
DUAL MODE CRASH AVOIDANCE

By

Ahmed Anwar Saeed Saad
Ahmed Saad Abdelfattah Ahmed

Hind Ashraf Taha Ali
Marehan Refaat Mohamed Mohamed
Nagham Wael Mohamed Mohamed

Omar Khaled Saleh Mohamed
Omar Mohamed Mostafa El-Nwishy
Omar Shaaban Roshdy Sharkawy

A Thesis Submitted to the
Faculty of Engineering at Cairo University

in Partial Fulfillment of the
Requirements for the

BACHELOR DEGREE
in

Electronics and Communications Engineering

FACULTY OF ENGINEERING ,CAIRO UNIVERSITY
GIZA,EGYPT

2020

Approved by the Examining Committee:

Dr. Hassan Mustafa, Thesis Main Advisor

Dr. Mohsen Rashwan, Thesis Main Advisor

Dr. Ahmed Madian, External Examiner

Dr. Mohamed Saeed, External Examiner

Dr. Mohamed Abdelghany, External Examiner

i

Acknowledgements

This dissertation would not have been possible without the great support of

our supervisors, Dr. Hassan Mostafa and Dr. Mohsen Rashwan, as well as Eng.

Abdelrahman Hussein, Eng.Mohamed Abdou and Eng.Eslam Bakr.

Dr. Hassan Mostafa and Dr. Mohsen Rashwan, we would like to thank you both

for your guidance, patience, help and support. We appreciate the great supervision

you offered us through the whole project, and the equipment you helped us access

and use easily.

Eng. Abdelrahman Hussein, we are grateful for your technical guidance and

concern about each individual of the team. Your knowledge and advice have always

had a significant impact on our progression.

Thanks for Valeo, especially for Eng.Mohamed Abdou and Eng.Eslam Bakr, we

would thank you for the support and guidance you provided us.

ii

Table of Contents

Acknowledgements ii

Table of Contents iii

List of Tables vii

List of Figures ix

Abstract xvi

1 INTRODUCTION 1

1.1 Lane Overtaking . 2

1.2 Distraction Detection . 3

1.3 Speech Recognition . 4

2 BACKGROUND 5

2.1 Automation phases . 5

2.2 Machine Learning . 8

2.2.1 What is machine learning? 8

2.2.2 History of machine learning 8

2.2.3 Types of Machine Learning 9

2.3 Relation between deep learning and automation 11

2.4 Deep Learning . 12

2.4.1 What is deep learning? . 12

2.4.2 History of deep learning [16] 13

2.4.3 Models of deep learning . 14

2.4.4 Impact of increasing data size on deep learning 17

3 LANE OVERTAKING 18

3.1 Carla simulator . 18

3.2 Literature Review . 20

3.3 Simulation Setup . 21

iii

3.3.1 How data is generated? . 21

3.3.2 Dataset . 23

3.3.3 Preprocessing . 25

3.4 Materials and Methods . 29

3.4.1 First approach:CNN with branching 29

3.4.2 Second Approach : LSTM with branching 34

3.5 Results and Discussion . 36

3.5.1 First Approach:CNN with branching 36

3.5.1.1 Regression Model using branching RGB one image 36

3.5.1.2 Regression Model using branching RGB Four images 37

3.5.1.3 Regression Model using branching Semantic Segmen-

tation one image 38

3.5.1.4 Regression Model using branching Semantic Segmen-

tation Four images 40

3.5.1.5 Regression Model using branching Gray Scale One

image . 41

3.5.2 Second Approach:LSTM with branching 42

3.5.2.1 Regression Model using branching Gray Scale one

image . 42

4 DISTRACTION DETECTION 43

4.1 Literature Review . 43

4.2 Simulation Setup . 44

4.2.1 Dataset . 44

4.2.2 Preprocessing . 46

4.2.2.1 Unique Drivers Problem 46

4.2.2.2 Augmentation . 46

4.3 Materials and Methods . 48

4.3.1 End-to-End Classification System 48

4.3.1.1 ResNet50 . 49

4.3.2 Face and Hands Semantic Segmentation 50

4.3.2.1 Image Segmentation 50

4.3.2.2 Region-based Segmentation 51

iv

4.3.2.3 Edge Detection Segmentation 52

4.3.2.4 Image Segmentation Based on Clustering 52

4.3.2.5 Mask R-CNN . 53

4.3.2.6 Image Segmentation using Fully Convolutional Net-

works . 54

4.3.2.7 U-Net . 59

4.4 Results and Discussion . 62

4.4.1 End-to-End Classification System 62

4.4.1.1 State Farm Dataset 62

4.4.1.2 AUC and State Farm Datasets 63

4.4.1.3 Model Optimization and Hardware Acceleration . . 64

4.4.1.4 Model Interpretability 68

4.4.1.5 Semantic Segmentation 76

5 SPEECH RECOGNITION 79

5.1 Literature Review . 79

5.2 Simulation Setup . 79

5.2.1 Dataset . 79

5.2.1.1 English dataset . 80

5.2.1.2 Arabic dataset . 80

5.2.2 Preprocessing . 83

5.2.2.1 Dataset distribution and Modeling of the missing

classes . 83

5.2.2.2 Features level . 85

5.2.2.3 Classical augmentation 86

5.2.2.4 GAN as an augmentation network 92

5.2.2.4.1 Limitations on standard GANs 93

5.2.2.4.2 Data pre-processing 94

5.2.2.4.3 GAN architecture and training phase . . . 94

5.2.2.4.4 Generation and labelling phase 94

5.2.2.5 YouTube dataset generator 94

5.3 Materials and Methods . 96

5.3.1 Speech recognition classification networks 96

v

5.3.1.1 Sequence Models 96

5.3.1.2 CNN Models . 97

5.3.1.3 Semi supervised learning 109

5.4 Results and Discussion . 111

6 DISCUSSION AND CONCLUSION 114

6.1 Conclusion . 114

References 115

vi

List of Tables

3.1 Detailed CNN architecture using branching 31

3.2 Detailed CNN architecture using branching Gray Scale 33

3.3 Detailed LSTM architecture using branching Gray Scale 34

3.4 Results of Regression Model using branching RGB one image . . . 36

3.5 Results of Regression Model using branching RGB one image with

augmentation . 37

3.6 Results of Regression Model using branching RGB Four images . . 37

3.7 Results of Regression Model using branching RGB Four images with

augmentation . 38

3.8 Results of Regression Model using branching Semantic Segmentation

One image . 39

3.9 Results of Regression Model using branching Semantic Segmentation

One image with augmentation . 39

3.10 Results of Regression Model using branching Semantic Segmentation

Four images . 40

3.11 Results of Regression Model using branching Semantic Segmentation

Four images with augmentation . 40

3.12 Results of Regression Model using branching Gray Scale One image 41

3.13 Results of Regression Model using branching Gray Scale One image 42

4.1 AUC dataset distribution . 45

4.2 State Farm dataset distribution . 45

4.3 A comparison between algorithms 54

4.4 Training and validation accuracy and loss on State Farm dataset for

the custom CNN . 62

4.5 Validation accuracy and loss on State Farm dataset for different CNNs

using Transfer Learning . 62

4.6 Proposed System Specifications . 63

4.7 Validation accuracy, validation loss and number of model parameters

before and after pruning . 68

vii

4.8 Validation accuracy, validation loss and number of model parameters

before and after Quantization . 68

4.9 U-NET results . 76

5.1 Dataset distribution . 84

5.2 Results of all the proposed CNN models 111

5.3 Results of all the proposed RNN models 111

viii

List of Figures

1.1 Some shapes of distraction due to the surrounding environment . . 1

1.2 Some shapes of distraction due to driver 1

1.3 Lane overtaking technique . 2

1.4 Distraction detection system pipeline 3

1.5 Speech recognition system . 4

2.1 Automation phases . 5

2.2 Linear and non- Linear Regression Model 10

2.3 Logistic Regression Model . 10

2.4 Classification Model . 10

2.5 Clustering Model . 11

2.6 Block diagram of Reinforcement learning basic concept 11

2.7 Relation between machine and deep learning 12

2.8 Deep learning neural network . 12

2.9 MLP architecture . 14

2.10 CNN architecture . 15

2.11 RNN architecture . 16

2.12 LSTM architecture . 16

2.13 Comparison between ML and DL performance when increasing data 17

3.1 Sample of various environmental conditions for Town 4 18

3.2 Two of sensing modalities provided by Carla 19

3.3 The RGB and Semantic images getting from the four cameras . . . 24

3.4 the labels . 25

3.5 Concatenation of four RGB images in one image 26

3.6 Concatenation of four Semantic images in one image 27

3.7 Applying some transformations on an image 28

3.8 CNN architecture using branching 31

3.9 Graph to show the difference between Sigmoid and Tanh activation

function . 31

ix

3.10 CNN architecture using branching flowchart 32

3.11 Temporal information in CNN input (Past) 33

3.12 Sequence prediction using LSTM 34

3.13 LSTM architecture using branching flowchart 35

4.1 AUC Distracted Driver Dataset. (a) Safe driving (b) Texting - right

(c) Talking on the phone - right (d) Texting - left (e) Talking on the

phone - left (f) Operating the radio (g) Drinking (h) Reaching behind

(i) Hair and makeup (j) Talking to a passenger. 45

4.2 State Farm Distracted Driver Detection Dataset. (a) Safe driving (b)

Texting - right (c) Talking on the phone - right (d) Texting - left (e)

Talking on the phone - left (f) Operating the radio (g) Drinking (h)

Reaching behind (i) Hair and makeup (j) Talking to a passenger. . . 45

4.3 Original sample from the AUC dataset. The class of image is talking

on the phone - right . 47

4.4 Augmented images. (a) Rotation and Shear (b) Cropping (c) Blur

(d) Multiplication (e) Additive Gaussian Noise (F) Addition 47

4.5 Custom CNN architecture . 48

4.6 Skip connection image from DeepLearning.AI 49

4.7 ResNet50 architecture . 50

4.8 Image localization and segmentation 50

4.9 Semantic segmentation of the left, instance segmentation on the right 51

4.10 Mask R-CNN . 53

4.11 Image classification using CNN . 55

4.12 From image classification to semantic segmentation 55

4.13 Feature map/Filter number along layers 55

4.15 Feature map/Filter number along layers 56

4.14 Feature maps . 56

4.17 Fusing for FCN-16s and FCN-8s . 57

4.16 FCN-32s . 57

4.18 Comparison with different FCNs . 58

4.19 Pascal VOC 2011 dataset (Left), NYUDv2 Dataset (Middle), SIFT

Flow Dataset (Right) . 58

x

4.20 Visualized results. 59

4.21 U-Net architecture . 60

4.22 An example from the state farm data set 60

4.23 An example from the state farm data set 61

4.24 An example from the AUC data set 61

4.25 An example from the AUC data set 61

4.26 Normalized confusion matrix for the validation set 64

4.27 Effect of increasing pruning amount of the convolutional layers weights

on the accuracy . 65

4.28 Effect of increasing pruning amount of the convolutional layers weights

on the loss . 65

4.29 Effect of increasing pruning amount of the linear layers weights on

the accuracy . 66

4.30 Effect of increasing pruning amount of the linear layers weights on

the loss . 66

4.31 Effect of increasing pruning amount of the linear layers weights on

the accuracy after pruning the weights of the convolutional layers . 67

4.32 Effect of increasing pruning amount of the linear layers weights on

the loss after pruning the weights of the convolutional layers 67

4.33 Visualization of the important parts of the image that contribute in

the prediction. (a) Original safe driving sample from the AUC dataset

(b) Saliency map . 69

4.34 Visualization of the important parts of the image that contribute in

the prediction. (a) Original texting - right sample from the AUC

dataset (b) Saliency map . 69

4.35 Visualization of the important parts of the image that contribute in

the prediction. (a) Original talking on the phone - right sample from

the AUC dataset (b) Saliency map 69

4.36 Visualization of the important parts of the image that contribute

in the prediction. (a) Original texting - left sample from the AUC

dataset (b) Saliency map . 70

xi

4.37 Visualization of the important parts of the image that contribute in

the prediction. (a) Original talking on the phone - left sample from

the AUC dataset (b) Saliency map 70

4.38 Visualization of the important parts of the image that contribute in

the prediction. (a) Original operating the radio sample from the AUC

dataset (b) Saliency map . 70

4.39 Visualization of the important parts of the image that contribute in

the prediction. (a) Original drinking sample from the AUC dataset

(b) Saliency map . 71

4.40 Visualization of the important parts of the image that contribute in

the prediction. (a) Original reaching behind sample from the AUC

dataset (b) Saliency map . 71

4.41 Visualization of the important parts of the image that contribute in

the prediction. (a) Original hair and makeup sample from the AUC

dataset (b) Saliency map . 71

4.42 Visualization of the important parts of the image that contribute in

the prediction. (a) Original talking to a passenger sample from the

AUC dataset (b) Saliency map . 72

4.43 Visualization of the important parts of the image that contribute

in the prediction. (a) Original safe driving sample from State Farm

dataset (b) Saliency map . 72

4.44 Visualization of the important parts of the image that contribute in

the prediction. (a) Original texting - right sample from State Farm

dataset (b) Saliency map . 72

4.45 Visualization of the important parts of the image that contribute in

the prediction. (a) Original talking on the phone - right sample from

State Farm dataset (b) Saliency map 73

4.46 Visualization of the important parts of the image that contribute in

the prediction. (a) Original texting - left sample from State Farm

dataset (b) Saliency map . 73

xii

4.47 Visualization of the important parts of the image that contribute in

the prediction. (a) Original talking on the phone - left sample from

State Farm dataset (b) Saliency map 73

4.48 Visualization of the important parts of the image that contribute in

the prediction. (a) Original operating the radio sample from State

Farm dataset (b) Saliency map . 74

4.49 Visualization of the important parts of the image that contribute in

the prediction. (a) Original drinking sample from State Farm dataset

(b) Saliency map . 74

4.50 Visualization of the important parts of the image that contribute in

the prediction. (a) Original reaching behind sample from State Farm

dataset (b) Saliency map . 74

4.51 Visualization of the important parts of the image that contribute in

the prediction. (a) Original hair and makeup sample from State Farm

dataset (b) Saliency map . 75

4.52 Visualization of the important parts of the image that contribute in

the prediction. (a) Original talking to a passenger sample from State

Farm dataset (b) Saliency map . 75

4.53 Driver and background segmentation masks 76

4.54 Original image after applying the segmentation mask 76

4.55 On the left is the ground truth segmented image, on the right is the

prediction of the U-NET model . 77

4.56 On the left is the ground truth segmented image, on the right is the

prediction of the U-NET model . 77

4.57 U-NET predictions on the AUC dataset 77

4.58 U-NET predictions on the AUC dataset 78

5.1 Targeted Arabic labels . 80

5.2 Web request-response cycle . 81

5.3 Welcome page of the website . 82

5.4 Tutorial page of the website . 82

5.5 A request to allow the microphone 83

5.6 Recording page of the website . 83

xiii

5.7 word (bed) in time domain, frequency domain and MFCC 85

5.8 Time domain of command ’Left’, Frequency domain of command ’Left’ 87

5.9 Time domain of command ’Left’ before and after Changing speed . 87

5.10 Time domain of command ’Left’ before and after Volume control . . 87

5.11 Time domain of command ’Left’ before and after applying Mask . . 88

5.12 Time domain of command ’Left’, Time shifted version of command

’Left’ . 88

5.13 Time domain of command ’Left’, Cropped version of command ’Left’ 89

5.14 Time domain of command ’Left’, Noisy version of command ’Left’ . 89

5.15 Frequency domain of command ’Left’, Freq. shifted version of com-

mand ’Left’ . 90

5.16 Pitch change mechanism . 90

5.17 Frequency domain of command ’Left’, Changing pitch of command

’Left’ . 91

5.18 Understanding GAN mechanism . 92

5.19 DCGAN architecture . 93

5.20 2 stages block diagram for silence/voiced classifier 97

5.21 VGG16 and 19 model structure . 97

5.22 ImageNet Large Scale Visual Recognition Challenge (ILSVRC) winners 98

5.23 alexnet model structure . 98

5.24 VGG19 and VGG16 layers . 99

5.25 resnet50 model structure . 99

5.26 resnet50 layers . 100

5.27 densenet structure . 100

5.28 Dense blocks . 101

5.29 densenet Architecture . 101

5.30 densenet layers . 102

5.31 mobilenet Architecture . 103

5.32 Depthwise Separable Convolution 103

5.33 mobilenet layers . 104

5.34 xception Architecture . 105

5.36 xception layers . 106

xiv

5.38 Controller model architecture for recursively constructing one block

of a convolutional cell . 107

5.39 NASNet layers . 108

5.40 Illustration of semi-supervised learning 109

5.41 Pseudo labelling technique . 110

5.42 Confusion matrix of the validation set 112

5.43 Confusion matrix of the test set . 112

5.44 Classification report of the validation set 113

5.45 Classification report of the test set 113

6.1 Block diagram of the proposed system 114

xv

Abstract

In this project, a solution for car accidents is proposed both in autonomous and
manual driving vehicles. Crash avoidance in autonomous vehicles is achieved through
some techniques like obstacle avoidance and lane overtaking, where it detects that
there is an obstacle at certain distance and begin to see whether there is a possibility
to overtake it or not. After applying many architectures, the best results on the
simulator where achieved by CNN architecture with loss of 0.0738, model size of
127.92 MB and inference time of 1 ms. While in manual driving vehicles, a driver
assistance and a real-time distraction detection system are built to decrease the
probability of being distracted while driving, which in turn, decreases the probability
of making an accident. The distraction detection system is based on ResNet50
architecture, which achieves classification accuracy and loss of 94.3% and 0.25,
respectively. A quantized version of the trained ResNet50 architecture is introduced
in order to facilitate the deployment and operation on the hardware. The quantized
version achieves classification accuracy and loss of 92.2% and 0.26, respectively, with
3.75x reduction in memory usage and 2x reduction in inference time, resulting in a
model size of 24MB and inference time of 75ms on the CPU in which the experiments
are conducted. A speech recognition system, as a driver assistance system, is built to
provide the driver some services that make him feel the luxury. Many classification
networks (CNNs and RNN) are tried out by using some techniques to increase the
data size for generalization. RNN is the best choice to represent speech recognition
module when implementing it, as it has less inference time of 0.69 ms, but it has
4.4M number of parameters. By using ensemble learning, a speech recognition
system within a specific domain of commands is made with classification accuracies
of 97.55%, 97.73%, and 90.238% while the categorical cross-entropy losses are 0.1457,
and 0.10314 on validation, test, and submission datasets respectively with a rate of
115 audios/sec on Tesla T4.

xvi

Chapter 1

Introduction

Advancements in science and technology have been reshaping our lives in recent
decades, where Artificial Intelligence and Machine Learning are the core for building
any smart system today. A lot of car accidents occur as the vehicles can’t avoid
crashing especially the self-driving ones, as they may be at high velocities. If an
obstacle suddenly appeared, it may not have time to decrease its velocity which
would lead to crashing. Also, many car accidents occur due to driver distraction, as
shown in the figure ,Distraction has many shapes,whether this distraction is due to
objects on the road, or due to the interaction of the driver with any other subject,
like talking on the phone, texting, drinking, or talking with a passenger. Distraction
may also occur due to the interaction with the vehicle itself, like operating the
radio, turning the air conditioning on, or looking behind to grab something . These
problems lead to the loss of many lives, and our project is introducing a solution
to avoid it.Our problem it is divided into three modules,as each module can deal
with some these shapes of distraction ,first module deals with the surrounding
environment of the semi-self driving car,as shown in figure 1.1 and second and third
modules deal with any distraction could happen inside the car from the driver ,as
shown in figure 1.2.

