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ABSTRACT 

The project presents a significant contribution to the design and Very Large-Scale 

Integration (VLSI) implementation of Spiking Neural Networks (SNN) with low power 

consumption and better area utilization. The project aims to approximate a certain neuron 

model which is the building block of the neural network to reduce the network complexity 

while maintaining an adequate level of accuracy. Furthermore, the thesis contributes with 

original novel work to the neuromorphic computing field which is briefly explained 

below.  

In this project, an efficient CORDIC-based hardware implementation of the 

Izhikevich neuron model is introduced. The CORDIC (COordinate Rotation Digital 

Computer) algorithm is used to approximate the square term in Izhikevich equations that 

describe the neuron response. The approximation is evaluated by defining four types of 

errors where the CORDIC approximation shows significant improvement in error 

performance compared to the Piecewise Linear (PWL) model [1]. Two additional 

approximation algorithms, Integral Sum and Iterative Logarithmic, have been proposed 

other than CORDIC algorithm. Yet, CORDIC algorithm has been proved the most 

accurate one.  

For ASIC flow, the power consumption of the CORDIC-based neuron hardware 

implementation ranges from 0.26 mW to 0.4 mW whereas the PWL-based neuron as well 

as the original Izhikevich neuron hardware implementations consume 0.3 mW and 1.06 

mW, respectively. A Figure of Merit (FoM) is defined to show the trade-off among errors, 

power and area. By comparing with the PWL-based neuron hardware implementation, it 

is found that the CORDIC-based model is preferred as an approximation method from 

FoM perspective.  

 In order to further investigate the performance of the CORDIC-based 

approximation of the neuron model against other approximation models, the different 

approximations of the Izhikevich neuron model have been implemented on Xilinx 

ZYNQ-7 ZC702 Evaluation FPGA Board. The original Izhikevich neuron model has 

exhibited a high-power consumption (3.73 mW) and number of LUTs (1030). Both the 
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CORDIC-based neuron model and the PWL-based neuron model performed significantly 

better than the original model from power and area perspective. Although the PWL-based 

neuron model consumed less power than the CORDIC-based neuron, the latter used a 

lower number of LUTs. 

Furthermore, a feedforward neural network of two layers with 210 neurons in 

total (200,10) is simulated using the original Izhikevich neuron model, the PWL-based 

neuron as well as the CORDIC-based neuron. MNIST dataset is used to train and test the 

network [2]. The original Izhikevich neuron-based network achieves an accuracy of 89% 

while the CORDIC-based network achieves a better accuracy (86.5% to 88%) than the 

PWL-based one (85.5%). 

Finally, real time FPGA implementation outputs are monitored using an 

oscilloscope for the purpose of behavioural verification. Spartan-6 FPGA SP605 

Evaluation Kit is programmed with a single CORDIC-based Izhikevich neuron and 

connected to an oscilloscope in Digilent Analog Discovery 2 kit. It is found that the 

CORDIC-based Izhikevich neuron can exhibit the tonic spiking behavior correctly. 
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CHAPTER 1 

 

 

Introduction 

1.1 The definition of Artificial Intelligence 

Human beings are distinguished from other living things by their intelligence. As 

a society of intelligent creatures, we are capable of thinking, planning, learning, problem 

solving and many other activities that stimulate our minds.  

Inspired by human brain, scientists and engineers are trying to understand how 

the brain works, mimic its functionality and build an artificial one that provides machines 

with the ability to think and decide. Started early in the 50’s, Artificial Intelligence, 

abbreviated as “AI”, is one of the recently established fields in science and engineering. 

AI is a new branch of Computer Science that aims to build intelligent machines that can 

think, learn and manipulate [3].  

Traditional machines are instruction-based. By following restrict instruction, they 

can perform a certain task or function. Instruction-based machines produce a predicted 

well-defined output. Using AI, machines can learn, think and decide how the output 

should look like. Such a capability enables the machines to perform complex tasks such 

as recognition and classification. 

1.2 The history of Artificial intelligence 

The first attempt that could be considered as AI was performed by Warren 

McCulloch and Walter Pitts (Figure 1.1 (a)) in 1943. Their knowledge was based on 

information from physiology, proposition logic and Turing’s theory of computation. 

They managed to create the first artificial neuron model that described how the neuron 

behaved. Their model was the early start of building artificial neural networks later [3].  
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In 1949, Donald Hebb (Figure 1.1 (b)) proposed a rule, called “Hebbian learning 

rule”, that governed the connection strength between neurons. His rule, states that the 

neural connection strength is increased if the neurons fire simultaneously. Hebb’s rule is 

a fundamental rule in AI that is used till now [3].  

After a year, Marvin Minsky (Figure 1.1 (c)) managed to build a computer based 

on neural network with the help of Dean Edmonds. SNARC (Stochastic Neural Analog 

Reinforcement Calculator) is a neural network machine that simulates a network of 40 

neurons. Their work is considered the first AI-based product [3]. 

One of the earliest pioneers in the 50’s is Alan Turing (Figure 1.1 (d)). His 

inspiration paved the road for scientists and engineers to develop and flourish the field of 

AI. His contributions to AI field included, but not limited to, the Turing Test, machine 

learning, genetic algorithms, and reinforcement learning [3].  

The official birth of Artificial intelligence was in 1956 when John McCarthy 

(Figure 1.1 (e)) used the term “Artificial intelligence” in his speech when he invited 

inspired scientists to a 2-month workshop. During this workshop, they tried to establish 

the basics of how machines could learn, think and solve problems [3]. 
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Figure 1.1 The founders of Artificial Intelligence. (a) Warren McCulloch. and 

Walter Pitts. (b) Donald Hebb. (c) Marvin Minsky. (d) Alan Turing. (e) John McCarthy. 
 

1.3 Classification of Artificial intelligence 

After several decades, the science of AI has developed significantly to include 

different aspects. AI is divided mainly into two categories, Symbolic Learning and 

Machine Learning, as shown in Figure 1.2. The difference between the two categories is 

in the way of learning that the former is symbolic-based learning while the latter is data-

based learning. In the Symbolic Learning, the machines learn the ability to move, avoid 

obstacles in the Robotics and recognize objects in computer vision. This aspect requires 

previous knowledge from Image Processing field [3].  

The other main aspect is Machine learning that is mainly concerned about 

recognizing patterns. Machine learning is divided into two main topics, Statistical 

learning and Deep Learning or Neural Networks. In statistical learning, machines learn 

how to understand and recognize voices as well as natural languages. Deep learning 

builds a network of neurons that are capable of doing a certain function. Neural Network 

(NN) includes, but not limited to, three types which are Artificial Neural Network (ANN), 
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Convolutional Neural Network (CNN) and Spiking Neural Network (SNN) which are 

discussed in details in the next chapter [3].  

 

Figure 1.2 Classification of Artificial Intelligence. 

 

1.4 Software versus Hardware- based Artificial Intelligence 

Recently, A lot of great applications have been implemented as a software 

program. Software-based AI has accomplished great achievements; however, software 

has limitations. It is limited by the power consumption and CPU/GPU speed. As an 

alternative, companies started to focus on implementing AI as a hardware product [4].  

Several recent commercial hardware products have been revealed. Companies 

moved towards hardware to take advantage of higher speed and lower power 

consumption. This turn will require exploring new hardware architecture than the 

traditional ones. A lot of research will be conducted to explore new custom hardware that 

is specialized for Artificial Intelligence to hit the performance limits [4]. The hardware-

based AI growth and its market share are discussed in details later on in the economic 

analysis chapter. 
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CHAPTER 2 

 

 

Literature review 

2.1 The Biological neuron: 

The biological neuron is the building block of our human brain. The brain consists 

of billions of neurons that are connected together to form a neural network responsible 

for thinking and making decisions. The biological neuron consists of three main 

components as shown in Figure 2.1 [5]: 

a) Dendrites: receives signals from neighbour neurons and synapses. 

b) A cell body (Soma): processes the signals received. 

c) An axon: sends processed signals out to other neurons. 

 

Figure 2.1 The biological neuron. 
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2.2 The artificial neuron: 

Mimicking the biological neuron, the artificial neuron also has a number of inputs, 

a processing block and an output that can be connected to multiple neurons as shown in 

Figure 2.2. Different neuron and neural network models differ in the design of the 

processing block; however, the main concept is the same and similar to that of the 

biological neuron. The artificial neuron as well as the neural network will be discussed 

in details later in this chapter [6].  

 

Figure 2.2 The artificial neuron. 

 

2.3 Types of Neural Networks 

Neural networks are one of the basics principles in the field of Artificial 

Intelligence [5]. There are several types of neural networks including, but not limited to, 

Artificial Neural Network (ANN), Convolutional Neural Network (CNN) and Spiking 

Neural Network (SNN). 

2.3.1 Artificial Neural Network (ANN) 

ANN is considered as a basic computing system inspired by the biological neural 

network. The basic component of ANN is the artificial neuron. Those neurons are 

implemented to mimic the computation process done inside the soma of the biological 

neuron. ANN is a matrix constructed by interconnecting many of those artificial neurons. 

Artificial neurons differ from each other according to the computation function used. To 

understand how the neuron works, a simple form of the artificial neuron, called the 

Perceptron, is illustrated below in Figure 2.3 [5].  
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Figure 2.3 The perceptron. 

 

The perceptron is considered as an early version of the sigmoid neuron. It takes 

several inputs and produces a single output as a binary digit “0” or “1”. Each input has a 

weight that represents the input strength. Inputs are multiplied by their weights. The 

output of the perceptron is determined by summing all the weighted inputs. If the 

summation is greater than the threshold, the result is logic 1 and if it is less than the 

threshold, the result is logic 0. The threshold is a neuron-related parameter used to limit 

the firing. The perceptron mathematical form is represented in (1) as follows  [7]:  

 𝑜𝑢𝑡𝑝𝑢𝑡 =  

{
 
 

 
 0     ∑𝑤𝑗𝑥𝑗 ≤ 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑

𝑗

1     ∑𝑤𝑗𝑥𝑗 > 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑

𝑗

 (1) 

Where 𝑥𝑗 represents the input’s value and the 𝑤𝑗 represents the weight’s value of 

neuron 𝑗. 

On the other hand, the perceptron model is a simple form of the neuron that it has 

some drawbacks. it is unrealistic to mimic the biological neuron as a binary number either 

“1” or “0”. In addition, the function is very sensitive that the output can flip from “1” to 
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“0” or the opposite if a slight change in the inputs or the weights occurs. This has led to 

develop the sigmoid neuron [7]. 

Sigmoid neuron is the most commonly used neuron in ANN. Sigmoid neuron is 

considered an improved version of the perceptron. The aim is to overcome the sensitivity 

problem of the perceptron. Consequently, any small change in the inputs or the weights 

will result in a small change in the output. The sigmoid neuron looks like the perceptron 

in its structure that it takes many inputs and produces a single output. Unlike the 

perceptron, the output will not be in a binary form. Instead, the output can take any value 

between 0 and 1. The sigmoid function is defined in (2) as follows [7]: 

 𝜎(𝑤. 𝑥 + 𝑏) =
1

1 + 𝑒−(∑ 𝑤𝑗𝑥𝑗+𝑏𝑗 )
 (2) 

Where b is an overall bias applied to the neuron. 

The sigmoid function formula looks difficult, but it is similar in shape to the 

perceptron when plotted. The perceptron is plotted as a step function, but the sigmoid 

function is plotted in Figure 2.4 as follows  [7]: 

 

Figure 2.4  The sigmoid function. 
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The architecture of ANN is divided into several layers. Each layer has its name 

and function. The leftmost (first) layer is called the input layer because it is the layer that 

deals with the inputs directly. The rightmost (last) one is called the output layer because 

it is the one that produces the output. Any middle layer is called a hidden layer. The 

network could have many hidden layers or no hidden layer at all. Each neuron in any 

layer is connected to all neurons in the next layer as well as the previous layer. Such a 

structure is called feedforward that will be discussed in details later on this chapter. The 

network is represented in Figure 2.5 as follows [7]: 

 

Figure 2.5  Feedforward structure of ANN. 

 

Those layers do some computation according to the applied input and then, send 

their results to the next layer which performs the same process until the final network 

output is ready at the output layer [7]. 

2.3.2 Convolutional Neural Network (CNN) 

The Convolutional Neural Network (CNN) is one of the currenlty used type of 

neural networks. CNN is mainly designed for image recognition applications. This type 

of neural network is inspired biologically from the visual cortex. The input of this 

network is always an array of pixels’ values. The number of pixels is dependent on the 

resolution and the size of the image. The value of the pixel is dependent on the features 

inside the image. The output of the CNN is a probability of some classes. CNN has a 

distinct structure not like any other neural network as shown in Figure 2.6 [8]. 
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Figure 2.6  Convolutional Neural Network (CNN). 

 

The structure of the CNN consists of a series of layers including, convolutional 

layer, Nonlinear layer, Pooling layer, Dropout layer and Fully connected layer. Each layer 

has its functionality and could be replicated more than one time [8]. 

The convolutional layer is directly connected to the input image. This layer is 

considered as a filter to scan a specific feature in the image. The filter is an array of 

weights applied to the inputs. The size of the chosen filter is compared with the original 

image and the desired resolution. The filter is moved to scan the whole image. The output 

of the filter is only one pixel. Accordingly, the image size will decrease at the end. Such 

an operation is called activation map illustrated in Figure 2.7 [8]. 

 

Figure 2.7  Activation map. 
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Rectified Linear Units (ReLU) layer is a nonlinear layer. This layer is interspersed 

between these convolutional layers. They provide nonlinearity, preservation of 

dimension and improve robustness. The ReLU layer applies the function f(x) = max (0, 

x) to all of the elements in the input volume [8]. 

