

ASIC/FPGA Hardware Implementation of

Izhikevich-based Spiking Neural Network

Using CORDIC Algorithm

Thesis submitted in fulfillment of the requirements for

the award of the Bachelor Degree in

Nanotechnology and Nanoelectronics Engineering

By:

Abdelrahim Mohamed Elnabawy

Hussien Abdelrazik

Moatasem Moustafa

Mostafa Elbediwy

Supervisors:

Dr. Amr Helmy

Dr. Hassan Mostafa

B.Sc in Nanotechnology and Nanoelectronics Engineering

University of Science and Technology at

Zewail City for Science and Technology

JUNE 2018

ii

ACKNOWLEDGEMENTS

First of all, we are so grateful for working under the supervision of Dr. Amr

Helmy and Dr. Hassan Mostafa. We would like to express our gratitude to the supervisors

for their guidance during the whole project period. Dr. Amr Helmy is the first one to

believe in us showing his support starting from the summer period of 2017. He dedicated

some of his worthy time to meet us even outside the official time for graduation project

meeting. In addition, he is the one who introduced this interesting topic to consider it as

our graduation project. We are so thankful to him for his support during this long journey.

Dr. Hassan joined us from the first day of the official graduation project time. Fortunately,

He had a lot of experience and solid knowledge in this field, so he put us on the right

track. Moreover, he supported us with contacts of research assistants and technical

engineers to help us during our project. So, we have to admit that we gained a solid

experience from working under Dr. Hassan supervision. Furthermore, both supervisors

helped us to get two funds from NTRA and ITIC and publish our first conference paper

in NEWCAS conference. It was a great pleasure working under the supervision of both,

Dr. Amr and Dr Hassan. It was an exciting journey that we managed to go through it

thanks to them.

 We are delighted to be supported from Dr. Hatem Fayed and Dr Ahmed Abd

Elsamea from the Mathematical Department at Zewail City for Science and Technology.

They invited us to meet in their offices. In spite of their busy schedule, we brainstormed

and discussed several ideas during the meeting. They gave us a mathematical point of

view to start from. So, we would like to thank them for their encouragement and support.

We also would like to thank Dr. Amr Bayoumi, the Nanotechnology Department Director

at Zewail City for Science and Technology, for providing us with all technical facilities

during our project. He provided us with a separated electronics lab supplied with all the

required tools such as FPGA kits, oscilloscopes, power supplies, Analog kits and

Breadboards. We would like to show our gratitude to Eng. Ahmed abd El Rabou and Eng.

Kirollos Ernest as they were the responsible engineers for our lab. We also want to thank

our colleagues for their support during the previous year by their encouragement,

knowledge and experience.

iii

 We would like to convey our thankful feelings for Eng. Salma Hassan Sayed,

Research Assistant from Cairo University, for helping us to start our track in this project.

She provided us with helpful resources to understand the deep learning concepts and the

neural network types. Also, Eng. Noha Gamal from Mentor Graphics shared with us her

experience with ISE tool to program the FPGA kit. So, we would like to offer both of

them special thanks for their support and guidelines.

 Finally, we would like to express our sincere appreciation to Dr. Shady Agwa. He

dedicated several hours of his valuable time to debug and solve a problem we faced in

the FPGA kit. He did not leave us until the problem is solved.

iv

PUBLICATION

We received a notification that our conference research paper is accepted to be published

in NEWCAS conference held in Montreal, Canada on June 24-27 2018.

A. Elnabawy, H. Abdelmohsen, M. Moustafa, M. Elbediwy, A. Helmy and H. Mostafa,

“A Low Power CORDIC-Based Hardware Implementation of Izhikevich Neuron

Model”, in IEEE International NEWCAS, Montréal, Canada, 2018, In Press.

http://www.tinyurl.com/yc79etsw
http://www.tinyurl.com/yc79etsw
http://www.tinyurl.com/yc79etsw

v

FUNDING AWARDS

This project is awarded two funding grants of 10,000 L.E each from:

i. National Telecom Regulatory Authority (NTRA).

ii. Information Technology Academia Collaboration (ITAC) Program at

Information Technology Industry Development Agency (ITIDA).

http://www.tra.gov.eg/en/SitePages/default.aspx
http://www.itida.gov.eg/En/Pages/home.aspx
http://www.itida.gov.eg/En/Pages/home.aspx

vi

ABSTRACT

The project presents a significant contribution to the design and Very Large-Scale

Integration (VLSI) implementation of Spiking Neural Networks (SNN) with low power

consumption and better area utilization. The project aims to approximate a certain neuron

model which is the building block of the neural network to reduce the network complexity

while maintaining an adequate level of accuracy. Furthermore, the thesis contributes with

original novel work to the neuromorphic computing field which is briefly explained

below.

In this project, an efficient CORDIC-based hardware implementation of the

Izhikevich neuron model is introduced. The CORDIC (COordinate Rotation Digital

Computer) algorithm is used to approximate the square term in Izhikevich equations that

describe the neuron response. The approximation is evaluated by defining four types of

errors where the CORDIC approximation shows significant improvement in error

performance compared to the Piecewise Linear (PWL) model [1]. Two additional

approximation algorithms, Integral Sum and Iterative Logarithmic, have been proposed

other than CORDIC algorithm. Yet, CORDIC algorithm has been proved the most

accurate one.

For ASIC flow, the power consumption of the CORDIC-based neuron hardware

implementation ranges from 0.26 mW to 0.4 mW whereas the PWL-based neuron as well

as the original Izhikevich neuron hardware implementations consume 0.3 mW and 1.06

mW, respectively. A Figure of Merit (FoM) is defined to show the trade-off among errors,

power and area. By comparing with the PWL-based neuron hardware implementation, it

is found that the CORDIC-based model is preferred as an approximation method from

FoM perspective.

 In order to further investigate the performance of the CORDIC-based

approximation of the neuron model against other approximation models, the different

approximations of the Izhikevich neuron model have been implemented on Xilinx

ZYNQ-7 ZC702 Evaluation FPGA Board. The original Izhikevich neuron model has

exhibited a high-power consumption (3.73 mW) and number of LUTs (1030). Both the

vii

CORDIC-based neuron model and the PWL-based neuron model performed significantly

better than the original model from power and area perspective. Although the PWL-based

neuron model consumed less power than the CORDIC-based neuron, the latter used a

lower number of LUTs.

Furthermore, a feedforward neural network of two layers with 210 neurons in

total (200,10) is simulated using the original Izhikevich neuron model, the PWL-based

neuron as well as the CORDIC-based neuron. MNIST dataset is used to train and test the

network [2]. The original Izhikevich neuron-based network achieves an accuracy of 89%

while the CORDIC-based network achieves a better accuracy (86.5% to 88%) than the

PWL-based one (85.5%).

Finally, real time FPGA implementation outputs are monitored using an

oscilloscope for the purpose of behavioural verification. Spartan-6 FPGA SP605

Evaluation Kit is programmed with a single CORDIC-based Izhikevich neuron and

connected to an oscilloscope in Digilent Analog Discovery 2 kit. It is found that the

CORDIC-based Izhikevich neuron can exhibit the tonic spiking behavior correctly.

viii

TABLE OF CONTENT

TITLE PAGE

ACKNOWLEDGEMENTS ii

PUBLICATION iv

FUNDING AWARDS v

ABSTRACT vi

TABLE OF CONTENT viii

LIST OF TABLES xii

LIST OF FIGURES xiii

LIST OF SYMBOLS xvi

LIST OF ABBREVIATIONS xvii

CHAPTER 1 INTRODUCTION 1

1.1 The definition of Artificial Intelligence 1

1.2 The history of Artificial intelligence 1

1.3 Classification of Artificial intelligence 3

1.4 Software versus Hardware- based Artificial Intelligence 4

CHAPTER 2 LITERATURE REVIEW 5

2.1 The Biological neuron: 5

2.2 The artificial neuron: 6

2.3 Types of Neural Networks 6

2.3.1 Artificial Neural Network (ANN) 6

2.3.2 Convolutional Neural Network (CNN) 9

ix

2.3.3 Spiking Neural Network (SNN) 12

2.3.4 Neural Network Comparison 14

2.4 Different spiking behaviours of the biological neuron 14

2.5 Different Spiking Neuron Models 22

2.5.1 Integrate and Fire (IF) Neuron Model: 23

2.5.2 Hodgkin–Huxley (HH) Neuron Model: 24

2.5.3 Izhikevich Neuron Model: 24

2.5.4 Comparison between the neuron models: 26

2.6 Types of Learning Algorithms 27

2.6.1 The Supervised Learning 27

2.6.2 The Unsupervised Learning 27

2.6.3 The Reinforcement Learning 28

2.7 Online Learning Versus Offline Learning 29

2.8 Different Network structures 30

2.8.1 Feedforward Structure 30

2.8.2 Recurrent Structure 30

CHAPTER 3 PROBLEM DEFINITION AND OUR CONTRIBUTION 31

3.1 Model accuracy versus power consumption 31

3.2 Problem in Izhikevich model 31

3.3 Our contribution 32

3.4 The flow of our work 33

CHAPTER 4 SINGLE IZHIKEVICH NEURON 37

4.1 The proposed approximation methods 37

4.1.1 Piece-Wise Linear approximation (Previous work) 37

x

4.1.2 COordinate Rotation Digital Computer algorithm 39

4.1.3 Iterative Logarithmic method 41

4.1.4 Integral Sum 44

4.2 Error definition and calculation 45

4.2.1 ERRp error definition 46

4.2.2 MAE error definition 46

4.2.3 RSEE error definition 46

4.2.4 MERRt error definition 47

4.2.5 MATLAB-based error calculation 48

4.3 Design and system architecture 48

4.4 VERILOG code simulation and ASIC/FPGA implementation 49

4.5 Comparison between CORDIC at n=10, PWL and original neuron models 52

4.5.1 Error comparison based on VERILOG results 52

4.5.2 Power/Area comparison in ASIC/FPGA platforms 53

4.6 Power/Area/Error trade-off in ASIC platforms 54

4.7 Comparison between CORDIC at n=5, PWL and original neuron models 56

4.7.1 Error comparison based on VERILOG results 56

4.7.2 Power/Area comparison in ASIC/FPGA platforms 56

CHAPTER 5 SPIKING NEURAL NETWORK 58

5.1 MNIST database 58

5.2 Input image preparation 59

5.3 Network structure 60

5.4 Rate-based Neural coding and Backpropagation algorithm 61

5.5 A case study of training and testing the Spiking Neural 62

5.6 Spiking Neural Network error evaluation 64

xi

5.6.1 Error based on the used number of training images versus the

network accuracy 64

5.6.2 Error based on the frequency of the target neuron versus the

number of learning iterations 65

5.6.3 Error based on the output value versus the number of learning

iterations 66

5.6.4 The effect of error reduction on the delta weight value 66

5.7 Spiking Neural Network comparison 67

CHAPTER 6 REAL TIME FPGA OUTPUTS DEMONSTRATION 69

6.1 The experimental setup of the FPGA implementation 69

6.2 The real time results of the FPGA implementation 72

CHAPTER 7 ECONOMIC ANALYSIS 73

7.1 The market share of Deep Neural Network 73

7.2 The Investment Growth of Hardware-based Deep Learning Applications 74

7.3 The estimated fabrication cost of hardware implementation in ASIC and FPGA

platforms 75

CHAPTER 8 CONCLUSION 76

REFERENCES 77

APPENDIX MATLAB SOURCE CODE 79

xii

LIST OF TABLES

Table 4.1 Error calculation of the approximation methods based on MATLAB

results. 48

Table 4.2 ERRp and MAE for the PWL-based and the CORDIC-based (n

=10) Izhikevich models. 53

Table 4.3 RSEE and MERRt for the PWL-based and the CORDIC-based (n

=10) Izhikevich models in VERILOG. 53

Table 4.4 The ASIC implementation comparison for the original, the

CORDIC-based (n =10) and the PWL-based Izhikevich models at

frequency = 9.1 MHz. 53

Table 4.5 The FPGA implementation comparison for the original, the

CORDIC-based (n =10) and the PWL-based Izhikevich models at

frequency = 9.1 MHz. 54

Table 4.6 ERRp and MAE for the PWL-based and the CORDIC-based (n =5)

Izhikevich models. 56

Table 4.7 RSEE and MERRt for the PWL-based and the CORDIC-based (n

=5) Izhikevich models in VERILOG. 56

Table 4.8 The ASIC implementation comparison for the original, the

CORDIC-based (n =5) and the PWL-based Izhikevich models at

frequency = 9.1 MHz. 56

Table 4.9 The FPGA implementation comparison for the original, the

CORDIC-based (n =5) and the PWL-based Izhikevich models at

frequency = 9.1 MHz. 57

Table 5.1 Spiking Neural Network performance based on CORDIC, PWL and

Original neuron models. 68

Table 7.1 The estimated fabrication cost for the prototype in ASIC and FPGA

platforms. 75

Table 7.2 The estimated fabrication cost for each individual SNN in the

production line of 1,000 chips. 75

xiii

LIST OF FIGURES

Figure 1.1 The founders of Artificial Intelligence. (a) Warren McCulloch. and

Walter Pitts. (b) Donald Hebb. (c) Marvin Minsky. (d) Alan Turing.

(e) John McCarthy. 3

Figure 1.2 Classification of Artificial Intelligence. 4

Figure 2.1 The biological neuron. 5

Figure 2.2 The artificial neuron. 6

Figure 2.3 The perceptron. 7

Figure 2.4 The sigmoid function. 8

Figure 2.5 Feedforward structure of ANN. 9

Figure 2.6 Convolutional Neural Network (CNN). 10

Figure 2.7 Activation map. 10

Figure 2.8 Pooling layer. 11

Figure 2.9 The behaviour of the biological neuron. 12

Figure 2.10 The spiking neuron’s main components. 13

Figure 2.11 Tonic Spiking. 14

Figure 2.12 Phasic Spiking. 15

Figure 2.13 Tonic Bursting. 15

Figure 2.14 Phasic Bursting. 16

Figure 2.15 Mixed Mode. 16

Figure 2.16 Spike Frequency Adaptation. 16

Figure 2.17 Class 1 Excitability. 17

Figure 2.18 Class 2 Excitability. 17

Figure 2.19 Spike Latency. 17

Figure 2.20 Subthreshold Oscillations. 18

Figure 2.21 Frequency Preference and Resonance. 18

Figure 2.22 Integration and Coincidence Detection. 19

Figure 2.23 Rebound Spike. 19

Figure 2.24 Rebound Burst. 19

Figure 2.25 Threshold Variability. 20

Figure 2.26 Bistability of Resting and Spiking States. 20

Figure 2.27 Depolarizing After-Potentials. 21

Figure 2.28 Accommodation. 21

Figure 2.29 Inhibition-Induced Spiking. 22

Figure 2.30 Inhibition-Induced Bursting. 22

xiv

Figure 2.31 Comparison between different spiking neuron models in their ability

to exhibit certain spiking behaviors and their computational

complexity. 23

Figure 2.32 20 biological neuron behaviors produced by Izhikevich neuron

model. 25

Figure 2.33 Izhikevich model paramters values to generate different neural

behaviors like the biological neuron. 26

Figure 2.34 Accuracy versus Complexity of different neuron models. 26

Figure 2.35 The Supervised Learning. 27

Figure 2.36 The Unsupervised Learning. 27

Figure 2.37 The Reinforcement Learning. 28

Figure 2.38 Specialization by Learning Algorithms by Doya in 1999. 28

Figure 2.39 Feedforward Neural Network Structure. 30

Figure 2.40 Recurrent Neural Network Structure. 30

Figure 3.1 The basic required knowledge and skills before starting our

neuromorphic computing project. 33

Figure 3.2 Determining the type of network to be implemented. 34

Figure 3.3 After choosing Spiking Neural Network, we have to choose the

spiking neuron model that is suitable for our performance matrix. 34

Figure 3.4 After choosing Izhikevich neuron model, propose approximation

methods and choose the most accurate one. 35

Figure 3.5 High level language optimization and comparison among different

approximation methods. 35

Figure 3.6 Implementation of the most suitable approximation methods to test

the hardware implemented in ASIC/FPGA platforms. 36

Figure 4.1 2nd order PWL approximation. 38

Figure 4.2 3rd order PWL approximation. 38

Figure 4.3 4th order PWL approximation. 39

Figure 4.4 The pseudocode of the CORDIC-based squaring. 40

Figure 4.5 The pseudocode of the iterative logarithmic-based squaring. 42

Figure 4.6 The pseudocode of the integral sum-based squaring. 45

Figure 4.7 ERRp error. 46

Figure 4.8 ERRt error. 47

Figure 4.9 Izhikevich neuron architecture (The exact connection is not shown

to avoid any confusion). 48

Figure 4.10 Floating-point and fixed-point representations. 49

Figure 4.11 Tonic spiking behavior simulated in ModelSim. 50

Figure 4.12 Two rapid spikes fired by the Izhikevich neuron. 50

xv

Figure 4.13 ASIC chip LAYOUT. 51

Figure 4.14 FPGA chip LAYOUT. 52

Figure 4.15 FoM versus n where the point at which ERR, P and A are minimum

is n = 5 55

Figure 5.1 Sample from the MNIST dataset. 58

Figure 5.2 Input image pixel map of MNIST dataset. 59

Figure 5.3 Our Feedforward Spiking Neural Network Structure. 60

Figure 5.4 Neuron frequency calculation. 62

Figure 5.5 This study is conducted using only one training image. (a) The

behavior of neuron #1 before the learning process. (b) The behavior

of neuron #5 before the learning process. (c) The behavior of neuron

#1 after the learning process. (a) The behavior of neuron #5 after the

learning process. 63

Figure 5.6 This study tests the network using a new image of number five after

training the network with 60,000 images. (a) The low frequency of

neuron #1. (b) The high frequency of neuron #5. 64

Figure 5.7 The number of taining images versus the network accuracy. 64

Figure 5.8 Relative frequency error versus the number of learning iterations.

