
Hardware Design and Implementation of Machine 

Learning Acceleration Network 

(Squeeze-Next Architecture) 

By 

Ahmed Hany Abd-Elrahman 

Ahmed Yasser Elbishbishy 

Ahmed Mohamed Makram 

Abdullah Mohamed Rajab 

Mohamed Sayed Mohamed 

Mohamed Hamed Mohamed 
 

A graduation project Sponsored by  

Siemens EDA (Mentor Graphics) and ONELAB  

Under the Supervision of 

Prof. Hassan Mostafa 

 

A Graduation Project thesis 

Submitted to the Faculty of Engineering at Cairo University 

In Partial Fulfillment of the Requirements for the Degree of 
Bachelor of 

Science in Electronics and Communications Engineering 

Faculty of Engineering, Cairo University Giza, Egypt 



II 
 

TABLE OF CONTENTS 

 

List Of Figures ......................................................................................................................... VIII 

List Of Tables ........................................................................................................................... XII 

List of Symbols and Abbreviations .......................................................................................... XIII 

Acknowledgments .................................................................................................................. XV 

Abstract ................................................................................................................................. XVI 

Chapter 1:  Introduction ........................................................................................................... 1 

1.1  Motivation ........................................................................................................................ 1 

1.2  Problem Definition ........................................................................................................... 2 

1.3  Organization ..................................................................................................................... 3 

Chapter 2:  Background And Related Work............................................................................ 5 

2.1 Introduction To Neural Network ........................................................................................ 5 

2.2 Network Training .............................................................................................................. 5 

2.3 Training Process ................................................................................................................ 6 

2.3.1  Forward Propagation .................................................................................................. 6 

2.3.2  Backward Propagation ............................................................................................... 6 

2.3.3  Loss Function ............................................................................................................ 7 

2.4  Introduction To CNN ........................................................................................................ 7 

2.4.1  Convolution Layer ..................................................................................................... 8 

2.4.2  Nonlinearity Layers ................................................................................................... 9 

2.4.3  Normalization Layer (Batch Normalization) ............................................................... 9 

2.4.4  Pooling Layer ............................................................................................................ 9 

2.4.5  Fully Connected Layers (FC) ................................................................................... 10 

2.4.6  Activation Layer ...................................................................................................... 10 

2.5 Different CNN Architectures ........................................................................................... 13 

2.5.1  ALEXNET (2012) ................................................................................................... 14 

2.5.2  VGGNET (2014) ..................................................................................................... 14 

2.5.3  GOOGLENET (INCEPTION V1) ............................................................................ 14 

2.5.4  RESNET-50 (2015) ................................................................................................. 15 



III 
 

2.5.5  SQUEEZE-NET ...................................................................................................... 16 

2.5.6  SQUEEZE-NEXT .................................................................................................... 17 

2.6 Point Representation ........................................................................................................ 18 

2.6.1  Fixed-Point Representation ...................................................................................... 18 

2.6.2  Floating-Point Representation .................................................................................. 19 

2.7  Parallelism ..................................................................................................................... 19 

2.7.1  Inter Layer Parallelism ............................................................................................. 20 

2.7.2  Inter Output Parallelism ........................................................................................... 20 

2.7.3  Inter Kernel Parallelism ........................................................................................... 20 

2.7.4   Intra Kernel Parallelism .......................................................................................... 20 

2.8  Pipelining ....................................................................................................................... 20 

2.9 Tensorflow ...................................................................................................................... 21 

2.10  DPU ............................................................................................................................. 21 

2.11 FPGA ............................................................................................................................ 22 

2.11.1 Overview ................................................................................................................ 22 

2.11.2 FPGA Flow............................................................................................................. 25 

2.12  ASIC ............................................................................................................................ 26 

2.12.1 Overview ................................................................................................................ 26 

2.12.2  ASIC Flow ............................................................................................................. 27 

2.14  Summary ...................................................................................................................... 29 

Chapter 3:  Design Architecture ............................................................................................. 30 

3.1  First Architecture Approach ............................................................................................ 30 

3.2  Second Approach Architecture ....................................................................................... 30 

3.3  Methods Of Parallelism .................................................................................................. 32 

3.3.1  16-Channel Parallelism ..................................................................................... 33 

3.3.2  8-Channel Parallelism ........................................................................................ 34 

3.3.3  4-Channel Parallelism ........................................................................................ 35 

3.3.4  3-Channel Parallelism ........................................................................................ 36 

3.4   Batch Normalization ...................................................................................................... 37 

3.4.1  Batch Normalization First Approach ........................................................................ 38 

3.4.2  Batch Normalization Second Approach .................................................................... 38 

3.4.3  Batch Normalization Third Approach ....................................................................... 38 



IV 
 

3.5  Layer Storage ................................................................................................................. 39 

3.6  Memories ....................................................................................................................... 40 

3.6.1  FPGAs on-chip Memory: ......................................................................................... 40 

3.6.2  WEIGHT MEMORY: .............................................................................................. 40 

3.6.3  BIAS MEMORY: .................................................................................................... 41 

3.6.4  DATA MEMORY: .................................................................................................. 41 

3.7  Intermediate Storage ....................................................................................................... 42 

3.8  Summary: ....................................................................................................................... 42 

Chapter 4:  Detailed Design .................................................................................................... 43 

4.1  Transition Between Layers That Have 1 Convolution...................................................... 43 

4.1.1  Transition Traditional Pipelined ............................................................................... 43 

4.1.2  Transition New Method ........................................................................................... 43 

4.2  Simultaneous Memory .................................................................................................... 44 

4.3 Optimization In Skip Connection Memories .................................................................... 45 

4.4  Skip connection merging ................................................................................................ 45 

4.5 Transition Between Layers That Have 5 Convolutions ..................................................... 46 

4.5.1  Transition traditional pipelined between layers that have 5 convolutions ...................... 46 

4.5.2  Transition new method between layers that have 5 convolutions .................................. 46 

4.6  Stall controller ................................................................................................................ 47 

4.7  Images controller ............................................................................................................ 48 

4.8  Layer Controller ............................................................................................................. 48 

4.8.1 Controller Responsibilities ........................................................................................ 48 

4.8.2 Controller Problems .................................................................................................. 50 

4.8  Average Pooling ............................................................................................................. 51 

4.9 Fully connected layer (FC) .............................................................................................. 51 

4.10. Summary ...................................................................................................................... 52 

Chapter 5:  Model Training And Parameters Generation ..................................................... 53 

5.1 Introduction To Squeezenext Training ............................................................................. 53 

5.2 Fixed Point Representation: ............................................................................................. 54 

5.3 Batch Normalization And Convolution Merging: ............................................................. 58 

5.4 Test Vectors Generation: ................................................................................................. 59 

5.5 Summary: ........................................................................................................................ 59 



V 
 

Chapter 6:  Optimizations For Squeezenext Architecture ..................................................... 60 

6.1 Timing Enhancements ..................................................................................................... 60 

6.1.1 Break the critical paths to increase the operating frequency. ...................................... 60 

6.1.2 Pipelining: ................................................................................................................ 60 

6.1.3  Parallelism inside layers: .......................................................................................... 62 

6.1.4  Merging some Convolutions in layers: ..................................................................... 62 

6.1.5  Pipelining inference of multiple images .................................................................... 62 

6.2 Area Enhancement........................................................................................................... 63 

6.2.1  Using Counter-Based Controller instead of FSM ...................................................... 63 

6.2.2  Using one controller to some layers: ......................................................................... 63 

6.2.3  Stride Optimization .................................................................................................. 64 

6.2.4 DSPs Optimization ................................................................................................... 64 

6.3 Power Reduction Techniques ........................................................................................... 65 

6.3.1 Clock gating in the Stall Controller ........................................................................... 65 

6.3.2 Operand Isolation:..................................................................................................... 66 

6.3.3 Avoid XOR Gates: .................................................................................................... 67 

6.4 Accuracy Enhancements .................................................................................................. 67 

6.4.1 Change data size within the layer .............................................................................. 67 

6.4.2  Moving the Radix Point in the fixed point representation ......................................... 68 

6.5 Summery ......................................................................................................................... 68 

Chapter 7: Synthesis And Implementation ............................................................................ 69 

7.1  Synthesis Flow ............................................................................................................... 69 

7.1.1  flatten_hierarchy: ..................................................................................................... 69 

7.1.2  gated_clock_conversion: .......................................................................................... 69 

7.1.3  bufg: ........................................................................................................................ 70 

7.1.4  fanout_limit ............................................................................................................. 70 

7.1.5  directive ................................................................................................................... 70 

7.1.6  retiming: .................................................................................................................. 71 

7.1.7  fsm_extraction: ........................................................................................................ 71 

7.1.8  keep_equivalent_registers: ....................................................................................... 71 

7.1.9  resource_sharing: ..................................................................................................... 71 

7.1.10 Synthesis Options ................................................................................................... 71 



VI 
 

7.2  Constraints: .................................................................................................................... 72 

7.3 Implementation Flow ....................................................................................................... 73 

7.3.1 Opt Design: .............................................................................................................. 73 

7.3.1 Power Opt Design (optional): .................................................................................... 73 

7.3.2 Place Design: ............................................................................................................ 74 

7.3.3 Post-Place Power Opt Design (optional): ................................................................... 75 

7.3.4 Post-Place Phys Opt Design (optional): ..................................................................... 75 

7.3.5  Route Design: .......................................................................................................... 76 

7.3.6  Post-Route Phys Opt Design (optional): ................................................................... 77 

7.3.7  Write Bitstream:....................................................................................................... 77 

7.4  Downloading The Bitstream Into The FPGA................................................................... 77 

7.4.1  Bitstream Overview ................................................................................................. 77 

7.4.2  Frequency Synthesis ................................................................................................ 77 

7.4.3 Output Observation ................................................................................................... 79 

7.4.3 Top Module Setup .................................................................................................... 80 

7.5 Summary: ........................................................................................................................ 80 

Chapter 8:  ASIC Flow............................................................................................................ 81 

8.1 Purpose for ASIC flow implementation ........................................................................... 81 

8.2 Problems in ASIC Flow Design ....................................................................................... 82 

8.2.1 Arithmetic Blocks ..................................................................................................... 82 

8.2.2 Memory Blocks ........................................................................................................ 82 

8.2.3 Setup Violation ......................................................................................................... 83 

8.3 Step and Method .............................................................................................................. 84 

8.3.1 Method ..................................................................................................................... 84 

8.3.2 Steps ......................................................................................................................... 85 

8.4 ASIC Results ..................................................................................................................... 88 

8.4 Summary ......................................................................................................................... 88 

Chapter 9:  Design Results ...................................................................................................... 89 

9.1 Testing Functionality and RTL Verification Methodology ............................................... 89 

9.1.1  Verification for each layer ........................................................................................ 89 

9.1.2  Verification of the overall system and results ........................................................... 89 

9.2 FPGA Results .................................................................................................................. 91 



