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You always need to refer to the first four chapters from the official CXL 2.0 

standard, you’ll find its link in the references section to download it, for more 

information and elaboration since we’re only sticking to this documentation 

from day one in our design and implementation for this project. 

 

This project is considered as a Digital IC Design Project and it’s under the 

sponsorship of Si-Vision and the supervision of Prof. Dr. Hassan Mostafa & 

Opto-Nano Electronics Laboratory in Cairo University. 
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1. About The Sponsors Si-Vision & Synopsys  
 

Si-Vision is a leading IP provider of high-performance, low-power radio frequency 

intellectual property (RF IP). Their solutions include Bluetooth low energy radio, low power 

Zigbee radio and other low power wireless radios. Their products deliver what they believe is 

an industry-leading combination of performance and monolithic integration, and target a 

broad range of applications serving consumers electronics, HIDs, smart meters, industrial 

mobile wireless devices, and generally wireless markets. Si-Vision has been in business since 

2007, with more than 350 years of collective experience and serving Tier-1 customers all over 

the globe. Si-Vision team has broad experience in RF Circuits and Systems, Digital and Back-

end Designs.  

Synopsys, Inc. (Nasdaq: SNPS) on July 16, 2015 announced that it has acquired the Bluetooth 

Smart IP from Silicon Vision, a leading provider of high-performance, ultra-low-power 

wireless IP solutions. The acquisition expands Synopsys’ extensive portfolio of DesignWare® 

IP for the Internet of Things (IoT), which includes security IP recently obtained through the 

acquisition of Elliptic Technologies, as well as logic libraries, memory compilers, non-volatile 

memory, data converters, interface IP, power-efficient ARC® processors, a sensor and control 

IP subsystem, and an embedded vision processor. The addition of Bluetooth Smart IP 

enables Synopsys to address the growing requirements for wireless connectivity in low-

power system-on-chips (SoCs) for a range of IoT applications including wearables, beacons, 

portable health, smart home, industrial and wireless sensor networks. 
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2. Terminology / Acronyms 
 

PCIe PCI Express 

CXL Compute Express Link, a low-latency, high-bandwidth link that supports 

dynamic protocol muxing of coherency, memory access, and IO protocols, 

thus enabling attachment of coherent accelerators or memory devices. 

Accelerator Devices that may be used by software running on Host processors to 

offload or perform any type of compute or I/O task. Examples of 

accelerators include programmable agents (such as GPU/GPGPU), fixed-

function agents, or reconfigurable agents such as FPGAs. 

 

Reserved The contents, states, or information are not defined at this time. Reserved 

register fields must be read only and must return 0 (all 0’s for multi-bit 

fields) when read. Reserved encodings for register and packet fields must 

not be used. Any implementation dependent on a Reserved field value or 

encoding will result in an implementation that is not CXL-spec compliant. 

The functionality of such an implementation cannot be guaranteed in this 

or any future revision of this specification. Flit, Slot, and message reserved 

bits should be set to 0 by the sender and the receiver should ignore them. 

SF 

 

Snoop Filter 

 

CXL.cache Agent coherency protocol that supports device caching of Host memory. 

 

CXL.io 

 

PCIe-based non coherent I/O protocol with enhancements for accelerator 

support. 
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CXL.mem 

 

Memory access protocol that supports device-attached memory. 

DCOH This refers to the Device Coherency agent on the device that is 

responsible for resolving coherency with respect to device caches and 

managing Bias states. 

Flex Bus 

 

A flexible high-speed port that is configured to support either PCI Express 

or Compute Express Link. 

Flex Bus.CXL CXL protocol over a Flex Bus interconnect. 

 

Home Agent This is the agent on the Host that is responsible for resolving system wide 

coherency for a given address. 
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3. Abstract 
 
 The massive growth in the production and consumption of data, particularly 

unstructured data, like images, digitized speech, and video, is resulting in a huge increase in 

the use of accelerators. According to the Bank of America Merrill Lynch Global 

Semiconductors Report from October 2, 2016, “an estimated accelerator TAM of $1.64B in 2017 

is expected to grow beyond $10B in 2021.” This trend towards heterogeneous computing in 

the data center means that, increasingly, different types of processors and co-processors 

must work together efficiently, while sharing memory. This disaggregation can cause 

systems to experience significant bottlenecks due to the use of large amounts of memory on 

accelerators, and the need to share this memory coherently with the Hosts to avoid 

unnecessary and excessive data copying. Compute Express Link (CXL), a low-latency, high-

bandwidth link that supports dynamic protocol muxing of coherency, memory access, and 

IO protocols, thus enabling attachment of coherent accelerators or memory devices. 

Compute Express Link (CXL), a new open interconnect standard, targets intensive workloads 

for CPUs and purpose-built accelerators where efficient, coherent memory access between a 

Host and Device is required. PCI Express (PCIe) has been around for many years, and the 

recently completed version of the PCIe base specification 5.0 now enables interconnection of 

CPUs and peripherals at speeds up to 32GT/s. However, in an environment with large shared 

memory pools and many devices requiring high bandwidth, PCIe has some limitations. PCIe 

doesn’t specify mechanisms to support coherency and can’t efficiently manage isolated 

pools of memory as each PCIe hierarchy shares a single 64-bit address space. In addition, the 

latency for PCIe links can be too high to efficiently manage shared memory across multiple 

devices in a system. The CXL standard addresses some of these limitations by providing an 

interface that leverages the PCIe 5.0 physical layer and electricals, while providing extremely 

low latency paths for memory access and coherent caching between host processors and 

devices that need to share memory resources, like accelerators and memory expanders. 
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4. Motivation and Overview 
 
 CXL is a dynamic multi-protocol technology designed to support accelerators and 

memory devices. CXL provides a rich set of protocols that include I/O semantics similar to 

PCIe (i.e., CXL.io), caching protocol semantics (i.e., CXL.cache), and memory access semantics 

(i.e., CXL.mem) over a discrete or on-package link. CXL.io is required for discovery and 

enumeration, error report, and host physical address (HPA) lookup. CXL.mem and CXL.cache 

protocols may be optionally implemented by the particular accelerator or memory device 

usage model. A key benefit of CXL is that it provides a low-latency, high-bandwidth path for 

an accelerator to access the system and for the system to access the memory attached to 

the CXL device. Figure 1 below is a conceptual diagram showing a device attached to a Host 

processor via CXL. 

 

Figure 1: Conceptual Diagram of Accelerator Attached to Processor via CXL 

 

The CXL 2.0 specification enables additional usage models beyond CXL 1.1, while being 

fully backwards compatible with CXL 1.1 (and CXL 1.0). It enables managed hot-plug, 

security enhancements, persistent memory support, memory error reporting, and 
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telemetry. CXL 2.0 also enables single-level switching support for fan-out as well as the 

ability to pool devices across multiple virtual hierarchies, including multi-domain 

support of memory devices. 

5. What is Our GP Revolving Around?  
 
 The intended outcome of our GP is to design & implement the CXL 2.0 controller that 

supports CXL.Cache & CXL.Mem protocols (will be intensively discussed later on in this paper). 

The Controller can be configured interface with the Application Layer through one of the 

following interface options: 1. ARM AMBA CXS Interface.  2. CXL Native Interface.  

The high-level block diagrams for the CXL Controller in the figure below show the main 

components of the controller for both CXS and Native Interface options. 

 

Figure 2: High-Level Block Diagrams for the CXL Controller 
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5.1 Main Features  

 
1. Compliant with CXL 2.0 specifications.  

2. Backward compatibility with CXL 1.1. 

3. Configurable operation modes: Device, Host and Dual Mode. 

4. Supporting internal data path width: 512-bit. 

5. Configurable Transaction/Application Layer clock frequency. 

6. APB Interface to access the controller configuration registers. 

7. Data path integrity.  

5.2 Limitations  
 

1. Integrity and Data Encryption (IDE) is not supported. 

2. Switch configuration is not supported. 

3. Not supporting full PCIe configuration space. 

4. We are not implementing the CXL.io protocol (Just CXL.Mem & CXL.Cache). 

5. We are not implementing the physical layer of the CXL (Just data link layer & 

transaction layer).  

5.3 Clock Requirements  
 

The controller should support the following clock domains:  

1. Controller primary clock (62.5 MHz). 

2. Application clock (supported values as ratio to primary clock: 1:1, 2:1). 

3. APB clock (32 MHz). 

6. CXL System Architecture  
 

This section describes the performance advantages and key features of CXL. CXL is a high 

performance I/O bus architecture used to interconnect peripheral devices that can be 
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either traditional non-coherent IO devices, memory devices, or accelerators with 

additional capabilities. The types of devices that can attach via CXL and the overall system 

architecture is described in the below figure:  

 

Figure 3: CXL Device Types 

  

6.1 CXL Device Types  
 

6.3.1 Type 1 CXL Device  
   

Type 1 CXL devices have special needs for which having a fully coherent cache 

in the device becomes valuable. For such devices, standard Producer-Consumer 

ordering models do not work very well. One example of a device with special 

requirements is to perform complex atomics that are not part of the standard suite of 

atomic operations present on PCIe. Basic cache coherency allows an accelerator to 

implement any ordering model it chooses and allows it to implement an unlimited 

number of atomic operations. These tend to require only small amounts of cache 

which can easily be tracked by standard processor snoop filter mechanisms. The size 

of cache that can be supported for such devices depends on the host’s snoop filtering 
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capacity. CXL supports such devices using its optional CXL.cache link over which an 

accelerator can use CXL.cache protocol for cache coherency transactions. 

