

Helwan University

Faculty of Engineering

 Communications and Electronics department

Hardware /Software Co-Design of

Automotive Lane Detection
Project Documentation Year (2021-2022)

Supervised by:

Dr. Mohamed EL Dakroury

Sponsored by:

One Lab and IP Valley inc. Canada

Project team:
 Abdelrahman Ahmed Fouda

 Basem Diaa

 Nancy Osama Ibrahim

 Shaimaa kamal

 Sarah Muhammed Khairat

2 | P a g e

Acknowledgment

First of all, we would like to express our deepest gratitude and full thanks

to almighty Allah for giving us the strength and the composure to complete

our senior project, with its complexities and difficulties, it was not an easy

task at all. This venture would not have been possible without the

generosity of many people who contributed their time and talents to the

various phases of this work. It’s our proud privilege to release the feelings

of our gratitude for the immense contribution of these people who directly

or indirectly made this project a success. We convey our sincere gratitude

to our graduation project supervisor Dr. Mohamed El Dakroury for his

advice, knowledge and the insightful discussions and suggestions

throughout the whole venture, and for patiently guiding us through its

processes. Also, We would like to thank Dr. Hassan Moustafa for his

dedication, his efforts and his great support to our team.

Finally, we would like to thank One Lab and IP Valley inc. Canada for

giving us the chance to work comfortably in its institute and provide us

with the newest tools.

3 | P a g e

Abstract

Traffic accidents have become one of the most serious problems all over

the world. Increase in the number of vehicles, human errors towards traffic

rules and the difficulty to oversee situational dangers by drivers are

contributing to most accidents on the road. With the increase in the number

of vehicles, many intelligent systems have been developed to help drivers

to drive safely. Lane detection is a vital element of driver assistance

systems. Lane detection process is an essential component for autonomous

vehicles, it has several major challenges, such as attaining robustness to

inconsistencies in lighting and background clutter. Advanced Driver

Assistance System (ADAS) provides safe and better driving, it ensures

safety and reduces driver workload. It helps to automate, adapt and enhance

the driving experience. Most of the road accidents occur due to

carelessness of driver. Whenever a dangerous situation is encountered, the

system either warns the driver or takes active role by performing necessary

corrective action to avoid an accident.

Lane detection is an application of environmental perception, which aims

to detect lane areas or lane lines by camera or lidar. In recent years,

gratifying progress has been made in detection accuracy.

The lane detection algorithms, which are an advanced driver assistance

system, are also one of the algorithms that using image processing

Cars always need high processing speed to make accurate techniques.

detection systems and e need to construct more robust w os.decisions

overcome the challenges and problems which causes failures and delay.

Unfortunately, the computer vision and image processing algorithms are

slow on processors and High-priced hardware such as "Graphics

Processing Unit" (GPU) because of the processing intensity of image

processing techniques. This situation reduces the usability of image

processing techniques and applications in daily life. In this project, A lane

detection algorithm has been developed as an image processing project,

and it has been implemented in the FPGA after this developed algorithm

.was broken down as software and hardware

Key words:

Lane detection, OpenCV, xfopencv, Xilinx SDSOC platform, HLS .

4 | P a g e

Table of Contents

Acknowledgement .. 2

Abstract ... 3

Table of Contents .. 4

List of Figures ... 7

List of Tables10

Table of Abbreviations ... 11

Chapter 1 Introduction .. 12

1.1. Introduction ... 13

1.2. Problem Statement .. 14

1.3. Objective ... 15

1.4. Previous work ... 15

1.5. proposed solution .. 16

Chapter 2 Development tools and environment 18

2.1. Software tools ... 19

2.1.1. Computer Vision Libraries ... 19

2.1.2. Languages ... 20

2.1.3. Platforms ... 22

2.1.2. Hardware tools ... 25

2.1.1. Raspberry pi .. 25

2.1.2. system on chip (SOC) ... 26

Chapter 3 Necessary Background ... 28

3.1. Computer vision .. 29

 3.1.1. what is computer vision? ... 29

 3.1.2. How Does Computer Vision Work? 29

 3.1.3. History of Computer Vision .. 31

 3.1.4. Computer vison Applications .. 31

 3.1.5. Benefits of economic impacts of CV 311

3.2 Deep learning ... 32

3.2.1. What is Deep Learning? ... 32

3.2.2. Advantages of Computer Vision .. 32

5 | P a g e

3.2.3. Difference between Computer Vision and Deep Learning .. 33

3.2.4. Computer Vision VS Deep Learning 32

3.2.2. Comparison Chart ... 32

3.3. Camera Calibration and Image Distortion Removal 32

3.3. Edge detection techniques .. 36

3.3.1. Canny Rdge Detection .. 32

3.3.2. Hough Tranform ... 40

3.3.3. Perspective Transform……………………….….. 44

3.3.4. Sliding Window .. 46

Chapter 4 Implementation on Raspberry pi .. 49

4.1. Hardware used .. 50

4.1.1. Raspberry Pi 4 .. 50

4.1.2. The Processor of Raspberry pi 4 .. 50

4.2. Implementation ... 51

4.2.1.Without implementing the curved lanes 51

4.2.2.With Curved Lanes .. 53

Chapter 5 Digital Design .. 61

5.1. Introduction ... 62

5.2. MATLAB .. 62

 5.2.1HDL Coder ... 62

5.3. Vivado HLS (Vivado High level synthesis) 64

5.3.1. High-Level synthesis methodology design 64

5.3.2. Vivado HLS flow .. 67

5.3.3. Gray scale on Vivado HLS ... 68

5.3.3. Challenges we faced .. 70

5.4. SDSOC (software defined System-On-Chip) 70

5.4.1. Overview .. 70

5.4.2. SDSOC target ... 71

5.4.3. Advantages of SDSOC ... 71

5.4.4. SDSOC environment design flow .. 71

5.4.5. About the project .. 73

5.4.6. SDSOC Environment ... 73

5.5. Implementation using SDSoC .. 75

6 | P a g e

5.5.1. Hardware resources utilization ... 75

5.5.2. Power estimations ... 75

5.5.3. Hardware accelerated cycles .. 75

5.5.4. Implementation combinations .. 76

5.5.5. Comparison between RTL and SDSoC HW implementation

 .. 76

5.5.6. Sample of generated reports ... 76

5.6. SDSOC Build Process .. 77

5.7. Hardware and Software separation ... 82

5.7.1Time Analysis ... 82

5.7.2Design Notes .. 82

5.8. The Lane Detection Algorithm ... 84

 5.8.1. PetaLinux .. 85

5.9. Zynq 7000 board ... 92

5.9.1. ZC702 Board .. 94

5.9.2. USB 2.0 ULPI Transceiver .. 97

5.9.3. SD Card Interface ... 99

5.9.4. USB-to-UART Bridge .. 99

Chapter 6 Results .. 106

6.1. Raspberry pi ... 107

6.2. Vivado HLS 112

6.4. SDSOC.. 113

Chapter 7 Conclusion and Future work .. 117

Conclusion ... 118

Future work .. 118

Chapter 8 References .. 119

7 | P a g e

List of Figures

Figure 1: Lane detection ... 13

Figure 2: Raspberry pi .. 25

Figure 3: SoC chip .. 26

Figure 4: (a) Traditional Computer Vision workflow vs. (b) Deep

Learning workflow. .. 34

Figure 5: chessboard corners traced on a sample image 36

Figure 6: chessboard corners traced on a sample image 36

Figure 7: Original image Figure 8: Gradient Magnitude Figure 9: Non-

maximum suppression .. 38

Figure 10: Canny: Hysteresis threshold .. 39

Figure 11: step1: After grayscale and gaussian filter, step 2: compute

magnitude and angle ... 39

Figure 12: Step 3: Non-maximum suppression, step 4: Hysteresis

thresholding ... 40

Figure 13: Canny Edge Detection Algorithm. .. 40

Figure 14: Mapping from edge points to the Hough Space. 41

Figure 15: The equation to calculate a slope of a line 42

Figure 16: An alternative representation of a straight line and its

corresponding Hough Space. .. 42

Figure 17: The process of detecting lines in an image 43

Figure 18: Output of Hough transform ... 44

Figure 19: Perspective transform 1 ... 45

Figure 20: Perspective transform image ... 46

Figure 21: Example of the sliding a window approach, where we slide a

window from left-to-right and top-to-bottom. .. 47

Figure 22: Raspberry pi 4 Model B .. 50

Figure 23 : Flowchart of straight lane lines algorithm 52

Figure 24 output 1 of the Raspberry pi ... 53

Figure 25 flowchart1 of curved lines algorithm 56

Figure 26: flowchart 2 of curved lines algorithm 57

Figure 27: bird's eye view ... 59

Figure 28: Wrapping image .. 59

Figure 29: Lane line boundaries warped back onto original image 60

Figure 30: Detected Lane lines overlapped on to the original image along

with curvature radius and position of the car ... 60

8 | P a g e

Figure 31: HDL coder design on MATLAB .. 63

Figure 32: grayscale output... 63

Figure 33: HLS design flow.. 65

Figure 34: HLS flow chart .. 66

Figure 35: flow design in Vivado HLS ... 67

Figure 36: reports generated by Vivado ... 68

Figure 37: original image .. 69

Figure 38: image after grayscale in Vivado .. 69

Figure 39: Xilinx blocking mail ... 70

Figure 40: SDSoC flow chart ... 72

Figure 41 projects can be implemented on SDSOC 74

Figure 42: System on chip (SoC) .. 74

Figure 43: Reports generated by SDSOC ... 77

Figure 44: SDSoC flow ... 78

Figure 45: SDSOC Platform ... 80

Figure 46: Linking openCV and xfopenCV library 81

Figure 47: Linking the OpenCV library ... 81

Figure 48: The Executable and Linkable Format (ELF) file. 81

Figure 49: partition errors ... 82

Figure 50: reports 1 by SDSOC .. 82

Figure 51: reports 2 by SDSOC .. 82

Figure 52: xfopencv libraries .. 83

Figure 53: OpenCV library error 1 ... 83

Figure 54: OpenCV library error 2 ... 83

Figure 55: OpenCV library solution ... 83

Figure 56: sdx log after running ... 84

Figure 57: Sds compiler error ... 84

Figure 58: opencv library error ... 84

Figure 59: command for installation ... 86

Figure 60: license of PetaLinux .. 86

Figure 61: add setting files to bash shell .. 87

Figure 62: create a normal project in PetaLinux 88

Figure 63: Create a bsp project on PetaLinux .. 88

Figure 64: command to show configuration ... 89

Figure 65: configuration window ... 89

Figure 66: steps on PetaLinux tool ... 90

Figure 67: Petalinux error 1 .. 90

file:///C:/Users/nancy/Downloads/final%20book.docx%23_Toc108805354
file:///C:/Users/nancy/Downloads/final%20book.docx%23_Toc108805356
file:///C:/Users/nancy/Downloads/final%20book.docx%23_Toc108805364
file:///C:/Users/nancy/Downloads/final%20book.docx%23_Toc108805365
file:///C:/Users/nancy/Downloads/final%20book.docx%23_Toc108805366
file:///C:/Users/nancy/Downloads/final%20book.docx%23_Toc108805367
file:///C:/Users/nancy/Downloads/final%20book.docx%23_Toc108805368
file:///C:/Users/nancy/Downloads/final%20book.docx%23_Toc108805369
file:///C:/Users/nancy/Downloads/final%20book.docx%23_Toc108805371
file:///C:/Users/nancy/Downloads/final%20book.docx%23_Toc108805372

9 | P a g e

Figure 68: Errors solution ... 91

Figure 69: files generated after build the project 91

Figure 70: Block Diagram of ZYNQ7000 .. 92

Figure 71: Block Diagram of ZC702 .. 96

Figure 72: high level Block Diagram ... 96

Figure 73: USB 2.0 ULPI Transceiver ... 98

Figure 74: USB Controller Block Diagram .. 99

Figure 75: SDI/O .. 100

Figure 76: SD card interface ... 100

Figure 77: SD port .. 101

Figure 78: SW 16 in ZC702 .. 102

Figure 79: SW1 in ZC702 ... 102

Figure 80: UART PORT in ZC702 .. 103

Figure 81: serial terminal setting .. 104

Figure 82: terminal setting in SDx .. 104

Figure 83: results after marking .. 105

Figure 84: output 1 .. 107

Figure 85: performance of raspberry pi in case 1 107

Figure 86: performance of raspberry pi in case 1 108

Figure 87: output 2 .. 109

Figure 88: performance of curvature .. 109

Figure 89: performance 2 of curvature ... 110

Figure 90: performance on pc ... 110

Figure 91: performance 2 on pc .. 111

Figure 92: Reports of grayscale code on Vivado 112

Figure 93: preprocessing stages .. 115

Figure 94: perspective transform .. 115

Figure 95: space usage in the system .. 116

Figure 96: power consumption result in the system 116

10 | P a g e

sList of table

…34.………………………Computer Vision VS Deep LearningTable 1:

Table 2: Results from Vivado..………………………………..…….…..68

Table 3: Sample of generated reports……………………………….….76

Table 4: Lane keeping system time analysis……………………………82

Table 5: Switch SW16 configuration option setting……………...….....97

Table 6: Configuring the Board for SD Card Boot……………………101

Table 7: xf::Sobel resource usage……………………………………...113

Table 8: xf::absdiff resource usage…….……………………………..113

Table 9: xf::Threshold resource usage………………………………...113

Table 10: xf::bitwise or resource usage…………………………...…...114

Table : 11: Xf::wrap Transform resource usage………….…………….114

Table 12: SDSoC ZC702 processor + hardware time analysis………..114

11 | P a g e

nsof abbreviatioTable

Abbreviation Word

SOC System on chip

SDSOC Software defined system on

chip

HLS High level synthesis

PS Processing system

PL Programmable logic

known as Lookup Table LUTS

HDL Hardware description

language

 transfer level-Register RTL

Universal Serial Bus USB

12 | P a g e

Chapter 1

Introduction

13 | P a g e

1.1. Introduction:

Traffic accidents are mainly caused by human mistakes such as inattention,

misbehavior, and distraction. Many companies and institutes have

proposed methods and techniques for the improvement of driving safety

and reduction of traffic accidents. Automobile accidents injure between 20

to 50 million people and kill at least 1.2 million individuals worldwide each

year. Among these accidents, approximately 60% are due to driver

inattentiveness and fatigue.

According to American Association of State Highway and Transportation

Officials (AASHTO), almost 60% of the fatal accidents are caused by an

unintentional lane drifting of a vehicle on major roads. Similarly, in a

Minnesota crash study, it was reported that 25 to 50 % of the severe road

departure crashes in Minnesota occur on curves, even though curves

account for only 10 % of the total system mileage. Systems that predict the

driver’s attentive state and intent of lane change and provide map-based

route guidance and/or warning about unintentional lane departure are all

useful to reduce major road crashes.

Figure 1: Lane detection

Most of these crashes involve crossing of an edge line, centerline, or

otherwise leaving the intended lane or trajectory. According to a recent

study, which compared crashes with and without an LDWS, it was found

that an in-vehicle LDWS was helpful in reducing crashes of all severities

by 18%, with injuries by 24%, and with fatalities by 86% without

considering for driver demographics.

