

Floating Point Unit Design, Verification and

Implementation

A Graduation Project Report Submitted to

the Faculty of Engineering at Cairo University

in Partial Fulfillment of the Requirements for the

Degree of Bachelor of Science

in

Electronics and Communications Engineering

By

Dina Mamdouh Mohamed

Sara Nassef Amin

Kirolos Osama Sobhy

Kerollos Samy Aweda

Lidia Adel Adly

Momen Hussein Mohamed

Under supervision of

Dr. Hassan Mostafa

Faculty of Engineering, Cairo University

Giza, Egypt

July 2021

1

A B S T R A C T

This document describes briefly the flow of design, verification and realization of

floating point unit (FPU) that performs the following operations: addition, subtraction and

multiplication on two 32-bit representations (single precision and decimal representation decimal

format). SIMD instruction is also supported for any of the supported operations with a maximum

number of 16 similar operations per SIMD instruction

The project was distributed among four teams

• Design team

o Developing an algorithm to perform the required operations on the specified

representations using MATLAB

o Implement the algorithm using synthesizable RTL code

o Perform behavioural simulation, synthesis and post synthesis simulation

o Improving the design working frequency using pipelining

• System team

o Developing the host controller interface (HCI) specifications and writing the RTL code

of the top level design

o Building PULPino platform and adding the FPU as a peripheral to it

o Developing an application and testing it using C coding

• Verification team

o Building UVM testing environments to perform functional verification on each

combinational module separately

o Building UVM testing environment to test the clocked integrated modules with the host

controller interface (HCI)

• Physical design team

o Synthesize RTL with DC, generate gate level netlist, check STA, and formal verification

o Place and route generated gate level netlist

o Generating layout for FPU with speed 35.7 MHz

o Generating layout with area equal 154122.5275 µm2

2

Contents
1 Chapter One: Introduction .. 8
2 Chapter Two: Floating point representation .. 9

2.1 Floating point representations .. 9

2.1.1 Binary interchange format encoding ... 9

2.1.2 Decimal interchange representation: ... 10

2.1.3 Special cases ... 13

2.1.4 Exceptions ... 14

2.1.5 Rounding ... 14

3 Chapter Three: RTL design .. 15
3.1 High Level Design ... 15

3.1.1 Decimal-32 representation – Decimal format ... 15

3.1.2 Decimal-32 representation – Binary format ... 19

3.1.3 Single precision ... 21

3.2 Register Transfer Level (Verilog) .. 23

3.2.1 Decimal-32 representation – Decimal format ... 23

3.2.2 Single precision ... 32

3.2.3 Frequency of the design .. 41

4 Chapter four: System ... 43
4.1 HCI (Host Contrller Interface) specification ... 43

4.1.1 Abbreviations .. 43

4.1.2 Memory-mapped FPU Host Controller Registers... 43

4.1.3 FPU Command register ... 43

4.1.4 FPU Status register ... 45

4.1.5 Operands A & B and Output registers: ... 47

4.1.6 Interrupt signal: ... 47

4.2 Top level design ... 48

4.2.1 Design without SIMD support .. 48

4.2.2 Design with SIMD support ... 51

4.2.3 Top level simulations .. 52

4.3 RISC-V .. 57

4.3.1 RISC-V features .. 57

4.3.2 RISC-V processors.. 57

4.4 PULPino ... 59

4.4.1 Features ... 59

4.4.2 PULPino Architecture ... 59

4.4.3 Memory map ... 60

3

4.4.4 PULPino environment .. 60

4.5 FPU-RISC V Integration.. 63

4.5.1 Integration methods .. 63

4.5.2 Integrating the FPU with RISC-V via a Bridge .. 64

4.6 FPU application and testing ... 66

4.6.1 FPU application .. 66

4.6.2 FPU testing.. 69

5 Chapter five: Verification .. 72
5.1 Design under test specifications ... 72

5.2 Work flow .. 72

5.3 Verification environments ... 72

5.3.1 Decimal representation testing environment .. 73

5.3.2 Single precision representation testing environment .. 82

5.3.3 The integrated environment .. 87

5.4 Testing ranges distribution ... 91

5.4.1 Single precision representation ... 91

5.4.2 Decimal encoding representation .. 92

5.5 Bugs ... 93
6 Chapter Six: Synthesis and Formal Verification .. 95

6.1 Synthesis .. 95

6.1.1 Flow Chart of the Synthesis Process ... 96

6.1.2 Setting the Libraries .. 96

6.1.3 Reading in the Design ... 97

6.1.4 Optimization Constrains ... 97

6.1.5 Compiling the Design ... 99

6.1.6 Report Analysis ... 100

6.1.7 Design challenges ... 103

6.2 Formal Verification .. 104

6.2.1 Basic Definitions:.. 104

7 Chapter Seven: Physical Design, Placement and Routing Stages 106
7.1 Basic Physical Design Flow Using IC Compiler ... 106

7.2 Floorplanning ... 108

7.3 Placement ... 108

7.4 Clock Tree Synthesis (CTS) .. 110

7.5 Routing ... 112
8 Projects Code Links ... 114

Integrated FPU RTL code .. 114

System code ... 114

Testing environment link on EDA playground .. 114
9 Bibliography ... 115

4

List of Figures

Figure 1: Binary format .. 9

Figure 2: Decimal format .. 11

Figure 3: Addition MATLAB results – Decimal format .. 16

Figure 4: Subtraction MATLAB results – Decimal format .. 17

Figure 5: Mantissa calculation in MATLAB .. 18

Figure 6: Multiplication MATLAB results – Decimal format.. 18

Figure 7: Addition MATLAB result - Binary format ... 19

Figure 8: Subtraction MATLAB results - Binary format ... 20

Figure 9: Multiplication MATLAB results – Binary format .. 21

Figure 10: Addition MATLAB result - Single precision .. 22

Figure 11: Multiplication MATLAB result - Single precision ... 22

Figure 12: architecture of decimal adder .. 24

Figure 13: simulation result - decimal adder .. 25

Figure 14: synthesis result - decimal adder... 25

Figure 15: minimum clock allowed - decimal adder .. 25

Figure 16: Architecture of subtraction in decimal format .. 27

Figure 17: Behavioral simulation result - Decimal subtraction .. 28

Figure 18: Area utilization - Decimal subttraction ... 28

Figure 19: Timing report - Decimal subtraction ... 28

Figure 20: Architecture of Multiplication in decimal representation - Decimal format 30

Figure 21: Behavioral simulation result - Decimal multiplication ... 31

Figure 22: Area utilization - Decimal mutiplication ... 31

Figure 23: Timing report - Decimal mutiplication ... 31

Figure 24: Architecture of addition in Single precision .. 33

Figure 25: Behavioral simulation result – addition Single precision ... 34

Figure 26: Area utilization – addition Single precision .. 34

Figure 27: Timing report - addition Single precision ... 34

Figure 28: Architecture of Subtractor in Single precision .. 37

Figure 29: Behavioral simulation result – subtraction Single precision 37

Figure 30: Area utilization – subtraction Single precision ... 37

Figure 31: Timing report - Subtraction Single precision .. 37

Figure 32: Architecture of multiplication in Single precision .. 39

Figure 33: Behavioral simulation result – addition Single precision ... 40

Figure 34: Area utilization – addition Single precision .. 40

Figure 35: Timing report - addition Single precision ... 40

Figure 36: Critical path of decimal multiplication .. 41

Figure 37: Timing report - After pipelining .. 41

Figure 38: Architecture of the decimal multiplication after pipelining .. 42

Figure 39: Top level block diagram without SIMD .. 48

Figure 40: HCI connections .. 49

Figure 41: SIMD connections ... 51

Figure 42: Single instruction simulation (A) .. 52

Figure 43: Single instruction simulation (B) .. 53

Figure 44: FPU reset bit simulation .. 54

Figure 45: FPU enable bit simulation ... 54

file:///C:/Users/adel/Downloads/GP2021.docx%23_Toc77804677

5

Figure 46: FPU interrupt enable bit simulation .. 55

Figure 47: SIMD instruction simulation (A) .. 55

Figure 48: SIMD instruction simulation (B) ... 56

Figure 49: SIMD instruction simulation (C) ... 56

Figure 50: PULPino block diagram .. 59

Figure 51: PULPino memory map .. 60

Figure 52:Commands for making Modelsim work ... 61

Figure 53: Script for installing and making Cmake .. 62

Figure 54: Script for running hello world example .. 62

Figure 55: Output of hello world example .. 63

Figure 56: Pulpino memory map after replacement of I2C by FPU ... 64

Figure 57: apb_fpu_bridge input/output signals ... 64

Figure 58: FPU_Single_Instruction header .. 66

Figure 59: FPU_Single_Instruction output ... 67

Figure 60: FPU_SIMD_Instruction header ... 67

Figure 61: FPU_SIMD_Instruction output ... 68

Figure 62: compare header .. 68

Figure 63:FPU_get_status header ... 69

Figure 64: Integration test cases ... 70

Figure 65: Single instruction operation/representation test case .. 70

Figure 66: Single instruction flags test case ... 71

Figure 67: SIMD instruction test case .. 71

Figure 68: Test cases output ... 71

Figure 69: Decimal representation testing environment ... 73

Figure 70: DE function ("random") .. 74

Figure 71: DE function ("gen_num") ... 74

Figure 72: DE function ("dec") ... 75

Figure 73: DE generating random transactions .. 75

Figure 74: DE driver run phase ... 76

Figure 75: DE task ("send_op") .. 77

Figure 76: DE BFM task("write_to_monitor") ... 77

Figure 77: DE command monitor function ("write_to_monitor") .. 77

Figure 78: DE result monitor function ("write_to_monitor") ... 78

Figure 79: DE function ("predict_result") for decimal addition ... 79

Figure 80: DE overflow condition .. 79

Figure 81: DE underflow condition and special case ... 80

Figure 82: DE rounding according to 9th digit ... 80

Figure 83: DE result check algorithm ... 81

Figure 84: DE env ("connect_phase") function .. 81

Figure 85: DE top module... 82

Figure 86: Single precision representation testing environment ... 82

Figure 87: SP task ("body") of ("random_sequence") .. 83

Figure 88: SP driver (“run_phase”) .. 84

Figure 89: SP function ("predict_result") ... 84

Figure 90: SP predicted overflow flag .. 85

Figure 91: SP predicted underflow flag .. 85

file:///C:/Users/adel/Downloads/GP2021.docx%23_Toc77804745

6

Figure 92: SP predicted inexact flag ... 86

Figure 93: SP env connect phase .. 86

Figure 94: SP class base_teste .. 86

Figure 95: SP ("random_test") class ... 87

Figure 96: integrated sequence_item data members ... 88

Figure 97: integrated sequence_item control signals .. 88

Figure 98: integrated environment BFM data members ... 89

Figure 99: writing operands to the BFM ... 89

Figure 100: DE predicted result .. 90

Figure 101: SP predicted result ... 91

Figure 102: Single precision ranges .. 92

Figure 103: Single precision constraints ... 92

Figure 104: decimal encoding representation constraints ... 93

Figure 105: Design Flow Block Diagram ... 95

Figure 106: Synthesis process flow chart. .. 96

Figure 107: Part of Timing report example .. 101

Figure 108: Path Slack histogram ... 102

Figure 109: Area Report example ... 102

Figure 110: Summary of QoR Report ... 103

Figure 111: Unmatched Points.. 105

Figure 112: Verification Report .. 105

Figure 113: Basic Physical Design Flow .. 106

Figure 114: Floorplan and power rings Placement of FPU .. 109

Figure 115: Zoomed in view of power rings and floorplanning placement 110

Figure 116:Balancing of Clock Skews ... 111

Figure 117:Handling Insertion Delay ... 111

Figure 118: Layout after CTS ... 111

Figure 119: Zoomed in view after CTS .. 112

Figure 120: Summary of final area ... 112

Figure 121: Final Layout of FPU .. 113

file:///C:/Users/adel/Downloads/GP2021.docx%23_Toc77804769

7

List of Tables

Table 1: comparison between different precisions in Binary representation 10

Table 2: encoding of the combinational field ... 11

Table 3: encoding of the trailing field ... 12

Table 4: comparison between different precisions in Decimal representation-decimal format ... 12

Table 5: Special cases in single precision ... 13

Table 6: Special cases in Decimal representation ... 13

Table 7: Exceptions... 14

Table 8: Memory-mapped FPU Host Controller Registers .. 43

Table 9: FPU Command register .. 45

Table 10: Register (0x110) ... 46

Table 11: Register (0x114) ... 46

Table 12: Register (0x118) ... 46

Table 13: Register (0x11C) ... 47

Table 14: Modified operation block function ... 49

Table 15: Peripherals of SweRVolf, PULPino and PULPissimo ... 58

Table 16: APB used signals description ... 65

Table 17: FPU signals description .. 65

Table 18: BUGS .. 94

Table 19: Floorplanning Parameters ... 108

8

1 CHAPTER ONE: INTRODUCTION

A floating-point unit (FPU) is a part of a computer system specially designed to carry out

operations on floating-point numbers. Typical operations are addition, subtraction,

multiplication, division, and square root.

The advantage of floating-point representation over fixed- point representation is that it

can support a much wider dynamic range (the largest and smallest numbers that can be

represented). The floating-point format needs slightly more storage (to encode the position of the

radix point), floating-point numbers achieve their greater range at the expense of slightly less

precision. Floating Point numbers has more flexibility than Fixed-point numbers which has

limited or no flexibility. The internal representations of data in floating-point hardware are more

exact than in fixed-point, ensuring greater accuracy in the results.

It is also important to consider fixed and floating-point formats in the context of precision

– the size of the gaps between numbers. Every time a Digital signal processor (DSP) generates a

new number via a mathematical calculation, that number must be rounded to the nearest value

that can be stored via the format in use. Rounding and/or truncating numbers during signal

processing naturally yields quantization error or ‘noise’ - the deviation between actual analog

values and quantized digital values. Since the gaps between adjacent numbers can be much

larger with fixed-point processing when compared to floating-point processing, round-off error

can be much more pronounced. As such, floating-point processing yields much greater precision

than fixed-point processing, distinguishing floating-point processors as the ideal DSP when

computational accuracy is a critical requirement.

The applications of using the floating-point format can be readily seen by contrasting the

data set requirements of video and audio applications. Floating Point units are used in high speed

objects recognition system and also in high performance computer systems as well as embedded

systems and mobile applications. In medical image recognition, greater accuracy supports the

many levels of signal input from light, x-rays, ultrasound and other sources that must be defined

and processed to create output images with useful diagnostic information. By contrast with these

applications, the enormous communications market is better served by floating-point devices.