After training with 60,000 images, the error saturates around 30% at

the end. 65

Figure 5.9 The relation between the output number and the target number

versus the learning iterations. 66

Figure 5.10 The delta weights changes during the learning process. 67

Figure 6.1 Spartan-6 FPGA SP605 Evaluation Kit. 69

Figure 6.2 Digilent Analog Discovery 2 kit. 70

Figure 6.3 The connection between the Spartan FPGA and the Discovery kit to

demonstrate the spike signal on the oscilloscope. 71

Figure 6.4 The whole system altogether. 71

Figure 6.5 The tonic spiking behavior demonstrated by the spike signal. 72

Figure 6.6 A closer look on the 2 rapid spikes fired at the beginning in the tonic

spiking behavior. 72

Figure 7.1 The market share of global neural network software in 2016. 73

Figure 7.2 The investment growth of Hardware-based Deep Learning

Applications from 2014 to 2025 in USD million. 74

xvi

LIST OF SYMBOLS

𝑤 Connection weight

𝐼 Neuron input current

𝐶𝑚 Membrane capacitance

𝑉𝑚 Membrane voltage

𝑉𝑡ℎ Threshold voltage

𝑡𝑟𝑒𝑓 Refractory period

𝑣 Membrane potential

𝑢 Recovery variable

𝑎 Izhikevich model parameter

𝑏 Izhikevich model parameter

𝑐 Izhikevich model parameter

𝑑 Izhikevich model parameter

∆𝑡 Time step

𝑚 Limit on the integer term

𝑛 Limit on the Fraction term

𝐸𝑅𝑅𝑝 Local minimum error

𝐸𝑅𝑅𝑡 Time difference error

𝑀𝐸𝑅𝑅𝑡 Mean time difference error

𝜎 Sigmoid function

xvii

LIST OF ABBREVIATIONS

AI

SNARC

Artificial Intelligence

Stochastic Neural Analog Reinforcement Calculator

NN Neural Network

ANN Artificial Neural Network

CNN Convolutional Neural Network

SNN Spiking Neural Network

CPU Central Processing Unit

GPU Graphical Processing Unit

ReLU Rectified Linear Units

LIF Leaky Integrate and Fire

HH Hodgkin-Huxley

FM Frequency Modulated

DAP Depolarized after-potential

IF Integrate and Fire

FPGA Field Programmable Gate Array

ASIC Application Specific Integrated Circuit

IOT Internet of Things

PWL Piece-Wise Linear

CORDIC COordinate Rotation Digital Computer

ILM Iterative Logarithmic Method

xviii

HDL Hardware Description Language

AdEx Adaptive Exponential

MAE Mean Absolute Error

RSEE Relative Spike Energy Error

FoM Figure of Merit

GM Geometric Mean

AM Arithmetic Mean

GMW Weighted Geometric Mean

LUT Look Up Table

DSP Digital Signal Processor

MNIST Modified National Institute of Standards and Technology

NIST National Institute of Standards and Technology

GPIO

USD

General Purpose Input/Output

United States Dollar

CAGR Compound annual growth rate

1

CHAPTER 1

Introduction

1.1 The definition of Artificial Intelligence

Human beings are distinguished from other living things by their intelligence. As

a society of intelligent creatures, we are capable of thinking, planning, learning, problem

solving and many other activities that stimulate our minds.

Inspired by human brain, scientists and engineers are trying to understand how

the brain works, mimic its functionality and build an artificial one that provides machines

with the ability to think and decide. Started early in the 50’s, Artificial Intelligence,

abbreviated as “AI”, is one of the recently established fields in science and engineering.

AI is a new branch of Computer Science that aims to build intelligent machines that can

think, learn and manipulate [3].

Traditional machines are instruction-based. By following restrict instruction, they

can perform a certain task or function. Instruction-based machines produce a predicted

well-defined output. Using AI, machines can learn, think and decide how the output

should look like. Such a capability enables the machines to perform complex tasks such

as recognition and classification.

1.2 The history of Artificial intelligence

The first attempt that could be considered as AI was performed by Warren

McCulloch and Walter Pitts (Figure 1.1 (a)) in 1943. Their knowledge was based on

information from physiology, proposition logic and Turing’s theory of computation.

They managed to create the first artificial neuron model that described how the neuron

behaved. Their model was the early start of building artificial neural networks later [3].

2

In 1949, Donald Hebb (Figure 1.1 (b)) proposed a rule, called “Hebbian learning

rule”, that governed the connection strength between neurons. His rule, states that the

neural connection strength is increased if the neurons fire simultaneously. Hebb’s rule is

a fundamental rule in AI that is used till now [3].

After a year, Marvin Minsky (Figure 1.1 (c)) managed to build a computer based

on neural network with the help of Dean Edmonds. SNARC (Stochastic Neural Analog

Reinforcement Calculator) is a neural network machine that simulates a network of 40

neurons. Their work is considered the first AI-based product [3].

One of the earliest pioneers in the 50’s is Alan Turing (Figure 1.1 (d)). His

inspiration paved the road for scientists and engineers to develop and flourish the field of

AI. His contributions to AI field included, but not limited to, the Turing Test, machine

learning, genetic algorithms, and reinforcement learning [3].

The official birth of Artificial intelligence was in 1956 when John McCarthy

(Figure 1.1 (e)) used the term “Artificial intelligence” in his speech when he invited

inspired scientists to a 2-month workshop. During this workshop, they tried to establish

the basics of how machines could learn, think and solve problems [3].

3

Figure 1.1 The founders of Artificial Intelligence. (a) Warren McCulloch. and

Walter Pitts. (b) Donald Hebb. (c) Marvin Minsky. (d) Alan Turing. (e) John McCarthy.

1.3 Classification of Artificial intelligence

After several decades, the science of AI has developed significantly to include

different aspects. AI is divided mainly into two categories, Symbolic Learning and

Machine Learning, as shown in Figure 1.2. The difference between the two categories is

in the way of learning that the former is symbolic-based learning while the latter is data-

based learning. In the Symbolic Learning, the machines learn the ability to move, avoid

obstacles in the Robotics and recognize objects in computer vision. This aspect requires

previous knowledge from Image Processing field [3].

The other main aspect is Machine learning that is mainly concerned about

recognizing patterns. Machine learning is divided into two main topics, Statistical

learning and Deep Learning or Neural Networks. In statistical learning, machines learn

how to understand and recognize voices as well as natural languages. Deep learning

builds a network of neurons that are capable of doing a certain function. Neural Network

(NN) includes, but not limited to, three types which are Artificial Neural Network (ANN),

4

Convolutional Neural Network (CNN) and Spiking Neural Network (SNN) which are

discussed in details in the next chapter [3].

Figure 1.2 Classification of Artificial Intelligence.

1.4 Software versus Hardware- based Artificial Intelligence

Recently, A lot of great applications have been implemented as a software

program. Software-based AI has accomplished great achievements; however, software

has limitations. It is limited by the power consumption and CPU/GPU speed. As an

alternative, companies started to focus on implementing AI as a hardware product [4].

Several recent commercial hardware products have been revealed. Companies

moved towards hardware to take advantage of higher speed and lower power

consumption. This turn will require exploring new hardware architecture than the

traditional ones. A lot of research will be conducted to explore new custom hardware that

is specialized for Artificial Intelligence to hit the performance limits [4]. The hardware-

based AI growth and its market share are discussed in details later on in the economic

analysis chapter.

5

CHAPTER 2

Literature review

2.1 The Biological neuron:

The biological neuron is the building block of our human brain. The brain consists

of billions of neurons that are connected together to form a neural network responsible

for thinking and making decisions. The biological neuron consists of three main

components as shown in Figure 2.1 [5]:

a) Dendrites: receives signals from neighbour neurons and synapses.

b) A cell body (Soma): processes the signals received.

c) An axon: sends processed signals out to other neurons.

Figure 2.1 The biological neuron.

6

2.2 The artificial neuron:

Mimicking the biological neuron, the artificial neuron also has a number of inputs,

a processing block and an output that can be connected to multiple neurons as shown in

Figure 2.2. Different neuron and neural network models differ in the design of the

processing block; however, the main concept is the same and similar to that of the

biological neuron. The artificial neuron as well as the neural network will be discussed

in details later in this chapter [6].

Figure 2.2 The artificial neuron.

2.3 Types of Neural Networks

Neural networks are one of the basics principles in the field of Artificial

Intelligence [5]. There are several types of neural networks including, but not limited to,

Artificial Neural Network (ANN), Convolutional Neural Network (CNN) and Spiking

Neural Network (SNN).

2.3.1 Artificial Neural Network (ANN)

ANN is considered as a basic computing system inspired by the biological neural

network. The basic component of ANN is the artificial neuron. Those neurons are

implemented to mimic the computation process done inside the soma of the biological

neuron. ANN is a matrix constructed by interconnecting many of those artificial neurons.

Artificial neurons differ from each other according to the computation function used. To

understand how the neuron works, a simple form of the artificial neuron, called the

Perceptron, is illustrated below in Figure 2.3 [5].

7

Figure 2.3 The perceptron.

The perceptron is considered as an early version of the sigmoid neuron. It takes

several inputs and produces a single output as a binary digit “0” or “1”. Each input has a

weight that represents the input strength. Inputs are multiplied by their weights. The

output of the perceptron is determined by summing all the weighted inputs. If the

summation is greater than the threshold, the result is logic 1 and if it is less than the

threshold, the result is logic 0. The threshold is a neuron-related parameter used to limit

the firing. The perceptron mathematical form is represented in (1) as follows [7]:

 𝑜𝑢𝑡𝑝𝑢𝑡 =

{

 0 ∑𝑤𝑗𝑥𝑗 ≤ 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑

𝑗

1 ∑𝑤𝑗𝑥𝑗 > 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑

𝑗

 (1)

Where 𝑥𝑗 represents the input’s value and the 𝑤𝑗 represents the weight’s value of

neuron 𝑗.

On the other hand, the perceptron model is a simple form of the neuron that it has

some drawbacks. it is unrealistic to mimic the biological neuron as a binary number either

“1” or “0”. In addition, the function is very sensitive that the output can flip from “1” to

8

“0” or the opposite if a slight change in the inputs or the weights occurs. This has led to

develop the sigmoid neuron [7].

Sigmoid neuron is the most commonly used neuron in ANN. Sigmoid neuron is

considered an improved version of the perceptron. The aim is to overcome the sensitivity

problem of the perceptron. Consequently, any small change in the inputs or the weights

will result in a small change in the output. The sigmoid neuron looks like the perceptron

in its structure that it takes many inputs and produces a single output. Unlike the

perceptron, the output will not be in a binary form. Instead, the output can take any value

between 0 and 1. The sigmoid function is defined in (2) as follows [7]:

 𝜎(𝑤. 𝑥 + 𝑏) =
1

1 + 𝑒−(∑ 𝑤𝑗𝑥𝑗+𝑏𝑗)
 (2)

Where b is an overall bias applied to the neuron.

The sigmoid function formula looks difficult, but it is similar in shape to the

perceptron when plotted. The perceptron is plotted as a step function, but the sigmoid

function is plotted in Figure 2.4 as follows [7]:

Figure 2.4 The sigmoid function.

9

The architecture of ANN is divided into several layers. Each layer has its name

and function. The leftmost (first) layer is called the input layer because it is the layer that

deals with the inputs directly. The rightmost (last) one is called the output layer because

it is the one that produces the output. Any middle layer is called a hidden layer. The

network could have many hidden layers or no hidden layer at all. Each neuron in any

layer is connected to all neurons in the next layer as well as the previous layer. Such a

structure is called feedforward that will be discussed in details later on this chapter. The

network is represented in Figure 2.5 as follows [7]:

Figure 2.5 Feedforward structure of ANN.

Those layers do some computation according to the applied input and then, send

their results to the next layer which performs the same process until the final network

output is ready at the output layer [7].

2.3.2 Convolutional Neural Network (CNN)

The Convolutional Neural Network (CNN) is one of the currenlty used type of

neural networks. CNN is mainly designed for image recognition applications. This type

of neural network is inspired biologically from the visual cortex. The input of this

network is always an array of pixels’ values. The number of pixels is dependent on the

resolution and the size of the image. The value of the pixel is dependent on the features

inside the image. The output of the CNN is a probability of some classes. CNN has a

distinct structure not like any other neural network as shown in Figure 2.6 [8].

10

Figure 2.6 Convolutional Neural Network (CNN).

The structure of the CNN consists of a series of layers including, convolutional

layer, Nonlinear layer, Pooling layer, Dropout layer and Fully connected layer. Each layer

has its functionality and could be replicated more than one time [8].

The convolutional layer is directly connected to the input image. This layer is

considered as a filter to scan a specific feature in the image. The filter is an array of

weights applied to the inputs. The size of the chosen filter is compared with the original

image and the desired resolution. The filter is moved to scan the whole image. The output

of the filter is only one pixel. Accordingly, the image size will decrease at the end. Such

an operation is called activation map illustrated in Figure 2.7 [8].

Figure 2.7 Activation map.

11

Rectified Linear Units (ReLU) layer is a nonlinear layer. This layer is interspersed

between these convolutional layers. They provide nonlinearity, preservation of

dimension and improve robustness. The ReLU layer applies the function f(x) = max (0,

x) to all of the elements in the input volume [8].

