
Functional Verification of
Narrow-band IOT Physical
Layer Uplink Transmitter

Faculty of Engineering Cairo university
Elecrtonics and Electrical Communication Department

Under the supervision of
Prof. Hassan Mostafa

Si-Vision mentors

Eng.Hussien Galal Eng.Sameh El-Ashry

August 16, 2020

Functional Verification of
Narrow-band IOT Physical Layer

Uplink Transmitter
Faculty of Engineering Cairo university

Elecrtonics and Electrical Communication Department

Under the supervision of
Prof. Hassan Mostafa

Si-Vision mentors

Eng.Hussien Galal Eng.Sameh El-Ashry

By:
Abdulrahman Tarek

Ahmed Mohamed Mahmoud Khalil
Ahmed Taha Abdelrahman

Amira Yehia Ahmed
Mahmoud Mohamed El-Araby

Omnia Tayseer Mohamed

August 2020

2

Abstract

Increased design complexity has resulted in the need for efficient verification.
The verification process is crucial for discovering and fixing bugs prior to fab-
rication and system integration. However, as designs increase in complexity,
the use of traditional verification techniques with VHDL and Verilog may
fall short to provide a proper toolset.
Narrowband IoT (NBIoT) is a Low Power Wide Area (LPWA) technology
that works virtually anywhere. It connects devices more simply and effi-
ciently on already established mobile networks, and handles small amounts
of fairly infrequent 2way data, securely and reliably. It has many advantages:
very low power consumption,excellent extended range in buildings and under-
ground, easy deployment into existing cellular network architecture, network
security amp; reliability, lower component cost.
This thesis explores the use of the universal verification methodology (UVM)
to verify the Physical Layer of NB-IOT LTE Uplink digital Transmitter using
complete environment for the chain.

1

Acknowledgement

The success and final outcome of this project required a lot of guidance and
assistance from many people and we are extremely privileged to have got this
all along the completion of our project. All that we have done is only due to
such supervision and assistance and we would not forget to thank them.
First, to our advisor, Dr. Hassan Mostafa and our advisors Eng.Hussien
Galal, Si- Vision, Egypt and Eng. Sameh El-Ashry, Si-Vision, Egypt
for their patient guidance, enthusiastic encouragement and useful critiques
of this project work.
Certainly, we will never find words enough to express the gratitude we owe
first to Allah and to our families. Their tender love and support have always
been the cementing force for building what we achieved. The all-round sup-
port rendered by them provided the much needed stimulant to sail through
the phases of stress and strain.
Finally, Thanks are due to previous GP members (the designers). Their
thesis was supportive, informative and guided us in many critical issues

2

Contents

1 Introduction 10
1.1 Motivation . 10

1.1.1 IOT . 11
1.1.2 NB-LTE . 12

1.2 Digital design . 24
1.2.1 Digital design flow . 25
1.2.2 Functional verification 28

1.3 The verification process . 29
1.3.1 Basic Testbench Functionality 30
1.3.2 Direct testing. 30
1.3.3 Constrained-random stimulus testing 32
1.3.4 Coverage. 36
1.3.5 Functional Coverage 39
1.3.6 Assertion . 41

2 UVM overview 42
2.1 What is UVM? . 42

2.1.1 System Verilog in UVM 42
2.2 UVM Methodology . 42
2.3 UVM Topology . 43

2.3.1 UVM factory . 45
2.4 Class Hierarchy . 45

2.4.1 UVM TLM communication 46
2.4.2 DUT connections to testbench 46
2.4.3 How are UVM classes related? 46

2.5 UVM phases . 47
2.5.1 Phases hierarchy . 48

2.6 UVM environment approaches 51

3

3 Standard specifications and functionality 55
3.1 Physical uplink shared channel 55
3.2 Channel coding, multiplexing and interleaving 56

3.2.1 Cyclic Redundancy Check (CRC) 56
3.2.2 Turbo Encoder . 56
3.2.3 Rate Matching . 61
3.2.4 Data Multiplexing and Channel interleaver 65

3.3 Physical Channel and modulation 68
3.3.1 Scrambler . 68
3.3.2 Modulation Mapper 69
3.3.3 FFT . 70
3.3.4 Resource element Mapper 71
3.3.5 IFFT and CP . 74

4 Block level testing 76
4.1 Transaction Approach . 78

4.1.1 Turbo Encoder . 78
4.1.2 Modulator . 85
4.1.3 Resource Element Mapper 92

4.2 Sequence Approach . 100
4.2.1 Rate Matcher . 100
4.2.2 FFT . 110
4.2.3 IFFT . 120

5 Top level testing 128
5.1 Specifications extraction . 128
5.2 Test plan . 130

5.2.1 Unknown (X, Z) Signals 130
5.2.2 Timing Relationships 130

5.3 Environment . 131
5.3.1 Sequence item . 131
5.3.2 Driver . 132
5.3.3 Input monitor . 133
5.3.4 Output monitor . 134
5.3.5 Scoreboard . 134
5.3.6 Coverage . 136
5.3.7 Assertions . 140

4

6 Results and conclusion 141
6.1 Block level testing . 141

6.1.1 Turbo Encoder results 141
6.1.2 Modulator results . 144
6.1.3 Resource Element Mapper results 146
6.1.4 Rate matcher results 148
6.1.5 FFT results . 152
6.1.6 IFFT results . 155

6.2 Top level testing . 156
6.2.1 Top level results . 156

6.3 Conclusion . 159

7 References 160

5

List of Figures

1.1 Standalone of NBIOT in GSM 13
1.2 Introduction/NBIOT in guard band 14
1.3 Introduction/NBIOT in band 14
1.4 Introduction/FDD and TDD differences.png 16
1.5 Frame structure type 1 . 16
1.6 Resource grid with 15kHz spacing 18
1.7 Resource grid with 3.75kHz spacing 19
1.8 NPUSH format1 15KHZ subcarrier spacing 21
1.9 Conceptual design flow of a digital system 26
1.10 directed tests incrementally cover the features in the verifica-

tion plan . 31
1.11 total design space and the features that get covered by directed

testcases . 32
1.12 How random tests incease coverage rate 34
1.13 constrained-random tests find new bugs 35
1.14 the paths to achieve complete coverage 36

2.1 UVM classes , connections between testbench and DUT 44
2.2 Transaction level modeling VS Analysis port export 46
2.3 DUT connected to test-bench through irtual interface 47
2.4 DUT connected to test-bench through virtual interface 49
2.5 UVM Tansactions approach envirnoment connectionss 54
2.6 Sequencer connected directly to driver through seq item export.

54

3.1 Overview of uplink physical channel processing [1] 56
3.2 Internal Structure of NB ILTE Turbo Encoder of rate 1/3 . . 57
3.3 Recursive Convolutional Encoder 58
3.4 Standard block diagram for rate matching 61

6

3.5 Multiplexer block diagram . 66
3.6 Multiplexing BPSK stream . 67
3.7 Multiplexing QPSK stream . 67
3.8 Scrambler standard internal structure 69
3.9 Uplink resource grid for NB-IoT 71
3.10 SCFDMA Block diagram . 74

4.1 Turbo Encoder input and output ports 78
4.2 Turbo Encoder Input driving 81
4.3 Turbo Encoder input sampling 81
4.4 Turbo Encoder output sampling 82
4.5 Modulator input and output ports 85
4.6 modulator driving . 88
4.7 modulator sampling . 88
4.8 Modulator output sampling 89
4.9 REM input and output ports 92
4.10 Resource Element Mapper input driving 95
4.11 Resource Element Mapper input sampling 96
4.12 Resource Element Mapper output sampling 96
4.13 Rate Matcher input and output ports 100
4.14 Rate Matcher input driving 104
4.15 Rate Matcher input sampling 104
4.16 Rate Matcher output sampling 105
4.17 FFT input and output ports 110
4.18 FFT driving . 113
4.19 FFT sampling . 113
4.20 FFT output . 114
4.21 FFT 3-point SFG . 115
4.22 FFT 6-point SFG . 115
4.23 FFT 12-point SFG . 116
4.24 IFFT input and output ports 120
4.25 IFFT driving . 123
4.26 IFFT sampling . 124
4.27 IFFT output . 124
4.28 IFFT 16-point SFG . 125

5.1 Chain Input driving . 133
5.2 Chain Input Sampling . 134

7

6.1 Turbo Encoder coverage group control 141
6.2 Turbo Encoder results By Instance 142
6.3 Turbo Encoder results Recursive Hierarchical Coverage Details 142
6.4 Turbo Encoder Assertion Coverage Report 143
6.5 Incorrect state for Turbo Stream H flag 144
6.6 Modultaor Scheme covergroup 144
6.7 Modulator BPSK covergroup 144
6.8 Modulator QPSK covergroup 145
6.9 Modulator coverage summary by instance 145
6.10 Modulator Recursive Hierarchical Coverage Details 145
6.11 Modulator assertion coverage 146
6.12 Modulator negative test . 146
6.13 Resource Element Mapper covergroup input 147
6.14 Resource Element Mapper cross coverage 147
6.15 Resource Element Mapper coverage summary by instance . . . 147
6.16 Resource Element Mapper Recursive Hierarchical Coverage

Details . 148
6.17 Resource Element Mapper assertion coverage 148
6.18 Rate matcher coverage group control 149
6.19 Rate matcher coverage group data 149
6.20 Rate matcher cross coverage group control 149
6.21 Rate matcher Coverage results By Instance 150
6.22 Rate matcher Recursive Hierarchical Coverage Details 150
6.23 Rate matcher Assertion Coverage Report 151
6.24 Incorrect value for the output sequence length value E 151
6.25 Incorrect value for the output sequence length value E wave

form . 152
6.26 fft covergroup input . 153
6.27 FFT Covergroup Msymb . 153
6.28 FFT coverage summary by instance 153
6.29 FFT Recursive Hierarchical Coverage Details 154
6.30 FFT assertion coverage . 154
6.31 IFFT coverage summary by instance 155
6.32 IFFT Recursive Hierarchical Coverage Details 155
6.33 IFFT assertion coverage . 156
6.34 Top scramb covergroup input 157
6.35 Top RM-mod Covergroup upper layer 157
6.36 Top REM Covergroup upper layer 157

8

6.37 Top coverage summary by instance 157
6.38 Top Recursive Hierarchical Coverage Details 158
6.39 Top assertion coverage . 159

9

Chapter 1

Introduction

1.1 Motivation

Over the past decade, there has been a tremendous growth in the number
of wireless devices. As wireless technology matures, this number is expected
to grow at an even higher rate with the goal being able to connect every
physical device to the internet. This presents a huge opportunity for wireless
system designers as 99.4 percent of the physical devices are still unconnected.
Machine to machine (M2M) communication is needed where devices would
communicate with each other without any human interaction. It is expected
that the revenue from M2M devices will grow from $200 million in 2011 to
$1.2 trillion in 2022. Some of the services which might need machine type
communication (MTC) include consumer electronics, security, public safety,
automotive, utilities, remote maintenance, payments, health and smart cities.
Until now, most of the wireless technologies were focused on improving the
quality and performance of consumer electronic devices intended for human
communication. MTC, however, is different from human communication as
the throughput/delay/power requirements vary to a great extent based on
the application and thus, require different connectivity solutions.

While services involving consumer electronics, building security and mainte-
nance can be served by a local area network (LAN), services such as remote
maintenance (sensors, vending machines etc), utilities (power, gas, water,
heating etc), smart cities etc need a wide area network (WAN). Since the
cellular technology is pretty mature and is already deployed in most parts of

10

the world, cellular based MTC systems can provide a solution for the IoT ap-
plications which need a WAN. LTE is one of the latest and widely accepted,
high speed wireless communication standard by 3rd generation partnership
project (3GPP). The standard is revised regularly, in order to accommodate
additional channel conditions and provide better connectivity with higher
data rates and efficient resource utilization.

However, LTE was designed for high speed communication and is not op-
timized for applications that need to support a potentially large number of
low-rate, low power and delay tolerant devices. These low cost devices, typ-
ically used in applications such as sensors, remote maintenance, tracking,
health-care, utilities etc, are expected to have very low complexity, low mo-
bility and low power consumption with a very long battery life. Hence, it is
desirable to develop LTE based wireless systems; suitable for low data-rate
and low power IoT applications.

Therefore, NB-IOT LTE is the suitable choice for this applications, this de-
vided into two section IOT and NB-LTE.

1.1.1 IOT

In the early evolution, it is known as “Internet of Computers”; then changed
to “Internet of People”; and recently, with the rapid development in the ICT,
it is recognized as the “Internet of Things”. In the IoT, different devices and
smart objects are included to expand the Internet and become accessible
and uniquely identified. The connectivity is enhanced from “any-time, any-
place” for “any-one” into “anytime, any-place” for “any-thing”. In the ICT
innovations and economy developments, a significant focus has shifted to the
IoT related technologies where it is widely considered as one of the most
important infrastructures of their promotion and one of the future promise
strategies. The main aim is to enable interaction and integration of the phys-
ical world and the cyber space.

The IoT is a new revolution in communication technology which means that
everything, from tires to hairbrush, will be assigned a unique identifier so can
be addressed, connected to other things and exchange information. There is
no exact or standard definition of the IoT yet. There are different attempts
such as, it is defined as “based on the traditional information carriers includ-

11

ing the Internet, telecommunication network and so on, Internet of Things
(IoT) is a network that interconnects ordinary physical objects with the iden-
tifiable addresses so that provides intelligent services”. or, defined IoT as “a
worldwide network of interconnected objects uniquely addressable, based on
standard communication protocols”, semantically as its origin expression is
composed of two words: “Internet” and “Things”. However, the true value
of IoT is in its ability to connect a variety of heterogeneous devices including
everyday existing objects, embedded intelligent sensors, context-aware com-
putations, traditional computing networks and smart objects that differ in
their design, systems, protocols, intelligence, applications, vendors and sizes.

1.1.2 NB-LTE

The earlier LTE-based standards (Cat-0 and Cat-1) that were proposed as
solutions for MTC prior to Release 13 failed to secure a significant share
of the IoT market. Unlike these, however, NB-IoT aims to meet the strin-
gent targets for both low device modem cost of below $5 and long battery
life in excess of 10 years, which are likely to make it much more successful.
Characteristics cited by the GSM Association as making NB-IoT particularly
attractive to users include:

• Low power consumption: current consumption of the order of 1nA
enables devices to operate for up to 10 years on a single charging cycle.

• Low device unit cost and area to integrate into a unified IoT/MTC
platform.

• Improved outdoor and indoor penetration coverage compared with ex-
isting wide area technologies.

• Secure connectivity and strong authentication.

• Optimized data transfer, supporting small, intermittent blocks of data.

• Network scalability to increase capacity.

12

1.1.2.1 Background

Realizing the importance of IoT for low-power and low cost applications with
extended coverage and very long battery life, 3GPP introduced narrowband
IoT (NB-IoT), as a part of their LTE-Release-13. Although NB-IoT is based
on LTE, but it’s a new radio-access technology as it is not fully backward
compatible with the existing LTE devices. However, it can be easily in-
tegrated in the existing LTE network by allocating some of the time and
frequency resources to NB-IoT.
NB-IoT occupies 180 kHz of spectrum, which is substantially smaller than
LTE bandwidths of 1.4–20 MHz

Spectrum, NB-IoT is designed to support three different de-
ployment scenarios:

1. Stand alone: utilizing a 200 kHz band used by global system for mobile
communication (GSM) frequencies as shown in see 1.1.

2. Guard band: occupying a 180 kHz wide physical resource block in the
guard band of existing LTE carrier band as shown in see 1.2.

3. In band: occupying one physical resource block within the LTE carrier
bandwidth shown in see 1.3.

Figure 1.1: Standalone of NBIOT in GSM

13

Figure 1.2: Introduction/NBIOT in guard band

Figure 1.3: Introduction/NBIOT in band

Thus, NB-IoT reuses the existing LTE design with respect to physical
layer processing which reduces the time required to develop the NB-IoT de-
vices to a great extent.

1.1.2.2 Purpose

As discussed in the previous section, NB-IoT provides a provision to allocate
a single resource block (RB) to each user, instead of at-least six resource
blocks in existing LTE. A single RB corresponds to a bandwidth of 180 kHz
(and hence the name narrow-band) as compared to the minimum bandwidth
of 1.4 MHz in conventional LTE systems. The resource block concept is dis-
cussed in later chapters. The purpose of this thesis is to verify a new, low
power, wireless communication system targeted towards IoT applications,
having very low throughput requirements with relaxed transmission delay
requirements. The overall system, similar to NB-IoT, will be based on LTE
and will have very low complexity, consume low power and have a long bat-
tery life. This system is able to allocate a very narrow bandwidth of 15 kHz
to each user while retaining the existing LTE physical layer structure.

14

1.1.2.3 Problem Formulation

NB-IoT standard allocates one resource block per user irrespective of the
throughput requirements of the application. A single resource block com-
prises of twelve subcarriers, each separated by 15kHz in frequency, giving
a bandwidth of 180kHz. This might not be an efficient way of using the
available spectrum when the throughput requirement is extremely low. In
extreme cases, when the data-rate requirement is very low, we might as well
allocate each subcarrier to a different user. This would enable a very effi-
cient use of the available spectrum with a multiplexing gain of twelve. The
transmitter in this case will be a NB-IoT transmitter with each subcarrier
carrying data for a separate user.

1.1.2.4 Limitations

In this thesis, we study the physical layer properties of the transmitter archi-
tecture, with a focus on the uplink path of the system. Problems related to
resource allocation and higher layer management is not discussed as a part
of the thesis. Further, since the target data-rate and power requirements are
low, only lower order modulation schemes, for instance, binary phase-shift
keying (BPSK) and quadrature phase-shift keying (QPSK).

1.1.2.5 Frame Structure

Downlink, uplink and sidelink transmissions are organized into radio frames
with Tf = Ts ∗307200 = 10ms duration where Ts is the number of time units
=1 / (1500*2048) seconds.

Three radio frame structures are supported

• Type 1, applicable to FDD only

• Type 2, applicable to TDD only

• Type 3, applicable to LAA secondary cell operation only

The difference between FDD and TDD is that in TDD system (Time division
duplex) same frequency band FC is used by both Transmit and receive path
at different time instants while FDD system (Frequency division duplex)
different frequency bands Fc1 and Fc2 are used by transmit and receive
paths at same time instant as shown in see 1.4.

15

Figure 1.4: Introduction/FDD and TDD differences.png

In NBIOT-LTE we use frame structure type 1 which is applicable to both
full duplex and half duplex FDD only ,Each radio frame is Tf = 307200∗Ts =
10ms long and consists of 10 subframes of length 30720∗Ts = 1ms numbered
from 0 to 9.

For subframes using δf = 15kHz, subframe i is defined as two slots, 2i
and 2i +1, of length Tslot = 15360 ∗ Ts = 0.5ms each.
For FDD, 10 subframes are available for downlink transmission and 10 sub-
frames are available for uplink transmissions in each 10 ms interval. Uplink
and downlink transmissions are separated in the frequency domain.
In half-duplex FDD operation, the UE cannot transmit and receive at the
same time while there are no such restrictions in full-duplex FDD.

Figure 1.5: Frame structure type 1

16

1.1.2.6 Slot Structure

Uplink waveform in LTE-NB is the same as in legacy LTE Uplink. That
is, LTE-NB Uplink is also using SC-FDMA. But there are some differences
between LTE-NB and legacy LTE in terms of structure of uplink signal. In
addition, there is a new unit called RU (Resource Unit) that exists in LTE-
NB but not used in legacy LTE.

1.1.2.7 Subcarrier Spacing

There are two different types of sub-carrier spacing in LTE-NB. One is 15
KHz (this is same as in legacy LTE) and the other one is 3.75 KHz

Subcarrier spacing NUL
sc Tslot

δf = 3.75KHZ 48 61440* Ts
δf = 15KHZ 12 15360* Ts

Table 1.1: Subcarrier spacing and corresponding number of subcarriers per
UL

In this thesis we are using 15 KHz subcarrier spacing.

1.1.2.8 Resource Grid

The transmitted signal in each slot is described by one or several resource
grids of NRB UL∗NSC RB subcarriers and Nsymbol UL SC-FDMA symbols. The
quantity NRB ULdepends on the uplink transmission bandwidth configured
in the cell and shall fulfil.

