

END-TO-END SELF DRIVING VEHICLES USING TIME DEPENDECY

MODELS, REINFORCEMENT LEARNING AND SENSOR FUSION

By

Abdallah Ahmed El Saeed

Mohamed Abdel El-Halim Bedier

Mohamed Sabry Abd El-Rady

Youssef Mostafa Ibrahim

A Thesis Submitted to the

Faculty of Engineering at Cairo University in

Partial Fulfillment of the

Requirements for the Degree of

BACHELOR OF ENGINEERING

in

Electronics and Communications Engineering

Under the supervision of

Prof. Hanan Ahmed Dr. Hassan Mostafa

Dr. Samah Tantawy

FACULTY OF ENGINEERING, CAIRO UNIVERSITY

GIZA, EGYPT

2020

END-TO-END SELF DRIVING VEHICLES USING TIME DEPENDECY

MODELS, REINFORCEMENT LEARNING AND SENSOR FUSION

By

Abdallah Ahmed El Saeed

Mohamed Abdel El-Haleem

Mohamed Sabry

Youssef Mostafa

A Thesis Submitted to the

Faculty of Engineering at Cairo University in

Partial Fulfillment of the

Requirements for the Degree of

BACHELOR OF ENGINEERING

in

Electronics and Communications Engineering

Under the supervision of

Prof. Hanan Ahmed

Affiliation

Electronics and Communications Engineering

Faculty of Engineering, Cairo University

Dr. Hassan Mostafa Dr. Samah Tantawy

Affiliation Affiliation
Department Department

Faculty, University Faculty, University

FACULTY OF ENGINEERING, CAIRO UNIVERSITY

GIZA, EGYPT

2020

Acknowledgements

This dissertation does not only hold the results of the year’s work, but also reflects the relationships

with many generous and stimulating people. This is the time where we have the opportunity to present

our appreciation to all of them.

First, to our advisors, Prof. Dr. Hanan Kamal, Dr. Hassan Mustafa and Dr. Samah El-Tantawy,

we would like to express our sincere gratitude and appreciation for your excellent guidance, caring,

patience, and immense help in planning and executing this project in a timely manner. Their great

personality and creativity provided us with an excellent atmosphere for work, while their technical

insight and experience helped us a lot in our research. Their support at the time of crisis will always be

remembered.

Of course, we will never find words enough to express the gratitude and appreciation that we

owe to our families. Their tender love and support have always been the cementing force for building

what we achieved. The all-round support rendered by them provided the much-needed stimulant

to sail through the phases of stress and strain.

Finally, we would also like to thank Eng. Eslam Baker who is an Algorithms Software Engineer and Deep Learning Researcher at Valeo,

who was always there for any questions, providing precious advice and sharing his time and experience.

Abstract

The development of autonomous ground vehicles is a long-studied instantiation especially,
navigation in densely populated urban environments. This setting is particularly challenging due to the
complex multi-agent dynamics at traffic intersections; the necessity to track and respond to the motion
of tens or hundreds of other actors in the surrounding environment that may be in view at any given
time; prescriptive traffic rules that necessitate recognizing street signs, street lights, and road markings
and distinguishing between multiple types of other vehicles, and recognizing long tail of rare events and
road construction, for instance, a child running onto the road, an accident ahead, or a rogue driver
barreling on the wrong side; and the necessity to rapidly reconcile conflicting objectives, such as
applying appropriate deceleration when an absent-minded pedestrian strays onto the road ahead but
another car is rapidly approaching from behind and may rear-end if one brake too hard.

In this work, supervised learning and reinforcement learning are used to efficiently train a simulated

car to drive autonomously and navigate from a start point to an end point without collision or
intersections with road lanes in an end-to-end fashion.

• Time-dependent Neural Networks for End-to-End Autonomous Driving using 3D Convolution
and Long Short-Term Memories (LSTM).

 We implemented and trained three time-dependent neural architectures as a modification on
the branched neural network introduced by Intel, Imposing time dependency to NN which increased the
accuracy and improved the generalization capability measured using Intel benchmarks in CARLA
Simulator.

• End-to-end Sensor Fusion between RGB Images and LiDAR Point Cloud.

We are pioneers in testing the fusion of Camera and LiDAR in end-to-end driving using Voxel Net
introduced in (Codevilla, Muller, Lopez, Koltun, & Dosovitskiy, 2017) and the branched neural network
introduced in (Zhou & Tuzel, 2017). The fusion increased the accuracy even further due to the presence
of depth information provided by the LiDAR point cloud.

• Integration of Reinforcement Learning and Supervised Learning.

We trained an agent using Reinforcement Learning in order to achieve a well generalized driving
policy, but due to the high dimensional state space the model was not able to converge well even by
trying state of the art RL algorithms like Rainbow algorithm, therefore we integrated both supervised
learning and reinforcement learning to enhance agent convergence, and we achieved better results than
that of using RL alone.

Contents
Chapter 1 Introduction ... 1

1.1 History ... 2

1.2 Problem Definition .. 4

1.3 Objectives.. 5

Chapter 2 Supervised Learning ... 5

2.1 The Learning Problem ... 5

2.1.1 Problem Setup ... 5

2.1.2 Types of Learning .. 6

2.1.3 Error and noise .. 8

2.2 Machine Learning Models ... 10

2.2.1. Linear Models .. 10

2.2.2. Non-Linear Models .. 12

2.3 Training Problems and Tuning Methods ... 15

2.3.1 Train/dev/test sets .. 15

2.3.2 Training Procedure .. 17

2.3.3 Bias and Variance Trade-off .. 17

2.4 Conclusion ... 18

Chapter 3 Reinforcement Learning ... 19

3.1 Formal framework .. 20

3.1.1 The reinforcement learning setting .. 20

3.1.2 The Markov property .. 20

3.1.3 Policies .. 21

3.1.4 The expected return.. 21

3.2 Different components to learn a policy .. 23

3.3 Different settings to learn a policy from data ... 24

3.3.1 Offline and online learning ... 24

3.3.2 Off-policy and on-policy learning .. 25

3.4 Value-based methods for deep RL .. 25

3.4.1 Q-learning ... 25

3.4.2 Fitted Q-learning ... 26

3.4.3 Deep Q-networks .. 27

3.4.4 Double DQN .. 29

3.5 Policy gradient methods for deep RL .. 29

3.5.1 Stochastic Policy Gradient ... 30

3.5.2 Deterministic Policy Gradient ... 32

3.5.3 Actor-Critic Methods ... 32

3.5.4 The critic .. 33

3.5.5 The actor ... 33

Chapter 4 Simulator .. 34

3.1 CARLA Simulator ... 34

3.2 Highlighted features.. 34

Chapter 5 Previous Imitation Learning Implementations (Intel’s and NVidia’s work) 36

5.1 Model architecture ... 36

5.2 Branched vs. Unbranched architecture .. 37

5.3 Signals range ... 38

5.4 Speed branch .. 38

5.5 Training Setup ... 38

5.6 Weighted sum loss function ... 39

5.7 Model Convergence .. 39

5.8 Soft processing on the control signal .. 40

5.8.1 Acceleration brake conflict ... 40

5.8.2 Speed Limitation ... 41

5.8.3 Avoid Fake Braking .. 41

5.9 Conclusion ... 41

Chapter 6 Data Description and Pre-processing ... 42

6.1 CARLA developers published Dataset Description .. 42

6.2 Visualizing a single data point ... 43

6.3 Visualizing s single data file ... 43

6.4 Notes regarding the data .. 44

6.4.1 HDF (H5) Format ... 44

6.4.2 RGB Images ... 44

6.4.3 Measurements Vector .. 44

6.4 High Level Command .. 45

6.4.5 Statistics .. 45

6.4.6 Cropping .. 46

6.5 Pros and Cons of the data ... 46

6.5.1 Pros .. 46

6.5.2 Cons .. 46

6.6 Data processing prior to our training .. 47

6.6.1 Filtering data with unaccepted speeds ... 47

6.6.2 Creating Scenarios as a sequence of frames ... 47

6.6.3 Up sample for the right and left branches .. 48

6.6.4 Data augmentation ... 49

6.6.7 Processing sequence ... 52

Chapter 7 Time Dependent Neural Networks .. 53

7.1 Supervised Camera Based Architectures .. 53

7.2 3D-Convloution SuperCam Architecture .. 54

7.3 LSTM SuperCam Architecture ... 55

7.4 LSTM SuperCam and LSTM + Attention SuperCam Architectures .. 56

Chapter 8 Fusion Networks ... 57

7.1 Dataset .. 57

7.2 SuperFusion Net .. 57

7.2.1 Point Cloud representations ... 57

7.2.2 Point Cloud Networks ... 59

7.3 SuperVoxel Net ... 59

7.3.1 VoxelNet Intuition ... 60

7.3.2 SuperVoxel .. 61

7.3 Conclusion ... 61

Chapter 9 Hardware .. 62

8.1 Physical System Specs .. 62

8.2 Fine Tuning .. 63

Chapter 10 Imitation and Fusion Results .. 64

9.1. Experimental setup .. 64

9.2. Trials and results .. 65

Chapter 11 Deep Deterministic Policy Gradient in Autonomous Driving ... 67

11.1 Actor .. 69

11.2 Critic .. 69

11.3 Reward function .. 70

11.3.1 Speed reward .. 70

11.3.2 Lane and off-road intersection reward ... 70

11.3.3 Collision reward .. 70

11.3.4 Steering reward ... 70

11.4 Exploration policy.. 70

11.5 Conclusion ... 71

Chapter 12 Using Nervana coach framework and Rainbow algorithm .. 72

12.1 Nervana coach framework .. 72

12.2 Rainbow algorithm .. 72

12.3 Extensions to DQN .. 72

12.3.1 Integrated Agent training steps .. 75

12.4 Results ... 75

Chapter 13 Deep Q-learning from demonstration ... 77

13.1 Problem setup ... 77

13.2 Actor Network in DDQN .. 80

13.3 Action Space .. 82

13.4 Prioritized Buffers Implementation .. 82

13.5 Prioritized Buffers Space Complexity and new prioritized caching method............................... 83

13.5.1 Working with cartpole .. 84

13.6 Conclusion ... 84

Chapter 14 Conclusion, future work and recommendations ... 85

14.1 Conclusion ... 85

14.2 Future work ... 86

14.3 Recommendations .. 86

Chapter 15 Bibliography ... 87

Table of Figures

FIGURE 1-1 CONTROLLER BASIC SETTINGS ... 4
FIGURE 2-1 BASIC SETUP OF THE LEARNING PROBLEM .. 5
FIGURE 2-2 THE GENERAL SUPERVISED LEARNING PROBLEM .. 10
FIGURE 2-3 DATASET SPLIT ... 16
FIGURE 3-1 RL BASIC SETTING ... 19
FIGURE 3-2 ILLUSTRATION OF A MDP. AT EACH STEP, THE AGENT TAKES AN ACTION THAT CHANGES ITS STATE IN THE ENVIRONMENT AND

PROVIDES A REWARD .. 21
FIGURE 3-3 DDQN LEARNING ARCHITECTURE .. 28
FIGURE 5-1 UNBRANCHED AND BRANCHED ARCHITECTURES ... 36
FIGURE 5-2 CONTROL SIGNALS ... 37
FIGURE 5-3 TRAINING LOOP ... 38
FIGURE 5-4 ACCELERATION BRAKE CONFLICT .. 39
FIGURE 5-5 SPEED LIMITATION .. 41
FIGURE 5-6 AVOID FAKE BRAKING ... 41
FIGURE 6-1 RGB IMAGE OF A SINGLE DATA FILE ... 43
FIGURE 6-2 VISUALIZATION OF A SINGLE DATA FILE ... 43
FIGURE 6-3 HDF FILES ARCHITECTURE ... 44
FIGURE 6-4 CROPPING FRAME FROM 800X600 TO 200X88 .. 46
FIGURE 6-5 FROM SINGLE FRAME TO STACK OF FRAMES ... 47
FIGURE 6-6 CREATING SCENARIOS ... 47
FIGURE 6-7 DATA DISTRIBUTION OVER THE FOUR CLASSES .. 48
FIGURE 6-8 DATA PERCENTAGE FOR EACH CLASS... 48
FIGURE 6-9 RIGHT AND STRAIGHT LOOKS LIKE FOLLOW AND UP SAMPLING ... 49
FIGURE 6-10 ORIGINAL SCENARIO ... 50
FIGURE 6-11 AUGMENTED SCENARIO 1 .. 50
FIGURE 6-12 AUGMENTED SCENARIO 2 .. 50
FIGURE 6-13 AUGMENTED SCENARIO 3 .. 51
FIGURE 6-14 AUGMENTED SCENARIO 4 .. 51
FIGURE 6-15 AUGMENTED SCENARIO 5 .. 51
FIGURE 6-16 AUGMENTED SCENARIO 6 .. 52
FIGURE 6-17 DATA PROCESSING SEQUENCE ... 52
FIGURE 7-1 IMITATION LEARNING CAMERA BASED OVERALL SYSTEM ARCHITECTURE .. 53
FIGURE 7-2 MULTI-FRAMES GENERATION ... 54
FIGURE 7-3 FUSION IMITATION LEARNING SOFTWARE ARCHITECTURE ... 54
FIGURE 7-4 SENSOR FUSION OVERALL SYSTEM ARCHITECTURE ... 54
FIGURE 7-5: LSTM SUPERCAM ARCHITECTURE ... 56
FIGURE 7-6 LSTM + ATTENTION SUPERCAM ARCHITECTURE .. 56
FIGURE 8-1 RANGE IMAGE CHANNELS IN THE FRONT CAMERA FIELD OF VIEW .. 58
FIGURE 8-2 360-DEGREE WIDE VIEW RANGE IMAGE ... 58
FIGURE 8-3 180-DEGREE BIRD'S EYE VIEW .. 58
FIGURE 8-4 RGB, RANGE IMAGE AND BIRD'S EYE VIEW SUPERFUSION ARCHITECTURE .. 59
FIGURE 8-5 VOXELS IN SPACE.. 59
FIGURE 8-6 VOXELNET OVERVIEW .. 60
FIGURE 8-7 RGB AND POINT CLOUD SUPERFUSION ... 61
FIGURE 9-1 GENERAL OVERVIEW OF THE SYSTEM ... 62
FIGURE 9-2 HARDWARE COMPONENT .. 63
FIGURE 9-3 COLLECTED FRAMES .. 63

file:///C:/Users/moham/Desktop/Final-Thesis.docx%23_Toc48394064

FIGURE 10-1 CORL 2017 EXPERIMENT .. 64
FIGURE 10-2 TASKS EXPLANATION IN CARLA TOWNS ... 65
FIGURE 10-3 BENCHMARK ARCHITECTURE .. 65
FIGURE 11-1 DDPG ARCHITECTURE .. 68
FIGURE 11-2 ACTOR NETWORK DETAILED ARCHITECTURE ... 69
FIGURE 11-3 CRITIC ARCHITECTURE ... 69
FIGURE 12-1 MEDIAN HUMAN-NORMALIZED PERFORMANCE ACROSS 57 ATARI GAMES ... 75
FIGURE 12-2 RAINBOW ARCHITECTURE USED WITH CARLA .. 76
FIGURE 13-1 DDQN ARCHITECTURE DIAGRAM WITH CONDITIONAL IMITATION NETWORK USED INSIDE THE DDQN 80
FIGURE 13-2 FINAL DQFD ARCHITECTURE DIAGRAM ... 82
FIGURE 13-3 DQFD ARCHITECTURE DIAGRAM USED WITH CARTPOLE .. 83
FIGURE 13-4 RETURNS OF DQFD VS DDQN IN THE INTERACTION PHASE WITH CARTPOLE .. 84

List of Tables

TABLE 5-1: CIL NETWORK IMPLEMENTATION DETAILS ... 36
TABLE 5-2: LABELS INFORMATION ... 38
TABLE 6-1: MEASUREMENTS VECTOR .. 43
TABLE 6-2: HIGH LEVEL COMMAND ... 45
TABLE 6-3: DATA STATISTICS .. 45
TABLE 9-1: HARDWARE MAIN COMPONENTS .. 62
TABLE 10-1: RESULTS ... 66
TABLE 13-1: SUMMARY OF FINAL-HYPER-PARAMETERS’ VALUES .. 81

1

Chapter 1 Introduction

Imitation learning and reinforcement learning are receiving renewed interest as

promising approaches to build autonomous driving vehicles. Demonstration of human driving

can be easily collected at scale, and can easily be simulated using graphics engines, both

imitation learning and reinforcement learning can be used to train an agent to predict control

commands; for example, mapping camera images to steering, acceleration and brake. However,

these systems have characteristic limitations especially when it comes to fully autonomous

urban driving. One limitation is the assumption that the optimal action can be predicted only

from perceptual input alone, because making a turn at an intersection cannot be predicted

from camera images only. The work in (Codevilla, Muller, Lopez, Koltun, & Dosovitskiy, 2017)

addresses this issue using conditional imitation learning, where the GPS high level directions

are fed to the function approximator along with the camera images to predict optimal actions,

just as mapping applications and passengers provide turn-by-turn directions to human drivers.

However, their work still faces some difficulties. Fitting a function approximator to imitate a

driving policy requires massive amounts of demonstrations and should be prone to overfitting.