VII 
 

9.2.1 FPGA Results at 100MHz ......................................................................................... 92 

9.2.2 FPGA Results at 125 MHz ........................................................................................ 96 

9.2.2 FPGA Results at 166.6 MHz ..................................................................................... 98 

9.2.2 FPGA Results at 200 MHz ...................................................................................... 100 

9.2.4  Result Comparison At Different Frequencies.......................................................... 101 

9.3 Hardware Testing .......................................................................................................... 102 

9.4 Other Works .................................................................................................................. 105 

9.5 Summary ....................................................................................................................... 106 

Chapter 10:  Future Work .................................................................................................... 107 

10.1 Change Fixed-Point Representation to reduce the Computational Power ...................... 107 

10.2 Using Multiple Clock Domains .................................................................................... 107 

10.3 Do The Verification Flow To The Network .................................................................. 107 

10.4 Complete ASIC flow for whole network ........................................................................ 107 

References ............................................................................................................................. 108 

 

 

 

 

 

 

 

 

 

 

 



VIII 
 

 

 

List Of Figures 

Figure 1: Training process of neural network ............................................................................... 6 

Figure 2: Cost function of CNN ................................................................................................... 7 

Figure 3: CNN classification example ......................................................................................... 8 

Figure 4: Convolution Layer process example ............................................................................. 8 

Figure 5: Pooling Layer process example .................................................................................... 9 

Figure 6: Max pooling example ................................................................................................. 10 

Figure 7: Average pooling example ........................................................................................... 10 

Figure 8: Fully Connected Layers .............................................................................................. 10 

Figure 9: Binary Step Function .................................................................................................. 11 

Figure 10: Linear Activation Functions ..................................................................................... 11 

Figure 11: Nonlinear Activation Functions examples ................................................................. 12 

Figure 12: ALEXNET ............................................................................................................... 14 

Figure 13: VGGNET ................................................................................................................. 14 

Figure 14: GOOGLENET ......................................................................................................... 15 

Figure 15: RESNET .................................................................................................................. 15 

Figure 16: SQUEEZE-NET ....................................................................................................... 16 

Figure 17:ResNet block on the left, SqueezeNet block in the middle, SqueezeNext block on the right .... 17 

Figure 18: Fixed-Point REPRESENTATION ............................................................................ 18 

Figure 19: Binary Floating-Point REPRESENTATION ............................................................. 19 

Figure 20: Decimal Floating-Point REPRESENTATION .......................................................... 19 

Figure 21: Parallelism process ................................................................................................... 19 

Figure 22: PIPELINING example .............................................................................................. 20 

Figure 23: TENSORFLOW algorithm ....................................................................................... 21 

Figure 24: Zynq UltraScale+ MPSoC ........................................................................................ 22 

Figure 25: Basic FPGA architecture .......................................................................................... 23 

Figure 26: Logic block components ........................................................................................... 23 

Figure 27: FPGA Wiring ........................................................................................................... 24 

Figure 28:48-bit logic unit ......................................................................................................... 25 

Figure 29: FPGA Flow .............................................................................................................. 25 

Figure 30:Asic Flow .................................................................................................................. 27 

Figure 31: Time-shared architecture .......................................................................................... 30 

Figure 32: Pipelined architecture ............................................................................................... 30 

Figure 33: 16-channel parallelism .............................................................................................. 33 

Figure 34:16-channel pipelined adder ........................................................................................ 33 



IX 
 

Figure 35: 8-channel parallelism................................................................................................ 34 

Figure 36: 8-channel pipelined adder ......................................................................................... 34 

Figure 37:4-channel parallelism................................................................................................. 35 

Figure 38: 4-channel pipelined adder ......................................................................................... 35 

Figure 39:3-channel parallelism................................................................................................. 36 

Figure 40: 3-channel pipelined adder ......................................................................................... 36 

Figure 41: Batch normalization method ..................................................................................... 37 

Figure 42: First approach of batch normalization ....................................................................... 38 

Figure 43: Second approach of batch normalization ................................................................... 38 

Figure 44: Memories of one layer .............................................................................................. 39 

Figure 45: Division of weight memory into small block ............................................................. 41 

Figure 46: Data memory using BRAM ...................................................................................... 42 

Figure 47: Division memory into BRAM with the same size...................................................... 42 

Figure 48: Traditional pipelining in first 6 layers ....................................................................... 43 

Figure 49: New transition method in first 6 layers ...................................................................... 43 

Figure 50: Simultaneous Memory .............................................................................................. 44 

Figure 51: Skip connection merging (step 1) .............................................................................. 45 

Figure 52: Skip connection merging (step 2) .............................................................................. 45 

Figure 53: Skip connection merging (last step) .......................................................................... 45 

Figure 54: Traditional pipelining between big layers.................................................................. 46 

Figure 55: Transition new method between big layers................................................................ 46 

Figure 56: Determine the address of output memory .................................................................. 49 

Figure 57: Determine when we should write data....................................................................... 49 

Figure 58: Problem of last output data ....................................................................................... 50 

Figure 59: Problem of first output data ...................................................................................... 50 

Figure 60: Average pooling ....................................................................................................... 51 

Figure 61: Fully connected layer ............................................................................................... 52 

Figure 62: SqueezeNext 14-layer model .................................................................................... 54 

Figure 63: Fixed Point Various Representations ........................................................................ 55 

Figure 64: Fixed point multiplication ......................................................................................... 56 

Figure 65: Fixed point addition.................................................................................................. 56 

Figure 66: Different fixed-point configuration within layers ...................................................... 58 

Figure 67: New batch normalization parameters ........................................................................ 58 

Figure 68: Combinational logic before breaking the critical path………………………………..60      

Figure 69: Combinational logic after breaking the critical path …………………………………………..60 

Figure 70: Three input pipelined adder tree with 3 channels ....................................................... 61 

Figure 71: Connections between the first two layers .................................................................. 61 

Figure 72: Parallelism process for multi-channel network .......................................................... 62 

Figure 73: Layer 1 controller ..................................................................................................... 63 

Figure 74: Network layers from layer 10 to layer 16 .................................................................. 64 

Figure 75: Latch-Free clock gating ............................................................................................ 65 

Figure 76: Glitch problem in the gated clock ............................................................................. 66 



X 
 

Figure 77: Latch-based clock gating .......................................................................................... 66 

Figure 78: No Glitch problem in the gated clock ........................................................................ 66 

Figure 79: Registering 32-bits multiplier inputs ......................................................................... 66 

Figure 80: 8-bits comparator ..................................................................................................... 67 

Figure 81: Increasing the size of the output fraction bits ............................................................ 68 

Figure 82: Clocking structure with LUT without gated clocks conversion .................................. 69 

Figure 83: Same structure with gated clocks converted .............................................................. 70 

Figure 84: Before Retiming………………………………………………………………………71     

Figure 85: After Retiming…………………………………………………… ............................. 71 

Figure 86: Constraints Editing Flow .......................................................................................... 72 

Figure 87: IBUFGDS differential input clock ............................................................................ 78 

Figure 88: VIO block diagram ................................................................................................... 79 

Figure 89: The used setup for downloading the code.................................................................. 80 

Figure 90: Application Specific Integrated Circuit example ....................................................... 81 

Figure 91:Logic synthesis inputs and outputs ............................................................................. 85 

Figure 92: PNR inputs and outputs ............................................................................................ 87 

Figure 93: RTL verification methodology .................................................................................. 89 

Figure 94: 20-image example for the tested images.................................................................... 90 

Figure 95: 20-image example dataset vs hardware output .......................................................... 90 

Figure 96: image number 741 from the dataset .......................................................................... 91 

Figure 97: Resources Utilizations after Synthesis....................................................................... 92 

Figure 98: Resources Utilizations after implementation ............................................................. 92 

Figure 99: worst 10 paths after synthesis ................................................................................... 93 

Figure 100:Setup and hold timing information after implementation .......................................... 94 

Figure 101: Fully routed nets ..................................................................................................... 94 

Figure 102: Router Utilization Summary ................................................................................... 94 

Figure 103: Device implementation………………………………………………………………94                    

Figure 104: Global Vertical/Horizontal routing utilization ......................................................... 94 

Figure 105: Total power on chip after synthesis ......................................................................... 95 

Figure 106: Total power on chip after implementation ............................................................... 95 

Figure 107: worst 10 paths ........................................................................................................ 96 

Figure 108: Total power on chip after synthesis ......................................................................... 96 

Figure 109: Total power on chip after implementation ............................................................... 97 

Figure 110: worst 10 paths ........................................................................................................ 98 

Figure 111: Total power on chip after synthesis ......................................................................... 98 

Figure 112: Total power on chip after implementation ............................................................... 99 

Figure 113: worst 10 paths ...................................................................................................... 100 

Figure 114: Total power on chip after synthesis ....................................................................... 100 

Figure 115: Total power on chip after implementation ............................................................. 101 

Figure 116: Image205 label in the dataset CIFAR10 ................................................................ 102 

Figure 117: Image 205 in the dataset CIFAR10 (cat) ............................................................... 102 

Figure 118: The output on the FPGA LEDs ............................................................................. 103 



XI 
 

Figure 119: VIO output ........................................................................................................... 103 

Figure 120: Image1015 label in the dataset CIFAR10 .............................................................. 103 

Figure 121: Image 1015 in the dataset CIFAR10 (dear) ........................................................... 104 

Figure 122: VIO output ........................................................................................................... 104 

Figure 123: ILA output............................................................................................................ 104 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



XII 
 

List Of Tables 

Table 1: Simulated hardware performance results to some CNNs .............................................. 18 

Table 2: The number of parameters and MACs in every layer .................................................... 31 

Table 3: The calculated DSPs units............................................................................................ 32 

Table 4: BRAM Number Optimization ...................................................................................... 44 

Table 5: Layers start and stop time ............................................................................................ 48 

Table 6: Comparison between SqueezeNext versions ................................................................. 53 

Table 7: Accuracy for different representations.......................................................................... 57 

Table 8: Optimization in Clock cycles after Pipelining between layers ....................................... 62 

Table 9: Optimization in Clock cycles after Pipelining inference ............................................... 63 

Table 10: Size of network layers from 1 to 7.............................................................................. 64 

Table 11: DSPs Optimization .................................................................................................... 65 

Table 12: Opt Design directives descriptions ............................................................................. 73 

Table 13: Place Design directives descriptions........................................................................... 74 

Table 14: Post-Place Phys Opt Design directives descriptions .................................................... 75 

Table 15: Route Design directives descriptions .......................................................................... 76 

Table 16: I/O constraints ........................................................................................................... 80 

Table 17: ASIC Results ............................................................................................................. 88 

Table 18: Resources before and after implementation ................................................................ 93 

Table 19: The total number of clock cycles to get the outputs .................................................... 95 

Table 20: FPGA results at different frequencies after synthesis ................................................ 101 

Table 21: FPGA results at different frequencies after implementation ...................................... 102 

