

Prepared by

Ahmed Mahmoud Huseiny Atya

Hassan Ahmed Hassan El-Sman

Khaled Khalifa Abd El-Hay

Islam Nasser Mahmoud

Abdelnaeem Abdelbaset Abdelnaeem

Ahmed Alaa El-deen Fathy Mahmoud

Supervised by

Dr. Hassan Mostafa

Dr. Hassan Aboushady

A Graduation Project Thesis Submitted to
The Faculty of Engineering at Cairo University. In Partial Fulfillment of

The Requirements for The
Degree of

Bachelor of Science
In

Electronics and Communications Engineering
Faculty of Engineering, Cairo University

Giza, Egypt
July 2023

Hardware Accelerator for Deep Learning Inference

Faculty of Engineering Cairo University

hmostafa@staff.cu.edu.eg
Highlight

hmostafa@staff.cu.edu.eg
Highlight

hmostafa@staff.cu.edu.eg
Highlight

hmostafa@staff.cu.edu.eg
Highlight

hmostafa@staff.cu.edu.eg
Highlight

hmostafa@staff.cu.edu.eg
Highlight

Acknowledgments
We would like to express our heartfelt gratitude to Dr. Hassan Mostafa and Dr. Hassan Aboushady for their

invaluable guidance and support throughout the journey of our graduation project. Their unwavering commitment
to excellence, depth of knowledge, and unwavering dedication have been instrumental in shaping the success of
our project.

Dr. Hassan Mostafa, your mentorship and expertise have been pivotal in shaping our research methodology
and ensuring the accuracy and precision of our findings. Your guidance and insightful feedback have continually
challenged us to think critically and strive for excellence. We are truly grateful for your unwavering support and
belief in our capabilities.

Dr. Hassan Aboushady, we are immensely grateful for your constant encouragement and motivation. Your
vast knowledge and passion for the subject matter have served as an inspiration to us. Your ability to simplify
complex concepts and provide us with a clear direction has been invaluable to the development of our project.

Lastly, we would like to express our heartfelt appreciation to our families and friends for their unconditional
love, understanding, and encouragement throughout this challenging yet rewarding journey. Their unwavering
support has been a constant source of strength and motivation.

To everyone who has contributed to our graduation project, directly or indirectly, we extend our sincerest
thanks. Your support and belief in our abilities have played a significant role in shaping the success of this project.

Abstract
The increasing demand for high-performance deep-learning models has led to the development of

specialized hardware accelerators. Among these accelerators, Gemmini stands out as a configurable and efficient
solution for deploying deep learning models. This graduation project aims to explore the process of configuring
and implementing the Gemmini accelerator for the deployment of deep learning models.

The project begins with an in-depth study of Gemmini's architecture, focusing on its design principles and
key components. This understanding forms the basis for configuring the accelerator to support various types of
deep learning models. By adapting the architecture to accommodate specific model requirements, the Gemmini
accelerator can maximize performance and efficiency.

This graduation project focuses on estimating the area and power results of the Gemmini accelerator using
a digital backend synthesis, Formal Verification and Place-and-Route (PNR) flow. The flow involves logic
synthesis, technology mapping, placement, routing, physical verification, and area and power estimation. Through
this flow, designers can evaluate the efficiency and scalability of the accelerator, enabling informed decisions
during the deployment of the Gemmini accelerator in deep learning model implementations. The project aims to
provide valuable insights into the area and power characteristics of the Gemmini accelerator, facilitating its
integration into various hardware setups for deep learning applications.

iv

Table of Contents
Acknowledgments... 2

Abstract ... 3

1. Introduction ... 1

1.1 Cognitive radio networks ... 1

1.2 Modulation classification ... 3

1.3 Wireless signal model .. 3

1.4 Fading ... 5

1.4.1 large-scale fading .. 5

1.4.2 Small-scale fading .. 6

1.5 Data acquisition .. 8

1.6 Deep learning ... 8

1.7 Deep learning acceleration ... 11

2 Gemmini and Chipyard Framework .. 15

2.1 Why Gemmini: The Choice Among Other Tools: ... 15

2.2 Chipyard Ecosystem:.. 16

2.2.1 Chisel: ... 16

2.2.2 FIRRTL: ... 16

2.2.3 RISC-V: .. 17

2.2.4 Rocket core and BOOM core: .. 17

2.2.5 RoCC (Rocket Chip Coprocessor) Accelerator generators: ... 17

2.2.6 FireSim: .. 18

2.2.7 HAMMER: ... 18

3 Methodology and Design Flow (Frontend): .. 19

3.1 Starting with DL Model: .. 19

3.2 Gemmini accelerator Design Flow for designing accelerators: ... 20

3.3 Custom SoC configuration for Different RTL generators: .. 20

3.4 RTL Build Process: .. 21

3.5 Software RTL Simulations: .. 22

3.5.1 Low-Level tests: ... 23

3.5.2 Gemmini Flow Automation Script: .. 23

3.5.3 High-level test: ... 24

4 Gemmini Framework ... 26

4.1 Background .. 26

4.1.1 Converting Convolution to General Matrix Multiplication (GEMM).. 26

v

4.1.2 Gemmini framework ... 28

4.2 Gemmini architecture ... 28

4.2.1 Introduction .. 28

4.2.2 RoCC interface ... 29

4.2.3 LoopConv and LoopMatMul modules ... 30

4.2.4 LoadController and StoreController ... 30

4.2.5 ExecuteController and image to column (im2col) ... 31

4.2.6 ScratchPad .. 33

4.3 Configurations .. 34

4.3.1 Introduction .. 34

4.3.2 Configurable parameters... 34

4.3.3 Implemented configurations ... 34

5 Design flow .. 36

5.1 Synthesis flow using design compiler: ... 37

5.1.1 Develop HDL files.. 37

5.1.2 Specify libraries (PDKS) .. 38

5.1.3 Read Design .. 39

5.1.4 Define design environment ... 40

5.4.5 Set design constrains .. 41

5.4.6 Compile strategy ... 43

5.4.7 Synthesize and optimize the design .. 43

5.4.8 Reports and netlist .. 44

5.2 Results of the synthesis step .. 45

5.2.1 Timing -setup .. 45

5.2.2 Timing -hold ... 46

5.2.3 Area .. 47

6 Formal Verification .. 48

6.1 Formal Verification Components ... 49

6.1.1 Logic Cones .. 49

6.1.2 Compare Points... 50

6.1.3 Containers ... 51

6.2 Formality Flow ... 52

6.2.1 Start Formality .. 53

6.2.2 Load Guidance .. 53

6.2.3 Load Reference and Implementation Designs .. 53

vi

6.2.4 Perform Setup ... 54

6.2.5 Matching Compare Points .. 54

6.2.6 Performing Verification .. 56

6.2.7 Reporting and Interpreting Results ... 56

6.3 Result of the Formal Verification... 57

7 CHAPTER FIVE: PLACE AND ROUTE ... 58

7.1 Introduction to PnR .. 58

7.2 PnR Flow .. 59

7.3 Detailed PnR Flow for Queue_56 .. 60

7.3.1 Design Import ... 60

7.3.2 Floor Planning .. 61

7.3.3 Power Planning ... 62

7.3.4 Placement.. 62

7.3.5 Timing analysis and optimization preCTS ... 63

7.3.6 Clock Tree Synthesis (CTS) ... 64

7.3.7 Detailed Routing ... 64

7.3.8 Verification ... 65

7.3.9 Filler Insertion .. 66

7.3.10 Summary ... 67

7.4 Results .. 67

7.4.1 Area Results .. 67

7.4.2 Area comparison ... 68

7.4.3 Power Results ... 68

8 Conclusion ... 70

9 Future work .. 71

References ... 73

vii

List of Figures
Figure 1: Spectrum management framework [2] .. 1
Figure 2: Transmitter diagram .. 3
Figure 3: Receiver diagram ... 4
Figure 4: transmission gain with respect to logarithm of the distance. .. 5
Figure 5: Multipath propagation illustration. [4] .. 6
Figure 6: Response of non-stationary channel. [4] ... 7
Figure 7: Neural network example. .. 9
Figure 8: Perceptron. ... 9
Figure 9: Common activation functions. .. 10
Figure 10: a fully connected layer before and after pruning. .. 10
Figure 11: convolution example. .. 11
Figure 12: CNN example .. 11
Figure 13: max pooling example .. 12
Figure 14: Processing engine [6] .. 12
Figure 15: time sharing in deep learning acceleration. [6] ... 13
Figure 16: weight stationary. [6] .. 13
Figure 17: output stationary. [6] ... 14
Figure 18 Chipyard Ecosystem ... 16
Figure 19 Process of converting Chisel to Verilog [8] ... 17
Figure 20 Rocket SoC for accelerators ... 18
Figure 21 Approaches of running DL models. ... 19
Figure 22 Gemmini Accelerator Different design flows. ... 20
Figure 23 Snapshots of chisel configuration files ... 21
Figure 24 Snapshot of output generated files from Gemmini... 22
Figure 25 Gemmini different levels of visibility. ... 22
Figure 26 Output of the final configuration Low level tests ... 24
Figure 27 (a) Direct convolution. (b) im2col-based GEMM operation (C)Systolic array operation 26
Figure 28 MAC architecture ... 27
Figure 29 Full SoC architecture .. 28
Figure 30 Gemmini accelerator architecture ... 29
Figure 31 RoCC interface signals ... 29
Figure 32 Command unrolling modules ... 30
Figure 33 DMA engine ... 31
Figure 34 SRAM controllers (a) im2col module (b)ExecuteController ... 31
Figure 35 MeshWithDelays module ... 32
Figure 36 MeshWithDelays module ... 32
Figure 37 Scratchpad module ... 33
Figure 38 (a) ScratchpadBanks (b) AccumulatorMem ... 33
Figure 39 Overview of how Design Compiler fits into the design flow ... 36
Figure 40 (computer-aided design) CAD tools ... 37
Figure 41 the Synthesis flow using DC tool ... 38
Figure 42 Design compiler take VHDL and Verilog files only. ... 38
Figure 43 TSMC PDK and its PVT flavours .. 38
Figure 44 Structure of design .. 39
Figure 45 Design environment to estimate the reality .. 40

viii

Figure 46 setting the design environment components... 40
Figure 47 Different processes in the different operating conditions ... 41
Figure 48 Max fanout to have good STA estimation. ... 41
Figure 49 : constrain the blocks of design. ... 42
Figure 50 Input to output timing path from Design compiler ... 42
Figure 51 Max delay to solve the problem. .. 42
Figure 52 Hierarchy of design .. 43
Figure 53: problem of Top-down strategy .. 43
Figure 54 the output files from the synthesis step .. 44
Figure 55 parameters under concern ... 45
Figure 56 The Logic Cone concept ... 49
Figure 57 Compare points of the cones of logic ... 50
Figure 58 Containers in a Hierarchical Design ... 51
Figure 59 Containers can hold design and technology libraries ... 52
Figure 60 the flow of The formality tool .. 52
Figure 61 Formality Read-Design Process Flow .. 54
Figure 62 Matches Corresponding Points between Designs... 55
Figure 63 compare points is matched by their name between Designs .. 55
Figure 64 Verifies logical equivalence for each logic cone between Designs ... 56
Figure 65 PnR Flow .. 59
Figure 66 Detailed PnR flow .. 60
Figure 67 Design modules .. 60
Figure 68 Final Floor Plan .. 61
Figure 69 Power Planning (stripes)... 62
Figure 70 Power Planning (Rings) .. 62
Figure 71 Trial Routing Results .. 62
Figure 72 Chip after Placement and Trial Routing ... 63
Figure 73 Timing and DRV's preCTS .. 63
Figure 74 Timing and DRV's after optimization .. 64
Figure 75 Detailed Routing Results .. 65
Figure 76 Chip after Detailed Routing.. 65
Figure 77 Connectivity Report .. 66
Figure 78 Geometry Report .. 66
Figure 79 Density after Filler insertion ... 66
Figure 80 Chip after Filler insertion ... 66
Figure 81 Area Distribution .. 68
Figure 82 Power Distribution.. 69
Figure 83 an overview of the top-module ... 71
Figure 84the top-module layout before merging .. 72
Figure 85 the top-module layout after merging .. 72

ix

List of Tables
Table 1comparison between Gemmini and other DNN accelerator generators ... 15
Table 2 the outcomes of running inference on three images using our configuration for ResNet50 25
Table 3 Setup timing result from Synthesis step .. 45
Table 4 Hold timing result from Synthesis step.. 46
Table 5 Table 4 Area result from Synthesis step .. 47
Table 6 1the result of the formal verification step .. 57
Table 7 Area Results ... 67
Table 8 Area Results for 22 nm FinFet technology [11] ... 68
Table 9 Power Results .. 69

x

List of Abbreviations

"
". JSON"

(JavaScript Object Notation) 21

(
(Design for Test)

DFT 71

A
additive white Gaussian noise

(AWGN) 4
artificial neural networks

(ANN) 9
Automatic modulation classification

(AMC) 3

C
central processing unit

(CPU) 15
Cognitive radio networks

(CRN)
cognitive radio users

(CR) 1
convolution neural network

(CNN) 11

D
Deep Learning Model

(DL) 19
Deep neural network

(DNN) 15
Direct memory access

(DMA) 30
Dynamic random access memory

(DRAM) 13

F
feature map

(fmap) 10
feature-based

(FB) 3
Field Programmable Gate Arrays

(FPGAs) 18
finite impulse response

(FIR) 4
Flexible Intermediate Representation for RTL

(FIRRTL) 16

xi

G
General matrix multiplication

(GEMM) 23
Graphics processing unit

(GPU) 19

H
HAMMER

(High-level Abstraction for Modularity, Extensibility, and Reusability) 18
Hardware

