

SIM-TO-REAL CONDITIONAL END-TO-END SELF-DRIVING VEHICLE

THROUGH VISUAL PERCEPTION

A THESIS

SUBMITTED TO

THE DEPARTMENT OF ELECTRONICS AND ELECTRICAL

COMMUNICATIONS

FACULTY OF ENGINEERING, CAIRO UNVERSITY

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

FOR THE DEGREE OF

 BACHELOR OF ENGINEERING

ABDELRAHMAN HUSSEIN EL-GAMMAL

AHMED SHERIF SALAH

AMR MEDHAT IBRAHIM

FAYROUZ YEHIA ZAKARIA

NERMEEN MOHAMED ELEWA

MOHAMED TAREK SHAABAN

JULY 2019

Abstract

Self-driving vehicles, or cars in particular, is the sleeping giant of this

century, with more and more cars on the road, and more fatalities due to human

error, the need of automating the driving task increases. The advancements being

made in the hardware capabilities, along with the huge amount of data available,

deep learning can be extensively used overcoming the performance and the

reliability of any rule based method to perform such task. Moreover, using deep

learning or AI in a hand-engineered context shall limit its capabilities to our

human interpretation of the provided data, which is in our case a visual of the road

in front of the vehicle, therefore we adopted an end-to-end approach to cover the

driving task starting from an image of the road in front of the vehicle till the

control signals sent to the vehicle’s motors, all in one computation without any

pre or post processing. And since deep learning requires huge amounts of data,

collecting data from the real world might not be the best option due to the

measurements inaccuracy, driving style variations, time consumed, possible

dangers, and more reasons that eliminated collecting a real-world dataset, thus, we

made use of the simulators available to have a consistent driving style with

various scenarios, accurate measurements, without time or power limitations, and

completely safe. Afterwards, the driving policy learned in the simulated

environment can be modularly transferred to the real environment, and perform

almost as well as it did in the simulator on real physical roads.

Acknowledgments

This dissertation would not have been possible without the support of

many people. First and foremost, we would like to thank our advisors and role

models Dr. Hassan Mostafa, Dr. Hossam Hassan, Dr. Ibrahim Sobh, and Eng.

Mahmoud El Khateeb.

 Dr. Hassan Mostafa and Dr. Hossam Hassan, we would like to thank you

both for your patience, guidance, support the great supervision you offered us

through the whole project, and equipment you helped us access and use easily

 Dr. Ibrahim Sobh and Eng. Mahmoud El Khateeb, you both provided

perfect technical guidance, through the whole project, that helped us reach our

desired objective, address various complex problems we faced, perform several

advanced techniques. We would specially thank you for the tremendous amount

of support and guidance you provieded us..

 Moreover, we want to thank Dr. Filipe Codevilla, Dr. Mattias Muller, and

Eng. Loay Amin, who have helped us with their relevant experience on several

problems we faced through our project.

 Contents

Introduction ... 1

Taxonomy of Driving Automation ... 2

Levels of Automation ... 3

Autonomous Cars Industry ... 6

Objective ... 10

Background ... 11

Machine Learning ... 11

Deep Learning ... 14

Deep Learning in Self Driving Cars ... 19

Simulation ... 21

Datasets ... 28

Methodology ... 31

Imitation Learning .. 31

Model Architecture ... 35

Training ... 45

Evaluation ... 48

Path Planning .. 50

Challenges ... 51

Domain Transformation and Semantic Segmentation 52

Simulation to Reality .. 57

Physical Setup ... 64

Overview ... 64

Main Computing Platform .. 65

Main Vehicle Components ... 66

Layers & Connections... 67

Power Management .. 69

Firmware ... 69

Wireless Control & Observation ... 69

Experiments and Results ... 71

Simulation Benchmark.. 71

Semantic Segmentation Evaluation .. 72

Physical Benchmark.. 73

Conclusion .. 74

List of Tables

Table 1. Command-Input Architecture. .. 38

Table 2. Branched Architecture. ... 43

Table 3. ERFNet Architecture .. 56

Table 4. ERFNet-Fast Architecture .. 62

Table 5. Simulation Benchmark ... 72

Table 6. Semantic Segmentation IoU. .. 72

Table 7. Physical Prototype Benchmark. .. 73

List of Figures

Figure 1. Road fatilities factors. .. 8

Figure 2. An illustration of our proposed end-to-end approach. 10

Figure 4. Logistic regression illustration. ... 13

Figure 5. Clustering illustration. ... 13

Figure 3. Linear regression illustration ... 13

Figure 6. Reinforcement learning concept illustration ... 14

Figure 7. An illustration of a standard two layers neural network........................ 15

Figure 8. An illustration of multiple layers deep neural network. 16

Figure 9. An illustration of a conventional convolutional neural network. 17

Figure 10. An unrolled illustration of a conventional RNN. 18

Figure 11. AirSim. .. 22

Figure 12. Gazebo simulator. .. 23

Figure 13. A high definition detailed scene from DeepDrive. 24

Figure 14. A scene taken from DeepDrive. .. 24

Figure 15. A standard scene from CARLA simulator. ... 25

Figure 16. CARLA Simulator Weather Conditions .. 26

Figure 17. CARLA Simulator Towns ... 27

Figure 18. An illustration of our controller-environment interactions. 34

Figure 19. A detailed figure of our command-input architecture. 37

Figure 20. A detailed figure of our command-input architecture. 42

Figure 21. Convolutional and Fully Connected Blocks .. 44

Figure 22. An illustration showing the right branch training batch 45

Figure 23. An illustration showing the left branch training batch. 45

Figure 24. Saliency Maps ... 49

Figure 25. Internal Activations ... 49

file:///C:/Users/Dell/Desktop/Thesis.docx%23_Toc13259088
file:///C:/Users/Dell/Desktop/Thesis.docx%23_Toc13259089
file:///C:/Users/Dell/Desktop/Thesis.docx%23_Toc13259090
file:///C:/Users/Dell/Desktop/Thesis.docx%23_Toc13259091
file:///C:/Users/Dell/Desktop/Thesis.docx%23_Toc13259092
file:///C:/Users/Dell/Desktop/Thesis.docx%23_Toc13259093
file:///C:/Users/Dell/Desktop/Thesis.docx%23_Toc13259094
file:///C:/Users/Dell/Desktop/Thesis.docx%23_Toc13259095
file:///C:/Users/Dell/Desktop/Thesis.docx%23_Toc13259096
file:///C:/Users/Dell/Desktop/Thesis.docx%23_Toc13259097
file:///C:/Users/Dell/Desktop/Thesis.docx%23_Toc13259098
file:///C:/Users/Dell/Desktop/Thesis.docx%23_Toc13259099
file:///C:/Users/Dell/Desktop/Thesis.docx%23_Toc13259100
file:///C:/Users/Dell/Desktop/Thesis.docx%23_Toc13259101
file:///C:/Users/Dell/Desktop/Thesis.docx%23_Toc13259102
file:///C:/Users/Dell/Desktop/Thesis.docx%23_Toc13259103
file:///C:/Users/Dell/Desktop/Thesis.docx%23_Toc13259104
file:///C:/Users/Dell/Desktop/Thesis.docx%23_Toc13259105
file:///C:/Users/Dell/Desktop/Thesis.docx%23_Toc13259106
file:///C:/Users/Dell/Desktop/Thesis.docx%23_Toc13259107
file:///C:/Users/Dell/Desktop/Thesis.docx%23_Toc13259108
file:///C:/Users/Dell/Desktop/Thesis.docx%23_Toc13259109
file:///C:/Users/Dell/Desktop/Thesis.docx%23_Toc13259110
file:///C:/Users/Dell/Desktop/Thesis.docx%23_Toc13259111
file:///C:/Users/Dell/Desktop/Thesis.docx%23_Toc13259112

Figure 26. Differences between both domains. .. 50

Figure 27.GTA V – CityScapes, CyCADA .. 52

Figure 28. Per-pixel semantic segmentation. .. 52

Figure 29. Binary Segmentation in CARLA Simulator .. 54

Figure 30. Binary Segmentation on our campus. .. 54

Figure 31. Modular Pipeline. .. 56

Figure 32. Target Environment ... 57

Figure 33. Lanes Influence on Perception. ... 58

Figure 34. The roads geometry defined in CARLA simulator. 59

Figure 35. Our customized track ... 60

Figure 36. Data Augmentation .. 62

Figure 37. Our physical prototype. ... 63

Figure 38. NVIDIA Jetson TX2.. 64

Figure 39. Our physical prototype chasis. .. 66

Figure 40. The interconnections on our physical system. 78

Figure 41. Debugging via VNC .. 70

file:///C:/Users/Dell/Desktop/Thesis.docx%23_Toc13259113
file:///C:/Users/Dell/Desktop/Thesis.docx%23_Toc13259114
file:///C:/Users/Dell/Desktop/Thesis.docx%23_Toc13259115
file:///C:/Users/Dell/Desktop/Thesis.docx%23_Toc13259116
file:///C:/Users/Dell/Desktop/Thesis.docx%23_Toc13259117
file:///C:/Users/Dell/Desktop/Thesis.docx%23_Toc13259118
file:///C:/Users/Dell/Desktop/Thesis.docx%23_Toc13259119
file:///C:/Users/Dell/Desktop/Thesis.docx%23_Toc13259120
file:///C:/Users/Dell/Desktop/Thesis.docx%23_Toc13259121
file:///C:/Users/Dell/Desktop/Thesis.docx%23_Toc13259122
file:///C:/Users/Dell/Desktop/Thesis.docx%23_Toc13259123
file:///C:/Users/Dell/Desktop/Thesis.docx%23_Toc13259124
file:///C:/Users/Dell/Desktop/Thesis.docx%23_Toc13259125
file:///C:/Users/Dell/Desktop/Thesis.docx%23_Toc13259126
file:///C:/Users/Dell/Desktop/Thesis.docx%23_Toc13259127
file:///C:/Users/Dell/Desktop/Thesis.docx%23_Toc13259128

1

Chapter 1

Introduction

 There are various benefits self-driving cars have to offer on different

aspects. Most importantly, they could make roads much safer. For example, the

leading cause of most accidents in our daily life is the human error. According to

the statistics provided by World Health Organization (WHO) [1], most of the road

fatalities are caused by the human error as shown in the following figure 1,

therefore self-driving cars can a more reliable approach for reducing these human

errors.

