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A B S T R A C T  

This document describes briefly the flow of design, verification and realization of 

floating point unit (FPU) that performs the following operations: addition, subtraction and 

multiplication on two 32-bit representations (single precision and decimal representation decimal 

format). SIMD instruction is also supported for any of the supported operations with a maximum 

number of 16 similar operations per SIMD instruction  

The project was distributed among four teams 

• Design team 

o Developing an algorithm to perform the required operations on the specified 

representations using MATLAB 

o Implement the algorithm using synthesizable RTL code  

o Perform behavioural simulation, synthesis and post synthesis simulation 

o Improving the design working frequency using pipelining  

• System team 

o Developing  the host controller interface (HCI) specifications and writing the RTL code 

of the top level design 

o Building PULPino platform and adding the FPU as a peripheral to it 

o Developing an application and testing it using C coding 

• Verification team 

o Building UVM testing environments to perform functional verification on each 

combinational module separately 

o Building UVM testing environment to test the clocked integrated modules with the host 

controller interface (HCI)    

• Physical design team 

o Synthesize RTL with DC, generate gate level netlist, check STA, and formal verification 

o Place and route generated gate level netlist 

o Generating layout for FPU with speed 35.7 MHz 

o Generating layout with area equal 154122.5275 µm2  
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1 CHAPTER ONE: INTRODUCTION 

A floating-point unit (FPU) is a part of a computer system specially designed to carry out 

operations on floating-point numbers. Typical operations are addition, subtraction, 

multiplication, division, and square root. 

The advantage of floating-point representation over fixed- point representation is that it 

can support a much wider dynamic range (the largest and smallest numbers that can be 

represented). The floating-point format needs slightly more storage (to encode the position of the 

radix point), floating-point numbers achieve their greater range at the expense of slightly less 

precision. Floating Point numbers has more flexibility than Fixed-point numbers which has 

limited or no flexibility. The internal representations of data in floating-point hardware are more 

exact than in fixed-point, ensuring greater accuracy in the results. 

It is also important to consider fixed and floating-point formats in the context of precision 

– the size of the gaps between numbers. Every time a Digital signal processor (DSP) generates a 

new number via a mathematical calculation, that number must be rounded to the nearest value 

that can be stored via the format in use. Rounding and/or truncating numbers during signal 

processing naturally yields quantization error or ‘noise’ - the deviation between actual analog 

values and quantized digital values. Since the gaps between adjacent numbers can be much 

larger with fixed-point processing when compared to floating-point processing, round-off error 

can be much more pronounced. As such, floating-point processing yields much greater precision 

than fixed-point processing, distinguishing floating-point processors as the ideal DSP when 

computational accuracy is a critical requirement. 

The applications of using the floating-point format can be readily seen by contrasting the 

data set requirements of video and audio applications. Floating Point units are used in high speed 

objects recognition system and also in high performance computer systems as well as embedded 

systems and mobile applications. In medical image recognition, greater accuracy supports the 

many levels of signal input from light, x-rays, ultrasound and other sources that must be defined 

and processed to create output images with useful diagnostic information. By contrast with these 

applications, the enormous communications market is better served by floating-point devices. 

FPUs execute dedicated trigonometric calculations used extensively in real-time applications 

such as motor control, power management, and communications data management. The graphics 

processing units (GPUs) today perform most arithmetic operations in the programmable 

processor cores using IEEE 754-compatible single precision 32-bit floating-point operations, 

newer GPUs such as the Tesla T10P also support IEEE 754 64-bit double-precision operations in 

hardware. 

The designed floating-point unit (FPU) supports two representations of floating-point 

numbers according to IEEE754-2019 standard which are binary32 and decimal representation-

decimal format, the following arithmetic operations are supported for each of the two 

representations, addition, subtraction and multiplication between operand A and operand B. 

SIMD instruction is also supported for any of the supported operations with a maximum number 

of 16 similar operations per SIMD instruction. 
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2 CHAPTER TWO: FLOATING POINT REPRESENTATION 

2.1 Floating point representations 

Floating point format according to IEEE754 standard-2019 is a way of representing real numbers 

with a string of digits. It maps the infinite range of real number by a finite subset with limited 

precision. A floating point number can be characterized by the following: 

• Sign: the polarity of the number, either positive (+), or negative (-). 

• Radix: the base number for scaling, usually two (binary), or ten (decimal). 

• Exponent range: the interval of the maximum and minimum power of the radix. 

• Significand: also called Precision or Mantissa, it is a fixed number of significant digits in base 

format. 

In general any floating point number is represented with the following equation:  

                         

                                        (−𝟏) 𝒔𝒊𝒈𝒏 × 𝒔𝒊𝒈𝒏𝒊𝒇𝒊𝒄𝒂𝒏𝒅 × 𝒓𝒂𝒅𝒊𝒙 𝒆𝒙𝒑𝒐𝒏𝒆𝒏𝒕 

2.1.1 Binary interchange format encoding 

Each floating-point number has just one encoding in a binary interchange format. To make the 

encoding unique, the value of the significand m is maximized by decreasing e until either e = 

emin or m ≥ 1. After this process is done, if e =e min and 0<m<1, the floating-point number is 

subnormal. Subnormal numbers (and zero) are encoded with a reserved biased exponent value. 

Representations of floating-point data in the binary interchange formats are uniquely encoded in 

k bits in the following three fields ordered (1): 

a) 1-bit sign S. 

b) w-bit biased exponent, E = e + bias. 

c) (t = p − 1)-bit trailing significand field digit string, T = d1 d2…dp−1; the leading bit of the 

significand. 

d0, is implicitly encoded in the biased exponent E. 

 

 

 

 

 

Figure 1: Binary format 

To put a number in one of the binary representation the number must be transformed to binary so 

it can be written as for example: 

111001 → 1.11001 ∗ 25 

So e = 5, m = 11001 and s = 0. 
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Comparison between the same representations with different number of bits: 

Parameter Binary16 Binary32 Binary64 Binary128 

Storage width in bits k 16 32 64 128 

Precision in bits p 11 24 53 113 

Maximum exponent emax 15 127 1023 16383 

Bias E 15 127 1023 16383 

Sign bit 1 1 1 1 

Exponent width in bits  w 5 8 11 15 

Significant field width 10 23 52 64 

Table 1: comparison between different precisions in Binary representation 

2.1.2 Decimal interchange representation: 

2.1.2.1 The Need for Decimal Floating Point Arithmetic:  

Although binary based computers dominate the world, decimal computations can't be ignored. 

Decimal numeration system is essential for many applications. Databases belong to 51 

commercial and financial organizations were surveyed and investigated, these databases include 

many financial applications such as banking, billing, inventory control, financial analysis, taxes, 

and retail sales. There were more than 456,420 columns which contained numeric data and were 

investigated to extract statistic information. This survey reported that 55% were decimal, and 

that further 43.7% were integer types which could have been stored as decimal numbers. The 

results of these applications are required to be accurate and rounded correctly to be committed by 

human manual calculations and law.  

For binary based computers, decimal numbers will be converted to/from binary numbers. 

Decimal numbers may not be converted exactly, due to the lack of binary system accuracy and 

finite precision hardware. Most of fraction numbers are not converted to binary numbers 

properly, let the decimal number X, to convert this decimal number to binary number it will be X 

that requires infinite number of bits to be represented exactly in binary which is not available so 

this number will be approximated, the stored value will be X, so any operation using this number 

will produce inaccurate results although the arithmetic operation is correct. The decimal to/from 

binary conversion is implemented using software programs with high delays.  

In addition to the accuracy problem there is another problem caused by binary arithmetic is the 

removal of trailing fraction zeroes. For example, binary system can't distinguish between 1.5 and 

1.50 because of the normalization nature of binary system. The trailing fraction zeros are 

essential in the calculation, they are very important for physics measurement for example if it is 

reported that, the mass of a body is 10.7kg versus 10.700kg, the two measures are not the same 

as the first one is accurate for 0.1 kg but the second one is accurate for 0.001kg. Hence binary 

arithmetic units can't be used directly for financial application and decimal arithmetic operations 

as they produce results not compatible with law and human requirements (2). 
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2.1.2.2 Decimal interchange format: 

Representations of floating-point data in the decimal interchange formats are encoded in k bits in 

the following three fields, whose detailed layouts and canonical (preferred) encodings are 

described below. 

 a) 1-bit sign S.  

b) A w+5 bit combination field G encoding classification and, if the encoded datum is a finite 

number, the exponent q and four significand bits (1 or 3 of which are implied). The biased 

exponent E is a w+2 bit quantity q+bias, where the value of the first two bits of the biased 

exponent taken together is either 0, 1, or 2. 

 c) A t-bit trailing significand field T that contains J ×10 bits and contains the bulk of the 

significand. When this field is combined with the leading significand bits from the combination 

field, the format encodes a total of p = 3×J+1 decimal digits (1).  

 

 

 

 

 

Figure 2: Decimal format 

Decimal interchange format contains two ways of encoding they are decimal encoding and 

binary encoding. 

2.1.2.2.1 Decimal interchange decimal encoding 

The encoding of the combination field is done using the following table depending on the most 

significant bit in the mantissa. 

COMBINATION FIELD 
M4 M3 M2 M1 M0 First 2 bits 

of E 

MSD of the mantissa Range of the MSD 

0 0 a b C 00 0abc MSD <= 7 

0 1 a b C 01 0abc MSD <= 7 

1 0 a b C 10 0abc MSD <= 7 

1 1 0 0 C 00 100c 8 <= MSD <= 9 

1 1 0 1 C 01 100c 8 <= MSD <= 9 

1 1 1 0 C 10 100c 8 <= MSD <= 9 

Table 2: encoding of the combinational field 

• If number is infinity, then M4 M3 M2 M1 M0 = 11110 

• If the input is NAN, then M4 M3 M2 M1 M0 = 11111 
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Trailing significand field  
Each three digit in the mantissa are encoded as in the following table: 

b9  b8 b7 b6 b5 b4 b3 b2 b1 b0 d2 d1 d0 Values encoded 

a  b c d e f 0 g H I 0abc 0def 0ghi (0-7)(0-7)(0-7) 

a  b c d e f 1 0 0 I 0abc 0def 100i (0-7)(0-7)(8-9) 

a b c g h f 1 0 L I 0abc 100f 0ghi (0-7)(8-9)(0-7) 

g h c d e f 1 1 0 I 100c 0def 0ghi (8-9)(0-7)(0-7) 

g h c 0 0 f 1 1 1 I 100c 100f 0ghi (8-9)(8-9)(0-7) 

d e c 0 1 f 1 1 1 I 100c 0def 100i (8-9)(0-7)(8-9) 

a b c 1 0 f 1 1 1 I 0abc 100f 100i (0-7)(8-9)(8-9) 

x x c 1 1 f 1 1 1 I 100c 100f 100i (8-9)(8-9)(8-9) 

Table 3: encoding of the trailing field 

Comparison between decimal representation decimal formats with different number of bits: 

Parameter Binary32 Binary64 Binary128 

Storage width in bits k 32 64 128 

Precision in digits p 7 16 34 

Maximum exponent emax 96 384 6144 

Minimum exponent emin -95 -383 -6143 

Bias E 101 398 6176 

Sign bit 1 1 1 

Combination field in bits 5 5 5 

Exponent continuation field in bits 6 8 12 

Trailing significand field in bits 20 50 110 

Table 4: comparison between different precisions in Decimal representation-decimal format 

To put a number in decimal 32 representation decimal format for example: 

If the number =1324.25 * 105 

1324.25 ∗ 105 → 132425.∗ 103 

Then the most significant digit =1 will be included in the combination field as in table2 

The exponent =3+bias=104→ 01101000 

So the combination field and the exponent will be: 01-001-101000 

The trailing field will be as in table3:011-010-0-100-010-101-0-000 

S = 0 

So the number will be written by putting the three parts together as:  

0    01-001-101000   011-010-0-100-010-101-0-000 
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2.1.2.2.2 Decimal interchange binary encodings: 

If the binary encoding is used for the significand, then: 

• if G0 G1 is 00, 01, or 10, then E is made up of the bits G0 to Gw+1, and the binary 

encoding of the significand C is obtained by prefixing the last 3 bits of G (i.e., Gw+2 Gw+3 

Gw+4) to T. 

• If G0 G1 is 11 and G2 G3 is 00, 01 or 10, then E is made up of the bits G2 to Gw+3, and the 

binary encoding of the significand C is obtained by prefixing 100Gw+4 to T (1). 

 

For example if we have a number=1.245678 ∗ 1010  

Then it can be written as 1245678.∗ 104 
So E = 4+101→0110 1001 

Trailing field=1 0011 0000 0001 1110 1110 

The length of trailing field = 21 which is less than 24 then this is the first case:  

So the combination field will be = 01101001 001 

 The trailing field will be = 0011 0000 0001 1110 1110 

The sign bit =0 

So the number will be written as: 0 01101001-001 00110000000111101110 

2.1.3 Special cases 

For single precision representation 

Single-Format Bit  Pattern Value 

0<e<255 (−1)𝑠 ∗ 2𝑒−127 ∗ 1. 𝑡 (normal numbers) 

e=0; t≠0 (at least one bit in t is non-zero) (−1)𝑠 ∗ 2𝑒−127 ∗ 0. 𝑡 (subnormal 

numbers) 

e=0; t=0 (all bits in t are zero) (−1)𝑠 ∗ 2𝑒−127 ∗ 0.0 (signed zero) 

s=0; e=255; t=0 +INF (positive infinity) 

s=1; e=255; t=0 -INF (negative infinity) 

s=x; e=255; t≠0 (at least one bit in t is non-

zero) 

NAN (Not-a-Number) 

Table 5: Special cases in single precision 

For decimal representation 

decimal-Format Bit Pattern Value 

e=x, t=0 Signed zero 

0_11110_00000…… +INF (positive infinity) 

1_11110_00000…… -INF (negative infinity) 

s_11111_00000…… QNAN 

S_11111_10000…... SNAN 

Table 6: Special cases in Decimal representation 
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2.1.4 Exceptions 

Exceptions are represented in RTL using flags to note that something abnormal happened to the 

resulted number 

overflow In case the result of addition or multiplication is bigger than the 

highest representable number. 

underflow In case the result of subtraction or division is lower than the smallest 

representable number. 

inexact In case rounding was done to the result or in case of underflow or 

overflow  

Invalid 

operation 

In case that the operation chosen can’t be done on the inserted inputs.  