Pooling layer is considered a down sampling layer as shown in Figure 2.8. This 

layer uses a filter to choose and compute the maximum-valued pixel. Moreover, pooling 

layer is used to control the overfitting problem. Such a problem occurs when the network 

cannot produce a correct output when a test set is applied. The reason is that training set 

makes the network over-biased [8]. 

 

Figure 2.8  Pooling layer. 

 

Dropout layer is used during the training time, but never used during the test time. 

This layer performs a specific function in the CNN where it “drops out” a random set of 

activations in that layer by setting them to zero. It helps in solving the problem of 

overfitting [8]. 

Fully Connected Layer works as a network itself. It works by taking the output of 

the previous layer then, determines which feature is the most correlated one to a particular 

class [8]. 
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2.3.3 Spiking Neural Network (SNN) 

Spiking Neural Network (SNN) is considered as the third generation of neural 

networks where the level of the realism has been increased. SNN can do not only 

recognition, but also data analysis and learning. The spiking neuron is the main 

component of SNN where it mimics the neuron of human’s brain. Like the perceptron 

and sigmoid neurons, the spiking neuron can take many inputs and produce one output. 

The input of the spiking neurons is a current and the output is a train of spikes. This type 

of neuron is not supposed to fire each propagation cycle, but only when the membrane 

potential exceeds a specific value [9]. 

The behaviour of the spiking neuron is shown in Figure 2.9. when the neuron’s 

membrane voltage is less than the threshold, the voltage accumulates till it reaches the 

threshold as long as a stimulus current is applied. when the membrane voltage reaches 

the threshold, the membrane voltage overshoots until it reaches the peak voltage, which 

is the maximum allowable value for the membrane voltage. Then, the membrane voltage 

drops down to a negative value during the refractory period until it reaches its resting 

state at the end [9]. 

 

Figure 2.9  The behaviour of the biological neuron. 
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Each spiking neuron consists of three main computational stages as shown in 

Figure 2.10. The first stage is the sum of all inputs’ currents. The second one does a 

certain computation. It integrates the output of the first stage over the time. The third 

stage is responsible for emitting the spikes and resetting the value of the membrane 

potential after a spike is fired [9]. 

 

Figure 2.10  The spiking neuron’s main components. 

 

There are several mathematical models for the spiking neuron such as Integrate 

and Fire (IF) model, Hodgkin-Huxley (HH) model and the Izhikevich model. Each model 

has advantages and disadvantages. The IF model is very simple, but it does not produce 

an accurate neural behaviour. The HH model can produce a very accurate neural 

behaviour, but it is very complex. The Izhikevich model is considered as the trade-off 

between the two previous models that it can produce an accurate behaviour while being 

quite simple [10]. 

 The structure of the SNN is not different from the structure of the ANN. It consists 

of layers connected to each other including, input layer, hidden layer(s) and output layer. 

Also, there could be more than one hidden layer or no hidden layer at all. 
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2.3.4 Neural Network Comparison  

As explained before, each type of neural network has its advantages and 

disadvantages. ANN is the simplest one from implementation perspective since its neuron 

model is the simplest. In addition, ANN accuracy reached high levels. However, ANN 

cannot mimic the biological neuron and produce accurate neural behavior. Although 

CNN is compatible with image recognition applications, CNN is more complex than 

ANN. The SNN is the highest complexity compared with ANN and CNN. However, SNN 

is the most capable network to mimic the human brain behavior. In addition, SNN is the 

only type of neural networks that introduced the concept of the time. All previous 

advantages make SNN the most promising neural network towards more realistic 

applications. A lot of research has to be done in order to decrease SNN complexity.   

2.4 Different spiking behaviours of the biological neuron 

The Biological neuron is capable of exhibiting different spiking behaviours in 

response to various DC currents. Although the interactions between billions of neurons 

results in tremendous spiking behaviours, there exist 20 prominent spiking behaviours 

that are known and used in creating artificial neural networks [11]: 

A) Tonic Spiking: The neuron is inactive in general unless the input current is on. In 

that case, the neuron fires a train of spikes. The neuron fires two rapid spikes at the 

beginning then, it fires a spike once every certain constant period [11]. 

 

Figure 2.11  Tonic Spiking. 

 

B) Phasic Spiking: The neuron fires only once when the input current is turned on 

then, it becomes inactive again, whether the input current is still on or changed to 
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off. It is useful in detection of the current stimulation start. The inter-burst 

frequency may get as high as 50 Hz [11]. 

 

Figure 2.12  Phasic Spiking. 

 

C) Tonic Bursting: The neuron fires periodic bursts of spikes when stimulated with 

input current [11]. 

 

Figure 2.13  Tonic Bursting. 

 

D) Phasic Bursting: Similar to phasic spiking but, it produces a burst of spikes at the 

beginning of the current stimulation only. However, bursts are favoured due to its 

immunity against neural noise [11]. 
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Figure 2.14  Phasic Bursting. 

 

E) Mixed Mode: The neuron combines the behaviour of both phasic bursting and 

tonic spiking. It produces a burst of spikes at the start of the stimulation then, 

moves to the tonic spiking behaviour by producing a spike train as long as the 

stimulation is going on [11]. 

 

Figure 2.15  Mixed Mode. 

 

F) Spike Frequency Adaptation: The neuron fires as tonic spiking but, with a 

decreasing frequency. It starts with a high frequency at the start of the stimulation 

then, decreases with time till the end of the current stimulation [11]. 

 

Figure 2.16  Spike Frequency Adaptation. 
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G) Class 1 Excitability: It performs a tonic spiking but, with a variable frequency 

that depends on the strength of the input stimulation. The spikes frequency ranges 

from 2 to 200Hz [11]. 

 

Figure 2.17  Class 1 Excitability. 

 

H) Class 2 Excitability: the neuron should work the same as Class 1 Excitability but, 

it cannot fire a very low frequency spike trains [11]. 

 

Figure 2.18  Class 2 Excitability. 

 

I) Spike Latency: The neuron fires a delayed spike after the stimulation. The delay 

is proportional to the strength of the stimulation current [11]. 

 

Figure 2.19  Spike Latency. 
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J) Subthreshold Oscillations: Neurons are able to exhibit oscillatory potential. The 

neurons behave like a bandpass filter where the frequency of the oscillations is an 

important characteristic [11]. 

 

Figure 2.20  Subthreshold Oscillations. 

 

K) Frequency Preference and Resonance: Neurons have a selective frequency of 

stimulation spikes that resonate only with their subthreshold oscillations causing a 

spike to be fired at their outputs. These neurons can represent a Frequency 

Modulated (FM) signals [11]. 

 

Figure 2.21  Frequency Preference and Resonance. 

 

L) Integration and Coincidence Detection: Neurons that do not produce oscillatory 

potential and act as integrators. It fires more likely with high frequency input. It is 

useful for detecting coincident spikes [11]. 
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Figure 2.22  Integration and Coincidence Detection. 
 

M) Rebound Spike: Neurons fire a rebound spike after receiving an inhibitory input 

[11]. It can be used as a detection for inhibitory current. 

 

Figure 2.23  Rebound Spike. 

 

N) Rebound Burst: Similar to Rebound Spike but, it produces a rebound burst of 

spikes after receiving an inhibitory input [11]. 

 

Figure 2.24  Rebound Burst. 

 

O) Threshold Variability: A very common misconception is that the neurons have 

fixed threshold. In this neural behaviour, the neuron is being exposed to a specific 

excitatory input, no spikes are noticed which means the input does not exceed the 

threshold. Another inhibitory stimulation is applied to the neuron before applying 
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the same old excitatory input one more time. The neuron now fires a spike which 

means the threshold has been reduced after the exposure to inhibitory input. 

Similarly, an excitatory input might cause the threshold to increase and the neuron 

becomes less excitable [11]. 

 

Figure 2.25  Threshold Variability. 

 

P) Bistability of Resting and Spiking States: Some neurons can exhibit multiple 

modes of operation (e.g. resting and tonic spiking). An input pulse (inhibitory or 

excitatory) can result in a switch between modes which opens the door for a short-

term memory behaviour. However, a switch from the tonic spiking to resting mode 

requires the input stimulation to arrive at an appropriate phase of oscillation which 

highlights the importance of spike timing in processing [11]. 

 

Figure 2.26  Bistability of Resting and Spiking States. 

 

Q) Depolarizing After-Potentials: The neuron membrane potential exhibits a 

prolonged depolarized after-potential (DAP). DAPs appear as a result of a high-

threshold input current activated during the spike [11]. 
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Figure 2.27  Depolarizing After-Potentials. 

 

R) Accommodation: Although neurons are sensitive to short stimulation pulses, a 

strong but slowly increasing ramped input current may not cause a spike fire. 

Throughout the ramp stimulation, the inward membrane currents have enough time 

to inactivate while outward membrane currents have enough time to activate, 

which means that the neuron accommodates and becomes less excitable [11]. 

 

Figure 2.28  Accommodation. 

 

S) Inhibition-Induced Spiking: When the injected current activates the h-current 

and deactivates calcium T-current, tonic spiking is fired even if the input 

stimulation is inhibitory [11]. 
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Figure 2.29  Inhibition-Induced Spiking. 

 

T) Inhibition-Induced Bursting: Similar to Inhibition-Induced Spiking but, it 

produces a burst train of spikes instead [11]. 

 

Figure 2.30  Inhibition-Induced Bursting. 

 

2.5 Different Spiking Neuron Models 

Some of the previously mentioned neuron properties are mutually exclusive. A 

neuron cannot be a resonator and an integrator at the same time, that is why no model can 

exhibit all these properties simultaneously. Nevertheless, some models can exhibit 

different computational properties by tuning some model parameters that control the 

neuron model behaviour as shown in Figure 2.31. Three common neuron computational 

models are: Integrate and Fire (IF), Hodgkin and Huxley (HH) and Izhikevich [11]. 
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Figure 2.31  Comparison between different spiking neuron models in their ability to 

exhibit certain spiking behaviors and their computational complexity. 

2.5.1 Integrate and Fire (IF) Neuron Model: 

It is considered one of the simplest models that describe the neuron behavior. The 

neuron is defined in (3) as: 

 𝐼(𝑡) =  𝐶𝑚
𝑑𝑉𝑚(𝑡)

𝑑𝑡
 (3) 

Which is basically the derivative of the capacitance law with respect to time. When an 

input current is applied to the neuron, the membrane voltage increases until it reaches a 

certain value, threshold voltage, then a spike is be fired and the membrane voltage is reset 

to the resetting potential value [11]. 

The model at this form is not accurate enough as the firing frequency increases 

linearly with the input current without any upper bound for the firing frequency. To 

enhance the model and accommodate this problem, the concept of refractory period (tref) 

is introduced. The refractory period is the amount of time after the spike during which 

firing new spikes is not allowed. The firing frequency can be formulated as in (4) [11]: 
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 𝑓(𝐼) =  
𝐼

𝐶𝑚𝑉𝑡ℎ + 𝑡𝑟𝑒𝑓𝐼
 (4) 

2.5.2 Hodgkin–Huxley (HH) Neuron Model: 

Hodgkin–Huxley (HH) is one of the most complicated, but accurate models in 

computational neuroscience. It consists of four differential equations that describe the 

membrane potential, activation of sodium and potassium currents and inactivation of 

sodium current. The model has tens of parameters that are tuned to achieve the neural 

properties discussed in previous sections. Another good advantage of the HH model is 

that all its parameters are biologically meaningful and measurable [11].  

2.5.3 Izhikevich Neuron Model: 

As illustrated in Figure 2.32, this model can produce the 20 essential biological 

neuron behaviors discussed earlier in this chapter. The Izhikevich model consists of two 

differential equations describing the biophysical neuron behavior as in (5), (6) and (7) 

[10].  

 

 𝑣′ = 0.04𝑣2 + 5𝑣 + 140 − 𝑢 + 𝐼 (5) 

 𝑢′ = 𝑎(𝑏𝑣 − 𝑢)  (6) 

 𝑖𝑓 𝑣 ≥ 30 𝑚𝑉, 𝑡ℎ𝑒𝑛 { 𝑣
 
←𝑐 

𝑢
 
←𝑢 + 𝑑

 (7) 

(5) and (6) describe how the membrane potential 𝑣  and the membrane recovery variable 

𝑢  change. (7) is the after-spike resetting equation. The membrane potential 𝑣  and the 

recovery variable 𝑢  depend on the following four parameters (𝑎, 𝑏, 𝑐 𝑎𝑛𝑑 𝑑) and the 

current I as explained in [10]. 
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Figure 2.32  20 biological neuron behaviors produced by Izhikevich neuron model. 

 

As illustrated in Figure 2.33, ‘a’ represents the recovery time of the neuron 

controlling the neuron recovery speed after firing. ‘b’ controls the sensitivity of the 

membrane recovery variable u.  Its value must be determined carefully to avoid 

fluctuations or subthreshold firing of the membrane potential 𝑣  . ‘c’ is the after-spike 

reset potential of v. ‘d’ determines the reset value of the variable 𝑢 when the after-spike 

resetting condition is met. ‘I’ is the synaptic current where it can be excitatory or 

inhibitory one [3]. Figure 2.33 shows how tuning the four basic parameters a,b,c and d 

can help achieve different neuron behaviors discussed earlier [10].  
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Figure 2.33  Izhikevich model paramters values to generate different neural behaviors 

like the biological neuron. 