(HW) 17
hardware description language

(HDL) 16

I
instruction set architecture

(ISA) 17
integrated circuits

(ICs) 18
intellectual property core

(IP) 15

L
likelihood-based

(LB) 3
local oscillator

(LO) 4

M
multiple regression

(MR) 24
Multiply And Accumulate

(MAC) 27

O
Open Neural Network Exchange

(ONNX) 23
Output Stationary

(OS) 27

P
Place-and-Route

PNR See
primary users

(PU) 1
processing element

(PE) 13

R
received signal strength

(RSS) 2

xii

rectified linear unit
(ReLU) 9

Register transfer level
(RTL) 17

RoCC
(Rocket Custom Coprocessor) 17

S
Signal-to-noise ratio

(SNR) 2
Static random-access memory

(SRAM) 31
systems-on-chip

(SoC) 16
Systolic Array

(SA) 27

T
Tensor Processing Unit

(TPU) 27
The Berkeley Out-of-Order Machine

(BOOM) 17
the radio frequency

(RF) 5

W
Weight Stationary

(WS) 27

pg. 1

1. Introduction

1.1 Cognitive radio networks
With the enormous increasing demand in communication systems and the spectrum is a very scarce

resource, new methodologies of communication are emerging to take advantage of the whole spectrum. The
spectrum is not used efficiently as it’s very congested in some parts while other parts are not used efficiently, the
unlicensed bands in the spectrum which is the bands that could be used without a license like bands used by the
Bluetooth or WIFI interfaces could be used for other types of communications like mobile communications to
make use of these parts of the spectrum which are not congested like the licensed bands. [1]

The problem with that paradigm is that it requires the communication network to be intelligent and
cognitive, to sense the spectral environment around it and find the spectral opportunities available. The network
should also be able to change its operating parameters to dynamically make use of its spectral environment for an
efficient spectrum utilization. [1]

Cognitive radio networks or CRN for short are networks that are capable of sensing and changing their
operating parameters to make use from the spectral environment around them. As seen in Figure 1 To sense it’s
environment, information about the environment is gathered from devices of the primary users (PU) and cognitive
radio users (CR) and other IoT devices and is sent to a near base stations and then these data are sent for processing
to datacenters using internet, after processing the data from all network users the datacenters send back the
decisions to the base stations. [2]

Figure 1: Spectrum management framework [2]

pg. 2

Cognitive radio networks have some challenges especially in the case of multiuser access, some are caused
by fading, shadowing and interference.

Certain challenges faced during multiuser access are described as follows: [1]

1. Uncertainty in allocating the channel resource: Inconsistency in the received signal strength
(RSS) due to channel fading can cause the CR to make wrong decision, which leads to violation
of cognitive policies laid out for reasoning and learning from the communication environment.
Highly sensitive radio devices can differentiate between faded primary signals and white
spaces. The decision-making process is often challenged when the fading effect is severe, and
the results are nonconclusive. In such circumstances, local readings of all the neighboring CRs
are collated and processed to deduce the signal strength, frequency, and PU channels. Adaptive
learning and sophisticated reasoning algorithms help the radio to allocate appropriate channels,
thereby establishing seamless communication links to the primary licensed users.

2. Noise and attenuation uncertainty: Communication signal in the environment is susceptible to
noise and attenuation losses. The factor of attenuation may vary in CRN; therefore, the impact
of noise needs to be reduced for quality interpretation of signal in a consistent and coherent
manner. Therefore, SNR is deduced, which compares the level of desired signal strength to
random noise.

3. Uncertainty due to aggregated interference: Communication links of CRs are affected by the
interference caused by different environmental variables present in the surrounding vicinity.
Hence, inconsistency produced from the immediate environment can hamper the quality of
communication of the PUs. Also, owing to the learning capability of CRs, aggregated
interference deduced by a set of radios in the neighborhood having a similar set of
environmental variables may lead to incorrect detection of the PU frequency, and may
eventually cause trouble in sensing the entire network of cognitive users. The only solution
here is to calibrate the sensitivity of the radios and compensate for the difference of aggregate
interference at each radio or at the controller.

4. Interference limit: A couple of major cases contributing to this context are localization
difficulty and listen-only mode. In first case, when the geographic location of the licensed
receiver is unknown to the secondary user, the aggregate interference and compensation fail to
be suitably analyzed. In the second case, the PU is calibrated to be in a listen-only mode, in
which no feedback or communication could be acquired from the receiver radio to the PU. In
such scenario, one-way communication takes place, because of which the primary
transmitter/controller fails to deduce the aggregate interference at the receiving end. The
preceding two cases inhibit the analysis of interference limits that could further lead to
disturbances in the communication link of the PUs.

pg. 3

1.2 Modulation classification
Automatic modulation classification (AMC) that identifies the modulation type of the received signal is an

essential part of noncooperative communication systems. The AMC plays an important role in many civil and
military applications such as cognitive radio, adaptive communication, and electronic reconnaissance. In these
systems, transmitters can freely choose the modulation type of signals; however, the knowledge of modulation
type is necessary to the receivers to demodulate the signals so that the transmission can be successful. AMC is a
sufficient way to solve this problem with no effects on spectrum efficiency. [3]

AMC algorithms have been widely studied in the past 20 years. In general, conventional AMC algorithms
can be divided into two categories: likelihood-based (LB) and feature-based (FB). LB methods are based on the
likelihood function of the received signal, and FB methods depend on feature extraction and classifier design. [3]

1.3 Wireless signal model
A wireless communication system transmits information from one point to another though a wireless

medium which is called a channel. At the system level, a wireless communication model consists of the following
parts:

Transmitter. The transmitter transforms the message, i.e., a stream of bits, produced by the source of
information into an appropriate form for transmission over the wireless channel. Figure 3 shows the processing
chain at the transmitter side.

First, the bits 𝑏𝑏𝑘𝑘 ∈ {0, 1} are mapped into a new binary sequence by a coding technique. The resulting
sequence is mapped to symbols 𝑠𝑠𝑠𝑠 from an alphabet or constellation which might be real or complex. This process
is called modulation.

In the modulation step, the created symbols are mapped to a discrete waveform or signal via a pulse shaping
filter and sent to the digital to analog converter module (𝐷𝐷/𝐴𝐴) where the waveform is transformed into an analog
continuous time signal, 𝑠𝑠𝑏𝑏(𝑡𝑡). The resulting signal is a baseband signal that is frequency shifted by the carrier
frequency fc to produce the wireless signal s(t) that is defined by:

𝑠𝑠(𝑡𝑡) = ℜ�sb(𝑡𝑡)𝑒𝑒𝑗𝑗2𝜋𝜋𝑓𝑓𝑐𝑐𝑡𝑡� = ℜ{𝑠𝑠𝑏𝑏(𝑡𝑡)} cos(2𝜋𝜋𝑓𝑓𝑐𝑐𝑡𝑡) − ℑ{𝑠𝑠𝑏𝑏(𝑡𝑡)} sin(2𝜋𝜋𝑓𝑓𝑐𝑐𝑡𝑡) (1)

Where s(t) is a real-valued bandpass signal, 𝑓𝑓𝑐𝑐 is the carrier frequency for the channel and 𝑠𝑠𝑏𝑏(𝑡𝑡) is the
baseband signal.

Figure 2: Transmitter diagram

pg. 4

Wireless channel. The wireless channel is characterized by the variations of the channel strength over time
and over frequency. The variations are modeled as (i) large-scale fading, which characterizes the path loss of the
channel as a function of distance and shadowing by large objects such as buildings and hills, and (ii) small-scale
fading, which models constructive and destructive interference of the multiple propagation paths between the
transmitter and receiver. The channel effects can be modeled as a linear time-varying system described by a
complex finite impulse response (FIR) filter ℎ(𝑡𝑡, 𝜏𝜏). If 𝑟𝑟(𝑡𝑡) is the signal at the channel output, the input/output
relation is given by:

𝑟𝑟(𝑡𝑡) = 𝑠𝑠(𝑡𝑡) ∗ ℎ(𝑡𝑡, 𝜏𝜏)

where ℎ(𝑡𝑡, 𝜏𝜏) is the band-limited bandpass channel impulse response, while ∗ denotes the convolution
operation.

 Receiver. The wireless signal at the receiver output will be a corrupted version of the transmitted signal
due to channel impairments and hardware imperfections of the transmitter and receiver. Typical hardware related
impairments are:

• Noise caused by the resistive components such as the receiver antenna. This thermal noise
may be modelled as additive white Gaussian noise (𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴),𝑛𝑛 ∼ 𝐴𝐴 (0,𝜎𝜎2).

• Frequency offset caused by the slightly different local oscillator (𝐿𝐿𝐿𝐿) signal frequencies at the
transmitter, 𝑓𝑓𝑓𝑓, and receiver, 𝑓𝑓𝑐𝑐′ .

• Phase Noise, ϕ(𝑡𝑡), caused by the frequency drift in the LOs used to demodulate the received
wireless signal. It causes the angle of the LO signals to drift around its intended instantaneous
phase 2𝜋𝜋𝑓𝑓𝑓𝑓𝑡𝑡.

• Timing drift caused by the difference in sample rates at the receiver and transmitter.
• The received wireless signal model can be given by

𝑟𝑟(𝑡𝑡) = ℜ�𝑟𝑟𝑏𝑏(𝑡𝑡)𝑒𝑒𝑗𝑗𝜔𝜔𝑐𝑐𝑡𝑡� (2)

Where 𝑟𝑟𝑏𝑏(𝑡𝑡) is the baseband complex envelop defined by

𝑟𝑟𝑏𝑏(𝑡𝑡) = �𝑠𝑠𝑏𝑏(𝑡𝑡) ∗ ℎ𝑏𝑏(𝑡𝑡, 𝜏𝜏)� ∙ 1
2
𝑒𝑒𝑗𝑗�𝜔𝜔𝑐𝑐−𝜔𝜔𝑐𝑐

′�𝑡𝑡 + 𝑛𝑛(𝑡𝑡) (3)

Where ℎ𝑏𝑏(𝑡𝑡, 𝜏𝜏) is the baseband channel equivalent given by

ℎ𝑏𝑏(𝑡𝑡, 𝜏𝜏) = ∑ 𝛼𝛼𝑖𝑖(𝑡𝑡, 𝜏𝜏)𝑒𝑒𝑗𝑗𝜔𝜔𝑐𝑐𝜏𝜏𝑖𝑖(𝑡𝑡)+𝜙𝜙𝑖𝑖(𝑡𝑡,𝜏𝜏)𝛿𝛿�𝜏𝜏 − 𝜏𝜏𝑖𝑖(𝑡𝑡)�

𝑙𝑙
𝑖𝑖=0 (4)

Figure 3: Receiver diagram

pg. 5

1.4 Fading
Fading is the happens due to reflection, refraction and pathloss that happens for in the propagation of

electromagnetic waves. Reflection is when the electromagnetic signal encounters a surface with particles with
large dimensions than the wavelength of the signal, while refraction happens in case of particles with dimensions
near the wavelength of the signal. [4]

There are many propagation models used in modeling the fading effect, but they’re categorized into two
categories, large-scale and small-scale propagation models. Large-scale propagation models account for the mean
of the signal which is used to define the radio frequency (RF for short) signal coverage. Small-scale models on
the other hand are used to represent the rapid fluctuations around the large-scale loss in the received signal in
small distances or small periods of time. [4]

1.4.1 large-scale fading

One of the large-scale propagation models that is used is the Friis free space path loss model given in
equation 1 :

𝐹𝐹𝐹𝐹(𝑑𝑑𝑑𝑑) = 10 log10 ��
𝜆𝜆

4𝜋𝜋𝜋𝜋
�
2
� (5)

Where:

𝜆𝜆:𝑤𝑤𝑤𝑤𝑤𝑤𝑒𝑒𝑤𝑤𝑒𝑒𝑛𝑛𝑤𝑤𝑡𝑡ℎ

𝑑𝑑:𝑇𝑇𝑟𝑟𝑤𝑤𝑛𝑛𝑠𝑠𝑇𝑇𝑇𝑇𝑡𝑡𝑡𝑡𝑒𝑒𝑟𝑟 𝑡𝑡𝑡𝑡 𝑟𝑟𝑒𝑒𝑓𝑓𝑒𝑒𝑇𝑇𝑤𝑤𝑒𝑒𝑟𝑟 𝑠𝑠𝑒𝑒𝑠𝑠𝑒𝑒𝑟𝑟𝑤𝑤𝑡𝑡𝑇𝑇𝑡𝑡𝑛𝑛 𝑑𝑑𝑇𝑇𝑠𝑠𝑡𝑡𝑤𝑤𝑛𝑛𝑓𝑓𝑒𝑒

Figure 4: transmission gain with respect to logarithm of the distance.

pg. 6

𝑃𝑃𝑟𝑟(𝑑𝑑𝑑𝑑) = 𝑃𝑃𝑡𝑡 + 𝐴𝐴𝑡𝑡 + 𝐴𝐴𝑟𝑟 − 𝐹𝐹𝐹𝐹(𝑑𝑑𝑑𝑑) (6)

Where:

𝑃𝑃𝑟𝑟: 𝑟𝑟𝑒𝑒𝑓𝑓𝑒𝑒𝑇𝑇𝑤𝑤𝑒𝑒𝑑𝑑 𝑠𝑠𝑡𝑡𝑤𝑤𝑒𝑒𝑟𝑟

𝑃𝑃𝑡𝑡: 𝑡𝑡𝑟𝑟𝑤𝑤𝑛𝑛𝑠𝑠𝑇𝑇𝑇𝑇𝑡𝑡𝑡𝑡𝑒𝑒𝑑𝑑 𝑠𝑠𝑡𝑡𝑤𝑤𝑒𝑒𝑟𝑟

𝐴𝐴𝑡𝑡: 𝑡𝑡𝑟𝑟𝑤𝑤𝑛𝑛𝑠𝑠𝑇𝑇𝑇𝑇𝑡𝑡𝑡𝑡𝑒𝑒𝑟𝑟 𝑤𝑤𝑤𝑤𝑇𝑇𝑛𝑛

𝐴𝐴𝑟𝑟: 𝑟𝑟𝑒𝑒𝑓𝑓𝑒𝑒𝑇𝑇𝑤𝑤𝑒𝑒𝑟𝑟 𝑤𝑤𝑤𝑤𝑇𝑇𝑛𝑛

This model is used for simple path loss estimations because of its simple form and limited number of
required parameters.