14 | P a g e

1.2. Problem Statement:

Lane departure warning systems have been in development by industry for

over 20 years. LDWS are generally visual devices that look at the lane line

markers to compute a predicted moment of lane departure and alert the

driver when unintended lane departures are about to occur without causing

undue false warnings due to subtle lateral lane position changes. Beginning

with simple line scan video, LDW has developed into sophisticated lane

marker identification and lane boundary projection systems that provide

the driver with a warning if the vehicle has a trajectory that will take it out

of lane.

Among these techniques, road perception and lane marking detection play

a vital role in helping drivers avoid mistakes. The lane detection is the

foundation of many advanced driver assistance systems (ADASs) such as

the lane departure warning system (LDWS) and the lane keeping assistance

system (LKAS). Some successful ADAS or automotive enterprises, such

as Mobileye, BMW, and Tesla, etc. have developed their own lane

detection and lane keeping products and have obtained significant

achievements in both research and real-world applications.

Almost all the current mature lane assistance products use vision-based

techniques since the lane markings are painted on the road for human visual

perception. The utilization of vision-based techniques detects lanes from

the camera devices and prevents the driver from making unintended lane

changes. Therefore, the accuracy and robustness are two most important

properties for lane detection systems. Lane detection systems should have

the capability to be aware of unreasonable detections and adjust the

detection and tracking algorithm accordingly. When a false alarm occurs,

the ADAS should alert the driver to concentrate on the driving task. On the

other hand, vehicles with high levels of automation continuously monitor

their environments and should be able to deal with low-accuracy detection

problems by themselves. Hence, evaluation of lane detection systems

becomes even more critical with increasing automation of vehicles. Most

vision-based lane detection systems are commonly designed based on

image processing techniques within similar frameworks. With the

development of high-speed computing devices and advanced machine

15 | P a g e

learning theories such as deep learning, lane detection problems can be

solved in a more efficient fashion using an end-to-end detection procedure.

The problem of our project is that the code should be written in C/C++ in

order to be able to implement the algorithm on SOC (system on chip).

Some resources say that we should write it with MATLAB and then do the

modifications and the optimizations process after converting the code from

MATLAB into C++ (but I guess it will be hard to make this), other

resources say that we should use OpenCV C++ library to implement the

algorithm on the SoC, others also say that we can write the algorithm in

C++ without using any library which I think will be hard.

we want to try the best and the applicable way and if there is another way

which will be better than these.

1.3. Objective:

Identifying lanes on the road is a common task performed by all human

drivers to ensure their vehicles are within lane constraints when driving, to

make sure traffic is smooth and minimize chances of collisions with other

cars in nearby lanes. Similarly, it is a critical task for an autonomous

vehicle to perform. It turns out that recognizing lane markings on roads is

possible using well known computer vision techniques. We will cover how

to use various techniques to identify and draw the inside of a lane, compute

lane curvature, and even estimate the vehicle’s position relative to the

center of the lane.

he normal between t to compareThe Aim of the project is

and the microcontrollers and microprocessors used in embedded systems

algorithm the hardware/software system represented in implementation of

to prove that the performance of the computer vision and image on SOC

ch better as the results is more is mu on SOC processing algorithms

the processing speed increases.accurate and

1.4. Previous work:

Lane detection and Lane tracking algorithms, which are a driver support

system, are also one of the algorithms developed using image processing

techniques. We can perform these algorithms by using many

16 | P a g e

microcontrollers such as ARM, Raspberry pi and many more. However,

due to the processing intensity caused by image processing techniques, it

works slowly on processors. To solve this slow working problem, high-

priced hardware such as "Graphics Processing Unit" (GPU) is used. The

use of GPU in projects increases the cost of the project and is offered to

the end user as a product at a high price. This situation reduces the usability

of image processing techniques and applications in daily life.

This project can be made using MATLAB on FPGA. We find that FPGA

solution achieves the speedup of over 10 times faster than traditional CPU

platform for image/video processing. We find that FPGA accelerations is

a cost-efficient, high-performance video processing solution for those

applications with low power and real-time requirements. However, we

found that MATLAB on FPGA has low accuracy in comparison to system

on chip (SOC).

1.5. proposed solution:

The utilization of vision-based techniques detects lanes from the camera

devices and prevents the driver from making unintended lane changes.

Therefore, the accuracy and robustness are two most important properties

for lane detection systems.

Lane detection systems should have the capability to be aware of

unreasonable detections and adjust the detection and tracking algorithm

accordingly. These systems can prevent drivers from making mistakes on

the road and can reduce traffic accidents. An effective DAS should satisfy

the following requirements: accuracy, reliability, robustness, low cost,

compact design, low dissipation, and applicability in real time, etc.

To solve this problem we use computer vision to try detecting the lane

lines, computer vision is a field of artificial intelligence that trains

computers to interpret and understand the visual world. Using digital

images from cameras and videos, machines can accurately identify and

classify objects — and then react to what they “see.”

Computer Vision and Machine Learning are witnessing tremendous

growth over the years due to the application of ML methods to computer

vision tasks that include image registration, 3D reconstruction,

https://www.sas.com/en_in/insights/analytics/what-is-artificial-intelligence.html

17 | P a g e

segmentation, and classification, motion tracking, and object detection.

Difficult computational data analytics problems are solved best by ML

algorithms based on training data.

The current level of computer vision allows the detection and tracking of

single objects (Lanes, faces, pedestrians, cars) classes in an unconstrained

setting. It enables the realization of smart cameras to identify smiling

persons, pedestrian detection, surveillance applications, including image-

based web searches.

The lane detection algorithms, which are an advanced driver assistance

system, are also one of the algorithms that using computer vision and image

processing techniques. Unfortunately, the computer vision algorithms are

slow on processors because of the processing intensity of image processing

techniques. This situation reduces the usability of computer vision and

image processing techniques and applications in daily life. In this project,

the ZC702 FPGA development card of the ZYNQ-7000 series of Xilinx

Company is used as “System on Chip” (SoC) to solve this problem.

18 | P a g e

Chapter 2

Development tools and

environment

19 | P a g e

2.1. Software tools

2.1.1. Computer Vision Libraries

2.1.1.1. OpenCV library

Open-Source Computer Vision (OpenCV) is an open-source image

processing library. The OpenCV library was first started to be developed

by INTEL in 1999, and later, with the support of various companies, it

continued to be developed as open-source software under the Berkeley

Software Distribution (BSD) license. Having a BSD license means that the

OpenCV library can be used free of charge in any project. OpenCV makes

it easy for businesses to utilize and modify the code.

The library has more than 2500 optimized algorithms, which includes a

comprehensive set of both classic and state-of-the-art computer vision and

machine learning algorithms. These algorithms can be used to detect and

recognize faces, identify objects, classify human actions in videos, track

camera movements, track moving objects, extract 3D models of objects,

produce 3D point clouds from stereo cameras, stitch images together to

produce a high resolution image of an entire scene, find similar images

from an image database, remove red eyes from images taken using flash,

follow eye movements, recognize scenery and establish markers to overlay

it with augmented reality, etc. OpenCV has more than 47 thousand people

of user community and estimated number of downloads exceeding 18

million. The library is used extensively in companies, research groups and

by governmental bodies.

It has C++, Python, Java and MATLAB interfaces and supports Windows,

Linux, Android and Mac OS. OpenCV leans mostly towards real-time

vision applications and takes advantage of MMX and SSE instructions

when available. A full featured CUBA and OpenCL interfaces are being

actively developed right now. There are over 500 algorithms and about 10

times as many functions that compose or support those algorithms.

OpenCV is written natively in C++ and has a template interface that works

seamlessly with STL containers.

https://sourceforge.net/projects/opencvlibrary/files/stats/timeline?dates=2001-09-20+to+2019-01-30
https://sourceforge.net/projects/opencvlibrary/files/stats/timeline?dates=2001-09-20+to+2019-01-30
https://opencv.org/opencv/android/

20 | P a g e

2.1.1.2. xfOpenCV library

Xilinx OpenCV (also known as xfOpenCV) is a template library optimized

for FPGA High-Level Synthesis (HLS), allowing to create image

processing pipelines easily in the same fashion that you may do it with the

well-known OpenCV library. Inside this function, you might find some

common algorithms such as

• Color space conversion

• Image resizing

• Border and edge detection algorithms (Canny, Sobel)

• Warp transformation

• Hough transform

• Matrix-matrix operations (addition, weighted-addition)

Xilinx OpenCV is open source and free completely supported and

maintained by the community under the BSD-3 license. That means that

XfOpenCV can be used in projects by recognizing the author when

distributing the application.

The Xilinx xfopenCV library is intended for application developers using

Zynq-7000 SoC and Zynq® Ultra Scale+™ MPSoC and PCIE based

(Virtex and U200 ...) devices. xfopenCV library has been designed to work

in the SDx™ development environment and provides a software interface

for computer vision functions accelerated on an FPGA device. xfopenCV

library functions are mostly similar in functionality to their OpenCV

equivalent. Any deviations, if present, are documented.

2.1.2. Languages

2.1.2.1. Python

Python programming Language Python is an interpreted high-level

general-purpose programming language. Python’s design philosophy

emphasizes code readability with its notable use of significant indentation.

21 | P a g e

2.1.2.2. C++

C++ is a general-purpose programming language created by Danish

computer scientist Bjarne Stroustrup as an extension of the C

programming language, or "C with Classes". The language has expanded

significantly over time, and modern C++ now has object-oriented, generic,

and functional features in addition to facilities for low-

level memory manipulation. It is almost always implemented as

a compiled language, and many vendors provide C++ compilers, including

the Free Software Foundation, LLVM, Microsoft, Intel, Oracle, and IBM,

so it is available on many platforms. It was designed with an orientation

toward systems programming and embedded, resource-constrained

software and large systems, with performance, efficiency, and flexibility

of use as its design highlights.

2.1.2.3. HLS

High-Level Synthesis tools (HLS) has renewed the High-Performance

Computing (HPC) community’s interest in Field Programmable Gate

Arrays (FPGA) for accelerating HPC applications. HLS tools hide the

complexity of FPGA programming through raising the abstraction level.

They offer environments where traditional HPC programmers can use

high-level languages such as C/C++ and OpenCL to implement kernels.

The ability to program FPGAs at a high level of abstraction.

Vivado is a tool provided by AMD Xilinx, Vivado High-Level Synthesis

accelerates design implementation by enabling C, C++ and System C

specifications to be directly targeted into Xilinx devices without the need

to manually create RTL.

We will discuss it later with more details in Chapter 5.

2.1.2.4. C

C programming Language C is a general-purpose, procedural computer

programming language supporting structured programming, lexical

variable scope, and recursion, with a static type system. By design, C

provides constructs that map efficiently to typical machine instructions.

https://en.wikipedia.org/wiki/General-purpose_programming_language
https://en.wikipedia.org/wiki/Bjarne_Stroustrup
https://en.wikipedia.org/wiki/C_(programming_language)
https://en.wikipedia.org/wiki/C_(programming_language)
https://en.wikipedia.org/wiki/Class_(programming)
https://en.wikipedia.org/wiki/Object-oriented_programming
https://en.wikipedia.org/wiki/Generic_programming
https://en.wikipedia.org/wiki/Functional_programming
https://en.wikipedia.org/wiki/Low-level_programming_language
https://en.wikipedia.org/wiki/Low-level_programming_language
https://en.wikipedia.org/wiki/Memory_(computing)
https://en.wikipedia.org/wiki/Compiled_language
https://en.wikipedia.org/wiki/List_of_compilers#C.2B.2B_compilers
https://en.wikipedia.org/wiki/Free_Software_Foundation
https://en.wikipedia.org/wiki/LLVM
https://en.wikipedia.org/wiki/Microsoft
https://en.wikipedia.org/wiki/Intel
https://en.wikipedia.org/wiki/Oracle_Developer_Studio
https://en.wikipedia.org/wiki/IBM
https://en.wikipedia.org/wiki/Systems_programming
https://en.wikipedia.org/wiki/Embedded_software
https://en.wikipedia.org/wiki/Performance_(software)

22 | P a g e

2.1.3. Platforms

2.1.3.1. SDSOC

SDSoC (Software-Defined System on Chip) environment is an Eclipse-

based Integrated Development Environment (IDE) for implementing

heterogeneous embedded systems using the Zynq-7000 All Programmable

SoC (System on Chip) platform. The SDSoC system compilers

(sdscc/sds++) transform C/C++ programs into complete

hardware/software systems based on command line options that specify

target platform, and functions within the program to compile into

programmable hardware. The SDSoC system compilers generate hardware

and software components that preserve program semantics and ensure

synchronization between hardware and software threads, while enabling

pipelined computation and communication. Each hardware function runs

as an independent thread to achieve high performance with the minimum

design time. We will discuss it later with more details on Chapter 5.

2.1.3.2. jupyter notebook

It is a Python (and also R) distribution. A Python distribution is a program

that allows you to use Python. It may contain more than one program in it.

Anaconda contains multiple programs that let you use Python. Jupiter

Notebook and Spyder are two of these programs. These programs in

Anaconda are specialized in data science and machine learning.

It is a web-based program under Anaconda distribution and it let you code

Python. You can also call it a web application under Anaconda. It is good

for data analysis and machine learning. You can visualize data easily. It is

very interactive and lets you run partial codes.

2.1.3.3. Visual studio 2019

Microsoft Visual Studio is an integrated development environment (IDE)

from Microsoft. It is used to develop computer programs, as well

as websites, web apps, web services and mobile apps. Visual Studio uses

Microsoft software development.

https://en.wikipedia.org/wiki/Integrated_development_environment
https://en.wikipedia.org/wiki/Microsoft
https://en.wikipedia.org/wiki/Computer_program
https://en.wikipedia.org/wiki/Web_site
https://en.wikipedia.org/wiki/Web_app
https://en.wikipedia.org/wiki/Web_service
https://en.wikipedia.org/wiki/Mobile_app

23 | P a g e

Visual Studio supports 36 different programming languages and allows the

code editor and debugger to support (to varying degrees) nearly any

programming language, provided a language-specific service exists. Built-

in languages include C, C++, C++/CLI, Visual Basic,.NET, C#,F#,

TypeScript, XML, JavaScript ,XSLT, HTML, and CSS. Support for other

languages such as Python, Ruby, Node.js, and M among others is available

via plug-ins. Java (and J#) were supported in the past.

2.1.3.4. VMware

VMware is a virtualization and cloud computing software provider based

in Palo Alto, Calif. Founded in 1998, VMware is a subsidiary of Dell

Technologies. EMC Corporation originally acquired VMware in 2004;

EMC was later acquired by Dell Technologies in 2016. VMware bases its

virtualization technologies on its bare-metal hypervisor ESX/ ESXi in x86

architecture.

With VMware server virtualization, a hypervisor is installed on the

physical server to allow for multiple virtual machines (VMs) to run on the

same physical server. Each VM can run its own operating system (OS),

which means multiple OSes can run on one physical server. All the VMs

on the same physical server share resources, such as networking and RAM.

In 2019, VMware added support to its hypervisor to

run containerized workloads in a Kubernetes cluster in a similar way.

These types of workloads can be managed by the infrastructure team in the

same way as virtual machines and the DevOps teams can deploy containers

as they were used to.