Nmin,UL
RB ≤ NUL

RB ≤ Nmax,UL
RB

Where Nmin,UL
RB and Nmax,UL

RB are the smallest and largest uplink bandwidths.
NUL
RB is number of resource blocks in uplink, NSC RB is Number of subcarriers

resource blocks, Nsymbol UL is number of symbols per uplink, Nmin,UL
RB is the

minimum number of resource blocks in uplink and Nmax,UL
RB is the maximum

number of resource blocks in uplink. Resource grid in a frame based on
15 KHz subcarrier spacing, Number of subcarriers is easily calculated to 12
sub-carriers within 180 KHz BW (LTE-NB System Bandwidth), there are
20 slots within a radio frame. Representing this case in a graphical format,
it becomes as shown in see 1.6. Basically this is the same as in legacy LTE
uplink resource grid.

17

Figure 1.6: Resource grid with 15kHz spacing

If a 3.75 KHz subcarrier spacing resource grid frame is drawn, 48 subcar-
riers exist in the 180 KHz BW (LTE-NB System Bandwidth), with 5 slots
within a radio frame. Translating this case into a graphical format, it would
become as the following see 1.7.

18

Figure 1.7: Resource grid with 3.75kHz spacing

Comparing 3.75 KHz resource grid and 15 KHz resource grid in the two
figures 1.6 and 1.7, some points can be noticed the followings:

• Sub-carrier spacing in 3.75 KHz became narrower by 4 times comparing
to 15 KHz resource grid.

• Symbol length in 3.75 KHz resource grid became longer by 4 times
comparing to 15 KHz resource grid (this is a basic property for OFDM.
The narrower sub-carrier spacing is, the longer symbol length).

• Length of a Radio Frame is defined to be the same (10 ms) in both
3.75 KHz resource grid and 15 KHz resource grid.

• The number of slots within a radio frame in 3.75 KHz resource grid
became smaller by 4 times comparing to 15 KHz resource grid.

• The number of OFDM symbols within a slot is the same (=7) in both
3.75 KHz resource grid and 15 KHz Grid.

19

NPUSCH δf NRU
sc N slots

UL N symbol
UL

1 16
1 15 KHz 3 8 7

16 4
12 2

Table 1.2: Number of subcarriers per RU in each carrier spacing

1.1.2.9 Resource unit

A kind of new concept in LTE-NB UL resource assignment comparing to
legacy LTE, LTE-NB introduce a new resource unit called RU (Resource
Unit) as a basic unit for NPUSCH allocation. This unit can take several
different types of configurations as defined in the table 1.2, noticing that
NPUSCH format 1 and 15 KHz subcarrier spacing is assumed in this thesis.

For NPUSCH format 1, Sub Carrier Spacing = 15 KHz, the number of
sub carrier in one RU is 1 and the number of slots within the RU is 16. The
graphical representation that I interpreted is as shown below see 1.8 the table
the red slots will send to the eNodeB.

20

Figure 1.8: NPUSH format1 15KHZ subcarrier spacing

1.1.2.10 Resource Allocation

In standard 213, the narrow band section describes The DCI, which is a
Downlink Control Information. The resource allocation information in up-
link, DCI format N0 for NPUSCH transmission indicates to a scheduled UE

• A set of contiguously allocated subcarriers of a resource unit determined
by the Subcarrier indication field in the corresponding DCI.

• A number of resource units determined by the resource assignment field
in the corresponding.

• A repetition number determined by the repetition number field in the
corresponding DCI.

21

Field num of Bits
Flag for format N0/format N1 differentiation 1

Subcarrier indication 6
Resource Assignment 3

Scheduling delay 2
Modulation and coding scheme 4

Redundancy version 1
Repetition number 3
New data indicator 1

DCI subframe repletion number 2
Total number of Bits 23

Table 1.3: DCI format N0 information

- For the second field ”subcarrier indication”:

Subcarrier indication field (Isu) Set of Allocated subcarriers (nsc)
0-11 Isu
12-15 3(Isu)+0,1,2
16-17 6(Isu)-16 +0, 1, 2, 3 , 4 , 5

18 0, 1, 2, 3, 4 ,5 , 6, 7 ,8 ,9 10 ,11
19-63 Reserved

Table 1.4: Allocated subcarriers

Isu nsc
0 1
1 2
2 3
3 4
4 5
5 6
6 8
7 10

Table 1.5: Number of resource units for NPUSCH

22

This allows us to know Number of resource units.
- For the ”Modulation and coding scheme number” field

MCS Index IMCS Modulation Order Qm TBS Index ITBS
0 1 0
1 1 2
2 2 1
3 2 3
4 2 4
5 2 5
6 2 6
7 2 7
8 2 8
9 2 9
10 2 10

Table 1.6: Modulation order and transport block index

It indicates the modulation order whether it’s QPSK or BPSK and from
the Transport block index, the transport block size can be obtained from
table see 1.6

23

ITBS IRU
0 1 2 3 4 5 6 7

0 16 32 56 88 120 152 208 256
1 24 56 88 144 176 208 256 344
2 32 72 144 176 208 256 328 424
3 40 104 176 208 256 28 440 568
4 56 120 208 256 328 408 552 680
5 72 144 224 328 424 504 680 872
6 88 176 256 392 504 600 808 1000
7 104 224 328 472 584 712 1000 1224
8 120 256 392 56 680 808 1096 1384
9 136 296 456 616 776 936 1256 1544
10 144 28 504 680 872 1000 1384 1736
11 176 76 584 776 1000 1192 1608 2024
12 208 440 680 1000 1128 1352 1800 2280
13 224 488 744 1032 1256 1544 2024 2536

Table 1.7: Transport block size.

In our chain we made it on maximum transport block size 2536 in re-
lease14.

1.2 Digital design

The semiconductor industry is the aggregate collection of companies engaged
in the design and fabrication of semiconductors. It formed around 1960,
once the fabrication of semiconductor devices became a viable business. The
industry’s annual semiconductor sales revenue has since grown to over $481
billion, as of 2018. The semiconductor industry is in turn the driving force
behind the wider electronics industry, with annual power electronics sales
of £135 billion ($218 billion) as of 2011, annual consumer electronics sales
expected to reach $2.9 trillion by 2020, tech industry sales expected to reach
$5 trillion in 2019, and e-commerce with over $29 trillion in 2017.

24

1.2.1 Digital design flow

see 1.9 presents a conceptual design flow from the specifications to the fi-
nal product. The flow in the figure shows a top-down approach, the reality
of an industrial development is much more complex, involving many itera-
tions through various portions of the flow in the figure, until the final design
converges to a form that meets the requirements of functionality, area, tim-
ing, power and cost. The design specifications are generally presented as a
document describing a set of functionalities that the final solution will have
to provide and a set constraint that it must satisfy. In this context, the
functional design is the initial process of deriving a potential and realizable
solution from these specifications and requirements. This is sometimes re-
ferred to as modeling and includes such activities as hardware/software trade
off and micro-architecture design.

Cause the large scale of the problem, the development of a functional
design is usually carried out using a hierarchical approach, so that a single
designer can concentrate on a portion of the model at any given time. Thus,
the architectural description provides a partition of the design in distinct
modules, each of which contributes a specific functionality to the overall de-
sign. These modules have well defined input/output interfaces and protocols
for communicating with the other components of the design. Among the
results of this design phase is a high-level functional description, often a soft-
ware program in C or in a similar programming language, that simulates the
behavior of the design with the accuracy of one clock cycle and reflects the
module partition.
It is used for performance analysis and also, as a reference model to verify
the behavior of the more detailed designs developed in the following stages.

25

Figure 1.9: Conceptual design flow of a digital system

26

From the functional design model, the hardware design team proceeds
to the Register Transfer Level (RTL) design phase. During this phase, the
architectural description is further refined: memory elements and functional
components of each model are designed using a Hardware Description Lan-
guage (HDL). This phase also entails the development of the clocking system
of the design and architectural trade-offs such as speed and power.

With the RTL design, the functional design of our digital system ends
and its verification begins. Functional verification consists of acquiring
reasonable confidence that a circuit will function correctly, under the assump-
tion that no manufacturing fault is present. The underlying motivation is to
remove all possible design errors before proceeding to the expensive phase of
chip manufacturing. Each time functional errors are found, the model needs
to be modified to reflect the proper behavior. During Functional verifica-
tion, the verification team develops various techniques and numerous suites
of tests to check that the design behavior corresponds to the initial specifi-
cations. When that is not the case, the functional design model needs to be
modified to provide the correct behavior specified and the RTL design up-
dated consequently. It is also possible that the Functional verification phase
reveals incongruous or overlooked aspects in the original set of specifications
and it is found that the specification document is to be updated instead of
the RTL description.

In the diagram of see 1.9, Functional verification appears as one isolated
phase of the design flow. However, in practical designs, the verification of the
RTL model is carried on in parallel with the other design activities and it of-
ten lasts until chip layout. An overview of the verification methodologies that
are common in today’s industrial developments is presented in see chapter 3 .

The next design phase consists of the Synthesis and Optimization
of the RTL design. The overall result of this phase is to generate a detailed
model of a circuit, which is optimized based on the design constraints. For
instance, a design could be optimized for power consumption or the size of
its final realization (IC area) or for the ease of testability of the final product.
The detailed model produced at this point describes the design in terms of
its basic logic components, such as AND, OR, NOT or XOR, in addition to
memory elements. Optimizing the netlist, or gate-level description, for con-
straints such as timing and power requirements is an increasingly challenging

27

aspect of current developments and it usually involves multiple iterations of
trial-and-error attempts before reaching a solution that satisfies the require-
ments.
Such optimizations may, in turn, introduce functional errors that require ad-
ditional function verification.

All the design phases, up to this point, have minimal support from
Computer- Aided Design (CAD) software tools and are almost entirely hand-
crafted by the design and verification team. Consequently, they absorb a
preponderant fraction of the time and cost involved in developing a digital
system. Starting with synthesis and optimization, most of the activities are
semi-automatic or at least heavily supported by CAD tools.
Automating the RTL verification phase, is the next challenge that the CAD
industry is facing in providing full support for digital systems development.

The synthesized model needs to be verified. The objective of RTL ver-
sus gates verification, or equivalence checking, is to guarantee that no errors
have been introduced during the synthesis phase. It is an automatic activity,
requiring minimal human interaction, that compares the pre-synthesis RTL
description to the post-synthesis gate-level description in order to guarantee
the functional equivalence of the two models.

At this point, it is possible to proceed to technology mapping and place-
ment and routing. The result is a description of the circuit in terms of
geometrical layout used for the fabrication process. Finally, the design is
fabricated, and the microchips are tested and packaged.

1.2.2 Functional verification

As we observed in the previous section, the correctness of a digital circuit is
a major consideration in the design of digital systems. Given the extremely
high and increasing costs of manufacturing microchips are very expensive. At
the same time, function verification, which is verifying that RTL description
do its function correctly, is still one the most challenging activities in digi-
tal system development: as, it is still carried on mostly with ad-hoc tests,
scripts and, often, even ad-hoc tools developed by design and verification
teams. In the best scenarios, the development of this verification infrastruc-
ture can be amortized among a family of designs with similar architecture

28

and functionality. Moreover, verification methodology still lacks any stan-
dard or even a commonly accepted plan of attack, with the consequence that
each hardware engineering team has its own distinct verification practices,
which often change with subsequent designs by the same team, due to the
insufficient ”correctness confidence-level” that any of the current approaches
provide. Given this scenario, it is not only easy to see why many digital
IC development teams report that more than 70% of the design time and
engineering resources are spent in verification, but it is clear why verification
is, thus, the bottleneck in the time-to-market odyssey for integrated circuit
development.

1.3 The verification process

Finding bugs not only the verification engineer goal, The goal of hardware
design is to create a device that performs a particular task, such as a DVD
player, network router, or radar signal processor, based on a design speci-
fication, as a verification engineer your job is to make sure the device can
accomplish that task successfully that is; the design is an accurate representa-
tion of the specification. Bugs are what you get when there is a discrepancy.
The behavior of the device when used outside of its original purpose is not
your responsibility although you want to know where those boundaries lie.[6]

What types of bugs are lurking in the design? The easiest ones to detect
are at the block level, in modules created by a single person. Did the ALU
correctly add two numbers? Did every bus transaction successfully complete?
Did all the packets make it through a portion of a network switch? It is al-
most trivial to write directed tests to find these bugs as they are contained
entirely within one block of the design.[6]

After the block level, the next place to look for discrepancies is at bound-
aries between blocks. Interesting problems arise when two or more designers
read the same description yet have different interpretations. For a given pro-
tocol, what signals change and when? The first designer builds a bus driver
with one view of the specification, while a second builds a receiver with a
slightly different view. Your job is to find the disputed areas of logic and
maybe even help reconcile these two different views.[6]

29

Once you have verified that the DUT performs its designated functions
correctly, you need to see how it operates when there are errors. Can the
design handle a partial transaction, or one with corrupted data or control
fields? Just trying to enumerate all the possible problems is difficult, not
to mention how the design should recover from them. Error injection and
handling can be the most challenging part of verification.[6]

1.3.1 Basic Testbench Functionality

The purpose of a testbench is to determine the correctness of the design
under test (DUT). This is accomplished by the following steps which also
lead to the basics component of the verification environment:

• Generate stimulus (sequence).

• Apply stimulus to the DUT (Driver).

• Capture the response (Monitor).

• Check for correctness (Scoreboard).

• Measure progress against the overall verification goals (Coverage).

Generating stimulus are most important step where this step generate the in-
puts which expresses a certain feature test, so verification test can be divided
into two types based on the stimulus generation where:

• Direct testing.

• Constrained-random stimulus testing.

1.3.2 Direct testing.

Traditionally, when faced with the task of verifying the correctness of a de-
sign, you may have used directed tests. Using this approach, you look at the
hardware specification and write a verification plan with a list of tests, each
of which concentrated on a set of related features. Armed with this plan,
you write stimulus vectors that exercise these features in the DUT. You then
simulate the DUT with these vectors and manually review the resulting log

30

files and waveforms to make sure the design does what you expect. Once the
test works correctly, you check off the test in the verification plan and move
to the next.[6]

This incremental approach makes steady progress, always popular with
managers who want to see a project making headway. It also produces almost
immediate results, since little infrastructure is needed when you are guiding
the creation of every stimulus vector. Given enough time and staffing, di-
rected testing is sufficient to verify many designs. Figure see 1.10 shows how
directed tests incrementally cover the features in the verification plan. Each
test is targeted at a very specific set of design elements. Given enough time,
you can write all the tests need for 100% coverage of the entire verification
plan.

Figure 1.10: directed tests incrementally cover the features in the verification
plan

When the design complexity doubles, it takes twice as long to complete
or requires twice as many people. Neither of these situations is desirable.
You need a methodology that finds bugs faster in order to reach the goal of
100% coverage.

31

Figure 1.11: total design space and the features that get covered by directed
testcases

Figure see 1.11 shows the total design space and the features that get
covered by directed testcases. In this space are many features, some of which
have bugs. You need to write tests that cover all the features and find the
bugs.

1.3.3 Constrained-random stimulus testing

While you want the simulator to generate the stimulus, you don’t want to-
tally random values. You use the SystemVerilog language to describe the
format of the stimulus (“address is 32-bits, opcode is X, Y, or Z, length ¡
32 bytes”), and the simulator picks values that meet the constraints. These
values are sent into the design, and also into a high-level model that predicts
what the result should be. The design’s actual output is compared with the
predicted output.

32

When you think of randomizing the stimulus to a design, the first thing
that you might think of is the data fields, but there are many field to be
randomized such as:

• Device configuration

• Environment configuration

• Input data

• Protocol exceptions

• Delays

• Errors and violation

Random stimulus is crucial for exercising complex designs. A directed test
finds the bugs you expect to be in the design, while a random test can find
bugs you never anticipated. Once you start using automatically generated
stimulus, you need an automated way to predict the results, generally a score-
board or reference model. Building the testbench infrastructure, including
self-prediction, takes a significant amount of work. A layered testbench helps
you control the complexity by breaking the problem into manageable pieces.
Transactors provide a useful pattern for building these pieces. With appro-
priate planning, you can build a testbench infrastructure that can be shared
by all tests and does not have to be continually modified. You just need to
leave “hooks” where the tests can perform certain actions such as shaping
the stimulus and injecting disturbances. Conversely, code specific to a single
test must be kept separate from the testbench so it does not complicate the
infrastructure.

Building this style of testbench takes longer than a traditional directed
test- bench, especially the self-checking portions, causing a delay before the
first test can be run. This gap can cause a manager to panic, so make this
effort part of your schedule. In Figure see 1.12, you can see the initial delay
before the first random test runs.

33

Figure 1.12: How random tests incease coverage rate

While this up-front work may seem daunting, the payback is high. Every
test you create shares this common testbench, as opposed to directed tests
where each is written from scratch. Each random test contains a few dozen
lines of code to constrain the stimulus in a certain direction and cause any
desired exceptions, such as creating a protocol violation. The result is that
your single constrained-random testbench is now finding bugs faster than the
many directed ones.

As the rate of discovery begins to drop off, you can create new random
constraints to explore new areas. The last few bugs may only be found with
directed tests, but the vast majority of bugs will be found with random tests.

34

Figure 1.13: constrained-random tests find new bugs

Figure 1.13 shows the coverage for constrained-random tests over the to-
tal design space. First, notice that a random test often covers a wider space
than a directed one. This extra coverage may overlap other tests, or may
explore new areas that you did not anticipate. If these new areas find a
bug, you are in luck! If the new area is not legal, you need to write more
constraints to keep away. Lastly, you may still have to write a few directed
tests to find cases not covered by any other constrained-random tests.

When using random stimulus, you need functional coverage to measure
verification progress.

35

Figure 1.14: the paths to achieve complete coverage

Figure 1.14 shows the paths to achieve complete coverage. Start at the
upper left with basic constrained-random tests. Run them with many differ-
ent seeds. When you look at the functional coverage reports, find the holes,
where there are gaps. Now you make minimal code changes, perhaps with
new constraints, or injecting errors or delays into the DUT. Spend most of
your time in this outer loop, only writing directed tests for the few features
that are very unlikely to be reached by random tests.

1.3.4 Coverage.

Coverage associated with the two categories we just described can be com-
bined to form a coverage space, which is often referred to as a coverage model.
For instance, an explicit specification coverage space consists of coverage
metrics that are manually created by an engineer, derived from a design’s
requirements document or specification. Another kind of explicit coverage
is the instrumentation created by an engineer that is based on the behavior
encapsulated by the design implementation, such as the filling or empty-
ing events associated with a particular FIFO in an RTL model. Similarly,
an implicit implementation coverage space consists of coverage metrics that
are automatically extracted by a tool (such as a simulator), and derived
from a design implementation (such as an RTL model). Another part of
the implicit specification coverage space consists of coverage metrics that are

36

automatically extracted by a tool, and are derived from the design speci-
fication. This part of the coverage space is currently an area of academic
research, although there have been a few EDA tools recently emerge that
attempt to automatically extract higher-level coverage properties by observ-
ing the effects of simulation patterns on an implementation (such as an RTL
model). Note that these higher-level functional behaviors cannot be auto-
matically extracted from the implementation alone, which is why they fall
into the coverage metrics associated with the implicit specification coverage
space.[10]

There are two primary forms of coverage metrics in production use in
industry today and these are:

• Code Coverage Metrics (Implicit coverage).

• Functional Coverage/Assertion Coverage Metrics (Explicit coverage).

1.3.4.1 Code Coverage

Introduce various coverage metrics associated with a design model’s implicit
implementation coverage space. In general, these metrics are referred to as
code coverage or structural coverage metrics. There are many types of code
coverage such as:

• Toggle Coverage
Toggle coverage is a code coverage metric used to measure the number
of times each bit of a register or wire has toggled its value. Although
this is a relatively basic metric, many projects have a testing require-
ment that all ports and registers, at a minimum, must have experienced
a zero-to-one and one-to-zero transition. In general, reviewing a toggle
coverage analysis report can be overwhelming and of little value if not
carefully focused. For example, toggle coverage is often used for basic
connectivity checks between IP blocks. In addition, it can be useful to
know that many control structures, such as a one-hot select bus, have
been fully exercised.[10]

37

• Line Coverage
Line coverage is a code coverage metric we use to identify which lines of
our source code have been executed during simulation. A line coverage
metric report will have a count associated with each line of source code
indicating the total number of times the line has executed. The line
execution count value is not only useful for identifying lines of source
code that have never executed, but also useful when the engineer feels
that a minimum line execution threshold is required to achieve sufficient
testing. Line coverage analysis will often reveal that a rare condition
required to activate a line of code has not occurred due to missing in-
put stimulus. Alternatively, line coverage analysis might reveal that
the data and control flow of the source code prevented it either due to
a bug in the code, or dead code that is not currently needed under cer-
tain IP configurations. For unused or dead code, you might choose to
exclude or filter this code during the coverage recording and reporting
steps, which allows you to focus only on the relevant code.