1.4.2 Small-scale fading

 In the figure shown the transmission gain is calculated through distance, the small fluctuations around the
large-scale fading. The small fluctuations caused by the multipaths the signal takes from the transmitter to the
receiver is the main reason for small-scale fading and it could be viewed as a time-varying channel response.

 The figure shows the response of a non-stationary channel where its response is given as mentioned in eq.3.

If a single pulse is transmitted over a multipath channel, then the received signal will appear as a pulse train,
with each pulse in the train corresponding to the line-of-sight component or a distinct multipath component
associated with a distinct scatterer or cluster of scatterers. The time delay spread of a multipath channel can result
in significant distortion of the received signal. This delay spread equals the time delay between the arrival of the
first received signal component (LOS or multipath) and the last received signal component associated with a
single transmitted pulse. If the delay spread is small compared to the inverse of the signal bandwidth, then there

Figure 5: Multipath propagation illustration. [4]

pg. 7

is little time spreading in the received signal. However, if the delay spread is relatively large then there is
significant time spreading of the received signal, which can lead to substantial signal distortion. [4]

Figure 6: Response of non-stationary channel. [4]

pg. 8

1.5 Data acquisition
Figure 3 summarizes the data acquisition process for collecting wireless signal features. The received signal,

𝑟𝑟(𝑡𝑡), is first amplified, mixed, low-pass filtered and then sent to the analog to digital (𝐴𝐴/𝐷𝐷) converter, which
samples the continuous-time signal at a rate 𝑓𝑓𝑠𝑠 = 1

𝑇𝑇𝑇𝑇
 samples per second and generates the discrete version rn.

The discrete signal 𝑟𝑟𝑛𝑛 = 𝑟𝑟[𝑛𝑛𝑇𝑇𝑆𝑆] consists of two components, the in-phase, 𝑟𝑟𝐼𝐼, and quadrature component, 𝑟𝑟𝑄𝑄,
i.e., [2]

𝑟𝑟𝑛𝑛 ∶= 𝑟𝑟[𝑛𝑛] = 𝑟𝑟𝐼𝐼 [𝑛𝑛] + 𝑗𝑗𝑟𝑟𝑄𝑄[𝑛𝑛] (7)

Suppose we sample for a period 𝑇𝑇 and collect a batch of 𝐴𝐴 samples. The signal samples 𝑟𝑟[𝑛𝑛] ∈ 𝐶𝐶 , 𝑛𝑛 =
 0, . . . ,𝐴𝐴 − 1, are a time-series of complex raw samples which may be represented as a data vector. The 𝑠𝑠 − 𝑡𝑡ℎ
data vector can be denoted as

𝑟𝑟𝑘𝑘 = [𝑟𝑟[0] , 𝑟𝑟[1] , … , 𝑟𝑟[𝐴𝐴 − 1]]𝑇𝑇 (8)

These data vectors 𝑟𝑟𝑘𝑘 are windowed or segmented representations of the received continuous sample stream,
similarly, as is seen in audio signal processing. They carry information for assessing which type of wireless signal
is sensed. This may be the type of modulation, the type of wireless technology, interferer, etc. [2]

The data used in the classification is derived in frequency form by using Fourier transformation to each
sampled vector of the time series data, and the amplitude phase form as each form have more accuracy when used
in certain classification tasks in CRN as shown in the figure. [2]

1.6 Deep learning
CRN uses many deep learning techniques to tackle problems like modulation classification and interface

detection so an introduction about machine learning and it’s uses is discussed in this section. Followed by a short
discussion about how to accelerate machine learning algorithms to be used efficiently in battery-based
applications where power and computational resources are very limited.

Deep learning algorithms are a part of the machine learning field which uses multiple layers nodes to
approximate highly non-linear relations in highly dimensional vector spaces with a computationally efficient
processing nodes. Considering the processing node, it’s simply a weighted sum of the inputs with an activations
function before the output as shown in figure 8. [5]

Each node is called a perceptron and is derived based on the theory of how neurons work, it’s assumed that
neurons sense the electrical current from its dendrites and uses a weighted sum for the currents and an activation
function to produce the final output signal through the axon. And for that reason, structures containing many
layers of nodes are referred to as neural networks. [5]

The need for activation function is extra important, given the structure of a neural network shown in
figure 7, if there isn’t a non-linear activation function the structure would act as a single perceptron due to the
linear function in each node. Non-linear activation functions help the structure to predict the non-linear relation
between the input and the output with a high accuracy.

pg. 9

One of the famous activation functions used in deep neural networks are shown in figure below, in hidden
layers it’s common to use the rectified linear unit (ReLU) function due to its very simple implementation. Some
problems with the ReLU function arise like the dead-ReLU problem so some artificial neural networks (ANN)
use the leaky-ReLU function to overcome the problem. [6]

Figure 7: Neural network example.

Figure 8: Perceptron.

pg. 10

The neural network mentioned above is usually referred to as fully connected network as each neuron has
a different weight for each input synapse. Most of the time there’s some common distribution between the inputs
to the neurons so it’s more convenient to share weights between them. The redundancy of the fully connected
architecture is obvious when pruning the structure to remove the less effective weights and redo training for the
network to find the appropriate weights (figure 10). [6]

The weight sharing paradigm could be achieved using a kernel being convolved with the output of each
layer, and each node in the kernel is a weight and after each convolution with the kernel there’s an activation
function. The benefit of convolution is that different elements in the input vector to each layer share the same
weight making the network more efficient with less redundancy in the structure. The figure below illustrates how
convolution between a kernel and input feature map (fmap) to the convolution layer. [6]

Figure 10: a fully connected layer before and after pruning.

Figure 9: Common activation functions.

pg. 11

Figure 12 shows a convolution neural network (CNN) example, between each two convolution layers
there’s a max pooling layer which choose the max feature in each 2-by-2 block in the feature maps, an example
of max pooling is shown in figure 13. [6]

1.7 Deep learning acceleration
Deep learning algorithms infer lots of computation especially multiplication as it requires more power and

time than simple addition and subtraction. Another problem with deep learning is the precision of calculations,
floating point operations is more time and power consuming than fixed point operations, and the fact that deep
learning algorithms are developed and tested in the floating point domain, transforming the model -mainly the
weights- to the fixed-point domain is needed to reduce the area and power of the accelerator design with taking
much care of the loss in accuracy could be resulted due to that. [6]

Figure 11: convolution example.

Figure 12: CNN example

pg. 12

The digital design for each node is simply a multiply and accumulate unit with some internal registers to
store the input activation (shown in figure 14), weight and output partial sum. As seen from previous figures ANN
architectures commonly contain lots of computational nodes that makes it almost impossible to make a direct
implementation by simply interchanging each node in the signal flow graph with its implementation, the design
will need more redundant area and power without benefiting from the regularity in the deep learning algorithm.
[6]

To overcome that problem, the use of time sharing is mandatory. The problem of time sharing is that it
complicates the controller part of the design. The figure below shows an example of the use of time sharing in
deep learning acceleration with each processing engine having a control unit to control the flow of signals and
data, and registers to store inputs and outputs. [6]

Figure 13: max pooling example

Figure 14: Processing engine [6]

pg. 13

There’re different ways for the data flow between the accelerators to benefit from the regularity in
computation of convolution, figure 16 shows an example of weight stationary data flow taxonomy. The weights
of the kernel are loaded in the PEs and the input activations is loaded in parallel and partial sums are moved
sequentially in the PE chain and after each output feature element is computed, the input activations is changed
with the weights being stationary until all outputs associated with these weights are computed to the movement
of weights from the DRAM to the buffer is minimized. [6]

The output stationary is also a common taxonomy used in deep learning acceleration, as shown in figure 17,
it’s same as the output stationary but with the partial sums being stationery and input activations and weights of
different kernels is loaded in parallel and partial sums are moved sequentially after being computed in each PE.
[6]

Figure 15: time sharing in deep learning acceleration. [6]

Figure 16: weight stationary. [6]

pg. 14

Figure 17: output stationary. [6]

pg. 15

2 Gemmini and Chipyard Framework
 As we discussed in chapter one Hardware accelerators play a crucial role in addressing the ever-increasing

computational demands of modern applications, particularly in fields such as artificial intelligence, data analytics,
and scientific simulations. These specialized hardware components, like the Gemmini accelerator, are designed
to efficiently perform specific tasks by offloading computation from general-purpose processors. The importance
of hardware accelerators lies in their ability to significantly enhance performance and energy efficiency, enabling
faster processing and reduced power consumption compared to traditional CPUs. However, implementing
hardware accelerators comes with its own set of challenges. One major challenge is the design complexity
involved in creating specialized architectures tailored to specific workloads.

To address the complexity involved in designing hardware accelerators, several strategies can be employed,
leveraging frameworks such as NVDLA, Gemmini, and TPU, among others. These frameworks provide valuable
resources and tools that simplify the accelerator design process and help overcome challenges.

One approach is to utilize one of these frameworks which offer pre-designed and verified hardware
accelerator IP cores specifically tailored for deep learning and matrix multiplication tasks, respectively. These
frameworks provide a starting point for us, enabling us to focus on customization and integration rather than
starting from scratch. By leveraging these specialized frameworks, we can accelerate development, reduce design
complexity, and benefit from the expertise embedded in these ready-to-use accelerator designs

2.1 Why Gemmini: The Choice Among Other Tools:
We have chosen Gemmini in our project as the hardware accelerator due to its unique features and

advantages compared to other existing options. One key factor is Gemmini's flexibility in providing
parameterizable architectural templates, enabling the generation of a wide variety of hardware and software
instances. This feature significantly improves hardware design productivity and allows for systematic evaluation
of DNN architecture.

As shown in Table 1 which compares the Gemmini with other DNN accelerator generators Gemmini stands
out by offering flexible architectural templates that cover various DNN accelerators, each suitable for different
execution environments and area/power/performance targets. Unlike many existing generators that focus on
specific representations or dataflows, Gemmini supports both floating and fixed-point data types, multiple
dataflows, and both vector and systolic spatial array architectures. This versatility enables a quantitative
comparison of efficiency and scalability differences, making it easier to evaluate and compare against other
accelerators.

Another advantage of Gemmini is its multi-level programming interface, catering to different user
requirements. It provides an easy-to-use programming interface for DNN application practitioners who prefer
working with high-level frameworks, such as PyTorch or TVM. At the same time, it offers low-level

Table 1comparison between Gemmini and other DNN accelerator generators

pg. 16

programming capabilities in C/C++ or assembly for framework developers and system programmers who need
precise control over hardware states.

Furthermore, Gemmini addresses the critical aspect of system-level integration, which is often overlooked
by other DNN accelerator generators. It supports full SoC integration with host CPUs, shared resources like
caches and system buses, and even booting Linux. This capability allows architects to evaluate subtle trade-offs
at the system level, considering the interaction and integration of the accelerator within a larger system.

2.2 Chipyard Ecosystem:
Gemmini is part of the Chipyard ecosystem which is a framework for designing and evaluating the full

system. It is composed of a collection of tools and libraries designed to provide an integration between open-
source and commercial tools for the development of systems-on-chip (SoC). The next figure shows the Chipyard
ecosystem. [7]

From the previous figure before starting the Gemmini design flow, we will summarize some important
components in the chipyard ecosystem and their functionality.

2.2.1 Chisel:

Chisel is a hardware description language (HDL) embedded within the Scala programming language. It
provides a concise and expressive syntax for describing digital circuits and enables the generation of optimized
synthesizable Verilog or VHDL code. Chisel combines the power of Scala's functional programming constructs
with a hardware construction library, allowing us to create reusable and composable hardware components. Its
integration with the Scala ecosystem provides access to a wide range of tools, libraries, and utilities, enhancing
productivity in the hardware design process.

2.2.2 FIRRTL:

FIRRTL (Flexible Intermediate Representation for RTL) is an intermediate hardware representation
language developed by Berkeley. It serves as a common format for specifying digital circuits and allows for
efficient transformations and optimizations. It acts as the bridge between Chisel and the subsequent stages of the

Figure 18 Chipyard Ecosystem

pg. 17

design flow. The FIRRTL compiler takes the Chisel-generated FIRRTL code and performs various
transformations and optimizations to generate the corresponding RTL. Figure 19 shows the steps of converting
the Chisel to synthesizable Verilog RTL codes ready for HW implementations. [7] [8] [9]

2.2.3 RISC-V:

RISC-V is an open-source instruction set architecture (ISA) developed at Berkeley. It is designed to be
simple, modular, and extensible, making it highly versatile and adaptable to various computing applications.
RISC-V's open nature allows for unrestricted use, modification, and implementation, fostering innovation and
collaboration in the development of processors and related hardware. [7]

2.2.4 Rocket core and BOOM core:

Rocket core and BOOM core are open-source processor cores based on the RISC-V instruction set
architecture. Rocket core is an in-order processor core, while BOOM core is an out-of-order core. These cores
serve as versatile starting points for designing custom RISC-V processors, with Rocket Chip generator framework
in the Chipyard ecosystem enabling the generation of customizable RISC-V SoCs. [7]

2.2.5 RoCC (Rocket Chip Coprocessor) Accelerator generators:

RoCC (Rocket Custom Coprocessor) accelerator generators are a framework within the Rocket Chip
generator that enables the design and integration of custom hardware accelerators. With the RoCC accelerator
generators, we can create specialized coprocessors like Gemmini, Hwacha, and SHA3 that extend the
functionality of the Rocket processor. These generators provide a customizable template and infrastructure for
designing and integrating custom accelerators, facilitating seamless communication and interaction between the
accelerators and the Rocket processor.