(a) Crash due to a car (b) Human in front of the car

Figure 1.1: Some shapes of distraction due to the surrounding environment

(a) Drinking (b) Talking to a passenger

Figure 1.2: Some shapes of distraction due to driver

1

1.1 Lane Overtaking

The lane change maneuver is one of the most thoroughly investigated automatic
driving operations for autonomous vehicles after trajectory tracking. This maneuver
is used as a primitive for performing more complex operations like changing lanes
on a highway, leaving the road, or overtaking another vehicle. [1]

A total of 13,939 fatal crashes occurred during overtaking maneuvers in the
United States from 1994 to 2005, which lead to the death of 24,565 people. Most of
these accidents were caused because of failing to leave enough distance, overtaking
when there was poor visibility, or by not giving way to an overtaking vehicle. These
accidents forced some governments to ban overtaking like that of Netherlands. So,
the objective of the autonomous vehicles is to have this feature (overtaking), but by
taking the precautions and be more safe. [1]

Deep Neural Network is used for detecting the existence of an obstacle and
the precautions that it will take to avoid crashing. According to the distance
available between the vehicle and the obstacle and the surrounding circumstances
(the availability of the neighboring lanes), the decision will be taken either by
decreasing the speed of the car or by stopping or by making lane overtaking. Below,
figure 1.3, represents the technique of the lane overtaking.

Figure 1.3: Lane overtaking technique

2

1.2 Distraction Detection

Road accidents occurring due to driver distraction increase as technology and
means of distraction like In-Vehicle Information Systems (IVIS) develop. The World
Health Organization (WHO) stated in the 2017 Global Status Report that 1.25
million yearly deaths worldwide take place due to road traffic accidents [2]. As
the Center for Disease Control and Prevention (CDC) motor vehicle safety division
reported, one in five car accidents are caused due to a distracted driver. According
to the National Highway Traffic Safety Administration (NHTSA), 9 people are killed
and 1000 are injured every day in crashes related to distracted driving in the United
States [3]. Additionally, NHTSA reported that 9% of fatal crashes in 2016 were
reported as distraction-affected crashes, and that 3450 people were killed in motor
vehicle crashes involving distracted drivers [3]. All the mentioned reports about
distracted driving threat raise the concern towards building distraction detection
systems capable of identifying the posture and state of the driver, whether the
driver is in a safe-driving state or distracted, and what kind of activity causes the
distraction.

The NHTSA defines distracted driving as any activity that diverts attention from
driving, including talking or texting on the phone, eating or drinking, talking to a
passenger and operating the radio or navigation systems [4]. The CDC categorizes
distracted driving into visual distraction (i.e taking one’s eyes off the road), manual
distraction (i.e taking one’s hands off the driving wheel) and cognitive distraction
(i.e taking one’s mind off driving) [5].

A real-time distraction detection system is built to avoid the aforementioned
problems of distraction. Figure 1.4 shows the pipeline of the proposed system. The
system is based on Deep Learning, in which a CNN has been trained on different
images of distracted drivers, in order to classify the state of the driver whether it
is a safe driving or a distracted state. The different kinds of distraction and the
datasets used in this work are discussed in section 4.2.1. The proposed system is able
to operate in a real-time environment, with a satisfactory degree of generalization.
Additionally, model optimization and hardware acceleration techniques such as
pruning and quantization have been applied after training, giving the capability of
deploying the model to an embedded system with less memory usage and faster
inference time.

Figure 1.4: Distraction detection system pipeline

3

1.3 Speech Recognition

Speech recognition is a process of converting spoken words into text. It is also
known as Automatic Speech Recognition (ASR). The technology gained acceptance
and shape in early 1970s due the research funded by Advance Research Project
Agency in U.S Department of Defense. It has been widely in use since 1970s in
various domains such as automotive industry, health care, military, IT support
centers, telephone directory assistance, embedded applications, automatic voice
translation into foreign languages etc.

In-car speech recognition is our point of interest, which enables the driver to
interact with the car. In-car speech recognition systems have become an almost
standard feature in all many new vehicles on the market today. The days of getting
in our cars and driving from point A to point B without any distractions is over.
Even though safe driving behaviors (and in many places, the law) requires us to
ignore the constant phone calls, emails, and text messages while behind the wheel,
that kind of disconnectedness isn’t the reality. A lot of voice technology was driven
by the need to keep the public safe while still acknowledging the device-dependent
epidemic. In-car speech recognition systems aim to remove the distraction of looking
down at your mobile phone while you drive. Companies like Apple, Google, and
Nuance are reshaping the way voice-activation is used in vehicles. They are the most
popular companies providing this service that enables drivers to find directions, send
emails, make phone calls, and play music, all by using the sound of their voice.

Command speech recognition system is built to assist the driver to interact with
the surrounding environment and remove the distraction that may cause car crashes.
By using the dataset provided from Tensorflow team on kaggle [6] as a challenge,
ours models are trained to recognize them well. The following figure 1.5 illustrates
the ASR process.

Figure 1.5: Speech recognition system

4

Chapter 2

Background

2.1 Automation phases

Figure 2.1: Automation phases

As shown in figure 2.1, there are five levels of automation. Here is much
information about them: [7],[8],[9]

1. Level 0:

• It is the level where there is no automation.
• The human driver is in complete control of the vehicle. The driver

performs all operating tasks like throttle, steering and breaking.
• For example: 2005 Honda

5

2. Level 1:

• It is the level where there is a driver assistant.
• The human driver sometimes receives help from an automated system

inside the vehicle which controls some parts of the driving tasks.
The vehicle can assist with some functions, but the driver still handles
all braking, steering, throttle and monitoring the surrounding.
For example: The car can brake a little extra when the diver is so close
to another car.

• This level could be found in almost cars today, such as: 2018 Toyota
Corolla, 2018 Nissan Sentra and others.

3. Level 2:

• It is the level at which there is partial automation.
• The vehicle can assist with steering or acceleration functions and allow the

driver to disengage from some of their tasks. The driver must always be
ready to take control of the vehicle and responsible for most safety-critical
functions and all monitoring the environment.

• For example: Tesla Autopilot, Volvo Pilot Assist and Audi Traffic
Jam Assist

4. Level 3:

• It is the level at which there is conditional automation.
• The automated system can conduct some parts of the driving task and

monitor the driving environment in some instances, but the driver should
be ready to take back control on request.
The vehicles are capable of driving themselves, but only under ideal
conditions and with limitations, such as limited-access divided highways
at a certain speed. Although hands are off the wheel, the driver is still
required to take over when road conditions fall below ideal.

5. Level 4:

• It is a level where high automation occurs.
• The automated system can handle the driving task and monitor the driving
environment. The vehicle is capable of steering, braking, accelerating,
monitoring the environment, determining when to change lanes, turns
and use signals.
Although the driver will not need to take back control, the automated
system will only be able to operate in certain environments and under
certain conditions. For example: it cannot deal with traffic jams.

6

6. Level 5:

• It is the level of full automation.
• The vehicles are able to perform all driving tasks, monitor and go through

all road conditions. There are no driver involvements at all, so, there is
no need for pedals and steering wheel.

• For example: NVIDIA announced an AI computer where drivers plug
their destination and the vehicle controls everything.

7

2.2 Machine Learning

2.2.1 What is machine learning?

Machine learning is an application of artificial intelligence (AI) that provides
systems the ability to automatically learn and improve from experience without being
explicitly programmed. Machine learning focuses on the development of computer
programs that can access data and use it to learn for themselves. [10] The process
of learning begins with observations or data, such as examples, direct experience,
or instruction, in order to look for patterns in data and make better decisions in
the future based on the examples that we provide. The primary aim is to allow
the computers to learn automatically without human intervention or assistance and
adjust actions accordingly. [10]

2.2.2 History of machine learning

The first case of neural networks was in 1943, when neurophysiologist Warren
McCulloch and mathematician Walter Pitts wrote a paper about neurons, and how
they work. They decided to create a model of this using an electrical circuit, and
therefore the neural network was born.
In 1950, Alan Turing created the world-famous Turing Test. This test is fairly simple
for a computer to pass; it has to be able to convince a human that it is a human
and not a computer.
1952 was the first computer program that could learn as it ran. It was a game which
played checkers, created by Arthur Samuel.
1958 Frank Rosenblatt designed the first artificial neural network called Perceptron.
The main goal of this was pattern and shape recognition.
1959 Bernard Widrow and Marcian Hoff created two models of them at Stanford
University. The first was called “ADELINE”, and it could detect binary patterns.
For example in a stream of bits, it could predict what the next one would be. The
next generation was called “MADELINE”; it could eliminate echo on phone lines so
had a useful real world application. It is still in use today.

1982 John Hopfield suggested creating a network which had bidirectional lines similar
to how neurons actually work.
1997 the IBM computer Deep Blue which was a chess-playing computer beat the
world chess champion. Since then, there have been many more advances in the field.
1998 research at AT T Bell Laboratories on digit recognition resulted in good
accuracy in detecting handwritten postcodes from the US Postal Service.
In the 2000s with the huge computational technological advancements, more machine
learning researches were done and machine learning becomes a trending topic in the
research area.[11]

8

2.2.3 Types of Machine Learning

There are three types of machine learning: Supervised learning, unsupervised
learning and reinforcement learning.
Supervised Learning: ML algorithm is given a small training dataset to work
with. This training dataset is a smaller part of the bigger dataset and serves to give
the algorithm a basic idea of the problem, solution, and data points to be dealt with.
The training dataset is also very similar to the final dataset in its characteristics
and provides the algorithm with the labeled parameters required for the problem.
The algorithm then, finds relationships between the parameters given essentially
establishing a cause and effect relationship between the variables in the dataset. At
the end of the training; the algorithm has an idea of how the data works and the
relationship between the input and the output. [12]
Examples of Supervised learning algorithms:

• Regression:A set of statistical processes for estimating the relationships between
a dependent variable(outcome value) and one or more independent variables
(features or predictors).
It includes different types like: Linear Regression as shown in Figure 1, Non-
Linear Regression as shown in Figure 2.2 and Logistic Regression as shown in
Figure 2.3.

• Classification :It refers to a predictive modeling problem where a class label is
predicted for a given example of input data as shown in Figure 2.4.
Examples of classification problems include: Given an example, classify if it is
spam or not. Given a handwritten character, classify it as one of the known
characters.

Unsupervised Learning: The labels allow the algorithm to find the exact nature
of the relationship between any two data points. However, unsupervised learning
does not have labels to work of resulting in the creation of hidden structures.
Relationships between data points are perceived by the algorithm in an abstract
manner with no input required from human beings.
Examples of unsupervised learning algorithms:

• Clustering:It mainly deals with finding a structure or pattern in a collection
of uncategorized data. Clustering algorithms will process your data and find
natural clusters (groups) if they exist in the data. You can also modify how
many clusters your algorithms should identify as shown in Figure 2.5.

Reinforcement Learning:The algorithm interacts with a dynamic environment
that provides feedback in terms of rewards and punishments. For example: self-
driving cars being rewarded to stay on the road as shown in Figure 2.6.

9

Figure 2.2: Linear and non- Linear Regression Model

Figure 2.3: Logistic Regression Model

Figure 2.4: Classification Model

10

Figure 2.5: Clustering Model

Figure 2.6: Block diagram of Reinforcement learning basic concept

2.3 Relation between deep learning and automa-
tion

Deep learning has been widely applied in image processing, natural language
understanding, and so on. In recent years, more and more deep learning-based
solutions have been presented in the field of self-driving cars and have achieved
outstanding results. More and more solutions based on deep learning for self-driving
cars have been presented, including obstacle detection, scene recognition, lane
detection, and so on. [13]

During the last decade, deep learning has demonstrated to be an excellent
technique in the field of AI. Deep learning methods have been used to solve various
problems like image processing, speech recognition, and natural language processing.
As deep learning can learn robust and effective feature representation through layer-
by-layer feature transformation of the original signal automatically, it has a good
capability to cope with some challenges in the field of self-driving cars. [13]

11

2.4 Deep Learning

2.4.1 What is deep learning?

Deep learning is an artificial intelligence (AI) function that imitates the workings
of the human brain in processing data and creating patterns for use in decision
making. Deep learning is a subset of machine learning in artificial intelligence that
has networks have the ability to do unsupervised, supervised and semi-supervised
learning. Also known as deep neural learning or deep neural network. [14],[15]

Figure 2.7: Relation between machine and deep learning

As shown in figure 2.7, deep learning is a class of machine learning algorithms
that uses multiple layers to progressively extract higher level features from the raw
input. For example, in image processing, lower layers may identify edges, while
higher layers may identify the concepts relevant to a human such as digits or letters
or faces, as it is shown below in figure 2.8. [15]

Figure 2.8: Deep learning neural network

Deep learning architectures such as deep neural networks, deep belief networks,
recurrent neural networks and convolutional neural networks have been applied
to fields including computer vision, machine vision, speech recognition, natural
language processing, audio recognition, social network filtering, machine translation,
bioinformatics, drug design, medical image analysis, material inspection and board
game programs, where they have produced results comparable to and in some cases
surpassing human expert performance. [15]

12

2.4.2 History of deep learning [16]

1. Early start: Early 40s to 60s

(a) McCullock and Pitts 1943: Introduced the linear threshold “neuron”.
(b) Rosenblatt 1962: Applied a “Hebbian” learning rule.
(c) Novikoff 1962: Proved the perceptron convergence theorem.

2. Deep Winter I: Late 60s through early 80s

(a) Robinson 1965: Introduced resolution theorem proving.
(b) Minsky 1969: Wined Turing Award for “promoting AI”.
(c) McCarthy and Hayes 1968: Introduced the situation calculus.
(d) Minsky and Papert 1969: Published the book Perceptrons. They

proved that many properties of images could not be determined by (single
layer) perceptrons. Caused a decline of activity in neural network research.

(e) McCarthy, 1971: Wined Turing Award.
(f) Minsky 1974: Wrote “A Framework for Representing Knowledge”.
(g) McCarthy 1980: Introduced “non-monotonic logic”.

3. Deep Resurgence I: Late 80s

(a) Fukushima 1980: Introduced the Neocognitron (a form of CNN).
(b) Hinton and Sejnowski 1985: Introduced the Boltzman machine.
(c) Rummelhart, Hinton and Williams 1986: Demonstrated empirical

success with backpropagation (itself dating back to 1961).

4. Deep Winter II: Late 90s’ and 00’s

(a) Valiant 1984: Introduced the formal definition of PAC learnability.
Credited with starting learning theory as a branch of computer science.
Turing Award, 2010.

(b) Pearl 1995: Published Probabilistic reasoning in intelligent systems:
Networks of plausible inference. Credited with driving the “statistical
revolution” in AI. Turing Award, 2011.

(c) Convex optimization and convex relaxations (the marginal poly-type of a
graphical model).

(d) Nonparametric Bayesian inference (Dirichlet processes).
(e) Submodular optimization.
(f) Schmidhuber et al. 1997: Introduced LSTMs.
(g) LeCun 1998: Introduced convolutional neural networks (CNNs) (LeNet).
(h) Bengio 2003: Introduced neural language modeling.

5. Deep Learning Exploding: In 2012

(a) Alexnet dominates the 2012 Imagenet challenge.
(b) Google speech recognition converts to deep learning.

13

2.4.3 Models of deep learning

There are different types of models used in Deep Learning. [17]

• Supervised Models:

– Classical Neural Networks (Multilayer Perceptrons)
– Convolutional Neural Networks (CNNs)
– Recurrent Neural Networks (RNNs)

• Unsupervised Models:

– Self-Organizing Maps (SOMs)
– Boltzman Machines
– AutoEncoders

We will talk about the supervised models much clearly.

• Classical Neural Networks:

Classic Neural Networks can also be referred to as Multilayer Perceptrons.
The perceptron model was created in 1958 by American psychologist Frank
Rosenblatt. Its singular nature allows it to adapt to basic binary patterns
through a series of inputs, simulating the learning patterns of a human-brain.As
shown in figure 2.9, a multilayer perceptron is the classic neural network model
consisting of more than 2 layers (contains one hidden layer or more). [17]

It is used in classification and regression problems where a set of real values
is given as inputs. It is also used when the data set used us tabular data
(formatted in rows and columns ex: CSV files) and when a higher level of
flexibility is required in the model. [17]

Figure 2.9: MLP architecture

14

• Convolutional Neural Networks:
A more capable and advanced variation of classic artificial neural networks, a
Convolutional Neural Network (CNN) is built to handle a greater amount of
complexity around pre-processing, and computation of data. [17]

CNNs were designed for image data and might be the most efficient and flexible
model for image classification problems. Although they were not particularly
built to work with non-image data, they can achieve stunning results with
non-image data as well. [17]

It is used for image datasets (including OCR document analysis) and when
the model requires more complexity in calculating the output. The most
common CNN architectures are ZFNet, GoogleNet, VGGNet, AlexNet
and ResNet. [17],[18]

In each CNN, there are two stages of training process, feed-forward stage and
back-propagation stage. As shown in figure 2.10, CNN consists of 4 blocks:
[17]

1. Convolutional layer:
A process in which feature maps are created (feature extraction occurs)
out of the input data. Then, a function is applied to filter maps.

2. Subsampling:
It is done by taking average or the maximum. It enables the CNN to
detect an image when presented with modification.

3. Flattening:
Flatten the data into an array, so CNN can read it.

4. Fully-connected layer:
The hidden layer where classification occurs. It also calculates the loss
function of the model.

Figure 2.10: CNN architecture

15

• Recurrent Neural Networks:
RNN is designed to recognize sequences and patterns such as speech, hand-
writing, text, and such applications. RNN benefits cyclic connections in the
structure which employ recurrent computations to sequentially process the
input data. [18]
As shown in figure 2.11, RNN is basically a standard neural network that has
been extended across time by having edges which feed into the next time step
instead of into the next layer in the same time step. Each of the previous
inputs data are kept in a state vector in hidden units, and these state vectors
is utilized to compute the outputs. [18]

Figure 2.11: RNN architecture

– Long Short –Term Memory:
LSTM is an RNN method which benefits feedback connections to be
used as a general-purpose computer. This method can be used for both
sequences and patterns recognition and image processing applications.
[18]
In general, LSTM contains three central units, including input, output,
and forget gates. LSTM can control on deciding when to let the input
enter the neuron and to remember what was computed in the previous
time step. One of the main strength of the LSTM method is that it
decides all these based on the current input itself. Down below, figure
2.12 represents the architecture of the LSTM model. [18]

Figure 2.12: LSTM architecture

16

2.4.4 Impact of increasing data size on deep learning

Over the past several years, deep learning has become a very powerful technique
for most of AI type problem, overshadowing classical machine learning. The first
reason of that is that deep learning tries to present a new concept for solving real
problems, which is artificial neural network that tries to simulate how the human
brain works. The second reason is the increased amount of data collected for solving
a problem, and that makes neural networks to achieve a superior performance on
many AI fields including speech recognition.