2.1.3.5. Virtual box

When using a traditional you need to install the operating system on a

physical machine for evaluating software that cannot be installed on your

current operating system. Oracle VirtualBox is what you need in this case,

instead of reinstalling software on your physical machine. VirtualBox is

designed to run virtual machines on your physical machine without

reinstalling your OS that is running on a physical machine. One more

https://en.wikipedia.org/wiki/Programming_language
https://en.wikipedia.org/wiki/C_(programming_language)
https://en.wikipedia.org/wiki/C%2B%2B
https://en.wikipedia.org/wiki/C%2B%2B/CLI
https://en.wikipedia.org/wiki/HTML
https://en.wikipedia.org/wiki/Cascading_Style_Sheets
https://en.wikipedia.org/wiki/Python_(programming_language)
https://en.wikipedia.org/wiki/Ruby_(programming_language)
https://en.wikipedia.org/wiki/Node.js
https://en.wikipedia.org/wiki/MUMPS
https://en.wikipedia.org/wiki/Plug-in_(computing)
https://en.wikipedia.org/wiki/Java_(programming_language)
https://en.wikipedia.org/wiki/J_Sharp
https://searchservervirtualization.techtarget.com/definition/hypervisor
https://searchservervirtualization.techtarget.com/definition/server-virtualization
https://searchservervirtualization.techtarget.com/definition/virtual-machine
https://www.techtarget.com/searchitoperations/definition/container-containerization-or-container-based-virtualization

24 | P a g e

VirtualBox advantage is that this product can be installed for free. A virtual

machine (VM) works much like a physical one. An OS and applications

installed inside a VM “think” that they are running on a regular physical

machine since emulated hardware is used for running VMs on VirtualBox.

Virtual machines are isolated from each other and from the host operating

system. Thus, you can perform your tests in isolated virtual machines

without any concerns of damaging your host operating system or other

virtual machines.

2.1.3.6. Peta Linux

Peta Linux is a tool used to create your personal system which is

compatible with hardware you work on it.

The Peta Linux Tools help you create and deliver a custom Linux

distribution. They allow you to work easily with available software which

is independently available from the Xilinx GIT or open source

communities.

The Peta Linux Tools offers everything necessary to customize, build and

deploy Embedded Linux solutions on Xilinx processing systems. Tailored

to accelerate design productivity, the solution works with the Xilinx

hardware design tools to ease the development of Linux systems for

Zynq® UltraScale+™ MPSoC, Zynq®-7000 SoCs, and MicroBlaze.

Custom BSP Generation Tools

Peta Linux tools enable developers to synchronize the software platform

with the hardware design as it gains new features and devices.

Peta Linux consists of three key elements: pre-configured binary bootable

images, fully customizable Linux for the Xilinx device, and Peta Linux

SDK which includes tools and utilities to automate complex tasks across

configuration, build, and deployment. We will discuss it with more details

in chapter 5.

25 | P a g e

2.2. Hardware tools

2.2.1. Raspberry pi

 Figure 2: Raspberry pi
From building a single board computer for educational purposes and

personal entertainment to selling more than 40 million boards around the

globe, Raspberry Pi has come a long way. Raspberry Pi devices are

developed by a UK-based charity that aims to deliver the power of digital

computing to people across all sections of the world. Raspberry Pi

foundations empower low-cost and high-power single-board PCs and

software.

Most of the schools and colleges prefer Raspberry Pi units for general

purposes. However, Raspberry Pi was not intended as a charity program

earlier. It was a small team of the computer laboratory at the University of

Cambridge that discovered a declining interest in computers due to

increasing costs and tough maintenance of typical computer systems. This

is where they decided to get a solution to this problem and thus, Raspberry

Pi was born. Let’s discuss the journey of Raspberry Pi from 2012 until

now.

The Raspberry Pi- a credit card sized single board computer developed by

Raspberry Pi Foundation, United Kingdom. The board is a miniature

marvel, packs extreme computing power and capable to develop amazing

projects. The computer costs ranging from $5 to $35 and is perfect to

perform all sort of computing tasks and interfacing various sorts of devices

via GPIO.

The Raspberry Pi board contains Broadcom based ARM Processor,

Graphics Chip, RAM, GPIO and other connectors for external devices. The

26 | P a g e

operating procedure of Raspberry Pi is very similar as compared to PC and

requires additional hardware like Keyboard, Mouse, Display Unit, Power

Supply, SD Card with OS Installed (Acting like Hard Disk) for operation.

Raspberry Pi also facilitates USB ports, Ethernet for Internet/Network-

Peer to Peer Connectivity. Like any other computer, where Operating

system acts as backbone for operation. Raspberry Pi facilitates open source

operating system’s based on Linux. Till date more than 30 operating

systems based on different flavors of Linux is being launched. Raspberry

Pi foundation has also launched various accessories like Camera,

Gertboard and Compute Model Kit for deploying add-on hardware

modules.

2.2.2. System on chip(SOC)

 Figure 3: SoC chip

As you may be aware, the concept has been around for a while; the

implication is that a single silicon chip can be used to implement the

functionality of an entire system, rather than several different physical

chips being required. In the past, the term SoC has usually referred to an

Application Specific Integrated Circuit (ASIC), which can include digital,

analogue and radio frequency components, together with mixed signal

blocks for implementing analogue-to-digital and digital-to-analogue

converters (ADCs and DACs). Focusing on the digital aspect for a

moment, an SoC can combine all aspects of a digital system: processing,

27 | P a g e

high-speed logic, interfacing, memory, and so on. All of these functions

might otherwise be realized using physically separate devices, and

combined together into a system at the Printed Circuit Board (PCB) level.

The SoC solution is lower cost, enables faster and more secure data

transfers between the various system elements, has higher overall system

speed, lower power consumption, smaller physical size, and better

reliability. In fact, there are a number of compelling reasons for preferring

SoCs over discrete component equivalent systems! For a simple graphical

comparison of the system-on-a-board and the system-on-chip

A SoC, also is essentially an integrated circuit or an IC that takes a single

platform and integrates an entire electronic or computer system onto it. It

is, exactly as its name suggests, an entire system on a single chip. The

components that an SoC generally looks to incorporate within itself include

a central processing unit, input and output ports, internal memory, as well

as analog input and output blocks among other things. Depending on the

kind of system that has been reduced to the size of a chip, it can perform a

variety of functions including signal processing, wireless communication,

artificial intelligence and more.

28 | P a g e

Chapter 3

Necessary Background

29 | P a g e

3.1. Computer vision

3.1.1. What is Computer Vision?

Computer vision is a field of artificial intelligence (AI) that enables

computers and systems to derive meaningful information from digital

images, videos, and other visual inputs — and take actions or make

recommendations based on that information. If AI enables computers to

think, computer vision enables them to see, observe and understand.

Computer vision works much the same as human vision, except humans

have a head start. Human sight has the advantage of lifetimes of context to

train how to tell objects apart, how far away they are, whether they are

moving and whether there is something wrong in an image.

Computer vision trains machines to perform these functions, but it has to

do it in much less time with cameras, data and algorithms rather than

retinas, optic nerves and a visual cortex. Because a system trained to

inspect products or watch a production asset can analyze thousands of

products or processes a minute, noticing imperceptible defects or issues, it

can quickly surpass human capabilities.

Computer vision is used in industries ranging from energy and utilities to

manufacturing and automotive – and the market is continuing to grow. It

is expected to reach USD 48.6 billion by 2022.

3.1.2. How Does Computer Vision Work?

Computer vision needs lots of data. It runs analyses of data over and over

until it discerns distinctions and ultimately recognize images. For example,

to train a computer to recognize automobile tires, it needs to be

fed vast quantities of tire images and tire-related items to learn the

differences and recognize a tire, especially one with no defects.

Two essential technologies are used to accomplish this: a type of machine

learning called deep learning and a convolutional neural network (CNN).

Machine learning uses algorithmic models that enable a computer to teach

itself about the context of visual data. If enough data is fed through the

model, the computer will “look” at the data and teach itself to tell one

30 | P a g e

image from another. Algorithms enable the machine to learn by itself,

rather than someone programming it to recognize an image.

A CNN helps a machine learning or deep learning model “look” by

breaking images down into pixels that are given tags or labels. It uses the

labels to perform convolutions (a mathematical operation on two functions

to produce a third function) and makes predictions about what it is

“seeing.” The neural network runs convolutions and checks the accuracy

of its predictions in a series of iterations until the predictions start to come

true. It is then recognizing or seeing images in a way similar to humans.

Much like a human making out an image at a distance, a CNN first discerns

hard edges and simple shapes, then fills in information as it runs iterations

of its predictions. A CNN is used to understand single images. A recurrent

neural network (RNN) is used in a similar way for video applications to

help computers understand how pictures in a series of frames are related to

one another.

3.1.3. History Of Computer Vision

1974 saw the introduction of optical character recognition (OCR)

technology, which could recognize text printed in any font or typeface.

Similarly, intelligent character recognition (ICR) could decipher hand-

written text using neural networks. Since then, OCR and ICR have found

their way into document and invoice processing, vehicle plate recognition,

mobile payments, machine translation and other common applications.

In 1982, neuroscientist David Marr established that vision works

hierarchically and introduced algorithms for machines to detect edges,

corners, curves and similar basic shapes. Concurrently, computer scientist

Kunihiko Fukushima developed a network of cells that could recognize

patterns. The network, called the Neocognitron, included convolutional

layers in a neural network.

By 2000, the focus of study was on object recognition, and by 2001, the

first real-time face recognition applications appeared. Standardization of

how visual data sets are tagged and annotated emerged through the 2000s.

In 2010, the ImageNet data set became available. It contained millions of

tagged images across a thousand object classes and provides a foundation

for CNNs and deep learning models used today. In 2012, a team from the

University of Toronto entered a CNN into an image recognition contest.

31 | P a g e

The model, called AlexNet, significantly reduced the error rate for image

recognition. After this breakthrough, error rates have fallen to just a few

percent.

3.1.4. Computer vison Applications

Now we have a very large number of applications that we use computer

vision in, and here some examples of fields and applications:

● Medicine

● Military

● Autonomous vehicles (like self-driving cars)

● Industry

● Sports

Each track and field of this you can use computer vision in many things

for a lot of applications.

3.1.5. Benefits and economic impacts of CV

● It makes the computer (machine) act like human, can see and take

an action control or monitor.

● Classify and identify the objects.

● In any application, it makes our life easier.

● Increasing human safety in dangerous situations.

32 | P a g e

3.2. Deep learning

3.2.1. What is Deep Learning?

Deep learning is a subset of machine learning and AI based on artificial

neural networks that seeks to mimic the functioning of the human brain so

that computer would learn what comes naturally to humans. Deep learning

is concerned with algorithms inspired by the structure of the human brain

that enables machines to gain some level of understanding and knowledge

just the way human brain filters information. It defines model parameters

for decision making process mimicking the understanding process in the

human brain. It is a way of data inference in machine learning and together,

they are among the major tools of modern AI. It was initially developed as

a machine learning approach to deal with complex input-output mappings.

Today, deep learning is a state of the art system used across many

industries for various applications.

3.2.2. Advantages of Deep Learning

Rapid progressions in DL and improvements in device capabilities

including computing power, memory capacity, power consumption, image

sensor resolution, and optics have improved the performance and cost-

effectiveness of further quickened the spread of vision-based applications.

Compared to traditional CV techniques, DL enables CV engineers to

achieve greater accuracy in tasks such as image classification, semantic

segmentation, object detection and Simultaneous Localization and

Mapping (SLAM). Since neural networks used in DL are trained rather

than programmed, applications using this approach often require less

expert analysis and fine-tuning and exploit the tremendous amount of video

data available in today’s systems. DL also provides superior flexibility

because CNN models and frameworks can be re-trained using a custom

dataset for any use case, contrary to CV algorithms, which tend to be more

domain-specific.

33 | P a g e

3.2.3. Difference between Computer Vision and Deep

Learning

Concept

Computer vision is a subset of machine learning that deals with making

computers or machines understand human actions, behaviors, and

languages similarly to humans. The idea is to get machines to understand

and interpret the visual world so that they make sense out of it and derive

some meaningful insights. Deep learning is a subset of AI that seeks to

mimic the functioning of the human brain based on artificial neural

networks.

Purpose

The purpose of computer vision is to program a computer to interpret visual

information contained within image and video data in order to make better

sense of the digital data. The idea is to translate this data into meaningful

insights, using contextual information provided by humans in order to

make better business decisions and solve complex problems. Deep learning

has been introduced with the objective of moving machine learning closer

to AI. DL algorithms have revolutionized the way we deal with data. The

goal is to extract features from raw data based on the notion of artificial

neural networks.

3.2.4. Computer Vision vs. Deep Learning

The traditional approach is to use well-established CV techniques such as

feature descriptors for object detection. Before the emergence of DL, a step

called feature extraction was carried out for tasks such as image

classification. Features are small “interesting”, descriptive, or informative

patches in images. Several CV algorithms, such as edge detection, corner

detection or threshold segmentation may be involved in this step. As many

features as practicable are extracted from images and these features form a

definition (known as a bag-of-words) of each object class. At the

deployment stage, these definitions are searched for in other images. If a

significant number of features from one bag-of-words are in another image,

the image is classified as containing that specific object (i.e. chair, horse,

etc.). The difficulty with this traditional approach is that it is necessary to

choose which features are important in each given image. As the number

34 | P a g e

of classes to classify increases, feature extraction becomes more and more

cumbersome.

It is up to the CV engineer’s judgment and a long trial and error process to

decide which features best describe different classes of objects. Moreover,

each feature definition requires dealing with a plethora of parameters, all

of which must be fine-tuned by the CV engineer. DL introduced the

concept of end-to-end learning where the machine is just given a dataset of

images which have been annotated with what classes of object are present

in each image. Thereby a DL model is ‘trained’ on the given data, where

neural networks discover the underlying patterns in classes of images and

automatically works out the most descriptive and salient features with

respect to each specific class of object for each object. It has been well-

established that DNNs perform far better than traditional algorithms, albeit

with trade-offs with respect to computing requirements and training time.

With all the state-of-the-art approaches in CV employing this

methodology, the workflow of the CV engineer has changed dramatically

where the knowledge and expertise in extracting hand-crafted features has

been replaced by knowledge and expertise in iterating through deep

learning architectures as depicted in the development of CNNs has had a

tremendous influence in the field of CV in recent years and is responsible

for a big jump in the ability to recognize objects

Figure 4: (a) Traditional Computer Vision workflow vs. (b) Deep Learning workflow.

35 | P a g e

3.2.5. Comparison Chart

 Table 1: Computer Vision VS Deep Learning

3.3. Camera Calibration & Image Distortion Removal

Image distortion occurs when a camera looks at 3D objects in the real world

and transforms them into a 2D image

This transformation isn’t always perfect and distortion can result in a

change in apparent size, shape or position of an object, So we need to

correct this distortion to give the camera an accurate view of the image.

This is done by computing a camera calibration matrix by taking several

chessboard pictures of a camera and using cv2.calibrateCamera()

function.

To compute the camera, the transformation matrix and distortion

coefficients, we use multiple pictures of a chessboard on a flat surface

36 | P a g e

taken by the same camera. OpenCV has a convenient method

called findChessboardCorners that will identify the points where black and

white squares intersect and reverse engineer the distortion matrix this way.

We use camera calibration techniques when using camera to take our input

image to apply our algorithm on it.