The architecture of the Rocket chip encompasses various essential components such as peripherals, memory
units, and system buses. These elements play significant roles in enabling the functionality and overall operation
of the Rocket chips. Figure 20 below provides an overview of the architecture, showcasing the integration and
interconnection of these components within the Rocket Chip. [8] [9]

Figure 19 Process of converting Chisel to Verilog [8]

pg. 18

In the next chapter, we will discuss the detailed architecture of the Gemmini accelerator and how it
communicates with the whole system.

2.2.6 FireSim:

FireSim is a key component of the Chipyard ecosystem developed by Berkeley. It is a cycle-accurate,
FPGA-accelerated simulation framework that allows for full-system simulation of RISC-V SoCs. FireSim enables
us to evaluate and validate their designs before physical fabrication by emulating the entire system, including the
Rocket processor, accelerators, and peripheral devices. This powerful tool provides a high level of fidelity and
performance for architectural exploration, software development, and verification in the Chipyard environment.
FireSim supports running on Amazon EC2 F1 FPGA-enabled cloud instances and locally managed Linux
machines with FPGAs attached. [7] [10]

2.2.7 HAMMER:

HAMMER (High-level Abstraction for Modularity, Extensibility, and Reusability) is an influential physical
design flow tool that plays a crucial role within the Chipyard ecosystem. This tool offers a modular and reusable
approach to physical design, streamlining the process of creating custom integrated circuits (ICs) and accelerating
the development cycle. HAMMER enables us to work at a higher level of abstraction by providing a set of well-
defined interfaces and design abstractions. It allows for the seamless integration of different design components,
such as cores, memories, and interconnects, fostering modularity and reusability. By utilizing HAMMER, we can
focus on the specific functionality and performance of their custom ICs, while the tool automatically handles
aspects like placement, routing, and optimization. This modular and reusable design flow not only enhances
productivity but also promotes collaboration and innovation within the Chipyard ecosystem, ultimately enabling
the rapid development of high-performance and energy-efficient hardware solutions. [7] [11] [12]

Figure 20 Rocket SoC for accelerators

pg. 19

3 Methodology and Design Flow (Frontend):
After exploring the various components of the Chipyard ecosystem in the previous chapter, we now shift

our focus to the Gemmini accelerator frontend design flow in this chapter. The frontend design flow is a crucial
stage in the development of Gemmini accelerators, encompassing several essential steps. In this chapter, we will
delve into each of these steps, providing an overview of the process and highlighting key considerations and
methodologies employed. By understanding the Gemmini accelerator frontend design flow, we can gain insights
into the intricate design decisions and optimizations involved in building high-performance and efficient
accelerators within the Chipyard framework.

3.1 Starting with DL Model:
As we aim to implement a Hardware computing device (Accelerator) to run a Deep Learning Model (DL)

in our case is a convolution neural network model making a Modulation recognition inference so, our starting
point will be with it.

Figure 21 shows the possible ways to run the DL model. There are three methods to execute and run DL
models. The first approach is to run the model on the host processor or host GPU of a computer. However, this is
not an ideal choice as it consumes a significant amount of time to run inference since these processors are not
specifically designed for DL tasks, which are computationally intensive. [13] [14]

The second method involves designing a specialized hardware (HW) accelerator tailored to the DL model.
This approach has the potential to offer the best performance in terms of area, power, and speed. However, it is a
complex and time-consuming process that requires designing and verifying the HW accelerator specifically for
the DL model. Moreover, this specialized HW accelerator is not capable of running inferences for other DL
models, limiting its versatility. [13]

The third and final approach is to utilize a pre-designed HW template, optimized for running DL models
efficiently in terms of power and area. In this method, we write configuration files using a high-level language,
and tools convert our design specifications into a synthesizable RTL (Register Transfer Level). This approach

Figure 21 Approaches of running DL models.

pg. 20

also encompasses additional tasks such as designing the entire System-on-Chip (SoC), testing, and profiling
performance. Essentially, we begin with the DL model and use the configurations to design the accelerator
accordingly. In the following chapter, we will provide a brief overview of how these configurations are written.
[11] [8]

3.2 Gemmini accelerator Design Flow for designing accelerators:
Once we have thoroughly studied the DL model or the specific requirements of the generic accelerator, we

proceed with the design flow as depicted in the following figure. This flow involves several steps, beginning with
the creation of configuration files that describe the behavior of the HW architecture design.

After completing the configuration files, we move on to testing the RTL (Register Transfer Level)
implementation. This step ensures that the design functions as intended and meets the desired specifications.
Through rigorous testing, we can identify and address any potential issues or bugs.

Once the RTL has been successfully tested, we proceed to evaluate the performance of the accelerator. This
can be done using an FPGA (Field-Programmable Gate Array) or by obtaining the final layout of the design and
its performance. [8] [9]

3.3 Custom SoC configuration for Different RTL generators:
Once we have conducted a thorough study of the DL model and determined the requirements and

specifications for the HW accelerator designed for spectrum sensing purposes, we begin the process of writing
Chisel configurations for the accelerator. These configurations will later be converted to RTL using a specialized
tool.

In addition to configuring the accelerator, we also have control over the entire system's configurations, as
depicted in Figure 20. This includes specifying configurations for the host CPU, L2 Cache, DRAM, and other

Figure 22 Gemmini Accelerator Different design flows.

pg. 21

peripherals. Since we have limited time to fully comprehend the Chisel language, we primarily rely on default
configurations and make only edits to some parameters, such as adjusting memory size and systolic array size.
We also remove unnecessary parts that are not important in spectrum sensing, which is a simpler task compared
to image processing. [15]

However, due to our limited expertise with Chisel and the specific configurations required for our use case,
we often encounter compatibility issues between the accelerator and the surrounding SoC. This necessitates
reconfiguring parameters and sometimes adding extra memory size that may are not needed to ensure proper
functionality and integration.

The key components we configure consist of four Chisel files. In the subsequent chapter, we will provide a
brief overview of how we configured these files, outlining the specific modifications made to tailor the accelerator
for spectrum sensing purposes. These files are GemminiCustomConfigs.scala, CPUConfigs.scala,
SoCConfigs.scala, and GemminiDefaultConfigs.scala. Figure 23 shows examples of these configuration files.

3.4 RTL Build Process:
Once we have written our configuration files, Gemmini provides automated scripts that facilitate the

conversion of these Chisel configuration files into Verilog RTL code. This conversion process involves several
steps. First, the Chisel codes are transformed into FIRRTL, which we discussed in detail in the previous chapter.
Subsequently, the FIRRTL Compiler, an open-source tool, translates the FIRRTL code into Verilog. [7] [9]

The resulting generated source code is located in the "generated_src" directory within the Gemmini system.
This directory comprises several automatically generated files based on the provided configurations as shown in
Figure 24. The core of this generated source code consists of RTL source files written in Verilog hardware
description languages. These files define the digital logic and components of the Gemmini system, including the
hardware accelerator, memory interfaces, control units, and interconnects. [15]

Testbench files were also generated which are fundamental for simulating and verifying the functionality
of the Gemmini system. These files contain stimulus generation modules, test cases, and simulation infrastructure,
allowing us to assess the correctness and performance of the system.

There are also “. JSON” files, which stand for JavaScript Object Notation, which are used in the Gemmini
system for configuration purposes. These files store system settings and specifications in a structured readable
format. They have parameters such as memory sizes, data precision, and systolic array dimensions. The Gemmini

Figure 23 Snapshots of chisel configuration files

pg. 22

system's automated scripts process .JSON files during system generation, ensuring that the specified settings are
applied to generate customized RTL code and other related components. [15]

3.5 Software RTL Simulations:
After generating the RTL code for the accelerator, it is crucial to ensure its proper functionality. This

involves testing and evaluating its performance using cycle-accurate simulators. The gemmini full-system
visibility SoC provides a convenient solution for this purpose.

The software code compilation flow for the Gemmini hardware accelerator offers multiple levels of control
and flexibility as shown in Figure 26. At the lowest level, we have the option to engage in low-level programming
using assembly language or direct machine configuration. This level of programming grants the highest level of
control, allowing for precise manipulation and configuration of the Gemmini hardware accelerator. It provides a

Figure 24 Snapshot of output generated files from Gemmini

Figure 25 Gemmini different levels of visibility.

pg. 23

deeper understanding of the underlying hardware and enables us to squeeze out every bit of performance by
carefully crafting code. [10] [14]

For more fine-grained control and optimization, the mid-level programming option provides access to
kernel libraries. We can leverage these libraries to optimize the performance of specific operations, such as matrix
multiplication (GEMM). This level of programming enables customization and tuning of the Gemmini accelerator
to achieve optimal results for specific tasks or workloads.

At the highest level, we can utilize high-level programming languages to compile their ONNX models,
providing a convenient and abstract approach. This level of programming allows for easy integration and
utilization of the Gemmini accelerator without delving into lower-level details.

3.5.1 Low-Level tests:

During the development and testing phase of the Gemmini hardware accelerator, we started with the lowest-
level templated tests with minor modifications. These tests are designed to assess the functionality and
performance of individual components within Gemmini, such as matrix multiplication, tiled matrix multiplication,
and specific workloads like Mobilenet. [15]

The templated tests provide a foundation for evaluating the behavior of Gemmini at a low level, allowing
us to validate the functionality of each component and verify that they are functioning as intended. By starting
with these tests, we can ensure that the fundamental building blocks of the accelerator are working correctly
before moving on to more complex and comprehensive evaluations.

There are tools for testing Gemmini like SPIKE and Verilator. SPIKE is a functional RISC-V ISA
(Instruction Set Architecture) simulator that emulates the behavior of a RISC-V processor. It enables us to execute
programs and observe the expected behavior without the need for physical hardware. Verilator, on the other hand,
is a cycle-accurate Verilog simulator. It allows us to simulate and analyze the behavior of Gemmini's hardware
design at a more detailed level, including the timing and interactions between different components. [7] [15]

3.5.2 Gemmini Flow Automation Script:

During our exploration and experimentation with Gemmini, we encountered failures in the tests, as we
mentioned earlier. These failures were primarily attributed to our limited experience with Chisel and the
complexities of configuring the system. As a result, reverting to default configurations took a considerable amount
of time. To streamline this process, we developed an automated script that facilitates the generation and testing
of Gemmini. Whenever a test fails, we simply modify the configuration files and rerun the script. This iterative
approach allows us to make multiple attempts with different configurations until we successfully pass all the tests
it is shown in Figure 26. The details of the final configurations adopted are discussed briefly in the subsequent
chapter.

pg. 24

3.5.3 High-level test:

After iterating through multiple configurations and tests, we arrived at our final configuration for
Gemmini. To validate the performance and functionality of the accelerator at a higher level, we conducted tests
using the ONNX runtime with a quantized model of ResNet-50 as our test case. We executed the test and
successfully passed it, demonstrating the compatibility of Gemmini with real-world workloads. However, it's
worth noting that achieving the desired results requires many clock cycles.

During our experimentation with the Gemmini accelerator, we encountered challenges when utilizing the
ONNX Runtime for the modulation recognition CNN (Convolutional Neural Network) model. While we
successfully employed the ONNX Runtime with the ResNet 50 test case, we faced difficulties with the MR
CNN model. The MR CNN model requires input in the form of a 2x128 dimension array, which differed from
the image runner compiler used in the ResNet 50 test. As a result, we were limited to testing the Gemmini
accelerator exclusively with the ResNet 50 quantized model. Next table illustrates the outcomes of running
inference on three images using our configuration.

Figure 26 Output of the final configuration Low level tests

pg. 25

Table 2 the outcomes of running inference on three images using our configuration for ResNet50

During our evaluation, we observed that the accuracy of the model utilized in the Gemmini accelerator fell
short of our expectations. It's important to note that the diminished performance can be attributed to the
quantization of the ResNet 50 model itself, rather than any hardware limitations. Quantization involves reducing
the precision of numerical values in the model to enhance computational efficiency. However, this process can
lead to a decrease in model accuracy. Thus, the performance we experienced can be attributed to the inherent
characteristics of the deep learning model rather than any shortcomings in the Gemmini hardware accelerator.
Moving forward, further optimizations or alternative models may be explored to address the accuracy concerns.

pg. 26

4 Gemmini Framework

4.1 Background

4.1.1 Converting Convolution to General Matrix Multiplication (GEMM)

Convolution is the main operation of deep learning and what it does is that it extracts features from the
training data [16] [17],The convolution operation can be expressed as a dot product between the input and the
kernel, figure 27a shows the direct convolution of an input matrix A with height ih and width iw and a kernel of
height kh and width kw and the output matrix C of height oh width ow, C matrix is produced by sliding the kernel
B over matrix A with a parameter called stride and applying matrix multiplication.

Figure 27 (a) Direct convolution. (b) im2col-based GEMM operation (C)Systolic array
operation

pg. 27

For more efficient operations the inputs and kernels are lowered into matrices using im2col operation and
applying GEMM operation [18] [19], as shown in figure 27b the matrices A and B are transformed into A’ and
B’ respectively using the im2col method, Each submatrix of A with a height of kh and width of kw is stretched
into a row of A’. A’ ends up with a dimension of inohow × khkwkc, where in is the total number of inputs and kc is
the number of kernel channels The im2col method is capable of identifying the overlapping data among the rows
of A’, The transformed kennel B’ is also generated by stretching B from Figure 27a into a column, The im2col
transformation enables the computation of the output matrix C' with dimensions oh and ow by performing a matrix
multiplication between matrices A' and B'. By leveraging optimized primitives or hardware accelerators, the
im2col-GEMM approach can efficiently execute this operation.