In this report, we address this challenge by invoking different function approximator

architectures that can benefit from time as well as spatial information. Also, we presented a

novel end-to-end fusion solution that can benefit from both Camera spatial information and

LiDAR depth information to enhance capability of prediction. Finally, we introduce an

integration between reinforcement learning and imitation learning to achieve more

generalization and allow efficient online learning. Experiments are done with realistic

simulation of urban driving using CARLA simulator and can be easily deployed in the physical

world. Recordings of both systems are provided in the supplementary video. In this work,

supervised learning and reinforcement learning is used to efficiently train a simulated car to

drive autonomously and navigate from start point to end point without collision with or

intersections with road lanes in and end-to-end fashion.

2

1.1 History
Research in autonomous urban driving of requires a lot of infrastructure costs and the

logistical difficulties of training and testing systems in the physical world.

In 1969, John McCarthy — a.k.a. one of the founding fathers of artificial intelligence —

describes something similar to the modern autonomous vehicle in an essay titled “Computer-

Controlled Cars.” McCarthy refers to an “automatic chauffeur,” capable of navigating a public

road via a “television camera input that uses the same visual input available to the human

driver.” He writes that users should be able to enter a destination using a keyboard, which

would prompt the car to immediately drive them there. Additional commands allow users to

change destination, stop at a rest room or restaurant, slow down, or speed up in the case of an

emergency. No such vehicle is built, but McCarthy’s essay lays out the mission for other

researchers to work toward.

In the early 1990s, Carnegie Mellon researcher Dean Pomerleau writes a PhD thesis,
describing how neural networks could allow a self-driving vehicle to take in raw images from
the road and output steering controls in real time. Pomerleau isn’t the only researcher working
on self-driving cars, but his use of neural nets proves way more efficient than alternative
attempts to manually divide images into “road” and “non-road” categories.

In 1995, Pomerleau and fellow researcher Todd Jochem take their Navlab self-driving car

system on the road. Their bare bones autonomous minivan (they have to control speed and

braking) travels 2,797 miles coast-to-coast from Pittsburgh, Pennsylvania to San Diego,

California in a journey the pair dubs “No Hands Across America.”

In 2002, DARPA announces its Grand Challenge, offering researchers from top research

institutions a one million prize if they can build an autonomous vehicle able to navigate 142

miles through the Mojave Desert. When the challenge kicks off in 2004, none of the 15

competitors are able to complete the course. The “winning” entry makes it less than eight

miles in several hours, before catching fire. It’s a damaging blow to the goal of building real

self-driving cars. While autonomous vehicles still seem way in the future in the decade of the

2000s, self-parking systems begin to emerge — demonstrating that sensors and autonomous

road technologies are getting close to ready for real world scenarios. Toyota’s Japanese Prius

hybrid vehicle offers automatic parallel parking assistance from 2003, while Lexus soon adds a

similar system for its Lexus LS sedan, Ford incorporates Active Park Assist in 2009, and BMW

follows one year later with its own parallel parking assistant.

Starting in 2009, Google begins developing its self-driving car project, now called

Waymo, in secret. The project is initially led by Sebastian Thrun, the former director of the

Stanford Artificial Intelligence Laboratory and co-inventor of Google Street View. Within a few

years, Google announces that its autonomous cars have collectively driven 300,000 miles under

3

computer control without one single accident occurring. In 2014, it reveals a prototype of a

driverless car without any steering wheel, gas pedal or brake pedal, thereby being 100 percent

autonomous. By the end of last year, more than 2 million miles had been driven by Google’s

autonomous car.

By 2013, major automotive companies including General Motors, Ford, Mercedes Benz,

BMW, and others are all working on their own self-driving car technologies. Nissan commits to

a launch date by announcing that it will release several driverless cars by the year 2020. Other

cars, such as the 2014 Mercedes S-Class, add semiautonomous features such as self-steering,

the ability to stay within lanes, accident avoidance, and more. The likes of Tesla and Uber also

begin actively exploring self-driving technology, while Apple is rumored to be doing so. The first

autonomous car fatality

At CES 2018, Nvidia unveiled a new self-driving car chip called Xavier that will

incorporate artificial-intelligence capabilities. The company then announced that it was

partnering with Volkswagen to develop AI for future self-driving cars. While not the first effort

to imbue autonomous cars with AI (Toyota was already researching the concept with MIT and

Stanford), the VW-Nvidia collaboration is the first to connect AI to production-ready hardware.

It opens up the possibility for self-driving cars to perform better, as well as for new

convenience features like digital assistants.

In recent years, AI becomes the major element towards designing a full self-driving car

using different approaches that differ on how much they rely on AI to perform autonomous

driving tasks.

4

1.2 Problem Definition
Instrumenting and operating even one robotic car require significant funds and

manpower. And a single vehicle is far from sufficient for collecting the requisite data that cover

the multitude of corner cases that must be processed for both training and validation. This is

true for classic modular pipelines approaches and even more so for data hungry deep learning

techniques. Training and validation of sensorimotor control models for urban driving in the

physical world is beyond the reach of most research groups. An alternative is to train and

validate driving strategies in simulation. Simulation can democratize research in autonomous

urban driving. It is also necessary for system verification, since some scenarios are too

dangerous to be staged in the physical world (e.g., a child running onto the road ahead of the

car). Simulation has been used for training driving models since the early days of autonomous

driving research. More recently, urban simulators have been used to evaluate new approaches

to autonomous driving. CARLA simulator, for example, is one of the most used urban driving

simulators to train and benchmark autonomous vehicles.

In our work, CARLA simulator is used to train and evaluate an end-to-end self-driving car

using two different approach, supervised learning and reinforcement learning, aiming to

achieve an efficient end-to-end solution that can complete driving missions safely in different

conditions.

First, we address the problem as a controller that interacts with the environment over

discrete time steps. At each time step t, the controller receives an observation 𝑂𝑡 and takes an

action 𝑎𝑡. The basic idea behind imitation learning is to train a controller that mimics an expert.

The training data is a set of observation-action pairs 𝐷 = {〈𝑜𝑖, 𝑎𝑖〉}𝑖=1
𝑁 generated by the expert.

Regarding these settings; our problem in which the parameters 𝜃 of a function

approximator 𝐹(𝑂𝑖; 𝜃) must be optimized to fit the mapping of observations to actions.

Figure 1-1 Controller basic settings

5

1.3 Objectives

Since safety is crucial in the self-driving car fields, the accuracy of the end-to-end

AI model and its generalization capability is critical, our objective from this project is to test

new ideas in designing neural networks for both imitation learning and deep reinforcement

learning including, Firstly, sensor fusion between sensors used by autonomous cars, Camera

and LIDAR, for example, secondly, to benefit from time-dependent neural network

architectures like recurrent neural networks and 3D-Convolution networks to increase accuracy

of prediction and achieve generalization without overfitting, Lastly, following the desire in

covering large portion in state space and covering many driving scenarios without using huge

datasets, reinforcement learning approach is used integrated with imitation learning to achieve

stability and convergence.

5

Chapter 2 Supervised Learning

2.1 The Learning Problem
If you show a picture to a three-year-old and ask if there is a tree in it, you will likely get the correct

answer. If you ask a thirty-year-old what the definition of a tree is, you will likely get an inconclusive answer.

We didn’t learn what a tree is by studying the mathematical definition of trees. We learned it by looking at

trees.

In other words, we learned from “data”. Learning from data is used in situations where we don’t have

an analytic solution, but we do have data that we can use to construct an empirical solution. This premise

covers a lot of territory, and indeed learning from data is one of the most widely used techniques in science,

engineering, and economics, among other fields. In this chapter, we present examples of learning from data

and formalize the learning problem. We also discuss the main concepts associated with learning, and the

different paradigms of learning that have been developed.

2.1.1 Problem Setup

What do financial forecasting, medical diagnosis, computer vision, and search engines have in

common? They all have successfully utilized learning from data. The repertoire of such applications is quite

impressive.

Suppose that a bank receives thousands of credit card applications every day, and it wants to automate

the process of evaluating them. Just as in the case of movie ratings, the bank knows of no magical formula that

can pinpoint when credit should be approved, but it has a lot of data. This calls for learning from data, so the

bank uses historical records of previous customers to figure out a good formula for credit approval. Each

customer record has personal information related to credit, such as annual salary, years in residence,

outstanding loans, etc. The record also keeps track of whether approving credit for that customer was a good

idea, i.e., did the bank make money on that customer. This data guides the construction of a successful

formula for credit approval that can be used on future applicants.

Figure 2-1 Basic setup of the learning problem

6

Let us give names and symbols to the main components of this learning problem. There is the input X

(customer information that is used to make a credit decision), the unknown target function f: X→Y (ideal

formula for credit approval), where X is the input space (set of all possible inputs x), and Y is the output space

(set of all possible outputs, in this case just a yes/no decision). There is a data set D of input-output examples

(x1,y1),......,(xN,yN), where yn = f(xn) for n = 1,...,N, (inputs corresponding to previous customers and the correct

credit decision for them in hindsight).

The examples are often referred to as data points. Finally, there is the learning algorithm that uses the

data set D to pick a formula g: X→Y that approximates f. The algorithm chooses g from a set of candidate

formulas under consideration, which we call the hypothesis set H. For instance, H could be the set of all linear

formulas from which the algorithm would choose the best linear fit to the data, as we will introduce later in

this section. When a new customer applies for credit, the bank will base its decision on g (the hypothesis that

the learning algorithm produced), not on f (the ideal target function which remains unknown). The decision

will be good only to the extent that g faithfully replicates f. To achieve that, the algorithm chooses g that best

matches f on the training examples of previous customers, with the hope that it will continue to match f on

new customers. Whether or not this hope is justified remains to be seen. Figure 2-1 illustrates the

components of the learning problem.

We will use the setup in Figure 2-1

 As our definition of the learning problem. Later on, we will consider a number of refinements and

variations to this basic setup as needed. However, the essence of the problem will remain the same. There is a

target to be learned. It is unknown to us. We have a set of examples generated by the target. The learning

algorithm uses these examples to look for a hypothesis that approximates the target.

2.1.2 Types of Learning

The basic premise of learning from data is the use of a set of observations to uncover an underlying

process. It is a very broad premise, and difficult to fit into a single framework. As a result, different learning

paradigms have arisen to deal with different situations and different assumptions. In this section, we

introduce some of these paradigms. The learning paradigm that we have discussed so far is called supervised

learning. It is the most studied and most utilized type of learning, but it is not the only one. Some variations of

supervised learning are simple enough to be accommodated within the same framework. Other variations are

more profound and lead to new concepts and techniques that take on lives of their own. The most important

variations have to do with the nature of the data set.

2.1.2.1 Supervised Learning

When the training data contains explicit examples of what the correct output should be for a given

inputs, then we are within the supervised learning setting that we have covered so far. Consider the hand-

written digit recognition problem. A reasonable data set for this problem is a collection of images of hand-

written digits, and for each image, what the digit actually is. We thus have a set of examples of the form

(image, digit). The learning is supervised in the sense that some ’supervisor’ has taken the trouble to look at

each input, in this case an image, and determine the correct output, in this case one of the ten categories O, 1,

7

2, 3, 4, 5, 6, 7, 8, 9. While we are on the subject of variations, there is more than one way that a data set can

be presented to the learning process. Data sets are typically created and presented to us in their entirety at

the outset of the learning process. For instance, historical records of customers in the credit-card application,

and previous movie ratings of customers in the movie rating application, are already there for us to use. This

protocol of a “ready” data set is the most common in practice, and it is what we will focus on in this book.

However, it is worth noting that two variations of this protocol have attracted a significant body of work. One

is active learning, where the data set is acquired through queries that we make. Thus, we get to choose a

point x in the input space, and the supervisor reports to us the target value for x. As you can see, this opens

the possibility for strategic choice of the point x to maximize its information value, similar to asking a strategic

question in a game of 20 questions. Another variation is called online learning, where the data set is given to

the algorithm one example at a time. This happens when we have streaming data that the algorithm has to

process “on the run”. Online learning is also useful when we have limitations on computing and storage that

preclude us from processing the whole data as a batch. We should note that online learning can be used in

different paradigms of learning, not just in supervised learning.

2.1.2.2 Unsupervised Learning

Unsupervised learning is where you only have input data (X) and no corresponding output variables.

The goal for unsupervised learning is to model the underlying structure or distribution in the data in order to

learn more about the data. These are called unsupervised learning because unlike supervised learning above

there is no correct answers and there is no teacher. Algorithms are left to their own devises to discover and

present the interesting structure in the data. Unsupervised learning problems can be further grouped into

clustering and association problems. Clustering: A clustering problem is where you want to discover the

inherent groupings in the data, such as grouping customers by purchasing behavior. Association: An

association rule learning problem is where you want to discover rules that describe large portions of your

data, such as people that buy X also tend to buy Y. Some popular examples of unsupervised learning

algorithms are: k-means for clustering problems. Apriori algorithm for association rule learning problems.

Between supervised and unsupervised learning is semi-supervised learning, where the teacher gives an

incomplete training signal: a training set with some (often many) of the target outputs missing.

2.1.2.3 Reinforcement Learning

When the training data does not explicitly contain the correct output for each input, we are no longer

in a supervised learning setting. Consider a toddler learning not to touch a hot cup of tea. The experience of

such a toddler would typically comprise a set of occasions when the toddler confronted a hot cup of tea and

was faced with the decision of touching it or not touching it. Presumably, every time she touched it, the result

was a high level of pain, and every time she didn’t touch it, a much lower level of pain resulted (that of an

unsatisfied curiosity). Eventually, the toddler learns that she is better off not touching the hot cup. The

training examples did not spell out what the toddler should have done, but they instead graded different

actions that she has taken. Nevertheless, she uses the examples to reinforce the better actions, eventually

learning what she should do in similar situations. This characterizes reinforcement learning, where the

8

training example does not contain the target output, but instead contains some possible output together with

a measure of how good that output is. In contrast to supervised learning where the training examples were of

the form (input, correct output), the examples in reinforcement learning are of the form (input, some output,

grade for this output). Importantly, the example does not say how good other outputs would have been for

this particular input. Reinforcement learning is especially useful for learning how to play a game. Imagine a

situation in backgammon where you have a choice between different actions and you want to identify the

best action. It is not a trivial task to ascertain what the best action is at a given stage of the game, so we

cannot easily create supervised learning examples. If you use reinforcement learning instead, all you need to

do is to take some action and report how well things went, and you have a training example. The

reinforcement learning algorithm is left with the task of sorting out the information coming from different

examples to find the best line of play.

2.1.2.4 Other Views of Learning

The study of learning has evolved somewhat independently in a number of fields that started

historically at different times and in different domains, and these fields have developed different emphases

and even different jargons. As a result, learning from data is a diverse subject with many aliases in the

scientific literature. The main field dedicated to the subject is called machine learning, a name that

distinguishes it from human learning. We briefly mention two other important fields that approach learning

from data in their own ways. Statistics shares the basic premise of learning from data, namely the use of a set

of observations to uncover an underlying process. In this case, the process is a probability distribution and the

observations are samples from that distribution. Because statistics is a mathematical field, emphasis is given

to situations where most of the questions can be answered with rigorous proofs. As a result, statistics focuses

on somewhat idealized models and analyzes them in great detail. This is the main difference between the

statistical approach to learning and how we approach the subject here. We make less restrictive assumptions

and deal with more general models than in statistics. Therefore, we end up with weaker results that are

nonetheless broadly applicable. Data mining is a practical field that focuses on finding patterns, correlations,

or anomalies in large relational databases. For example, we could be looking at medical records of patients

and trying to detect a cause-effect relationship between a particular drug and long-term effects. We could

also be looking at credit card spending patterns and trying to detect potential fraud. Technically, data mining

is the same as learning from data, with more emphasis on data analysis than on prediction. Because databases

are usually huge, computational issues are often critical in data mining.

2.1.3 Error and noise

We close this chapter by revisiting two notions in the learning problem in order to bring them closer to

the real world. The first notion is what approximation means when we say that our hypothesis approximates

the target function well. The second notion is about the nature of the target function. In many situations,

there is noise that makes the output of f not uniquely determined by the input. What are the ramifications of

having such a ’noisy’ target on the learning problem?

9

2.1.3.1 Error Measures

Learning is not expected to replicate the target function perfectly. The final hypothesis g is only an

approximation of f. To quantify how well g approximates f, we need to define an error measure that quantifies

how far we are from the target.

The choice of an error measure affects the outcome of the learning process. Different error measures

may lead to different choices of the final hypothesis, even if the target and the data are the same, since the

value of a particular error measure may be small while the value of another error measure in the same

situation is large. Therefore, which error measure we use has consequences for what we learn. What are the

criteria for choosing one error measure over another? We address this question here. First, let’s formalize this

notion a bit. An error measure quantifies how well each hypothesis h in the model approximates the target

function f, Error = E(h,f). While E(h,f) is based on the entirety of h and f, it is almost universally defined based

on the errors on individual input points x. If we define a pointwise error measure e(h(x),f(x)), the overall error

will be the average value of this pointwise error. So far, we have been working with the classification error

e(h(x),f(x)) = [h(x)f −J(x)]. In an ideal world, E(h,J) should be user-specified. The same learning task in different

contexts may warrant the use of different error measures. One may view E(h,J) as the ’cost’ of using h when

you should use f. This cost depends on what his used for, and cannot be dictated just by our learning

techniques. Here is a case in point.