 

Figure 4: Type 1 CXL Device 
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6.3.2 Type 2 CXL Device  
   

Type 2 devices, in addition to fully coherent cache, also have memory, for 

example DDR, High Bandwidth Memory (HBM) etc., attached to the device. These 

devices execute against memory, but their performance comes from having massive 

bandwidth between the accelerator and device-attached memory. The key goal for 

CXL is to provide a means for the Host to push operands into device-attached 

memory and for the Host to pull results out of device-attached memory such that it 

doesn’t add software and hardware cost that offsets the benefit of the accelerator. 

This spec refers to coherent system address mapped device-attached memory as 

Host-managed Device Memory (HDM). 

 
Figure 5: Type 2 CXL Device 

 
 
6.3.2.1 Bias Based Coherency Model  
  

The Host-managed Device Memory (HDM) attached to a given device is referred to as 

device-attached memory to denote that it is local to only that device. The Bias Based 

coherency model defines two states of bias for device-attached memory: Host Bias and 

Device Bias. When the device-attached memory is in Host Bias state, it appears to the 

device just as regular Host-attached memory does. That is, if the device needs to 

access it, it needs to send a request to the Host which will resolve coherency for the 
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requested line. On the other hand, when the device-attached memory is in Device Bias 

state, the device is guaranteed that the Host does not have the line in any cache. As 

such, the device can access it without sending any transaction (request, snoops, etc.) 

to the Host whatsoever. It is important to note that the Host itself sees a uniform view 

of device-attached memory regardless of the bias state. In both modes, coherency is 

preserved for device-attached memory. 

The key benefits of Bias Based coherency model are: 

1. Helps maintain coherency for device-attached memory which is mapped to system 

coherent address space. 

2. Helps the device access its local attached memory at high bandwidth without 

incurring significant coherency overheads (e.g., snoops to the Host). 

3. Helps the Host access device-attached memory in a coherent, uniform manner, just 

as it would for Host-attached memory. 

6.3.2.1.1 Host Bias  
 
 The Host Bias mode typically refers to the part of the cycle when the operands are being 

written to memory by the Host during work submission or when results are being read out from the 

memory after work completion. During Host Bias mode, coherency flows allow for high throughput 

access from the Host to device-attached memory (as shown by the blue arrows in Figure 6) whereas 

device access to device-attached memory is not optimal since they need to go through the host (as 

shown in green arrows in Figure 6).  
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Figure 6: Type 2 Host Bias 

6.3.2.1.2 Device Bias  
 
The Device Bias mode is used when the device is executing the work, between work submission and 

completion, and in this mode, the device needs high bandwidth and low latency access to device-

attached memory. In this mode, device can access device-attached memory without consulting the 

Host’s coherency engines (as shown in red arrows in Figure 7). The Host can still access device-attached 

memory but may be forced to give up ownership by the accelerator (as shown in green arrows in 

Figure 7). This results in the device seeing ideal latency & bandwidth from device-attached memory, 

whereas the Host sees compromised performance.  

 

Figure 7: Type 2 Device Bias 

 
 
 
 
6.3.3 Type 3 CXL Device  
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 A Type 3 CXL Device supports CXL.io and CXL.mem protocols. An example of a Type 3 

CXL device is a memory expander for the Host as shown in the figure below. 

 

Figure 8: Type 3 CXL Device 

Since this is not an accelerator, the device does not make any requests over CXL.cache. 

The device operates primarily over CXL.mem to service requests sent from the Host.  

 

7. Transaction Layer  
 

7.1 CXL.Cache 
 

The CXL.cache protocol defines the interactions between the Device and Host as a 

number of requests that each have at least one associated response message and 

sometimes a data transfer. The interface consists of three channels in each direction: 

Request, Response, and Data. The channels are named for their direction, D2H for Device to 

Host and H2D for Host to Device, and the transactions they carry, Request, Response, and 

Data as shown in Figure 9. The independent channels allow different kinds of messages to 

use dedicated wires and achieve both decoupling and a higher effective throughput per 

wire. 
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Figure 9: CXL.Cache Channels 

 
D2H Request (Device to Host Request) carries new requests from the Device to the Host. The 

requests typically target memory. Each request will receive zero, one or two responses and at 

most one 64-byte cache line of data. The channel may be back pressured without issue. D2H 

Response carries all responses from the Device to the Host. Device responses to snoops 

indicate the state the line was left in the device caches, and may indicate that data is being 

returned to the Host to the provided data buffer. They may still be blocked temporarily for 

link layer credits, but should not require any other transaction to complete to free the credits. 

D2H Data carries all data and byte-enables from the Device to the Host. The data transfers 

can result either from implicit (as a result of snoop) or explicit write-backs (as a result of 

cache capacity eviction). In all cases a full 64-byte cache line of data will be transferred. D2H 

Data transfers must make progress or deadlocks may occur. They may be blocked 

temporarily for link layer credits, but must not require any other transaction to complete to 

free the credits. 

 

H2D Request (Host to Device Request) carries requests from the Host to the Device. These 

are snoops to maintain coherency. Data may be returned for snoops. The request carries the 

location of the data buffer to which any return data should be written. H2D Requests may be 

back pressured for lack of device resources; however, the resources must free up without 

needing D2H Requests to make progress. H2D Response carries ordering messages and pulls 

for write data. Each response carries the request identifier from the original device request to 
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indicate where the response should be routed. For write data pull responses, the message 

carries the location where the data should be written. H2D Responses can only be blocked 

temporarily for link layer credits. H2D Data delivers the data for device read requests. In all 

cases a full 64-byte cache line of data will be transferred. H2D Data transfers can only be 

blocked temporarily for link layer credits. 

 

7.2.1 Channel Ordering  
 
 In general, all of the CXL.cache channels must work independently of each other to ensure that 

forward progress is maintained. For example, since requests from the device to the Host to a given 

address X will be blocked by the Host until it collects all snoop responses for this address X, linking the 

channels would lead to deadlock. However, there is a specific instance where ordering between 

channels must be maintained for the sake of correctness. The Host needs to wait until Global Ordering 

(GO) messages, sent on H2D Response, are observed by the device before sending subsequent snoops 

for the same address. To limit the amount of buffering needed to track GO messages, the Host assumes 

that GO messages that have been sent over CXL.cache in a given cycle cannot be passed by snoops 

sent in a later cycle. 

7.2.2 Channel Crediting  
 
 To maintain the modularity of the interface no assumptions can be made on the ability to send 

a message on a channel since link layer credits may not be available at all times. Therefore, each 

channel must use a credit for sending any message and collect credit returns from the receiver. During 

operation, the receiver returns a credit whenever it has processed the message (i.e., freed up a buffer). It 

is not required that all credits are accounted for on either side, it is sufficient that credit counter 

saturates when full. If no credits are available, the sender must wait for the receiver to return one. The 

table below describes which channels must drain to maintain forward progress and which can be 

blocked indefinitely. 
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7.2.3 CXL.Cache Transaction Description  
 
 7.2.3.1 Device to Host Requests  
  
  For device to Host requests there are four different semantics: CXL.cache Read, 

CXL.cache Read0, CXL.cache Read0/Write, and CXL.cache Write. All device to Host CXL.cache 

transactions fall into the one of these four semantics, though the allowable responses and 

restrictions for each request type within a given semantic are different. 

CXL.Cache Read  

CXL.cache Reads must have a D2H request credit and send a request message on the 

D2H CXL.cache request channel. CXL.cache Read requests require zero or one response (GO) 

message and data messages totaling a single 64-byte cache line of data. Both the response, 

if present, and data messages are directed at the device tracker entry provided in the initial 

D2H request packet’s CQID field. The device entry must remain active until all the messages 

from the Host have been received. To ensure forward progress the device must have a 

reserved data buffer to be able to accept all 64 bytes of data immediately after the request is 

sent. However, the device may temporarily be unable to accept data from the Host due to 

prior data returns not draining. Once both the response message and the data messages 

have been received from the Host, the transaction can be considered complete and the entry 

deallocated from the device. 