Figure 2.13: Comparison between ML and DL performance when increasing data

Increasing the amount of data has a good impact on the performance of deep
learning models, especially on large neural networks, which are very deep and have
many parameters, and makes the neural networks more generalized to many cases of
the problem we want to solve (overfitting reduction). There are two ways to increase
the data: collecting new data, which is very challenging process between big AI
companies to improve their models more and more to serve the society. The second
way is adding artificial data (augmented versions) to the dataset, which is cheaper
and some techniques may consume much time for implementation.

There are many techniques to increase data size which will be covered in the
next chapters. They made a great results in increasing the performance of the deep
learning models, which are:

• Data augmentation

• Segmentation

• Semi-supervised learning

• Generative adversarial networks (GANs)

17

Chapter 3

Lane Overtaking

3.1 Carla simulator

Carla is an open-source simulator for autonomous driving research. It supports
development, training and validation of autonomous urban driving systems. It also
provides open digital assets (urban layouts, buildings, vehicles, pedestrians, street
signals, etc) that are used freely.
It is used to study the performance of three approaches to autonomous driving: a
classic modular pipeline, an end-to-end model trained via imitation learning and an
end-to-end model trained via reinforcement learning. [19]

The simulation platform supports flexible setup of sensor suites and provides
signals that can be used to train driving strategies, such as: GPS coordinates, speed,
acceleration, detailed data on collisions and other infractions. A wide range of
environmental conditions can be specified including the weather and the time. [19]
Down below, figure 3.1 illustrates various environmental conditions. It shows a street
in Town 4 in 4 different weather conditions. Clockwisely from top left: clear day,
daytime mid rain, daytime shortly after rain and clear sunset.

Figure 3.1: Sample of various environmental conditions for Town 4

18

Carla has been built for flexibility and realism in the rendering and physics
simulation. It is implemented as an open-source layer over Unreal Engine(UE4). [19]

Carla simulates a dynamic world and provides a simple interface between the
world and an agent that interacts with the world. To support this functionality,
Carla is designed as a server-client system.
The server is responsible for everything related with the simulation itself: sensor
rendering, computation of physics, updates on the world-state and its actors and
much more. As it aims for realistic results, the best fit would be running the server
with a dedicated GPU, especially when dealing with machine learning.
The client API is implemented in python and is responsible for the interaction between
the autonomous agent and the server via sockets. The client sends commands and
meta-commands to the server and receives sensor readings. The commands control
the vehicle including steering, throttling and braking. While the meta-commands
control the behavior of the server. They are used for resetting the simulation,
changing the properties of the environment (weather conditions, density of the
vehicles and pedestrians) and modifying the sensor suite. [19]

Carla allows for flexible configuration of the agent’s sensor suite. Some of these
sensors are RGB camera which acts as a regular camera capturing images from the
scene, Depth camera which provides a view over the scene codifying the distance of
each pixel to the camera (also known as depth buffer or z-buffer) and Semantic
Segmentation camera which classifies every object in the view by displaying it
in a different color according to the object class, for example: pedestrians appear
in a different color than the vehicles. Down below, figure 3.2 illustrates two of
sensing modalities provided by Carla. From left to right: RGB camera and Semantic
Segmentation camera. [20]

Figure 3.2: Two of sensing modalities provided by Carla

There are other sensors such as: Lidar, it simulates a rotating Lidar implemented
using ray-casting, at which the points are computed by adding a laser for each channel
distributed in the vertical field of view, then the rotation is simulated computing the
horizontal angle that the Lidar rotated this frame and doing a ray-cast for each point
that each laser was supposed to generate this frame. Another sensors, Collision
sensor which registers an event each time the actor collisions against something in
the world and Lane Invasion sensor which registers an events each time the actor
crosses a lane marking. [20]

19

3.2 Literature Review

Accidents have spread significantly, either because of the dispersal of drivers doing
something, or external factors resulting from the presence of cars or the appearance
of people. As for the car while driving, Hence, some papers appeared attempting to
solve these problems and reach solutions for how to deal when these problems are
about to happen,as we found in Forward Collision Warning (FCW), the vehicle has
the ability to warn the driver that there is an object in front of the vehicle. The
driver has the responsibility of taking reasonable action. However, in Automatic
Emergency Braking (AEB) the vehicle starts taking action through braking in case
the vehicle comes close to an object in front of it. These actions are taken by the
ego-vehicle based on integrating advanced sensors like Laser, Camera, and Radar.
However, these vehicle’s actions lead to the occurrence of many crashes, in addition
to being a source of congestion because of its poorness[21].

According to this paper[22],we found that they tried to solve the problems that
happened due to the distraction outside the moving vehicle ,as the Crash avoidance
functionality is considered as one of the most important features in self-driving
Cars. Recently, it is partially integrated into the self-driving car system.The path
planning problem is one of the most important problems which autonomous driving
cars face, as it is a safety-critical task, and needs full knowledge of the surrounding
environment. During the last ten years, path planning problem was tackled using
two approaches: multi-stage pipeline, and single-stage approach.The multi-stage
approach decomposes the problem into the following blocks: a) perception which
is responsible for perceiving the surrounding environment, b) trajectory prediction
for the surrounding objects, c) trajectory planning which compute the trajectory
depends on the perception and prediction for the environment, and d) control block
which is responsible for taking the good actions depending on the whole information
which are gathered by the previous block.

Their data collection pipeline consists of three main blocks, The first block is
the waypoints generator which is considered as the most important block in the
data collection phase.Waypoints are generated based on the well-defined map using
CARLA simulator[19], then a postprocessing phase is applied on these waypoints
to act as the traditional ground truth for path planning functionality. The second
block is a PID controller which is composed of proportional, integral and derivative
components which are tuned to achieve a smooth performance for the vehicle motion
following the previously generated waypoints by controlling three vehicle actions:
throttle, steering angle and brake. The third block is the noise generator which
is inspired by CARLA simulator[19],they collected 1500 episodes which contain
440k data frames, each data frame consists of 4 images from the forward camera,
the right camera, the left camera and the backward camera with its corresponding
measurements which consist of throttle, brake, steering percentage and forward
speed.The data is collected covering various and different scenarios, our vehicle is
moving and the other vehicles are static.

20

They used Convolution neural network as a network architecture, and they made a
concatenation between the images ,as a four separated images representation depends
on the camera cocoon vehicle’s installation, it simply takes the four separated images
which are front, right, left, and rear views as input to a DNN.
They used Bird’s eye view projection,as from the four cameras, a bird’s eye view
image is generated ,and their results were satisfied and reached to the least loss
made their model work efficiently .

3.3 Simulation Setup

3.3.1 How data is generated?

• We used Carla simulator 0.9.6 version.

• There are a lot of features for this version, here are some of them:

– changing maps at runtime.
– lane change extension.
– Different towns with many lanes.

• Steps of generating data:

– First, our car is moving using proportional-integral differential con-
trol(PID) and waypoints (we give it waypoint and a speed which is
translated into steer, throttle and brake).
The parameters of PID: [23]

∗ First, a pure gain KP that scales the vehicle acceleration based on
the speed error. This ensures that the vehicle is accelerating in the
correct direction with the magnitude proportional to the error.

∗ Second, in integral term KI sets up the output based on accumulated
past errors. This ensures the steady steed errors are eliminated for
ramp referencing.

∗ Finally, the derivative term KD dampens the overshoot caused by
the integration term.

The values which are used: KP = 0.8, KD = 0.001, KI = 0.1

– At the beginning, we calculate the distances between our car and the
other cars that are in the same lane and in front of our one.

– At a specific limit (6m) it begins to see whether there is a possibility for
lane change or not (according to the street restrictions). If there is a
possibility, it would be right or left or both. If it is less than 5m, it will
stop.

21

– If it is:
∗ Right:
First, we will calculate the distance between the waypoint of the
same location of our car in the right lane and the other cars that
are in the same lane and in front of our one or behind. We get the
minimum distance and its location.

· If the right lane is empty, it will turn right.
· As long as the difference between ours and the nearest car that
is behind is < 3m, it will stop otherwise it will calculate the
minimum distance, if 0 <= the minimum distance < 9m, it will
stop otherwise it will turn right.

∗ Left:
First, we will calculate the distance between the waypoint of the same
location of our car in the left lane and the other cars that are in the
same lane and in front of our one or behind. We get the minimum
distance and its location.

· If the left lane is empty, it will turn left.
· As long as the difference between ours and the nearest car that
is behind is < 3m, it will stop otherwise it will calculate the
minimum distance, if 0 <= the minimum distance < 9m, it will
stop otherwise it will turn left.

∗ Both:
The default will be left. So, we will check the left first.
First, we will calculate the distance between the waypoint of the same
location of our car in the left lane and the other cars that are in the
same lane and in front of our one or behind. We get the minimum
distance and its location.

· If the left lane is empty, it will turn left.
· As long as the difference between ours and the nearest car that
is behind is > 3m and the minimum distance > 9m, it will turn
left.

· If it is not in this range, we will check the right lane. We will
first calculate the distance between the waypoint of the same
location of our car in the right lane and the other cars that are
in the same lane and in front of our one or behind. We get the
minimum distance and its location.
· If the right lane is empty, it will turn right.
· As long as the difference between ours and the nearest car
that is behind is < 3m, it will stop otherwise it will check the
minimum distance, if 0 <= the minimum distance < 9m, it
will stop otherwise it will turn right.

22

3.3.2 Dataset

It is a group of images with 27 labels that had been collected under a some
specific assumptions.

Assumptions:

1. We collect data from highway.

2. Town is divided into sections according to x and y values, as the town is
divided into 8 sections ,every section has it’s own x and y.

3. Other cars are obtained randomly from specific locations.First, we made the
car walk in every section of the town manually .Then, along the car is walking
we get the location (x, y and z points) and save it at an external text folder.
Finally, the cars we installed in the simulator takes random locations from the
text folder that we had.

4. Other cars are static,our car is the only one that walk with a determined steer
, throttle for cases of walking forward and turning whatever right or left ,and
a determined brake equals one for cases of stopping the car.

5. We are using 4 cameras.

• First one is to collect the images from the front view,it’s yaw angle is 0.0
deg and roll angle is 0.0 deg.

• Second one is to collect the images from the right view,it’s yaw angle is
90.0 deg and roll angle is 0.0 deg.

• Third one is to collect the images from the left view,it’s yaw angle is -90.0
deg and roll angle is 0.0 deg.

• Fourth one is to collect the images from the backward view,it’s yaw angle
is 180.0 deg and roll angle is 0.0 deg .

• All cameras are on the top of the car.

23

Dataset and labels :

• Dataset was collected using a 4 cameras to get the RGB images and 4
sensors to get the semantic segmentation images and the FPS is 20 as
shown in the figure 3.3

(a) Camera 1:Front (b) Camera 2:Right

(c) Camera 3:Left (d) Camera 4:Back

(e) Camera 1:Front (f) Camera 2:Right

(g) Camera 3:Left (h) Camera 4:Back

Figure 3.3: The RGB and Semantic images getting from the four cameras

• Dataset is divided into training data ,validation data and test data
(a) Trainin data : 14,313 for RGB and 14,313 for Semantic.
(b) Validation data : 2,362 for RGB and 2,362 for Semantic.
(c) Test data : 2,031 for RGB and 2,031 for Semantic.

24

• During taking the images that express the course of the car, its actions
and the surrounding environment,we collect labels for the four images
were taken by the four cameras in the same instant which include the
location of the car in that instant, it’s throttle, gear, steer, brake, velocity,
rotation, lane invasion, sensor of collision, weather of the town and some
other labels that describe the car and the surrounding environment .

• Total number of labels is 27,as shown in figure 3.4

Figure 3.4: the labels

3.3.3 Preprocessing

• Why Preprocessing ?

– The curse of Dimensionality.
∗ The quantity of training data grows exponentially with the dimension

of the input space.
∗ In practice, we only have limited quantity of input data .

· Increasing the dimensionality of the problem leads to a poor
representation of the mapping.

• Steps:

1. We have a RGB semantic images from four cameras (forward, backward
,left and right) as shown in the figure1 ,there is a little overlapping
between the four cameras ,as FOV for all cameras is “ 110 degree ” .

2. We made a concatenation between every out coming four images from the
four images for each instant to be one image ,as The front image has been
attached to the image on the right, with the image on the left,with the
image at the backward and we made this for RGB ones and the semantic
ones as shown in the figure 3.3 .

25

3. Data balancing :

(a) There are four classes (follow , right ,left and stop):

– Follow : It includes every out coming image as long as the car
is moving forward in the lane without being exposed to any
obstacle.

– Right :It includes every out coming image when the car take
the decision to go right according to the conditions that were
mentioned above.

– Left :It includes every out coming image when the car take the
decision to go left according to the conditions that were mentioned
above.

– Stop :It includes every out coming image when the car take the
decision to stop according to the conditions that were mentioned
above.

(b) Balanced data to have an equal number of samples in each class.

(c) Training data : 14,313 for RGB 14,313 for Semantic each class has
3,578 images.

(d) Validation data : 2,362 for RGB 2,362 for Semantic each class has
591 images.

(e) Test data : 2,031 for RGB 2,031 for Semantic each class has 508
images.

(f) Different cars:

– We collect the data of validation and test with a different cars
from we used during collecting the training data .

– The cars we used (chevorlet,citroen,mini.cooper,dodge,nissan,volks
and mercedes)

4. concatenation :
it aim to concatenate the four images which were being collected from
the four cameras (front,right,left,back) each instant to act as one image
,as shown in figure 3.5 and figure 3.6 .

Figure 3.5: Concatenation of four RGB images in one image

26

Figure 3.6: Concatenation of four Semantic images in one image

5. Augmentation :
It aims to increase data set,seeing different shapes of images that can
be happened at the real life during taking the pictures to collect the
data set as a result human errors such as the images may be shifted or
as a result of climate changes and improving the performance ,as the
machine will see a variation of data shapes. We made an offline augmen-
tation by using imgaug library instead of Keras online data augmentation

– Applying different transformations,as shown in figure 3.7 :

(a) Rotation (small angle) : the image can be rotated with small
angle.

(b) Shear (small angle) : the image can be sheared with small angle
due to some human errors.

(c) Addtion :Add a value to all pixels in an image

(d) Multiplication : Multiply all pixels in an image with a specific
value, thereby making the image darker or brighter

(e) Addative Gaussian Noise :Add noise sampled from gaussian dis-
tributions elementwise to images

(f) Rain

(g) Clouds

– We applied a group of the previous transformations on a group of
data ,as we did not apply each transform on each image.

– After applying augmentation , data set was increased five times the
old data,as it was increased from 14313 to 71565.

27

(a) The original image
(b) The image after applying

addative gaussian noise

(c) The image after applying
Multiplication

(d) The image after applying
addtion

Figure 3.7: Applying some transformations on an image

28

3.4 Materials and Methods

Our problem is a regression problem in which that we have an input image and
the output is that the prediction of car control signals: throttle which is a continuous
value between 0 and 1, steer which is a continuous value between -1 and 1, and
brake which is discrete value 0 or 1. We aim to reduce the loss function given by
this equation 3.1

MSE = 1
n

n∑
i=1

(y − ŷ)2 (3.1)

So we tried more than one approach to minimize loss function to be able to make
the car take the right action. If there is an obstacle in front of it, it will check both;
right lane and left lane in case that our car in the middle lane, if it is in the most
right lane, it will check the left only and if it is in the most left lane; it will check
the right only. According to prediction, it will decide to go left, right or it will stop.
Moreover, if there is no obstacle in front of it, it will go straight. We have mainly
two approaches: CNN and LSTM. With CNN, we have tried different models such
as:

• CNN with RGB based on one image.

• CNN with RGB based on four images.

• CNN with RGB based on one image with augmentation.

• CNN with RGB based on four images with augmentation.

• CNN with Semantic Segmentation based on one image.

• CNN with Semantic Segmentation based on four images.

• CNN with Semantic Segmentation based on one image with augmentation.

• CNN with Semantic Segmentation based on four images with augmentation.

• CNN with Gray Scale based on one image.

• LSTM with Gray Scale based on one image.

3.4.1 First approach:CNN with branching

In this approach, we use CNN as it takes the input frame RGB image, Semantic
Segmentation image, or Gray Scale image and it gives us the output of control signals:
throttle, steer, and brake which makes the vehicle enables to move and takes different
action. The main layers in the architecture are the convolution layer, dropout layer,
batch normalization layer, pooling layer, flatten layer, and fully connected layer as
shown in figure 3.8 and figure 3.10.The detailed CNN architecture shows the total
number of parameters and the output shape of each layer as shown in table 3.1.

29

We will start to talk about the function of each layer and how it helps us to get our
target output.

• Convolution layer : Convolution layer: This layer is used to extract features
from a source image. Our source image here is (224,224,3) in the case of
RGB image and Semantic Segmentation image and (224,224,4) in the case
of Gray Scale image; we will discuss this in details later. Convolution helps
with blurring, sharpen, edge detection, or other operations that can help the
machine to learn.

• Drop-out layer:This layer is a technique used to prevent a model from over-
fitting.We use dropout here of 0.1 with convolution layers and 0.5 with dense
layer as shown in figure 3.8 and table 3.1.

• Batch Normalization layer: This layer to improve speed and performance.

• Pooling layer: This layer reduces the image dimensionality without losing
important features.

• Flatten layer: This layer is that layer where all the inputs from one layer are
connected to every activation unit of the next layer. In most popular machine
learning models, the last few layers are full connected layers that compile the
data extracted by previous layers to form the final output. Here we have more
than one activation function because of the different value range of throttle,
steer and brake so that the idea of the branching model comes from here and
also the general reason to use activation function is that activation function is
a function that is added into an artificial neural network to help the network
learn complex patterns in the data.

– Branch A : Sigmoid function in which the input to the function is trans-
formed into a value between 0 and 1 which is suitable for throttle values’
range from 0 to 1 as shown in figure 3.9.

– Branch B : Tanh function in which the input to the function is transformed
into a value between -1 and 1 which is suitable for steer values’ range
from -1 to 1 as shown in figure 3.9.

– Branch C : Sigmoid function like Branch A and it is suitable for brake
values’ range from 0 to 1 as shown in figure 3.9.

– Concatenate : This is used to concatenate the three branches A, B, and
C to be the output of CNN.

– Optimizer : We use Adam optimizer here which is used to change the
attributes of neural network such as weights and learning rate to reduce
losses and get results faster. The main idea of learning rate is that it
controls how quality the model is adapted to the problem and in our case
we use the learning rate of 0.001.
For semantic segmentation the input is also (224,224,3), the model takes
the input as RGB and classifies every object in the view by displaying
it in a different color according to the object class, for example, trees
appear in a different color than a vehicle. This is the idea of semantic
segmentation as mention in the previous sections.