Moreover, there is a study made by Eno Centre for Transportation [2], this

study found out that if ten percent of all cars were self-driving, as many as

211,000 accidents would be prevented annually. Some 1,100 lives would be

preserved, and the economic costs of automobile accidents would be reduced by

more than $20 billion. An additional benefit could be decreasing or even

eliminating traffic congestion can be achieved by self-driving cars by following a

consistent behavior during traffic jams, turning all cars on the road into a fleet of

cars moving similarly with interconnection and intercommunication among them.

CHAPTER 1. INTRODUCTION

2

Another crucial aspect is the amount of time and effort spent during

driving daily, but with self-driving cars drivers can take over the whole driving

task, letting drivers make use of their time. Also, self-driving cars could also

come in handy in emergency situations. For example, if a driver lost

consciousness, a vehicle equipped with self-driving technology could take them to

safety.

Taxonomy of Driving Automation

It describes the level of automation in a driving system, there are some

things we need to take into consideration while defining the taxonomy of self-

driving car and the level of automation. The driver attention needed for example,

does the driver need to keep attention on the steering wheel all the time? The

driver action needed, for example does the driver need to steer? Does the driver

need to control the speed? Or does the driver need to change the lanes or can the

car stay in the current lane without any intervention? What exactly do we need to

expect when we say that the car can drive autonomously? All these questions lead

Figure 1. Roads Fatalities Factors

CHAPTER 1. INTRODUCTION

3

to the autonomous driving taxonomy. The categorization standards that we will

discuss in this topic are be suggested by the Society of Automotive Engineers

(SAE), but we need to describe the driving task before classifying the levels of

automation.

 The driving task consists of two main tasks, lateral control and

longitudinal control. Lateral control which refers to steering and navigating

laterally on the road, keeping a constant distances from the boundaries of the

road. While longitudinal control is the task where we control the position and

velocity of the car along the roadway, via throttle and brakes.

More tasks could be considered, like object and event detection and response

(OEDR). OEDR is essentially the ability to detect objects and events that

immediately affect the driving task and to react to them appropriately. Moreover,

one more task to be considered is planning, which is primarily concerned with the

long and short term plans needed to travel to a destination or execute maneuvers

such as lane changes and intersection crossings. Some more miscellaneous tasks

that people perform while driving can be considered as well. These include

actions like signaling with indicators, interacting with other drivers, etc.

Levels of Automation

These levels are commonly-used to describe levels of driving automation,

defined by the SAE Standard J3016 [3].

CHAPTER 1. INTRODUCTION

4

Level 0 – No Automation: It is a full human perception, planning and control. In

this level, there is no driving automation whatsoever and everything is done by

the driver.

Level 1 – Driving Assistance: In this level the autonomous system assists the

driver by performing either lateral or longitudinal control tasks, either but not

both.

For example, adaptive cruise control, in adaptive cruise control or ACC, the

system can control the speed of the car, but it needs the driver to perform steering.

So it can perform longitudinal control but needs the human to perform lateral

control. Similarly, lane keeping assist systems, in lane keeping assistance, the

system can help you stay within your lane and warn you when you are drifting

towards the boundaries.

Level 2 – Partial Driving Automation: In this level the system performs both

the control tasks, lateral and longitudinal in specific driving scenarios.

Some simple examples of level two features are GM Super Cruise, and Nissan's

Pro Pilot Assist [4]. These can control both your lateral and longitudinal motion

but the driver monitoring of the system is always required. Nowadays, many

automotive manufacturers offer level two automation products including

Mercedes, Audi, Tesla and Hyundai.

CHAPTER 1. INTRODUCTION

5

Level 3 – Conditional Driving Automation: In this level, the system can

perform Object and Event Detection in Response to a certain degree in addition to

the control tasks. However, in the case of failure the control must be taken up by

the driver.

An example of level three systems, would be the Audi A Luxury Sedan, which

was an automated driving system that can navigate unmonitored in slow traffic.

Level 4 – High Driving Automation: In this level, we arrive at highly automated

vehicles, where the system is capable of reaching a minimum risk condition, in

case the driver doesn't intervene in time for an emergency. Level four systems can

handle emergencies on their own, but may still ask drivers to take over to avoid

pulling over to the side of the road unnecessarily. With this amount of

automation, the passengers can check their phone or watch a movie knowing that

the system is able to handle emergencies and is capable of keeping the passengers

safe. However, level four still permits self-driving systems with a limited

operational design domain (ODD).

For example, as of fall 2018, only Waymo has deployed vehicles for public

transport with this level of autonomy. The Waymo fleet [5] can handle the driving

task in a defined geographic area with a nominal set of operating conditions,

without the need for a human driver.

CHAPTER 1. INTRODUCTION

6

Level 5 – Full Driving Automation: In this level the system is fully autonomous

and its ODD is unlimited. Meaning that it can operate under any condition

necessary. Level five is the point where our society undergoes transformational

change. With driverless taxis shuttling people in packages wherever we need

them. Unfortunately, we don't have any examples for level five yet.

Autonomous Cars Industry

Self-driving cars will be without a doubt the standard way of

transportation in the future. Major companies are willing to spend millions of

dollars in their development, as its future market is predicted to worth trillions.

Self-driving cars are now a feasible due to many different computational

technological advancements. We introduce briefly some of the most important

companies that had some major contribution in the field of autonomous driving

and navigation.

CMU Navlab [6]: The Carnegie Mellon University Navigation

Laboratory Navlab (CMU) group builds computer-controlled vehicles for

automated and assisted driving. Since 1984, they have built a series of

robot cars, vans, SUVs, and buses. Navlab11 [7], their latest vehicle in the

Navlab family, a robot Jeep Wrangler equipped with a wide variety of

sensors for short-range and mid-range obstacle detection.

CHAPTER 1. INTRODUCTION

7

Waymo's Self-Driving Cars: Waymo got started in 2009 as the Google

Self-Driving Car Project [8] and was spun off as a subsidiary of Google's

own parent company Alphabet Inc. in 2016. Waymo car is equipped with

cameras to enhance the vision along with a LIDAR. LIDAR is technology

that uses lasers to generate a highly accurate representation of the area

around a self-driving car. Unlike a human driver, LIDAR is able to

generate a complete 360 degree view of the world around the vehicle. A

Waymo car is able to plot a route from one location to another and then

react, in real time, to the flow of traffic, using the information from maps,

the LIDAR system, and other sensors. Sensors designed to detect objects

as far as three football fields away in all directions including pedestrians,

cyclists and vehicles. Waymo had tested its system in six states and 25

cities across the U.S over a span of more than 9 years. Waymo announced

that it has been running Level 4 autonomous cars, with no human behind

the wheel.

Tesla Model S: Tesla started equipping Model S with hardware to allow

for the incremental introduction of self-driving technology: a forward

radar, a forward-looking camera, 12 long-range ultrasonic sensors

positioned to sense 16 feet around the car in every direction at all speeds,

and a high-precision digitally-controlled electric assist braking system.

This combined suite of features represents the only fully integrated

CHAPTER 1. INTRODUCTION

8

autopilot system involving four different feedback modules: camera, radar,

ultrasonic, and GPS. These mutually reinforcing systems offer real-time

data feedback from the Tesla fleet, ensuring that the system is continually

learning and improving upon itself. Autopilot allows Model S to steer

within a lane, change lanes with the simple tap of a turn signal, and

manage speed by using active, traffic-aware cruise control. Digital control

of motors, brakes, and steering helps avoid collisions from the front and

sides, as well as preventing the car from wandering off the road.

Renault NEXT TWO [9]: Driverless operation is based on a system that

monitor and analyze the vehicle’s environment using the following: a

radar fitted in the front bumper and a camera on the central rear-view

mirror. The radar detects the vehicle in front and calculates its speed. The

camera is used to correctly position the vehicle in its lane. The system also

features an ultrasound belt wrapping around the vehicle. These monitoring

systems are coordinated by a control unit that communicate the powertrain

components and guard against contradictory instructions.

Mercedes-Benz: Mercedes S class has option for autonomous steering,

lane keeping, acceleration/braking, accident avoidance, and driver fatigue

detection. Partially automated driving is available to drivers of new

CHAPTER 1. INTRODUCTION

9

Mercedes-Benz E and S class models. The current S-Class falls under

Level 2 autonomy. These systems can assist in steering, acceleration, and

deceleration, but the driver remains in charge of monitoring the driving

environment at all times. In 2020, Mercedes-Benz will step up to the plate

with its own Level 3 technology for the next generation S-Class.

CHAPTER 1. INTRODUCTION

10

Objective

We propose an approach for driving autonomy using an end-to-end

approach illustrated in figure 2, the main objective is to design and operate a

vehicle controller on a hardware prototype of an autonomous vehicle, navigating

from a starting point to a destination point, on a route defined by a higher level

planner, using only visual data captured by an ordinary camera (frames) placed on

the front of the vehicle, relying on data extracted only from simulated

environments, interacting with its surrounding environment autonomously.

