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Abstract 

Self-driving vehicles, or cars in particular, is the sleeping giant of this 

century, with more and more cars on the road, and more fatalities due to human 

error, the need of automating the driving task increases. The advancements being 

made in the hardware capabilities, along with the huge amount of data available, 

deep learning can be extensively used overcoming the performance and the 

reliability of any rule based method to perform such task. Moreover, using deep 

learning or AI in a hand-engineered context shall limit its capabilities to our 

human interpretation of the provided data, which is in our case a visual of the road 

in front of the vehicle, therefore we adopted an end-to-end approach to cover the 

driving task starting from an image of the road in front of the vehicle till the 

control signals sent to the vehicle’s motors, all in one computation without any 

pre or post processing. And since deep learning requires huge amounts of data, 

collecting data from the real world might not be the best option due to the 

measurements inaccuracy, driving style variations, time consumed, possible 

dangers, and more reasons that eliminated collecting a real-world dataset, thus, we 

made use of the simulators available to have a consistent driving style with 

various scenarios, accurate measurements, without time or power limitations, and 

completely safe. Afterwards, the driving policy learned in the simulated 



 

 

 

environment can be modularly transferred to the real environment, and perform 

almost as well as it did in the simulator on real physical roads. 
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Chapter 1  

Introduction 

 There are various benefits self-driving cars have to offer on different 

aspects. Most importantly, they could make roads much safer. For example, the 

leading cause of most accidents in our daily life is the human error. According to 

the statistics provided by World Health Organization (WHO) [1], most of the road 

fatalities are caused by the human error as shown in the following figure 1, 

therefore self-driving cars can a more reliable approach for reducing these human 

errors.  

Moreover, there is a study made by Eno Centre for Transportation [2], this 

study found out that if ten percent of all cars were self-driving, as many as 

211,000 accidents would be prevented annually. Some 1,100 lives would be 

preserved, and the economic costs of automobile accidents would be reduced by 

more than $20 billion. An additional benefit could be decreasing or even 

eliminating traffic congestion can be achieved by self-driving cars by following a 

consistent behavior during traffic jams, turning all cars on the road into a fleet of 

cars moving similarly with interconnection and intercommunication among them.
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Another crucial aspect is the amount of time and effort spent during 

driving daily, but with self-driving cars drivers can take over the whole driving 

task, letting drivers make use of their time. Also, self-driving cars could also 

come in handy in emergency situations. For example, if a driver lost 

consciousness, a vehicle equipped with self-driving technology could take them to 

safety. 

Taxonomy of Driving Automation 

It describes the level of automation in a driving system, there are some 

things we need to take into consideration while defining the taxonomy of self-

driving car and the level of automation. The driver attention needed for example, 

does the driver need to keep attention on the steering wheel all the time? The 

driver action needed, for example does the driver need to steer? Does the driver 

need to control the speed? Or does the driver need to change the lanes or can the 

car stay in the current lane without any intervention? What exactly do we need to 

expect when we say that the car can drive autonomously? All these questions lead 

Figure  1. Roads Fatalities Factors 
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to the autonomous driving taxonomy. The categorization standards that we will 

discuss in this topic are be suggested by the Society of Automotive Engineers 

(SAE), but we need to describe the driving task before classifying the levels of 

automation. 

 The driving task consists of two main tasks, lateral control and 

longitudinal control. Lateral control which refers to steering and navigating 

laterally on the road, keeping a constant distances from the boundaries of the 

road. While longitudinal control is the task where we control the position and 

velocity of the car along the roadway, via throttle and brakes. 

More tasks could be considered, like object and event detection and response 

(OEDR). OEDR is essentially the ability to detect objects and events that 

immediately affect the driving task and to react to them appropriately. Moreover, 

one more task to be considered is planning, which is primarily concerned with the 

long and short term plans needed to travel to a destination or execute maneuvers 

such as lane changes and intersection crossings. Some more miscellaneous tasks 

that people perform while driving can be considered as well. These include 

actions like signaling with indicators, interacting with other drivers, etc. 

Levels of Automation 

These levels are commonly-used  to describe levels of driving automation, 

defined by the SAE Standard J3016 [3]. 
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Level 0 – No Automation: It is a full human perception, planning and control. In 

this level, there is no driving automation whatsoever and everything is done by 

the driver. 

Level 1 – Driving Assistance: In this level the autonomous system assists the 

driver by performing either lateral or longitudinal control tasks, either but not 

both.  

For example, adaptive cruise control, in adaptive cruise control or ACC, the 

system can control the speed of the car, but it needs the driver to perform steering. 

So it can perform longitudinal control but needs the human to perform lateral 

control. Similarly, lane keeping assist systems, in lane keeping assistance, the 

system can help you stay within your lane and warn you when you are drifting 

towards the boundaries. 

Level 2 – Partial Driving Automation: In this level the system performs both 

the control tasks, lateral and longitudinal in specific driving scenarios. 

Some simple examples of level two features are GM Super Cruise, and Nissan's 

Pro Pilot Assist [4]. These can control both your lateral and longitudinal motion 

but the driver monitoring of the system is always required. Nowadays, many 

automotive manufacturers offer level two automation products including 

Mercedes, Audi, Tesla and Hyundai. 
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Level 3 – Conditional Driving Automation: In this level, the system can 

perform Object and Event Detection in Response to a certain degree in addition to 

the control tasks. However, in the case of failure the control must be taken up by 

the driver. 

An example of level three systems, would be the Audi A Luxury Sedan, which 

was an automated driving system that can navigate unmonitored in slow traffic. 

Level 4 – High Driving Automation: In this level, we arrive at highly automated 

vehicles, where the system is capable of reaching a minimum risk condition, in 

case the driver doesn't intervene in time for an emergency. Level four systems can 

handle emergencies on their own, but may still ask drivers to take over to avoid 

pulling over to the side of the road unnecessarily. With this amount of 

automation, the passengers can check their phone or watch a movie knowing that 

the system is able to handle emergencies and is capable of keeping the passengers 

safe. However, level four still permits self-driving systems with a limited 

operational design domain (ODD). 

For example, as of fall 2018, only Waymo has deployed vehicles for public 

transport with this level of autonomy. The Waymo fleet [5] can handle the driving 

task in a defined geographic area with a nominal set of operating conditions, 

without the need for a human driver. 
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Level 5 – Full Driving Automation: In this level the system is fully autonomous 

and its ODD is unlimited. Meaning that it can operate under any condition 

necessary. Level five is the point where our society undergoes transformational 

change. With driverless taxis shuttling people in packages wherever we need 

them. Unfortunately, we don't have any examples for level five yet. 

Autonomous Cars Industry 

Self-driving cars will be without a doubt the standard way of 

transportation in the future. Major companies are willing to spend millions of 

dollars in their development, as its future market is predicted to worth trillions. 

Self-driving cars are now a feasible due to many different computational 

technological advancements. We introduce briefly some of the most important 

companies that had some major contribution in the field of autonomous driving 

and navigation. 

CMU Navlab [6]: The Carnegie Mellon University Navigation 

Laboratory Navlab (CMU) group builds computer-controlled vehicles for 

automated and assisted driving. Since 1984, they have built a series of 

robot cars, vans, SUVs, and buses. Navlab11 [7], their latest vehicle in the 

Navlab family, a robot Jeep Wrangler equipped with a wide variety of 

sensors for short-range and mid-range obstacle detection. 
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Waymo's Self-Driving Cars: Waymo got started in 2009 as the Google 

Self-Driving Car Project [8] and was spun off as a subsidiary of Google's 

own parent company Alphabet Inc. in 2016. Waymo car is equipped with 

cameras to enhance the vision along with a LIDAR. LIDAR is technology 

that uses lasers to generate a highly accurate representation of the area 

around a self-driving car. Unlike a human driver, LIDAR is able to 

generate a complete 360 degree view of the world around the vehicle. A 

Waymo car is able to plot a route from one location to another and then 

react, in real time, to the flow of traffic, using the information from maps, 

the LIDAR system, and other sensors. Sensors designed to detect objects 

as far as three football fields away in all directions including pedestrians, 

cyclists and vehicles. Waymo had tested its system in six states and 25 

cities across the U.S over a span of more than 9 years. Waymo announced 

that it has been running Level 4 autonomous cars, with no human behind 

the wheel. 