Pooling layer is considered a down sampling layer as shown in Figure 2.8. This

layer uses a filter to choose and compute the maximum-valued pixel. Moreover, pooling

layer is used to control the overfitting problem. Such a problem occurs when the network

cannot produce a correct output when a test set is applied. The reason is that training set

makes the network over-biased [8].

Figure 2.8 Pooling layer.

Dropout layer is used during the training time, but never used during the test time.

This layer performs a specific function in the CNN where it “drops out” a random set of

activations in that layer by setting them to zero. It helps in solving the problem of

overfitting [8].

Fully Connected Layer works as a network itself. It works by taking the output of

the previous layer then, determines which feature is the most correlated one to a particular

class [8].

12

2.3.3 Spiking Neural Network (SNN)

Spiking Neural Network (SNN) is considered as the third generation of neural

networks where the level of the realism has been increased. SNN can do not only

recognition, but also data analysis and learning. The spiking neuron is the main

component of SNN where it mimics the neuron of human’s brain. Like the perceptron

and sigmoid neurons, the spiking neuron can take many inputs and produce one output.

The input of the spiking neurons is a current and the output is a train of spikes. This type

of neuron is not supposed to fire each propagation cycle, but only when the membrane

potential exceeds a specific value [9].

The behaviour of the spiking neuron is shown in Figure 2.9. when the neuron’s

membrane voltage is less than the threshold, the voltage accumulates till it reaches the

threshold as long as a stimulus current is applied. when the membrane voltage reaches

the threshold, the membrane voltage overshoots until it reaches the peak voltage, which

is the maximum allowable value for the membrane voltage. Then, the membrane voltage

drops down to a negative value during the refractory period until it reaches its resting

state at the end [9].

Figure 2.9 The behaviour of the biological neuron.

13

Each spiking neuron consists of three main computational stages as shown in

Figure 2.10. The first stage is the sum of all inputs’ currents. The second one does a

certain computation. It integrates the output of the first stage over the time. The third

stage is responsible for emitting the spikes and resetting the value of the membrane

potential after a spike is fired [9].

Figure 2.10 The spiking neuron’s main components.

There are several mathematical models for the spiking neuron such as Integrate

and Fire (IF) model, Hodgkin-Huxley (HH) model and the Izhikevich model. Each model

has advantages and disadvantages. The IF model is very simple, but it does not produce

an accurate neural behaviour. The HH model can produce a very accurate neural

behaviour, but it is very complex. The Izhikevich model is considered as the trade-off

between the two previous models that it can produce an accurate behaviour while being

quite simple [10].

 The structure of the SNN is not different from the structure of the ANN. It consists

of layers connected to each other including, input layer, hidden layer(s) and output layer.

Also, there could be more than one hidden layer or no hidden layer at all.

14

2.3.4 Neural Network Comparison

As explained before, each type of neural network has its advantages and

disadvantages. ANN is the simplest one from implementation perspective since its neuron

model is the simplest. In addition, ANN accuracy reached high levels. However, ANN

cannot mimic the biological neuron and produce accurate neural behavior. Although

CNN is compatible with image recognition applications, CNN is more complex than

ANN. The SNN is the highest complexity compared with ANN and CNN. However, SNN

is the most capable network to mimic the human brain behavior. In addition, SNN is the

only type of neural networks that introduced the concept of the time. All previous

advantages make SNN the most promising neural network towards more realistic

applications. A lot of research has to be done in order to decrease SNN complexity.

2.4 Different spiking behaviours of the biological neuron

The Biological neuron is capable of exhibiting different spiking behaviours in

response to various DC currents. Although the interactions between billions of neurons

results in tremendous spiking behaviours, there exist 20 prominent spiking behaviours

that are known and used in creating artificial neural networks [11]:

A) Tonic Spiking: The neuron is inactive in general unless the input current is on. In

that case, the neuron fires a train of spikes. The neuron fires two rapid spikes at the

beginning then, it fires a spike once every certain constant period [11].

Figure 2.11 Tonic Spiking.

B) Phasic Spiking: The neuron fires only once when the input current is turned on

then, it becomes inactive again, whether the input current is still on or changed to

15

off. It is useful in detection of the current stimulation start. The inter-burst

frequency may get as high as 50 Hz [11].

Figure 2.12 Phasic Spiking.

C) Tonic Bursting: The neuron fires periodic bursts of spikes when stimulated with

input current [11].

Figure 2.13 Tonic Bursting.

D) Phasic Bursting: Similar to phasic spiking but, it produces a burst of spikes at the

beginning of the current stimulation only. However, bursts are favoured due to its

immunity against neural noise [11].

16

Figure 2.14 Phasic Bursting.

E) Mixed Mode: The neuron combines the behaviour of both phasic bursting and

tonic spiking. It produces a burst of spikes at the start of the stimulation then,

moves to the tonic spiking behaviour by producing a spike train as long as the

stimulation is going on [11].

Figure 2.15 Mixed Mode.

F) Spike Frequency Adaptation: The neuron fires as tonic spiking but, with a

decreasing frequency. It starts with a high frequency at the start of the stimulation

then, decreases with time till the end of the current stimulation [11].

Figure 2.16 Spike Frequency Adaptation.

17

G) Class 1 Excitability: It performs a tonic spiking but, with a variable frequency

that depends on the strength of the input stimulation. The spikes frequency ranges

from 2 to 200Hz [11].

Figure 2.17 Class 1 Excitability.

H) Class 2 Excitability: the neuron should work the same as Class 1 Excitability but,

it cannot fire a very low frequency spike trains [11].

Figure 2.18 Class 2 Excitability.

I) Spike Latency: The neuron fires a delayed spike after the stimulation. The delay

is proportional to the strength of the stimulation current [11].

Figure 2.19 Spike Latency.

18

J) Subthreshold Oscillations: Neurons are able to exhibit oscillatory potential. The

neurons behave like a bandpass filter where the frequency of the oscillations is an

important characteristic [11].

Figure 2.20 Subthreshold Oscillations.

K) Frequency Preference and Resonance: Neurons have a selective frequency of

stimulation spikes that resonate only with their subthreshold oscillations causing a

spike to be fired at their outputs. These neurons can represent a Frequency

Modulated (FM) signals [11].

Figure 2.21 Frequency Preference and Resonance.

L) Integration and Coincidence Detection: Neurons that do not produce oscillatory

potential and act as integrators. It fires more likely with high frequency input. It is

useful for detecting coincident spikes [11].

19

Figure 2.22 Integration and Coincidence Detection.

M) Rebound Spike: Neurons fire a rebound spike after receiving an inhibitory input

[11]. It can be used as a detection for inhibitory current.

Figure 2.23 Rebound Spike.

N) Rebound Burst: Similar to Rebound Spike but, it produces a rebound burst of

spikes after receiving an inhibitory input [11].

Figure 2.24 Rebound Burst.

O) Threshold Variability: A very common misconception is that the neurons have

fixed threshold. In this neural behaviour, the neuron is being exposed to a specific

excitatory input, no spikes are noticed which means the input does not exceed the

threshold. Another inhibitory stimulation is applied to the neuron before applying

20

the same old excitatory input one more time. The neuron now fires a spike which

means the threshold has been reduced after the exposure to inhibitory input.

Similarly, an excitatory input might cause the threshold to increase and the neuron

becomes less excitable [11].

Figure 2.25 Threshold Variability.

P) Bistability of Resting and Spiking States: Some neurons can exhibit multiple

modes of operation (e.g. resting and tonic spiking). An input pulse (inhibitory or

excitatory) can result in a switch between modes which opens the door for a short-

term memory behaviour. However, a switch from the tonic spiking to resting mode

requires the input stimulation to arrive at an appropriate phase of oscillation which

highlights the importance of spike timing in processing [11].

Figure 2.26 Bistability of Resting and Spiking States.

Q) Depolarizing After-Potentials: The neuron membrane potential exhibits a

prolonged depolarized after-potential (DAP). DAPs appear as a result of a high-

threshold input current activated during the spike [11].

21

Figure 2.27 Depolarizing After-Potentials.

R) Accommodation: Although neurons are sensitive to short stimulation pulses, a

strong but slowly increasing ramped input current may not cause a spike fire.

Throughout the ramp stimulation, the inward membrane currents have enough time

to inactivate while outward membrane currents have enough time to activate,

which means that the neuron accommodates and becomes less excitable [11].

Figure 2.28 Accommodation.

S) Inhibition-Induced Spiking: When the injected current activates the h-current

and deactivates calcium T-current, tonic spiking is fired even if the input

stimulation is inhibitory [11].

22

Figure 2.29 Inhibition-Induced Spiking.

T) Inhibition-Induced Bursting: Similar to Inhibition-Induced Spiking but, it

produces a burst train of spikes instead [11].

Figure 2.30 Inhibition-Induced Bursting.

2.5 Different Spiking Neuron Models

Some of the previously mentioned neuron properties are mutually exclusive. A

neuron cannot be a resonator and an integrator at the same time, that is why no model can

exhibit all these properties simultaneously. Nevertheless, some models can exhibit

different computational properties by tuning some model parameters that control the

neuron model behaviour as shown in Figure 2.31. Three common neuron computational

models are: Integrate and Fire (IF), Hodgkin and Huxley (HH) and Izhikevich [11].

23

Figure 2.31 Comparison between different spiking neuron models in their ability to

exhibit certain spiking behaviors and their computational complexity.

2.5.1 Integrate and Fire (IF) Neuron Model:

It is considered one of the simplest models that describe the neuron behavior. The

neuron is defined in (3) as:

 𝐼(𝑡) = 𝐶𝑚
𝑑𝑉𝑚(𝑡)

𝑑𝑡
 (3)

Which is basically the derivative of the capacitance law with respect to time. When an

input current is applied to the neuron, the membrane voltage increases until it reaches a

certain value, threshold voltage, then a spike is be fired and the membrane voltage is reset

to the resetting potential value [11].

The model at this form is not accurate enough as the firing frequency increases

linearly with the input current without any upper bound for the firing frequency. To

enhance the model and accommodate this problem, the concept of refractory period (tref)

is introduced. The refractory period is the amount of time after the spike during which

firing new spikes is not allowed. The firing frequency can be formulated as in (4) [11]:

24

 𝑓(𝐼) =
𝐼

𝐶𝑚𝑉𝑡ℎ + 𝑡𝑟𝑒𝑓𝐼
 (4)

2.5.2 Hodgkin–Huxley (HH) Neuron Model:

Hodgkin–Huxley (HH) is one of the most complicated, but accurate models in

computational neuroscience. It consists of four differential equations that describe the

membrane potential, activation of sodium and potassium currents and inactivation of

sodium current. The model has tens of parameters that are tuned to achieve the neural

properties discussed in previous sections. Another good advantage of the HH model is

that all its parameters are biologically meaningful and measurable [11].

2.5.3 Izhikevich Neuron Model:

As illustrated in Figure 2.32, this model can produce the 20 essential biological

neuron behaviors discussed earlier in this chapter. The Izhikevich model consists of two

differential equations describing the biophysical neuron behavior as in (5), (6) and (7)

[10].

 𝑣′ = 0.04𝑣2 + 5𝑣 + 140 − 𝑢 + 𝐼 (5)

 𝑢′ = 𝑎(𝑏𝑣 − 𝑢) (6)

 𝑖𝑓 𝑣 ≥ 30 𝑚𝑉, 𝑡ℎ𝑒𝑛 { 𝑣

←𝑐

𝑢

←𝑢 + 𝑑

 (7)

(5) and (6) describe how the membrane potential 𝑣 and the membrane recovery variable

𝑢 change. (7) is the after-spike resetting equation. The membrane potential 𝑣 and the

recovery variable 𝑢 depend on the following four parameters (𝑎, 𝑏, 𝑐 𝑎𝑛𝑑 𝑑) and the

current I as explained in [10].

25

Figure 2.32 20 biological neuron behaviors produced by Izhikevich neuron model.

As illustrated in Figure 2.33, ‘a’ represents the recovery time of the neuron

controlling the neuron recovery speed after firing. ‘b’ controls the sensitivity of the

membrane recovery variable u. Its value must be determined carefully to avoid

fluctuations or subthreshold firing of the membrane potential 𝑣 . ‘c’ is the after-spike

reset potential of v. ‘d’ determines the reset value of the variable 𝑢 when the after-spike

resetting condition is met. ‘I’ is the synaptic current where it can be excitatory or

inhibitory one [3]. Figure 2.33 shows how tuning the four basic parameters a,b,c and d

can help achieve different neuron behaviors discussed earlier [10].

26

Figure 2.33 Izhikevich model paramters values to generate different neural behaviors

like the biological neuron.

In this work, Euler method is used to solve numerically the differential equations

with time step, ∆𝑡 as Izhikevich suggested in [11]. (8) and (9) show Izhikevich model in

Euler formula as follows:

 𝑣𝑡+∆𝑡 = 𝑣𝑡 + ∆𝑡(0.04𝑣𝑡
2 + 5𝑣𝑡 + 140 − 𝑢𝑡 + 𝐼) (8)

 𝑢𝑡+∆𝑡 = 𝑢𝑡 + ∆𝑡 ∗ 𝑎(𝑏𝑣𝑡 − 𝑢𝑡) (9)

2.5.4 Comparison between the neuron models:

As discussed before, different neuron models offer a variety of computational

accuracy as well as a variety of model complexity. Figure 2.34 shows the trade-off

between the complexity and accuracy in different neuron models. It is noticeable that

Izhikevich model offers a high accuracy, almost the same as HH model, while costing a

low complexity compared to other neuron models. That is why Izhikevich model is

preferred in neural computations over the other models [11].

Figure 2.34 Accuracy versus Complexity of different neuron models.

27

2.6 Types of Learning Algorithms

Learning algorithm is the stage of teaching the neural network to perform a certain

task. The learning algorithm is mainly responsible for updating the weights of layers

connections. The weights increase in value if a certain input strongly affects the output

and decrease otherwise. There are three learning algorithms that are commonly used in

neural networks [9].

2.6.1 The Supervised Learning

This type of learning is characterized by presence of the desired output as shown

in Figure 2.35. Using this algorithm, the network is able to configure itself by comparing

the actual output with the desired output. Then, the network calculates the error with

which the network weights are updated [9].

Figure 2.35 The Supervised Learning.

2.6.2 The Unsupervised Learning

Unlike the supervised learning, this learning algorithm does not have a desired

output as shown in Figure 2.36. Unsupervised learning is characterized by the presence

of only the inputs where the network is supposed to learn by itself. The network learns

by searching for similarities and patterns in the applied input that’s why it is also called

self-organizing learning [9].

Figure 2.36 The Unsupervised Learning.

28

2.6.3 The Reinforcement Learning

The idea behind this learning algorithm comes from the punishment and reward

learning method from the psychology field. The network learns by trial and error as

shown in Figure 2.37. The right behavior of the network gets a positive reward while the

undesired wrong behavior gets a punishment. Sometimes, Reinforcement learning is

considered as subcategory of supervised learning. [9].

Figure 2.37 The Reinforcement Learning.

In Figure 2.38, it is shown that the human brain does not only use one type of

learning, instead, the brain uses the three types of learning. Each learning algorithm

occurs in a different part inside the brain [12].

Figure 2.38 Specialization by Learning Algorithms by Doya in 1999.

29

2.7 Online Learning Versus Offline Learning

From the implementation perspective, there are two main techniques to do

learning which are on-chip (Online) learning and off-chip (offline) learning. The offline

learning is commonly used than the online learning. The idea of the off-chip training is

based on simulating and training the network using a high-level language till it reaches

the desired accuracy. Then, the resulted optimum weights are stored into a memory to be

used in hardware implementation. This technique has several advantages that it is very

fast compared to the online learning and provides accurate weights without truncation

errors. On the other hand, offline learning requires a large memory to store the weights

where such a memory takes a large area and increases the power consumption. In

addition, the weights will be fixed. If the network is implemented on a FPGA, this is not

a problem because it can be reprogrammed easily. However, if the network is

implemented on ASIC platform, there is no way to modify the weights after

implementation. This introduces significant limitation to the network design [13].