Table 7: Exceptions 

2.1.5 Rounding 

Rounding process is very important after each operation, as all operations produce an 

intermediate result with infinite precision, so it is required to round this result to finite precision 

to be suitable for the destination precision format. IEEE 754-2019 standard defines five rounding 

modes for arithmetic operations as follow (1), 

• RoundTiesToEven: the absolute result is rounded to nearest number. If tie case occurs 

the absolute result is rounded to nearest even value. 

• RoundTiesToAway: the absolute result is rounded to nearest number. If tie case occurs 

the absolute result is rounded to the larger number.  

• RoundTiesToPositive: the result is rounded towards positive infinity (if the final result 

sign is positive then the result is rounded up, else the extra digits are truncated). 

•  RoundTiesToNegative: the result is rounded towards negative infinity (if the final result 

sign is negative then the absolute result is rounded away from zero, else the extra digits 

are truncated).  

•  RoundTowardZero: the absolute result is rounded towards zero, (all extra digits are 

truncated). 
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3 CHAPTER THREE: RTL DESIGN  

3.1 HIGH LEVEL DESIGN 

The logic used in performing each operation on numbers represented in decimal-32 

representation or on single precision has been simulated using MATLAB codes, then the results 

have been tested by comparing them with the results calculated using normal operations in 

MATLAB. 

3.1.1 Decimal-32 representation – Decimal format 

A function has been used to extract sign, exponent, and mantissa from the represented numbers 

to be able to perform the required operation, this function returns the most significand bit as sign 

bit then it decodes the exponent and the mantissa from the combinational field and trailing 

significand bits using Table 2 and Table 3. 

3.1.1.1 Addition 

To perform the addition operation, the two operands must have the same exponent, so first, 

significand alignment is done by comparing the two exponents to determine which operand has 

the largest one then calculating the difference between the two exponents and padding the 

mantissa of smallest operand from the left with a numbers of zeros equal to four multiplied by 

the calculated difference as the radix of the exponent is ten which means that if the difference 

equals to one will be equivalent to shifting the mantissa one digit (4 bits), therefore the exponent 

of the final result will be equal to the exponent of the largest operand. 

Second, each 4 bits of the first operand starting from the right has been added to their 

corresponding in the second operand, if the result is greater than or equal to ten then subtract ten 

to obtain the corresponding 4 bits of the mantissa of the final results and a carry equals to one 

will be added to the addition of the next two digits; otherwise the result was putted directly in the 

mantissa. 

Third, normalization is needed when the result of adding the 4 most significand bits is greater 

than ten; normalization has been done by incrementing the exponent by one and the mantissa 

will be equal to the most significand seven digits.  

Finally, to check the correctness of this logic, different ranges of real numbers has been used, the 

result was calculated by using MATLAB, and by using the previous logic after putting the real 

numbers in decimal-32 representations. 

As shown in Figure 3 below, the results are approximately equal in both cases. 
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Figure 3: Addition MATLAB results – Decimal format 

3.1.1.2 Subtraction 

First step, deciding which exponent is the bigger to be the exponent of the final result, then, 

padding zeros to the mantissa of the number with the smaller exponent by the difference of the 

two exponents.                                                                                                                                        

Second step, is deciding which mantissa is the bigger if there was no difference in the exponent 

because we will use the borrow method which needs to subtract the bigger from the smaller to 

get a right result, so if the second mantissa was the bigger then the final result is negative .                                                                                                                               

 Third step, subtracting the bigger mantissa from the smaller one by taking the last 2 digits from 

each mantissa an subtract them if their result is negative then we need to add 10 to the result and 

borrow one from the digit that is before them and continue this operation on the seven digits.   

Finally, the results as shown in Figure 4 have been checked as in addition. 

                                                                               



   

17 

 

 
Figure 4: Subtraction MATLAB results – Decimal format  

 

3.1.1.3 Multiplication 

First, the exponent of the result has been calculated by adding the exponent of the two operands 

also, the sign bit has been calculated by xoring the sign bits of the two operands. 

Second, the mantissa has been calculated as shown in Figure 5. 

Third, the resulted mantissa will be equal to 14 digits, so normalization has been done by taking 

the most non-zero digits and then the number of remaining digits will be added to the exponent.  

Finally, the results as shown in Figure 6 have been checked as in addition. 
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Figure 5: Mantissa calculation in MATLAB 

 

Figure 6: Multiplication MATLAB results – Decimal format 
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3.1.2 Decimal-32 representation – Binary format 

A function has been used to extract sign, exponent and mantissa from the represented number the 

same as in decimal format. 

3.1.2.1 Addition 

Same as in decimal format first, significant alignment has been done by dividing the mantissa of 

the smallest operand by ten because the radix of the exponent is ten and the mantissa is 

represented in binary format which means two different bases; the number of divisions operation 

is equal to the difference between the two exponents. 

Second, the mantissa of the two operands after alignment has been added directly as normal 

binary addition. 

Finally, different ranges of real numbers have been used to check this logic, by comparing the 

calculated result with the predicated result as shown in Figure 7. 

 
Figure 7: Addition MATLAB result - Binary format 

3.1.2.2 Subtraction 

Subtraction in binary format is very easy after making significant alignment, so as explained 

before in the addition the way to make significant alignment is using division. 

Then after this step we can make a normal binary subtraction between the normalized mantissa 

of the two numbers. 

Finally, the results as shown in Figure 8 have been checked as before. 
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Figure 8: Subtraction MATLAB results - Binary format 

3.1.2.3 Multiplication 

First, the exponent has been calculated using binary addition of the exponent of the two operand 

and sign has been calculated same as in decimal format. 

Second, the mantissa of the two operands have been multiplied together to calculate the resulted 

mantissa which will be equal to 48 bits so normalization is required. 

To normalize the mantissa, it is required to decide how many digits are presented in the 

mantissa; this is done by comparing the mantissa with the largest number composed of 14 digits, 

if it is greater than this number, then add seven to the exponent and divide the mantissa by ten 

seven times, but if it is smallest than this number, then compare it with the largest number 

composed of 13 digits, , if it is greater, then add six to the exponent and divide the mantissa by 

ten six times, and if it is smallest complete the comparing process until the mantissa is 

normalized to be the most seven non-zeros digits and the numbers of remaining digits in the 

mantissa is added to the exponent. 

Finally, the results as shown in Figure 9 have been checked as before. 
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Figure 9: Multiplication MATLAB results – Binary format 

3.1.3 Single precision 

Sign, exponent and mantissa are extracted directly using bit selection in each operation. 

3.1.3.1 Addition 

First, significand alignment has been done by calculating the difference between the exponents 

of the two operands, then shifting the mantissa of the smallest operand with number of zeros 

equal to the difference calculated, and the exponent of the final result will be equal to the largest 

exponent. 

Second, the mantissa of the two operands after the above modification have been binary added 

too each other, if there is a carry, then the exponent increased by one and the mantissa will be 

equal to the carry followed by the most 23 bits of the resulted mantissa. 

Finally, different ranges of real numbers have been used to check this logic, by comparing the 

calculated result with the predicated result as shown in Figure 10. 
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Figure 10: Addition MATLAB result - Single precision 

3.1.3.2 Multiplication 

First, to calculate the exponents of the result add the exponent of the two operands. 

Second, binary multiply the mantissa of the two operands, then the resulted mantissa will be 48 

bits, if the most significand bit equal to one then add one to exponent and take the most 24 bits of 

the resulted mantissa, otherwise normalize the mantissa by decrementing the exponent until 

reaching the first one. 

Finally, the results as shown in Figure 11 have been checked as before. 

 

Figure 11: Multiplication MATLAB result - Single precision 
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3.2   REGISTER TRANSFER LEVEL (VERILOG) 

 This section describes how the high level design is translated to RTL code, in this project two 

representations only were chosen for the design phase they are decimal 32 representation 

decimal format and single precision representation. 

3.2.1 Decimal-32 representation – Decimal format 

3.2.1.1 Addition 

Addition is done using the architecture in figure 12, each block has its role as described below: 

1. Conversion from IEEE-754 to sign, exponent and mantissa: 

This block acts as a decoder that decodes the number to extract the sign bit, mantissa 

represented as a BCD number that is constructed of 28 bits bus each digit is represented 

in four bits and the exponent in an 8 bit bus. 

2. Remove leading zeros: 

The function of this block is to remove the leading zeros in the entered in the 

representation to not to lose precision or digits in the steps of normalization of rounding, 

and this is done by checking the number of zeros in the mantissa, subtract this number 

from the exponent and remove these zeros from the mantissa. 

3. Binary subtractor : 

This block is used to determine the exponent of the final result, calculate the difference 

between the two exponents to make significand alignment in the next block and send a 

signal called greater to indicate which mantissa needs significand alignment. 

4. Significand alignment: 

This block pads the mantissa of the smallest number by zeros their number equals to the 

difference in the exponent but multiplied by four as each zero is represented in four bits 

the same as in MATLAB but it keeps the last three removed digits in an 12 bits bus as 

guard digit, round digit and sticky bit which is the ORing of all the removed digits from 

the significand alignment, the rounding digit will be used in the rounding module. 

5. BCD adder: 

The BCD adder is constructed of 7-4bits binary adders and if the result of each adder is 

greater than nine then we add six to the result and take the least four bits in the final 

result and the carry is added in the next adder. 

6. Rounding 

This module adds one to the mantissa if the rounding digit is greater than five. 

7. Normalization: 

Normalization is used in case of a carry resulted from the addition which means that the 

result in composed of eight digits and that can’t be represented so normalization module 

is used to take the most seven digits as a result and add one to the exponent 

of the final result. If the exponent of the final result exceeds 192=8’b1100-0000(the max 

exponent of the representation) overflow flag and inexact flag are raised.   

8. Conversion to IEEE-754 standard 

This module takes the final exponent, the sign bit and the mantissa to encode them and 

put them in the final representation. 
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Figure 12: architecture of decimal adder 
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Behavioral simulation results: 

Synthesis result: 

 

Figure 14: synthesis result - decimal adder 

Post place and route results: 

 

Figure 15: minimum clock allowed - decimal adder 

 

 

 

 

 

 

 

 

 

 

Figure 13: simulation result - decimal adder 



   

26 

 

3.2.1.2 Subtraction 

Subtraction is done using the architecture in Figure 16; each block has its role as described 

below, repeated blocks are explained above: 

1. Conversion form IEEE-754 standard to sign, exponent and mantissa. 

As described above in addition. 

2. Remove leading zeros 

As described above in addition. 

3. Binary subtractor. 

As described above in addition. 

4. Significand alignment 

The same as in addition but the GRS digits are not extracted from the mantissa; they are a 

part of the mantissa because they will enter in the subtraction process so the output of 

significand alignment is two buses of fourteen bits. 

5. BCD subtractor 

This block subtracts the mantissa of the two operands from each other using the ten’s 

complement, after making the ten’s complement of the second operand , the mantissa of 

the first operand and the ten’s complement of the mantissa of the second operand enter in 

the BCD adder the same as in the addition but check the result of the BCD adder if there 

is a carry digit then the Result is positive and equal to the digits after the carry digit and if 

not then the result is negative and the result is the ten’s complement of the result. 

The resulted mantissa is the first 28 bits only of the result as they represent seven digit 

and the next twelve bits are taken for the GRS digits. 

6. Normalization 

 This block removes the leading zeros resulted from the subtraction, enter the GRS digits 

instead of these zeros, add zeros to the right of the number to complete the seven digits 

and subtract the number of the leading zeros from the exponent of the result. if the 

exponent is less than the number of the leading zeros then remove zeros their number 

equals to the exponent . 

If the resulted mantissa and exponent equal to zero then underflow flag is raised.  

7. Rounding 

As described above in addition. 

8. Conversion to IEEE-754 format 

As described above in addition. 
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Figure 16: Architecture of subtraction in decimal format 
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Behavioral simulation results:

 

Figure 17: Behavioral simulation result - Decimal subtraction 

Synthesis result: 

 

Figure 18: Area utilization - Decimal subttraction 

Post place and route results: 

 

Figure 19: Timing report - Decimal subtraction 
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3.2.1.3 Multiplication 

Multiplication has been done using the architecture shown in Figure 20, each block has its role as 

described below 

1. Conversion form IEEE-754 standard to sign, exponent and mantissa 

As described above in addition. 

2. Xor gate 

This gate is used to determine the sign of the result. 

3. Removing leading zeros  

As described above in addition. 

4. Binary adder 

Add the exponent of the two operands, then subtract the bias to calculate the resulted 

exponent, also this block can raise underflow or overflow signal if the sum is greater or 

smaller than the available exponent. 

5.  BCD multiplier 

Multiplication process has been done as explained in the MATLAB work but instead of 

the “for” loop, use eight different cases to calculate the value of the carry in the next step. 

6. Normalization 

Switch case has been used to determine the number of digits resulted from the 

multiplication operation, then take the first seven non-zeros digits, keep the following 

three digits to be used in rounding, and add the number of the remaining digits in the 

exponent, also check the underflow cases as sometimes although the addition of the two 

exponent is less than available exponent after the normalization the underflow flag can be 

lowered. 

7. Rounding 

If the round digit is greater than five than add one to the mantissa and raise the inexact 

flag, then check if overflow has occurred. 

8. Conversion to IEEE-754 format 

As described above in addition. 
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Figure 20: Architecture of Multiplication in decimal representation - Decimal format 
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Behavioral simulation results: 
 Figure 21 shows an underflow case, a normal case, an overflow case, an invalid operation case 

when one of the two operands equal infinity.