Tesla Model S: Tesla started equipping Model S with hardware to allow 

for the incremental introduction of self-driving technology: a forward 

radar, a forward-looking camera, 12 long-range ultrasonic sensors 

positioned to sense 16 feet around the car in every direction at all speeds, 

and a high-precision digitally-controlled electric assist braking system. 

This combined suite of features represents the only fully integrated 
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autopilot system involving four different feedback modules: camera, radar, 

ultrasonic, and GPS. These mutually reinforcing systems offer real-time 

data feedback from the Tesla fleet, ensuring that the system is continually 

learning and improving upon itself. Autopilot allows Model S to steer 

within a lane, change lanes with the simple tap of a turn signal, and 

manage speed by using active, traffic-aware cruise control. Digital control 

of motors, brakes, and steering helps avoid collisions from the front and 

sides, as well as preventing the car from wandering off the road. 

 

Renault NEXT TWO [9]: Driverless operation is based on a system that 

monitor and analyze the vehicle’s environment using the following: a 

radar fitted in the front bumper and a camera on the central rear-view 

mirror. The radar detects the vehicle in front and calculates its speed. The 

camera is used to correctly position the vehicle in its lane. The system also 

features an ultrasound belt wrapping around the vehicle. These monitoring 

systems are coordinated by a control unit that communicate the powertrain 

components and guard against contradictory instructions. 

Mercedes-Benz: Mercedes S class has option for autonomous steering, 

lane keeping, acceleration/braking, accident avoidance, and driver fatigue 

detection. Partially automated driving is available to drivers of new 
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Mercedes-Benz E and S class models. The current S-Class falls under 

Level 2 autonomy. These systems can assist in steering, acceleration, and 

deceleration, but the driver remains in charge of monitoring the driving 

environment at all times. In 2020, Mercedes-Benz will step up to the plate 

with its own Level 3 technology for the next generation S-Class.  
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Objective 

We propose an approach for driving autonomy using an end-to-end 

approach illustrated in figure 2, the main objective is to design and operate a 

vehicle controller on a hardware prototype of an autonomous vehicle, navigating 

from a starting point to a destination point, on a route defined by a higher level 

planner, using only visual data captured by an ordinary camera (frames) placed on 

the front of the vehicle, relying on data extracted only from simulated 

environments, interacting with its surrounding environment autonomously. 

 

 

 

 

 

Figure  2. An illustration of our proposed end-to-end approach. 
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Chapter 2 

Background 

Machine Learning 

Machine Learning (ML) is considered a subset of artificial intelligence 

(AI) which enables the system to automatically learn from experience and deal 

with new problem and tasks effectively without being explicitly programmed. The 

existence of complex tasks in the real world which we can’t handle with 

traditional rule based programming accelerates the research in the area of machine 

learning to build a reliable system which is able to perform these complex tasks 

with high immunity to random possible variations. Machine Learning simply 

builds a mathematical model based on given information known as training data 

and use this model to preform predictions or decisions on relevant data that it 

hasn’t been exposed to before. 

History: In 1959, Arthur Samuel coined the term “Machine Learning” while at 

IBM and wrote the first computer learning program which was the game for 

checkers. As time passes, machine learning researches increased but considered 

only an application for artificial intelligence.  In 1957, Frank Rosenblatt designed 

the first neural network for computers (the perceptron) simulating the process of a 

human brain. In 1990s machine learning recognized as a separate field and started 
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to flourish. In 2000s with the huge computational technological advancements, 

more machine learning researches were done and machine learning becomes a 

trending topic in the research area. 

Types of Machine Learning: The types of machine learning differ in their 

objective, inputs, outputs, and the approach to perform required tasks. We are 

going to cover the most used and essential types of machine learning briefly in the 

following subsections. 

Supervised Learning: Supervised learning is the type of machine learning meant 

to map input data to output data. We build a machine learning model and train it 

using labeled data, it correlates the main features in the input data to the output 

labels, and gains the ability to perform future predictions on relevant new unseen 

inputs with high accuracy. 

Supervised Learning has many types and approaches. The most well-known types 

are regression and classification. Regression is used to predict continuous values 

of outputs depending on the current input to the model with help of what we call 

hypothesis function as shown on figure 3. On the other hand, classification is 

being used to determine the category of specific input. Classification could be 

binary (categorize input into two types only), or Multi-class Classification 

(categorize input into multiple options) as shown in figure 4 [10]. 
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Unsupervised Learning: Unsupervised Learning is type of machine learning 

which can learn by itself without the need to labeled dataset. It searches for 

common correlations in given data, estimates a model that is able to analyze new 

and unseen input data. Unsupervised Learning is commonly used in clustering 

data into clusters which is determined without human interference based on the 

given unlabeled data as shown in figure 5 [11]. 

Reinforcement Learning: Reinforcement learning is the type of machine 

learning where the agent learns by himself without any given data as it learns 

from interaction with surrounding environment. Depending on the effects of 

specific actions the agent perform, feedback signals is sent to the agent to tell him 

how good/bad these actions were. Given appropriate amount of time, the agent 

will be able to learn patterns and logical triggers to his actions so that the least 

amount of negative feedback will be sent to him as shown in figure 6.  

 

Figure 3. Linear 

regression illustration. 
Figure 4. Logisticc 

regression illustration. 
Figure 5. Clustering 

illustraion. 
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Reinforcement learning, due to its generality, is studied in many other disciplines, 

such as game theory, control theory, and operations research. 

Deep Learning 

Deep Learning [12] is a class of machine learning which uses multiple 

layers to extract complex high dimensional features from raw input data. Deep 

learning is able to deal effectively with complex problems such as analysis of 

images, videos and time series events, taking into consideration spatial, temporal 

dependencies, or both. The term “deep” in deep learning refers to the number of 

layers through which the data is transformed. Deep learning methods can handle 

efficiently supervised learning problems, unsupervised learning problems as well 

as reinforcement learning problems. 

Deep Learning Approaches: Deep Learning approaches is based mostly on 

artificial neural networks (ANN). Neural networks, in general, are built to 

simulate the behavior of the human brain– specifically, pattern recognition and 

the passage of input through various layers of simulated neural connections. 

Figure 6. Reinforcement learning concept illustration. 
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Neural networks are based on a collection of interconnected layers of 

nodes called perceptrons, responsible for processing information passing through 

different layers as shown in figure 7. Neural networks have many types based on 

the problem they are addressing. We are interested in the following three types; 

Deep Neural Networks: A deep neural network (DNN) is a neural network with 

more than two hidden layers. As we increase the depth of the neural network, the 

ability to detect higher level features increases. The main advantage of DNNs to 

traditional machine learning approaches is that we don’t need to separately extract 

features from the raw input as the DNN can handle the task of feature extraction 

efficiently correlating the most affecting features to perform the required task. 

DNNs are trained using back propagation algorithm which is simply calculating 

the derivatives of a layer with respect to the previous layer starting from the  

 

Figure 7. An illustration of a standard two layers neural network. 
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output layer to the input layer. An illustration of a DNN structure is shown in 

figure 8. 