FPUs execute dedicated trigonometric calculations used extensively in real-time applications

such as motor control, power management, and communications data management. The graphics

processing units (GPUs) today perform most arithmetic operations in the programmable

processor cores using IEEE 754-compatible single precision 32-bit floating-point operations,

newer GPUs such as the Tesla T10P also support IEEE 754 64-bit double-precision operations in

hardware.

The designed floating-point unit (FPU) supports two representations of floating-point

numbers according to IEEE754-2019 standard which are binary32 and decimal representation-

decimal format, the following arithmetic operations are supported for each of the two

representations, addition, subtraction and multiplication between operand A and operand B.

SIMD instruction is also supported for any of the supported operations with a maximum number

of 16 similar operations per SIMD instruction.

9

2 CHAPTER TWO: FLOATING POINT REPRESENTATION

2.1 Floating point representations

Floating point format according to IEEE754 standard-2019 is a way of representing real numbers

with a string of digits. It maps the infinite range of real number by a finite subset with limited

precision. A floating point number can be characterized by the following:

• Sign: the polarity of the number, either positive (+), or negative (-).

• Radix: the base number for scaling, usually two (binary), or ten (decimal).

• Exponent range: the interval of the maximum and minimum power of the radix.

• Significand: also called Precision or Mantissa, it is a fixed number of significant digits in base

format.

In general any floating point number is represented with the following equation:

 (−𝟏) 𝒔𝒊𝒈𝒏 × 𝒔𝒊𝒈𝒏𝒊𝒇𝒊𝒄𝒂𝒏𝒅 × 𝒓𝒂𝒅𝒊𝒙 𝒆𝒙𝒑𝒐𝒏𝒆𝒏𝒕

2.1.1 Binary interchange format encoding

Each floating-point number has just one encoding in a binary interchange format. To make the

encoding unique, the value of the significand m is maximized by decreasing e until either e =

emin or m ≥ 1. After this process is done, if e =e min and 0<m<1, the floating-point number is

subnormal. Subnormal numbers (and zero) are encoded with a reserved biased exponent value.

Representations of floating-point data in the binary interchange formats are uniquely encoded in

k bits in the following three fields ordered (1):

a) 1-bit sign S.

b) w-bit biased exponent, E = e + bias.

c) (t = p − 1)-bit trailing significand field digit string, T = d1 d2…dp−1; the leading bit of the

significand.

d0, is implicitly encoded in the biased exponent E.

Figure 1: Binary format

To put a number in one of the binary representation the number must be transformed to binary so

it can be written as for example:

111001 → 1.11001 ∗ 25

So e = 5, m = 11001 and s = 0.

10

Comparison between the same representations with different number of bits:

Parameter Binary16 Binary32 Binary64 Binary128

Storage width in bits k 16 32 64 128

Precision in bits p 11 24 53 113

Maximum exponent emax 15 127 1023 16383

Bias E 15 127 1023 16383

Sign bit 1 1 1 1

Exponent width in bits w 5 8 11 15

Significant field width 10 23 52 64

Table 1: comparison between different precisions in Binary representation

2.1.2 Decimal interchange representation:

2.1.2.1 The Need for Decimal Floating Point Arithmetic:

Although binary based computers dominate the world, decimal computations can't be ignored.

Decimal numeration system is essential for many applications. Databases belong to 51

commercial and financial organizations were surveyed and investigated, these databases include

many financial applications such as banking, billing, inventory control, financial analysis, taxes,

and retail sales. There were more than 456,420 columns which contained numeric data and were

investigated to extract statistic information. This survey reported that 55% were decimal, and

that further 43.7% were integer types which could have been stored as decimal numbers. The

results of these applications are required to be accurate and rounded correctly to be committed by

human manual calculations and law.

For binary based computers, decimal numbers will be converted to/from binary numbers.

Decimal numbers may not be converted exactly, due to the lack of binary system accuracy and

finite precision hardware. Most of fraction numbers are not converted to binary numbers

properly, let the decimal number X, to convert this decimal number to binary number it will be X

that requires infinite number of bits to be represented exactly in binary which is not available so

this number will be approximated, the stored value will be X, so any operation using this number

will produce inaccurate results although the arithmetic operation is correct. The decimal to/from

binary conversion is implemented using software programs with high delays.

In addition to the accuracy problem there is another problem caused by binary arithmetic is the

removal of trailing fraction zeroes. For example, binary system can't distinguish between 1.5 and

1.50 because of the normalization nature of binary system. The trailing fraction zeros are

essential in the calculation, they are very important for physics measurement for example if it is

reported that, the mass of a body is 10.7kg versus 10.700kg, the two measures are not the same

as the first one is accurate for 0.1 kg but the second one is accurate for 0.001kg. Hence binary

arithmetic units can't be used directly for financial application and decimal arithmetic operations

as they produce results not compatible with law and human requirements (2).

11

2.1.2.2 Decimal interchange format:

Representations of floating-point data in the decimal interchange formats are encoded in k bits in

the following three fields, whose detailed layouts and canonical (preferred) encodings are

described below.

 a) 1-bit sign S.

b) A w+5 bit combination field G encoding classification and, if the encoded datum is a finite

number, the exponent q and four significand bits (1 or 3 of which are implied). The biased

exponent E is a w+2 bit quantity q+bias, where the value of the first two bits of the biased

exponent taken together is either 0, 1, or 2.

 c) A t-bit trailing significand field T that contains J ×10 bits and contains the bulk of the

significand. When this field is combined with the leading significand bits from the combination

field, the format encodes a total of p = 3×J+1 decimal digits (1).

Figure 2: Decimal format

Decimal interchange format contains two ways of encoding they are decimal encoding and

binary encoding.

2.1.2.2.1 Decimal interchange decimal encoding

The encoding of the combination field is done using the following table depending on the most

significant bit in the mantissa.

COMBINATION FIELD
M4 M3 M2 M1 M0 First 2 bits

of E

MSD of the mantissa Range of the MSD

0 0 a b C 00 0abc MSD <= 7

0 1 a b C 01 0abc MSD <= 7

1 0 a b C 10 0abc MSD <= 7

1 1 0 0 C 00 100c 8 <= MSD <= 9

1 1 0 1 C 01 100c 8 <= MSD <= 9

1 1 1 0 C 10 100c 8 <= MSD <= 9

Table 2: encoding of the combinational field

• If number is infinity, then M4 M3 M2 M1 M0 = 11110

• If the input is NAN, then M4 M3 M2 M1 M0 = 11111

12

Trailing significand field
Each three digit in the mantissa are encoded as in the following table:

b9 b8 b7 b6 b5 b4 b3 b2 b1 b0 d2 d1 d0 Values encoded

a b c d e f 0 g H I 0abc 0def 0ghi (0-7)(0-7)(0-7)

a b c d e f 1 0 0 I 0abc 0def 100i (0-7)(0-7)(8-9)

a b c g h f 1 0 L I 0abc 100f 0ghi (0-7)(8-9)(0-7)

g h c d e f 1 1 0 I 100c 0def 0ghi (8-9)(0-7)(0-7)

g h c 0 0 f 1 1 1 I 100c 100f 0ghi (8-9)(8-9)(0-7)

d e c 0 1 f 1 1 1 I 100c 0def 100i (8-9)(0-7)(8-9)

a b c 1 0 f 1 1 1 I 0abc 100f 100i (0-7)(8-9)(8-9)

x x c 1 1 f 1 1 1 I 100c 100f 100i (8-9)(8-9)(8-9)

Table 3: encoding of the trailing field

Comparison between decimal representation decimal formats with different number of bits:

Parameter Binary32 Binary64 Binary128

Storage width in bits k 32 64 128

Precision in digits p 7 16 34

Maximum exponent emax 96 384 6144

Minimum exponent emin -95 -383 -6143

Bias E 101 398 6176

Sign bit 1 1 1

Combination field in bits 5 5 5

Exponent continuation field in bits 6 8 12

Trailing significand field in bits 20 50 110

Table 4: comparison between different precisions in Decimal representation-decimal format

To put a number in decimal 32 representation decimal format for example:

If the number =1324.25 * 105

1324.25 ∗ 105 → 132425.∗ 103

Then the most significant digit =1 will be included in the combination field as in table2

The exponent =3+bias=104→ 01101000

So the combination field and the exponent will be: 01-001-101000

The trailing field will be as in table3:011-010-0-100-010-101-0-000

S = 0

So the number will be written by putting the three parts together as:

0 01-001-101000 011-010-0-100-010-101-0-000

13

2.1.2.2.2 Decimal interchange binary encodings:

If the binary encoding is used for the significand, then:

• if G0 G1 is 00, 01, or 10, then E is made up of the bits G0 to Gw+1, and the binary

encoding of the significand C is obtained by prefixing the last 3 bits of G (i.e., Gw+2 Gw+3

Gw+4) to T.

• If G0 G1 is 11 and G2 G3 is 00, 01 or 10, then E is made up of the bits G2 to Gw+3, and the

binary encoding of the significand C is obtained by prefixing 100Gw+4 to T (1).

For example if we have a number=1.245678 ∗ 1010

Then it can be written as 1245678.∗ 104
So E = 4+101→0110 1001

Trailing field=1 0011 0000 0001 1110 1110

The length of trailing field = 21 which is less than 24 then this is the first case:

So the combination field will be = 01101001 001

 The trailing field will be = 0011 0000 0001 1110 1110

The sign bit =0

So the number will be written as: 0 01101001-001 00110000000111101110

2.1.3 Special cases

For single precision representation

Single-Format Bit Pattern Value

0<e<255 (−1)𝑠 ∗ 2𝑒−127 ∗ 1. 𝑡 (normal numbers)

e=0; t≠0 (at least one bit in t is non-zero) (−1)𝑠 ∗ 2𝑒−127 ∗ 0. 𝑡 (subnormal

numbers)

e=0; t=0 (all bits in t are zero) (−1)𝑠 ∗ 2𝑒−127 ∗ 0.0 (signed zero)

s=0; e=255; t=0 +INF (positive infinity)

s=1; e=255; t=0 -INF (negative infinity)

s=x; e=255; t≠0 (at least one bit in t is non-

zero)

NAN (Not-a-Number)

Table 5: Special cases in single precision

For decimal representation

decimal-Format Bit Pattern Value

e=x, t=0 Signed zero

0_11110_00000…… +INF (positive infinity)

1_11110_00000…… -INF (negative infinity)

s_11111_00000…… QNAN

S_11111_10000…... SNAN

Table 6: Special cases in Decimal representation

14

2.1.4 Exceptions

Exceptions are represented in RTL using flags to note that something abnormal happened to the

resulted number

overflow In case the result of addition or multiplication is bigger than the

highest representable number.

underflow In case the result of subtraction or division is lower than the smallest

representable number.

inexact In case rounding was done to the result or in case of underflow or

overflow

Invalid

operation

In case that the operation chosen can’t be done on the inserted inputs.

Table 7: Exceptions

2.1.5 Rounding

Rounding process is very important after each operation, as all operations produce an

intermediate result with infinite precision, so it is required to round this result to finite precision

to be suitable for the destination precision format. IEEE 754-2019 standard defines five rounding

modes for arithmetic operations as follow (1),

• RoundTiesToEven: the absolute result is rounded to nearest number. If tie case occurs

the absolute result is rounded to nearest even value.

• RoundTiesToAway: the absolute result is rounded to nearest number. If tie case occurs

the absolute result is rounded to the larger number.

• RoundTiesToPositive: the result is rounded towards positive infinity (if the final result

sign is positive then the result is rounded up, else the extra digits are truncated).

• RoundTiesToNegative: the result is rounded towards negative infinity (if the final result

sign is negative then the absolute result is rounded away from zero, else the extra digits

are truncated).

• RoundTowardZero: the absolute result is rounded towards zero, (all extra digits are

truncated).

15

3 CHAPTER THREE: RTL DESIGN

3.1 HIGH LEVEL DESIGN

The logic used in performing each operation on numbers represented in decimal-32

representation or on single precision has been simulated using MATLAB codes, then the results

have been tested by comparing them with the results calculated using normal operations in

MATLAB.

3.1.1 Decimal-32 representation – Decimal format

A function has been used to extract sign, exponent, and mantissa from the represented numbers

to be able to perform the required operation, this function returns the most significand bit as sign

bit then it decodes the exponent and the mantissa from the combinational field and trailing

significand bits using Table 2 and Table 3.

3.1.1.1 Addition

To perform the addition operation, the two operands must have the same exponent, so first,

significand alignment is done by comparing the two exponents to determine which operand has

the largest one then calculating the difference between the two exponents and padding the

mantissa of smallest operand from the left with a numbers of zeros equal to four multiplied by

the calculated difference as the radix of the exponent is ten which means that if the difference

equals to one will be equivalent to shifting the mantissa one digit (4 bits), therefore the exponent

of the final result will be equal to the exponent of the largest operand.

Second, each 4 bits of the first operand starting from the right has been added to their

corresponding in the second operand, if the result is greater than or equal to ten then subtract ten

to obtain the corresponding 4 bits of the mantissa of the final results and a carry equals to one

will be added to the addition of the next two digits; otherwise the result was putted directly in the

mantissa.

Third, normalization is needed when the result of adding the 4 most significand bits is greater

than ten; normalization has been done by incrementing the exponent by one and the mantissa

will be equal to the most significand seven digits.

Finally, to check the correctness of this logic, different ranges of real numbers has been used, the

result was calculated by using MATLAB, and by using the previous logic after putting the real

numbers in decimal-32 representations.

As shown in Figure 3 below, the results are approximately equal in both cases.

16

Figure 3: Addition MATLAB results – Decimal format

3.1.1.2 Subtraction

First step, deciding which exponent is the bigger to be the exponent of the final result, then,

padding zeros to the mantissa of the number with the smaller exponent by the difference of the

two exponents.

Second step, is deciding which mantissa is the bigger if there was no difference in the exponent

because we will use the borrow method which needs to subtract the bigger from the smaller to

get a right result, so if the second mantissa was the bigger then the final result is negative .

 Third step, subtracting the bigger mantissa from the smaller one by taking the last 2 digits from

each mantissa an subtract them if their result is negative then we need to add 10 to the result and

borrow one from the digit that is before them and continue this operation on the seven digits.

Finally, the results as shown in Figure 4 have been checked as in addition.

17

Figure 4: Subtraction MATLAB results – Decimal format

3.1.1.3 Multiplication

First, the exponent of the result has been calculated by adding the exponent of the two operands

also, the sign bit has been calculated by xoring the sign bits of the two operands.

Second, the mantissa has been calculated as shown in Figure 5.

Third, the resulted mantissa will be equal to 14 digits, so normalization has been done by taking

the most non-zero digits and then the number of remaining digits will be added to the exponent.

Finally, the results as shown in Figure 6 have been checked as in addition.

18

Figure 5: Mantissa calculation in MATLAB

Figure 6: Multiplication MATLAB results – Decimal format

19

3.1.2 Decimal-32 representation – Binary format

A function has been used to extract sign, exponent and mantissa from the represented number the

same as in decimal format.