The im2col approach led to a lot of innovations in hardware accelerators one of them is the use of the
Systolic Array (SA) [20], SA was designed in 1979 but it grabbed the attention again when Google used it in
Google Tensor Processing Unit (TPU) to accelerate GEMM operations [21], an SA is made of mesh of processing
elements (PEs) which includes Multiply And Accumulate (MAC) unit which architecture is shown in figure 28.
PEs communicate with neighbors to send input data and compute data from MACs, each clock cycle data are
loaded from memory to the PEs that they are connected to, then to the neighbor PEs then to the last PEs then back
to the memory to save the results. Figure 27c shows the operation of 4*1 SA used to multiply A’ and B’ to produce
C’, A’ is fed to the SA from the left and B’ is fed to the SA from the top in each clock cycle Each PE computes
the MAC operation until the last input value is received. The final generation of individual elements of matrix C’
starts and ends in cycle t4 and cycle t7, respectively. The SA method implements two main dataflows, which
include OS and WS [22].

The dataflow scheme illustrates how the processing elements (PEs) communicate with each other and how
data is accessed and transferred between memory and the PEs. Two different dataflow schemes, OS and WS, are
described.

In the OS (Output Stationary) dataflow scheme, the partial sums of C' remain within the PEs until the final
output is computed. This design minimizes the movement of partial sums between the PEs and memory. The PEs
communicate with each other to perform the necessary computations, reducing the need for data transfers to and
from memory.

On the other hand, the WS (Weight Stationary) dataflow scheme involves pre-loading the kernel matrix B'
into the appropriate PEs before the computations start. This allows for the reuse of the kernel matrix without
accessing memory repeatedly. By storing the necessary data within the PEs, the WS dataflow minimizes memory
access and enhances overall efficiency. The Gemmini accelerator framework, which is the focus of this work,

Figure 28 MAC architecture

pg. 28

utilizes the SA method to configure and accelerate General Matrix Multiplication (GEMM) operations of various
dimensions. The SA method leverages the dataflow schemes, OS and WS, to optimize the computation and
minimize data movement, resulting in improved performance and efficiency for GEMM operations.

4.1.2 Gemmini framework

The name is not an abbreviation of anything but it may be a combination of the two words Gemini and
GEMM, the Gemmini accelerator frame work has been around since 2019, it is capable of generating a full System
on Chip (SoC) accelerator including peripherals, memories, processors and their interconnections, from the
beginning the researches have worked on improving and enhancing some components of the architecture

4.2 Gemmini architecture

4.2.1 Introduction

Gemmini is a part of the open source RSIC-V chipyard framework [7], The architecture is always under
development, the language used in the framework is Chisel which is a new Hardware Description Language
(HDL) designed to generate configurable hardware design with parameters, Chisel is embedded in Scala to
provide high level object oriented programming and functional primitives, Then the Chisel HDL is compiled to
generate Verilog HDL code and since, it does not only generate the SA but it generated a full SoC for simulations
and implementations [23]

Gemmini accelerator can be generated alone or in a full SoC as shown in figure 29, the Gemmini accelerator
is based on non-standard RSIC-V instruction set architecture so it needs a rocket processor to communicate with
to receive commands and send results, the framework gives the ability to generated a rocket processor on chip
with Gemmini accelerator or only the Gemmini accelerator to be integrated later into a system that already has a
RSIC-V processor.

We need to understand the architecture of the Gemmini accelerator to be able to read the configurations and
configure our accelerator to our deep learning model.

Figure 29 Full SoC architecture

pg. 29

In the next section we describe the architecture of the standalone Gemmini accelerator shown in figure 30.

4.2.2 RoCC interface

The interface is designed to enable decoupled communication between the core processor and the Gemmini
accelerator [24], as shown in figure 31, The RoCC interface consists of command (RoCCCommand) and response
(RoCCResponse), the core processor sends commands and related data to Gemmini accelerator through the
RoCCCommand and receives the results from accelerator through RoCCResponse interface.

Figure 30 Gemmini accelerator architecture

Figure 31 RoCC interface signals

pg. 30

4.2.3 LoopConv and LoopMatMul modules

The LoopConv and LoopMatMul unroll the large convolutions and matrix multiplications to fit the systolic
array dimensions.

As shown in figure 32.a LoopConv consists of modules such as LoopConvLdBias, LoopConvLdWeight,
and LoopConvLdInput. Which are responsible for loading the main inputs of a machine learning models (inputs,
bias, weights). The LoopConvExecute and LoopConvst modules are responsible for executing the convolution
operations and storing the results respectively.

As shown in figure 32.b LoopMatMul consists of modules such as LoopMatmulLdA, LoopMatmulLdB,
and LoopMatmulLdD which are responsible for loading the matrices A, B and D respectively.
LoopMatmulExecute is responsible for generating commands for the matrix multiplications. LoopMatmulStC is
responsible for storing the result matrix C.

The Queue_56 module in both LoopConv and LoopMatmul stores the input commands in a buffer.

The unrolled commands are then sent to Reservation station module.

4.2.4 LoadController and StoreController

Load and store controllers are similar in design and they are responsible for data movement instructions
from DRAM to the scratchpad module in Gemmini accelerator and from the scratchpad in the Gemmini
accelerator to DRAM respectively. Both modules use a finite state machine. The finite state machine has three
states waiting_for_cmd, sending_rows, and waiting_for_dma_req_ready. In the waiting_for_cmd state, the
controllers configure themselves and load the commands from the reservations station module into the
DMACommandTracker and DMACommandTracker_1 for load and store controllers respectively, they also keep
track of total amount of data to be loaded the scratchpad and stored in the DRAM, respectively. In the
waiting_for_req_ready state. The controllers wait until the DMA configure itself to store and read data. In the
sending_row state, the controllers keep working until they load all the data needed which we know the size of
needed data from the command trackers.

Figure 32 Command unrolling modules

pg. 31

4.2.5 ExecuteController and image to column (im2col)

ExecuteController illustrated in figure 34b and im2col illustrated in figure 34a both modules connect to the
SRAMs, im2col module can be generated as a hardware module or the operation can be handled by the core
processor.

Im2col module reads instructions from execute controller and data from SRAM interface of the scratchpad
module,the module makes sure that every PE is used as much as possible, it operates depending on a finite state
machine with states nothing_to_do, waiting_for_im2col, preparing_im2col, and im2col_done.

The execute controller connects to im2col and SRAM interfaces and reservation station, the received
command from reservation station is unrolled by TransposePreloadUnroller module and stored in the
MultiHeadedQueue_1 module. MultiHeadedQueue_1 module is a buffer and it classifies commands to execute
instructions which are then buffered in Queue_61 module then sent to MeshWithDelays module illustrated in
figure 35, and memory instructions to read data from the SRAMs of the scratchpad module.

Figure 33 DMA engine

Figure 34 SRAM controllers (a) im2col module (b)ExecuteController

pg. 32

MeshWithDelays module consists of a mesh and AlwaysOutTransposer, AlwaysOutTransposer is
responsible for transposing the matrix before it enters the mesh, It is implemented as a configurable systolic array.

Mesh module is illustrated in figure 36, it consists of configurable number of rows and columns of PEs,
there are registers to make sure all input matrices arrive at the same time to the PEs before starting the
multiplication operation, one of the configurations that we might have multiple meshes each mesh contains one
tile that is made of PEs, so we conclude that PEs are the most important part of the mesh.

PEs in Gemmini can have three data flows implementations WS, OS and both, we choose what to have in
the configuration part. Also illustrated in figure 36.

As discussed bfore Mesh module takes the inputs from AlwaysOutTransposer unit and sends the results to
the SRAM of accumulator in scratchpad.

Figure 35 MeshWithDelays module

Figure 36 MeshWithDelays module

pg. 33

4.2.6 ScratchPad

 It is responsible for storing the output data of the matrices convolution and multiplication. Figure 37
illustrates the structure of the scratchpad module. It contains multiple pipelines to pipeline DMA and
ExecuteConrtoller read operation. StreamWriter module is responsible for storing the data before sending it to
the DRAM, DMA control signals interacts with StreamWriter and StreamReader to read or read their contents.

Figure 38a illustrates the structure of the scratchpadBanks in the scratchpad module. The number of banks
that are SRAM banks and their sizes are configurable (The default number of banks is four banks), while multiple
banks enables concurrent memory access. They are responsible for storing the input and output matrices A, B, D
and C.

Figure 38b illustrates the structure of the AccumulatorMem in the scratchpad module. The number of banks
that are SRAM banks and their sizes are configurable (The default number of banks is two banks), the
AccumulatorMem holds the intermediate and final results [10].

Figure 38 (a) ScratchpadBanks (b) AccumulatorMem

Figure 37 Scratchpad module

pg. 34

4.3 Configurations

4.3.1 Introduction

As the goal is to achieve higher performance configurations play a crucial rule to achieve that goal, In this
section we will discuss the available configurations and the configurations we chose whether we chose to stick
with the default configurations or chose to change it to fit our goal.

4.3.2 Configurable parameters

4.3.2.1 Spatial Array parameters

As discussed before spatial array can has multiple tiles while each tile has multiple number of PEs, the
default configuration is to have 1 tile and a mesh of 16x16 PEs.

The dataflow options are weight stationary and output stationary and to have both, the default configuration
is to have both.

4.3.2.2 Data types

Data types in Gemmini can be fixed point or floating point, we can configure the input data type, the
accumulator data type and the spatial array data type, the default is the input data type is an 8-bit signed integer,
the accumulator data type is 32-bit signed integer and the spatial array data type to be 20-bit signed integer.

4.3.2.3 Scratchpad and accumulator

Gemmini gives you the ability to choose the size of the scratchpad memory and accumulator memory and
to divide each one of them into banks to enable concurrent access, the default configuration for the scratchpad
memory is to be 256kB divided to 4 banks, and for the accumulator the default is to have 64kB memory divided
to 2 banks.

4.3.2.4 Deep neural network options

As Gemmini accelerator is a deep learning accelerator it give the ability to generate hardware modules to
do some of the common functionalities of the deep learning, it can be configured to be able to learn and change
the weight of the neural network in the run time or to only do the inference, can be configured to have max pool
operation and nonlinear activation (ex: RELU), the default is to have them all.

4.3.3 Implemented configurations

In the spatial array we chose to stick with the default configuration as it fits our purpose the only change is
in the dataflow type, we chose to have only weight stationary as it have been proved to be faster and execute the
operation in less clock cycles than output stationary in small designs [10].

In the data types we chose the input to be 16-bit signed integer as of the deep learning model we are trying
to run, and the accumulator input type and the spatial array output type we chose to stick with default
configurations.

pg. 35

The scratch pad memory size we chose it to be 64kB and to be divided into 4 banks as the deep learning
model we are trying to run is relatively small to the normal deep learning models, the accumulator memory size
is 32kB and divided into 2 banks.

In the deep learning options as the goal of the deep learning model we are trying is to only do the inference
we chose the option that the accelerator does not learn in the run time, as the deep learning model we are trying
to run does not have a maxpool function we chose not to have it, the deep learning model we are trying to run
have a RELU function so we chose to implement it.

We chose to have a hardware module to do the image to column operation.

pg. 36

5 Design flow
We use Design Compiler for logic synthesis, which is the process of converting a design description written

in a hardware description language such as Verilog or VHDL into an optimized gate-level netlist mapped to a
specific technology library. The steps in the synthesis process are as follows:

1. The input design files for Design Compiler are often written using a hardware description language (HDL)
such as Verilog or VHDL.

2. Design Compiler uses technology libraries, synthetic or DesignWare libraries, and symbol libraries to
implement synthesis and to display synthesis results graphically. During the synthesis process, Design
Compiler translates the HDL description to components extracted from the generic technology (GTECH)
library and DesignWare library. The GTECH library consists of basic logic gates and flip-flops. The
DesignWare library contains more complex cells such as adders and comparators. Both the GTECH and
DesignWare libraries are technology independent, that is, they are not mapped to a specific technology
library. Design Compiler uses the symbol library to generate the design schematic [25].

Figure 39 Overview of how Design Compiler fits into the design flow

pg. 37

3. After translating the HDL description to gates, Design Compiler optimizes and maps the design to a specific
technology library, known as the target library. The process is constraint driven. Constraints are the designer’s
specification of timing and environmental restrictions under which synthesis is to be performed.

4. After the design is optimized, it is ready for test synthesis. Test synthesis is the process by which designers
can integrate test logic into a design during logic synthesis. Test synthesis enables designers to ensure that a
design is testable and resolve any test issues early in the design cycle. The result of the logic synthesis process
is an optimized gate-level netlist, which is a list of circuit elements and their interconnections.

5. After test synthesis, the design is ready for the place and route tools, which place and interconnect cells in
the design. Based on the physical routing, the designer can back-annotate the design with actual interconnect
delays; Design Compiler can then resynthesize the design for more accurate timing analysis.

Synthesis tool > Design compiler from Synopsis

STA tool > Prime time from Synopsis

Formal Verification tool > Formality from Synopsis

PnR tool > Innovus from Cadence

5.1 Synthesis flow using design compiler:
As shown in Figure 41.:

5.1.1 Develop HDL files

- First, we extract Verilog files from Gemmini (design compiler accept RTL written in VHDL and Verilog
as a HDLs)

- Understand the nature of RTL extracted from Gemmini and how arrange files to input them as source files
to Design compiler compiler

Synopsis design
compiler

Prime time

Innovus

CAD Tools

Formality

Figure 40 (computer-aided design) CAD tools

pg. 38

5.1.2 Specify libraries (PDKS)

Develop
HDL files

Specify
libraries

Read
design

Define
design

environmen

Set design
constraint

Select
compile
strategy.