30

Figure 3.8: CNN architecture using branching

Figure 3.9: Graph to show the difference between Sigmoid and Tanh activation function

Table 3.1: Detailed CNN architecture using branching

Layer Output Shape Number Of Parameters
Input Layer (224,224,3) 0

Convolution_1 (222,222,32) 896
Spatial_Dropout_1 (222,222,32) 0

Batch_Normalization_1 (222,222,32) 128
Max_Pooling_1 (111,111,32) 0
Convolution_2 (109,109,64) 18496

Spatial_Dropout_2 (109,109,64) 0
Batch_Normalization_2 (109,109,64) 256

Max_Pooling_2 (54,54,64) 0
Convolution_3 (52,52,128) 73856

Spatial_Dropout_3 (52,52,128) 0
Batch_Normalization_3 (52,52,128) 512

Max_Pooling_3 (26,26,128) 0
Flatten 86528 0
Dense_1 128 11075712

Batch_Normalization_4 128 512
Dropout_4 128 0
Dense_2 1 129
Dense_3 1 129
Dense_4 1 129

Concatenate 3 0
31

Figure 3.10: CNN architecture using branching flowchart

32

For GrayScale, the input to CNN is (224,224,4) as the idea is to convert the RGB
image to grayscale and take the current film and last three frames in the past so the
total number of channels becomes four which help the model to predict the output
control signals depend on the current and past frames as shown in figure 3.11 and
the detailed architecture of CNN with gray scale as shown in table 3.2.

Figure 3.11: Temporal information in CNN input (Past)

Table 3.2: Detailed CNN architecture using branching Gray Scale

Layer Output Shape Number Of Parameters
Input Layer (224,224,4) 0

Convolution_1 (222,222,32) 1184
Spatial_Dropout_1 (222,222,32) 0

Batch_Normalization_1 (222,222,32) 128
Max_Pooling_1 (111,111,32) 0
Convolution_2 (109,109,64) 18496

Spatial_Dropout_2 (109,109,64) 0
Batch_Normalization_2 (109,109,64) 256

Max_Pooling_2 (54,54,64) 0
Convolution_3 (52,52,128) 73856

Spatial_Dropout_3 (52,52,128) 0
Batch_Normalization_3 (52,52,128) 512

Max_Pooling_3 (26,26,128) 0
Flatten 86528 0
Dense_1 128 11075712

Batch_Normalization_4 128 512
Dropout_4 128 0
Dense_2 1 129
Dense_3 1 129
Dense_4 1 129

Concatenate 3 0

33

3.4.2 Second Approach : LSTM with branching

The main idea of LSTM that it has feedback connections. Here we have input
shape of (4,224,224,1) the current frame and the last three past frames so the total
number of frames becomes four all of them are grayscale and the one refers to the
time dimension as shown in figure 3.12. The architecture is the same in the case of
CNN, the difference is there is no Drop-out layer and Pooling layer. We use here the
global average pooling layer instead of the flatten layer as shown in table 3.3 and
figure 3.13. It still has the same function. The difference between flatten and global
average pooling is that flatten will take a tensor of any shape and transform it into a
one dimensional but keeping all values in the tensor and for global average pooling,
it applies average pooling on the spatial dimensions until each spatial dimension is
one, and leaves other dimensions unchanged.

Figure 3.12: Sequence prediction using LSTM

Table 3.3: Detailed LSTM architecture using branching Gray Scale

Layer Output Shape Number Of Parameters
Input Layer (4,224,224,1) 0

Convolution_1 (4,224,224,16) 9856
Batch_Normalization_1 (4,224,222,16) 64

Convolution_2 (4,224,244,32) 55424
Batch_Normalization_2 (4,224,224,32) 128

Convolution_3 (4,224,224,64) 221440
Batch_Normalization_3 (4,224,224,64) 256
Global_Average_Pooling (1,64) 0

Dense_1 128 8320
Batch_Normalization_4 128 512

Dropout_4 128 0
Dense_2 1 129
Dense_3 1 129
Dense_4 1 129

Concatenate 3 0

34

Figure 3.13: LSTM architecture using branching flowchart

35

3.5 Results and Discussion

We have a loss of throttle, steer, and break for training, validation, and test. We
calculate them by equation 3.1. After that we get the training, validation, and test
loss by taking the average of the throttle, steer, and break loss. According to this
loss, we can compare among different architecture to get the least loss as we will
show in this section.
We have also calculated the total number of parameters and inference time which is
the process of using a trained machine-learning algorithm to make predictions.
We have tried the following architecture in case of one image from the front camera
and case of four images from the front, back, right and left side cameras. Moreover,
we have tried each of this architecture with and without augmentation.

3.5.1 First Approach:CNN with branching

3.5.1.1 Regression Model using branching RGB one image

We got the results of loss in throttle,steer and brake for one image RGB as shown
in table 3.4 and after we applied the augmentation on Data-set for RGB one image,
the results had been improved as shown in table 3.5.

Table 3.4: Results of Regression Model using branching RGB one image

Training loss 0.043
Training throttle loss 0.097
Training steer loss 0.022
Training brake loss 0.01
Validation loss 0.118

Validation throttle loss 0.177
Validation steer loss 0.055
Validation brake loss 0.122

Test Loss 0.072
Test throttle loss 0.151
Test steer loss 0.023
Test brake loss 0.042

• Number of parameters : 11.2 M

• Model size: 127.92 MB

• Inference Time

• GPU : Tesla T4

36

Table 3.5: Results of Regression Model using branching RGB one image with
augmentation

Training loss 0.039
Training throttle loss 0.092
Training steer loss 0.019
Training brake loss 0.006
Validation loss 0.11

Validation throttle loss 0.162
Validation steer loss 0.051
Validation brake loss 0.117

Test Loss 0.064
Test throttle loss 0.138
Test steer loss 0.018
Test brake loss 0.036

• Number of parameters : 11.2 M -

• Model size: 127.92 MB

• Inference Time : 1 ms

• GPU : Tesla T4

3.5.1.2 Regression Model using branching RGB Four images

Here,We got the results of loss in throttle,steer and brake for four images RGB
as shown in table 3.6 and after we applied the augmentation on Data-set for RGB
four images, the results had been improved as shown in table 3.7.

Table 3.6: Results of Regression Model using branching RGB Four images

Training loss 0.051
Training throttle loss 0.105
Training steer loss 0.030
Training brake loss 0.017
Validation loss 0.099

Validation throttle loss 0.164
Validation steer loss 0.063
Validation brake loss 0.069

Test Loss 0.070
Test throttle loss 0.145
Test steer loss 0.031
Test brake loss 0.036

37

• Number of parameters : 11.2 M

• Model size: 127.92 MB

• Inference Time : 0.001456 sec

• GPU : Tesla T4

Table 3.7: Results of Regression Model using branching RGB Four images with
augmentation

Training loss 0.034
Training throttle loss 0.079
Training steer loss 0.018
Training brake loss 0.004
Validation loss 0.078

Validation throttle loss 0.151
Validation steer loss 0.043
Validation brake loss 0.039

Test Loss 0.068
Test throttle loss 0.142
Test steer loss 0.015
Test brake loss 0.045

• Number of parameters : 11.2 M

• Model size: 127.92 MB

• Inference Time : 0.001417 sec

• GPU : Tesla T4

3.5.1.3 Regression Model using branching Semantic Segmentation one
image

Here, We got the results of loss in throttle,steer and brake for one image Semantic
Segmentation as shown in table 3.8 and after we applied the augmentation on Data-
set for Semantic Segmentation one image, the results had been improved as shown
in table 3.9.

38

Table 3.8: Results of Regression Model using branching Semantic Segmentation One image

Training loss 0.0399
Training throttle loss 0.0849
Training steer loss 0.02336
Training brake loss 0.01134
Validation loss 0.1143

Validation throttle loss 0.1709
Validation steer loss 0.06126
Validation brake loss 0.1109

Test Loss 0.071307
Test throttle loss 0.14177
Test steer loss 0.0414
Test brake loss 0.031

• Number of parameters : 11.2 M

• Model size: 127.92 MB

• Inference Time : 0.0014 sec

• GPU : Tesla T4

Table 3.9: Results of Regression Model using branching Semantic Segmentation One
image with augmentation

Training loss 0.0156
Training throttle loss 0.0383
Training steer loss 0.00746
Training brake loss 0.00122
Validation loss 0.1016

Validation throttle loss 0.17706
Validation steer loss 0.04556
Validation brake loss 0.08219

Test Loss 0.0738
Test throttle loss 0.1689
Test steer loss 0.0285
Test brake loss 0.024

• Number of parameters : 11.2 M

• Model size: 127.92 MB

• Inference Time : 0.0013 sec

• GPU : Tesla T4

39

3.5.1.4 Regression Model using branching Semantic Segmentation Four
images

Here,We got the results of loss in throttle,steer and brake for four images Semantic
Segmentation as shown in table 3.10 and after we applied the augmentation on
Data-set for Semantic Segmentation four images, the results had been improved as
shown in table 3.11.

Table 3.10: Results of Regression Model using branching Semantic Segmentation Four
images

Training loss 0.0350
Training throttle loss 0.0781
Training steer loss 0.0215
Training brake loss 0.0055
Validation loss 0.0979

Validation throttle loss 0.1573
Validation steer loss 0.0579
Validation brake loss 0.0783

Test Loss 0.0648
Test throttle loss 0.1431
Test steer loss 0.0301
Test brake loss 0.0212

• Number of parameters : 11.2 M

• Model size: 127.92 MB

• Inference Time : 0.00145045 sec

• GPU : Tesla T4

Table 3.11: Results of Regression Model using branching Semantic Segmentation Four
images with augmentation

Training loss 0.0356
Training throttle loss 0.0810
Training steer loss 0.0189
Training brake loss 0.0068
Validation loss 0.0823

Validation throttle loss 0.1512
Validation steer loss 0.0508
Validation brake loss 0.0447

Test Loss 0.0598
Test throttle loss 0.1362
Test steer loss 0.0233
Test brake loss 0.0200

40

• Number of parameters : 11.2 M

• Model size: 127.92 MB

• Inference Time : 0.002448 sec

• GPU : Tesla K80

3.5.1.5 Regression Model using branching Gray Scale One image

Here,We got the results of loss in throttle,steer and brake for one image Gray
Scale using time dimension as shown in table 3.12.

Table 3.12: Results of Regression Model using branching Gray Scale One image

Training loss 0.036
Training throttle loss 0.092
Training steer loss 0.011
Training brake loss 0.005
Validation loss 0.091

Validation throttle loss 0.256
Validation steer loss 0.014
Validation brake loss 0.003

Test Loss 0.038
Test throttle loss 0.097
Test steer loss 0.014
Test brake loss 0.004

• Number of parameters : 11.2 M

• Model size: 127.92 MB

• Inference Time : 0.000294 sec

• GPU : Tesla P100-PCIE-16GB

41

3.5.2 Second Approach:LSTM with branching

3.5.2.1 Regression Model using branching Gray Scale one image

Here, We got the results of loss in throttle,steer and brake for one image Gray
Scale using time dimension as shown in table 3.13.

Table 3.13: Results of Regression Model using branching Gray Scale One image

Training loss 0.228
Training throttle loss 0.437
Training steer loss 0.217
Training brake loss 0.031
Validation loss 0.217

Validation throttle loss 0.405
Validation steer loss 0.232
Validation brake loss 0.014

Test Loss 0.216
Test throttle loss 0.414
Test steer loss 0.218
Test brake loss 0.017

• Number of parameters : 296,387

• Model size: 3.47 MB

• Inference Time : 0.028789 sec

• GPU : Tesla P100-PCIE-16GB

As we show in the previous tables the different results, after that we have tried
each of these models on the Carla simulator. For RGB the results were not efficient
enough to enable the vehicle to take the right action.
Semantic Segmentation with augmentation based on one image gives us the best
results which make the vehicle to behave right while the four images did not give
the best results as expected because the way of concatenation was not the best way
to concatenate four images as the size of each image after concatenation becomes
224*896 and we resized it to become 224*224 to be ready as input for CNN so
the image became unclear which makes the model was not enable to make a good
prediction.
For CNN with Gray Scale,the results were better than the Semantic Segmentation
but it did not work well in the Carla simulator.
LSTM was very slow in training and in the simulator.
At the end, we choose to work with CNN Semantic Segmentation based on one
image with augmentation.

42

Chapter 4

Distraction Detection

In this chapter, a real-time driver distraction detection system is introduced.
The system is built in an end-to-end approach, in which a single neural network
infers whether the driver is in a safe-driving or a distracted state, and what kind
of a distracted state is the driver in. The input to the neural network is an image
captured by a camera mounted on the top right side of the driver. This end-to-
end approach has the advantage of being more computationally efficient than a
multi-stage system in which the classification process is based on multiple blocks
combined together to form the final prediction. Different CNNs have been trained
and tested for their classification performance on the used dataset. The trained
CNNs include VGG16, ResNet50, InceptionV3, Xception, MobileNet and DenseNet.
After the training process, model optimization and hardware acceleration algorithms
as quantization and pruning are applied on the best performing model in order
to compress and accelerate the neural network for hardware deployment. Model
visualization is discussed, which is an essential part in the assessment of the model
generalization on new unseen data.

Moreover, an end-to-end semantic segmentation system for hands and face is
proposed. The system is built using only UNET for the segmentation process, which
shows a satisfactory inference time, enabling the system to operate in a real-time
environment.

4.1 Literature Review

Driver distraction is a serious problem that leads to the loss many lives. This
section presents the related work in the field of distraction detection using Machine
Learning and Deep Learning approaches, where various distraction detection systems
have been proposed in order to limit the number of accidents that occur due to
driver distraction.

[24] introduced a distracted driving dataset with with a side view of the driver.
The distraction classes included in the dataset are: talking on a cellular phone, eating
a cake, grasping the steering wheel and operating the shift lever. The proposed
distraction detection system is based on a contourlet transform for feature extraction

43

and random forest as a classifier with a classification accuracy of 90.5%. [25]
demonstrates that a multiwavelet transform improves the accuracy of the multi-layer
perceptron classifier to 90.61%, which was previously reported to be 37.06% in
[24]. [26] shows that using a support vector machine (SVM) with an intersection
kernel, followed by a radial basis function (RBF) kernel achieves classification
accuracies of 92.81% and 94.25%, respectively, in comparison with [24] and [25].
[27] proposes a convolutional neural network (CNN) solution with a classification
accuracy of 99.78% on the Southeast University Distracted Driver Dataset [24].
The introduced distraction detection system uses pre-trained sparse filters as the
first convolution layer parameters, followed by fine tuning the network on the
actual dataset. [28] proposes a deep learning-based solution that consists of a
genetically weighted ensemble of convolutional neural networks. The proposed
system achieves a classification accuracy of 90% using 5 AlexNet and 5 InceptionV3
networks. Additionally, a thinned version of the system that operates in a real-time
environment on a CPU-based system is proposed using two NasNetMobile networks
with a classification accuracy of 84.64%. [29] collected a driver distraction detection
dataset using a developed assisted-driving test bed. The proposed distraction
detection system is based on a GoogleNet model which achieves an accuracy of 89%
and operates at a frequency of 11 Hz on a Jetson TX1 embedded computer board.

4.2 Simulation Setup

In this section, the datasets used to train the deep learning models are discussed.
Additionally, preprocessing techniques applied on the datasets as a preparation to
the training process are demonstrated.

4.2.1 Dataset

Two datasets are used in this work. The first dataset is the AUC Distracted
Driver Dataset [30] [31], while the second dataset is the State Farm Distracted Driver
Detection Dataset [32]. Both datasets contain images for distracted drivers with
10 different classes. Figure 4.2 and 4.1 show the 10 different classes from the AUC
and State Farm datasets, respectively. Table 4.1 and 4.2 demonstrate the dataset
distribution for both AUC and State Farm datasets, respectively.

44

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Figure 4.1: AUC Distracted Driver Dataset. (a) Safe driving (b) Texting - right (c)
Talking on the phone - right (d) Texting - left (e) Talking on the phone - left (f)

Operating the radio (g) Drinking (h) Reaching behind (i) Hair and makeup (j) Talking to
a passenger.

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Figure 4.2: State Farm Distracted Driver Detection Dataset. (a) Safe driving (b) Texting -
right (c) Talking on the phone - right (d) Texting - left (e) Talking on the phone - left (f)
Operating the radio (g) Drinking (h) Reaching behind (i) Hair and makeup (j) Talking to

a passenger.

Table 4.1: AUC dataset distribution

Dataset Number of samples
Train 10555

Validation 1123
Total 11678

Table 4.2: State Farm dataset distribution

Dataset Number of samples
Train 18732

Validation 3692
Test 79726
Total 102150

45

4.2.2 Preprocessing

4.2.2.1 Unique Drivers Problem

The problem of unique drivers is crucial to inspect in order to achieve a degree
of satisfactory model generalization. When splitting the State Farm dataset into
training and validation sets, the splitting is carried out so that no driver in the
training set appears in the validation set and vice versa. This ensures that the
validation results reflect the performance of the model on new unseen drivers. If
some drivers in the validation set appear in the training set, the validation set results
will not be a proper evaluation metric to assess model generalization, as the training
and validation sets will be highly correlated. The AUC dataset is split into training
and validation sets based on unique drivers, so this preprocessing step is performed
only on State Farm dataset, by selecting some drivers for the validation set and
excluding them from the training set.

4.2.2.2 Augmentation

The purpose of augmentation is to increase the number of samples in the dataset
and introduce artificial alterations in the original images that the trained model
may encounter in the future after training, which in turn increases the possibility of
generalization. In order to augment the training set, the following transformations
are applied on every image:

• Rotation and Shear

• Motion Blur

• Cropping

• Additive Gaussian Noise

• Addition

• Multiplication

46

Figure 4.3: Original sample from the AUC dataset. The class of image is talking on the
phone - right

(a) (b)

(c)

(d) (e)

(f)

Figure 4.4: Augmented images. (a) Rotation and Shear (b) Cropping (c) Blur (d)
Multiplication (e) Additive Gaussian Noise (F) Addition

47

4.3 Materials and Methods

4.3.1 End-to-End Classification System

Different experiments have been carried out in order to determine the best
architecture and approach for classification. The first experiments are performed on
the State Farm dataset only, while in the second experiment, the AUC and State
Farm datasets have been merged into a larger dataset. Adding the two datasets
together shows a better classification performance and generalization, due to the
variance in the lighting conditions, recording cameras and drivers. The experiments
are performed by utilizing Google Colaboratory resources, which are Nvidia Tesla
P100-PCIE-16GB GPU, Intel R© Xeon R© CPU @ 2.20 GHz, and 25GB RAM.

The experiments including only the State Farm dataset are carried out using
two approaches. In the first approach, a custom CNN has been built and trained
from scratch. Different architectures have been tested for their generalization after
training. Figure [ref] shows the best performing CNN architecture. The architecture
consists of four convolutional blocks, each block consists of three layers: convolutional
layer, spatial dropout layer and a max-pooling layer. The number of filters of the
convolutional layers increases as the network depth increases, it starts by 64 filters
in the first layer and ends by 256 filters in the the third and fourth layers. A
flattening layer lies after the last convolutional block, followed by a fully connected
layer of 1024 neurons. A last fully connected layer of 10 neurons is added for
classification. Dropout layers are introduced between the flattening layer and the
first fully connected layer, and between the two fully connected layers to avoid
overfitting. The total number of model parameters is 2.1M.