Table 22: Comparison with different implementations for CNNs on FPGA ............................. 105 

 

 

 

 

 

 

 

 

 

 



XIII 
 

List of Symbols and Abbreviations 
 

ASIC Application-Specific Integrated Circuit 

BRAM Block Random Access Memory 

CIFAR Canadian Institute For Advanced Research 

CLB  Configurable Logic Block 

CNN Convolutional Neural Network 

CPU Central Processing Unit 

CTS  Clock Tree Synthesis 

DC Design Compiler 

DPU Deep learning Processing Unit 

DRC Design Rule Check 

DSP Digital Signal Processing 

EEPROM Electrically Erasable Programmable Read-Only Memory 

ESD Electro-static discharge violations 

FC  Fully Connected 

FPGA Field Programmable Gate Array 

FPN Feature Pyramid Network 

GDS Graphic Design System 

GPU Graphics Processing Unit 

HDL  Hardware Description Language 

HLS High-Level Synthesis 

HW Hardware 

I/O Input/Output 

IC Integrated Circuit 

ICC Integrated Circuit Chip 

ICG  Integrated Gated Clock 

ILA Integrated Logic Analyzer 

IP Internet Protocol 

LED Light-Emitting Diode 



XIV 
 

LEF Library Exchange Format 

LLVM Low Level Virtual Machine 

LUT LookUp Table 

LVS Layout versus Schematic 

MAC Multiply and Accumulate 

MMCM Mixed Mode Clock Manager 

MSE Mean Squared Error 

PAR Place and Routing 

PDP Power Delay Product 

PLD  Programmable Logic Device 

PLL Phase-Locked Loop 

PM Pattern Match 

RAM Random-Access Memory 

RE Read Enable 

RELU Rectified Linear Unit 

ResNet Residual Neural Network 

ROM Read-Only Memory 

RTL Register Transfer Language 

SC Standard Cell 

SqNxt Squeeze-next 

SVF Serial Vector Format 

SW Software 

TANH Tangent hyperbolic 

TLU Table Look Up 

VGG  Visual Geometry Group 

VHSIC Very High-Speed Integrated Circuit 

VIO Virtual Input/Output 

WE Write Enable 

YOLO You Only Look Once 

 



XV 
 

Acknowledgments 
 

First and Foremost we thank Allah for all the opportunities, trials, and strength 

that have been showered on us. Our praise is to Allah, the Almighty, the greatest of all, 

on whom ultimately we depend for sustenance and guidance. 

 

Second, our appreciation also goes out to our families and friends for their 

encouragement and support all through our studies. 

 

We are incredibly grateful to our supervisor Dr. Hassan Mostafa for his invaluable 

advice, continuous support, patience and his caring about following up each stage in the 

project, also for providing us all tools and equipment we needed   

 

Finally, we want to thank Siemens EDA team represented in Eng. Ziad Ibrahim, QA/test 

engineer at Questa static for his encouragement and for providing his time and experience 

to help us overcome some obstacles we faced during some stages. We got from him great 

experience and knowledge that helped us all the time of the project. 

 

 

 

 

 

 

 



XVI 
 

Abstract 

The Convolutional Neural Network (CNN) becomes one of the most trending 

fields of research nowadays because it gives the power to machines to interact with 

surrounding environment and paving the way to computer vision applications to detect 

and take actions, organize and take decisions based on this data in all fields of life. It is 

obvious that GPUs have high power consumption and relatively huge area that make 

them unable to fit in mobile devices. CNN architecture that uses FPGA implementation 

proved to be faster when it gets compared to traditional GPU and CPU, allowing it to be 

used in real time applications. Using Squeeze net CNN architecture will make FPGA 

speed go higher, which is needed with today’s environment as it allows for fast 

automation process and better application learning in many fields. 

The aim of this project is to make, implement and design Squeeze-Next CNN 

architecture on a Virtex-7 FPGA that is available on VC709 board and to finish the ASIC 

flow with the best possible throughput. 
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Chapter 1:  Introduction 

1.1  Motivation 

Deep convolutional Neural Network (CNN) has a lot of ways to be used in many 

fields like computer vision. Squeeze next [1], Alex net [2], VGG16 [3] and Squeeze net 

[4] have gotten better with image recognition the introduction of better computation 

power and continuous research in the deep learning algorithms. To work out the details of 

an image is a tough task for researchers lately. In the past, they had to rely on hard codes 

and computer vision to make the image detection work, but the newer deep learning 

algorithms have been taken their place instead. They have proven themselves to be better 

at dealing with higher resolutions. The latter allowed also to make the model shrink in 

size and higher inference time as the network became even more in depth, which is 

important as embedded systems gives so little resources to begin with. The engineer must 

be considerate with the resources given to from small computational power to limited 

memory. For the distributed training on parallel servers, the overhead to train the model 

is directly proportional to the number of parameters and complexity of the model. The 

model size of CNN can play a vital role when it comes to transporting the model 

wirelessly in terms of the firmware or software updates. 

The CNN [5] consists of various layers such as the convolution layer, pooling 

layer, RELU layers, and Fully Connected layer (FC). The convolution layers take high 

computational power as compared to the other layers because of complex matrix multi 

plication. Several network compression techniques are available such as architectural 

compression, pruning, quantization and encoding techniques (Human encoding). 

However, many of these methods reduce the model size but results in a significant 

accuracy drop of the model. 
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1.2  Problem Definition 

Deep Neural network is one of the hot researches nowadays, there are attention 

begun to turn on this powerful field and may companies aspire to achieve as deep as they 

can in this field of technology, however it’s very important to specify where to 

implement this Network on. There is a challenge between companies to implement 

Convolution Neural Network (CNN) that can be fast as it can and more accurate, and this 

Neural Network one of the most commonly used network in the Deep neural network, 

which made a great achievement in the image processing field for their high accuracy and 

low numbers of computation it takes to processes an image if compared with deep neural 

network, however there is a huge number of computation it takes to process one single 

image due to the convolution operation for multiple dimensions data and this reflects the 

high power consumption, large amount of resources and memories, so there is a tradeoff 

between the accuracy and power consumption, amount of resources and memories, if you 

need more accurate network all you have to do is to pay the price, however now the 

network’s training phase which take place on a computer cluster are not a big deal in 

power consumption so the power consumed in the testing phase only. 

Any Machine learning algorithm can be implemented on GPUs, FPGA and ASIC, 

there are challenges among those three platforms in order to get the fast response (high 

throughput), less delay, low power consumption and more efficient, since advanced 

machine learning are powered with Deep learning so the Deep learning define which 

platform is better. 

The GPUs the most powerful among the three platforms because of having a huge 

number of cores and large external bandwidth, it is too easy to perform the training, 

testing and deploying the models using various framework and in floating-point 

representation which gives the highest accuracy and high performance for the model 

itself, however the GPUs are the most consuming power among the three, and it’s not the 

best thing for all application that depends on its cost and amount of resources, the 

throughput of GPUs are high, however they cannot reach the maximum throughput due to 

performing other applications in parallel with the model itself. 
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The next one is ASIC, from the advantage of implementing the CNN model on 

ASIC is you can achieve the highest power efficiency and best performance, nowadays 

researches are held on building CNN various models on ASIC to accelerate the CNN, 

However ASIC models are not flexible enough to cope up with the evolution of CNN 

models, also the cost and time for design, verification and fabrication. 

The last one is FPGA, it is obvious that FPGA compensate between the 

advantages of the GPUs and ASIC, like low power consumption, low area, fast response 

and high performance it does not add too much cost like GPUs in the application, 

however it is limited with finite amount of resources and memories and also not the best 

on mass production but still the most commonly used for development and testing. 

The most important thing in this field is the model cope up with the real time 

application many application depends on camera photos with large number of pixels that 

translated to huge data and these application need to respond as fast as they can to avoid 

any catastrophic or financial lost so that they need fast response with optimum accuracy. 

 

 

1.3  Organization 

CHAPTER2, in this chapter we will give a summary of different architectures, a brief 

background of convolution neural network, terms that might be used in this chapter and a 

discussion of Squeeze Next FPGA ASIC. 

CHAPTER3, in this chapter provides a discussion about the main idea of our 

architecture, how to use parallelism, how to use pipelining, adder tree to implement 

convolution, batch normalization implementation and optimization and main idea of our 

memory. 

CHAPTER4,  this chapter provides a discussion about our detailed design, integration 

idea, implementation and optimization in small and huge layers, skip connection merging 

idea, skip connection memory optimization, responsibilities of controller and its 

problems, average pooling and fully connected layer. 
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CHAPTER5, this chapter discusses the software part discusses the different versions of 

the squeezenext networks and choosing the suitable one. Also we discussed the batch 

normalization problem and its solution. And finally the generation of test vectors for each 

layer. 

CHAPTER6, this chapter discusses different optimization techniques and their effect on 

different fields, we applied the timing enhancements to increase the operating frequency 

and the total throughput, the area aware enhancements used to reduce the number of 

resources used, hence reduce the consumed power, Power reduction techniques are used 

to decrease the total dynamic power and the Accuracy Enhancements make the HW 

model accuracy reach to the SW model accuracy. 

CHAPTER7, this chapter provides a discussion on the synthesis flow, the used 

constraints, the implementation flow and the best strategies for our design then 

generating and downloading the bitstream on FPGA. 

CHAPTER8, this part introduces the ASIC part for the project and why we choose to 

follow the ASIC flow and the problems we have faced in ASIC and how we solve them 

like memories, the method and steps we followed in the ASIC flow. 

CHAPTER9, this chapter shows the RTL verification methodology and the calculated 

accuracy then the calculated results including utilization, power, timing, throughput and 

energy at different frequencies. Finally we compared our design with previous works 

which implemented on FPGA with only 10 classes. 

CHAPTER10, in this chapter, extra modifications that can be done to implement 

Squeeze-Next more efficiently with reduction in used clock cycles and FPGA resources 

will be presented. 
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Chapter 2:  Background And Related Work 

2.1 Introduction To Neural Network 

Deep Learning is a subfield of machine learning concerned with algorithms 

inspired by the structure of the brain which is called artificial neural networks.  

The purpose of artificial neural networks is to achieve a very simplified model of 

the human brain. By having the artificial neural networks try to learn tasks mimicking the 

brain’s behavior. The brain consists of a large set of neurons which are specialized cell 

elements. These neurons are activated in response to the input, the activation of the 

neurons allows the network to detect and classify the patterns. Depending on certain input 

data, a neural network will try to calculate the probability that the data belong to a certain 

class (e.g., an object in a specific image). The neural network can be trained to recognize 

different classes by being provided a set of labeled training data which is called 

supervised learning[6].  