The figure below shows the elements required to complete a CXL.cache Read. Note that the 

response (GO) message can be received before, after, or between the data messages. 
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Figure 10: CXL.Cache Read Behavior 

 

CXL.Cache Write  

 CXL.cache Write must have a D2H request credit before sending a request message 

on the D2H CXL.cache request channel. Once the Host has received the request message, it 

is required to send either two separate or one merged GO-I and WritePull message. The GO 

message must never arrive at the device before the WritePull but it can arrive at the same 

time in the combined message. If the transaction requires posted semantics, then a 

combined GO-I/WritePull message can be used. If the transaction requires non-posted 

semantics, then WritePull will be issued first followed by the GO-I when the non-posted write 

is globally observed. Upon receiving the GO-I message, the device will consider the store 

done from a memory ordering and cache coherency perspective, giving up snoop ownership 

of the cache line (if the CXL.cache message is an Evict). The WritePull message triggers the 

device to send data messages to the Host totaling exactly 64 bytes of data, though any 

number of bytes enables can be set. A CXL.cache write transaction is considered complete by 

the device once the device has received the GO-I message, and has sent the required data 

messages. At this point the entry can be deallocated from the device. The Host considers a 
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write to be done once it has received all 64 bytes of data, and has sent the GO-I response 

message. All device writes and Evicts fall into the CXL.cache Write semantic. 

 

Figure 11: CXL.Cache Device to Host Write Behavior 

7.2 CXL.Mem 
 
 The CXL Memory Protocol is called CXL.mem, and it is a transactional interface 

between the CPU and Memory. It uses the physical and link layer of Compute Express Link 

(CXL) when communicating across dies. The protocol can be used for multiple different 

Memory attach options including when the Memory Controller is located in the Host CPU, 

when the Memory Controller is within an Accelerator device, or when the Memory Controller 

is moved to a memory buffer chip. It applies to different Memory types (volatile, persistent, 

etc.) and configurations (flat, hierarchical, etc.) as well.  

The coherency engine in the CPU interfaces with the Memory (Mem) using CXL.mem 

requests and responses. In this configuration, the CPU coherency engine is regarded as the 

CXL.mem Master and the Mem device is regarded as the CXL.mem Subordinate. The 

CXL.mem Master is the agent which is responsible for sourcing CXL.mem requests (reads, 

writes, etc.) and a CXL.mem Subordinate is the agent which is responsible for responding to 

CXL.mem requests (data, completions, etc.). 



CXL 2.0 Controller 

 

Cairo University CXL 2.0 Si-Vision 

When the Subordinate is an Accelerator, CXL.mem protocol assumes the presence of a 

device coherency engine (DCOH). This agent is assumed to be responsible for implementing 

coherency related functions such as snooping of device caches based on CXL.mem 

commands and update of Meta Data fields. Support for memory with Meta Data is optional 

but this needs to be negotiated with the Host in advance. The negotiation mechanisms are 

outside the scope of this specification. If Meta Data is not supported by device-attached 

memory, the DCOH will still need to use the Host supplied Meta Data updates to interpret 

the commands. If Meta Data is supported by device-attached memory, it can be used by 

Host to implement a coarse snoop filter for CPU sockets. 

CXL.mem transactions from Master to Subordinate are called “M2S” and transactions from 

Subordinate to Master are called “S2M”. 

Within M2S transactions, there are two message classes: 

I. Request without data - generically called Requests (Req) 

II. Request with Data - (RwD) 

Similarly, within S2M transactions, there are two message classes: 

I. Response without data - generically called No Data Response (NDR) 

II. Response with data - generically called Data Response (DRS) 

7.3 Transaction Ordering Summary  
 

Table in Figure 12 captures the upstream ordering cases and Table in Figure 13 captures 

the downstream ordering cases. The columns represent a first issued message and the rows 

represent a subsequently issued message. The table entry indicates the ordering relationship 

between the two messages. The table entries are defined as follows: 

➔ Yes–the second message (row) must be allowed to pass the first (column) to avoid 

Dead lock. (When blocking occurs, the second message is required to pass the first 

message. Fairness must be comprehended to prevent starvation.) 

➔ Y/N–there are no ordering requirements. The second message may optionally pass 
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the first message or be blocked by it. 

➔ No–the second message must not be allowed to pass the first message. This is 

required to support the protocol ordering model. 

  

 
Figure 12: Upstream Ordering Summary 

   

7.4 Transaction Flows to Device-Attached Memory  
 
 The transaction flow diagrams below are intended to be illustrative of the flows 

between the Host and device for access to device-attached Memory using the Bias Based 

Coherency mechanism described earlier. However, these flows are not comprehensive of 

every Host and device interaction. The diagrams below make the following assumptions: 

1. The device contains a coherency engine which is called DCOH in the diagrams below. 

2. The DCOH contains a Snoop Filter which tracks any caches (called Dev cache) 

implemented on the device. This is not strictly required, and the device is free to choose an 

implementation specific mechanism as long as the coherency rules are obeyed. 

3. The DCOH contains a Bias Table lookup mechanism. The implementation of this is 

device specific. 

4. The device specific aspects of the flow, illustrated using red flow arrows, need not 

conform exactly to the pictures below. These can be implemented in a device specific 

manner. 
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7.4.1 Cachable Read from Host  
 

In this example, the Host requested a cacheable non-

exclusive copy of the line. The non-exclusive aspect of 

the request is communicated using the “SnpData” 

semantic. In this example, the request got a snoop 

filter hit in the DCOH, which caused the device cache 

to be snooped. The device cache downgraded the 

state from Exclusive to Shared and returned the 

Shared data copy to the Host. The Host is told of the 

state of the line using the Cmp-S semantic. 

 
7.4.2 Read for Ownership from Host  

 
In the above example, the Host requested a cacheable 

exclusive copy of the line.  The exclusive aspect of the request 

is communicated using the “SnpInv” semantic, which asks 

the device to invalidate its caches.  In this example, the 

request got a snoop filter hit in the DCOH, which caused the 

device cache to be snooped. The device cache downgraded 

the state from Exclusive to Invalid and returned the Exclusive 

data copy to the Host.  The Host is told of the state of the line 

using the Cmp-E semantic. 

 
 
 
 
 
 
 

Figure 13: Cachable Read from Host 

Figure 14: Read for Ownership from Host 
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7.4.3 Non-Cachable Read from Host  
 
 
In the above example, the Host requested a non-cacheable 

copy of the line. The noncacheable aspect of the request is 

communicated using the “SnpCurr” semantic.  

In this example, the request got a snoop filter hit in the 

DCOH, which caused the device cache to be snooped. 

The device cache did not need to change its caching 

state; however, it gave the current snapshot of the data. The 

Host is told that it is not allowed to cache the line 

using the Cmp semantic. 

7.4.4 Ownership Request from Host - No Data Required 
 
In this example, the Host requested exclusive access to 

a line without requiring the device to send data. 

It communicates that to the device using an opcode of 

MemInv with a MetaValue of ‘10 (Any), which is 

significant in this case. It also asks the device to 

invalidate its caches with the SnpInv command. The 

device invalidates its caches and gives exclusive 

ownership to the Host as communicated using the 

Cmp-E semantic. 

 
 
 
 
 
 
 
 

Figure 15: Non-Cachable Read from Host 

Figure 16: Ownership Request from Host (NDR) 



CXL 2.0 Controller 

 

Cairo University CXL 2.0 Si-Vision 

7.4.5 Flush from Host 
 

In the above example, the Host wants to flush a line from 

all caches, including the device’s caches, to device 

memory.  To do so, it uses an opcode of MemInv with a 

MetaValue of ‘00 (Invalid) and a SnpInv. 

The device flushes its caches and returns a Cmp 

indication to the Host. 

 
 
 
7.4.6 Weakly Ordered Write from Host 
 
In this example, the Host issues a weakly ordered write 

(partial or full line). 

The weakly ordered semantic is communicated by the 

embedded SnpInv. In this example, the device had a 

copy of the line cached. This resulted in a merge within 

the device before writing it back to memory and 

sending a Cmp indication to the Host. 

 

 

 

 

 

 

 

 

 

Figure 17: Flush from Host 

Figure 18: Weakly Ordered Write from Host 
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7.4.7 Write from Host with Invalid Host Caches 
 
In the above example, the Host performed a write 

while guaranteeing to the device that it no longer has 

a valid cached copy of the line. The fact that the Host 

didn’t need to snoop the device’s caches means it 

previously acquired an exclusive copy of the line. 

The guarantee on no valid cached copy is indicated by 

a MetaValue of ‘00 (Invalid).  

 
 
 
 
 
7.4.7 Write from Host with Valid Host Caches 
 

This example is the same as the previous one except that the 

Host chose to retain a valid cacheable copy of the line after 

the write.  

This is communicated to the device using a MetaValue of not 

‘00 (Invalid). 

 
 
 
 
 
 
 
 

Note: You need to go back to the CXL 2.0 official standard for more 

examples and their illustration. 

Figure 19: Write from Host with Invalid Host Caches 

Figure 20: Write from Host with Valid Host Caches 
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8. Data Link Layer  
 

Before we go into details in the data link layer, we’ll describe the flex bus.  

A Flex Bus port allows designs to choose between providing native PCIe protocol or CXL over 

a high-bandwidth, off-package link; the selection happens during link training via alternate 

protocol negotiation and depends on the device that is plugged into the slot. Flex Bus uses 

PCIe electricals, making it compatible with PCIe retimers, and form factors that support PCIe. 