 

In this work, Euler method is used to solve numerically the differential equations 

with time step, ∆𝑡 as Izhikevich suggested in [11]. (8) and (9) show Izhikevich model in 

Euler formula as follows:  

 𝑣𝑡+∆𝑡 = 𝑣𝑡 + ∆𝑡(0.04𝑣𝑡
2 + 5𝑣𝑡 + 140 − 𝑢𝑡 + 𝐼) (8) 

 𝑢𝑡+∆𝑡 = 𝑢𝑡 + ∆𝑡 ∗ 𝑎(𝑏𝑣𝑡 − 𝑢𝑡) (9) 

2.5.4 Comparison between the neuron models: 

As discussed before, different neuron models offer a variety of computational 

accuracy as well as a variety of model complexity. Figure 2.34 shows the trade-off 

between the complexity and accuracy in different neuron models. It is noticeable that 

Izhikevich model offers a high accuracy, almost the same as HH model, while costing a 

low complexity compared to other neuron models. That is why Izhikevich model is 

preferred in neural computations over the other models [11]. 

 

Figure 2.34  Accuracy versus Complexity of different neuron models. 

 



27 

2.6 Types of Learning Algorithms 

Learning algorithm is the stage of teaching the neural network to perform a certain 

task. The learning algorithm is mainly responsible for updating the weights of layers 

connections. The weights increase in value if a certain input strongly affects the output 

and decrease otherwise. There are three learning algorithms that are commonly used in 

neural networks [9]. 

2.6.1 The Supervised Learning 

This type of learning is characterized by presence of the desired output as shown 

in Figure 2.35. Using this algorithm, the network is able to configure itself by comparing 

the actual output with the desired output. Then, the network calculates the error with 

which the network weights are updated [9]. 

 

Figure 2.35  The Supervised Learning. 

2.6.2 The Unsupervised Learning 

Unlike the supervised learning, this learning algorithm does not have a desired 

output as shown in Figure 2.36. Unsupervised learning is characterized by the presence 

of only the inputs where the network is supposed to learn by itself. The network learns 

by searching for similarities and patterns in the applied input that’s why it is also called 

self-organizing learning [9]. 

 

Figure 2.36  The Unsupervised Learning. 
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2.6.3 The Reinforcement Learning 

The idea behind this learning algorithm comes from the punishment and reward 

learning method from the psychology field. The network learns by trial and error as 

shown in Figure 2.37. The right behavior of the network gets a positive reward while the 

undesired wrong behavior gets a punishment. Sometimes, Reinforcement learning is 

considered as subcategory of supervised learning. [9]. 

 

Figure 2.37  The Reinforcement Learning. 

 

In Figure 2.38, it is shown that the human brain does not only use one type of 

learning, instead, the brain uses the three types of learning. Each learning algorithm 

occurs in a different part inside the brain [12]. 

 

Figure 2.38  Specialization by Learning Algorithms by Doya in 1999. 
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2.7 Online Learning Versus Offline Learning 

From the implementation perspective, there are two main techniques to do 

learning which are on-chip (Online) learning and off-chip (offline) learning. The offline 

learning is commonly used than the online learning. The idea of the off-chip training is 

based on simulating and training the network using a high-level language till it reaches 

the desired accuracy. Then, the resulted optimum weights are stored into a memory to be 

used in hardware implementation. This technique has several advantages that it is very 

fast compared to the online learning and provides accurate weights without truncation 

errors. On the other hand, offline learning requires a large memory to store the weights 

where such a memory takes a large area and increases the power consumption. In 

addition, the weights will be fixed. If the network is implemented on a FPGA, this is not 

a problem because it can be reprogrammed easily. However, if the network is 

implemented on ASIC platform, there is no way to modify the weights after 

implementation. This introduces significant limitation to the network design [13]. 

The online learning performs the network training on hardware. It has a great 

advantage that weights are updated instantaneously. Also, if the network is implemented 

on a non-reprogrammable platform such as ASIC, there is no worry about updating the 

weights because learning occurs online. On the other hand, this technique has several 

disadvantages because it will increase the time delay that’s why online learning is 

significantly slower than the offline learning. Another problem is that it requires 

additional area and power due to the additional implemented logic and circuit of the 

learning [13]. 
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2.8 Different Network structures 

Neural networks can be classified according to their structure. The network 

structure differs in the connections between the layers. There are two main topologies in 

the neural networks: 

2.8.1 Feedforward Structure 

The feedforward topology network is a unidirection topology in which each 

neuron is connected to all the neurons in the following layer as shown in Figure 2.39. 

Within the same layer, neurons are not allowed to connect to each other. In addition, 

neurons are not allowed to connect to the preceding neurons. Also, a neuron cannot make 

cycles or loops. [6]. 

 

Figure 2.39  Feedforward Neural Network Structure. 

2.8.2 Recurrent Structure 

In the recurrent topology network, the interconnections have a higher level of 

freedom compared with the feedforward one. There is no single path direction that a 

neuron can connect either to a following or a preceding layer as shown in Figure 2.40. 

Also, cycles and loops are allowed. This could be thought of as a sort of feedback 

mechanism, but this topology will increase the complexity of the network [6]. 

 

Figure 2.40  Recurrent Neural Network Structure. 
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CHAPTER 3 

 

Problem definition and our contribution 

3.1 Model accuracy versus power consumption 

As discussed before, there are several types of Neural Networks such as ANN, 

CNN and SNN. Recently, SNN is expected to replace ANN and CNN as it can simulate 

the human brain behavior better than the previous generations of neural network. SNN 

can achieve high accuracy as its neuron models mimic the biological neuron behaviors 

perfectly. Regrettably, the spiking neuron models may consume higher power than the 

artificial neurons in ANN.  

The trade-off between the accuracy and the power consumption leads us to the 

main neoteric objective in the spiking neural networks, whereas a variety of spiking 

neuron models exists that can generate a poorly approximated to exactly simulated 

neuron behaviors according to the required accuracy. The main features required while 

choosing an appropriate spiking neuron model are simplicity, power consumption and 

number of supported behaviors.  

The model that is suitable to achieve most of these features is Izhikevich neuron 

model. The reason is that Izhikevich neuron model has a moderate simplicity, is 

represented by two differential equations only and produces various neural behaviors. 

3.2 Problem in Izhikevich model 

The selected model to implement our spiking neural network is the Izhikevich 

neuron model which offers suitable performance and accuracy compared to the other 

neuron models. On the other hand, all spiking neuron models, including Izhikevich model 

itself, consume higher power than the artificial neuron in ANN due to the used differential 

equations and multipliers. Despite of Izhikevich model simplicity compared to other 

spiking models, it still consumes power due to the squaring term 𝑣2 and several constant 
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multipliers. These high-power components in the neuron model won’t be acceptable 

according to the market needs as neural networks, in general, is required in low power 

systems like IOT and biological sensors. In addition, all neural networks that are used 

nowadays in CPUs and cell phones, are designed to be ultra-low power to save the 

device’s battery life time.  

As a solution, the constant multipliers are implemented using fixed shifters and 

adders. Due to bits limitation and truncation, an error affects the neuron accuracy 

compared to the original Izhikevich model. The original Izhikevich model refers to the 

exact Izhikevich model without approximating the parameters values. In addition, we 

have to introduce some approximation techniques to decrease the power consumption of 

the remaining power-hungry term, the squaring term. 

3.3 Our contribution 

The only approximation method applied to the Izhikevich model in previous 

research work is the Piece-Wise Linear approximation (PWL) [1]. This technique 

converts the squaring term into a sum of straight lines. This method increases the 

accuracy of the approximation by increasing the number of straight lines. There are three 

different orders of piece wise linear system discussed in [1]. The 2nd order PWL uses two 

straight lines, the 3rd order PWL uses three straight lines while the 4th order PWL uses 

four straight lines. In this project, only the 4th order PWL is used during comparison and 

evaluation. We will refer to the 4th order PWL in the upcoming sections as PWL only for 

simplicity. The reader should keep in mind that we are talking about the 4th order PWL 

approximation when writing PWL abbreviation.  

The second technique is COordinate Rotation Digital Computer (CORDIC) 

which splits the number to be squared into a fraction part and an integral part. After that, 

each part is divided into a summation of powers of two to be implemented using shifters 

and adders instead of multipliers.  

The third technique is called Iterative Logarithmic Method (ILM) which aims to 

convert the number to the largest summation of powers of two. This technique subtracts 

a power of two term from the number then, considers the remainder as an error term 

thereafter, it iterates on this subtraction operation until reaching a desired minimum error 

value.  
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The last method is called Integral Sum which modifies the squaring to a simple 

iterative addition operation. This conversion is based on the fundamental principle of 

multiplication that any multiplication operation can be converted to an addition operation. 

This methodology has also multiple approaches to achieve acceptable accuracy. From a 

hardware perspective, all these techniques try to replace the huge multiplier circuit with 

a set of shifters and adders. These approximation methods are discussed in details in the 

next chapter.   

3.4 The flow of our work 

The following workflow diagrams show our progress during this project. Figure 

3.1 shows the prerequisite skills needed before going through this neuromorphic 

computing project.  

 

Figure 3.1  The basic required knowledge and skills before starting our 

neuromorphic computing project. 
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Figure 3.2 illustrates the first step in this project which is choosing the suitable type of 

network to be implemented. In this work, Spiking Neural Network (SNN) is chosen.  

 

Figure 3.2  Determining the type of network to be implemented. 
 

In Figure 3.3, the spiking neuron model is determined according to our accuracy and 

power guidelines. In this project, the Izhikevich neuron model is chosen. 

 

Figure 3.3  After choosing Spiking Neural Network, we have to choose the spiking 

neuron model that is suitable for our performance matrix. 
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Figure 3.4 highlights the process of proposing new approximation techniques and 

taking the final decision to implement our spiking neuron. A CORDIC-based hardware 

implementation of the Izhikevich neuron model is introduced 

 

Figure 3.4  After choosing Izhikevich neuron model, propose approximation 

methods and choose the most accurate one. 
 

To determine the applicability of each approximation method, a high-level language, 

MATLAB, is required. Using MATLAB, each method is evaluated to determine the most 

accurate approximation algorithm to be used as shown in Figure 3.5. Our neuron accuracy 

is compared with the original and the PWL-based neurons.  

 

Figure 3.5  High level language optimization and comparison among different 

approximation methods. 
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As illustrated in Figure 3.6, the CORDIC-based, PWL-based and original neuron models 

are written as a VERILOG code and we calculate again the accuracy for each method 

based on the HDL output data. Then, the spiking neuron is implemented on ASIC/FPGA 

platforms. A performance analysis is held among the three models to show the power and 

area reduction due to the CORDIC and the PWL compared with the original neuron in 

ASIC and FPGA platforms.  

 

Figure 3.6  Implementation of the most suitable approximation methods to test the 

hardware implemented in ASIC/FPGA platforms. 
 

After that, the spiking neural network is constructed using the CORDIC-based, 

PWL-based and original neuron models. Then, the accuracy of each network is calculated 

using MATLAB to determine the most preferable approximation technique. Finally, the 

power and area values are estimated to show up the reduction occurred while 

implementing the network with the approximation methods.  
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CHAPTER 4 

 

 

Single Izhikevich Neuron  

4.1 The proposed approximation methods 

4.1.1 Piece-Wise Linear approximation (Previous work) 

The Piece-Wise Linear (PWL) converts the squaring term into a sum of straight 

lines. This method is applied to the quadratic term in the Izhikevich model before in [1]. 

Depending on the number of straight lines, PWL can be second, third and fourth order. 

Increasing the number of straight lines results in better accuracy and resemblance to the 

square term. Yet, this leads to more complexity in terms of hardware implementation [1]. 

A) 2nd order Piece-Wise Linear approximation 

The first meaningful PWL approximation to the quadratic equation in Izhikevich 

model is to use two straight lines as shown in Figure 4.1. This approximation is 

formulated in (10) as follows [1]: 

 𝑓′(𝑉) =  𝑘1|𝑉 + 62.5| − 𝑘2 − 𝑢 + 𝐼 (10) 

Where k1 and k2 are the parameters that represent the degrees of freedom produced by 

the PWL approximation. Tuning these parameters is essential to achieve the closest 

behavior to the original model [1]. 
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Figure 4.1  2nd order PWL approximation. 

 

B) 3rd order Piece-Wise Linear approximation 

The same quadratic term can be approximated by PWL model with a better 

accuracy by increasing the number of straight lines from two lines to three lines. This 

third order approximation is shown in Figure 4.2 and can be formulated in (11) as follows 

[1]: 

 𝑓′(𝑉) =  𝑘1(|𝑉 + 62.5 + 𝑘2| + |𝑉 + 62.5 − 𝑘2|) − 𝑘1𝑘2𝑘3 − 𝑢 + 𝐼 (11) 

It is noticeable that the number of fitting parameters (𝑘1𝑘2𝑘3) has increased, meaning 

that this approximation has more degrees of freedom than the previous one [1]. 

 

Figure 4.2  3rd order PWL approximation. 
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C) 4th order Piece-Wise Linear approximation 

Following the same pattern, the accuracy can be increased by increasing the order 

of PWL approximation. It is proposed in [1] that 4th order PWL approximation is a good 

trade-off between accuracy and complexity. The 4th order PWL approximation is 

illustrated in Figure 4.3. The approximation can be formulated in (12)  as follows: 

 
𝑓′(𝑉) =  𝑘2(|𝑉 + 62.5 + 𝑘3| + |𝑉 + 62.5 − 𝑘3|) + 𝑘1|𝑉 + 62.5|

− 4𝑘2𝑘3 − 𝑢 + 𝐼 
(12) 

 

Figure 4.3  4th order PWL approximation. 