Reports
and netlists

Synthesize
and

optimize

Figure 41 the Synthesis flow using DC tool

Figure 42 Design compiler take VHDL and Verilog files only.

SlowSlow
(Setup)

TypicalTypic
al

FastFast
(Hold)

Figure 43 TSMC PDK and its PVT flavours

pg. 39

we specify the link, targets and synthetic libraries for Design Compiler by using the link_library,
target_library and synthetic_library commands.

The link and target libraries are technology libraries that define the semiconductor vendor’s set of cells and
related information, such as cell names, cell pin names, delay arcs, pin loading, design rules, and operating
conditions.

The synthetic library is the DesignWare libraries where you take the adder , subtractor ,multiplier and divisor
and that which make us able to write the arithmetic symbols like (+,-,*,/) in our RTL code [25]

5.1.3 Read Design

Design Compiler provides the following ways to read design files:

• The analyze and elaborate commands

• The read_file command (we used this way)

Our design consists of 11 submodules, and we make synthesis to every submodule separately as the code of
the RTL wea so big and that lead to full of our laptops rams the design compiler crashes we will discuss this
problem later in details inshallah.

1

1

1

8

7

6

5

43 2

9

Figure 44 Structure of design

pg. 40

5.1.4 Define design environment

Design Compiler requires you to model the environment of the design to be synthesized. This model
comprises the external operating conditions (manufacturing process, temperature, and voltage), loads, drives,
fanouts, and wire load models. It directly influences design synthesis and optimization result.

5.1.4.1 Operating conditions

As shown Figure 47, The technology library contains operating condition specifications such as (FF, SS,
TT) with different voltages, temperature, and process to make the design take in account all corner cases and
changes may occur in the chip while processing.

Goal of operating conditions: To ensure that chip will operate correctly in the different environments.

5.1.4.2 Wire load model

Wire load models are used only when Design Compiler is not operating in topographical mode. Wire load
modeling allows you to estimate the effect of wire length and fanout on the resistance, capacitance, and area of
nets. Design Compiler uses these physical values to calculate wire delays and circuit speeds. Semiconductor
vendors develop wire load models, based on statistical information specific to the vendors’ process. The models
include coefficients for area, capacitance, and resistance per unit length, and a fanout-to-length table for
estimating net lengths (the number of fanouts determines a nominal length) [25].

Figure 45 Design environment to estimate the reality

Operating
conditions

Wire load
model

Output
Load

Design Environment

Driving Cell

Figure 46 setting the design environment components

pg. 41

Goal of WLM: To estimate the parasitics of routing between cells and not be more optimistic in STA.

Choice of WLD depends on design size.

5.1.4.3 Driving cell and output load

Our design consists of hundreds of logic chains like in

the figure and to calculate the delay of the chain you need the input transition and the output capacitance,
so we set driving cell to estimate the input transition and set the output load.

5.4.5 Set design constrains

We have two types from constrains:

Logical DRC:

• Max fanout

• Max transition

• Max capacitance

Figure 48 logic chain

Figure 47 Different processes in the different operating
conditions

Figure 48 Max fanout to have good STA estimation.

pg. 42

Optimization:

• Area:

• Set max area

• Speed:

• Clock

• Input delay

• Output delay

We put 60% from the clock cycle as input delay for the logic outside my block towards input ports and also
60% from the clock cycle to the logic outside my block towards output ports.

Problem: In the timing paths between input to output we have 120% from the clock cycle reserved outside
my block and that cause me setup violation

To solve this problem, we use set_max_delay command to constrain these specific paths only.

Figure 49 : constrain the blocks of design.

Figure 50 Input to output timing path from Design compiler

Figure 51 Max delay to solve the problem.

pg. 43

5.4.6 Compile strategy

Top-down strategy:

Top-down compile, in which the top-level design and all its sub designs are compiled together.

When we use Top-down compile the Ram become full and the design compiler crashes. So, we had to
compile every submodule separately with Its constraining and script and integrate them again.

- We synthesis the TOP

Bottom-up strategy:

Bottom-up compile, in which the individual sub designs are compiled separately, starting from the bottom
of the hierarchy, and proceeding up through the levels of the hierarchy until the top-level design is compiled.

-We synthesis {U3, U4, U5} then U2 with U1 then TOP

5.4.7 Synthesize and optimize the design

We have multiple efforts in the tool:

Most powerful : Compile_ultra more optimization and maximum effort from the DC to meet the constrains

Colmpile -map_effort:

• High

Figure 52 Hierarchy of design

Figure 53: problem of Top-down strategy

pg. 44

• medium
• low

optimization order:

• Delay (WLM)

• design rule

• power

• area

5.4.8 Reports and netlist

Netlist: The optimized gate-level file that mapped to the technology libraries (.libs) and has two formats
Verilog format (.v) and binary format (.ddc) which is Synopsys database format. It is most recommended by
Synopsys.

SDC: it has the constrains applied on the design with its ports and nets, It is a short form of
“Synopsys Design Constraint” which is a common format for constraining the design which is supported by
almost all Synthesis.

Reports: They are files reported from the Design compiler tool to see the result of the synthesis process and
we have extracted 6 reports:

• Area

• Setup

• Hold

• Constrains

• Clocks

• Power

Netlist SDC

SDF

Write out files

Reports

Figure 54 the output files from the synthesis step

pg. 45

SDF: It stands for Standard delay format. It gives information on the timing data extensively used in
backend VLSI design flows like gate level simulation the SDF after synthesis isn’t accurate as it depends on
WLM.

5.2 Results of the synthesis step

5.2.1 Timing -setup
Table 3 Setup timing result from Synthesis step

Instance name Setup state Slack -critical path Period

Execute controller Met 0 20ns

FrontendTLB Met 0 20ns

im2col Met 4.57 20ns

LoadController Met 0 20ns

Loopconv Met 0 20ns

LoopMatmul Met 0 20ns

Queue_57 Met 1.2 20ns

Queue_58 Met 0.38 20ns

ReservationStation Met 0 20ns

StoreController Met 0 20ns

Scratchpad Met 0 20ns

Total accelerator Met _ 20ns

Timing

S

Total
Power

Total Area

Concerns

Figure 55 parameters under concern

pg. 46

5.2.2 Timing -hold

Table 4 Hold timing result from Synthesis step

Instance name Setup
state

Slack -critical
path Period

Execute controller Met 0.47 20ns

FrontendTLB Met 0.62 20ns

im2col Met 12.9 20ns

LoadController Met 0.89 20ns

Loopconv Met 0.32 20ns

LoopMatmul Met 0.81 20ns

Queue_57 Met 1.16 20ns

Queue_58 Met 1.16 20ns

ReservationStation Met 0.61 20ns

StoreController Met 0.77 20ns

Scratchpad Violated 0 20ns

Total accelerator Met _ 20ns

pg. 47

5.2.3 Area

Table 5 Table 4 Area result from Synthesis step

Instance name Number
of cells cell area Interconnect

area Total area Percentage

Execute controller 192210.0 3098539.4 116024229.0 119122768.4 6.88%

FrontendTLB 3937.0 46637.3 2513013.2 2559650.5 0.15%

im2col 67.0 734.3 26600.1 27334.4 0.00%

LoadController 5565.0 77618.7 3466885.7 3544504.4 0.20%

Loopconv 59142.0 986664.1 35674748.9 36661413.0 2.12%

LoopMatmul 37754.0 517273.8 18498994.4 19016268.2 1.10%

Queue_57 1607.0 23604.6 1120939.4 1144544.0 0.07%

Queue_58 1636.0 24349.5 1155006.3 1179355.8 0.07%

ReservationStation 31897.0 346019.2 18678435.3 19024454.5 1.10%

StoreController 4168.0 68223.9 2310945.3 2379169.2 0.14%

Scratchpad 2677679 38857777.8 1487934334.8 1526792112.7 88.18%

Total accelerator 337983.0 5189664.8 199469797.7
1529171281.9

um2

1.529 cm2
100%

pg. 48

6 Formal Verification
Formal Verification or Logic Equivalence Check, popularly known as LEC is one of the most important

parts of the ASIC VLSI design. Formal verification is done to check the functional/logical equivalence of a
changed/modified design, which is the netlist of the design, concerning a golden design. The golden design
(Verilog RTL model) is called the Reference design, and the design which needs to be checked, is the
Implementation design. Formal Verification is done to make sure that unexpected changes have not happened in
the design in each implementation step.

Formal Verification needs to be done in the following circumstances. usually, two kinds of verification
are common in Formal Verification. I would use (ref) for reference and (impl) implementation:

• RTL (ref) vs Netlist(impl):

a) Golden RTL design VS Post-synthesis (Synth) netlist.

b) Golden RTL design VS Post-design for test (DFT) netlist.

c) Golden RTL design VS Post-place and route (PNR) netlist.

• Netlist before a specific step in ASIC flow VS Netlist after this specific step:

a) Pre-Synthesis netlist VS Post-Synthesis netlist.

b) Pre-DFT netlist VS Netlist Post-DFT netlist

c) Pre-PNR netlist VS Netlist Post-PNR netlist

RTL vs Netlist is used to verify that the synthesis has been doing the right job, i.e. the resulting netlist is
functionally equal to the RTL. we can always simulate the netlist to verify that the netlist is ok, but netlist
simulations take time, they can run for hours days, and in some cases even weeks. Now suppose that after running
days of simulation, you found a very small bug, you fix it in RTL, synthesize it, and produce a new netlist. Now
without the existence of any formal verification, you would run days of simulation again. With formal verification,
you can quickly verify that the netlist out of synthesis is corresponding to what the RTL is, thus saving you a lot
of time [26] .

Netlist vs Netlist may be done to verify:

1. Pre-layout and Post-layout netlists: After PNR, you produce a 'post-layout' netlist to check if this netlist
is functionally equivalent to the 'pre-layout netlist', formal verification is a popular choice.

2. Engineering Change Order (ECO) changes which is the practice of introducing logic directly into the
gate-level netlist corresponding to a change that happens in the RTL. i.e., Suppose you change a gate
or two for fixing timing or for any other purpose. For example, if you insert a buffer to fix a hold
violation in the netlist manually, you would then like to be sure that nothing else has broken as a result.

In any typical SOC design, there are several electronic design automation (EDA) tools in the Formal
Verification flow. The major tools which do formal checking are Synopsys Formality, Cadence Co-formal, and
Mentor Formal-pro.

Our EDA tool choice in this step of the ASIC flow was Synopsys Formality tool as it has a good pack of
features such as Offering a graphical user interface (GUI) and a shell command-line interface (fm_shell)
environment. Using the shell command-line interface makes creating an automated TCL script to be run to all

pg. 49

modules of the Gemmini architecture without the need to open the GUI of the Formality tool as we use the bottom-
up technique in the ASIC flow.

The most important features of the formality tool were performing RTL-to-RTL, RTL-to-gate, and gate-to-
gate design verifications, Reading Synopsys internal (.db or. ddc) formats. And Reading synthesizable System
Verilog, Verilog, and VHDL.

6.1 Formal Verification Components
This section presents components and concepts that help you effectively use the Formality tool. It includes

the following sections:

6.1.1 Logic Cones

A logic cone consists of combinational logic originating from a particular design object such as an output
port, register, latch, black box input pin, or net driven by multiple drivers. The logic cone is terminated at certain
design object outputs such as mentioned above. The design objects where logic cones are terminated are those
used by Formality to create compare points that will be shown in the next section.

These design objects are primary outputs, internal registers, black box input pins, and nets driven by
multiple drivers where at least one driver is a port or black box. The design objects at which logic cones terminate
are primary inputs and those that Formality uses to create compare points.

In Figure 56, the design object of concern is a primary output. Formality compares this design object
(compare point) to a comparable object (compare point) in a second design during verification. The shaded area
of the figure represents the logic cone for the primary output. The cone begins at the input net of the port and
works back toward the termination points. In this illustration, the termination points are nets connected to primary
inputs [27].

Figure 56 The Logic Cone concept

pg. 50

6.1.2 Compare Points

A compare point is a design object used as a combinational logic endpoint during verification. A compare
point can be an output port, register, latch, black box input pin, or net driven by multiple drivers.

Formality uses the following design objects to automatically create compare points:

• Primary outputs

• Sequential elements

• Black box input pins

• Nets driven by multiple drivers, where at least one driver is a port or black box

As shown in Figure 57, Formality verifies a compare point by comparing the logic cone from a compare
point in the implementation design against a logic cone for a matching compare point from the reference design.

When functions defining the cones of logic for a matched pair of compare points (one from the reference
design and one from the implementation design) are proved by Formality to be functionally equivalent, the result
is that the compare points in both the reference and implementation designs have passing status. If all compare
points in the reference design pass verification, the final verification result for the entire design is a successful
verification [27].

Before design verification, Formality tries to match each primary output, sequential element, black box
input pin, and qualified net in the implementation design with a comparable design object in the reference design.

For Formality to perform a complete verification, all compare points must be verifiable. There must be a
one-to-one correspondence between the design objects in the reference and implementation designs. However,
the following cases do not require a one-to-one correspondence to get complete verification when you are testing
for design consistency:

• Implementation design contains extra primary outputs.

• Either the implementation or reference design contains extra registers, and no compare points fail
during verification.

Compare points are primarily matched by object names in the designs. If the object names in the designs
are different, Formality uses various methods to match up these compare points automatically. You can also
manually match these object names when all automatic methods fail.

Figure 57 Compare points of the cones of logic

pg. 51

Compare-point matching techniques in Formality can be broadly divided into two categories:

• Name-based matching techniques

• Non-name-based matching techniques

Unmatched design objects from either the implementation or reference design are reported as failing
compare points, with a note indicating that there is no comparable design object in the reference design [26].

6.1.3 Containers

A container is a complete, self-contained space into which Formality reads designs. It is typical for one
container to hold the reference design while another holds the implementation design.