Convolutional Neural Networks: A convolutional neural network (CNN) is a 

class of deep neural networks, most commonly applied to analyzing visual 

imagery. CNNs are regularized versions of multilayer perceptrons. Multilayer 

perceptrons usually refer to fully connected networks, that is, each neuron in one 

layer is connected to all neurons in the next layer. The "fully-connectedness" of 

these networks makes them prone to overfitting data. Typical ways of 

regularization include adding some form of magnitude measurement of weights to 

the loss function. However, CNNs take a different approach towards 

regularization: they take advantage of the hierarchical pattern in data and 

assemble more complex patterns using smaller and simpler patterns. Therefore, on 

the scale of connectedness and complexity, CNNs are on the lower extreme. They 

are also known as shift invariant or space invariant artificial neural networks 

Figure 8. An illustration of multiple layers deep neural network. 
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(SIANN), based on their shared-weights architecture and translation invariance 

characteristics [13][14]. 

Convolutional networks were inspired by biological processes [15][16][17][18] in 

that the connectivity pattern between neurons resembles the organization of the 

animal visual cortex. Individual cortical neurons respond to stimuli only in a 

restricted region of the visual field known as the receptive field. The receptive 

fields of different neurons partially overlap such that they cover the entire visual 

field. CNNs use relatively little pre-processing compared to other image 

classification algorithms. This means that the network learns the filters that in 

traditional algorithms were hand-engineered. This independence from prior 

knowledge and human effort in feature design is a major advantage. They have 

applications in image and video recognition, recommender systems [19], image 

classification, medical image analysis, and natural language processing [20]. A 

simple illustration of the general structure of a conventional CNN is shown in 

figure 9. 

Figure 9. An illustration of a conventional convolutional neural network. 
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Recurrent Neural Networks: Recurrent neural network (RNN) is a class of 

neural networks which is used to analyze sequential data. The input to RNN is 

correlated with previous inputs forming a time series input which passes through 

the network affecting the final output as shown in figure 10. RNNs are suitable 

for problem with high temportal dependencies such as speech analysis, 

recognition, language models, machine translation, etc. 

 

  

Figure 10. An unrolled illustration of a conventional RNN. 
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Deep Learning in Self Driving Cars 

Self-Driving car is defined as a car which is capable of sensing and 

approximating its surrounding environment and navigating with little or no human 

interference. Deep learning had a major contribution in developing self-driving 

cars. Autonomous driving has two approaches to, either a hand-engineered 

modular pipelined approach, or an end-to-end deep learning based approach. 

Modular Approach: The main idea of this approach is to split the task of 

autonomous driving into multiple modules performing smaller and specific tasks. 

Combing all these modules together gives the vehicle the ability to take decisions 

on its own without human interference. We are discussing briefly the main 

modules existing in this approach. 

Localization: Localization means that the vehicle is able to detect its own 

position with very high accuracy. HD maps are used for localization with 

the help of GPS system. 

Planning: Planning is meant to feed the vehicle with both the long term 

planning and short term planning. Planning module is important for the 

vehicle as it affective directly the behavior of the vehicle at every moment. 
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Perception: Perception module is the eyes for the vehicle. Several sensory 

data can be combined to provide a robust representation of the 

surrounding environment, like cameras, LIDAR, RADAR, and another 

sensors. CNNs are used in this module heavily to perform different tasks 

as lane detection, object detection and localization, and more. 

Control: Given sensor data and planned trajectories, a control module is 

necessary to control the vehicle in a way that let it follow its trajectory as 

well as interacting with the surrounding environment accurately. 

End-to-End Approach: End-to-End approach aims to eliminate any hand-

engineered pipelining, unleashing the abilities of deep learning to form its own 

model of the environment, and an approximate robust relation between the 

surrounding environment and the corresponding control signals. The driving 

model learns from thousands of frames associated with control signals how to 

deal in different situations without the need to program it explicitly. The resulting 

driving policy of this approach is a replica of the driver’s behavior existing in the 

provided training dataset. 
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Simulation 

Simulation is an essential part of testing, evaluating and developing self-

driving vehicles, because it allows us to ensure that our vehicle will operate safely 

before we even step foot in it, recently it has been useful for collecting data 

required for developing self-driving vehicles. Simulation has been used to verify 

that the vehicle's controller handles all various scenarios appropriately, most 

importantly, we can test our vehicle in situations that cannot be tested in real 

environment as it would be too dangerous to test on actual roads and very risky on 

the other drivers and pedestrians. Generally, to test the reliability of such a safety 

critical system, such as an end-to-end self-driving vehicles, it must first be tested 

and evaluated in a simulated environment. 

There exists a number of simulators that are capable of testing and evaluating 

self-driving cars. The task is to find a suitable simulator that is compatible with 

our objective. The most important requirement is that the simulator provides a 

high-fidelity realistic driving environment. In the next subsections, we will 

discuss briefly several self-driving simulators. 

AirSim: Airsim [21] is an open source simulation tool for drones, cars and other 

several vehicles, based on Unreal Engine 4 developed by Microsoft as a platform 

for AI research. AirSim provides realistic environments, vehicle dynamics, and 

multi-modal sensing for researchers building autonomous vehicles that use AI to 
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enhance their safe operation in the open world. It provides realistic and high-

fidelity environments that makes it a suitable visual and physical simulator for 

autonomous vehicles as shown in figure 11. AirSim is inspired by the goal of 

developing reinforcement learning algorithms for the autonomous agents that can 

operate in the real world.  

  

Figure 11. A screen capture of a scene taken from AirSim, showing several live sensor data it has to offer. 
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Gazebo Simulator: Gazebo [22] is an open source 3D dynamic multi-robot 

environment. Gazebo, is designed to accurately reproduce the dynamic 

environments a robot may encounter. Gazebo offers the ability to accurately and 

efficiently simulate populations of robots in complex indoor and outdoor 

customized environments. All simulated objects have mass, velocity, friction, and 

numerous other attributes that allow them to behave realistically when pushed, 

pulled, knocked over, or carried. The physics engine used in Gazebo is designed 

to simulate the dynamics associated with rigid bodies as shown in the simulation 

environment in Gazebo shown in figure 12.  

  

Figure 12. A scene from Gazebo simulator. 
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DeepDrive: DeepDrive [23] is an open sourced simulation tool for self-driving 

cars, based on Unreal Engine to be a platform for AI research. It features a 

tensorflow baseline agent and a self-driving benchmark. The simulation 

environment is shown in figure 13. OpenAI has enabled its DeepDive Project to 

transform GTA V into a self-driving car simulator. OpenAI has released the open 

source integration of artificial intelligence training software Universe within the 

DeepDive Project to bring GTA V to the self-driving world. The game provides 

artificial intelligence (AI) agents the access to a 3D world through Universe. The 

agents can watch the action live and examine the behavior of people within the 

GTA environment to develop an intelligent self-driving model. DeepDrive 

repurposes GTA V as a self-driving car simulator; it also provides pre-trained 

self-driving agents and the datasets used to train them. GTA V is an extensive, 

detailed world about a fifth of the size of Los Angeles, easily modified to any size 

or city as shown in figure 14. Not only does it have winding city streets, but also 

mountains, deserts, and highways that you can explore in 257 different cars, and it 

has 14 different weather simulations. 