 

Figure 21: Behavioral simulation result - Decimal multiplication 

Synthesis result: 

 

Figure 22: Area utilization - Decimal mutiplication 

Post place and route results: 

 

Figure 23: Timing report - Decimal mutiplication 
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3.2.2 Single precision 

3.2.2.1 Addition 

Addition is performed using the architecture shown in Figure 24; the role of each block is 

described below: 

1. Conversion from IEEE-754 to sign, exponent and mantissa 

This block has been used to extract the sign, exponent, and mantissa from the represented 

numbers using bit selection, and then concatenate the implicit bit ( 1 in case of normal 

numbers and 0 in case of subnormal numbers). 

2. Binary subtractor 

This block compare the two operands, set the exponent of the final result to the largest 

exponent, calculate the difference between the two exponent, also it has a signal greater 

indicate which operand is greater.  

3. Significand alignment  

This block shift the mantissa of the smallest operand recognized using greater signal, 

number of shifts equal to the signal difference received from binary subtractor in case of 

two normal numbers and equal to (difference – 1) in case of normal and subnormal 

numbers, also it keeps the shifted bits to be used in rounding, the last two shifted bits in 

the guard and round bits respectively, and the or-ing of the remaining shifted bits in the 

sticky bit. 

4. Binary adder 

This block adds the mantissa of the two operands. 

5. Normalization 

This block receives the sum of the two mantissas and checks if there is a carry, then 

increments the exponent and shifts the resulted mantissa, the shifted bit goes to the guard 

bit, guard bit to round bit, and sticky bit is equal to the or-ing between the round bit and 

the sticky bit. 

6. Rounding 

This block checks whether the guard bit and last bit in the mantissa are equal to one, or 

the guard bit, round bit and sticky bit are equal to one, if one of the two cases exist then 

increment the mantissa by one and raise inexact flag, and finally checks if there exist an 

overflow. 

7. Conversion to IEEE-754 format 

This block takes the sign of the first operand and the final result of the exponent and the 

mantissa, and then puts the result in single precision representation formats.         
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Figure 24: Architecture of addition in Single precision 



   

34 

 

Behavioral simulation results: 

 

Figure 25: Behavioral simulation result –  addition Single precision 

Synthesis result: 

 

Figure 26: Area utilization – addition Single precision 

Post place and route results: 

 

Figure 27: Timing report - addition Single precision 
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3.2.2.2 Subtraction 

Subtraction is done using the architecture in Figure 28; each block has its role as described 

below, repeated blocks are explained above: 

1. Conversion from IEEE-754 to sign, exponent and mantissa 

As described above in addition. 

2. Binary subtractor 

As described above in addition  

3. Significand alignment  

Same as in addition but it keeps the GRS bits in the shifted mantissa because they will 

enter in the subtraction process. 

4. Binary subtractor 

This block subtract the two normalized mantissa with their GRS bits using two’s 

complement, after making the two’2 complement to the second mantissa a normal binary 

addition is done and if there is a carry bit then the result is positive else then the result is 

negative and equals to the two’2 complement of the output of the adder. 

5. Normalization 

This block receives the result of subtraction and removes all the leading zeros resulted 

from the subtraction and take the GRS bits instead of these leading zeros inside the bits 

that can be represented only if the exponent of the result is bigger than the number of 

leading zeros so we can subtract their number from the exponent to normalize the number 

and if not remove a number of leading zeros equal the (exponent -1) and assign the 

exponent to be equal zero so the number is now a subnormal number. 

If the resulted mantissa and exponent after normalization equal zero then raise the 

underflow flag.  

6. Rounding 

As described above in addition. 

7. Conversion to IEEE-754 format 

As described above in addition. 
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Figure 28: Architecture of Subtractor in Single precision  

 

 

Behavioral simulation results: 

 

Figure 29: Behavioral simulation result –  subtraction Single precision 

Synthesis result: 

 

Figure 30: Area utilization – subtraction Single precision 

Post place and route results: 

 

Figure 31: Timing report - Subtraction Single precision 
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3.2.2.3 Multiplication 

Multiplication is performed using the architecture shown in Figure 32; the role of each block is 

described below: 

1. Conversion form IEEE-754 standard to sign, exponent and mantissa 

As described above in addition. 

2. Xor gate 

This gate is used to determine the sign of the result. 

3. Binary adder 

This block calculates the result exponent by adding the exponent of the two operands, 

and then subtracts the bias from the sum, also it can raise the underflow or overflow 

signal is the result is greater or smaller than the available exponent. 

4. Binary multiplier 

This block multiplies the mantissa of the two operands. 

5. Normalization 

First, using a switch case this block determine the state of the result according to the 

numbers of leading zeros, assigns the mantissa to be the first 24 bits starting from the first 

one from the left, and assigns the following two bits to be guard and round bit 

respectively and the or-ing of the remaining bits to be sticky bit. 

Second, in each state check the underflow signal if it is raised, then decides whether the 

underflow can be solved by representing the number as a subnormal number or not and if 

the underflow signal isn’t raised, then treats the number normally the subtracting the 

number of leading zeros from the exponent. 

Finally, check if there is an overflow occurs or not 

6. Rounding 

As described above in addition. 

7. Conversion to IEEE-754 format 

As described above in addition. 
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Figure 32: Architecture of multiplication in Single precision 
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Behavioral simulation results: 

 

Figure 33: Behavioral simulation result –  addition Single precision 

Synthesis result: 

 

Figure 34: Area utilization – addition Single precision 

Post place and route results: 

 

Figure 35: Timing report - addition Single precision 
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3.2.3 Frequency of the design 

After designing the six modules a high level module is created to integrate the six modules 

together, the whole design can work with the frequency of the slowest path that exists in the 

decimal multiplication as seen in Figure 36 it exists in the path where the BCD multiplier exists. 

So the design can work with  the frequency of the critical path that is equal to 13.8 MHz, so 

pipelining is used To Increase the frequency of the whole design . 

Pipelining is done by dividing the BCD multiplier to two parts as seen in Figure 38, now the 

design can work with frequency 25.8MHz which is the frequency of the critical path in the 

decimal subtractor. 

 

Figure 36: Critical path of decimal multiplication 

Post place and route results: 

 

Figure 37: Timing report - After pipelining 
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Figure 38: Architecture of the decimal multiplication after pipelining 
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4 CHAPTER FOUR: SYSTEM  

4.1 HCI (HOST CONTRLLER INTERFACE) SPECIFICATION 

4.1.1 Abbreviations 

 
• Reserved: These registers/bits are reserved and should be set to zero 

• RO-Read Only: If a register/bit is read only, this means that only the FPU can write 

into it, writes by the software have no effect and reads by the FPU return zeros. 

• WO-Write Only: If a register/bit is write only, this means that only the software can 

write into it, writes by the FPU have no effect and reads by the software return zeros. 

• R/W-Read/Write: If a register/bit is read/write, this means that both the software and 

the FPU can write into it and read from it. Note that individual bits in R/W registers 

may be RO or WO. 

• Single operation instruction: instruction where the SIMD of the control bit of the 

FPU command register is set to zero. 

• SIMD instruction: instruction where the SIMD of the control bit of the FPU 

command register is set to one, SIMD is the single instruction, multiple data. 

4.1.2 Memory-mapped FPU Host Controller Registers 

Configuration 

offset 

Register Set Number of registers  Register 

Access 

000 FPU Command register 1 R/W 

0x004-0x00C Reserved 3 -- 

0x010-0x04C Operand A 16 WO 

0x050-0x08C Operand B 16 WO 

0x090-0x10C Reserved 32 -- 

0x110-0x11C FPU Status registers 4 R/W 

0x120-0x12C Reserved 4 -- 

0x130-0x16C Output 16 RO 

0x170-0x17C Reserved 4 -- 

 
Table 8: Memory-mapped FPU Host Controller Registers 

4.1.3 FPU Command register 

Bit Description 

22-31 Reserved 

18-21 Number of SIMD operations – WO.  

• Default 0000b (1 operation). This field identifies the number of SIMD 

instruction operations, the FPU checks this field if it’s a SIMD instruction. 
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• The FPU can carry out a maximum of 16 similar operations (value = 1111b) 

at each SIMD instruction. 

17 SIMD – WO.  

• This control bit is used by the software to tell the FPU whether this 

instruction is a single operation instruction or a SIMD instruction, if the 

software sets this bit to one then it’s a SIMD instruction else if it sets it to 

zero then this is a single operation instruction. 

13-16 Reserved 

11-12 Operation – WO.  

• Default 00b.This field identifies which operation will be performed. 

• Values mean: 

o 00b                   Addition 

o 01b                   Subtraction 

o 10b                   Multiplication 

o 11b                   Reserved 

7-10 Reserved 

5-6 Floating-point format – WO.  

• Default 00b.This field identifies which floating-point format is to be used. 

• Values mean: 

o 00b                   Binary32 (Single-precision)  

o 01b                   Reserved 

o 10b                   Decimal representation – Decimal format 

o 11b                   Reserved 

4 Reserved 

3 Interrupt Enable – WO.  

• This control bit is set to one by the software to tell the FPU to issue an 

interrupt by setting the interrupt signal to one when it finishes an operation 

which is reset to zero when the software raises the clear status bit of the FPU 

Status register (register 0x110-bit 1) to one. 

• In case this control bit is set to zero, the interrupt signal is masked (i.e. no 

interrupt signal is issued by the FPU when it finishes an operation). 

2 Doorbell – R/W.  

• This control bit is set to one by software to tell the FPU that there is a new 

operation. 

• When the FPU starts the operation, it sets it to zero. 

1 FPU Enable – WO. 

• This control bit is used by software to enable the FPU. 

• The FPU executes the operations as long as this bit is one. When the 

software sets this bit to zero, the FPU completes the current operation and 

then halts until the software sets this bit to one again. 

0 

 

FPU Reset – R/W.  

• This control bit is used by software to reset the FPU. 

• When software writes a one to this bit, the FPU terminates any operation in 

progress. 

• This bit is set to zero by the FPU when the reset process is complete. 
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Software cannot terminate the reset process early by writing a zero to this 

register. 

Table 9: FPU Command register 

4.1.4 FPU Status register 

4.1.4.1 Register (0x110) 

Bit Description 

7-31 Reserved 

6 Inexact flag – RO.  

• Default 0b. This control bit is set to one by the FPU when an operation 

delivers a numerical result that signal no other exception and its rounded 

result differs from what would have been computed were both exponent 

range and precision unbounded. 

• More details in IEEE754-2019 standard section 7.6 

5 Underflow flag – RO.  

• Default 0b. This control bit is set to one by the FPU when a tiny non-zero 

result is detected. 

• More details in IEEE754-2019 standard section 7.5 

4 Overflow flag – RO.  

• Default 0b. This control bit is set to one by the FPU if and only if the 

destination format’s largest finite number is exceeded in magnitude by what 

would have been the rounded floating-point result were the exponent range 

unbounded. 

• More details in IEEE754-2019 standard section 7.4 

3 Division by zero flag– RO.   

• Reserved and set to zero as the current FPU doesn’t support division or 

logarithmic operations. 

• More details in IEEE754-2019 standard section 7.3 

2 Invalid operation flag  – RO. 

• Default 0b. This control bit is set to one by the FPU if and only if there is no 

usefully definable result in the cases where the operands are invalid for the 

operation to be performed. 

• More details in IEEE754-2019 standard section 7.2  

1 Clear status– WO.  

• This control bit is set to one by the software after either receiving an 

interrupt signal in case the interrupt enable bit of the FPU Command register 

(bit 3) is set to one or after the software checks the status bit of the FPU 

Status register (register 0x110-bit 0) to find it set to one, the software sets 

this bit to one to tell the FPU to reset the status bit of the FPU Status register 

(register 0x110-bit 0) to zero. 

0 

 

 Status– RO.  

• This control bit has a default value of zero, it is set to one by the FPU when 

it terminates an operation and is reset to zero when the software raises the 
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clear status bit of the FPU Status register (register 0x110-bit 1) to one. 

Table 10: Register (0x110) 
Note: The five flags (bits 2 -6) in this register are the output flags in case of a single operation 

instruction, in case of a SIMD instruction they are the output flags of the first SIMD instruction 

operation. 

4.1.4.2 Register (0x114) 

Bit Description 

31 Reserved 

16-30 SIMD Division by zero  flags– RO.   

• Reserved and set to zero as the current FPU doesn’t support division or 

logarithmic operations. 

15 Reserved  

0-14 

 

 SIMD Invalid operation flags – RO. 

• Each of these 15 bits have a default value of 0b, in case of a SIMD 

instruction, they are the invalid operation output flags, as explained for bit 1 

in FPU status register (0x110), of the second to the 16𝑡ℎ SIMD instruction 

operations in order. 

Table 11: Register (0x114) 

4.1.4.3 Register (0x118) 

Bit Description 

31 Reserved 

16-30 SIMD Underflow flags– RO. 

• Each of these 15 bits have a default value of 0b, in case of a SIMD 

instruction, they are the underflow output flags, as explained for bit 4 in FPU 

status register (0x110), of the of the second to the 16𝑡ℎ SIMD instruction 

operations in order. 

15 Reserved  

0-14 

 

 SIMD Overflow flags– RO. 

• Each of these 15 bits have a default value of 0b, in case of a SIMD 

instruction, they are the overflow output flags, as explained for bit 3 in FPU 

status register (0x110), of the of the second to the 16𝑡ℎ SIMD instruction 

operations in order. 

Table 12: Register (0x118) 

4.1.4.4 Register (0x11C) 

Bit Description 

15-31 Reserved  

0-14 

 

 SIMD Inexact flags– RO. 