A container typically includes a set of related technology libraries and design libraries that fully describe a
design that is to be compared against another design. A technology library is a collection of “parts” associated
with a particular vendor and design technology. A design library is a collection of designs associated with a single
design effort. Designs contain design objects such as cells, ports, nets, and pins. A cell can be a primitive or an
instance of another design as shown in figure 58 [26, 27].

In general, to perform a design comparison, you should load all of the information about one design into a
container (the reference), and all the information about the other design into another container (the
implementation).

As shown the Figure 59, Each container can hold many design and technology libraries, and each library
can hold many designs and cells. Components of a hierarchical design must reside in the same container [26].

Figure 58 Containers in a Hierarchical Design

pg. 52

6.2 Formality Flow
The flow chart in Figure 60 provides an overall flow to the Formality design verification process. That we

will go through each step in the flow.

Figure 59 Containers can hold design and technology libraries

Figure 60 the flow of The formality tool

pg. 53

6.2.1 Start Formality

Formality offers two working environments:

• The Formality shell, fm_shell, is the command-line interface. The fm_shell commands are made
up of command names, arguments, and variable assignments. Commands use the tool command
language that is used in many applications in the EDA industry.

• The Formality GUI is the graphical, menu-driven interface. It allows you to perform verification
and provides schematic and logic cone views to help you debug failed verifications.

Our choice was using the shell command-line interface makes creating an automated TCL script to be run
to all modules of the Gemmini architecture without the need to open the GUI of the Formality tool as we use the
bottom-up technique in the ASIC [27].

6.2.2 Load Guidance

Load guidance or the Automated Setup File is the step before specifying the reference and implementation
designs, it is optional to load an automated setup file (.svf) into Formality. The benefit of an automated setup file
(.svf) is that it allows the implementation tool to automatically provide setup information to Formality. It helps
Formality understand and process design changes caused by other tools that were used in the design flow.
Formality uses this information to assist compare point matching and correctly set up verification without your
intervention. It eliminates the need to enter setup information manually, a task that is time-consuming and error-
prone [27].

For example, during synthesis, the phase of a register might be inverted. This change is recorded in the
automated setup file (.svf). When you read the automated setup file into Formality, the tool can account for the
phase inversion during compare point matching and verification.

6.2.3 Load Reference and Implementation Designs

To run Formality, it is a must to read in both a reference and an implementation design and any related
technology libraries. Optionally, you can pass additional setup information from Design Compiler to Formality,
and you can load automated setup files from other related tools.

As shown in Figure 6, you first read in these automated setup files. Next, read only the libraries (.db) and
designs (.v) that are needed for the reference, then immediately specify its top-level design. Read only the files
that you need for the implementation design (netlist) (.v), then immediately specify its top-level design. Finally,
you must set the top-level design for the reference design before proceeding to the implementation design [26].

The formality tool uses the concept of container as shown previously in the container section to create two
containers one for the reference design, called the reference container, and another for the implementation design,
called the implementation container, As shown in Figure 61.

pg. 54

6.2.4 Perform Setup

After reading designs into the Formality environment and linking them, sometimes it needs to set design-
specific options to help Formality perform verification. For example, if someone is aware of certain areas in a
design that Formality cannot verify, you might want to prevent the tool from attempting to verify those areas. Or,
if you want to speed up verification, you might declare blocks in two separate designs black boxes.

There are some cases you need to use setup commands:

• Exclude some compare points from the verification step.

• Force some ports or pins to have a constant value whether 0 or 1.

• Allow the formality tool to treat undriven nets and pins as don’t care values during the verification
step.

6.2.5 Matching Compare Points

After preparing the verification environment and setting up your design, the design is ready to match
compare points and then verify the design.

As described in “Compare Points”, compare point matching is either named-based, as shown in Figure 7,
or non-name-based. The following matching techniques occur by default when you match compare points.

Name-based matching:

Figure 61 Formality Read-Design Process Flow

pg. 55

• Exact-name matching
• Compare point matching based on net names
• Name filtering

Non-name-based matching:

• Topological equivalence
• Signature and topological analysis

These matching techniques are executed in the following order:

• Exact-name matching
• Name filtering
• Topological equivalence
• Signature analysis
• Compare point matching based on net names

After a technique succeeds in matching a compare point in one design to a compare point in the other design,

that compare point becomes exempt from processing by other matching techniques and is passed to verify step
[27].

Figure 63 compare points is matched by their name between Designs

Figure 62 Matches Corresponding Points between Designs

pg. 56

6.2.6 Performing Verification

When the verify command is used, the Formality attempts to verify logical equivalence for each logic cone
and its compare points in the implementation design and the reference design. As shown in the figure below.

6.2.7 Reporting and Interpreting Results

As part of your troubleshooting efforts, Formality allows you to report on passing, failing, unverified, and
aborted compare points. During verification, Formality assigns one of three types of status messages for each
compare point it identifies:

• Passing
A passing point represents a compare point match that passes verification. Passing verification
means that Formality determined that the functions that define the values of the two compare point
design objects are functionally equivalent.

• Failing
A failing point represents a compare point match that does not pass verification. Failing
verification means that Formality determined that the two design objects that constitute the
compare point are not functionally equivalent [26].

• Unverified
An unverified point represents a compare point that has not yet been verified. Formality normally
stops verification after 20 failing points have been found.

• Aborted
An aborted point represents a compare point that Formality did not determine to be either passing
or failing. The cause can be a compare point that is too difficult to verify [27].

Based on the previous categories, Formality classifies final verification results in one of the following ways:

• Succeeded
The implementation design was determined to be functionally equivalent to the reference design.
All compare points passed verification.

• Failed
The implementation design was determined to be not functionally equivalent to the reference
design. Formality could not successfully match all design objects in the reference design with

Figure 64 Verifies logical equivalence for each logic cone between Designs

pg. 57

comparable objects in the implementation design, or at least one design object in the reference
design was determined nonequivalent to its comparable object in the implementation design (a
compare point failure).

• Inconclusive
Formality could not determine whether the reference and implementation designs are equivalent
in the following cases:

 A matched pair of compare points was too difficult to verify, causing an “aborted”
compare point, and no failing points.

 The verification was interrupted.

6.3 Result of the Formal Verification
As we use the bottom-up technique in the ASIC flow. We perform the formality step for each module of

the Gemmini architecture. We choose to run formality for only compare Golden RTL between Post-synthesis
Netlist and Post-PNR Netlist as comparing a Netlist before a specific step in ASIC flow and after this specific
step will not get a useful indication to the formal verification but comparing Golden RTL and a netlist is always
giving a better indication what changes have happened to the RTL after a specific step in ASIC flow.

Table 6 1the result of the formal verification step

Module name Golden RTL VS Post-synthesis Netlist Golden RTL VS Post-PNR Netlist

ExecuteController Verification Succeeded Verification Succeeded
FrontendTLB Verification Succeeded Verification Succeeded

Im2col Verification Succeeded Verification Succeeded
LoadController Verification Succeeded Verification Succeeded

Loopconv Verification Succeeded Verification Succeeded
LoopMatmul Verification Succeeded Verification Succeeded

Queue_57 Verification Succeeded Verification Succeeded
Queue_58 Verification Succeeded Verification Succeeded

ReservationStation Verification Succeeded Verification Succeeded
Scratchpad Verification Succeeded Verification Succeeded

StoreController Verification Succeeded Verification Succeeded

As shown in the previous table each module of the Gemmini architecture has passed the formal verification
check. That means the functional/logical operation of a changed/modified design (netlist) after synthesis and PNR
steps are the same as the functional/logical operation of the RTL before synthesis and PNR steps. It also means
the synthesis tool and PNR tool have done the right job.

pg. 58

7 CHAPTER FIVE: PLACE AND ROUTE

7.1 Introduction to PnR
The rapid advancement of integrated circuit technology has led to the development of complex and highly

integrated electronic systems, these systems often consist of numerous components, such as logic gates, memory
elements, and interconnects, all interconnected on a silicon chip. However, designing the physical layout of these
components and efficiently routing interconnects poses significant challenges.

Place and route (PnR) is a crucial step in the physical design process of electronic systems, where the
locations of components are determined and the interconnections between them are established. PnR plays a
fundamental role in translating the logical representation of a circuit into a physical layout that meets various
design objectives, including performance, area utilization, power consumption, and manufacturability.

The primary goal of PnR is to optimize the physical layout of the components on a chip, taking into account
the specified design constraints and objectives. The placement step determines the positions of the components
on the chip's surface, aiming to minimize wire length, optimize timing, and reduce congestion. On the other hand,
the routing step involves establishing the interconnections between the components while considering factors
such as wire length, signal integrity, and congestion.

PnR algorithms leverage various techniques, including mathematical optimization, heuristic algorithms, and
machine learning approaches, to achieve efficient and effective physical design. These algorithms consider
numerous factors, such as signal delays, power consumption, thermal constraints, and manufacturing constraints,
to produce a physically realizable and high-performing layout.

The challenges in PnR arise due to the increasing complexity and scale of modern electronic systems. The
large number of components, the interconnect patterns, and the requirement to satisfy multiple conflicting design
objectives make PnR a computationally intensive task. Moreover, as technology advances, the need for faster and
more energy-efficient electronic systems further intensifies the demand for sophisticated PnR techniques.

Efficient PnR plays a vital role in the success of electronic systems, impacting their performance, power
consumption, and cost. A well-designed PnR process can significantly improve the yield of integrated circuits,
reduce the TTM (time-to-market), and enhance the overall reliability and manufacturability of electronic systems.

In conclusion, PnR is a critical step in the physical design process of electronic systems, aiming to optimize
the placement and routing of components on a chip. Efficient PnR algorithms and techniques play a crucial role
in achieving high-performance, low-power, and cost-effective designs. As the complexity of electronic systems
continues to grow, advancements in PnR are crucial for meeting the evolving demands of modern integrated
circuit design.

pg. 59

Figure 65 PnR Flow

7.2 PnR Flow

As shown in the above figure the PnR is the step that follows the synthesis step as it take the Gate Level
Netlist that is produced from the synthesis step and the general flow of the PnR consist of :-

1. Floor planning

2. Placement

3. CTS (clock tree synthesis)

4. Detailed Routing

5. Physical verification

6. GDS-II steam

And in the next section we will explain this flow in details in a test case (Queue_57.v)

The tool used: - Cadence Innovus 2019.

pg. 60

7.3 Detailed PnR Flow for Queue_56

7.3.1 Design Import

This is the first step in the PnR flow where we load the netlist from the synthesis operation and also load
the LEF and MMMC files

LEF Files:-Library Exchange Format (LEF) is a specification for representing the physical layout of an
integrated circuit in an ASCII format. It includes design rules and abstract information about the cells. There are
three kinds of LEF files which are Technology LEF File, Standard Cell LEF file, IO LEF file.

Figure 66 Detailed PnR flow

Figure 67 Design modules

pg. 61

Multi-Mode Multi Corner (MMMC) View Definition File:- The MMMC view definition file contains
pointers to two type of files which are Liberty Timing Models Files (LIB), Design Constraints (SDC). LIB files
contain timing information about the standard cells and IO pads and SDC file contains the different timing
constraints

7.3.2 Floor Planning

In this step we choose the chip area (Innovus calculate it automatically based on the synthesis results) and
choose the core utilization (the area of the standard cells divided by the total area) for the placement step which
is 0.7 in our case to make easy routing and also choose the core margins in all direction which is 5 in our case to
place the power and ground rings and choose the aspect ratio which is the height divided by the width we make
it 1 resulting in square floor plan.

Figure 68 Final Floor Plan

pg. 62

7.3.3 Power Planning

In this step we add the power and ground rings in the margin area to feed all the chip cells then add the
stripes to establish a (VDD, GND) network

7.3.4 Placement

Placement is the process of placing the standard cells inside the core boundary in an optimal location. The
tool tries to place the standard cell in such a way that the design should have minimal congestions and the best
timing. Every PnR tool provides various commands/switches so that users can optimize the design in a better way
in terms of timing, congestion, area, and power as per their requirements. Based on the preferences set by the
user, the tool tray to place and optimize the Placement, does not place only the standard cells present in the
synthesized netlist but also places many physical only cells and adds buffers/inverters as per the requirement to
meet the timings, DRV, and foundry requirements. Also in this step we do the trial route which is not the actual
route to estimate some design metrics.

Figure 70 Power Planning (Rings) Figure 69 Power Planning (stripes)

Figure 71 Trial Routing Results

pg. 63

7.3.5 Timing analysis and optimization preCTS

After we finish the placement and before adding the clock tree (CTS) we should check the timing and the
DRV's of the design and if any violation happens, we should solve them by the optimization step.

Figure 72 Chip after Placement and Trial Routing

Figure 73 Timing and DRV's preCTS

pg. 64

As seen, there is a timing violation and some DRV's so we need the optimization step

As seen the density increase from 64.5% to 65.67% but we solve the violations.

7.3.6 Clock Tree Synthesis (CTS)

In this step we create the clock tree for our clock (REF_CLK) and check the timing and the DRV's same as
the previous step and make sure there is no violations

The only change from the previous step is that the density increase from 65.669 to 66.087 as a result for the
CTS creation

7.3.7 Detailed Routing

As mentioned before in the placement step we make a trial routing which is not the final routing and it's
done for the purpose of estimation of some design metrics but in this step we make the detailed (actual) routing
for all the cells in the chip and calculate the actual delay for all the interconnects and save them in the SDF file
after finishing the flow

SDF File:-Standard Delay Format File it gives information about the delay of the paths and interconnects
and also used in the final gate level simulation

Figure 74 Timing and DRV's after optimization

pg. 65

After the detailed routing we also check timing and make optimization if needed, the density doesn't change

7.3.8 Verification

In this step we verify the geometry and the connectivity of the design to make sure there is no violation
of the DRC.