Figure 13. A scene taken from DeepDrive. Figure 14. A high definition detailed scene from 

DeepDrive. 
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CARLA Simulator: CARLA (Car Learning to Act) is an open source simulator 

developed to support autonomous vehicle research, in particular the development, 

training and validation of autonomous urban driving systems [24] that is founded 

by Intel. CARLA is able to simulate advanced and realistic weather conditions, 

urban environments and non-player characters. CARLA provides open digital 

assets (urban layouts, buildings, vehicles) that were created for this purpose and 

can be used freely. The simulation platform supports flexible specification of 

sensor suites, environmental conditions, and full control of all static and dynamic 

actors. The simulator is built with Python as a layer on top of Unreal Engine 4 

(UE4). CARLA has several towns, urban traffic environments as shown in figure 

15 wherein vehicles may be rendered and tested. CARLA is used to study the  

 

Figure  15. A standard scene from CARLA simulator. 
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performance of several approaches to autonomous driving. These approaches are 

evaluated in controlled scenarios of increasing difficulty, and their performance is 

examined via metrics provided by CARLA, illustrating the platform’s utility for 

autonomous driving research. It includes urban layouts, a multitude of vehicle 

models, buildings, pedestrians, intersections, cross traffic, traffic rules, street 

signs, etc. A wide range of environmental conditions can be specified, including 

weather and time of day. A number of such environmental weather conditions are 

illustrated in figure 16. The environment of CARLA is composed of 3D models of 

static objects such as buildings, vegetation, traffic signs, and infrastructure, as 

well as dynamic objects such as vehicles and pedestrians. All models are carefully 

designed to reconcile visual quality and rendering speed. All 3D models share a 

Figure 16. The same scene from CARLA simulator, taken from different daytimes and weather conditions. 
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common scale, and their sizes reflect those of real objects. CARLA 0.8.4 includes 

40 different buildings, 16 animated vehicle models, and 50 animated pedestrian 

models. This way they have designed two different towns: Town 1 with a total of 

2.9 km of drivable roads, used for training, and Town 2 with 1.4 km of drivable 

roads, used for testing that is shown in figure 17.  CARLA allows flexible 

configuration of the agent’s sensor suite. The version we used includes sensors 

that are limited to RGB cameras and to pseudo-sensors that provide ground-truth 

depth and semantic segmentation. It provides three sensing modalities, depth and 

semantic segmentation are pseudo-sensors that support experiments that control 

for the role of perception. Additional sensor models can be plugged in via the 

API. The number of cameras and their type and position can be specified by the 

client. Camera parameters include 3D location, 3D orientation with respect to the 

car’s coordinate system, field of view, and depth of field.  

  

Figure 17, a scene from town 1 on the left, and another from town 2 on the right. 
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Datasets 

Deep learning mainly relies on huge amounts of training data. Getting the 

right data means gathering or identifying the input data that describes the 

environment sufficiently to be related to the outputs you want to predict; i.e. data 

that contains signals that describes events you care about. Some of the popular 

related datasets are listed below; 

Berkeley DeepDrive BDD100k: This is one of the largest dataset for self-

driving AI and contains over 100,000 videos of over 1,100-hour driving 

events across different times of the day, and varying weather conditions. 

The annotated images within the dataset come from New York and San 

Francisco areas. 

Baidu ApolloScape: This large dataset defines 26 distinct semantic items 

such as cars, bicycles, pedestrians, street lights, etc. This dataset contains 

various categories of data set like scene parsing, car instance, lane 

segmentation, etc. 

Comma.ai: This dataset contains more than seven hours of highway 

driving. The data set contains measurements like speed, acceleration, 

steering angles and GPS coordinates. 
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Oxford’s Robotic Car: This dataset contains over 100 repetitions of the 

same route through Oxford, UK, captured over one year with different 

combinations of weather, traffic and pedestrians, along with long-term 

changes such as construction and roadwork. 

KUL Belgium Traffic Sign Dataset: This dataset contains 10,000+ 

annotations of traffic signs from thousands of physically distinct traffic 

signs in Belgium, particularly in the Flanders region. Belgium TSC dataset 

is built for traffic sign classification purposes. Is a subset of Belgium TS 

dataset and contains cropped images around annotations for 62 different 

classes of traffic signs. Belgium TSC is split in a training part with 4591 

images and a testing part with 2534 images. 

LISA: Laboratory for Intelligent & Safe Automobiles, UC San Diego 

Datasets: This dataset includes LISA Vehicle Detection Dataset, LISA 

Traffic Sign Dataset, and LISA Traffic Light Dataset. 

KITTI Dataset: The KITTI dataset has been recorded from a moving 

platform while driving in and around Karlsruhe, Germany .It includes 

camera images, laser scans, high-precision GPS measurements and IMU 

accelerations from a combined GPS/IMU system. 

CityScapes: This dataset focuses on semantic understanding of urban 

street scenes, from 50 different cities, during all different seasons, on 
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different daytimes, several weather conditions, and varying scene layout. 

It contains 5000 frames, with 30 different segmentation classes annotated 

finely and coarsely. 

But using a real dataset didn’t meet our requirements, and all of them were 

taken from a set of environments completely different than ours, moreover, 

collecting a dataset using a fleet of real vehicles on real roads can be time 

consuming, expensive, and very risky on other drivers and pedestrians, on the 

other hand, a dataset collected completely from a simulated environment is almost 

cost-free, risk-free, and completely customizable to include all different scenarios.  

The dataset that we used to train our driving model was extracted by Intel Labs 

from CARLA Simulator 

 The dataset contains 600,000 frames of RGB image stored at a resolution 

of 200x88. 

 Each frame has its corresponding 28 measurements for like steering, gas, 

brake, speed, acceleration, etc. 
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Chapter 3 

Methodology 

Imitation Learning 

 A basic imitation learning [25] consists of discrete environment 

observations ot and actions at, in our case these observations are raw simulated 

images (RGB) taken from a camera placed on our simulated vehicle, and these 

actions are performed by an expert driver that could be a human expert or a rule 

based autopilot. The goal is to train a controller that mimics the expert’s actions 

on the training data and beyond in familiar –but not similar– data. The simulated 

data generated by the expert that is supposed to train the controller is a set of 

observation-action pairs as follows; 

𝛽 = {〈𝑜𝑖 , 𝑎𝑖〉}𝑖=1
𝑁  

The basic assumption that the expert is performing the tasks of interests 

perfectly, which are; navigating in straight urban two-lane roads, taking left and 

right turns, taking decisions based on the higher level command provided by a 

higher level planner on intersections, and interacting with other vehicles and 

pedestrians. This is a supervised learning problem, which the controller’s 
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parameters W of a function approximator F(o; W) must be optimized to fit the 

mapping of the observations ot to the actions at as follows; 

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒
W

 ∑ l (F(𝑜𝑖, W), 𝑎𝑖)

𝑖

 

Moreover, the expert’s actions in our case are logical and explained by the 

observations, this can be represented as a function E that maps the controller’s 

actions at to the observations as follows; 

𝑎𝑖  = 𝐸(𝑜𝑖) 

An approximator will be able to fit sufficiently given enough data as long 

as the expert’s actions are explained enough by the observations, this condition 

will exist in certain simple tasks like lane following and simple turns. Considering 

more complex tasks and scenarios, this condition will break down immediately, 

like intersections for example, the action taken by the expert can never be 

explained by the observation as it depends on a higher level decision, which is in 

our case called the higher level command that is provided by the higher level 

planner. The same observations could lead to totally different actions depending 

on the higher level command or the defined route in general. Therefore if a 

controller or a model is trained without considering that higher level command, it 

would take an arbitrary decision in each intersection, which results in a non-useful 
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system in the defined urban environment. A system like this will have no 

communication with the higher level planner to define a route at all. 