Figure 4.5: Custom CNN architecture

48

The second approach is based on Transfer Learning. Various pre-trained CNNs
on the ImageNet dataset have been trained on the State Farm dataset. The CNNs
used in the experiment are VGG16, ResNet50, InceptionV3, Xception, MobileNet
and DenseNet. The last fully connected layers in the CNNs have been removed
and replaced by new fully connected layers with randomly initialized weights. The
training process is performed using ImageNet pre-trained weights as an initialization,
then the whole network is trained without freezing the weights of any convolutional
layer, which shows better results than keeping certain weights unchanged. The
results of the two approaches are discussed in section 4.4. The Transfer Learning
based experiment shows that ResNet50 outperforms other pre-trained CNNs used in
the experiment. Consequently, section 4.3.1.1 discusses the architecture of ResNet50.
An ensemble between all the trained CNNs is performed by calculating the average
of the predicted probabilities by all the models for each class on every sample of the
dataset. The advantage of the ensemble approach is that it improves the classification
accuracy on the validation and test sets, on the other hand, it is computationally
expensive due to the existence of six models contributing to the final prediction,
leading to more memory usage and greater inference time.

4.3.1.1 ResNet50

Residual Networks is a type of neural networks proposed in [33] that is used for
various computer vision tasks. This networks is the winner of ImageNet challenge in
2015. ResNet introduces the idea of skip connections which helps in training deep
neural networks by preventing the problem of vanishing gradient descent. ResNet50
is a version of the ResNet architecture.

Figure 4.6 demonstrates the idea of the skip connection introduced in ResNet.
The illustration on the left shows multiple stacked convolution layers, while the
illustration on the right shows the same stacked convolution layers but with the
original input added to the output of the convolutional block.

Figure 4.6: Skip connection image from DeepLearning.AI

The ResNet50 architecture consists of 5 stages each with a convolution and
an identity block as shown in figure 4.7. Each convolutional block consists of 3
convolutional layers, and each identity block also consists of 3 convolutional layers.
The ResNet50 architecture has around 23 million trainable parameters.

49

Figure 4.7: ResNet50 architecture

4.3.2 Face and Hands Semantic Segmentation

4.3.2.1 Image Segmentation

How does image segmentation work?

We can divide or partition the image into various parts called segments. It’s not
a great idea to process the entire image at the same time as there will be regions
in the image which do not contain any information. By dividing the image into
segments, we can make use of the important segments for processing the image.
That, in a nutshell, is how image segmentation works.

An image is a collection or set of different pixels. We group together the pixels
that have similar attributes using image segmentation.

Figure 4.8: Image localization and segmentation

50

The different types of image segmentation:

We can broadly divide image segmentation techniques into two types. Consider
the below images:

Figure 4.9: Semantic segmentation of the left, instance segmentation on the right

In image 1, every pixel belongs to a particular class (either background or
person). Also, all the pixels belonging to a particular class are represented by the
same color (background as black and person as pink). This is an example of semantic
segmentation.

Image 2 has also assigned a particular class to each pixel of the image. However,
different objects of the same class have different colors (Person 1 as red, Person 2 as
green, background as black, etc.). This is an example of instance segmentation.

4.3.2.2 Region-based Segmentation

One simple way to segment different objects could be to use their pixel values.
An important point to note is that the pixel values will be different for the objects
and the image’s background if there’s a sharp contrast between them.

In this case, we can set a threshold value. The pixel values falling below or above
that threshold can be classified accordingly (as an object or the background). This
technique is known as Threshold Segmentation.

51

4.3.2.3 Edge Detection Segmentation

What divides two objects in an image? There is always an edge between two
adjacent regions with different grayscale values (pixel values). The edges can be
considered as the discontinuous local features of an image.

We can make use of this discontinuity to detect edges and hence define a boundary
of the object. This helps us in detecting the shapes of multiple objects present in a
given image. Now the question is how can we detect these edges? This is where we
can make use of filters and convolutions.

Here’s the step-by-step process of how this works:

- Take the weight matrix
- Put it on top of the image
- Perform element-wise multiplication and get the output
- Move the weight matrix as per the stride chosen
- Convolve until all the pixels of the input are used

4.3.2.4 Image Segmentation Based on Clustering

Clustering is the task of dividing the population (data points) into a number of
groups, such that data points in the same groups are more similar to other data
points in that same group than those in other groups. These groups are known as
clusters.

One of the most commonly used clustering algorithms is k-means. Here, the k
represents the number of clusters (not to be confused with k-nearest neighbor).

How k-means works?

1. First, randomly select k initial clusters.

2. Randomly assign each data point to any one of the k clusters.

3. Calculate the centers of these clusters.

4. Calculate the distance of all the points from the center of each cluster.

5. Depending on this distance, the points are reassigned to the nearest cluster.

6. Calculate the center of the newly formed clusters. Finally, repeat steps (4),
(5) and (6) until either the center of the clusters does not change or we reach
the set number of iterations.

52

4.3.2.5 Mask R-CNN

Mask R-CNN is an extension of the popular Faster R-CNN object detection
architecture. Mask R-CNN adds a branch to the already existing Faster R-CNN
outputs. The Faster R-CNN method generates two things for each object in the
image:

1. Its class.

2. The bounding boxes coordinates.

Mask R-CNN adds a third branch to this which outputs the object mask as well.
An intuition of how Mask R-CNN works on the inside:

Figure 4.10: Mask R-CNN

1. We take an image as input and pass it to the ConvNet, which returns the
feature map for that image.

2. Region proposal network (RPN) is applied on these feature maps,This returns
the object proposals along with their objectness score.

3. RoI pooling layer is applied on these proposals to bring down all the proposals
to the same size.

4. the proposals are passed to a fully connected layer to classify and output the
bounding boxes for objects. It also returns the mask for each proposal.

53

Table 4.3: A comparison between algorithms

Algorithm Description Advantages Limitations

Region Based Seg-
mentation

Separates the ob-
jects into differ-
ent regions based
on some threshold
value(s).

a. Simple calcu-
lations b. Fast
operation speed c.
When the object
and background
have high con-
trast, this method
performs really
well

When there is
no significant
grayscale dif-
ference or an
overlap of the
grayscale pixel
values, it becomes
very difficult to get
accurate segments.

Edge Detection
Segmentation

Makes use of
discontinuous
local features of
an image to detect
edges and hence
define a boundary
of the object.

It is good for im-
ages having better
contrast between
objects.

Not suitable when
there are too many
edges in the im-
age and if there
is less contrast be-
tween objects.

Segmentation
based on Cluster-
ing

Divides the pixels
of the image into
homogeneous clus-
ters.

Works really well
on small datasets
and generates ex-
cellent clusters.

a. Computation
time is too large
and expensive.
b. k-means is a
distance-based al-
gorithm. It is not
suitable for clus-
tering non-convex
clusters.

Mask R-CNN

Gives three out-
puts for each ob-
ject in the image:
its class, bound-
ing box coordi-
nates, and object
mask

a. Simple, flexi-
ble and general ap-
proach. b. It
is also the cur-
rent state-of-the-
art for image seg-
mentation.

High training
time.

4.3.2.6 Image Segmentation using Fully Convolutional Networks

1. From Image Classification to Semantic Segmentation

In classification, conventionally, an input image is downsized and goes through
the convolution layers and fully connected (FC) layers, and output one predicted
label for the input image, as follows:

54

Figure 4.11: Image classification using CNN

Imagine we turn the FC layers into 1x1 convolutional layers:

Figure 4.12: From image classification to semantic segmentation

And if the image is not downsized, the output will not be a single
label. Instead, the output has a size smaller than the input image
(due to the max pooling):

Figure 4.13: Feature map/Filter number along layers

55

Figure 4.15: Feature map/Filter number along layers

If we upsample the output above, then we can calculate the pixel-
wise output (label map) as below:

Figure 4.14: Feature maps

2. Upsampling Via Deconvolution

Convolution is a process getting the output size smaller. Thus, the name,
deconvolution, is coming from when we want to have upsampling to get the
output size larger. (But the name, deconvolution, is misinterpreted as reverse
process of convolution, but it is not.) And it is also called, up convolution,
and transposed convolution. And it is also called fractional stride convolution
when fractional stride is used.

3. Fusing the Output

After going through conv7 as below, the output size is small, then 32 upsampling
is done to make the output have the same size of input image. But it also
makes the output label map rough. And it is called FCN-32s:

56

Figure 4.17: Fusing for FCN-16s and FCN-8s

Figure 4.16: FCN-32s

This is because, deep features can be obtained when going deeper, spatial
location information is also lost when going deeper. That means output from
shallower layers have more location information. If we combine both, we can
enhance the result.

To combine, we fuse the output (by element-wise addition): FCN-16s: The
output from pool5 is 2 upsampled and fuse with pool4 and perform 16 upsam-
pling. Similar operations for FCN-8s as in the figure above.

57

Figure 4.18: Comparison with different FCNs

FCN-32s result is very rough due to loss of location information while FCN-8s
has the best result.

This fusing operation actually is just like the boosting / ensemble technique
used in AlexNet, VGGNet, and GoogLeNet, where they add the results by
multiple model to make the prediction more accurate. But in this case, it is
done for each pixel, and they are added from the results of different layers
within a model.

4. Results

Figure 4.19: Pascal VOC 2011 dataset (Left), NYUDv2 Dataset (Middle), SIFT Flow
Dataset (Right)

• FCN-8s is the best in Pascal VOC 2011.

• FCN-16s is the best in NYUDv2.

• FCN-16s is the best in SIFT Flow.

58

Figure 4.20: Visualized results.

4.3.2.7 U-Net

UNet, evolved from the traditional convolutional neural network, was first de-
signed and applied in 2015 to process biomedical images. As a general convolutional
neural network focuses its task on image classification, where input is an image and
output is one label, but in biomedical cases, it requires us not only to distinguish
whether there is a disease, but also to localise the area of abnormality.

UNet is dedicated to solving this problem. The reason it is able to localise and
distinguish borders is by doing classification on every pixel, so the input and output
share the same size.

The network has basic foundation looks like figure 4.21:

59

Figure 4.21: U-Net architecture

The architecture is symmetric and consists of two major parts — the left part is
called contracting path, which is constituted by the general convolutional process;
the right part is expansive path, which is constituted by transposed 2d convolutional
layers.

We needed a data set for the U-NET approach, to train the model, so we had to
manually annotate 2250 images for training and keeping 200 images for validation,
here are some examples of the manually annotated data from both the state farm
and AUC data set.

Figure 4.22: An example from the state farm data set

60

Figure 4.23: An example from the state farm data set

Figure 4.24: An example from the AUC data set

Figure 4.25: An example from the AUC data set

61

4.4 Results and Discussion

4.4.1 End-to-End Classification System

In this section, the results of each classification experiment are discussed. The
first experiments are carried out using the State Farm dataset, while the second
experiments are performed using both the AUC and State Farm datasets. Model
optimization and hardware acceleration techniques are demonstrated. Moreover,
saliency maps of the model predictions are illustrated in order to clarify the degree
of generalization.

4.4.1.1 State Farm Dataset

The experiments based on the State Farm dataset are performed using both the
custom CNN and pre-trained models discussed in section 4.3.1. Table 4.4 shows
the training and validation accuracy and loss using the custom CNN, which are
the best results achieved by training a CNN from scratch. It has been observed
that transfer learning facilitates the training process and improves the ability of the
CNNs to generalize on the problem of distraction detection. Table 4.5 demonstrates
the validation accuracy and loss for different pre-trained CNNs after training on
State Farm dataset, as well as the results of the ensemble between all the CNNs.
ResNet50 outperforms other CNNs with a validation accuracy and loss of 88.4% and
0.38, respectively. The ensemble improves the validation accuracy and loss to 90.2%
and 0.31, respectively, however, this approach leads to high memory usage, and it is
more difficult to be deployed in a real-time environment.

Table 4.4: Training and validation accuracy and loss on State Farm dataset for the
custom CNN

Metric Train Validation
Accuracy 86% 78%

Loss 0.4 0.8

Table 4.5: Validation accuracy and loss on State Farm dataset for different CNNs using
Transfer Learning

Model Validation Accuracy Validation Loss
ResNet50 88.4% 0.38
VGG16 84.8% 0.48

InceptionV3 85% 0.5
Xception 85.8% 0.45
MobileNet 85.8% 0.54
DenseNet 85.8% 0.47

Ensemble of classifiers 90.2% 0.31

62

4.4.1.2 AUC and State Farm Datasets

After testing the ResNet50 model trained on the State Farm dataset on the
AUC dataset, classification accuracy has been calculated to be 33%. This result
illustrates the inability to generalize to new cases, as the AUC dataset includes
different recording cameras, lighting conditions and drivers. Hence, the two datasets
are combined to form a larger dataset, with more variance in lighting conditions
and drivers than any of the two datasets separately. After training the ResNet50
model on the new formed dataset without augmentation, the classification accuracy
and loss have been observed to be 90.4% and 0.34 respectively, which is close to the
results obtained by the ensemble approach on the State Farm dataset only. After
applying augmentation on the new dataset, the classification accuracy and loss
have been improved to 92.5% and 0.26, respectively. By fine tuning the learning
rate and dropout percentage, the classification accuracy and loss have been further
improved to 94.3% and 0.25, respectively. Table 4.6 demonstrates the proposed real-
time distraction detection system specifications. Figure 4.26 shows the normalized
confusion matrix for the validation set. Most of the samples in the validation set
are classified correctly, with some confusion between hair and makeup and drinking,
and between talking to a passenger and safe driving classes. The model predicted
the hair and makeup class samples accurately with an accuracy of 81%, with 9%
misclassification from the drinking class. Regarding the talking to a passenger class,
78% of the samples are classified correctly, with 14% misclassification from the safe
driving class.

Table 4.6: Proposed System Specifications

Model ResNet50
Validation Accuracy 94.3%

Validation Loss 0.25%
Test Loss 0.247

Number of Parameters 23.5 M
Model Size 90 MB

Inference Time (GPU) 8 ms
Inference Time (CPU) 160 ms

63

Figure 4.26: Normalized confusion matrix for the validation set

4.4.1.3 Model Optimization and Hardware Acceleration

Model optimization is an essential step in order to compress the trained model for
an efficient deployment on hardware. The optimization process results in accelerating
the forward propagation when inferring an input, which leads to less inference time,
and more classified frames per second (FPS). Two optimization techniques are
performed in this work, which are pruning and quantization.

The idea of pruning is to zero out the weights with the least contribution in
the classification accuracy, keeping the reduction in the accuracy as low as possible.
Weight pruning is performed using different criteria, such as L1 structured, L2
structured, L1 unstructured and L2 unstructured. L1 unstructured criterion is used
in this work. The L1 unstructured criterion zeroes out the weights with the least L1
norm in different layers of the network. The L1 unstructured criterion is performed
on every convolutional and linear layer in the CNN, with varying the amount of
weights to be pruned in every layer. Figure 4.27 and 4.28 show the effect of changing
the amount of pruning of the convolutional layers weights on the validation accuracy
and loss, respectively. Figure 4.29 and 4.30 show the effect of changing the amount of
pruning of the linear layers weights on the validation accuracy and loss, respectively.
Figure 4.31 and 4.32 show the effect of changing the amount of pruning of the linear
layers weights on the validation accuracy and loss, respectively, after pruning 30%
of the convolutional layers weights. Table 4.7 demonstrates the effect of pruning on
the validation accuracy, validation loss and number of model parameters.

64

Figure 4.27: Effect of increasing pruning amount of the convolutional layers weights on
the accuracy

Figure 4.28: Effect of increasing pruning amount of the convolutional layers weights on
the loss

65

Figure 4.29: Effect of increasing pruning amount of the linear layers weights on the
accuracy

Figure 4.30: Effect of increasing pruning amount of the linear layers weights on the loss

66

Figure 4.31: Effect of increasing pruning amount of the linear layers weights on the
accuracy after pruning the weights of the convolutional layers

Figure 4.32: Effect of increasing pruning amount of the linear layers weights on the loss
after pruning the weights of the convolutional layers

67

Table 4.7: Validation accuracy, validation loss and number of model parameters before
and after pruning

Metric Before Pruning After Pruning
Validation Accuracy 93.5% 93.25%

Validation Loss 0.25% 0.247
Number of Parameters 26M 18M (Non zero)

Quantization is the process of converting the representation of the model pa-
rameters from float32 to int8, thus reducing the model size and the inference time,
which in turn accelerates the model performance on hardware. Quantization aware
training is used in this work, in which the model parameters are quantized based
on 2 introduced new parameters which are the scale and zero point. Equation 4.1
demonstrates how each model parameter is quantized. Each parameter is divided
by the scale value, then the result is added to the zero point value. After scaling
the model parameter and adding the zero point value, the result is rounded to the
nearest integer. The two introduced paramters (scale and zero point) are computed
using an optimization technique which minimizes the error between the actual label
and the prediction of the quantized model, thus the ResNet50 architecture has been
trained on a subset of the dataset in order to find the optimum scale and zero point
parameters. Table 4.8 shows the effect of quantization on the validation accuracy,
validation loss, test loss, model size and inference time on CPU.

Q(x,scale,zero_point) = round(x

scale
+ zero_point) (4.1)

Table 4.8: Validation accuracy, validation loss and number of model parameters before
and after Quantization

Metric Before Quantization After Quantization
Validation Accuracy 94.3% 92.2%

Validation Loss 0.25% 0.262
Test Loss 0.247 0.28
Model Size 90 MB 24 MB

Inference Time (CPU) 160 ms 75 ms

4.4.1.4 Model Interpretability

Interpretability and visualization play a key role in evaluating the Neural Net-
works performance. In order to assess model generalization, it is crucial to identify
the most relevant parts of the image that the trained model considers when predicting
a certain class for an input image. The following figures illustrate the saliency map
based on the ResNet50 model prediction for each class in both the AUC and State
Farm datsets.