• Each of these 15 bits have a default value of 0b, in case of a SIMD 
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instruction, they are the inexact output flags, as explained for bit 5 in FPU 

status register (0x110), of the of the second to the 16𝑡ℎ SIMD instructions 

operations in order. 
Table 13: Register (0x11C) 

4.1.5 Operands A & B and Output registers: 

Each operand has 16 registers and so does the output, the first register of each operand is used in 

single operations and the result is written in the first output register, the different operations are 

carried out as follows: 

• Addition:                      𝑜𝑢𝑡𝑝𝑢𝑡(0𝑥130) = 𝐴(0𝑥010) + 𝐵(0𝑥050) 

• Subtraction:                𝑜𝑢𝑡𝑝𝑢𝑡(0𝑥130) = 𝐴(0𝑥010) − 𝐵(0𝑥050) 

• Multiplication:            𝑜𝑢𝑡𝑝𝑢𝑡(0𝑥130) = 𝐴(0𝑥010) × 𝐵(0𝑥050) 

In case of SIMD instructions, the Number of SIMD operations field of the FPU command 

register determines how many similar operations are carried out which also determines the 

number of registers of each operand and the output that is to be used, operations are carried out 

on the registers of each operand and the output in order, to illustrate how this works with a  

simple example, given that the operation is addition and the number of SIMD operations is three, 

the addition SIMD operations are carried out as follows: 

𝑜𝑢𝑡𝑝𝑢𝑡(0𝑥130) = 𝐴(0𝑥010) + 𝐵(0𝑥050) 
𝑜𝑢𝑡𝑝𝑢𝑡(0𝑥134) = 𝐴(0𝑥014) + 𝐵(0𝑥054) 
𝑜𝑢𝑡𝑝𝑢𝑡(0𝑥138) = 𝐴(0𝑥018) + 𝐵(0𝑥058) 

4.1.6 Interrupt signal: 

This signal has a default value of zero, it is set to one by the FPU when the interrupt enable bit of 

the FPU Command register (bit 3) is set to one and the FPU terminates an operation and is reset 

to zero when the software raises the clear status bit of the FPU Status register (register 0x110-bit 

1) to one. 
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4.2  TOP LEVEL DESIGN 

4.2.1 Design without SIMD support 

 

 

Figure 39: Top level block diagram without SIMD 

HCI: 

 
This block represents the interface between the software from one side and the FPU blocks from 

the other side, from the software side it only sends and receives 32 bits data with certain 

addresses, from the FPU blocks’ side control signals and status signals are sent and received as 

well as operands and the FPU output as shown in Figure 40.The HCI block extracts the control 

signals that are sent to the FPU blocks from the data sent from the software as well as uses the 

status signals to update some bits in the data sent t the software. The HCI block contains some 

registers which are FPU Command register, Operand A 0x010 register, Operand B 0x050 

register, FPU Status register 0x110 and a dataout register, it also contains a multiplexer and a 

demultiplexer to read from and write into these registers. 
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Figure 40: HCI connections 

Modified operation: 

 
This block uses three inputs which are the operation and the sign bits (bit number 31) of the two 

operands to determine the modified operation as shown in Table 14. 

Operation Sign bits of the operands Modified operation 

Adiition Same sign Addition 

Different signs Subtraction 

Subtaction Same sign Subtraction 

Different signs Addition 

Multiplicaioon - Multiplication 
Table 14: Modified operation block function 

Enable decoder: 

 
This block uses the modified operation together with the representation to enable only one of the 

input registers to the different CLBs (combinational logic blocks) when there is a new single 

instruction or new SIMD data. In the SIMD case, the enable decoder operates with each new data 

because even though the operation and representation don’t change, the signs of the operands 

change with different data which changes the modified operation and therefore the enable of the 

registers changes.   
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Input registers: 

 
There are six input registers each connected to one of the CLBs, they register and output the 

operands to the CLBs, they input new operands when enabled by the enable decoder, when the 

FPU reset bit is set to one they reset all operands to zero and when enabled they output a signal 

to the output register of the same CLB to read the outputs and flags after one clock cycle. 

    

CLBs (Combinational Logic Blocks): 

 
The six CLBs are: 

1. Decimal Adder 

2. Decimal Subtractor 

3. Decimal Multiplier 

4. Single precision Adder 

5. Single precision Subtractor 

6. Single precision Multiplier 

 

Input registers: 

 
There are six output registers each connected to one of the CLBs, they register and output the 

outputs and flags of the CLBs, they input new outputs and flags when enabled by the signal from 

the input register connected to the same CLB and they also output a ready signal that is set to one 

whetn it receives the new outputs and flags. 

 

Output multiplexer: 

 
The output multiplexer inputs the outputs, flags and ready signals of the six output registers and 

outputs the desired according to the modified operation and representation. 

 

Other logic: 

 
The doorbell_r signal is fed back to the HCI to reset the Doorbell bit of the command register to 

zero indicating that the operands hane been inserted to the CLB. 

The rst_r signal is fed back to the HCI to reset the FPU Reset bit of the command register to zero 

in case it was set to one indicating that the input and output registers have all been reset. 
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4.2.2 Design with SIMD support 

 
In order to support SIMD instructions some blocks were added and some modifications were 

made as explained here. 

 

Added blocks are: 

• SIMD block 

• Operands multiplexer  

• Interrupt multiplexer 

• Software dataout multiplexer 

 

SIMD: 

 
This block is the main block in supporting SIMD, it interfaces with the software to directly read 

the operands and register them, it also interfaces with the HCI through some control signals and 

with other FPU blocks as shown in Figure 41, it contains 16 registers for each of the operands, 

for the outputs and the flags, it also contains a finite state machine, counters ,multiplexers and 

demultiplexers  that control the operands that are outputted and the outputs and flags that are 

read, it also achieves pipelining.   

 

 

Figure 41: SIMD connections 
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Operands multiplexer: 

 
This block chooses which operands are to be sent to the input registers either those from the HCI 

or the SIMD blocks according to whether it’s a SIMD operation (SIMD bit of the command 

register is set to one) or not. 

   

Interrupt multiplexer: 

 
This block’s name is misleading, its function is to choose which output, falgs and ready signal 

are to be sent to the HCI either those from the output multiplexer in case of single instruction or 

the ouput and flags of the first register in the SIMD block and the simd_ready signal in case of 

SIMD instruction.   

 

Software dataout multiplexer: 

 
This block interfaces with the software to output the sw_dataoout instead of the HCI, according 

to the required register data if it’s the command register, status register 0x110 or output 0x130, 

it’s read from the HCI output else for the other outputs and status registers, it’s read from the 

SIMD output as their registers are located there.   

 

4.2.3  Top level simulations 

4.2.3.1  Single instruction: 

 

 Normal operation without interrupt enable: 

 

 

Figure 42: Single instruction simulation (A) 
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Figure 43: Single instruction simulation (B) 

As shown in Figure 42 and Figure 43: 

• First, the software sends operand a (0x10) then operand b (0x50), by observing when 

fpu_operand_a and fpu_operand_b values change it’s clear that reading each takes one 

clock cycle. 

• Then, the software sends the FPU command register (0x0) and the fpu_doorbell_w signal 

is set to 1 

• The fpu_doorbell_r signal, output of the input register which is active low, is set to 0 after 

another clock cycle (this clock cycle is needed to register the inputs of the different 

representations/operations) 

• The fpu_ready signal is set to 1 after another clock cycle (CLB delay). 

• After another clock cycle the status bit of the FPU command register (0X110) is set to 

one and fpu_output is ready which means that the operation takes 3 clock cycles from the 

negative edge of the sw_write_en signal after reading the FPU command register until the 

status bit is set to one.  

• After that the clear status bit of the FPU command register (0X110) is set to one by the 

software. 

• The fpu_ready signal is reset to zero after one clock cycle. 

• After another clock cycle the status bit is reset to zero and in the following clock cycle 

the clear bit is reset to zero as well, both are reset to zero by the FPU not the software. 

• The output (0X130) is then read but it can be read at any clock cycle afte the status bit is 

set to one. 
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FPU reset bit: 

 

 

Figure 44: FPU reset bit simulation 

Figure 44 shows the case where the FPU reset bit of FPU command register (0x0) is set to one, 

the operands registered in the input register are set to zero after two clock cycles and the outputs 

registered in the output register are set to zero after another clock cycle, the software can read the 

FPU command register (0x0) to find that this signal is reset to 0 after 3 clock cycles from the 

negative edge of the sw_write_en signal. 

 

FPU enable bit: 

 

 

Figure 45: FPU enable bit simulation 

Figure 45 shows the case where the FPU enable bit is kept zero, the fpu_doorbell_w signal is not 

set to one and therefore no operation is carried out, trying to read the output, it is zero due to a 

preceding reset. 
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FPU interrupt enable bit: 

 

Figure 46: FPU interrupt enable bit simulation 

Figure 46 shows the case where the FPU interrupt enable bit is set to one, the fpu_interrupt 

signal rises to one with the status bit of the FPU status register (0x110) and drops to zero again 

when the clear status bit is set to one. 

4.2.3.2  SIMD instruction: 

 

Figure 47: SIMD instruction simulation (A) 



   

56 

 

 

Figure 48: SIMD instruction simulation (B) 

 

Figure 49: SIMD instruction simulation (C) 

As shown in Figure 47, Figure 48 and Figure 49: 

• First, all the operands are written. 

• Then, the FPU command register (0x0) is written by the software with the simd bit set to 

one and the number of simd operations bits set to the desired value, here three operations 

are carried which means that the number of simd operations bits are set to 4’b0010. 

• The operation takes 4(latency)+n-1 (n : number of SIMD operations) clock cycles from 

the negative edge of the sw_write_en signal after reading the FPU command register until 

the status bit is set to one instead of 3*n 

• The outputs and the other status registers (contain flags) can then be read. 
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4.3 RISC-V  

The RISC-V is an open-source ISA that was originally developed in the Computer Science 

Division of the EECS Department at the University of California, Berkeley. 

 

4.3.1 RISC-V features 

• An open-source ISA (Instruction Set Architecture) without the financial burden of 

licensing fees 

• Simple 

o Far smaller than other commercial ISAs 

o Clean slate design 

• A modular ISA  

o Small standard base ISA (I) 

o Multiple standard extensions (M A F D G C) 

• Designed for Extensibility/Specialization 

o Variable-length instruction encoding 

o Vast opcode space available for instruction-set extensions 

• Stable 

o Base and standard extensions are frozen  

o Addition via optional extensions, not new versions 

• Engineers can choose to go big, small, powerful or lightweight with their designs. 

 

4.3.2 RISC-V processors 

A Survey of different implementations of the RISC-V processor was carried out and a 

comparison between them was made. 

First, some cores were excluded, some examples for reasons for excluding cores are: 

• Language (not Verilog or SystemVerilog) 

• Not open source (e.g. Andes- Nuclei) 

• No debugger (e.g. PicoRV32) 

• GitHub Star (e.g. starsea_riscv-0 star) 

• License (e.g. RV12) 

Then, three SoCs (System on Chips) were chosen SweRVolf, PULPino and PULPissimo. 

• SweRVolf 

o Core:  EH1 

• Language: SystemVerilog 

• RV32IMC 

• On-chip debugger (OpenOCD) 

• PULPino and PULPissimo 

o Cores:  

1. Zero-risky 

• Language: SystemVerilog 
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• RV32IMC 

• Dubugger: RISC-V debug specification 0.13  

2. RI5CY 

• Language: SystemVerilog 

• RV32IM[F]C 32-bit 

• Optional full support for RV32F Single Precision Floating Point 

Extensions (Floating-point support in the form of IEEE-754 single 

precision)  

• Dubugger: RISC-V debug specification 0.13  

 

SweRVolf PULPino PULPissimo 
 

 uDMA Subsystem 

UART UART UART 

SPI SPI Master SPI Master 
 

I2C I2C 
 

 I2S 
 

 CAMIF 

GPIO GPIO GPIO 

RISC-V timer Timer Timer 
 

Event/Interrupt Unit Event/Interrupt Unit 
 

FLL FLL 

System controller SoC Control SoC Control 

DMI Debug Port Debug Unit 
 

 SoC Event Generator 
 

 Advanced Timer 

 
Table 15: Peripherals of SweRVolf, PULPino and PULPissimo 

Work was done on the three SoCs trying to build and run simulation examples on them and then 

trying to modify these examples to later build our own application, only SweRVolf and PULPino 

were successfully built and a simulation example was run on each, PULPino example was easily 

modified by changing in C codes unlike SweRVolf, therefore PULPino was chosen for 

integration. 
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4.4 PULPino  

PULPino is an open-source single-core microcontroller system, based on 32-bit RISC-V cores 

developed at ETH Zurich. PULPino is configurable to use either the RISCY or the zero-riscy 

core. 

4.4.1 Features 

• Processor (Open-source RISC-V ISA processor). 

• Ultra-low-power and ultra-low-area constraints. 

Most of PULPino blocks are gated by clock (to turn off any useless block during 

operations so it can save more power). 

The peripherals connected to APB bus that is less power consumption than AXI bus.  

• RI5CY or zero-riscy core.  

The two cores have the same external interfaces and are thus plug-compatible.    

The difference between RI5CY and zero-riscy is that the RI5CY core support more ALU 

ISA extensions and complex operations than zero-riscy. 

We are working with the RI5CY core which is enabled by default. 

• Contains a broad set of peripherals:  I2C   SPI   UART  

• Available for FPGA (Synthesizable written in System Verilog) 

4.4.2 PULPino Architecture 

 

Figure 50: PULPino block diagram 

The SoC uses a AXI as its main interconnect with a bridge to APB, both the AXI and the APB 

buses feature 32 bit wide data channel, all peripherals in PULPino are connected to the APB bus 

except the SPI slave which is a very special peripheral and not intended to be used from the core 

itself. (3) 

The core uses a very simple data and instruction interface to talk to data and instruction 

memories directly. 
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4.4.3 Memory map 

 

 

Figure 51: PULPino memory map 

4.4.4 PULPino environment 

In order to build Pulpino platform, Ubuntu 18.04 Linux VM image on VMware was used.  