Figure 2. An illustration of our proposed end-to-end approach.

11

Chapter 2

Background

Machine Learning

Machine Learning (ML) is considered a subset of artificial intelligence

(AI) which enables the system to automatically learn from experience and deal

with new problem and tasks effectively without being explicitly programmed. The

existence of complex tasks in the real world which we can’t handle with

traditional rule based programming accelerates the research in the area of machine

learning to build a reliable system which is able to perform these complex tasks

with high immunity to random possible variations. Machine Learning simply

builds a mathematical model based on given information known as training data

and use this model to preform predictions or decisions on relevant data that it

hasn’t been exposed to before.

History: In 1959, Arthur Samuel coined the term “Machine Learning” while at

IBM and wrote the first computer learning program which was the game for

checkers. As time passes, machine learning researches increased but considered

only an application for artificial intelligence. In 1957, Frank Rosenblatt designed

the first neural network for computers (the perceptron) simulating the process of a

human brain. In 1990s machine learning recognized as a separate field and started

CHAPTER 2. BACKGROUND

12

to flourish. In 2000s with the huge computational technological advancements,

more machine learning researches were done and machine learning becomes a

trending topic in the research area.

Types of Machine Learning: The types of machine learning differ in their

objective, inputs, outputs, and the approach to perform required tasks. We are

going to cover the most used and essential types of machine learning briefly in the

following subsections.

Supervised Learning: Supervised learning is the type of machine learning meant

to map input data to output data. We build a machine learning model and train it

using labeled data, it correlates the main features in the input data to the output

labels, and gains the ability to perform future predictions on relevant new unseen

inputs with high accuracy.

Supervised Learning has many types and approaches. The most well-known types

are regression and classification. Regression is used to predict continuous values

of outputs depending on the current input to the model with help of what we call

hypothesis function as shown on figure 3. On the other hand, classification is

being used to determine the category of specific input. Classification could be

binary (categorize input into two types only), or Multi-class Classification

(categorize input into multiple options) as shown in figure 4 [10].

CHAPTER 2. BACKGROUND

13

Unsupervised Learning: Unsupervised Learning is type of machine learning

which can learn by itself without the need to labeled dataset. It searches for

common correlations in given data, estimates a model that is able to analyze new

and unseen input data. Unsupervised Learning is commonly used in clustering

data into clusters which is determined without human interference based on the

given unlabeled data as shown in figure 5 [11].

Reinforcement Learning: Reinforcement learning is the type of machine

learning where the agent learns by himself without any given data as it learns

from interaction with surrounding environment. Depending on the effects of

specific actions the agent perform, feedback signals is sent to the agent to tell him

how good/bad these actions were. Given appropriate amount of time, the agent

will be able to learn patterns and logical triggers to his actions so that the least

amount of negative feedback will be sent to him as shown in figure 6.

Figure 3. Linear

regression illustration.
Figure 4. Logisticc

regression illustration.
Figure 5. Clustering

illustraion.

CHAPTER 2. BACKGROUND

14

Reinforcement learning, due to its generality, is studied in many other disciplines,

such as game theory, control theory, and operations research.

Deep Learning

Deep Learning [12] is a class of machine learning which uses multiple

layers to extract complex high dimensional features from raw input data. Deep

learning is able to deal effectively with complex problems such as analysis of

images, videos and time series events, taking into consideration spatial, temporal

dependencies, or both. The term “deep” in deep learning refers to the number of

layers through which the data is transformed. Deep learning methods can handle

efficiently supervised learning problems, unsupervised learning problems as well

as reinforcement learning problems.

Deep Learning Approaches: Deep Learning approaches is based mostly on

artificial neural networks (ANN). Neural networks, in general, are built to

simulate the behavior of the human brain– specifically, pattern recognition and

the passage of input through various layers of simulated neural connections.

Figure 6. Reinforcement learning concept illustration.

CHAPTER 2. BACKGROUND

15

Neural networks are based on a collection of interconnected layers of

nodes called perceptrons, responsible for processing information passing through

different layers as shown in figure 7. Neural networks have many types based on

the problem they are addressing. We are interested in the following three types;

Deep Neural Networks: A deep neural network (DNN) is a neural network with

more than two hidden layers. As we increase the depth of the neural network, the

ability to detect higher level features increases. The main advantage of DNNs to

traditional machine learning approaches is that we don’t need to separately extract

features from the raw input as the DNN can handle the task of feature extraction

efficiently correlating the most affecting features to perform the required task.

DNNs are trained using back propagation algorithm which is simply calculating

the derivatives of a layer with respect to the previous layer starting from the

Figure 7. An illustration of a standard two layers neural network.

CHAPTER 2. BACKGROUND

16

output layer to the input layer. An illustration of a DNN structure is shown in

figure 8.

Convolutional Neural Networks: A convolutional neural network (CNN) is a

class of deep neural networks, most commonly applied to analyzing visual

imagery. CNNs are regularized versions of multilayer perceptrons. Multilayer

perceptrons usually refer to fully connected networks, that is, each neuron in one

layer is connected to all neurons in the next layer. The "fully-connectedness" of

these networks makes them prone to overfitting data. Typical ways of

regularization include adding some form of magnitude measurement of weights to

the loss function. However, CNNs take a different approach towards

regularization: they take advantage of the hierarchical pattern in data and

assemble more complex patterns using smaller and simpler patterns. Therefore, on

the scale of connectedness and complexity, CNNs are on the lower extreme. They

are also known as shift invariant or space invariant artificial neural networks

Figure 8. An illustration of multiple layers deep neural network.

CHAPTER 2. BACKGROUND

17

(SIANN), based on their shared-weights architecture and translation invariance

characteristics [13][14].

Convolutional networks were inspired by biological processes [15][16][17][18] in

that the connectivity pattern between neurons resembles the organization of the

animal visual cortex. Individual cortical neurons respond to stimuli only in a

restricted region of the visual field known as the receptive field. The receptive

fields of different neurons partially overlap such that they cover the entire visual

field. CNNs use relatively little pre-processing compared to other image

classification algorithms. This means that the network learns the filters that in

traditional algorithms were hand-engineered. This independence from prior

knowledge and human effort in feature design is a major advantage. They have

applications in image and video recognition, recommender systems [19], image

classification, medical image analysis, and natural language processing [20]. A

simple illustration of the general structure of a conventional CNN is shown in

figure 9.

Figure 9. An illustration of a conventional convolutional neural network.

CHAPTER 2. BACKGROUND

18

Recurrent Neural Networks: Recurrent neural network (RNN) is a class of

neural networks which is used to analyze sequential data. The input to RNN is

correlated with previous inputs forming a time series input which passes through

the network affecting the final output as shown in figure 10. RNNs are suitable

for problem with high temportal dependencies such as speech analysis,

recognition, language models, machine translation, etc.

Figure 10. An unrolled illustration of a conventional RNN.

CHAPTER 2. BACKGROUND

19

Deep Learning in Self Driving Cars

Self-Driving car is defined as a car which is capable of sensing and

approximating its surrounding environment and navigating with little or no human

interference. Deep learning had a major contribution in developing self-driving

cars. Autonomous driving has two approaches to, either a hand-engineered

modular pipelined approach, or an end-to-end deep learning based approach.

Modular Approach: The main idea of this approach is to split the task of

autonomous driving into multiple modules performing smaller and specific tasks.

Combing all these modules together gives the vehicle the ability to take decisions

on its own without human interference. We are discussing briefly the main

modules existing in this approach.

Localization: Localization means that the vehicle is able to detect its own

position with very high accuracy. HD maps are used for localization with

the help of GPS system.

Planning: Planning is meant to feed the vehicle with both the long term

planning and short term planning. Planning module is important for the

vehicle as it affective directly the behavior of the vehicle at every moment.

CHAPTER 2. BACKGROUND

20

Perception: Perception module is the eyes for the vehicle. Several sensory

data can be combined to provide a robust representation of the

surrounding environment, like cameras, LIDAR, RADAR, and another

sensors. CNNs are used in this module heavily to perform different tasks

as lane detection, object detection and localization, and more.

Control: Given sensor data and planned trajectories, a control module is

necessary to control the vehicle in a way that let it follow its trajectory as

well as interacting with the surrounding environment accurately.

End-to-End Approach: End-to-End approach aims to eliminate any hand-

engineered pipelining, unleashing the abilities of deep learning to form its own

model of the environment, and an approximate robust relation between the

surrounding environment and the corresponding control signals. The driving

model learns from thousands of frames associated with control signals how to

deal in different situations without the need to program it explicitly. The resulting

driving policy of this approach is a replica of the driver’s behavior existing in the

provided training dataset.

CHAPTER 2. BACKGROUND

21

Simulation

Simulation is an essential part of testing, evaluating and developing self-

driving vehicles, because it allows us to ensure that our vehicle will operate safely

before we even step foot in it, recently it has been useful for collecting data

required for developing self-driving vehicles. Simulation has been used to verify

that the vehicle's controller handles all various scenarios appropriately, most

importantly, we can test our vehicle in situations that cannot be tested in real

environment as it would be too dangerous to test on actual roads and very risky on

the other drivers and pedestrians. Generally, to test the reliability of such a safety

critical system, such as an end-to-end self-driving vehicles, it must first be tested

and evaluated in a simulated environment.

There exists a number of simulators that are capable of testing and evaluating

self-driving cars. The task is to find a suitable simulator that is compatible with

our objective. The most important requirement is that the simulator provides a

high-fidelity realistic driving environment. In the next subsections, we will

discuss briefly several self-driving simulators.