 

Therefore, the higher level command must be included explicitly along with the 

observations in the function E to map the actions at with the observations ot and 

the higher level command ct simultaneously as follows; 

𝑎𝑖  = 𝐸(𝑜𝑖 , 𝑐𝑖) 

The learning objective now can be reformulated to include the higher level 

command ct as follows; 

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒
W

 ∑ l (F(𝑜𝑖 , W), 𝐸(𝑜𝑖,  𝑐𝑖))

𝑖

 

Therefore, the dataset becomes triplets of observations, actions, and higher level 

commands as follows; 

𝛽 = {〈𝑜𝑖 , 𝑐𝑖, 𝑎𝑖〉}𝑖=1
𝑁  

And the final general learning objective becomes as follows; 

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒
W

 ∑ l (F(𝑜𝑖, 𝑐𝑖,W), 𝑎𝑖)

𝑖
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Afterwards, the controller-environment relation in association with the higher 

level command can be represented as follows in figure 18. 

 

 

 

  

  

Figure 19 Figure 18. An illustration of our controller-environment interactions. 



CHAPTER 3. METHADOLOGY 

35 

 

 

 

Model Architecture  

In our case, our observations ot includes images and low dimensional 

measurement vectors, and the controller F is a deep neural network taking ot as an 

input alongside with the higher level command ct and predicts the suitable action 

at. The actions space could be continuous or discrete according to the nature of 

each action. In our case, the actions at consists of three main signals, steering 

which is continuous, throttle which is discrete, and brakes which is also discrete, 

while the higher level command ct is a categorical variable indicating which 

direction to take, either left, right, straight, or follow-lane that is represented by a 

one-hot vector. Through the simulation phase the input image is raw RGB without 

any preprocessing. 

We addressed the problem of embedding the higher level command into 

the learning objective through two different approaches with two different 

architectures. Also the convolutional neural network (CNN) used in both 

architecture was strongly inspired by NVIDIA’s PilotNet [26], modified and 

embedded in a larger network that is inspired by CoIL [27], that will be discussed 

in detail through this section. All our experiments and trials were implemented 

with Keras using Tensorflow [28] Backend. 
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Architecture #1 

This architecture is illustrated in figure 19, and table 1. The model takes 

the images alongside with the measurements vector and the higher level command 

as inputs, and all three of them are processed independently. The image is 

processed by a CNN while the measurements vector and the higher level 

command are processed by two separated fully connected networks (FCN), and 

their outputs are concatenated to form a joint vector that is then processed by 

another FCN called the control FCN to output the steering, throttle, and brakes 

signals all at once. 

This architecture aims to a learning objective that considers the higher level 

command as a trainable input as follows; 

 
𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒

W
 ∑ l (F(𝑜𝑖, 𝑐𝑖,W), 𝑎𝑖)

𝑖

 

 

  



CHAPTER 3. METHADOLOGY 

37 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

F
ig

u
re 1

9
. A

 d
eta

iled
 fig

u
re o

f o
u
r co

m
m

a
n

d
-in

p
u

t a
rch

itectu
re. 



CHAPTER 3. METHADOLOGY 

38 

 

 

 

Table 1. A detailed description of our command-input architecture. 

Input Layer/Block Input Shape Output Shape 
Number of 

Parameters 

Frame 

Convolutional 

Block 1 
200x88x3 200x88x16 2,444 

Convolutional 

Block 2 
200x88x16 98x48x24 9,720 

Convolutional 

Block 3 
98x48x24 47x19x36 21,780 

Convolutional 

Block 4 
47x19x36 22x8x48 43,440 

Convolutional 

Block 5 
22x8x48 20x6x64 27,968 

Convolutional 

Block 6 
20x6x64 18x4x64 37,184 

Fully 

Connected 

Block 1 

4,608 1164 5,369,532 

Fully 

Connected 

Block 2 

1164 512 598,528 

     

Speed 

Measurement 

Fully 

Connected 

Block 3 

1 128 768 

Fully 

Connected 

Block 4 

128 128 17,027 

     

Concatenated 

Vector 

Fully 

Connected 5 
640 256 165,120 

Fully 

Connected 6 
256 256 66,816 

Fully 

Connected 7 
256 64 16,704 

Fully 

Connected 8 
64 1 65 

Total Number of parameters 6,410,631 



CHAPTER 3. METHADOLOGY 

39 

 

 

 

Architecture #2  

This approach is illustrated in figure 20, and table 2. The model in this 

approach takes the image alongside with the measurements vector as inputs, 

without the higher level command, similarly, they are processed independently as 

in approach 1. The main difference that the higher level command is no longer a 

trainable input, instead it will be used to influence the control FCN that processes 

the joint vector that results of concatenating the CNN’s output with the 

measurements FCN’s output in a special manner. There will be certain number of 

control FCNs that takes the joint vector and outputs the output signals, that 

number depends on the number of directions or categories that the higher level 

planner is intended to produce, in our case as mentioned before there is only 4 

possible values for that higher level command ct, therefore there will be 4 control 

FCNs or 4 control branches processing the joint vector, each for every direction. 

This architecture can be modeled as having 4 experts willing to driving all 

the time, and are able to interact with the environment sufficiently all the time 

except at the intersections, one of them for example tends to take the left exit of 

the intersection, called after the higher level command direction; the left head, and 

similarly for the right and the straight head, while the follow-lane head is an 

expert in driving and turning in ordinary situations without intersections, and it is 

the one that controls the vehicle most of the time. 
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This architecture aims to a learning objective that doesn’t include the higher level 

command as a trainable input at all, as follows; 

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒
W

 ∑ l (F(𝑜𝑖,W), 𝑎𝑖)

𝑖

 

But, it does affect the whole model, as the inputs are fed forward into the 

model including all the branches or heads, the higher level command selects 

which branch or head to backpropagate through during training time. The 

resulting model after training should have a CNN that is trained on all the training 

dataset including all branches, a measurements FCN that is also trained on all the 

training dataset, and 4 branches, each trained on its corresponding subset of the 

training dataset according to the higher level command, but all of them share the 

same CNN and measurements FCN. 

This model architecture was trained in a very special manner, as a custom 

loss function was used to guide the backpropagation in the branch corresponding 

to each direction or higher level command, also the training process itself needed 

to be performed carefully to avoid domination of a certain branch over the others. 

An extra branch was added called the speed auxiliary branch, it is responsible of 

predicting the corresponding speed from the output of the CNN only, although the 

actual speed is included as an input in the measurements vector, but the predicted 

speed is drawn from an early stage in the network that hasn’t been exposed to the 
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input one yet, this connection forced an implicit correlation between the input 

frame and the output speed that could be used later to add more reliability to the 

overall model while driving. 
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Table 2. A detailed description of our branched architecture. 

Input Layer/Block Input Shape Output Shape 
Number of 

Parameters 

Frame 

Convolutional 

Block 1 
200x88x3 200x88x16 2,444 

Convolutional 

Block 2 
200x88x16 98x48x24 9,720 

Convolutional 

Block 3 
98x48x24 47x19x36 21,780 

Convolutional 

Block 4 
47x19x36 22x8x48 43,440 

Convolutional 

Block 5 
22x8x48 20x6x64 27,968 

Convolutional 

Block 6 
20x6x64 18x4x64 37,184 

Fully 

Connected 

Block 1 

4,608 1164 5,369,532 

Fully 

Connected 

Block 2 

1164 512 598,528 

     

Speed 

Measurement 

Fully 

Connected 

Block 3 

1 128 768 

Fully 

Connected 

Block 4 

128 128 17,027 

     

Concatenated 

Vector 

Fully 

Connected 5 
640 256 165,120 

Fully 

Connected 6 
256 256 66,816 

Fully 

Connected 7 
256 64 16,704 

Fully 

Connected 8 
64 1 65 

Total Number of parameters 7,456,785 
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The convolutional block mentioned in both architectures in figures 20 and 

21 consists of a 2D convolutional layer, followed by a relu activation, batch 

normalization, and dropout, the batch normalization-dropout order was strictly 

followed to avoid variance shift and to make use of their advantages combined. 