2.1.3.2 Noisy Targets

In many practical applications, the data we learn from are not generated by a deterministic target

function. Instead, they are generated in a noisy way such that the output is not uniquely determined by the

input. For instance, in the credit-card example we presented in Section 1.1, two customers may have identical

salaries, outstanding loans, etc., but end up with different credit behavior. Therefore, the credit ’function’ is

not really a deterministic function, but a noisy one. This situation can be readily modeled within the same

framework that we have. Instead of y = f(x), we can take the output y to be a random variable that is affected

by, rather than determined by, the input x. Formally, we have a target distribution P(yIx) instead of a target

function y = f(x). A data point (x,y) is now generated by the joint distribution P(x,y) = P(x)P(y|x). One can think

of a noisy target as a deterministic target plus added noise. If y is real-valued for example, one can take the

expected value of y given x to be the deterministic f(x) , and consider y−f(x) as pure noise that is added to f.

This view suggests that a deterministic target function can be considered a special case of a noisy target, just

with zero noise. Indeed, we can formally express any function f as a distribution P(y|x) by choosing P(y|x) to

be zero for all y except y = f(x) . Therefore, there is no loss of generality if we consider the target to be a

distribution rather than a function. Figure 2.2 modifies the previous Figures 2.1 to illustrate the general

learning problem, covering both deterministic and noisy targets.

10

2.2 Machine Learning Models

In this chapter, we present examples of learning from data and formalize the learning

problem. We also discuss the main concepts associated with learning,

Figure 2-2 The general supervised learning problem

and the different paradigms of learning that have been developed.

2.2.1. Linear Models

We often wonder how to draw a line between two categories; right versus wrong,

personal versus professional life, useful email versus spam, to name a few. A line is intuitively

our first choice for a decision boundary. In learning, as in life, a line is also a good first choice.

In Chapter 2, we (and the machine) learned a procedure to 'draw a line' between two

categories based on data (the perceptron learning algorithm). We started by taking the

hypothesis set H that included all possible lines (actually hyperplanes). The algorithm then

searched for a good line in H by iteratively correcting the errors made by the current candidate

line, in an attempt to improve𝐸𝑖𝑛. As we saw in Chapter 2, the linear model set of lines has a

small VC dimension and so is able to generalize well from 𝐸𝑖𝑛to 𝐸𝑜𝑢𝑡.

 The aim of this chapter is to further develop the basic linear model into a powerful tool

for learning from data. We branch into three important problems: the classification problem

11

that we have seen and two other important problems called regression and probability

estimation. The three problems come with different but related algorithms, and cover a lot of

territory in learning from data. As a rule of thumb, when faced with learning problems, it is

generally a winning strategy to try a linear model first.

2.2.1.1. Linear Regression

Linear regression is another useful linear model that applies to real-valued target

functions. It has a long history in statistics, where it has been studied in great detail, and has

various applications in social and behavioral sciences. Here, we discuss linear regression from a

learning perspective, where we derive the main results with minimal assumptions.

The Algorithm:

Linear regression is used for finding linear relationship between target and one or more

predictors. There are two types of linear regression- Simple and Multiple.

2.2.1.1.1. Simple Linear Regression

Simple linear regression is useful for finding relationship between two continuous
variables. One is predictor or independent variable and other is response or dependent
variable. It looks for statistical relationship but not deterministic relationship. Relationship
between two variables is said to be deterministic if one variable can be accurately expressed by
the other. For example, using temperature in degree Celsius it is possible to accurately predict
Fahrenheit. Statistical relationship is not accurate in determining relationship between two
variables. For example, relationship between height and weight.

The core idea is to obtain a line that best fits the data. The best fit line is the one for
which total prediction error (all data points) are as small as possible. Error is the distance
between the point to the regression line.

2.2.1.1.2. Logistic Regression

Logistic Regression is all about predictions. Logistic Regression was used in the biological

sciences in early twentieth century. It was then used in many social science applications.

Logistic Regression is used when the dependent variable(target) is categorical.

Consider a scenario where we need to classify whether an email is spam or not. If we use linear
regression for this problem, there is a need for setting up a threshold based on which
classification can be done. Say if the actual class is malignant, predicted continuous value 0.4
and the threshold value is 0.5, the data point will be classified as not malignant which can lead
to serious consequence in real time.

12

From this example, it can be inferred that linear regression is not suitable for classification
problem. Linear regression is unbounded, and this brings logistic regression into picture. Their
value strictly ranges from 0 to 1.

2.2.1.1.3. SVM

Now you have accustomed yourself with linear regression and logistic regression

algorithms. Support vector machine is another simple algorithm that every machine learning

expert should have in his/her arsenal. Support vector machine is highly preferred by many as it

produces significant accuracy with less computation power. Support Vector Machine,

abbreviated as SVM can be used for both regression and classification tasks. But it is widely

used in classification objectives.

The objective of the support vector machine algorithm is to find a hyperplane in an N-

dimensional space (N — the number of features) that distinctly classifies the data points.

To separate the two classes of data points, there are many possible hyperplanes that

could be chosen. Our objective is to find a plane that has the maximum margin, i.e. the

maximum distance between data points of both classes. Maximizing the margin distance

provides some reinforcement so that future data points can be classified with more confidence.

Hyperplanes are decision boundaries that help classify the data points. Data points

falling on either side of the hyperplane can be attributed to different classes. Also, the

dimension of the hyperplane depends upon the number of features. If the number of input

features is 2, then the hyperplane is just a line. If the number of input features is 3, then the

hyperplane becomes a two-dimensional plane. It becomes difficult to imagine when the

number of features exceeds 3.

In logistic regression, we take the output of the linear function and squash the value

within the range of [0,1] using the sigmoid function. If the squashed value is greater than a

threshold value (0.5) we assign it a label 1, else we assign it a label 0. In SVM, we take the

output of the linear function and if that output is greater than 1, we identify it with one class

and if the output is -1, we identify is with another class. Since the threshold values are changed

to 1 and -1 in SVM, we obtain this reinforcement range of values ([-1,1]) which acts as margin.

2.2.2. Non-Linear Models

2.2.2.1. Artificial Neural Networks

An artificial neural network (ANN) is the piece of a computing system designed to

simulate the way the human brain analyzes and processes information. It is the foundation of

artificial intelligence (AI) and solves problems that would prove impossible or difficult by human

13

or statistical standards. ANNs have self-learning capabilities that enable them to produce better

results as more data becomes available.

Artificial neural networks are built like the human brain, with neuron nodes interconnected like

a web. The human brain has hundreds of billions of cells called neurons. Each neuron is made

up of a cell body that is responsible for processing information by carrying information towards

(inputs) and away (outputs) from the brain.

 An ANN has hundreds or thousands of artificial neurons called processing units, which are

interconnected by nodes. These processing units are made up of input and output units. The

input units receive various forms and structures of information based on an internal weighting

system, and the neural network attempts to learn about the information presented to produce

one output report. Just like humans need rules and guidelines to come up with a result or

output, ANNs also use a set of learning rules called backpropagation, an abbreviation for

backward propagation of error, to perfect their output results.

 An ANN initially goes through a training phase where it learns to recognize patterns in data,

whether visually, aurally, or textually. During this supervised phase, the network compares its

actual output produced with what it was meant to produce—the desired output. The difference

between both outcomes is adjusted using backpropagation. This means that the network works

backward, going from the output unit to the input units to adjust the weight of its connections

between the units until the difference between the actual and desired outcome produces the

lowest possible error.

 During the training and supervisory stage, the ANN is taught what to look for and what its

output should be, using yes/no question types with binary numbers. For example, a bank that

wants to detect credit card fraud on time may have four input units fed with these questions:

(1) Is the transaction in a different country from the user’s resident country? (2) Is the website

the card is being used at affiliated with companies or countries on the bank’s watch list? (3) Is

the transaction amount larger than $2,000? (4) Is the name on the transaction bill the same as

the name of the cardholder?

 The bank wants the "fraud detected" responses to be Yes Yes Yes No, which in binary format

would be 1 1 1 0. If the network’s actual output is 1 0 1 0, it adjusts its results until it delivers an

output that coincides with 1 1 1 0. After training, the computer system can alert the bank of

pending fraudulent transactions, saving the bank lots of money.

2.2.2.2. Convolutional Neural Network

A Convolutional Neural Network (ConvNet/CNN) is a Deep Learning algorithm which can

take in an input image, assign importance (learnable weights and biases) to various

aspects/objects in the image and be able to differentiate one from the other. The pre-

processing required in a ConvNet is much lower as compared to other classification algorithms.

14

While in primitive methods filters are hand-engineered, with enough training, ConvNets have

the ability to learn these filters/characteristics.

Convolutional layers are the major building blocks used in convolutional neural networks.

A convolution is the simple application of a filter to an input that results in an activation.
Repeated application of the same filter to an input results in a map of activations called a
feature map, indicating the locations and strength of a detected feature in an input, such as an
image.

The innovation of convolutional neural networks is the ability to automatically learn a large
number of filters in parallel specific to a training dataset under the constraints of a specific
predictive modeling problem, such as image classification. The result is highly specific features
that can be detected anywhere on input images.

2.2.2.3. Recurrent Neural Networks

Recurrent Neural Networks (RNNs) add an interesting twist to basic neural networks. A

vanilla neural network takes in a fixed size vector as input which limits its usage in situations

that involve a ‘series’ type input with no predetermined size.

RNNs are designed to take a series of input with no predetermined limit on size. One could ask

what the big deal is, I can call a regular NN repeatedly too? Sure can, but the ‘series’ part of the

input means something. A single input item from the series is related to others and likely has an

influence on its neighbors. Otherwise it's just “many” inputs, not a “series” input (duh!).

Recurrent Neural Network remembers the past and its decisions are influenced by what it has

learnt from the past. Note: Basic feed forward networks “remember” things too, but they

remember things they learnt during training. For example, an image classifier learns what a “1”

looks like during training and then uses that knowledge to classify things in production.

While RNNs learn similarly while training, in addition, they remember things learnt from prior

input(s) while generating output(s). It’s part of the network. RNNs can take one or more input

vectors and produce one or more output vectors and the output(s) are influenced not just by

weights applied on inputs like a regular NN, but also by a “hidden” state vector representing

the context based on prior input(s)/output(s). So, the same input could produce a different

output depending on previous inputs in the series.

15

2.3 Training Problems and Tuning Methods

2.3.1 Train/dev/test sets

2.3.1.1 Training Vs Testing

Before a final exam, a professor may hand out some practice problems and solutions to

the class. Although these problems are not the exact ones that will appear on the exam,

studying them will help you do better. They are the 'training set' in your learning.

If the professor's goal is to help you do better in the exam, why not give out the exam

problems themselves? Well, nice try. Doing well in the exam is not the goal in and of itself. The

goal is for you to learn the course material. The exam is merely a way to gauge how well you

have learned the material. If the exam problems are known ahead of time, your performance

on them will no longer accurately gauge how well you have learned.

The same distinction between training and testing happens in learning from data. In this

chapter, we will develop a mathematical theory that characterizes this distinction. We will also

discuss the conceptual and practical implications of the contrast between training and testing.

2.3.1.2 Training Dataset

Training Dataset: The sample of data used to fit the model.

The actual dataset that we use to train the model (weights and biases in the case of Neural
Network). The model sees and learns from this data.

2.3.1.3 Validation Dataset

Validation Dataset: The sample of data used to provide an unbiased evaluation of a model fit
on the training dataset while tuning model hyperparameters. The evaluation becomes more
biased as skill on the validation dataset is incorporated into the model configuration.

The validation set is used to evaluate a given model, but this is for frequent evaluation. We as
machine learning engineers use this data to fine-tune the model hyperparameters. Hence the
model occasionally sees this data, but never does it “Learn” from this. We (mostly humans, at-
least as of 2017) use the validation set results and update higher level hyperparameters. So, the
validation set in a way affects a model, but indirectly.

16

2.3.1.4 Test Dataset

Test Dataset: The sample of data used to provide an unbiased evaluation of a final model fit on
the training dataset.

The Test dataset provides the gold standard used to evaluate the model. It is only used once a
model is completely trained (using the train and validation sets). The test set is generally what
is used to evaluate competing models (For example on many Kaggle competitions, the
validation set is released initially along with the training set and the actual test set is only
released when the competition is about to close, and it is the result of the model on the Test
set that decides the winner). Many a times the validation set is used as the test set, but it is not
good practice. The test set is generally well curated. It contains carefully sampled data that
spans the various classes that the model would face, when used in the real world.

Figure 2-3 Dataset split

About the dataset split ratio

Now that you know what these datasets do, you might be looking for recommendations on how
to split your dataset into Train, Validation and Test sets…

This mainly depends on 2 things. First, the total number of samples in your data and second, on
the actual model you are training.

Some models need substantial data to train upon, so in this case you would optimize for the
larger training sets. Models with very few hyperparameters will be easy to validate and tune, so
you can probably reduce the size of your validation set, but if your model has many
hyperparameters, you would want to have a large validation set as well (although you should
also consider cross validation). Also, if you happen to have a model with no hyperparameters or
ones that cannot be easily tuned, you probably don’t need a validation set too!

All in all, like many other things in machine learning, the train-test-validation split ratio is also
quite specific to your use case and it gets easier to make judge as you train and build more and
more models.

17

Note on Cross Validation: Many a times, people first split their dataset into 2 — Train and Test.
After this, they keep aside the Test set, and randomly choose X% of their Train dataset to be the
actual Train set and the remaining (100-X)% to be the Validation set, where X is a fixed
number(say 80%), the model is then iteratively trained and validated on these different sets.
There are multiple ways to do this, and is commonly known as Cross Validation. Basically, you
use your training set to generate multiple splits of the Train and Validation sets. Cross validation
avoids over fitting and is getting more and more popular, with K-fold Cross Validation being the
most popular method of cross validation

2.3.2 Training Procedure

First, we gather and prepare our data. This step is very important because the quality

and quantity of data that you gather will directly determine how good your predictive model

can be. Data preparation, where we load our data into a suitable place and prepare it for use in

our machine learning training. We’ll first put all our data together, and then randomize the

ordering. We don’t want the order of our data to affect what we learn, since that’s not part of

determining whether a drink is beer or wine. In other words, we make a determination of what

a drink is, independent of what drink came before or after it.

Next, the most important step is to choose our model. There are many models that researchers

and data scientists have created over the years. Some are very well suited for image data,

others for sequences (like text, or music), some for numerical data, others for text-based data.

Then we dive into training our models on our machines

The last step is to evaluate our model performance, we use the test set which we split earlier

and the model hasn’t seen before to evaluate our model and test how it can generalize and

predict well.

After those steps, we have our model ready, but there are a few things which we can do to

enhance our model performance. So, we will discuss parameter tuning. A lot of parameters can

be tuned by us and not learnable parameters by the model such as learning rate, split ratio of

the given data, number of neighbors in case of KNNs classifier, maximum depth in case of using

Decision Trees. So, many hyperparameters which we need to tune before submit the last phase

of our model

2.3.3 Bias and Variance Trade-off

Whenever we discuss model prediction, it’s important to understand prediction errors (bias and

variance). There is a tradeoff between a model’s ability to minimize bias and variance. Gaining a

proper understanding of these errors would help us not only to build accurate models but also

to avoid the mistake of overfitting and underfitting.

18

Bias is the difference between the average prediction of our model and the correct value which

we are trying to predict. Model with high bias pays very little attention to the training data and

oversimplifies the model. It always leads to high error on training and test data.

Variance is the variability of model prediction for a given data point or a value which tells us

spread of our data. Model with high variance pays a lot of attention to training data and does

not generalize on the data which it hasn’t seen before. As a result, such models perform very

well on training data but has high error rates on test data.

If our model is too simple and has very few parameters then it may have high bias and low
variance. On the other hand, if our model has large number of parameters then it’s going to
have high variance and low bias. So, we need to find the right/good balance without overfitting
and underfitting the data.

This tradeoff in complexity is why there is a tradeoff between bias and variance. An algorithm
can’t be more complex and less complex at the same time.

To build a good model, we need to find a good balance between bias and variance such that it

minimizes the total error. An optimal balance of bias and variance would never overfit or

underfit the model. Therefore, understanding bias and variance is critical for understanding the

behavior of prediction models.

2.4 Conclusion

In this chapter, we present examples of learning from data and formalize the learning problem.

We also discuss the main concepts associated with learning, and the different paradigms of learning that

have been developed.

19

Chapter 3 Reinforcement Learning

Reinforcement learning (RL) is the area of machine learning that deals with sequential
decision-making. In this chapter, we describe how the RL problem can be formalized as an
agent that has to make decisions in an environment to optimize a given notion of cumulative
rewards. It will become clear that this formalization applies to a wide variety of tasks and
captures many essential features of artificial intelligence such as a sense of cause and effect as
well as a sense of uncertainty and nondeterminism. This chapter also introduces the different
approaches
to learning sequential decision-making tasks and how deep RL can be useful.

A key aspect of RL is that an agent learns a good behavior. This means that it modifies or
acquires new behaviors and skills incrementally. Another important aspect of RL is that it uses
trial-and-error experience (as opposed to e.g., dynamic programming that assumes full
knowledge of the environment a priori). Thus, the RL agent does not require complete
knowledge or control of the environment; it only needs to be able to interact with the
environment and collect information. In an offline setting, the experience is acquired a priori,
then it is used as a batch for learning (hence the offline setting is also called batch RL).