AirSim: Airsim [21] is an open source simulation tool for drones, cars and other

several vehicles, based on Unreal Engine 4 developed by Microsoft as a platform

for AI research. AirSim provides realistic environments, vehicle dynamics, and

multi-modal sensing for researchers building autonomous vehicles that use AI to

CHAPTER 2. BACKGROUND

22

enhance their safe operation in the open world. It provides realistic and high-

fidelity environments that makes it a suitable visual and physical simulator for

autonomous vehicles as shown in figure 11. AirSim is inspired by the goal of

developing reinforcement learning algorithms for the autonomous agents that can

operate in the real world.

Figure 11. A screen capture of a scene taken from AirSim, showing several live sensor data it has to offer.

CHAPTER 2. BACKGROUND

23

Gazebo Simulator: Gazebo [22] is an open source 3D dynamic multi-robot

environment. Gazebo, is designed to accurately reproduce the dynamic

environments a robot may encounter. Gazebo offers the ability to accurately and

efficiently simulate populations of robots in complex indoor and outdoor

customized environments. All simulated objects have mass, velocity, friction, and

numerous other attributes that allow them to behave realistically when pushed,

pulled, knocked over, or carried. The physics engine used in Gazebo is designed

to simulate the dynamics associated with rigid bodies as shown in the simulation

environment in Gazebo shown in figure 12.

Figure 12. A scene from Gazebo simulator.

CHAPTER 2. BACKGROUND

24

DeepDrive: DeepDrive [23] is an open sourced simulation tool for self-driving

cars, based on Unreal Engine to be a platform for AI research. It features a

tensorflow baseline agent and a self-driving benchmark. The simulation

environment is shown in figure 13. OpenAI has enabled its DeepDive Project to

transform GTA V into a self-driving car simulator. OpenAI has released the open

source integration of artificial intelligence training software Universe within the

DeepDive Project to bring GTA V to the self-driving world. The game provides

artificial intelligence (AI) agents the access to a 3D world through Universe. The

agents can watch the action live and examine the behavior of people within the

GTA environment to develop an intelligent self-driving model. DeepDrive

repurposes GTA V as a self-driving car simulator; it also provides pre-trained

self-driving agents and the datasets used to train them. GTA V is an extensive,

detailed world about a fifth of the size of Los Angeles, easily modified to any size

or city as shown in figure 14. Not only does it have winding city streets, but also

mountains, deserts, and highways that you can explore in 257 different cars, and it

has 14 different weather simulations.

Figure 13. A scene taken from DeepDrive. Figure 14. A high definition detailed scene from

DeepDrive.

CHAPTER 2. BACKGROUND

25

CARLA Simulator: CARLA (Car Learning to Act) is an open source simulator

developed to support autonomous vehicle research, in particular the development,

training and validation of autonomous urban driving systems [24] that is founded

by Intel. CARLA is able to simulate advanced and realistic weather conditions,

urban environments and non-player characters. CARLA provides open digital

assets (urban layouts, buildings, vehicles) that were created for this purpose and

can be used freely. The simulation platform supports flexible specification of

sensor suites, environmental conditions, and full control of all static and dynamic

actors. The simulator is built with Python as a layer on top of Unreal Engine 4

(UE4). CARLA has several towns, urban traffic environments as shown in figure

15 wherein vehicles may be rendered and tested. CARLA is used to study the

Figure 15. A standard scene from CARLA simulator.

CHAPTER 2. BACKGROUND

26

performance of several approaches to autonomous driving. These approaches are

evaluated in controlled scenarios of increasing difficulty, and their performance is

examined via metrics provided by CARLA, illustrating the platform’s utility for

autonomous driving research. It includes urban layouts, a multitude of vehicle

models, buildings, pedestrians, intersections, cross traffic, traffic rules, street

signs, etc. A wide range of environmental conditions can be specified, including

weather and time of day. A number of such environmental weather conditions are

illustrated in figure 16. The environment of CARLA is composed of 3D models of

static objects such as buildings, vegetation, traffic signs, and infrastructure, as

well as dynamic objects such as vehicles and pedestrians. All models are carefully

designed to reconcile visual quality and rendering speed. All 3D models share a

Figure 16. The same scene from CARLA simulator, taken from different daytimes and weather conditions.

CHAPTER 2. BACKGROUND

27

common scale, and their sizes reflect those of real objects. CARLA 0.8.4 includes

40 different buildings, 16 animated vehicle models, and 50 animated pedestrian

models. This way they have designed two different towns: Town 1 with a total of

2.9 km of drivable roads, used for training, and Town 2 with 1.4 km of drivable

roads, used for testing that is shown in figure 17. CARLA allows flexible

configuration of the agent’s sensor suite. The version we used includes sensors

that are limited to RGB cameras and to pseudo-sensors that provide ground-truth

depth and semantic segmentation. It provides three sensing modalities, depth and

semantic segmentation are pseudo-sensors that support experiments that control

for the role of perception. Additional sensor models can be plugged in via the

API. The number of cameras and their type and position can be specified by the

client. Camera parameters include 3D location, 3D orientation with respect to the

car’s coordinate system, field of view, and depth of field.

Figure 17, a scene from town 1 on the left, and another from town 2 on the right.

CHAPTER 2. BACKGROUND

28

Datasets

Deep learning mainly relies on huge amounts of training data. Getting the

right data means gathering or identifying the input data that describes the

environment sufficiently to be related to the outputs you want to predict; i.e. data

that contains signals that describes events you care about. Some of the popular

related datasets are listed below;

Berkeley DeepDrive BDD100k: This is one of the largest dataset for self-

driving AI and contains over 100,000 videos of over 1,100-hour driving

events across different times of the day, and varying weather conditions.

The annotated images within the dataset come from New York and San

Francisco areas.

Baidu ApolloScape: This large dataset defines 26 distinct semantic items

such as cars, bicycles, pedestrians, street lights, etc. This dataset contains

various categories of data set like scene parsing, car instance, lane

segmentation, etc.

Comma.ai: This dataset contains more than seven hours of highway

driving. The data set contains measurements like speed, acceleration,

steering angles and GPS coordinates.

CHAPTER 2. BACKGROUND

29

Oxford’s Robotic Car: This dataset contains over 100 repetitions of the

same route through Oxford, UK, captured over one year with different

combinations of weather, traffic and pedestrians, along with long-term

changes such as construction and roadwork.

KUL Belgium Traffic Sign Dataset: This dataset contains 10,000+

annotations of traffic signs from thousands of physically distinct traffic

signs in Belgium, particularly in the Flanders region. Belgium TSC dataset

is built for traffic sign classification purposes. Is a subset of Belgium TS

dataset and contains cropped images around annotations for 62 different

classes of traffic signs. Belgium TSC is split in a training part with 4591

images and a testing part with 2534 images.

LISA: Laboratory for Intelligent & Safe Automobiles, UC San Diego

Datasets: This dataset includes LISA Vehicle Detection Dataset, LISA

Traffic Sign Dataset, and LISA Traffic Light Dataset.

KITTI Dataset: The KITTI dataset has been recorded from a moving

platform while driving in and around Karlsruhe, Germany .It includes

camera images, laser scans, high-precision GPS measurements and IMU

accelerations from a combined GPS/IMU system.

CityScapes: This dataset focuses on semantic understanding of urban

street scenes, from 50 different cities, during all different seasons, on

CHAPTER 2. BACKGROUND

30

different daytimes, several weather conditions, and varying scene layout.

It contains 5000 frames, with 30 different segmentation classes annotated

finely and coarsely.

But using a real dataset didn’t meet our requirements, and all of them were

taken from a set of environments completely different than ours, moreover,

collecting a dataset using a fleet of real vehicles on real roads can be time

consuming, expensive, and very risky on other drivers and pedestrians, on the

other hand, a dataset collected completely from a simulated environment is almost

cost-free, risk-free, and completely customizable to include all different scenarios.

The dataset that we used to train our driving model was extracted by Intel Labs

from CARLA Simulator

 The dataset contains 600,000 frames of RGB image stored at a resolution

of 200x88.

 Each frame has its corresponding 28 measurements for like steering, gas,

brake, speed, acceleration, etc.

31

Chapter 3

Methodology

Imitation Learning

 A basic imitation learning [25] consists of discrete environment

observations ot and actions at, in our case these observations are raw simulated

images (RGB) taken from a camera placed on our simulated vehicle, and these

actions are performed by an expert driver that could be a human expert or a rule

based autopilot. The goal is to train a controller that mimics the expert’s actions

on the training data and beyond in familiar –but not similar– data. The simulated

data generated by the expert that is supposed to train the controller is a set of

observation-action pairs as follows;

𝛽 = {〈𝑜𝑖 , 𝑎𝑖〉}𝑖=1
𝑁

The basic assumption that the expert is performing the tasks of interests

perfectly, which are; navigating in straight urban two-lane roads, taking left and

right turns, taking decisions based on the higher level command provided by a

higher level planner on intersections, and interacting with other vehicles and

pedestrians. This is a supervised learning problem, which the controller’s

CHAPTER 3. METHADOLOGY

32

parameters W of a function approximator F(o; W) must be optimized to fit the

mapping of the observations ot to the actions at as follows;

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒
W

 ∑ l (F(𝑜𝑖, W), 𝑎𝑖)

𝑖

Moreover, the expert’s actions in our case are logical and explained by the

observations, this can be represented as a function E that maps the controller’s

actions at to the observations as follows;

𝑎𝑖 = 𝐸(𝑜𝑖)

An approximator will be able to fit sufficiently given enough data as long

as the expert’s actions are explained enough by the observations, this condition

will exist in certain simple tasks like lane following and simple turns. Considering

more complex tasks and scenarios, this condition will break down immediately,

like intersections for example, the action taken by the expert can never be

explained by the observation as it depends on a higher level decision, which is in

our case called the higher level command that is provided by the higher level

planner. The same observations could lead to totally different actions depending

on the higher level command or the defined route in general. Therefore if a

controller or a model is trained without considering that higher level command, it

would take an arbitrary decision in each intersection, which results in a non-useful

CHAPTER 3. METHADOLOGY

33

system in the defined urban environment. A system like this will have no

communication with the higher level planner to define a route at all.