The online learning performs the network training on hardware. It has a great

advantage that weights are updated instantaneously. Also, if the network is implemented

on a non-reprogrammable platform such as ASIC, there is no worry about updating the

weights because learning occurs online. On the other hand, this technique has several

disadvantages because it will increase the time delay that’s why online learning is

significantly slower than the offline learning. Another problem is that it requires

additional area and power due to the additional implemented logic and circuit of the

learning [13].

30

2.8 Different Network structures

Neural networks can be classified according to their structure. The network

structure differs in the connections between the layers. There are two main topologies in

the neural networks:

2.8.1 Feedforward Structure

The feedforward topology network is a unidirection topology in which each

neuron is connected to all the neurons in the following layer as shown in Figure 2.39.

Within the same layer, neurons are not allowed to connect to each other. In addition,

neurons are not allowed to connect to the preceding neurons. Also, a neuron cannot make

cycles or loops. [6].

Figure 2.39 Feedforward Neural Network Structure.

2.8.2 Recurrent Structure

In the recurrent topology network, the interconnections have a higher level of

freedom compared with the feedforward one. There is no single path direction that a

neuron can connect either to a following or a preceding layer as shown in Figure 2.40.

Also, cycles and loops are allowed. This could be thought of as a sort of feedback

mechanism, but this topology will increase the complexity of the network [6].

Figure 2.40 Recurrent Neural Network Structure.

31

CHAPTER 3

Problem definition and our contribution

3.1 Model accuracy versus power consumption

As discussed before, there are several types of Neural Networks such as ANN,

CNN and SNN. Recently, SNN is expected to replace ANN and CNN as it can simulate

the human brain behavior better than the previous generations of neural network. SNN

can achieve high accuracy as its neuron models mimic the biological neuron behaviors

perfectly. Regrettably, the spiking neuron models may consume higher power than the

artificial neurons in ANN.

The trade-off between the accuracy and the power consumption leads us to the

main neoteric objective in the spiking neural networks, whereas a variety of spiking

neuron models exists that can generate a poorly approximated to exactly simulated

neuron behaviors according to the required accuracy. The main features required while

choosing an appropriate spiking neuron model are simplicity, power consumption and

number of supported behaviors.

The model that is suitable to achieve most of these features is Izhikevich neuron

model. The reason is that Izhikevich neuron model has a moderate simplicity, is

represented by two differential equations only and produces various neural behaviors.

3.2 Problem in Izhikevich model

The selected model to implement our spiking neural network is the Izhikevich

neuron model which offers suitable performance and accuracy compared to the other

neuron models. On the other hand, all spiking neuron models, including Izhikevich model

itself, consume higher power than the artificial neuron in ANN due to the used differential

equations and multipliers. Despite of Izhikevich model simplicity compared to other

spiking models, it still consumes power due to the squaring term 𝑣2 and several constant

32

multipliers. These high-power components in the neuron model won’t be acceptable

according to the market needs as neural networks, in general, is required in low power

systems like IOT and biological sensors. In addition, all neural networks that are used

nowadays in CPUs and cell phones, are designed to be ultra-low power to save the

device’s battery life time.

As a solution, the constant multipliers are implemented using fixed shifters and

adders. Due to bits limitation and truncation, an error affects the neuron accuracy

compared to the original Izhikevich model. The original Izhikevich model refers to the

exact Izhikevich model without approximating the parameters values. In addition, we

have to introduce some approximation techniques to decrease the power consumption of

the remaining power-hungry term, the squaring term.

3.3 Our contribution

The only approximation method applied to the Izhikevich model in previous

research work is the Piece-Wise Linear approximation (PWL) [1]. This technique

converts the squaring term into a sum of straight lines. This method increases the

accuracy of the approximation by increasing the number of straight lines. There are three

different orders of piece wise linear system discussed in [1]. The 2nd order PWL uses two

straight lines, the 3rd order PWL uses three straight lines while the 4th order PWL uses

four straight lines. In this project, only the 4th order PWL is used during comparison and

evaluation. We will refer to the 4th order PWL in the upcoming sections as PWL only for

simplicity. The reader should keep in mind that we are talking about the 4th order PWL

approximation when writing PWL abbreviation.

The second technique is COordinate Rotation Digital Computer (CORDIC)

which splits the number to be squared into a fraction part and an integral part. After that,

each part is divided into a summation of powers of two to be implemented using shifters

and adders instead of multipliers.

The third technique is called Iterative Logarithmic Method (ILM) which aims to

convert the number to the largest summation of powers of two. This technique subtracts

a power of two term from the number then, considers the remainder as an error term

thereafter, it iterates on this subtraction operation until reaching a desired minimum error

value.

33

The last method is called Integral Sum which modifies the squaring to a simple

iterative addition operation. This conversion is based on the fundamental principle of

multiplication that any multiplication operation can be converted to an addition operation.

This methodology has also multiple approaches to achieve acceptable accuracy. From a

hardware perspective, all these techniques try to replace the huge multiplier circuit with

a set of shifters and adders. These approximation methods are discussed in details in the

next chapter.

3.4 The flow of our work

The following workflow diagrams show our progress during this project. Figure

3.1 shows the prerequisite skills needed before going through this neuromorphic

computing project.

Figure 3.1 The basic required knowledge and skills before starting our

neuromorphic computing project.

34

Figure 3.2 illustrates the first step in this project which is choosing the suitable type of

network to be implemented. In this work, Spiking Neural Network (SNN) is chosen.

Figure 3.2 Determining the type of network to be implemented.

In Figure 3.3, the spiking neuron model is determined according to our accuracy and

power guidelines. In this project, the Izhikevich neuron model is chosen.

Figure 3.3 After choosing Spiking Neural Network, we have to choose the spiking

neuron model that is suitable for our performance matrix.

35

Figure 3.4 highlights the process of proposing new approximation techniques and

taking the final decision to implement our spiking neuron. A CORDIC-based hardware

implementation of the Izhikevich neuron model is introduced

Figure 3.4 After choosing Izhikevich neuron model, propose approximation

methods and choose the most accurate one.

To determine the applicability of each approximation method, a high-level language,

MATLAB, is required. Using MATLAB, each method is evaluated to determine the most

accurate approximation algorithm to be used as shown in Figure 3.5. Our neuron accuracy

is compared with the original and the PWL-based neurons.

Figure 3.5 High level language optimization and comparison among different

approximation methods.

36

As illustrated in Figure 3.6, the CORDIC-based, PWL-based and original neuron models

are written as a VERILOG code and we calculate again the accuracy for each method

based on the HDL output data. Then, the spiking neuron is implemented on ASIC/FPGA

platforms. A performance analysis is held among the three models to show the power and

area reduction due to the CORDIC and the PWL compared with the original neuron in

ASIC and FPGA platforms.

Figure 3.6 Implementation of the most suitable approximation methods to test the

hardware implemented in ASIC/FPGA platforms.

After that, the spiking neural network is constructed using the CORDIC-based,

PWL-based and original neuron models. Then, the accuracy of each network is calculated

using MATLAB to determine the most preferable approximation technique. Finally, the

power and area values are estimated to show up the reduction occurred while

implementing the network with the approximation methods.

37

CHAPTER 4

Single Izhikevich Neuron

4.1 The proposed approximation methods

4.1.1 Piece-Wise Linear approximation (Previous work)

The Piece-Wise Linear (PWL) converts the squaring term into a sum of straight

lines. This method is applied to the quadratic term in the Izhikevich model before in [1].

Depending on the number of straight lines, PWL can be second, third and fourth order.

Increasing the number of straight lines results in better accuracy and resemblance to the

square term. Yet, this leads to more complexity in terms of hardware implementation [1].

A) 2nd order Piece-Wise Linear approximation

The first meaningful PWL approximation to the quadratic equation in Izhikevich

model is to use two straight lines as shown in Figure 4.1. This approximation is

formulated in (10) as follows [1]:

 𝑓′(𝑉) = 𝑘1|𝑉 + 62.5| − 𝑘2 − 𝑢 + 𝐼 (10)

Where k1 and k2 are the parameters that represent the degrees of freedom produced by

the PWL approximation. Tuning these parameters is essential to achieve the closest

behavior to the original model [1].

38

Figure 4.1 2nd order PWL approximation.

B) 3rd order Piece-Wise Linear approximation

The same quadratic term can be approximated by PWL model with a better

accuracy by increasing the number of straight lines from two lines to three lines. This

third order approximation is shown in Figure 4.2 and can be formulated in (11) as follows

[1]:

 𝑓′(𝑉) = 𝑘1(|𝑉 + 62.5 + 𝑘2| + |𝑉 + 62.5 − 𝑘2|) − 𝑘1𝑘2𝑘3 − 𝑢 + 𝐼 (11)

It is noticeable that the number of fitting parameters (𝑘1𝑘2𝑘3) has increased, meaning

that this approximation has more degrees of freedom than the previous one [1].

Figure 4.2 3rd order PWL approximation.

39

C) 4th order Piece-Wise Linear approximation

Following the same pattern, the accuracy can be increased by increasing the order

of PWL approximation. It is proposed in [1] that 4th order PWL approximation is a good

trade-off between accuracy and complexity. The 4th order PWL approximation is

illustrated in Figure 4.3. The approximation can be formulated in (12) as follows:

𝑓′(𝑉) = 𝑘2(|𝑉 + 62.5 + 𝑘3| + |𝑉 + 62.5 − 𝑘3|) + 𝑘1|𝑉 + 62.5|

− 4𝑘2𝑘3 − 𝑢 + 𝐼
(12)

Figure 4.3 4th order PWL approximation.

4.1.2 COordinate Rotation Digital Computer algorithm

The COordinate Rotation Digital Computer (CORDIC) algorithm is used in

approximating the exponential term in the Adaptive Exponential Integrate and Fire

(AdEx) neuron model [14]. The algorithm is used in approximating different functions

(e.g., multiplication, exponential function and hyperbolic function) [14]. To understand

how the CORDIC algorithm works with multiplication, assume that the two

multiplicands 𝐴1and 𝐴2 are divided into two terms: integer term 𝐼 and fraction term 𝐹 in

(13) as follows:

 𝐴1 × 𝐴2 = (𝐼1 + 𝐹1) × (𝐼2 + 𝐹2) (13)

To convert the multiplication to shifters, the integer and fraction terms are written as a

sum of powers of two in (14) and (15).

40

 𝐼 = 𝐼[1] + 𝐼[2] × 2 + 𝐼[3] × 4… =∑𝐼[𝑖] × 2𝑖−1
𝑚

𝑖=1

 (14)

 𝐹 =
𝐹[1]

2
+
𝐹[2]

4
+
𝐹[3]

8
… =∑𝐹[𝑖] × 2−𝑖

𝑛

𝑖=1

 (15)

Where I[i] and F[i] are either 0 or 1. m and n define the limits of the integer and the

fraction terms, respectively. Since the Izhikevich model contains a square term (𝑣 × 𝑣),

only one 𝑣 is written as the form in (14) and (15) and the other 𝑣 is just a shifted version.

Figure 4.4 shows the pseudocode of the CORDIC-based squaring.

Figure 4.4 The pseudocode of the CORDIC-based squaring.

In this work, the CORDIC algorithm is applied to the Izhikevich model by

substituting in (8) with (14) and (15). Accordingly, (8) is approximated in (16) as follows:

𝑣𝑡+∆𝑡 = 𝑣𝑡 + ∆𝑡 (0.04𝑣𝑡(∑𝐼[𝑖] × 2𝑖−1 +∑𝐹[𝑖] × 2−𝑖
𝑛

𝑖=1

𝑚

𝑖=1

) + 5𝑣𝑡

+ 140 − 𝑢𝑡 + 𝐼)

(16)

Where m and n are predetermined before the hardware implementation.

41

4.1.3 Iterative Logarithmic method

The iterative logarithmic method (ILM) is one of proposed techniques used to

approximate the v2 term in the Izhikevich neuron model and simplify the multiplication

operation on the hardware level. The method is an iterative algorithm where the user

determines the required output accuracy. This method could get the exact value

depending on the number of iterations. The multiplicands are represented in the

logarithmic form [15]. Then, all the operations are converted into shifters and adders. To

understand how this method works, let us assume we multiply N1*N2 where each number

is represented in (17) as follows:

 𝑁1 = 2
𝑘1 +𝑁1

(1)
 𝑎𝑛𝑑 𝑁2 = 2𝑘2 + 𝑁2

(1)
 (17)

𝑁1
(1)

 and 𝑁2
(1)

 are the reminders of 𝑁1 − 2
𝑘1 and 𝑁2 − 2

𝑘2, respectively.

Hence, the product of 𝑁1 𝑎𝑛𝑑 𝑁2 is formulated in (18) and (19) as follows:

 𝑃𝑡𝑟𝑢𝑒 = 𝑁1 ∗ 𝑁2 = (2
𝑘1 + 𝑁1

(1)) ∗ (2𝑘2 + 𝑁2
(1)) (18)

 𝑃𝑡𝑟𝑢𝑒 = 2𝑘1+𝑘2 + 2𝑘1 ∗ 𝑁2
(1) + 2𝑘2 ∗ 𝑁1

(1) + 𝑁1
(1) ∗ 𝑁2

(1)
 (19)

As seen above, 𝑃𝑡𝑟𝑢𝑒 is a set of several shift operations that are easily

implemented in hardware except for the last term 𝑁1
(1) ∗ 𝑁2

(1)
 . Thus, 𝑃𝑡𝑟𝑢𝑒 is

approximated by ignoring the last term in (20) as follows:

 𝑃𝑎𝑝𝑝𝑟𝑜𝑥
(0)

= 2𝑘1+𝑘2 + 2𝑘1 ∗ 𝑁1
(2) + 2𝑘2 ∗ 𝑁1

(1)
 (20)

Where 𝑃𝑡𝑟𝑢𝑒 = 𝑃𝑎𝑝𝑝𝑟𝑜𝑥
(0)

+ 𝐸(0) and 𝐸(0) = 𝑁1
(1) ∗ 𝑁1

(2)
.

To improve the accuracy and decrease the error, the previous steps are applied again on

the error term, 𝐸(0) as in (21) where 𝑁1
(1)
= 2𝑙1 + 𝑁1

(2)
 and 𝑁2

(1)
= 2𝑙2 + 𝑁2

(2)
.

42

 𝐸(0) = 2𝑙1+𝑙2 + 2𝑙1 ∗ 𝑁2
(2)
+ 2𝑙2 ∗ 𝑁1

(2)
+ 𝑁1

(2)
∗ 𝑁2

(2)
 (21)

As we did previously, the error term, 𝐸(0) is approximated by ignoring the last

term, 𝑁1
(2) ∗ 𝑁2

(2)
 as in (22).

 𝐶1 = 2𝑙1+𝑙2 + 2𝑙1 ∗ 𝑁2
(2) + 2𝑙2 ∗ 𝑁1

(2)
 (22)

 Where 𝐸(0) = 𝐶1 + 𝐸(1).

Similarly, the method is applied once more time until the error becomes small enough

to be acceptable. The final result can be formulated in (23) as follows:

 𝑃𝑎𝑝𝑝𝑟𝑜𝑥
(𝑖)

= 𝑃𝑎𝑝𝑝𝑟𝑜𝑥
(0)

+∑𝐶(𝑗)
𝑖

𝑗=1

 (23)

Figure 4.5 below shows a pseudocode that describes how to approximate the v2 using the

iterative logarithmic method.

Figure 4.5 The pseudocode of the iterative logarithmic-based squaring.