3.1.2.1 Addition

Same as in decimal format first, significant alignment has been done by dividing the mantissa of

the smallest operand by ten because the radix of the exponent is ten and the mantissa is

represented in binary format which means two different bases; the number of divisions operation

is equal to the difference between the two exponents.

Second, the mantissa of the two operands after alignment has been added directly as normal

binary addition.

Finally, different ranges of real numbers have been used to check this logic, by comparing the

calculated result with the predicated result as shown in Figure 7.

Figure 7: Addition MATLAB result - Binary format

3.1.2.2 Subtraction

Subtraction in binary format is very easy after making significant alignment, so as explained

before in the addition the way to make significant alignment is using division.

Then after this step we can make a normal binary subtraction between the normalized mantissa

of the two numbers.

Finally, the results as shown in Figure 8 have been checked as before.

20

Figure 8: Subtraction MATLAB results - Binary format

3.1.2.3 Multiplication

First, the exponent has been calculated using binary addition of the exponent of the two operand

and sign has been calculated same as in decimal format.

Second, the mantissa of the two operands have been multiplied together to calculate the resulted

mantissa which will be equal to 48 bits so normalization is required.

To normalize the mantissa, it is required to decide how many digits are presented in the

mantissa; this is done by comparing the mantissa with the largest number composed of 14 digits,

if it is greater than this number, then add seven to the exponent and divide the mantissa by ten

seven times, but if it is smallest than this number, then compare it with the largest number

composed of 13 digits, , if it is greater, then add six to the exponent and divide the mantissa by

ten six times, and if it is smallest complete the comparing process until the mantissa is

normalized to be the most seven non-zeros digits and the numbers of remaining digits in the

mantissa is added to the exponent.

Finally, the results as shown in Figure 9 have been checked as before.

21

Figure 9: Multiplication MATLAB results – Binary format

3.1.3 Single precision

Sign, exponent and mantissa are extracted directly using bit selection in each operation.

3.1.3.1 Addition

First, significand alignment has been done by calculating the difference between the exponents

of the two operands, then shifting the mantissa of the smallest operand with number of zeros

equal to the difference calculated, and the exponent of the final result will be equal to the largest

exponent.

Second, the mantissa of the two operands after the above modification have been binary added

too each other, if there is a carry, then the exponent increased by one and the mantissa will be

equal to the carry followed by the most 23 bits of the resulted mantissa.

Finally, different ranges of real numbers have been used to check this logic, by comparing the

calculated result with the predicated result as shown in Figure 10.

22

Figure 10: Addition MATLAB result - Single precision

3.1.3.2 Multiplication

First, to calculate the exponents of the result add the exponent of the two operands.

Second, binary multiply the mantissa of the two operands, then the resulted mantissa will be 48

bits, if the most significand bit equal to one then add one to exponent and take the most 24 bits of

the resulted mantissa, otherwise normalize the mantissa by decrementing the exponent until

reaching the first one.

Finally, the results as shown in Figure 11 have been checked as before.

Figure 11: Multiplication MATLAB result - Single precision

23

3.2 REGISTER TRANSFER LEVEL (VERILOG)

 This section describes how the high level design is translated to RTL code, in this project two

representations only were chosen for the design phase they are decimal 32 representation

decimal format and single precision representation.

3.2.1 Decimal-32 representation – Decimal format

3.2.1.1 Addition

Addition is done using the architecture in figure 12, each block has its role as described below:

1. Conversion from IEEE-754 to sign, exponent and mantissa:

This block acts as a decoder that decodes the number to extract the sign bit, mantissa

represented as a BCD number that is constructed of 28 bits bus each digit is represented

in four bits and the exponent in an 8 bit bus.

2. Remove leading zeros:

The function of this block is to remove the leading zeros in the entered in the

representation to not to lose precision or digits in the steps of normalization of rounding,

and this is done by checking the number of zeros in the mantissa, subtract this number

from the exponent and remove these zeros from the mantissa.

3. Binary subtractor :

This block is used to determine the exponent of the final result, calculate the difference

between the two exponents to make significand alignment in the next block and send a

signal called greater to indicate which mantissa needs significand alignment.

4. Significand alignment:

This block pads the mantissa of the smallest number by zeros their number equals to the

difference in the exponent but multiplied by four as each zero is represented in four bits

the same as in MATLAB but it keeps the last three removed digits in an 12 bits bus as

guard digit, round digit and sticky bit which is the ORing of all the removed digits from

the significand alignment, the rounding digit will be used in the rounding module.

5. BCD adder:

The BCD adder is constructed of 7-4bits binary adders and if the result of each adder is

greater than nine then we add six to the result and take the least four bits in the final

result and the carry is added in the next adder.

6. Rounding

This module adds one to the mantissa if the rounding digit is greater than five.

7. Normalization:

Normalization is used in case of a carry resulted from the addition which means that the

result in composed of eight digits and that can’t be represented so normalization module

is used to take the most seven digits as a result and add one to the exponent

of the final result. If the exponent of the final result exceeds 192=8’b1100-0000(the max

exponent of the representation) overflow flag and inexact flag are raised.

8. Conversion to IEEE-754 standard

This module takes the final exponent, the sign bit and the mantissa to encode them and

put them in the final representation.

24

Figure 12: architecture of decimal adder

25

Behavioral simulation results:

Synthesis result:

Figure 14: synthesis result - decimal adder

Post place and route results:

Figure 15: minimum clock allowed - decimal adder

Figure 13: simulation result - decimal adder

26

3.2.1.2 Subtraction

Subtraction is done using the architecture in Figure 16; each block has its role as described

below, repeated blocks are explained above:

1. Conversion form IEEE-754 standard to sign, exponent and mantissa.

As described above in addition.

2. Remove leading zeros

As described above in addition.

3. Binary subtractor.

As described above in addition.

4. Significand alignment

The same as in addition but the GRS digits are not extracted from the mantissa; they are a

part of the mantissa because they will enter in the subtraction process so the output of

significand alignment is two buses of fourteen bits.

5. BCD subtractor

This block subtracts the mantissa of the two operands from each other using the ten’s

complement, after making the ten’s complement of the second operand , the mantissa of

the first operand and the ten’s complement of the mantissa of the second operand enter in

the BCD adder the same as in the addition but check the result of the BCD adder if there

is a carry digit then the Result is positive and equal to the digits after the carry digit and if

not then the result is negative and the result is the ten’s complement of the result.

The resulted mantissa is the first 28 bits only of the result as they represent seven digit

and the next twelve bits are taken for the GRS digits.

6. Normalization

 This block removes the leading zeros resulted from the subtraction, enter the GRS digits

instead of these zeros, add zeros to the right of the number to complete the seven digits

and subtract the number of the leading zeros from the exponent of the result. if the

exponent is less than the number of the leading zeros then remove zeros their number

equals to the exponent .

If the resulted mantissa and exponent equal to zero then underflow flag is raised.

7. Rounding

As described above in addition.

8. Conversion to IEEE-754 format

As described above in addition.

27

Figure 16: Architecture of subtraction in decimal format

28

Behavioral simulation results:

Figure 17: Behavioral simulation result - Decimal subtraction

Synthesis result:

Figure 18: Area utilization - Decimal subttraction

Post place and route results:

Figure 19: Timing report - Decimal subtraction

29

3.2.1.3 Multiplication

Multiplication has been done using the architecture shown in Figure 20, each block has its role as

described below

1. Conversion form IEEE-754 standard to sign, exponent and mantissa

As described above in addition.

2. Xor gate

This gate is used to determine the sign of the result.

3. Removing leading zeros

As described above in addition.

4. Binary adder

Add the exponent of the two operands, then subtract the bias to calculate the resulted

exponent, also this block can raise underflow or overflow signal if the sum is greater or

smaller than the available exponent.

5. BCD multiplier

Multiplication process has been done as explained in the MATLAB work but instead of

the “for” loop, use eight different cases to calculate the value of the carry in the next step.

6. Normalization

Switch case has been used to determine the number of digits resulted from the

multiplication operation, then take the first seven non-zeros digits, keep the following

three digits to be used in rounding, and add the number of the remaining digits in the

exponent, also check the underflow cases as sometimes although the addition of the two

exponent is less than available exponent after the normalization the underflow flag can be

lowered.

7. Rounding

If the round digit is greater than five than add one to the mantissa and raise the inexact

flag, then check if overflow has occurred.

8. Conversion to IEEE-754 format

As described above in addition.

30

Figure 20: Architecture of Multiplication in decimal representation - Decimal format

31

Behavioral simulation results:
 Figure 21 shows an underflow case, a normal case, an overflow case, an invalid operation case

when one of the two operands equal infinity.

Figure 21: Behavioral simulation result - Decimal multiplication

Synthesis result:

Figure 22: Area utilization - Decimal mutiplication

Post place and route results:

Figure 23: Timing report - Decimal mutiplication

32

3.2.2 Single precision

3.2.2.1 Addition

Addition is performed using the architecture shown in Figure 24; the role of each block is

described below:

1. Conversion from IEEE-754 to sign, exponent and mantissa

This block has been used to extract the sign, exponent, and mantissa from the represented

numbers using bit selection, and then concatenate the implicit bit (1 in case of normal

numbers and 0 in case of subnormal numbers).

2. Binary subtractor

This block compare the two operands, set the exponent of the final result to the largest

exponent, calculate the difference between the two exponent, also it has a signal greater

indicate which operand is greater.

3. Significand alignment

This block shift the mantissa of the smallest operand recognized using greater signal,

number of shifts equal to the signal difference received from binary subtractor in case of

two normal numbers and equal to (difference – 1) in case of normal and subnormal

numbers, also it keeps the shifted bits to be used in rounding, the last two shifted bits in

the guard and round bits respectively, and the or-ing of the remaining shifted bits in the

sticky bit.

4. Binary adder

This block adds the mantissa of the two operands.

5. Normalization

This block receives the sum of the two mantissas and checks if there is a carry, then

increments the exponent and shifts the resulted mantissa, the shifted bit goes to the guard

bit, guard bit to round bit, and sticky bit is equal to the or-ing between the round bit and

the sticky bit.

6. Rounding

This block checks whether the guard bit and last bit in the mantissa are equal to one, or

the guard bit, round bit and sticky bit are equal to one, if one of the two cases exist then

increment the mantissa by one and raise inexact flag, and finally checks if there exist an

overflow.

7. Conversion to IEEE-754 format

This block takes the sign of the first operand and the final result of the exponent and the

mantissa, and then puts the result in single precision representation formats.

33

Figure 24: Architecture of addition in Single precision

34

Behavioral simulation results:

Figure 25: Behavioral simulation result – addition Single precision

Synthesis result:

Figure 26: Area utilization – addition Single precision

Post place and route results:

Figure 27: Timing report - addition Single precision

35

3.2.2.2 Subtraction

Subtraction is done using the architecture in Figure 28; each block has its role as described

below, repeated blocks are explained above:

1. Conversion from IEEE-754 to sign, exponent and mantissa

As described above in addition.

2. Binary subtractor

As described above in addition

3. Significand alignment

Same as in addition but it keeps the GRS bits in the shifted mantissa because they will

enter in the subtraction process.

4. Binary subtractor

This block subtract the two normalized mantissa with their GRS bits using two’s

complement, after making the two’2 complement to the second mantissa a normal binary

addition is done and if there is a carry bit then the result is positive else then the result is

negative and equals to the two’2 complement of the output of the adder.

5. Normalization

This block receives the result of subtraction and removes all the leading zeros resulted

from the subtraction and take the GRS bits instead of these leading zeros inside the bits

that can be represented only if the exponent of the result is bigger than the number of

leading zeros so we can subtract their number from the exponent to normalize the number

and if not remove a number of leading zeros equal the (exponent -1) and assign the

exponent to be equal zero so the number is now a subnormal number.

If the resulted mantissa and exponent after normalization equal zero then raise the

underflow flag.

6. Rounding

As described above in addition.

7. Conversion to IEEE-754 format

As described above in addition.

36

37

Figure 28: Architecture of Subtractor in Single precision

Behavioral simulation results:

Figure 29: Behavioral simulation result – subtraction Single precision

Synthesis result:

Figure 30: Area utilization – subtraction Single precision

Post place and route results:

Figure 31: Timing report - Subtraction Single precision

38

3.2.2.3 Multiplication

Multiplication is performed using the architecture shown in Figure 32; the role of each block is

described below:

1. Conversion form IEEE-754 standard to sign, exponent and mantissa

As described above in addition.

2. Xor gate

This gate is used to determine the sign of the result.

3. Binary adder

This block calculates the result exponent by adding the exponent of the two operands,

and then subtracts the bias from the sum, also it can raise the underflow or overflow

signal is the result is greater or smaller than the available exponent.

4. Binary multiplier

This block multiplies the mantissa of the two operands.

5. Normalization

First, using a switch case this block determine the state of the result according to the

numbers of leading zeros, assigns the mantissa to be the first 24 bits starting from the first

one from the left, and assigns the following two bits to be guard and round bit

respectively and the or-ing of the remaining bits to be sticky bit.

Second, in each state check the underflow signal if it is raised, then decides whether the

underflow can be solved by representing the number as a subnormal number or not and if

the underflow signal isn’t raised, then treats the number normally the subtracting the

number of leading zeros from the exponent.

Finally, check if there is an overflow occurs or not

6. Rounding

As described above in addition.

7. Conversion to IEEE-754 format

As described above in addition.

39

Figure 32: Architecture of multiplication in Single precision

40

Behavioral simulation results:

Figure 33: Behavioral simulation result – addition Single precision

Synthesis result:

Figure 34: Area utilization – addition Single precision

Post place and route results:

Figure 35: Timing report - addition Single precision

41

3.2.3 Frequency of the design

After designing the six modules a high level module is created to integrate the six modules

together, the whole design can work with the frequency of the slowest path that exists in the

decimal multiplication as seen in Figure 36 it exists in the path where the BCD multiplier exists.

So the design can work with the frequency of the critical path that is equal to 13.8 MHz, so

pipelining is used To Increase the frequency of the whole design .

Pipelining is done by dividing the BCD multiplier to two parts as seen in Figure 38, now the

design can work with frequency 25.8MHz which is the frequency of the critical path in the

decimal subtractor.

Figure 36: Critical path of decimal multiplication

Post place and route results:

Figure 37: Timing report - After pipelining

42

Figure 38: Architecture of the decimal multiplication after pipelining

43

4 CHAPTER FOUR: SYSTEM

4.1 HCI (HOST CONTRLLER INTERFACE) SPECIFICATION

4.1.1 Abbreviations

• Reserved: These registers/bits are reserved and should be set to zero

• RO-Read Only: If a register/bit is read only, this means that only the FPU can write

into it, writes by the software have no effect and reads by the FPU return zeros.