 Figure 5: chessboard corners traced on a sample image

Figure 6: chessboard corners traced on a sample image

3.4. Edge detection techniques

The edge representation of an image significantly reduces the quantity of

data to be processed, yet it retains essential information regarding the

shapes of objects in the scene. This explanation of an image is easy to

incorporate into a large amount of object recognition algorithms used in

computer vision along with other image processing applications. The major

property of the edge detection technique is its ability to extract the exact

edge line with good orientation as well as more literature about edge

detection has been available in the past three decades. On the other hand,

there is not yet any common performance directory to judge the

performance of the edge detection techniques. The performance of an edge

http://docs.opencv.org/2.4/modules/calib3d/doc/camera_calibration_and_3d_reconstruction.html#cv2.findChessboardCorners

37 | P a g e

detection techniques are always judged personally and separately

dependent to its application.

Edge detection is a fundamental tool for image segmentation. Edge

detection methods transform original images into edge images benefits

from the changes of grey tones in the image. In image processing especially

in computer vision, the edge detection treats the localization of important

variations of a gray level image and the detection of the physical and

geometrical properties of objects of the scene. It is a fundamental process

detects and outlines of an object and boundaries among objects and the

background in the image. Edge detection is the most familiar approach for

detecting significant discontinuities in intensity values. Edges are local

changes in the image intensity. Edges typically occur on the boundary

between two regions. The main features can be extracted from the edges of

an image. Edge detection has major feature for image analysis. These

features are used by advanced computer vision algorithms. Edge detection

is used for object detection which serves various applications like medical

image processing, biometrics etc. Edge detection is an active area of

research as it facilitates higher level image analysis. There are three

different types of discontinuities in the grey level like point, line, and

edges. Spatial masks can be used to detect all the three types of

discontinuities in an image. There are many edge detection techniques in

the literature for image segmentation. The most commonly used

discontinuity-based edge detection techniques are reviewed in this section.

Those techniques are Roberts edge detection, Sobel Edge Detection,

Prewitt edge detection, Kirsh edge detection, Robinson edge detection,

Marr-Hildreth edge detection, LoG edge detection and Canny Edge

Detection.

3.4.1. Canny Edge Detection

In industry, the Canny edge detection technique is one of the standard edge

detection techniques. It was first created by John Canny for his Master’s

thesis at MIT in 1983, and still outperforms many of the newer algorithms

that have been developed. To find edges by separating noise from the

image before find edges of image the Canny is a very important method.

Canny method is a better method without disturbing the features of the

38 | P a g e

edges in the image afterwards it , applying the tendency to find the edges

and the serious value for threshold.

The algorithmic steps are as follows:

 • Convolve image f(r, c) with a Gaussian function to get smooth image

 f^(r, c). f^(r,c)=f(r,c)*G(r,c,6)

 • Apply first difference gradient operator to compute edge strength then

edge magnitude and direction are obtained as before.

• Apply non-maximal or critical suppression to the gradient magnitude.

• Apply threshold to the non-maximal suppression image. Unlike Roberts

and Sobel, the Canny operation is not very susceptible to noise. If the

Canny detector worked well it would be superior.

Figure 7: Original image Figure 8: Gradient Magnitude Figure 9: Non-maximum

suppression

Then, A threshold is applied on the edge pixels, by so-called hysteresis

thresholding, which is based on using two thresholds, T1 and T2, with T1

< T2. Ridge pixels with values greater than T2 are said to be "strong" edge

pixels. Ridge pixels with values between T1 and T2 are said to be "weak"

edge pixels.

39 | P a g e

 Figure 10: Canny: Hysteresis threshold

Algorithm of canny edge:

 1. convert pic to gray scale.

 2. Noise reduction using Gaussian filter.

 3. Compute gradient magnitude and angle

4. Non-maximum suppression

 5. Hysteresis thresholding.

Figure 11: step1: After grayscale and gaussian filter, step 2: compute magnitude and

angle

40 | P a g e

Figure 12: Step 3: Non-maximum suppression, step 4: Hysteresis thresholding

3.4.2. Hough Transform

The Hough Transform is an algorithm patented by Paul V. C. Hough and

was originally invented to recognize complex lines in photographs (Hough,

1962). Since its inception, the algorithm has been modified and enhanced

to be able to recognize other shapes such as circles and quadrilaterals of

specific types. In order to understand how the Hough Transform algorithm

works, it is important to understand four concepts: edge image, the Hough

Space, and the mapping of edge points onto the Hough Space, an alternate

way to represent a line, and how lines are detected.

Edge Image

 Figure 13: Canny Edge Detection Algorithm.

41 | P a g e

An edge image is the output of an edge detection algorithm. An edge

detection algorithm detects edges in an image by determining where the

brightness/intensity of an image changes drastically. Examples of edge

detection algorithms include: Canny, Sobel, Laplacian, etc. It is common

for an edge image to be binarized meaning all of its pixel values are either

a 1 or a 0. Depending on your situation, either a 1 or a 0 can signify an edge

pixel. For the Hough Transform algorithm, it is crucial to perform edge

detection first to produce an edge image which will then be used as input

into the algorithm.

The Hough Space and the Mapping of Edge Points onto the Hough Space

 Figure 14: Mapping from edge points to the Hough Space.

The Hough Space is a 2D plane that has a horizontal axis representing the

slope and the vertical axis representing the intercept of a line on the edge

image. A line on an edge image is represented in the form of y = ax +

b (Hough, 1962). One line on the edge image produces a point on the Hough

Space since a line is characterized by its slope a and intercept b. On the

other hand, an edge point (xᵢ, yᵢ) on the edge image can have an infinite

number of lines pass through it. Therefore, an edge point produces a line in

the Hough Space in the form of b = axᵢ + yᵢ (Leavers, 1992). In the Hough

Transform algorithm, the Hough Space is used to determine whether a line

exists in the edge image.

https://en.wikipedia.org/wiki/Canny_edge_detector
https://en.wikipedia.org/wiki/Sobel_operator
https://en.wikipedia.org/wiki/Laplace_operator

42 | P a g e

An Alternate Way to Represent a Line

 Figure 15: The equation to calculate a slope of a line

There is one flaw with representing lines in the form of y = ax + b and the

Hough Space with the slope and intercept. In this form, the algorithm won’t

be able to detect vertical lines because the slope a is undefined/infinity for

vertical lines (Leavers, 1992). Programmatically, this means that a

computer would need an infinite amount of memory to represent all

possible values of a. To avoid this issue, a straight line is instead

represented by a line called the normal line that passes through the origin

and perpendicular to that straight line. The form of the normal line is ρ = x

cos(θ) + y sin(θ) where ρ is the length of the normal line and θ is the angle

between the normal line and the x axis.

Figure 16: An alternative representation of a straight line and its corresponding Hough

Space.

Using this, instead of representing the Hough Space with the slope a and

intercept b, it is now represented with ρ and θ where the horizontal axis is

for the θ values and the vertical axis are for the ρ values. The mapping of

43 | P a g e

edge points onto the Hough Space works in a similar manner except that an

edge point (xᵢ, yᵢ) now generates a cosine curve in the Hough Space instead

of a straight line (Leavers, 1992). This normal representation of a line

eliminates the issue of the unbounded value of a that arises when dealing

with vertical lines.

Line Detection

 Figure 17: The process of detecting lines in an image
The yellow dots in the Hough Space indicate that lines exist and are

represented by the θ and ρ pairs.

As mentioned, an edge point produces a cosine curve in the Hough Space.

From this, if we were to map all the edge points from an edge image onto

the Hough Space, it will generate a lot of cosine curves. If two edge points

lay on the same line, their corresponding cosine curves will intersect each

other on a specific (ρ, θ) pair. Thus, the Hough Transform algorithm detects

lines by finding the (ρ, θ) pairs that have a number of intersections larger

than a certain threshold. It is worth noting that this method of thresholding

might not always yield the best result without doing some preprocessing

like neighborhood suppression on the Hough Space to remove similar lines

in the edge image.

Steps of The Algorithm

1. Decide on the range of ρ and θ. Often, the range of θ is [0, 180]

degrees and ρ is [-d, d] where d is the length of the edge image’s

diagonal. It is important to quantize the range of ρ and θ meaning

there should be a finite number of possible values.

44 | P a g e

2. Create a 2D array called the accumulator representing the

Hough Space with dimension (num_rhos, num_thetas) and

initialize all its values to zero.

3. Perform edge detection on the original image. This can be done

with any edge detection algorithm of your choice.

4. For every pixel on the edge image, check whether the pixel is an

edge pixel. If it is an edge pixel, loop through all possible values

of θ, calculate the corresponding ρ, find the θ and ρ index in the

accumulator, and increment the accumulator base on those index

pairs.

5. Loop through all the values in the accumulator. If the value is

larger than a certain threshold, get the ρ and θ index, get the value

of ρ and θ from the index pair which can then be converted back

to the form of y = ax + b.

 Figure 18: Output of Hough transform
3.4.3. Perspective transform

When human eyes see near things, they look bigger as compared to those

who are far away. This is called perspective in a general way. Whereas

transformation is the transfer of an object etc. from one state to another.

So overall, the perspective transformation deals with the conversion of 3d

world into 2d image. The same principle on which human vision works

and the same principle on which the camera works.

45 | P a g e

We will see in detail about why this happens, that those objects which are

near to you look bigger, while those who are far away, look smaller even

though they look bigger when you reach them.

Figure 19: Perspective transform 1

• Sometimes we have the required images or videos but the necessary

information is not properly visible. In such cases, we may have to

change the alignment of the images or videos or change the

perspective of the images or videos to obtain better insights into the

required information from the image or video.

• Then we make use of a function called Perspective Transform()

function in OpenCV.

• The PerspectiveTransform() function takes the coordinate points on

the source image which is to be transformed as required and the

coordinate points on the destination image that corresponds to the

points on the source image as the input parameters.

cv2.PerspectiveTransform(source coordinates,

destination_coordinates)

• The PerspectiveTransform() function returns the matrix of the

transformed perspective as the output.

• Then the original source image and the resulting matrix from the

PerspectiveTransform() function along with the size of the required

output image is passed to the warpPerspective() function to obtain

the transformed image.

46 | P a g e

cv2.warpPerspective(source_image, destination_image,

destination_imagesize)

• The aligned or transformed image of the source image as per the

required size is returned by the warpPerspective() function.

 Figure 20: Perspective transform image

3.4.4. Sliding window

Sliding windows play an integral role in object classification, as they allow

us to localize exactly “where” in an image an object resides. We utilize a

sliding window to detect objects in images at various scales and locations.

Normally, we’d use an image classifier on the window region to see if it

contains an object of interest. By combining sliding windows with object

classification, we can build classification systems for images that can

identify objects of various sizes and positions. Despite their simplicity,

these techniques are the foundation of modern neural network architectures

for identifying objects in images.

what is a sliding window?

In the context of computer vision (and as the name suggests), a sliding

window is a rectangular region of fixed width and height that “slides”

across an image, such as in the following figure:

47 | P a g e

Figure 21: Example of the sliding a window approach, where we slide a window from

left-to-right and top-to-bottom.

For each of these windows, we would normally take the window region

and apply an image classifier to determine if the window has an object

that interests us — in this case, a face.

How the sliding window on the lane works?

The selection of initial sliding window is very important and hence

previous lane starting points are saved in the cache to efficiently detect the

moving lanes. Basic sliding window approach is not suitable in sharp

curves and dashed lanes. Multiple sliding window technique is able to

detect the sharp curves and dashed lanes. Once the left and right lanes are

detected, the center of the left lane and right lane is found; vehicle's

deviation from actual center of the lane is calculated.

After, edge detection, perspective transformation is performed in order to

get a top view of the image. The image coordinates are shifted, and the

image is rotated followed by projecting the image onto a 2D plane. Most

of the research using feature-based techniques for lane detection use

inverse perspective transform. It is very useful especially when dealing

with curved road scenarios. It is also called bird's-eye view image. Lane

detection algorithm comprises of the basic image preprocessing steps

followed by image warping and line fitting using B-Spline model and

Random Sample Consensus (RANSAC) algorithm. After warping the

https://pyimagesearch.com/wp-content/uploads/2014/10/sliding_window_example.gif

48 | P a g e

image, to detect the best lane points sliding window approach is used

instead of searching the entire image. Sliding window technique can be

used for any application to reduce the search area there by reducing the

computational complexity. This technique also reduces detecting points

outside the lanes. The lane detection using combined thresholding

(Gradient and Hue, Saturation and Lightness (HSL) thresholding),

perspective transform, sliding window approach and second order

polynomial fitting.

A sliding window technique is used to find the edges of rail lines. The edge

points are detected by filtering the points in sliding windows based on their

gradient value and mean square error approximation. A sliding window

technique is used to detect lanes on the road. Generally, in a sliding

window approach, after image preprocessing steps, initially two windows

(left and right) are considered using peak values in the histogram of the

image. Subsequent sliding window positions are determined based on

mean of the points in the current sliding window. Several open-source

resources implemented sliding window technique. But this algorithm

works only for slightly curved lanes but not for sharp curves because, the

windows are considered assuming that the next lane points will be above

the previous window.

49 | P a g e

 Chapter 4

Implementation on

Raspberry pi

50 | P a g e

4.1. Hardware used

4.1.1. Raspberry Pi 4

Figure 22: Raspberry pi 4 Model B

 Raspberry Pi 4 was launched in June 2019. This edition has a 64-bit

CPU, Wi-Fi, and Bluetooth, and boasts improved performance speed. It

has been specifically designed for experimentation with the circuit board

and to help users develop new computing skills. The main reason to

choose raspberry pi 4 as a beginner is because this is the latest (till now)

bug-free version and faster than all old pi boards.

Raspberry Pi 4 comes with- Broadcom BCM2711 Quad-core Cortex-A72

(ARM v8) 64-bit SoC @ 1.5GHz Processor, 4GB LPDDR4-3200

SDRAM and OpenGL ES 3.0 graphics H.265 (4kp60 decode). It has

Gigabit Ethernet, along with Wi-Fi of 5.0 GHz IEEE 802.11ac wireless &

Bluetooth 5.0, BLE. Micro-SD card slot for loading operating system and

data storage. 2-lane MIPI DSI display port and 2-lane MIPI CSI camera

port. And also 4-pole stereo audio and composite video port.

4.1.2. The Processor of Raspberry pi 4

The encapsulated processor, which uses the same heat spreader for better

thermal control as the last model, may look the same from the outside. But

while the Raspberry Pi 3 was built around the Broadcom BCM2837

processor, a quad-core Arm Cortex-A53 clocked at 1.4GHz, the new board

51 | P a g e

is built around the Broadcom BCM2711, a 64-bit quad-core Arm Cortex-

A72 clocked at 1.5GHz. Though that might not seem significant, there are

some big differences between the core architectures of these two

processors.

While the A53 was designed as a mid-range core, and for efficiency, the

A72 is a performance core, so despite the apparently small difference in

clock speed, the real performance difference between the cores is really

rather significant.

We use Raspberry Pi 4 Model B to implement the algorithm and use

Motors to Move the wheels of Demo of the project.

4.2. Implementation

4.2.1. Without implementing the curved lanes

First we take the input from the camera, the camera takes some pictures of

a chess board before taking a picture of the lane in order to know the

camera distortion and trying to correct it.