Figure 21 provides a high-level diagram of a Flex Bus port implementation, illustrating both a 

slot implementation and a custom implementation where the device is soldered down on 

the motherboard. The slot implementation can accommodate either a Flex Bus. CXL card or 

a PCIe card. One or two optional retimers can be 

inserted between the CPU and the device to extend 

the channel length. As illustrated in Figure 22, this 

flexible port can be used to attach coherent 

accelerators or smart I/O to a Host processor.  
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Figure 21: CPU Flex Bus Port 

 
Flex Bus Features 
 

Flex Bus provides a point-to-point interconnect that can transmit native PCIe protocol 

or dynamic multi-protocol CXL to provide I/O, caching, and memory protocols over PCIe 

electricals. The primary link attributes include support of the following features: 

I. Native PCIe mode, full feature support as defined in the PCIe specification 

II. CXL mode, as defined in this specification 

III. Configuration of PCIe vs CXL protocol mode  

IV. Signaling rate of 32 GT/s, degraded rate of 16GT/s or 8 GT/s in CXL mode 

V. Link width support for x16, x8, x4, x2 (degraded mode), and x1 (degraded mode) in CXL 

mode 

VI. Bifurcation (aka Link Subdivision) support to x4 in CXL mode 

 

Flex Bus Layering Overview 
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Flex Bus architecture is organized as multiple layers, as illustrated in Figure 22. The CXL 

transaction (protocol) layer is subdivided into logic that handles CXL.io and logic that handles 

CXL.mem and CXL.cache; the CXL link layer is subdivided in the same manner. Note that the 

CXL.mem and CXL.cache logic are combined within the transaction layer and within the link 

layer. The CXL link layer interfaces with the CXL ARB/MUX, which interleaves the traffic from 

the two logic streams. Additionally, the PCIe transaction and data link layers are optionally 

implemented and, if implemented, are permitted to be converged with the CXL.io 

transaction and link layers, respectively. As a result of the link training process, the 

transaction and link layers are configured to operate in either PCIe mode or CXL mode. While 

a host CPU would most likely implement both modes, an accelerator AIC is permitted to 

implement only the CXL mode. The logical sub-block of the Flex Bus physical layer is a 

converged logical physical layer that can operate in either PCIe mode or CXL mode, 

depending on the results of alternate mode negotiation during the link training process. 
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Figure 22: Conceptual Diagram of Flex Bus Layering 

 
The figure below shows where the CXL.cache and CXL.mem link layer exists in the Flex 

Bus layered hierarchy. 
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Figure 23: Flex Bus Layers - CXL.Cache + CXL.Mem Link Layer Highlighted 

 

CXL.cache and CXL.mem protocols use a common Link Layer. This section defines the 

properties of this common Link Layer. 
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The following Figures illustrate the high-level CXL.Cache/ CXL.Mem Flit Overview.  

 

 
Figure 24:CXL.cache/. mem Protocol Flit Overview 

  

Figure 25: CXL.cache/.mem All Data Flit Overview 
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Figure 26: Example of a protocol flit from device to host 

A “Header” Slot is defined as one that carries a “Header” of link-layer specific information, 

including the definition of the protocol-level messages contained in the rest of the header as 

well as in the other slots in the flit. 

A “Generic” Slot can carry one or more request/response messages or a single 16B data 

chunk. The flit can be composed of a Header Slot and 3 Generic Slots or four 16B Data 

Chunks. The flit header utilizes the same definition for both the Upstream as well as the 

Downstream ports summarized in the table below. 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 Figure 27: CXL.cache/CXL.mem Flit Header Definition 
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In general, bits or encodings that are not defined will be marked “Reserved” or “RSVD” in this 

specification. These bits should be set to 0 by the sender of the packet and the receiver 

should ignore them. Please also note that certain fields with static 0/1 values will be checked 

by the receiving Link Layer when decoding a packet. For example, Control flits have several 

static bits defined. A Control flit that passes the CRC check but fails the static bit check 

should be treated as a standard CRC error or as a fatal error when in “retry_local_normal” 

state of the LRSM. Logging and reporting of such errors is device specific. Checking of these 

bits reduces the probability of silent error under conditions where the CRC check fails to 

detect a long burst error. However, link layer must not cause fatal error whenever it is under 

shadow of CRC errors, i.e., its LRSM is not in “retry_local_normal” state. This is prescribed 

because all-data-flit can alias to control messages after a CRC error and those alias cases may 

result in static bit check failure. 

The following figure describes how the flit header information is encoded:  

 

Figure 28: Flit Header Type Encoding 

The Ak field is used as part of the link layer retry protocol to signal CRC-passing receipt of flits 

from the remote transmitter. The transmitter sets the Ak bit to acknowledge successful 

receipt of 8 flits; a clear Ak bit is ignored by the receiver. 

The BE (Byte Enable) and Sz (Size) fields have to do with the variable size of data messages. 

To reach its efficiency targets, the CXL.cache/mem link layer assumes that generally all bytes 

are enabled for most data, and that data is transmitted at the full cache line granularity. 

When all bytes are enabled, the link layer does not transmit the byte enable bits, but instead 
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clears the Byte Enable field of the corresponding flit header. When the receiver decodes that 

the Byte Enable field is clear, it must regenerate the byte enable bits as all ones before 

passing the data message on to the transaction layer. If the Byte Enable bit is set, the link 

layer Rx expects an additional data chunk slot containing byte enable information. Note that 

this will always be the last slot of data for the associated request. 

Similarly, the Sz field reflects the fact that the CXL.cache/mem protocol allows transmission 

of data at the half cache line granularity. When the Size bit is set, the link layer Rx expects 

four slots of data chunks, corresponding to a full cache line. When the Size bit is clear, it 

expects only two slots of data chunks. In the latter case, each half cache line transmission will 

be accompanied by its own data header. A critical assumption of packing the Size and Byte 

Enable information in the flit header is that the Tx flit packer may begin at most one data 

message per flit. 

The following table describes legal values of Sz and BE for various data transfers. For cases 

where a 32B split transfer is sent that includes Byte Enables, the trailing Byte Enables apply 

only to the 32B sent. The Byte Enable bits that are applicable to that transfer are aligned 

based on which half of the cacheline is applicable to the transfer (BE[63:32] for Upper half or 

BE [31:0] for the lower half of the cacheline). This means that each of the split 32B transfers to 

form a cacheline of data will include Byte Enables if Byte Enables are needed. Illegal use will 

cause an uncorrectable error. 

 

Figure 29: Legal values of Sz and BE Fields 

The transmitter sets the Credit Return fields to indicate resources available in the collocated 

receiver for use by the remote transmitter. Credits are given for transmission per message 
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class, which is why the flit header contains independent Request, Response, and Data Credit 

Return fields. Note that there are no Requests sourced in S2M direction, and there are no 

Responses sourced in M2S direction. The details of the channel mapping are captured in 

Figure 30. Credits returned for channels not supported by the device or host should be 

silently discarded. The granularity of credits is per message. These fields are encoded 

exponentially, as delineated in Figure 31 below. 

Note: Messages sent on Data channels require a single data credit for the entire messages. 

This means 1 credit allows for one data transfer, including the header of the message, 

regardless of whether the transfer is 64B, 32B or contains Byte Enables. 

 

Figure 30: ReqCrd/DataCrd/RspCrd Channel Mapping 

 

Figure 31: CXL.cache/CXL.mem Credit Return Encodings 
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Finally, the Slot Format Type fields encode the Slot Format of both the header slot and of the 

other generic slots in the flit (if the Flit Type bit specifies that the flit is a Protocol Flit). The 

subsequent sections detail the protocol message contents of each slot format, but the table 

below provides a quick reference for the Slot Format field encoding. 

 

 

Figure 32: Slot Format Field Encoding 

The following tables describe the slot format and the type of message contained by each 

format for both directions. 
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Figure 33: H2D/M2S Slot Formats 

 
Figure 34: D2H/S2M Slot Formats 

 
Slot Format Definition 

Slot diagrams in the section include abbreviations for bit field names to allow them to fit into 

the diagram. In the context of diagram most abbreviations are obvious, but the abbreviation 

list below ensures clarity. 

• SL3 = Slot3[2] 

• LI3 = LD-ID[3] 

• U11 = UQID[11] 

• O4 = Opcode[4] 
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• Val = Valid 

• RV = Reserved 

• RSVD = Reserved 

• Poi = Poison 

• Tag15 =Tag[15] 

• MV0 = MetaValue[0] 

• MV1 = MetaValue[1] 

• R11 = RspData[11] 

 

H2D and M2S Formats  

 

Figure 35: H0 - H2D Req + H2D Resp    Figure 36: H1 - H2D Data Header + H2D Resp + 
H2D Resp 
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Figure 37: H3 - 4 H2D Data Header 

Figure 38: H2 - H2D Req + H2D Data Header 

 
 
Note: Please, refer to section 2 from chapter 4 in the CXL 2.0 for more H2D and M2S 

formats.  