This is in contrast to the online setting where data becomes available in a sequential order and

is used to progressively update the behavior of the agent. In both cases, the core learning

algorithms are essentially the same but the main difference is that in an online setting, the

agent can influence how it gathers experience so that it is the most useful for learning. This is

an additional challenge mainly because the agent has to deal with the exploration/exploitation

dilemma while learning. But learning in the online setting can also be an advantage since the

agent is able to gather information specifically on the most interesting part of the environment.

For that reason, even when the environment is fully known, RL approaches may provide the

most computationally efficient approach in practice as compared to some dynamic

programming methods that would be inefficient due to this lack of specificity.

Figure 3-1 RL basic setting

20

3.1 Formal framework

3.1.1 The reinforcement learning setting

The general RL problem is formalized as a discrete time stochastic control process where
an agent interacts with its environment in the following way: the agent starts, in a given state
within its environment 𝑠𝑜 ∈ 𝑆, by gathering an initial observation 𝑜𝑜 ∈ 𝑂 . At each time step t,
the agent has to take an action 𝑎𝑡 ∈ 𝐴. As illustrated in Figure 3-1, it follows three
consequences: (i) the agent obtains a reward 𝑟𝑡 ∈ 𝑅, (ii) the state transitions to 𝑠𝑡+1, and (iii)
the agent obtains an observation 𝑜𝑡+1. This control setting was first proposed by (Bellman R. ,
1957b). Here, we review the main elements of RL before delving into deep RL in the following
chapters.

3.1.2 The Markov property

The Markov property means that the future of the process only depends on the current

observation, and the agent has no interest in looking at the full history. A Markov Decision

Process (MDP) (Bellman R. a., 1957a) is a discrete time stochastic control process defined as

follows:

 Definition 3.1. An MDP is a 5-tuple (𝑆, 𝐴, 𝑇, 𝑅, 𝛾) where:

• 𝑆 is the state space,

• 𝐴 is the action space,

• 𝑇 ∶ 𝑆 × 𝐴 × 𝑆 → [0,1] is the transition function (set of conditional transition

probabilities between states),

• 𝑅 ∶ 𝑆 × 𝐴 × 𝑆 → 𝑅 is the reward function, where R is a continuous set of

possible rewards in range 𝑅𝑚𝑎𝑥 ∈ 𝑅+ (𝑒. 𝑔. , [0, 𝑅𝑚𝑎𝑥]),

• 𝛾 ∈ [0,1) is the discount factor.

The system is fully observable in an MDP, which means that the observation is the same as the
state of the environment: 𝑜𝑡 = 𝑠𝑡. At each time step 𝑡, the probability of moving to 𝑠𝑡+1 is
given by the state transition function 𝑇(𝑠𝑡, 𝑎𝑡, 𝑠𝑡+1) and the reward is given by a bounded
reward function 𝑅(𝑠𝑡, 𝑎𝑡, 𝑠𝑡+1) ∈ 𝑹.

21

Figure 3-2 Illustration of a MDP. At each step, the agent takes an action that changes its state in the environment and provides a
reward

3.1.3 Policies

A policy defines how an agent selects actions. Policies can be categorized under the

criterion of being either stationary or non-stationary. A non- stationary policy depends on the

time-step and is useful for the finite- horizon context where the cumulative rewards that the

agent seeks to optimize are limited to a finite number of future time steps (Bertsekas, 1995). In

this introduction to deep RL, infinite horizons are considered and the policies are stationary.

Policies can also be categorized under a second criterion of being either deterministic or

stochastic:

In the deterministic case, the policy is described by

𝜋(𝑠) ∶ 𝑆 → 𝐴

In the stochastic case, the policy is described by 𝜋(𝑠, 𝑎) ∶ 𝑆 × 𝐴 → [0,1] where

𝜋(𝑠, 𝑎) denotes the probability that action a may be chosen in state 𝑠.

3.1.4 The expected return

Throughout this survey, we consider the case of an RL agent whose goal is to find a policy

𝜋(𝑠, 𝑎) ∈ Π , so as to optimize an expected return

𝑉𝜋(𝑠) ∶ 𝑆 → 𝑅

(also called V-value function) such that

22

𝑽𝝅(𝒔) = 𝑬 [∑ 𝜸𝒌

∞

𝟎

 𝒓𝒕+𝒌 |𝒔𝒕 = 𝒔, , 𝝅]

(3.1)

Where,

𝑟𝑡 = Ε
𝑎~𝜋(𝑠𝑡,.)

[𝑅(𝑠𝑡, 𝑎, 𝑠𝑡+1)]

𝑃(𝑠𝑡+1|𝑠𝑡, 𝑎𝑡) = 𝑇(𝑠𝑡, 𝑎𝑡, 𝑠𝑡+1) 𝑤𝑖𝑡ℎ 𝑎𝑡~𝜋(𝑠𝑡, .)

From the definition of the expected return, the optimal expected return can be defined as:

 𝑽∗(𝒔) = 𝐦𝐚𝐱
𝝅 𝝐 𝚷

𝑽𝝅(𝒔) (3.2)

In addition to the V-value function, a few other functions of interest can be introduced.

The Q-value function 𝑄𝜋(𝑠, 𝑎) ∶ 𝑆 × 𝐴 → 𝑅 is defined as follows:

𝑸𝝅(𝒔) = 𝑬 [∑ 𝜸𝒌

∞

𝟎

 𝒓𝒕+𝒌 |𝒔𝒕 = 𝒔, 𝒂𝒕 = 𝒂, 𝝅]

(3.3)

This equation can be rewritten recursively in the case of an MDP using Bellman’s equation:

 𝑸𝝅(𝒔, 𝒂) = ∑ 𝑻(𝒔, 𝒂, 𝒔′) (𝑹(𝒔, 𝒂, 𝒔′)

𝒔′𝝐 𝑺

+ 𝜸𝑸𝝅(𝒔′, 𝒂 = 𝝅(𝒔′)))

(3.4)

Similarly, to the V-value function, the optimal Q-value function 𝑄∗(𝑠, 𝑎) can also be defined as

 𝑸∗(𝒔, 𝒂) = 𝐦𝐚𝐱
𝝅 𝝐 𝚷

𝑸𝝅(𝒔, 𝒂) (3.5)

23

The particularity of the Q-value function as compared to the V-value function is that the optimal

policy can be obtained directly from Q∗(s, a):

 𝝅∗(𝒔) = 𝐦𝐚𝐱
𝒂 𝝐 𝐀

𝑸∗(𝒔, 𝒂)

(3.6)

The optimal V-value function 𝑉∗(𝑠) is the expected discounted reward when in a given state 𝑠

while following the policy 𝜋∗ thereafter.

The optimal Q-value 𝑄∗(𝑠, 𝑎) is the expected discounted return when in a given state s and for

a given action a while following the policy 𝜋∗ thereafter.

It is also possible to define the advantage function

 𝑨𝝅(𝒔, 𝒂) = 𝑸𝝅(𝒔, 𝒂) − 𝑽𝝅(𝒔)

(3.7)

This quantity describes how good the action 𝑎 is, as compared to the expected return when

following directly policy 𝜋.

Note that one straightforward way to obtain estimates of either

𝑉𝜋(𝑠), 𝑄𝜋(𝑠, 𝑎) 𝑎𝑛𝑑 𝐴𝜋(𝑠, 𝑎) is to use Monte Carlo methods, i.e. defining an estimate by

performing several simulations from s while following policy π. In practice, we will see that this

may not be possible in the case of limited data. In addition, even when it is possible, we will see

that other methods should usually be preferred for computational efficiency.

3.2 Different components to learn a policy

An RL agent includes one or more of the following components:

• a representation of a value function that provides a prediction of how good each

state or each state/action pair is,

• a direct representation of the policy 𝜋(𝑠) or 𝜋(𝑠, 𝑎)

24

• a model of the environment (the estimated transition function and the estimated

reward function) in conjunction with a planning algorithm.

The first two components are related to what is called model-free RL. When the latter component

is used, the algorithm is referred to as model-based RL.

For most problems approaching real-world complexity, the state space is high-dimensional

(and possibly continuous). In order to learn an estimate of the model, the value function or the

policy, there are two main advantages for RL algorithms to rely on deep learning:

• Neural networks are well suited for dealing with high-dimensional sensory inputs

(such as times series, frames, etc.) and, in practice, they do not require an

exponential increase of data when adding extra dimensions to the state or

action space.

• In addition, they can be trained incrementally and make use of additional

samples obtained as learning happen

3.3 Different settings to learn a policy from data

3.3.1 Offline and online learning

Learning a sequential decision-making task appears in two cases: (i) in the offline learning

case where only limited data on a given environment is available and (ii) in an online learning case

where, in parallel to learning, the agent gradually gathers experience in the environment. The

specificity of the batch setting is that the agent has to learn from limited data without the

possibility of interacting further with the environment. In the online setting, the learning

problem is more intricate and learning without requiring a large amount of data (sample

efficiency) is not only influenced by the capability of the learning algorithm to generalize well

from the limited experience. Indeed, the agent has the possibility to gather experience via an

exploration/exploitation strategy. In addition, it can use a replay memory to store its experience

so that it can be reprocessed at a later time. In both the batch and the online settings, a

supplementary consideration is also the computational efficiency, which, among other things,

depends on the efficiency of a given gradient descent step. All these elements will be

introduced with more details in the following chapters.

25

3.3.2 Off-policy and on-policy learning

According to (Sutton R. S., 2017), « on-policy methods attempt to evaluate or improve the

policy that is used to make decisions, whereas off-policy methods evaluate or improve a policy

different from that used to generate the data ». In off-policy based methods, learning is

straightforward when using trajectories that are not necessarily obtained under the current policy,

but from a different behavior policy β (s, a). In those cases, experience replay allows reusing

samples from a different behavior policy. On the contrary, on-policy based methods usually

introduce a bias when used with a replay buffer as the trajectories are usually not obtained

solely under the current policy 𝜋. As will be discussed in the following chapters, this makes off-

policy methods sample efficient as they are able to make use of any experience; in contrast, on-

policy methods would, if specific care is not taken, introduce a bias when using off-policy

trajectories.

3.4 Value-based methods for deep RL

The value-based class of algorithms aims to build a value function, which subsequently lets us

define a policy. We discuss hereafter one of the simplest and most popular value-based

algorithms, the Q-learning algorithm and its variant, the fitted Q-learning, that uses

parameterized function approximators. We also specifically discuss the main elements of the

deep Q-network (DQN) algorithm (Mnih, et al., 2015) which has achieved superhuman- level

control when playing ATARI games from the pixels by using neural networks as function

approximators. We then review various improvements of the DQN algorithm and provide

resources for further details. At the end of this chapter and in the next chapter, we discuss the

intimate link between value-based methods and policy-based methods.

3.4.1 Q-learning

The basic version of Q-learning keeps a lookup table of values 𝑄(𝑠, 𝑎) with one entry for every

state-action pair. In order to learn the optimal Q-value function, the Q-learning algorithm makes

use of the Bellman equation for the Q-value function whose unique solution is 𝑄 ∗ (𝑠, 𝑎):

𝑸 ∗ (𝒔, 𝒂) = (𝑩𝑸 ∗)(𝒔, 𝒂)

(3.8)

26

·

where B is the Bellman operator mapping any function 𝐾 ∶ 𝑆 × 𝐴 → 𝑅 into another

function 𝑆 × 𝐴 → 𝑅 and is defined as follows:

 (𝑩𝑲)(𝒔, 𝒂) = ∑ 𝑻(𝒔, 𝒂, 𝒔′)(𝑹(𝒔, 𝒂, 𝒔′) + 𝜸 𝐦𝐚𝐱
𝒂′∈ 𝑨

𝑲 (𝒔′, 𝒂′))

𝒔′∈ 𝑺

(3.9)

By Banach’s theorem, the fixed point of the Bellman operator exists since it is a contraction

mapping. In practice, one general proof of convergence to the optimal value function is

available (Watkins, 1992) under the conditions that:

• the state-action pairs are represented discretely, and

• all actions are repeatedly sampled in all states (which ensures sufficient exploration, hence

not requiring access to the transition model). (Hasselt, H., Guez, & Silver., 2016)

This simple setting is often inapplicable due to the high-dimensional (possibly continuous)

state-action space. In that context, a parameterized value function 𝑄(𝑠, 𝑎; 𝜃) is needed, where

θ refers to some parameters that define the Q-values.

3.4.2 Fitted Q-learning

Experiences are gathered in a given dataset D in the form of tuples < 𝑠, 𝑎, 𝑟, 𝑠′ > where the

state at the next time-step 𝑠′ is drawn from 𝑇 (𝑠, 𝑎, .) and the reward r is given by 𝑅(𝑠, 𝑎, 𝑠′).

In fitted Q-learning, the algorithm starts with some random initialization of the Q-values

𝑄(𝑠, 𝑎; 𝜃𝑜) where 𝜃𝑜 refers to the initial parameters (usually such that the initial Q-values should

be relatively close to 0 so as to avoid slow learning). Then, an approximation of the Q-values at

the kth iteration 𝑄(𝑠, 𝑎; 𝜃𝑘) is updated towards the target value

 𝒀𝒌
𝑸 = 𝒓 + 𝜸 𝐦𝐚𝐱

𝒂′∈ 𝑨
𝑸(𝒔′, 𝒂′; 𝜽𝒌)

(3.10)

where θk refers to some parameters that define the Q-values at the kth iteration.

In neural fitted Q-learning (NFQ), the state can be provided as an input to the Q-network and a

different output is given for each of the possible actions. This provides an efficient structure that has

the advantage of obtaining the computation of max
𝑎′∈ 𝐴

𝑄(𝑠′, 𝑎′; 𝜃𝑘) in a single forward pass in the

27

k

neural network for a given 𝑠′.

 The Q-values are parameterized with a neural network 𝑄(𝑠, 𝑎; 𝜃𝑘) where the parameters 𝜃𝑘 are

updated by stochastic gradient descent (or a variant) by minimizing the square loss:

 𝑳𝑫𝑸𝑵 = (𝑸(𝒔, 𝒂; 𝜽𝒌) − 𝒀𝒌
𝑸)𝟐

(3.11)

Thus, the Q-learning update amounts in updating the parameters:

𝜽𝒌+𝟏 = 𝜽𝒌 + 𝜶(𝒀𝒌

𝑸 − 𝑸(𝒔, 𝒂; 𝜽𝒌))𝛁𝜽𝒌
𝑸(𝒔, 𝒂; 𝜽𝒌)

(3.12)

where 𝛼 is a scalar step size called the learning rate. Note that using the square loss is not

arbitrary. Indeed, it ensures that 𝑄(𝑠, 𝑎; 𝜃𝑘) should tend without bias to the expected value of

the random variable 𝑌𝑄. Hence, it ensures that 𝑄(𝑠, 𝑎; 𝜃𝑘) should tend to Q*(s, a) after many

iterations in the hypothesis that the neural network is well-suited for the task and that the

experience gathered in the dataset D is sufficient.

When updating the weights, one also changes the target. Due to the generalization and

extrapolation abilities of neural networks, this approach can build large errors at different

places in the state-action space. Therefore, the contraction mapping property of the Bellman

operator in Equation is not enough to guarantee convergence. It is verified experimentally that

these errors may propagate with this update rule and, as a consequence, convergence may be

slow or even unstable. Another related damaging side-effect of using function approximators is the

fact that Q-values tend to be overestimated due to the max operator (Hasselt, H., Guez, & Silver.,

2016) Because of the instabilities and the risk of overestimation, specific care has be taken to

ensure proper learning

3.4.3 Deep Q-networks

Leveraging ideas from NFQ, the deep Q-network (DQN) algorithm introduced by (Mnih, et al.,

2015) is able to obtain strong performance in an online setting for a variety of ATARI games,

directly by learning from the pixels. It uses two heuristics to limit the instabilities:

• The target Q-network in Equation is replaced by 𝑄(𝑠′, 𝑎′; 𝜃𝑘
−) where its parameters 𝜃𝑘

− are

updated only every N iterations with the following assignment 𝜃𝑘
− = 𝜃𝑘 this prevents the

28

instabilities and to propagate quickly and it reduces the risk of divergence as the target

values 𝑌𝑘
𝑄 are kept fixed for N iterations. The idea of target networks can be seen as

instantiation of fitted Q-learning, where each period between target network updates

corresponds to single fitted Q-iteration.

• In an online setting, the replay memory keeps all information for the last 𝑁𝑟𝑒𝑝𝑙𝑎𝑦 ∈

𝑁 time steps, where the experience is collected by following an ∈-greedy policy. The

updates are then made on a set of tuples < 𝑠, 𝑎, 𝑟, 𝑠′ > (called mini-batch) selected

randomly within the replay memory. This technique allows for updates that cover a wide

range of the state- action space. In addition, one mini-batch update has less variance

compared to a single tuple update. Consequently, it provides the possibility to make a

larger update of the parameters, while having an efficient parallelization of the algorithm.

In addition to the target Q-network and the replay memory, DQN uses other important

heuristics. To keep the target values in a reasonable scale and to ensure proper learning in

practice, rewards are clipped between -1 and +1. Clipping the rewards limits the scale of the

error derivatives and makes it easier to use the same learning rate across multiple games

(however, it introduces a bias). In games where the player has multiple lives, one trick is also to

associate a terminal state to the loss of a life such that the agent avoids these terminal states

(in a terminal state the discount factor is set to 0).

In DQN, many deep learning specific techniques are also used. In particular, a preprocessing

step of the inputs is used to reduce the input dimensionality, to normalize inputs (it scales pixels

value into [-1,1]) and to deal with some specificities of the task. In addition, convolutional layers

are used for the first layers of the neural network function approximator and the optimization is

performed using a variant of stochastic gradient descent called RMSprop.