This camera distortion results from the transformation of the image from

3D to 2D and results in change in the shape or position of an object in an

image.

After calibrating the distortion in the image, we apply this error to raw

images to apply distortion correction.

After this we take the input from the camera (video) and convert the image

from 3 channel image (R, G, B) to grayscale.

We then filter the image from noises and unneeded information by

applying gaussian filter, after this we use canny edge detector in order to

detect the edges in our image then the output of canny is the input of ROI

step. This step specifies the region which we want to detect the lane by

adjusting the parameters and the coordinates to specify the area of the lane

only to complete the processing on the image.

We try multiple times until the correct region of the lane is specified and

no error exist in this region.

We then apply the output image to the Hough transform which draw the

lines on the lanes of the image in order to detect them, then we average

these lines to output only one line on the image.

https://en.wikipedia.org/wiki/ARM_Cortex-A72
https://en.wikipedia.org/wiki/ARM_Cortex-A72

52 | P a g e

We then apply these lines (the two lanes) on the original image which is 3

Channel image to draw the lines on the original lanes as shown in the

following figure.

 Figure 23 : Flowchart of straight lane lines algorithm

53 | P a g e

 Figure 24 output 1 of the Raspberry pi

4.2.2. With Curved Lanes

Identifying lanes on the road is a common task performed by all human

drivers to ensure their vehicles are within lane constraints when driving, so

as to make sure traffic is smooth and minimize chances of collisions with

other cars in nearby lanes. Similarly, it is a critical task for an autonomous

vehicle to perform. It turns out that recognizing lane markings on roads is

possible using well known computer vision techniques

The input data set for the algorithm is collected by recording video

sequences of the white lanes, which are formed inside an indoor facility.

The input video is converted to frames. The input image consists of white

lanes. Hence, detecting those white lanes using color thresholding helps in

eliminating most of the unnecessary points in the frame. The input RGB

image is converted to hue, saturation and value (HSV) image. The lower

and upper thresholds are selected depending upon the lighting conditions,

which vary the color of the lanes. Thus, white components are extracted.

Now, the image is converted to gray scale image. Gray scale image

conversion reduces the computational complexity. In real time

environment, small stones or debris that can be seen beside lanes, could be

accidently considered as edge points. This can be reduced using Gaussian

Blur.

54 | P a g e

Next, canny edge detection is performed to segment the dominant pixels.

Edge detection finds the boundaries of the objects within images. Canny

Edge detection is a multi-stage algorithm. A filtered gray scale image is

the input to the canny edge detection. It deals with the calculation of

gradients, non- maximum suppression and thresholding with hysteresis.

There are two thresholds, which should be selected based on the input data

set. If the pixel gradient value is higher than the upper threshold, the pixel

is accepted as an edge. If the pixel value is below the lower threshold and

is not connected to any of the pixel values above the upper threshold, it is

rejected.

When the lane is curved, top view image produces more information about

the lane than a normal image whose lanes intersect at horizon. With this

view, the left and right lanes are not closer to each other at the horizon.

This also helps in the sliding window technique in the categorization of left

and right lanes. If the image is not perspective transformed, there is a good

probability that the sliding windows of the left lane might be accidently

merged into the windows of the right lane. The image coordinates are

shifted, rotated and projected to a bird's- eye view image using perspective

transform. The coordinates of the perspective transformation are chosen

carefully so that a perfect transformed image is obtained. This helps us

retain all the lane data in the image.

After canny edge detection, the image warping is done. This warped canny

image is the input to the sliding window technique. To draw multiple

sliding windows, the starting point of the windows should be known. To

find the initial point, histogram for the bottom part of the image is

calculated. Based on the peak value of the histogram, the initial window is

selected and the mean of the non-zero points inside the window is

determined. For the first half of the image, left lane peak is obtained and

the other right half gives the peak of the right lane. Thus, left and right

starting sliding windows are formed, and then left lane center and right

lane center are calculated. This kind of selection works fine as long as both

lanes are in ideal places that is left lane on the left side of the image and

right lane on the right side of the image. In some cases, for example where

the vehicle is gradually steered more towards right, then we might see the

right lane in the left half of the image. In such situations, improper

detection is possible.

 To avoid such situations, a variable cache is defined to save the starting

55 | P a g e

point windows of previous lanes. The histogram is not calculated

throughout the detection process but only for first few frames and later it

will be dynamically tracked using the cache. For each initial sliding

window, mean of the points inside each window is calculated. Two

windows to the left and right of the mean point and three more windows

on top of the mean point are selected as next sliding windows. This kind

of selection of windows helps to detect the sharp curves and dashed lanes.

The window width and height are fixed depending upon the input data set.

The width of the sliding window should be adjusted depending on the

distance between the lanes. The left and right sliding windows on top help

track the lane points turning left and right respectively. The windows need

to have a relatively well-tuned size to make sure the left and right curved

lanes are not tracked interchangeably when lanes have sharp turn and

become horizontally parallel to each other. The detected points inside the

sliding window are saved.

The process of finding the mean point and next set of sliding windows

based on valid points inside the respective sliding windows for left and

right lanes is continued until no new lane points are detected. Points

detected in previous sliding windows are discarded when finding points in

next set of sliding windows. This makes sure that the algorithm can stop

tracking when no new points are found. Once, the left and right points are

detected, these points are processed to polynomial fitting to fit the

respective lanes. Average of polynomial fit values of past few frames is

used to avoid any intermittent frames, which may have unreliable lane

information. The lane starting points are retrieved from the polynomial

fitting equation. This approach helps increase the confidence of lane's

starting point detection based on lanes rather than relying on starting

sliding windows. The deviation of the car from center of the lanes is

calculated. Then the image is unwrapped, and the lines are fitted onto the

input image.

56 | P a g e

 Figure 25 flowchart1 of curved lines algorithm

57 | P a g e

 Figure 26: flowchart 2 of curved lines algorithm

we build a pipeline consisting of the following steps:

• Computation of camera calibration matrix and distortion coefficients

from a set of chessboard images

• Distortion removal on images

• Application of color and gradient thresholds to focus on lane lines

• Production of a bird’s eye view image via perspective transform

• Use of sliding windows to find hot lane line pixels

• Fitting of second-degree polynomials to identify left and right lines

composing the lane.

• Computation of lane curvature and deviation from lane center

58 | P a g e

• Warping and drawing of lane boundaries on image as well as lane

curvature information.

4.2.2.1. Video or image input

Here we take a video to be our input and to do our image processing and

computer vision techniques on it.

4.2.2.2. Use color transforms

We use color transforms, gradients, etc., to create a thresholded binary

image. The idea behind this step is to create an image processing pipeline

where the lane lines can be clearly identified by the algorithm. There are a

number of different ways to get to the solution by playing around with

different gradients, thresholds and color spaces. I experimented with a

number of these techniques on several different images and used a

combination of thresholds, color spaces, and gradients. I settled on the

following combination to create my image processing pipeline: S channel

thresholds in the HLS color space and V channel thresholds in the HSV

color space, along with gradients to detect lane lines. An example of a final

binary thresholded image is shown in the fig below, where the lane lines

are clearly visible.

4.2.2.3. Apply a perspective transform

We apply perspective transform to generate a “bird’s-eye view” of the

image. Images have perspective which causes lanes lines in an image to

appear like they are converging at a distance even though they are parallel

to each other. It is easier to detect curvature of lane lines when this

perspective is removed. This can be achieved by transforming the image to

a 2D Bird’s eye view where the lane lines are always parallel to each other.

Since we are only interested in the lane lines, I selected four points on the

original un-distorted image and transformed the perspective to a Bird’s eye

view as shown in below.

59 | P a g e

 Figure 27: bird's eye view

4.2.2.4. Detect lane pixels

To detect the lane lines and fit to find the lane boundary, there are a number

of different approaches. I used convolution which is the sum of the product

of two separate signals: the window template and the vertical slice of the

pixel image.

I used a sliding window method to apply the convolution, which will

maximize the number of hot pixels in each window. The window template

is slid across the image from left to right and any overlapping values are

summed together, creating the convolved signal. The peak of the

convolved signal is where the highest overlap of pixels is and it is the most

likely position for the lane marker. Methods have been used to identify lane

line pixels in the rectified binary image. The left and right lines have been

identified and fit with a curved polynomial function. Example images with

line pixels identified with the sliding window approach and a polynomial

fit overlapped are shown.

 Figure 28: Wrapping image

4.2.2.5. The curvature determination

To determine the curvature of the lane and vehicle position with respect to

the center of the car I took the measurements of where the lane lines are

60 | P a g e

and estimated how much the road is curving, along with the vehicle

position with respect to the center of the lane. I assumed that the camera is

mounted at the center of the car.

4.2.2.6. Image wrapping

In this step we warp the detected lane boundaries back onto the original

image and display numerical estimation of lane curvature and vehicle

position.

The fit from the rectified image has been warped back onto the original

image and plotted to identify the lane boundaries. Fig 7 demonstrates that

the lane boundaries were correctly identified and warped back on to the

original image. An example image with lanes, curvature, and position from

center is shown.

 Figure 29: Lane line boundaries warped back onto original image

Figure 30: Detected Lane lines overlapped on to the original image along with

curvature radius and position of the car

61 | P a g e

 Chapter 5

 Digital Design

62 | P a g e

5.1 . Introduction

The usage rate of image processing algorithms has gained a great impetus

with the "OpenCV" library, which is implemented as open source. The lane

detection algorithms, which are an advanced driver assistance system, are

also one of the algorithms that using image processing techniques.

Unfortunately, the image processing algorithms are slow on processors

because of the processing intensity of image processing techniques. This

situation reduces the usability of image processing techniques and

applications in daily life.

As FPGA solution achieves the speedup of over 10 times faster & less

power than traditional CPU platform for image/video processing but it take

much time to design any circuit (ex: using a research paper published in

Germany in lane detection acceleration VHDL this design take 3 years, this

IC gave better performance but it take long time compared with 4 to six

months using GPU), so try design high performance IC in the shortest time.

First, we decided to use MATLAB & SIMULINK to convert the lane

detection algorithm to HDL conde (VHDL / Verilog) but after some

research we found 2 problems.

1-The low performance of the output HDL code.

2- The output HDL code isn’t readable so we can’t modify it.

3-The accuracy of the output of MATLAB is poor.

We then decided to change the MATLAB to a new tool which gives

accurate output. This tool is SDSOC (software defined system on chip).

5.2. MATLAB

First we desire to use HDL coder to the lane detection algorithm to HDL

(VHDL/Verilog)

5.1.1. HDL Coder

HDL Coder provides a workflow advisor that automates the programming

of Xilinx®, Microsemi®, and Intel® FPGAs. You can control HDL

architecture and implementation, highlight critical paths, and generate

hardware resource utilization estimates. HDL Coder provides traceability

between your Simulink model and the generated Verilog and VHDL code,

63 | P a g e

enabling code verification for high-integrity applications adhering to DO-

254 and other standards.

 Figure 31: HDL coder design on MATLAB

DO-254 is a requirements-driven process-oriented safety standard used on

commercial electronics that go into aircraft. (Conceptually speaking, this

standard applies to all electronics in anything that flies or could crash and

pose a hazard to the public.

After working about one month with MATLAB we started in applying

some parts of the algorithm as grayscale.

 Figure 32: grayscale output

64 | P a g e

But after research and some experiments we discover the low

performance of the HDL coder , need long time to make the time analysis

for the code and the main problem is the code is not readable so, if we can’t

modify any part in the algorithm to decrease of the area or for any purpose

so the sponsor suggest using the SDSOC but due to the lake of resources

and the long time it need to build a project (the small project can take half

an hour to built) so, we used Vivado HLS as the two tools work with the

same HLS and it can build project in few minutes.

5.3. Vivado HLS (Vivado High level synthesis)

5.3.1. High-Level synthesis methodology design:

Vivado High-Level Synthesis also known as Electronic System Level

Synthesis and C Synthesis is an automated design procedure, that converts

the algorithmic description of a system into the corresponding hardware

circuit. In this process, which is actually a part of the high-level design

flow, the system behavior is described at a very high level of abstraction.

This method improves productivity and reduces the chance of error.

Synopsys introduced Behavioral Compiler, the first-generation behavioral

synthesis tool, in 1994. Verilog was used as the input language. 10 years

later, various next-generation High-Level Synthesis (HLS) tools were

introduced in the market. These tools offered circuit synthesis, described

in a high-level language and Register Transfer Level. Manufacturers of

these tools provided extensive PC support for a wide range of tool issues.

The first step in HLS is to implement the system algorithm in a high-level

language, such as ANSI C, C++, System C, etc. After that, the synthesis

tool generates the technical details, which is required for hardware

implementation.

Most of the HLS design methods use conventional logic synthesis tools by

generating a Register Level Transfer (RTL) logic implementation from the

system algorithm. The RTL logic is used by the traditional logic synthesis

tools to generate a gate-level design. The HLS tools convert the partially

https://www.amazon.in/shop/semiconductorclub
https://www.amazon.in/shop/semiconductorclub
https://www.amazon.in/shop/semiconductorclub

65 | P a g e

timed functional code into a fully timed RTL design. The basic objective

of HLS is to enable the designers to develop and test the hardware

efficiently. It also gives the designers better control over the design

architecture optimization.

Hardware design could be developed at multiple levels of abstraction. The

most common abstraction levels are Algorithmic Level, Register Transfer

Level and Gate Level.

It allows the users who are not familiar with logic design to develop

hardware accelerators for complex ML algorithms on FPGA. Xilinx

included Vivado HLS on their development framework so that any user

can use HLS for custom hardware development. Although HLS enables

rapid prototyping for any random algorithms, there exists limitations on its

achievable performance, memory bandwidth, and logic count compared to

the ones from manual designs by domain experts.

 Figure 33: HLS design flow

For ML applications, which usually have regular compute and memory

access patterns, HLS provides a decent performance, short development

time, and easier debugging environment. The objective of HLS is to extract

parallelism from the input description and construct a micro architecture

that is faster and cheaper than simply executing the input description as a

program on a microprocessor. The goal of HLS is to let hardware designers

efficiently build and verify hardware, by giving them better control over

optimization of their design architecture, and through the nature of

allowing the designer to describe the design at a higher level of abstraction

https://www.amazon.in/shop/semiconductorclub
https://www.amazon.in/shop/semiconductorclub

66 | P a g e

while the tool does the RTL implementation. Verification of the RTL is an

important part of the process. The high-level synthesis tools handle the

micro-architecture and transform untimed or partially timed functional

code into fully timed RTL implementations, automatically creating cycle-

by-cycle detail for hardware implementation. The (RTL) implementations

are then used directly in a conventional logic synthesis flow to create a

gate-level implementation.

 Figure 34: HLS flow chart

The HLS design description is ‘high level’ compared to RTL in two

aspects: design abstraction, and specification language:

 I. High level of abstraction: HLS input is an untimed (or

partially timed) dataflow or computation specification of the design.

This is higher level than RTL because it does not describe a specific

cycle by cycle behavior and allows HLS tools the freedom to decide

what to do in each clock cycle.

 II. High level specification language: HLS input is specified in

languages like C, C++, System C, or even MATLAB, and allows use

of advanced language features like loops, arrays, structs, classes,

pointers, inheritance, overloading, template, polymorphism, etc.