 

 

 

 

Flit Packing Rules  

The packing rules are defined below. It is assumed that a given queue has credits towards 

the RX and any protocol dependencies (SNP-GO ordering, for example) have already been 

considered: 

• Rollover is defined as any time a data transfer needs more than one flit. Note that a 

data chunk which contains 128b (format G0), can only be scheduled in Slots 1, 2, 

and 3 of a protocol flit since Slot 0 has only 96b available, as 32b are taken up by 

the flit header. The following rules apply to Rollover data chunks. 

— If there's a rollover of more than 3 16B data chunks, the next flit must necessarily be an all 

data flit. 
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— If there’s a rollover of 3 16B data chunks, Slots 1, Slots 2 and Slots 3 must necessarily contain 

the 3 rollover data chunks. Slot 0 will be packed independently (it is allowed for Slot 0 to have 

the Data Header for the next data transfer). 

— If there’s a rollover of 2 16B data chunks, Slots 1 and Slots 2 must necessarily contain the 2 

rollover data chunks. Slot 0 and Slot 3 will be packed independently. 

— If there’s a rollover of 1 16B data chunk, Slot 1 must necessarily contain the rollover data 

chunk. Slot 0, Slot 2 and Slot 3 will be packed independently. 

— If there’s no rollover, each of the 4 slots will be packed independently. 

• Care must be taken to ensure fairness between packing of CXL.mem & CXL.cache 

transactions. Similarly, care must be taken to ensure fairness between channels 

within a given protocol. The exact mechanism to ensure fairness is implementation 

specific. 

Valid messages within a given slot need to be tightly packed. Which means, if a slot 

contains multiple possible locations for a given message, the Tx must pack the 

message in the first available location before advancing to the next available 

location. 

• Valid messages within a given flit need to be tightly packed. Which means, if a flit 

contains multiple possible slots for a given message, the Tx must pack the message 

in the first available slot before advancing to the next available slot. 

• Empty slots are defined as slots without any valid bits set and they may be mixed 

with other slots in any order as long as other packing rules are followed. For an 

example refer to Figure 26 where slot H3 could have no valid bits set indicating an 

empty slot, but the 1st and 2nd generic slots, G1 and G2 in the example, may have 

mixed valid bits set. 

• If a valid Data Header is packed in a given slot, the next available slot for data 

transfer (Slot 1, Slot 2, Slot 3 or an all-data flit) will be guaranteed to have data 

associated with the header. The Rx will use this property to maintain a shadow copy 
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of the Tx Rollover counts. This enables the Rx to expect all-data flits where a flit 

header is not present. 

• For data transfers, the Tx must send 16B data chunks in cacheline order. That is, 

chunk order 01 for 32B transfers and chunk order 0123 for 64B transfers. 

A MDH slot format must be chosen by the Tx only if there is more than 1 valid Data 

Header to pack in that slot. 

• Control flits cannot be interleaved with all-data flits. This also implies that when an 

all-data flit is expected following a protocol flit (due to Rollover), the Tx cannot 

send a Control flit before the all-data flit. 

• For non-MDH containing flits, there can be at most 1 valid Data Header in that flit. 

Also, a MDH containing flit cannot be packed with another valid Data Header in the 

same flit. 

• The maximum number of messages that can be sent in a given flit is restricted to 

reduce complexity in the receiver which writes these messages into credited 

queues. By restricting the number of messages across the entire flit, the number of 

write ports into the receiver’s queues are constrained. The maximum messages in a 

flit (sum, across all slots) is: 

D2H Request --> 4 

D2H Response --> 2 

D2H Data Header --> 4 

D2H Data --> 4*16B 

S2M NDR --> 2 

S2M DRS Header --> 3 

S2M DRS Data --> 4*16B 

H2D Request --> 2 

H2D Response --> 4 

H2D Data Header --> 4 
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H2D Data --> 4*16B 

M2S Req --> 2 

M2S RwD Header --> 1 

M2S RwD Data --> 4*16B 

For a given slot, lower bit positions are defined as bit positions that appear starting 

from lower order Byte #. That is, bits are ordered starting from (Byte 0, Bit 0) 

through (Byte 15, Bit 7). 

• For multi-bit message fields like Address [MSB: LSB], less significant bits will appear 

in lower order bit positions. 

• Message ordering within a flit is based on flit bit numbering, i.e., the earliest 

messages are placed at the lowest flit bit positions and progressively later 

messages are placed at progressively higher bit positions. Examples: An M2S Req 0 

packed in Slot 0 precedes an M2S Req 1 packed in Slot 1. Similarly, a Snoop packed 

in Slot 1 follows a GO packed in Slot 0, and this ordering must be maintained. 

Finally, for Header Slot Format H1, an H2D Response packed starting from Byte 7 

precedes an H2D Response packed starting from Byte 11. 

Link Layer Control Flit 

Link Layer Control flits do not follow flow control rules applicable to protocol flits. That is, they 

can be sent from an entity without any credits. These flits must be processed and consumed 

by the receiver within the period to transmit a flit on the channel since there are no storage 

or flow control mechanisms for these flits. The following table lists all the Controls Flits 

supported by the CXL.cache/CXL.mem link layer. 

In CXL 2.0 a 3-bit CTL_FMT field is added to control messages and uses bits that were 

reserved in CXL1.1 control messages. All control messages used in CXL1.1 have this field 

encoded as ‘b000 to maintain backward compatibility. This field is used to distinguish 

formats added in CXL 2.0 control messages that require a larger payload field. The new 
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format increases the payload field from 64-bits to 96-bits and uses CTL_FMT encoding of 

‘b001. 

 

Figure 39: CXL.cache/CXL.mem Link Layer Control Types 

 
Note: For link layer control details, refer to section 2 in chapter 4 in the CXL 2.0 standard.  

Link Layer Initialization  

Link Layer Initialization must be started after a physical layer link down to link up transition 

and the link has trained successfully to L0. During Initialization and after the Init Flit has been 

sent the Cache/Mem Link Layer can only send Control-Retry flits until Link Initialization is 

complete. The following describes how the link layer is initialized and credits are exchanged. 

The Tx portion of the Link Layer must wait until the Rx portion of the Link Layer has 

received at least one valid flit that is CRC clean before sending the ControlINIT.Param flit. 

Before this condition is met, the Link Layer must transmit only 

Control-Retry flits, i.e., Retry. Frame/Req/Ack/Idle flits. 

— If for any reason the Rx portion of the Link Layer is not ready to begin processing flits 

beyond Control-INIT and Control-Retry, the Tx will stall transmission of LLCTR-INIT.Param flit 

— Retry. Frame/Req/Ack are sent during this time as part of the regular Retry flow. 

— Retry.Idle flits are sent prior to sending a Init.Param flit even without a retry condition to 

ensure the remote agent can observe a valid flit. 

• The Control-INIT.Param flit must be the first non-Control-Retry flit transmitted by 
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the Link Layer 

• The Rx portion of the Link Layer must be able to receive an Control-INIT.Param flit 

immediately upon completion of Physical Layer initialization because the very first 

valid flit may be a Control-INIT.Param 

• Received Control-INIT.Param values (i.e., LLR Wrap Value) must be made “active”, 

that is, applied to their respective hardware states within 8 flit clocks of error-free 

reception of Control-INIT.Param flit. 

— Until an error-free INIT.Param flit is received and these values are applied, LLR Wrap Value 

shall assume a default value of 9 for the purposes of ESEQ tracking. 

• Any non-Retry flits received before Control-INIT.Param flit will trigger an 

Uncorrectable Error. 

• Only a single Control-INIT.Param flit is sent. Any CRC error conditions with an 

Control-INIT.Param flit will be dealt with by the Retry state machine and replayed 

from the Link Layer Retry Buffer. 

• Receipt of an Control-INIT.Param flit after an Control-INIT.Param flit has already 

been received should be considered an Uncorrectable Error. 

• It is the responsibility of the Rx to transmit credits to the sender using standard 

credit return mechanisms after link initialization. Each entity should know how 

many buffers it has and set its credit return counters to these values. Then, during 

normal operation, the standard credit return logic will return these credits to the 

sender. 

• Immediately after link initialization, the credit exchange mechanism will use the 

LLCRD flit format. 

• It is possible that the receiver will make available more credits than the sender can 

track for a given message class. For correct operation, it is therefore required that 

the credit counters at the sender be saturating. Receiver will drop all credits in 

receives for unsupported channels (example: Type 3 device receiving any 
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CXL.Cache credits). 

• Credits should be sized to achieve desired levels of bandwidth considering roundtrip time of 

credit return latency. This is implementation and usage dependent. 

 

Link Layer Retry 

The link layer provides recovery from transmission errors using retransmission, or Link Layer 

Retry (LLR). The sender buffers every retryable flit sent in a local link layer retry buffer (LLRB). 

To uniquely identify flits in this buffer, the retry scheme relies on sequence numbers which 

are maintained within each device. Unlike in PCIe, CXL.cache/ .mem sequence numbers are 

not communicated between devices with each flit to optimize link efficiency. The exchange 

of sequence numbers occurs only through link layer control flits during a LLR sequence. The 

sequence numbers are set to a predetermined value (zero) during Link Layer Initialization 

and they are implemented using a wrap-around counter. The counter wraps back to zero 

after reaching the depth of the retry buffer. This scheme makes the following assumptions: 

• The round-trip delay between devices is more than the maximum of the link layer 

clock or flit period. 