• WO-Write Only: If a register/bit is write only, this means that only the software can

write into it, writes by the FPU have no effect and reads by the software return zeros.

• R/W-Read/Write: If a register/bit is read/write, this means that both the software and

the FPU can write into it and read from it. Note that individual bits in R/W registers

may be RO or WO.

• Single operation instruction: instruction where the SIMD of the control bit of the

FPU command register is set to zero.

• SIMD instruction: instruction where the SIMD of the control bit of the FPU

command register is set to one, SIMD is the single instruction, multiple data.

4.1.2 Memory-mapped FPU Host Controller Registers

Configuration

offset

Register Set Number of registers Register

Access

000 FPU Command register 1 R/W

0x004-0x00C Reserved 3 --

0x010-0x04C Operand A 16 WO

0x050-0x08C Operand B 16 WO

0x090-0x10C Reserved 32 --

0x110-0x11C FPU Status registers 4 R/W

0x120-0x12C Reserved 4 --

0x130-0x16C Output 16 RO

0x170-0x17C Reserved 4 --

Table 8: Memory-mapped FPU Host Controller Registers

4.1.3 FPU Command register

Bit Description

22-31 Reserved

18-21 Number of SIMD operations – WO.

• Default 0000b (1 operation). This field identifies the number of SIMD

instruction operations, the FPU checks this field if it’s a SIMD instruction.

44

• The FPU can carry out a maximum of 16 similar operations (value = 1111b)

at each SIMD instruction.

17 SIMD – WO.

• This control bit is used by the software to tell the FPU whether this

instruction is a single operation instruction or a SIMD instruction, if the

software sets this bit to one then it’s a SIMD instruction else if it sets it to

zero then this is a single operation instruction.

13-16 Reserved

11-12 Operation – WO.

• Default 00b.This field identifies which operation will be performed.

• Values mean:

o 00b Addition

o 01b Subtraction

o 10b Multiplication

o 11b Reserved

7-10 Reserved

5-6 Floating-point format – WO.

• Default 00b.This field identifies which floating-point format is to be used.

• Values mean:

o 00b Binary32 (Single-precision)

o 01b Reserved

o 10b Decimal representation – Decimal format

o 11b Reserved

4 Reserved

3 Interrupt Enable – WO.

• This control bit is set to one by the software to tell the FPU to issue an

interrupt by setting the interrupt signal to one when it finishes an operation

which is reset to zero when the software raises the clear status bit of the FPU

Status register (register 0x110-bit 1) to one.

• In case this control bit is set to zero, the interrupt signal is masked (i.e. no

interrupt signal is issued by the FPU when it finishes an operation).

2 Doorbell – R/W.

• This control bit is set to one by software to tell the FPU that there is a new

operation.

• When the FPU starts the operation, it sets it to zero.

1 FPU Enable – WO.

• This control bit is used by software to enable the FPU.

• The FPU executes the operations as long as this bit is one. When the

software sets this bit to zero, the FPU completes the current operation and

then halts until the software sets this bit to one again.

0

FPU Reset – R/W.

• This control bit is used by software to reset the FPU.

• When software writes a one to this bit, the FPU terminates any operation in

progress.

• This bit is set to zero by the FPU when the reset process is complete.

45

Software cannot terminate the reset process early by writing a zero to this

register.

Table 9: FPU Command register

4.1.4 FPU Status register

4.1.4.1 Register (0x110)

Bit Description

7-31 Reserved

6 Inexact flag – RO.

• Default 0b. This control bit is set to one by the FPU when an operation

delivers a numerical result that signal no other exception and its rounded

result differs from what would have been computed were both exponent

range and precision unbounded.

• More details in IEEE754-2019 standard section 7.6

5 Underflow flag – RO.

• Default 0b. This control bit is set to one by the FPU when a tiny non-zero

result is detected.

• More details in IEEE754-2019 standard section 7.5

4 Overflow flag – RO.

• Default 0b. This control bit is set to one by the FPU if and only if the

destination format’s largest finite number is exceeded in magnitude by what

would have been the rounded floating-point result were the exponent range

unbounded.

• More details in IEEE754-2019 standard section 7.4

3 Division by zero flag– RO.

• Reserved and set to zero as the current FPU doesn’t support division or

logarithmic operations.

• More details in IEEE754-2019 standard section 7.3

2 Invalid operation flag – RO.

• Default 0b. This control bit is set to one by the FPU if and only if there is no

usefully definable result in the cases where the operands are invalid for the

operation to be performed.

• More details in IEEE754-2019 standard section 7.2

1 Clear status– WO.

• This control bit is set to one by the software after either receiving an

interrupt signal in case the interrupt enable bit of the FPU Command register

(bit 3) is set to one or after the software checks the status bit of the FPU

Status register (register 0x110-bit 0) to find it set to one, the software sets

this bit to one to tell the FPU to reset the status bit of the FPU Status register

(register 0x110-bit 0) to zero.

0

 Status– RO.

• This control bit has a default value of zero, it is set to one by the FPU when

it terminates an operation and is reset to zero when the software raises the

46

clear status bit of the FPU Status register (register 0x110-bit 1) to one.

Table 10: Register (0x110)
Note: The five flags (bits 2 -6) in this register are the output flags in case of a single operation

instruction, in case of a SIMD instruction they are the output flags of the first SIMD instruction

operation.

4.1.4.2 Register (0x114)

Bit Description

31 Reserved

16-30 SIMD Division by zero flags– RO.

• Reserved and set to zero as the current FPU doesn’t support division or

logarithmic operations.

15 Reserved

0-14

 SIMD Invalid operation flags – RO.

• Each of these 15 bits have a default value of 0b, in case of a SIMD

instruction, they are the invalid operation output flags, as explained for bit 1

in FPU status register (0x110), of the second to the 16𝑡ℎ SIMD instruction

operations in order.

Table 11: Register (0x114)

4.1.4.3 Register (0x118)

Bit Description

31 Reserved

16-30 SIMD Underflow flags– RO.

• Each of these 15 bits have a default value of 0b, in case of a SIMD

instruction, they are the underflow output flags, as explained for bit 4 in FPU

status register (0x110), of the of the second to the 16𝑡ℎ SIMD instruction

operations in order.

15 Reserved

0-14

 SIMD Overflow flags– RO.

• Each of these 15 bits have a default value of 0b, in case of a SIMD

instruction, they are the overflow output flags, as explained for bit 3 in FPU

status register (0x110), of the of the second to the 16𝑡ℎ SIMD instruction

operations in order.

Table 12: Register (0x118)

4.1.4.4 Register (0x11C)

Bit Description

15-31 Reserved

0-14

 SIMD Inexact flags– RO.

• Each of these 15 bits have a default value of 0b, in case of a SIMD

47

instruction, they are the inexact output flags, as explained for bit 5 in FPU

status register (0x110), of the of the second to the 16𝑡ℎ SIMD instructions

operations in order.
Table 13: Register (0x11C)

4.1.5 Operands A & B and Output registers:

Each operand has 16 registers and so does the output, the first register of each operand is used in

single operations and the result is written in the first output register, the different operations are

carried out as follows:

• Addition: 𝑜𝑢𝑡𝑝𝑢𝑡(0𝑥130) = 𝐴(0𝑥010) + 𝐵(0𝑥050)

• Subtraction: 𝑜𝑢𝑡𝑝𝑢𝑡(0𝑥130) = 𝐴(0𝑥010) − 𝐵(0𝑥050)

• Multiplication: 𝑜𝑢𝑡𝑝𝑢𝑡(0𝑥130) = 𝐴(0𝑥010) × 𝐵(0𝑥050)

In case of SIMD instructions, the Number of SIMD operations field of the FPU command

register determines how many similar operations are carried out which also determines the

number of registers of each operand and the output that is to be used, operations are carried out

on the registers of each operand and the output in order, to illustrate how this works with a

simple example, given that the operation is addition and the number of SIMD operations is three,

the addition SIMD operations are carried out as follows:

𝑜𝑢𝑡𝑝𝑢𝑡(0𝑥130) = 𝐴(0𝑥010) + 𝐵(0𝑥050)
𝑜𝑢𝑡𝑝𝑢𝑡(0𝑥134) = 𝐴(0𝑥014) + 𝐵(0𝑥054)
𝑜𝑢𝑡𝑝𝑢𝑡(0𝑥138) = 𝐴(0𝑥018) + 𝐵(0𝑥058)

4.1.6 Interrupt signal:

This signal has a default value of zero, it is set to one by the FPU when the interrupt enable bit of

the FPU Command register (bit 3) is set to one and the FPU terminates an operation and is reset

to zero when the software raises the clear status bit of the FPU Status register (register 0x110-bit

1) to one.

48

4.2 TOP LEVEL DESIGN

4.2.1 Design without SIMD support

Figure 39: Top level block diagram without SIMD

HCI:

This block represents the interface between the software from one side and the FPU blocks from

the other side, from the software side it only sends and receives 32 bits data with certain

addresses, from the FPU blocks’ side control signals and status signals are sent and received as

well as operands and the FPU output as shown in Figure 40.The HCI block extracts the control

signals that are sent to the FPU blocks from the data sent from the software as well as uses the

status signals to update some bits in the data sent t the software. The HCI block contains some

registers which are FPU Command register, Operand A 0x010 register, Operand B 0x050

register, FPU Status register 0x110 and a dataout register, it also contains a multiplexer and a

demultiplexer to read from and write into these registers.

49

Figure 40: HCI connections

Modified operation:

This block uses three inputs which are the operation and the sign bits (bit number 31) of the two

operands to determine the modified operation as shown in Table 14.

Operation Sign bits of the operands Modified operation

Adiition Same sign Addition

Different signs Subtraction

Subtaction Same sign Subtraction

Different signs Addition

Multiplicaioon - Multiplication
Table 14: Modified operation block function

Enable decoder:

This block uses the modified operation together with the representation to enable only one of the

input registers to the different CLBs (combinational logic blocks) when there is a new single

instruction or new SIMD data. In the SIMD case, the enable decoder operates with each new data

because even though the operation and representation don’t change, the signs of the operands

change with different data which changes the modified operation and therefore the enable of the

registers changes.

50

Input registers:

There are six input registers each connected to one of the CLBs, they register and output the

operands to the CLBs, they input new operands when enabled by the enable decoder, when the

FPU reset bit is set to one they reset all operands to zero and when enabled they output a signal

to the output register of the same CLB to read the outputs and flags after one clock cycle.

CLBs (Combinational Logic Blocks):

The six CLBs are:

1. Decimal Adder

2. Decimal Subtractor

3. Decimal Multiplier

4. Single precision Adder

5. Single precision Subtractor

6. Single precision Multiplier

Input registers:

There are six output registers each connected to one of the CLBs, they register and output the

outputs and flags of the CLBs, they input new outputs and flags when enabled by the signal from

the input register connected to the same CLB and they also output a ready signal that is set to one

whetn it receives the new outputs and flags.

Output multiplexer:

The output multiplexer inputs the outputs, flags and ready signals of the six output registers and

outputs the desired according to the modified operation and representation.

Other logic:

The doorbell_r signal is fed back to the HCI to reset the Doorbell bit of the command register to

zero indicating that the operands hane been inserted to the CLB.

The rst_r signal is fed back to the HCI to reset the FPU Reset bit of the command register to zero

in case it was set to one indicating that the input and output registers have all been reset.

51

4.2.2 Design with SIMD support

In order to support SIMD instructions some blocks were added and some modifications were

made as explained here.

Added blocks are:

• SIMD block

• Operands multiplexer

• Interrupt multiplexer

• Software dataout multiplexer

SIMD:

This block is the main block in supporting SIMD, it interfaces with the software to directly read

the operands and register them, it also interfaces with the HCI through some control signals and

with other FPU blocks as shown in Figure 41, it contains 16 registers for each of the operands,

for the outputs and the flags, it also contains a finite state machine, counters ,multiplexers and

demultiplexers that control the operands that are outputted and the outputs and flags that are

read, it also achieves pipelining.

Figure 41: SIMD connections

52

Operands multiplexer:

This block chooses which operands are to be sent to the input registers either those from the HCI

or the SIMD blocks according to whether it’s a SIMD operation (SIMD bit of the command

register is set to one) or not.

Interrupt multiplexer:

This block’s name is misleading, its function is to choose which output, falgs and ready signal

are to be sent to the HCI either those from the output multiplexer in case of single instruction or

the ouput and flags of the first register in the SIMD block and the simd_ready signal in case of

SIMD instruction.

Software dataout multiplexer:

This block interfaces with the software to output the sw_dataoout instead of the HCI, according

to the required register data if it’s the command register, status register 0x110 or output 0x130,

it’s read from the HCI output else for the other outputs and status registers, it’s read from the

SIMD output as their registers are located there.

4.2.3 Top level simulations

4.2.3.1 Single instruction:

 Normal operation without interrupt enable:

Figure 42: Single instruction simulation (A)

53

Figure 43: Single instruction simulation (B)

As shown in Figure 42 and Figure 43:

• First, the software sends operand a (0x10) then operand b (0x50), by observing when

fpu_operand_a and fpu_operand_b values change it’s clear that reading each takes one

clock cycle.

• Then, the software sends the FPU command register (0x0) and the fpu_doorbell_w signal

is set to 1

• The fpu_doorbell_r signal, output of the input register which is active low, is set to 0 after

another clock cycle (this clock cycle is needed to register the inputs of the different

representations/operations)

• The fpu_ready signal is set to 1 after another clock cycle (CLB delay).

• After another clock cycle the status bit of the FPU command register (0X110) is set to

one and fpu_output is ready which means that the operation takes 3 clock cycles from the

negative edge of the sw_write_en signal after reading the FPU command register until the

status bit is set to one.

• After that the clear status bit of the FPU command register (0X110) is set to one by the

software.

• The fpu_ready signal is reset to zero after one clock cycle.

• After another clock cycle the status bit is reset to zero and in the following clock cycle

the clear bit is reset to zero as well, both are reset to zero by the FPU not the software.

• The output (0X130) is then read but it can be read at any clock cycle afte the status bit is

set to one.

54

FPU reset bit:

Figure 44: FPU reset bit simulation

Figure 44 shows the case where the FPU reset bit of FPU command register (0x0) is set to one,

the operands registered in the input register are set to zero after two clock cycles and the outputs

registered in the output register are set to zero after another clock cycle, the software can read the

FPU command register (0x0) to find that this signal is reset to 0 after 3 clock cycles from the

negative edge of the sw_write_en signal.

FPU enable bit:

Figure 45: FPU enable bit simulation

Figure 45 shows the case where the FPU enable bit is kept zero, the fpu_doorbell_w signal is not

set to one and therefore no operation is carried out, trying to read the output, it is zero due to a

preceding reset.