This is higher level than (synthesizable subset of) RTL description

languages and allows concise, reusable, and readable design

descriptions.

The objective of HLS is to extract parallelism from the input description

and construct a micro architecture that is faster and cheaper than simply

executing the input description as a program on a microprocessor. The

67 | P a g e

micro architecture contains a pipelined data path and a cycle-by-cycle

description of how data is routed through this data path.

5.3.2. Vivado HLS flow :

1- we use C/C++ but with changes in the syntax as there are some functions

and libraries in C/C++ is not supported in HLS (can’t be accelerated or

have some design issues as dynamic access memory).

2- We build the project then after building it, Vivado generates RTL

scheme (VHDL/Verilog).

3-we use Vivado AXI to produce IP core.

4-finaly the project implementation is completed.

 Figure 35: flow design in Vivado HLS

We chose to use Vivado HLS before using SDSOC due to the presence of

resources and shorter build time.

68 | P a g e

5.3.3. Gray scale on Vivado HLS

We apply the Grayscale algorithm on HLS. We put an input image which

contains 3 channels (R, G, B) to the code and it converts the image to an

image with one channel (grayscale). The Vivado HLS tool outputs reports

which explain the performance of the

The reports

Figure 36: reports generated by Vivado

 Table 2: Results from Vivado

69 | P a g e

The output of the test bench

Figure 37: original image

Figure 38: image after grayscale in Vivado

70 | P a g e

5.3.4. Challenges we faced

One of the Challenges we faced in our project while using Vivado HLS is

making Egypt a blocked area by Xilinx so

the absence of mark function of Vivado Which allows you to choose

he ARM cortex of the SOC so we go to usefunctions to build on tsome

5.4. SDSOC (software defined System-On-Chip)

5.4.1. Overview

SDSOC is an environment offered by AMD Xilinx is an Eclipse-based

Integrated Development Environment (IDE) for implementing

heterogeneous embedded systems using the Zynq-7000 SoC and Zynq

UltraScale+ MPSoC platforms which support the design using HLS (high

level synthesis c/c++).

The SDSoC development environment provides a familiar embedded

C/C++/OpenCL application development experience including an easy to

use Eclipse IDE and a comprehensive design environment for

heterogeneous Zynq SoC and MPSoC deployment. Complete with the

industry's first C/C++/OpenCL full-system optimizing compiler, SDSoC

delivers system level profiling, automated software acceleration in

programmable logic, automated system connectivity generation, and

libraries to speed programming. It also enables end user and third party

platform developers to rapidly define, integrate, and verify system level

solutions and enable their end customers with a customized programming

environment.

5.4.2. SDSOC target

The acceleration is the target in this field nowadays for using these systems

in real time applications. The Graphics Processing Units is the solution but

Figure 39: Xilinx blocking mail

71 | P a g e

its high-power consumption prevents its utilization in daily-used

equipment moreover the Field Programmable Gate Array (FPGA) has low

power consumption and flexible architecture. We added a new

methodology to compromise the area requirements with the speed and

design time by using Xilinx SDSOC tool (including processor and FPGA

on the same board). Implementing design using HW/SW partitioning will

enhance time design based on high level language (C or C++) in Vivado

HLS (High Level Synthesis). It also fits for larger designs than using FPGA

only and faster in design time.

5.4.3. Advantages of SDSOC

The main advantage of using SDSOC is the ability to implement larger

designs & give less time for design, but the generated RTL is not optimized

so it will take more area, power, and may be delay too. To explore the

design space, first we choose each function for hardware acceleration and

all other functions for software to get the power, area, and delay for each

function separately. Then eliminate the other partitioning possibilities

based on the parameters of each function. This way guarantee that we run

the possible partitions only and get the best among them. And this is what

SDSOC usually does, it separates the hardware component from the

software ones.

5.4.4. SDSOC environment design flow

 As shown the SDSOC environment design flow

• the first step is to identify compute-intensive hot spots in the

application that can be migrated to programmable logic to achieve

higher performance

• isolate them into functions that you can compile for hardware.

C/C++ code compiled for programmable logic with the SDSoC

environment must conform to coding guidelines and must also

conform to Vivado High-Level Synthesis (HLS) guidelines.

• The remaining flow of SDSOC is selecting the functions for

hardware acceleration and running the code with choosing estimate

performance and generation of SD-Card image.

72 | P a g e

• We then take the SD-Card image to evaluation board chosen for

implementation.

• After placing and routing is done on board, the tool generates an

estimation report for speed up for using selected function for

hardware implementation.

• We do this flow several times until we get the best optimum

solution, which gives us the hardware functions with their

generated RTL code.

The input language for SDSOC is a C/C++ code written according to

high level synthesis (HLS) instructions approved by Vivado HLS tool

supported with SDx environment tools.

The support of CPU and FPGA together on the same board makes a lot of

combinations for implementing design which function will be executed

by CPU and which one will be implemented on FPGA with HDL code

generated to it.

 Figure 40: SDSoC flow chart

73 | P a g e

5.4.5. About the project

The design has been simulated on SDx 2018.3 environment using SDSoC,

Vivado, and Vivado HLS. Our methodology is running the whole system

by CPU only (SW solution) then takes each function to be implemented on

FPGA and the other functions SW to get each function specifications

(Hardware Resources, Latency, Power Estimations, Hardware accelerated

cycles) separately then start to combine between the functions that can be

fit on HW together and see the improvement in performance then finally

decide the best combination of implementation to be done.

In this project, we use ZYNQ-7000 FPGA of "Xilinx" company, in order

to show that it can use image processing algorithms at low cost.

"System of Chip - SoC" is defined on the development board. The lane

tracking algorithm has been developed as an image processing project, and

the hardware part has been implemented after this system has been broken

down into software and hardware. Lane keeping algorithm was written in

“C++” environment using “OpenCV” library and has 3 main functions. In

the first function "pre-processing" section, meaningful information was

tried to be extracted from the photo frame also some preprocessing is done

like grayscale conversion, image filtering and binarization, in the second

section, it was aimed to determine the lines belonging to the strip from this

information extracted in the "stripe finding" function, and in the last section,

the detected lines that would express the strip were painted and visualized

with the "line drawing" function.

 According to the time analysis, the first part, the preprocessing part, was

implemented in hardware. SDSoC and Vivado platforms were used to

implement the project on the ZYNQ-7000 development board.

When using high-level software (C++) on the SDSoC platform. Verilog, a

hardware description language, is used on the Vivado platform.

5.4.6. SDSOC Environment

The concept of a platform is integral to the SDSoC environment as it

defines the hardware, software, and meta-data components on which

SDSoC applications are built. Multiple base platforms are available within

the SDx IDE and can be used to create SDSoC applications without first

having to create a custom platform. The SDx IDE utilizes the sds++ system

74 | P a g e

compiler to convert C/C++ code into high-performance hardware

accelerators that attach to platform interfaces as determined by the platform

designer and by application code pragmas. Declarations within the

platform meta-data identify interface ports, clocks, interrupts, and reset

blocks for use by the system compiler when it attaches hardware

accelerators to the base platform.

The system compiler analyzes a program to determine the dataflow

between software and hardware functions and generates an application-

specific system-on-chip. The sds++ system compiler generates hardware

IP and software control code that implements data transfers and

synchronizes the hardware accelerators with application software.

Performance is achieved by pipelining communication and computation,

thereby producing hardware functions that can run with maximum

parallelism as illustrated in the following figure.

Figure 42: System on chip (SoC)

The sds++ system compiler invokes the Vivado® High-Level Synthesis

 Figure 41 projects can be implemented on SDSOC

75 | P a g e

(HLS) tool to transform software functions into a bitstream that defines and

configures the programmable logic (PL) portion of the SoC. In addition,

stub functions are generated so application software compiled and linked

using the standard GNU toolchain transparently uses the implemented

hardware functions. All necessary drivers and libraries are automatically

included in this system compilation process. The final output of system

compilation is the generated sd_card directory, which at minimum is

populated with a Zynq bootable BOOT.BIN file, the executable and

linkable format (ELF) file application code, and a README.txt boot

instructions file. The BOOT.BIN file contains any necessary bootloaders,

bitstreams, and application code to boot the generated system on a target

board. For systems that run Linux on the target board, the sd_card directory

also contains the Linux image file used during the boot process.

5.5. Implementation using SDSoC

5.5.1. Hardware resources utilization

After performing Debug build for design with choosing only one hardware

function and the other functions are executed by CPU, we get the detailed

reports for synthesis and implementation of this function to get hardware

utilizations (LUT, BRAMs, DSPs, and FFs).

5.5.2. Power estimations

The tool generates the estimated power (Watt) consumptions for the

hardware partitioned functions including on chip power consists of

dynamic power, programmable logic (PL), Processing system (PS), and

static power (PL and PS). These numbers based on the automatic generated

RTL from the tool. We get the numbers using Vivado power estimator for

the generated RTL Project.

5.5.3.Hardware accelerated cycles

Hardware acceleration is metric defined by SDSoC tool. Hardware

acceleration is the number of clock cycles improvement in execution of

system if the function is implemented as hardware function on the

programmable logic. the tool generates the hardware acceleration for the

generated platforms of the synthesized hardware as estimated by

debugging compilers of tool. The used performance estimation assumes

76 | P a g e

worst-case latency of hardware functions, it also assumes worst-case data

transfer size for arrays so it could be the hardware function latency and

data transfer size at run time is smaller than such assumptions).

5.5.4. Implementation combinations

There are several implementation combinations for the design as we said.

We will choose some of them depends on the results of area of each

functions to decide which functions will implement on HW and the others

on SW. reports show the utilization of hardware resources for different

implementations. the implemented combinations for HW show the

accelerated clock cycles that will improve speed of system. Furthermore,

the dynamic power is the dominant in on Chip power so the different

solutions have a small effect on PL power, as it is much smaller than PS

power. Hence, the PS power is the dominant term in dynamic power too.

These results are very useful guide to choose and eliminate the

combinations for implementation.

5.5.5. Comparison between RTL and SDSoC HW

implementation

Here is a simple comparison based on the previous results of synthesis

phase for both RTL and SDSOC. The optimized RTL has better results as

SDSOC generates un-optimized RTL code RTL takes a lot of LUTs but

with minimum use of BRAMs and FFs but SDSOC goes to use BRAMs

more than LUTs and DSPs. On the other hand, the SDSOC flow is giving

less time for design, more flexible for any change, the optimized RTL can

replace for the generated RTL from Tool, which will be better comparable

to optimized RTL regular flow. This is the main part of using SDSOC flow

for fast design time and fitting larger designs.

5.5.6. Sample of generated reports

Table 3: Sample of generated reports

77 | P a g e

 Figure 43: Reports generated by SDSOC

Design guidelines

The guidelines for implementation using SDSOC.

• Write the input C++ code with optimized techniques supported by

the SDSOC tool.

• Divide design into sub-functions considering the functions that will

target hardware will be written in a good way that suits HW

implementation.

• Using the useful pragmas that helps to decrease time and resources

• After getting the implementation of design try to replace RTL

generated code with another optimized one that will enhance

performance.

• Finally, one of possible work in this area is to using partial

dynamic reconfiguration (PDR).

5.6. SDSOC Build Process

The SDSOC build process uses a standard compilation and linking

process. Similar to g++, the sds++ system compiler invokes sub-

processes to accomplish compilation and linking.

As shown in the following figure, compilation is extended not only to

78 | P a g e

object code that runs on the CPU, but it also includes compilation and

linking of hardware functions into IP blocks using the Vivado High-Level

Synthesis (HLS) tool, and creating standard object files (.o) using the

target CPU toolchain. System linking consists of program analysis of

caller/callee relationships for all hardware functions, and the generation

of an application-specific hardware/software network to implement every

hardware function call. The sds++ system compiler invokes all necessary

tools, including Vivado HLS (function compiler), the Vivado Design

Suite to implement the generated hardware system, and the Arm compiler

and sds++ linker to create the application binaries that run on the CPU

invoking the accelerator (stubs) for each hardware function by outputting

a complete bootable system for an SD card.

 Figure 44: SDSoC flow

The compilation process includes the following tasks:

1. Analyzing the code and running a compilation for the main

application on the Arm core, as well as a separate compilation for

each of the hardware accelerators.

2. Compiling the application code through standard GNU Arm

compilation tools with an object (.o) file produced as final output.

3. Running the hardware accelerated functions through the HLS

tool to start the process of custom hardware creation with an object

(.o) file as output.

79 | P a g e

After compilation, the linking process includes the following

tasks:

1. Analyzing the data movement through the design and modifying

the hardware platform to accept the accelerators.

2. Implementing the hardware accelerators into the programmable

logic (PL) region using the Vivado Design Suite to run synthesis

and implementation, and generate the bitstream for the device.

3. Updating the software images with hardware access APIs to call

the hardware functions from the embedded processor application.

4. Producing an integrated SD card image that can boot the board

with the application in an Executable and Linkable Format (ELF)

file.

 The project creation

We use the “XfOpenCV” library. It is a library which is derived from the

“OpenCV” library and is an optimized library for hardware

implementation of many OpenCV functions for Xilinx FPGAs [30].

Working with Xilinx SDSoC platform, this library acts as an accelerator

in computer vision projects. The first version was released in June 2017,

and this project uses the third version - the current latest version -

released in December 2017.

Since SDSOC is an Eclipse IDE based development platform, there is a

similarity in project creation stages. When the program is run for the first

time, first the "workspace" file path where the projects will be saved is

created, then the main section welcomes the user. In this area, new

projects can be created, files containing new FPGA development cards

can be transferred, previous projects can be imported, and educational

documents about SDSoC can be accessed. A screenshot of this area is

given in Figure. FPGA development to be used in SDSoC projects to be

created.

After the card is selected, the operating system that the project will run on

is selected under the system configuration title (Linux, Standalone,

FreeRTOS). In this project, "Linux" was chosen as the system

80 | P a g e

configuration while using the ZC702 development board.

xfOpenCV library linking

 In the project created to link the XfOpencv library to the SDSoC

platform, set the "C/C++ build" setting and go to the "Directories" tab

under the "SDS ++ Compiler" heading and add the XfOpencv library to

the "Include Paths" path.

 OpenCV library linking

 In order for the OpenCV library to be used on the Zynq Board

Development Board the OpenCV library must be installed according to

the "AARCH32" architecture. After the installation in accordance with

the processor architecture on the FPGA card used, the project belongs to:

- OpenCV library compiled for the computer environment (Windows in

this project) used in the "Directories" tab under the "SDS ++ Compiler"

heading in the "C/C++ build" setting is added to the "Include Paths" path.

- In addition, OpenCV cores used in the project in the "Libraries" path in

the "SDS ++ Linker" tab under the "C/C++ build" setting; The OpenCV

library, which is installed for the appropriate target architecture

(AARCH32 in this project), is added to the "Library Search Path" path.

 Figure 45: SDSOC Platform

81 | P a g e

Figure 46: Linking openCV and xfopenCV library

Figure 47: Linking the OpenCV library

Figure 48: The Executable and Linkable Format (ELF) file.

82 | P a g e

5.7. Hardware and Software separation

In order to implement the lane detection system faster, a part of the

algorithm of the system is thought to be implemented in hardware. The

ZC702 development board of the ZYNQ-7000 series of Xilinx company,

which is suitable for this system, which will be separated as hardware and

software, has been selected. In the ARM Cortex-A9 processor available in

the software block ZC702; The hardware block will be implemented in the

logic cells section of the ZC702.