43

To clarify the method, let us take an example where 𝑁1 = 7 and 𝑁2 = 9.

𝑁1 = 2
2 + 3 and 𝑁2 = 23 + 1

Their product equals to 𝑃𝑡𝑟𝑢𝑒 = 𝑁1 ∗ 𝑁2 = (2
2 + 3) ∗ (23 + 1)

𝑃𝑡𝑟𝑢𝑒 = 2
5 + 22 ∗ 1 + 23 ∗ 3 + 3 ∗ 1

The approximated product equals to 𝑃𝑎𝑝𝑝𝑟𝑜𝑥
(0)

= 25 + 22 ∗ 1 + 23 ∗ 3 = 60

 Where 𝑃𝑡𝑟𝑢𝑒 = 𝑃𝑎𝑝𝑝𝑟𝑜𝑥
(0)

+ 𝐸(0).

The error from the first iteration is 𝐸(0) = 𝑁1
(1) ∗ 𝑁1

(2) = 3 ∗ 1. Hence, apply the method

again on the error term where 𝑁1
(1)
= 3 = 21 + 1 and 𝑁2

(1)
= 1 = 20.

𝐶1 = 21 + 20 ∗ 1

Where 𝐸(1) = 0.

𝐸(0) = 𝐶1 + 𝐸(1) = 21 + 20 ∗ 1 = 3

So, the final result equals to

𝑃𝑎𝑝𝑝𝑟𝑜𝑥
(𝑖)

= 𝑃𝑎𝑝𝑝𝑟𝑜𝑥
(0)

+∑𝐶(𝑗)
𝑖

𝑗=1

= 60 + 3 = 63

As seen above, the final results agree with the correct answer of multiplying 7 by 9.

44

4.1.4 Integral Sum

The integral sum algorithm is considered a new methodology to calculate the

squaring. The idea behind this method is based on the multiplication principle. Let us

take this simple example to demonstrate the idea behind the algorithm. Assume V = 10 is

to be squared.

102 = 10 ∗ 10 = 10 + 10 + 10 + 10 + 10 + 10 + 10 + 10 + 10 + 10 = 100

Instead of multiplying 10 by 10, you can add it ten times. As a result, the

multiplication operation is converted into addition operation as shown above. This

conversion is formulated in (24) as follows:

 𝑉2 =∑𝑉

|𝑉|

𝑖=0

 (24)

From the hardware perspective, the critical path depends on the value of V. The

reason is that if you square a small number, you will need a small number of iterations.

On the other hand, if you square a large number, you will need a large number of

iterations. To solve this problem, we can do another mathematical trick which is to add

the number 10 five times.

102 = 10 ∗ 10 = 10 + 10 + 10 + 10 + 10 = 50

As a result, the solution lost half its value, but the number of iterations decreased

to half improving the performance in hardware. To accommodate the loss occurred, we

can multiply the solution by 2 as follows:

102 = 10 ∗ 10 = 2(10 + 10 + 10 + 10 + 10) = 100

The multiplication by 2 should not be considered as a complex multiplication operation.

The reason is that multiplication by 2 is realized in hardware as a left shift operation. The

previous trick is formulated in (25) as follows:

 𝑉2 ≅ 2 ∗∑𝑉

|
𝑉
2
|

𝑖=0

 (25)

45

To extend the previous formula, we can replace the division and multiplication by

2 with a variable m as in (26).

 𝑉2 ≅ 𝑚∑𝑉

|
𝑉
𝑚
|

𝑖=0

 (26)

where m = 1,2,4,8,16, 32, ..

The parameter m takes only values that are multiples of 2. Increasing the value of m will

decrease the number of iterations required, improving the hardware performance.

However, as the value of m increases, the error introduced to the squaring term increases.

A pseudocode of the integral sum algorithm is shown in Figure 4.6 below.

Figure 4.6 The pseudocode of the integral sum-based squaring.

4.2 Error definition and calculation

Various errors are defined to assess the different approximation methods. The first

two errors, ERRp and MAE examine the deviation occurred in 𝑓(𝑣) introduced in (27)

where another two errors, RSEE and MERRt are applied on the Izhikevich model

equations in (5), (6) and (7).

 𝑓(𝑣) = 0.04𝑣2 + 5𝑣 + 140 (27)

46

4.2.1 ERRp error definition

As illustrated in Figure 4.7, this error is defined in [1] as the difference between the

original and the approximated curves 𝑓(𝑣) at the local minimum point (at 𝑣 = − 62.5)

as in (28). This point is the initial excitation point where the neuron will require a stronger

input I if the error is significant as in [1]. This error is formulated as follows:

 𝐸𝑅𝑅𝑝 = |𝑓(−62.5)|𝐸𝑥𝑎𝑐𝑡 − |𝑓(−62.5)|𝐴𝑝𝑝𝑟𝑜𝑥𝑖𝑚𝑎𝑡𝑒𝑑 (28)

Figure 4.7 ERRp error.

4.2.2 MAE error definition

To generalize the concept of ERRp, Mean Absolute Error calculates the average

of the differences between 𝑓(𝑣) curves for both the original and the approximated models

over the range of 𝑣. MAE is formulated in (29) as follows:

 𝑀𝐴𝐸 =
∑ |𝑓(𝑉𝑖)

 |𝐸𝑥𝑎𝑐𝑡 − |𝑓(𝑉𝑖)
 |𝐴𝑝𝑝𝑟𝑜𝑥𝑖𝑚𝑎𝑡𝑒𝑑

𝑛
𝑖

𝑛
 (29)

4.2.3 RSEE error definition

Relative Spike Energy Error is inspired by a common concept in signal processing

called “Signal Energy” which is an indication for the resemblance in shape between the

spikes generated from both the original and the approximated models [16]. RSEE is

unaffected by any spike timing shifts between the two models. This error is formulated

in (30) as follows:

47

 𝑅𝑆𝐸𝐸 =
∑ |𝑉𝑖

2|
𝐸𝑥𝑎𝑐𝑡𝑖 − ∑ |𝑉𝑖

2|
𝐴𝑝𝑝𝑟𝑜𝑥𝑖𝑚𝑎𝑡𝑒𝑑𝑖

∑ |𝑉𝑖
2|
𝐸𝑥𝑎𝑐𝑡𝑖

× 100 (30)

4.2.4 MERRt error definition

As illustrated in Figure 4.8, ERRt measures the time difference between only the

first two consecutive spikes as in [14]. To make the error definition more realistic, ERRt

is applied on all the spikes fired in a specific time interval where MERRt is the mean

value of ERRt. This error is formulated in (31), (32) and (33) as follows:

 𝐸𝑅𝑅𝑡 = |
∆𝑡𝑝 − ∆𝑡𝑒

∆𝑡𝑒
| × 100 (31)

 𝑤ℎ𝑒𝑟𝑒 ∆𝑡 = 𝑡𝑎𝑝𝑒𝑥2 − 𝑡𝑎𝑝𝑒𝑥1 (32)

 𝑀𝐸𝑅𝑅𝑡 =
1

𝑛
∑𝐸𝑅𝑅𝑡𝑖

𝑛

𝑖

 (33)

Where ∆𝑡𝑝 and ∆𝑡𝑒 represent the time intervals between two consecutive spikes in the

approximated and the original models, respectively in (31).

Figure 4.8 ERRt error.

48

4.2.5 MATLAB-based error calculation

After defining several errors, the different approximation methods, proposed in

previous sections, are evaluated as shown in Table 4.1. Although the CORDIC algorithm

has a higher MERRt error than the iterative logarithmic method, the former demostrates

the least RSEE and MAE errors. As a result, CORDIC algorithm is used during this work

as it shows better error results than the other methods.

Table 4.1 Error calculation of the approximation methods based on MATLAB

results.

Error

type

CORDIC Iterative Logarithmic PWL Integral

sum

Accuracy

factor

1 2 3 4 5 1 2 3 4 5 ---- 2 3

RSEE 3.23 1.27 0.52 0.19 0.03 2.73 1.21 0.67 0.39 0.1 1.3 4.53 9.5

MERRt 0.68 0.23 0.23 0.23 0.23 30.5 24.61 3.95 0.23 0 0.25 10.75 22

MAE 0.51 0.22 0.07 0 0 0.64 0.09 0.04 0.06 0.09 46.94 1.16 2.4

4.3 Design and system architecture

The neuron architecture is divided into four main blocks as shown in Figure 4.9.

The “Reset” signal is triggered to initialize u and v. Module 1 calculates the value of

(0.2 ∗ 𝑣)2 using any of the approximation methods described before. Subsequently,

modules 2 and 3 calculate the next value of v and u, respectively. Finally, module 4

decides whether to fire a spike and reset v and u or to pass v and u without firing a spike.

Figure 4.9 Izhikevich neuron architecture (The exact connection is not shown to

avoid any confusion).

49

4.4 VERILOG code simulation and ASIC/FPGA implementation

As illustrated in the previous sections, the model uses decimal fraction numbers

such as “a” and “b” parameters. Decimal fraction numbers increase system complexity

in hardware level, so choosing their representation method is crucial. There are two ways

of decimal fraction number representation, floating-point and fixed-point representations

as shown in Figure 4.10. In this project, fixed-point representation is chosen because it is

simpler, less complex in hardware level and less power consumption than floating point

representation [17].

Figure 4.10 Floating-point and fixed-point representations.

In this work, Euler’s time step is set to 0.25 ms. The CORDIC-based, the PWL-

based and the original Izhikevich models are hardware implemented using VERILOG to

compare the error, power and area in the ASIC/FPGA platform. All constants

multiplication is to be implemented using shifters and adders for all models except for

the original model which uses multipliers without any approximation. For all models, the

architecture is not pipelined. For the PWL-based and the CORDIC-based Izhikevich

neuron, the number of bits is equal to 22 bits (12.10).

The original model is implemented with a number of bits that makes the

MATLAB code results matches the VERILOG code results. It should be noted that the

original model HDL code will always suffer from error due to the nature of fixed point

representation. However, the error is kept as small as possible. ModelSim 10.4a is used

in writing and simulation of the VERILOG code.

50

To verify that the VERILOG code exhibits a correct behavior like the MATLAB

code, a signal called “spike” is defined that is equal to logic 1 if a spike occurs and is

equal to logic 0 otherwise. As illustrated in Figure 4.11, the VERILOG code

demonstrated the same behavior as the MATLAB code behavior in Figure 2.11. In this

case, tonic spiking behavior is examined. To get a closer look, two rapid spikes are fired

at the beginning as shown in Figure 4.12. then, a relatively slower spike is fired every

certain time period.

Figure 4.11 Tonic spiking behavior simulated in ModelSim.

Figure 4.12 Two rapid spikes fired by the Izhikevich neuron.

51

After illustrated in Figure 4.13, the CORDIC-based, the PWL-based and the

original Izhikevich models are hardware implemented to compare the error versus the

power and the area in the ASIC platform using UMC 130 nm technology. DC Compiler

Version B-2008.09 and SoC Encounter 8.1 are used in the ASIC synthesis and Place and

Route (PnR) stages, respectively.

Figure 4.13 ASIC chip LAYOUT.

52

Furthermore, the CORDIC-based, the PWL-based and the original Izhikevich

models are hardware implemented to compare the error versus the power and the area in

the FPGA platform using Xilinx Zynq-7000 SoC ZC702 FPGA as illustrated in Figure

4.14. Vivado HLS 2015.2 is used in FPGA programming.

Figure 4.14 FPGA chip LAYOUT.

4.5 Comparison between CORDIC at n=10, PWL and original neuron models

4.5.1 Error comparison based on VERILOG results

As shown in Table 4.2, the CORDIC-based and the PWL-based models exhibits

ERRp error of 0 and 0.25, respectively. This means that the initial excitation point of the

CORDIC-based Izhikevich model matches the original Izhikevich model, however the

PWL model is shifted by 0.25. Regarding MAE, the PWL approximation suffers from a

large error compared to the CORDIC approximation. This means the PWL approximated

parabola, 𝑓(𝑣) strongly deviates from the original parabola, 𝑓(𝑣).

53

Table 4.2 ERRp and MAE for the PWL-based and the CORDIC-based (n =10)

Izhikevich models.

 PWL CORDIC

ERRp 0.25 0

MAE 46.85 0.005

According to Table 4.3, the CORDIC-based Izhikevich model shows less error

than the PWL-based Izhikevich model which means the spike in the former model suffers

less from signal loss as well as timing shift.

Table 4.3 RSEE and MERRt for the PWL-based and the CORDIC-based (n =10)

Izhikevich models in VERILOG.

 RSEE (%) MERRt (%)

 CORDIC PWL CORDIC PWL

TS 0.06 1.18 1.56 1.11

TB 0.44 5.52 0 7.28

MM 0.80 2.46 2.60 3.28

FFA 0.24 0.10 1.13 0.74

Mean Value (%) 0.39 2.32 1.32 3.10

4.5.2 Power/Area comparison in ASIC/FPGA platforms

According to Table 4.4, the CORDIC-based Izhikevich model hardware

implementation shows significant improvement compared to the original Izhikevich

model hardware implementation in ASIC. Although the PWL-based hardware

implementation of the Izhikevich model shows slight improvement than the CORDIC-

based hardware implementation of the Izhikevich model, the latter model is more

accurate as in Table 4.2 and Table 4.3.

Table 4.4 The ASIC implementation comparison for the original, the CORDIC-

based (n =10) and the PWL-based Izhikevich models at frequency = 9.1 MHz.

 Original CORDIC PWL

Area (𝝁𝒎𝟐) 69149 25894 21076

Power (mW) 1.06 0.40 0.30

54

In order to further investigate the hardware implementation performance of the

three designs, the designs are also implemented on Xilinx Zynq-7000 SoC ZC702 FPGA

where a comparison between their power and area is performed in Table 4.5. The area in

FPGA is represented by the number of LUTs, registers and DSP. According to Table 4.5,

the CORDIC-based Izhikevich neuron model shows significant improvement compared

to the original Izhikevich neuron model in power and area perspective. However, the

PWL-based Izhikevich neuron model consumes less power and area than the CORDIC-

based Izhikevich neuron model in FPGA platform.

Table 4.5 The FPGA implementation comparison for the original, the CORDIC-

based (n =10) and the PWL-based Izhikevich models at frequency = 9.1 MHz.

 Original CORDIC PWL

Power (mW) 3.73 2.726 1.984

No. of LUTs 1030 961 811

No. of registers 64 44 44

No. of DSPs 10 0 0

4.6 Power/Area/Error trade-off in ASIC platforms

As seen in the previous section, the CORDIC-based neuron model consumes

higher power and area than the PWL-based neuron model. Consequently, a sweep over n

from 0 to 10 is performed to decrease the power and area of the CORDIC approximation

at the cost of additional error. n = 0 means the approximation is performed on integer

term only as if there is no fraction term. When implemented in ASIC platform, the

CORDIC-based Izhikevich model power ranges from 0.26 mW to 0.40 mW when n is

changed from 0 to 10. The study performed in this section is based on ASIC results.

A Figure of Merit (FoM) is defined to show the tradeoff among error (ERR),

power (P) and area (A) and determine the value of n at which the FoM is minimum. ERR

is the arithmetic mean of RSEE and MERRt. as in (34).

 𝐸𝑅𝑅 =
1

2
(𝑅𝑆𝐸𝐸 +𝑀𝐸𝑅𝑅𝑡) (34)

The arithmetic mean (AM) is used in ERR because RSEE and MERRt have the same

55

numeric range (0 – 100 %). However, when combining the power and the area, the

geometric mean (GM) is preferred over the AM due to having different numeric ranges.