• Statement Coverage
Statement coverage is a code coverage metric we use to identify which
statements within our source code have been executed during simula-
tion. In general, most engineers find that statement coverage analysis
is more useful than line coverage since a statement often spans multiple
lines of source code-or multiple statements can occur on a single line
of source code. A metrics report used for statement coverage analysis
will have a count associated with each line of source code indicating
the total number of times the statement has executed. This statement
execution count value is not only useful for identifying lines of source
code that have never executed, but also useful when the engineer feels
that a minimum statement execution threshold is required to achieve
sufficient testing.

• Block Coverage
Block coverage is a variant on the statement coverage metric which
identifies whether a block of code has been executed or not. A block is
defined as a set of statements between conditional statements or within
a procedural definition, the key point being that if the block is reached,

38

all the lines within the block will be executed. This metric is used to
avoid unscrupulous engineers from achieving a higher statement cover-
age by simply adding more statements to their code.

• Branch Coverage
Branch coverage (also referred to as decision coverage) is a code cover-
age metric that reports whether Boolean expressions tested in control
structures (such as the if, case, while, repeat, forever, for and loop
statements) evaluated to both true and false. The entire Boolean ex-
pression is considered one true-or-false predicate regardless of whether
it contains logical-and or logical-or operators.

• Expression Coverage
Expression coverage (sometimes referred to as condition coverage) is
a code coverage metric used to determine if each condition evaluated
both to true and false. A condition is an Boolean operand that does
not contain logical operators. Hence, expression coverage measures the
Boolean conditions independently of each other

• Finite-State Machine
Coverage Today’s code coverage tools are able to identify finite state
machines within the RTL source code. Hence, this makes it possible
to automatically extract FSM code coverage metrics to measure condi-
tions. For example, the number of times each state of the state machine
was entered, the number of times the FSM transitioned from one state
to each of its neighboring states, and even sequential arc coverage to
identify state visitation transitions.[10]

1.3.5 Functional Coverage

The objective of functional verification is to determine if the design re-
quirements, as defined in our specification, are functioning as intended.
But how do you know if all the specified functionality was actually
implemented? Furthermore, how do we know if all the specified func-
tionality was really tested? Code coverage metrics will not help us

39

answer these questions.
In this section, we introduce an explicit coverage metric referred to
as functional coverage, which can be associated with either the de-
sign’s specification or implementation coverage space. The objective of
measuring functional coverage is to measure verification progress with
respect to the functional requirements of the design. That is, functional
coverage helps us answer the question: Have all specified functional re-
quirements been implemented, and then exercised during simulation?
The details on how to create a functional coverage model are discussed
separately in the Testplan to functional coverage chapter.
The functional behavior of any design, at least as observed from any
interface within the verification environment, consists of both data and
temporal components. Hence, from a high-level, there are two main
types of functional coverage measurement we need to consider: Cover
Groups’ and Cover Properties.

Cover Group Modeling
With respect to functional coverage, the sampling of state values within
a design model or on an interface is probably the easiest to understand.
We refer to this form of functional coverage as cover group modeling.
It consists of state values observed on buses, grouping of interface con-
trol signals, as well as register. The point is that the values that are
being measured occur at a single explicitly or implicitly sampled point
in time. SystemVerilog covergroups are part of the machinery we typi-
cally use to build the functional data coverage models, and the details
are discussed in the block level design example and the discussion of
the corresponding example covergroup implementations.

Cover Property Modeling
With respect to functional coverage, temporal relationships between se-
quences of events are probably the hardest to reason about. However,
ensuring that these sequences of events are properly tested is impor-
tant. We use cover property modeling to measure temporal relation-
ships between sequences of events. Probably the most popular example
of cover properties involves the handshaking sequence between control
signals on a bus protocol. Other examples include power-state transi-
tion coverage associated with verifying a low-power design. Assertions
and coverage properties are part of the machinery that we use to build

40

temporal coverage models, and are addressed in the bus protocol mon-
itor example.

1.3.6 Assertion

. Assertions are primarily used to validate the behavior of a design. An
assertion is a check embedded in design or bound to a design unit during
the simulation. Warnings or errors are generated on the failure of a specific
condition or sequence of events. Assertions are used to
- Check the occurrence of a specific condition or sequence of events.
- Provide functional coverage. There are two kinds of assertions:
- Immediate Assertions.
- Concurrent Assertions.

• Immediate Assertions:

Immediate assertions check for a condition at the current simulation time. An
immediate assertion is the same as an if..else statement with assertion con-
trol. Immediate assertions have to be placed in a procedural block definition.

• Concurrent Assertions:

Concurrent assertions check the sequence of events spread over multiple clock
cycles. The concurrent assertion is evaluated only at the occurrence of a
clock tick - The test expression is evaluated at clock edges based on the sam-
pled values of the variables involved - It can be placed in a procedural block,
a module, an interface or a program definition

41

Chapter 2

UVM overview

2.1 What is UVM?

UVM is short for Universal Verification Methodology. The accellera UVM
standard was created by EDA vendors like Cadence ,Mentor and Synopsys,
and customers and design companies like ARM ,IBM , . . . etc. The UVM
implementation is based on system Verilog base classes , UVM is a situa-
tion of verification knowledge and experience, this combination provides a
powerful flexible methodology to create reusable, scalable and interoperable
testbenches that help to simulate and verify the wide variety of IC designs.

2.1.1 System Verilog in UVM

UVM is built with SystemVerilog’s Object Oriented Programming constructs
based on aggregation or composition and inheritance concepts. Aggregation
or composition means that a class has a reference to another class, in other
words an object container relationship and inheritance concept describes the
relationship between base classes and extended ones you can say it shows the
UVM hierarchy.

2.2 UVM Methodology

The verification methodology has many goals, the most important goal is
reusability which means a configurable test environments for a variety of tests
with reusable testbench components from project to project . Reusability

42

saves a lot of time and effort putting the parts of the test together, connect-
ing different components inside the testbench and creating stimulus. This
allows the engineer to create stimulus and components once then reuse that
work again in the same project or in other different projects. The second goal
is interoperability needed for tools from multiple vendors and with multiple
types of tools as well. For example an engineer develops a testbench with
one simulator and wants to make sure that your code behaves correctly in
other simulators as the system Verilog is very large and most of time many
vendors contributes to implement the features. UVM allows each vendor to
focus on a common subset of system verilog feature so that a design simulates
consistently, UVM also allows verification intellectual property (VIP) mod-
els in your testbench that’s why In-house verification code of components
that make up the design and commercial verification code for of the shelf
components can be used.There is no need to write the code from scratch,
moreover the UVM separates stimulus generation from delivering it to the
DUT, In UVM, classes that describe the transaction are different from the
classes that describe how components are connected together that allows
several engineers to generate stimulus and develop the testbench in parallel,
UVM code also is written in a maintainable manner so that it is easy to read
or modify according to your needs in the project.

2.3 UVM Topology

Using UVM we are trying to build a verification environment that can be
used over and over for many test, the main idea is to separate the stimulus
from the test bench ,So that the stimulus will be responsible for defining what
exactly will happen for this particular simulation run , while the testbench
will be responsible for defining all components that are needed to interact
with DUT. The test class is to build and configure the environment and
to generate stimulus we can also determine how many times are we going
to run a particular stimulus and what type of transactions are we going
to generate. The environment class instantiate the components for driving
transactions into the DUT, Monitoring values read fro the DUT and checking
the result as well.see2.1 The DUT communicates with the testbench through
a systemverilog interface that has different methods which you can call to
drive transactions to the design and read them out of it , So this structure
rarely changes. All of these of these components are constructed under a

43

base class called uvm root which constructs your testbench and start the
simulation phases.

Figure 2.1: UVM classes , connections between testbench and DUT

The DUT communicates with the test environment through a systemver-
ilog interfacre , So every interface inside your design needs an agent that en-
capsulates everything needed for counicating with this interface , first drive
transactions into DUT so the driver send transactions to the interface which
then wiggles to DUT pins. A sequencer components connected to the driver
sends the transactions to the driver then the driver sends the transactions
to the DUT through the interface, To verify the result the monitor watches
the pin wiggles through the interface coverts those pin wiggles into trans-
actions and sends them to the scoreboard or coverage collector for checking
the values and verify results , This is done an analysis port which is like a
sysytemverilog mailbox. A configuration object is a class with configuration
values like the virtual interface.

44

2.3.1 UVM factory

Previously, creating a dynamically different type of objects required modi-
fying source code which contradicts the reusability concept of UVM. UVM
factory is a mechanism introduced by the UVM to improve the flexibility
and scalability of the testbench by allowing the user to substitute an existing
class object by any of its inherited child class objects. Factory is a critical
aspect which is introduced in the UVM that builds everything in the UVM
environment like dynamically adaptable testbenches, which are tests created
and compiled at run time . Therefore, factory requires that all the classes
to be registered with the factory with macros like ‘uvm component utils and
‘uvm object utils macros.

2.4 Class Hierarchy

The UVM package contains a class library that provides a set of base classes
which can be extended by users as required , UVM object is the base class
for all UVM data and hierarchical classes . its role is to define a set of
methods for common operation such as (create , copy , compare, print).
there are two group class that are inherited from uvm object the first one
is uvm component that is used to build the testbench topology also there
classes are dynamically created they exist for the entire simulation , the
classes has additional characteristics like being in fixed location inside uvm
topology and having methods that are called in a fixed order to build and
connect the testbench run the test and report the results , The second droup
is transaction classes the stimulus is described into the design by extending
uvm base classes a single transaction is a sequence item and multiple items
form a sequence . Transactions are transient object they are created and
destroyed during the simulation run and has no fixed location in the topology
and created in the test ,flow into the driver or are created in the monitor and
are sent into the scoreboard The complete diagram expansion in 2.2 may show
other predefined component types that are driver from uvm component class
, The class should be used as the base class for any user definend components
so to create my agent class you should etend uvm agent base class and te
same for driver, monitor . . . etc. The uvm class library provides all the
building blocks you need to develop and easily constructed.

45

2.4.1 UVM TLM communication

The communication between components has 2 connections called a TLM
that stands for transaction level modeling , The TLM connections has 2
pins the initiator that has an object called port and the target contains
an object called export, As in the driver when it pulls transactions from
sequencer , A port is a one to one connection to an export a less common
type is when producer pushes transactions to a consumer. Another kind of
connections called Analysis port export that is used to connect monitor to
both scoreboard and coverage collectors so it ’s a one to many connection.see
2.2

Figure 2.2: Transaction level modeling VS Analysis port export

2.4.2 DUT connections to testbench

The DUT’s ports can not be connected directly to the testbench class ob-
jects so a different SystemVerilog means of communication, which is virtual
interfaces is used.see 2.3 The DUT’s ports are connected to an instance of
an interface. The Testbench communicates with the DUT through the in-
terface instance. Using a virtual interface as a reference or handle to the
interface instance, the testbench can access the tasks, functions, ports, and
internal variables of the SystemVerilog interface. As the interface instance is
connected to the DUT pins, the testbench can monitor and control the DUT
pins indirectly through the interface elements.

2.4.3 How are UVM classes related?

The UVM library defines a set of base classes and utilities that facilitate the
design of modular, scalable, reusable verification environments. All UVM

46

Figure 2.3: DUT connected to test-bench through irtual interface

classes are derived from uvm object and an individual transaction is a se-
quence item contains a transactions properties and methods , A series of
generated sequence items are known as sequence to obtain a real stimulus.
The transactions are sent to the sequencer that routes between multiple se-
quences, Sequencer and drivers are components which are permanent objects
created at the start of simulation and remain for the entire simulation. UVM
sequence class is derives from uvm sequence base class that contains a task
body to generate one or more sequences , There are 4 steps should be done to
generate transactions first one is to creat a sequence item object ,then wait
for a driver to request a transaction through sequencer, The third step is to
assign the transaction values where you have to check your randomization
and Lastly send the transaction to driver and wait for completion. Sequences
can have randomized properties by allocating them as random variables then
the sequences can behave differently each time when it is started, Complex
sequences may get a feedback fro the dut to choose between branches to
complete the sequence.

2.5 UVM phases

It is a concept of how the UVM act from the start of simulation to the
end in which all the testbench components goes through these set of phases
sequentially, so it is a synchronizing mechanism for the environment in the
life cycle of a simulation.

47

2.5.0.1 Why does UVM need phases?

Because UVM uses system Verilog OOP which enables reusing and editing
classes and objects which can be created at different times, so it is possible
to create a new object in the middle of the simulation , which could end
by calling a component while it hasn’t been initialized yet leading to wrong
testbench outputs

2.5.0.2 Why Verilog testbenches don’t need phases?

Because it consists of static modules which have a set of ports to communicate
with other test bench components Static modules means have their instances
created at the beginning of the simulation, so there are no worries about any
component being called without it being created

2.5.1 Phases hierarchy

UVM -phases can be grouped into three categories see 2.4
1. Build time phases
Phases executed in the start of simulation in which the testbench com-

ponents are constructed ,configured and connected in zero time simulation
since this phase methods are functions executed in zero time simulation .

Build phase Is done from the top to the bottom .
They consist of :

••• Build phase: function used to build test bench components and create
their instance

• Connect phase: function used to connect between different testbench
components via TLM ports.

• End of elaboration phase: function used to display UVM topology and
other functions required to be done after connection

• Start of simulation phase: function used to set initial run-time config-
uration and display topology.

2. Run time phases
Actual simulation that consumes time happens in this UVM phase and runs

48

Figure 2.4: DUT connected to test-bench through virtual interface

49

parallel to other UVM run-time phases. Consists of :

• Pre-reset : the pre reset phase starts at the same time as the run phase.
Its purpose is to take care of any activity that should occur before the
reset, such as waiting for a power-good signal to go active.

• Reset: responsible for DUT reset.

• Post reset: responsible for any required actions after reset.

• Pre configure: This phase is intended for anything that is required to
prepare for the DUT configuration process after the DUT is out of
reset.

• Configure: configure phase is used to put the DUT into a known state
before the stimulus could be applied to the DUT.

• Post configure: This phase is intended to wait for the effect of the
configuration to propagate through the DUT.

• Pre main : pre main is used to ensure that all the components needed
to generate the stimulus are ready to do so.

• Main: main phase is where the stimulus specified by the Test case is
generated and applied to the DUT.

• Post main: Used for any final act after the main phase.

• Pre shutdown: This phase is acts like a buffer to apply any stimulus
before the shutdown phase starts.

• Shutdown: The shutdown phase is to ensure that the effects of stimulus
generated during the main phase has propagated through the DUT and
that the resultant data has drained away.

• Post shutdown: post shutdown is intended for any final activity before
exiting the run phase. After it UVM Testbench starts the cleanup
phase.

50

3. Clean-Up phases
It is the phase where the results of the testcase are collected and reported.
Consists of:

beginitemize

• Extract : Used to retrieve and process information from scoreboards
and functional coverage monitors.

• Check: Used to check that the DUT behaved correctly and to identify
any errors that may have occurred during the execution of the test
bench.

• Report: Used to display the results of the simulation or to write the
results to file.

• Final: Used to complete any other outstanding actions that the test
bench has not already completed.

2.6 UVM environment approaches

2.6.0.1 UVM Transactions approach

We’ve modularized our work by providing methods in each class that do the
work of that class and by being careful to avoid situations where one class
needs to know the internal workings of another . to maintain adaptability
and reusability for passing data between classes (tester , driver , coverage
and scoreboard) we exploit the advantages of classes , methods and OOP
as the class and the objects we instantiate from that class have two useful
points : classes have methods that interact with the data and hide details
from users. We work with objects through handles, and we can pass these
handles around our test- bench. Therefore several object scan easily share a
piece of data. this is implemented these advantages using UVM class library
transactions. Encapsulating all this data in the transaction makes the rest
of the test-bench much simpler. For example, tester won’t need to figure

51

out legal values to drive the test-bench. It will simply let the transaction
randomize itself.

transactions classes definition We define transactions by extending the
uvm transaction base class and writing the methods (convert2string , do copy
, do compare) .Transactions encapsulate both data and all the operations we
can do to that data. Data fields can be randomized using System Verilog’s
built-in randomize method. The uvm transaction class extends uvm object,
not uvm component, there is a result transaction class to hold results and
another transaction class that extends command transaction to generate dif-
ferent stimulus without changing the tester object this class will use same
way as the command transaction but under dedicated constrains. The re-
sult transaction class is just like the command transaction class , The score-
board will use the do compare() method to compare predicted results to
actual results. Transaction-level simulation makes it easier to compare pre-
dicted and actual results Both the result monitor and the predictor create
result transaction objects. The result monitor passes us an actual result
Then we get the corresponding command from the command monitor and
use the predict result() method to create a predicted result transaction. We
use compare() to see if we got the right result. The scoreboard is now much
simpler. we override the command transaction with the class that generates
stimulus , The override causes the tester to create a constrained transac-
tion from the class mentioned rather than a command transaction, without
modifying the tester.

This transaction approach focuses on data. Classes and objects are cre-
ated to easily create, compare, and transport data. Although in this approach
the data classes are separated from the structure classes, the data stimulus
is not separated from structure.

Good test benches separate the order of the transactions (the test stimu-
lus) from the test bench structure. The structure should remain unchanged
regardless of the order of transactions So another approach called sequence
approach is used in 3 blocks (rate-matcher , FFT , IFFT) environments and
also used in the Top level environment.see 2.5

2.6.0.2 UVM Sequences approach

UVM sequences separate stimulus from the test-bench structure. They allow
us to create one test-bench structure and then run different data through it
, thus completing our journey through the UVM. A sequence item is created

52

to carry out the data and the uvm sequencer can replace the tester in the
transctions class. The uvm sequence item carries data from uvm sequences
through the uvm sequencer to a uvm driver. The sequence item class is
exactly the same as the command transaction class except that the class ex-
tends uvm sequence item instead of uvm transaction. The sequencer class
takes sequence items from a sequence and passes them on to a driver. The
UVM provides us with a uvm sequencer base class. The driver class extend
uvm driver and parameterize it to work with the sequence item and inherit
the seq item port object and all its functionality. The run phase calls the
get next item() method on the seq item port object, This method blocks un-
til the sequencer puts data into the port and then gives us a sequence item
object. calling the item done() method on the seq item port object to tell
the sequencer that it can send us another sequence item. In this approach
environment the sequencer doesn’t need a FIFO to connect to the driver. the
driver expects to connect to a sequencer and can do it directly.

The uvm sequencer comes equipped with an object called a seq item export
see 2.6 connect the driver to the sequencer by calling the connect() method
on the driver’ s seq item port. The uvm sequence class sits outside the UVM
hierarchy (it has no parent argument in its constructor) but can feed data
into the UVM hierarchy through the uvm sequencer.

53

Figure 2.5: UVM Tansactions approach envirnoment connectionss

Figure 2.6: Sequencer connected directly to driver through seq item export.

54

Chapter 3

Standard specifications and
functionality

We have subjected to 3GPP Narrowband IOT LTE Standard release 14. In
this Chapter, the standard description for each block and its algorithm in
the chain will be stated.[1]

3.1 Physical uplink shared channel

The baseband signal representing the physical uplink shared channel is de-
fined in terms of the following steps: see 3.1

• scrambling.

• Modulation of scrambled bits to generate complex-valued symbols.

• Mapping of the complex-valued modulation symbols onto one or several
transmission layers.

• Transform precoding to generate complex-valued symbols.

• Precoding of the complex-valued symbols.

• Mapping of precoded complex-valued symbols to resource elements.

• Generation of complex-valued time-domain SC-FDMA signal for each
antenna port.