• All protocol flits are stored in the retry buffer.  

Note that for efficient operation, the size of the retry buffer must be more than the round-trip 

delay. This includes: 

• Time to send a flit from the sender 

• Flight time of the flit from sender to receiver 

• Processing time at the receiver to detect an error in the flit 

• Time to accumulate and, if needed, force Ack return and send embedded Ack 

return back to the sender 

• Flight time of the Ack return from the receiver to the sender 

• Processing time of Ack return at the original sender 
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Otherwise, the LLR scheme will introduce latency, as the transmitter will have to wait for the 

receiver to confirm correct receipt of a previous flit before the transmitter can free space in 

its LLRB and send a new flit. Note that the error case is not significant because transmission 

of new flits is effectively stalled until successful retransmission of the erroneous flit anyway. 

 

LLR Variables  

The retry scheme maintains two state machines and several state variables. Although the 

following text describes them in terms of one transmitter and one receiver, both the 

transmitter and receiver side of the retry state machines and the corresponding state 

variables are present at each device because of the bidirectional nature of the link. Since 

both sides of the link implement both transmitter and receiver state machines, for clarity this 

discussion will use the term “local” to refer to the entity that detects a CRC error, and 

“remote” to refer to the entity that sent the flit that was received erroneously. 

The receiving device uses the following state variables to keep track of the sequence number 

of the next flit to arrive. 

• ESeq: This indicates the expected sequence number of the next valid flit at the 

receiving link layer entity. ESeq is incremented by one (modulo the size of the 

LLRB) on error-free reception of a retryable flit. ESeq stops incrementing after an 

error is detected on a received flit until retransmission begins (RETRY.Ack message is 

received). Link Layer Initialization sets ESeq to 0. Note that there is no way for the receiver to 

know that an error was for a non-retryable vs retryable flit. For any CRC error it will initiate the 

link layer retry flow as usual, and effectively the transmitter will resend from the first retryable 

flit sent. The sending entity maintains two indices into its LLRB, as indicated below. 

• WrPtr: This indexes the entry of the LLRB that will record the next new flit. When 

an entity sends a flit, it copies that flit into the LLRB entry indicated by the WrPtr 
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and then increments the WrPtr by one (modulo the size of the LLRB). This is implemented 

using a wrap-around counter that wraps around to 0 after reaching the depth of the LLRB. 

Non-Retryable Control flits do not affect the WrPtr. WrPtr stops incrementing after receiving 

an error indication at the remote entity (RETRY.Req message) except as described in the 

implementation note below, until normal operation resumes again (all flits from the LLRB 

have been retransmitted). WrPtr is initialized to 0 and is incremented only when a flit is put 

into the LLRB. 

RdPtr: This is used to read the contents out of the LLRB during a retry scenario. 

The value of this pointer is set by the sequence number sent with the retransmission request 

(RETRY.Req message). The RdPtr is incremented by one (modulo the size of the LLRB) 

whenever a flit is sent, either from the LLRB in response to a retry request or when a new flit 

arrives from the transaction layer and irrespective of the states of the local or remote retry 

state machines. If a flit is being sent when the RdPtr and WrPtr are the same, then it 

indicates that a new flit is being sent, otherwise it must be a flit from the retry buffer. 

The LLR scheme uses an explicit acknowledgment that is sent from the receiver to the 

sender to remove flits from the LLRB at the sender. The acknowledgment is indicated via an 

ACK bit in the headers of flits flowing in the reverse direction. In CXL.cache, a single ACK bit 

represents 8 acknowledgments. Each entity keeps track of the number of available LLRB 

entries and the number of received flits pending acknowledgment through the following 

variables. 

• NumFreeBuf: This indicates the number of free LLRB entries at the entity. 

NumFreeBuf is decremented by 1 whenever an LLRB entry is used to store a 

transmitted flit. NumFreeBuf is incremented by the value encoded in the Ack/ 

Full_Ack (Ack is the protocol flit bit AK, Full_Ack defined as part of LLCRD message) 

field of a received flit. NumFreeBuf is initialized at reset time to the size of the 

LLRB. The maximum number of retry queues at any entity is limited to 255 (8 bit 

counter). Also, note that the retry buffer at any entity is never filled to its capacity, 
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therefore NumFreeBuf is never ‘0. If there is only 1 retry buffer entry available, 

then the sender cannot send a Retryable flit. This restriction is required to avoid 

ambiguity between a full or an empty retry buffer during a retry sequence that may 

result into incorrect operation. This implies if there are only 2 retry buffer entries 

left (NumFreeBuf = 2), then the sender can send an Ack bearing flit only if the 

outgoing flit encodes a value of at least 1 (which may be a Protocol flit with Ak bit 

set), else a LLCRD control flit is sent with Full_Ack value of at least 1. This is 

required to avoid deadlock at the link layer due to retry buffer becoming full at both 

entities on a link and their inability to send ACK through header flits. This rule also 

creates an implicit expectation that you cannot start a sequence of “All Data Flits” 

that cannot be completed before NumFreeBuf=2 because you must be able to 

inject the Ack bearing flit when NumFreeBuf=2 is reached. 

• NumAck: This indicates the number of acknowledgments accumulated at the 

receiver. NumAck increments by 1 when a retryable flit is received. NumAck is 

decremented by 8 when the ACK bit is set in the header of an outgoing flit. If the 

outgoing flit is coming from the LLRB and its ACK bit is set, NumAck does not 

decrement. At initialization, NumAck is set to 0. The minimum size of the NumAck 

field is the size of the LLRB. NumAck at each entity must be able to keep track of at 

least 255 acknowledgments. The LLR protocol requires that the number of retry queue 

entries at each entity must be at least 22 entries (Size of Forced Ack (16) + Max All-Data-Flit (4) 

+ 2) to prevent deadlock. 

 

LLCRD Forcing  

Recall that the LLR protocol requires space available in the LLRB to transmit a new flit, and 

that the sender must receive explicit acknowledgment from the receiver before freeing 

space in the LLRB. In scenarios where the traffic flow is very asymmetric, this requirement 
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could result in traffic throttling and possibly even starvation. Suppose that the A→B direction 

has very heavy traffic, but there is no traffic at all in the B→A direction. In this case A could 

exhaust its LLRB size, while B never has any return traffic in which to embed Acks. In CXL we 

want to minimize injected traffic to reserve bandwidth for the other traffic stream(s) sharing 

the link. To avoid starvation, CXL must permit LLCRD Control message forcing (injection of a 

non-traffic flit to carry an Acknowledge and Credit return), but this function must be 

constrained to avoid wasting bandwidth. In CXL, when B has accumulated a programmable 

minimum number of Acks to return, B’s CXL.cache/mem link layer will inject a LLCRD flit to 

return an Acknowledge. The threshold of pending Acknowledges before forcing the LLCRD 

can be adjusted using the “Ack Force Threshold” field in the “CXL Link Layer Ack Timer 

Control Register”. There is also a timer-controlled mechanism to force LLCRD when the timer 

reaches a threshold. The timer will clear whenever an ACK/CRD carrying message is sent. It 

will increment every link layer clock an ACK/CRD carrying message is not sent and any Credit 

value to return is greater than 0 or acknowledge to return is greater than 1. The reason the 

Acknowledge threshold value is specified as “greater than 1”, as opposed to “greater than 0”, 

is to avoid repeated forcing of LLCRD when no other retryable flits are being sent. If the timer 

incremented when the pending Acknowledge count is “greater than 0”, there would be a 

continuous exchange of LLCRD messages carrying Acknowledges on an otherwise idle link; 

this is because the LLCRD is itself retryable and results in a returning Acknowledge in the 

other direction. The result is that the link layer would never be truly idle when the transaction 

layer traffic is idle. The timer threshold to force LLCRD is configurable using the “Ack or CRD 

flush retimer” field in the “CXL Link Layer Ack Timer Control Register”. It should also be noted 

that the CXL.cache link layer must accumulate a minimum of 8 Acks to set the ACK bit in a 

CXL.cache and CXL.mem flit header. If LLCRD forcing occurred after the accumulation of 8 

Acks, it could result in a negative beat pattern where real traffic always arrives soon after a 

forced Ack, but not long enough after for enough Acks to re-accumulate to set the ACK bit. In 

the worst case this could double the bandwidth consumption of the CXL.cache side. By 



CXL 2.0 Controller 

 

Cairo University CXL 2.0 Si-Vision 

waiting for at least 16 Acks to accumulate, the CXL.cache/mem link layer ensures that it can 

still opportunistically return Acks in a protocol flit avoiding the need to force an LLCRD for 

Ack return. It is recommended that the Ack Force Threshold value be set to 16 or greater in 

the “CXL Link Layer Ack Timer Control Register” to reduce overhead of LLCRD injection. 

It is recommended that link layer prioritize other link layer flits before LLCRD forcing. 