Therefore, the higher level command must be included explicitly along with the

observations in the function E to map the actions at with the observations ot and

the higher level command ct simultaneously as follows;

𝑎𝑖 = 𝐸(𝑜𝑖 , 𝑐𝑖)

The learning objective now can be reformulated to include the higher level

command ct as follows;

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒
W

 ∑ l (F(𝑜𝑖 , W), 𝐸(𝑜𝑖, 𝑐𝑖))

𝑖

Therefore, the dataset becomes triplets of observations, actions, and higher level

commands as follows;

𝛽 = {〈𝑜𝑖 , 𝑐𝑖, 𝑎𝑖〉}𝑖=1
𝑁

And the final general learning objective becomes as follows;

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒
W

 ∑ l (F(𝑜𝑖, 𝑐𝑖,W), 𝑎𝑖)

𝑖

CHAPTER 3. METHADOLOGY

34

Afterwards, the controller-environment relation in association with the higher

level command can be represented as follows in figure 18.

Figure 19 Figure 18. An illustration of our controller-environment interactions.

CHAPTER 3. METHADOLOGY

35

Model Architecture

In our case, our observations ot includes images and low dimensional

measurement vectors, and the controller F is a deep neural network taking ot as an

input alongside with the higher level command ct and predicts the suitable action

at. The actions space could be continuous or discrete according to the nature of

each action. In our case, the actions at consists of three main signals, steering

which is continuous, throttle which is discrete, and brakes which is also discrete,

while the higher level command ct is a categorical variable indicating which

direction to take, either left, right, straight, or follow-lane that is represented by a

one-hot vector. Through the simulation phase the input image is raw RGB without

any preprocessing.

We addressed the problem of embedding the higher level command into

the learning objective through two different approaches with two different

architectures. Also the convolutional neural network (CNN) used in both

architecture was strongly inspired by NVIDIA’s PilotNet [26], modified and

embedded in a larger network that is inspired by CoIL [27], that will be discussed

in detail through this section. All our experiments and trials were implemented

with Keras using Tensorflow [28] Backend.

CHAPTER 3. METHADOLOGY

36

Architecture #1

This architecture is illustrated in figure 19, and table 1. The model takes

the images alongside with the measurements vector and the higher level command

as inputs, and all three of them are processed independently. The image is

processed by a CNN while the measurements vector and the higher level

command are processed by two separated fully connected networks (FCN), and

their outputs are concatenated to form a joint vector that is then processed by

another FCN called the control FCN to output the steering, throttle, and brakes

signals all at once.

This architecture aims to a learning objective that considers the higher level

command as a trainable input as follows;

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒

W
 ∑ l (F(𝑜𝑖, 𝑐𝑖,W), 𝑎𝑖)

𝑖

CHAPTER 3. METHADOLOGY

37

F
ig

u
re 1

9
. A

 d
eta

iled
 fig

u
re o

f o
u
r co

m
m

a
n

d
-in

p
u

t a
rch

itectu
re.

CHAPTER 3. METHADOLOGY

38

Table 1. A detailed description of our command-input architecture.

Input Layer/Block Input Shape Output Shape
Number of

Parameters

Frame

Convolutional

Block 1
200x88x3 200x88x16 2,444

Convolutional

Block 2
200x88x16 98x48x24 9,720

Convolutional

Block 3
98x48x24 47x19x36 21,780

Convolutional

Block 4
47x19x36 22x8x48 43,440

Convolutional

Block 5
22x8x48 20x6x64 27,968

Convolutional

Block 6
20x6x64 18x4x64 37,184

Fully

Connected

Block 1

4,608 1164 5,369,532

Fully

Connected

Block 2

1164 512 598,528

Speed

Measurement

Fully

Connected

Block 3

1 128 768

Fully

Connected

Block 4

128 128 17,027

Concatenated

Vector

Fully

Connected 5
640 256 165,120

Fully

Connected 6
256 256 66,816

Fully

Connected 7
256 64 16,704

Fully

Connected 8
64 1 65

Total Number of parameters 6,410,631

CHAPTER 3. METHADOLOGY

39

Architecture #2

This approach is illustrated in figure 20, and table 2. The model in this

approach takes the image alongside with the measurements vector as inputs,

without the higher level command, similarly, they are processed independently as

in approach 1. The main difference that the higher level command is no longer a

trainable input, instead it will be used to influence the control FCN that processes

the joint vector that results of concatenating the CNN’s output with the

measurements FCN’s output in a special manner. There will be certain number of

control FCNs that takes the joint vector and outputs the output signals, that

number depends on the number of directions or categories that the higher level

planner is intended to produce, in our case as mentioned before there is only 4

possible values for that higher level command ct, therefore there will be 4 control

FCNs or 4 control branches processing the joint vector, each for every direction.

This architecture can be modeled as having 4 experts willing to driving all

the time, and are able to interact with the environment sufficiently all the time

except at the intersections, one of them for example tends to take the left exit of

the intersection, called after the higher level command direction; the left head, and

similarly for the right and the straight head, while the follow-lane head is an

expert in driving and turning in ordinary situations without intersections, and it is

the one that controls the vehicle most of the time.

CHAPTER 3. METHADOLOGY

40

This architecture aims to a learning objective that doesn’t include the higher level

command as a trainable input at all, as follows;

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒
W

 ∑ l (F(𝑜𝑖,W), 𝑎𝑖)

𝑖

But, it does affect the whole model, as the inputs are fed forward into the

model including all the branches or heads, the higher level command selects

which branch or head to backpropagate through during training time. The

resulting model after training should have a CNN that is trained on all the training

dataset including all branches, a measurements FCN that is also trained on all the

training dataset, and 4 branches, each trained on its corresponding subset of the

training dataset according to the higher level command, but all of them share the

same CNN and measurements FCN.

This model architecture was trained in a very special manner, as a custom

loss function was used to guide the backpropagation in the branch corresponding

to each direction or higher level command, also the training process itself needed

to be performed carefully to avoid domination of a certain branch over the others.

An extra branch was added called the speed auxiliary branch, it is responsible of

predicting the corresponding speed from the output of the CNN only, although the

actual speed is included as an input in the measurements vector, but the predicted

speed is drawn from an early stage in the network that hasn’t been exposed to the

CHAPTER 3. METHADOLOGY

41

input one yet, this connection forced an implicit correlation between the input

frame and the output speed that could be used later to add more reliability to the

overall model while driving.

CHAPTER 3. METHADOLOGY

42

F
ig

u
re 2

0
. A

 d
eta

iled
 fig

u
re o

f o
u
r co

m
m

a
n

d
-in

p
u

t a
rch

itectu
re.

CHAPTER 3. METHADOLOGY

43

Table 2. A detailed description of our branched architecture.

Input Layer/Block Input Shape Output Shape
Number of

Parameters

Frame

Convolutional

Block 1
200x88x3 200x88x16 2,444

Convolutional

Block 2
200x88x16 98x48x24 9,720

Convolutional

Block 3
98x48x24 47x19x36 21,780

Convolutional

Block 4
47x19x36 22x8x48 43,440

Convolutional

Block 5
22x8x48 20x6x64 27,968

Convolutional

Block 6
20x6x64 18x4x64 37,184

Fully

Connected

Block 1

4,608 1164 5,369,532

Fully

Connected

Block 2

1164 512 598,528

Speed

Measurement

Fully

Connected

Block 3

1 128 768

Fully

Connected

Block 4

128 128 17,027

Concatenated

Vector

Fully

Connected 5
640 256 165,120

Fully

Connected 6
256 256 66,816

Fully

Connected 7
256 64 16,704

Fully

Connected 8
64 1 65

Total Number of parameters 7,456,785

CHAPTER 3. METHADOLOGY

44

The convolutional block mentioned in both architectures in figures 20 and

21 consists of a 2D convolutional layer, followed by a relu activation, batch

normalization, and dropout, the batch normalization-dropout order was strictly

followed to avoid variance shift and to make use of their advantages combined.

An illustration showing the operations’ order is shown below in figure 21.

Similarly, the fully connected block has the same structure, but a fully connected

layer instead of a convolutional layer, as shown also in figure 21.

 The output nodes had different activations according to their function; the

steering output node had a tanh activation function as the steering angle was

normalized to have values ranging from -1 to 1, and was considered a regression

output with mean absolute error loss function, while the throttle and the brakes

output nodes had sigmoid activation functions as their values ranged only from 0

to 1, also with a mean absolute error functions as well.

Figure 21. Describing the convolutional block on the

left, and the fully connected block on the right

CHAPTER 3. METHADOLOGY

45

Training

 Due to the differences between both architectures, the training phase was

completely different for each, as the second one had very special requirements

that had to be handled carefully in order to train the 4 branches simultaneously.

Both of them at the end of the training phase had reasonable losses;

 Losssteering = 0.015 ~ 0.030

 Lossthrottle = 0.050 ~ 0.100

 Lossbrakes = 0.050 ~ 0.100

Although all losses were relatively small, but the most expressive and

important one is the steering loss, as it varies rapidly and frequently, while the

throttle and the brakes in the training dataset were almost fixed to certain values

most of the time, so their losses weren’t as expressive as the steering loss.