55

Figure 3.1: Overview of uplink physical channel processing [1]

3.2 Channel coding, multiplexing and inter-

leaving

3.2.1 Cyclic Redundancy Check (CRC)

Denote the input bits to the CRC computation by a0,a1,.....,aA−1 , and the
parity bits by p0,p1,.....,pl−1 is equal to TBS and L is the number of parity
bits at which L=24 bits for NB-IOT. The parity bits for NB-IOT are gener-
ated the following cyclic generator polynomial:
gCRC24A = [D24 + D23 + D18 + D17 + D14 + D11 + D10 + D7 + D6 + D5 +
D4 +D3 +D + 1]
The bits after CRC attachment are denoted by b0,b1,.....,bA+l−1 where B =
A+ L. The relation between ak and bk is :

bk = ak For k = 0, 1, 2,. . . , A-1

bk = ak−A For k = A, A+1, A+2,. . . , A+l-1

There is no segmentation as for NB-IOT maximum TBS=2536 bits it’s less
than Z=6144 bits so there is only one code block C=1.[3]

3.2.2 Turbo Encoder

According to 3GPP narrowband IOT LTE Standard release 14, Turbo En-
coder consists of two recursive Convolutional Encoder and one Turbo code
internal interleaver as shown in see 3.2

56

Figure 3.2: Internal Structure of NB ILTE Turbo Encoder of rate 1/3

3.2.2.1 Recursive Convolutional Encoder

The scheme of recursive Convolutional encoder is a Parallel Concatenated
Convolutional Code (PCCC) with two 8-state constituent encoders see 2.3,
the coding rate of turbo encoder is 1/3, the recursive convolutional encoders
are differing from ordinary convolutional encoder as it has both feedback and
feedforward convolutional encoders.

57

Figure 3.3: Recursive Convolutional Encoder

The transfer function of the 8-state constituent code for the PCCC is:

G(D) = [1, g1(D)
g0(D)

]

where g0(D) = 1 +D2 +D3

g0(D) = 1 +D +D3

The initial value of the shift registers of the 8-state constituent encoders shall
be all zeros when starting to encode the input bits.

The output from the turbo encoder is

d
(
k

0) = Xk

,d
(
k

1) = zk
,d

(
k

2) = z
′

k

For k = 0,1,2,...,K-1.

The bits input to the turbo encoder are denoted by c0,c1,c2,ck−1,and the bits
output from the first and second 8-state constituent encoders are denoted
by z0,cz1,z2,zk−1, and z

′
0,z
′
1,....,zk−

′
1,respectively. The bits output from the

turbo code internal interleaver are denoted by c
′
0,c
′
1,c
′
2,ck−

′
1, and these bits

are to be the input to the second 8-state constituent encoder.[3]

3.2.2.2 Trellis termination for turbo encoder

Trellis termination is performed by taking the tail bits from the shift register
feedback after all information bits are encoded. Tail bits are padded after

58

the encoding of information bits. The first three tail bits shall be used
to terminate the first constituent encoder (upper switch of figure in lower
position) while the second constituent encoder is disabled. The last three
tail bits shall be used to terminate the second constituent encoder see3.3
while the first constituent encoder is disabled. The transmitted bits for
trellis termination shall then be:

d
(
k

0) = xk , dk+
(
1

0) = zk+1 , dk+
(
2

0) = x
′

k,dk+
(
3

0) = z
′

k+1

d
(
k

1) = zk , dk+
(
1

1) = xk+2 , dk+
(
2

1) = z
′

k,dk+
(
3

1) = x
′

k+2

d
(
k

2) = Xk+1 ,dk+
(
1

2) = zk+2 ,dk+
(
2

2) = x
′

k+1 ,dk+
(
3

2) = z
′

k+2

3.2.2.3 Internal Interleaver

The bits input to the turbo code internal interleaver are denoted by c0,c1,c2,.....,ck−1,
where K is the number of input bits = TBS + 24 CRC bits. The bits output
from the turbo code internal interleaver are denoted by c

′
0,c
′
1,c
′
2,.....,c

′

k−1, The
relationship between the input and output bits is as follows:

c
′
i=cπ(i) ,Where i=0,1,2,. . . (k-1)

Where the relationship between the output index i (ordered bits index) and
the input index π(i)-interleaved index- satisfies the following quadratic form:
π(i) = (f1 ∗ i + f2 ∗ i2)%K The parameters f1 and f2 depend on the block
size K and are summarized in Table in the standard.[3]

59

M K f1 f2 M K f1 f2 M K f1 f2 M K f1 f2

1 40 3 10 34 304 37 76 67 624 41 234 100 1280 199 240
2 48 7 12 35 312 19 78 68 640 39 80 101 1312 21 82
3 56 19 42 36 320 21 120 69 656 185 82 102 1344 211 252
4 64 7 16 37 328 21 82 70 672 43 252 103 1763 21 86
5 72 7 18 38 336 115 84 71 688 21 86 104 1408 43 88
6 80 11 20 39 344 193 86 72 704 155 44 105 1440 149 60
7 88 5 22 40 352 21 44 73 720 79 120 106 1472 45 92
8 96 11 24 41 360 133 90 74 736 139 92 107 1501 49 846
9 104 7 26 42 368 81 46 75 752 23 94 108 1536 71 48
10 112 41 84 43 376 45 94 76 768 217 48 109 1568 13 28
11 120 103 90 44 384 23 48 77 784 25 98 110 1600 17 80
12 128 15 32 45 392 243 98 78 800 17 80 111 1632 25 102
13 136 9 34 46 400 151 40 79 816 127 102 112 1664 183 104
14 144 17 108 47 408 155 120 80 832 25 52 113 1696 55 954
15 152 9 38 48 416 25 52 81 848 239 106 114 1728 127 96
16 160 21 120 49 424 51 106 82 864 17 48 115 1760 27 110
17 168 101 84 50 432 47 72 83 880 137 110 116 1792 29 112
18 176 21 44 51 440 91 110 84 896 215 112 117 1824 29 114
19 184 57 46 52 448 29 168 85 912 29 114 118 1856 57 116
20 192 23 48 53 456 29 114 86 928 15 58 119 1888 45 354
21 200 13 50 54 464 247 58 87 944 147 118 120 1920 31 120
22 208 27 52 55 472 29 118 88 960 29 60 121 1952 59 610
23 216 11 36 56 480 89 180 89 976 59 122 122 1984 185 124
24 224 27 56 57 488 91 122 90 992 65 124 123 2016 113 420
25 232 85 58 58 496 157 62 91 1008 55 84 124 2048 31 64
26 240 29 60 59 504 55 84 92 1024 31 64 125 2112 17 66
27 248 33 62 60 512 31 64 93 1056 17 66 126 2176 171 136
28 256 15 32 61 528 17 66 94 1088 171 204 127 2240 209 420
29 264 17 198 62 544 35 68 95 1120 67 140 128 2304 253 216
30 272 33 68 63 560 227 420 96 1152 35 72 129 2368 367 444
31 280 103 210 64 576 65 96 97 1152 35 72 130 2432 265 456
32 288 19 36 65 592 19 74 98 1216 39 76 131 2496 181 468
33 296 19 74 66 608 37 76 99 1248 19 78 132 2560 39 80

Table 3.1: Turbo code internal interleaver parameters

60

3.2.3 Rate Matching

The basic function of rate matching module is to match the number of bits
in transport block to the number of bits that can be transmitted in the given
allocation, it also controls the rate as the turbo encoder gives 1/3 rate, we can
increase or decrease rate by using this block according to DCI and channel
quality information. By means of rate matching, any arbitrary code rate can
be achieved from a fixed-rate mother code.[3] Rate matching mainly consists
of three main parts:

• First part is sub-block interleavers which are used to interleave the three
information bit streams d

(0)
k , d

(1)
k and d

(2)
k coming from turbo-encoder

as shown see 3.4.

• Second part is bit collection block which concatenates the three output
streams of the three sub-block interleavers v

(0)
k , v

(1)
k ,v

(2)
k which represent

the systematic bit stream, parity bit stream and interleaved parity
stream respectively as in see 3.4.

• Last sub-block is bit-selection block which select the start point inside
buffer to get output according to upper layer parameters described in
following sections.

Figure 3.4: Standard block diagram for rate matching

61

3.2.3.1 Sub-block interleavers

The input bits to the sub-block interleaver are denoted by d
(i)
0 , d

(i)
1 ,d

(i)
2 ,.....,d

(i)
D−1,

where D is the number of bits D=TBS+24+4 where the 24 bits are CRC bits
and the other 4 bits are the trellis termination bits added by the encoder and
i=0,1,2. The interleaving is done after putting the data in matrix form ac-
cording to the following steps:

• Assign CTC
subblock = 32 to be the number of columns of the matrix. The

columns of the matrix are numbered 0, 1, 2,. . . , CTC
subblock − 1 from left

to right.

• Determine the number of rows of the matrix RTC
subblock at which the rows

of rectangular matrix are numbered 0, 1, 2,. . . , RTC
subblock−1 from top to

bottom. Number of rows can be found by calculating minimum integer
RTC
subblock such that:

D ≤(RTC
subblockC

TC
subblock)

• The next step is to determine the number of dummy bits to complete
the rectangular matrix according to next scenario :

-If (RTC
subblockC

TC
subblock)¿D, then ND= (RTC

subblockC
TC
subblock -D) where ND is the

number of dummy bits.
-Dummy bits are padded at the beginning of the matrix such that Yk =
¡NULL¿ for k = 0, 1,. . . , ND - 1.

Then, the input data bits entered and placed after dummy bits as follow
YND+k = d

(i)
k , k = 0, 1,. . . , D-1, and the bit sequence Yk is written into the

(RTC
subblockR

TC
subblock) matrix row by row starting with bit y0 in column 0 of row

0 as in figure see 3.4

Y0 Y1 Y2 ... YcTCsubblock−1

YcTCsubblock YcTCsubblock+1 YcTCsubblock+2 ... Y2cTCsubblock−1

.

.

.
Y(RTCsubblock−1)∗CTCsubblock

Y(RTCsubblock−1)∗CTCsubblock+1 Y(RTCsubblock−1)∗CTCsubblock+2 ... Y(RTCsubblock−1)∗CTCsubblock−1

After the write state ends reading state starts from the matrix according

to permutation table see 3.2 which is the same table for d
(0)
k and d

(1)
k but for

d
(2)
k it’s different.

62

For d
(0)
k and d

(1)
k :

Perform the inter-column permutation for the matrix based on the pat-
tern ¡P (j)¿ j 0,1,. . . , CTC

subblock−1 that is shown in table see3.2, where P (j) is
the original column position of the j-th permuted column. After permutation
of the columns, the inter-column permuted
(RTC

subblock ∗ CTC
subblock) matrix is as in figure, while the output of the sub-block

interleaver is the bit sequence read out column by column from the inter-
column permuted (RTC

subblock ∗ CTC
subblock) matrix. The bits after sub-block in-

terleaving are denoted by v
(i)
0 ,v

(i)
1 , v

(i)
2 ,.,vk−1(i) , where v

(i)
0 corresponds to

YP (0), v
(i)
1 to YP (0) + CTC

subblock ..and Kπ = (RTC
subblock ∗ CTC

subblock).

[h]
Yp(0) Yp(0) Yp(0) ... Yp(cTCsubblock−1)

Yp(0)+cTCsubblock
Yp(1)+cTCsubblock

Yp(2)+cTCsubblock
... Yp(cTCsubblock)+cTCsubblock

.

.

.
Yp(0)+(RTCsubblock−1)∗CTCsubblock

Yp(1)+(RTCsubblock−1)∗CTCsubblock
Yp(2)+(RTCsubblock−1)∗CTCsubblock+2 ... Yp(CTCsubblock)(RTCsubblock−1)∗2CTCsubblock−1

Number of columns CTC
subblock Inter-column permutation pattern

p(0),p(1) , ... P(CTC
subblock − 1)

0, 16, 8, 24, 4, 20, 12, 28, 2, 18
32 , 10, 26, 6, 22, 14, 30, 1, 17, 9,

25, 5, 21, 13, 29, 3, 19, 11, 27, 7, 23, 15, 31

Table 3.2: Inter-column permutation pattern

For d
(2)
k :

The output of the sub-block interleaver is denoted by v
(2)
0 ,v

(i)
1 , v

(i)
2 ,.,v

(k
(2)
−1)

,

where v
(i)
k =Y(k)

and where

π(k) = (p(K/RTC
subblock) + CTC

subblock ∗ (k mod RTC
subblock) + 1) mod kπ

One of the simplifications reached after tracing the equation of inter-column
permutation for the third stream columns that on substituting by k for each
RTC
subblock the result that can be reached is that the table can be used with

adding one to each column index to be as in table see6.18.

63

Number of columns CTC
subblock Inter-column permutation pattern

p(0)+1,p(1)+1 , ... P(CTC
subblock − 1) + 1

1, 17, 9, 25, 5, 21, 13, 29, 3, 19
32 , 11, 27, 7, 23, 15, 31, 2, 18,

26, 6, 22, 14, 30, 4, 20, 12, 28, 8, 24, 16, 0

Table 3.3: Inter-column permutation pattern for third input

3.2.3.2 Bit collection

This block concatenate the three streams in circular buffer at first it adds the
original interleaved stream which are known as systematic bits then interlac-
ing between two other parity streams, the circular buffer of length Kw = 3K
for the coded block is generated as following :

wk = v
(0)
k for k = 0,. . . , K−1

wkπ+2k = v
(1)
k for k = 0,. . . , K−1

wkπ+2k+1 = v
(2)
k for k = 0,. . . , K−1

3.2.3.3 Bit-selection

Denote the soft buffer size for code block (only one code block for NB-IOT)
by Ncb bits, where the size Ncb is obtained as follows:

Ncb = Kw

Where Kw = 3K

Denoting by E the rate matching output sequence length for the coded block
and the redundancy version number which used to determine the starting
transmission point in the buffer for this transmission,
where rvidx = 0, rvidx = 2 for NB-IOT and the rate matching output bit
sequence indexes are K=0,1,. . . .,E-1. To determine the output length, define
G which represents the total number of bits available for the transmission of
one transport block, then set G

′
= G/NL.Qm where modulation index Qm is

1 for BPSK and 2 for QPSK. While NLis equal to the number of layers a
transport block is mapped onto which is equal to 1 layer in NB-IOT, therefore
G
′
= G/Qm then the output length can be determined as E = Qm ∗

⌈
G
′⌉

The last stage is to choose point to start from inside the buffer so define K0

at which

64

K0 = RTC
subblock.(2.

⌈
Ncb/(8R

TC
subblock

⌉
).rvidx + 2)

where

RTC
subblock is the number of rows defined in previous section. However, this

equation can be simplified in NB-IOT to be

K0 = RTC
subblock.(24.rvidx + 2), as

Ncb = Kw = 3K = 3(RTC
subblockC

TC
subblock) = 3(RTC

subblock32).

Then output can be determined according the following pseudo code where
k is bit index counter while j is loop counter to avoid reading NULL dummy
bits and the modulus here just to represent the idea of circular buffer when
K0 + j = Ncb it returns to index zero inside the buffer.[3] Set k = 0 and j =
0

While (k < E)
If (wk0+jmodNcb 6= NULL)

ek = wk0+jmodNcb

k = k +1
End if

j = j +1
End while

3.2.4 Data Multiplexing and Channel interleaver

After rate matching, interleaving is applied per resource unit without any
control information multiplexing in order to apply a time-first rather than
frequency-first mapping, where the input sequence is the portion of e for a
resource unit (output of the Rate matching) and where maximum number of
columns Cmax is

Cmax = (NUL
symbol − 1) ∗NUL

slot

Where NUL
symbol is the number of SC-FDMA symbols for NPUSCH in a

UL resource unit, NUL
slotis number of subcarriers in the frequency domain for

NB-IoT and NscRU is number of consecutive subcarriers in an UL resource
unit for NB-IoT as given in Table 3.3 [3]

65

3.2.4.1 Data and Control Multiplexing

The control and data multiplexing is performed such that HARQ-ACK in-
formation is present on both slots and is mapped to resources around the
demodulation reference signals. In addition, the multiplexing ensures that
control and data information are mapped to different modulation symbols.
The inputs to the data and control multiplexing are the coded bits of the
control information denoted by q0, q1, q2, . . . , qNL∗QCQI−1 and the coded bits
of the UL-SCH denoted by f0, f1, f2, . . . , fG−1The output of the data and
control multiplexing operation is denoted by g0, g1, g2, . . . , gH′−1 .
Where H = G + NL ∗ QCQI And H ′ = H/NLQm H is the total number
of coded bits allocated for UL-SCH data and CQI/PMI information across
the NL tansmission layers of the transport block.[3] In Narrowband IoT-LTE
(Assumptions):

Qm = 1 for BPSK and 2 for QPSK
NL = 1

QCQI = 0, As no control bits is multiplexed

Figure 3.5: Multiplexer block diagram

i = k =0
While (i < G) then place the data

gk = [fi,fi+Qm∗NL−1]T

i=i+Qm*NL

k=k+1

Then for BPSK :

66

Figure 3.6: Multiplexing BPSK stream

For Qpsk

Figure 3.7: Multiplexing QPSK stream

3.2.4.2 Channel Interleaver

The channel interleaver described in this section in conjunction with the
resource element mapping implements a time-first mapping of modulation
symbols onto the transmit waveform while ensuring that the HARQ-ACK
and RI information are present on both slots in the subframe. But the DUT
did not consider any control information, so code bits g0, g1, g2, . . . , gH′−1 are
only interleaved in channel interleaver. The output bit sequence from the
channel interleaver is derived as follows:

1- Assign Cmax by equation to be the number of columns of the matrix.
The columns of the matrix are numbered 0, 1, 2, . . . , Cmax1 from left to right.

2- The number of rows of the matrix is R
′
max = (Htotal

′
.Qm.NL))Cmax and

we define Rmax
′
= Rmax(Qm.NL)). The rows of the rectangular matrix are

numbered 0, 1, 2, . . . , Rmax1 from top to bottom.

67

3-Write the input vector sequence, for k = 0, 1,. . . ,H
′−1 into the RmaxCmax

matrix by sets of Qm.NL rows starting with the vector Y0 in column 0 and
rows 0 to Qm.NL-1. We filled RmaxCmaxH

′ with zeros in the last Qm.NLrows.
(Assumption)

Where Y0 = f0 for BPSK that occupies (Qm.NL = 1) rows and Y 0 =[
f0

f1

]

Y0 Y1 Y2 ... Ycmax−1

Ycmax Ycmax+1 Ycmax+2 ... Y2cmax−1

.

.

.
Y
R
′−1∗Cmax
max

Y
(R
′−1)∗Cmax+1
max

Y
(R
′−1)∗Cmax+2
max

... Y
(R
′−1)∗Cmax−1
max

The output of the block interleaver is the bit sequence read out column

by column from the RmaxCmax matrix. The bits after channel interleaving
are denoted by h0, h1, h2. . . hRmaxxCmax−1 .

3.3 Physical Channel and modulation

3.3.1 Scrambler

Scrambler mainly consists of two linear feedback shift registers which sim-
ply generating a L=31- Golden Sequence C(n) by 2 paths of flip flops which
initialized by two different values as shown in figure . for input codeword,
the block of bits b(q)(0),. . . ,b(q)(M

(q)
bit − 1), where M

(q)
bit is the number of bits

transmitted in codeword on the physical uplink shared channel in one sub-
frame, shall be scrambled with a UE-specific scrambling sequence prior to
modulation, resulting in a block of scrambled bits b̌(q)(0),. . . ,b̌(q)(M

(q)
bit −1) In

order to get the required output, the first m-sequence shall be initialized with
x1(0) = 1, x1(n) = 0, n = 1, 2, . . . , 30. On the other hand the initialization
of the second m-sequence is denoted by Cinit =

∑30
i=0 x2(i).2i and cinit for

NB-IOT is given by

cinit = nRNTI .2
14 + nfmod2.213 + bns2c.29 +NNcel

ID l.