4.4.4.1 Pulpino requirements 

1. ModelSim in reasonably recent version  

Modelsim-Intel FPGA Lite (Free) Edition for Linux (release: 19.1) was used, but 

since Intel only supports Red Hat-based distros like CentOS Linux, at first Modelsim 

didn’t work, but by looking for some hacks and scripting some edits and changes as 

shown in Figure 52, Modelsim worked on the used Ubuntu and the installation path to the 

bin was added to the ".bashrc" path. (4) 
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Figure 52:Commands for making Modelsim work 

2. python2 >= 2.6 

The installed version is 2.7.17 in addition to installing python yaml. 

 

3. CMake >= 2.8.0 

Used script is shown in Figure 53 and then the bin was added to the ".bashrc" path 
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Figure 53: Script for installing and making Cmake 

4. riscv-toolchain 

ri5cy_gnu_toolchain was used, errors arose at first while running make, by 

searching I reached a way that by making some changes in some files and rerunning 

make, it finished successfully and the installation path to the bin was added to the 

".bashrc" path. (5) 

  

Changes to build ri5cy_gnu_toolchain: 

o git clone https://github.com/pulp-platform/ri5cy_gnu_toolchain.git 

o cd ri5cy_gnu_toolchain 

o Run make. It will download some files, encounter an error and stop. 

o cd build/src/newlib-gcc/gcc/cp 

o Open cfns.gperf in your favorite text editor and remove lines below the first 

comment (starting at line 19, inclusive) up until the line containing "%}" without 

the quotation marks. After that's done, right after the comment ends with "*/" 

without quotation marks, the next line should be "%}" without quotation marks. 

o gperf -o -C -E -k '1-6,$' -j1 -D -N libc_name_p -L C++ --output-file cfns.h 

cfns.gperf 

o Open except.c and on line 1043 add "Perfect_Hash::" without quotation marks 

exactly in front of "libc_name_p" without quotation marks. 

o cd back to ri5cy_gnu_toolchain and run make. It should not encounter any errors 

and should finish successfully. 

4.4.4.2 Running simulations 

 To run simulation of hello world example in Modelsim console, the script in 

Figure 54 were used and the output is shown in Figure 55 

 

Figure 54: Script for running hello world example 
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Figure 55: Output of hello world example 

4.5 FPU-RISC V INTEGRATION 

4.5.1 Integration methods 

There were three methods to integrate the FPU with the RISC-V: 

 

1. To connect it through the UART as an intermediate interface between both RISC-V and 

FPU. 

2. To replace one of the peripherals with the FPU to be directly connected to the APB. 

3. To connect the FPU directly to the APB as a new peripheral. 

 

The first method is not preferred because it requires unnecessary time and more complex 

applications to handle the data between two different peripherals 

 

The second method was the one used, the I2C peripheral is the one chosen to be replaced since 

• The size of its memory suits that specified in the HCI memory map specification as 

shown in Table 8, Pulpino memory map after this replacement is shown in Figure 56. 

•  The FPU registers slightly resemble those specified in the HCI specifications. 

 

The third method is more practical as in practical one would want to extend or add new 

peripherals to existing ones rather than replace an exsisting one but since it needs more 

modifications in PULPino files than the second case and there wouldn’t be a difference in 

functionality, the second case was chosen yet this case is a better practice. 
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Figure 56: Pulpino memory map after replacement of I2C by FPU 

4.5.2 Integrating the FPU with RISC-V via a Bridge  

An apb_fpu_bridge was designed to integrate the FPU with the APB since the FPU have 

input/output signals different from that of the APB and a different address register size, the 

bridge is a combinational block written in Verilog and it interfaces the APB from the left and the 

HCI of the FPU from the right, the input and output signals on both sides are shown in Figure 57 

 

 

Figure 57: apb_fpu_bridge input/output signals 
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4.5.2.1 Bridge-APB interface 

The used APB signals’ description according to the AMBA APB Protocol (Version: 2.0) are 

shown in Table 16: APB used signals descriptionTable 16 (6) 

Signal Desciption 

PCLK Clock. The rising edge of PCLK times all transfers on the APB. 

PRESETn Reset. The APB reset signal is active LOW. This signal is normally 

connected directly to the system bus reset signal. 

PADDR Address. This is the APB address bus. It can be up to 32 bits wide (here 

12 bits wide) and is driven by the peripheral bus bridge unit 

PWDATA  Write data. This bus is driven by the peripheral bus bridge unit during 

write cycles when PWRITE is HIGH. This bus can be up to 32 bits 

wide (here 32 bits wide) 

PRDATA Read Data. The selected slave drives this bus during read cycles when 

PWRITE is LOW. This bus can be up to 32-bits wide (here 32 bits 

wide) 

PSELx Select. The APB bridge unit generates this signal to each peripheral bus 

slave. It indicates that the slave device is selected and that a data 

transfer is required. There is a PSELx signal for each slave. 

PWRITE Direction. This signal indicates an APB write access when HIGH and 

an APB read access when LOW. 

PENABLE Enable. This signal indicates the second and subsequent cycles of an 

APB transfer 

PREADY Ready. The slave uses this signal to extend an APB transfer.  

PSLVERR This signal indicates a transfer failure. APB peripherals are not required 

to support the PSLVERR pin. This is true for both existing and new 

APB peripheral designs. Where a peripheral does not include this pin 

then the appropriate input to the APB bridge is tied LOW 

Table 16: APB used signals description 

4.5.2.2 Bridge-FPU interface 

Signal Desciption 

Clk Clock 

reset_n Asynchronous reset 

sw_address Address which is 32 bits wide 

sw_datain  Write data which is 32 bits wide  

sw_dataout Read Data which is 32-bits wide  

sw_read_en Read enable one bit which enables a read operation 

sw_write_en Write enable one bit which enables a write operation 

fpu_interrupt Interrupt 

Table 17: FPU signals description 
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4.5.2.3 Bridge-Event unit interface 

 
The fpu_int signal is connected to PULPino lightweight event and interrupt unit. 

 

4.5.2.4 Integration steps 

1) Replace I2C rtl files with the FPU and the bridge rtl files. 

2) Replace the I2C instantiation by the FPU instantiaton (peripherals.sv).  
3) Remove inputs/outputs of the I2C (pulpino_top.sv). 
4) Replace I2C rtl files directories in vsim vcompile scripts by those of the FPU 

(vcompile_apb_i2c.csh). 
5) Compile and load design. 

4.6 FPU APPLICATION AND TESTING 

4.6.1 FPU application 

 The FPU application was written in C programming language, four functions were added to the 

I2C.c and I2C.h files which are: 

1. FPU_Single_Instruction 

2. FPU_SIMD_Instruction 

3. Compare 

4. FPU_get_status 

4.6.1.1 FPU Single Instruction 

 

Figure 58: FPU_Single_Instruction header 

Function Inputs:  

• Two operands  

• Operation 

• Representation 

Function Outputs:  

• FPU output 

• Flags 

Function code flow: 

1. Wait until status bit is set to zero by reading the command register in a loop. 

2. Write operands. 

3. Write command register 

• FPU Enable and Doorbell are set to one, Interrupt enable is set to zero. 

• Floating-point format and operation are set according to the floating-point 

representation and operation sent.  



   

67 

 

4. Wait until status bit is set to one by reading the command register in a loop. 

5. Reset status bit to zero by writing to the command register the same value read fom it (to 

not affect the flags as they’ll be read later) but eith the clear bit set to one. 

6. Read output. 

7. Read flags. 

 

 

Figure 59: FPU_Single_Instruction output 

4.6.1.2 FPU SIMD Instruction 

 

Figure 60: FPU_SIMD_Instruction header 

Function Inputs:  

• Two arrays for operands  

• Operation 

• Representation 

• Number of SIMD operations 

Function Outputs:  

• Array of FPU outputs 

• Array of flags 

Function code flow: 

1. Wait until status bit is set to zero by reading the command register in a loop. 

2. Write operands in a loop according to number of SIMD operations. 

3. Write command register 

• FPU Enable and Doorbell are set to one, Interrupt enable is set to zero. 

• Floating-point format and operation are set according to the floating-point 

representation and operation sent.  

• SIMD bit is set to one. 

• Number of SIMD operations bits are set according to the required number of 

operations. 

4. Wait until status bit is set to one by reading the command register in a loop. 
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5. Reset status bit to zero by writing to the command register the same value read fom it (to 

not affect the flags as they’ll be read later) but eith the clear bit set to one. 

6. Read the four status registers then extract from them the flags of each operarion and 

insert them in the array of flags. 

7. Read outputs in a loop and insert them in the array of outputs. 

 

Figure 61: FPU_SIMD_Instruction output 

4.6.1.3 Compare 

 

Figure 62: compare header 

Function Inputs:  

• FPU output. 

• FPU flags. 

• Reference output. 

• Reference flags. 

Function Outputs:  

• Boolean.  

Function code: 

The output is true if  

1. FPU output is equal to Reference output. 

2. All FPU flags are equal to Reference flags. 

Else it’s false 
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4.6.1.4 FPU get status 

 

Figure 63:FPU_get_status header 

This function reads the status register and resurns it’s value, it’s called in the 

FPU_Single_Instruction and th FPU_SIMD_Insruction functions. 

4.6.2 FPU testing 

In order to test the integration of the FPU with the RISC-V core as well as the C functions 

developed, a set of data for different operands, operations, representations and the expected 

outputs and flags was used, the cases shown in Figure 64 were caried out. 

 

The cases are divided into 2 groups: 

1. Cases to test the single instruction function which are futher divided into two sub-groups: 

o One to test that the representation and operation are correctly decoded and this 

was carried out by inserting the same opeands to all the possible combinations of 

the representation and operation (the designed FPU have 6 different cmbinations) 

as shown in Figure 65, where each of those combinations have a different 

expected output so by comparing the expected outputs with the generated ones, 

we can guarantee that the representation and operation are decoded correctly. 

o The other to test that the flags are extracted from the status register and read 

correctly, four cases were tested one for each case as shown in Figure 66, in the 

cases of overflow and underflow two flags are risen in each case, the flag 

representing either overflow or underflow in addition to the inexact flag. 

2. Cases to test the SIMD instruction function, due to the large number of possibilities of 

this instruction and the difficulty of covering all it’s cases by designing specific test 

cases, testing of this instruction was done using 16 different operands for each of the 6 

different combinations of the operation and representation, then the number of SIMD 

operations for each case was looped on to cover all it’s pssible cases, at the first iteration 

the first operands are taken, then in the second iteration the first and the second operands 

are taken, then in the third one the first three are taken and so on until the last operation 

where all the sixteen operands are taken as shown in Figure 67, also the used operands 

with each operation and representation were chosen and disttibuted in a way so that 

different flags are risen in different locations of the SIMD array with each of the 6 

different combinations to check the flags’ decoding. 

The outputs of all test cases were zero errors as shown in Figure 68 

 



   

70 

 

 

Figure 64: Integration test cases  

 

 

Figure 65: Single instruction operation/representation test case 
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Figure 66: Single instruction flags test case 

 

Figure 67: SIMD instruction test case 

 

Figure 68: Test cases output 
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5 CHAPTER FIVE: VERIFICATION 

In this chapter we’re going to discuss the verification phase in this project, we’re required to 

build a testing environment to perform functional verification on the RTL code, firstly we built 

separate testing environments for each combinational module then an environment to test the 

integrated floating point unit modules with the host controller interface (HCI) 

5.1 DESIGN UNDER TEST SPECIFICATIONS   

The designed FPU performs 3 operations (Addition, subtraction and multiplication) on two 

different 32 bits representations (single precision and decimal format decimal encoding, also the 

designed FPU supports single instruction multiple data (SIMD) operations so it can perform the 

same operation on different operands up to 16 operands 

The output of the FPU has 32-bit result with the same representation of the two input 

operands and 4-bits flags where the four flags are: 

• Invalid operation: raised when the input operation is not one of the three specified 

operations. 

• Overflow flag: raised when the result is greater than the maximum representable number. 

• Underflow flag: raised when the result is smaller than the maximum representable 

number. 

•  Inexact flag: raised when the result is rounded up. 

5.2 WORK FLOW  

We started by studying systemVerilog language for verification from the reference 

(“SystemVerilog for verification A guide to learning the testbench language features third 

edition”) and the UVM basics from (“The UVM Primer An Introduction to the Universal 

Verification Methodology by Ray Salemi”). (7) (8) 

We have built testing environment for each combinational module then we built the 

integrated environment to test the integrated modules with the (HCI). 

The three testing environments for the decimal representation are built using UVM 

transactions & UVM_TLM ports, while the single precision and the integrated environments 

built using sequence_item and UVM_sequencer.   

 

5.3 VERIFICATION ENVIRONMENTS  

All the environments are built using UVM methodology which have more features than the 

OOP environments and make the testing environment more reusable and editable   

The UVM allows us to use 
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• Dynamically-generated objects that allow you to specify tests and test bench 

architecture without recompiling 

• A hierarchical testbench organization that includes Drivers, Monitors, and Bus 

Functional Models 

• Transaction-level communication between objects 

• Testbench stimulus (UVM Sequences) separated from the testbench structure 

5.3.1 Decimal representation testing environment 

It’s a UVM transaction based environment 

5.3.1.1 Environment architecture 

 

Figure 69: Decimal representation testing environment 

5.3.1.2 Environment’s transaction  

The transaction is a UVM object that extends the UVM_transaction, Transactions 

encapsulate both data and all the operations we can do to that data, In our environment we have 

two transactions which are the command transaction and the result transaction  
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5.3.1.2.1 Command transaction 

The command transaction class contains four members which are: 

• 32-bit (a_rep) for operand(1) represented in the decimal format 

• 32-bit (b_rep) for operand(2) represented in the decimal format 

• Real (a_dec) for operand(1) in real format  

• Real (b_dec) for operand(2) in real format  

And it contains two functions which are (“random”) and (“dec”): 

Function (“random”) 

 

Figure 70: DE function ("random") 

This function is used to randomize the two operands of the transaction, firstly we create an 

object of the class “rand_num “, this class contains 3 data members: 

• Sign bit which represents the sign of the operand (0= positive number, 1=negative 

number) 

• Unsigned integer (“C”) which represent combination field of the number 

• Integer (“exp”) which represents the exponent of the number 

And one function member (“gen_num”), this function return a real number from the class 

members by using the formula shown in Figure 71 

 

Figure 71: DE function ("gen_num") 

Then these class members are randomized with certain constraints that will be discussed 

later, after the randomization in order to store the randomized operands in 32-bit decimal format 

we used the function (“represent”) which takes an object of the class “rand_num” as an argument 

and return 32-bits in the decimal format, this process is repeated to generate the second operand. 
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Function (“dec”) 

 

Figure 72: DE function ("dec") 

This function is used to store the two randomized numbers in the real format in the two 

transaction members (“a_dec”) and (“b_dec”) using the function (“decode”) which takes the 32-

bit represented number in decimal format and return the corresponding real value using the 

member function (“gen_num”) of class (“rand_num”). 