68

(a) (b)

Figure 4.33: Visualization of the important parts of the image that contribute in the
prediction. (a) Original safe driving sample from the AUC dataset (b) Saliency map

(a) (b)

Figure 4.34: Visualization of the important parts of the image that contribute in the
prediction. (a) Original texting - right sample from the AUC dataset (b) Saliency map

(a) (b)

Figure 4.35: Visualization of the important parts of the image that contribute in the
prediction. (a) Original talking on the phone - right sample from the AUC dataset (b)

Saliency map

69

(a) (b)

Figure 4.36: Visualization of the important parts of the image that contribute in the
prediction. (a) Original texting - left sample from the AUC dataset (b) Saliency map

(a) (b)

Figure 4.37: Visualization of the important parts of the image that contribute in the
prediction. (a) Original talking on the phone - left sample from the AUC dataset (b)

Saliency map

(a) (b)

Figure 4.38: Visualization of the important parts of the image that contribute in the
prediction. (a) Original operating the radio sample from the AUC dataset (b) Saliency

map

70

(a) (b)

Figure 4.39: Visualization of the important parts of the image that contribute in the
prediction. (a) Original drinking sample from the AUC dataset (b) Saliency map

(a) (b)

Figure 4.40: Visualization of the important parts of the image that contribute in the
prediction. (a) Original reaching behind sample from the AUC dataset (b) Saliency map

(a) (b)

Figure 4.41: Visualization of the important parts of the image that contribute in the
prediction. (a) Original hair and makeup sample from the AUC dataset (b) Saliency map

71

(a) (b)

Figure 4.42: Visualization of the important parts of the image that contribute in the
prediction. (a) Original talking to a passenger sample from the AUC dataset (b) Saliency

map

(a) (b)

Figure 4.43: Visualization of the important parts of the image that contribute in the
prediction. (a) Original safe driving sample from State Farm dataset (b) Saliency map

(a) (b)

Figure 4.44: Visualization of the important parts of the image that contribute in the
prediction. (a) Original texting - right sample from State Farm dataset (b) Saliency map

72

(a) (b)

Figure 4.45: Visualization of the important parts of the image that contribute in the
prediction. (a) Original talking on the phone - right sample from State Farm dataset (b)

Saliency map

(a) (b)

Figure 4.46: Visualization of the important parts of the image that contribute in the
prediction. (a) Original texting - left sample from State Farm dataset (b) Saliency map

(a) (b)

Figure 4.47: Visualization of the important parts of the image that contribute in the
prediction. (a) Original talking on the phone - left sample from State Farm dataset (b)

Saliency map

73

(a) (b)

Figure 4.48: Visualization of the important parts of the image that contribute in the
prediction. (a) Original operating the radio sample from State Farm dataset (b) Saliency

map

(a) (b)

Figure 4.49: Visualization of the important parts of the image that contribute in the
prediction. (a) Original drinking sample from State Farm dataset (b) Saliency map

(a) (b)

Figure 4.50: Visualization of the important parts of the image that contribute in the
prediction. (a) Original reaching behind sample from State Farm dataset (b) Saliency map

74

(a) (b)

Figure 4.51: Visualization of the important parts of the image that contribute in the
prediction. (a) Original hair and makeup sample from State Farm dataset (b) Saliency

map

(a) (b)

Figure 4.52: Visualization of the important parts of the image that contribute in the
prediction. (a) Original talking to a passenger sample from State Farm dataset (b)

Saliency map

75

4.4.1.5 Semantic Segmentation

• Mask R-CNN results:
First model we tried was Mask R-CNN, it was fed the input image, and
outputted the segmentation mask as following:

Figure 4.53: Driver and background segmentation masks

Figure 4.54: Original image after applying the segmentation mask

There was a critical problem with the mask rcnn as it’s inference time was
about 15-20 seconds, and that was not suitable for real-time systems.

• U-NET:
For the U-NET model, we used it to segment the face and hands of the driver,
it was implemented using Keras, and we got the following results shown in
table 4.9:

Table 4.9: U-NET results

Data/Metric Loss Mean IOU
Training 0.0409 0.9045
Validation 0.0667 0.9044

76

After testing the U-NET and evaluating it, we had the segmented output
images as below:

Figure 4.55: On the left is the ground truth segmented image, on the right is the
prediction of the U-NET model

Figure 4.56: On the left is the ground truth segmented image, on the right is the
prediction of the U-NET model

Figure 4.57: U-NET predictions on the AUC dataset

77

Figure 4.58: U-NET predictions on the AUC dataset

After training the U-NET model, we used it to segment the whole data set,
but unfortunately after implementing the segmentation model along with the
classification model, the classification results were not satisfying in comparison
with the E2E ResNet50 model.
The reason for that would be that the manually annotated segmentation data
set was not enough. The only solution for that problem is increasing the data
set and the annotation of more data, so we can get better results from the
2-block model.
The good thing about that model is its inference time, which has decreased
from 15-20 seconds as in the mask R-CNN to 2-5 ms.

78

Chapter 5

Speech Recognition

There is a rising demand for better speech recognition systems proposed on the
AI market that authorize contact-less control to several devices and equipment. The
speech recognition system enables the user to do the task with minimum effort or to
focus on other advanced tasks. The speech recognition system that is proposed in
this chapter can be integrated in systems that require limited number of tasks like
tuning devices and equipment while driving the car. This system enables the driver
to be more focused on the driving task and not get distracted by these other tasks.

5.1 Literature Review

This section presents the related work in the field of Speech recognition. This
paper [34] introduced RNN model with a classification accuracy on test set (about
7K samples) 96.5%. The first place at this competition [6] on Kaggle achieved 91%
on the submission set (about 150K samples).

5.2 Simulation Setup

5.2.1 Dataset

The dataset is a mandatory block of a successful deep learning system. This
section will introduce speech datasets in two different languages. The speech
recognition system is trained on the English dataset although the Arabic dataset is
mentioned because it has been collected by our team. The Arabic dataset is small
that prevents our team to build a reliable Arabic speech recognition system however
it is an open-source dataset to increase it and build a reliable system soon.

79

5.2.1.1 English dataset

This dataset is publicly available from Tensorflow team on kaggle [6] as a challenge
to build an algorithm that understands simple speech commands in English. The
predicted 12 labels are "yes", "no", "up", "down", "left", "right", "on", "off", "stop",
"go" and everything else should be considered either "unknown" or "silence". These
are the core classes that the challenge compute the accuracy score on them however
there are additional 20 classes that are available to use which are "zero", "one",
"two", "three", "four", "five", "six", "seven", "eight", "nine", "bed", "bird", "cat", "dog",
"happy", "house", "Marvin", "sheila", "tree", and "wow". This dataset does not cover
the modeling of the "unknown" or the "noise" classes. In section Dataset distribution
and Modeling of the missing classes the creation of these two classes are covered.

5.2.1.2 Arabic dataset

Arabic speech dataset is rare to be found as a reliable open source, from this
point a website [35] for collecting an open source Arabic speech dataset is deployed
to have a reliable dataset structure as an Arabic version from the dataset created by
Tensorflow team on kaggle [6]. Building the website will be discussed briefly below.
The targeted classes are shown in figure 5.1. Although the number of users who
recorded these words is still small, it is a serious initiative to construct a reliable
speech Arabic dataset for the Arabic AI community.

Figure 5.1: Targeted Arabic labels

Due to the importance and scarce of the Arabic data, a web application was built
to simply collect Arabic data with 27 classes as shown in figure 5.1. The website is
composed of two parts: front-end and back-end. Front-end is the part that the client
sees and interacts with, it concerns on designing, templating and formatting the
text using HTML, CSS and JavaScript. Back-end is the part that concerns on the
connection to database and servers using Flask and pythonanywhere. The following
figure 5.2 illustrates this process.

80

Figure 5.2: Web request-response cycle

Flask is a micro web framework that facilitates building the web application,
the routing happened between pages and creation of session between the client and
server. Pythonanywhere’ is a web hosting service based on Python language, on
which the website deployed and took a domain name. It is our database to store
the recorded audios of 512 MB free storage, knowing that the size of one audio is 31
KB, and by using the console of the web hosting service ‘Pythonanywhere’, which
supports python language, the recorded audios are sent to google drive.

To record audio stream, an API called ‘Mediastream recording’ is used, because
it provides an easy way to record from the user’s input devices and instantly save the
captured audio in a blob that contains the recorded audio chunks and format type
ogg format. Then, the audio is converted to a 16-bit little-endian PCM-encoded wav
file at a 16000 sample rate to be in familiar format and ready for use. After that,
AJAX technique is used to send this information in JSON format to the directory
created in pythonanywhere, and the name of the saved file is the id of the session
that Flask created for the client.

81

The figures below shows the website when a client visits it:

The figure 5.3 is welcome page that contains a brief about the website and some
instructions related to recording, and the second one 5.4 is a tutorial page that
illustrates what the user should do to facilities the process.

Figure 5.3: Welcome page of the website

Figure 5.4: Tutorial page of the website

82

After that, recording page will appear but press allow to use the microphone. The
labels are written in the black box, and the recording starts when the blue button is
pressed, the recording time is about 1 sec and stops automatically, as shown in the
figures 5.5, 5.6. The user can listen to the recorded audio and download it if needed.
After finishing all the words, click upload button to send all the recorded audios to
the database.

Figure 5.5: A request to allow the microphone

Figure 5.6: Recording page of the website

5.2.2 Preprocessing

5.2.2.1 Dataset distribution and Modeling of the missing classes

Modeling of classes "unknown" and "silence" was a mandatory task for this
competition to achieve a high score. The dataset contains a folder for different kinds
of background noises. Background clips had been cut into 1-sec slices and mixed for
the "silence" class modeling. The "unknown" class is conducted from two resources.
The first one is from the other unused classes that exist in the dataset like "marvin",
"bird", etc. The second resource is from random people talking video on youtube[36].
The whole dataset is split into training, validation, testing, and unlabeled submission
set. The submission set is the dataset that is submitted to kaggle to calculate the
model score on it and it is about 152000 samples.

83

The training, validation, and testing datasets contain unique speakers that the
speaker who contributes to the training set doesn’t contribute to the testing set nor
the validation set and vice versa. This guarantees well-generalized models that don’t
bias to the speaker’s identity. The dataset distribution is shown in table 5.1.

Table 5.1: Dataset distribution

Class Train Validation Test
Down 1842 264 253
Go 1861 260 251
Left 1839 247 267
No 1853 270 252
Off 1839 256 262
On 1864 257 246

Right 1852 256 259
Silence 1600 199 201
Stop 1885 246 249

Unknown 34154 4421 4470
UP 1843 260 272
Yes 1860 261 256
Total 54292 7197 7238

84

5.2.2.2 Features level

In order to teach our model and make it with high efficiency there are several
ways for that the most important is to have sufficient data as they say in the deep
learning world more data is better but the presence of a large amount of data
does not guarantee getting the best results for teaching the model from here the
explanation of Some of Features levels that have been done for our data to get the
most benefit.

some of these features is to ensure that all of our data are well organized and
unique and the duration of each sound segment is equal and has same rate to ensure
access to the same features when processing on sound clips, Example of these features
is MFCC as it is considered one of the most important features, and to make the
data be equal in duration the sound clips was padded to ensure equal duration

And the most important of these features as mentioned in the previous paragraph
is the use of MFCC Let’s first see what is MFCC means MFCC stands for Mel
frequency cepstral coefficients. As you can see there are 4 words in the abbreviation.
Mel, frequency, cepstral and coefficients. The idea of MFCC is to convert audio
in time domain 5.7a into frequency domain 5.7b so that it can understand all the
information present in speech signals. But just converting time domain signals
into frequency domain may not be very optimal. so do more than just converting
time-domain signals into frequency domain signals. Our ear has cochlea which
basically has more filters at low frequency and very few filters at higher frequency.
This can be mimicked using Mel filters. So, the idea of MFCC is to convert time
domain signals into frequency domain signal by mimicking cochlea function using
Mel filters 5.7c, this is to extract the best features found in the sound by using
suitable number of filters.

(a) word (bed) in time domain
(b) word (bed) in frequency

domain (c) word (bed) in MFCC

Figure 5.7: word (bed) in time domain, frequency domain and MFCC

85

5.2.2.3 Classical augmentation

In order to increase the accuracy and reduce the loss and the presence of a limited
number of data,the augmentation is used to make the model learn more from the
data by seeing many changes that occur in the sound in the daily life such as low
volume and loudness and speed of speech and slow And for the possibility of losing
part of the word, using the augmentation, the model will be able to learn more and
see many possible changes that can happen.

Data augmentation is a technique to artificially get more training data from
the existing training data. It is a type of data pre-processing that makes different
transformations to the training data, and gives the training data the property of
diversity. This technique makes the classifier learns features that are irrelevant to the
time, frequency or power (signal strength). The basic methods of data augmentation
for audio is implemented from scratch using scipy and numpy packages instead of
librosa library that supports many methods of audio augmentation.

many functions are used to increase data and let’s talk about each of them in
this section, which are:

1. Changing speed

2. Volume control

3. Mask

4. Time shifting

5. Cropping audio

6. Adding random noise

7. Fourier transform

8. Pitch change

The disadvantage of Librosa augmentation is that it takes long time to do one
epoch in the training phase of about 6 Hrs on google colab virtual machine. This is
because audio files are stored as float numbers, which makes librosa augmentation
deals with floating point operations. But using scipy and numpy packages, audio
files are stored as integer numbers. Our implementation for audio augmentation
class, as a result, has accelerated the process and epoch’s time in the training phase
takes about 15 minutes on google colab.

A sample from class ’Left’ is taken to show the effect of each augmentation
method on it, the following figures 5.8a, 5.8b show the command ’Left’ in time and
frequency domains.

86

(a) Time domain of command ’Left’ (b) Frequency domain of command ’Left’

Figure 5.8: Time domain of command ’Left’, Frequency domain of command ’Left’

1. Changing speed:
By using this function speed up or slow down the voice or part of it can be
done at random proportions. The following figures 5.9b,shows its effect on
’Left’ command:

(a) Time domain of command ’Left’ before
Changing speed

(b) Time domain of command ’Left’ after
Changing speed

Figure 5.9: Time domain of command ’Left’ before and after Changing speed

2. Volume control:
This function enables us to control the volume level by increasing or decreasing
or increasing part and decrease part or vice versa in random ways, which
ensures the occurrence of most possible possibilities. The following figures
5.10b,shows its effect on ’Left’ command:

(a) Time domain of command ’Left’ before
Volume control

(b) Time domain of command ’Left’ after
Volume control

Figure 5.10: Time domain of command ’Left’ before and after Volume control

87

3. Mask:
This function disturbs or loses part of the sound, either by adding noise or
losing part of the sound completely, which is what sometimes happens when
using bad microphones so a certain zone can be selected then do a mask on
it and the mask can be random noise or zeros(silence). The following figures
5.11b,shows its effect on ’Left’ command:

(a) Time domain of command ’Left’ before
applying Mask

(b) Time domain of command ’Left’ after
applying Mask

Figure 5.11: Time domain of command ’Left’ before and after applying Mask

4. Time shifting:
It shifts the audio given as an argument in time domain. Its parameters: the
audio wanted to shift, sampling rate of the signal, direction to shift ‘right, left
or both which randomly choose the direction’, and maximum limit on shifting
in milliseconds for just keep the quality of the audio as good as possible. The
shifting factor is randomly chosen between 0 to maximum limit of shift. The
following figures 5.12a, 5.12b shows its effect on ’Left’ command:

(a) Time domain of command ’Left’ (b) Time shifted version of command ’Left’

Figure 5.12: Time domain of command ’Left’, Time shifted version of command ’Left’

5. Cropping audio:
It crops or cuts a small frame from the audio. Its parameters: the audio to
make the process on, sampling rate, duration of the audio in seconds, and the
start and end of cropping which are randomly chosen. The following figures
5.13a, 5.13b shows its effect:

88

(a) Time domain of command ’Left’ (b) Cropped version of command ’Left’

Figure 5.13: Time domain of command ’Left’, Cropped version of command ’Left’

6. Adding random noise:
It adds random noise to the signal, either white Gaussian noise or background
noise that provided from the competition. Its parameters: the audio that noise
is added to, the intensity of the noise and chosen randomly, augmented zone
which is a range of the audio to apply augmentation on, and the background
noise. The following figures 5.14a, 5.14b shows its effect:

(a) Time domain of command ’Left’ (b) Noisy version of command ’Left’

Figure 5.14: Time domain of command ’Left’, Noisy version of command ’Left’

7. Fourier transform:
It shifts the audio in the frequency domain, by applying on it fast Fourier
transform, then shifting the result and perform inverse Fourier transform. Its
parameters: the audio, its sampling rate and shifting factor which is chosen
randomly, it can be negative and figures out how many samples the audio is
shifted. Shifting factor is a number between upper and lower bounds, which
are chosen accurately to keep the quality of the audio as good as possible. The
following figures 5.15a, 5.15b shows its effect:

89

(a) Frequency domain of command ’Left’ (b) Freq. shifted version of command ’Left’

Figure 5.15: Frequency domain of command ’Left’, Freq. shifted version of command
’Left’

8. Pitch change:
The scientific aspect of pitch change is shifting the fundamental frequency of
the signal. Pitch-shifting is easy once you have sound stretching. If you want
a higher pitch, you first stretch the sound while conserving the pitch, then you
speed up the result, such that the final sound has the same duration as the
initial one, but a higher pitch due to the speed change. Its implementation
depends on two functions which are create-Frames’ that stretches the original
audio and fusion-Frames’ that compresses the processing audio. The following
figure 5.16 illustrates the process of changing the pitch:

Figure 5.16: Pitch change mechanism

90

Pitch change function parameters:

(a) audio that will be augmented.
(b) Sampling rate of the audio.
(c) Window size: which depends on sampling frequency, it must be a number

divisible by 2 and 28 is chosen after some tries to get a good quality.
(d) Overlap factor: which is taken to be 75% overlapping between the current

frame and the next one and this also determines the size of the hop.
(e) Number of semitones: which is the number of shifting steps and of range

[-10:10] for the quality of the audio.

The following figures 5.17a, 5.17b shows its effect:

(a) Frequency domain of command ’Left’ (b) Changing pitch of command ’Left’

Figure 5.17: Frequency domain of command ’Left’, Changing pitch of command ’Left’

91

5.2.2.4 GAN as an augmentation network

Generative Adversarial Networks (GANs) have had a huge success since they
were introduced in 2014 by Ian J. Goodfellow and co-authors in this paper [37], which
are a type of neural network architecture that allow neural networks to generate
data. In the past few years, they’ve become one of the hottest sub fields in deep
learning, going from generating fuzzy images of digits to photo realistic images of
faces. Generative Adversarial Networks are composed of two models: the first model
is the generator which aims to generate new samples similar to the existed one, the
second model is the discriminator and its goal is to recognize if an input data is real
(belongs to original data distributions) or fake (generated from the generator).
GANs learn a probability distribution of a dataset by pitting two neural networks
against each other. The generator is able to take random noise (latent space vector of
a certain dimension) and map it to image which will be the input to the discriminator.
The competition between these two models is what improves their knowledge, until
the generator succeeds in creating realistic data. The following figure 5.18 shows
how GANs work:

Figure 5.18: Understanding GAN mechanism

GANs are a form of unsupervised generative modeling, where you can just provide
data and have the model create synthetic data from it. However, the state-of-the-art
GANs use a technique called Conditional-GANs which turn the generative modeling
task into a supervised learning one, requiring labeled data. In Conditional-GANs,
class labels are embedded into the generator and discriminator to facilitate the
generative modeling process. Unconditional GANs refer to Goodfellow’s original
idea, in which no class labels are needed for generative modeling.

92

Deep learning researchers work in two ways: the first one is making different
GAN architectures by using new concepts, and the second is performing different
mechanism in calculating loss function. Deep convolutional generative adversarial
network (DCGAN) is one of the popular and successful network design for GAN [38].
It mainly composes of convolution layers without max pooling or fully connected
layers. It uses convolutional stride and transposed convolution for the downsampling
and the upsampling as shown in figure 5.19. Many GAN models take the architecture
of DCGAN and change only the loss function that measures the similarity of the
actual and the generated data.

Figure 5.19: DCGAN architecture

5.2.2.4.1 Limitations on standard GANs
Standard GANs have some drawbacks that researchers must understand to improve
GAN’s performance properly. Researchers try to make GAN training more stable.
These problems are areas of active research,and none of them have been completely
solved. The first problem that standard GANs faced is vanishing gradients, it affects
the training of the generator specifically and makes no updates to the parameters
(weights and biases) and that due to superiority the discriminator in determining
real-fake samples. The second problem is mode collapse, which is a mode that the
discriminator gets stuck in a local minimum and the generator generates similar
outputs to make the discriminator in this situation. If the generator starts producing
the same output (or a small set of outputs) over and over again, the discriminator
will learn to always reject that output. The third problem is failure to converge,
As the generator improves with training, the discriminator performance gets worse
because the discriminator can’t easily tell the difference between real and fake. If
the generator succeeds perfectly, then the discriminator has a 50% accuracy. This
progression poses a problem for convergence of the GAN as a whole: the discriminator
feedback gets less meaningful over time. If the GAN continues training past the point
when the discriminator is giving completely random feedback, then the generator
starts to train on junk feedback, and its own quality may collapse.