GM prevents factors with large values from dominating in mean calculation. In addition,

a weighted GM (GMW) is used to increase the contribution of one term over the others

depending on the design demands as in (35). In this work, it is chosen to make the power

and area of higher weight than the error as given in (36) since the paper main focus is on

the low power hardware implementation.

 𝐺𝑀𝑊 = √∏𝑥𝑖
𝑤𝑖

𝑛

𝑖=1

∑ 𝑤𝑖
𝑛
𝑖=1

 (35)

 𝐹𝑜𝑀 = √𝐸𝑅𝑅 ∗ 𝑃2 ∗ 𝐴2
5

 (36)

According to Figure 4.15, the value of n at which the FoM is minimum is 5.

Depending on the problem constraints, one can choose whether to reduce the power

consumption (decrease n) or to increase the accuracy (increase n) where such a tradeoff

offers design flexibility.

Figure 4.15 FoM versus n where the point at which ERR, P and A are minimum is n

= 5

56

4.7 Comparison between CORDIC at n=5, PWL and original neuron models

4.7.1 Error comparison based on VERILOG results

According to Table 4.6 and Table 4.7, the CORDIC approximation at n = 5 has

less error than the PWL for the four types of errors.

Table 4.6 ERRp and MAE for the PWL-based and the CORDIC-based (n =5)

Izhikevich models.

 PWL CORDIC

ERRp 0.25 0

MAE 46.85 0.17

Table 4.7 RSEE and MERRt for the PWL-based and the CORDIC-based (n =5)

Izhikevich models in VERILOG.

 RSEE (%) MERRt (%)

 CORDIC PWL CORDIC PWL

TS 0.23 1.18 1.56 1.11

TB 0.33 5.52 0.24 7.28

MM 1.20 2.46 3.35 3.28

FFA 1.13 0.10 0.40 0.74

Mean Value (%) 0.72 2.32 1.39 3.10

4.7.2 Power/Area comparison in ASIC/FPGA platforms

According to Table 4.8, the CORDIC-based Izhikevich neuron model consumes

almost the same power and area as the PWL-based Izhikevich neuron model when

implemented in ASIC platform. Also, both of them still show better hardware

performance than the original Izhikevich model.

Table 4.8 The ASIC implementation comparison for the original, the CORDIC-

based (n =5) and the PWL-based Izhikevich models at frequency = 9.1 MHz.

 Original CORDIC PWL

Area (𝝁𝒎𝟐) 69149 22088 21076

Power (mW) 1.06 0.33 0.30

57

Then, a comparison between their power and area is performed in Table 4.9, when

implemented on FPGA. According to Table 4.9, the CORDIC-based Izhikevich neuron

model shows significant improvement compared to the original Izhikevich neuron model

in power and area perspective. The PWL-based Izhikevich neuron model still consumes

less power and area than the CORDIC-based Izhikevich neuron model in FPGA platform,

however, the 2 designs have become closer in hardware performance when CORDIC is

implemented with n = 5 than the previous study when CORDIC is implemented with n =

10.

Table 4.9 The FPGA implementation comparison for the original, the CORDIC-

based (n =5) and the PWL-based Izhikevich models at frequency = 9.1 MHz.

 Original CORDIC PWL

Power (mW) 3.73 2.319 1.984

No. of LUTs 1030 848 811

No. of registers 64 44 44

No. of DSPs 10 0 0

58

CHAPTER 5

Spiking Neural Network

5.1 MNIST database

The learning methodology used in simulating the neural network is supervised

learning. Hence, a dataset has to be used to test and train the network. One of the most

widely used datasets in machine learning systems is MNIST data set. It consists of

handwritten numbers from zero to nine with different styles as illustrated in Figure 5.1.

This means the network output layer contains 10 neurons, where each neuron represents

a number from 0 to 9. The MNIST data set is inspired from NIST’s data set which is

collected from American employees (training data) and American high school students

(testing data). However, MNIST data is black and white images only with fixed and

limited number of pixels. The training data set consists of 60,000 images while the testing

data set consists of 10,000 images. Half of the training data set as well as the testing data

set are extracted from NIST’s training and testing data sets. Each set is accompanied by

its labels to train and test the network. Our network uses all the training and testing images

[2].

Figure 5.1 Sample from the MNIST dataset.

59

5.2 Input image preparation

Before the network starts the computation process, the input image has to be

prepared as illustrated in Figure 5.2. The images are converted from gray scale to black

and white scale. The conversion is performed by multiplying the image by a step function

to determine the black and white regions of the pixels. Each image has 28*28 pixels (784

pixels) and an equivalent label. Each squared-image is converted into a single columned-

image of 784 pixels in total.

Figure 5.2 Input image pixel map of MNIST dataset.

60

5.3 Network structure

As illustrated in Figure 5.3, the network structure is feedforward and consists of

two neural layers (The input pixels are not counted as a layer). The first layer, which is

called the hidden layer, contains 200 neurons connected to the input image pixels through

200 synapses.

Figure 5.3 Our Feedforward Spiking Neural Network Structure.

61

Each arrow in Figure 5.3 represents a synapse whose objective is to convert each

pixel into an input current governed by the following equation in (37):

 𝐼𝑖 = 𝐼0 +∑𝑊𝑖,𝑗 ∗ 𝐼𝑗

𝑆

𝑗=1

 (37)

where 𝐼𝑖 is the input current for the neuron i. 𝐼0 represents the initial biasing current for

the neuron used to make sure the neuron is always in the on-state. 𝐼𝑗 refers to the pixel

value which is equal to 1 if white and 0 if black. The weights matrix, connecting the input

pixels with the first layer, is 𝑊𝑖,𝑗 . 𝑊𝑖,𝑗 represents the connection strength between 𝐼𝑗

(pixel) and 𝐼𝑖 (neuron). the parameter S is equal to the total number of pixels. As a result,

the total number of pixels is determined earlier before the network operates.

The second layer, which is called the output layer, consists of 10 neurons where

each neuron represents a digit from zero to nine. Similarly, there are synapses between

the hidden layer and the output layer. The biasing current is the same as before but, the

dimensions of the weights matrix is changed.

5.4 Rate-based Neural coding and Backpropagation algorithm

As we mentioned before, each neuron fires a train of spikes. So, how does the

neural network translate these trains of spikes into a decision? The neural network

translates the neurons’ output using a concept called neural coding. Our spiking neural

network uses one type of neural coding called rate coding where the network decision is

based on neurons’ firing rates. The rate coding states that as the neuron input current

increases, the neuron’s frequency increases. As a result, if a neuron’s input current is

higher than another neuron’s input current, the former’s frequency will be higher than the

latter’s frequency. So, the firing frequency is function of the input current which is

modified by increasing/decreasing the current. To modify the input currents, rate coding

modifies the weights connecting the neurons. The neuron frequency is defined as the

number of spikes fired divided by the time interval as illustrated in Figure 5.4 [18].

62

Figure 5.4 Neuron frequency calculation.

Furthermore, the backpropagation algorithm is used to calculate the error where

the weights modification is based on this error as shown in (38). The following equation

determines the delta weights to reach the desired output from the network [1].

 ∆𝑊𝑖,𝑗 = 𝛼 ∗ 𝐼𝑖 ∗ (𝑓𝑎𝑐𝑡𝑢𝑎𝑙 − 𝑓𝑑𝑒𝑠𝑖𝑟𝑒𝑑) (38)

where 𝛼 is the learning rate that is determined before constructing the network and fixed

during the learning process. The observed frequency from each neuron is called 𝑓𝑎𝑐𝑡𝑢𝑎𝑙

while the target frequency is called 𝑓𝑑𝑒𝑠𝑖𝑟𝑒𝑑. The high frequency is the target frequency

for the correct output neuron and the low frequency is the target frequency for the other

neurons. In this network, the high frequency is chosen to be 30 spikes per 100 ms (300

Hz) while the Low frequency is 1 spike per 100 ms (10 Hz). to put an upper bound and a

lower bound for the weights, a sigmoid function can be used during the learning process.

Sigmoid function, 𝜎(𝐼𝑖) is applied to the input current, 𝐼𝑖 in the delta weights equation.

The modified weight is formulated in (39) as follows [1]:

 𝑊𝑖,𝑗 𝑚𝑜𝑑𝑖𝑓𝑖𝑒𝑑 = 𝑊𝑖,𝑗 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 − 𝛼 ∗ 𝜎(𝐼𝑖) ∗ (𝑓𝑎𝑐𝑡𝑢𝑎𝑙 − 𝑓𝑑𝑒𝑠𝑖𝑟𝑒𝑑) (39)

For more details, the proof of (39) is explained in [1].

5.5 A case study of training and testing the Spiking Neural

To understand the rate coding, Figure 5.5 shows the behavior of two neurons in

the output layer before and after the learning operation. First, an image containing number

5 is inserted to the network then, the behavior of these two neurons is observed. If the

first neuron fires spikes with a high frequency, this means the input image is “1”.

63

Similarly, if the second neuron fires spikes with a high frequency, this means the input

image is “5”. As shown in Figure 5.5 (a) and (b), the network can’t figure out the number

whether it is one or five because both neurons fire with a high frequency. After that, the

learning process takes place so that the weights can be updated. when the network is

tested again, the neuron #5 has a higher firing rate than neuron #1 as illustrated in Figure

5.5 (c) and (d). Finally, the network decides that the input number is 5.

Figure 5.5 This study is conducted using only one training image. (a) The behavior

of neuron #1 before the learning process. (b) The behavior of neuron #5 before the

learning process. (c) The behavior of neuron #1 after the learning process. (a) The

behavior of neuron #5 after the learning process.

After training the network with the whole MNIST dataset (60,000 images), the

network is tested using an unknown new handwritten style of number 5. As shown in

Figure 5.6, the frequency of the target neuron #5 is higher than the frequency of neuron

#1. This means that the learning process is going well and the network is able to determine

the number #5 whether it saw the exact handwritten style before or the handwritten style

is new to the network as illustrated in Figure 5.5 and Figure 5.6.

64

Figure 5.6 This study tests the network using a new image of number five after

training the network with 60,000 images. (a) The low frequency of neuron #1. (b) The

high frequency of neuron #5.

5.6 Spiking Neural Network error evaluation

5.6.1 Error based on the used number of training images versus the network

accuracy

This study is conducted to show how the network accuracy is affected by the

number of training images. During this study, the network is provided with a batch size

equals 5000 then, the network accuracy is tested. As illustrated in Figure 5.7, the network

accuracy increases as the number of images increase. At the beginning, the accuracy is

badly affected by the low number of training images. Then, the accuracy reaches a

saturation value where the improvement in accuracy is small.

Figure 5.7 The number of taining images versus the network accuracy.

65

5.6.2 Error based on the frequency of the target neuron versus the number of

learning iterations

Ideally, the target neuron fires with 𝑓ℎ𝑖𝑔ℎ = 300 Hz. However, the network does

not behave correctly at the beginning where the target neuron does not fire spikes with

the ideal 𝑓ℎ𝑖𝑔ℎ. Based on this observation, a relative error function is defined as in (40).

 𝐸 =
𝑓ℎ𝑖𝑔ℎ − 𝑓𝑎𝑐𝑡𝑢𝑎𝑙

𝑓ℎ𝑖𝑔ℎ
 (40)

where 𝑓ℎ𝑖𝑔ℎ is the target neuron (ideal) high frequency, fixed at 300 Hz, while

𝑓𝑎𝑐𝑡𝑢𝑎𝑙 is the target neuron actual frequency. This error decreases as the network trains

more. As illustrated in the Figure 5.8, the error decreases as the number of learning

iterations increases until the error settles down around 30%. This means after a certain

number of images, the training process does not affect the network. It should be noted

that the batch size used in this study equals to 100 images.

Figure 5.8 Relative frequency error versus the number of learning iterations. After

training with 60,000 images, the error saturates around 30% at the end.

66

5.6.3 Error based on the output value versus the number of learning iterations

Another average error is defined as the difference between the output number and

the target number. As shown in Figure 5.9, the value of the average error decreases as the

learning iterations increase. When the error tends to zero, the network shows a correct

decision. Also, this type of error saturates around a certain number at the end of the

learning process.

Figure 5.9 The relation between the output number and the target number versus the

learning iterations.

5.6.4 The effect of error reduction on the delta weight value

Due to the error reduction, the value of the delta weight decreases during the

learning process as the delta weight is function of the error. As the delta weights

decreases, this means the network is close to the correct weights. When the network

reaches the exact correct weights, the weights saturate at their current values. As shown

in Figure 5.10, the delta weight is relatively large at the beginning of the learning

operation then, it decreases until saturation occurs. The curve does small oscillations

around the zero delta weight which means there is no longer weight modification.

Occasionally, the network has learned and reached the correct weights.

67

Figure 5.10 The delta weights changes during the learning process.

5.7 Spiking Neural Network comparison

 Three independent spiking neural networks are constructed using original,

CORDIC-based and PWL-based neurons. Each one takes the learning and testing

operations separately. There are three factors used to compare the simulation results of

each network, the accuracy, the estimated power consumption and the estimated area.

After completing the learning operation using 60,000 images, the testing process begins

with 10,000 images in which the first factor, the accuracy, is calculated. The network

accuracy (𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦𝑁𝑒𝑡𝑤𝑜𝑟𝑘) is defined in (41) as the number of correct network’s

decisions (𝑛𝐶𝑜𝑟𝑟𝑒𝑐𝑡) divided by the total number of testing images (𝑛𝑇𝑒𝑠𝑡𝑖𝑛𝑔 = 10,000).

 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦𝑁𝑒𝑡𝑤𝑜𝑟𝑘 =
𝑛𝐶𝑜𝑟𝑟𝑒𝑐𝑡
𝑛𝑇𝑒𝑠𝑡𝑖𝑛𝑔

∗ 100 % (41)

Since the network is simulated in MATLAB, there is no way to calculate the

actual power consumption. Instead, the second factor, which is the estimated power

consumption, is calculated. We assume that the main power consuming source in the

network is the neuron. So, the estimated network power (𝑃𝑁𝑒𝑡𝑤𝑜𝑟𝑘
𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑

) is determined in

(42) by the number of used neurons (𝑛𝑁𝑒𝑢𝑟𝑜𝑛𝑠) multiplied by the power of a single neuron

(𝑃𝑁𝑒𝑢𝑟𝑜𝑛).

68

 𝑃𝑁𝑒𝑡𝑤𝑜𝑟𝑘
𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑

= 𝑛𝑁𝑒𝑢𝑟𝑜𝑛𝑠 ∗ 𝑃𝑁𝑒𝑢𝑟𝑜𝑛 (42)

Of course, this value isn’t accurate for determining the actual network power

consumption. Although it is a rough estimation, the estimated value gives us an indication

about the expected true power consumption value. Similarly, the third factor, which is

the estimated area, is calculated as the estimated power. The estimated area (𝐴𝑁𝑒𝑡𝑤𝑜𝑟𝑘
𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑

)

equals to the number of neurons (𝑛𝑁𝑒𝑢𝑟𝑜𝑛𝑠) multiplied by the area of a single neuron

(𝐴𝑁𝑒𝑢𝑟𝑜𝑛) as shown in (43).

 𝐴𝑁𝑒𝑡𝑤𝑜𝑟𝑘
𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑

= 𝑛𝑁𝑒𝑢𝑟𝑜𝑛𝑠 ∗ 𝐴𝑁𝑒𝑢𝑟𝑜𝑛 (43)

The simulation results in Table 5.1 show us the original based SNN achieves the

highest accuracy which is 89%. However, its estimated power and area is significantly

high compared to CORDIC and PWL based SNN. CORDIC-based SNN achieves power

reduction percentage from 60% to 74% of the original based SNN power consumption

according to the accuracy parameter, n. Besides, CORDIC-based SNN achieves area

reduction percentage from 62% to 76% of the original-based SNN area according to the

accuracy parameter, n. Table 5.1 also shows that the accuracy of the CORDIC-based

SNN ranges from 86.5% to 88% over the parameter n sweep. The estimated power of the

CORDIC-based SNN ranges from 55 mW to 84 mW when n is changed from 0 to 10.