5.3.1.2.2 Result transaction 

This transaction is used to store the result and then transmits it from the result monitor to 

the scoreboard and its data members are: 

• 32-bit (“Result”) which represents the result in the decimal format 

• Real (“result_dec”) which represents the corresponding real value of the result 

• 4-bit (“flags”) which represents the result flags  

And a function (“dec”) which takes the 32-bit represented result as an argument and 

return the corresponding real value. 

5.3.1.3 Environment’s components description 

5.3.1.3.1 Tester 

The tester block is responsible for generating the test cases which will propagate through 

the environment, the test cases are generated using constrained randomization in the form of 

transactions, the tester has a UVM_put_port which takes the data of transaction type to deliver 

the test cases to the driver. 

The tester generates the UVM command transactions then it calls the function 

(“.random”) to randomize the transaction components, then the transaction is decoded using the 

function (“.dec”) to have the random operands in real form which is needed to perform further 

operations, then the transaction is put in the tester port then this process is repeated to generate 

another test case and so on. 

 

Figure 73: DE generating random transactions 
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5.3.1.3.2 Command_f 

It’s an UVM analysis FIFO of type transaction which delivers the test cases transactions 

from the tester to the driver, the FIFO takes the transaction through its put port in the tester then 

it blocks the tester from putting new transactions in the FIFO till the first added transaction is get 

by the driver 

5.3.1.3.3 Driver 

The driver block extends UVM_component and has a UVM_get_port, also we instantiate 

a virtual BFM in the driver so it can communicate with the DUT through the BFM 

The UVM_get_port is used to get the test cases transactions from the tester through the 

FIFO then it calls a built task (“.send_op”) which takes the two operands represented in the 32-

bit decimal format to be sent to the DUT through the BFM, the other task is 

(“.write_to_monitor”) which takes two arguments which are the two operands in the real format 

to be sent to the command monitor through the BFM 

The run phase of the driver is inside a forever loop however the test ends when the loop 

used in the tester to generate the test cases finishes because the phase objection is dropped after 

generating the test cases and it was the only raised objection in the whole testing environment. 

 

Figure 74: DE driver run phase 

 

 

5.3.1.3.4 Bus functional model (BFM) 

The BFM has two interfaces. On one side is a functional interface that accepts 

transactions and on the other side is a pin interface that is connected to the DUT. The 

functionality of the BFM is to bridge those two interfaces 

In our BFM we have some data members which represent the inputs and outputs of the 

design under test: 

• 32-bit (“operand1”) models the represented first operand in the decimal format 

• 32-bit (“operand2”) models the represented second operand in the decimal format 

• 32-bit (“Result”) models the output of the DUT in the decimal format 

• 4-bit (“Flags”) models the result flags of the DUT 

It also has instances of the command monitor and the result monitor which are used to 

send the two operands and the DUT outputs to the scoreboard, and it has two member tasks 

(“send_op”) and (“write_to_monitor”). 
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Task (“send_op”)  

This task is called in the driver and takes two arguments which are the two operands in 

the decimal format representation then they are assigned to the BFM members (“operand1”) and 

(“operand2”) which are connected to the DUT, the task has a delay of 10 ns to model the 

propagation delay of the operands through the combinational DUT 

 

Figure 75: DE task ("send_op") 

Task (“write_to_monitor”) 

This task is called in the driver and takes two arguments which are the two operands in 

the real format and then they are passed to the command monitor by calling the member function 

of the command monitor instance (“write_to_monitor”), the output of the DUT which are the 32-

bit represented result and the 4-bit flags are passed to the result monitor also by calling the 

member function of the result monitor instance (“write_to_monitor”).  

 

Figure 76: DE BFM task("write_to_monitor") 

5.3.1.3.5 Command monitor 

The command monitor block extends the UVM _component, it has a virtual instance of 

the BFM and has an analysis port of type (“command _transaction”) called (“cm_port”) which is 

used to send the two operands to the scoreboard, In the build phase, this command monitor is 

connected to the command monitor instance in the BFM 

The command monitor has a member function (“write_to_monitor”) (which is called in 

the BFM), the function has two arguments of type real (“a_dec”) and (“b_dec”), firstly we create 

an object of (“command_transaction”) then we assign the two arguments to the corresponding 

members of the command transaction, then the transaction is sent through the port to the 

scoreboard. 

 

Figure 77: DE command monitor function ("write_to_monitor") 
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5.3.1.3.6 Result monitor 

The result monitor block extends the UVM _component, it has a virtual instance of the 

BFM and has an analysis port of type (“result _transaction”) called (“ap_port”) which is used to 

send the result and flags to the scoreboard, In the build phase, this result monitor is connected to 

the result monitor instance in the BFM 

The result monitor has a member function (“write_to_monitor”) (which is called in the 

BFM), the function has two arguments 32-bit (“Result”) and 4-bit (“Flags”), firstly we create an 

object of (“result_transaction”) then we assign the two arguments to the corresponding members 

of the result transaction, we call the member function of the result transaction (“dec”) to put the 

real format of the result in the member of the result transaction (“result_dec”), then the 

transaction is sent through the port to the scoreboard. 

 

Figure 78: DE result monitor function ("write_to_monitor") 

5.3.1.3.7 Scoreboard 

UVM scoreboard is a verification component that contains checkers and verifies the 

functionality of a design. It usually receives transaction level objects captured from the interfaces 

of a DUT via TLM Analysis Ports. 

In our environment the scoreboard extends uvm_subscriber for the result monitor to be 

connected to the analysis port of the result monitor and receive the result transaction, it has a 

UVM_tlm_analysis_fifo of type command transaction which is connected to the command 

monitor analysis port, it has two member functions (“predict_result”) and (“write”) 

 

Function (“predict_result”) 

This function has one argument of type command transaction and return result transaction with 

the predicted result and flags. 

Firstly we create an object of result transaction then we store the predicted real format 

value of the result in (“result_dec”) member of the result transaction by carrying out the required 

operation on the two operands in real format (“a_dec”) and (“b_dec”) which are members of the 

command transaction passed through the argument 

The operation applied on the two operands is changed according to the design under test 

so that the same environment can be used for the addition, subtraction and multiplication designs 

for decimal format representation just by changing the operator in the scoreboard. 
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Figure 79: DE function ("predict_result") for decimal addition 

Function (“write”) 

This function is called automatically when the result monitor write the data in its analysis 

port and it takes one argument of type result transaction (“t”) which have the same data written 

by the result monitor in the port. 

We create two objects of type command transaction and result transaction (“cmd”), 

(“predicted”) then we use the function (“try_get”) to get the data from the FIFO and store it in 

the command transaction (“cmd”), this transaction is passed as an argument to the function 

(“predict_result”) and return a result transaction which is the predicted result for the given 

operands, then the predicted flags are calculated as will be discussed to be compared with the 

DUT flags. 

To calculate the overflow flag, the predicted result is compared to the maximum 

representable numbers (positive or negative), if the result is greater than the maximum positive 

number or smaller than the maximum negative number the overflow flag and the inexact flag are 

raised, then the predicted flags are compared with the DUT flags and decide whether the test 

case pass or fail, without comparing the result as they’re not checked in case of overflow. 

 

Figure 80: DE overflow condition 

The minimum representable number is (1 × 10−101) so that if the absolute result is less 

than that number, the number will be not representable and the underflow flag will be raised, but 

if the exponent is between -95 and -101 it may be underflow or not according to the precision of 

the number for example: 
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If the exponent is -96, and the result is 1.23456 × 10−96 so the number will be 

representable in the form 123456 × 10−101 but if the number is 1.234567 × 10−96 =
1234567 × 10−102 which is an underflow case, special cases is made for each exponent 

between -95 and -101 to calculate the precision of the result and decide if it’s underflow or not. 

The inexact flag is risen when there is rounding up in the last digit of the result (the 7th 

digit) or if it’s an underflow or overflow case, this approximation is done according to rounding 

digit which is the 9th digit of the result, where if this digit is greater than or equal 5 the result is 

rounded up otherwise no rounding occur and this is done by the algorithm shown in Figure 82 

 

Figure 82: DE rounding according to 9th digit 

There is a special case in the addition and subtraction operations where if the exponent 

difference between the two operands is 14 or more so the result will be the larger operand and 

the inexact flag will never be raised but this is not applied for the multiplication case 

The result is compared by calculating the difference between the predicted result and the 

result from the DUT, if this difference is more than a certain threshold (stated due to that the 

operation done on real type in the testing environment has more precision of the decimal format 

Figure 81: DE underflow condition and special case 
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representation) or the predicted flags aren’t equal the DUT flags the test case is considered a 

failure. 

 

Figure 83: DE result check algorithm 

5.3.1.3.8 Class (“env”) 

The env class extends UVM_env, this class has instances of all the environments 

components discussed above which are created in its build phase, then in the connect phase these 

components are connected together where the driver and the tester are connected to the ports of 

the FIFO (“command_f”), also the command and result monitors are connected to the ports of 

the scoreboard, this class is instantiated in (“random_test”) class which extends UVM_test. 

 

Figure 84: DE env ("connect_phase") function 

5.3.1.3.9 Top module 

In the top module (“env_pkg”) which is a package that include all the environment 

components flies, also import the (“UVM_pkg”), then the BFM and the DUT are instantiated and 

connected, the BFM is given to (“UVM_config_db”) to be instantiated easier in the other 

components, then (“run_test”) function is called with the argument the name of the UVM_test 

file (“random_test”) to start the test. 
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Figure 85: DE top module 

5.3.2 Single precision representation testing environment 

It’s a UVM sequence based environment, this environment has some improvements on the 

transaction based environment to make it more reusable as we separate the test case generation 

from the environment structure so we could run different sequences on the same environment. 

5.3.2.1 Environment’s architecture 

 

Figure 86: Single precision representation testing environment 
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5.3.2.2 Environment’s sequence item 

The sequence item class contains six members which are the fields of the single precision 

representation for each operand: 

• 23-bit (“mantissa_1”) represents the significand of operand(1) 

• 8-bit (“exp_1”) represents the exponent of operand(1) 

• bit (“sign_1”) represents the sign bit of operand(1) 

• 23-bit (“mantissa_2”) represents the significand of operand(2) 

• 8-bit (“exp_2”) represents the exponent of operand(2) 

• bit (“sign_2”) represents the sign bit of operand(2) 

These members will be randomized with certain constraints which will be discussed later. 

 

5.3.2.3 Environment’s components description 

The top module, BFM, command monitor and result monitor are almost the same as the 

UVM transaction based environment previously discussed. 

5.3.2.3.1 Sequence 

In our environment this class is called (“random_sequence”) which extends 

UVM_sequence of type (“sequence_item”), this sequence contains the testing scenario by 

creating a sequence item object and randomize it then send it to the sequencer using the functions 

(“start_item”) and (“finish_item”). 

 

Figure 87: SP task ("body") of ("random_sequence") 

5.3.2.3.2 Sequencer 

The sequencer is automatically deliver the sequence_item from the sequence to the 

driver, it has no special functions, so it’s defined in the (“env_pkg”) using (“typedef”) and will 

be instantiated in the (“env”) class, the sequencer has a built in port which will be connected to 

the driver. 

5.3.2.3.3 Driver  

The driver class extends UVM_driver of type (“sequence_item”) the UVM_driver has a 

built in port called (“seq_item_port”) which will be connected to the sequencer, the driver create 

an object of type sequence item to store the data generated by using the function 

(“get_next_item”), then sends this data to the BFM using function (“send_op”) and call the 
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function (“write_to_monitore”) which have been discussed previously, the function 

(“item_done”) is called after sending the data which declares that the driver is ready to get 

another sequence item. 

 

Figure 88: SP driver (“run_phase”) 

 

5.3.2.3.4 Scoreboard 

The scoreboard extends UVM_subscriber of type (“result_transaction”) which is the 

same class in the decimal encoding environment previously discussed, it has a 

(“UVM_tlm_analysis_fifo”) of type sequence item to get the command data from the command 

monitor, it also has two function members (“write”) and (“predict_result”). 

 

Function (“predict_result”) 

It has one argument of type sequence_item , a result_transaction object is created to store 

the predicted result and flags, each operand is converted to short real type using the built in 

function (“$bitstoshortreal”) then the operation is carried out and the result is converted back to 

the single precision representation using the built in function (“$shortrealtobits”), we are using 

the type short real as it’s stored as bits in the form of single precision representation, so it’s 

easier to switch between the two formats 

The same function is used for all the operations by changing only the operator. 

 

Figure 89: SP function ("predict_result") 

Function (“write”) 

In this function the predicted flags are calculated then the DUT result and flags are 

compared to the predicted to decide whether the test case pass or fail 

Since the result is stored in short real type which have the same ranges as the single 

precision representation, in the overflow case the result will be infinity which will be represented 
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as all ones in the exponent field and all zeros in the mantissa field 

(“32’b1111111100000000000000000000000”) 

 

 

Figure 90: SP predicted overflow flag 

In the underflow case the result is all zeros. 

 

Figure 91: SP predicted underflow flag 

To calculate the predicted inexact flag, the operation to get the predicted result is carried 

out again but with storing the result in a real data type so that it has a higher precision, then to 

decide if rounding occurred or not we get the difference between the mantissa of the predicted 

result stored in short real and that stored in real.  