 

4.1.2 COordinate Rotation Digital Computer algorithm 

The COordinate Rotation Digital Computer (CORDIC) algorithm is used in 

approximating the exponential term in the Adaptive Exponential Integrate and Fire 

(AdEx) neuron model [14]. The algorithm is used in approximating different functions 

(e.g., multiplication, exponential function and hyperbolic function) [14]. To understand 

how the CORDIC algorithm works with multiplication, assume that the two 

multiplicands 𝐴1and 𝐴2 are divided into two terms: integer term 𝐼 and fraction term 𝐹 in 

(13) as follows: 

 

  𝐴1 × 𝐴2 = (𝐼1 + 𝐹1) × (𝐼2 + 𝐹2) (13) 

To convert the multiplication to shifters, the integer and fraction terms are written as a 

sum of powers of two in (14) and (15).  
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 𝐼 = 𝐼[1] + 𝐼[2] × 2 + 𝐼[3] × 4… =∑𝐼[𝑖] × 2𝑖−1
𝑚

𝑖=1

 (14) 

 𝐹 =
𝐹[1]

2
+
𝐹[2]

4
+
𝐹[3]

8
… =∑𝐹[𝑖] × 2−𝑖

𝑛

𝑖=1

 (15) 

Where I[i] and F[i] are either 0 or 1. m and n define the limits of the integer and the 

fraction terms, respectively. Since the Izhikevich model contains a square term (𝑣 × 𝑣), 

only one 𝑣 is written as the form in (14) and (15) and the other 𝑣 is just a shifted version. 

Figure 4.4 shows the pseudocode of the CORDIC-based squaring. 

 

 

Figure 4.4  The pseudocode of the CORDIC-based squaring. 

In this work, the CORDIC algorithm is applied to the Izhikevich model by 

substituting in (8) with (14) and (15). Accordingly, (8) is approximated in (16) as follows: 

 

𝑣𝑡+∆𝑡 = 𝑣𝑡 + ∆𝑡 (0.04𝑣𝑡(∑𝐼[𝑖] × 2𝑖−1 +∑𝐹[𝑖] × 2−𝑖
𝑛

𝑖=1

𝑚

𝑖=1

) + 5𝑣𝑡

+ 140 − 𝑢𝑡 + 𝐼) 

(16) 

Where m and n are predetermined before the hardware implementation. 
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4.1.3 Iterative Logarithmic method 

The iterative logarithmic method (ILM) is one of proposed techniques used to 

approximate the v2 term in the Izhikevich neuron model and simplify the multiplication 

operation on the hardware level. The method is an iterative algorithm where the user 

determines the required output accuracy. This method could get the exact value 

depending on the number of iterations. The multiplicands are represented in the 

logarithmic form [15]. Then, all the operations are converted into shifters and adders. To 

understand how this method works, let us assume we multiply N1*N2 where each number 

is represented in (17) as follows: 

 𝑁1 = 2
𝑘1 +𝑁1

(1)
 𝑎𝑛𝑑 𝑁2 = 2𝑘2 + 𝑁2

(1)
 (17) 

𝑁1
(1)

 and 𝑁2
(1)

 are the reminders of 𝑁1 − 2
𝑘1 and 𝑁2 − 2

𝑘2, respectively. 

Hence, the product of 𝑁1 𝑎𝑛𝑑 𝑁2 is formulated in (18) and (19) as follows: 

  𝑃𝑡𝑟𝑢𝑒 = 𝑁1 ∗ 𝑁2 = (2
𝑘1 + 𝑁1

(1)) ∗ (2𝑘2 + 𝑁2
(1)) (18) 

 𝑃𝑡𝑟𝑢𝑒 = 2𝑘1+𝑘2 + 2𝑘1 ∗ 𝑁2
(1) + 2𝑘2 ∗ 𝑁1

(1) + 𝑁1
(1) ∗ 𝑁2

(1)
 (19) 

As seen above, 𝑃𝑡𝑟𝑢𝑒  is a set of several shift operations that are easily 

implemented in hardware except for the last term 𝑁1
(1) ∗ 𝑁2

(1)
 . Thus, 𝑃𝑡𝑟𝑢𝑒  is 

approximated by ignoring the last term in (20) as follows: 

 𝑃𝑎𝑝𝑝𝑟𝑜𝑥
(0)

= 2𝑘1+𝑘2 + 2𝑘1 ∗ 𝑁1
(2) + 2𝑘2 ∗ 𝑁1

(1)
 (20) 

Where 𝑃𝑡𝑟𝑢𝑒 = 𝑃𝑎𝑝𝑝𝑟𝑜𝑥
(0)

+ 𝐸(0) and  𝐸(0) = 𝑁1
(1) ∗ 𝑁1

(2)
. 

To improve the accuracy and decrease the error, the previous steps are applied again on 

the error term, 𝐸(0)  as in (21) where 𝑁1
(1)
= 2𝑙1 + 𝑁1

(2)
 and 𝑁2

(1)
= 2𝑙2 + 𝑁2

(2)
.  
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 𝐸(0) = 2𝑙1+𝑙2 + 2𝑙1 ∗ 𝑁2
(2)
+ 2𝑙2 ∗ 𝑁1

(2)
+ 𝑁1

(2)
∗ 𝑁2

(2)
 (21) 

As we did previously, the error term, 𝐸(0) is approximated by ignoring the last 

term, 𝑁1
(2) ∗ 𝑁2

(2)
 as in (22). 

 𝐶1 = 2𝑙1+𝑙2 + 2𝑙1 ∗ 𝑁2
(2) + 2𝑙2 ∗ 𝑁1

(2)
 (22) 

 Where 𝐸(0) = 𝐶1 + 𝐸(1). 

Similarly, the method is applied once more time until the error becomes small enough 

to be acceptable. The final result can be formulated in (23) as follows: 

 𝑃𝑎𝑝𝑝𝑟𝑜𝑥
(𝑖)

= 𝑃𝑎𝑝𝑝𝑟𝑜𝑥
(0)

+∑𝐶(𝑗)
𝑖

𝑗=1

 (23) 

Figure 4.5 below shows a pseudocode that describes how to approximate the v2 using the 

iterative logarithmic method. 

 

Figure 4.5  The pseudocode of the iterative logarithmic-based squaring. 
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To clarify the method, let us take an example where 𝑁1 = 7 and 𝑁2 = 9. 

𝑁1 = 2
2 + 3 and 𝑁2 = 23 + 1 

Their product equals to 𝑃𝑡𝑟𝑢𝑒 = 𝑁1 ∗ 𝑁2 = (2
2 + 3) ∗ (23 + 1) 

𝑃𝑡𝑟𝑢𝑒 = 2
5 + 22 ∗ 1 + 23 ∗ 3 + 3 ∗ 1 

The approximated product equals to  𝑃𝑎𝑝𝑝𝑟𝑜𝑥
(0)

= 25 + 22 ∗ 1 + 23 ∗ 3 = 60 

 Where 𝑃𝑡𝑟𝑢𝑒 = 𝑃𝑎𝑝𝑝𝑟𝑜𝑥
(0)

+ 𝐸(0). 

The error from the first iteration is 𝐸(0) = 𝑁1
(1) ∗ 𝑁1

(2) = 3 ∗ 1. Hence, apply the method 

again on the error term where 𝑁1
(1)
= 3 = 21 + 1 and 𝑁2

(1)
= 1 = 20. 

𝐶1 = 21 + 20 ∗ 1 

Where 𝐸(1) = 0. 

𝐸(0) = 𝐶1 + 𝐸(1) = 21 + 20 ∗ 1 = 3 

So, the final result equals to  

𝑃𝑎𝑝𝑝𝑟𝑜𝑥
(𝑖)

= 𝑃𝑎𝑝𝑝𝑟𝑜𝑥
(0)

+∑𝐶(𝑗)
𝑖

𝑗=1

= 60 + 3 = 63 

As seen above, the final results agree with the correct answer of multiplying 7 by 9. 
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4.1.4 Integral Sum  

The integral sum algorithm is considered a new methodology to calculate the 

squaring. The idea behind this method is based on the multiplication principle. Let us 

take this simple example to demonstrate the idea behind the algorithm. Assume V = 10 is 

to be squared.  

102 = 10 ∗ 10 = 10 + 10 + 10 + 10 + 10 + 10 + 10 + 10 + 10 + 10 = 100 

Instead of multiplying 10 by 10, you can add it ten times. As a result, the 

multiplication operation is converted into addition operation as shown above. This 

conversion is formulated in (24) as follows: 

 𝑉2 =∑𝑉

|𝑉|

𝑖=0

 (24) 

From the hardware perspective, the critical path depends on the value of V. The 

reason is that if you square a small number, you will need a small number of iterations. 

On the other hand, if you square a large number, you will need a large number of 

iterations. To solve this problem, we can do another mathematical trick which is to add 

the number 10 five times. 

102 = 10 ∗ 10 = 10 + 10 + 10 + 10 + 10 = 50 

As a result, the solution lost half its value, but the number of iterations decreased 

to half improving the performance in hardware. To accommodate the loss occurred, we 

can multiply the solution by 2 as follows: 

102 = 10 ∗ 10 = 2(10 + 10 + 10 + 10 + 10) = 100 

The multiplication by 2 should not be considered as a complex multiplication operation. 

The reason is that multiplication by 2 is realized in hardware as a left shift operation. The 

previous trick is formulated in (25) as follows: 

 𝑉2 ≅ 2 ∗∑𝑉

|
𝑉
2
|

𝑖=0

 (25) 
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To extend the previous formula, we can replace the division and multiplication by 

2 with a variable m as in (26).  

 𝑉2 ≅ 𝑚∑𝑉

|
𝑉
𝑚
|

𝑖=0

 (26) 

where m = 1,2,4,8,16, 32, .. 

 

The parameter m takes only values that are multiples of 2. Increasing the value of m will 

decrease the number of iterations required, improving the hardware performance. 

However, as the value of m increases, the error introduced to the squaring term increases. 

A pseudocode of the integral sum algorithm is shown in Figure 4.6 below. 

 

 

Figure 4.6  The pseudocode of the integral sum-based squaring. 

4.2 Error definition and calculation 

Various errors are defined to assess the different approximation methods. The first 

two errors, ERRp and MAE examine the deviation occurred in 𝑓(𝑣) introduced in (27) 

where another two errors, RSEE and MERRt are applied on the Izhikevich model 

equations in (5), (6) and (7). 

 𝑓(𝑣) = 0.04𝑣2 + 5𝑣 + 140 (27) 
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4.2.1 ERRp error definition 

As illustrated in Figure 4.7, this error is defined in [1] as the difference between the 

original and the approximated curves 𝑓(𝑣) at the local minimum point (at 𝑣 =  − 62.5) 

as in (28). This point is the initial excitation point where the neuron will require a stronger 

input I if the error is significant as in [1]. This error is formulated as follows: 

 𝐸𝑅𝑅𝑝 = |𝑓(−62.5)|𝐸𝑥𝑎𝑐𝑡 − |𝑓(−62.5)|𝐴𝑝𝑝𝑟𝑜𝑥𝑖𝑚𝑎𝑡𝑒𝑑 (28) 

 

Figure 4.7  ERRp error. 

4.2.2 MAE error definition 

To generalize the concept of ERRp, Mean Absolute Error calculates the average 

of the differences between 𝑓(𝑣) curves for both the original and the approximated models 

over the range of 𝑣. MAE is formulated in (29) as follows: 

 𝑀𝐴𝐸 =
∑ |𝑓(𝑉𝑖)

 |𝐸𝑥𝑎𝑐𝑡 − |𝑓(𝑉𝑖)
 |𝐴𝑝𝑝𝑟𝑜𝑥𝑖𝑚𝑎𝑡𝑒𝑑

𝑛
𝑖

𝑛
 (29) 

4.2.3 RSEE error definition 

Relative Spike Energy Error is inspired by a common concept in signal processing 

called “Signal Energy” which is an indication for the resemblance in shape between the 

spikes generated from both the original and the approximated models [16]. RSEE is 

unaffected by any spike timing shifts between the two models. This error is formulated 

in (30) as follows: 
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 𝑅𝑆𝐸𝐸 =
∑ |𝑉𝑖

2|
𝐸𝑥𝑎𝑐𝑡𝑖 − ∑ |𝑉𝑖

2|
𝐴𝑝𝑝𝑟𝑜𝑥𝑖𝑚𝑎𝑡𝑒𝑑𝑖

∑ |𝑉𝑖
2|
𝐸𝑥𝑎𝑐𝑡𝑖

× 100 (30) 

4.2.4 MERRt error definition 

As illustrated in Figure 4.8, ERRt measures the time difference between only the 

first two consecutive spikes as in [14]. To make the error definition more realistic, ERRt 

is applied on all the spikes fired in a specific time interval where MERRt is the mean 

value of ERRt. This error is formulated in (31), (32) and (33) as follows: 

 𝐸𝑅𝑅𝑡 = |
∆𝑡𝑝 − ∆𝑡𝑒

∆𝑡𝑒
| × 100 (31) 

  𝑤ℎ𝑒𝑟𝑒 ∆𝑡 =  𝑡𝑎𝑝𝑒𝑥2 − 𝑡𝑎𝑝𝑒𝑥1 (32) 

 𝑀𝐸𝑅𝑅𝑡 =  
1

𝑛
∑𝐸𝑅𝑅𝑡𝑖

𝑛

𝑖

 (33) 

Where ∆𝑡𝑝 and ∆𝑡𝑒 represent the time intervals between two consecutive spikes in the 

approximated and the original models, respectively in (31). 

 

Figure 4.8  ERRt error. 
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4.2.5 MATLAB-based error calculation 

After defining several errors, the different approximation methods, proposed in 

previous sections, are evaluated as shown in Table 4.1. Although the CORDIC algorithm 

has a higher MERRt error than the iterative logarithmic method, the former demostrates 

the least RSEE and MAE errors. As a result, CORDIC algorithm is used during this work 

as it shows better error results than the other methods. 

Table 4.1 Error calculation of the approximation methods based on MATLAB 

results. 