55

FPU interrupt enable bit:

Figure 46: FPU interrupt enable bit simulation

Figure 46 shows the case where the FPU interrupt enable bit is set to one, the fpu_interrupt

signal rises to one with the status bit of the FPU status register (0x110) and drops to zero again

when the clear status bit is set to one.

4.2.3.2 SIMD instruction:

Figure 47: SIMD instruction simulation (A)

56

Figure 48: SIMD instruction simulation (B)

Figure 49: SIMD instruction simulation (C)

As shown in Figure 47, Figure 48 and Figure 49:

• First, all the operands are written.

• Then, the FPU command register (0x0) is written by the software with the simd bit set to

one and the number of simd operations bits set to the desired value, here three operations

are carried which means that the number of simd operations bits are set to 4’b0010.

• The operation takes 4(latency)+n-1 (n : number of SIMD operations) clock cycles from

the negative edge of the sw_write_en signal after reading the FPU command register until

the status bit is set to one instead of 3*n

• The outputs and the other status registers (contain flags) can then be read.

57

4.3 RISC-V

The RISC-V is an open-source ISA that was originally developed in the Computer Science

Division of the EECS Department at the University of California, Berkeley.

4.3.1 RISC-V features

• An open-source ISA (Instruction Set Architecture) without the financial burden of

licensing fees

• Simple

o Far smaller than other commercial ISAs

o Clean slate design

• A modular ISA

o Small standard base ISA (I)

o Multiple standard extensions (M A F D G C)

• Designed for Extensibility/Specialization

o Variable-length instruction encoding

o Vast opcode space available for instruction-set extensions

• Stable

o Base and standard extensions are frozen

o Addition via optional extensions, not new versions

• Engineers can choose to go big, small, powerful or lightweight with their designs.

4.3.2 RISC-V processors

A Survey of different implementations of the RISC-V processor was carried out and a

comparison between them was made.

First, some cores were excluded, some examples for reasons for excluding cores are:

• Language (not Verilog or SystemVerilog)

• Not open source (e.g. Andes- Nuclei)

• No debugger (e.g. PicoRV32)

• GitHub Star (e.g. starsea_riscv-0 star)

• License (e.g. RV12)

Then, three SoCs (System on Chips) were chosen SweRVolf, PULPino and PULPissimo.

• SweRVolf

o Core: EH1

• Language: SystemVerilog

• RV32IMC

• On-chip debugger (OpenOCD)

• PULPino and PULPissimo

o Cores:

1. Zero-risky

• Language: SystemVerilog

58

• RV32IMC

• Dubugger: RISC-V debug specification 0.13

2. RI5CY

• Language: SystemVerilog

• RV32IM[F]C 32-bit

• Optional full support for RV32F Single Precision Floating Point

Extensions (Floating-point support in the form of IEEE-754 single

precision)

• Dubugger: RISC-V debug specification 0.13

SweRVolf PULPino PULPissimo

 uDMA Subsystem

UART UART UART

SPI SPI Master SPI Master

I2C I2C

 I2S

 CAMIF

GPIO GPIO GPIO

RISC-V timer Timer Timer

Event/Interrupt Unit Event/Interrupt Unit

FLL FLL

System controller SoC Control SoC Control

DMI Debug Port Debug Unit

 SoC Event Generator

 Advanced Timer

Table 15: Peripherals of SweRVolf, PULPino and PULPissimo

Work was done on the three SoCs trying to build and run simulation examples on them and then

trying to modify these examples to later build our own application, only SweRVolf and PULPino

were successfully built and a simulation example was run on each, PULPino example was easily

modified by changing in C codes unlike SweRVolf, therefore PULPino was chosen for

integration.

59

4.4 PULPino

PULPino is an open-source single-core microcontroller system, based on 32-bit RISC-V cores

developed at ETH Zurich. PULPino is configurable to use either the RISCY or the zero-riscy

core.

4.4.1 Features

• Processor (Open-source RISC-V ISA processor).

• Ultra-low-power and ultra-low-area constraints.

Most of PULPino blocks are gated by clock (to turn off any useless block during

operations so it can save more power).

The peripherals connected to APB bus that is less power consumption than AXI bus.

• RI5CY or zero-riscy core.

The two cores have the same external interfaces and are thus plug-compatible.

The difference between RI5CY and zero-riscy is that the RI5CY core support more ALU

ISA extensions and complex operations than zero-riscy.

We are working with the RI5CY core which is enabled by default.

• Contains a broad set of peripherals: I2C SPI UART

• Available for FPGA (Synthesizable written in System Verilog)

4.4.2 PULPino Architecture

Figure 50: PULPino block diagram

The SoC uses a AXI as its main interconnect with a bridge to APB, both the AXI and the APB

buses feature 32 bit wide data channel, all peripherals in PULPino are connected to the APB bus

except the SPI slave which is a very special peripheral and not intended to be used from the core

itself. (3)

The core uses a very simple data and instruction interface to talk to data and instruction

memories directly.

60

4.4.3 Memory map

Figure 51: PULPino memory map

4.4.4 PULPino environment

In order to build Pulpino platform, Ubuntu 18.04 Linux VM image on VMware was used.

4.4.4.1 Pulpino requirements

1. ModelSim in reasonably recent version

Modelsim-Intel FPGA Lite (Free) Edition for Linux (release: 19.1) was used, but

since Intel only supports Red Hat-based distros like CentOS Linux, at first Modelsim

didn’t work, but by looking for some hacks and scripting some edits and changes as

shown in Figure 52, Modelsim worked on the used Ubuntu and the installation path to the

bin was added to the ".bashrc" path. (4)

61

Figure 52:Commands for making Modelsim work

2. python2 >= 2.6

The installed version is 2.7.17 in addition to installing python yaml.

3. CMake >= 2.8.0

Used script is shown in Figure 53 and then the bin was added to the ".bashrc" path

62

Figure 53: Script for installing and making Cmake

4. riscv-toolchain

ri5cy_gnu_toolchain was used, errors arose at first while running make, by

searching I reached a way that by making some changes in some files and rerunning

make, it finished successfully and the installation path to the bin was added to the

".bashrc" path. (5)

Changes to build ri5cy_gnu_toolchain:

o git clone https://github.com/pulp-platform/ri5cy_gnu_toolchain.git

o cd ri5cy_gnu_toolchain

o Run make. It will download some files, encounter an error and stop.

o cd build/src/newlib-gcc/gcc/cp

o Open cfns.gperf in your favorite text editor and remove lines below the first

comment (starting at line 19, inclusive) up until the line containing "%}" without

the quotation marks. After that's done, right after the comment ends with "*/"

without quotation marks, the next line should be "%}" without quotation marks.

o gperf -o -C -E -k '1-6,$' -j1 -D -N libc_name_p -L C++ --output-file cfns.h

cfns.gperf

o Open except.c and on line 1043 add "Perfect_Hash::" without quotation marks

exactly in front of "libc_name_p" without quotation marks.

o cd back to ri5cy_gnu_toolchain and run make. It should not encounter any errors

and should finish successfully.

4.4.4.2 Running simulations

 To run simulation of hello world example in Modelsim console, the script in

Figure 54 were used and the output is shown in Figure 55

Figure 54: Script for running hello world example

63

Figure 55: Output of hello world example

4.5 FPU-RISC V INTEGRATION

4.5.1 Integration methods

There were three methods to integrate the FPU with the RISC-V:

1. To connect it through the UART as an intermediate interface between both RISC-V and

FPU.

2. To replace one of the peripherals with the FPU to be directly connected to the APB.

3. To connect the FPU directly to the APB as a new peripheral.

The first method is not preferred because it requires unnecessary time and more complex

applications to handle the data between two different peripherals

The second method was the one used, the I2C peripheral is the one chosen to be replaced since

• The size of its memory suits that specified in the HCI memory map specification as

shown in Table 8, Pulpino memory map after this replacement is shown in Figure 56.

• The FPU registers slightly resemble those specified in the HCI specifications.

The third method is more practical as in practical one would want to extend or add new

peripherals to existing ones rather than replace an exsisting one but since it needs more

modifications in PULPino files than the second case and there wouldn’t be a difference in

functionality, the second case was chosen yet this case is a better practice.

64

Figure 56: Pulpino memory map after replacement of I2C by FPU

4.5.2 Integrating the FPU with RISC-V via a Bridge

An apb_fpu_bridge was designed to integrate the FPU with the APB since the FPU have

input/output signals different from that of the APB and a different address register size, the

bridge is a combinational block written in Verilog and it interfaces the APB from the left and the

HCI of the FPU from the right, the input and output signals on both sides are shown in Figure 57

Figure 57: apb_fpu_bridge input/output signals

65

4.5.2.1 Bridge-APB interface

The used APB signals’ description according to the AMBA APB Protocol (Version: 2.0) are

shown in Table 16: APB used signals descriptionTable 16 (6)

Signal Desciption

PCLK Clock. The rising edge of PCLK times all transfers on the APB.

PRESETn Reset. The APB reset signal is active LOW. This signal is normally

connected directly to the system bus reset signal.

PADDR Address. This is the APB address bus. It can be up to 32 bits wide (here

12 bits wide) and is driven by the peripheral bus bridge unit

PWDATA Write data. This bus is driven by the peripheral bus bridge unit during

write cycles when PWRITE is HIGH. This bus can be up to 32 bits

wide (here 32 bits wide)

PRDATA Read Data. The selected slave drives this bus during read cycles when

PWRITE is LOW. This bus can be up to 32-bits wide (here 32 bits

wide)

PSELx Select. The APB bridge unit generates this signal to each peripheral bus

slave. It indicates that the slave device is selected and that a data

transfer is required. There is a PSELx signal for each slave.

PWRITE Direction. This signal indicates an APB write access when HIGH and

an APB read access when LOW.

PENABLE Enable. This signal indicates the second and subsequent cycles of an

APB transfer

PREADY Ready. The slave uses this signal to extend an APB transfer.

PSLVERR This signal indicates a transfer failure. APB peripherals are not required

to support the PSLVERR pin. This is true for both existing and new

APB peripheral designs. Where a peripheral does not include this pin

then the appropriate input to the APB bridge is tied LOW

Table 16: APB used signals description

4.5.2.2 Bridge-FPU interface

Signal Desciption

Clk Clock

reset_n Asynchronous reset

sw_address Address which is 32 bits wide

sw_datain Write data which is 32 bits wide

sw_dataout Read Data which is 32-bits wide

sw_read_en Read enable one bit which enables a read operation

sw_write_en Write enable one bit which enables a write operation

fpu_interrupt Interrupt

Table 17: FPU signals description

66

4.5.2.3 Bridge-Event unit interface

The fpu_int signal is connected to PULPino lightweight event and interrupt unit.

4.5.2.4 Integration steps

1) Replace I2C rtl files with the FPU and the bridge rtl files.

2) Replace the I2C instantiation by the FPU instantiaton (peripherals.sv).
3) Remove inputs/outputs of the I2C (pulpino_top.sv).
4) Replace I2C rtl files directories in vsim vcompile scripts by those of the FPU

(vcompile_apb_i2c.csh).
5) Compile and load design.

4.6 FPU APPLICATION AND TESTING

4.6.1 FPU application

 The FPU application was written in C programming language, four functions were added to the

I2C.c and I2C.h files which are:

1. FPU_Single_Instruction

2. FPU_SIMD_Instruction

3. Compare

4. FPU_get_status

4.6.1.1 FPU Single Instruction

Figure 58: FPU_Single_Instruction header

Function Inputs:

• Two operands

• Operation

• Representation

Function Outputs:

• FPU output

• Flags

Function code flow:

1. Wait until status bit is set to zero by reading the command register in a loop.

2. Write operands.

3. Write command register

• FPU Enable and Doorbell are set to one, Interrupt enable is set to zero.

• Floating-point format and operation are set according to the floating-point

representation and operation sent.

67

4. Wait until status bit is set to one by reading the command register in a loop.

5. Reset status bit to zero by writing to the command register the same value read fom it (to

not affect the flags as they’ll be read later) but eith the clear bit set to one.

6. Read output.

7. Read flags.

Figure 59: FPU_Single_Instruction output

4.6.1.2 FPU SIMD Instruction

Figure 60: FPU_SIMD_Instruction header

Function Inputs:

• Two arrays for operands

• Operation

• Representation

• Number of SIMD operations

Function Outputs:

• Array of FPU outputs

• Array of flags

Function code flow:

1. Wait until status bit is set to zero by reading the command register in a loop.

2. Write operands in a loop according to number of SIMD operations.

3. Write command register

• FPU Enable and Doorbell are set to one, Interrupt enable is set to zero.

• Floating-point format and operation are set according to the floating-point

representation and operation sent.

• SIMD bit is set to one.

• Number of SIMD operations bits are set according to the required number of

operations.

4. Wait until status bit is set to one by reading the command register in a loop.

68

5. Reset status bit to zero by writing to the command register the same value read fom it (to

not affect the flags as they’ll be read later) but eith the clear bit set to one.

6. Read the four status registers then extract from them the flags of each operarion and

insert them in the array of flags.

7. Read outputs in a loop and insert them in the array of outputs.

Figure 61: FPU_SIMD_Instruction output

4.6.1.3 Compare

Figure 62: compare header

Function Inputs:

• FPU output.

• FPU flags.

• Reference output.

• Reference flags.

Function Outputs:

• Boolean.

Function code:

The output is true if

1. FPU output is equal to Reference output.

2. All FPU flags are equal to Reference flags.

Else it’s false

69

4.6.1.4 FPU get status

Figure 63:FPU_get_status header

This function reads the status register and resurns it’s value, it’s called in the

FPU_Single_Instruction and th FPU_SIMD_Insruction functions.

4.6.2 FPU testing

In order to test the integration of the FPU with the RISC-V core as well as the C functions

developed, a set of data for different operands, operations, representations and the expected

outputs and flags was used, the cases shown in Figure 64 were caried out.

The cases are divided into 2 groups:

1. Cases to test the single instruction function which are futher divided into two sub-groups:

o One to test that the representation and operation are correctly decoded and this

was carried out by inserting the same opeands to all the possible combinations of

the representation and operation (the designed FPU have 6 different cmbinations)

as shown in Figure 65, where each of those combinations have a different

expected output so by comparing the expected outputs with the generated ones,

we can guarantee that the representation and operation are decoded correctly.

o The other to test that the flags are extracted from the status register and read

correctly, four cases were tested one for each case as shown in Figure 66, in the

cases of overflow and underflow two flags are risen in each case, the flag

representing either overflow or underflow in addition to the inexact flag.