93

5.2.2.4.2 Data pre-processing
To make GAN ready for the training phase, the dataset must be in an appropriate
format. So, each audio sample is converted to one channel mel-spectrogram (stft
then scale the linear amplitude to dB) image of size 128 ∗ 128. Then the image
is normalized by means and standard deviations of all dataset samples. After
generating samples from GAN, it will be converted to audio again of sampling rate
16KHz and duration of one second by denormalize the image first, then perform
inverse mel-spectrogram on it (istft between mel-spectrogram and phase which is
random vector).

5.2.2.4.3 GAN architecture and training phase
WGAN is a neural network that tries to solve the problems encountered by previous
GAN architectures [39]. This is done by using new concept in calculating loss
function, that tells how similarity the generated samples are to the actual data by
calculating the distance between the actual data distribution and the generated data
distribution. This is called Wasserstein distance. This approach provides a solution
to the first two problems discussed above.

5.2.2.4.4 Generation and labelling phase
After training the generator and discriminator, GAN has been tuned with weights
that enables it to generate augmented versions of the actual data. In our case, more
than 100K samples in total of classes ’yes, no, up, down, right, left, go, stop, on, off’
are generated to begin our third training phase for some models. But before that,
GAN labelling of the generated samples is checked by passing them as inputs to the
best ensemble version of models to predict generated samples labels. The results
will be discussed in section 5.4.

5.2.2.5 YouTube dataset generator

The amount of the labeled data is considered to be one of the most important
characteristics in the deep learning world. Therefore, in order to increase accuracy
and reduce losses, it was desired to generate data from YouTube because of the huge
amount of audio data, because of that the videos are automatically translated by
YouTube for the English language, that helps us to locate the words and build a
unet model that can segment those words and collect a huge number of labeled data.

let’s discuss the steps taken to collect the labeled data that needed to increase
the data in classes that are desired to be classified.

1-first of all its needs to bring the channel’s ID through where the audio files
and the words are to be collected, and it must choose a channel that contains clear
sound and is recorded in high quality to ensure the quality of the data that will be
collected.

94

2- After selecting the appropriate channel, it’s needed to pass it’s ID to the
library named Python-YouTube [40], which will bring the identities of the videos
inside.

3- After bringing the identities of the videos, they are passed first to the library
named YouTube-transcript-API [41], which will give the translation of the video,
and when each sentence begins and its duration and this data will be needed later to
collect the data. Secondly, the videos’ IDs can be used to download those videos by
passing the video ID to the library named pytube [42] and then convert it to mp3.

4- After obtaining the video as a sound and knowing each sentence through
translation, when it appeared and the duration of its stay, Words in our classes can
now be searched for, so now it can only take the sound clips of the sentence that
contain our classes and the rest of the other sound clips are deleted, each audio clip
called a chunk.

5- In the penultimate step, the method that will work on dividing the sentence
and extracting our word are chosen. There are two methods for that, the first is
by using the hard code, which depends on knowing the location of the word in the
sentence by the subtitle and making a segmentation for the sentence by choosing a
limit for the amplitude of the voice if the amplitude of the voice is less than it Then
it will be considered silence so the sentence can be segmented and the word can be
combined, but this method is very weak in segmentation because it does not depend
on knowing the word and if the speaker does not leave a space between each word
and the other which is what usually happens so this method will fail, The second
method is by using deep learning by building a unet model that can learn and know
the word to be collected, and this method will depend on the strength of the model
that was built in order to be able to know the required word and bring it out.

6- After building a unet model and teaching it to learn the word and extract it
from the sentence, the sentences (chunks) that were collected from the videos that
contain the words to be collected are entered to the unet model and those words
can be collected, and by this, a huge amount of data can be collected to improve
the accuracy of our classifier.

Unfortunately, after building the unet model and trying to use it, it did not give
a good results, because the data used to teach are from one source,so the model did
not learn from different sources, so it could not work well when using it in another
source, but it was giving very good results in the same source which is learned from.

95

5.3 Materials and Methods

5.3.1 Speech recognition classification networks

Speech or sound signals have many waveforms to visualize, if a change has
affected a signal, the effect of this change may not be observed well in the time
domain as an example, but in the frequency domain can represent that effect well.
Speech signal also has many waveforms, which are time-domain waveform, which
is very common, spectrogram, mel-spectrogram and MFCC. As discussed in the
section of feature level, speech signal is treated and represented as an image that
carries information about the signal (MFCC features).
The success of convolutional neural networks made data pre-processing an important
step and widened the view to think of speech signals as images. This is a good point
that CNN made a great success in many fields, so its implementation on another
fields such as Speech recognition may reflect its success and make a breakthrough in
that field. Our first attempt to solve the problem is to try CNN models and convert
speech dataset into images (MFCC features).
Many different models are trained for solving the same problem. In this section,
the used CNN models are covered from their architectures point of view. Our
second attempt is to train a sequence model that its input is raw data (time domain
waveform) with some extensions added to it. The variation in the architectures of
the models used to solve the problem and the features is a good point that will help
when ensemble learning is performed.

5.3.1.1 Sequence Models

A recurrent neural network (RNN) is a class of artificial neural networks where
connections between nodes form a directed graph along a temporal sequence. This
allows it to exhibit temporal dynamic behavior. RNN is very useful in speech
recognition systems. In some cases it outperforms CNNs with the same number
of parameters however, it takes a long time in training. In this section we have
implemented the RNN proposed in the paper with some modifications on the input
size to be less than the proposed [34]. Two approaches are taken to outperform
the results of the paper [34]. The first one is using the semi supervised technique
explained in section 5.3.1.3 while the second approach is the two stages classifiers
which will be explained in this section.

"silence" and "unknown" classes are too large due to their good modeling explained
in section 5.2.2.1. This forces us to do down sampling to these classes to get a
balanced distribution. Two stages model solves this problem. The first stage is 2 or
3 classes classifier model that is able to take all the data size while the second stage
is 11 or 10 classes classifier. This technique allows to use all the available data of
the "unknown" and "silence" samples.

96

Figure 5.20 shows an example of 2 stages. The first model is a "silence"/"voiced"
classifier while the second model classifies what the user have said if the first model
passes the voiced word to it.

Figure 5.20: 2 stages block diagram for silence/voiced classifier

5.3.1.2 CNN Models

CNN is a type of neural network model which allows us to extract higher
representations for the image content. Unlike the classical image recognition where
you define the image features yourself, CNN takes the image’s raw pixel data, trains
the model, then extracts the features automatically for better classification.

There are many CNN models that have proven their ability to learn well and
let’s talk about these models.

1. VGG16 model and VGG19 model

Figure 5.21: VGG16 and 19 model structure

97

VGG16 and VGG19 5.21 is a convolutional neural network model proposed by
K. Simonyan and A. Zisserman from the University of Oxford in the paper
“Very Deep Convolutional Networks for Large-Scale Image Recognition” [43].
The model achieves 92.7% top-5 test accuracy in ImageNet 5.22, which is a
dataset of over 14 million images belonging to 1000 classes. It was one of the
famous model submitted to ILSVRC-2014.

Figure 5.22: ImageNet Large Scale Visual Recognition Challenge (ILSVRC) winners

It makes the improvement over AlexNet 5.23 by replacing large kernel-sized
filters (11 and 5 in the first and second convolutional layer, respectively) with
multiple 3∗3 kernel-sized filters one after another.

Figure 5.23: alexnet model structure

by using Keras to load pre-trained model of VGG16 and VGG19 then by
removing the classifier of VGG16 and VGG19 and added our classifier Which
consists of 2 FC layer followed by the output layer (softmax) as shown in 5.24

98

(a) VGG16 layers (b) VGG19 layers

Figure 5.24: VGG19 and VGG16 layers

2. resnet50 model

Figure 5.25: resnet50 model structure

99

ResNet 5.25 is a powerful backbone model that is used very frequently in many
computer vision tasks, as it is the first net to outperform human imagenet
5.22, ResNet uses skip connection to add the output from an earlier layer to a
later layer. This helps it mitigate the vanishing gradient problem
by using Keras to load pre-trained model of resnet50 then by removing the
classifier of resnet50 and added our classifier Which consists of 2 FC layer
followed by the output layer (softmax) as shown in 5.26

Figure 5.26: resnet50 layers

3. densenet model
DenseNet 5.27 is a new CNN architecture that reached State-Of-The-Art
(SOTA) results on classification datasets (CIFAR, SVHN, ImageNet) using
less parameters, thanks to its new use of residual it can be deeper than the
usual networks and still be easy to optimize.

Figure 5.27: densenet structure

100

DenseNet is composed of Dense blocks 5.28. In those blocks, the layers are
densely connected together: Each layer receive in input all previous layers
output feature maps, this extreme use of residual creates a deep supervision
because each layer receive more supervision from the loss function thanks to
the shorter connections.

Figure 5.28: Dense blocks

Instead of summing the residual like in ResNet, DenseNet concatenates all the
feature maps, DenseNet has lower need of wide layers because as layers are
densely connected there is little redundancy in the learned features. All layers
of a same dense block share a collective knowledge.
The final architecture of DenseNet is as shown in 5.29

Figure 5.29: densenet Architecture

101

by using Keras to load pre-trained model of DenseNet then by removing the
classifier of DenseNet and added our classifier Which consists of 2 FC layer
followed by the output layer (softmax) as shown in 5.30

Figure 5.30: densenet layers

To summarize, the DenseNet architecture uses the residual mechanism to its
maximum by making every layer (of a same dense block) connect to their
subsequent layers, This model’s compactness makes the learned features non-
redundant as they are all shared through a common knowledge, It is also far
more easy to train deep network with the dense connections because of an
implicit deep supervision where the gradient is flowing back more easily thanks
to the short connections [44].

102

4. mobilenet model
The best feature in mobilenet 5.31 is it runs very efficiently on mobile devices
and is nearly as accurate as much larger convolutional networks like our good
friend VGGNet-16 [45].

Figure 5.31: mobilenet Architecture

The big idea behind MobileNets: Use depthwise separable convolutions 5.32
to build light-weight deep neural networks, When these two things are put
together — a depthwise convolution followed by a pointwise convolution — the
result is called a depthwise separable convolution. A regular convolution does
both filtering and combining in a single go, but with a depthwise separable
convolution these two operations are done as separate steps.

Figure 5.32: Depthwise Separable Convolution

The purpose of the depthwise convolution is to filter the input channels.
Think edge detection, color filtering, and so on, The purpose of this pointwise
convolution is to combine the output channels of the depthwise convolution to
create new features, But Why do this? The end results of both approaches
are pretty similar — they both filter the data and make new features — but a
regular convolution has to do much more computational work to get there and
needs to learn more weights.

103

So even though it does (more or less) the same thing, the depthwise separable
convolution is going to be much faster! It’s about 3x as fast as Inception and
10 as fast as VGGNet-16, and it uses way less battery power than both. That’s
largely due to the much smaller number of learned parameters (4 million versus
24 million for Inception-v3 and 138 million for VGGNet-16).
Accessing memory is the biggest drain on battery power, so having many fewer
parameters is a big plus.
Speed isn’t everything, of course. MobileNets is only useful if it’s also accurate.
So how accurate is it? By experience [46] MobileNets is quite close to VGGNet
indeed,That’s great because VGGNet-16 is often used as a feature extractor
for other neural networks, so you can now simply replace that part of the
network with this new MobileNets model and get an immediate 10x speed-up.
by using Keras to load pre-trained model of mobilenet then by removing the
classifier of mobilenet and added our classifier Which consists of 2 FC layer
followed by the output layer (softmax) as shown in 5.33.

Figure 5.33: mobilenet layers

104

5. xception model

Figure 5.34: xception Architecture

The big idea behind xception 5.34: is Used Modified depthwise separable
convolutions 5.35a which is the pointwise convolution followed by a depthwise
convolution, and the Two minor differences between Modified depthwise sepa-
rable convolutions and depthwise separable convolutions 5.35b are The order
of operations and The Presence/Absence of Non-Linearity as In Xception, the
modified depthwise separable convolution, there is NO intermediate ReLU
non-linearity.

(a) Modified Depthwise Separable Convolution (b) Depthwise Separable Convolution

The modified depthwise separable convolution with different activation units
are tested. the Xception without any intermediate activation has the highest
accuracy compared with the ones using either ELU or ReLU.

Xception outperforms VGGNet, ResNet, and Inception-v3 in ImageNet —
ILSVRC [47].

by using Keras to load pre-trained model of Xception then by removing the
classifier of Xception and added our classifier Which consists of 2 FC layer
followed by the output layer (softmax) as shown in 5.36.

105

Figure 5.36: xception layers

106

6. Nasnet model
In NASNet, though the overall architecture is predefined as shown in 5.37a,
the blocks or cells are not predefined by authors. Instead, they are searched
by reinforcement learning search method, the number of motif repetitions N
and the number of initial convolutional filters are as free parameters, and
used for scaling, Specifically, these cells are called Normal Cell and Reduction
Cell, Normal Cell: Convolutional cells that return a feature map of the same
dimension, Reduction Cell: Convolutional cells that return a feature map
where the feature map height and width is reduced by a factor of two, Only
the structures of (or within) the Normal and Reduction Cells are searched by
the controller RNN (Recurrent Neural Network) 5.37b.

(a) Scalable Architectures for CIFAR-10 and
ImageNet (b) controller RNN (Recurrent Neural Network)

Nasnet 5.38 is “Controller” network that learns to design a good network
architecture (output a string corresponding to network design).

Figure 5.38: Controller model architecture for recursively constructing one block of a
convolutional cell

107

how it Iterate?

(a) Sample an architecture from search space
(b) Train the architecture to get a “reward” R corresponding to accuracy
(c) Compute gradient of sample probability, and scale by R to perform con-

troller parameter update 5.37b. (increase likelihood of good architecture
being sampled, decrease likelihood of bad architecture)

Applying neural architecture search (NAS) to a large dataset like ImageNet
is expensive , Design a search space of building blocks (“cells”) that can be
flexibly stacked, NASNet is Used NAS to find best cell structure on smaller
CIFAR-10 dataset, then transfer architecture to ImageNet.
NASNets outperform Inception-v1, MobileNet-V1 and ShuffleNet-V1 with
higher accuracy but with similar or smaller models, and by Using Faster
R-CNN, NASNet-A outperforms MobileNetV1, ShuffleNet V1, ResNet, and
Inception-ResNet-v2 [48].
by using Keras to load pre-trained model of NASNets then by removing the
classifier of NASNets and added our classifier Which consists of 2 FC layer
followed by the output layer (softmax) as shown in 5.39.

Figure 5.39: NASNet layers

108

There are another neural networks that are trained to solve the problem, which
are DenseNet-BC (densenet with bottleneck extension and compression ratio)
[44], WideResNet which is a neural network that solves the problems faced
ResNet [49], ResNext which provides a new factor to update ResNet [50], and
DPN-92 [51]. All these neural networks are randomly initialized, this helps
in breaking symmetry and every neuron is no longer performing the same
computation. These models are implemented on PyTorch framework, and have
improved the performance and increased the submission accuracy, and that
will be discussed in section 5.4.

5.3.1.3 Semi supervised learning

Semi-supervised learning is an approach that makes a big breakthrough in
machine learning and deep learning fields, it is an intermediate between supervised
and unsupervised learning. Supervised learning needs training data with its ground
truth labels to feed the neural network with, while unsupervised learning is a
technique used with unlabelled data. Semi-supervised learning is a recommended
technique when the dataset is mixture between labelled and unlabelled data, and
the labelled data is small compared to the unlabelled one. The figure below 5.40
shows the difference between three learning techniques.

Amazon, which is one of the biggest company in the field of AI, used this approach
to train their voice-driven intelligent assistant ‘Alexa’, and improve its performance.
In 2017, they said that semi-supervised approach enhances Alexa’s spoken language
understanding by more than 25 percent over the last 12 months.

Figure 5.40: Illustration of semi-supervised learning

109

Nowadays, data is a very important factor in deep learning field, which is the
fuel of the neural network to learn and improve itself. Due to the expensiveness and
the difficultly of collecting new data and annotating it, semi-supervised technique
is applied to increase the amount of data and train our models well. As discussed
in the section of dataset that the competition provides a submission dataset that
kaggle evaluates the score on it, but it is unlabelled. After training our models with
annotated dataset using supervised learning, the models have been tuned with a set
of weights that can predict answers for similar untagged data, and the submission
data has been used for this purpose.

The implementation of ensemble learning is a great idea in this situation, so the
outputs of four CNN models are combined together to get the best prediction. After
that, this labelled data has been an input to the models to retrain them well and
tune their weights.

Semi-supervised technique enhances the results of submission accuracy by 0.1
to 0.3 %, which is a satisfactory effect. The results of this powerful technique are
covered in results and discussion section. The following figure 5.41 simply illustrates
the idea of semi-supervised learning:

Figure 5.41: Pseudo labelling technique

110

5.4 Results and Discussion

The results of all the proposed CNN models in section Speech recognition
classification networks are shown in table 5.2 while RNN models are shown in table
5.3.

Table 5.2: Results of all the proposed CNN models

Model Val. acc. Test. acc. Val. loss Test loss Parameters msec/sample
Xception 0.906 0.908 0.629 0.702 24.046 M 0.41
Mobilenet 0.949 0.954 0.2 0.173 4.034 M 0.138
Resnet50 0.956 0.959 0.167 0.152 26.229 M 0.414
Densenet 0.959 0.964 0.145 0.137 13.565 M 0.69
Nasnet 0.939 0.946 0.258 0.219 87.262 M 1.5
VGG16 0.965 0.963 0.137 0.138 15.258 M 0.27
VGG19 0.957 0.962 0.157 0.139 21.092 M 0.27

Densenet (semi) 0.959 0.962 0.153 0.139 13.776 M 0.69
Mobilenet (semi) 0.872 0.874 0.435 0.430 4.034 M 0.138
Nasnet (semi) 0.943 0.945 0.22 0.201 87.262 M 1.5
Resnet50 (semi) 0.954 0.954 0.173 0.171 26.229 M 0.414
VGG16 (semi) 0.957 0.958 0.17 0.163 15.258 M 0.27
VGG19 (semi) 0.957 0.96 0.166 0.155 20.193 M 0.27

Densenet (random initialized) 0.952 0.958 0.202 0.189 0.769 M 3.3
Densenet (semi) (random initialized) 0.948 0.95 0.193 0.172 0.769 M 3.3

DPN92 0.951 0.954 0.201 0.19 34.240 M 4.6
DPN92 (semi) 0.94 0.94 0.19 0.172 34.240 M 4.6

Resnext 0.935 0.937 0.244 0.229 34.427 M 4.8
Resnext (semi) 0.942 0.947 0.231 0.219 34.427 M 4.8
WideResnet 0.963 0.97 0.18 0.165 75.205 M 5.48

WideResnet (semi) 0.959 0.961 0.191 0.166 75.205 M 5.48

Table 5.3: Results of all the proposed RNN models

Model Val. acc. Test. acc. Val. loss Test loss Parameters Input Size msec/sample
RNN 0.927 0.933 0.246 0.249 1.292 M (80*125) 2.48

RNN (2 stages silence) 0.987 0.989 0.218 0.211 4.96 M (80*125) 6
RNN (2 stages unknown) 0.928 0.928 0.423 0.5 4.96 M (80*125) 6
RNN (2 stages 3 classes) 0.926 0.93 0.472 0.461 4.96 M (80*125) 6.2

RNN 0.932 0.936 0.237 0.222 4.407 M (32*32) 0.69
RNN (2 stages silence) 0.987 0.989 0.211 0.217 8.814 M (32*32) 3

RNN (2 stages unknown) 0.956 0.959 0.167 0.152 8.814 M (32*32) 3
RNN (2 stages 3 classes) 0.93 0.932 0.44 0.487 8.814 M (32*32) 3.3

RNN (semi) 0.961 0.963 0.141 0.131 4.407 M (32*32) 0.69
RNN (semi) (2 stages silence) 0.995 0.995 0.106 0.109 8.814 M (32*32) 3

RNN (semi) (2 stages unknown) 0.964 0.959 0.265 0.307 8.814 M (32*32) 3
RNN (semi) (2 stages 3 classes) 0.963 0.962 0.284 0.276 8.814 M (32*32) 3.3

Different combinations of ensemble learning between models have been carried
out targeting to get the best accuracy on submission dataset (150k samples). The
best combination of models is Densenet (randomly initialized) (semi supervised),
Wideresnet, Resnext (semi supervised) ,DPN92 and RNN (32*32) (semi supervised).
This combination has achieved accuracy of 0.9755, 0.973 and 90.238 on the validation,
test and submission set respectively. This achievement placed our team on the 25th

out of 1314 competitors on the competition. The Confusion matrix of the validation
set is shown in figure 5.42 while that of the test set is shown in figure 5.43.