Table 5.1 Spiking Neural Network performance based on CORDIC, PWL and

Original neuron models.

 Original CORDIC PWL

Accuracy parameter - n = 0 n = 5 n = 10 -

𝑨𝒄𝒄𝒖𝒓𝒂𝒄𝒚𝑵𝒆𝒕𝒘𝒐𝒓𝒌 (%) 89 86.5 87 88 85.5

𝑷𝑵𝒆𝒕𝒘𝒐𝒓𝒌
𝑬𝒔𝒕𝒊𝒎𝒂𝒕𝒆𝒅 (𝒎𝑾) 210 55 69 84 63

𝑨𝑵𝒆𝒕𝒘𝒐𝒓𝒌
𝑬𝒔𝒕𝒊𝒎𝒂𝒕𝒆𝒅 (𝒎𝒎𝟐) 14.5 3.5 4.5 5.5 4.5

69

CHAPTER 6

Real time FPGA outputs demonstration

6.1 The experimental setup of the FPGA implementation

For further verification, the FPGA is programmed with a single CORDIC-based

Izhikevich neuron and connected to an oscolloscope to see real time outputs. The purpose

is to make sure the neuron exhibits the biological behaviors correctly, In this study, the

tonic spiking behavior is investigated. Spartan-6 FPGA SP605 Evaluation Kit is used

during this study as shown in Figure 6.1 and programmed using ISE Design Suite 14.7.

A signal called spike in the VERILOG code is connected to a (General-Purpose

Input/Output) GPIO pin in the FPGA. Spike signal equals logic 1 if there is a spike and

logic 0 otherwise.

Figure 6.1 Spartan-6 FPGA SP605 Evaluation Kit.

70

Then, the GPIO pin is connected to Digilent Analog Discovery 2 kit shown in

Figure 6.2. This kit has several functionalities such as oscilloscope, function generator,

logic analyzer and others. In this study, Digilent Analog Discovery 2 kit is used as an

oscilloscope to demonstrate the spike signal and see the tonic spiking behavior.

Figure 6.2 Digilent Analog Discovery 2 kit.

The connection between the FPGA and the discovery kit is simple as illustrated

in Figure 6.3. The oscilloscope is a differential pair oscilloscope which has positive and

negative terminals. The positive terminal of the oscilloscope is connected to the GPIO

pin where the GPIO pin is connected to the spike signal in the design. The negative

terminal of the oscilloscope, the ground of the discovery kit and the ground of the Spartan

FPGA are all connected together to make a common ground connection.

71

Figure 6.3 The connection between the Spartan FPGA and the Discovery kit to

demonstrate the spike signal on the oscilloscope.

. As illustrated in Figure 6.4, this is the whole system where the laptop on the

right is used to program the Spartan FPGA and the laptop on the left is used to see the

output of the oscilloscope of the Discovery kit.

Figure 6.4 The whole system altogether.

72

6.2 The real time results of the FPGA implementation

By comparing Figure 6.5 with Figure 2.11, the CORDIC-based Izhikevich neuron

can demonstrate the tonic spiking behavior correctly. 2 rapid spikes are fired at the

beginning, then a constantly periodic spike is fired.

Figure 6.5 The tonic spiking behavior demonstrated by the spike signal.

To take a closer look, Figure 6.6 illustrates the 2 rapid spikes fired at the beginning. As

seen below, the pulse of the spike signal looks perfect and does not suffer from noise.

Figure 6.6 A closer look on the 2 rapid spikes fired at the beginning in the tonic

spiking behavior.

73

CHAPTER 7

Economic analysis

7.1 The market share of Deep Neural Network

The huge amount of data generated each day is the main resource for the AI

systems which supports the NN growth. Deep neural network market size in 2016 is

estimated to be about 270 USD million as in [19]. In addition, the compound annual

growth rate (CAGR) of neural network market is estimated to be 26% till 2021 [20]. The

reason for such a huge investment is that there are many promising applications in which

neural network can be applied. Figure 7.1 shows the market share of the deep neural

network software in 2016 [20]. The healthcare category, for example, is in need for low

power AI systems. These low power devices are implanted inside the human body.

Figure 7.1 The market share of global neural network software in 2016.

74

7.2 The Investment Growth of Hardware-based Deep Learning Applications

 As shown in Figure 7.2, the services provided by deep learning technology

are limited due to lack of well-defined learning algorithms during the period from 2014

to 2017. Unfortunately, computer engineers haven’t covered all concepts of neural

networks, yet. Till now, there are still new learning algorithms introduced to deep

learning. On the other hand, there is a solid base of deep learning systems that can be

used in applications now and provide great results. This figure illustrates the growth of

deep learning hardware applications. Starting from 2016, the demands of converting the

software systems to real time hardware systems is increased. The needs of hardware deep

learning are due to its low power with efficient performance. Nowadays, the market

demands the lowest possible power systems that can be reached. So, hardware deep

learning is expected to have a high growth rate in the upcoming years [19].

Figure 7.2 The investment growth of Hardware-based Deep Learning Applications

from 2014 to 2025 in USD million.

75

7.3 The estimated fabrication cost of hardware implementation in ASIC and

FPGA platforms

Table 7.1 represents the estimated fabrication cost of implementing our SNN on

ASIC and FPGA platforms. The FPGA estimated cost is based on the Xilinx Zynq-7000

SoC ZC702 Evaluation Kit which is suitable for the number of LUTs used in our design.

Fabrication cost in ASIC platform is determined from Sigenics website. As shown in

Table 7.1 , it is clear that the cost of implementing a prototype using FPGA is much less

than implementing it with ASIC platform due to the Non-recurring engineering (NRE)

cost of ASIC. Table 7.2 shows the estimated fabrication cost of each chip in a production

line of 1,000 chips. The fabrication cost using ASIC platform decreases with increasing

the production capacity as the NRE cost is divided on a large number of chips. In contrast,

the fabrication using FPGA platform remains the same [21].

Table 7.1 The estimated fabrication cost for the prototype in ASIC and FPGA

platforms.

Implementation Platform SNN Fabrication Cost

FPGA

(Xilinx Zynq-7000 SoC ZC702

Evaluation Kit)

895$

ASIC
NRE cost = 234,964$

Production die cost = 5,300$

Table 7.2 The estimated fabrication cost for each individual SNN in the production

line of 1,000 chips.

Implementation platform SNN Fabrication Cost per chip

FPGA

(Xilinx Zynq-7000 SoC ZC702

Evaluation Kit)

895$

ASIC 240$

http://www.sigenics.com/

76

CHAPTER 8

Conclusion

In this work, several approximation methods such as the CORDIC, the Iterative

logarithmic and the integral sum approximations for the 𝑣2 term in the Izhikevich model

are proposed. The CORDIC-based Izhikevich neuron model produces the spiking neuron

behaviors like the original model efficiently. The original, the CORDIC-based and the

PWL-based Izhikevich models are tested using both the ASIC & FPGA platforms to

perform power/area comparison. The CORDIC-based Izhikevich model exhibits less

power and area compared to the original Izhikevich model with an acceptable error. In

addition, a Figure of Merit among Power, Area and error is defined to show how the

CORDIC algorithm is flexible where the CORDIC approximation achieves better results

than the PWL approximation.

Furthermore, the performance of each approximation in neural networks has been

tested by constructing the network using the CORDIC-based neuron, PWL-based neuron

and the original neuron. The CORDIC-based spiking neural network consumes less

power and area than the original and the PWL-based spiking neural networks. Also, the

CORDIC-based spiking neural network has been found to be more accurate than the

PWL-based one.

Finally, real time FPGA outputs is demonstrated using an oscilloscope for the

purpose of behavioural verification. It is found that the CORDIC-based Izhikevich

neuron can exhibit the tonic spiking behavior correctly.

77

REFERENCES

 [1] H. Soleimani, A. Ahmadi, and M. Bavandpour, “Biologically inspired spiking neurons:

Piecewise linear models and digital implementation,” IEEE Trans. Circuits Syst. I Regul.

Pap., 2012.

[2] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning applied to

document recognition,” Proc. IEEE, 1998.

[3] S. Russell and P. Norvig, Artificial Intelligence: A Modern Approach, Third edition. 2014.

[4] H. Bauer, G. Richter, J. Wüllenweber, M. Breunig, D. Wee, and H. Klein, “Smartening

up with Artificial Intelligence (AI) - What’s in it for Germany and its Industrial Sector?,”

2017.

[5] K. Gurney, An Introduction to Neural Networks. 1996.

[6] R. T. J. Monson and Drew J. Philip, “Artificial neural networks,” Surgery, 2000.

[7] M. Nielsen, “Neural Networks and Deep Learning,” Determ. Press, 2015.

[8] A. Deshpande, “A Beginner’s Guide To Understanding Convolutional Neural Networks

Part 1,” https://adeshpande3.github.io/adeshpande3.github.io/A-Beginner%27s-Guide-

To-Understanding-Convolutional-Neural-Networks/, 2016. .

[9] S. Davies, “Learning in Spiking Neural Networks,” Thesis Diss., 2012.

[10] E. M. Izhikevich, “Simple model of spiking neurons,” IEEE Trans. Neural Networks,

2003.

[11] E. M. Izhikevich, “Which model to use for cortical spiking neurons?,” IEEE Trans. Neural

Networks, 2004.

[12] K. Doya, “What are the computations of the cerebellum, the basal ganglia and the cerebral

cortex?,” Neural Networks. 1999.

[13] J. Wang, A. Belatreche, L. Maguire, and M. McGinnity, “Online Versus Offline Learning

for Spiking Neural Networks: A Review and New Strategies,” IEEE 9th Int. Conf.

Cyberntic Intell. Syst., 2010.

[14] M. Heidarpour, A. Ahmadi, and R. Rashidzadeh, “A CORDIC Based Digital Hardware

for Adaptive Exponential Integrate and Fire Neuron,” IEEE Trans. Circuits Syst. I Regul.

78

Pap., 2016.

[15] Z. Babić, A. Avramović, and P. Bulić, “An iterative logarithmic multiplier,”

Microprocess. Microsyst., 2011.

[16] R. C. Guido, “A tutorial on signal energy and its applications,” Neurocomputing, 2016.

[17] C. Inacio and D. Ombres, “DSP decision: fixed point of floating?,” IEEE Spectr., 1996.

[18] R. Brette, “Philosophy of the Spike: Rate-Based vs. Spike-Based Theories of the Brain,”

Front. Syst. Neurosci., 2015.

[19] “‘Deep Learning Market Size & Growth | Industry Research Report, 2025,’ Agriculture

Drones Market Size, Share | Industry Report, 2024.” [Online]. Available:

https://www.grandviewresearch.com/industry-analysis/deep-learning-market. [Accessed:

05-Jun-2018].

[20] “Global Neural Network Software Market 2017-2021,” Technavio,” 2017. [Online].

Available: https://www.technavio.com/report/global-neural-network-software-market.

[Accessed: 05-Jun-2018].

[21] “PeopleVine, S. (2018). Sigenics - Custom Integrated Circuits.” [Online]. Available:

http://www.sigenics.com/. [Accessed: 05-Jun-2018].

79

APPENDIX

MATLAB SOURCE CODE

% This MATLAB file generates figure 1 in the paper by

% Izhikevich E.M. (2004)

% Which Model to Use For Cortical Spiking Neurons?

% use MATLAB R13 or later. November 2003. San Diego, CA

%%%%%%%%%%%%%%% (A) tonic spiking %%%%%%%%%%%%%%%%%%%%%%

subplot(5,4,1)

a=0.02; b=0.2; c=-65; d=6;

V=-70; u=b*V;

VV=[]; uu=[];

tau = 0.25; tspan = 0:tau:100;

T1=tspan(end)/10;

for t=tspan

 if (t>T1)

 I=14;

 else

 I=0;

 end;

 V = V + tau*(0.04*V^2+5*V+140-u+I);

 u = u + tau*a*(b*V-u);

 if V > 30

 VV(end+1)=30;

 V = c;

 u = u + d;

 else

 VV(end+1)=V;

 end;

 uu(end+1)=u;

end;

plot(tspan,VV,[0 T1 T1 max(tspan)],-90+[0 0 10 10]);

axis([0 max(tspan) -90 30])

axis off;

title('(A) tonic spiking');

%%%%%%%%%%%%%%%%%% (B) phasic spiking %%%%%%%%%%%%%%%%%%%%%%%%%

subplot(5,4,2)%

a=0.02; b=0.25; c=-65; d=6;

V=-64; u=b*V;

VV=[]; uu=[];

tau = 0.25;tspan = 0:tau:200;

T1=20;

for t=tspan

 if (t>T1)

 I=0.5;

 else

 I=0;

 end;

 V = V + tau*(0.04*V^2+5*V+140-u+I);

 u = u + tau*a*(b*V-u);

 if V > 30

 VV(end+1)=30;

 V = c;

80

 u = u + d;

 else

 VV(end+1)=V;

 end;

 uu(end+1)=u;

end;

plot(tspan,VV,[0 T1 T1 max(tspan)],-90+[0 0 10 10]);

axis([0 max(tspan) -90 30])

axis off;

title('(B) phasic spiking');

%%%%%%%%%%%%%% (C) tonic bursting %%%%%%%%%%%%%%%%%%%%%%%%%%%%

subplot(5,4,3)

a=0.02; b=0.2; c=-50; d=2;

V=-70; u=b*V;

VV=[]; uu=[];

tau = 0.25; tspan = 0:tau:220;

T1=22;

for t=tspan

 if (t>T1)

 I=15;

 else

 I=0;

 end;

 V = V + tau*(0.04*V^2+5*V+140-u+I);

 u = u + tau*a*(b*V-u);

 if V > 30

 VV(end+1)=30;

 V = c;

 u = u + d;

 else

 VV(end+1)=V;

 end;

 uu(end+1)=u;

end;

plot(tspan,VV,[0 T1 T1 max(tspan)],-90+[0 0 10 10]);

axis([0 max(tspan) -90 30])

axis off;

title('(C) tonic bursting');

%%%%%%%%%%%%%%% (D) phasic bursting %%%%%%%%%%%%%%%%%%%%%%%%%%

subplot(5,4,4)

a=0.02; b=0.25; c=-55; d=0.05;

V=-64; u=b*V;

VV=[]; uu=[];

tau = 0.2; tspan = 0:tau:200;

T1=20;

for t=tspan

 if (t>T1)

 I=0.6;

 else

 I=0;

 end;

 V = V + tau*(0.04*V^2+5*V+140-u+I);

 u = u + tau*a*(b*V-u);

 if V > 30

 VV(end+1)=30;

 V = c;

81

 u = u + d;

 else

 VV(end+1)=V;

 end;

 uu(end+1)=u;

end;

plot(tspan,VV,[0 T1 T1 max(tspan)],-90+[0 0 10 10]);

axis([0 max(tspan) -90 30])

axis off;

title('(D) phasic bursting');

%%%%%%%%%%%%%%% (E) mixed mode %%%%%%%%%%%%%%%%%%%%%%%%%

subplot(5,4,5)

a=0.02; b=0.2; c=-55; d=4;

V=-70; u=b*V;

VV=[]; uu=[];

tau = 0.25; tspan = 0:tau:160;

T1=tspan(end)/10;

for t=tspan

 if (t>T1)

 I=10;

 else

 I=0;

 end;

 V = V + tau*(0.04*V^2+5*V+140-u+I);

 u = u + tau*a*(b*V-u);

 if V > 30

 VV(end+1)=30;