Figure 3-3 DDQN learning architecture

29

3.4.4 Double DQN

The max operation in Q-learning uses the same values both to select and to evaluate an action.

This makes it more likely to select overestimated values in case of inaccuracies or noise, resulting

in overoptimistic value estimates. Therefore, the DQN algorithm induces an upward bias. The

double estimator method uses two estimates for each variable, which allows for the selection of

an estimator and its value to be uncoupled. Thus, regardless of whether errors in the estimated

Q-values are due to stochasticity in the environment, function approximation, non-stationarity,

or any other source, this allows for the removal of the positive bias in estimating the action

values. In Double DQN, or DDQN (Hasselt, H., Guez, & Silver., 2016), the target value 𝑌𝑘
𝑄 is replaced

by

𝒀𝒌

𝑫𝑫𝑸𝑵 = 𝒓 + 𝜸 𝑸(𝒔′, 𝐚𝐫𝐠𝐦𝐚𝐱
𝒂 ∈ 𝑨

𝑸(𝒔′, 𝒂; 𝜽𝒌); 𝜽𝒌
−)

(3.13)

which leads to less overestimation of the Q-learning values, as well as improved stability, hence

improved performance. As compared to DQN, the target network with weights θt
− are used for

the evaluation of the current greedy action. Note that the policy is still chosen according to the

values obtained by the current weights 𝜃.

3.5 Policy gradient methods for deep RL

This section focuses on a particular family of reinforcement learning algorithms that use policy

gradient methods. These methods optimize a performance objective (typically the expected

cumulative reward) by finding a good policy (e.g. a neural network parameterized policy) thanks

to variants of stochastic gradient ascent with respect to the policy parameters. Note that policy

gradient methods belong to a broader class of policy-based methods that includes, among

others, evolution strategies. These methods use a learning signal derived from sampling

instantiations of policy parameters and the set of policies is developed towards policies that

achieve better returns. In this chapter, we introduce the stochastic and deterministic gradient

theorems that provide gradients on the policy parameters in order to optimize the performance

objective. Then, we present different RL algorithms that make use of these theorems.

30

3.5.1 Stochastic Policy Gradient

The expected return of a stochastic policy 𝜋 starting from a given state 𝑠𝑜 can be written as

(Sutton, A. McAllester, P. Singh, & Mansour, 2000):

𝑽𝝅(𝒔𝒐) = ∫ 𝝆𝝅(𝒔)
𝑺

 ∫ 𝝅(𝒔, 𝒂) 𝑹′(𝒔, 𝒂) 𝒅𝒂𝒅𝒔,

𝑨

(3.14)

Where 𝑅′(𝑠, 𝑎) = ∫ 𝑇(𝑠, 𝑎, 𝑠′) 𝑅(𝑠, 𝑎, 𝑠′)
𝑠′ ∈ 𝑆

 and 𝜌𝜋(𝑠) is the discounted state distribution

defined as

𝝆𝝅(𝒔) = ∑ 𝜸𝒕 𝐏𝐫{𝒔𝒕 = 𝒔 | 𝒔𝒐 , 𝝅}

∞

𝒕=𝟎

(3.15)

For a differentiable policy 𝜋𝑤, the fundamental result underlying these algorithms is the policy

gradient theorem (Sutton, A. McAllester, P. Singh, & Mansour, 2000):

𝛁𝒘 𝑽𝝅𝒘 (𝒔𝒐) = ∫ 𝝆𝝅(𝒔)
𝑺

 ∫ 𝛁𝒘 𝝅𝒘(𝒔, 𝒂) 𝑸𝛑𝒘(𝒔, 𝒂) 𝒅𝒂𝒅𝒔,

𝑨

(3.16)

This result allows us to adapt the policy parameters 𝑤: ∆𝑤 ∝ ∇𝑤 𝑉𝜋𝑤 from experience. This

result is particularly interesting since the policy gradient does not depend on the gradient of the

state distribution (even though one might have expected it to). The simplest way to derive the

policy gradient estimator (i.e., estimating ∇𝑤 𝑉𝜋𝑤(𝑠𝑜) from experience) is to use a score

function gradient estimator, commonly known as the REINFORCE algorithm (Williams & J.,

1992).The likelihood ratio trick can be exploited as follows to derive a general method of

estimating gradients from expectations:

𝛁𝒘 𝝅𝒘(𝒔, 𝒂) = 𝝅𝒘(𝒔, 𝒂)

𝛁𝒘 𝝅𝒘(𝒔, 𝒂)

𝝅𝒘(𝒔, 𝒂)

= 𝝅𝒘(𝒔, 𝒂) 𝛁𝒘 𝐥𝐨𝐠(𝝅𝒘(𝒔, 𝒂))

(3.17)

31

It follows that

 𝛁𝒘 𝑽𝝅𝒘 (𝒔𝒐) = 𝑬𝒔~𝝆𝝅𝒘 ,𝒂~𝝅𝒘
[𝛁𝒘 𝐥𝐨𝐠(𝝅𝒘(𝒔, 𝒂)) 𝑸𝛑𝒘(𝒔, 𝒂)]

(3.18)

Note that, in practice, most policy gradient methods effectively use undiscounted state

distributions, without hurting their performance (Thomas & P., 2014). So far, we have shown

that policy gradient methods should include a policy evaluation followed by a policy

improvement. On the one hand, the policy evaluation estimates 𝑄π𝑤. On the other hand, the

policy improvement takes a gradient step to optimize the policy 𝜋𝑤(𝑠, 𝑎) with respect to the

value function estimation. Intuitively, the policy improvement step increases the probability of

the actions proportionally to their expected return.

The question that remains is how the agent can perform the policy evaluation step, i.e., how to

obtain an estimate of 𝑄π𝑤(𝑠, 𝑎). The simplest approach to estimating gradients is to replace

the Q function estimator with a cumulative return from entire trajectories. In the Monte- Carlo

policy gradient, we estimate the 𝑄π𝑤(𝑠, 𝑎) from rollouts on the environment while following

policy 𝜋𝑤. The Monte-Carlo estimator is an unbiased well-behaved estimate when used in

conjunction with the backpropagation of a neural network policy, as it estimates returns until

the end of the trajectories (without instabilities induced by bootstrapping). However, the main

drawback is that the estimate requires on-policy rollouts and can exhibit high variance. Several

rollouts are typically needed to obtain a good estimate of the return. A more efficient approach

is to instead use an estimate of the return given by a value-based approach, as in actor-critic

methods. We make two additional remarks. First, to prevent the policy from becoming

deterministic, it is common to add an entropy regularizer to the gradient. With this regularizer,

the learnt policy can remain stochastic. This ensures that the policy keeps exploring.

Second, instead of using the value function 𝑄π𝑤, an advantage value function 𝐴π𝑤 can also be

used. While 𝑄π𝑤(𝑠, 𝑎) summarizes the performance of each action for a given state under

policy π𝑤, the advantage function 𝐴π𝑤(𝑠, 𝑎) provides a measure of comparison for each action

to the expected return at the state (s), given by 𝑉π𝑤(𝑠). 𝐴π𝑤 (𝑠, 𝑎) = 𝑄π𝑤(𝑠, 𝑎) − 𝑉π𝑤(𝑠) has

usually lower magnitudes than 𝑄π𝑤(𝑠, 𝑎). This helps reduce the variance of the gradient

estimator ∇𝑤 𝑉𝜋𝑤 (𝑠𝑜) in the policy improvement step, while not modifying the expectation. In

other words, the value function 𝑉π𝑤(𝑠) can be seen as a baseline or control variate for the

gradient estimator. When updating the neural network that fits the policy, using such a baseline

allows for improved numerical efficiency – i.e. reaching a given performance with fewer

updates – because the learning rate can be bigger.

32

3.5.2 Deterministic Policy Gradient

The policy gradient methods may be extended to deterministic policies. The Neural Fitted Q

Iteration with Continuous Actions (NFQCA) (Hafner, R., & Riedmiller, 2011) and the Deep

Deterministic Policy Gradient (DDPG) (Silver, et al., 2014) algorithms introduce the direct

representation of a policy in such a way that it can extend the NFQ and DQN algorithms to

overcome the restriction of discrete actions. Let us denote by 𝜋(𝑠) the deterministic policy

 𝜋(𝑠) ∶ 𝑆 → 𝐴. In discrete action spaces, a direct approach is to build the policy iteratively

with:

 𝝅𝒌+𝟏(𝒔) = 𝐚𝐫𝐠𝐦𝐚𝐱
𝒂 ∈𝑨

𝑸𝝅𝒌(𝒔, 𝒂),

(3.19)

where 𝜋𝑘 is the policy at the 𝑘𝑡ℎ iteration. In continuous action spaces, a greedy policy

improvement becomes problematic, requiring a global maximization at every step. Instead, let

us denote by 𝜋𝜔(𝑠) a differentiable deterministic policy. In that case, a simple and

computationally attractive alternative is to move the policy in the direction of the gradient of Q,

which leads to the Deep Deterministic Policy Gradient (DDPG) algorithm:

 𝛁𝒘 𝑽𝝅𝒘 (𝒔𝒐) = 𝑬𝒔~𝝆𝝅𝒘 [𝛁𝒘𝝅𝒘 𝛁𝒂(𝑸𝛑𝒘(𝒔, 𝒂)) |𝒂= 𝝅𝒘(𝒔)]

(3.20)

This equation implies relying on ∇𝑎 𝑄𝜋𝑤 (𝑠, 𝑎) (in addition to ∇𝑤π𝑤), which usually requires

using actor-critic methods.

3.5.3 Actor-Critic Methods

As we have seen, a policy represented by a neural network can be updated by gradient ascent

for both the deterministic and the stochastic case. In both cases, the policy gradient typically

requires an estimate of a value function for the current policy. One common approach is to use

an actor-critic architecture that consists of two parts: an actor and a critic. The actor refers to

the policy and the critic to the estimate of a value function (e.g., the Q-value function). In deep

RL, both the actor and the critic can be represented by non-linear neural network function

approximators (Mnih, et al., 2016) . The actor uses gradients derived from the policy gradient

theorem and adjusts the policy parameters 𝑤. The critic, parameterized by 𝜃, estimates the

approximate value function for the current policy 𝜋: 𝑄(𝑠, 𝑎; 𝜃) ≈ 𝑄𝜋(𝑠, 𝑎).

33

3.5.4 The critic

From a (set of) tuples < s, a, r, s0 >, possibly taken from a replay memory, the simplest off-policy

approach to estimating the critic is to use a pure bootstrapping algorithm TD(0) where, at every

iteration, the current value 𝑄(𝑠, 𝑎; 𝜃) is updated towards a target value:

This approach has the advantage of being simple, yet it is not computationally efficient as it

uses a pure bootstrapping technique that is prone to instabilities and has a slow reward

propagation backwards in time. This is similar to the elements discussed in the value-based

methods. The ideal is to have an architecture that is

• sample-efficient such that it should be able to make use of both off-policy and on-policy

trajectories (i.e., it should be able to use a replay memory), and

• computationally efficient: it should be able to profit from the stability and the fast

reward propagation of on-policy methods for samples collected from near on-policy

behavior policies.

3.5.5 The actor

The off-policy gradient in the policy improvement phase for the stochastic case is given as:

 𝛁𝒘𝑽𝝅𝒘(𝒔𝒐) = 𝑬𝒔~𝝆
𝝅𝜷 ,𝒂~𝝅𝜷

[𝛁𝜽 𝐥𝐨𝐠 (𝛑𝒘(𝒔, 𝒂)) (𝑸𝛑𝒘(𝒔, 𝒂))]

(3.21)

where 𝛽 is a behavior policy generally different than, which makes the gradient generally

biased. This approach usually behaves properly in practice but the use of a biased policy

gradient estimator makes difficult the analysis of its convergence without the GLIE assumption

(Munos, R., Stepleton, Harutyunyan, & Bellemare., 2016).

 In the case of actor-critic methods, an approach to perform the policy gradient on-policy

without experience replay has been investigated with the use of asynchronous methods, where

multiple agents are executed in parallel and the actor-learners are trained asynchronously

(Mnih, et al., 2016). The parallelization of agents also ensures that each agent experiences

different parts of the environment at a given time step. In that case, n-step returns can be used

without introducing a bias. This simple idea can be applied to any learning algorithm that

requires on-policy data and it removes the need to maintain a replay buffer. However, this

asynchronous trick is not sample efficient. An alternative is to combine off-policy and on-policy

samples to trade-off both the sample efficiency of off-policy methods and the stability of on-

policy gradient estimates.

34

Chapter 4 Simulator

3.1 CARLA Simulator

Since Training in the physical world is not feasible. We can’t learn the car learn in the

physical world, this will cause many of accidents and problems. So, we need to have a virtual

urban driving simulator. So, we go to CARLA Simulator, One of the best simulators available. It

has an online support from the team and there is papers published based on it from the top

universities and companies. CARLA has been developed from the ground up to support

development, training, and validation of autonomous driving systems. In addition to open-

source code and protocols, CARLA provides open digital assets (urban layouts, buildings,

vehicles) that were created for this purpose and can be used freely. The simulation platform

supports flexible specification of sensor suites, environmental conditions, full control of all

static and dynamic actors, maps generation and much more.

3.2 Highlighted features

• Scalability via a server multi-client architecture: multiple clients in the same or in

different nodes can control different actors.

• Flexible API: CARLA exposes a powerful API that allows users to control all aspects

related to the simulation, including traffic generation, pedestrian behaviors, weathers,

sensors, and much more.

• Autonomous Driving sensor suite: users can configure diverse sensor suites including

LIDARs, multiple cameras, depth sensors and GPS among others.

• Fast simulation for planning and control: this mode disables rendering to offer a fast

execution of traffic simulation and road behaviors for which graphics are not required.

35

• Maps generation: users can easily create their own maps following the Open Drive

standard via tools like Roadrunner.

• Traffic scenarios simulation: our engine Scenario Runner allows users to define and

execute different traffic situations based on modular behaviors.

• ROS integration: CARLA is provided with integration with ROS via our ROS-bridge

Autonomous Driving baselines: we provide Autonomous Driving baselines as runnable agents in CARLA,

including an Auto Ware agent and a Conditional Imitation Learning agent.

36

Chapter 5 Previous Imitation Learning Implementations (Intel’s and

NVidia’s work)

In this chapter we will explain the previous methods of implementing the supervised learning

approach (Imitation learning) and explain the architecture layers and the training setup used and all

details related to the implementation and tuning.

5.1 Model architecture
The previous work of imitation learning was mainly related to two works: NVidia architecture and

Intel architecture. In fact, the most recent work was a combination of both of them. The very first

implementation of the imitation learning model is separated into two modules as inputs: photo-

processing module, measurements processing module and the command module as shown in figure 5-

1 on the left. The photo-processing module is the NVidia’s architecture. This architecture takes the

command input directly as a feature vector, or in Carla it’s a single value represents the desired high-

level command e.g. 2 means turn left (High Level Command is a CARLA auto generated signal that

provides the agent with the optimal direction related to the optimal path). The high-level command in

reality is obtained from GPS sensor, which guides the car with commands like: turn left and etc. This

implementation is separated into one module as an output: control module. The second improvement

provided by Intel shown in figure 5-1 on the right. The control module instead of using 1 control

module the model uses control module consists of 4 identical parallel branches each branch has a

specific weights and identifies which branch will be activated for this frame which mean that when the

signal generated by CARLA is “turn right” for example the control module first branch will be activated

and when the signal generated by CARLA is “turn left” for example the control module second branch

will be activated.

The imitation learning module details is shown in table 1.

Figure 5-1 Unbranched and Branched architectures

Table 5-1: CIL Network Implementation details

Module Layer no. Layer
No. Filters/

Neurons
Filter Size Stride Dropout

Image

Module
1 Conv 3 5x5 2 0.2

 2 Conv 24 5x5 1 0.2

 3 Conv 36 5x5 2 0.2

37

 4 Conv 48 3x3 1 0.2

 5 Conv 64 3x3 2 0.2

 6 FC 512 - - 0.5

 7 FC 512 - - 0.5

Speed

Module
1 FC 128 - - 0.5

 2 FC 128 - - 0.5

 3 FC 128 - - 0.5

Decision

Module
1 FC 256 - - 0.5

 2 FC 256 - - 0.5

 3 FC 128 - - 0.5

 4 FC 3 - - 0.5

5.2 Branched vs. Unbranched architecture
Previous work used the branched architecture instead of the unbranched architecture shown in

figure 5-1 on left because it has the advantage of taking the planner command into consideration in all

cases, unlike the unbranched which not forced to obey the planner command in all cases which leads to

a suboptimal performance The branched architecture is a conditional imitation learning because the

network parts are activated by a condition (in our case the planner command is the condition). This new

approach causes a complex training setup and complexity in the data preprocessing, the new approach

prevents us from using many of the API built-in functions due to the branching complexity so we

implemented some training functions from scratch.

Figure 5-2 Control Signals

38

5.3 Signals range

The outputs of the network are normalized and mapped to the values shown in table 2.
Table 5-2: Labels information

Control Signal Range Description

Steering Range [-1,1]

Positive: Rotation to the

right Negative: Rotation to

the left

Gas [0,1]
Zero: no pressing

One: full pressing

Brake [0,1]
Zero: no pressing

One: full pressing

5.4 Speed branch
It’s clear that the three control signals (steering angle – throttle – brake) are enough to control

the car and there was no need to predict the speed in controlling the car. However, the speed was

predicted to ensure that the car operates correctly, each frame we compare the current speed provided

by the simulator with the predicted speed and if the difference between them are above a certain

threshold we modify the control signals by adding offset to the gas otherwise we don’t change anything.