 

Figure 40: Retry Buffer and Related Pointers 

 
 
 
 
LLR State Machines 
 
The LLR scheme is implemented with two state machines: Remote Retry State Machine 

(RRSM) and Local Retry State Machine (LRSM). These state machines are implemented by 

each entity and together determine the overall state of the transmitter and receiver at the 

entity. The states of the retry state machines are used by the send and receive controllers to 

determine what flit to send and the actions needed to process a received flit. 

Local Retry State Machines  

This state machine is activated at the entity that detects an error on a received flit. The 

possible states for this state machine are: 
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• RETRY_LOCAL_NORMAL: This is the initial or default state indicating normal operation (no 

CRC error has been detected). 

• RETRY_LLRREQ: This state indicates that the receiver has detected an error on a received flit 

and a RETRY.Req sequence must be sent to the remote entity. 

• RETRY_LOCAL_IDLE: This state indicates that the receiver is waiting for a 

RETRY.Ack sequence from the remote entity in response to its RETRY.Req sequence. The 

implementation may require sub-states of RETRY_LOCAL_IDLE to 

capture, for example, the case where the last flit received is a Frame flit and the next flit 

expected is a RETRY.Ack. 

• RETRY_PHY_REINIT: The state machine remains in this state for the duration of a physical 

layer retrain. 

• RETRY_ABORT: This state indicates that the retry attempt has failed and the link 

cannot recover. Error logging and reporting in this case is device specific. This is a 

terminal state. The local retry state machine also has the three counters described below. The 

counters and thresholds described below are implementation specific. 

• TIMEOUT: This counter is enabled whenever a RETRY.Req request is sent from an 

entity and the LRSM state become RETRY_LOCAL_IDLE. The TIMEOUT counter is 

disabled and the counting stops when the LRSM state changes to some state other 

than RETRY_LOCAL_IDLE. The TIMEOUT counter is reset to 0 at link layer initialization and 

whenever the LRSM state changes from RETRY_LOCAL_IDLE to RETRY_LOCAL_NORMAL or 

RETRY_LLRREQ. The TIMEOUT counter is also reset when the Physical layer returns from re-

initialization (the LRSM transition through RETRY_PHY_REINIT to RETRY_LLRREQ). If the 

counter has reached its threshold without receiving a Retry.Ack sequence, then the 

RETRY.Req request is sent again to retry the same flit. 

NUM_RETRY: This counter is used to count the number of RETRY.Req requests sent to retry 

the same flit. The counter remains enabled during the whole retry sequence (state is not 

RETRY_LOCAL_NORMAL). It is reset to 0 at initialization. It is also reset to 0 when a RETRY.Ack 
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sequence is received with the Empty bit set or whenever the LRSM state is 

RETRY_LOCAL_NORMAL and an error-free retryable flit is received. The counter is 

incremented whenever the LRSM state changes from RETRY_LOCAL_LLRREQ to 

RETRY_LOCAL_IDLE. If the counter reaches a threshold (Called MAX_NUM_RETRY), then the 

local retry state machine transitions to the RETRY_PHY_REINIT. The NUM_RETRY counter is 

also reset when the Physical layer exits from LTSSM recovery state (the LRSM transition 

through RETRY_PHY_REINIT to RETRY_LLRREQ). Note: It is suggested that the value of 

MAX_NUM_RETRY should be no less than 0xA. 

• NUM_PHY_REINIT: This counter is used to count the number of physical layer’s 

reinitializations generated during a LLR sequence. The counter remains enabled during the 

whole retry sequence (state is not RETRY_LOCAL_NORMAL). It is reset to 0 at initialization 

and after successful completion of the retry sequence. The counter is incremented whenever 

the LRSM changes from RETRY_LLRREQ to RETRY_PHY_REINIT. If the counter reaches a 

threshold (called MAX_NUM_PHY_REINIT) instead of transitioning from RETRY_LLRREQ to 

RETRY_PHY_REINIT, the LRSM will transition to RETRY_ABORT. The NUM_PHY_REINIT 

counter is also reset whenever a Retry.Ack sequence is received with the Empty bit set. Note: 

It is suggested that the value of MAX_NUM_PHY_REINIT should be no less than 0xA. 

Note: For local retry state transitions, refer to section 2 from chapter 4 in the CXL 2.0 

standard.  

Timeout definition 

After the local receiver has detected a CRC error, triggering the LRSM, the local Tx sends a 

RETRY.Req sequence to initiate LLR. At this time, the local Tx also starts its TIMEOUT counter. 

The purpose of this counter is to decide that either the Retry.Req sequence or corresponding 

Retry.Ack sequence has been lost, and that another RETRY.Req attempt should be made. 

Recall that it is a fatal error to receive multiple Retry.Ack sequences (i.e., a subsequent Ack 

without a corresponding Req is unexpected). To reduce the risk of this fatal error condition 
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we check NUM_RETRY value returned to filter out Retry.Ack messages from the prior retry 

sequence. This is done to remove fatal condition where a single retry sequence incurs a 

timeout while the Ack message is in flight. The TIMEOUT counter should be capable of 

handling worst-case latency for a Retry.Req sequence to reach the remote side and for the 

corresponding Retry.Ack sequence to return. Certain unpredictable events (such as low 

power transitions, etc.) that interrupt link availability could add a very large amount of 

latency to the RETRY round-trip. To make the TIMEOUT robust to such events, instead of 

incrementing per link layer clock, TIMEOUT increments whenever the local Tx transmits a flit, 

protocol or control. Due to the TIMEOUT protocol, it must force injection of RETRY.Idle flits if it 

has no real traffic to send, so that the TIMEOUT counter continues to increment. 

 

Interaction with Physical Layer Reinitalization  

On detection of a physical layer LTSSM Recovery, the receiver side of the link layer must force 

a link layer retry on the next flit. Forcing an error will either initiate LLR or cause a current LLR 

to follow the correct error path. The LLR will ensure that no retryable flits are dropped during 

the physical layer reinit. Without initiating a LLR it is possible that packets/flits in flight on the 

physical wires could be lost or the sequence numbers could get mismatched. 

Upon detection of a physical layer LTSSM Recovery, the LLR RRSM needs to be reset to its 

initial state and any instance of Retry.Ack sequence needs to be cleared in the link layer and 

physical layer. The device needs to make sure it receives a Retry.Req sequence before it ever 

transmits a RETRY.Ack sequence. 

 

CXL.Cache/ CXL.Mem Flit CRC  

The CXL.cache Link Layer uses a 16b CRC for transmission error detection. The 16b CRC is over 

the 528-bit flit. The assumptions about the type errors are as follows: 

• Bit ordering runs down each lane 
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• Bit Errors occur randomly or in bursts down a lane, with majority of errors single bit 

random errors. 

• Random errors can statistically cause multiple bit errors in a single flit, so it is more 

likely to get 2 errors in a flit then 3 errors, and more likely to get 3 errors in a flit 

then 4 errors, and so on... 

• There is no requirement for primitive polynomial (a polynomial that generates all 

elements of an extension field from a base field) since we do have a fixed payload. 

Primitive may be the result, but it's not required. 

 

CRC-16 Polynomial and Detection Properties  

The CRC polynomial to be used is 0x1f053. 

• The 16b CRC Polynomial has the following properties: 

• All Single, double, and triple bit errors detected 

• Polynomial selection based on best 4-bit error detection characteristics and perfect 

1, 2, 3-bit error detection.  

 

 

9. Market Analysis  
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Microchip Technology 

The explosion of modern applications such as Artificial Intelligence, Machine Learning and 

deep learning is changing the very nature of computing and transforming businesses. These 

applications have opened myriad ways for companies to improve their business 

development processes, operations, security and provide better customer experiences. To 

support these applications, platforms are being designed to utilize SoCs that can process 

large data sets in cloud data centers, have specialized processing power to service the use 

cases, create customized solutions, and scale this market. The market size of AI was valued at 

$65.48 billion in 2020, and is projected to reach $1,581.70 billion by 2030, growing at a CAGR of 

38.0% from 2021 to 2030, according to a recent report by Allied Market Research.  

With this exponential growth comes rising concerns about the security on these platforms 

running mission-critical applications in emerging markets such as healthcare, automotive, 

and data analytics. Security is one of the major factors that is contributing towards the 

complexity as well as cost of development and maintenance of these systems. In fact, per the 

2022 report published by IBM Security, the global average total cost of a data breach 
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increased to USD 4.35 million in 2022 and has been the highest in history. What’s even more 

concerning is that it took an average of 207 days to identify the breach and 70 days to 

contain the breach.  

 

Figure 41: Average total cost of a data breach in USD millions (Source: IBM Security, 2022) 

In addition to the cost, the complexity of threats that can breach these platforms by 

malicious actors has been increasing significantly over the past decade and it needs to be 

addressed with concrete security measures at the hardware, software, and protocol level on 

platform SoCs. 