2.2 Network Training 

Convolutional Neural Networks (CNNs) are a special type of Neural Networks 

which are commonly used with visual data, which have shown state-of-the-art 

performance on various competitive benchmarks. The powerful learning ability of deep 

CNN is largely due to the use of multiple feature extraction stages (hidden layers) that 

can automatically learn representations from the data. The topology of CNN is divided 

into multiple learning stages composed of a combination of the convolutional layer, non-

linear processing (RELU) units, and subsampling (Pooling) layers. Each layer performs 

multiple transformations using a bank of convolutional kernels (filters). Convolution 

operation extracts locally correlated features by dividing the image into small slices 

(similar to the retina of the human eye), making it capable of learning suitable features. 

Output of the convolutional kernels is assigned to non-linear processing (RELU) units, 

which not only helps in learning abstraction but also embeds non-linearity in the feature 

space. This non-linearity generates different patterns of activations for different responses 

and thus facilitates in learning of semantic differences in images. Output of the non-linear 
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function (RELU) is usually followed by subsampling (Pooling), which helps in 

summarizing the results and also makes the input invariant to geometrical distortions [7]. 

 

2.3 Training Process 

The basic learning that has to be done in neural networks is training neurons when 

to get activated. Each neuron should activate only for particular type of inputs and not all 

inputs. Therefore, by propagating forward, it is noticed how well the neural networks are 

behaving and find the error. After finding out that the network has error, backpropagation 

is applied and a form of gradient descent is used to update new values of weights. Then, 

forward propagation is applied again to see how well those weights are performing and 

then the weights are updated using backpropagation. This will go on until reaching some 

minima for error value. 

 

Figure 1: Training process of neural network 

2.3.1  Forward Propagation 

In forward Propagation as in Figure, in 1st row, input X is provided to each 

neuron and two functions are calculated, one is linear multiplication i.e. 𝑍=𝑊×𝑋+𝑏 and 

the other is activation function a=RELU(z), different activation functions can be used, 

then it will forward through every layer and predicted output is obtained. 

2.3.2  Backward Propagation 

Back propagation is a technique to reduce the loss i.e. (Actual o/p-predicted o/p) 

by updating the parameters weight, bias by using an algorithm called Gradient descent. 

For example  in 2nd row last column, Loss(L) is partially differentiated w.r.t a[2] but a[2] 

depends on z[2], again z[2] depends on weight w[1], activation a[1], and bias b[1], so 

gradients of a[1], w[1] and b[1] is calculated w.r.t Loss(L). Then by using Gradient 
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Descent algorithm, weight and bias in that layer are updated but again a[1] depends on 

calculation of z[1]. Above procedure will be repeated till first layer. Finally, it will 

propagate backside to reduce the loss by calculating all parameters gradients w.r.t 

Loss(L), and update them by using Gradient Descent algorithm. 

 

2.3.3  Loss Function 

A loss function can be defined in many different ways but a common one is MSE 

(Mean Squared Error), which are half times (actual - predicted) squared. 𝐸𝑡𝑜𝑡𝑎𝑙 =Σ 

1

2
(𝑡𝑎𝑟𝑔𝑒𝑡−𝑜𝑢𝑡𝑝𝑢𝑡) 

2 
. 

The predicted label (output of the CNN) must be the same as the training label 

(This means that the network got its prediction right). In order to achieve this, it’s a must 

to minimize the amount of loss (error). It just an optimization problem in calculus to find 

out which inputs (weights) most directly contributed to the loss (or error) of the network 

as shown in Figure. 

 

Figure 2: Cost function of CNN 

2.4  Introduction To CNN 

A Convolutional Neural Network (Conv-Net/CNN) is a Deep Learning algorithm 

which can take in an input image, assign importance (learnable weights and biases) to 

various aspects/objects in the image and be able to differentiate one from the other. The 

pre-processing required in a Conv-Net is much lower as compared to other classification 

algorithms. While in primitive methods filters are hand-engineered, with enough training, 

Conv-Nets have the ability to learn these filters/characteristics. 
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Figure 3: CNN classification example 

Convolutional neural networks are constructed by stacking a number of generic network 

layers, which transform the input feature maps of dimension (𝑖𝑛∗ 𝑤𝑖𝑛∗𝑐ℎ𝑖𝑛). Into output 

feature maps of dimension (ℎ𝑜𝑢𝑡∗ 𝑤𝑜𝑢𝑡∗𝑐ℎ𝑜𝑢𝑡). A typical CNN path consists of two parts: 

1. The feature extractor which extracts features across the CNN layers which are; 

Convolutional (Conv), Pooling (Pool) Rectified Linear Unit (RELU). 

2. The Classifier, which is implemented using fully connected layers, takes these 

features and decides on the output class. 

 

In order to understand the proposed hardware implementation, the CNN detailed layers 

will be discussed in this section. 

2.4.1  Convolution Layer 

The Conv layer is the main block of a CNN that does most of the computations. It 

works by dividing the image into small regions (known as receptive field) and 

convolving them with a specific filter (multiplying weights of the filter or kernel 

(weights) with corresponding receptive field elements), then sliding these filters over the 

input feature maps as shown in figure. Each of these weight filters can be thought of as 

feature identifiers. [8] 

 

Figure 4: Convolution Layer process example 
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There are 2 parameters in conv layers which are listed below: 

1. Filters: The Conv layer’s parameters consist of a set of learnable filters which 

work as feature detector (edges, simple colors, and curves). 

2. Stride: Stride is the number of pixels by which the filter matrix slides over the 

input matrix. 

2.4.2  Nonlinearity Layers 

These layers are used to introduce the non-linearity in the model. This helps to 

train the model faster and more accurately, and it helps to reduce the overfitting of the 

model on the training dataset. Rectified linear unit (RELU) is one of the favorite 

activation functions used in CNN. RELU function converts all negative numbers to 0 and 

keeps the positive number. RELU helps to reduce the computational complexity, and it 

helps in convergence while training. 

2.4.3  Normalization Layer (Batch Normalization) 

Normalization layer is used to normalize the responses from the adjacent output 

channels. It normalizes the output distribution to zero mean with unit variance. 

2.4.4  Pooling Layer 

In CNN, it is used to down-sample the input features with non-linearity. It reduces 

the resolution of the input feature map but keeps the features intact. [9] 

 

Figure 5: Pooling Layer process example 

There are two popular choices of pooling: 

1. Max pooling:  Suppose you have 4×4 input and you want to apply max-pooling. It 

is quite simple to take 4×4 break it into different regions. The output is 2×2 each 

of the outputs will just be the max from the correspondingly shaded region. 
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Figure 6: Max pooling example 

2. Average pooling: instead of taking the max within each filter you take the 

average. 

 

Figure 7: Average pooling example 

2.4.5  Fully Connected Layers (FC) 

These layers are often used as the last layers in the CNN to compute the class 

score of the classification. This layer has a full connection to all previous activations. FC 

layers act as a classifier on the top of high-level features. [6] 

 

Figure 8: Fully Connected Layers 

2.4.6  Activation Layer 

Activation functions are mathematical equations that determine the output of a 

neural network. The function is attached to each neuron in the network, and determines 

whether it should be activated (“fired”) or not, based on whether each neuron’s input is 

relevant for the model’s prediction. It’s important that activation functions be 



11 
 

computationally efficient because they are calculated several times (thousands or even 

millions) for each data sample. [10] 

2.4.6.1  Binary Step Function 

The binary step function outputs one if the input is positive and zero otherwise. 

Step function cannot support classifying the inputs into one of several categories. As they 

produce don’t support multi-value output.  

 

Figure 9: Binary Step Function 

2.4.6.2  Linear Activation Functions 

It takes the inputs, multiplied by the weights for each neuron, and creates an 

output signal proportional to the input as shown in figure In one sense, a linear function is 

better than a step function because it allows multiple outputs, not just yes and no. 

 

Figure 10: Linear Activation Functions 

However, a linear activation function has two major problems: 

1. Not possible to use backpropagation (gradient descent) to train the model since 

the derivative of the function is a constant, and has no relation to the input, X. 

2. A linear activation function makes the neural network unable to fit non-linear 

data. They turn the neural network into just one layer; the last layer will be a 

linear. 
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2.4.6.3  Nonlinear Activation Function 

Networks use a non-linear activation functions which help them fit non-linear 

data such as images, video, audio, etc. [10] 

 

Figure 11: Nonlinear Activation Functions examples 

Non-linear functions fix the problems of a linear activation function: 

1. They have a derivative function which is related to the inputs and so allow 

backpropagation. 

2. They allow stacking of multiple layers of neurons to create a deep neural network. 

Deep neural network with multiple hidden layers are needed to learn complex 

data with high levels of accuracy. 

There are seven types of Nonlinear Activation functions and here are the most popular 

nonlinear activation functions: 

1. SIGMOID /LOGISTICS FUNCTIONS:  

Advantages 

• Smooth gradient, preventing “jumps” in output values. 

• Output values between 0 and 1, normalizing the output of each neuron. 

• Clear predictions—for X above 2 or below -2, tends to bring the Y value (the 

prediction) to the edge of the curve, very close to 1or0. 
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Disadvantages 

• Vanishing gradient: For very high or very low input values, the derivative is 

almost zero, this can result in the network refusing to learn, or being too slow to 

reach an accurate prediction. 

• Outputs not zero centered. 

• Computationally expensive due to the exponential function. 

 

2. TANH /HYPERBOLIC TANGENT: 

Advantages 

• Zero centered: which make it easier to model inputs that have negative, neutral, 

and positive values. 

• Otherwise like the sigmoid function. 

Disadvantages 

• Like the Sigmoid function. 

 

3. RELU (RECTIFIED LINEAR UNIT): The RELU is a piece-wise linear function. It 

outputs the same input if it’s positive and outputs zero for negative values. 

Advantages 

• Computationally efficient 

• No vanishing gradient problem for positive inputs 

Disadvantages 

• For negative inputs the gradient becomes zero, the network cannot perform 

backpropagation and cannot learn. This issue is called the dying RELU. 

RELU and its variants are preferred over others activations as it helps in overcoming the 

vanishing gradient problem. 

2.5 Different CNN Architectures 

In recent years, the world witnessed the birth of numerous CNNs. These networks 

have gotten so deep that it has become extremely difficult to visualize the entire model. 

We stop keeping track of them and treat them as black box models. These illustrations 

provide a more compact view of the entire model of each architecture. 
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2.5.1  ALEXNET (2012)  

 

Figure 12: ALEXNET  

Alex-Net is one of most famous CNN architecture because it was the first CNN to 

win the ILSVRC in 2012.AlexNet consist of 5 conv layers and 3 max-pooling layers in 

addition to 3 fully-connected layers in the end of architecture. 

 It has a huge size and 60 million parameters; Alex-Net was the first to implement:  

1. Rectified Linear Units (RELUs) as activation functions.  

2. Overlapping pooling in CNNs. 

2.5.2  VGGNET (2014) 

In this architecture the designers from Visual Geometry Group (VGG) depend on 

the most straightforward way to improve the accuracy of CNN is to go deeper and 

increase the number of layers and parameters.as shown in figure, VGG-Net has 13 

convolutions layers and 5 max-pooling layers followed by 3 fully-connected layers in 

near to output. And it depends also on RELU the same activation function of Alex-Net. 