An illustration showing the operations’ order is shown below in figure 21. 

Similarly, the fully connected block has the same structure, but a fully connected 

layer instead of a convolutional layer, as shown also in figure 21. 

 The output nodes had different activations according to their function; the 

steering output node had a tanh activation function as the steering angle was 

normalized to have values ranging from -1 to 1, and was considered a regression 

output with mean absolute error loss function, while the throttle and the brakes 

output nodes had sigmoid activation functions as their values ranged only from 0 

to 1, also with a mean absolute error functions as well.  

 

  

Figure 21. Describing the convolutional block on the 

left, and the fully connected block on the right 
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Training  

 Due to the differences between both architectures, the training phase was 

completely different for each, as the second one had very special requirements 

that had to be handled carefully in order to train the 4 branches simultaneously. 

Both of them at the end of the training phase had reasonable losses; 

 Losssteering = 0.015 ~ 0.030 

 Lossthrottle = 0.050 ~ 0.100 

 Lossbrakes = 0.050 ~ 0.100 

Although all losses were relatively small, but the most expressive and 

important one is the steering loss, as it varies rapidly and frequently, while the 

throttle and the brakes in the training dataset were almost fixed to certain values 

most of the time, so their losses weren’t as expressive as the steering loss. 

Architecture #1  

 Training this model was completely straight forward, the training dataset 

was fed to the network in batches of size 32 samples, completely shuffled and 

random, including the higher level command. The training dataset was balanced 

to reach 600,000 samples, 150,000 samples for each direction, then the model was 

trained and evaluated after 20~25 epochs. The final loss values on the end of the 

training phase were on average close to the values mentioned before, but it 

doesn’t define how good the model is in its task. 
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Architecture #2  

 This model had to be trained carefully as it have 4 control branches 

sharing the same CNN mainly. After various experiments, hyperparameters 

tuning, and training methods, the best way to train this model is by training it with 

batches of random samples of each direction separately, a batch of size 32 

samples from the left direction for the left branch, followed by a batch of the same 

size from right direction for the right branch, while the speed branch being fed all 

the training data regardless of the higher level command, and so on till the whole 

dataset is fed to the model. 

The training phase sequence is illustrated in figures 22 and 23, indicating which 

parts of the model were trained using each subset of the training dataset. 
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Evaluation  

 Evaluating the models’ performance in such task included inspecting their 

performance on the test set, but it wasn’t enough to measure how good either of 

them, therefore an evaluating metric had been defined to do so, which is  the 

success rate, given a total number of defined trips between two arbitrary points on 

the simulator’s map, the higher level planner defined the shortest path as a 

sequence of higher level commands, afterwards the trained model was left to 

control the vehicle according to its visual view and the higher level command, the 

success rate is the number of the successful trips it performed to the total number 

of defined trips. 

 The first model wasn’t very promising at all, it successfully performed the 

basic task of driving in straight roads and taking simple turns, but the higher level 

command had no influence at all on its decision at the intersections, taking 

arbitrary decisions that made it fail to reach its defined destination. 

 On the other hand, the second model performed much better than the first, 

and in order to improve this model, we had to understand and inspect various 

internal properties after training, like visualizing internal activations [29] and 

saliency maps [30]. The internal activations following the convolutional blocks 

after training showed exactly which features did the model rely on in predicting 

its final output, illustrated in figure 24. Afterwards, for further understanding of 



CHAPTER 3. METHADOLOGY 

49 

 

 

 

how the model predict its outputs, the saliency maps were carefully inspected, we 

observed that on normal conditions on straight road segments, that the model 

focused and concentrated on the center of the image, as shown in figure 25.   

  

Figure 24. Showing an input frame on top, followed 

by its corresponding activations after the first 

convolutional block, after the training phase, showing 

how much the network extracted the importance of the 

road boundaries and lanes implicitly. 

Figure 25. Showing an input frame on top, followed 

by its corresponding saliency map, showing how 

much the model learned to focus on the centerof the 

scene. 
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Path Planning 

 In order to generate the higher level command we mentioned, we had 

implement a routing algorithm that is able to find a suitable route between our 

starting point and destination point, and then convert this route into a sequence of 

higher level commands. 

The routing module’s input is a source point in (latitude, longitude) co-

ordinates, as well as a destination point in the same co-ordinates, and a grapph-

based map of our campus that we managed to find on OpenStreetMaps, the 

routing module finds the shortest path between the two points as a sequence of co-

ordinates, which we are then converted to a new approximate (x, y) co-ordinate 

system. Using the new (x, y) co-ordinates, we reformulated the problem. We need 

to find a sequence of higher level commands (left, right, forward, follow-lane). 

We managed to do so by assuming a vector normal to the ground, and by taking 

the cross product of a vector from the previous point till the current point, with a 

vector from the previous point till the next point, then taking the dot product of 

the resultant vector of the cross product with the one normal to the ground, we 

had a value which indicates whether the next point falls on the left or the right of 

the currunt point. Moreover, a threshold was sat by try and error to compromise 

the road’s bending and turns to generate the forward command.   
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Challenges 

 Transferring the learned driving policy from the simulated environment to 

a real environment is the main objective from the beginning, but due to the huge 

difference between the two domains, as shown in figure 26, the trained CNN 

failed completely to generalize and extract the features required for the latter parts 

of the network. 

To address this problem we had to transform either domains to the other or find 

an intermediate domain that both can reach, afterwards the driving policy can be 

learned on that domain and abstracted to be used on both of them similarly 

without fine-tuning. 

 

  

Figure 26. Showing the difference between our simulated environment on the left, and our real 

environment on our campus on the right. 
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Domain Transformation and Semantic Segmentation 

To transfer the learned driving policy from the simulated domain to the 

real domain, one of these two solutions must be followed in order to narrow the 

gap between the two domains; either domain transformation or semantic 

segmentation. Both approaches offer immunity to the scene structure in both 

domains, like the layout of roads, buildings, cars, pedestrians, surface appearance 

(materials, lighting), and the properties of the camera. The selected approach will 

be used as a perception module, and its role is to filter out nuisance factors and 

preserve the information needed for planning and control. 

Domain Transformation 

Regarding domain transformation, using generative models, the simulated 

domain can be converted to the real domain, and vice versa, as shown in figure 

27, and several approaches in the literature have done this task accurately, like 

DLID [31], CADA [32], CyCADA [33], but their major drawback is their 

processing time, training time, and training possible instability. Therefore, we 

haven’t selected domain transformation to solve our problem. 
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Semantic Segmentation 

On the other hand, semantic segmentation is the task of classifying each 

and every pixel in an image to a class as shown in figure 28. Here you can see that 

pedestrians are red, the road is purple, the vehicles are blue, street signs are 

yellow, etc. Semantic segmentation is different from instance segmentation, 

which is that different objects of the same class will have different labels and 

identites. 

GTA V Generated GTA V Generated CityScapes CityScapes 

Figure 27. The image pairs on the left taken from a simulated domain, and converted to a real one, while 

the pair on the right taken from a real domain, and converted to a simulated one. 

Figure 28. Per-pixel semantic segmentation. 
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Using per-pixel binary segmentation of the image into “road” and “no 

road” regions. It abstracts away texture, lighting, shading, and weather, leaving 

only a few factors of variation: the geometry of the road, the camera pose, and the 

shape of the objects occupying the road. Such segmentation contains sufficient 

information for following the road and taking turns, and it abstracts enough to 

support transfer. Moreover, binary segmentation takes far less processing time, 

and much more stable in training. Therefore, we adopted binary segmentation as a 

perception module in order to transfer the driving policy to the real environment. 