Error 

type 

CORDIC  Iterative Logarithmic PWL  Integral 

sum 

Accuracy 

factor 

1 2 3 4 5 1 2 3 4 5 ---- 2 3 

RSEE 3.23 1.27 0.52 0.19 0.03 2.73 1.21 0.67 0.39 0.1 1.3 4.53 9.5 

MERRt 0.68 0.23 0.23 0.23 0.23 30.5 24.61 3.95 0.23 0 0.25 10.75 22 

MAE 0.51 0.22 0.07 0 0 0.64 0.09 0.04 0.06 0.09 46.94 1.16 2.4 

 

4.3 Design and system architecture 

The neuron architecture is divided into four main blocks as shown in Figure 4.9. 

The “Reset” signal is triggered to initialize u and v. Module 1 calculates the value of 

(0.2 ∗ 𝑣)2  using any of the approximation methods described before. Subsequently, 

modules 2 and 3 calculate the next value of v and u, respectively. Finally, module 4 

decides whether to fire a spike and reset v and u or to pass v and u without firing a spike. 

 

Figure 4.9  Izhikevich neuron architecture (The exact connection is not shown to 

avoid any confusion). 
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4.4 VERILOG code simulation and ASIC/FPGA implementation 

As illustrated in the previous sections, the model uses decimal fraction numbers 

such as “a” and “b” parameters. Decimal fraction numbers increase system complexity 

in hardware level, so choosing their representation method is crucial. There are two ways 

of decimal fraction number representation, floating-point and fixed-point representations 

as shown in Figure 4.10. In this project, fixed-point representation is chosen because it is 

simpler, less complex in hardware level and less power consumption than floating point 

representation [17]. 

 

Figure 4.10  Floating-point and fixed-point representations. 

 

 

In this work, Euler’s time step is set to 0.25 ms. The CORDIC-based, the PWL-

based and the original Izhikevich models are hardware implemented using VERILOG to 

compare the error, power and area in the ASIC/FPGA platform. All constants 

multiplication is to be implemented using shifters and adders for all models except for 

the original model which uses multipliers without any approximation. For all models, the 

architecture is not pipelined. For the PWL-based and the CORDIC-based Izhikevich 

neuron, the number of bits is equal to 22 bits (12.10).  

The original model is implemented with a number of bits that makes the 

MATLAB code results matches the VERILOG code results. It should be noted that the 

original model HDL code will always suffer from error due to the nature of fixed point 

representation. However, the error is kept as small as possible. ModelSim 10.4a is used 

in writing and simulation of the VERILOG code. 
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To verify that the VERILOG code exhibits a correct behavior like the MATLAB 

code, a signal called “spike” is defined that is equal to logic 1 if a spike occurs and is 

equal to logic 0 otherwise. As illustrated in Figure 4.11, the VERILOG code 

demonstrated the same behavior as the MATLAB code behavior in Figure 2.11. In this 

case, tonic spiking behavior is examined. To get a closer look, two rapid spikes are fired 

at the beginning as shown in Figure 4.12. then, a relatively slower spike is fired every 

certain time period.  

 

 

Figure 4.11  Tonic spiking behavior simulated in ModelSim. 

 

 

Figure 4.12  Two rapid spikes fired by the Izhikevich neuron. 
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After illustrated in Figure 4.13, the CORDIC-based, the PWL-based and the 

original Izhikevich models are hardware implemented to compare the error versus the 

power and the area in the ASIC platform using UMC 130 nm technology. DC Compiler 

Version B-2008.09 and SoC Encounter 8.1 are used in the ASIC synthesis and Place and 

Route (PnR) stages, respectively. 

 

Figure 4.13  ASIC chip LAYOUT. 

 

 

 

 



52 

Furthermore, the CORDIC-based, the PWL-based and the original Izhikevich 

models are hardware implemented to compare the error versus the power and the area in 

the FPGA platform using Xilinx Zynq-7000 SoC ZC702 FPGA as illustrated in Figure 

4.14. Vivado HLS 2015.2 is used in FPGA programming. 

 

Figure 4.14  FPGA chip LAYOUT. 
 

4.5 Comparison between CORDIC at n=10, PWL and original neuron models 

4.5.1 Error comparison based on VERILOG results 

As shown in Table 4.2, the CORDIC-based and the PWL-based models exhibits 

ERRp error of 0 and 0.25, respectively. This means that the initial excitation point of the 

CORDIC-based Izhikevich model matches the original Izhikevich model, however the 

PWL model is shifted by 0.25. Regarding MAE, the PWL approximation suffers from a 

large error compared to the CORDIC approximation. This means the PWL approximated 

parabola, 𝑓(𝑣) strongly deviates from the original parabola, 𝑓(𝑣). 
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Table 4.2 ERRp and MAE for the PWL-based and the CORDIC-based   (n =10) 

Izhikevich models. 

 PWL CORDIC 

ERRp 0.25 0 

MAE 46.85 0.005 

  

According to Table 4.3, the CORDIC-based Izhikevich model shows less error 

than the PWL-based Izhikevich model which means the spike in the former model suffers 

less from signal loss as well as timing shift. 

Table 4.3 RSEE and MERRt for the PWL-based and the CORDIC-based  (n =10) 

Izhikevich models in VERILOG. 

 RSEE (%) MERRt (%) 

 CORDIC PWL CORDIC PWL 

TS 0.06 1.18 1.56 1.11 

TB 0.44 5.52 0 7.28 

MM 0.80 2.46 2.60 3.28 

FFA 0.24 0.10 1.13 0.74 

Mean Value (%) 0.39 2.32 1.32 3.10 

 

4.5.2 Power/Area comparison in ASIC/FPGA platforms 

According to Table 4.4, the CORDIC-based Izhikevich model hardware 

implementation shows significant improvement compared to the original Izhikevich 

model hardware implementation in ASIC. Although the PWL-based hardware 

implementation of the Izhikevich model shows slight improvement than the CORDIC-

based hardware implementation of the Izhikevich model, the latter model is more 

accurate as in Table 4.2 and Table 4.3. 

Table 4.4 The ASIC implementation comparison for the original, the CORDIC-

based (n =10) and the PWL-based Izhikevich models at frequency = 9.1 MHz. 

 Original  CORDIC PWL  

Area (𝝁𝒎𝟐) 69149 25894 21076 

Power (mW) 1.06 0.40 0.30 
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In order to further investigate the hardware implementation performance of the 

three designs, the designs are also implemented on Xilinx Zynq-7000 SoC ZC702 FPGA 

where a comparison between their power and area is performed in Table 4.5. The area in 

FPGA is represented by the number of LUTs, registers and DSP. According to Table 4.5, 

the CORDIC-based Izhikevich neuron model shows significant improvement compared 

to the original Izhikevich neuron model in power and area perspective. However, the 

PWL-based Izhikevich neuron model consumes less power and area than the CORDIC-

based Izhikevich neuron model in FPGA platform. 

 

Table 4.5 The FPGA implementation comparison for the original, the CORDIC-

based (n =10) and the PWL-based Izhikevich models at frequency = 9.1 MHz. 

 Original  CORDIC PWL 

Power (mW) 3.73 2.726 1.984 

No. of LUTs 1030 961 811 

No. of registers 64 44 44 

No. of DSPs 10 0 0 

 

4.6 Power/Area/Error trade-off in ASIC platforms  

As seen in the previous section, the CORDIC-based neuron model consumes 

higher power and area than the PWL-based neuron model. Consequently, a sweep over n 

from 0 to 10 is performed to decrease the power and area of the CORDIC approximation 

at the cost of additional error. n = 0 means the approximation is performed on integer 

term only as if there is no fraction term. When implemented in ASIC platform, the 

CORDIC-based Izhikevich model power ranges from 0.26 mW to 0.40 mW when n is 

changed from 0 to 10. The study performed in this section is based on ASIC results.  

A Figure of Merit (FoM) is defined to show the tradeoff among error (ERR), 

power (P) and area (A) and determine the value of n at which the FoM is minimum. ERR 

is the arithmetic mean of RSEE and MERRt. as in (34).  

 𝐸𝑅𝑅 =
1

2
(𝑅𝑆𝐸𝐸 +𝑀𝐸𝑅𝑅𝑡) (34) 

The arithmetic mean (AM) is used in ERR because RSEE and MERRt have the same 
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numeric range (0 – 100 %). However, when combining the power and the area, the 

geometric mean (GM) is preferred over the AM due to having different numeric ranges. 

GM prevents factors with large values from dominating in mean calculation. In addition, 

a weighted GM (GMW) is used to increase the contribution of one term over the others 

depending on the design demands as in (35). In this work, it is chosen to make the power 

and area of higher weight than the error as given in (36) since the paper main focus is on 

the low power hardware implementation. 

 𝐺𝑀𝑊 = √∏𝑥𝑖
𝑤𝑖

𝑛

𝑖=1

∑ 𝑤𝑖
𝑛
𝑖=1

 (35) 

 𝐹𝑜𝑀 =  √𝐸𝑅𝑅 ∗ 𝑃2 ∗ 𝐴2
5

 (36) 

According to Figure 4.15, the value of n at which the FoM is minimum is 5. 

Depending on the problem constraints, one can choose whether to reduce the power 

consumption (decrease n) or to increase the accuracy (increase n) where such a tradeoff 

offers design flexibility. 

 

Figure 4.15  FoM versus n where the point at which ERR, P and A are minimum is n 

= 5 
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4.7 Comparison between CORDIC at n=5, PWL and original neuron models 

4.7.1 Error comparison based on VERILOG results 

According to Table 4.6 and Table 4.7, the CORDIC approximation at n = 5 has 

less error than the PWL for the four types of errors. 

 

Table 4.6 ERRp and MAE for the PWL-based and the CORDIC-based   (n =5) 

Izhikevich models. 

 PWL CORDIC 

ERRp 0.25 0 

MAE 46.85 0.17 

  

Table 4.7 RSEE and MERRt for the PWL-based and the CORDIC-based  (n =5) 

Izhikevich models in VERILOG. 

 RSEE (%) MERRt (%) 

 CORDIC PWL CORDIC PWL 

TS 0.23 1.18 1.56 1.11 

TB 0.33 5.52 0.24 7.28 

MM 1.20 2.46 3.35 3.28 

FFA 1.13 0.10 0.40 0.74 

Mean Value (%) 0.72 2.32 1.39 3.10 

 

4.7.2 Power/Area comparison in ASIC/FPGA platforms 

According to Table 4.8, the CORDIC-based Izhikevich neuron model consumes 

almost the same power and area as the PWL-based Izhikevich neuron model when 

implemented in ASIC platform. Also, both of them still show better hardware 

performance than the original Izhikevich model. 

Table 4.8 The ASIC implementation comparison for the original, the CORDIC-

based (n =5) and the PWL-based Izhikevich models at frequency = 9.1 MHz. 

 Original  CORDIC PWL  

Area (𝝁𝒎𝟐) 69149 22088 21076 

Power (mW) 1.06 0.33 0.30 
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Then, a comparison between their power and area is performed in Table 4.9, when 

implemented on FPGA. According to Table 4.9, the CORDIC-based Izhikevich neuron 

model shows significant improvement compared to the original Izhikevich neuron model 

in power and area perspective. The PWL-based Izhikevich neuron model still consumes 

less power and area than the CORDIC-based Izhikevich neuron model in FPGA platform, 

however, the 2 designs have become closer in hardware performance when CORDIC is 

implemented with n = 5 than the previous study when CORDIC is implemented with n = 

10. 

 

Table 4.9 The FPGA implementation comparison for the original, the CORDIC-

based (n =5) and the PWL-based Izhikevich models at frequency = 9.1 MHz. 

 Original  CORDIC PWL 

Power (mW) 3.73 2.319 1.984 

No. of LUTs 1030 848 811 

No. of registers 64 44 44 

No. of DSPs 10 0 0 
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CHAPTER 5 

 

 

Spiking Neural Network 

5.1 MNIST database 

The learning methodology used in simulating the neural network is supervised 

learning. Hence, a dataset has to be used to test and train the network. One of the most 

widely used datasets in machine learning systems is MNIST data set. It consists of 

handwritten numbers from zero to nine with different styles as illustrated in Figure 5.1. 

This means the network output layer contains 10 neurons, where each neuron represents 

a number from 0 to 9. The MNIST data set is inspired from NIST’s data set which is 

collected from American employees (training data) and American high school students 

(testing data). However, MNIST data is black and white images only with fixed and 

limited number of pixels. The training data set consists of 60,000 images while the testing 

data set consists of 10,000 images. Half of the training data set as well as the testing data 

set are extracted from NIST’s training and testing data sets. Each set is accompanied by 

its labels to train and test the network. Our network uses all the training and testing images 

[2]. 

 

Figure 5.1  Sample from the MNIST dataset. 
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5.2 Input image preparation 

Before the network starts the computation process, the input image has to be 

prepared as illustrated in Figure 5.2. The images are converted from gray scale to black 

and white scale. The conversion is performed by multiplying the image by a step function 

to determine the black and white regions of the pixels. Each image has 28*28 pixels (784 

pixels) and an equivalent label. Each squared-image is converted into a single columned-

image of 784 pixels in total. 

 

 

Figure 5.2  Input image pixel map of MNIST dataset. 
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5.3 Network structure 

As illustrated in Figure 5.3, the network structure is feedforward and consists of 

two neural layers (The input pixels are not counted as a layer). The first layer, which is 

called the hidden layer, contains 200 neurons connected to the input image pixels through 

200 synapses. 