5.7.1. Time Analysis

5.7.2. Design Notes

Partition for the code

Problem: this error appeared while trying to mark any function to be

accelerated on FPGA.

Solution: change the Date&Time of the operating system to be before

2020(This is a bug in the tool).sample of the reports after running the

project.

Figure 50: reports 1 by SDSOC Figure 51: reports 2 by SDSOC

Table 4: Lane keeping system time analysis

 Figure 49: partition errors

83 | P a g e

OpenCV and xf-opencv libraries

Problem: sdx can’t find the libraries

 Solution: add the path of the libraries (folder of include and lib) as

shown below.

OpenCV libraries

Problem:

Solution: this error appeared as the version of the opencv doesn’t

suitablewith the target platform (you should use version so.3.1).

Problem:

Solution: remove -hls-target 1 flag from sdscc compiler as shown

Figure 55: OpenCV library solution

Figure 52: xfopencv libraries

Figure 53: OpenCV library error 1

Figure 54: OpenCV library error 2

84 | P a g e

partition for lane detection algorithm with opencv libraries.

Problem:

Solution: Install gcc-multilib package in Ubuntu.

5.8. The Lane Detection Algorithm

Here we use with xf opencv libraries on SDSoC , but after implementing

the code on the kit we get an error which need to use static libraries to

choose the files which need to implement, to do this task we need to use

petalinux environment.

Figure 58: opencv library error

Figure 56: sdx log after running

Figure 57: Sds compiler error

85 | P a g e

5.8.1. PetaLinux

PetaLinux is a tool used to create your personal system which is compatible

with hardware you work on it. It helps you create and deliver a custom

Linux distribution. They allow you to work easily with available software

which is independently available from the Xilinx GIT or open source

communities.

5.8.1.1. Yocto project

The Yocto Project (YP) is an open source collaboration project that helps

Xilinx provides based systems.-developers create custom Linux

countless meta layers that enable developers to build all the necessary

 builttaLinux Tools are Pe components for running Linux on Xilinx SoCs.

infrastructure.on top of the YP

Installing PetaLinux in your system

1: Step

All of the Xilinx tools require 32-bit libraries at some point In time to

compile. DocNav requires several 32-bit libraries and PetaLinux needs

32-bit architectures for cross compilation. Therefore the first step is to

add the 32-bit architecture to your Ubuntu system. Since there Is a

99.999% chance your computer has an Intel based processor, add I386

using the package management system, dpkg

~$ sudo dpkg --add-architecture i386

Step 2:

Then install all of the required package dependencies for the Xilinx tools

Some of these packages are:

• tofrodos

• iproute

• gawk

• gcc

• git-core

• make

• net-tools

86 | P a g e

• ncurses-dev

• libncurses5-dev

• tftpd*

• zlib1g-dev

• flex

• bison

• lib32z1

• lib32ncurses5

• lib32bz2-1.0

• ia32gcc1

• lib32stdc++6

• libselinux1

Step 3:

Then install the PetaLinux tool

Figure 59: command for installation

After writing this command the license of petalinux will appear to accept

it and start installation

Figure 60: license of PetaLinux

87 | P a g e

Step 4:

Change Ubuntu's shell from dash to bash as PetaLinux Is only compatible

with bash :

~$ sudo dpkg-reconfigure dash

The PetaLinux tools require you to use 'bash' as your shell rather than

'dash', which is likely your default shell if you're running Ubuntu

The next thing to take care of will be to source the tools for PetaLinux to

use within the terminal window. This includes the 'settings64.sh' and

'settings.sh' files in your Vivado and PetaLinux installation directories,

respectively. To avoid needing to type the source commands into the shell

every time, you can add a couple lines to the .bashrc script. To modify this

system wide, use a text editor to open your .bashrc file. For Ubuntu, this

will be bash.bashrc located in the /etc directory (see following command

and/or first image above).

Figure 61: add setting files to bash shell

Step 5: optional

To use PetaLinux, you will need a PetaLinux project directory to work in.

This can be done either by creating a totally new project or by using a

reference design provided in a board support package (BSP). Creating a

fresh project provides you with a basic template from which you can start

your development. Just change to a directory you would like to create your

project in and enter the following command.

88 | P a g e

Figure 62: create a normal project in PetaLinux

The '--type' parameter should remain 'project', the '--template' parameter

should be whatever supported architecture you are targeting (either zynq,

zynqMP for Ultra scale chips, or microblaze for soft processors

implemented in FPGA fabric), and the '--name' parameter can be whatever

you want to name your project. Do note that this simply provides a folder

structure for PetaLinux to use and requires you to provide pretty much

every part of the build, from the first stage boot loader to the file system,

and is not suggested for those new to Linux development. New players

should instead use a BSP!

Step 6:

Creating a new project from a BSP is the simplest way to get started with

PetaLinux, since it provides you with an already functioning and bootable

Linux image that you start playing with.

PetaLinux board support packages (BSPs) are reference designs on

supported boards for you to start working with and customizing your own

projects. In addition, these designs can be used as a basis for creating your

own projects on supported boards. PetaLinux BSPs are provided in the

form of installable BSP files, and include all necessary design and

configuration files, pre-built and tested hardware, and software images

ready for downloading on your board or for booting in the QEMU system

emulation environment.

Figure 63: Create a bsp project on PetaLinux

We should use the same version of PetaLinux to create this project and

the same version of Vivado.

89 | P a g e

Step 7:

This step is very straight forward from an end user's perspective, but will

require you to accept a bit of 'magic' in the background if you are not

intimately familiar with the process of compiling a Linux image from

scratch. Suffice it to say that by the end of the configure and build process

in PetaLinux, you will have a kernel, file system, first stage and second

stage boot loaders, and device tree compiled and ready to be deployed to

your hardware target. To run configuration on the BSP project you just

created, change directory into the directory that was made with the

'petalinux-create' command, and type in the following.

Figure 64: command to show configuration

When you enter this command the configuration window will appear

Figure 65: configuration window

After that we build the project and try an example to check if it is

installed correctly or not

90 | P a g e

Figure 66: steps on PetaLinux tool

There are some errors when we build a project:

problems:

1. firstly installation permission was denied.

solution: use sudo apt command.

Figure 67: Petalinux error 1

2. Installation failed.

Solution: use another version PetaLinux and install it in another location

on the operation system.

3. Build the project on PetaLinux (still under processing and i am

trying to solve it)

Solution: download the suite layer(gategarth) to be compatible.

91 | P a g e

4. Can`t read the file.cpp that is created and edit in the file.bb which

is created with the project

Solution: we should use an Editor to edit in the file so we use vim Editor

And to save vim file press Esc then :w and to exit from the editor press

Esc then :x

Figure 68: Errors solution

After build the project it will create boot file and image file, we take them

and put with the image that chosen on SD Card and put them in the board.

Figure 69: files generated after build the project

92 | P a g e

5.9. Zynq 7000 board

Figure 70: Block Diagram of ZYNQ7000

The Zynq®-7000 SoC family integrates the software programmability of

an ARM®-based processor with the hardware programmability of an

FPGA, enabling key analytics and hardware acceleration while integrating

CPU, DSP, ASSP, and mixed signal functionality on a single device.

Consisting of single-core Zynq-7000S and dual-core Zynq-7000 devices,

the Zynq-7000 family is the best price to performance-per-watt, fully

scalable SoC platform for your unique application requirements.

Naturally, as in any design project, the first stage is to define the desired

behaviors of the system, to create an appropriate specification from a set

of requirements. This is depicted as the starting point at the top of the

diagram, and it forms the basis of the system design that is subsequently

developed.

93 | P a g e

As mentioned earlier in this chapter, the Zynq architecture combines an

ARM processor (for software elements of the designed system) with FPGA

fabric (predominantly for hardware elements of the system, although

additional processors can also be implemented here too, if desired). A key

element of the system design stage, which comes next, is therefore to

partition the intended functionality appropriately between software and

hardware, and to define the interfaces between the two sections. Of course,

it is possible that this partitioning will subsequently be adjusted as the

designers iterate the system towards completion.

Having partitioned the system, software and hardware development can

then progress in parallel, to a large extent. In terms of hardware

development, the task is to identify the necessary functional blocks to

achieve the design, and to thereafter assemble them through some

combination of design reuse and new IP development, and make

appropriate connections between the blocks. Similarly, the software aspect

of the project can be realized through developing custom code or by

reusing pre-existing software. Verification of both software and hardware

will be required, and this forms an integral and important part of the

process.

Application Processing Unit

Basic Functionality

The application processing unit (APU), located within the PS, contains one

processor for single-core devices or two processors for dual-core devices.

These are Arm® Cortex™-A9 processors with NEON co-processors

connected in an MP configuration sharing a 512 KB L2 cache. Each

processor is a high-performance and low-power core that implements two

separate 32 KB L1 caches for instruction and data. The Cortex-A9

processor implements the Arm v7-A architecture with full virtual memory

support and can execute 32-bit Arm instructions, 16-bit and 32-bit Thumb

instructions, and 8-bit Java™ byte codes in the Jazelle state. The NEON™

co-processor media and signal processing architecture add instructions that

target audio, video, image and speech processing, and 3D graphics. These

advanced single instruction multiple data (SIMD) instructions are available

in both Arm and Thumb states

The Cortex-A9 processor(s) within the APU are organized in an MP

configuration with a snoop control unit (SCU) responsible for maintaining

94 | P a g e

L1 cache coherency between the two processors and the ACP interface

from the PL. To increase performance, there is a shared unified 512 KB

level-two (L2) cache for instruction and data. In parallel to the L2 cache,

there is a 256 KB on-chip memory (OCM) module that provides a low-

latency memory.

Central Processing Unit (CPU)

Each Cortex-A9 CPU can issue two instructions in one cycle and execute

them out of order. The CPU implements dynamic branch prediction and

with its variable length pipeline can deliver 2.5 DMIPs/MHz The Cortex-

A9 processor implements the Armv7-A architecture with full virtual

memory support and can execute 32-bit Arm instructions, 16-bit and 32-

bit Thumb instructions, and 8-bit Java™ byte codes in the Jazelle hardware

acceleration state.

Zynq evaluation board has more than one type, we use zc702

evaluation kit.

5.9.1. ZC702 Board

Overview

The ZC702 evaluation board for the XC7Z020 SoC provides a hardware

environment for developing and evaluating designs targeting the Zynq®

XC7Z020-1CLG484C device. The ZC702 board provides features

common to many embedded processing systems, including DDR3

component memory, a tri-mode Ethernet PHY, general purpose I/O, and

two UART interfaces.

ZC702 board Features:

• Zynq XC7Z020-1CLG484C device

• 1 GB DDR3 component memory (four 256 Mb x 8 devices)

• 128 Mb Quad SPI flash memory

• USB 2.0 ULPI (UTMI+ low pin interface) transceiver

• Secure Digital (SD) connector

• USB JTAG interface using a Digilent module

• Clock sources:

➢ Fixed 200 MHz LVDS oscillator (differential)

➢ I2C programmable LVDS oscillator (differential)

95 | P a g e

➢ Fixed 33.33 MHz LVCMOS oscillator (single-ended)

• Ethernet PHY RGMII interface with RJ-45 connector

• USB-to-UART bridge

• HDMI codec

• I2C bus

• I2C bus multiplexed to:

➢ Si570 user clock

➢ ADV7511 HDMI codec

➢ M24C08 EEPROM (1 kB)

➢ 1-To-16 TCA6416APWR port expander

➢ RTC-8564JE real time clock

➢ FMC1 LPC connector

➢ FMC2 LPC connector

➢ PMBUS data/clock

• Status LEDs:

➢ Ethernet status

➢ Power good

➢ FPGA INIT

➢ FPGA DONE

• User I/O:

➢ Two programmable logic (PL) user pushbuttons

➢ PL user DIP switch (2-pole)

➢ Eight PL user LEDs

➢ Two processing system (PS) pushbuttons shared with PS 2-

pole DIP switch

➢ Two PS user LEDs

➢ Dual row Pmod GPIO header

➢ Single row Pmod GPIO header

• SoC PS Reset Pushbuttons:

➢ SRST_B PS reset button

➢ POR_B PS reset button

• Two VITA 57.1 FMC LPC connectors

• Power on/off slide switch

• Power management with PMBus voltage and current

monitoring via TI power controllers

• Dual 12-bit 1 MSPS XADC analog-to-digital front end

• Configuration options:

96 | P a g e

➢ Quad SPI flash memory

➢ USB JTAG configuration port (Digilent module)

➢ Platform cable header JTAG configuration port

➢ 20-pin PL PJTAG header

➢ 20-pin PS JTAG header

Figure 71: Block Diagram of ZC702

Feature Description

Zynq-7000 XC7Z020 SoC: The ZC702 board is populated with the

Zynq-7000 XC7Z020-1CLG484C SoC. The XC7Z020 SoC consists of an

SoC-style integrated processing system (PS) and programmable logic

(PL) on a single die.

Figure 72: high level Block Diagram

97 | P a g e

The PS integrates two Arm® Cortex™-A9 MPCore™ application

processors, AMBA® interconnect, internal memories, external memory

interfaces, and peripherals including USB, Ethernet, SPI, SD/SDIO, I2C,

CAN, UART, and GPIO. The PS runs independently of the PL and boots

at power-up or reset

Device Configuration

Zynq-7000 XC7Z020 SoC uses a multi-stage boot process that supports

both a non-secure and a secure boot. The PS is the master of the boot and

configuration process. For a secure boot, the PL must be powered on to

enable the use of the security block located within the PL, which provides

256-bit AES and SHA decryption/authentication.

The ZC702 board supports these configuration options:

 PS Configuration: Quad SPI flash memory

 PS Configuration: Processor System Boot from SD Card (J64)

 PL Configuration: USB JTAG configuration port (Digilent

module)

 PL Configuration: Platform cable header J2 and flying lead header

J58 JTAG configuration ports

The JTAG configuration option is selected by setting SW16 as shown

in Table 1

Table 5: Switch SW16 configuration option setting

5.9.2. USB 2.0 ULPI Transceiver

Introduction

The USB controller is capable of fulfilling a wide range of applications for

USB 2.0 implementations as a host, a device, or On-the-Go. Two identical

98 | P a g e

controllers are in the Zynq-7000 device. Each controller is configured and

controlled independently. The USB controller I/O uses the ULPI protocol

to connect external ULPI PHY via the MIO pins. The ULPI interface

provides an 8-bit parallel SDR data path from the controller’s internal

UTMI-like bus to the PHY. The ULPI interface minimizes device pin count

and is controlled by a 60 MHz clock output from the PHY.

USB is a cable bus that supports data exchange between a host device and

a wide range of computer peripherals. The attached peripherals share USB

bandwidth through a host-scheduled, token-based protocol. The bus allows

peripherals to be attached, configured, used, and detached while the host

and other peripherals remain operational.

Figure 73: USB 2.0 ULPI Transceiver

The ZC702 board uses a Standard Microsystems Corporation USB3320

USB 2.0 ULPI Transceiver at U9 to support a USB connection to the host

computer. A USB cable is supplied in the ZC702 Evaluation Kit (Standard-

A connector to host computer, Mini-B connector to ZC702 board

connector J1). The USB3320 is a high-speed USB 2.0 PHY supporting the

UTMI+ low pin interface (ULPI) interface standard. The ULPI standard

defines the interface between the USB controller IP and the PHY device

which drives the physical USB bus. Use of the ULPI standard reduces the

interface pin count between the USB controller IP and the PHY device.