2. Cases to test the SIMD instruction function, due to the large number of possibilities of

this instruction and the difficulty of covering all it’s cases by designing specific test

cases, testing of this instruction was done using 16 different operands for each of the 6

different combinations of the operation and representation, then the number of SIMD

operations for each case was looped on to cover all it’s pssible cases, at the first iteration

the first operands are taken, then in the second iteration the first and the second operands

are taken, then in the third one the first three are taken and so on until the last operation

where all the sixteen operands are taken as shown in Figure 67, also the used operands

with each operation and representation were chosen and disttibuted in a way so that

different flags are risen in different locations of the SIMD array with each of the 6

different combinations to check the flags’ decoding.

The outputs of all test cases were zero errors as shown in Figure 68

70

Figure 64: Integration test cases

Figure 65: Single instruction operation/representation test case

71

Figure 66: Single instruction flags test case

Figure 67: SIMD instruction test case

Figure 68: Test cases output

72

5 CHAPTER FIVE: VERIFICATION

In this chapter we’re going to discuss the verification phase in this project, we’re required to

build a testing environment to perform functional verification on the RTL code, firstly we built

separate testing environments for each combinational module then an environment to test the

integrated floating point unit modules with the host controller interface (HCI)

5.1 DESIGN UNDER TEST SPECIFICATIONS

The designed FPU performs 3 operations (Addition, subtraction and multiplication) on two

different 32 bits representations (single precision and decimal format decimal encoding, also the

designed FPU supports single instruction multiple data (SIMD) operations so it can perform the

same operation on different operands up to 16 operands

The output of the FPU has 32-bit result with the same representation of the two input

operands and 4-bits flags where the four flags are:

• Invalid operation: raised when the input operation is not one of the three specified

operations.

• Overflow flag: raised when the result is greater than the maximum representable number.

• Underflow flag: raised when the result is smaller than the maximum representable

number.

• Inexact flag: raised when the result is rounded up.

5.2 WORK FLOW

We started by studying systemVerilog language for verification from the reference

(“SystemVerilog for verification A guide to learning the testbench language features third

edition”) and the UVM basics from (“The UVM Primer An Introduction to the Universal

Verification Methodology by Ray Salemi”). (7) (8)

We have built testing environment for each combinational module then we built the

integrated environment to test the integrated modules with the (HCI).

The three testing environments for the decimal representation are built using UVM

transactions & UVM_TLM ports, while the single precision and the integrated environments

built using sequence_item and UVM_sequencer.

5.3 VERIFICATION ENVIRONMENTS

All the environments are built using UVM methodology which have more features than the

OOP environments and make the testing environment more reusable and editable

The UVM allows us to use

73

• Dynamically-generated objects that allow you to specify tests and test bench

architecture without recompiling

• A hierarchical testbench organization that includes Drivers, Monitors, and Bus

Functional Models

• Transaction-level communication between objects

• Testbench stimulus (UVM Sequences) separated from the testbench structure

5.3.1 Decimal representation testing environment

It’s a UVM transaction based environment

5.3.1.1 Environment architecture

Figure 69: Decimal representation testing environment

5.3.1.2 Environment’s transaction

The transaction is a UVM object that extends the UVM_transaction, Transactions

encapsulate both data and all the operations we can do to that data, In our environment we have

two transactions which are the command transaction and the result transaction

74

5.3.1.2.1 Command transaction

The command transaction class contains four members which are:

• 32-bit (a_rep) for operand(1) represented in the decimal format

• 32-bit (b_rep) for operand(2) represented in the decimal format

• Real (a_dec) for operand(1) in real format

• Real (b_dec) for operand(2) in real format

And it contains two functions which are (“random”) and (“dec”):

Function (“random”)

Figure 70: DE function ("random")

This function is used to randomize the two operands of the transaction, firstly we create an

object of the class “rand_num “, this class contains 3 data members:

• Sign bit which represents the sign of the operand (0= positive number, 1=negative

number)

• Unsigned integer (“C”) which represent combination field of the number

• Integer (“exp”) which represents the exponent of the number

And one function member (“gen_num”), this function return a real number from the class

members by using the formula shown in Figure 71

Figure 71: DE function ("gen_num")

Then these class members are randomized with certain constraints that will be discussed

later, after the randomization in order to store the randomized operands in 32-bit decimal format

we used the function (“represent”) which takes an object of the class “rand_num” as an argument

and return 32-bits in the decimal format, this process is repeated to generate the second operand.

75

Function (“dec”)

Figure 72: DE function ("dec")

This function is used to store the two randomized numbers in the real format in the two

transaction members (“a_dec”) and (“b_dec”) using the function (“decode”) which takes the 32-

bit represented number in decimal format and return the corresponding real value using the

member function (“gen_num”) of class (“rand_num”).

5.3.1.2.2 Result transaction

This transaction is used to store the result and then transmits it from the result monitor to

the scoreboard and its data members are:

• 32-bit (“Result”) which represents the result in the decimal format

• Real (“result_dec”) which represents the corresponding real value of the result

• 4-bit (“flags”) which represents the result flags

And a function (“dec”) which takes the 32-bit represented result as an argument and

return the corresponding real value.

5.3.1.3 Environment’s components description

5.3.1.3.1 Tester

The tester block is responsible for generating the test cases which will propagate through

the environment, the test cases are generated using constrained randomization in the form of

transactions, the tester has a UVM_put_port which takes the data of transaction type to deliver

the test cases to the driver.

The tester generates the UVM command transactions then it calls the function

(“.random”) to randomize the transaction components, then the transaction is decoded using the

function (“.dec”) to have the random operands in real form which is needed to perform further

operations, then the transaction is put in the tester port then this process is repeated to generate

another test case and so on.

Figure 73: DE generating random transactions

76

5.3.1.3.2 Command_f

It’s an UVM analysis FIFO of type transaction which delivers the test cases transactions

from the tester to the driver, the FIFO takes the transaction through its put port in the tester then

it blocks the tester from putting new transactions in the FIFO till the first added transaction is get

by the driver

5.3.1.3.3 Driver

The driver block extends UVM_component and has a UVM_get_port, also we instantiate

a virtual BFM in the driver so it can communicate with the DUT through the BFM

The UVM_get_port is used to get the test cases transactions from the tester through the

FIFO then it calls a built task (“.send_op”) which takes the two operands represented in the 32-

bit decimal format to be sent to the DUT through the BFM, the other task is

(“.write_to_monitor”) which takes two arguments which are the two operands in the real format

to be sent to the command monitor through the BFM

The run phase of the driver is inside a forever loop however the test ends when the loop

used in the tester to generate the test cases finishes because the phase objection is dropped after

generating the test cases and it was the only raised objection in the whole testing environment.

Figure 74: DE driver run phase

5.3.1.3.4 Bus functional model (BFM)

The BFM has two interfaces. On one side is a functional interface that accepts

transactions and on the other side is a pin interface that is connected to the DUT. The

functionality of the BFM is to bridge those two interfaces

In our BFM we have some data members which represent the inputs and outputs of the

design under test:

• 32-bit (“operand1”) models the represented first operand in the decimal format

• 32-bit (“operand2”) models the represented second operand in the decimal format

• 32-bit (“Result”) models the output of the DUT in the decimal format

• 4-bit (“Flags”) models the result flags of the DUT

It also has instances of the command monitor and the result monitor which are used to

send the two operands and the DUT outputs to the scoreboard, and it has two member tasks

(“send_op”) and (“write_to_monitor”).

77

Task (“send_op”)

This task is called in the driver and takes two arguments which are the two operands in

the decimal format representation then they are assigned to the BFM members (“operand1”) and

(“operand2”) which are connected to the DUT, the task has a delay of 10 ns to model the

propagation delay of the operands through the combinational DUT

Figure 75: DE task ("send_op")

Task (“write_to_monitor”)

This task is called in the driver and takes two arguments which are the two operands in

the real format and then they are passed to the command monitor by calling the member function

of the command monitor instance (“write_to_monitor”), the output of the DUT which are the 32-

bit represented result and the 4-bit flags are passed to the result monitor also by calling the

member function of the result monitor instance (“write_to_monitor”).

Figure 76: DE BFM task("write_to_monitor")

5.3.1.3.5 Command monitor

The command monitor block extends the UVM _component, it has a virtual instance of

the BFM and has an analysis port of type (“command _transaction”) called (“cm_port”) which is

used to send the two operands to the scoreboard, In the build phase, this command monitor is

connected to the command monitor instance in the BFM

The command monitor has a member function (“write_to_monitor”) (which is called in

the BFM), the function has two arguments of type real (“a_dec”) and (“b_dec”), firstly we create

an object of (“command_transaction”) then we assign the two arguments to the corresponding

members of the command transaction, then the transaction is sent through the port to the

scoreboard.

Figure 77: DE command monitor function ("write_to_monitor")

78

5.3.1.3.6 Result monitor

The result monitor block extends the UVM _component, it has a virtual instance of the

BFM and has an analysis port of type (“result _transaction”) called (“ap_port”) which is used to

send the result and flags to the scoreboard, In the build phase, this result monitor is connected to

the result monitor instance in the BFM

The result monitor has a member function (“write_to_monitor”) (which is called in the

BFM), the function has two arguments 32-bit (“Result”) and 4-bit (“Flags”), firstly we create an

object of (“result_transaction”) then we assign the two arguments to the corresponding members

of the result transaction, we call the member function of the result transaction (“dec”) to put the

real format of the result in the member of the result transaction (“result_dec”), then the

transaction is sent through the port to the scoreboard.

Figure 78: DE result monitor function ("write_to_monitor")

5.3.1.3.7 Scoreboard

UVM scoreboard is a verification component that contains checkers and verifies the

functionality of a design. It usually receives transaction level objects captured from the interfaces

of a DUT via TLM Analysis Ports.

In our environment the scoreboard extends uvm_subscriber for the result monitor to be

connected to the analysis port of the result monitor and receive the result transaction, it has a

UVM_tlm_analysis_fifo of type command transaction which is connected to the command

monitor analysis port, it has two member functions (“predict_result”) and (“write”)

Function (“predict_result”)

This function has one argument of type command transaction and return result transaction with

the predicted result and flags.

Firstly we create an object of result transaction then we store the predicted real format

value of the result in (“result_dec”) member of the result transaction by carrying out the required

operation on the two operands in real format (“a_dec”) and (“b_dec”) which are members of the

command transaction passed through the argument

The operation applied on the two operands is changed according to the design under test

so that the same environment can be used for the addition, subtraction and multiplication designs

for decimal format representation just by changing the operator in the scoreboard.

79

Figure 79: DE function ("predict_result") for decimal addition

Function (“write”)

This function is called automatically when the result monitor write the data in its analysis

port and it takes one argument of type result transaction (“t”) which have the same data written

by the result monitor in the port.

We create two objects of type command transaction and result transaction (“cmd”),

(“predicted”) then we use the function (“try_get”) to get the data from the FIFO and store it in

the command transaction (“cmd”), this transaction is passed as an argument to the function

(“predict_result”) and return a result transaction which is the predicted result for the given

operands, then the predicted flags are calculated as will be discussed to be compared with the

DUT flags.

To calculate the overflow flag, the predicted result is compared to the maximum

representable numbers (positive or negative), if the result is greater than the maximum positive

number or smaller than the maximum negative number the overflow flag and the inexact flag are

raised, then the predicted flags are compared with the DUT flags and decide whether the test

case pass or fail, without comparing the result as they’re not checked in case of overflow.

Figure 80: DE overflow condition

The minimum representable number is (1 × 10−101) so that if the absolute result is less

than that number, the number will be not representable and the underflow flag will be raised, but

if the exponent is between -95 and -101 it may be underflow or not according to the precision of

the number for example:

80

If the exponent is -96, and the result is 1.23456 × 10−96 so the number will be

representable in the form 123456 × 10−101 but if the number is 1.234567 × 10−96 =
1234567 × 10−102 which is an underflow case, special cases is made for each exponent

between -95 and -101 to calculate the precision of the result and decide if it’s underflow or not.

The inexact flag is risen when there is rounding up in the last digit of the result (the 7th

digit) or if it’s an underflow or overflow case, this approximation is done according to rounding

digit which is the 9th digit of the result, where if this digit is greater than or equal 5 the result is

rounded up otherwise no rounding occur and this is done by the algorithm shown in Figure 82

Figure 82: DE rounding according to 9th digit

There is a special case in the addition and subtraction operations where if the exponent

difference between the two operands is 14 or more so the result will be the larger operand and

the inexact flag will never be raised but this is not applied for the multiplication case

The result is compared by calculating the difference between the predicted result and the

result from the DUT, if this difference is more than a certain threshold (stated due to that the

operation done on real type in the testing environment has more precision of the decimal format

Figure 81: DE underflow condition and special case

81

representation) or the predicted flags aren’t equal the DUT flags the test case is considered a

failure.

Figure 83: DE result check algorithm

5.3.1.3.8 Class (“env”)

The env class extends UVM_env, this class has instances of all the environments

components discussed above which are created in its build phase, then in the connect phase these

components are connected together where the driver and the tester are connected to the ports of

the FIFO (“command_f”), also the command and result monitors are connected to the ports of

the scoreboard, this class is instantiated in (“random_test”) class which extends UVM_test.

Figure 84: DE env ("connect_phase") function

5.3.1.3.9 Top module

In the top module (“env_pkg”) which is a package that include all the environment

components flies, also import the (“UVM_pkg”), then the BFM and the DUT are instantiated and

connected, the BFM is given to (“UVM_config_db”) to be instantiated easier in the other

components, then (“run_test”) function is called with the argument the name of the UVM_test

file (“random_test”) to start the test.

82

Figure 85: DE top module

5.3.2 Single precision representation testing environment

It’s a UVM sequence based environment, this environment has some improvements on the

transaction based environment to make it more reusable as we separate the test case generation

from the environment structure so we could run different sequences on the same environment.

5.3.2.1 Environment’s architecture

Figure 86: Single precision representation testing environment

83

5.3.2.2 Environment’s sequence item

The sequence item class contains six members which are the fields of the single precision

representation for each operand:

• 23-bit (“mantissa_1”) represents the significand of operand(1)

• 8-bit (“exp_1”) represents the exponent of operand(1)

• bit (“sign_1”) represents the sign bit of operand(1)

• 23-bit (“mantissa_2”) represents the significand of operand(2)

• 8-bit (“exp_2”) represents the exponent of operand(2)

• bit (“sign_2”) represents the sign bit of operand(2)

These members will be randomized with certain constraints which will be discussed later.

5.3.2.3 Environment’s components description

The top module, BFM, command monitor and result monitor are almost the same as the

UVM transaction based environment previously discussed.

5.3.2.3.1 Sequence

In our environment this class is called (“random_sequence”) which extends

UVM_sequence of type (“sequence_item”), this sequence contains the testing scenario by

creating a sequence item object and randomize it then send it to the sequencer using the functions

(“start_item”) and (“finish_item”).