68

This equation calculates the initial decimal value for x2 which can be con-
verted to its binary value to initialize the register. To work properly, initial
1600 shift cycles should be taken in consideration to induce extra randomness
for the initial state, so Nc = 1600 and the output sequence is given by:

C(n) = (x1(nNc) + x2(n+Nc)) mod 2
x1(n+ 31) = (x1(n+ 3) + x1(n)) mod 2
x2(n+ 31) = (x2(n+ 3) + x2(n+ 2)) mod 2
, so 1600 shift cycles should be performed directly after initialization and
before enabling scrambler to be able to receive any input.[3]

Figure 3.8: Scrambler standard internal structure

3.3.2 Modulation Mapper

Modulation is a process in which the incoming data stream is modulated onto
a carrier, the modulation process involves switching the amplitude, frequency
or phase of sinusoidal carrier in some fashion in accordance with the incoming
data; there are three basic modulation schemes known as ASK, FSK and
PSK. According to 3GPP TS 36.211 version 14.4.0 Release 14, Table see3.4
specifies the modulation mappings applicable for the narrowband physical
uplink shared channel. [1]

BPSK: In case of BPSK modulation, a single bit, b(i), is mapped to a
complex-valued modulation symbol x=I+jQ according to Table see 3.5

69

NPUSCH format NRU
sc Modulation scheme

1 1 BPSK , QPSK
1 QPSK

2 1 BPSK

Table 3.4: Modulation Mapping

b(i) I Q
0 1√

2
1√
2

0 1√
2

1√
2

Table 3.5: BPSK Modulation Mapping

QPSK
In case of QPSK modulation, a pair of bits, b(i),b(i+1), is mapped to a

complex-valued modulation symbol x=I+jQ according to Table see 3.6.

b(i),b(i+1) I Q
00 1√

2
1√
2

01 1√
2

1√
2

10 1√
2

1√
2

11 1√
2

1√
2

Table 3.6: QPSK Modulation Mapping

3.3.3 FFT

The block of complex values x (0), x (1) , x(MLayer
symbol−1) , generated

from the modulation mapper, is divided into a set of MLayer
symbol/M

Npusch
sc sets,

each corresponding to one SC-FDMA symbol. Transform precoding shall be
applied according to

y(l.MNpusch
sc + k) = 1/

√
MNpusch
sc

)

∑MscNpusch−1
(k=0) x(l.Mpusch

sc + i)e−j
2ik/(M

Npusch
sc
)

k = 0, 1,MNpusch
sc − 1

l = 0, 1,(MLayer
symbol)/(M

Npusch
sc)− 1

70

Resulting in a block of complex-valued symbols y (0), y (1). . . ., y(MLayer
symbol−

1). WhereMNpusch
sc = NRU

sc .N
RU
sc is the number of allocated subcarriers and

it could be determined for NB-IoT from table. Resource units are used to
describe the mapping of the NPUSCH to resource elements. A resource unit
is defined as NUL

slots ∗ NUL
symbols consecutive SC-FDMA symbols in the time

domain and NRU
sc , consecutive subcarriers in the frequency domain, where

NUL
slots, N

UL
symbolsandN

RU
sc , are given by table. In our design we assumed work-

ing with NPUSCH format 1 with 15 KHz spacing.[1]

3.3.4 Resource element Mapper

3.3.4.1 Resource grid

A transmitted physical channel or signal in a slot is described by one or
several resource grids of NUL

sc subcarriers and NUL
symbol SC-FDMA symbols.

The resource grid is illustrated in figure. The slot number within a radio
frame is denoted ns wherens ε (0 , 1 , .. , 19) for = 15 KHZ and ns ε (0 , 1
, .. , 4) for = 3.75 KHZ

Figure 3.9: Uplink resource grid for NB-IoT

The uplink bandwidth in terms of subcarriers NUL
sc , and the slot duration

Tslotare given in table 3.4.

71

3.3.4.2 Resource element

Each element in the resource grid is called a resource element and is uniquely
defined by the index pair (k,l) in a slot where k=0,. . . , NUL

sc −1 and l=0,. . . .,NUL
symbol−

1 are the indices in the frequency and time domains, respectively. Resource
element (k,l) corresponds to the complex value ak,l. Quantities ak,l corre-
sponding to resource elements not used for transmission of a physical channel
or a physical signal in a slot shall be set to zero.[1]

3.3.4.3 Resource unit

Resource units are used to describe the mapping of the NPUSCH to resource
elements. A resource unit is defined as NUL

symbolN
UL
slots consecutive SC-FDMA

symbols in the time domain andNRU
sc consecutive subcarriers in the frequency

domain, where NRU
sc and NUL

symbol are given by table 1.2

3.3.4.4 Mapping to physical resources

NPUSCH can be mapped to one or more than one resource units, NRU each
of which shall be transmitted MNPUSCH

rep times. The block of complex-valued
symbols z(0), . . . , z(Map

symbol − 1)which are the output of the FFT block are
mapped in sequence starting with z(0) to subcarriers assigned for transmis-
sion of NPUSCH. The mapping to resource elements (k,l) corresponding to
the subcarriers assigned for transmission and not used for transmission of ref-
erence signals shall be in increasing order of first the index k, then the index
l, starting with the first slot in the assigned resource unit. After mapping to
Nslots slots, the Nslots slots shall be repeated MNPUSCH

identical −1 additional times,
before continuing the mapping of z(.) to the following slot, where

MNPUSCH
identical =

{
min(bMNPUSCH

rep /2c, 4) forNRU
sc > 1

1 forNRU
sc = 1

Nslots =

{
1 forδf = 3.75KHZ
2 forδf = 15KHZ

DCI information of resource allocation: DCI information of resource allo-
cation: The resource allocation information in uplink DCI format N0 for
NPUSCH transmission indicates to a scheduled UE. A set of contiguously
allocated subcarriers nsc of a resource unit determined by the Subcarrier in-
dication field in the corresponding DCI , A number of resource units nRU

72

determined by the resource assignment field in the corresponding DCI ac-
cording to table see 3.7. A repetition number nRep determined by the repe-
tition number field in the corresponding DCI according to table see 3.8. The
subcarrier spacing f of NPUSCH transmission is assumed 15 kHz for our op-
eration. For NPUSCH transmission with subcarrier spacing f=15 kHz, the
subcarrier indication field Isc in the DCI determines the set of contiguously
allocated subcarriers nsc according to Table.see 3.9

Subcarrier indication field (Isu) Set of Allocated subcarriers (nsc)
0-11 Isu
12-15 3(Isu)+0,1,2
16-17 6(Isu)-16 +0, 1, 2, 3 , 4 , 5

18 0, 1, 2, 3, 4 ,5 , 6, 7 ,8 ,9 10 ,11
19-63 Reserved

Table 3.7: Allocated subcarriers

Isu nsc
0 1
1 2
2 3
3 4
4 5
5 6
6 8
7 10

Table 3.8: Number of resource units for NPUSCH

73

Isu nsc
0 1
1 2
2 4
3 8
4 16
5 32
6 64
7 128

Table 3.9: Number of resource units for NPUSCH

3.3.5 IFFT and CP

IFFT is the block responsible for transforming frequency sub channels into
time domain samples to be transmitted through the RF blocks. LTE uplink
uses SC-FDMA which is a modified form of the OFDM with similar through-
put performance and complexity, SC-FDMA is viewed as DFT-coded OFDM
where time-domain symbols are transformed to frequency domain symbols
and then go through the standard OFDM modulation, SC-FDMA has all the
advantages of OFDM like robustness against multi-path signal propagation,
the block diagram for the SC-FDMA is shown in figure. see 3.10

Figure 3.10: SCFDMA Block diagram

The main advantage of SC-FDMA is the low Peak Average Power Ratio
(PAPR) of the transmit signal, PAPR is a big concern for user equipment,
as PAPR relates to the power amplifier efficiency as low PAPR allows the
power amplifier to operate close to the saturation region resulting in high ef-
ficiency that is why SC-FDMA is the preferred technology for user terminals.
The NB-IoT supported bandwidth is 180 KHz with number of subcarriers
depending on the spacing between sub channels, 2 sub channels are defined

74

in the standard 15 KHz and 3.75 KHz each with its own symbol duration.
For more clear understanding of the symbol durations and frequency alloca-
tion of symbols we need to illustrate this on the resource grid, the resource
grid represents time on the x-axis and frequency on the y-axis. In its time
domain structure, each LTE frame is 10ms long and comprises of 10 sub-
frames, each of 1ms duration. The sub-frames are further divided into two
time slots of 0.5ms, each comprising 7 SC-FDMA symbols in normal cyclic
prefix operation and 6 SC-FDMA symbols in extended cyclic prefix mode.
For the sake of simplicity, we shall restrict our discussion only to normal
cyclic prefix mode. A fixed subcarrier spacing of 15 KHz gives a SC-FDMA
symbol duration of 66.67 us. A cyclic prefix of duration 5.2 us is used for
the first SC-FDMA symbol and 4.68 us for the rest of the symbols in each
time-slot. This gives a total symbol duration of 71.87 us for the first symbol
and 71.35 us for the rest of the symbols in a time-slot.

The IFFT subcarriers are grouped into sets of 12 subcarriers with spac-
ing of 15 KHz between each adjacent sub channels, each group is called a
resource block NB-IoT has one resource block only per UE transmitter. To
implement IFFT block which supports 12 subcarriers as the max number of
allocated sub carriers we may use 16 point IFFT as a minimum size. The
less the IFFT size, the less the output sample rate is as this number of sam-
ples in addition to cyclic prefix samples are distributed on the same defined
SC-FDMA symbol duration. In our implementation we use 16 point IFFT
to decrease latency and power dissipation of the block and output sample
rate could be compensated by an up sample filter to upgrade the rate to a
convenient rate for the digital to analog converter (ADC) block. These set-
tings are equivalent to cyclic prefix samples per Sc-fdma symbol which is 16
samples =2 cyclic prefix samples, peak data rate = 336 Kbit/s and output
sample rate =36 Ksample/sec.

75

Chapter 4

Block level testing

The main mission of top level testing is to prove that all the internal blocks
are connected and can work together as required. The top level DUT is con-
sidered as a black box That it can only be accessed through its ports and
registers. This assumes that the design is complicated and it can benefit
from block level testing.

Block level testing can provide great benefit if there are complicated al-
gorithmic functions that are applied to a data stream. There may be several
operations along a modem coding chain that are extremely difficult to prove
completely. For instance, a FFT or IFFT translation block. In a block level
environment, it is easy to stimulate the block with full random data, but
in the full design, the inputs may be limited (by design). With a reference
model of the algorithmic function to compare against, randomness will en-
sure achieving full coverage. Moreover, the advantage of block level testing
is that, the DUT being smaller, simulations will run faster. Also, because
the functionality of a block is only part of the top level DUT. When the full
DUT is being simulated, simulation speed will get slower.
In the other hand, one disadvantage of block level testing is that special
BFM’s and/or models may have to be created. Also, that a separate envi-
ronment has to be created for each block. Once all blocks have been proven,
the top level testing should not have to concern itself with the low level
functionality of these algorithms, but more on the control and overall in-
put/output.

76

As discussed in chapter three , two different approaches were clarified
In the first one (i.e. transaction approach), we have separated data from
structure, we have not separated data stimulus from structure. This tester
class is the problem. The tester creates new transactions and feeds them
into the testbench. This means the tester is doing two things: choosing
the order of the transactions and feeding them to the Driver. This makes
reuse a problem. The tester is not the perfect solution to the problem of
creating new transactions, it cannot be reused because it has the side effect of
determining stimulus. The transaction type can be overridden to control data
randomization, but the entire tester class also must be changed to change
the number of transactions and the way they are sent. If more tests and
more combinations were added, there would be more of tester classes. This
would be complex hard to maintain. It’s better to separate the order of
the transactions (i.e. generating the data stimulus) from the Environment
structure. The structure should remain unchanged regardless of the order
of transactions. In the second approach (i.e. transaction approach), UVM
sequences separate stimulus from the Environment structure. They allow
us to create one testbench structure and then run different data through it.
This is a complete and an adaptable testbench.

77

4.1 Transaction Approach

It was used to verify 3 block of the transmitter chain.

4.1.1 Turbo Encoder

Figure 4.1: Turbo Encoder input and output ports

Port name Direction Width Description
Turbo IN input 1 bit Input stream
Turbo clk input 1 bit system clock

Turbo enable input 1 bit Block enable
Turbo Load sinal input 1 bit Input load signal

TurboRST input 1 bit Block reset
TBS input 1 bit Transport bolck size

Turbo X k output 1 bit Output stream 1
Turbo Z k output 1 bit Output stream 2

Turbo Z k P output 1 bit Output stream 3
Turbo Stream H output 1 bit Flag signal to indicate

the valid output
Turbo done output 1 bit Flag to indicate the end of the valid output

Table 4.1: Turbo Encoder input and output ports

78

4.1.1.1 TEST PLAN

Unknown (X, Z) Signals

For the Turbo Encoder the following signals must be known under certain
conditions:

Signal Condition
Turbo IN Turbo EN, Turbo RST and Turbo Load Signal are all at logic ‘1’
Turbo EN Always in a known state

Turbo Load signal Turbo EN and Turbo RST are both at logic ‘1’
Turbo RST Always in a known state

TBS Turbo EN, Turbo RST and Turbo Load Signal are all at logic ‘1’
Turbo X k Turbo Stream H is at logic ‘1’
Turbo Z k Turbo Stream H is at logic ‘1’

Turbo Z k P Turbo Stream H is at logic ‘1’
Turbo Stream H always be in a known state

Turbo done always be in a known state

Table 4.2: Turbo Encoder Unknown (X, Z) Signals

Timing Relationships
For the Turbo Encoder, the following temporal relationships can be de-

fined:

Sequence What to check
Output length Turbo Stream H = 1 / For a number of cycles according to TBS

Trellis Termination Initially : Output length sequence
After 2 cycles:

Turbo Stream H = 1 / For 4 cycles
Transaction done Initially : Trellis Termination sequence

After 1 cycle:
Turbo done = 1

Table 4.3: Turbo Encoder temporal timing relationships

79

Functional Coverage

The fields that are relevant to Turbo Encoder functional coverage are:

Specifications cover
TBS Cover all values in table 3.1

Table 4.4: Turbo Encoder Functional coverage

4.1.1.2 Environment

Transaction This class encapsulates all Turbo Encoder driving variables. A
set constraints was defined on these variables.

Constraints

1-Transport block size Constraint:

• Since we have only specific values to TBS signal, we need to limit the
randomization of TBS to be as follow TBS∈(Table 3.1)

2-Control Constraint:

• Gives distribution to the constraint solver for Turbo EN, 90% logic
‘1’ and the other 10% is logic ‘0’

• Gives distribution to the constraint solver for Turbo RST, 90% logic
‘1’ and the other 10% is logic ‘0’

• Gives distribution to the constraint solver for Turbo EN, 90% logic
‘1’ and the other 10% is logic ‘0’

Driver

The driver gets the transaction from the tester. While Turbo EN and Turbo RST
are both at logic 1, the driver asserts Turbo Load Signal and starts to send
the input bits for (TBS + 24) consecutive cycles then Turbo Load Signal

80

shall go to a logic 0 in the next cycle. The designed block is not pipelined.
therefore, the driver goes to a sleep state waiting for Turbo done signal to
be sampled at logic 1 in order to get the next transaction.

Figure 4.2: Turbo Encoder Input driving

Input Monitor

Once Turbo EN, Turbo RST and Turbo Load Signal are all at logic
1, the monitor enters a loop of sampling Turbo IN for (TBS+24) consecu-
tive clock cycles. The sampling takes place at the positive edge. Meanwhile,
in each cycle the monitor checks that the control signals and TBS are stable.
If not, it breaks the sampling loops.

Once the sampling loop is completed successfully, the monitor broadcast
the transaction to the coverage and scoreboard components via the TLM
Analysis port. The monitor waits for Turbo Load Signal to go to logic 1
again which indicates a new transaction

Figure 4.3: Turbo Encoder input sampling

Output Monitor

As a result of the output bits being generated in inconsecutive clock cy-
cles, the output monitor enters a waiting state until Turbo Stream H is sam-
pled at logic 1. Once this event is triggered, Turbo X k, Turbo Z k and
Turbo Z k P will be sampled at the same positive edge.

81

The monitor continues in the previous operation until Turbo done is to be
sampled at logic 1 which means the transaction is completed.

If the number of sampled output bits were equal to (TBS+28), the out-
put monitor sends the output transaction to the scoreboard component via
the TLM Analysis port.

Figure 4.4: Turbo Encoder output sampling

Scoreboard

The scoreboard is implemented based on the two constituent encoders as
shown in 2.3 Predict result function is responsible for predicting the output,
which will be compared with the DUT output.

• The received input transaction will be interleaved based on TBS see
3.1

• The output bits will be calculated through some Boolean expressions
using for loop.

• Trellis termination bits is calculated separately as X K
′

is part of the
padded bits

• The encoded information is padded with the generated trellis termina-
tion Then the comparing process starts

82

Coverage

We’ve defined our functional coverage model in terms of stimulus in (test
plan chapter). The Turbo Encoder is fully tested if we’ve run a complete set
of these terms:

• TBS

Transport block size is nothing but the payload for physical layer. All of
the values shown in table see 3.1 should be check to fully test the internal
interleaver.
A covergroup is used to capture functional coverage for TBS bus. There is
a defined coverage bin for each value of TBS in the coverage model. When
the write function is invoked. The Coverage should be triggered to sample
the coverage values

Assertions

One way to verify the Rate matcher is to implement a monitor as a Sys-
tem Verilog interface that uses a mixture of SVA concurrent assertions to
observe and check the bus traffic.
It’s a passive verification component which monitors the block signals, it can
be attached to external signals in the top level of the UVM Environment.
In this module we check the value of the interface signals, if one of them is
in an undefined state, then it will cause a problem under certain conditions.
There are two type of signals to be checked:

1. Signal must be known all time to ensure proper operation of the whole
chain; these signals are:

• Turbo RST

• Turbo EN

• Turbo Stream H

• Turbo done

83

2. Signal must be known only under certain condition; these signals are:

• Turbo IN

• TBS

• Turbo X k

• Turbo Z k

• Turbo Z k P

This module is also used to verify the signals sequences for all types of
transfers to ensure successful communication between the Turbo Encoder
and the other blocks in the Transmitter chain.

The sequences checked by this Assertions module are:

1. Output sequence length .

The Output length of encoded information is variable according to the Trans-
port block size. the coding rate of turbo encoder is 1/3 with (TBS+24) out-
put bits generated on each bus. Therefore, Turbo Stream H shall be at
logic 1 for a number of (TBS+24) inconsecutive cycles.

2. Trellis Termination sequence.

Trellis termination is performed by taking the tail bits from the shift reg-
ister feedback after all information bits are encoded. Tail bits are padded
after the encoding of information bits. Turbo Stream H shall be sampled
at logic 1 for 4 consecutive cycles after the output length sequence is finished.

3. Transaction done sequence.

Turbo done indicates that the block finished the current operation and
is ready for new input. Turbo done must be sampled at logic one after
Turbo Stream H is sampled at logic ‘1’ for (TBS+28) cycles.

These sequences are used to verify the timing between commands.

84

4.1.2 Modulator

Figure 4.5: Modulator input and output ports

Port name Direction Width Description
Mod IN input 1 bit Serial input stream from scrambler
Mod clk input 1 bit system clock
Mod EN input 1 bit Block enable

Mod IN EN input 1 bit Shows
whether the value on Mod IN bus is valid or not

Mod RST input 1 bit Active low reset signal,
puts the block into its initial state

modQm input 1 bit Modulation index
(BPSK or QPSK), upper layer parameter

Msc input 2 bits Number of subcarriers, upper layer parameter
Mod O valid output 1 bit Signal to show

the current values of ModIandModQarevalid
mod I output 16 bit Real part of output

symbol, represented in fixed point
(integer part: 6 bits, fraction part: 10 bits)

mod Q output 16 bit Imaginary part of output
symbol, represented in fixed point

(integer part: 6 bits, fraction part: 10 bits)

Table 4.5: Turbo Encoder input and output ports

85

4.1.2.1 TEST PLAN

Unknown (X, Z) Signals

For the Modulator the following signals must be known under certain
conditions:

Signal Condition
Mod IN Mod RST, Mod EN and Mod IN EN are all at logic ‘1’
Mod EN Always in a known state

Mod IN Enable Mod RST and Mod EN are both at logic ‘1’
Mod Qm Mod RST and Mod EN are both at logic ‘1’

Msc Mod RST and Mod EN are both at logic ‘1’
Mo I Mod O Valid is at logic ‘1’
Mo Q Mod O Valid is at logic ‘1’

Mo o valid Always in a known state

Table 4.6: Modulator Unknown (X, Z) Signals

Timing Relationships

For the Modulator, the following temporal relationships can be defined:

Sequence What to check
Reset Effect Mod O Valid = 0

Mod Q = 0
Mod I = 0

Output Timing Initially : Mod IN EN == 1
After a number of cycles depending on modulation index:

Mod O Valid = 1 / For 1 cycle

Table 4.7: Modulator temporal timing relationships

86

Functional Coverage

The fields that are relevant to the Modulator functional coverage are:

Specifications cover
Mod IN Cover all possible input symbols
Mod Qm Cover all modulation schemes

Msc Cover all possible subcarrier numbers
Mod IN, Msc,Mod Qm Cover all combination of all inputs

Table 4.8: Modulator Functional coverage

4.1.2.2 Environment

Transaction

This class encapsulates all Modulator driving variables. A set constraints
was defined on these variables.