Figure 75 Detailed Routing Results

Figure 76 Chip after Detailed Routing

pg. 66

As seen, there are no geometry or connectivity violations.

7.3.9 Filler Insertion

In this step we add some filler cells to increase the utilization of the chip and fill the empty places in the
chip, the library provide various sizes of the filler cells such as {FILL1M FILL2M FILL4M FILL8M
FILL16M FILL32M FILL64M} the number indicate the filler width, after adding the filler the density is
100%

Figure 78 Geometry Report
Figure 77 Connectivity Report

Figure 80 Chip after Filler insertion

Figure 79 Density after Filler insertion

pg. 67

7.3.10 Summary

After done with this flow we generate the GDSII file and the SDF file and some reports (Area, power,
Timing) that will be discuss in the next section.

Graphic Design System (GDSII Files): This file is required for layout extraction at the time of layout
generation we need the mapping file to produce actual GDS file of the IC.

7.4 Results

7.4.1 Area Results

In the next table all the modules final areas will be listed and its percentage from the total area.

Table 7 Area Results

Module name Area in (µm2) Percentage %
ExecuteController 7323129 14.335%

FrontendTLB 33848 0.066%
Im2col 614 0.001%

LoadController 113450 0.222%
Loopconv 1065238 2.085%

LoopMatmul 380153 0.744%
Queue_57 22179 0.043%
Queue_58 23063 0.045%

ReservationStation 284168 0.556%
Scratchpad 41792113 81.81%

StoreController 46337 0.091%
Total 51084292 100%

The expected final area will be larger than the 51 mm2 as this area is the summation of all the modules area
after integrating them with each other and the largest 2 modules are the Scratchpad and the ExecuteController as
they take 96%

Place & Route Flow

.v netlist

.lib timing

.LEF

.SDC
.GDS layout

.SDF delay

.v netlist

pg. 68

7.4.2 Area comparison

In the next table we list the area results for implement the Gemmini accelerator with the 22nm FFL process
technology and the final total area is 1.029 mm2 compared to our 51 mm2 implementation with TSMC 130nm
process technology we found area increase by 50X which is reasonable and close to the rough estimate which is
the square of the technology scaling (130/22) square which is 36X.

Table 8 Area Results for 22 nm FinFet technology [11]

Module name Area (µm) Percentage %
Spatial Array 116k 11.3%
Scratchpad 690k 67.1%

CPU 171k 16.6%
Other 52k 5.0%
Total 1029k 100%

7.4.3 Power Results

In the next table all the modules total power will be listed and its percentage from the total chip power.

Figure 81 Area Distribution

pg. 69

Table 9 Power Results

Module name Power in (mW) Percentage %

ExecuteController 125.6 13.064%

FrontendTLB 1.72 0.179%

Im2col 0.13 0.014%

LoadController 3.6 0.374%

Loopconv 39.2 4.077%

LoopMatmul 13.6 1.415%

Queue_57 1.86 0.193%

Queue_58 2.05 0.213%

ReservationStation 11.82 1.229%

Scratchpad 758 78.842%

StoreController 3.85 0.4%

Total 961.43 100%

The total power is approximately 1W and the 2 most power-hungry modules are the Scratchpad and the
ExecuteController as they consume about 92% from the chip total power

 Figure 82 Power Distribution

pg. 70

8 Conclusion
In conclusion, our graduation project focused on understanding and implementing the Gemmini accelerator

for deep learning model inference. We began by acquiring a comprehensive understanding of hardware
architectures specifically designed for deep learning. Subsequently, we delved into the Gemmini framework,
studying its architecture and configuration options.

Based on a published paper analysis, we identified the suitable configuration for our model and generated
the Register Transfer Level (RTL) representation. This allowed us to verify the correctness of the Gemmini
accelerator by testing it on the ResNet-50 model, demonstrating its ability to make deep learning inference.

To bring our implementation to fruition, we employed a Digital Backend flow, synthesis, placement, and
routing stages. This flow facilitated the transformation of the RTL design into a physical layout, ensuring efficient
placement of components and optimal interconnections. Then list the final area and power for all the modules and
we end with the GDS2 file for the Gemmini modules

pg. 71

9 Future work
Although we achieved some satisfactory results for us, but there were and still are some challenges that,

unfortunately, due to lack of time, we were unable to accomplish them. Therefore, we will present those problems
that may one day be solved by us or by other engineers :

1. Multi modes (capture and scan modes) and (Design for Test) DFT
Due the huge number of lines in the generated RTL code of Gemmini architecture, almost half million
line of Verilog, and it’s not easy to read and debagged it. Therefore, it was a hard and time-consuming
mission to identify each combinational logic exist between 2 flipflops and replace them by the scan-
flipflop version.

2. As the the Scratchpad is power-hungry module. so, finding a better implementation (hard macro or IP) to
replace the Scratchpad module to achieve a reasonable area and power consumption is a need.

3. Integrate all the generated GDS files for all modules to only one GDS representing the top module for
Gemmini architecture. This step needs a good experience in psychical layout engineering to draw the
layout of the top module and leave a good area to the layout of the 11 modules of Gemmini architecture
to merge the GDS files later by using cadence innovus tool or Calibre.

Figure 83 an overview of the top-module

pg. 72

Figure 85 the top-module layout after merging Figure 84the top-module layout before merging

pg. 73

References

[1] Introduction to cognitive radio networks and applications, Boca Raton: CRC Press, 2016.

[2] T. K. I. m. E. d. P. Merima Kulin, "End-to-end learning from spectrum data: a deep learning approach for
wireless signal identification in spectrum monitoring applications.," IEEE Access, vol. 6, pp. 18484-
18501, 2018.

[3] A. M. ,. N. M. ,. a. A. M. V. Valeria Loscri, "Wireless cognitive network technologies and protocols," in
Modeling and Simulation of Computer Networks and Systems Methodologies and Applications, Waltham,
Elsevier, 2015, pp. 119-153.

[4] A. Goldsmith, Wireless Communications, New York: Cambridge University Press, 2005.

[5] C. M. Bishop, Pattern Recognition and Machine learning, Singapore: Springer, 2006.

[6] Y.-H. C. T.-J. Y. a. J. S. E. Vivienne Sze, Efficient Processing of deep neural networks, Morgan Claypool:
Springer, 2020.

[7] Chipyard’s documentation, https://chipyard.readthedocs.io/en/stable/, version “1.10.0” accessed on 10
November 2022.

[8] EE290-2, Spring 2021: Hardware for Machine Learning course in UC Berkely.

[9] EE241B : Advanced Digital Circuits course in UC Berkely.

[10] Gookyi, D.A.N.; Lee, E.; Kim, K.; Jang, S.-J.; Lee, S.-S. Deep Learning Accelerators’ Configuration
Space Exploration Effect on Performance and Resource Utilization: A Gemmini Case Study. Sensors
2023, 23, 2380. https:// doi.org/10.3390/s23052380.

[11] H. Genc et al., "Gemmini: Enabling Systematic Deep-Learning Architecture Evaluation via Full-Stack
Integration," 2021 58th ACM/IEEE Design Automation Conference (DAC), San Francisco, CA, USA,
2021, pp. 769-774, doi: 10.1109/DAC18074.2021.9586216..

[12] D. G. J. W. C. S. H Liew, Hammer: a modular and reusable physical design flow tool, Proceedings of the
59th ACM/IEEE Design Automation Conference, 1335-1338, 2022.

[13] A. Emad et al., "Deep Learning Modulation Recognition for RF Spectrum Monitoring," 2021 IEEE
International Symposium on Circuits and Systems (ISCAS), Daegu, Korea, 2021, pp. 1-5, doi:
10.1109/ISCAS51556.2021.9401658..

[14] Gemmini tutorial mlsys 2022 ,Gemmini Tutorial MLSys 2022. Available at:
https://sites.google.com/berkeley.edu/gemmini-tutorial-mlsys-2022/ ..

[15] Gemmini. Available online: https://github.com/ucb-bar/gemmini (accessed on 10 November 2022)..

pg. 74

[16] Howard, A.G.; Zhu, M.; Chen, B.; Kalenichenko, D.; Wang, W.; Weyand, T.; Andreetto, M.; Adam, H.
MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications. arXiv 2017,
arXiv:1704.04861. preprint..

[17] Krizhevsky, A.; Sutskever, I.; Hinton, G.E. ImageNet Classification with Deep Convolutional Neural
Networks. Commun. ACM 2017, 60, 84–90. [CrossRef].

[18] Chen, J.; Xiong, N.; Liang, X.; Tao, D.; Li, S.; Ouyang, K.; Zhao, K.; DeBardeleben, N.; Guan, Q.; Chen,
Z. TSM2: Optimizing Tall-and-Skinny Matrix-Matrix Multiplication on GPUs. In Proceedings of the
ACM International Conference on Supercomputing, Phoeni.

[19] Anderson, A.; Gregg, D. MobileNets: Optimal DNN Primitive Selection with Partitioned Boolean
Quadratic Programming. arXiv 2018, arXiv:1710.01079. preprint..

[20] Kung, H.T. Why Systolic Architectures? IEEE Comput. 1982, 15, 37–46. [CrossRef].

[21] Jouppi, N.P.; Young, C.; Patil, N.; Patterson, D.; Agrawal, G.; Bajwa, R.; Bates, S.; Bhatia, S.; Boden, N.;
Borchers, A.; et al. Eyeriss: In-Datacenter Performance Analysis of a Tensor Processing Unit. In
Proceedings of the Annual International Symposium, Architecture, Toronto, ON, Canada, 24–28 June
2017; IEEE: San Francisco, CA, USA, 2017..

[22] Sze, V.; Chen, Y.H.; Yang, T.J.; Emer, J.S. Efficient Processing of Deep Neural Networks: A Tutorial and
Survey. Proc. IEEE 2017,, 105, 2295–2329. [CrossRef].

[23] Digital Design with Chisel. Available online: https://github.com/schoeberl/chisel-book (accessed on 10
November 2022)..

[24] Rocket Core. Available online: https://chipyard.readthedocs.io/en/stable/Generators/Rocket.html
(accessed on 10 November 2022)..

[25] Design Compiler® User Guide Version L-2016.03-SP2, June 2016.

[26] I. Synopsys, Formality User Guide, Synopsys, Inc, 2010.

[27] Formality® User Guide Version Z-2007.06, June 2007.

	Acknowledgments
	Abstract
	1. Introduction
	1.1 Cognitive radio networks
	1.2 Modulation classification
	1.3 Wireless signal model
	1.4 Fading
	1.4.1 large-scale fading
	1.4.2 Small-scale fading

	1.5 Data acquisition
	1.6 Deep learning
	1.7 Deep learning acceleration

	2 Gemmini and Chipyard Framework
	2.1 Why Gemmini: The Choice Among Other Tools:
	2.2 Chipyard Ecosystem:
	2.2.1 Chisel:
	2.2.2 FIRRTL:
	2.2.3 RISC-V:
	2.2.4 Rocket core and BOOM core:
	2.2.5 RoCC (Rocket Chip Coprocessor) Accelerator generators:
	2.2.6 FireSim:
	2.2.7 HAMMER:

	3 Methodology and Design Flow (Frontend):
	3.1 Starting with DL Model:
	3.2 Gemmini accelerator Design Flow for designing accelerators:
	3.3 Custom SoC configuration for Different RTL generators:
	3.4 RTL Build Process:
	3.5 Software RTL Simulations:
	3.5.1 Low-Level tests:
	3.5.2 Gemmini Flow Automation Script:
	3.5.3 High-level test:

	4 Gemmini Framework
	4.1 Background
	4.1.1 Converting Convolution to General Matrix Multiplication (GEMM)
	4.1.2 Gemmini framework

	4.2 Gemmini architecture
	4.2.1 Introduction
	4.2.2 RoCC interface
	4.2.3 LoopConv and LoopMatMul modules
	4.2.4 LoadController and StoreController
	4.2.5 ExecuteController and image to column (im2col)
	4.2.6 ScratchPad

	4.3 Configurations
	4.3.1 Introduction
	4.3.2 Configurable parameters
	4.3.2.1 Spatial Array parameters

	4.3.3 Implemented configurations

	5 Design flow
	5.1 Synthesis flow using design compiler:
	5.1.1 Develop HDL files
	5.1.2 Specify libraries (PDKS)
	5.1.3 Read Design
	5.1.4 Define design environment
	5.4.5 Set design constrains
	5.4.6 Compile strategy
	5.4.7 Synthesize and optimize the design
	5.4.8 Reports and netlist
	5.2 Results of the synthesis step
	5.2.1 Timing -setup
	5.2.2 Timing -hold
	5.2.3 Area

	6 Formal Verification
	6.1 Formal Verification Components
	6.1.1 Logic Cones
	6.1.2 Compare Points
	6.1.3 Containers

	6.2 Formality Flow
	6.2.1 Start Formality
	6.2.2 Load Guidance
	6.2.3 Load Reference and Implementation Designs
	6.2.4 Perform Setup
	6.2.5 Matching Compare Points
	6.2.6 Performing Veriﬁcation
	6.2.7 Reporting and Interpreting Results

	6.3 Result of the Formal Verification

	7 CHAPTER FIVE: PLACE AND ROUTE
	7.1 Introduction to PnR
	7.2 PnR Flow
	7.3 Detailed PnR Flow for Queue_56
	7.3.1 Design Import
	7.3.2 Floor Planning
	7.3.3 Power Planning
	7.3.4 Placement
	7.3.5 Timing analysis and optimization preCTS
	7.3.6 Clock Tree Synthesis (CTS)
	7.3.7 Detailed Routing
	7.3.8 Verification
	7.3.9 Filler Insertion
	7.3.10 Summary

	7.4 Results
	7.4.1 Area Results
	7.4.2 Area comparison
	7.4.3 Power Results

	8 Conclusion
	9 Future work
	References