Figure 87: SP task ("body") of ("random_sequence")

5.3.2.3.2 Sequencer

The sequencer is automatically deliver the sequence_item from the sequence to the

driver, it has no special functions, so it’s defined in the (“env_pkg”) using (“typedef”) and will

be instantiated in the (“env”) class, the sequencer has a built in port which will be connected to

the driver.

5.3.2.3.3 Driver

The driver class extends UVM_driver of type (“sequence_item”) the UVM_driver has a

built in port called (“seq_item_port”) which will be connected to the sequencer, the driver create

an object of type sequence item to store the data generated by using the function

(“get_next_item”), then sends this data to the BFM using function (“send_op”) and call the

84

function (“write_to_monitore”) which have been discussed previously, the function

(“item_done”) is called after sending the data which declares that the driver is ready to get

another sequence item.

Figure 88: SP driver (“run_phase”)

5.3.2.3.4 Scoreboard

The scoreboard extends UVM_subscriber of type (“result_transaction”) which is the

same class in the decimal encoding environment previously discussed, it has a

(“UVM_tlm_analysis_fifo”) of type sequence item to get the command data from the command

monitor, it also has two function members (“write”) and (“predict_result”).

Function (“predict_result”)

It has one argument of type sequence_item , a result_transaction object is created to store

the predicted result and flags, each operand is converted to short real type using the built in

function (“$bitstoshortreal”) then the operation is carried out and the result is converted back to

the single precision representation using the built in function (“$shortrealtobits”), we are using

the type short real as it’s stored as bits in the form of single precision representation, so it’s

easier to switch between the two formats

The same function is used for all the operations by changing only the operator.

Figure 89: SP function ("predict_result")

Function (“write”)

In this function the predicted flags are calculated then the DUT result and flags are

compared to the predicted to decide whether the test case pass or fail

Since the result is stored in short real type which have the same ranges as the single

precision representation, in the overflow case the result will be infinity which will be represented

85

as all ones in the exponent field and all zeros in the mantissa field

(“32’b1111111100000000000000000000000”)

Figure 90: SP predicted overflow flag

In the underflow case the result is all zeros.

Figure 91: SP predicted underflow flag

To calculate the predicted inexact flag, the operation to get the predicted result is carried

out again but with storing the result in a real data type so that it has a higher precision, then to

decide if rounding occurred or not we get the difference between the mantissa of the predicted

result stored in short real and that stored in real.

In the case of the subnormal number the mantissa of the higher precision needs to be

normalized so that it can be subtracted from the single precision mantissa this normalization is

done by adding the bias of the higher precision (1024) to the exponent of the higher precision

and subtraction the bias of the lower precision format (128), then the mantissa of the higher

precision format is shifted right by the result of the previously described operation then the

mantissa is ready to be subtracted from the single precision mantissa

86

Figure 92: SP predicted inexact flag

5.3.2.3.5 Class (“env”)

In this class all the environment components are instantiated, in its connect phase the

driver is connected directly to the sequencer and the command and result monitor are connected

to the scoreboard as shown in Figure 93

Figure 93: SP env connect phase

5.3.2.3.6 Class (“base_test”)

It’s the base test which extends the UVM_test and then any other test with its sequence

will extends this base test, in this base test an object from the (“env”) and the sequencer classes

are created then this sequencer object is connected to the sequencer inside the env object

Figure 94: SP class base_teste

87

5.3.2.3.7 Class (“random_test”)

This class extends (“base_test”) class ,firstly it creates an object from the (“sequence”)

class then the built_in function start after raise the uvm_phase objection this function takes one

argument which is the sequencer object then the objection is dropped after the test scenario is

done.

Figure 95: SP ("random_test") class

5.3.3 The integrated environment

The integrated environment tests the integrated sequential module which have the FPU (all

6 modules) and the HCI, it also tests the SIMD (Single Instruction Multiple Data) which

performs the same operation on array of data up to 16 entries, the environment is a

sequence_item based environment with the same structure as the single precision environment

previously described

5.3.3.1 Environment sequence_item

 The sequence item of the integrated environment has combined data member from both

single precision sequence item and decimal encoding command transaction, all this members are

in the form of arrays of 16 elements it also has control data members to decide the operation to

be done, the representation and the number of the simd operations, the result transaction data

members are also in the form of arrays.

88

Figure 96: integrated sequence_item data members

Figure 97: integrated sequence_item control signals

5.3.3.2 Environment’s components description

The sequence, sequencer, command and result monitors are almost the same as the single

precision environment described above

5.3.3.2.1 Class (“driver”)

The driver class extends the UVM_driver class, it has an instance from the (“bfm”), in its

run_phase an object of the sequence_item is created to store the test case which is read from the

sequencer, then the test case is put in the right representation according to the (“rep”) bit in the

sequence item, this done in a for loop so that each operation is sent in the case of simd operations

(using concatenation for single precision and function decode for the decimal encoding

representation), then the function (“send_op”) is called given the arguments which are the

represented operands and the control signals, also the function (“write_to_monitor”) is called

with the same arguments

5.3.3.2.2 BFM

The BFM class is connected to the DUT whose input and output data members are shown

in Figure 98

89

Figure 98: integrated environment BFM data members

The inputs and outputs are registered where we can give the address of the required register

through ("sw_address”) and write the data through (“sw_datain”) or read the output from

(“sw_dataout”).

The BFM has 3 tasks which are (“reset”), (“send_op”), (“write_to monitor”), and an initial block

for clock generation

Task (“send_op”)

The operands is sent to the DUT following a certain procedure corresponding to the

specifications of the HCI design, for synchronization we used the negative edge clock in the

environment to write the data on the DUT, then the DUT is sampling the data at the next positive

edge, by this method the testing environment is immune to the clock skew between the clock

generation in the BFM and the DUT and monitoring the result the flow of writing is as follow:

1. The DUT is reset at the start of the testing sequence.

2. The operands are written to registers with reserved addresses.

3. Then the control data (which contains the operation, representation, number of

simd operations and FPU enable) is written to the command register.

Figure 99: writing operands to the BFM

90

Task (“write_to_monitor”)

This task reads the results from the DUT and creates the result transaction that will be

sent by the result monitor to the scoreboard and at the same time the command monitor send to

the scoreboard the corresponding sequence item which includes the test case data

1. Firstly, we wait on the status bit (which is raised when the FPU finish the

required operations)

2. Then the result is read from the output registers

3. Then the flags are read from the flag registers

4. Then the result is send to the result monitor and the command is sent to the

command monitor using the function (“write_to_monitor”)

5. Then the clear bit is raised which makes the DUT ready to accept a new test case

and set the status bit to zero.

5.3.3.2.3 Scoreboard

The scoreboard extends the UVM_subcriber with the type (“result_transaction “), as the

previous testing environments it has two tasks (“predict_result”) and (“write”)

Task (“predict_result”)

The function (“predict_result”) takes one argument of the type (“sequence_item”)

it is used to calculate the predicted result according to the representation and the

operation of the test case:

• In the case of the decimal encoding format (rep bit is zero) the predicted result is

calculated by performing the required operation on the (“a_dec”), (“b_dec”) data

members of the sequence item and the predicted result is stored in the

(“result_dec”) data member of the result transaction.

Figure 100: DE predicted result

• In the case of the single precision format (rep bit is one) the predicted result is

calculated by performing the required operation on the operands after converting

them by using the built-in function (“$bitstoshortreal”) then the result is converted

back to bits by using the built-in function (“$shortrealtobits”)

91

Figure 101: SP predicted result

Task (“write”)

Task write is responsible for reading the result transaction (which contains the result and

flags calculated by the DUT) from the result monitor and calculate the predicted flags is

calculated then the result and flags is compared to decide if the test case will pass or fail

The predicted flags are calculated according to the representation and operation bits in

the sequence item that is read from the command monitor the flags are calculated inside a for

loop that loops on the simd operation number, which perform the same logic as the previous

environments according to the test case representation.

5.4 TESTING RANGES DISTRIBUTION

These ranges distribution is done by applying constraints on the data members to be randomized.

The test is carried out with random seed for each run and each run generates about 200000 test

case in combinational modules and about 20000 test case for the integrated DUT where SIMD is

also randomized which can have upto 16 operation in each test case

5.4.1 Single precision representation

Single precision representation has 32 bits, 1 sign bit, 8-bit exponent, 23-bit mantissa, and

it has 2 categories of numbers normal and subnormal numbers. When the 8 bits of the exponent

are all zeros it means that the number is a subnormal number (its decimal exponent less than -

38),

92

Figure 102: Single precision ranges

Since there are edges between positive and negative subnormal numbers (around zero) and

between subnormal and normal numbers (in both positive and negative cases) and the boundaries

of the range, so the corner cases are near these edges and boundaries, we distributed the weights

of the range to:

1) Large positive normal

2) Small positive normal

3) Large positive subnormal

4) Small positive subnormal

Other than the ordinary cases of the range between these numbers, Same for the negative

numbers.

The cases generated where the randomized operands are different combinations of these

ranges have a higher probability to cross the boundaries.

Figure 103: Single precision constraints

5.4.2 Decimal encoding representation

By the same criteria used in the single precision we divided the entire positive (Same for

the negative) range into 5 parts:

1) Extremely large numbers (with max exponent of the range “90”)

2) Large numbers

3) Extremely small numbers (with min exponent of the range “-101”)

4) Small numbers

5) Ordinary numbers

0

Positive

Subnormal

Negative

Subnormal
Negative Normal Positive Normal

93

Figure 104: decimal encoding representation constraints

5.5 BUGS

MODULE BUGS ACTIONS TAKEN BY

RTL TEAM

CURRENT

STATUS

DECIMAL

ADDER

Incorrect result when one of

the operands has precision of 6

digits

Create a new block to

remove the leading zeros

Fixed

DECIMAL

SUBTRACTOR

predicted result not equal to

calculated at some cases

exponent of the operands)

Use the GRS bits during

normalization

Fixed

Rounding error due to error in

GRS bits

Change the rounding

condition in the file

(“rounding”)

Fixed

Rounding error (when the

exponent of the result is

different from the

Change the length of BCD

subtractor

Fixed

Incorrect rounding and result

when the difference between

the operands is very small

 Open Bug

DECIMAL

MULTIPLIER

Overflow flag is always raised Increase the length of the

variable storing the sum of

the exponent of the two

operands in the file

(“binary adder”)

Fixed

SINGLE

PRECISION

ADDER

No errors

94

SINGLE

PRECISION

SUBTRACTOR

Inexact flag isn’t raised

correctly

Change the length of

binary subtractor

Fixed

Incorrect result and inexact

flag in case of operands with

small difference in exponent

During normalization use

GRS bits, Switch the order

between rounding and

normalization

Fixed

Inexact flag is not raised

correctly in case of subnormal

operands

Handle subnormal

numbers as special case

during normalization

Fixed

Incorrect result when rounding

occur

Remove GRS bits from

the mantissa before

rounding

Fixed

SINGLE

PRECISION

MULTIPLIER

Underflow flag is raised at

subnormal result(exp < −38)

Modifying

(“normalization”) file to

consider the subnormal

numbers as results without

raising the underflow flag

Fixed

Incorrect result when one of

the operands is subnormal

(“exponent addition”)

module handles the case

of multiplication between

normal and subnormal

operands as a special case

Fixed

Overflow flag isn’t raised

correctly

Modifying the overflow

condition

Fixed

INTEGRATED

FPU

Output is always zero at first

add/subtract operation after

reset where operands are not

of the same sign

Take into consideration

the operand’s sign for the

selection of output

multiplexer

Fixed

Status bit isn’t raised in simd

instructions

Modifying (“simd”)

module and including

finite state machine to

control the module

Fixed

Simd operation is t the same

for all the operands as the first

operation regardless the sign

of the other operands

Updating the operation for

each simd operation

depending on the

operand’s sign

Fixed

Flags in the first simd

operation are not correctly

risen

Creating special cases for

small number of simd

operations to directly

connect the flags to the

output

Fixed

Table 18: BUGS

95

6 CHAPTER SIX: SYNTHESIS AND FORMAL

VERIFICATION

Figure 10.1: Design Flow Block Diagram

6.1 Synthesis

When synthesizing any design, we have certain considerations to take. We need to set the

libraries to be used due to allowable fabrication technology and design techniques, and then we

need to analyze our designs and sub-designs. Moreover, we need to define Performance figures

like speed and power optimization constraints according to our needs. Furthermore, we need to

RTL Code

Verification

(Simulation)

Formal

Verification

(RTL vs

Netlist)

RTL

Coding

Placement

and

Routing

Synthesis

Figure 105: Design Flow Block Diagram

96

specify technology constraints like size and space (area). Finally, we need to compile the design

according to the specified constraints, in a top-down or bottom-up strategy, afterwards we obtain

reports about whether the constraints we set were satisfied or not, and the area, speed and power

consumption of our design (9).

6.1.1 Flow Chart of the Synthesis Process

The steps of the synthesis process are done in a sequential manner as seen below in Figure 106.

This sequence may be modified slightly to suit the design process of each designer.

Figure 106: Synthesis process flow chart.

We will refer to the synthesis flow using the Synopsys Design Compiler tool in the following

discussion because that is the tool we use in our practice.

6.1.2 Setting the Libraries

It is vital to define the technology library to which the design will be mapped so that the

synthesis tool knows how to map the design. There are multiple library types, each contains

specific information about the cells and the technology itself, they are as follows (9):

• Target library: contains all the logic cells that should used for mapping during synthesis. In

other words, the tool during synthesis maps a design to the logic cells present in this library.

97

• Link library: contains information on the logic gates in the synthesis technology library. The

tool uses this library solely for reference but does not use the cells present in it for mapping as in

the case of target_library.

In order to specify the Technology library we set both the target library and the link library in our

design to “NangateOpenCellLibrary_ss0p95v125c.db” as it has highest temperature, lowest

voltage and slow-slow process, also notice that link library setting is a list that contains the

technology library as well as an asterisk, which indicates that DC should resolve references by

searching the memory (designs that have been analysed prior to this design) and then if it cannot

find the reference in memory it will look in the technology library. If DC does not find the

reference in either, it looks in the search path. The search_path is just a variable that tells

DC where to look in order to resolve references that have not been found in the link library.

6.1.3 Reading in the Design

After specifying our libraries, we need to allow DC to read in the design. This phase consists of

checking and analyzing the RTL for syntax errors, resolving references, mapping the design to

technology-independent implementation (GTECH) before building the generic logic for the

design. DC offers us with two options for accomplishing this. The read_file technique is the

first, while the analyse and elaborate approach is the second. The analyse command

also stores the result of the translation in the specified design library that maybe used later. So a

design analyzed once need not be analyzed again and can be merely elaborated, thus saving time.

Conversely read command performs the function of analyze and elaborate commands but does

not store the analyzed results, therefore making the process slow by comparison, so we use

analyse and elaborate.