After reviewing several semantic segmentation models in the literature, we 

implement the perception module with an encoder-decoder deep convolutional 

neural network like ENet [34], PSPNet [35], and ERFNet [36], we settled on 

using ERFNet, although it wasn’t the fastest choice in terms of processing time, it 

was the most generalized one, as it was trained on real data, and generalizes on 

simulated data [37], which fits our purpose exactly. The model architecture details 

are shown in table 3, and implemented with PyTorch [38]. 

The training dataset for ERFNet we chose was CityScapes’ standard 

dataset, taken from several cities around Germany, with a total number of 5,000 

labeled frames, we edited the whole dataset to remove all the labels except the 

road for our binary segmentation model. Moreover, we also had to edit ERFNet to 

fit our purpose for binary segmentation instead of semantic segmentation.  
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 After training ERFNet on CityScapes’ dataset, it was able to generalize 

and perform well on both on simulated data, and real data, from our campus as 

well as it does on CityScapes’ test set, as shown in figures 29 and 30. 

  

Figure 29. The simulated input frame to our perception module shown on top, followed by the predicted per-

pixel binary  segmentation, with “road” labels illustrated in green, and “no road” otherwise. 

Figure 30. The r input frame to our perception module shown on top, followed by the predicted per-pixel 

binary  segmentation, with “road” labels illustrated in green, and “no road” otherwise. 
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Layer Type Out Channels Out Resolution 

1 Downsampler Block 16 512 x 256 

2 Downsampler Block 64 256 x 128 

3-7 5 x Non-bt-1D 64 256 x 128 

8 Downsampler Block 128 128 x 64 

9 Non-bt-1D (dilated 2) 128 128 x 64 

10 Non-bt-1D (dilated 4) 128 128 x 64 

11 Non-bt-1D (dilated 8) 128 128 x 64 

12 Non-bt-1D (dilated 16) 128 128 x 64 

13 Non-bt-1D (dilated 2) 128 128 x 64 

14 Non-bt-1D (dilated 4) 128 128 x 64 

15 Non-bt-1D (dilated 8) 128 128 x 64 

16 Non-bt-1D (dilated 16) 128 128 x 64 

17 Deconvolution 64 256 x 128 

18-19 2 x Non-bt-1D 64 256 x 128 

20 Deconvolution 16 512 x 256 

21-22 2 x Non-bt-1D 16 512 x 256 

23 Deconvolution 2 1024 x 512 

Table 3 
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Simulation to Reality 

The main challenge in our case is how our trained driving model will react 

when performing in a real environment; a whole new environment and perceptual 

distribution. Our purpose is with minimum fine tuning, we could successfully 

deploy our model in the real world, bridge the gap between the simulated domain 

and the real domain, and drive smoothly with no need for collecting more data 

from the new target environment to fine-tune the driving model. We were able to 

do so using semantic segmentation, which eliminates unnecessary visual details 

and unifies the two domains. 

In this section, we transfer a driving policy trained in simulated environment to a 

a real-world envrionment, with no fine tuning of the driving model. Our final 

pipeline we need to do so, is illustrated in figure 31. 

  

Figure 31. Our abstraction pipeline, operating in a real environment as well as the simulated environment. 
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Real Environment 

 After deploying the trained driving model on our physical prototype, we 

tested the driving policy on our university campus, which is an outdoor 

predefined environment that includes intersections and roads with no traffic lights 

nor traffic signs. An image taken from the vehicle’s view on our campus is shown 

in figure 32.  

 

 

 

 

  

Figure 32. An image from our target environment, which is our campus. 
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Challenges 

We faced some failures in the semantic segmentation view, as it segments 

the RGB frame that is taken from the camera mounted on our physical prototype, 

as shown in figure 32, the reason of the semantic segmentation model failure is 

that the model is trained on CityScapes’ dataset, that includes lanes in all of its 

frames, while our campus doesn’t. We proposed an experimental solution to 

enhance the semantic segmentation model by adding graphical lanes to our testing 

environment as boundaries to the RC car. This solution is firstly experimented by 

editing some images graphically to test the lanes’ impact on the semantic 

segmentation result. The addition of lanes made the semantic segmentation much 

better in most cases as shown in figure 33. 

 

Figure 33. An illustration show the effect of the road lanes on the perception modules. 
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 One more challenge we had to encounted, is the inconsistancy of our 

semantic segmentation results without road lanes, therefore, we had to build our 

own track, that is built with the same road geometry in turns and intersections 

used in our simulated environment. Due to the difficulty of building a large track 

spanning a large area, instead, we build a miniature version, designed to expose 

our vehicle to various senarios, like straight roads, simple turns, and taking 

descisions at intersections. An illustration of the road geometry defined in our 

simulated environment map as well as an image of our track is shown in figures 

34 and 35 respectively. 

  

Figure 34. The roads geometry defined in CARLA simulator. 
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 The final challenge we faced, that the trained ERFNet on CityScapes’ 

alone lacked consistency on our track, as it classified regions outside our track as 

“road”, which is not wrong, but it doesn’t meet our purpose. So, we had to fine-

tune it using data captured from our track. In addition, we faced some processing 

time issues due to the size of the original ERFNet, and due to our simpler binary 

segmentation task, we managed to use an optimized version of ERFNet called 

ERFNet-Fast, which is much smaller than the original one, that fits our purpose 

perfectly. The full ERFNet-Fast architecture is illustrated in detail in table 4. 

 To fine-tune ERFNet-Fast, we needed much data from our track, covering 

several weather, daytime, shadow, and lighting conditions, which is not easy to 

collect. Therefore, we collected and labeled 600 unique frames, afterwards, we 

Figure 35. An image of the road we designed, according to the geometry of CARLA simlator’s maps relative 

to our physical prototype’s size. 



CHAPTER 3. METHADOLOGY 

62 

 

 

 

augmented them to reach 14,000 frames, using various augmentation techniques 

like changing brightness, contrast, channel order, and blur randomly, as well as 

adding sun flare, artificial shadows, and random objects. A sample of our 

augmented dataset is shown in figure 36. 

Layer Type Out Channels Out Resolution 

1 Downsampler block 16 100 x 44 

2-6 5 x Non-bt-1D 16 100 x 44 

7 Downsampler block 64 50 x 22 

8 Non-bt-1D (dilated 2) 64 50 x 22 

9 Non-bt-1D (dilated 4) 64 50 x 22 

10 Non-bt-1D (dilated 8) 64 50 x 22 

11 Non-bt-1D (dilated 16) 64 50 x 22 

12 Deconvolution 16 100 x 44 

13-14 2 x Non-bt-1D 16 100 x 44 

15 Deconvolution 2 200 x 88 

Table 4 
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Figure 36. An original image from our track on top, followed by 20 different randomly augmented images. 
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Chapter 4 

Physical Setup 

Overview 

As explained in earlier chapters, the objective is to utilize state-of-the-art 

deep learning algorithms on a hardware embedded platform to model a self-

driving vehicle. Here is an overview of the hardware system used is shown in 

figure 37.

Figure 37. Our physical prototype. 
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Main Computing Platform  

This project uses the NVIDIA Jetson TX2 Developer Kit [39], depicted in 

figure 38, which exposes the hardware capabilities and interfaces of the Jetson 

TX2 AI supercomputer on a module. It is proved to be a fast, most power-

efficient embedded AI computing device by the time this thesis is published. 

Moreover, it is compatible with several deep learning frameworks, computer 

vision, GPU computing, multimedia processing, and others. So, it was a suitable 

embedded platform to deploy our deep learning algorithms. 