Architecture #1

 Training this model was completely straight forward, the training dataset

was fed to the network in batches of size 32 samples, completely shuffled and

random, including the higher level command. The training dataset was balanced

to reach 600,000 samples, 150,000 samples for each direction, then the model was

trained and evaluated after 20~25 epochs. The final loss values on the end of the

training phase were on average close to the values mentioned before, but it

doesn’t define how good the model is in its task.

CHAPTER 3. METHADOLOGY

46

Architecture #2

 This model had to be trained carefully as it have 4 control branches

sharing the same CNN mainly. After various experiments, hyperparameters

tuning, and training methods, the best way to train this model is by training it with

batches of random samples of each direction separately, a batch of size 32

samples from the left direction for the left branch, followed by a batch of the same

size from right direction for the right branch, while the speed branch being fed all

the training data regardless of the higher level command, and so on till the whole

dataset is fed to the model.

The training phase sequence is illustrated in figures 22 and 23, indicating which

parts of the model were trained using each subset of the training dataset.

CHAPTER 3. METHADOLOGY

47

F
ig

u
re 2

2
. A

n
 illu

stra
tio

n
 sh

o
w

in
g

 th
e left b

ra
n

ch
 tra

in
in

g
 b

a
tch

.

F
ig

u
re 2

3
. A

n
 illu

stra
tio

n
 sh

o
w

in
g

 th
e rig

h
t b

ra
n

ch
 tra

in
in

g
 b

a
tch

.

CHAPTER 3. METHADOLOGY

48

Evaluation

 Evaluating the models’ performance in such task included inspecting their

performance on the test set, but it wasn’t enough to measure how good either of

them, therefore an evaluating metric had been defined to do so, which is the

success rate, given a total number of defined trips between two arbitrary points on

the simulator’s map, the higher level planner defined the shortest path as a

sequence of higher level commands, afterwards the trained model was left to

control the vehicle according to its visual view and the higher level command, the

success rate is the number of the successful trips it performed to the total number

of defined trips.

 The first model wasn’t very promising at all, it successfully performed the

basic task of driving in straight roads and taking simple turns, but the higher level

command had no influence at all on its decision at the intersections, taking

arbitrary decisions that made it fail to reach its defined destination.

 On the other hand, the second model performed much better than the first,

and in order to improve this model, we had to understand and inspect various

internal properties after training, like visualizing internal activations [29] and

saliency maps [30]. The internal activations following the convolutional blocks

after training showed exactly which features did the model rely on in predicting

its final output, illustrated in figure 24. Afterwards, for further understanding of

CHAPTER 3. METHADOLOGY

49

how the model predict its outputs, the saliency maps were carefully inspected, we

observed that on normal conditions on straight road segments, that the model

focused and concentrated on the center of the image, as shown in figure 25.

Figure 24. Showing an input frame on top, followed

by its corresponding activations after the first

convolutional block, after the training phase, showing

how much the network extracted the importance of the

road boundaries and lanes implicitly.

Figure 25. Showing an input frame on top, followed

by its corresponding saliency map, showing how

much the model learned to focus on the centerof the

scene.

CHAPTER 3. METHADOLOGY

50

Path Planning

 In order to generate the higher level command we mentioned, we had

implement a routing algorithm that is able to find a suitable route between our

starting point and destination point, and then convert this route into a sequence of

higher level commands.

The routing module’s input is a source point in (latitude, longitude) co-

ordinates, as well as a destination point in the same co-ordinates, and a grapph-

based map of our campus that we managed to find on OpenStreetMaps, the

routing module finds the shortest path between the two points as a sequence of co-

ordinates, which we are then converted to a new approximate (x, y) co-ordinate

system. Using the new (x, y) co-ordinates, we reformulated the problem. We need

to find a sequence of higher level commands (left, right, forward, follow-lane).

We managed to do so by assuming a vector normal to the ground, and by taking

the cross product of a vector from the previous point till the current point, with a

vector from the previous point till the next point, then taking the dot product of

the resultant vector of the cross product with the one normal to the ground, we

had a value which indicates whether the next point falls on the left or the right of

the currunt point. Moreover, a threshold was sat by try and error to compromise

the road’s bending and turns to generate the forward command.

CHAPTER 3. METHADOLOGY

51

Challenges

 Transferring the learned driving policy from the simulated environment to

a real environment is the main objective from the beginning, but due to the huge

difference between the two domains, as shown in figure 26, the trained CNN

failed completely to generalize and extract the features required for the latter parts

of the network.

To address this problem we had to transform either domains to the other or find

an intermediate domain that both can reach, afterwards the driving policy can be

learned on that domain and abstracted to be used on both of them similarly

without fine-tuning.

Figure 26. Showing the difference between our simulated environment on the left, and our real

environment on our campus on the right.

CHAPTER 3. METHADOLOGY

52

Domain Transformation and Semantic Segmentation

To transfer the learned driving policy from the simulated domain to the

real domain, one of these two solutions must be followed in order to narrow the

gap between the two domains; either domain transformation or semantic

segmentation. Both approaches offer immunity to the scene structure in both

domains, like the layout of roads, buildings, cars, pedestrians, surface appearance

(materials, lighting), and the properties of the camera. The selected approach will

be used as a perception module, and its role is to filter out nuisance factors and

preserve the information needed for planning and control.

Domain Transformation

Regarding domain transformation, using generative models, the simulated

domain can be converted to the real domain, and vice versa, as shown in figure

27, and several approaches in the literature have done this task accurately, like

DLID [31], CADA [32], CyCADA [33], but their major drawback is their

processing time, training time, and training possible instability. Therefore, we

haven’t selected domain transformation to solve our problem.

CHAPTER 3. METHADOLOGY

53

Semantic Segmentation

On the other hand, semantic segmentation is the task of classifying each

and every pixel in an image to a class as shown in figure 28. Here you can see that

pedestrians are red, the road is purple, the vehicles are blue, street signs are

yellow, etc. Semantic segmentation is different from instance segmentation,

which is that different objects of the same class will have different labels and

identites.

GTA V Generated GTA V Generated CityScapes CityScapes

Figure 27. The image pairs on the left taken from a simulated domain, and converted to a real one, while

the pair on the right taken from a real domain, and converted to a simulated one.

Figure 28. Per-pixel semantic segmentation.

CHAPTER 3. METHADOLOGY

54

Using per-pixel binary segmentation of the image into “road” and “no

road” regions. It abstracts away texture, lighting, shading, and weather, leaving

only a few factors of variation: the geometry of the road, the camera pose, and the

shape of the objects occupying the road. Such segmentation contains sufficient

information for following the road and taking turns, and it abstracts enough to

support transfer. Moreover, binary segmentation takes far less processing time,

and much more stable in training. Therefore, we adopted binary segmentation as a

perception module in order to transfer the driving policy to the real environment.

After reviewing several semantic segmentation models in the literature, we

implement the perception module with an encoder-decoder deep convolutional

neural network like ENet [34], PSPNet [35], and ERFNet [36], we settled on

using ERFNet, although it wasn’t the fastest choice in terms of processing time, it

was the most generalized one, as it was trained on real data, and generalizes on

simulated data [37], which fits our purpose exactly. The model architecture details

are shown in table 3, and implemented with PyTorch [38].

The training dataset for ERFNet we chose was CityScapes’ standard

dataset, taken from several cities around Germany, with a total number of 5,000

labeled frames, we edited the whole dataset to remove all the labels except the

road for our binary segmentation model. Moreover, we also had to edit ERFNet to

fit our purpose for binary segmentation instead of semantic segmentation.

CHAPTER 3. METHADOLOGY

55

 After training ERFNet on CityScapes’ dataset, it was able to generalize

and perform well on both on simulated data, and real data, from our campus as

well as it does on CityScapes’ test set, as shown in figures 29 and 30.

Figure 29. The simulated input frame to our perception module shown on top, followed by the predicted per-

pixel binary segmentation, with “road” labels illustrated in green, and “no road” otherwise.

Figure 30. The r input frame to our perception module shown on top, followed by the predicted per-pixel

binary segmentation, with “road” labels illustrated in green, and “no road” otherwise.

CHAPTER 3. METHADOLOGY

56

Layer Type Out Channels Out Resolution

1 Downsampler Block 16 512 x 256

2 Downsampler Block 64 256 x 128

3-7 5 x Non-bt-1D 64 256 x 128

8 Downsampler Block 128 128 x 64

9 Non-bt-1D (dilated 2) 128 128 x 64

10 Non-bt-1D (dilated 4) 128 128 x 64

11 Non-bt-1D (dilated 8) 128 128 x 64

12 Non-bt-1D (dilated 16) 128 128 x 64

13 Non-bt-1D (dilated 2) 128 128 x 64

14 Non-bt-1D (dilated 4) 128 128 x 64

15 Non-bt-1D (dilated 8) 128 128 x 64

16 Non-bt-1D (dilated 16) 128 128 x 64

17 Deconvolution 64 256 x 128

18-19 2 x Non-bt-1D 64 256 x 128

20 Deconvolution 16 512 x 256

21-22 2 x Non-bt-1D 16 512 x 256

23 Deconvolution 2 1024 x 512

Table 3

CHAPTER 3. METHADOLOGY

57

Simulation to Reality

The main challenge in our case is how our trained driving model will react

when performing in a real environment; a whole new environment and perceptual

distribution. Our purpose is with minimum fine tuning, we could successfully

deploy our model in the real world, bridge the gap between the simulated domain

and the real domain, and drive smoothly with no need for collecting more data

from the new target environment to fine-tune the driving model. We were able to

do so using semantic segmentation, which eliminates unnecessary visual details

and unifies the two domains.

In this section, we transfer a driving policy trained in simulated environment to a

a real-world envrionment, with no fine tuning of the driving model. Our final

pipeline we need to do so, is illustrated in figure 31.

Figure 31. Our abstraction pipeline, operating in a real environment as well as the simulated environment.