This problem is called the fake stopping problem, when the car stuck and stays in this situation for a

long time without logical reason; therefore, the speed is predicted with separated branch to solve this

problem not to pass it as a control signal.

5.5 Training Setup

We can consider the network as two parts: first is the feature extraction part which includes the

image module, speed module and concatenation layers, second

Figure 5-3 Training loop

is the decision module which includes the four branches (left branch- right branch -follow branch-
straight branch)? The training process will be iterative process as shown in figure 5-3.

39

The network is trained using firstly, left batch and mask the 3 other branches then we will train it using

right batch and mask the 3 other branches and the same thing with the follow and straight branches,

this process will be repeated over the whole dataset to make one epoch be biased towards one task

than another, to force the feature extraction part to extract features generally for all tasks This training

setup helped us to achieve great results and amazing generalization in all scenes, although the training

setup causes a slow train and high CPU dependency (due to the iterative method) ,it’s the best setup to

enhance the performance. Note that the speed branch will be trained in all batches because it’s

independent on the planner command.

5.6 Weighted sum loss function

The loss function is an important part that we must choose it carefully. The absolute error

between the network predictions and the true labels was chosen, but this wasn’t enough to enhance

the performance. Previous work tried to give each control signal a specific weight expresses its

importance in the optimization process Equation 1 shows the weighted sum loss function used.

Loss = 0.95(0.45 Steer+0.45 Gas+0.45 Brake) +0.05 Speed

They notice that the steering angle and gas has higher weight than the brake or the speed branch
because the main control signals that affect the performance are the steering angle and gas. After
applying this loss function the performance improved and the model collisions and mistakes decreased
as expected.

5.7 Model Convergence

To indicate that the model converged or not they apply the fitting test. They used some training
sample to test the model if the loss with high then the model needs more time to train and learn, if the
loss was small value then they indicate that the model fits the data so we need to test the overfitting to
prevent the model

Figure 5-4 Acceleration brake conflict

40

from the bad generalization capability, they tested the overfitting using real frames don’t included in

the dataset and check the performance, if the performance was bad the training must be stopped and

try to improve the performance by taking earlier epoch result or by the common techniques like

regularization and dropout. Leaving the model in training stage for a long time causes overfitting,

therefore the model should be tested after almost each epoch to prevent the resources waste and to

speed up the train process. The overfitting problem is the main supervised learning algorithms

challenge, the more data we train using it the less overfitting problem occurs but there are some other

effective parameters that affect the overfitting like training setup, dropout and data balancing and

augmentation.

5.8 Soft processing on the control signal
In some cases, the network outputs maybe not logical or maybe not suitable to the physical

problems like the gas brake conflict and other cases so we sometimes modify these outputs to prevent
the network output from being incompatible.

5.8.1 Acceleration brake conflict
In this case the acceleration value and the brake value are not compatible, therefore in case of the

acceleration is higher than the brake it was forced that the brake to be zero before providing it to the

simulator.

41

5.8.2 Speed Limitation
The speed is limited to certain values to satisfy the town rules, therefore they prevented the

network from break this rule be deactivating the acceleration signal in case of the car passed the speed
limit.

Figure 5-5 Speed limitation

Figure 5-6 Avoid Fake Braking

5.8.3 Avoid Fake Braking
When the brake is below a certain value, they consider it as an error and force it to be equal to

zero.

5.9 Conclusion

In this part we discussed the previous work in imitation learning architecture and training setup

which lead to the amazing results reached. In the next chapter, we will discuss out implementations as

well as other details we added in the imitation learning.

42

Chapter 6 Data Description and Pre-processing

In imitation networks we used two datasets:

- The first one collected by CARLA developers and used for the time dependency

approach networks

- The second one we collected which include LiDAR point cloud for each frame

As mentioned in the previous chapter, the IL technique mainly depends on the

training data, thus having a consistent, balanced and clean data is a game changer for

the overall model performance. This chapter handles the description of the training

data before and after preprocessing.

6.1 CARLA developers published Dataset Description

The dataset has the following characteristics before any processing:

- It was collected with the simulator running on 10 fps.

- It’s compressed in HDF (.H5 format) files, each file containing 200 frames. And each

frame has 28 measurements that are taken out of the simulator.

- It contains about 3290 files i.e. approximately 658,000 frames (Training points).

- Each frame is represented as an RGB image (3 channels).

- Each channel has a resolution of 200 x 88.

43

6.2 Visualizing a single data point

Here we are visualizing a single data point. Again, it consists of an RGB formatted

image with dimensions 200 pixels x 88 pixels. And each RGB image has 28

measurements. It can easily be noticed that we are interested in five measurements

only, thus the rest are left for future development.

Figure 6-1 RGB Image of a single data file

Table 6-1: Measurements Vector

index 1 2 3 11 25

Label Steer Gas Brake Speed High level command

Data type Float Float Float Float
Integer

Range [-1,1] [-1,1] [0,1] [-19, 83] {2,3,4,5}

6.3 Visualizing s single data file
Here we are visualizing a single data file, figure 6-2 shows that each file has 200 data

points as mentioned before.

Figure 6-2 Visualization of a single data file

44

6.4 Notes regarding the data

6.4.1 HDF (H5) Format

H5 file is a data file saved in the Hierarchical Data Format (HDF). It contains multidimensional

arrays of scientific data. The following figure 6-3 shows its architecture:

Figure 6-3 HDF Files Architecture

which is very suitable since the data is in hierarchical format.

6.4.2 RGB Images

It’s accurate that the RGB images raise the necessity of a more complex model and more

memory cost, however they offer more features to extract.

6.4.3 Measurements Vector

Not all the 28 measurement is used, only five of them, the rest of them is intentionally

left for future development

45

6.4 High Level Command

For the self-driving car at point A to reach point B, there has to be a 3rd party

supporting software independent of the car itself to accomplish two tasks in

sequence:

● Routing: Choosing the path.

● Navigation: Navigating through the path i.e. generating one of four signals: (Follow the

lane, turn right, turn left, and keep straight).

 This is what the planner does. The planner basically routes and generates the High command

signals. This can be easily shown in the following table.

Table 6-2: High Level Command

Value Command

2 Follow

3 Left

4 Right

5 Straight

6.4.5 Statistics

The below table shows some statistics about the measurements.

Table 6-3: Data Statistics

Description Steer Gas Brake Speed

Mean 0.00163 0.54 0.175 18

Standard Deviation 0.1559 0.33 0.38 14.463

Minimum -1 0 0 -18.73

Maximum 1 1 1 83

46

6.4.6 Cropping

The images are cropped to 200 x 88. This step crops the sky and the Engine hood which

are not effective in the decision. This also slightly helps saving.

Figure 6-4 Cropping frame from 800x600 to 200x88

6.5 Pros and Cons of the data

6.5.1 Pros

- Relatively large amount of data which means many scenes for the network to

be trained on.

- The measurement vector contains more than what is needed which opens the

doors for future development.

- Almost totally clean.

6.5.2 Cons

- Doesn’t take traffic lights into consideration.

- Almost completely ignores pedestrians.

- Which effectively limits the performance of the supervised learning algorithms.

- 10 fps produces many duplicated frames which must be taken care of in the preprocessing

step.

47

6.6 Data processing prior to our training

In this section, we will discuss the processing done on the data before the training.

6.6.1 Filtering data with unaccepted speeds

Some speeds are negative which means that the car is moving backward. Thus, all frames with

speeds less than -1 were filtered out and those with speeds less than zero and greater than -1 were left

and considered as noise. Noise is something we usually add to increase robustness to over fitting.

6.6.2 Creating Scenarios as a sequence of frames

The time dependent networks should be fed by a sequence of frames instead of single

frame to take the time feature into consideration so in the preprocessing stage we stack the

current frame with the frame came before it as its past associated with the current frame (last

frame in the sequence) target labels

Figure 6-5 From single frame to stack of frames

Creating scenarios statically needs a huge amount of storage, so we use the shit in scenarios

concept to reduce the number of samples which is illustrated in figure 6-6.

Figure 6-6 Creating scenarios

48

6.6.3 Up sample for the right and left branches

As mentioned before, each data point is associated with a high-level command (Turn

right, turn left, follow the lane, continue straight).

It might be intuitive that each of these commands doesn’t represent 25% of the data

which is a problematic situation especially with the branched architecture. Biasing the model

towards one of the commands is something we need to avoid.

Figure 6-7 Data distribution over the four classes

Figure 6-8 Data percentage for each class

49

By analyzing the data, we found that frames associated with the right and left high level

command have the interesting property that high-Level command usually comes early before

the curve which should create correlation between follow and the other high-level commands.

So, we create a dictionary for each high-level command containing the start and end for

each High-level command sequence and use the last third form the right and the left sequences

to balance the dataset. This will help us also to improve the performance of the right and left

branches in testing.

Figure 6-9 Right and straight looks like follow and up sampling

6.6.4 Data augmentation

Data augmentation is a strategy that enables practitioners to significantly increase the

diversity of data available for training models, without actually collecting new data. There are

two data augmentation techniques:

● Position Augmentation, i.e. Crop, resize, horizontal flip and vertical flip.

● Color Augmentation, i.e. Brightness, contrast, saturation and Grayscale transformation.

Not all the augmentation techniques work for a certain problem, for instance and in our

specific case, horizontal flip and vertical flip will be a complete mess.

Below is the original scenario taken from the simulator alongside with some examples to

augmented scenarios.

50

1. Original scenario with length of 4 frames

Figure 6-10 Original scenario

2. Augmented scenario with Change Color Temperature, Multiply and Add to Brightness and Rain

Figure 6-11 Augmented scenario 1

3. Augmented scenario with Change Color Temperature, Multiply and Add to Brightness

and Gaussian Blur

Figure 6-12 Augmented scenario 2

51

4. Augmented scenario with Change Color Temperature, Multiply and Add to Brightness

and Additive Gaussian Noise

Figure 6-13 Augmented scenario 3

5. Augmented scenario with Change Color Temperature, Multiply and Add to Brightness

and Coarse Salt and Pepper

Figure 6-14 Augmented scenario 4

6. Augmented scenario with Change Color Temperature, Multiply and Add to Brightness

and Coarse Dropout

Figure 6-15 Augmented scenario 5

52

7. Augmented scenario with Contrast Normalization

Figure 6-16 Augmented scenario 6

6.6.7 Processing sequence

The processing sequence of the data was as follows:

● First, we have 3290 files of data, each containing 200 frames.

● Secondly, we filter these data with unaccepted speeds, then we create scenarios while

classifying them into four files, each containing data related to a certain class.

● Up sampling is used to balance and improve the dataset

● Data is written as 32 data points per file. This is because, experimentally, it’s the highest batch

size applicable for the available GPUs.

● The last thing to do is to augment the data, this is done through reading the data, shuffling it,

then randomly augment a portion of it, and add the augmented array to the original array and

finally shuffling again or augment on the fly while training.

Figure 6-17 Data processing sequence

Original
dataset

Filtering
Creating
scenarios

up sampling Classification

Shufle
scenarios

Augmenting
Shuffling

again
Create

patches

53

Chapter 7 Time Dependent Neural Networks

In this chapter we address our first approach in designing deep learning networks, we describe

several approaches in the time dependent neural networks.

7.1 Supervised Camera Based Architectures

The first approach is to use the camera sensor. Camera image is the most scenery enrich sensor

that acquires a high-quality representation of the front scene.

Overall, the camera input passes through:

a) A preprocessing stage: where images get filtered and augmented

b) Feature Extraction Network: CNN (convolutional neural network) which locates

significant features of the input image

c) Merging module: Weights each feature

d) Prediction Network: predicts the optimal action regarded the input observation

Figure 7-1 Imitation learning Camera based overall system architecture

Our contribution in the feature extraction module is that we wanted our controller to mimic

real-life driving policy. For instance, during car driving we don’t only rely on the current

observation 𝑂𝑡, but also previous scenes or observations 𝑂 = {… , 𝑂𝑡−2, 𝑂𝑡−1, 𝑂𝑡}. In fact, the

RGB Preprocessing module in figure 7-2 converts between the old single image representation

to the new stack of frame representation as shown in figure 7-2.

54

Figure 7-2 Multi-frames generation

In order to match the new data representation, we used three two main ideas in the feature

extraction part

1. 3D Convolution (convolution across spatial and time information)

2. Reusing 2D Convolution across different time steps to feed an LSTM

Our enhancement in the Merging module regards how we’ll be combining the outputs from the

feature extraction module. Choices are as follows:

1. Ordinary FC in case of 3D Convolution

2. LSTM and LSTM with Attention in case of 2D Convolution

Figure 7-3 Fusion Imitation learning software architecture

Figure 7-4 Sensor fusion overall system architecture

7.2 3D-Convloution SuperCam Architecture

Observed image is at 200x88 pixel resolution with an input shape of

scenario_lengthx200x88x3. Feature extraction network consists of 8 3D Convolution layers with

55

a stride of 2. The number of filters increased from 32 to 256 at the final layer. The output

feature map is passed through 2 FC layers each with 512 neurons and then concatenated with

the speed embedding. Finally, the concatenated features are passed through a FC layer with

512 neurons and then to all the four branches. Each branch consists of 2 FC layers of 256

neurons then 3 neurons output.

Batch normalization is added after each convolution and fully connected layers. RELU is used

after all layers.

The current is speed is predicted using images feature map only to avoid the car from stopping

during testing.

We used an MSE loss function to train our branched network along with Adam optimizer and an

initial learning rate of 0.001, where a 120 batches size was used.

It was better to use online augmentation due to memory limits and also to improve the

generalization capability. We decided to fix sum augmentation techniques while changing

others during each training step. Coarse drop out, Gaussian noise and salt and pepper were

used as fixed augmentation to force the network to focus on the road features, while a

changing in colors and brightness where used dynamically changing to force the network to be

immune to any weather conditions.

𝑚𝑖𝑛𝜃 ∑ 𝑙(𝐹(𝑜𝑖 , 𝜃), 𝑎𝑖)

Where 𝐹(𝑜𝑖, 𝜃) the network is output and 𝑎𝑖 are actions for given observation 𝑜𝑖

7.3 LSTM SuperCam Architecture

The only change in this architecture is that we used 2D convolution and we reuse the

feature extraction part according to the number of the input multiple frames.

We used LSTM mechanism. Observed image is at 200x88 pixel resolution with an input

shape of 200x88x3. Feature extraction network consists of 8 2D-Convolution layers with a stride

of 2. We reused filters to match the scenario length e.g. each 2D Filter is used scenario length

times on each input frame and the number of filters increased from 32 to 256 at the final layer.

The output feature map is passed through 2 FC layers each with 512 neurons, before we

concatenate the output with the speed embeddings, we first apply LSTM between all outputs of

the Reused 2D-Conv layers and obtain the output from the last time sample frame (As shown in

figure 7-5). Finally, the LSTM output is then concatenated with the speed embedding and

passed through a FC layer with 512 neurons and then to all the four branches. Each branch

consists of 2 FC layers of 256 neurons then 3 neurons output.

56

7.4 LSTM SuperCam and LSTM + Attention SuperCam Architectures

The same blocks from previous normal LSTM, we used 2D convolution and we reuse the

feature extraction part according to the number of the input multiple frames. The difference

between the LSTM SuperCam architecture and the LSTM + Attention SuperCam architecture is

that the latter uses attention from (Bahdanau, Cho and Bengio 2015) while the former uses the

output from the last time step LSTM cell. Finally, the concatenated features are passed through

a FC layer with 512 neurons and then to all the four branches. Each branch consists of 2 FC

layers of 256 neurons then 3 neurons output.

Figure 7-6 LSTM + Attention SuperCam Architecture

Figure 7-5: LSTM SuperCam Architecture

57

Chapter 8 Fusion Networks

This chapter address the fusion part in our project, we’ll mainly talk about three parts: New

collected data, SuperFusion, SuperVoxelNet

7.1 Dataset

We’ve collected new data with the same configurations of the original datasets as it doesn’t have point

clouds. The collected dataset has the following characteristics before any processing:

• It was collected with the simulator running on 10 fps.

• It consists of 89 episodes

• It contains approximately 300, 000 frames (Training points).

• Each frame is represented as an RGB image (3 channels).

• Each channel has a resolution of 200 x 88.

• Each frame has a point cloud.

• Each point cloud has a maximum of 10000 points.

7.2 SuperFusion Net

7.2.1 Point Cloud representations

The network has two inputs from the point cloud

1. Range Image:

The LiDAR produces a cylindrical range image as it sweeps over the environment with a

set of lasers. The horizontal resolution of the image is determined by the rotation speed and

laser pulse rate, and the vertical resolution is determined by the number of lasers. The LiDAR

contains a set of 64 lasers with Elevation Field of view = (-10, 30). For each point in the sweep,

the sensor provides a range r, reflectance e, azimuth θ, and laser id m, which corresponds to a

known elevation angle. Using the range, azimuth, and elevation, we can compute the

corresponding 3D point (x, y, z)in the sensor frame. We build an input image by directly

mapping the laser id m to rows and discretizing azimuth θ into columns. If more than one point

occupies the same cell in the image, we keep the closest point.