6.1.4 Optimization Constrains

In order to properly optimize our design to give minimum area and highest speed, we must

provide DC with constrains. This involves setting drive characteristics for input ports, setting

loads on input and output ports.

98

6.1.4.1 Clock Characteristics

1. It is important for prelayout phase where clock tree are incompelete to specify

transition time at register clock pins as it might be pessimistic. We can specify this

using command set_clock_transition.

The command set_clock_transition places clock_rise_transition and

clock_fall_transition attribures on the clock_list we take it in our design with “0.1”.

2. set_clock_uncertainity This command can specify either interclock

uncertainty or simple uncertainty (skew characteristics). It has been set with 0.08

from period.

3. The clock network latency is the time it takes a clock signal to propagate from the

clock definition point to a register clock pin. Design Compiler assumes ideal

clocking but specifying clock network latency provides an estimate of the clock tree

for pre-layout, so we used this command set_clock_latency with value 2.

6.1.4.2 Maximum Capacitance

We use the set_max_capacitance command to define the maximum total capacitive

load that an output port can drive. Capacitance is specified in units consistent with

technology library definition.

DC must check that the capacitive load of driven nets and interconnects is less than the

max_capacitance attribute of the driving pin.

6.1.4.3 Speed

DC deals with timing constraints for speed optimization in a very specific way. Generally,

the tool classifies timing paths into 3 categories as follows:

99

o Path category 1: From input to register (this path is constrained according to the

input delay using set_input_delay command) and we set it with 0.4 from

our period.

o Path category 2: From register to register (this path is constrained according to

the clock period, using the create_clock command) and here we set period

with 28𝑛𝑠 as after some iterations of compilation we found it gives positive slack

= 0.26𝑛𝑠.

o Path category 3: From register to output (this path is constrained according to

output delay, using the set_output_delay command) and we set it with 0.4

from our period.

6.1.4.4 Area

In order to constrain the area of the design we use the set_max_area command and

provide DC with the maximum area constraint. Setting max_area attribute to a value of

zero means we want DC to optimize the area to the smallest possible size.

6.1.5 Compiling the Design

The design is mapped onto technology-specific gates at this step, and the design is also optimised

at this time. We ask DC to map and optimise the design based on these limitations and

environment settings after we've defined all of our constraints and environment variables. This is

accomplished on three levels: the architectural, logic, and gate levels. “compile_ultra” is

command that has been used.

DC performs high-level synthesis activities at the architectural level, such as reordering

operators, sharing sub-expressions and resources, and picking other more optimal DesignWare

implementations.

In the logic-level phase, DC is still working on GTECH implementation; here is where DC deals

with the hierarchy in the design.

100

DC works on the netlist created by logic-level synthesis to create a technology-specific

implementation in the gate-level phase. The actual technology-specific mapping, as well as delay

and area optimization (according to restrictions) and any design rule constraint violations are

completed in this step.

For large hierarchical designs consisting of many sub-circuits there are several strategies that we

may use to compile the design, but we use Top-Down Strategy.

Top-Down Strategy

In this strategy, we set the constraints for the top level module only. We read all lower level

modules, but we do not compile them separately. After all the modules have been read, and the

top level constraints have been defined we compile the top level only, and DC infers the

constraints required for lower level modules in order to satisfy the top level constraints, and thus

it maps all modules accordingly.

At first we use compile_ultra -retime -timing_high_effort_script to give

more effort to timing violations then we set_critical_range 2 which specify that next

optimization will be applied to critical path and paths which has till negative slack 2, then we

compile_ultra -incremental to optimize more or paths which may be violated but we

found that there is a hold violation, and to solve it we set_fix_hold [all_clocks] and

then compile_ultra -retime -timing_high_effort_script and

compile_ultra -incremental and it gives good results without violations (10).

6.1.6 Report Analysis

Design Compiler makes it easy for us to generate a range of reports to check the accuracy and

quality of our implementation. The time report, the area report, the quality of outcomes report,

and the constraint report are the most significant reports. We'll go over each of them in detail

below (9).

101

6.1.6.1 Timing Reports

Design Compiler has a built-in static timing analyzer called DesignTime. Static Timing Analysis

can determine if a circuit meets timing constraints without dynamic simulation which is an

advantage when it comes to saving time.

DesignTime works by breaking down our design into a set of timing paths, each has a

startpoint and an endpoint.

Below in Figure 107. Notice that the time units are units consistent with those defines in the

technology library, which is nanosecond in our case.

Figure 107: Part of Timing report example

As shown in following histogram that worst slack is 0.268ns which means that there is no setup

time violation after synthesis.

Individual

Contribution

Incremental

Total

 Path Delay

Maximum

Path

Required

102

Figure 108: Path Slack histogram

6.1.6.2 Area and QoR Reports

This report gives us the total area of the design. It calculates this area by adding the area

attributes of the gates from the technology library. Usually the area units are specified in the

technology library as well, or in an associated document. In our case the area units were µm2.

Figure 109: Area report example shows an example of the area report. Notice that the

interconnect area and the total area are reported as “undefined” because pre-layout we do not

have an idea of interconnect area.

Figure 109: Area Report example

103

Figure 110: Summary of QoR Report

6.1.7 Design challenges

At first hold time violation was “-1.88ns”as we used compile_ultra only. We tried to fix this

violation with:

1. Compile with -only hold time.

2. Specify timing optimization options in PnR script.

3. Opening worst path and insert more buffers in it or use larger driving buffers in it (this

method works but there were large number).

Finally we solve it using specific types of compile as illustrated in section 6.1.5.

104

6.2 FORMAL VERIFICATION

Formal verification is a method to verify a design without running Simulations, thus saving

simulation time. It works by comparing the “implementation” design against a “reference”,

golden model design, that has already been simulated (or proofed by formal verification against a

previous reference design).

6.2.1 Basic Definitions:

• Reference Design: The golden model against which we verify the implementation design

• Implementation Design: The design we want to verify, here it is the synthesized netlist.

• Container: A container is like a “bucket” that carries the design library as well as the

technology library info related to the design in the container. Conventionally, we have

one container for the reference design and one for the implementation design.

• Logic Cones: is a cluster of combinational logic starting from a design object (like:

primary outputs, internal registers, black box input pins and nets having multiple drivers

where at least one driver is a port/black box) and spreading backward to terminate at

certain design object outputs. Formality uses the origin points of logic cones to create

compare points (when a logic cone boils down from multiple termination points to a

single origin point, Formality compares the logic cone at this single origin point).

• Compare Points: The points of origin of logic cones at which formality compares the

entire logic cones between reference and implementation designs.

• Matching Compare Points: finding the analogous logic cones between the reference

and implementation designs. The analogous cones are matched by several techniques,

performed as follows (in this order):

o Exact-name matching

o Name filtering

o Topological equivalence

o Signature analysis

o Compare point matching based on net names

o After compare points are matched, each pair of compare points is verified against

the other for logic equivalence.

105

• Verification: Checking that matched compare point in the implementation design is

logically equivalent to its peer in the reference design.

We used Formality tool by Synopsys and we got 4 unmatched points like in following Figure

111, but after checking with RTL team and system team we found that those 4 bits are redundant

as they will always lead to logic1 or logic 0, and also when we verify design all points passed.

Figure 111: Unmatched Points

Figure 112: Verification Report

106

7 CHAPTER SEVEN: PHYSICAL DESIGN, PLACEMENT

AND ROUTING STAGES

After the completion of the synthesis phase of a design, we can then move on to the next step,

which is placement and routing of the netlist. There are several stages in the placement and

routing (PnR) process.

7.1 BASIC PHYSICAL DESIGN FLOW USING IC COMPILER

The goal of physical design is to convert the synthesized netlist into a GDSII file that is

manufacturable (9). The main steps of PnR flow can be seen in the figure below.

Figure 113: Basic Physical Design Flow

107

• Libraries and Files Used During the Physical Design Process:

1- Logical Libraries
a. Provide timing and functionality information for all standard cells

b. Provide timing information for hard macros

c. Define drive/load design rules:

Max fanout

Max transition

Max/Min capacitance

d. usually the same ones used by Design Compiler during synthesis

e. Are specified with variables:

target_library

link_library

2- Physical Libraries

a. Contain physical information of standard, macro and pad cells, necessary for

placement and routing.

b. Define placement unit tile like Height of placement rows, Minimum, width

resolution, Preferred routing directions and Pitch of routing tracks

c. Are specified with the command:

create_mw_lib –mw_reference_library

3- Technology Files

A technology file is provided by the technology vendor. Technology file is unique

for each technology and contains the information related to metal/vias information

such as

a. Units & precision for electrical units (V, I and power)

b. Define colors and patterns of layers for displays

c. Number & name designations for each metal/vias

d. Physical & electrical characteristics of each metal/via

e. Define design rules such as min. wire width & min. wire to wire spacing

f. Contains ERC rules, Extraction rules, LVS rules

g. Provide parameterized cells for MOS capacitance

h. Create menus and commands

4- RC module files (TLU+)

TLU is a Synopsys specific format which contains the R and C (Resistor and

capacitance) values of nets used for routing .These R and C values will be

required at the time of calculating a net delay which is nothing but product of

these R and C of a net.In our design we use following TLU files :

set tlupmax "$sc_dir/tech/rcxt/FreePDK45_10m_Cmax.tlup"

set tlupmin "$sc_dir/tech/rcxt/FreePDK45_10m_Cmin.tlup"

108

set tech2itf "$sc_dir/tech/rcxt/FreePDK45_10m.map"

7.2 FLOORPLANNING

Floorplan is one the critical & important step in Physical design. Quality of your Chip / Design

implementation depends on how good the floorplan is.

A floorplanning is the process of placing blocks/macros in the chip/core area,

thereby determining the routing areas between them. Also, it determines the size of die and

creates wire tracks for placement of standard cells, creates power ground (PG) connections,

and determines the I/O pin/pad placement.

Parameter Value

Aspect Ratio (AR) 1.0 (square)

Maximum Core Utilization 0.6 (60%)

Table 19: Floorplanning Parameters

7.3 PLACEMENT

After the floorplanning and power-planning stage, we need to begin placing the standard cells in

uniform rows inside the core area and fix the obtained placement of the macros as well. This

stage can greatly influence the timing parameters of our design, as it specifies the finalized

placement of blocks and standard cells, thus providing a more accurate estimate of interconnect

lengths and thus delays.

Keeping the above in mind, we need to be vigilant during our checks in this stage to ensure that

the rest of the flow will go as smoothly as possible. Here we start to fix hold violation using

“set_buffer_opt_strategy -effort high” which introduces buffers and inverters

to fix timing.

The placement stage is done using the place_opt command and it has several sub-steps.

There are several options for configuring the flow of this stage according to the needs of our

109

design. For example, we may invoke place_opt with -congestion to encourage the tool to

place cells with the goal of minimizing congestion or with -area_recovery which enables

buffer removal and cell downsizing of non critical paths, and in our design we use them both

with -effort high.

At end of this stage we check_legality sure that all the cells are placed in row with no

overlaps.

After Placement we use “report_timing -delay max -max_paths 20 >

output/top_place.setup.rpt” and “report_timing -delay min -

max_paths 20 > output/top_place.hold.rpt” to check violations and there was

a hold violation with -2.01ns which will be fixed in next steps.

Figure 114: Floorplan and power rings Placement of FPU

110

Figure 115: Zoomed in view of power rings and floorplanning placement

7.4 CLOCK TREE SYNTHESIS (CTS)

We can go on to the Clock Tree Synthesis (CTS) stage after completing the placement stage with

acceptable timing and estimations of congestion/power usage. We deal with the clock nets that

were previously viewed as optimal throughout this stage. The parts that follow describe the step

and what is done during CTS, as well as the inputs to the stage and the desired outputs or goals.

CTS is essentially the insertion of buffers along the clock paths in the design in order to balance

the skew (differences in clock signal delay between clock inputs) and satisfy the required

insertion delay (time taken by clock signal to traverse from clock definition point to the sink of

the clock). The balancing of clock skew is done by building a buffer tree, as illustrated in

following figure, below. The handling of insertion delay is done by adding delay lines, as

illustrated too.

111

Figure 118: Layout after CTS

Figure 116:Balancing of Clock Skews

Figure 117:Handling Insertion Delay

112

Figure 119: Zoomed in view after CTS

7.5 ROUTING

After the CTS stage is completed with satisfactory skew-balancing and no hold (or setup) timing

violations, we may proceed to the routing stage. In this stage the design undergoes detailed

routing, where the actual path of interconnects across different metal layers and in different

geometric configurations is determined, so as expected area increased a lot as shown inFigure

120.

Figure 120: Summary of final area

113

Figure 121: Final Layout of FPU

114

8 PROJECTS CODE LINKS

INTEGRATED FPU RTL CODE

https://drive.google.com/drive/u/0/folders/1JWLysGlZydS-aQwMg3v_szmyj6i19_vM

SYSTEM CODE

https://drive.google.com/drive/u/0/folders/1NannWNHSFAEaqcV2o_RvE4jhI5tWiKcX

TESTING ENVIRONMENT LINK ON EDA PLAYGROUND

https://www.edaplayground.com/x/JvFm

PHYSICAL DESIGN SCRIPTS

https://drive.google.com/drive/folders/1-FJvMNPa0Mv9naBD6y11cY8nzqXDsSQ6

https://drive.google.com/drive/u/0/folders/1JWLysGlZydS-aQwMg3v_szmyj6i19_vM
https://drive.google.com/drive/u/0/folders/1NannWNHSFAEaqcV2o_RvE4jhI5tWiKcX
https://www.edaplayground.com/x/JvFm
https://drive.google.com/drive/folders/1-FJvMNPa0Mv9naBD6y11cY8nzqXDsSQ6

115

9 BIBLIOGRAPHY

1. IEEE Standard for Floating-Point. 2019. IEEE-754.

2. A. V. Alvarez, “High-performance Decimal Floating-Point Units,” University of Santiago de

Compostela, Jan. 2009.

3. https://github.com/pulp-platform/pulpino. [Online]

4. https://vhdlwhiz.com/modelsim-quartus-prime-lite-ubuntu-20-04/. [Online]

5. https://github.com/pulp-

platform/pulpino/issues/196?fbclid=IwAR1Ofd2zRy1yiL3_7S055Dw8uw8JK1VbiqZ3xxVTnJh

GKsOmXR1FtXO8quY. [Online]

6.

https://www.eecs.umich.edu/courses/eecs373/readings/IHI0024C_amba_apb_protocol_spec.pdf.

[Online]

7. SystemVerilog for Verification A Guide to Learning the Testbench Language Features Third

Edition.

8. The UVM Primer An Introduction to the Universal Verification Methodology by Ray Salemi .

9. ASIC Design Flow Tutorial Using Synopsys tools.

10. Design Compiler Optimization Reference Manual .