111

The Classification report of the validation set is shown in figure 5.44 while that
of the test set is shown in figure 5.45.

Figure 5.42: Confusion matrix of the validation set

Figure 5.43: Confusion matrix of the test set

112

Figure 5.44: Classification report of the validation set

Figure 5.45: Classification report of the test set

113

Chapter 6

Discussion and Conclusion

6.1 Conclusion

All in all, we have presented three modules in order to minimize the car crashes.
First module, lane overtaking, which helps in detecting the obstacles and take suitable
decisions according to the surrounding conditions whether by stopping or by making
lane change. Second module, distraction detection, at which it detects whether the
driver is internally distracted or not and how it is distracted (drinking, talking on
the phone, operating the radio, makeup,.... etc). Third module, speech recognition,
at which it assists the driver to interact with the surrounding environment and
remove the distraction that may cause car crashes.

As shown in figure 6.1, there may be an integration of the three modules where
first, it detects whether the driver is distracted or not. If yes there will be an alarm
then it will check the input command, if not it will check the input command. If
it is lane overtaking, it will see whether it can be done or not according to the
surrounding situations and take the suitable actions. If it is not lane overtaking, it
will do the event according to the input command then return to see whether the
driver is distracted or not and so on.

Figure 6.1: Block diagram of the proposed system

114

References

[1] J. E. Naranjo, C. Gonzalez, R. Garcia, and T. De Pedro, “Lane-change fuzzy
control in autonomous vehicles for the overtaking maneuver”, IEEE Transac-
tions on Intelligent Transportation Systems, vol. 9, no. 3, pp. 438–450, 2008.

[2] W. H. Organization, “World health statistics 2017: Monitoring health for the
sdgs, sustainable development goals”, 2017.

[3] National Highway Traffic Safety Administration, Traffic safety facts research
notes 2016: Distracted driving.s. department of transportation, washington, dc:
Nhtsa; 2015. [Online]. Available: https://crashstats.nhtsa.dot.gov/Api/
Public/ViewPublication/812517.

[4] T. M. Pickrell, H. R. Li, and S. KC, Traffic safety facts, 2016. [Online].
Available: https://www.nhtsa.gov/risky-driving/distracted-driving.

[5] U. D. o. H. &. H. Services, Distracted driving, 2016. [Online]. Available:
https://www.cdc.gov/%20motorvehiclesafety/distracted_driving/.

[6] P. Warden, “Speech commands: A public dataset for single-word speech recog-
nition.”, Dataset available from https://www.kaggle.com/c/tensorflow-speech-
recognition-challenge/data, 2017.

[7] The 5 levels of autonomous vehicles, 2018. [Online]. Available: https://www.
truecar.com/blog/5-levels-autonomous-vehicles/.

[8] The 5 autonomous driving levels explained, 2020. [Online]. Available: https:
//www.iotforall.com/5-autonomous-driving-levels-explained/.

[9] Self-driving car fundamentals: The five stages of automation, 2019. [Online].
Available: https : / / www . wiredbrief . com / artificial - intelligence /
self-driving-car-fundamentals-the-five-stages-of-automation/.

[10] Machine learning definition, 2020. [Online]. Available: https://expertsystem.
com/machine-learning-definition/.

[11] History of machine learning, 2018. [Online]. Available: https://www.doc.ic.
ac.uk/~jce317/history-machine-learning.html.

[12] P. Analytics, What is machine learning: Definition, types, applications and
examples | potentia analytics inc. 2019. [Online]. Available: https://www.
potentiaco.com/what-is-machine-learning-definition-types-applications-
and-examples/.

[13] J. Ni, Y. Chen, Y. Chen, J. Zhu, D. Ali, and W. Cao, “A survey on theories
and applications for self-driving cars based on deep learning methods”, Applied
Sciences, vol. 10, no. 8, p. 2749, 2020.

[14] Deep learning, 2019. [Online]. Available: https://www.investopedia.com/
terms/d/deep-learning.asp.

115

https://crashstats.nhtsa.dot.gov/Api/Public/ViewPublication/812517
https://crashstats.nhtsa.dot.gov/Api/Public/ViewPublication/812517
https://www.nhtsa.gov/risky-driving/distracted-driving
https://www.cdc.gov/%20motorvehiclesafety/distracted_driving/
https://www.truecar.com/blog/5-levels-autonomous-vehicles/
https://www.truecar.com/blog/5-levels-autonomous-vehicles/
https://www.iotforall.com/5-autonomous-driving-levels-explained/
https://www.iotforall.com/5-autonomous-driving-levels-explained/
https://www.wiredbrief.com/artificial-intelligence/self-driving-car-fundamentals-the-five-stages-of-automation/
https://www.wiredbrief.com/artificial-intelligence/self-driving-car-fundamentals-the-five-stages-of-automation/
https://expertsystem.com/machine-learning-definition/
https://expertsystem.com/machine-learning-definition/
https://www.doc.ic.ac.uk/~jce317/history-machine-learning.html
https://www.doc.ic.ac.uk/~jce317/history-machine-learning.html
https://www.potentiaco.com/what-is-machine-learning-definition-types-applications-and-examples/
https://www.potentiaco.com/what-is-machine-learning-definition-types-applications-and-examples/
https://www.potentiaco.com/what-is-machine-learning-definition-types-applications-and-examples/
https://www.investopedia.com/terms/d/deep-learning.asp
https://www.investopedia.com/terms/d/deep-learning.asp

[15] Deep learning. [Online]. Available: https://en.wikipedia.org/wiki/Deep_
learning.

[16] The history of deep learning, 2018. [Online]. Available: https://www.quora.
com/What-is-the-history-of-deep-learning.

[17] Deep learning models, 2019. [Online]. Available: https://towardsdatascience.
com/6-deep-learning-models-10d20afec175.

[18] A. Mosavi, S. Ardabili, and A. R. Varkonyi-Koczy, “List of deep learning mod-
els”, in International Conference on Global Research and Education, Springer,
2019, pp. 202–214.

[19] A. Dosovitskiy, G. Ros, F. Codevilla, A. Lopez, and V. Koltun, “Carla: An
open urban driving simulator”, arXiv preprint arXiv:1711.03938, 2017.

[20] Carla’s sensors and cameras. [Online]. Available: https://carla.readthedocs.
io/en/0.9.6/cameras_and_sensors/#sensorlidarray_cast.

[21] M. K. Pal, N. Debabhuti, P. Sadhukhan, and P. Sharma, “A novel real-time
collision avoidance system for on-road vehicles”, in 2018 Fourth International
Conference on Research in Computational Intelligence and Communication
Networks (ICRCICN), IEEE, 2018, pp. 141–146.

[22] E. Mohammed, M. Abdou, S. A. Engineer, and O. A. Nasr, “End-to-end deep
path planning and automatic emergency braking camera cocoon-based solu-
tion”, in Machine Learning for Autonomous Driving, NeurIPS 2019 Workshop,
2019.

[23] 2019. [Online]. Available: https://devmesh.intel.com/projects/self-
driving-cars-longitudinal-and-lateral-control-design.

[24] C. H. Zhao, B. L. Zhang, J. He, and J. Lian, “Recognition of driving postures by
contourlet transform and random forests”, IET Intelligent Transport Systems,
6(2):161-168, 2011.

[25] C. Zhao, Y. Gao, J. He, and J. Lian, “Recognition of driving postures by
multiwavelet transform and multilayer perceptron classifier”, Engineering
Applications of Artificial Intelligence, 25(8):1677â“1686, 2012.

[26] C. Zhao, B. Zhang, J. Lian, J. He, T. Lin, and X. Zhang, “Classification of
driving postures by support vector machines”, In Image and Graphics (ICIG),
2011 Sixth International Conference on, pages 926â“930. IEEE, 2011.

[27] C. Yan, F. Coenen, and B. Zhang, “Driving posture recognition by convolu-
tional neural networks”, IET Computer Vision, 10(2):103â“114, 2016.

[28] H. Eraqi, Y. Abouelnaga, M. Saad, M. Moustafa, “Driver distraction identifica-
tion with an ensemble of convolutional neural networks”, Journal of Advanced
Transportation, Machine Learning in Transportation, 2019.

[29] Duy Tran, Ha Manh Do, Weihua Sheng, He Bai, Girish Chowdhary, “Real-
time detection of distracted driving based on deep learning”, IET Intelligent
Transport Systems, July 2018.

[30] Y. Abouelnaga, H. Eraqi, and M. Moustafa, "Real-time Distracted Driver
Posture Classification". Neural Information Processing Systems (NIPS 2018),
Workshop on Machine Learning for Intelligent Transportation Systems, Dec.
2018.

116

https://en.wikipedia.org/wiki/Deep_learning
https://en.wikipedia.org/wiki/Deep_learning
https://www.quora.com/What-is-the-history-of-deep-learning
https://www.quora.com/What-is-the-history-of-deep-learning
https://towardsdatascience.com/6-deep-learning-models-10d20afec175
https://towardsdatascience.com/6-deep-learning-models-10d20afec175
https://carla.readthedocs.io/en/0.9.6/cameras_and_sensors/#sensorlidarray_cast
https://carla.readthedocs.io/en/0.9.6/cameras_and_sensors/#sensorlidarray_cast
https://devmesh.intel.com/projects/self-driving-cars-longitudinal-and-lateral-control-design
https://devmesh.intel.com/projects/self-driving-cars-longitudinal-and-lateral-control-design

[31] H. Eraqi, Y. Abouelnaga, M. Saad, M. Moustafa, "Driver Distraction Iden-
tification with an Ensemble of Convolutional Neural Networks", Journal of
Advanced Transportation, Machine Learning in Transportation (MLT) Issue,
2019.

[32] State Farm, State Farm Distracted Driver Detection. Can computer vision
spot distracted drivers? 2016. [Online]. Available: https://www.kaggle.com/
c/state-farm-distracted-driver-detection/data/.

[33] Kaiming He, Xiangyu Zhang, Shaoqing Ren, Jian Sun, “Deep residual learning
for image recognition”, arXiv:1512.03385v1 [cs.CV], 2015.

[34] D. C. de Andrade, S. Leo, M. L. D. S. Viana, and C. Bernkopf, A neural
attention model for speech command recognition, 2018. eprint: arXiv:1808.
08929.

[35] Saad, Nwishy, and Shabaan, Ankh: A website for collecting an open source
arabic speech dataset, https://ahmedsaad.pythonanywhere.com/, 2020.

[36] Your Questions Answered channel. (Oct. 2016). 10 hours of people talking,
[Online]. Available: https://www.youtube.com/watch?v=PHBJNN-M_Mo.

[37] Ian J. Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-
Farley, Sherjil Ozair, Aaron Courville, Yoshua Bengio, Generative adversarial
networks. [Online]. Available: https://arxiv.org/pdf/1406.2661.

[38] Alec Radford, Luke Metz, Soumith Chintala, Unsupervised representation
learning with deep convolutional generative adversarial networks. [Online].
Available: https://arxiv.org/abs/1511.06434.

[39] Ishaan Gulrajani, Faruk Ahmed, Martin Arjovsky, Vincent Dumoulin, Aaron
Courville, Improved training of wasserstein gans. [Online]. Available: https:
//arxiv.org/abs/1704.00028.

[40] Ikaros Kun, Python-youtube. [Online]. Available: https://pypi.org/project/
python-youtube/.

[41] Jonas Depoix, Youtube-transcript-api. [Online]. Available: https://pypi.
org/project/youtube-transcript-api/.

[42] Nick Ficano, Pytube. [Online]. Available: https : / / pypi . org / project /
pytube/.

[43] Karen Simonyan, Andrew Zisserman, Very deep convolutional networks for
large-scale image recognition. [Online]. Available: https://arxiv.org/abs/
1409.1556.

[44] Gao Huang, Zhuang Liu, Laurens van der Maaten, Kilian Q. Weinberger,
Densely connected convolutional networks. [Online]. Available: https://arxiv.
org/abs/1608.06993.

[45] Andrew G. Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko, Weijun
Wang, Tobias Weyand, Marco Andreetto, Hartwig Adam, Mobilenets: Efficient
convolutional neural networks for mobile vision applications. [Online]. Available:
https://arxiv.org/abs/1704.04861v1.

[46] Matthijs Hollemans, Mobilenets. [Online]. Available: https://machinethink.
net/blog/googles-mobile-net-architecture-on-iphone/.

117

https://www.kaggle.com/c/state-farm-distracted-driver-detection/data/
https://www.kaggle.com/c/state-farm-distracted-driver-detection/data/
arXiv:1808.08929
arXiv:1808.08929
https://ahmedsaad.pythonanywhere.com/
https://www.youtube.com/watch?v=PHBJNN-M_Mo
https://arxiv.org/pdf/1406.2661
https://arxiv.org/abs/1511.06434
https://arxiv.org/abs/1704.00028
https://arxiv.org/abs/1704.00028
https://pypi.org/project/python-youtube/
https://pypi.org/project/python-youtube/
https://pypi.org/project/youtube-transcript-api/
https://pypi.org/project/youtube-transcript-api/
https://pypi.org/project/pytube/
https://pypi.org/project/pytube/
https://arxiv.org/abs/1409.1556
https://arxiv.org/abs/1409.1556
https://arxiv.org/abs/1608.06993
https://arxiv.org/abs/1608.06993
https://arxiv.org/abs/1704.04861v1
https://machinethink.net/blog/googles-mobile-net-architecture-on-iphone/
https://machinethink.net/blog/googles-mobile-net-architecture-on-iphone/

[47] Sik-Ho Tsang, Xception â” with depthwise separable convolution. [Online].
Available: https://towardsdatascience.com/review- xception- with-
depthwise-separable-convolution-better-than-inception-v3-image-
dc967dd42568.

[48] Barret Zoph , Vijay Vasudevan, Jonathon Shlens, Quoc V. Le, Learning
transferable architectures for scalable image recognition. [Online]. Available:
https://arxiv.org/pdf/1707.07012.

[49] Sergey Zagoruyko, Nikos Komodakis, Wide residual networks. [Online]. Avail-
able: https://arxiv.org/abs/1605.07146.

[50] Saining Xie, Ross Girshick, Piotr DollÃ¡r, Zhuowen Tu, Kaiming He, Aggregated
residual transformations for deep neural networks. [Online]. Available: https:
//arxiv.org/abs/1611.05431.

[51] Yunpeng Chen, Jianan Li, Huaxin Xiao, Xiaojie Jin, Shuicheng Yan, Jiashi
Feng, Dual path networks. [Online]. Available: https://arxiv.org/abs/1707.
01629.

118

https://towardsdatascience.com/review-xception-with-depthwise-separable-convolution-better-than-inception-v3-image-dc967dd42568
https://towardsdatascience.com/review-xception-with-depthwise-separable-convolution-better-than-inception-v3-image-dc967dd42568
https://towardsdatascience.com/review-xception-with-depthwise-separable-convolution-better-than-inception-v3-image-dc967dd42568
https://arxiv.org/pdf/1707.07012
https://arxiv.org/abs/1605.07146
https://arxiv.org/abs/1611.05431
https://arxiv.org/abs/1611.05431
https://arxiv.org/abs/1707.01629
https://arxiv.org/abs/1707.01629

	Acknowledgements
	Table of Contents
	List of Tables
	List of Figures
	Abstract
	Introduction
	Lane Overtaking
	Distraction Detection
	Speech Recognition

	Background
	Automation phases
	Machine Learning
	What is machine learning?
	 History of machine learning
	Types of Machine Learning

	Relation between deep learning and automation
	Deep Learning
	What is deep learning?
	History of deep learning Historydeep
	Models of deep learning
	Impact of increasing data size on deep learning

	Lane Overtaking
	Carla simulator
	Literature Review
	Simulation Setup
	How data is generated?
	Dataset
	Preprocessing

	Materials and Methods
	First approach:CNN with branching
	Second Approach : LSTM with branching

	Results and Discussion
	First Approach:CNN with branching
	Regression Model using branching RGB one image
	Regression Model using branching RGB Four images
	Regression Model using branching Semantic Segmentation one image
	Regression Model using branching Semantic Segmentation Four images
	Regression Model using branching Gray Scale One image

	Second Approach:LSTM with branching
	Regression Model using branching Gray Scale one image

	Distraction Detection
	Literature Review
	Simulation Setup
	Dataset
	Preprocessing
	Unique Drivers Problem
	Augmentation

	Materials and Methods
	End-to-End Classification System
	ResNet50

	Face and Hands Semantic Segmentation
	Image Segmentation
	Region-based Segmentation
	Edge Detection Segmentation
	Image Segmentation Based on Clustering
	Mask R-CNN
	Image Segmentation using Fully Convolutional Networks
	U-Net

	Results and Discussion
	End-to-End Classification System
	State Farm Dataset
	AUC and State Farm Datasets
	Model Optimization and Hardware Acceleration
	Model Interpretability
	Semantic Segmentation

	Speech Recognition
	Literature Review
	Simulation Setup
	Dataset
	English dataset
	Arabic dataset

	Preprocessing
	Dataset distribution and Modeling of the missing classes
	Features level
	Classical augmentation
	GAN as an augmentation network
	Limitations on standard GANs
	Data pre-processing
	GAN architecture and training phase
	Generation and labelling phase

	YouTube dataset generator

	Materials and Methods
	Speech recognition classification networks
	Sequence Models
	CNN Models
	Semi supervised learning

	Results and Discussion

	Discussion and Conclusion
	Conclusion

	References