VGG-Net has 138M parameters and takes up about 500MB of storage space.it has 

another version VGG-19 with a greater number of layers and higher accuracy. 

 

Figure 13: VGGNET 

2.5.3  GOOGLENET (INCEPTION V1) 

This CNN architecture is by Google. It was the winner of ILSVRC 2014 

challenge. The main highlight of this architecture was the inception model which 



15 
 

dramatically reduced the number of parameters of the model. It has 4 million parameters 

compared to AlexNet with 60 Million. It uses average pooling instead of fully connected 

layers at the top layer. The most recent version of GoogLeNet is inception-v4.[11] 

 

Figure 14: GOOGLENET 

2.5.4  RESNET-50 (2015) 

Residual Neural Network (ResNet)[12] in Figure was introduced by Kaiming He 

et al from Microsoft Research, skip connections were used in which helped in making 

CNN much deeper, there are multiple versions of ResNet architectures but most 

commonly used is ResNet152 which won 2015 ILSVRC competition and consists of 152 

layers, it achieves top-5 error rate of 3.57% and contains only 60 million parameter which 

is considered small number its huge number of layers. 

 

Figure 15: RESNET 
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2.5.5  SQUEEZE-NET 

This is a small CNN architecture which achieves the AlexNet-level accuracy on 

ImageNet with 50x fewer parameters. This type of small architecture is beneficial for 

efficient distributed training; it has very little overhead while exporting new models to 

clients and it is feasible for FPGA and embedded deployment. 

In the SqueezeNet paper, the author outlines three main strategies: 

1. Replace 3 x 3 kernels with 1 x 1 for smaller network: To reduce the network 

parameters, they used 1 x 1 filters instead of 3 x 3. Since 1 x 1 kernels have 9x less 

parameters than 3 x 3 kernels. 

2. Decrease the number of input channels to 3x3 kernels: Using the 1x1 kernels as 

bottleneck layer called squeeze layer as shown in the Figure 5.5 to reduce the depth of the 

model and reduce the computation for the following 3x3 kernels. 

3. Down-sampling later in the network to keep the large activation maps to preserve the 

feature maps: The intuition is that, the large activation map is kept due to delayed down-

sampling in the network, which results in higher classification accuracy. 

 

Figure 16: SQUEEZE-NET 
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2.5.6  SQUEEZE-NEXT 

SqueezeNext is a new family of neural network architectures whose design was 

influenced by simulation outcomes on a neural network accelerator as well as by taking 

into account earlier structures like SqueezeNet. With 112 less parameters, this new 

network can match AlexNet's accuracy on the ImageNet test, while one of its deeper 

variations can match VGG-19 accuracy with only 4.4 million parameters—31 fewer than 

VGG-19. In addition, SqueezeNext outperforms MobileNet's top-5 classification 

accuracy while utilizing 1.3 less parameters, although it eliminates the use of depthwise-

separable convolutions, which are ineffective on some mobile processor architectures. 

Depending on the resources available on the target hardware, the user can make a 

tradeoff between speed and accuracy thanks to this wide range of accuracy. We were able 

to construct versions of the baseline model that are 2.59/8.26 quicker and 2.25/7.5 more 

energy efficient than SqueezeNet/AlexNet without any accuracy loss by using hardware 

simulation findings for power and inference speed on an embedded system. 

 

Figure 17:ResNet block on the left, SqueezeNet block in the middle, SqueezeNext block on the right 

ResNet, SqueezeNet, and SqueezeNext (SqNxt) blocks are shown in the diagram on the 

left, middle, and right, respectively. To limit the number of input channels to the 3 * 3 

convolution, SqueezeNext employs a two-stage bottleneck module. In order to further 

minimize the number of parameters (orange sections), the latter is further divided into 

separable convolutions, which is followed by a 1 * 1 expansion module. 
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Table 1: Simulated hardware performance results to some CNNs 

Observe how the SqueezeNext model's changes improve inference and power usage over 

the original model. For instance, compared to the baseline model, the 1.0-SqNxt-23v5 

model is 12 percent quicker and 17 percent more energy efficient.  

2.6 Point Representation 

2.6.1  Fixed-Point Representation 

A fixed-point representation of a number consists of integer and fractional 

components.  The bit length is defined as: WL=IWL+FWL+1. 

With this representation the range of the number is [−2𝐼𝑊𝐿  , 2𝐼𝑊𝐿] and a step size 

(resolution) of 2−𝐹𝑊𝐿 . [13] 

The fixed-point number system shows the best trade-off between accuracy and 

computational complexity in hardware-based applications. Fixed-point has two main 

advantages. Firstly, the smaller hardware implementation of fixed point-based system 

allows for more modules to be instantiated in same area with same logic gates that 

increases the opportunities of parallelism and pipelining. Secondly, the smaller data 

representation of parameters or input pixels reduces the required memory, enabling larger 

CNN models to fit within the given memory capacity and reducing the power of memory-

access because more data fit within same memory bandwidth. [14] 

 

Figure 18: Fixed-Point REPRESENTATION 
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2.6.2  Floating-Point Representation 

Floating point number has 3 parts: sign, exponent and mantissa. 

 

Figure 19: Binary Floating-Point REPRESENTATION 

Floating point math offers a wide range of numbers and more precision than fixed 

point math. The problem with floating point numbers is that floating point operations is 

slow .They also have to deal with very large registers. [15] 

 

Figure 20: Decimal Floating-Point REPRESENTATION 

2.7  Parallelism 

Parallelism[16] means many calculations or the execution of processes are carried 

out simultaneously, that will decrease the time of execution of CNN architectures. For 

example, two-dimensional convolution is computed between sliding windows of input 

feature maps and kernels, and consumes most computation time of CNN as shown in 

Figure. Parallelism included inside an output feature map of each layer, known as intra-

output parallelism. 

 

Figure 21: Parallelism process 
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2.7.1  Inter Layer Parallelism 

 Data between the layers of CNN architecture are dependent so no layer can be 

executed before another and layers can’t work in parallel. 

2.7.2  Inter Output Parallelism 

Every output feature map is result of convolution between the input feature map and 

filter. All filters are independent and different so the output feature maps are totally 

independent of each other. The convolution between the input volume and different 

filters can be performed in parallel without problems. 

2.7.3  Inter Kernel Parallelism 

The output feature map is result of swapping filter on all input feature map and 

performing convolution. Each convolution is independent since input pixels are 

independent from each other so it is possible to compute all of output pixels in output 

feature map concurrently. 

2.7.4   Intra Kernel Parallelism 

The convolution is set of multiplication and addition operations. Every multiplication 

operation between the input pixel and corresponding parameter in filter and all of 

operations are independent and the addition operation of results from multiplication to 

calculate the output pixel can be performed in parallel also. 

2.8  Pipelining 

The approach is to rearrange the algorithm into a pipeline, where each stage can 

operate simultaneously with the other stages as shown in Figure. Pipelining tends to be 

faster and it can even be more resource efficient. 

 

Figure 22: PIPELINING example 
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2.9 Tensorflow 

Machine Learning applications that is Accelerated on Field-Programmable Gate 

Arrays (FPGAs) has many advantages over other computing platforms. While the 

machine learning architecture is often developed in a high-level language such as Python, 

the manual transformation of the algorithm to C code for High-Level Synthesis (HLS) or 

to Register Transfer Level (RTL) code for synthesis consumes many times and requires 

digital design engineers.  

In order to show how we can make FPGAs more accessible to software developers, 

LeFlow, an open-source tool which allows machine learning software developers to 

automatically synthesize TensorFlow numerical computation models to FPGA hardware. 

The flow uses Google’s XLA compiler to generate LLVM code from a TensorFlow 

specification, which is then delivered to a high level synthesis tool such as LegUp to 

generate RTL. So, we can write the TensorFlow code and it will be automatically 

converted to RTL code. [17] 

 

Figure 23: TENSORFLOW algorithm 

2.10  DPU 

The DPUCZDX8G is the deep learning processing unit (DPU) designed to 

support the Zynq UltraScale+ MPSoC. It is a configurable engine which is optimized for 

the computation of convolutional neural networks. There is many options and parameters 
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that can describe the parallelization utilized in the engine. Where this options can be 

selected according to the target device and application. It supports many common 

convolutional neural networks, such as VGG, ResNet, GoogLeNet, YOLO, SSD, 

MobileNet, FPN, and others, since it contains a set of optimized instructions.  

The Xilinx® DPUCZDX8G is a programmable engine optimized for 

convolutional neural networks. It is consisting of a scheduler module with high 

performance, a hybrid computing array module, a fetching unit module for the 

instructions, and a global memory pool module. Due to this available powerful hardware 

that the DPU provides for the CNNs it became easier to develop CNN network on the 

hardware.    

There are two flows that can be used for integrating the DPUCZDX8G into the 

project: the VIVADO® flow and the Vitis™ flow. [18] 

 

Figure 24: Zynq UltraScale+ MPSoC 

2.11 FPGA 

2.11.1 Overview 

An integrated circuit that comprises of internal hardware blocks with user-

programmable interconnects to tailor operation for a particular application is called a 

field-programmable gate array (FPGA) [19]. The interconnects are easily 
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reprogrammable, enabling an FPGA to enable a new application or accept design 

modifications over the course of the part's lifetime. 

A basic FPGA architecture consists of thousands of fundamental elements called 

configurable logic blocks (CLBs) surrounded by a system of programmable 

interconnects, called a fabric, that routes signals between CLBs. Input/output (I/O) blocks 

interface between the FPGA and external devices. 

 

Figure 25: Basic FPGA architecture 

Multiple logic blocks make comprise a single CLB. An FPGA's lookup table 

(LUT) is one of its distinguishing characteristics. For any combination of inputs, a LUT 

holds a preset list of logic outputs; LUTs with four to six input bits are common. 

Multiplexers (mux), full adders (FAs), and flip-flops are examples of common logic. 

 

Figure 26: Logic block components 

Each device's CLB has a different number and configuration of parts; this 

condensed CLB has two modes of operation. In arithmetic mode, the LUT outputs are 

provided as inputs to the FA along with a carry input from another CLB. In normal mode, 

the LUTs are coupled with Mux 2 to produce a four-input LUT. The FA output and the 

LUT output are chosen by Mux 4. Through the D flip-flop, Mux 6 determines if the 

operation is asynchronous or synchronized to the FPGA clock.  



24 
 

The more advanced CLBs found in current-generation FPGAs can do many 

operations with only one block, and they can be combined to perform more intricate tasks 

like multipliers, registers, counters, and even digital signal processing (DSP) operations.  

In order to create an FPGA-based design, the necessary computing jobs must first 

be defined in the development tool before being combined into a configuration file that 

specifies how to connect the CLBs and other modules. The procedure resembles a 

software development cycle, but instead of creating a set of instructions to run on a 

predetermined hardware platform, the objective is to construct the hardware itself. 

