Power(mW) Reconfiguration Time(ms)
HWICAP PRC Ideal
WIFI 20.47
3G 1.15 300 54 1.6
4G 148.875
Average Power =
71.245

173



Results, Conclusion & Future Work

In this chapter, we are going to conclude our achievements and results through a year
full of team work, enthusiasm, hard work and research, then we are showing the
conclusion of the performed work and the future work which should be done next. The
future work needed is in three main tracks. The first one is to improve the
reconfiguration between the different systems. The second one is to let the transmitters
and receivers communicate with each other through the air interface using two USRPs.

The third track is to add more systems such as GSM and Bluetooth.

9.1 Results

Our project is an experience of both hardware and software skills. And in our
project we have been keen on verifying our results to make sure of the success of

our work.
The final results of our work

e Optimization of 3G transmitter HDL codes & HDL and MATLAB
implementation of 3G Receiver.

e Optimization of Wi-Fi transmitter HDL codes & HDL and MATLAB
implementation of Wi-Fi Receiver.

e Optimization of LTE transmitter HDL codes, MATLAB
implementation of LTE Receiver & HDL implementation of most of the
LTE Receiver blocks.

e HDL and MATLAB implementation of 2G transmitter and receiver.

e Building testing environment on FPGA to test all the implemented
chains.

e Building DPR system using two different controllers of ICAP
(HWICAP & PRC).
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9.2 Conclusion

By using the PDR to switch between the three systems this reduces the dissipated
power in a large way. In current mobile phones, each system is implemented as a
separate system which is always running even if it’s not activated. Using the PDR
here decreases the dissipated power as only one system is active and running at each

time.

Another advantage for using the SDR is that it can be easily tuned from one
system to another with little switching time. As a result, it is clear that using SDRs
in mobiles has many advantages over the conventional mobiles used now. Right

now the future is moving towards this concept.

9.3 Future Work

9.3.1 PDR future work
The future work in the Partial Dynamic Reconfiguration (PDR) should be
directed to two different paths:

e Decrease the reconfiguration time between the three transmitters.
e Develop the test environment required to perform the PDR on the three

receivers.

9.3.1.1 Decrease reconfiguration time between transmitters
As mentioned before in Chapter 8, the reconfiguration time between the three

transmitters is around 10 milliseconds. This reconfiguration time can be reduced

by:

e Using multiple partitions instead of single partitions.
e Using different reconfiguration techniques such as
1. ZYCAP, Open source controller of ICAP.
2. Implementing our specific controller for SDR to reach maximum

throughput.

9.3.1.2 PDR between receivers
PDR was performed successfully with the three transmitters. The next step is to

go on with the same approach to perform the reconfiguration between the three
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receivers. The testing environment should be developed to switch between the
receivers. Once this is achieved, the full communication between the transmitters

and receivers can be achieved on the same FPGA.

9.3.2 Communicating through air
The previous work was to simulate communication systems in baseband only but
without using real antennas to send and receive data. Only noise was added to the
transmitted data just to simply model the real case. As shown in Error! Reference
source not found. which contains the simple communication system, the completed
part is DSP part. The future work should include working in the other modules other
than the DSP one.

The transmitter and receiver should be communicating through air such that the
whole communication system is complete. This requires one FPGA for the
transmitter, one FPGA for the receiver, one USRP for the transmitter, and one
USRP for the receiver.

9.3.3 Adding new systems
It is clear that there are four implemented and tested systems. These four systems
are 3G, 4G, Wi-Fi & 2G. Other systems can be added to the existing systems. One
of them can be the Bluetooth system.
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