 

Figure 5.3  Our Feedforward Spiking Neural Network Structure. 
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Each arrow in Figure 5.3 represents a synapse whose objective is to convert each 

pixel into an input current governed by the following equation in (37): 

 𝐼𝑖 = 𝐼0 +∑𝑊𝑖,𝑗 ∗ 𝐼𝑗

𝑆

𝑗=1

 (37) 

where 𝐼𝑖 is the input current for the neuron i. 𝐼0 represents the initial biasing current for 

the neuron used to make sure the neuron is always in the on-state. 𝐼𝑗 refers to the pixel 

value which is equal to 1 if white and 0 if black. The weights matrix, connecting the input 

pixels with the first layer, is 𝑊𝑖,𝑗 . 𝑊𝑖,𝑗  represents the connection strength between 𝐼𝑗 

(pixel) and 𝐼𝑖 (neuron). the parameter S is equal to the total number of pixels. As a result, 

the total number of pixels is determined earlier before the network operates.  

The second layer, which is called the output layer, consists of 10 neurons where 

each neuron represents a digit from zero to nine. Similarly, there are synapses between 

the hidden layer and the output layer. The biasing current is the same as before but, the 

dimensions of the weights matrix is changed. 

5.4 Rate-based Neural coding and Backpropagation algorithm  

As we mentioned before, each neuron fires a train of spikes. So, how does the 

neural network translate these trains of spikes into a decision? The neural network 

translates the neurons’ output using a concept called neural coding. Our spiking neural 

network uses one type of neural coding called rate coding where the network decision is 

based on neurons’ firing rates. The rate coding states that as the neuron input current 

increases, the neuron’s frequency increases. As a result, if a neuron’s input current is 

higher than another neuron’s input current, the former’s frequency will be higher than the 

latter’s frequency. So, the firing frequency is function of the input current which is 

modified by increasing/decreasing the current. To modify the input currents, rate coding 

modifies the weights connecting the neurons. The neuron frequency is defined as the 

number of spikes fired divided by the time interval as illustrated in Figure 5.4 [18]. 
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Figure 5.4  Neuron frequency calculation. 

 

Furthermore, the backpropagation algorithm is used to calculate the error where 

the weights modification is based on this error as shown in (38). The following equation 

determines the delta weights to reach the desired output from the network [1].  

 ∆𝑊𝑖,𝑗 = 𝛼 ∗ 𝐼𝑖 ∗ (𝑓𝑎𝑐𝑡𝑢𝑎𝑙 − 𝑓𝑑𝑒𝑠𝑖𝑟𝑒𝑑) (38) 

where 𝛼 is the learning rate that is determined before constructing the network and fixed 

during the learning process. The observed frequency from each neuron is called 𝑓𝑎𝑐𝑡𝑢𝑎𝑙 

while the target frequency is called 𝑓𝑑𝑒𝑠𝑖𝑟𝑒𝑑. The high frequency is the target frequency 

for the correct output neuron and the low frequency is the target frequency for the other 

neurons. In this network, the high frequency is chosen to be 30 spikes per 100 ms (300 

Hz) while the Low frequency is 1 spike per 100 ms (10 Hz). to put an upper bound and a 

lower bound for the weights, a sigmoid function can be used during the learning process. 

Sigmoid function, 𝜎(𝐼𝑖) is applied to the input current, 𝐼𝑖 in the delta weights equation. 

The modified weight is formulated in (39) as follows [1]: 

 𝑊𝑖,𝑗 𝑚𝑜𝑑𝑖𝑓𝑖𝑒𝑑 = 𝑊𝑖,𝑗 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 −  𝛼 ∗ 𝜎(𝐼𝑖) ∗ (𝑓𝑎𝑐𝑡𝑢𝑎𝑙 − 𝑓𝑑𝑒𝑠𝑖𝑟𝑒𝑑) (39) 

For more details, the proof of (39) is explained in [1]. 

5.5 A case study of training and testing the Spiking Neural 

To understand the rate coding, Figure 5.5 shows the behavior of two neurons in 

the output layer before and after the learning operation. First, an image containing number 

5 is inserted to the network then, the behavior of these two neurons is observed. If the 

first neuron fires spikes with a high frequency, this means the input image is “1”. 
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Similarly, if the second neuron fires spikes with a high frequency, this means the input 

image is “5”. As shown in Figure 5.5 (a) and (b), the network can’t figure out the number 

whether it is one or five because both neurons fire with a high frequency. After that, the 

learning process takes place so that the weights can be updated. when the network is 

tested again, the neuron #5 has a higher firing rate than neuron #1 as illustrated in  Figure 

5.5 (c) and (d). Finally, the network decides that the input number is 5. 

 

Figure 5.5  This study is conducted using only one training image. (a) The behavior 

of neuron #1 before the learning process. (b) The behavior of neuron #5 before the 

learning process. (c) The behavior of neuron #1 after the learning process. (a) The 

behavior of neuron #5 after the learning process. 

 

After training the network with the whole MNIST dataset (60,000 images), the 

network is tested using an unknown new handwritten style of number 5. As shown in 

Figure 5.6, the frequency of the target neuron #5 is higher than the frequency of neuron 

#1. This means that the learning process is going well and the network is able to determine 

the number #5 whether it saw the exact handwritten style before or the handwritten style 

is new to the network as illustrated in Figure 5.5 and Figure 5.6. 
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Figure 5.6  This study tests the network using  a new image of number five after 

training the network with 60,000 images. (a) The low frequency of neuron #1. (b) The 

high frequency of neuron #5. 

 

5.6 Spiking Neural Network error evaluation 

5.6.1 Error based on the used number of training images versus the network 

accuracy 

This study is conducted to show how the network accuracy is affected by the 

number of training images. During this study, the network is provided with a batch size 

equals 5000 then, the network accuracy is tested. As illustrated in Figure 5.7, the network 

accuracy increases as the number of images increase. At the beginning, the accuracy is 

badly affected by the low number of training images. Then, the accuracy reaches a 

saturation value where the improvement in accuracy is small.  

 

Figure 5.7  The number of taining images versus the network accuracy. 
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5.6.2 Error based on the frequency of the target neuron versus the number of 

learning iterations 

Ideally, the target neuron fires with 𝑓ℎ𝑖𝑔ℎ = 300 Hz. However, the network does 

not behave correctly at the beginning where the target neuron does not fire spikes with 

the ideal 𝑓ℎ𝑖𝑔ℎ. Based on this observation, a relative error function is defined as in (40). 

 𝐸 = 
𝑓ℎ𝑖𝑔ℎ − 𝑓𝑎𝑐𝑡𝑢𝑎𝑙

𝑓ℎ𝑖𝑔ℎ
 (40) 

where 𝑓ℎ𝑖𝑔ℎ is the target neuron (ideal) high frequency, fixed at 300 Hz, while 

𝑓𝑎𝑐𝑡𝑢𝑎𝑙 is the target neuron actual frequency. This error decreases as the network trains 

more. As illustrated in the Figure 5.8, the error decreases as the number of learning 

iterations increases until the error settles down around 30%. This means after a certain 

number of images, the training process does not affect the network. It should be noted 

that the batch size used in this study equals to 100 images. 

 

 

Figure 5.8  Relative frequency error versus the number of learning iterations. After 

training with 60,000 images, the error saturates around 30% at the end. 
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5.6.3 Error based on the output value versus the number of learning iterations 

Another average error is defined as the difference between the output number and 

the target number. As shown in Figure 5.9, the value of the average error decreases as the 

learning iterations increase. When the error tends to zero, the network shows a correct 

decision.  Also, this type of error saturates around a certain number at the end of the 

learning process. 

 

Figure 5.9  The relation between the output number and the target number versus the 

learning iterations. 

 

5.6.4 The effect of error reduction on the delta weight value 

Due to the error reduction, the value of the delta weight decreases during the 

learning process as the delta weight is function of the error. As the delta weights 

decreases, this means the network is close to the correct weights. When the network 

reaches the exact correct weights, the weights saturate at their current values. As shown 

in Figure 5.10, the delta weight is relatively large at the beginning of the learning 

operation then, it decreases until saturation occurs. The curve does small oscillations 

around the zero delta weight which means there is no longer weight modification. 

Occasionally, the network has learned and reached the correct weights. 
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Figure 5.10  The delta weights changes during the learning process. 

 

 

5.7 Spiking Neural Network comparison 

 Three independent spiking neural networks are constructed using original, 

CORDIC-based and PWL-based neurons. Each one takes the learning and testing 

operations separately. There are three factors used to compare the simulation results of 

each network, the accuracy, the estimated power consumption and the estimated area. 

After completing the learning operation using 60,000 images, the testing process begins 

with 10,000 images in which the first factor, the accuracy, is calculated. The network 

accuracy (𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦𝑁𝑒𝑡𝑤𝑜𝑟𝑘 ) is defined in (41) as the number of correct network’s 

decisions (𝑛𝐶𝑜𝑟𝑟𝑒𝑐𝑡) divided by the total number of testing images (𝑛𝑇𝑒𝑠𝑡𝑖𝑛𝑔 = 10,000). 

 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦𝑁𝑒𝑡𝑤𝑜𝑟𝑘 = 
𝑛𝐶𝑜𝑟𝑟𝑒𝑐𝑡
𝑛𝑇𝑒𝑠𝑡𝑖𝑛𝑔

∗ 100 % (41) 

Since the network is simulated in MATLAB, there is no way to calculate the 

actual power consumption. Instead, the second factor, which is the estimated power 

consumption, is calculated. We assume that the main power consuming source in the 

network is the neuron. So, the estimated network power (𝑃𝑁𝑒𝑡𝑤𝑜𝑟𝑘
𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑

 
) is determined in 

(42) by the number of used neurons (𝑛𝑁𝑒𝑢𝑟𝑜𝑛𝑠) multiplied by the power of a single neuron 

(𝑃𝑁𝑒𝑢𝑟𝑜𝑛).  



68 

 𝑃𝑁𝑒𝑡𝑤𝑜𝑟𝑘
𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑

 
= 𝑛𝑁𝑒𝑢𝑟𝑜𝑛𝑠 ∗ 𝑃𝑁𝑒𝑢𝑟𝑜𝑛 (42) 

Of course, this value isn’t accurate for determining the actual network power 

consumption. Although it is a rough estimation, the estimated value gives us an indication 

about the expected true power consumption value. Similarly, the third factor, which is 

the estimated area, is calculated as the estimated power. The estimated area (𝐴𝑁𝑒𝑡𝑤𝑜𝑟𝑘
𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑

 
) 

equals to the number of neurons (𝑛𝑁𝑒𝑢𝑟𝑜𝑛𝑠) multiplied by the area of a single neuron 

(𝐴𝑁𝑒𝑢𝑟𝑜𝑛) as shown in (43). 

 𝐴𝑁𝑒𝑡𝑤𝑜𝑟𝑘
𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑

 
= 𝑛𝑁𝑒𝑢𝑟𝑜𝑛𝑠 ∗ 𝐴𝑁𝑒𝑢𝑟𝑜𝑛 (43) 

The simulation results in Table 5.1 show us the original based SNN achieves the 

highest accuracy which is 89%. However, its estimated power and area is significantly 

high compared to CORDIC and PWL based SNN. CORDIC-based SNN achieves power 

reduction percentage from 60% to 74% of the original based SNN power consumption 

according to the accuracy parameter, n. Besides, CORDIC-based SNN achieves area 

reduction percentage from 62% to 76% of the original-based SNN area according to the 

accuracy parameter, n. Table 5.1 also shows that the accuracy of the CORDIC-based 

SNN ranges from 86.5% to 88% over the parameter n sweep. The estimated power of the 

CORDIC-based SNN ranges from 55 mW to 84 mW when n is changed from 0 to 10.  

Table 5.1 Spiking Neural Network performance based on CORDIC, PWL and 

Original neuron models. 

 Original  CORDIC PWL 

Accuracy parameter - n = 0 n = 5 n = 10 - 

𝑨𝒄𝒄𝒖𝒓𝒂𝒄𝒚𝑵𝒆𝒕𝒘𝒐𝒓𝒌 (%) 89 86.5 87 88 85.5 

𝑷𝑵𝒆𝒕𝒘𝒐𝒓𝒌
𝑬𝒔𝒕𝒊𝒎𝒂𝒕𝒆𝒅 (𝒎𝑾) 210 55 69 84 63 

𝑨𝑵𝒆𝒕𝒘𝒐𝒓𝒌
𝑬𝒔𝒕𝒊𝒎𝒂𝒕𝒆𝒅 (𝒎𝒎𝟐) 14.5 3.5 4.5 5.5 4.5 
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CHAPTER 6 

 

 

Real time FPGA outputs demonstration 

6.1 The experimental setup of the FPGA implementation  

For further verification, the FPGA is programmed with a single CORDIC-based 

Izhikevich neuron and connected to an oscolloscope to see real time outputs. The purpose 

is to make sure the neuron exhibits the biological behaviors correctly, In this study, the 

tonic spiking behavior is investigated. Spartan-6 FPGA SP605 Evaluation Kit is used 

during this study as shown in Figure 6.1 and programmed using ISE Design Suite 14.7. 

A signal called spike in the VERILOG code is connected to a (General-Purpose 

Input/Output) GPIO pin in the FPGA. Spike signal equals logic 1 if there is a spike and 

logic 0 otherwise.  

 

Figure 6.1  Spartan-6 FPGA SP605 Evaluation Kit. 
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Then, the GPIO pin is connected to Digilent Analog Discovery 2 kit shown in 

Figure 6.2. This kit has several functionalities such as oscilloscope, function generator, 

logic analyzer and others. In this study, Digilent Analog Discovery 2 kit is used as an 

oscilloscope to demonstrate the spike signal and see the tonic spiking behavior. 

 

Figure 6.2  Digilent Analog Discovery 2 kit. 

 

The connection between the FPGA and the discovery kit is simple as illustrated 

in Figure 6.3. The oscilloscope is a differential pair oscilloscope which has positive and 

negative terminals. The positive terminal of the oscilloscope is connected to the GPIO 

pin where the GPIO pin is connected to the spike signal in the design. The negative 

terminal of the oscilloscope, the ground of the discovery kit and the ground of the Spartan 

FPGA are all connected together to make a common ground connection. 
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Figure 6.3  The connection between the Spartan FPGA and the Discovery kit to 

demonstrate the spike signal on the oscilloscope. 
 