To create an FPGA setup, designers have historically used a hardware description 

language (HDL) like VHDL or Verilog. 

 

Figure 27: FPGA Wiring 

The FPGA routing is typically not segregated. That is, before ending in a switch 

box, each wiring segment only crosses one logic block. Longer routes can be created by 

activating several of a switch box's programmable switches. Some FPGA systems use 

longer routing lines that span many logic blocks for faster performance connection. There 

is a switch box wherever a vertical and a horizontal channel cross. In this system, a wire 

can connect to three other wires in adjacent channel segments through three 

programmable switches that are present when it enters a switch box. The planar or 

domain-based switch box topology is the switch pattern or topology utilized in this 

architecture. In this switch box layout, a track number one wire only links to other track 

number one wires in neighboring channel segments, a track number two wire only 

connects to other track number two wires, and so on. The connections in a switch box are 

shown in the right figure. Typically, the width of each routing channel is the same 
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(number of wires). In the array, more than one I/O pad may fit within a row's height or a 

column's breadth. 

 

Figure 28:48-bit logic unit 

An additional popular form of core that is available as an IP core or an embedded 

core is digital signal processors (DSPs), as seen in Figure. To manipulate analogue 

signals, these are essentially specialized CPUs. Multiply-Accumulate block, or MAC, is 

implemented as a DSP slice and is primarily utilized as a building block for complicated 

DSP applications. They are frequently used for filtering and compression of video or 

audio data. 

2.11.2 FPGA Flow 

Figure 29 shows the steps of the design flow. 

 

Figure 29: FPGA Flow 

1-Functional Specifications: in this step, all specifications for the application are 

determined along with good understanding of function of this application.  
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2-HDL: the HDL code that describes that function is written, and then Behavioral 

Simulation is done to make sure that the HDL describes the function needed correctly.  

3-Synthesis: HDL is converted into logic gates and other cells present in the FPGA itself, 

Static timing analysis is done to approximately calculate the maximum clock delay of the 

application and calculate the maximum clock speed achieved for the application.  

4-Place & Route: The logic blocks and cells in the FPGA are connected together, and 

Static Timing Analysis is done again to calculate the exact delay model of the 

application.  

5-Download & Verify in circuit: The HDL code is burned on the FPGA. 

 

2.12  ASIC 

2.12.1 Overview 

ASIC[20] is an integrated circuit(IC or chip) customized for a particular use or 

application (not for general purpose like CPU).ASIC is any integral circuit or any piece 

of hardware or microchip.(CPU is also an ASIC but it’s not meant for any particular task 

rather its universal). IC can be meant for image processing, audio processing, video 

processing, mobile application, IOT application, (CPU, RAM chip, ROM, EEPROM, 

FLASH memory in your mobile or pc). 

ASIC is combination of analog function (clock, amplification, noise suppressing), 

digital function (adder, mux, registers, CPU), programmable logic, different type of 

memory, power management in a single chip. So here chip is dedicated for a particular 

application. 

Initial investment for ASIC development is lot but it costs less for high volume. It takes 

several months to design, verify and produce and require a very methodology and 

requires very expensive tools for development. So it’s targeted for high volume to reduce 

the cost (mostly for consumer electronics). 
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ASIC are 3 types: 

1- SEMI CUSTOM: it uses predesigned logic cell (AND, OR, MUX, FLOPS, etc.) known 

as standard cell. The ASIC designer uses all these standard cells stored in the form of a 

library and does placement of these cells and interconnection. These cells can be placed 

anywhere on silicon as per the requirement. All these cells are predesigned, pretested and 

pre characterized so fully optimized. This semi-custom design reduces design time and 

risks. Here we can also change the transistor size in a standard cell to optimize it for 

speed and performance (each standard cell is designed in ASIC library provided by ASIC 

Company using full custom). 

2- FULL CUSTOM: Here the designers design some or all the logic cell, circuit or layout, 

interconnection of its own for a specific application. It is approached if there are no 

suitable existing cell libraries available. It’s used when ASIC technology is new or so 

specialized that the circuit must be custom designed (optimized analog circuit, memory 

cell, processor). It’s costly, time consuming but provides max performance, minimized 

area and highest flexibility as designed with own efforts. 

3- PROGRAMMABLE ASIC :   FPGA,PLD 

2.12.2  ASIC Flow 

Figure 30 shows the steps of the design flow. 

 

 

Figure 30:Asic Flow 
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1-Functional Specifications: in this step, all specifications for the application are 

determined along with good understanding of function of this application.  

 

2-HDL: the HDL code that describes that function is written, and then Behavioral 

Simulation is done to make sure that the HDL describes the function needed correctly.  

 

3-Synthesis: reads in the RTL code (.v , .vhd or .sv files) with the standard cells physical 

libraries which contain delay information (.lib files), physical dimensions and metal layer 

information within the cell (.lef files) to convert the behavioral RTL code into real 

physical standard cell gates (gate level netlist). 

 

4-Floorplanning: formalizes and refines the floorplan during the architecture planning 

step. In this step while keeping in mind the area requirements, we divide the whole die 

area into physical partitions, and mold their shapes. Pins and ports are assigned to a 

location that can then be refined depending on the results of PAR. 

 

5-Placement: In this step, all standard cells are placed in legal locations on site rows, 

with minimum wire length, while ensuring optimal placement which helps timing 

convergence to be faster.  

 

6-Clock Tree Synthesis: In all the previous steps we assumed clock network is ideal. 

During clock tree synthesis, clocks are propagated and then using clock buffers the clock 

tree will be synthesized. The aim of this step is to get optimize the clock latency and 

minimizing clock skew. Many algorithms used to optimize the clock latency - H Tree, 

Steiner Tree, Clock Tree Mesh, Multi-source Clock Tree Synthesis and traditional Single 

Point Clock Tree Synthesis. 

 

7-Routing: In this step we route the signal nets as all instances placed and clocks are now 

routed. Modern process supports ten to twelve metal layer stacks, but M0-M1 only are 

used for standard cell routing. For detail routing we usually use glorified maze router 

algorithm and to ensure faster run time we add some constraints. The metal resources are 
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the legal locations for metal routes. The main goal of detail routing is to minimize detours 

as they can cause issues on timing, and to minimize Design Rule Check (DRC) violations, 

i.e opens, shorts, etc. This step does from ten to twelve multiple search and repair loops 

to minimize the overall DRC count. 

 

8-Physical and Timing Verification: Physical verification ensures that the layout is 

correct. Physical Verification checks have been increased recently and now includes- 

DRC (Design Rule Checks), LVS (Layout versus Schematic), , Electro-static discharge 

violations (ESD), Electromigration, Antenna violations, Pattern Match (PM) violations, 

Shorts, Opens, Floating nets etc. Tracking these violations is important in parallel with 

the Place and Route flow. Timing Verification ensures that the chip works at the required 

frequency by verifying setup time and hold time are met in all timing paths in the design. 

 

2.14  Summary 

In this chapter a background about convolution neural networks, different 

architectures, detailed discussion about Squeeze-Next, FPGA, ASIC and useful terms 

such as parallelism and fixed-point representation were presented. 
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Chapter 3:  Design Architecture 

In this chapter, we present two different architectures for implementing the CNN 

(Squeeze-Next) on” Virtex7 FPGA” to understand what led to our design. 

3.1  First Architecture Approach 

The first one “Time-shared architecture” is designing a very fast 1 block using 

available FPGA’s resources and reusing the block in different layers. But the problem 

with this architecture is that it won’t be fast enough. So, we have to think about another 

architecture. 

 

Figure 31: Time-shared architecture 

3.2  Second Approach Architecture 

 The second one “Pipelined architecture” targets high-speed implementation of 

Squeeze-Next by pipelining all the layers together and deploying the whole architecture. 

 

Figure 32: Pipelined architecture 
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The number of parameters and MACs (Multiply and Accumulate) in every layer is 

needed to make a good implementation of this architecture. Breakdown of the 1.0-SqNxt-

14 architecture. Here, Wi, Hi, and Ci are the input width, height, and channels, Kw and 

Kh are the convolution filter sizes, Wo, Ho, and Co are the output width, height, and 

channels, S is the stride, Pw and Ph is padding, Repeat refers to how many times a 

particular module is repeated, Par is the number of parameters for each layer, MAC is the 

number of multiply and add instructions. 

 

Table 2: The number of parameters and MACs in every layer 
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3.3  Methods Of Parallelism  

The “Pipelined architecture” pipelines all the layers together but all layer stages 

are done respectively. So, we have to implement different hardware for each layer but the 

stages of one layer share the same hardware. 

To increase the speed of one layer, we use inter kernel parallelism and inter output 

parallelism. For every layer fixed number of parallel channels and a fixed number of 

parallel filters and the multiplication of them is the number of used DSPs for this layer. 

Virtex-7 Series DSPs are equal to 3600. The used DSPs in this way of parallelism are 

3504. For each layer, we are careful that the number of 
𝑀𝐴𝐶𝑠

𝐷𝑆𝑃𝑠
  will be similar to other 

layers because it represents the number of cycles in each layer which we need to be 

similar in our Pipelined architecture. 

 

Table 3: The calculated DSPs units 
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3.3.1  16-Channel Parallelism 

We need to implement 16 channels parallelism with 16 filters parallelism at 12 times. 

 

Figure 33: 16-channel parallelism 

 

We need to implement pipelined 3-input adder for each block using 25 registers and 8 

adders.  

 

Figure 34:16-channel pipelined adder 
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3.3.2  8-Channel Parallelism 

We need to implement 8 channels parallelization with 8 filters parallelization at 3 times. 

 

Figure 35: 8-channel parallelism 

 

We need to implement pipelined 3-input adder for each block using 13 registers and 5 

adders.  

 

Figure 36: 8-channel pipelined adder 



35 
 

3.3.3  4-Channel Parallelism 

We need to implement 4 channels parallelization with 4 filters parallelization at 1 time. 

And 4 channels parallelization with 8 filters parallelization at 1 time. 

 

Figure 37:4-channel parallelism 

 

We need to implement pipelined 3-input adder for each block using 6 registers and 2 

adders.  

 

Figure 38: 4-channel pipelined adder 
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3.3.4  3-Channel Parallelism 

We need to implement 3 channels parallelization with 64 filters parallelization at 1 time. 

 

Figure 39:3-channel parallelism 

 

We need to implement pipelined 2-input adder for each block using 5 registers and 2 

adders.  

 

Figure 40: 3-channel pipelined adder 
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3.4   Batch Normalization 

We have one mini-batch for each filter  

 

Figure 41: Batch normalization method 

In every mini-batch, we have Two learnable parameters called beta (β) and 

gamma (γ) and two non-learnable parameters (Mean Moving Average (μ𝑚𝑜𝑣) and 

Variance Moving Average (σ²𝑚𝑜𝑣)) are saved as part of the ‘state’ of the Batch Norm 

layer. 