In the case of the subnormal number the mantissa of the higher precision needs to be 

normalized so that it can be subtracted from the single precision mantissa this normalization is 

done by adding the bias of the higher precision (1024) to the exponent of the higher precision 

and subtraction the bias of the lower precision format (128), then the mantissa of the higher 

precision format is shifted right by the result of the previously described operation then the 

mantissa is ready to be subtracted from the single precision mantissa 
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Figure 92: SP predicted inexact flag 

 

5.3.2.3.5 Class (“env”) 

In this class all the environment components are instantiated, in its connect phase the 

driver is connected directly to the sequencer and the command and result monitor are connected 

to the scoreboard as shown in Figure 93 

 

Figure 93: SP env connect phase 

5.3.2.3.6 Class (“base_test”) 

It’s the base test which extends the UVM_test and then any other test with its sequence 

will extends this base test, in this base test an object from the (“env”) and the sequencer classes 

are created then this sequencer object is connected to the sequencer inside the env object     

 

Figure 94: SP class base_teste 
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5.3.2.3.7 Class (“random_test”) 

This class extends (“base_test”) class ,firstly it creates an object from the (“sequence”) 

class  then the built_in function start after raise the uvm_phase objection this function takes one 

argument which is the sequencer object then the objection is dropped after the test scenario is 

done. 

 

 

Figure 95: SP ("random_test") class 

 

5.3.3 The integrated environment  

The integrated environment tests the integrated sequential module which have the FPU (all 

6 modules) and the HCI, it also tests the SIMD (Single Instruction Multiple Data) which 

performs the same operation on array of data up to 16 entries, the environment is a 

sequence_item based environment with the same structure as the single precision environment 

previously described 

5.3.3.1 Environment sequence_item  

  The sequence item of the integrated environment has combined data member from both 

single precision sequence item and decimal encoding command transaction, all this members are 

in the form of arrays of 16 elements it also has control data members to decide the operation to 

be done, the representation and the number of the simd operations, the result transaction data 

members are also in the form of arrays. 
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Figure 96: integrated sequence_item data members 

 

Figure 97: integrated sequence_item control signals 

5.3.3.2 Environment’s components description  

The sequence, sequencer, command and result monitors are almost the same as the single 

precision environment described above 

5.3.3.2.1 Class (“driver”) 

The driver class extends the UVM_driver class, it has an instance from the (“bfm”), in its 

run_phase an object of the sequence_item is created to store the test case which is read from the 

sequencer, then the test case is put in the right representation according to the (“rep”) bit in the 

sequence item, this done in a for loop so that each operation is sent in the case of simd operations 

(using concatenation for single precision and function decode for the decimal encoding 

representation), then the function (“send_op”) is called given the arguments which are the 

represented operands and the control signals, also the function (“write_to_monitor”) is called 

with the same arguments 

5.3.3.2.2 BFM  

The BFM class is connected to the DUT whose input and output data members are shown 

in Figure 98 
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Figure 98: integrated environment BFM data members 

The inputs and outputs are registered where we can give the address of the required register 

through ("sw_address”) and write the data through (“sw_datain”) or read the output from 

(“sw_dataout”). 

The BFM has 3 tasks which are (“reset”), (“send_op”), (“write_to monitor”), and an initial block 

for clock generation 

 

Task (“send_op”) 

The operands is sent to the DUT following a certain procedure corresponding to the 

specifications of the HCI design, for synchronization we used the negative edge clock in the 

environment to write the data on the DUT, then the DUT is sampling the data at the next positive 

edge, by this method the testing environment is immune to the clock skew between the clock 

generation in the BFM and the DUT and monitoring the result the flow of writing is as follow: 

1. The DUT is reset at the start of the testing sequence. 

2. The operands are written to registers with reserved addresses.  

3. Then the control data (which contains the operation, representation, number of 

simd operations and FPU enable) is written to the command register. 

 

Figure 99: writing operands to the BFM 
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Task (“write_to_monitor”) 

This task reads the results from the DUT and creates the result transaction that will be 

sent by the result monitor to the scoreboard and at the same time the command monitor send to 

the scoreboard the corresponding sequence item which includes the test case data 

1. Firstly, we wait on the status bit (which is raised when the FPU finish the 

required operations)  

2. Then the result is read from the output registers 

3. Then the flags are read from the flag registers 

4. Then the result is send to the result monitor and the command is sent to the 

command monitor using the function (“write_to_monitor”) 

5. Then the clear bit is raised which makes the DUT ready to accept a new test case 

and set the status bit to zero.  

 

5.3.3.2.3 Scoreboard 

The scoreboard extends the UVM_subcriber with the type (“result_transaction “), as the 

previous testing environments it has two tasks (“predict_result”) and (“write”) 

Task (“predict_result”) 

The function (“predict_result”) takes one argument of the type (“sequence_item”) 

it is used to calculate the predicted result according to the representation and the 

operation of the test case: 

• In the case of the decimal encoding format (rep bit is zero) the predicted result is 

calculated by performing the required operation on the (“a_dec”), (“b_dec”) data 

members of the sequence item and the predicted result is stored in the 

(“result_dec”) data member of the result transaction. 

 

Figure 100: DE predicted result 

 

• In the case of the single precision format (rep bit is one) the predicted result is 

calculated by performing the required operation on the operands after converting 

them by using the built-in function (“$bitstoshortreal”) then the result is converted 

back to bits by using the built-in function (“$shortrealtobits”) 
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Figure 101: SP predicted result 

 

Task (“write”) 

Task write is responsible for reading the result transaction (which contains the result and 

flags calculated by the DUT) from the result monitor and calculate the predicted flags is 

calculated then the result and flags is compared to decide if the test case will pass or fail 

The predicted flags are calculated according to the representation and operation bits in 

the sequence item that is read from the command monitor the flags are calculated inside a for 

loop that loops on the simd operation number, which perform the same logic as the previous 

environments according to the test case representation. 

5.4 TESTING RANGES DISTRIBUTION 

These ranges distribution is done by applying constraints on the data members to be randomized. 

The test is carried out with random seed for each run and each run generates about 200000 test 

case in combinational modules and about 20000 test case for the integrated DUT where SIMD is 

also randomized which can have upto 16 operation in each test case 

5.4.1 Single precision representation  

Single precision representation has 32 bits, 1 sign bit, 8-bit exponent, 23-bit mantissa, and 

it has 2 categories of numbers normal and subnormal numbers. When the 8 bits of the exponent 

are all zeros it means that the number is a subnormal number (its decimal exponent less than -

38),    
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Figure 102: Single precision ranges 

Since there are edges between positive and negative subnormal numbers (around zero) and 

between subnormal and normal numbers (in both positive and negative cases) and the boundaries 

of the range, so the corner cases are near these edges and boundaries, we distributed the weights 

of the range to: 

1) Large positive normal 

2) Small positive normal 

3) Large positive subnormal 

4) Small positive subnormal 

Other than the ordinary cases of the range between these numbers, Same for the negative 

numbers. 

The cases generated where the randomized operands are different combinations of these 

ranges have a higher probability to cross the boundaries. 

 

Figure 103: Single precision constraints 

5.4.2 Decimal encoding representation 

By the same criteria used in the single precision we divided the entire positive (Same for 

the negative) range into 5 parts: 

1) Extremely large numbers (with max exponent of the range “90”) 

2)  Large numbers  

3) Extremely small numbers (with min exponent of the range “-101”) 

4)  Small numbers  

5) Ordinary numbers 

0 

Positive 

Subnormal  

 

Negative 

Subnormal  
Negative Normal Positive Normal 
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Figure 104: decimal encoding representation constraints 

5.5 BUGS 

MODULE BUGS ACTIONS TAKEN BY 

RTL TEAM 

CURRENT 

STATUS 

DECIMAL 

ADDER 

Incorrect result when one of 

the operands has precision of 6 

digits 

Create a new block to 

remove the leading zeros 

Fixed 

DECIMAL 

SUBTRACTOR 

predicted result not equal to 

calculated at some cases 

exponent of the operands) 

Use the GRS bits during 

normalization 

Fixed 

Rounding error due to error in 

GRS bits 

Change the rounding 

condition in the file 

(“rounding”) 

 

Fixed 

Rounding error (when the 

exponent of the result is 

different from the 

Change the length of BCD 

subtractor 

Fixed 

Incorrect rounding and result 

when the difference between 

the operands is very small 

 Open Bug 

DECIMAL 

MULTIPLIER 

Overflow flag is always raised Increase the length of the 

variable storing the sum of 

the exponent of the two 

operands in the file 

(“binary adder”) 

Fixed 

SINGLE 

PRECISION 

ADDER 

No errors   
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SINGLE 

PRECISION 

SUBTRACTOR 

Inexact flag isn’t raised 

correctly 

Change the length of 

binary subtractor 

Fixed 

Incorrect result and inexact 

flag in case of operands with 

small difference in exponent 

 

During normalization use 

GRS bits, Switch the order 

between rounding and 

normalization 

 

Fixed 

Inexact flag is not raised 

correctly in case of subnormal 

operands 

 

Handle subnormal 

numbers as special case 

during normalization 

 

Fixed 

Incorrect result when rounding 

occur 

Remove GRS bits from 

the mantissa before 

rounding 

Fixed 

SINGLE 

PRECISION 

MULTIPLIER 

Underflow flag is raised at 

subnormal result(exp < −38) 

Modifying 

(“normalization”) file to 

consider the subnormal 

numbers as results without 

raising the underflow flag 

Fixed 

Incorrect result when one of 

the operands is subnormal 

 

(“exponent addition”) 

module handles the case 

of multiplication between 

normal and subnormal 

operands as a special case 

Fixed 

Overflow flag isn’t raised 

correctly 

Modifying the overflow 

condition 

Fixed 

INTEGRATED 

FPU 

 

Output is always zero at first 

add/subtract operation after 

reset where operands are not 

of the same sign 

Take into consideration 

the operand’s sign for the 

selection of output 

multiplexer 

Fixed 

Status bit isn’t  raised in simd 

instructions 

Modifying (“simd”) 

module and including 

finite state machine to 

control the module 

Fixed 

Simd operation is t the same 

for all the operands as the first 

operation regardless the sign 

of the other operands 

Updating the operation for 

each simd operation 

depending on the 

operand’s sign 

Fixed 

Flags in the first simd 

operation are not correctly 

risen 

Creating special cases for 

small number of simd 

operations to directly 

connect the flags to the 

output 

Fixed 

Table 18: BUGS   
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6 CHAPTER SIX: SYNTHESIS AND FORMAL 

VERIFICATION 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 10.1: Design Flow Block Diagram 

 

 

6.1 Synthesis 

When synthesizing any design, we have certain considerations to take. We need to set the 

libraries to be used due to allowable fabrication technology and design techniques, and then we 

need to analyze our designs and sub-designs. Moreover, we need to define Performance figures 

like speed and power optimization constraints according to our needs. Furthermore, we need to 

RTL Code 

Verification 

(Simulation) 

Formal 

Verification 

(RTL vs 

Netlist) 

RTL 

Coding 

Placement 

and 

Routing 

Synthesis 

Figure 105: Design Flow Block Diagram 
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specify technology constraints like size and space (area). Finally, we need to compile the design 

according to the specified constraints, in a top-down or bottom-up strategy, afterwards we obtain 

reports about whether the constraints we set were satisfied or not, and the area, speed and power 

consumption of our design (9). 

6.1.1 Flow Chart of the Synthesis Process 

The steps of the synthesis process are done in a sequential manner as seen below in Figure 106.  

This sequence may be modified slightly to suit the design process of each designer. 

 

Figure 106: Synthesis process flow chart. 

We will refer to the synthesis flow using the Synopsys Design Compiler tool in the following 

discussion because that is the tool we use in our practice. 

6.1.2 Setting the Libraries 

It is vital to define the technology library to which the design will be mapped so that the 

synthesis tool knows how to map the design. There are multiple library types, each contains 

specific information about the cells and the technology itself, they are as follows (9): 

• Target library: contains all the logic cells that should used for mapping during synthesis. In 

other words, the tool during synthesis maps a design to the logic cells present in this library. 



   

97 

 

• Link library: contains information on the logic gates in the synthesis technology library. The 

tool uses this library solely for reference but does not use the cells present in it for mapping as in 

the case of target_library. 

In order to specify the Technology library we set both the target library and the link library in our 

design to “NangateOpenCellLibrary_ss0p95v125c.db” as it has highest temperature, lowest 

voltage and slow-slow process, also notice that link library setting is a list that contains the 

technology library as well as an asterisk, which indicates that DC should resolve references by 

searching the memory (designs that have been analysed prior to this design) and then if it cannot 

find the reference in memory it will look in the technology library. If DC does not find the 

reference in either, it looks in the search path. The search_path is just a variable that tells 

DC where to look in order to resolve references that have not been found in the link library. 

6.1.3 Reading in the Design 

After specifying our libraries, we need to allow DC to read in the design. This phase consists of 

checking and analyzing the RTL for syntax errors, resolving references, mapping the design to 

technology-independent implementation (GTECH) before building the generic logic for the 

design. DC offers us with two options for accomplishing this. The read_file technique is the 

first, while the analyse and elaborate approach is the second. The analyse command 

also stores the result of the translation in the specified design library that maybe used later. So a 

design analyzed once need not be analyzed again and can be merely elaborated, thus saving time. 

Conversely read command performs the function of analyze and elaborate commands but does 

not store the analyzed results, therefore making the process slow by comparison, so we use 

analyse and elaborate. 

6.1.4 Optimization Constrains 

In order to properly optimize our design to give minimum area and highest speed, we must 

provide DC with constrains. This involves setting drive characteristics for input ports, setting 

loads on input and output ports. 
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6.1.4.1 Clock Characteristics 

1. It is important for prelayout phase where clock tree are incompelete to specify 

transition time at register clock pins as it might be pessimistic. We can specify this 

using command set_clock_transition. 