.  As illustrated in Figure 6.4, this is the whole system where the laptop on the 

right is used to program the Spartan FPGA and the laptop on the left is used to see the 

output of the oscilloscope of the Discovery kit. 

 

Figure 6.4  The whole system altogether. 
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6.2 The real time results of the FPGA implementation 

By comparing Figure 6.5 with Figure 2.11, the CORDIC-based Izhikevich neuron 

can demonstrate the tonic spiking behavior correctly. 2 rapid spikes are fired at the 

beginning, then a constantly periodic spike is fired. 

 

Figure 6.5  The tonic spiking behavior demonstrated by the spike signal. 
 

To take a closer look, Figure 6.6 illustrates the 2 rapid spikes fired at the beginning. As 

seen below, the pulse of the spike signal looks perfect and does not suffer from noise. 

 

Figure 6.6  A closer look on the 2 rapid spikes fired at the beginning in the tonic 

spiking behavior. 
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CHAPTER 7 

 

 

Economic analysis 

7.1 The market share of Deep Neural Network  

The huge amount of data generated each day is the main resource for the AI 

systems which supports the NN growth. Deep neural network market size in 2016 is 

estimated to be about 270 USD million as in [19]. In addition, the compound annual 

growth rate (CAGR) of neural network market is estimated to be 26% till 2021 [20]. The 

reason for such a huge investment is that there are many promising applications in which 

neural network can be applied. Figure 7.1 shows the market share of the deep neural 

network software in 2016 [20]. The healthcare category, for example, is in need for low 

power AI systems. These low power devices are implanted inside the human body.  

 

Figure 7.1  The market share of global neural network software in 2016. 
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7.2 The Investment Growth of Hardware-based Deep Learning Applications 

 As shown in Figure 7.2, the services provided by deep learning technology 

are limited due to lack of well-defined learning algorithms during the period from 2014 

to 2017. Unfortunately, computer engineers haven’t covered all concepts of neural 

networks, yet. Till now, there are still new learning algorithms introduced to deep 

learning. On the other hand, there is a solid base of deep learning systems that can be 

used in applications now and provide great results. This figure illustrates the growth of 

deep learning hardware applications. Starting from 2016, the demands of converting the 

software systems to real time hardware systems is increased. The needs of hardware deep 

learning are due to its low power with efficient performance. Nowadays, the market 

demands the lowest possible power systems that can be reached. So, hardware deep 

learning is expected to have a high growth rate in the upcoming years [19]. 

 

 

Figure 7.2  The investment growth of Hardware-based Deep Learning Applications 

from 2014 to 2025 in USD million. 
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7.3 The estimated fabrication cost of hardware implementation in ASIC and 

FPGA platforms 

Table 7.1 represents the estimated fabrication cost of implementing our SNN on 

ASIC and FPGA platforms. The FPGA estimated cost is based on the Xilinx Zynq-7000 

SoC ZC702 Evaluation Kit which is suitable for the number of LUTs used in our design. 

Fabrication cost in ASIC platform is determined from Sigenics website. As shown in 

Table 7.1 , it is clear that the cost of implementing a prototype using FPGA is much less 

than implementing it with ASIC platform due to the Non-recurring engineering (NRE) 

cost of ASIC. Table 7.2 shows the estimated fabrication cost of each chip in a production 

line of 1,000 chips. The fabrication cost using ASIC platform decreases with increasing 

the production capacity as the NRE cost is divided on a large number of chips. In contrast, 

the fabrication using FPGA platform remains the same [21].  

Table 7.1 The estimated fabrication cost for the prototype in ASIC and FPGA 

platforms. 

Implementation Platform SNN Fabrication Cost 

FPGA 

(Xilinx Zynq-7000 SoC ZC702 

Evaluation Kit) 

895$ 

ASIC 
NRE cost = 234,964$ 

Production die cost = 5,300$ 

 

Table 7.2 The estimated fabrication cost for each individual SNN in the production 

line of 1,000 chips. 

Implementation platform SNN Fabrication Cost per chip 

FPGA 

(Xilinx Zynq-7000 SoC ZC702 

Evaluation Kit) 

895$ 

ASIC 240$ 

 

 

 

 

http://www.sigenics.com/
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CHAPTER 8 

 

Conclusion 

In this work, several approximation methods such as the CORDIC, the Iterative 

logarithmic and the integral sum approximations for the 𝑣2 term in the Izhikevich model 

are proposed. The CORDIC-based Izhikevich neuron model produces the spiking neuron 

behaviors like the original model efficiently. The original, the CORDIC-based and the 

PWL-based Izhikevich models are tested using both the ASIC & FPGA platforms to 

perform power/area comparison. The CORDIC-based Izhikevich model exhibits less 

power and area compared to the original Izhikevich model with an acceptable error. In 

addition, a Figure of Merit among Power, Area and error is defined to show how the 

CORDIC algorithm is flexible where the CORDIC approximation achieves better results 

than the PWL approximation.  

Furthermore, the performance of each approximation in neural networks has been 

tested by constructing the network using the CORDIC-based neuron, PWL-based neuron 

and the original neuron. The CORDIC-based spiking neural network consumes less 

power and area than the original and the PWL-based spiking neural networks. Also, the 

CORDIC-based spiking neural network has been found to be more accurate than the 

PWL-based one.  

Finally, real time FPGA outputs is demonstrated using an oscilloscope for the 

purpose of behavioural verification. It is found that the CORDIC-based Izhikevich 

neuron can exhibit the tonic spiking behavior correctly.
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APPENDIX 

MATLAB SOURCE CODE  

%   This MATLAB file generates figure 1 in the paper by 

%               Izhikevich E.M. (2004) 

%   Which Model to Use For Cortical Spiking Neurons? 

%   use MATLAB R13 or later. November 2003. San Diego, CA 

 

%%%%%%%%%%%%%%% (A) tonic spiking %%%%%%%%%%%%%%%%%%%%%% 

subplot(5,4,1) 

a=0.02; b=0.2;  c=-65;  d=6; 

V=-70;  u=b*V; 

VV=[];  uu=[]; 

tau = 0.25; tspan = 0:tau:100; 

T1=tspan(end)/10; 

for t=tspan 

    if (t>T1) 

        I=14; 

    else 

        I=0; 

    end; 

    V = V + tau*(0.04*V^2+5*V+140-u+I); 

    u = u + tau*a*(b*V-u); 

    if V > 30 

        VV(end+1)=30; 

        V = c; 

        u = u + d; 

    else 

        VV(end+1)=V; 

    end; 

    uu(end+1)=u; 

end; 

plot(tspan,VV,[0 T1 T1 max(tspan)],-90+[0 0 10 10]); 

axis([0 max(tspan) -90 30]) 

axis off; 

title('(A) tonic spiking'); 

 

%%%%%%%%%%%%%%%%%% (B) phasic spiking %%%%%%%%%%%%%%%%%%%%%%%%% 

subplot(5,4,2)% 

a=0.02; b=0.25; c=-65;  d=6; 

V=-64; u=b*V; 

VV=[];  uu=[]; 

tau = 0.25;tspan = 0:tau:200; 

T1=20; 

for t=tspan 

    if (t>T1) 

        I=0.5; 

    else 

        I=0; 

    end; 

    V = V + tau*(0.04*V^2+5*V+140-u+I); 

    u = u + tau*a*(b*V-u); 

    if V > 30 

        VV(end+1)=30; 

        V = c; 
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        u = u + d; 

    else 

        VV(end+1)=V; 

    end; 

    uu(end+1)=u; 

end; 

plot(tspan,VV,[0 T1 T1 max(tspan)],-90+[0 0 10 10]); 

axis([0 max(tspan) -90 30]) 

axis off; 

title('(B) phasic spiking'); 

 

%%%%%%%%%%%%%% (C) tonic bursting %%%%%%%%%%%%%%%%%%%%%%%%%%%% 

subplot(5,4,3) 

a=0.02; b=0.2;  c=-50;  d=2; 

V=-70;  u=b*V; 

VV=[];  uu=[]; 

tau = 0.25; tspan = 0:tau:220; 

T1=22; 

for t=tspan 

    if (t>T1) 

        I=15; 

    else 

        I=0; 

    end; 

    V = V + tau*(0.04*V^2+5*V+140-u+I); 

    u = u + tau*a*(b*V-u); 

    if V > 30 

        VV(end+1)=30; 

        V = c; 

        u = u + d; 

    else 

        VV(end+1)=V; 

    end; 

    uu(end+1)=u; 

end; 

plot(tspan,VV,[0 T1 T1 max(tspan)],-90+[0 0 10 10]); 

axis([0 max(tspan) -90 30]) 

axis off; 

title('(C) tonic bursting'); 

 

%%%%%%%%%%%%%%% (D) phasic bursting %%%%%%%%%%%%%%%%%%%%%%%%%% 

subplot(5,4,4) 

a=0.02; b=0.25; c=-55;  d=0.05; 

V=-64;  u=b*V; 

VV=[];  uu=[]; 

tau = 0.2;  tspan = 0:tau:200; 

T1=20; 

for t=tspan 

    if (t>T1) 

        I=0.6; 

    else 

        I=0; 

    end; 

    V = V + tau*(0.04*V^2+5*V+140-u+I); 

    u = u + tau*a*(b*V-u); 

    if V > 30 

        VV(end+1)=30; 

        V = c; 
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        u = u + d; 

    else 

        VV(end+1)=V; 

    end; 

    uu(end+1)=u; 

end; 

plot(tspan,VV,[0 T1 T1 max(tspan)],-90+[0 0 10 10]); 

axis([0 max(tspan) -90 30]) 

axis off; 

title('(D) phasic bursting'); 

 

 

%%%%%%%%%%%%%%% (E) mixed mode %%%%%%%%%%%%%%%%%%%%%%%%% 

subplot(5,4,5) 

a=0.02; b=0.2;  c=-55;  d=4; 

V=-70;  u=b*V; 

VV=[];  uu=[]; 

tau = 0.25; tspan = 0:tau:160; 

T1=tspan(end)/10; 

for t=tspan 

    if (t>T1) 

        I=10; 

    else 

        I=0; 

    end; 

    V = V + tau*(0.04*V^2+5*V+140-u+I); 

    u = u + tau*a*(b*V-u); 

    if V > 30 

        VV(end+1)=30; 

        V = c; 

        u = u + d; 

    else 

        VV(end+1)=V; 

    end; 

    uu(end+1)=u; 

end; 

plot(tspan,VV,[0 T1 T1 max(tspan)],-90+[0 0 10 10]); 

axis([0 max(tspan) -90 30]) 

axis off; 

title('(E) mixed mode'); 

 

 

%%%%%%%%%%%%%%%% (F) spike freq. adapt %%%%%%%%%%%%%%%%%%%%%%%% 

subplot(5,4,6) 

a=0.01; b=0.2;  c=-65;  d=8; 

V=-70;  u=b*V; 

VV=[];  uu=[]; 

tau = 0.25; tspan = 0:tau:85; 

T1=tspan(end)/10; 

for t=tspan 

    if (t>T1) 

        I=30; 

    else 

        I=0; 

    end; 

    V = V + tau*(0.04*V^2+5*V+140-u+I); 

    u = u + tau*a*(b*V-u); 

    if V > 30 
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        VV(end+1)=30; 

        V = c; 

        u = u + d; 

    else 

        VV(end+1)=V; 

    end; 

    uu(end+1)=u; 

end; 

plot(tspan,VV,[0 T1 T1 max(tspan)],-90+[0 0 10 10]); 

axis([0 max(tspan) -90 30]) 

axis off; 

title('(F) spike freq. adapt'); 

 

%%%%%%%%%%%%%%%%% (G) Class 1 exc. %%%%%%%%%%%%%%%%%%%%%%%%%% 

subplot(5,4,7) 

a=0.02; b=-0.1; c=-55; d=6; 

V=-60; u=b*V; 

VV=[]; uu=[]; 

tau = 0.25; tspan = 0:tau:300; 

T1=30; 

for t=tspan 

    if (t>T1) 

        I=(0.075*(t-T1)); 

    else 

        I=0; 

    end; 

    V = V + tau*(0.04*V^2+4.1*V+108-u+I); 

    u = u + tau*a*(b*V-u); 

    if V > 30 

        VV(end+1)=30; 

        V = c; 

        u = u + d; 

    else 

        VV(end+1)=V; 

    end; 

    uu(end+1)=u; 

end; 

plot(tspan,VV,[0 T1 max(tspan) max(tspan)],-90+[0 0 20 0]); 

axis([0 max(tspan) -90 30]) 

axis off; 

title('(G) Class 1 excitable'); 

 

%%%%%%%%%%%%%%%%%% (H) Class 2 exc. %%%%%%%%%%%%%%%%%%%%%%%%%% 

subplot(5,4,8) 

a=0.2;  b=0.26; c=-65;  d=0; 

V=-64;  u=b*V; 

VV=[];  uu=[]; 

tau = 0.25; tspan = 0:tau:300; 

T1=30; 

for t=tspan 

    if (t>T1) 

        I=-0.5+(0.015*(t-T1)); 

    else 

        I=-0.5; 

    end; 

    V = V + tau*(0.04*V^2+5*V+140-u+I); 

    u = u + tau*a*(b*V-u); 

    if V > 30 
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        VV(end+1)=30; 

        V = c; 

        u = u + d; 

    else 

        VV(end+1)=V; 

    end; 

    uu(end+1)=u; 

end; 

plot(tspan,VV,[0 T1 max(tspan) max(tspan)],-90+[0 0 20 0]); 

axis([0 max(tspan) -90 30]) 

axis off; 

title('(H) Class 2 excitable'); 