Constraints

1- Modulation index constraint:

• There are 2 values for the modulation index BPSK and QPSK, the
modulation index is randomized with equal distribution for these values

2- Msc Constraint:

• There are 3 values for the number of subcarriers, 3, 6 and 12 subcarriers.
It’s randomized with equal distribution for these values

3-Control Constraint:

• Gives distribution to the constraint solver for Mod EN, 90% logic ‘1’
and the other 10% is logic ‘0’

• Gives distribution to the constraint solver for Mod RST, 90% logic
‘1’ and the other 10% is logic ‘0’

87

• Gives distribution to the constraint solver for Mod IN EN, 90% logic
‘1’ and the other 10% is logic ‘0’

Driver

The driver receives the transactions from the tester which include the val-
ues for input signals, it converts a transaction to its corresponding bit level
signals and applies them to the DUT interface. The driver checks the mod-
ulation index, if it’s 0 i.e. BPSK modulation, it drives a single bit to the
interface while applying the given value of Mod IN EN, if it’s 1 i.e. QPSK
modulation, it drives a pair of bits to the interface

Figure 4.6: modulator driving

Input Monitor

The monitor checks at every positive edge of the clock for the Mod IN EN
signal, if it’s sampled at logic ‘1’, it samples the data from the DUT’s inter-
face. If the modulation index is at logic ‘0’ (i.e. BPSK), the monitor groups
the data in a transaction and writes it in the analysis port for the subscribers
to read. If it’s at logic ‘1’ it waits another clock cycle to capture the second
bit of the transaction (i.e. QPSK).

Figure 4.7: modulator sampling

88

Output Monitor

The output monitor checks at every positive edge of the clock if the Mod O Valid
signal is sampled at logic ‘1’, then it samples the real and imaginary outputs
of the modulation symbol and writes them into its analysis port.

Figure 4.8: Modulator output sampling

Scoreboard

The prediction in the case of the modulator is simple; a case statement
that checks the value of the input bits, the modulation index and the num-
ber of subcarriers, it produces the corresponding real and imaginary part
for that symbol. The following table shows the fixed point values for each
corresponding value of the constellation points

Real value Fixed point value
1√
2
∗ 1√

3
4’h01A2

1√
2
∗ 1√

6
4’h0128

1√
2
∗ 1√

12
4’h00D1

− 1√
2
∗ 1√

3
4’hFESE

− 1√
2
∗ 1√

6
4’hFED8

− 1√
2
∗ 1√

12
4’hFF2F

Table 4.9: Modulator Fixed Point Representation mapping

Coverage

We’ve defined our functional coverage model in terms of stimulus in (test
plan chapter). The coverage block has 3 covergroups, Scheme, BPSK and
QPSK

89

• Scheme

This covergroup is used to cover both modulation schemes, BPSK and
QPSK, through the input Qm which is the modulation index. One cover-
point is enough to accommodate for it. Two more covergroups are needed to
cover the data and subcarrier cases.

• BPSK

This covergroup has 2 coverpoints, one for the input symbol (Mod IN),
and another for the number of subcarrier (Msc). It also has cross coverage
between these two coverpoints

• QPSK

IThis Covergroup has the same coverpoints as BPSK, the difference is
that in case of BPSK, the input symbol is 1 bit, while in case of QPSK
the input symbol is two bits, so this covergoup samples two consecutive
bits driven to the input (Mod IN) and covers all the cases for the input
symbol. The coverpoint for Msc and cross coverage are the same as BPSK.
The combination of these 3 covergroups insures the Modulator has been
tested thoroughly

• Cross coverage

All the previous covergroups are crossed together to make sure that the
modulator’s exercised all possible combinations and has been tested thor-
oughly

Assertions

One way to verify the Modulator is to implement a monitor as a System
Verilog interface that uses a mixture of SVA concurrent assertions to observe
and check the bus traffic. It’s a passive verification component which moni-
tors the block signals, it can be attached to external signals in the top level
of the UVM Environment. In this module we check the value of the interface
signals, if one of them is in an undefined state, then it will cause a problem
under certain conditions. There are two type of signals to be checked:

90

1. Signal must be known all time to ensure proper operation of the whole
chain; these signals are:

• Mod RST

• Mod EN

• Mod O Valid

2. Signal must be known only under certain condition; these signals are:

• Mod IN EN

• Mod IN

• Mod Qm

• Msc

This module is also used to verify the signals sequences for all types of
transfers to ensure successful communication between the Modulator and the
other blocks in the Transmitter chain. The sequences checked by this Asser-
tions module are:

1. Reset effect sequence:

When reset is at logic ‘0’, all the outputs of the modulator must be sam-
pled at logic ‘0’

2. Output timing sequence:

There are two cases depending on the modulation index i.e. (Mod Qm):

• BPSK

If Mod IN EN is sampled at logic 1 for 1 clock cycle and Mod Qm=0 (i.e.
BPSK) then on the next positive edge of the clock, Mod O Valid should be
sampled at logic 1 for one cycle indicating an output symbol is valid

• QPSK

If Mod IN EN is sampled at logic 1 for 2 clock cycles and Mod QM=1
(i.e. QPSK) then on the next positive edge of the clock, Mod O Valid should
be sampled at logic 1 for one cycle indicating an output symbol is valid. These
sequences are used to verify the timing between commands.

91

4.1.3 Resource Element Mapper

Figure 4.9: REM input and output ports

Port name Direction Width Description
REM clk input 1 bit system clock

REM enable input 1 bit Block enable
REM res input 1 bit Block reset

Isc input 5 bits Upper layer signal to tell
the number of subcarriers and their start index

Irep input 3 bits Upper layer signal to tell
the number of repetitions

In real input 16 bits Real part of the input symbol
In imag input 16 bits Imaginary part of the input symbol

Mapper ready output 1 bit Flag to tell the previous block
that the rem is ready to receive input

Valid FFT out input 1 bit Fag to tell that the output
of the previous block is valid

Valid out output 1 bit Flag to indicate that
Output of REM is valid

Table 4.10: Resource Element Mapper input and output ports

92

4.1.3.1 TEST PLAN

Unknown (X, Z) Signals

For the Resouce Element Mapper the following signals must be known
under certain conditions:

Signal Condition
REM res always be in a known state

Isc REM enable and REM res are both at logic ‘1’
REM enable always in a known state

Irep REM enable and REMresarebothatlogic‘1
′

In imag REM enable, REMresandV alid FFT outareallatlogic‘1′

In real REM enable, REMresandV alid FFT outareallatlogic‘1′

Task done always be in a known state
Valid out always be in a known state
Out imag REM enable,REM res and valid out are at logic ‘1’
Out real REM enable,REM res and valid out are at logic ‘1’

Table 4.11: Resource element mapper Unknown (X, Z) Signals

Timing Relationships

For the Resource Element Mapper, the following temporal relationships
can be defined:

Sequence What to check
Output latency After a number of cycles according to Isc and Irep:

Valid out = 1
Output length Valid out = 1 / For 12 cycles

Transaction done Initially : Output length
After 1 cycles:

MTask done = 1 / For 4 cycles
Operation holding Initially: Irep = 3,4,5,6,7 , Output length / 13 times

Maper ready = 0

Table 4.12: Resource element mapper temporal Timing relationship

93

Functional Coverage

The fields that are relevant to REM functional coverage are:

Specifications cover
Isc Cover all values from 0 to 18
Irep Cover all values from 0 to 7

Ise & Irep Cover all combinations of the two inputs

Table 4.13: Resource element mapper functional coverage

4.1.3.2 Environment

Transaction This class encapsulates all Turbo Encoder driving variables. A
set of constraints was defined on these variables.

Constraints

1- Number of subcarriers Constraint

• Since we have only specific values to Isc signal, we need to limit the
randomization of Isc to be as follow Isc∈ [0:18] as specified in (3.7)

2-Control Constraint:

• Gives distribution to the constraint solver for REM enable, 90% logic
‘1’ and the other 10% is logic ‘0’

• Gives distribution to the constraint solver for REM res, 90% logic ‘1’
and the other 10% is logic ‘0’

• Gives distribution to the constraint solver for Valid FFT out, 90%
logic ‘1’ and the other 10% is logic ‘0’

• Gives distribution to the constraint solver for rem out en, 90% logic ‘1’
and the other 10% is logic ‘0’

94

Driver

While REM enable and REM res are both at logic 1, the driver asserts
Valid FFT out and starts to send the input according to number of sub-
carrier in consecutive cycles then Valid FFT out shall go to logic 0 in the
next cycle.

The designed block is not pipelined. Therefore, the driver goes to a sleep
state waiting for Task done signal to be sampled at logic ‘1’ in order to get
the next transaction.

Figure 4.10: Resource Element Mapper input driving

Input Monitor

Once REM enable and REM res and Valid FFT out are all at logic
‘1’, the monitor enters a loop of sampling Input real, Input imag, Isc and
Irep for number of clock cycles depending on the number of subcarrier allo-
cated and the number of repetition. The sampling takes place at the positive
edge. Meanwhile, in each cycle the monitor checks that the control signals
are stable. If not, it breaks the sampling loops.

Once the sampling loop is completed successfully, the monitor broadcast
the transaction to the coverage and scoreboard components via the TLM
Analysis port. The monitor waits for the repetition of Task done to be sam-
pled at logic 1 for 14 times which indicates a new transaction.

95

Figure 4.11: Resource Element Mapper input sampling

Output Monitor

As a result of the output being generated in inconsecutive clock cycles, the
output monitor enters a waiting state until Valid out is sampled at logic 1.
Once this event is triggered, Out real and Out imag will be sampled at the
same positive edge.

The monitor continues in the previous operation until Task done has been
sampled be at logic 1 for 14 times which means the transaction is completed.
Then the output monitor sends the output transaction to the scoreboard
component via the TLM Analysis port.

Figure 4.12: Resource Element Mapper output sampling

Scoreboard

We need to model a memory which represent resource grid as shown in 1.6

• the repetition is done after one resource unit NRU which equal to 14
blocks of input data every block is equal to number of subcarriers. In
order to test the repetition feature the input transaction must be at
least 14 NRU , so we model this using three dimensions array, first
dimension indicates the input data width which is equal to 16 bit,

96

second dimension indicates the number of subcarriers allocated which
has a maximum value of 12 and the third dimension indicates slots
which has a maximum value of 14 slots to test the repetition feature.

• Consequently, the output of DUT is equal to (12 × 14 × number of
repetitions) so we model this with four dimensions’ array, first dimen-
sion indicates the width of output data (16 bits), second dimension
indicates the outputs of every slot which is equal to 12, the third di-
mension indicates number of slots which is equal to 14 slots and the
fourth dimension indicate the number of repetitions.

• Using the received input transaction, we assign in the four-dimensions
array using for nested loops first loop on number of subcarrier (fre-
quency) and second loops on number of slots (time) and the third loops
on number of repetition

Coverage

We’ve defined our functional coverage model in terms of stimulus in (test
plan chapter). REM is fully tested if we’ve run a complete set of these terms:

• Isc

Upper layer parameter which determines the number of subcarrier and
the starting index of subcarriers. All of the values vary from 0 to 18
should be check to fully test all possible register access which indicates
all possible subcarriers. A covergroup is used to capture functional
coverage for Isc bus. There is a defined coverage bin for each value of
Isc in the coverage model.

• Irep

Upper layer parameter which determines the number of repeated blocks
of data. All of the values vary from 0 to 7 should be check to fully test
all possible register access which indicates all possible repetition. A
covergroup is used to capture functional coverage for Irep bus. There
is a defined coverage bin for each value of Irep in the coverage model.

97

• Cross coverage

All the previous Coverpoint are crossed together to make sure that the
REM’s exercised all possible combinations and has been tested thor-
oughly. When the write function is invoked. The Coverage should be
triggered to sample the coverage values.

Assertions

way to verify the REM is to implement a monitor as a System Verilog
interface that uses a mixture of SVA concurrent assertions to observe and
check the bus traffic.
It’s a passive verification component which monitors the protocol signals, it
can be attached to external signals in the top level of the UVM Environment.
In this module we check the value of the interface signals, if one of them is
in an undefined state, then it will cause a problem under certain conditions.

There are two type of signals to be checked:
1. Signal must be known all time to ensure proper operation of the whole
chain; these signals are:

• REM res

• REM enable

• Task done

• Valid out

Signal must be known only under certain condition clarified in table ();
these signals are:

• Isc

• Irep

• In imag

• In real

• Out imag

• Out real

98

This module is also used to verify the signals sequences for all types of
transfers to ensure successful communication between REM block and the
other blocks in the Transmitter chain.

These sequences are used to verify the timing between commands:

1. Output latency sequence.

This sequence is to check the Latency of the block; we are concerned with
the timing of first valid output. The time of the rising edge of Valid out
indicates the latency of the block.

2. Output length sequence.

The Output length of REM block is 12 symbols for every transaction and
it’s generated in consecutive cycles. Valid out indicates that the generated
output is valid and ready to be sampled. It must be held at logic ‘1’ for 12
consecutives cycles.

3. Transaction done sequence.

Output length of block is constant and equal to 12 and the output is gener-
ated in consecutive cycles. Task done indicates that the block finished the
current operation and is ready for new input. the rising edge of Task done
must happen after 12 consequences Valid out.

4. Operation holding.

FFT takes 54 cycles to produce new data to the resource element mapper,
however, if repetition occurs, the REM will be sending old data stored in its
memory, so the data from the FFT will be lost. Therefore, the REM sends
a signal (i.e. Mapper ready) to the control unit to tell if it can receive new
input or not. If it’s sampled to be at logic 1, the control unit disables the
FFT and all the previous blocks, if I’s not, the chain runs in the normal
operation.
These sequences are used to verify the timing between commands.

99

4.2 Sequence Approach

It was used to verify 3 block of the transmitter chain.

4.2.1 Rate Matcher

Figure 4.13: Rate Matcher input and output ports

Port name Direction Width Description
RM clk input 1 bit system clock

RM Enable input 1 bit Block enable
RM enable ld input 1 bit Input load signal

RMreset input 1 bit Block reset
TBS input 12 bits Transport bolck size

G input 12 bits determine output sequence length
Rv input 1 bit Redundancy version
Qm input 12 bits Modulation index
E output 12 bits Output sequence length

RM out output 1 bit Output bit stream
RM out enable output 1 bit Valid output enable

Table 4.14: Rate matcher input and output ports

100

4.2.1.1 TEST PLAN

Unknown (X, Z) Signals

For the Rate Matcher the following signals must be known under certain
conditions:

Signal Condition
In d0 RM enable ld, RMEnable, RM resetareallatlogic‘1′

In d1 RM enable ld, RMEnable, RM resetareallatlogic‘1′

In d1 RM enable ld, RMEnable, RM resetareallatlogic‘1′

RM Enable Always in a known state
RM enable ld RM Enable and RM reset are both at logic 1

RMreset Always in a known state
TBS RM Enable, RM reset and RM enable ld are all at logic ‘1’

G RM Enable, RM reset and RM enable ld are all at logic ‘1’
Rv RM Enable, RM reset and RM enable ld are all at logic ‘1’
Qm RM Enable, RM reset and RM enable ld are all at logic ‘1’

RM out RM out enable is at logic ‘1’
RM out enable Always in a known state
RM end flag Always in a known state

Table 4.15: Rate matcher unknown (X, Z) Signals

101

Timing Relationships

For the Rate Matcher, the following temporal relationships can be defined:

Sequence What to check
Output length RM out enable = 1 / For a number of cycles according to G

Transaction done Initially : Output length
After 1 cycle:

RM end flag = 1 / For at least 1 clock cycle and the output
is not a dummy bit.

Table 4.16: Rate matcher temporal timing relationshipsp

Functional Coverage

The fields that are relevant to Rate Matcher functional coverage are:

Specifications cover
TBS Cover all values in (lookup table number)

G Cover all values from 0: 2880
Rv cover all vaues
Qm cover all vaues

Table 4.17: Rate Matcher functional coverage

4.2.1.2 Environment

Sequence item

This class encapsulates all Rate Matcher driving variables. A set constraints
was defined on these variables.

Constraints

1-Transport block size Constraint:

• Since we have only specific values to TBS signal, we need to limit the
randomization of TBS to be as follow TBS(Table elvalues)

102

2-G value constraint:

• The maximum value for G is 2880 therefor the size is [11:0] 12 bits.

3- Redundancy version constraint

• Gives distribution to the constraint solver for Rv, 90% logic ‘0’ and the
other 10% is logic ‘1’ for retransmissions cases

4- Modulation index constraint:

• Gives distribution to the constraint solver for Qm, 50% logic ‘1’ and
the other 50% is logic ‘0’

5-Control Constraint:

• Gives distribution to the constraint solver for RM Enable, 95% logic
‘1’ and the other 5% is logic ‘0’

• Gives distribution to the constraint solver for RM reset, 95% logic ‘1’
and the other 5% is logic ‘0’

• Gives distribution to the constraint solver for RM enable ld, 95% logic
‘1’ and the other 5% is logic ‘0’

Driver

While RM Enable, RM reset are both at logic 1, the driver asserts and
RM enable ld and starts to feed the DUT through in d0, in d1 and in d2
for (TBS + 28) clock cycles then RM enable ld shall go to a logic 0 in the
next cycle.

The designed block is not pipelined. therefore, the driver goes to a sleep
state waiting for RM end flag signal to be sampled at logic 1 in order to get
the next transaction.

103

Figure 4.14: Rate Matcher input driving

Input Monitor

Once RM Enable, RM reset and RM enable ld are all at logic ‘1’, the
control signals TBS, G, Rv and Qm are sampled in the same positive edge
clock cycle of RM enable ld then the monitor enters a loop of sampling in d0,
in d1 and in d2 for (TBS+28) clock cycles. The sampling takes place at the
positive edge. Meanwhile, in each cycle the monitor checks that the control
signals, TBS and G are stable. If not, it breaks the sampling loops.

Once the sampling loop is completed successfully, the monitor broadcast
the transaction to the coverage and scoreboard components via the TLM
Analysis port.

Figure 4.15: Rate Matcher input sampling

Output Monitor

There are two main cases that the output monitor is dealing with. First
in the normal scenario, the output monitor enters a waiting state until
RM out enable is sampled at logic 1. Once this event is triggered, RM out
and E will be sampled at the same positive edge. The monitor continues in

104

the previous operation until RM end flag is to be sampled at logic 1 which
means the transaction is completed.

If the number of sampled output bits will be equal to E, the output moni-
tor sends the output transaction to the scoreboard component via the TLM
Analysis port.

In the second scenario, the DUT has no output for the sent input transac-
tion. Therefore, the result monitor will break the sampling loop after 10000
clock cycles and send zero output to scoreboard. the output monitor sends
the output transaction to the scoreboard component via the TLM Analysis
port.

Figure 4.16: Rate Matcher output sampling

105

Scoreboard

The implemented scoreboard for the rate-matcher can be described as fol-
lows: 2.5 Three matrices for each input vector are allocated to store the input
vector from the turbo encoder (i.e. data, data parity, data parity interleaved)
in the three sub-blocks interleave as mentioned in the rate-matcher standard
see 3.2.3 .

• The received input transaction will be interleaved based on TBS see
3.1

• The size of these matrices is Row32 where Rows = dTBS
32
e, 32 is the

fixed number of columns. the input bits number is not necessary equal
to Row32 , So to fill the matrix elements we add dummy bits in the first
row of these matrices the dummy bits are modeled as high impedance
’Z’ in the model.