CHAPTER 3. METHADOLOGY

58

Real Environment

 After deploying the trained driving model on our physical prototype, we

tested the driving policy on our university campus, which is an outdoor

predefined environment that includes intersections and roads with no traffic lights

nor traffic signs. An image taken from the vehicle’s view on our campus is shown

in figure 32.

Figure 32. An image from our target environment, which is our campus.

CHAPTER 3. METHADOLOGY

59

Challenges

We faced some failures in the semantic segmentation view, as it segments

the RGB frame that is taken from the camera mounted on our physical prototype,

as shown in figure 32, the reason of the semantic segmentation model failure is

that the model is trained on CityScapes’ dataset, that includes lanes in all of its

frames, while our campus doesn’t. We proposed an experimental solution to

enhance the semantic segmentation model by adding graphical lanes to our testing

environment as boundaries to the RC car. This solution is firstly experimented by

editing some images graphically to test the lanes’ impact on the semantic

segmentation result. The addition of lanes made the semantic segmentation much

better in most cases as shown in figure 33.

Figure 33. An illustration show the effect of the road lanes on the perception modules.

CHAPTER 3. METHADOLOGY

60

 One more challenge we had to encounted, is the inconsistancy of our

semantic segmentation results without road lanes, therefore, we had to build our

own track, that is built with the same road geometry in turns and intersections

used in our simulated environment. Due to the difficulty of building a large track

spanning a large area, instead, we build a miniature version, designed to expose

our vehicle to various senarios, like straight roads, simple turns, and taking

descisions at intersections. An illustration of the road geometry defined in our

simulated environment map as well as an image of our track is shown in figures

34 and 35 respectively.

Figure 34. The roads geometry defined in CARLA simulator.

CHAPTER 3. METHADOLOGY

61

 The final challenge we faced, that the trained ERFNet on CityScapes’

alone lacked consistency on our track, as it classified regions outside our track as

“road”, which is not wrong, but it doesn’t meet our purpose. So, we had to fine-

tune it using data captured from our track. In addition, we faced some processing

time issues due to the size of the original ERFNet, and due to our simpler binary

segmentation task, we managed to use an optimized version of ERFNet called

ERFNet-Fast, which is much smaller than the original one, that fits our purpose

perfectly. The full ERFNet-Fast architecture is illustrated in detail in table 4.

 To fine-tune ERFNet-Fast, we needed much data from our track, covering

several weather, daytime, shadow, and lighting conditions, which is not easy to

collect. Therefore, we collected and labeled 600 unique frames, afterwards, we

Figure 35. An image of the road we designed, according to the geometry of CARLA simlator’s maps relative

to our physical prototype’s size.

CHAPTER 3. METHADOLOGY

62

augmented them to reach 14,000 frames, using various augmentation techniques

like changing brightness, contrast, channel order, and blur randomly, as well as

adding sun flare, artificial shadows, and random objects. A sample of our

augmented dataset is shown in figure 36.

Layer Type Out Channels Out Resolution

1 Downsampler block 16 100 x 44

2-6 5 x Non-bt-1D 16 100 x 44

7 Downsampler block 64 50 x 22

8 Non-bt-1D (dilated 2) 64 50 x 22

9 Non-bt-1D (dilated 4) 64 50 x 22

10 Non-bt-1D (dilated 8) 64 50 x 22

11 Non-bt-1D (dilated 16) 64 50 x 22

12 Deconvolution 16 100 x 44

13-14 2 x Non-bt-1D 16 100 x 44

15 Deconvolution 2 200 x 88

Table 4

CHAPTER 3. METHADOLOGY

63

Figure 36. An original image from our track on top, followed by 20 different randomly augmented images.

64

Chapter 4

Physical Setup

Overview

As explained in earlier chapters, the objective is to utilize state-of-the-art

deep learning algorithms on a hardware embedded platform to model a self-

driving vehicle. Here is an overview of the hardware system used is shown in

figure 37.

Figure 37. Our physical prototype.

CHAPTER 4. PHYSICAL SETUP

65

Main Computing Platform

This project uses the NVIDIA Jetson TX2 Developer Kit [39], depicted in

figure 38, which exposes the hardware capabilities and interfaces of the Jetson

TX2 AI supercomputer on a module. It is proved to be a fast, most power-

efficient embedded AI computing device by the time this thesis is published.

Moreover, it is compatible with several deep learning frameworks, computer

vision, GPU computing, multimedia processing, and others. So, it was a suitable

embedded platform to deploy our deep learning algorithms.

The Jetson TX2 is pre-flashed with a Linux environment and includes

support for many common APIs. Many important libraries are easy to install and

use like CUDA Toolkit for Ubuntu and Linux for Tegra (L4T), OpenCV [40],

TensorRT and CuDNN [41].

Figure 38. NVIDIA Jetson TX2.

CHAPTER 4. PHYSICAL SETUP

66

Main Vehicle Components

The main mechanical hardware vehicle platform used is the Traxxas Slash

2WD RC vehicle [42]. Here is an anatomy of the vehicle as depicted in figure 39.

The main components on the chassis are:

 DC Motor.

 Electronic Speed Controller (ESC).

 Steering Servo Motor.

 Battery Cells.

 Receiver Box.

Figure 39. Our physical prototype chasis.

CHAPTER 4. PHYSICAL SETUP

67

This RC car is mainly used for races, radio-controlled by a Traxxas TQ 2.4

GHz transmitter. The control signals are sent from the TQ transmitter to the

receiver box which passes them to both the ESC and the steering servo. The ESC

is programmed to control the speed of the DC motor and monitor the battery

voltage in order to provide a smooth control experience. In order to utilize this

amazing vehicle platform for our objective, the radio system has been removed

and both the ESC and the steering servo are connected to a low level embedded

micro-controller to provide an ease programming capability.

One main advantage of using this vehicle is the mechanical stability provided

in its suspension system, front and rear bumper, and the Ackerman steering

system.

Layers & Connections

We have upgraded the vehicle with two layers full of variant components with

different functionalities. On the base layer, the ESC and the DC Motor are

powered by a NiMH battery. Meanwhile, an embedded microcontroller is used to

generate PWM signals to control both the steering servo and the ESC. This

microcontroller is connected to the Jetson TX2 which is mounted on the first

layer, alongside with the main power supply source which is an Energizer

XP20000 Power Pack that provides enough power for Jetson TX2, a USB hub to

expand the USB ports available on Jetson TX2, the embedded microcontroller,

CHAPTER 4. PHYSICAL SETUP

68

and a USB camera is also mounted and connected to the Jetson as in figure 40.

The overall process pipeline is summarized as follows:

1. The camera captures a frame infront of the vehicle.

2. The Jetson TX2 processes the input frame and outputs its corresponding

predictions.

3. The predictions are converted to control signals, then passed to the

microcontroller.

4. The microcontroller generates the corresponding PWM signals to control

both the steering servo and the ESC.

5. The ESC outputs the corresponding electrical signals to control the speed

of the DC motor.

Figure 40. The interconnections and intercommunication on our physical system.

CHAPTER 4. PHYSICAL SETUP

69

Power Management

For the NVIDIA Jetson TX2 Developer Kit to run AI models efficiently, it

was powered by the 19V 3A outlet of the power pack mentioned before. The

Jetson TX2 Kit consumes around 60W at full CPU/GPU utilization, and the

system is shipped with a 19V 4.74A power supply. The power pack also provides

USB hub with 5V 2A and the PWM microcontroller with 5V 1A.

Firmware

The low-level microcontroller is programmed to provide both the ESC and

the steering servo with the required PWM signals upon receiving the prediction

signals from the Jetson TX2. This firmware provides an abstraction and ease of

high-level control encoded in discrete numbers which are mapped to different

PWM control signals. The encoded numbers are then used in communication with

Jetson TX2 to be encapsulated in other abstraction layers in the main software

application layer.

Wireless Control & Observation

As explained previously, the stock radio system has been removed from

the vehicle. But in order for the live debugging process to be more robust and

efficient, a wireless connection has been set up on the Jetson TX2 to provide live

feedback on the vehicle readings during run-time. A wireless connection hosted

CHAPTER 4. PHYSICAL SETUP

70

on a remote server utilizes the Virtual Network Computing (VNC), which is a

connection system that allows you to access the target device remotely. So, a

VNC server has been set up on the Jetson TX2. Meanwhile, a command or an

observation station is connected remotely to the server, observing and analyzing

the scene alongside with different readings and control actions as depicted in

Figure 41.

Figure 41. A screen capture from our remote workstation, with complete access to our physical prototype

readings and views.

71

Chapter 5

Experiments and Results

Simulation Benchmark

 To prove our end-to-end approach effictiveness, as well as testing our

driving policies, we used CARLA simulator’s experiment suites, that offer

several trips with gradual increasing difficulty, to unit test each task the driving

policy should perform. In this subsection, we benchmarked the original driving

policy, trained on raw RGB simulated frames. Our evaluating metric is the

success rate, which is the number of successful trips to the total number of

defined trips. We compared our results over 50 trips to that of CoIL in both towns

1 and 2, in ordinary weather conditions, using the same experiment suite they

used, as shown in table 5.

Moreover, we were able to benchmark our model over 100 trips in town 1,

and surprisingly achieved a success rate of 85.85%, over a total distance of 22.4

km. Also, it was able to achieve a success rate of 84.42% over 190 different

trips, in 2 different weather conditions, in town 1, covering a distance of 41 k

CHAPTER 5. EXPERIMENTS AND RESULTS

72

Environment
IoU

Maximum Minimum Average

CityScapes 0.95 0.46 0.89

CARLA 0.91 0.51 0.76
Table 6. Maximum, minimum, and average IoU values of our perception module on CityScapes’ and CARLA

test sets.