 

%%%%%%%%%%%%%%%%% (I) spike latency %%%%%%%%%%%%%%%%%%%%%%%%%%%% 

subplot(5,4,9) 

a=0.02; b=0.2;  c=-65;  d=6; 

V=-70;  u=b*V; 

VV=[];  uu=[]; 

tau = 0.2; tspan = 0:tau:100; 

T1=tspan(end)/10; 

for t=tspan 

    if t>T1 & t < T1+3 

        I=7.04; 

    else 

        I=0; 

    end; 

    V = V + tau*(0.04*V^2+5*V+140-u+I); 

    u = u + tau*a*(b*V-u); 

    if V > 30 

        VV(end+1)=30; 

        V = c; 

        u = u + d; 

    else 

        VV(end+1)=V; 

    end; 

    uu(end+1)=u; 

end; 

plot(tspan,VV,[0 T1 T1 T1+3 T1+3 max(tspan)],-90+[0 0 10 10 0 0]); 

axis([0 max(tspan) -90 30]) 

axis off; 

title('(I) spike latency'); 

 

 

%%%%%%%%%%%%%%%%% (J) subthresh. osc. %%%%%%%%%%%%%%%%%%%%%%%%%%% 

subplot(5,4,10) 

a=0.05; b=0.26; c=-60;  d=0; 

V=-62;  u=b*V; 

VV=[];  uu=[]; 

tau = 0.25; tspan = 0:tau:200; 

T1=tspan(end)/10; 

for t=tspan 

    if (t>T1) & (t < T1+5) 

        I=2; 

    else 

        I=0; 

    end; 

    V = V + tau*(0.04*V^2+5*V+140-u+I); 

    u = u + tau*a*(b*V-u); 
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    if V > 30 

        VV(end+1)=30; 

        V = c; 

        u = u + d; 

    else 

        VV(end+1)=V; 

    end; 

    uu(end+1)=u; 

end; 

plot(tspan,VV,[0 T1 T1 (T1+5) (T1+5) max(tspan)],-90+[0 0 10 10 0 0],... 

      tspan(220:end),-10+20*(VV(220:end)-mean(VV))); 

axis([0 max(tspan) -90 30]) 

axis off; 

title('(J) subthreshold osc.'); 

 

 

%%%%%%%%%%%%%%%%%% (K) resonator %%%%%%%%%%%%%%%%%%%%%%%% 

subplot(5,4,11) 

a=0.1;  b=0.26; c=-60;  d=-1; 

V=-62;  u=b*V; 

VV=[];  uu=[]; 

tau = 0.25; tspan = 0:tau:400; 

T1=tspan(end)/10; 

T2=T1+20; 

T3 = 0.7*tspan(end); 

T4 = T3+40; 

for t=tspan 

    if ((t>T1) & (t < T1+4)) | ((t>T2) & (t < T2+4)) | ((t>T3) & (t < T3+4)) | ((t>T4) 

& (t < T4+4)) 

        I=0.65; 

    else 

        I=0; 

    end; 

    V = V + tau*(0.04*V^2+5*V+140-u+I); 

    u = u + tau*a*(b*V-u); 

    if V > 30 

        VV(end+1)=30; 

        V = c; 

        u = u + d; 

    else 

        VV(end+1)=V; 

    end; 

    uu(end+1)=u; 

end; 

plot(tspan,VV,[0 T1 T1 (T1+8) (T1+8) T2 T2 (T2+8) (T2+8) T3 T3 (T3+8) (T3+8) T4 T4 

(T4+8) (T4+8) max(tspan)],-90+[0 0 10 10 0 0 10 10 0 0 10 10 0 0 10 10 0 0]); 

axis([0 max(tspan) -90 30]) 

axis off; 

title('(K) resonator'); 

 

%%%%%%%%%%%%%%%% (L) integrator %%%%%%%%%%%%%%%%%%%%%%%% 

subplot(5,4,12) 

a=0.02; b=-0.1; c=-55; d=6; 

V=-60; u=b*V; 

VV=[];  uu=[]; 

tau = 0.25; tspan = 0:tau:100; 

T1=tspan(end)/11; 

T2=T1+5; 
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T3 = 0.7*tspan(end); 

T4 = T3+10; 

for t=tspan 

    if ((t>T1) & (t < T1+2)) | ((t>T2) & (t < T2+2)) | ((t>T3) & (t < T3+2)) | ((t>T4) 

& (t < T4+2)) 

        I=9; 

    else 

        I=0; 

    end; 

    V = V + tau*(0.04*V^2+4.1*V+108-u+I); 

    u = u + tau*a*(b*V-u); 

    if V > 30 

        VV(end+1)=30; 

        V = c; 

        u = u + d; 

    else 

        VV(end+1)=V; 

    end; 

    uu(end+1)=u; 

end; 

plot(tspan,VV,[0 T1 T1 (T1+2) (T1+2) T2 T2 (T2+2) (T2+2) T3 T3 (T3+2) (T3+2) T4 T4 

(T4+2) (T4+2) max(tspan)],-90+[0 0 10 10 0 0 10 10 0 0 10 10 0 0 10 10 0 0]); 

axis([0 max(tspan) -90 30]) 

axis off; 

title('(L) integrator'); 

 

%%%%%%%%%%%%%%%%% (M) rebound spike %%%%%%%%%%%%%%%%%%%%%%%%%%%% 

subplot(5,4,13) 

a=0.03; b=0.25; c=-60;  d=4; 

V=-64;  u=b*V; 

VV=[];  uu=[]; 

tau = 0.2;  tspan = 0:tau:200; 

T1=20; 

for t=tspan 

    if (t>T1) & (t < T1+5) 

        I=-15; 

    else 

        I=0; 

    end; 

    V = V + tau*(0.04*V^2+5*V+140-u+I); 

    u = u + tau*a*(b*V-u); 

    if V > 30 

        VV(end+1)=30; 

        V = c; 

        u = u + d; 

    else 

        VV(end+1)=V; 

    end; 

    uu(end+1)=u; 

end; 

plot(tspan,VV,[0 T1 T1 (T1+5) (T1+5) max(tspan)],-85+[0 0 -5 -5 0 0]); 

axis([0 max(tspan) -90 30]) 

axis off; 

title('(M) rebound spike'); 

 

%%%%%%%%%%%%%%%%% (N) rebound burst %%%%%%%%%%%%%%%%%%%%%%%%%%%% 

subplot(5,4,14) 

a=0.03; b=0.25; c=-52;  d=0; 
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V=-64;  u=b*V; 

VV=[];  uu=[]; 

tau = 0.2;  tspan = 0:tau:200; 

T1=20; 

for t=tspan 

    if (t>T1) & (t < T1+5) 

        I=-15; 

    else 

        I=0; 

    end; 

    V = V + tau*(0.04*V^2+5*V+140-u+I); 

    u = u + tau*a*(b*V-u); 

    if V > 30 

        VV(end+1)=30; 

        V = c; 

        u = u + d; 

    else 

        VV(end+1)=V; 

    end; 

    uu(end+1)=u; 

end; 

plot(tspan,VV,[0 T1 T1 (T1+5) (T1+5) max(tspan)],-85+[0 0 -5 -5 0 0]); 

axis([0 max(tspan) -90 30]) 

axis off; 

title('(N) rebound burst'); 

 

%%%%%%%%%%%%%%%%% (O) thresh. variability %%%%%%%%%%%%%%%%%%%%%%%%%% 

subplot(5,4,15) 

a=0.03; b=0.25; c=-60;  d=4; 

V=-64;  u=b*V; 

VV=[];  uu=[]; 

tau = 0.25; tspan = 0:tau:100; 

for t=tspan 

   if ((t>10) & (t < 15)) | ((t>80) & (t < 85)) 

        I=1; 

    elseif (t>70) & (t < 75) 

        I=-6; 

    else 

        I=0; 

    end; 

    V = V + tau*(0.04*V^2+5*V+140-u+I); 

    u = u + tau*a*(b*V-u); 

    if V > 30 

        VV(end+1)=30; 

        V = c; 

        u = u + d; 

    else 

        VV(end+1)=V; 

    end; 

    uu(end+1)=u; 

end; 

plot(tspan,VV,[0 10 10 15 15 70 70 75 75 80 80 85 85 max(tspan)],... 

          -85+[0 0  5  5  0  0  -5 -5 0  0  5  5  0  0]); 

axis([0 max(tspan) -90 30]) 

axis off; 

title('(O) thresh. variability'); 
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%%%%%%%%%%%%%% (P) bistability %%%%%%%%%%%%%%%%%%%%%%%%%% 

subplot(5,4,16) 

a=0.1;  b=0.26; c=-60;  d=0; 

V=-61;  u=b*V; 

VV=[];  uu=[]; 

tau = 0.25; tspan = 0:tau:300; 

T1=tspan(end)/8; 

T2 = 216; 

for t=tspan 

    if ((t>T1) & (t < T1+5)) | ((t>T2) & (t < T2+5)) 

        I=1.24; 

    else 

        I=0.24; 

    end; 

    V = V + tau*(0.04*V^2+5*V+140-u+I); 

    u = u + tau*a*(b*V-u); 

    if V > 30 

        VV(end+1)=30; 

        V = c; 

        u = u + d; 

    else 

        VV(end+1)=V; 

    end; 

    uu(end+1)=u; 

end; 

plot(tspan,VV,[0 T1 T1 (T1+5) (T1+5) T2 T2 (T2+5) (T2+5) max(tspan)],-90+[0 0 10 10 0 0 

10 10 0 0]); 

axis([0 max(tspan) -90 30]) 

axis off; 

title('(P) bistability'); 

 

 

%%%%%%%%%%%%%% (Q) DAP %%%%%%%%%%%%%%%%%%%%%%%%%% 

subplot(5,4,17) 

a=1;  b=0.2; c=-60;  d=-21; 

V=-70;  u=b*V; 

VV=[];  uu=[]; 

tau = 0.1; tspan = 0:tau:50; 

T1 = 10; 

for t=tspan 

     if abs(t-T1)<1 

        I=20; 

    else 

        I=0; 

    end; 

    V = V + tau*(0.04*V^2+5*V+140-u+I); 

    u = u + tau*a*(b*V-u); 

    if V > 30 

        VV(end+1)=30; 

        V = c; 

        u = u + d; 

    else 

        VV(end+1)=V; 

    end; 

    uu(end+1)=u; 

end; 

plot(tspan,VV,[0 T1-1 T1-1 T1+1 T1+1 max(tspan)],-90+[0 0 10 10 0 0]); 

axis([0 max(tspan) -90 30]) 
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axis off; 

title('(Q) DAP         '); 

 

 

 

%%%%%%%%%%%%%% (R) accomodation %%%%%%%%%%%%%%%%%%%%%%%%%% 

subplot(5,4,18) 

a=0.02;  b=1; c=-55;  d=4; 

V=-65;  u=-16; 

VV=[];  uu=[];  II=[]; 

tau = 0.5; tspan = 0:tau:400; 

for t=tspan 

    if (t < 200) 

        I=t/25; 

    elseif t < 300 

        I=0; 

    elseif t < 312.5 

        I=(t-300)/12.5*4; 

    else 

        I=0; 

    end; 

    V = V + tau*(0.04*V^2+5*V+140-u+I); 

    u = u + tau*a*(b*(V+65)); 

    if V > 30 

        VV(end+1)=30; 

        V = c; 

        u = u + d; 

    else 

        VV(end+1)=V; 

    end; 

    uu(end+1)=u; 

    II(end+1)=I; 

end; 

plot(tspan,VV,tspan,II*1.5-90); 

axis([0 max(tspan) -90 30]) 

axis off; 

title('(R) accomodation'); 

 

%%%%%%%%%%%%%% (S) inhibition induced spiking %%%%%%%%%%%%%%%%%%%%%%%%%% 

subplot(5,4,19) 

a=-0.02;  b=-1; c=-60;  d=8; 

V=-63.8;  u=b*V; 

VV=[];  uu=[]; 

tau = 0.5; tspan = 0:tau:350; 

for t=tspan 

       if (t < 50) | (t>250) 

        I=80; 

    else 

        I=75; 

    end; 

    V = V + tau*(0.04*V^2+5*V+140-u+I); 

    u = u + tau*a*(b*V-u); 

    if V > 30 

        VV(end+1)=30; 

        V = c; 

        u = u + d; 

    else 

        VV(end+1)=V; 
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    end; 

    uu(end+1)=u; 

end; 

plot(tspan,VV,[0 50 50 250 250 max(tspan)],-80+[0 0 -10 -10 0 0]); 

axis([0 max(tspan) -90 30]) 

axis off; 

title('(S) inh. induced sp.'); 

 

%%%%%%%%%%%%%% (T) inhibition induced bursting %%%%%%%%%%%%%%%%%%%%%%%%%% 

subplot(5,4,20) 

a=-0.026;  b=-1; c=-45;  d=-2; 

V=-63.8;  u=b*V; 

VV=[];  uu=[]; 

tau = 0.5; tspan = 0:tau:350; 

for t=tspan 

       if (t < 50) | (t>250) 

        I=80; 

    else 

        I=75; 

    end; 

    V = V + tau*(0.04*V^2+5*V+140-u+I); 

    u = u + tau*a*(b*V-u); 

    if V > 30 

        VV(end+1)=30; 

        V = c; 

        u = u + d; 

    else 

        VV(end+1)=V; 

    end; 

    uu(end+1)=u; 

end; 

plot(tspan,VV,[0 50 50 250 250 max(tspan)],-80+[0 0 -10 -10 0 0]); 

axis([0 max(tspan) -90 30]) 

axis off; 

title('(T) inh. induced brst.'); 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

 

set(gcf,'Units','normalized','Position',[0.3 0.1 0.6 0.8]); 

 

 