• After filling the matrix with dummy bits and input data the interleaving
phase comes which is an inter-column interleaving according to fixed
tables that are mentioned in see 3.2.

• The bit collection phase, the 3 matrices are concatenated in a new
matrix, to do the bit selection or to determine where to start to generate
the output bits we should calculate the K0 as follows Rows∗((24∗RV)+
2). The output sequence length E should be calculated to determine
how many bits the model will generate E = (Qm + 1) ∗ (G

Qm+1
. Then

the comparing process starts.

Coverage

We’ve defined our functional coverage model in terms of stimulus in (test
plan chapter). A covergroup is used to capture functional coverage for con-
trol signals. The Rate Matcher is fully tested if we’ve run a complete set of
these terms:

• TBS

Transport block size is nothing but the payload for physical layer. All of
the values shown in Table (lookup) should be check to fully test the internal

106

interleaver. There is a defined coverage bin for each value of TBS in the
coverage model. When the write function is invoked. The Coverage should
be triggered to sample the coverage values

• G

an upper layer parameter that is used to calculate the required output
sequence. this parameter can take any values from 0 to 2880. Two bins
are used to check the design response in both cases minimum and maximum
values,

• R

Redundancy version is an upper layer parameter that is used in the bit
selection phase to determine the location from where we start to generate
the output bits. two bins are used to check the system response in the two
cases Rv= 0 and Rv=1, this parameter is in control coverage group.

• Qm

Modulation index That determines the modulation order whether the
transaction is a BPSK or QPSK . Two bins are used to observe the system
response in the two case Qm=0 , Qm =1.

107

• Cross coverage

All the previous covergroups are crossed together to make sure that the
modulator’s exercised all possible combinations and has been tested thor-
oughly When the write function is invoked. The Coverage should be trig-
gered to sample the coverage values

Assertions

One way to verify the Rate matcher is to implement a monitor as a Sys-
tem Verilog interface that uses a mixture of SVA concurrent assertions to
observe and check the bus traffic.It’s a passive verification component which
monitors the block signals, it can be attached to external signals in the top
level of the UVM Environment.In this module we check the value of the in-
terface signals, if one of them is in an undefined state, then it will cause a
problem under certain conditions.

There are two type of signals to be checked:

1. Signal must be known all time to ensure proper operation of the whole
chain; these signals are:

• RM reset

• RM Enable

• RM out enable

• RM end flag

2. Signal must be known only under certain condition; these signals are:

• RM enable ld

• In d0

• In d1

• In d2

• G

• Rv

• Qm

• RM out

108

This module is also used to verify the signals sequences for all types of
transfers to ensure successful communication between the Rate matcher and
the other blocks in the Transmitter chain.

The sequences checked by this Assertions module are:

1. Output length sequence.

The Output length of the collected bits is variable according to G parameter
see quation number. Therefore, RM out enable shall be sampled at logic 1
for a number of consecutive cycles defining a valid output.

2. Transaction done sequence.

end flag indicates that the block finished the current operation and is ready
for new input. end flag must be sampled at logic one after RM out enable
completes output length sequence successfully.

These sequences are used to verify the timing between commands.

109

4.2.2 FFT

Figure 4.17: FFT input and output ports

Port name Direction Width Description
Turbo IN input 1 bit Input stream
FFT clk input 1 bit system clock
FFT EN input 1 bit Block enable
FFTRST input 1 bit Block reset
Msymb input 1 bit To choose between 3 and 6

and 12 points FFT
FFT IN RE input 16 bits Real part of the input symbol
FFT IN IM input 16 bits Imaginary part of the input symbol
FFT out RE input 16 bits Real part of the output symbol
FFT out IM input 16 bits Imaginary part of the output symbol
FFT Vaid output 1 bit the output of the FFT is valid
FFT ready output 1 bits FFT is ready to receive new input

Table 4.18: FFT input and output ports

110

4.2.2.1 TEST PLAN

Unknown (X, Z) Signals

For FFT, the following signals must be known under certain conditions:

Signal Condition
FFT IN RE FFT ready, FFT RES and FFT EN are all at logic ‘1’ in the previous cycle
FFT IN Im FFT ready, FFT RES and FFT EN are all at logic ‘1’ in the previous cycle

FFT EN Always be in a known state
FFT RES Always in a known state
Msymb FFT ready, FFT RES and FFT EN are all at logic ‘1’

FFT ready always be in a known state
FFT out RE FFT Valid is at logic ‘1’
FFT out Im FFT Valid is at logic ‘1’
FFT Valid always be in a known state

fft done always be in a known state

Table 4.19: FFT unkown signals

Timing Relationships

For FFT, the following temporal relationships can be defined:

Sequence What to check
FFT output length FFT Valid = 1 / For a number of cycles according to Msymbol

FFT Transaction done Initially :FFT Output length
After 1 cycle:

FFT done = 1 / For one clock cycle
FFT new input Initially :FFT Output length

FFT ready = 1 / For a number of cycles according to Msymbol

Table 4.20: FFT timing relationship

Functional Coverage

The fields that are relevant to FFT functional coverage are:

111

Specifications cover
FFT IN RE Cover the maximum and minimum values
FFT IN IM Cover the maximum and minimum values

FFT IN RE & FFT IN IM Cover all combination between
their maximum and minimum values

Msymbol Cover all possible numbers of subcarriers
Cover all sequenced combination between them

Table 4.21: FFT functional coverage

4.2.2.2 Environment

Sequence item

This class encapsulates all FFT driving variables. A set constraints was
defined on these variables.

Constraints

1-Msymb constraint:

• Since we have only specific values to TBS signal, we need to limit the
randomization of TBS to be as follow Msymb [02]; 2’00 for 3-point FFT,
2’01 for 6-point FFT and 2’10 for 12-point FFT with equal distribution

2-Control Constraint:

• Gives distribution to the constraint solver for FFT EN, 90% logic ‘1’
and the other 10% is logic ‘0’

• Gives distribution to the constraint solver for FFT RES, 90% logic
‘1’ and the other 10% is logic ‘0’

Driver

While FFT EN and FFT RES are both at logic 1, the driver drives the
inputs FFT IN RE and FFT IN IM to the interface and change it every
clock cycle according to the radix of FFT required (i.e. Msymb). Since the
block is not pipelined. therefore, the driver goes to idle state waiting for
FFT ready signal to be sampled at logic 1 in order to get the next input.

112

Figure 4.18: FFT driving

Input Monitor

Once FFT EN and FFT RES are both at logic 1, the monitor samples
Msymb value and enters a loop of sampling FFT IN RE and FFT IN IM
for number of clock cycles according to Msymb. The sampling takes place
at the positive clock edge. Once the sampling loop is completed successfully,
the monitor sends the sequence item to the coverage and scoreboard compo-
nents via the TLM Analysis port. The monitor enters an ideal state waiting
for FFT ready to go to logic 1 again which indicates a new transaction.

Figure 4.19: FFT sampling

Output Monitor

The output monitor enters a waiting state until FFT Valid is sampled at
logic 1. Once this event happened, Monitor samples Msymb of the interface
and enter a loop sampling the output of the FFT (i.e. FFT out RE and
FFT out Im) for 3, 6 or 12 clock cycles depending on Msymb. The moni-
tor continues in the previous operation until FFT Valid is sampled at logic
0 which mean the FFT output has ended. The monitor sends the output
transaction to the scoreboard component via the TLM Analysis port

113

Figure 4.20: FFT output

Scoreboard

The implementation of the golden model for the FFT is done by convert-
ing the input stream into real data type then implementing the butterfly
algorithm for 3,6,12 FFT that consists of multiplication and additions per-
formed on the real representation. Afterwards, the DUT output is converted
into real representation and the error of transformation is calculated between
them which should satisfy a required accuracy. The scoreboard consists of:

• Fix2dec function which covert the randomized input from the stimulus
to real data value type.

• structure to encapsulate the input to the FFT functions and another
structure to encapsulate the output.

• FFT-3 function which implement the butter of radix-3 FFT as shown
in the figure see4.21

• FFT-6 function which implement the butter of radix-6 FFT as shown
in the figure see 4.22

• FFT-12 function which implement the butter of radix-12 FFT as shown
in the figure see 4.23

• The predict function of the scoreboard call the required FFT function
depending on Msymbol and the output of the DUT is convert to real
data type using the transformation function that was discussed earlier.

• The difference between the DUT real output and the FFT function
output is checked to be compatible with the desired accuracy

114

Figure 4.21: FFT 3-point SFG

Figure 4.22: FFT 6-point SFG

115

Figure 4.23: FFT 12-point SFG

116

• The predict function of the scoreboard call the required FFT function
depending on Msymb and the output of the DUT is convert to real
data type using the transformation function that was discussed earlier.

• The difference between the DUT real output and the FFT function
output is checked to be compatible with the desired accuracy

Coverage

We’ve defined our functional coverage model in terms of stimulus in (test
plan chapter). FFT is fully tested if we’ve run a complete set of these terms:

• FFT IN RE & FFT IN IM

They are the real and imaginary terms of the Input signal to the FFT
block which the operation of butterfly should be applied on, the 16-bit
of each is divided in the design into 6-bit decimal and 10-bit fraction.
Since the maximum and the minimum value of the real and the imagi-
nary input are considered as a corner values, they should be tested to
ensure that the butterfly of FFT work properly.

A covergroup is used to capture functional coverage for Input bus. Two
coverpoints are used for the two input signals where two coverage bins
are defined for each value (maximum and minimum) in each coverpoint.

• Msymb

It defines the number of subcarriers to be allocated in the frequency
domain which Consequently defines the number of the FFT point to
be performed or the butterfly to be used whether 3 ,6 or 12 point FFT.

Therefore, all the FFT points shall be tested separately to ensure the
properly operation of each butterfly.

A covergroup is used to capture functional coverage for Msymb bus.
A coverpoint is used where three coverage bins are defined for each

117

value (0 for three subcarriers, 1 for six subcarriers and 2 for 12 subcar-
riers).

Since the block doesn’t require a reset between each operation, a se-
quenced combination between each two, different FFT points, butterfly
operations has to be verified.

A Coverpoint transition bins in the same covergroup is used to check
all the possible sequence of the Msymb values.

Assertions

One way to verify the FFT is to implement a monitor as a System Verilog
interface that uses a mixture of SVA concurrent assertions to observe and
check the bus traffic. It’s a passive verification component which monitors
the block signals, it can be attached to external signals in the top level of
the UVM Environment. In this module we check the value of the interface
signals, if one of them is in an undefined state, then it will cause a problem
under certain conditions. There are two type of signals to be checked:

1. Signal must be known all time to ensure proper operation of the whole
chain; these signals are:

• FFT EN

• FFT RES

• FFT RES

• FFT ready

• FFT Valid

• fft done

2. Signal must be known only under certain condition; these signals are:

• FFT IN RE

• FFT IN Im

• Msymb

• FFT out RE

118

• FFT out Im

This module is also used to verify the signals sequences for all types of
transfers to ensure successful communication between FFT block and the
other blocks in the Transmitter chain.

The sequences checked by this Assertions module are:

1. FFT output length sequence.

The output length of block is variable according to the number of subcarriers
that would be allocated. It can be either 3, 6 or 12 and the output is gener-
ated in consecutive cycles. FFT Vaild indicates that the generated output
is valid and ready to be sampled. It must be held at logic ‘1’ for a number
of consecutives cycles depending on the value of Msymb

2. FFT transaction done sequence.

FFT done indicates that the block finished the current operation to avoid
any unwanted data and it is ready for the new one. Once the last output is
sampled, FFT done must be sampled at logic ‘1’ for one cycle at the next
positive edge

3. FFT new input sequence.

FFT ready indicates that the FFT block is ready for operation and ready
to take input. Since the FFT take input serially as one input per cycle, the
ready signal has to be stable at logic ‘1’ as long as the input is being feed to
the FFT block. when FFT ready is sampled at logic ‘1’, the previous block
puts the data on the input bus in order to be sample at the next positive
edge. Once the last output is sampled, FFT ready must be sampled at
logic ‘1’ at the next positive edge. Basically, FFT ready has to be stable
for either 3 ,6 or 12 clock cycles depending on the number of subcarrier that
would be allocated (i.e. Msymb).

These sequences are used to verify the timing between commands.

119

4.2.3 IFFT

Figure 4.24: IFFT input and output ports

120

Port name Direction Width Description
IFFT clk input 1 bit system clock
IFFT EN input 1 bit Block enable

IFFT RST input 1 bit Block reset
Last in input 16 bits Igeneral control unit

raised to 1 when the last SC-FDMA symbol is
transferred from resource mapper to the IFFT block.

IFFT IN RE input 16 bits Real part of the output symbol
IFFT IN IM input 16 bits imaginary part of the output symbol

out RE output 16 bits Real part of the output symbol
out IM output 16 bits imaginary part of the output symbol

Vaid out output 1 bit general control unit
raised to 1 from cycles 54 to 11

at each IFFT iteration to enable the
output of resource element mapper

to enter the IFFT block from cycles 1 to 12.
early ready output 1 bits general control

unit raised to 1 from cycles 54 to 11
at each IFFT iteration to enable

the output of resource element mapper
to enter the IFFT block from cycles 1 to 12.

Sc fdma done output 1 bit general control unit raised

Table 4.22: IFFT input and output ports

121

4.2.3.1 TEST PLAN

Unknown (X, Z) Signals

For IFFT, the following signals must be known under certain conditions:

Signal Condition
IFFT IN RE early ready, IFFT RES and IFFT EN

are all at logic ‘1’ in the previous cycle
IFFT IN IM early ready, IFFT RES and IFFT EN

are all at logic ‘1’ in the previous cycle
IFFT EN Always be in a known state
IFFT RES Always in a known state

Last in always be in a known state
early ready always be in a known state
Valid out always be in a known state

Sc fdma done always be in a known state
OUT RE Valid out is at logic ‘1’
OUT IM Valid out is at logic ‘1’

Table 4.23: IFFT unkown signals

Timing Relationships

For IFFT, the following temporal relationships can be defined:

Sequence What to check
Output length Initially: early ready = 1

After 54 cycles:
Valid out = 1 / For 54 cycles

Data Transaction done Initially: last in = 1
After 108 cycle:
scfdma done = 1

Table 4.24: Rate Matcher timing temporal relationship

122

4.2.3.2 Environment

Sequence item

This class encapsulates all IFFT driving variables. A set constraints was
defined on these variables.

Constraints

1-Control Constraint:

• Gives distribution to the constraint solver for IFFT EN, 90% logic ‘1’
and the other 10% is logic ‘0’

• Gives distribution to the constraint solver for IFFT RES, 90% logic
‘1’ and the other 10% is logic ‘0’

• Gives distribution to the constraint solver for Last in, 90% logic ‘1’
and the other 10% is logic ‘0’

Driver

The driver gets the sequence item from the sequencer. While IFFT RES,
IFFT EN and early ready are all at logic ‘1’, the driver starts to send the
input in 12 consecutive cycles. The designed block is not pipelined. There-
fore, the driver goes to a sleep state waiting for early ready signal to be
sampled at logic ‘1’ in order to get the next sequence item.

Figure 4.25: IFFT driving

Input Monitor

Once IFFT RES and IFFT EN are both at logic ‘1’, the monitor enters a
loop of sampling IFFT IN RE and IFFT IN IM (i.e. Frequency domain
symbols) for 12 clock cycles. The sampling takes place at the positive clock

123

edge. Once the sampling loop is completed successfully, the monitor broad-
cast the transaction to the coverage and scoreboard components via the TLM
Analysis port. The monitor enters an ideal state waiting for early ready to
go to logic ‘1’ again which indicates a new transaction.

Figure 4.26: IFFT sampling

Output Monitor

The output monitor enters a waiting state until Valid out is high. Once
this event is triggered, OUT RE and OUT IM will be sampled at the
same positive edge. each symbol is fixed for 3 clock cycles so the output
sampling occurs every 3 clock cycles. the sampling lasts for 54 clock cycles
i.e. 18 symbols (16 output symbols and 2 cyclic prefix). The output moni-
tor sends the output transaction to the scoreboard component via the TLM
Analysis port

Figure 4.27: IFFT output

Scoreboard

16 point IFFT used to cover 12 subcarriers with spacing of 15 KHz between
each adjacent sub channels. The scoreboard is implemented based on butter
fly unit as shown in figure see 3.10

124

Figure 4.28: IFFT 16-point SFG

Predict result function is responsible for predicting the output, which will
be compared with the DUT output.

• Twiddle values has generated using MATLAB then used as a look up
table in the scoreboard.

• As the prediction model operates at real representation, first we convert
the binary input to real type using fix2dec function.

• The last four bits is padded with zeros as we have 12 subcarriers and
the IFFT is 16 points

• The model consists of four stages according to figure each stage is
implemented using for loop.

• The output is converted to binary type using dec2fix function and as-
signed in OUT RE and OUT IM.

• Finally, cyclic prefix is inserted. transformation function that was dis-
cussed earlier.

125

Assertions

One way to verify the IFFT is to implement a monitor as a System Verilog
interface that uses a mixture of SVA concurrent assertions to observe and
check the bus traffic. It’s a passive verification component which monitors
the protocol signals, it can be attached to external signals in the top level of
the UVM Environment. In this module we check the value of the interface
signals, if one of them is in an undefined state, then it will cause a problem
under certain conditions.

There are two type of signals to be checked:
1. Signal must be known all time to ensure proper operation of the whole
chain; these signals are:

• IFFT EN

• IFFT RES

• Last in

• early ready

• Valid out

• Sc fdma done

2. Signal must be known only under certain condition; these signals are:

• IFFT IN RE

• IFFT IN IM

• Msymb

• OUT RE

• OUT IM

This module is also used to verify the signals sequences for all types of
transfers to ensure successful communication between the IFFT and the other
blocks in the Transmitter chain.

126

The sequences checked by this Assertions module are:

1. Output length sequence.

Valid out goes to logic ‘1’ after the first iteration of IFFT which takes 54
clock cycle after early ready being sampled at logic ‘1’. It should be stable
for 54 clock cycles (18 symbols each symbol is fixed 3 clock cycles).

2. Data transmission done sequence

sc fdma done goes to logic ‘1’ when the final SC-FDMA symbol is com-
pletely transmitted which means after asserting Last in by 108 clock cycles
(54 clock cycle latency and 18 symbols each symbol is fixed 3 clock cycles).

These sequences are used to verify the timing between commands.

127

Chapter 5

Top level testing

5.1 Specifications extraction

128

Port name Direction Width Description
System rst input 1 bit Reset the whole block
System clk input 1 bit Operating clock

System input input 1 bit Serial input bitstream
from the upper layer

TBS Start input 1 bit Control signal from the upper layer to
indicate the beginning of the transmission

TBS input 12 bits Transport Block size
G input 12 bits indicate the output

sequence length for the rate matcher
Rv input 1 bit Reduncdancy version
Qm input 1 bit Modulation index
Isc input 5 bits indicate number of subcarriers and

their start index for REM
Irep input 3 bits indicate number of repetitions to REM

N slots input 1 bit Number of time slots
Msc output 1 bit Number of subcarriers

Scramb nf input 1 bit LSB of system frame number
Scramb RNTI input 16 bit Radio Network Temporary identifier

Scramb Ncell ID input 9 bits Index of cell identity
Scramb ns input 4 bits First slot of transmission codeword
Out real output 16 bits Real part of output symbol, 6 bits

for integer part and 10 bits for fraction part
Out imag output 16 bits imaginary part of output symbol, 6 bits

for integer part and 10 bits for fraction part
Valid out output 1 bit output symbol is valid for

transmission or not
busy signal output 1 bit the design is processing a packet

to prevent receiving of another packett
init shift done output 1 bit to indicate that the scrambler

finished its initial shifting operation
and ready to operate.