The equation of one pixel of mini-batch is Y =
𝑥−μ

√σ2+ε
× γ + β . where ε is epsilon which 

equals to 10−5 in our training, x is the output of convolution, y is the output of one pixel 

of mini-batch, μ is the mean of all pixels of mini-batch and σ² is the variance of all pixels 

of mini-batch. 

During Training, Batch Norm starts by calculating the mean and variance for a mini-

batch. However, during Inference, we have a single sample, not a mini-batch. Here is 

where the two Moving Average parameters come in.  

The ones that we calculated during training and saved with the model. We use those 

saved mean and variance values for the Batch Norm during Inference.  

The equation of the Mean Moving Average of mini-batch is:  μ𝑚𝑜𝑣 = α × μ𝑚𝑜𝑣 + (1 − α) × μ 

where α is momentum which equals to 0.1 in our training  

The equation of Variance Moving Average of mini-batch is: σ² 𝑚𝑜𝑣 = α × σ² 𝑚𝑜𝑣 + (1 − α) × σ²  

where α is momentum which equals to 0.1 in our training. 
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3.4.1  Batch Normalization First Approach  

The first approach is describing the equation of one pixel of mini-batch as it is. The 

equation is Y =
𝑥−μ

√σ2+ε
× γ + β 

 

Figure 42: First approach of batch normalization 

3.4.2  Batch Normalization Second Approach  

The second approach is describing the equation of one pixel of mini-batch but by some 

simplifications to use 1 multiplier and 1 adder only. So, we can use 1 DSP for every 

block.  

The equation is Y=
𝑥−μ

√σ2+ε
× γ + β= 

γ

√σ2+ε
× 𝑥 + β −

μ × γ

√σ2+ε
= 𝑎𝑥 + 𝑏 

Where: a=
γ

√σ2+ε
 and b= β −

μ × γ 

√σ2+ε
 

 

Figure 43: Second approach of batch normalization 

3.4.3  Batch Normalization Third Approach 

We notice that we can make fusing batch normalization. The equation of convolution is 

Y=∑ 𝑥 ∗ 𝑤𝑐𝑜𝑛𝑣 and the equation of batch is ȳ=𝑎𝑥 + 𝑏. [37] 

So, we can say ȳ=b + ∑ 𝑥 ∗ 𝑤𝑐𝑜𝑛𝑣 * a. we make it using only convolution. 
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3.5  Layer Storage    

 We have 5 stages in every layer. If the input data is stored in “memory 1”, the 

output of the first stage will be stored in “memory 3”. At the second stage, the input will 

be in “memory 3” and the output will be in “memory 1” and so on. We still have the 

problem that we need to make element-wise addition between the input of the first stage 

and the output of the fifth stage. And the question is where is the data input of the first 

stage? We don’t have storage for it. So, we will use “memory 2”. 

 

Figure 44: Memories of one layer 
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3.6  Memories 

3.6.1  FPGAs on-chip Memory: 

The FPGA fabric includes embedded memory elements that can be used as 

random-access memory (RAM), read-only memory (ROM), or shift registers. These 

elements are block RAMs (BRAMs), LUTs (distributed RAM), and Registers. 

3.6.1.1  BRAM 

FPGAs normally have an on-chip BRAM matrix, which could be configured as 

FIFO, RAM, or ROM. The targeted device (Virtex-7 x690t) contains about 2940 BRAM 

18Kb instances, each can be configured to 4Kb x 4, 8Kb x 2, or 16Kb x 1. So, it can hold 

1024 parameters. BRAMs can have dual ports for the same instances, allowing the 

performance of half the latency.  

3.6.1.2  LUTS 

The LUT is a small memory in which the contents of a truth table are written 

during device configuration. Due to the flexibility of the LUT structure in Xilinx FPGAs, 

these blocks are commonly referred to as distributed memories. Each LUT can be 

configured as 6 input 1-bit ROM (64x1). This is the fastest kind of memory available on 

the FPGA, because it can be instantiated in any part of the fabric that improves the 

performance of the implemented circuit, which makes them a good approach to 

SqueezNext implementation. 

3.6.1.3  REGISTER: 

Register memory is the smallest and fastest memory in a computer. It is not a part 

of the main memory and is located in the CPU in the form of registers, which are the 

smallest data holding elements.  

3.6.2  WEIGHT MEMORY: 

Not only each layer has its weight memory, but each conv has its weight memory. 

As an example (conv2) in layer2 which has kernel size1x1x64x32. It can be configured 

as a block ROM with a size 32kb. This memory only can read one parameter in each 

cycle, so this big memory can’t be good for our parallelization technique so, we must 
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divide this memory into small blocks for each parallelization technique. Each small block 

with a size of [8x16] 8 numbers 16bit for each. Every 16 small blocks are dedicated for 

two filters and one adder tree. 

 

Figure 45: Division of weight memory into small block 

For memory optimization, we used for weight memory Distributed RAM which the best 

choice for memory optimization where the size of small block is about 128 b which will 

be not efficient if we use BRAM. 

3.6.3  BIAS MEMORY: 

For each conv, there are a small number of biases which is the number of filters. 

Therefore, we use the register as a memory for bias. Each bias is eighteen bits. 

3.6.4  DATA MEMORY: 

We use BRAM for image data memory. Because each BRAM can only read and 

write maximum  two addresses every cycle (dual port) So, we need to use the number of 

BRAM equal to the number of the input of the adder tree. If we take an example of data 

[15x15x32] which converted to RAM of the size of 112.5 kb with 7200 number, but this 

size can’t be divided into several BRAM equal to the input of the adder tree. Therefore, 

we use RAM of size 128kb which is divided into 8 BRAM each having 1024 free spaces. 
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Figure 46: Data memory using BRAM 

There is an overhead that doesn’t affect the design because we use the spaces for 

padding. And we fill this places with don’t care that so, it doesn’t impact on area or 

power. 

 

Figure 47: Division memory into BRAM with the same size 

As shown in figure 47, we divide the RAM memory into some of BRAM with size of   16 

Kb filled with 900 number .In this example, we use 16 adder trees thus, we use dual-port 

memory for each BRAM. Each BRAM is divided into 4 blocks of size 4kb that help us 

when writing and reading with simple address. 

3.7  Intermediate Storage    

We need batch-separated memories in each layer in Pipelined architecture. 

3.8  Summary: 

 This chapter provides a discussion about the main idea of our architecture, how to 

use parallelism, how to use pipelining, adder tree to implement convolution, batch 

normalization implementation and its optimization and main idea of our memory. 
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Chapter 4:  Detailed Design  

4.1  Transition Between Layers That Have 1 Convolution 

Due to our architecture, we have 6 layers consists of 1 convolution: 1 layer is 

convolution from the origin and 5 was 1 layer but we split it into 5 layers because of its 

huge delay.  

4.1.1  Transition Traditional Pipelined 

To make traditional pipelining between these 6 layers: we need input memory and 

output memory for each layer. After end of each layer, we will pass its data from its 

output memory to the input memory of next layer. We have waste of delay, area and 

power in this method because the output memory has the same data in the input memory 

in next layer (waste of area) and this transition take time and spend power. 

 
Figure 48: Traditional pipelining in first 6 layers 

4.1.2  Transition New Method 

In this new method, we will replace each 2 memories (output and input memory) 

with 1 memory which we called transition memory. The new method depends on 

transition in specific time. 

 
Figure 49: New transition method in first 6 layers 
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To specify this time, we will see if we pass data from slow layer to fast layer or from fast 

layer to slow layer. If we pass data from fast layer to slow layer, we will start this 

transition after first output data in fast layer and the fast layer will end before slow layer 

so we will freeze it until the end of slow layer. If we pass data from slow layer to fast 

layer, we will start this transition after we make sure there won't be any confliction in 

data so we will freeze the fast layer from the beginning. Using this method, we nearly 

decreased the number of used BRAMs to its half as shown in table 4: 

 

Table 4: BRAM Number Optimization 

 Now we need to design new memory which we called “Simultaneous Memory”. 

4.2  Simultaneous Memory 

It is a modified dual-port memory. By using 1st data input with (addr1, WR) and 

2nd output data with (addr2, RE) and canceling out other input and output data. 

Therefore, we can read and write (simultaneously). While the layer(n) stores data by 

(addr1, WR) the layer(n+1) reads data by (addr2, RE). 

 
Figure 50: Simultaneous Memory 
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4.3 Optimization In Skip Connection Memories 

We notice that in traditional pipelining we have 5 skip connection memories, but 

in new method we have only 1 skip connection memory. So how that happened? These 5 

layers was 1 layer originally and these layers has skip connection convolution. So, 

because of pipelining we should have 5 skip connection memories. But our new method 

isn’t like traditional pipelining so we don’t need to 5 skip connection memories as all 5 

layers will be in the same data in same time not in different data like pipelining. 

4.4  Skip connection merging 

We can’t assume it as a slow layer then it will be freeze in this layer which we 

don’t need. To assume this layer as a slow layer and save the time, we should merge the 

normal convolution with the skip connection convolution by out 1 output from normal 

convolution then 1 output from skip connection convolution as the images show.  

 

Figure 51: Skip connection merging (step 1) 

 

Figure 52: Skip connection merging (step 2) 

 

Figure 53: Skip connection merging (last step) 
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4.5 Transition Between Layers That Have 5 Convolutions 

It is different case in layers that have 5 convolutions because they have 3 internal 

memories so we need to know which method is better for these layers 

4.5.1  Transition traditional pipelined between layers that have 5 convolutions 

In traditional pipelining, we will store output of fifth convolution in memory 3 in 

layer 1 then we will move it to memory 1 and memory 2 in layer 2 then we will start 

layer and so on 

Figure 54: Traditional pipelining between big layers 

4.5.2  Transition new method between layers that have 5 convolutions 

In transition new method, we will store output of fifth convolution in memory 1 

and memory 2 in layer 2 directly and will start layer 2 simultaneous as layers that have 1 

convolution. 

Figure 55: Transition new method between big layers 



47 
 

Now we can see that the new method is better here because it saves area and power. But 

we have special case in layers from 10 to 16 because layers from 10 to 16 is the same 

layer with different bias and weights so we need to use 1 controller for all of them and we 

need to use 8 dual port BRAM in each memory of them so we need traditional pipelined 

here because we haven’t BRAM can take 4 addresses. 

 

4.6  Stall controller 

 Stall controller is controller which we design to freeze the layer in the specific 

time we determined and run the layer in the specific time we determined. This schedule 

represents the start time and freeze time of each layer. 