The Jetson TX2 is pre-flashed with a Linux environment and includes 

support for many common APIs. Many important libraries are easy to install and 

use like CUDA Toolkit for Ubuntu and Linux for Tegra (L4T), OpenCV [40], 

TensorRT and CuDNN [41]. 

Figure 38. NVIDIA Jetson TX2. 
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Main Vehicle Components  

The main mechanical hardware vehicle platform used is the Traxxas Slash 

2WD RC vehicle [42]. Here is an anatomy of the vehicle as depicted in figure 39. 

The main components on the chassis are: 

 DC Motor.  

 Electronic Speed Controller (ESC). 

 Steering Servo Motor.  

 Battery Cells. 

 Receiver Box. 

 

Figure 39. Our physical prototype chasis. 
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This RC car is mainly used for races, radio-controlled by a Traxxas TQ 2.4 

GHz transmitter. The control signals are sent from the TQ transmitter to the 

receiver box which passes them to both the ESC and the steering servo. The ESC 

is programmed to control the speed of the DC motor and monitor the battery 

voltage in order to provide a smooth control experience.  In order to utilize this 

amazing vehicle platform for our objective, the radio system has been removed 

and both the ESC and the steering servo are connected to a low level embedded 

micro-controller to provide an ease programming capability.  

One main advantage of using this vehicle is the mechanical stability provided 

in its suspension system, front and rear bumper, and the Ackerman steering 

system. 

Layers & Connections 

We have upgraded the vehicle with two layers full of variant components with 

different functionalities. On the base layer, the ESC and the DC Motor are 

powered by a NiMH battery. Meanwhile, an embedded microcontroller is used to 

generate PWM signals to control both the steering servo and the ESC. This 

microcontroller is connected to the Jetson TX2 which is mounted on the first 

layer, alongside with the main power supply source which is an Energizer 

XP20000 Power Pack that provides enough power for Jetson TX2, a USB hub to 

expand the USB ports available on Jetson TX2, the embedded microcontroller, 
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and a USB camera is also mounted and connected to the Jetson as in figure 40. 

The overall process pipeline is summarized as follows: 

1. The camera captures a frame infront of the vehicle. 

2. The Jetson TX2 processes the input frame and outputs its corresponding 

predictions. 

3. The predictions are converted to control signals, then passed to the 

microcontroller. 

4. The microcontroller generates the corresponding PWM signals to control 

both the steering servo and the ESC. 

5. The ESC outputs the corresponding electrical signals to control the speed 

of the DC motor.  

Figure 40. The interconnections and intercommunication on our physical system. 
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Power Management 

For the NVIDIA Jetson TX2 Developer Kit to run AI models efficiently, it 

was powered by the 19V 3A outlet of the power pack mentioned before. The 

Jetson TX2 Kit consumes around 60W at full CPU/GPU utilization, and the 

system is shipped with a 19V 4.74A power supply. The power pack also provides 

USB hub with 5V 2A and the PWM microcontroller with 5V 1A.   

Firmware 

The low-level microcontroller is programmed to provide both the ESC and 

the steering servo with the required PWM signals upon receiving the prediction 

signals from the Jetson TX2. This firmware provides an abstraction and ease of 

high-level control encoded in discrete numbers which are mapped to different 

PWM control signals. The encoded numbers are then used in communication with 

Jetson TX2 to be encapsulated in other abstraction layers in the main software 

application layer. 

Wireless Control & Observation 

As explained previously, the stock radio system has been removed from 

the vehicle. But in order for the live debugging process to be more robust and 

efficient, a wireless connection has been set up on the Jetson TX2 to provide live 

feedback on the vehicle readings during run-time. A wireless connection hosted 
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on a remote server utilizes the Virtual Network Computing (VNC), which is a 

connection system that allows you to access the target device remotely. So, a 

VNC server has been set up on the Jetson TX2. Meanwhile, a command or an 

observation station is connected remotely to the server, observing and analyzing 

the scene alongside with different readings and control actions as depicted in 

Figure 41.

Figure 41. A screen capture from our remote workstation, with complete access to our physical prototype 

readings and views. 
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Chapter 5 

Experiments and Results 

Simulation Benchmark 

 To prove our end-to-end approach effictiveness, as well as testing our 

driving policies, we  used CARLA simulator’s experiment suites, that offer 

several trips with gradual increasing difficulty, to unit test each task the driving 

policy should perform. In this subsection, we benchmarked the original driving 

policy, trained on raw RGB simulated frames. Our evaluating metric is the 

success rate, which is the number of successful trips to the total number of 

defined trips. We compared our results over 50 trips to that of CoIL in both towns 

1 and 2, in ordinary weather conditions, using the same experiment suite they 

used, as shown in table 5. 

Moreover, we were able to benchmark our model over 100 trips in town 1, 

and surprisingly achieved a success rate of 85.85%, over a total distance of 22.4 

km. Also, it was able to achieve  a success rate of 84.42% over 190 different 

trips, in 2 different weather conditions, in town 1, covering a distance of 41 k
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Environment 
IoU 

Maximum Minimum Average 

CityScapes 0.95 0.46 0.89 

CARLA 0.91 0.51 0.76 
Table 6. Maximum, minimum, and average IoU values of our perception module on CityScapes’ and CARLA 

test sets. 

Semantic Segmentation Evaluation 

 The most common metric used in semantic segmentation literature is the 

intersection over union (IoU). IoU meausre allows us to evaluate how similar our 

predicted labels to the ground truth.  

 We managed to measure the IoU over two datasets extracted from 

CARLA simulator, and CityScapes. The maximum, minimum, and average IoU 

values we achieved at the end of the training phase are illustrated in table 6. 

  

Model Success Rate 

 Town 1 Town 2 

CoIL Command Input 78% 52% 

CoIL Branched 88% 64% 

Ours Branched 94% 73% 
Table 5. Results in the simulated environment. We compare the presented method to baseline approaches, 

according to the success rate. 
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Physical Benchmark 

 On our track, by design, it is capable of benchcmarking our driving policy 

in all kinds of tasks it should perform, as mentioned before. We ran several testing 

sessions in various weather conditions and daytimes. The final results we reached 

over 10 successive testing sessions are illustrated in detail in table 7. Moreover, 

the higher level command that should be provided by a higher level planner, was 

provided manually through a remote controller. 

Task Success Rate 

Straight Roads 100% 

Left Turns 90% 

Right Turns 60% 

Approaching an in Intersection 

Taking a Left Exit 
60% 

Approaching an in Intersection 

Taking a Right Exit 
40% 

Approaching an in Intersection 

Taking a Straight Exit 
100% 

Table 7. The success rate achieved by our physical prototype on 10 successive testing sessions. 
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Chapter 6 

Conclusion 

 We have tested and evaluated an end-to-end approach trained using 

simulated data, on a a simulated environment, targeting level 5 autonomy, 

achieving a state-of-the-art success rates in different driving sceanrios, without 

any pre of post processing. Moreover, we managed to encapsulate and abstract 

our driving policy through training it on an intermediate domain, that could be 

reached from several domains and environments. We managed to convert our 

real-world environment on our campus to the intermediate domain of ours, and 

successfully transferred our driving policy to our physical prototype. 

 We proved that end-to-end approaches provide implicit feature extraction, 

through inspecting the saliency maps of our simulation driving policy. Although 

end-to-end approaches, given enough data, could provide an extraordinary 

solution to several complex tasks, but its main drawback that we have no control 

on the features it relies on, making it extremely hard to debug and inspect in most 

applications. 

 The abstraction we demonstrated, showed minimum fine-tuning on the 

perception module, which is much more easier than fine-tuning the driving policy, 

as the data it needs can be easliy collected and labeled.
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