99 | P a g e

The interface to the USB3320 transceiver is implemented through the IP in

the XC7Z020 SoC Processor System.

The controller interfaces to the PS system memory on one side and an

external ULPI PHY device on the USB side. A block diagram is shown in

Figure

Figure 74: USB Controller Block Diagram

Difference between USB and ULPI:

USB defines the external interface (physical, electrical, various layers of

signaling).

The PHY (physical interface circuitry) that presents USB interfaces also

has to interface to the host computer. This is done using a UTMI interface.

ULPI is a lower pin-count version of that internal interface. This is

beneficial for smaller and lower-cost devices.

Announced on March 1, 2004, the ULPI specification provides a low-pin,

low-cost, small form-factor transceiver interface for any USB application.

5.9.3. SD Card Interface

Secure Digital, officially abbreviated as SD, is a proprietary non-

volatile memory card format developed by the SD Card

Association (SDA) for use in portable devices.

The standard was introduced in August 1999 by joint efforts

between SanDisk, Panasonic (Matsushita Electric) and Toshiba as an

improvement over Multimedia Cards (MMC), and has become the

http://en.wikipedia.org/wiki/PHY_(chip)
http://en.wikipedia.org/wiki/Proprietary_format
http://en.wikipedia.org/wiki/Non-volatile_memory
http://en.wikipedia.org/wiki/Non-volatile_memory
http://en.wikipedia.org/wiki/Memory_card
http://en.wikipedia.org/wiki/SD_Card_Association
http://en.wikipedia.org/wiki/SD_Card_Association
http://en.wikipedia.org/wiki/SanDisk
http://en.wikipedia.org/wiki/Panasonic
http://en.wikipedia.org/wiki/Toshiba
http://en.wikipedia.org/wiki/MultiMediaCard

100 | P a g e

industry standard. The three companies formed SD-3C, LLC, a company

that licenses and enforces intellectual property rights associated with SD

memory cards and SD host and ancillary products.

The companies also formed the SD Association (SDA), a non-profit

organization, in January 2000 to promote and create SD Card standards.

SDA today has about 1,000 member companies. The SDA uses

several trademarked logos owned and licensed by SD-3C to enforce

compliance with its specifications and assure users of compatibility.

 Figure 75: SDI/O

The ZC702 board includes a secure digital input/output (SDIO) interface

to provide user-logic access to general purpose nonvolatile SDIO

memory cards and peripherals.

The SDIO signals are connected to XC7Z020 SoC PS bank 501 which has

its VCCMIO set to 1.8V. A TXB02612 SDIO port expander with voltage-

level translation (U61) is used between the XC7Z020 SoC and the SD card

connector (J64).

The Figure below shows the connections of the SD card interface on the

ZC702 board.

Figure 76: SD card interface

http://en.wikipedia.org/wiki/Trademark
http://en.wikipedia.org/wiki/Logo

101 | P a g e

SD card

Problem: the SD port of laptop didn’t sense SD card.

 Figure 77: SD port
Solution: after search we find that there is another way to connect sd card

by using usb reader to connect it to usb Port instead of connection

directly by sd port (it is recommended to connect sd card directly by sd

card so if you faced this problem you can try to use another sd card or

another laptop to ensure that the problem doesn’t in the sd port)

Configuring the Board for SD Card Boot

To boot the board from an SD card, you need to physically change either

a switch or jumper settings on the board. This section describes settings

for a ZC702 board

Problem: when we try to execute the application at the Linux prompt

through typing this path: / mnt/ name_of_project.elf. We didn’t receive

any response.

 Solution: after search we find that we should boot up the board using sd

mode. Boot Modes: The following table can be used to determine mode

switch configuration (sd mode).

Table 6: Configuring the Board for SD Card Boot

• Identify whether you have to change a jumper or a switch.

102 | P a g e

For Revision D and newer boards:

DIP switch SW16 (light blue/grey color) positions 3 and 4 should be set

to 1.

Figure 78: SW 16 in ZC702

Another problem: after determining the sw16 we typed the same path

and this one there was response but can’t define the command

Solution: you should activate sw1 (press SW1 (POR_B))before type the

path to reinitialize board configuration

Figure 79: SW1 in ZC702

5.9.4. USB-to-UART Bridge

The ZC702 board contains a Silicon Labs CP2103GM USB-to-UART

bridge device (U36) which allows a connection to a host computer with a

USB port. The USB cable is supplied in the ZC702 Evaluation Kit

(Standard-A end to host computer, Type Mini-B end to ZC702 board

103 | P a g e

connector J17). The CP2103GM is powered by the USB 5V provided by

the host PC when the USB cable is plugged into the USB port on the

ZC702 board.

Silicon Labs provides royalty-free Virtual COM Port (VCP) drivers for

the host computer. These drivers permit the CP2103GM USB-to-UART

bridge to appear as a COM port to communications application software

(for example, TeraTerm or HyperTerm) that runs on the host computer.

Connecting the Board to a Serial Terminal

To connect a ZC702 board to a serial terminal you need a mini USB cable

to connect the UART port on the board to the computer where you run a

serial terminal. There is a serial terminal available as part of the SDSoC

IDE (tab labeled Terminal 1 at bottom of screen).

1. Connect the mini-USB cable to the UART port.

Figure 80: UART PORT in ZC702

2. Set up the serial terminal (for example, puTTY, minicom, or the

SDSoC environment terminal):

• Set the baud rate to 115200 baud.

• In Windows, set the serial port to COMn, where n is a number and can

be found as follows:

➢ Select Start > Computer then right-click Properties.

➢ Select Device Manager and open Ports (COM & LPT).

104 | P a g e

➢ Use the COM port labeled Silicon Labs CP210x USB to UART

Bridge.
 If the right COM port does not appear on the Terminal Settings

window, make sure the board is connected to the USB port and

turned on. Restart the SDSoC environment by selecting File >

Restart and the COM port should appear on the list.

Problem: the serial port wasn’t defined (we use serial communication).

Solution: download and setup drivers from siliconlabs to define the port.

(CP210x USB to UART Bridge VCP Drivers - Silicon Labs).

Click the icon to open the settings.

Figure 81: serial terminal setting

Figure 82: terminal setting in SDx

105 | P a g e

3. Power on the board

The board needs to be powered on at least once with the mini USB cable

connected for Windows to recognize the UART and install the driver.

You might need to power cycle the board.

Executing a Pre-built Application

To run the pre-built application on the ZC702 board, follow these

steps:

1) Copy the contents of the sd-card-prebuilt folder to the root

folder of an SD card

2) Insert the card into the SD card slot of the ZC702 board.

3) Confirm jumpers or switches are set to boot from the SD card as

shown above

4) Set up a serial terminal.

5) With the SD card inserted and cables connected, power up the

board and start the serial terminal session.

You should see the Done LED turn green and Linux booting

6) At the prompt, type cd /mnt

This takes you to the SD card folder containing the application

ELF file

7) To run the application ELF, type: ./mmult.elf

8) The application displays information about the run and the

results of the matrix multiplication.

You see output similar to that shown below

Figure 83: results after marking

106 | P a g e

 Chapter 6

Results

107 | P a g e

6.1 Raspberry pi

The output of the Raspberry pi: In case the detection of straight lane lines

Here we implement the first algorithm on Raspberry pi which is detection

of straight lane lines without the detection of the curved ones.

Here we record the percentage of usage of the algorithm while processing

on raspberry pi processor. We also record the RAM utilization in order to

prove that the processing on digital platforms results in much better

performance.

Figure 84: output 1

Figure 85: performance of raspberry pi in case 1

108 | P a g e

Figure 86: performance of raspberry pi in case 1

The output in case the detection of straight and curved lane

lines

Here we implement the second algorithm on Raspberry pi which is

detection of straight and curved lane lines.

Here we record the percentage of usage of the algorithm while processing

on raspberry pi processor. We also record the RAM utilization in order to

prove that the processing on digital platforms results in much better

performance.

109 | P a g e

Figure 87: output 2

 Figure 88: performance of curvature

110 | P a g e

 Figure 89: performance 2 of curvature
Here is The output performance in case the detection of straight and

curved lines on our pc intel core i7

Figure 90: performance on pc

111 | P a g e

 Figure 91: performance 2 on pc

112 | P a g e

6.2 Vivado HLS

Here is the output of the gray code of the Vivado HLS

Figure 92: Reports of grayscale code on Vivado

113 | P a g e

6.3 SDSOC

 Table 7: xf::Sobel resource usage

 Table 8: xf::absdiff resource usage

 Table 9: xf::Threshold resource usage

114 | P a g e

Table 10: xf::bitwise or resource usage

 Table : 11: Xf::wrap Transform resource usage

 Table 12: SDSoC ZC702 processor + hardware time analysis.

115 | P a g e

 Figure 93: preprocessing stages

 Figure 94: perspective transform

116 | P a g e

Figure 95: space usage in the system

Figure 96: power consumption result in the system

 Figure96:Time analysis of the SW

117 | P a g e

Chapter 7

Conclusion and

Future work

118 | P a g e

Conclusion
As discussed in the previous chapters we compress the years of the design

in few months and overcome the complexity of the design using Verilog

by using SDSOC tool and SOC. We use computer vision techniques in

order to detect the street lane lines to try decreasing car accidents. We

focused on determining the best accuracy in our project. This is the reason

why we use software/hardware co-design. We save power and number of

cycles which will save more lives due to the faster decisions and save

power of millions of cars daily. We also find that the performance of the

normal processors has lower efficiency than using digital design.

Future work:

We choose using the xfOpenCV library to decrease the time but it spends

more time to solve its problems with SDSOC so, the future work must be

try to implement code without using any library and get the results or using

Xilinx new tool vitis which support AI, cloud computing and all c++ &

python libraries.

We also aim to use deep learning techniques to try to increase the accuracy

and robustness and also to be able to detect any lane line in any other street.

119 | P a g e

Chapter 8

References

120 | P a g e

[1] Hassan Mostafa, Implementation of deep neural networks on FPGA-

CPU platform using Xilinx SDSOC ,2020

[2] Hassan Mostafa, Design and Implementation of Authenticated

Encryption Co-Processors for Satellite HardwareSecurity ,2020

[3] Xilinx, SDSOC user guide,2018

[4] Xilinx, Vivado Design Suite Tutorial,2014

[5] Xilinx, ZC702 Evaluation Board for the Zynq-7000 XC7Z020 SoC

User Guide, 2018

[6] Niall O’ Mahony, Sean Campbell, Anderson Carvalho, Suman

Harapanahalli, Gustavo Velasco Hernandez, Lenka Krpalkova, Daniel

Riordan and Joseph Walsh. " Deep Learning vs. Traditional Computer

Vision",Ireland

[7] Yang Xing, Chen Lv, Member, IEEE, Long Chen, Huaji Wang, Hong

Wang, Dongpu Cao, Member, IEEE,Efstathios Velenis, Fei-Yue Wang,

Fellow, IEEE, Advances in Vision-Based Lane Detection.

[8] Xilinx. ug1233-xilinx-opencv-user-guide,2019

[9] Xilinx, ug1085-zynq-ultrascale-trm,2019

[10] Xilinx, ug902-vivado-high-level-synthesis,2017

[11] Xilinx, ug1028-sdsoc-intro-tutorial 2016

[12] Adam Ziębiński, Automotive Production Engineering

UnifiedPerspective based on Data Mining Methods and Virtual Factory

Model. 15 april 2019

[13] xilinx, ug585-Zynq-7000-TRM,2021

[14] xilinx, ug821-zynq-7000-swdev.2015

[15] xilinx. ug850-zc702-eval-bd.2018

[16] xilinx. ug1028-sdsoc-getting-started.2018

[17] Xilinx,Zynq-7000 SoC Technical Reference Manual,2021

[18] Xilinx, Zynq-7000 All Programmable SoC Software Developers

Guide,2015

[19] Hardware Acceleration of Computer Vision Application

[20] Xilinx, Zynq-7000 All Programmable SoC: Concepts, Tools, and

121 | P a g e

Techniques (CTT),2012

[21] Xilinx, ug1027-intro-to-sdsoc, 2018

[22] ug1144-petalinux-tools-reference-guide, 2022

[23] Xilinx, ug1282-sdsoc-debugging-guide, 2018

[24] Xilinx, ug1235-sdsoc-optimization-guide, 2018

[25] Basic HLS Tutorial, 2018

[26] Qian Xu, Srenivas Varadarajan IEEE, A Distributed Canny Edge

Detector: Algorithm and FPGA Implementation, 2014

[27] Xu Y.Shan X.Chen B.Y.Chi C.Lu Z.F.Wang Y.Q. 1College of

Mechatronics and Control Engineering, Shenzhen University, Shenzhen,

518060, China, A Lane Detection Method Combined Fuzzy Control with

RANSAC Algorithm,2015

[28] Erke Shang & Xiangjing An, A real-time lane departure warning

system based on FPGA,2013

[29] Adaptive Lane Keeping Assistance System design based on driver’s

behavior

Algorithms, Integration, Assessment, andPerspectives on ACP-Based

Parallel Vision,2018

[30] Jyun-Guo Wang a, Cheng-Jian Lin b,*, Shyi-Ming Chen a,

Applying fuzzy method to vision-based lane detection

and departure warning system, 2010.

[31] Wang Ze, Weiqiang Ren and Qiang Qiu, "LaneNet: Real-Time Lane

Detection Networks for Autonomous Driving,"ArXiv, abs/1807.01726

(2018).

[32] Keerti Chand Bhupathi and Hasan Ferdowsi," Northern lllinois USA",

" An Augmented Sliding Window Technique to Improve Detection of Curved

Lanes in Autonomous Vehicles", November 2020.

[33] Hardware Acceleration for Machine Learning

[34] HG Zhu, Beijing." An Efficient Lane Line Detection Method Based

on Computer Vision",China, 2021.

[35] Ahmed Mahmoud, Loay Ehab, Mohamed Reda, Mostafa Abdelaleem,

Hossam Abd El Munim, Maged Ghoneima , M. Saeed Darweesh and

Hassan Mostafa," Real-Time Lane Detection-Based Line Segment

Detection", 2018.

122 | P a g e

[36] Qian Xu, Srenivas Varadarajan, Chaitali Chakrabarti, Fellow, IEEE,

and Lina J. Karam, Fellow, IEEE,"A Distributed Canny Edge Detector:

Algorithm and FPGA Implementation", JULY 2014.

[37] Wei Wang, Hui Lin and Junshu Wang3,4 ,CNN based lane detection

with instance segmentation in edge-cloud computing.

[38] Muthukrishnan.R1and M.Radha2," Edge detection techniques for

image segmentation", Coimbatore, Dec 2011.

[39] Xu Y.Shan X.Chen B.Y.Chi C.Lu Z.F.Wang Y.Q.1," A Lane

Detection Method Combined Fuzzy Control with RANSAC Algorithm",

China.

[40] Ammu M Kumar and Philomina Simon," Review of Lane Detection

and tracking algorithms in advanced assistance driving system", August

2015.