58

Figure 8-1 Range image channels in the front camera field of view

For each cell coordinate in the image, we collect a set of input channels from its corresponding point:

range r, height z, azimuth angle θ. The result is a three-channel image that forms the input to our

network

Figure 8-2 360-degree wide view Range image

2. Bird’s Eye View

A view from a high angle as if seen by a bird in flight that we got by projecting the points from the

3D-point cloud into 2D-grayscale image representing the x-y plane or the road geometry as each pixel

contains the height of any obstacle there.

Figure 8-3 180-degree bird's eye view

59

7.2.2 Point Cloud Networks

We maintained the settings for the classification part and for the images feature

extraction part, but we added a new point cloud feature extraction network. Feature extraction

network for point cloud is based on the VoxelNet in (Zhou & Tuzel, 2017). The output feature

map from for both Camera and LiDAR are concatenated with the speed embedding. Finally, the

concatenated features are passed through a FC layer with 512 neurons and then to all the four

branches.

Figure 8-4 RGB, Range Image and Bird's Eye View SuperFusion Architecture

7.3 SuperVoxel Net

In this approach we need to divide the space into small voxels each voxel contains some

points. After choosing the voxel size and the max number of points in each voxel, we can create

sequences of voxel, then we capture dependencies between points within the same voxel

(Using Conv Operation). The output of this is a filtered, correlated and cleaner voxels each voxel

contains features, 3D-Conv is used to capture correlation between voxels.

Figure 8-5 Voxels in space

60

7.3.1 VoxelNet Intuition

A work [] proposed VoxelNet that “a generic 3D detection network that unifies feature extraction and

bounding box prediction into a single stage, end-to-end trainable deep network”. As mentioned in the

paper, the three networks are:

1. Feature Learning Network

2. Convolutional Middle Layers

3. Region Proposal Network

Figure 8-6 VoxelNet Overview

And the steps are follows:

1. Preprocessing:

a. Divide the input point cloud into voxels (Boxes in space) with a picked width, height,

depth

b. Some voxels might contain more or less points than other voxels, so a maximum

number of points T is chosen, and if the number of points is larger than T then random T

point are picked. If the number of points is smaller than T then we zero-pad the rest of

points

2. Feature Learning Network: All coming operations are per voxel:

a. VFE layer

b. Element Max Pooling

c. Concatenation

d. Reallocate each voxel with a tensor representing the output feature vector

3. Convolutional Middle Layers

a. 3D Convolution layers

4. Region Proposal Network

61

7.3.2 SuperVoxel

In general, our task wasn’t region proposal so we decided to discard the final RBN module mentioned in

the paper. Our architecture is divided into three modules:

1. RGB Module: Done with Single frame input or as per our enhances of Time dependencies

2. VoxelNet module: Same Feature Learning Network and Convolutional Middle mentioned in []

3. Speed moduel

Figure 8-7 RGB and Point CLoud SuperFusion

7.3 Conclusion

In this chapter we discussed the details of our data and the preprocessing sequence we used.

Now that we are done with the used algorithm, the implementation, the data, and before we dig into

the results let’s talk a little bit about the simulator and the hardware resources we used, which are the

topics of the following chapters respectively.

62

Chapter 9 Hardware

In order to start deploying our product we wanted to create a POC (Proof of Concept) prototype

on a scale 1/5 of a real truck. This section explains two parts: Physical System Specs and Fine Tuning.

8.1 Physical System Specs
The setup of the physical system is shown in Figure 9-1,9-2, we were supposed to follow this work [] by

Intel. The main components of the hardware systems are as follows:

 The system overall is: NVidia TX23 takes input image from the front camera, process the

image using out deployed model, send signal to the flight controller to control the speed as well as the

steering of the car.

Table 9-1: Hardware Main Components

Component Description

Traxxas Maxx The body of the vehicle

Nvidia TX2
Embedded processing GPU unit that will process incoming

images (observations from the environment)

Camera Front-camera to get the scene information

Holybro-

Pixhawk

Flight Controller contains ARM processor, on-board sensors like

GPS which is used to obtain the route

Figure 9-1 General Overview of the system

63

Figure 9-2 Hardware Component

8.2 Fine Tuning

We’ve tried as much as possible to enrich our model with augmented images that simulates the

reality, e.g. Coarse Dropout was intended to provide a mimic the real shadow on the ground. However,

since safety is our priority, we wanted to increase our model accuracy in reality. In order to reach that:

• We collected 700 frames from the real environment where our hardware will be tested, samples

of the frames are shown in figure 9-3.

• The 700 frames were manually labeled with high level command.

• We fine-tuned the model and re-trained a few more epochs with the new frames.

Figure 9-3 Collected frames

64

Chapter 10 Imitation and Fusion Results

9.1. Experimental setup
Carla simulator makes us able to run the evaluation mechanism in an episodic setup. In

each episode, the agent is initialized at a new given point and asked to drive to a given

destination point, given high-level turn commands from a topological planner. An episode is

considered successful if the agent reaches the goal within a fixed time interval. CARLA has 2

towns. Town 1 is used for training, while town 2 is used exclusively for testing. There are 4

kinds of weather for training and 2 for testing.

For evaluation, we followed CoRL 2017 experiment [9.1], which consists of 4 tasks (straight,

single turn, navigation without dynamics, and navigation with dynamics) each has 25 pairs of

start and goal locations as in fig [9.2]. So, we sum up with 600 test cases (6 weathers * (4 tasks

* 25 test cases per each task)) in each town. More details about the driving benchmark

structure are shown in fig [9.3].

Figure 10-1 CoRL 2017 Experiment

65

Figure 10-2 tasks Explanation in Carla towns

Figure 10-3 Benchmark Architecture

9.2. Trials and results

Trial iterations:

• Design Network architecture

• Hyper parameter tuning

o Change dropout ratio

o Add Augmentation in the fly instead of static and change augmentation ratio

o Adding batch normalization

o Change loss weights

66

o Add Speed branches

o Up sampling

• Deeside based on Tensor board whether the model efficiency is good enough to start

benchmarking

• Benchmark and compare to previous iterations

Table 10-1: Results

Network Task T1W1 T1W2 T2W1 T2W2

Replication of intel network
Intel conditional network

Straight 95 89 79 80

Single Turn 89 90 59 48

Navigation without dynamics 86 84 40 44

Navigation with dynamics 83 82 38 42

3D convolution SuperCam

Straight 100 98 96 90

Single Turn 97 96 74 70

Navigation without dynamics 88 88 56 60

Navigation with dynamics 80 84 48 54

LSTM SuperCam

Straight 98 96 95 90

Single Turn 92 90 75 72

Navigation without dynamics 84 84 60 62

Navigation with dynamics 79 80 46 55

LSTM + Attention SuperCam

Straight 100 99 95 92

Single Turn 94 92 80 74

Navigation without dynamics 88 89 64 62

Navigation with dynamics 80 82 48 57

Range Image SuperLidar

Straight 82 80 82 80

Single Turn 54 56 54 56

Navigation without dynamics 41 40 41 40

Navigation with dynamics 36 37 36 37

Bird’s eye view SuperLidar

Straight 90 88 86 86

Single Turn 89 86 74 72

Navigation without dynamics 78 70 70 56

Navigation with dynamics 54 50 50 50

SuperLidar (Range + Bird’s
eye view)

Straight 96 96 89 88

Single Turn 94 94 75 75

Navigation without dynamics 82 82 64 64

Navigation with dynamics 78 78 60 60

RGB, Ragne image, and Bird’s
eye view Super Fusion

Straight 100 100 98 96

Single Turn 97 98 88 89

Navigation without dynamics 93 93 76 75

Navigation with dynamics 89 88 75 74

SuperVoxel

Straight 100 100 98 98

Single Turn 98 98 90 88

Navigation without dynamics 94 92 77 75

Navigation with dynamics 91 90 74 73

67

Chapter 11 Deep Deterministic Policy Gradient in Autonomous Driving

As described in chapter 3, DDPG is a policy gradient algorithm that uses a stochastic

behavior policy for good exploration but estimates a deterministic target policy, which is much

easier to learn. Policy gradient algorithms utilize a form of policy iteration: they evaluate the

policy, and then follow the policy gradient to maximize performance. Since DDPG is off-policy

and uses a deterministic target policy, this allows for the use of the Deterministic Policy

Gradient theorem. DDPG is an actor-critic algorithm as well; it primarily uses two neural

networks, one for the actor and one for the critic. These networks compute action predictions

for the current state and generate a temporal- difference (TD) error signal each time step. The

input of the actor network is the current state, and the output is a single real value representing

an action chosen from a continuous action space. The critic’s output is simply the estimated Q-

value of the current state and of the action given by the actor. The deterministic policy gradient

theorem provides the update rule for the weights of the actor network. The critic network is

updated from the gradients obtained from the TD error signal. In general, training and

evaluating the policy and/or value function with thousands of temporally-correlated simulated

trajectories leads to the introduction of enormous amounts of variance in your approximation

of the true Q-function (the critic). The TD error signal is excellent at compounding the variance

introduced by bad predictions over time. We used a replay buffer to store the experiences of

the agent during training, and then randomly sample experiences to use for learning in order to

break up the temporal correlations within different training episodes. This technique is known

as experience replay. DDPG uses this. Directly updating the actor and critic neural network

weights with the gradients obtained from the TD error signal that was computed from both

your replay buffer and the output of the actor and critic networks causes your learning

algorithm to diverge (or to not learn at all). It was recently discovered that using a set of target

networks to generate the targets for your TD error computation regularizes your learning

algorithm and increases stability. Figure 11-1 describes the DDPG in architecture in details.

Algorithms 1 is the DDPG algorithm.

68

Figure 11-1 DDPG architecture

69

11.1 Actor
We used the same conditional network described in (Codevilla, Muller, Lopez, Koltun, &

Dosovitskiy, 2017) as our actor. Figure 11.2 better describes the actor network in more details.

Figure 11-2 Actor Network detailed architecture

11.2 Critic

We used the same conditional network described in (Codevilla, Muller, Lopez, Koltun, &

Dosovitskiy, 2017) as our critic that output the state value function for each branch. Figure 11.3

better describes the critic network in more details.

Figure 11-3 Critic architecture

70

11.3 Reward function
 Reinforcement learning relies heavily on immediate rewards which needs to very

representative to the task that needs to be solved. High dimensional problems might require

complex reward shaping techniques to allow the agent to learn efficiently. The reward function

that we used is described by

𝑟𝑒𝑤𝑎𝑟𝑑 = 𝑚𝑎𝑥(𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝑆𝑝𝑒𝑒𝑑 − 1, 30) − 5 ∗ 𝑙𝑎𝑛𝑒 𝑖𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡𝑖𝑜𝑛 − 5
∗ 𝑜𝑓𝑓𝑟𝑜𝑎𝑑 𝑖𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡𝑖𝑜𝑛 − 100 𝑎𝑛𝑦 𝑐𝑜𝑙𝑙𝑖𝑠𝑖𝑜𝑛 − 𝑎𝑏𝑠(𝑠𝑡𝑒𝑒𝑟) ∗ 10

11.3.1 Speed reward

The car needs to move in most cases so there must be some positive reward that is

proportional to its speed, but this is up to a limit which is 30 Km/h. Moreover, to prevent the

car from stopping, a –ve reward is set along with the other rewards.

11.3.2 Lane and off-road intersection reward

The car needs to drive along its way without crossing any lanes or curbs, so we set a

proportional –ve reward to accommodate for intersecting in lanes while driving which is given

by

−5 ∗ 𝑙𝑎𝑛𝑒 𝑖𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡𝑖𝑜𝑛 − 5 ∗ 𝑜𝑓𝑓𝑟𝑜𝑎𝑑 𝑖𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡𝑖𝑜𝑛

11.3.3 Collision reward

To ensure safe driving, the car must learn to avoid hitting any static or dynamic object in

the environment, so a very large –ve reward must be set if the car collide with anything which is

given by

−100 𝑎𝑛𝑦 𝑐𝑜𝑙𝑙𝑖𝑠𝑖𝑜𝑛

11.3.4 Steering reward

In most cases other than turning left of right, the car must drive in straight lines, so a need the

car to learn not to output any steering while driving on its way, and this can be achieved by

−𝑎𝑏𝑠(𝑠𝑡𝑒𝑒𝑟) ∗ 10

11.4 Exploration policy

71

We used epsilon-greedy (Sutton R. S., 2017) as our exploration policy starting with 𝜖 = 1

and ending with 𝜖 = 0.01 following a decay rate of 0.99999. This exploration schedule is set to

ensure that the car can try as much exploration as it could for a sufficient amount of time

before ending with a probability of 0.01 to choose a random action.

11.5 Conclusion

The reinforcement learning was expected to enhance the performance and achieve

generalization, but the DDPG is sample inefficient especially in high dimensional state

problems. It needs both large time and trying different random seeds, and due to huge

networks used in Actor and Critic, our Memory usage affected the interaction process, and it

was unfeasible to debug and monitor for tuning hyper-parameters. In the next chapter we will

try some new ideas.

72

Chapter 12 Using Nervana coach framework and Rainbow algorithm

12.1 Nervana coach framework

Coach is a python framework which models the interaction between an agent and an

environment in a modular way. With Coach, it is possible to model an agent by combining

various building blocks, and training the agent on multiple environments. The available

environments allow testing the agent in different fields such as robotics, autonomous driving,

games and more. It exposes a set of easy-to-use APIs for experimenting with new RL

algorithms, and allows simple integration of new environments to solve. Coach collects

statistics from the training process and supports advanced visualization techniques for

debugging the agent being trained.

12.2 Rainbow algorithm

The deep reinforcement learning community has made several independent improvements to

the DQN algorithm. However, it is unclear which of these extensions are complementary and

can be fruitfully combined. Rainbow combines six extensions to the DQN Invalid source

specified..

12.3 Extensions to DQN

DQN has been an important milestone, but several limitations of this algorithm are now known,

and many extensions have been proposed. Six extensions have been proposed, and each have

addressed a limitation and improved overall performance figure 13.1 shows how Rainbow

outperforms all pervious modification in DQN.

Double Q-learning. As mentioned in chapter 3, Conventional Q-learning is affected by an

overestimation bias, and this can harm learning. Double Q-learning (Hasselt, H., Guez, & Silver.,

73

2016), addresses this overestimation by decoupling, in the maximization performed for the

bootstrap target, the selection of the action from its evaluation. It is possible to effectively

combine this with DQN using the target given by equation (3.13)

This change was shown to reduce harmful overestimations that were present for DQN, thereby

improving performance.

Prioritized replay. DQN samples uniformly from the replay buffer. Ideally, we want to sample

more frequently those transitions from which there is much to learn. As a proxy for learning

potential, prioritized experience replay Invalid source specified. samples transitions with

probability relative to the last encountered absolute TD error.

Dueling networks. The dueling network is a neural network architecture designed for value

based RL. It features two streams of computation, the value and advantage streams, sharing a

convolutional encoder, and merged by a special aggregator Invalid source specified.. This

corresponds to the following factorization of action values:

𝒒𝜽(𝒔, 𝒂) = 𝒗𝜼 (𝒇𝝃(𝒔)) + 𝒂𝝍(𝒄(𝒔), 𝒂) −

∑ 𝒂𝝍(𝒇𝝃(𝒔), 𝒂′)𝒂′

𝑵𝒂𝒄𝒕𝒊𝒐𝒏𝒔

(11.1)

Where 𝜉, 𝜂 𝑎𝑛𝑑 𝜓 are, respectively, the parameters of the shared encoder 𝑓𝜉 , of the value

stream 𝑣𝜂, and of the advantage stream 𝑎𝜓; and 𝜃 = {𝜉, 𝜂, 𝜓}

Multi-step learning. Q-learning accumulates a single reward and then uses the greedy action at

the next step to bootstrap. Alternatively, forward-view multi-step targets can be used (Sutton

R. S., 2017). We define the truncated n-step return from a given state 𝑆𝑡 as

74

𝑹𝒕

(𝒏)
= ∑ 𝜸𝒕

(𝒌)
𝑹𝒕+𝒌+𝟏

𝒏−𝟏

𝒌=𝟎

(11.2)

A multi-step variant of DQN is then defined by minimizing the alternative loss,

 (𝑹𝒕
(𝒏)

+ 𝜸𝒕
(𝒏)

 𝐦𝐚𝐱
𝒂′

𝒒�̅� (𝑺𝒕+𝒏, 𝒂′) − 𝒒𝜽(𝑺𝒕, 𝑨𝒕))𝟐

(11.3)

Multi-step targets with suitably tuned n often lead to faster learning (Sutton R. S., 2017).

Distributional RL. We can learn to approximate the distribution of returns instead of the

expected return. Recently, Invalid source specified. proposed to model such distributions with

probability masses placed on a discrete support 𝑧, where 𝑧 is a vector with 𝑁𝑎𝑡𝑜𝑚𝑠 ∈ 𝑁+ atoms

defoned by 𝑧𝑖 = 𝑣min + (𝑖 − 1)
𝑣max −𝑣m

𝑁𝑎𝑡𝑜𝑚𝑠−1
. The approximating distribution 𝑑𝑡 =

(𝑧, 𝑝𝜃(𝑆𝑡, 𝐴𝑡)).

The goal is to update 𝜃 such that this distribution closely matches the actual distribution of

returns.