The CXL Consortium is an open industry standard group formed to develop technical 

specifications that facilitate breakthrough performance for emerging usage models while 

supporting an open ecosystem for data center accelerators and other high-speed 

enhancements. 
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Figure 42: Board of Directors 
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Figure 43: Contributors 

 
Quotes from the CXL Consortium:  

"Today’s data center requires continuous innovation across the entire compute ecosystem 

including memory interface technologies in order to meet the performance and scalability 

demands of our customers," said Raghu Nambiar, corporate vice president, Data Center 

Ecosystems and Solutions at AMD. "Microchip's new SMC 2000 utilizes CXL interfaces for 

memory expansion and can greatly improve system performance. We are excited to work 

with Microchip to deliver a cohesive memory solution for our mutual customers and propel 

the computer industry forward to meet these next-generation data center needs." 

“Cadence collaborated closely with Microchip on CXL verification and compliance testing, 

leveraging multiple Cadence Verification IP offerings to fine-tune the interconnect 

technology needed to advance performance for AI and HPC applications,” said Paul 
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Cunningham, senior vice president and general manager of the System & Verification Group 

at Cadence. “Microchip’s release of the SMC 2000 CXL controller provides the memory 

bandwidth and capacity expansion required for the next generation of CPUs and GPUs to 

accelerate high-performance compute.” 

“Dell is a strong promoter of CXL and is actively participating in the CXL Consortium and 

standards development. CXL provides the flexible infrastructure needed to optimize the TCO 

of current and emerging workloads on our future systems,” said Stuart Berke, fellow and VP 

at Dell. “We are excited to see Microchip’s SMC 2000 CXL-based Smart Memory Controllers 

enter the CXL memory ecosystem.” 

“The momentum behind CXL is currently being fueled by the need for low-latency and high-

bandwidth I/O solutions,” said Jim Pappas, Director of Technology Initiatives at Intel. 

“Microchip, with their SMC 2000 Smart Memory Controller, is a key contributor to the 

developing ecosystem, and we are pleased to see their investment to drive broader 

deployment of CXL devices and to enable rapid industry adoption.” 

“As an active member of the CXL Consortium, Lenovo is committed to developing this 

important standard and helping build the ecosystem around the new CXL interconnect,” said 

Greg Huff, Chief Technology Officer, Lenovo Infrastructure Solutions Group. “We are excited 

to be part of developing solutions that enable a new era of data center performance and 

efficiency, working with Microchip to foster the growth and adoption of innovative CXL 

products in future Lenovo systems.” 

“We strongly support the development of a rich ecosystem of innovative memory 

technologies that enhance system-scale capacity and performance,” said Raj Hazra, senior 

vice president and general manager of Micron’s Compute and Networking business unit. 

“CXL is a groundbreaking innovation that will open the door to composable system 
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architecture, facilitating new ways to connect Micron’s industry-leading memory and 

storage.”  

"Having introduced the world’s first ASIC-based CXL DRAM module, along with an open-

source software toolkit, Samsung will continue to drive the commercialization of CXL 

products in collaboration with our customers and partners to meet the growing demand for 

data-heavy applications,” said Cheolmin Park, vice president of Memory Global Sales & 

Marketing at Samsung Electronics, and director of the CXL Consortium. “We’re delighted 

that Microchip’s SMC 2000 Smart Memory Controllers will be able to deliver the memory 

performance and capacity scaling that the data center industry needs to manage 

increasingly memory-intensive workloads more cost efficiently.” 

“CXL memory solutions are expected to create many new opportunities in the future for the 

industry, with continuous emergence of more complex memory-bound future applications. 

It will allow customers to manage memories more efficiently through additional scaling in 

memory bandwidth and capacity at lower TCO. SK hynix expects that Microchip's SMC 2000 

memory controller will provide a desirable solution to satisfy such needs and accelerate 

expanding the overall CXL ecosystem,” said Uksong Kang, vice president of DRAM Product 

and Planning at SK hynix. 

“SMART has designed Microchip’s SMC 2000 into our CXL E3.S Memory Module (XMM) which 

is being adopted in new CXL-enabled platforms,” states Satya Iyer, SMART Modular’s vice 

president of Specialty Memory. Iyer continues, “SMART has extensive experience launching 

new products based on emerging industry interconnect standards, such as OpenCAPI 

DDIMMs, and is now working closely with Microchip to enable XMMs as one of the CXL 

products in our portfolio.” 
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10. GP Estimated Cost, Tools, and Materials. 
 

In fact, we are going through the digital IC design flow for this project to deliver an 

intellectual property (IP) for the CXL.Mem & CXL.Cache for both transaction layer and data 

link layer for the CXL 2.0 standard.  

The cost is actually inherent in the tools that we use for simulation and verification for our 

design. These tools are provided to us by Si-Vision’s exclusive contractor in the middle east, 

Synopsys.  

10.1 Tools  
 

1. VCS: The Synopsys VCS® functional verification solution is the primary verification 

solution used by a majority of the world’s top semiconductor companies. VCS 

provides the industry’s highest performance simulation and constraint solver 

engines. VCS’ simulation engine natively takes full advantage of multicore processors 

with state-of-the-art Fine-Grained Parallelism (FGP) technology, enabling users to 

easily speed up high-activity, long-cycle tests by allocating more cores at runtime.  

2. SpyGlass Linting Tool: Inefficiencies during RTL design usually surface as critical 

design bugs during the late stages of design implementation. If detected, these bugs 

will often lead to iterations, and if left undetected, they will lead to silicon re-spins. The 

SpyGlass® product family is the industry standard for early design analysis with the 

most in-depth analysis at the RTL design phase. SpyGlass provides an integrated 

solution for analysis, debug and fixing with a comprehensive set of capabilities for 

structural and electrical issues all tied to the RTL description of design. 
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3. TestMax DFT: Synopsys TestMAX DFT is a comprehensive, advanced design-for-

test (DFT) tool that addresses the cost challenges of testing designs across a range of 

complexities. TestMAX DFT supports all essential DFT, including boundary scan, scan 

chains, core wrapping, test points, and compression. These DFT structures are 

implemented through TestMAX Manager for early validation of the corresponding 

register transfer level (RTL), or with Synopsys synthesis tools to generate netlists. 

 
4. Verdi Tool: The Verdi® Automated Debug System is the centerpiece of the Verdi 

SoC Debug Platform and enables comprehensive debug for all design and verification 

flows. It includes powerful technology that helps you comprehend complex and 

unfamiliar design behavior, automate difficult and tedious debug processes and unify 

diverse and complicated design environments. 

 

10.2 Materials 
 

As mentioned in many occasions in this paper, the only document that we’re only 

sticking to is the CXL’s 2.0 first four chapters from the official standard (You will find its link in 

the references section). 

10.3 Cost 
 

The only Hardware kit that we will use is the Zynq FPGA in the figure below. It may be 

changed later according to the needs. But for sure we are going to test on an FPGA kit from 

ONE-Lab. 

Note that this FPGA kit will be rented from ONE-Lab in Cairo University and not fully 

purchased as it’s only used for the testing and prototyping purposes. 
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Figure 44: ZYNQ -7000 Arm FPGA 

 
 

11. GP Timeline 
 

Tasks  Description Deliverables  Time 

(Weeks) 

Study System 

Verilog 

 

1. SV for RTL Design 

2. SV always block types 

3. Using interfaces to simplify 

module 

connectivity 

4. Using struct to create 

encapsulated data 

structure 

 2 
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Synopsys Verdi Tool 
1. Getting familiar with the tool2. 

Knowing how to run a 

simulation, open a wave, add 

signals, and debug. 

 

 1 

CXL protocol 

 

1. CXL 2.0 Specs Chapters 1 to 42. 

ARM CXS Specs 

 

 3 

System architecture 

phase 

 

1. Putting architecture to the 

whole system, describing main 

modules, high level connectivity, 

different clock domains.2. 

Preparing different (basic) 

scenarios. 

 

1. Presentation 

describes the 

main features for 

the CXL protocol 

 

3 

System 

implementation 

phase 

 

1. Describing every module on its 

own (Ports, main functionality, 

block diagram, timing diagrams) 

 

1. Module level 

design 

documents 

 

3 

Module level RTL 

Implementation 

and testing 

 

1. Implementing all modules as 

described in the previous step2. 

Unit testing of each module 

 

 4 
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System Integration 

& testing 

 

1. Integrating all modules 

together and test the 

system 

2. Hitting the testing scenarios 

prepared in architecture, and add 

any corner cases needed 

 

 5 

ASIC flow 

 

1. Lint/CDC checks (Spyglass)2. 

Synthesis (DC)3. DFT-TMAX (DC- 

TestMAX)4. Formality Checking 

(FV) 

 

1. Clean lint and 

CDC2. Power, 

area and 

timingreports3. 

DFT ready design 

andStuck-at-

coverage4. Clean 

FV 

 

5 

Thesis preparation 

 

All the documentation made in 

previous stages will be added to 

thesis 

 

 3 

Total   
 29 
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12. GP Final Deliverables 
 

I. Micro-Architecture documentation for the controller and the main blocks. 

II. Synthesizable System Verilog RTL 

III. Simulation environment and tests 

IV. Move through ASIC flow up to frontend Synthesis 

V. (Synthesis + DFT + Formality checking) 
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