 V = c;

 u = u + d;

 else

 VV(end+1)=V;

 end;

 uu(end+1)=u;

end;

plot(tspan,VV,[0 T1 T1 max(tspan)],-90+[0 0 10 10]);

axis([0 max(tspan) -90 30])

axis off;

title('(E) mixed mode');

%%%%%%%%%%%%%%%% (F) spike freq. adapt %%%%%%%%%%%%%%%%%%%%%%%%

subplot(5,4,6)

a=0.01; b=0.2; c=-65; d=8;

V=-70; u=b*V;

VV=[]; uu=[];

tau = 0.25; tspan = 0:tau:85;

T1=tspan(end)/10;

for t=tspan

 if (t>T1)

 I=30;

 else

 I=0;

 end;

 V = V + tau*(0.04*V^2+5*V+140-u+I);

 u = u + tau*a*(b*V-u);

 if V > 30

82

 VV(end+1)=30;

 V = c;

 u = u + d;

 else

 VV(end+1)=V;

 end;

 uu(end+1)=u;

end;

plot(tspan,VV,[0 T1 T1 max(tspan)],-90+[0 0 10 10]);

axis([0 max(tspan) -90 30])

axis off;

title('(F) spike freq. adapt');

%%%%%%%%%%%%%%%%% (G) Class 1 exc. %%%%%%%%%%%%%%%%%%%%%%%%%%

subplot(5,4,7)

a=0.02; b=-0.1; c=-55; d=6;

V=-60; u=b*V;

VV=[]; uu=[];

tau = 0.25; tspan = 0:tau:300;

T1=30;

for t=tspan

 if (t>T1)

 I=(0.075*(t-T1));

 else

 I=0;

 end;

 V = V + tau*(0.04*V^2+4.1*V+108-u+I);

 u = u + tau*a*(b*V-u);

 if V > 30

 VV(end+1)=30;

 V = c;

 u = u + d;

 else

 VV(end+1)=V;

 end;

 uu(end+1)=u;

end;

plot(tspan,VV,[0 T1 max(tspan) max(tspan)],-90+[0 0 20 0]);

axis([0 max(tspan) -90 30])

axis off;

title('(G) Class 1 excitable');

%%%%%%%%%%%%%%%%%% (H) Class 2 exc. %%%%%%%%%%%%%%%%%%%%%%%%%%

subplot(5,4,8)

a=0.2; b=0.26; c=-65; d=0;

V=-64; u=b*V;

VV=[]; uu=[];

tau = 0.25; tspan = 0:tau:300;

T1=30;

for t=tspan

 if (t>T1)

 I=-0.5+(0.015*(t-T1));

 else

 I=-0.5;

 end;

 V = V + tau*(0.04*V^2+5*V+140-u+I);

 u = u + tau*a*(b*V-u);

 if V > 30

83

 VV(end+1)=30;

 V = c;

 u = u + d;

 else

 VV(end+1)=V;

 end;

 uu(end+1)=u;

end;

plot(tspan,VV,[0 T1 max(tspan) max(tspan)],-90+[0 0 20 0]);

axis([0 max(tspan) -90 30])

axis off;

title('(H) Class 2 excitable');

%%%%%%%%%%%%%%%%% (I) spike latency %%%%%%%%%%%%%%%%%%%%%%%%%%%%

subplot(5,4,9)

a=0.02; b=0.2; c=-65; d=6;

V=-70; u=b*V;

VV=[]; uu=[];

tau = 0.2; tspan = 0:tau:100;

T1=tspan(end)/10;

for t=tspan

 if t>T1 & t < T1+3

 I=7.04;

 else

 I=0;

 end;

 V = V + tau*(0.04*V^2+5*V+140-u+I);

 u = u + tau*a*(b*V-u);

 if V > 30

 VV(end+1)=30;

 V = c;

 u = u + d;

 else

 VV(end+1)=V;

 end;

 uu(end+1)=u;

end;

plot(tspan,VV,[0 T1 T1 T1+3 T1+3 max(tspan)],-90+[0 0 10 10 0 0]);

axis([0 max(tspan) -90 30])

axis off;

title('(I) spike latency');

%%%%%%%%%%%%%%%%% (J) subthresh. osc. %%%%%%%%%%%%%%%%%%%%%%%%%%%

subplot(5,4,10)

a=0.05; b=0.26; c=-60; d=0;

V=-62; u=b*V;

VV=[]; uu=[];

tau = 0.25; tspan = 0:tau:200;

T1=tspan(end)/10;

for t=tspan

 if (t>T1) & (t < T1+5)

 I=2;

 else

 I=0;

 end;

 V = V + tau*(0.04*V^2+5*V+140-u+I);

 u = u + tau*a*(b*V-u);

84

 if V > 30

 VV(end+1)=30;

 V = c;

 u = u + d;

 else

 VV(end+1)=V;

 end;

 uu(end+1)=u;

end;

plot(tspan,VV,[0 T1 T1 (T1+5) (T1+5) max(tspan)],-90+[0 0 10 10 0 0],...

 tspan(220:end),-10+20*(VV(220:end)-mean(VV)));

axis([0 max(tspan) -90 30])

axis off;

title('(J) subthreshold osc.');

%%%%%%%%%%%%%%%%%% (K) resonator %%%%%%%%%%%%%%%%%%%%%%%%

subplot(5,4,11)

a=0.1; b=0.26; c=-60; d=-1;

V=-62; u=b*V;

VV=[]; uu=[];

tau = 0.25; tspan = 0:tau:400;

T1=tspan(end)/10;

T2=T1+20;

T3 = 0.7*tspan(end);

T4 = T3+40;

for t=tspan

 if ((t>T1) & (t < T1+4)) | ((t>T2) & (t < T2+4)) | ((t>T3) & (t < T3+4)) | ((t>T4)

& (t < T4+4))

 I=0.65;

 else

 I=0;

 end;

 V = V + tau*(0.04*V^2+5*V+140-u+I);

 u = u + tau*a*(b*V-u);

 if V > 30

 VV(end+1)=30;

 V = c;

 u = u + d;

 else

 VV(end+1)=V;

 end;

 uu(end+1)=u;

end;

plot(tspan,VV,[0 T1 T1 (T1+8) (T1+8) T2 T2 (T2+8) (T2+8) T3 T3 (T3+8) (T3+8) T4 T4

(T4+8) (T4+8) max(tspan)],-90+[0 0 10 10 0 0 10 10 0 0 10 10 0 0 10 10 0 0]);

axis([0 max(tspan) -90 30])

axis off;

title('(K) resonator');

%%%%%%%%%%%%%%%% (L) integrator %%%%%%%%%%%%%%%%%%%%%%%%

subplot(5,4,12)

a=0.02; b=-0.1; c=-55; d=6;

V=-60; u=b*V;

VV=[]; uu=[];

tau = 0.25; tspan = 0:tau:100;

T1=tspan(end)/11;

T2=T1+5;

85

T3 = 0.7*tspan(end);

T4 = T3+10;

for t=tspan

 if ((t>T1) & (t < T1+2)) | ((t>T2) & (t < T2+2)) | ((t>T3) & (t < T3+2)) | ((t>T4)

& (t < T4+2))

 I=9;

 else

 I=0;

 end;

 V = V + tau*(0.04*V^2+4.1*V+108-u+I);

 u = u + tau*a*(b*V-u);

 if V > 30

 VV(end+1)=30;

 V = c;

 u = u + d;

 else

 VV(end+1)=V;

 end;

 uu(end+1)=u;

end;

plot(tspan,VV,[0 T1 T1 (T1+2) (T1+2) T2 T2 (T2+2) (T2+2) T3 T3 (T3+2) (T3+2) T4 T4

(T4+2) (T4+2) max(tspan)],-90+[0 0 10 10 0 0 10 10 0 0 10 10 0 0 10 10 0 0]);

axis([0 max(tspan) -90 30])

axis off;

title('(L) integrator');

%%%%%%%%%%%%%%%%% (M) rebound spike %%%%%%%%%%%%%%%%%%%%%%%%%%%%

subplot(5,4,13)

a=0.03; b=0.25; c=-60; d=4;

V=-64; u=b*V;

VV=[]; uu=[];

tau = 0.2; tspan = 0:tau:200;

T1=20;

for t=tspan

 if (t>T1) & (t < T1+5)

 I=-15;

 else

 I=0;

 end;

 V = V + tau*(0.04*V^2+5*V+140-u+I);

 u = u + tau*a*(b*V-u);

 if V > 30

 VV(end+1)=30;

 V = c;

 u = u + d;

 else

 VV(end+1)=V;

 end;

 uu(end+1)=u;

end;

plot(tspan,VV,[0 T1 T1 (T1+5) (T1+5) max(tspan)],-85+[0 0 -5 -5 0 0]);

axis([0 max(tspan) -90 30])

axis off;

title('(M) rebound spike');

%%%%%%%%%%%%%%%%% (N) rebound burst %%%%%%%%%%%%%%%%%%%%%%%%%%%%

subplot(5,4,14)

a=0.03; b=0.25; c=-52; d=0;

86

V=-64; u=b*V;

VV=[]; uu=[];

tau = 0.2; tspan = 0:tau:200;

T1=20;

for t=tspan

 if (t>T1) & (t < T1+5)

 I=-15;

 else

 I=0;

 end;

 V = V + tau*(0.04*V^2+5*V+140-u+I);

 u = u + tau*a*(b*V-u);

 if V > 30

 VV(end+1)=30;

 V = c;

 u = u + d;

 else

 VV(end+1)=V;

 end;

 uu(end+1)=u;

end;

plot(tspan,VV,[0 T1 T1 (T1+5) (T1+5) max(tspan)],-85+[0 0 -5 -5 0 0]);

axis([0 max(tspan) -90 30])

axis off;

title('(N) rebound burst');

%%%%%%%%%%%%%%%%% (O) thresh. variability %%%%%%%%%%%%%%%%%%%%%%%%%%

subplot(5,4,15)

a=0.03; b=0.25; c=-60; d=4;

V=-64; u=b*V;

VV=[]; uu=[];

tau = 0.25; tspan = 0:tau:100;

for t=tspan

 if ((t>10) & (t < 15)) | ((t>80) & (t < 85))

 I=1;

 elseif (t>70) & (t < 75)

 I=-6;

 else

 I=0;

 end;

 V = V + tau*(0.04*V^2+5*V+140-u+I);

 u = u + tau*a*(b*V-u);

 if V > 30

 VV(end+1)=30;

 V = c;

 u = u + d;

 else

 VV(end+1)=V;

 end;

 uu(end+1)=u;

end;

plot(tspan,VV,[0 10 10 15 15 70 70 75 75 80 80 85 85 max(tspan)],...

 -85+[0 0 5 5 0 0 -5 -5 0 0 5 5 0 0]);

axis([0 max(tspan) -90 30])

axis off;

title('(O) thresh. variability');

87

%%%%%%%%%%%%%% (P) bistability %%%%%%%%%%%%%%%%%%%%%%%%%%

subplot(5,4,16)

a=0.1; b=0.26; c=-60; d=0;

V=-61; u=b*V;

VV=[]; uu=[];

tau = 0.25; tspan = 0:tau:300;

T1=tspan(end)/8;

T2 = 216;

for t=tspan

 if ((t>T1) & (t < T1+5)) | ((t>T2) & (t < T2+5))

 I=1.24;

 else

 I=0.24;

 end;

 V = V + tau*(0.04*V^2+5*V+140-u+I);

 u = u + tau*a*(b*V-u);

 if V > 30

 VV(end+1)=30;

 V = c;

 u = u + d;

 else

 VV(end+1)=V;

 end;

 uu(end+1)=u;

end;

plot(tspan,VV,[0 T1 T1 (T1+5) (T1+5) T2 T2 (T2+5) (T2+5) max(tspan)],-90+[0 0 10 10 0 0

10 10 0 0]);

axis([0 max(tspan) -90 30])

axis off;

title('(P) bistability');

%%%%%%%%%%%%%% (Q) DAP %%%%%%%%%%%%%%%%%%%%%%%%%%

subplot(5,4,17)

a=1; b=0.2; c=-60; d=-21;

V=-70; u=b*V;

VV=[]; uu=[];

tau = 0.1; tspan = 0:tau:50;

T1 = 10;

for t=tspan

 if abs(t-T1)<1

 I=20;

 else

 I=0;

 end;

 V = V + tau*(0.04*V^2+5*V+140-u+I);

 u = u + tau*a*(b*V-u);

 if V > 30

 VV(end+1)=30;

 V = c;

 u = u + d;

 else

 VV(end+1)=V;

 end;

 uu(end+1)=u;

end;

plot(tspan,VV,[0 T1-1 T1-1 T1+1 T1+1 max(tspan)],-90+[0 0 10 10 0 0]);

axis([0 max(tspan) -90 30])

88

axis off;

title('(Q) DAP ');

%%%%%%%%%%%%%% (R) accomodation %%%%%%%%%%%%%%%%%%%%%%%%%%

subplot(5,4,18)

a=0.02; b=1; c=-55; d=4;

V=-65; u=-16;

VV=[]; uu=[]; II=[];

tau = 0.5; tspan = 0:tau:400;

for t=tspan

 if (t < 200)

 I=t/25;

 elseif t < 300

 I=0;

 elseif t < 312.5

 I=(t-300)/12.5*4;

 else

 I=0;

 end;

 V = V + tau*(0.04*V^2+5*V+140-u+I);

 u = u + tau*a*(b*(V+65));

 if V > 30

 VV(end+1)=30;

 V = c;

 u = u + d;

 else

 VV(end+1)=V;

 end;

 uu(end+1)=u;

 II(end+1)=I;

end;

plot(tspan,VV,tspan,II*1.5-90);

axis([0 max(tspan) -90 30])

axis off;

title('(R) accomodation');

%%%%%%%%%%%%%% (S) inhibition induced spiking %%%%%%%%%%%%%%%%%%%%%%%%%%

subplot(5,4,19)

a=-0.02; b=-1; c=-60; d=8;

V=-63.8; u=b*V;

VV=[]; uu=[];

tau = 0.5; tspan = 0:tau:350;

for t=tspan

 if (t < 50) | (t>250)

 I=80;

 else

 I=75;

 end;

 V = V + tau*(0.04*V^2+5*V+140-u+I);

 u = u + tau*a*(b*V-u);

 if V > 30

 VV(end+1)=30;

 V = c;

 u = u + d;

 else

 VV(end+1)=V;

89

 end;

 uu(end+1)=u;

end;

plot(tspan,VV,[0 50 50 250 250 max(tspan)],-80+[0 0 -10 -10 0 0]);

axis([0 max(tspan) -90 30])

axis off;

title('(S) inh. induced sp.');

%%%%%%%%%%%%%% (T) inhibition induced bursting %%%%%%%%%%%%%%%%%%%%%%%%%%

subplot(5,4,20)

a=-0.026; b=-1; c=-45; d=-2;

V=-63.8; u=b*V;

VV=[]; uu=[];

tau = 0.5; tspan = 0:tau:350;

for t=tspan

 if (t < 50) | (t>250)

 I=80;

 else

 I=75;

 end;

 V = V + tau*(0.04*V^2+5*V+140-u+I);

 u = u + tau*a*(b*V-u);

 if V > 30

 VV(end+1)=30;

 V = c;

 u = u + d;

 else

 VV(end+1)=V;

 end;

 uu(end+1)=u;

end;

plot(tspan,VV,[0 50 50 250 250 max(tspan)],-80+[0 0 -10 -10 0 0]);

axis([0 max(tspan) -90 30])

axis off;

title('(T) inh. induced brst.');

%%

set(gcf,'Units','normalized','Position',[0.3 0.1 0.6 0.8]);