Semantic Segmentation Evaluation

 The most common metric used in semantic segmentation literature is the

intersection over union (IoU). IoU meausre allows us to evaluate how similar our

predicted labels to the ground truth.

 We managed to measure the IoU over two datasets extracted from

CARLA simulator, and CityScapes. The maximum, minimum, and average IoU

values we achieved at the end of the training phase are illustrated in table 6.

Model Success Rate

 Town 1 Town 2

CoIL Command Input 78% 52%

CoIL Branched 88% 64%

Ours Branched 94% 73%
Table 5. Results in the simulated environment. We compare the presented method to baseline approaches,

according to the success rate.

CHAPTER 5. EXPERIMENTS AND RESULTS

73

Physical Benchmark

 On our track, by design, it is capable of benchcmarking our driving policy

in all kinds of tasks it should perform, as mentioned before. We ran several testing

sessions in various weather conditions and daytimes. The final results we reached

over 10 successive testing sessions are illustrated in detail in table 7. Moreover,

the higher level command that should be provided by a higher level planner, was

provided manually through a remote controller.

Task Success Rate

Straight Roads 100%

Left Turns 90%

Right Turns 60%

Approaching an in Intersection

Taking a Left Exit
60%

Approaching an in Intersection

Taking a Right Exit
40%

Approaching an in Intersection

Taking a Straight Exit
100%

Table 7. The success rate achieved by our physical prototype on 10 successive testing sessions.

74

Chapter 6

Conclusion

 We have tested and evaluated an end-to-end approach trained using

simulated data, on a a simulated environment, targeting level 5 autonomy,

achieving a state-of-the-art success rates in different driving sceanrios, without

any pre of post processing. Moreover, we managed to encapsulate and abstract

our driving policy through training it on an intermediate domain, that could be

reached from several domains and environments. We managed to convert our

real-world environment on our campus to the intermediate domain of ours, and

successfully transferred our driving policy to our physical prototype.

 We proved that end-to-end approaches provide implicit feature extraction,

through inspecting the saliency maps of our simulation driving policy. Although

end-to-end approaches, given enough data, could provide an extraordinary

solution to several complex tasks, but its main drawback that we have no control

on the features it relies on, making it extremely hard to debug and inspect in most

applications.

 The abstraction we demonstrated, showed minimum fine-tuning on the

perception module, which is much more easier than fine-tuning the driving policy,

as the data it needs can be easliy collected and labeled.

References

[1] Road traffic injuries from WHO, https://www.who.int/news-room/fact-

sheets/detail/road-traffic-injuries

[2] Preparing a Nation for Autonomous Vehicles: Opportunities, Barriers and

Policy Recommendations, 2010.

[3] J3016-201401 Standard for Terms Related to On-Road Motor Vehicle

Automated Driving Systems.

[4] NISSAN'S PROPILOT ASSIST, https://www.nissanusa.com/experience-

nissan/news-and-events/nissan-propilot-assist.html

[5] Mayank Bansal, Alex Krizhevsky and Abhijit Ogale. ChauffeurNet: Learning

to Drive by Imitating the Best and Synthesizing the Worst. At Google Brain &

Waymo, 2018.

[6] Toward autonomous driving: the CMU Navlab. I. Perception, IEEE, 1991

[8] "Google's self-driving-car project becomes a separate company: Waymo". The

Associated Press, 2016.

[7] Yata, Teruko & Thorpe, Chuck & Dellaert, Frank. (2002). Static Environment

Recognition Using Omni-camera from a Moving Vehicle.

[9] Renault Innovation, https://group.renault.com/en/innovation-2/

[10] Stuart J. Russell, Peter Norvig (2010) Artificial Intelligence: A Modern

Approach.

https://www.who.int/news-room/fact-sheets/detail/road-traffic-injuries
https://www.who.int/news-room/fact-sheets/detail/road-traffic-injuries
https://www.nissanusa.com/experience-nissan/news-and-events/nissan-propilot-assist.html
https://www.nissanusa.com/experience-nissan/news-and-events/nissan-propilot-assist.html
https://group.renault.com/en/innovation-2/

[11] Unsupervised Learning: Foundations of Neural Computation.

[12] Schmidhuber, J. (2015). "Deep Learning in Neural Networks: An Overview.

[13] Hubel, DH; Wiesel, TN (October 1959). "Receptive fields of single neurones

in the cat's striate cortex". J. Physiol.

[14] LeCun, Yann; Bengio, Yoshua; Hinton, Geoffrey (2015). "Deep learning".

Nature.

[15] Weng, J; Ahuja, N; Huang, TS (1993). "Learning recognition and

segmentation of 3-D objects from 2-D images". Proc. 4th International Conf.

Computer Vision: 121–128.

[16] Schmidhuber, Jürgen (2015). "Deep Learning". Scholarpedia.

[17] Homma, Toshiteru; Les Atlas; Robert Marks II (1988). "An Artificial Neural

Network for Spatio-Temporal Bipolar Patters: Application to Phoneme

Classification". Advances in Neural Information Processing Systems.

 [18] Waibel, Alex (December 1987). Phoneme Recognition Using Time-Delay

Neural Networks. Meeting of the Institute of Electrical, Information and

Communication Engineers (IEICE). Tokyo, Japan.

[19] Alexander Waibel et al., Phoneme Recognition Using Time-Delay Neural

Networks IEEE Transactions on Acoustics, Speech, and Signal Processing,

Volume 37, No. 3, pp. 328. - 339 March 1989.

 [20] LeCun, Yann; Bengio, Yoshua (1995). "Convolutional networks for images,

speech, and time series". In Arbib, Michael A. (ed.). The handbook of brain

theory and neural networks (Second ed.). The MIT press. pp. 276–278.

[21] Shah, Shital et al. “AirSim: High-Fidelity Visual and Physical Simulation for

Autonomous Vehicles.”.

[22] Nathan Koenig and Andrew Howard. Design and Use Paradigms for Gazebo,

An Open-Source Multi-Robot Simulator. In Intelligent Robots & Systems

Conference 2004, Japan.

[23] Chen, Chenyi et al. “DeepDriving: Learning Affordance for Direct

Perception in Autonomous Driving.” 2015 IEEE International Conference on

Computer Vision (ICCV) (2015): 2722-2730.

[24] Dosovitskiy, Alexey et al. “CARLA: An Open Urban Driving Simulator.”

CoRL (2017).

[25] P. Englert, A. Paraschos, J. Peters, and M. P. Deisenroth. Model-based

imitation learning by probabilistic trajectory matching. In ICRA, 2013.

[26] Bojarski, Mariusz et al. “End to End Learning for Self-Driving Cars.”.

[27] Bojarski, Mariusz et al. “End to End Learning for Self-Driving Cars.”.

[28] TensorFlow: A system for large-scale machine learning, 2006.

[29] Bojarski, Mariusz et al. “Explaining How a Deep Neural Network Trained

with End-to-End Learning Steers a Car.”.

[30] Simonyan, Karen et al. “Deep Inside Convolutional Networks: Visualising

Image Classification Models and Saliency Maps.”.

[31] Sumit Chopra , Suhrid Balakrishnan , Raghuraman Gopalan, “DLID: Deep

learning for domain adaptation by interpolating between domains” (2013).

[32] Long, Mingsheng et al. “Conditional Adversarial Domain Adaptation.”

NeurIPS (2018).

[33] Hoffman, Judy et al. “CyCADA: Cycle-Consistent Adversarial Domain

Adaptation.” ICML (2018).

[34] Paszke, Adam et al. “ENet: A Deep Neural Network Architecture for Real-

Time Semantic Segmentation.”

[35] Zhao, Hengshuang et al. “Pyramid Scene Parsing Network.” 2017 IEEE

Conference on Computer Vision and Pattern Recognition (CVPR) (2017): 6230-

6239.

[36] Romera, Eduardo et al. “ERFNet: Efficient Residual Factorized ConvNet for

Real-Time Semantic Segmentation.” IEEE Transactions on Intelligent

Transportation Systems 19 (2018): 263-272.

[37] Mueller, Matthias et al. “Driving Policy Transfer via Modularity and

Abstraction.” CoRL (2018).

[38] Paszke, Adam et al. “Automatic differentiation in PyTorch.” (2017).

[39] NVIDIA Jetson TX2 Developer Kit Specifications,

https://developer.nvidia.com/embedded/jetson-tx2-developer-kit

https://developer.nvidia.com/embedded/jetson-tx2-developer-kit

[40] Bradski, G., 2000. The OpenCV Library. Dr. Dobb’s Journal of Software

Tools.

[41] Chetlur, Sharan et al. “cuDNN: Efficient Primitives for Deep Learning.”.

[42] Traxxas Slash 2WD User Manual,

https://traxxas.com/sites/default/files/58034-58024-OM-N-EN-R02_0.pdf

https://traxxas.com/sites/default/files/58034-58024-OM-N-EN-R02_0.pdf

	Introduction
	Taxonomy of Driving Automation
	Levels of Automation
	Autonomous Cars Industry
	Objective

	Background
	Machine Learning
	Deep Learning
	Deep Learning in Self Driving Cars
	Simulation
	Datasets

	Methodology
	Imitation Learning
	Model Architecture
	Training
	Evaluation
	Path Planning
	Challenges
	Domain Transformation and Semantic Segmentation
	Simulation to Reality

	Physical Setup
	Overview
	Main Computing Platform
	Main Vehicle Components
	Layers & Connections
	Power Management
	Firmware
	Wireless Control & Observation

	Experiments and Results
	Simulation Benchmark
	Semantic Segmentation Evaluation
	Physical Benchmark

	Conclusion