Noisy Nets. The limitations of exploring using -greedy policies are clear in games such as

Montezuma’s Revenge, where many actions must be executed to collect the first reward. Noisy

Nets (Fortunato et al. 2017) propose a noisy linear layer that combines a deterministic and

noisy stream

 𝒚 = (𝒃 + 𝑾𝒙) + (𝒃𝒏𝒐𝒊𝒔𝒚 ⊙ ∈𝒃+ (𝑾𝒏𝒐𝒊𝒔𝒚 ⊙ ∈𝒘)𝒙)

(11.4)

where ∈𝑤 and ∈𝑏 are random variables, and ⊙ denotes the element-wise product. This

transformation can then be used in place of the standard linear 𝑦 = 𝑏 + 𝑊𝑥. Over time, the

network can learn to ignore the noisy stream, but will do so at different rates in different parts

of the state space, allowing state-conditional exploration with a form of self-annealing

75

Figure 12-1 Median human-normalized performance across 57 Atari games

12.3.1 Integrated Agent training steps

1. Sample a batch of transitions from the replay buffer.

2. The Bellman update is projected to the set of atoms representing the Q values distribution

3. Network is trained with the cross-entropy loss between the resulting probability

distribution and the target probability distribution. Only the target of the actions that were

actually taken is updated.

4. Once in every few thousand steps, weights are copied from the online network to the target

network.

5. After every training step, the priorities of the batch transitions are updated in the prioritized

replay buffer using the KL divergence loss that is returned from the network.

12.4 Results

Rainbow algorithm is used from Nervana coach framework with CARLA 8.2 figure 12-2, the

unconditional network described in (Codevilla, Muller, Lopez, Koltun, & Dosovitskiy, 2017) was

used as our function approximator. The algorithm was learning very quickly to go straight but it

had difficulties in learning to make turns so it needs a lot of reward shaping to make it work.

Another problem when using Nervana is that the code was crashing after nearly 8 hours due to

76

the lack of RAM. We used 16 GB is RAM that was not enough for the prioritized experience

replay buffer, the solution to this problem is a new prioritized cashing method that will be

discussed in the next chapter.

Figure 12-2 Rainbow architecture used with CARLA

77

Chapter 13 Deep Q-learning from demonstration

Deep reinforcement learning (RL) has achieved several high-profile successes in difficult

decision-making problems. However, these algorithms typically require a huge amount of data

before they reach reasonable performance. In fact, their performance during learning can be

extremely poor. This may be acceptable for a simulator, but it severely limits the applicability of

deep RL to many real-world tasks, where the agent must learn in the real environment. Deep Q-

learning from Demonstrations (DQfD) is a setting where the agent may access data from

previous control of the system. The algorithm leverages small sets of demonstration data to

massively accelerate the learning process even from relatively small amounts of demonstration

data and is able to automatically assess the necessary ratio of demonstration data while

learning thanks to a prioritized replay mechanism. (DQfD) works by combining temporal

difference updates with supervised classification of the demonstrator’s actions.

13.1 Problem setup

We followed the work in Invalid source specified.. The optimal state-action value

function 𝑄∗(𝑠, 𝑎) provides maximal values in all states and is determined by solving the Bellman

equation:

 𝑸∗(𝒔, 𝒂) = 𝑬[𝑹(𝒔, 𝒂) + 𝜸 ∑ 𝑷(𝒔′ | 𝒔, 𝒂) 𝒎𝒂𝒙
𝒂′

𝑸∗(𝒔′, 𝒂′)

𝒔′

]

(12.1)

The optimal policy 𝜋 is then 𝜋(𝑠) = 𝑎𝑟𝑔𝑚𝑎𝑥
𝑎∈𝐴

𝑄∗(𝑠, 𝑎) . DQN approximates the value function

𝑄(𝑠, 𝑎) with a deep neural network that outputs a set of action values 𝑄(𝑠,· ; 𝜃) for a given

state input s, where 𝜃 are the parameters of the network. There are two key components of

DQN that make this work.

First, it uses a separate target network that is copied every τ steps from the regular network so

that the target Q-values are more stable. Second, the agent adds all of its experiences to a

replay buffer Dreplay, which is then sampled uniformly to perform updates on the network.

The double Q-learning update Invalid source specified. uses the current network to calculate

the argmax over next state values and the target network for the value of that action. The

double DQN loss is

 𝑱𝑫𝑸(𝑸) = (𝑹(𝒔, 𝒂) + 𝜸𝑸(𝒔𝒕+𝟏, 𝒂𝒕+𝟏
𝒎𝒂𝒙, 𝜽′) − 𝑸(𝒔, 𝒂; 𝜽))𝟐

(12.2)

78

where 𝜃′are the parameters of the target network, and 𝑎𝑡+1
𝑚𝑎𝑥 = 𝑎𝑟𝑔𝑚𝑎𝑥

𝑎
𝑄(𝑠𝑡+1, 𝑎, 𝜃)

Separating the value functions used for these two variables reduces the upward bias that is

created with regular Q-learning updates. Prioritized experience replay Invalid source specified..

modifies the DQN agent to sample more important transitions from its replay buffer more

frequently. The probability of sampling a particular transition 𝑖 is proportional to its priority,

𝑃(𝑖) =
𝑝𝑖

𝛼

∑ 𝑝𝑘
𝛼

𝑘
 where the priority 𝑝𝑖 = 𝛿𝑖 + 휀 and 𝛿𝑖 is the last TD error calculated for this

transition and ε is a small positive constant to ensure all transitions are sampled with some

probability.

 𝑱𝑬(𝑸) = 𝒎𝒂𝒙
𝒂 ∈ 𝑨

[𝑸(𝒔, 𝒂) + 𝒍(𝒂𝑬, 𝒂)] − 𝑸(𝒔, 𝒂𝑬)

(12.3)

where aE is the action the expert demonstrator took in states and 𝑙(𝑎𝐸 , 𝑎) is a margin function

that is 0 when 𝑎 = 𝑎𝐸 and positive otherwise. This loss forces the values of the other actions to

be at least a margin lower than the value of the demonstrator’s action. Adding this loss

grounds, the values of the unseen actions to reasonable values, and makes the greedy policy

induced by the value function imitate the demonstrator. If the algorithm pre-trained with only

this supervised loss, there would be nothing constraining the values between consecutive

states and the Q-network would not satisfy the Bellman equation, which is required to improve

the policy on-line with TD learning.

The overall loss used to update the network is a combination of two losses:

 𝑱(𝑸) = 𝑱𝑫𝑸(𝑸) + 𝝀 𝑱𝑬(𝑸)

(12.4)

The λ parameters control the weighting between the losses.

We examine removing some of these losses in Section. Once the pre-training phase is complete,

the agent starts acting on the system, collecting self-generated data, and adding it to its replay

buffer 𝐷𝑟𝑒𝑝𝑙𝑎𝑦. Data is added to the replay buffer until it is full, and then the agent starts

overwriting old data in that buffer. However, the agent never over-writes the demonstration

data. For proportional prioritized sampling, different small positive constants, 𝜖𝑎 𝑎𝑛𝑑 𝜖𝑑, are

added to the priorities of the agent and demonstration transitions to control the relative

sampling of demonstration versus agent data. All the losses are applied to the demonstration

data in both phases, while the supervised loss is not applied to self-generated data.

Overall, Deep Q-learning from Demonstration (DQfD) differs from PDD DQN in six key ways:

79

• Demonstration data: DQfD is given a set of demonstration data, which it retains in its

replay buffer permanently.

• Pre-training: DQfD initially trains solely on the demonstration data before starting any

interaction with the environment.

• Supervised losses: In addition to TD losses, a large margin supervised loss is applied that

pushes the value of the demonstrator’s actions above the other action values.

• L2 Regularization losses: The algorithm also adds L2 regularization losses on the network

weights to prevent over-fitting on the demonstration data.

• N-step TD losses: The agent updates its Q-network with targets from a mix of 1-step and

n-step returns.

• Demonstration priority bonus: The priorities of demonstration transitions are given a

bonus of ϵd, to boost the frequency that they are sampled.

Pseudo-code is sketched in Algorithm 1.

80

13.2 Actor Network in DDQN

Figure 13-1 DDQN architecture diagram with conditional imitation network used inside the DDQN

The conditional network in (Codevilla, Muller, Lopez, Koltun, & Dosovitskiy, 2017) was used

inside the DDQN, but the training was very sensitive to some hyper-parameters, table 12.1

describes the best hyper-parameters to be used

81

Table 13-1: summary of final-hyper-parameters’ values

Parameter Value Reasons

Batch size 256 or bigger Stability in learning

Losses ratio 1
Stability in learning from both demonstration

and observation data

Discount factor 0.99 More stability

Exploration schedule [1,0.01,0.9999] Recommended experimentally by DeepMind

Learning rate and its

schedule
0.01 Recommended experimentally by DeepMind

Number of pre training

steps

750000 mini-batch

updates
Recommended experimentally by DeepMind

Frequency of updating

target network
10000 steps Recommended experimentally by DeepMind

Frequency of updating

online buffers
2000 steps Recommended experimentally by us

Frequency of updating

offline buffers
2000 steps Recommended experimentally by us

Ratio of imitation and RL

data in the interaction

phase

0.1 Recommended experimentally by DeepMind

𝑙(𝑎, 𝑎𝐸) 0.8 Recommended experimentally by DeepMind

FC neurons 1024
Experimentally, more neurons are capable of

capturing more information

Batch normalization After all layers
Experimentally, removing batch normalization

usually cause divergence

Dropout

0.2 after Convolution

layers

0.5 after FC

Experimentally, dropout reduces multi-

coolinearity and helps convergence on the

long term

Reward at pre training 10
Experimentally, rewards above this value

cause divergence

82

13.3 Action Space

Actions for controlling the car are continuous. Steering is in the range [-1,1],

acceleration is in the range [-1,1] and brake in range [-1,1]. We chose to work with DDQN so

firstly, we fused both acceleration and brake into one variable acc-brake so that brake falls in

the range [-1,0] and acceleration is in the range [0,1]. Secondly, we discretized steering and acc-

brake each to 20 actions, with a total 441 combination actions for each branch. Finally, we

preprocessed the demonstration data by Intel (Codevilla, Muller, Lopez, Koltun, & Dosovitskiy,

2017) to match action space settings.

13.4 Prioritized Buffers Implementation
 We first used an ordinary sorted array, but this dominated the run time. To scale to

large memory sizes N and for proportional prioritization, we used ‘sum-tree’ data structure

which is very similar in spirit to the array representation of a binary heap. However, instead of

the usual heap property, the value of a parent node is the sum of its children. Leaf nodes store

the transition priorities and the internal nodes are intermediate sums, with the parent node

containing the sum over all priorities, 𝑝𝑡𝑜𝑡𝑎𝑙. This provides an efficient way of calculating the

cumulative sum of priorities, allowing 𝑂(𝑙𝑜𝑔 𝑁) updates and sampling. To sample a mini batch

of size k, the range [0, 𝑝𝑡𝑜𝑡𝑎𝑙] is divided equally into k ranges. Priorities are saved in the sum-

tree and actual data are saved in an ordinary array Invalid source specified.. Software

implementation is simply described in figure 13-2.

Figure 13-2 final DQFD architecture diagram

83

13.5 Prioritized Buffers Space Complexity and new prioritized caching method

To scale to large memory sizes N we have to use very large RAM sizes which is not practical. We

adopted a new prioritized caching method as in figure 13-2 by using two kinds of buffers, an

offline buffers that keeps track of the files’ names on the disk and their current priorities and an

online buffer that is a small buffer in the RAM which contains the actual data that is frequently

sampled from the offline buffer. Using this idea is equivalent to using one large buffer and it is

both time and space efficient.

We used 16 buffers in our method, 8 online buffers and 8 offline buffers, each of online buffers

and offline buffers are subdivided to demonstration buffers and self-generated data buffers.

There is a buffer for each head or output branch in our conditional imitation network structure.

Figure 13-3 DQfD architecture diagram used with cartpole

84

Figure 13-4 Returns of DQfD vs DDQN in the interaction phase with cartpole

13.5.1 Working with cartpole

As a proof of concept, we tested our code with a cartpole, we used a 2 FC layers in the

DDQN to predict state-action value function and we ran the code twice, firstly we set the

pretraining steps of the DQfD to 5000 minibatch updates. Secondly, we tried using DDQN alone.

Figure 13-4 show the massive acceleration when using DQfD, and also it is capable of reaching

higher returns.

13.6 Conclusion

Due to COVID-19 situation, we didn’t manage to finish tuning the DQFD in the

autonomous driving problem, but a proof of concept was done on cartpole problem. Working

on DQfD in the autonomous driving problem is left as a future work.

85

Chapter 14 Conclusion, future work and recommendations

In this chapter, we will introduce two parts which are the conclusion and the future

research works which could help in the extension of this project.

14.1 Conclusion
End to End Self Driving task is a very difficult problem to be solved, especially with

algorithms that are still in a research area such as Reinforcement Learning algorithms. It might

seem easy to apply them with a simulator, but in real life it is totally different. This is due to the

numerous factors that aren’t considered and which also can affect the vehicle, such as: Climate

changes, pedestrians, congestion, traffic lights.

We applied three approaches, the supervised learning approaches using Imitation

learning the Time dependency approach and the sensor fusion approach and the reinforcement

learning approach using actor-critic algorithms.

We used the Intel self-driving model approach using conditional branches as Nvidia

pilot-net as our base lines to enhance these model’s performance by changing input from single

image to a stack of frames represents time sequence or adding another input branch for the

LiDAR point-cloud. Then, we trained and tested it with the help of the Urban Driving

environment, e.g. CARLA Simulator.

We took the Intel model as our reference. It seemed fair to use the same data in camera

only based architectures they used, and the collected data follows the same configurations for

architectures that include LiDAR, also the exact same benchmark was used. Finally, we were

able to outperform them in the same testing conditions and scenarios.

To go further with the project, we implemented the actor-critic network and carefully

chose all the relevant parameters to enhance our model performance.

In conclusion our three contributions can be summarized as follows time dependent

neural networks achieve high accuracy and more generalization in new driving scenarios,

sensor fusion achieves more redundancy and higher accuracy, while reinforcement learning

also achieves a higher accuracy but with online learning capability and a cost-effective

deployment.

86

14.2 Future work

• Try Transformers instead of LSTM.

• Using GANs to predict future states instead of using the scenario of past frames in time-

dependent neural network.

• Using self-supervised learning to predict future next states and using it in time-dependent

settings.

• Try state of the art reinforcement learning algorithms integrated with supervised setting

to achieve more stable and robust agents.

• Fine Tuning bigger models on real-life datasets.

• Enhancing fusion end-to-end networks with state-of-the-art LIDAR-based feature

extraction methods like SA-SSD.

14.3 Recommendations
We highly recommend the following in any future work,

1. Tips and Tricks in Deep Learning Training

https://github.com/Conchylicultor/Deep-Learning-Tricks#training

2. Tips and Tricks in Deep Reinforcement learning Training

https://github.com/williamFalcon/DeepRLHacks

3. Never use Keras instead, use pure TF 1.15, TF 2.0 or Pytorch because it's very high level.

https://github.com/Conchylicultor/Deep-Learning-Tricks#training
https://github.com/williamFalcon/DeepRLHacks

87

Chapter 15 Bibliography
Bahdanau, D., Cho, K., & Bengio, Y. (2015). Neural Machine Translation by Jointly Learning to Align and

Translate .

Bellman, R. (1957b). “Dynamic Programming”.

Bellman, R. a. (1957a). “A Markovian decision process”.

Bertsekas, D. P. (1995). Dynamic programming and optimal control. Vol. 1. No. 2.

Codevilla, F., Muller, M., Lopez, A., Koltun, V., & Dosovitskiy, A. (2017). End-to-end Driving via

Conditional Imitation Learning.

Hafner, R., & Riedmiller, M. (2011). “Reinforcement learning in feedback control”. Machine learning.

84(1-2): 137–169.

Hasselt, V., H., Guez, A., & Silver., D. (2016). “Deep Reinforcement Learning with Double Q-Learning.”.

Mnih, V., Badia, A. P., Mirza, M., Graves, A., Lillicrap, T. P., Harley, T., . . . Kavukcuoglu., K. (2016).

“Asynchronous methods for deep reinforcement learning”. In: International Conference on

Machine Learning.

Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A. A., Veness, J., . . . Ostrovski, G. (2015). “Human-level

control through deep reinforcement learning.

Munos, R., Stepleton, T., Harutyunyan, A., & Bellemare., M. (2016). “Safe and efficient off-policy

reinforcement learning”. In: Advances in Neural Information Processing Systems. 1046–1054.

Silver, D., Lever, G., Heess, N., Degris, T., Wierstra, D., & Riedmiller., M. (2014). “Deterministic Policy

Gradient Algorithms”. In: ICML.

Sutton, R. S. (2017). Reinforcement Learning: An Introduction MIT Press.

Sutton, R. S., A. McAllester, D., P. Singh, S., & Mansour, Y. .. (2000). “Policy gradient methods for

reinforcement learning with function approximation".

Thomas, & P. (2014). “Bias in natural actor-critic algorithms”. In: International Conference on Machine

Learning. 441–448.

Watkins, C. J. (1992). “Q-learning”. Machine learning.

Williams, & J., R. (1992). “Simple statistical gradient-following algorithms for connectionist

reinforcement learning”. Machine learning. 8(3-4):229–256.

Zhou, Y., & Tuzel, O. (2017). VoxelNet: End-to-End Learning for Point Cloud Based 3D Object Detection .