The command set_clock_transition places clock_rise_transition and 

clock_fall_transition attribures on the clock_list we take it in our design with “0.1”. 

2. set_clock_uncertainity This command can specify either interclock   

uncertainty or simple uncertainty (skew characteristics). It has been set with 0.08 

from period. 

3. The clock network latency is the time it takes a clock signal to propagate from the 

clock definition point to a register clock pin. Design Compiler assumes ideal 

clocking but specifying clock network latency provides an estimate of the clock tree 

for pre-layout, so we used this command set_clock_latency with value 2. 

6.1.4.2 Maximum Capacitance 

We use the set_max_capacitance command to define the maximum total capacitive 

load that an output port can drive. Capacitance is specified in units consistent with 

technology library definition. 

DC must check that the capacitive load of driven nets and interconnects is less than the 

max_capacitance attribute of the driving pin. 

 

6.1.4.3 Speed 

DC deals with timing constraints for speed optimization in a very specific way. Generally, 

the tool classifies timing paths into 3 categories as follows: 
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o Path category 1: From input to register (this path is constrained according to the 

input delay using set_input_delay command) and we set it with 0.4 from 

our period. 

o Path category 2: From register to register (this path is constrained according to 

the clock period, using the create_clock command) and here we set period 

with 28𝑛𝑠 as after some iterations of compilation we found it gives positive slack 

= 0.26𝑛𝑠. 

o Path category 3: From register to output (this path is constrained according to 

output delay, using the set_output_delay command) and we set it with 0.4 

from our period. 

6.1.4.4 Area 

In order to constrain the area of the design we use the set_max_area command and 

provide DC with the maximum area constraint. Setting max_area attribute to a value of 

zero means we want DC to optimize the area to the smallest possible size. 

6.1.5 Compiling the Design 

The design is mapped onto technology-specific gates at this step, and the design is also optimised 

at this time. We ask DC to map and optimise the design based on these limitations and 

environment settings after we've defined all of our constraints and environment variables. This is 

accomplished on three levels: the architectural, logic, and gate levels. “compile_ultra” is 

command that has been used. 

DC performs high-level synthesis activities at the architectural level, such as reordering 

operators, sharing sub-expressions and resources, and picking other more optimal DesignWare 

implementations. 

In the logic-level phase, DC is still working on GTECH implementation; here is where DC deals 

with the hierarchy in the design. 
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DC works on the netlist created by logic-level synthesis to create a technology-specific 

implementation in the gate-level phase. The actual technology-specific mapping, as well as delay 

and area optimization (according to restrictions) and any design rule constraint violations are 

completed in this step. 

For large hierarchical designs consisting of many sub-circuits there are several strategies that we 

may use to compile the design, but we use Top-Down Strategy. 

Top-Down Strategy 

In this strategy, we set the constraints for the top level module only. We read all lower level 

modules, but we do not compile them separately. After all the modules have been read, and the 

top level constraints have been defined we compile the top level only, and DC infers the 

constraints required for lower level modules in order to satisfy the top level constraints, and thus 

it maps all modules accordingly. 

At first we use compile_ultra -retime -timing_high_effort_script to give 

more effort to timing violations then we set_critical_range 2 which specify that next 

optimization will be applied to critical path and paths which has till negative slack 2, then we 

compile_ultra -incremental to optimize more or paths which may be violated but we 

found that there is a hold violation, and to solve it we set_fix_hold [all_clocks] and 

then compile_ultra -retime -timing_high_effort_script and 

compile_ultra -incremental and it gives good results without violations (10). 

6.1.6 Report Analysis 

Design Compiler makes it easy for us to generate a range of reports to check the accuracy and 

quality of our implementation. The time report, the area report, the quality of outcomes report, 

and the constraint report are the most significant reports. We'll go over each of them in detail 

below (9). 
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6.1.6.1 Timing Reports 

Design Compiler has a built-in static timing analyzer called DesignTime. Static Timing Analysis 

can determine if a circuit meets timing constraints without dynamic simulation which is an 

advantage when it comes to saving time. 

DesignTime works by breaking down our design into a set of timing paths, each has a 

startpoint and an endpoint. 

Below in Figure 107. Notice that the time units are units consistent with those defines in the 

technology library, which is nanosecond in our case. 

 

 

 

Figure 107: Part of Timing report example 

As shown in following histogram that worst slack is 0.268ns which means that there is no setup 

time violation after synthesis. 
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Path 
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Figure 108: Path Slack histogram 

6.1.6.2 Area and QoR Reports 

This report gives us the total area of the design. It calculates this area by adding the area 

attributes of the gates from the technology library. Usually the area units are specified in the 

technology library as well, or in an associated document. In our case the area units were µm2. 

Figure 109: Area report example shows an example of the area report. Notice that the 

interconnect area and the total area are reported as “undefined” because pre-layout we do not 

have an idea of interconnect area. 

 

Figure 109: Area Report example 
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Figure 110: Summary of QoR Report 

6.1.7 Design challenges 

At first hold time violation was “-1.88ns”as we used compile_ultra only. We tried to fix this 

violation with: 

1. Compile with -only hold time. 

2. Specify timing optimization options in PnR script. 

3. Opening worst path and insert more buffers in it or use larger driving buffers in it (this 

method works but there were large number). 

Finally we solve it using specific types of compile as illustrated in section 6.1.5. 
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6.2 FORMAL VERIFICATION 

Formal verification is a method to verify a design without running Simulations, thus saving 

simulation time. It works by comparing the “implementation” design against a “reference”, 

golden model design, that has already been simulated (or proofed by formal verification against a 

previous reference design). 

6.2.1 Basic Definitions: 

• Reference Design: The golden model against which we verify the implementation design 

• Implementation Design: The design we want to verify, here it is the synthesized netlist. 

• Container: A container is like a “bucket” that carries the design library as well as the 

technology library info related to the design in the container. Conventionally, we have 

one container for the reference design and one for the implementation design. 

• Logic Cones:  is a cluster of combinational logic starting from a design object (like: 

primary outputs, internal registers, black box input pins and nets having multiple drivers 

where at least one driver is a port/black box) and spreading backward to terminate at 

certain design object outputs. Formality uses the origin points of logic cones to create 

compare points (when a logic cone boils down from multiple termination points to a 

single origin point, Formality compares the logic cone at this single origin point). 

• Compare Points: The points of origin of logic cones at which formality compares the 

entire logic cones between reference and implementation designs. 

• Matching Compare Points: finding the analogous logic cones between the reference 

and implementation designs. The analogous cones are matched by several techniques, 

performed as follows (in this order): 

o Exact-name matching 

o Name filtering 

o Topological equivalence 

o Signature analysis 

o Compare point matching based on net names 

o After compare points are matched, each pair of compare points is verified against 

the other for logic equivalence. 



   

105 

 

• Verification: Checking that matched compare point in the implementation design is 

logically equivalent to its peer in the reference design. 

 
We used Formality tool by Synopsys and we got 4 unmatched points like in following Figure 

111, but after checking with RTL team and system team we found that those 4 bits are redundant 

as they will always lead to logic1 or logic 0, and also when we verify design all points passed. 

 

 

Figure 111: Unmatched Points 

 

Figure 112: Verification Report 
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7 CHAPTER SEVEN: PHYSICAL DESIGN, PLACEMENT 

AND ROUTING STAGES 

After the completion of the synthesis phase of a design, we can then move on to the next step, 

which is placement and routing of the netlist. There are several stages in the placement and 

routing (PnR) process. 

7.1 BASIC PHYSICAL DESIGN FLOW USING IC COMPILER 

The goal of physical design is to convert the synthesized netlist into a GDSII file that is 

manufacturable (9). The main steps of PnR flow can be seen in the figure below. 

 

Figure 113: Basic Physical Design Flow 
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• Libraries and Files Used During the Physical Design Process: 

1- Logical Libraries 
a. Provide timing and functionality information for all standard cells 

b. Provide timing information for hard macros 

c. Define drive/load design rules: 

Max fanout 

Max transition 

Max/Min capacitance 

d. usually the same ones used by Design Compiler during synthesis 

e. Are specified with variables: 

target_library 

link_library 

 

2- Physical Libraries 

a. Contain physical information of standard, macro and pad cells, necessary for 

placement and routing. 

b. Define placement unit tile like Height of placement rows, Minimum, width 

resolution, Preferred routing directions and Pitch of routing tracks 

c. Are specified with the command: 

create_mw_lib –mw_reference_library 

 

3- Technology Files 

A technology file is provided by the technology vendor. Technology file is unique 

for each technology and contains the information related to metal/vias information 

such as 

a. Units & precision for electrical units (V, I and power) 

b. Define colors and patterns of layers for displays 

c. Number & name designations for each metal/vias 

d. Physical & electrical characteristics of each metal/via 

e. Define design rules such as min. wire width & min. wire to wire spacing 

f. Contains ERC rules, Extraction rules, LVS rules 

g. Provide parameterized cells for MOS capacitance 

h. Create menus and commands 

 

4- RC module files (TLU+) 

TLU is a Synopsys specific format which contains the R and C (Resistor and 

capacitance) values of nets used for routing .These R and C values will be 

required at the time of calculating a net delay which is nothing but product of 

these R and C of a net.In our design we use following TLU files : 

set tlupmax "$sc_dir/tech/rcxt/FreePDK45_10m_Cmax.tlup" 

set tlupmin "$sc_dir/tech/rcxt/FreePDK45_10m_Cmin.tlup" 
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set tech2itf "$sc_dir/tech/rcxt/FreePDK45_10m.map" 

7.2 FLOORPLANNING 

Floorplan is one the critical & important step in Physical design. Quality of your Chip / Design 

implementation depends on how good the floorplan is. 

A floorplanning is the process of placing blocks/macros in the chip/core area, 

thereby determining the routing areas between them. Also, it determines the size of die and 

creates wire tracks for placement of standard cells, creates power ground (PG) connections, 

and determines the I/O pin/pad placement. 

Parameter Value 

Aspect Ratio (AR) 1.0 (square) 

Maximum Core Utilization 0.6 (60%) 

Table 19: Floorplanning Parameters 

7.3 PLACEMENT 

After the floorplanning and power-planning stage, we need to begin placing the standard cells in 

uniform rows inside the core area and fix the obtained placement of the macros as well. This 

stage can greatly influence the timing parameters of our design, as it specifies the finalized 

placement of blocks and standard cells, thus providing a more accurate estimate of interconnect 

lengths and thus delays. 

Keeping the above in mind, we need to be vigilant during our checks in this stage to ensure that 

the rest of the flow will go as smoothly as possible. Here we start to fix hold violation using 

“set_buffer_opt_strategy -effort high” which introduces buffers and inverters 

to fix timing. 

The placement stage is done using the place_opt command and it has several sub-steps. 

There are several options for configuring the flow of this stage according to the needs of our 



   

109 

 

design. For example, we may invoke place_opt with -congestion to encourage the tool to 

place cells with the goal of minimizing congestion or with -area_recovery which enables 

buffer removal and cell downsizing of non critical paths, and in our design we use them both 

with -effort high. 

At end of this stage we check_legality sure that all the cells are placed in row with no 

overlaps. 

After Placement we use “report_timing -delay max -max_paths 20 > 

output/top_place.setup.rpt” and “report_timing -delay min -

max_paths 20 > output/top_place.hold.rpt” to check violations and there was 

a hold violation with -2.01ns which will be fixed in next steps. 

 

 

Figure 114: Floorplan and power rings Placement of FPU 
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Figure 115: Zoomed in view of power rings and floorplanning placement 

7.4 CLOCK TREE SYNTHESIS (CTS) 

We can go on to the Clock Tree Synthesis (CTS) stage after completing the placement stage with 

acceptable timing and estimations of congestion/power usage. We deal with the clock nets that 

were previously viewed as optimal throughout this stage. The parts that follow describe the step 

and what is done during CTS, as well as the inputs to the stage and the desired outputs or goals. 

CTS is essentially the insertion of buffers along the clock paths in the design in order to balance 

the skew (differences in clock signal delay between clock inputs) and satisfy the required 

insertion delay (time taken by clock signal to traverse from clock definition point to the sink of 

the clock). The balancing of clock skew is done by building a buffer tree, as illustrated in 

following figure, below. The handling of insertion delay is done by adding delay lines, as 

illustrated too. 
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Figure 118: Layout after CTS 

 

Figure 116:Balancing of Clock Skews 

 

 

Figure 117:Handling Insertion Delay 
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Figure 119: Zoomed in view after CTS 

7.5 ROUTING 

After the CTS stage is completed with satisfactory skew-balancing and no hold (or setup) timing 

violations, we may proceed to the routing stage. In this stage the design undergoes detailed 

routing, where the actual path of interconnects across different metal layers and in different 

geometric configurations is determined, so as expected  area increased a lot as shown inFigure 

120. 

 

Figure 120: Summary of final area 
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Figure 121: Final Layout of FPU 
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8 PROJECTS CODE LINKS 

INTEGRATED FPU RTL CODE  

https://drive.google.com/drive/u/0/folders/1JWLysGlZydS-aQwMg3v_szmyj6i19_vM 

SYSTEM CODE  

https://drive.google.com/drive/u/0/folders/1NannWNHSFAEaqcV2o_RvE4jhI5tWiKcX 

TESTING ENVIRONMENT LINK ON EDA PLAYGROUND 

https://www.edaplayground.com/x/JvFm 

PHYSICAL DESIGN SCRIPTS 

https://drive.google.com/drive/folders/1-FJvMNPa0Mv9naBD6y11cY8nzqXDsSQ6 

 

 

 

 

 

 

 

 

 

 

https://drive.google.com/drive/u/0/folders/1JWLysGlZydS-aQwMg3v_szmyj6i19_vM
https://drive.google.com/drive/u/0/folders/1NannWNHSFAEaqcV2o_RvE4jhI5tWiKcX
https://www.edaplayground.com/x/JvFm
https://drive.google.com/drive/folders/1-FJvMNPa0Mv9naBD6y11cY8nzqXDsSQ6
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