Table 5.1: Chain input and output ports

129

5.2 Test plan

5.2.1 Unknown (X, Z) Signals

For the Chain the following signals must be known under certain conditions:

Signal Condition
System rst Always in a known state
TBS Start System RST at logic ‘1’

indicate the beginning of the transmission
TBS During a single transmission

G During a single transmission
Rv During a single transmission
Qm During a single transmission
Isc During a single transmission
Irep During a single transmission

Nslots During a single transmission
Scramb nf During a single transmission

ScrambRNTI During a single transmission
ScrambRNTI During a single transmission

Scramb Ncell ID During a single transmission
Scramb ns During a single transmission
Out real Valid out at logic ‘1’
Out imag Validoutatlogic‘1

′

Valid out Always in a known state

Table 5.2: Chain input and output ports

5.2.2 Timing Relationships

The timing relationships between the signals in the protocol can be described
using sequences and properties. For the top level chain, the following tem-
poral relationships can be defined:

130

Sequence What to check
Valid out = 0

Reset Effect Out real = 0
Out imag= 0

Signal stability Initially : TBSstart = 1
for one clock cycle

Upper layer parameters are stable
until busy signal becomes low

Table 5.3: Chain temporal timing relationships

5.3 Environment

5.3.1 Sequence item

This class encapsulates all top level driving variables. A set constraints was
defined on these variables.

Constraints

1-Transport block size Constraint:

• Since we have only specific values to TBS signal, we need to limit the
randomization of TBS to be as follow TBS 3.1

2- G value constraint

• The maximum value for G is 2880 therefor the size is [11:0] 12 bits.

3- Redundancy version constraint

• Gives distribution to the constraint solver for Rv, 90% logic ‘0’ and the
other 10% is logic ‘1’ for retransmissions cases

4- Modulation index constraint:

• There are 2 values for the modulation index BPSK and QPSK, the
modulation index is randomized with equal distribution for these values
Qm, 50% logic ‘1’ and the other 50% is logic ‘0’

131

5- Msc Constraint:

• There are 3 values for the number of subcarriers, 3, 6 and 12 subcar-
riers. It’s randomized with equal distribution for these values signal
randomized with equal distribution for these values Msc, ‘00’, ‘01’and
‘10’;

6-Number of subcarriers Constraint:

• Since we have only specific values to Isc signal, we need to limit the
randomization of Isc to be as follow I sc ε[0 : 18] as specified in 3.7

7- Number of slots Constraint:

• Since we have only specific values to N slots signal , we need to limit
the randomization of N slots to be as follow N slotsε[1 : 16]

7- Number of slot Constraint:

• Since we have only specific values to Scramb ns signal, we need to limit
the randomization of Scramb ns to be as follow Scramb nsε[0 : 9]

5.3.2 Driver

Driving the input to the chain is supposed to be according to the busy signal
but this signal is not working properly , then the input driving in the envi-
ronment needs to be accurately calculated according to the output length for
each transaction to keep driving after the previous transaction is completed.
Since The output of the block interleaver is the bit sequence read out column
by column from the

(Rmax ∗ Cmax) where:
G
′
= G

Qm

E = Qm ∗
⌈
G
′⌉

H
′
= dE ∗Qme

Cmax = (NUL
symbol − 1) ∗NUL

slot

Rmax =
⌈

H
′

Cmax

⌉
Data path through modulator and fft without changing in its size and when
enter the REM and IFFT the size is changed according to :

132

Nslot(Rmax ∗ Cmax)/Nsc

Number of NRu=
Nslots

14
; N slots % 14 =0

output data length Number of NRu *N slots ∗ 14 ∗ 18
Number of NRu =N slots

14
; N slots%14 6= 0

output data length Number of NRu ∗N slots∗14∗18 + (Nslots%14 = 0)∗18

Then the TBS start signal is set to ’0’ , then the control signals and the input
stream is derived to the interface followed by 24 bit ’0’s for the CRC ,once
the valid out signal has a posedge a counter is incremented and compared
to the output calculated length so as not to drive new transaction until the
operating one is completed

Figure 5.1: Chain Input driving

5.3.3 Input monitor

Once TBS start is sampled at logic 1, the monitor starts with sampling the
control signals then it enters a loop of sampling System input for (TBS)
consecutive clock cycles. The sampling takes place at the positive edge.
Once the sampling loop is completed successfully, the monitor broadcast
the transaction to the coverage and scoreboard components via the TLM
Analysis port. The monitor waits for TBS start to be sampled at logic 1
which indicates a new transaction.

133

Figure 5.2: Chain Input Sampling

5.3.4 Output monitor

As a result of the output being generated in consecutive clock cycles, the
output monitor enters a waiting state until the latency of chain then Valid out
is sampled at logic 1. Once this event is triggered, Out real and Out imag
will be sampled at the same positive edge.
The monitor continues in the previous operation until the length of the output
according to equation 1 which means the transaction is completed. Then the
output monitor sends the output transaction to the scoreboard component
via the TLM Analysis port.

5.3.5 Scoreboard

The top level scoreboard is required to predict the output of the whole chain,
so it was decided to reuse the existing models in the block level testing envi-
ronments. Since an environment was developed for each of the six blocks dis-
cussed in block level testing, modeling the three remaining blocks is needed.

• CRC model:

The CRC is an error detection technique used to calculate parity bits
that are added to the transmitted data. It is implemented using LFSR,

134

the polynomial of CRC block has been modeled using loop of input size
(TBS) iterations, the input concatenated by 24 zeros then xoring and
shifting is done for 24 bits then the output transmitted to Turbo En-
coder block with (24+TBS) output length.

• Data Multiplexing and Channel interleaver model:

Data multiplexing ensures control and data information are mapped to
different modulation symbols, channel interleaver interleave the data
to avoid burst error. -Multiplexing the data is done depending on the
Q M signal as shown in the following figure see 3.6 3.7.

Interleaving of the data is done by reading the multiplexed data column
by column.

• Scrambler model:

The scrambler is used to randomize input bit stream using two LFSRs
in parallel, it is modeled using a for loop of input size which mimics the
functionality of the LFSRs. Modifications to the original models were
needed so they operate correctly when handing data to each other.

• Modulator modification:

The original model of the modulator operates on a single input symbol
at a time, the modified model receives the whole input stream and then
performs its operation repeatedly on each symbol.

• FFT modification:

Same as Modulator, instead of operating on a specific number of input
symbols according to the number of subcarriers. The model receives
the whole symbols, divides them into groups according to the number
of subcarriers and performs its operation repeatedly.

135

• REM modification:

In REM model the input is received in three dimensional arrays us-
ing three nested loops of input size (FFT output size) iterations to
operate on single RU, number of slots iterations and number of sub-
carriers iterations.

The REM outputs are formed as two-dimensional arrays to deliver the
proper IFFT input using three nested loops of number of repetitions
iterations, number of slots iterations and twelve subcarriers iterations.

• IFFT modification:

Same as FFT, In the IFFT model the input block is divided in seg-
ments of twelve using two nested loops.

The whole model was implemented by creating a class for each block’s
model, each model contains a function that predicts the output and pa-
rameters necessary for this function. For these classes to communicate
with each other, another class was used to encapsulate the outputs for
each model.

Scoreboard prediction function receives the sequence item of the chain
then it instantiates object of each class of the chain model, instantiates
objects of the encapsulated output of each block and then calls the
predict function of each object created which performs the prediction
of golden model of each block.

5.3.6 Coverage

We’ve defined our functional coverage model in terms of stimulus in (test plan
chapter). A covergroup is used to capture functional coverage for control
signals. The top chain is fully tested if we’ve run a complete set of these
terms:

136

• TBS

Transport block size is nothing but the payload for physical layer. All of
the values shown in Table (lookup) should be check to fully test the internal
interleaver. There is a defined coverage bin for each value of TBS in the
coverage model. When the write function is invoked. The Coverage should
be triggered to sample the coverage values.

• G

an upper layer parameter that is used to calculate the required output
sequence. this parameter can take any values from 0 to 2880. Two bins
are used to check the design response in both cases minimum and maximum
values,

• R

Redundancy version is an upper layer parameter that is used in the bit
selection phase to determine the location from where we start to generate
the output bits. two bins are used to check the system response in the two
cases Rv= 0 and Rv=1, this parameter is in control coverage group.

• Qm

Modulation index That determines the modulation order whether the
transaction is a BPSK or QPSK . Two bins are used to observe the system
response in the two case Qm=0 , Qm =1.

• Scheme

This covergroup is used to cover both modulation schemes, BPSK and
QPSK, through the input

• BPSK

This covergroup has 2 coverpoints, one for the input symbol (Mod IN),
and another for the number of subcarrier (Msc). It also has cross coverage
between these two coverpoints

• QPSK

137

IThis Covergroup has the same coverpoints as BPSK, the difference is that
in case of BPSK, the input symbol is 1 bit, while in case of QPSK the input
symbol is two bits, so this covergoup samples two consecutive bits driven to
the input (Mod IN) and covers all the cases for the input symbol. The cov-
erpoint for Msc and cross coverage are the same as BPSK. The combination
of these 3 covergroups insures the Modulator has been tested thoroughly.

138

• Isc

Upper layer parameter which determines the number of subcarrier and
the starting index of subcarriers. All of the values vary from 0 to 18 should
be check to fully test all possible register access which indicates all possible
subcarriers. A covergroup is used to capture functional coverage for Isc bus.
There is a defined coverage bin for each value of Isc in the coverage model.

• Irep

Upper layer parameter which determines the number of repeated blocks
of data. All of the values vary from 0 to 7 should be check to fully test all
possible register access which indicates all possible repetition. A covergroup
is used to capture functional coverage for Irep bus. There is a defined coverage
bin for each value of Irep in the coverage model.

• FFT IN RE FFT IN IM

They are the real and imaginary terms of the Input signal to the FFT
block which the operation of butterfly should be applied on, the 16-bit of
each is divided in the design into 6-bit decimal and 10-bit fraction. Since
the maximum and the minimum value of the real and the imaginary input
are considered as a corner values, they should be tested to ensure that the
butterfly of FFT work properly. A covergroup is used to capture functional
coverage for Input bus. Two coverpoints are used for the two input signals
where two coverage bins are defined for each value (maximum and minimum)
in each coverpoint.

• Msymb

It defines the number of subcarriers to be allocated in the frequency
domain which Consequently defines the number of the FFT point to be per-
formed or the butterfly to be used whether 3 ,6 or 12 point FFT. Therefore,
all the FFT points shall be tested separately to ensure the properly opera-
tion of each butterfly. A covergroup is used to capture functional coverage
for Msymb bus. A coverpoint is used where three coverage bins are defined
for each value (0 for three subcarriers, 1 for six subcarriers and 2 for 12
subcarriers) Since the block doesn’t require a reset between each operation,
a sequenced combination between each two, different FFT points, butter-
fly operations has to be verified A Coverpoint transition bins in the same
covergroup is used to check all the possible sequence of the Msymb values.

139

5.3.7 Assertions

In this module we check the value of the interface signals, if one of them is
in an undefined state, then it will cause a problem under certain conditions.
There are two type of signals to be checked:

1. Signal must be known all time to ensure proper operation of the whole
chain; these signals are:

• System RST

• Valid Out

2. Signal must be known only under certain condition; these signals are:

• TBS

• Qm

• Rv

• Msc

• G

• N slots

• Scramb nf

• Scramb ns

• Scramb RNTI

• Scramb Ncell ID

• Isc

• Irep

This module is also used to verify the signals sequences for all types of trans-
fers The sequences checked by this Assertions module are:

1. Reset effect sequence:

When reset is at logic ‘0’, all the outputs of the top level chain must be
sampled at logic ‘0’

2. Signal stability

When TBS start is raised to logic ‘1’ for one clock cycle and until the end of
the transmission, which is indicated by the busysignalbecominglogic‘0

′

140

Chapter 6

Results and conclusion

6.1 Block level testing

6.1.1 Turbo Encoder results

These results are obtained by running all tests and merging the coverage
results

6.1.1.1 Functional coverage

Cover groups results are shown see 6.18 6.20 6.19

Figure 6.1: Turbo Encoder coverage group control

6.1.1.2 Code Coverage

code coverage results are as shown. see 6.20

141

Figure 6.2: Turbo Encoder results By Instance

Figure 6.3: Turbo Encoder results Recursive Hierarchical Coverage Details

142

6.1.1.3 Assertions

All the assertions passed except for Stream H valid as shown see 6.23

Figure 6.4: Turbo Encoder Assertion Coverage Report

6.1.1.4 Turbo Encoder Bugs

Output is incorrect in some TBS values This bug was found by the envi-
ronment, the internal interleaver fails at multiple values of the transport
block size i.e. TBS The its output is incorrect. These values are: 504, 520,
1064, 968, 2088, 2152, 2280, 2216, 2408, 2472, 2344, 2536. Consequently, the
Turbo generates incorrect bits for Turbo Z K P and incorrect trellis termi-
nation bits according to the equations
dk+

(
2

0) = x
′

k,dk+
(
3

0) = z
′

k+1

dk+
(
2

1) = z
′

k,dk+
(
3

1) = x
′

k+2

dk+
(
2

2) = x
′

k+1 ,dk+
(
3

2) = z
′

k+2

Turbo Stream H flag goes in undefined state This bug was found by As-
sertions module, Turbo Stream H flag goes in undefined state for one cy-
cle in the beginning of the simulation in the beginning of the simulation.
Turbo Stream H indicates that this output bit is valid in order for the Next
block to sample it. As discussed in chapter elplan, this flag cannot be un-
known.

143

Figure 6.5: Incorrect state for Turbo Stream H flag

6.1.2 Modulator results

These results are obtained by running all tests and merging the coverage
results

6.1.2.1 Functional coverage

Cover groups results are shown see ?? 6.7 6.8

Figure 6.6: Modultaor Scheme covergroup

Figure 6.7: Modulator BPSK covergroup

144

Figure 6.8: Modulator QPSK covergroup

6.1.2.2 Code Coverage

code coverage results are as shown. see 6.9

Figure 6.9: Modulator coverage summary by instance

Figure 6.10: Modulator Recursive Hierarchical Coverage Details

6.1.2.3 Assertions

All the assertions passed as shown see 6.11

145

Figure 6.11: Modulator assertion coverage

6.1.2.4 Modulator Bugs

No bugs were found in the modulator

6.1.2.5 Modulator negative test results

When applying an illegal value to input Msc, the DUT raises the signal
Mod O Valid indicating that the output is valid while both Mod I and Mod Q
are unknown.

Figure 6.12: Modulator negative test

6.1.3 Resource Element Mapper results

These results are obtained by running all tests and merging the coverage
results

146

6.1.3.1 Functional coverage

Cover groups results are shown see 6.13 6.14

Figure 6.13: Resource Element Mapper covergroup input

Figure 6.14: Resource Element Mapper cross coverage

6.1.3.2 Code Coverage

code coverage results are as shown. see 6.15

Figure 6.15: Resource Element Mapper coverage summary by instance

147

Figure 6.16: Resource Element Mapper Recursive Hierarchical Coverage De-
tails

6.1.3.3 Assertions

All the assertions passed as shown see 6.17

Figure 6.17: Resource Element Mapper assertion coverage

6.1.3.4 Resource Element Mapper Bugs

No bugs were found in the Resource Element Mapper.

6.1.4 Rate matcher results

These results are obtained by running all tests and merging the coverage
results

148

6.1.4.1 Functional coverage

Cover groups results are shown see 6.18 6.20 6.19

Figure 6.18: Rate matcher coverage group control

Figure 6.19: Rate matcher coverage group data

Figure 6.20: Rate matcher cross coverage group control

6.1.4.2 Code Coverage

code coverage results are as shown. see 6.21

149

Figure 6.21: Rate matcher Coverage results By Instance

Figure 6.22: Rate matcher Recursive Hierarchical Coverage Details

150

6.1.4.3 Assertions

All the assertions passed as shown see 6.23

Figure 6.23: Rate matcher Assertion Coverage Report

6.1.4.4 Rate matcher Bugs

• Incorrect value for the output sequence length value E

A bug was found by the environment , the bug is The DUT fails to calculate
output sequence length value in certain case: when the upper layer parame-
ters values are as follow modulation index(Qm) = 1 and G = an odd number
as the output length is determined E = Qm ∗

⌈
G
′⌉

, then it’s observed that
the DUT fails to do ceiling function

for example Qm=1 , G 1203 E resulted from DUT =1202 which is wrong.
E resulted form scoreboard model = 1204 which is right.

Figure 6.24: Incorrect value for the output sequence length value E

• Error in stream bits

it ’s found that the last matrix of the 3 matrices do the interpolation in a
wrong way as according to 3 GPP NB-LTE standard the interpolation is
done by interchanging the columns of the matrix according to certain table

151

Figure 6.25: Incorrect value for the output sequence length value E wave
form

, however when interpolation is done on third matrix in DUT there is an
up/down flipping done to the last column which is wrong. This problem
cannot affect the output bits negatively except when the required output
length is nearly greater than 3 times the input bits.

• No resulted output in high TBS values

It’s found that the DUT is not responding or resulting any output in high
transport block size (TBS) values 2024, 2280, 2536. the environment can
overcomes this case and do a new random test automatically.

• Combinational implementation output sequence length

It’s observed that in the RTL the output sequence length E is imple-
mented combinational not sequential which means the value of output se-
quence length can be changed within the transaction and this may affects
the design badly in case of glitches or all metastability cases.

6.1.5 FFT results

These results are obtained by running all tests and merging the coverage
results

6.1.5.1 Functional coverage

Cover groups results are shown see ?? 6.27

152

Figure 6.26: fft covergroup input

Figure 6.27: FFT Covergroup Msymb

6.1.5.2 Code Coverage

code coverage results are as shown. see 6.28

Figure 6.28: FFT coverage summary by instance

153

Figure 6.29: FFT Recursive Hierarchical Coverage Details

6.1.5.3 Assertions

All the assertions passed as shown see 6.30

Figure 6.30: FFT assertion coverage

6.1.5.4 FFT Bugs

No bugs were found in the FFT.

154

6.1.6 IFFT results

6.1.6.1 Functional coverage

Functional coverage for the IFFT is irrelevant as the block’s functionality is
implemented incorrectly

6.1.6.2 Code Coverage

code coverage results are as shown. see 6.31

Figure 6.31: IFFT coverage summary by instance

Figure 6.32: IFFT Recursive Hierarchical Coverage Details

155

6.1.6.3 Assertions

For scfdma done failed as the design specifications defined it to raise to 1
when the final SC-FDMA symbol is completely transmitted but this does
not happen (it raises after 53 cycle after the first output symbol). as shown
see 6.33

Figure 6.33: IFFT assertion coverage

6.1.6.4 IFFT Bugs

The IFFT has incorrect function implementation, the DUT output is not the
same as the estimated from the scoreboard (which is verified using matlab
built in function).

6.2 Top level testing

6.2.1 Top level results

These results are obtained by running all tests and merging the coverage
results

6.2.1.1 Functional coverage

Cover groups results are shown see 6.34 6.35 6.36

156

Figure 6.34: Top scramb covergroup input

Figure 6.35: Top RM-mod Covergroup upper layer

Figure 6.36: Top REM Covergroup upper layer

6.2.1.2 Code Coverage

Code Coverage didn’t reach 100% as there is no control on the internal signals
TBS has only even value then some signals don’t toggle , Also TBS valid
values according to standard don’t cover all range of values.
code coverage results are as shown. see 6.37 6.38

Figure 6.37: Top coverage summary by instance

157

Figure 6.38: Top Recursive Hierarchical Coverage Details

6.2.1.3 Assertions

The assertions are shown see 6.39

158

Figure 6.39: Top assertion coverage

6.3 Conclusion

Function verification is a very essential phase to verify any RTL to test its
function correctly, is still one the most challenging activities in digital system
development , The purpose of a testbench is to determine the correctness of
the design under test (DUT).
Generating stimulus are most important step where this step generate the
inputs which expresses a certain feature test, Random stimulus is crucial for
exercising complex designs. A directed test finds the bugs you expect to be
in the design, while a random test can find bugs you never anticipated.

159

Chapter 7

References

• [1] 3GPP TS 36.211 V14.4.0 (2017-09)

• [2] 3GPP TS 36.201 V14.1.0 (2017-03)

• [3] 3GPP TS 36.212 V14.4.0 (2017-09)

• [4] 3GPP TS 36.213 V14.4.0 (2017-09)

• [5]Low Power Design of the Baseband Physical Layer of NarrowBand IoT LTE
Uplink Digital Transmitter

• [6]Design and Verification of
Digital Systems

• [7] systemverilog for verification . chris spear . 2012

• [8] Ray-Salemi-The-UVM-Primer-An-Introduction-to-the-Universal-Verification-
Methodology-Boston-Light-Press-2013

• [9] Universal Verification Methodology (UVM) 1.1 Class Reference

• [10] Cookbook by Mentor Graphics-2012

160