Layer Number Start Time Freeze Time 

Layer1 At start and after 10805 clk cycles again After 8104 clk cycles 

Layer2 After 13 clk cycles from layer1 starting Never freezing after starting 

Layer3 After 3613 clk cycles from layer2 starting At start and after 10805 clk cycles 

from layer2 starting 

Layer4 After 8 clk cycles from layer3 starting Never freezing after starting 

Layer5 After 12 clk cycles from layer4 starting Never freezing after starting 

Layer6 After 3613 clk cycles from layer5 starting At start and after 10805 clk cycles 

from layer5 starting 

Layer7 After 4503 clk cycles from layer6 starting At start and after 10805 clk cycles 

from layer6 starting 

Layer8 After 7204 clk cycles from layer7 starting At start and after 10805 clk cycles 

from layer7 starting 

Layer9 After 9208 clk cycles from layer8 starting At start and after 10805 clk cycles 

from layer8 starting 

Layer10 After Ending of layer9  After 10805 clk cycles from its start 

Layer11 After Ending of layer9 in case that layer 

10 is started before 

After 10805 clk cycles from its start 

Layer12 After Ending of layer9 in case that layer 

11 is started before 

After 10805 clk cycles from its start 
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Table 5: Layers start and stop time 

 

4.7  Images controller 

Due to pipelining between layers and the STALL controller design, we can now 

Pipeline inference of multiple images and to make a prediction of the class of a specific 

image we can load a set of images on the FPGA not just one image, also pipelining in 

inferring the images improved the total throughput. So we can conclude that our design 

support inferring multiple images one by one into the model (Pipeline inference). 

4.8  Layer Controller 

4.8.1 Controller Responsibilities 

Our controller consists of some up-counters and combinational logic to do some 

responsibilities as follow: 

4.8.1.1 Determine the address of input data memory and weight memory 

We use 4 counters: j (for number of kernal rows), k (for number of kernal 

column), x (for number of data rows), y (for number of data column). The address of data 

memory will be (x+j) for row and (y+k) for column. The address of weight memory will 

be j for row and k for column. The counter k will count to end then j then y then x and so 

on. 

Layer13 After Ending of layer9 in case that layer 

12 is started before 

After 10805 clk cycles from its start 

Layer14 After Ending of layer9 in case that layer 

13 is started before 

After 10805 clk cycles from its start 

Layer15 After Ending of layer9 in case that layer 

14 is started before 

After 10805 clk cycles from its start 

Layer16 After Ending of layer9 in case that layer 

15 is started before 

After 10805 clk cycles from its start 

Layer17 After Ending of layer9 in case that layer 

16 is started before 

After 10805 clk cycles from its start 

Layer18 After Ending of layer9 in case that layer 

17 is started before 

After 10805 clk cycles from its start 
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4.8.1.2  Determine the address of output data memory and weight memory 

We need to take advantage of address of input data memory. We can input the old 

address in Register before its change by one clock.  

 
Figure 56: Determine the address of output memory 

 

4.8.1.3  Determine when we should write data and restart the accumulator 

Assume that last data should go to adder tree when j=max(j) and k=max(k). So, 

we should wait the number of stages in adder tree (as each stage ends in one clock cycles) 

after last data should go to adder tree to write. So, we use counter R to count the number 

of stages after j and k get their max values. Note that in this image max(j)=max(k)=2 and 

the number of stages in adder tree=4. 

 

Figure 57: Determine when we should write data 
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4.8.2 Controller Problems 

When all counters go to their final values, they will come back to zero. The 

problem is that we need to wait for the number of stages in the adder tree (as each stage 

ends in one clock cycles) to store final data in memory. So, we use temp counter. 

 
Figure 58: Problem of last output data 

When we go to repeat the same layer but with new data, we still have false number in the 

adder tree. We need R counter to count new number of stages in the adder tree (as each 

stage ends in one clock cycle) in new repeated layer to restart the adder tree. So, if temp 

counter goes to its maximum, it will make counter R go to one not zero. 

 
Figure 59: Problem of first output data 
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4.8  Average Pooling 

Average pooling is the one of the important parts at the end of the layers after 

finishing all convolutions the output patch is 4x4 and before the output goes to Fully 

connected we need to reduce the size of the patch to be 1x1, so that we take the mean 

value from each patch which contains 16 value (4x4), so the input that enters the FC 

becomes 1x1x128. 

Average pooling in our design is implemented at the last layer (Layer18) and this layer 

has a special filter for the Average pooling, this filter is consisted of one accumulator 

then shift block. 

The accumulator block each cycle take one value from the 16 value of each patch then 

accumulate until reach 16 cycles then the output from the accumulator is shifted to the 

right by 4 bits so the digital value is divided by 16 then it stored inside register file to be 

ready for the next level. 

As we use parallelism technique, we do not have one accumulator, instead we have 8 

accumulator blocks to gives me 8 data each 16 cycle. Figure 60 shows the filter of the 

average pooling. 

 
Figure 60: Average pooling 

4.9 Fully connected layer (FC) 

 Fully connected layer the last layer that decide the type of class of input image, 

the fully connected layer has an input of 1x1x128 and it should reduce the 128 numbers 

to 10 number each number gives like a contribution for each class from 10 classes, the 

maximum number indicates the type of image the model predicts, the FC is just like the 
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convolution layer but it differs from it that it has no RELU at the end of the convolution, 

so the output can be negative. 

 The Fully connected layer implemented in the last layer (Layer 18) which use the 

same filter of the normal convolution filter this filter takes its input data from register file 

that stored its data from average pooling (the layer before FC) and takes the weight value 

from other rom and the accumulator of the filter is loaded with bias from FC bias rom, 

the output of the convolution block stored inside another register file (small memory), 

there are 10 values from register file enter comparator tree block to determines the largest 

value and output 4 bit signal which determine the index of the predicted type of the input 

image. Figure 61 shows the comparator tree. 

 

Figure 61: Fully connected layer 

 

4.10. Summary 

  This chapter provides a discussion about our detailed design, integration idea, 

implementation and optimization in small and huge layers, skip connection merging idea, 

skip connection memory optimization, responsibilities of controller and its problems, 

average pooling and fully connected layer.  
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Chapter 5:  Model Training And Parameters Generation 
 

5.1 Introduction To Squeezenext Training 

Squeeze has many different versions that vary in accuracy, number of parameters, 

size, and complexity. 

To choose a suitable version for our needs and to confirm the results found in the art 

about the model, we used a python code used to implement the 23-layer version then 

modified it to create several other versions as shown in table 6. 

The data set used was CIFAR10, which consists of 60,000 32x32 colored images, divided 

into 10 classes having 6000 images in each class. Training and testing of the data set 

were done on a 1660ti Graphics card and Intel core i7-9750h processor. We used 50,000 

images for training and 10,000 images for testing. 

After comparing results, we found that the squeezNext-14-1x version in Fig.62 is the 

most suitable for our needs as has about 200,000 fewer parameters than the 23-layer 

version, also its size is significantly less coming at 2.05 Mb Compared to the 23-layer 

version while taking a hit of only 0.28% in accuracy. 

Moreover, the 6-layer versions were not chosen as they suffered from a big accuracy loss 

from the 23-layer version despite having excellent size and number of parameters. 

 

Table 6: Comparison between SqueezeNext versions 

To further our research other versions of the 14-layer model was tested where the RELU 

was executed before the batch normalization, but this led to less accuracy (despite finding 
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papers claiming otherwise). Also, the 14-layer version with max-pooling wasn’t chosen 

due to the big decrease in accuracy.

 

Figure 62: SqueezeNext 14-layer model 

5.2 Fixed Point Representation: 

A great deal of effort has been expended in the design of CNNs training 

algorithms under various applications. Training CNNs incorporates many complex 

calculations and experiments different sets of parameters/settings are very common. It is 

therefore very effective to do training using high-level programming languages, e.g., 

Python and MATLAB because the parameters can be changed very easily. Moreover, 

many of the calculations are independent of each other therefore can be done in 

conjunction. Thus, graphics processing units (GPUs), which can perform a large number 

of simple independent calculations, are widely accepted to speed up the training and 

testing processes.  

At all times the above-mentioned training statistics is done using floating-point 

arithmetic, real applications may require the trained CNNs to operate with fixed-point 

calculations to reduce delays and improve throughput, whatever the application is. Using 

fixed-point values, neural networks can be then implemented on Hardware such as 

FPGAs and ASICs [21]. Various representations are shown in fig.63. 
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Figure 63: Fixed Point Various Representations 

In fixed-point representation, we need to define the integer and fractional word length for 

our parameters. 

To decrease the cost and the power consumption, the fixed-point arithmetic has to be 

used. Nevertheless, the application fixed-point specification has to be determined. This 

specification defines the integer and fractional word length for each data. The data 

dynamic range has to be calculated for determining the position of the binary point with 

respect to the word length of the integer data. The fractional part word length depends on 

the operator’s word length Fixed point representation divides the number into 3 fields: 

sign bit field, integer field, and fraction field Signed Fixed-point representation has a 

range of numbers from -(2
(k-1)

-1) to (2
(k-1)

-1), for K bits [22]. 

Dealing with fixed point numbers takes special measures to enable its use in different 

mathematical operations such as multiplication, addition and subtraction, which we will 

discuss now. Fixed-point multiplication is similar to 2's compliment multiplication but it 

needs the location of the binary point to be deduced after the multiplication to obtain the 

correct result as shown in fig.64.  The deduction of the binary point’s location is a task 

for designers only. But the implementation doesn’t know where the binary point is 

located.   

This is due to the fact that the fixed-point multiplication is similar to a 2's complemented 

multiplication; where there is no extra hardware is required. The bits required for the 

product is the multiplicand's length added to the multiplier's length. 
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Figure 64: Fixed point multiplication 

Addition is harder because the points need to be aligned before executing the addition.  

When we add more than two numbers all of the same length, the number of bits required 

for the addition is: the word length plus log2(𝑁)where N is the number of elements being 

summed as shown in fig.65 [23].  

  

Figure 65: Fixed point addition 

Converting a number to fixed point can be done in software in various methods, We used 

a simple mathematical formula for the conversion that depends on multiplying the 

number to be converted by the weight (in binary representation) corresponding to the 

number of fraction bits used and flooring the answer then dividing it by the same 

aforementioned weight.  

Hence, we notice that using fixed-point representation comes with a cost however as it 

leads to a decrease in accuracy that varies with the total number of bits used and the 

portion of these bits designated to the integer and fraction fields. 
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Choosing the correct number of bits for fraction, and integer parts were done by 

observing the values of the parameters after training and choosing a number that is 

satisfactory enough to represent them. 

For example, knowing that all the parameters are values below one only one bit can be 

assigned to the integer part to be fully represented (not including the sign bit), After 

converting the numbers, we test the model to measure the loss in accuracy as shown in 

table 7, and decide whether a suitable number of bits were chosen. 

After careful examination of the inputs and output of each layer and output parameters 

the design chosen for fixed-point was: 16-bit numbers with 1 sign bit, 1 integer bit, and 

14 fraction bits. Except for the linear layer which needed 5 bits for the integer part as it 

contained big numbers. 

 This gave an accuracy of 89.93: 

 

Chosen sizes Accuracy 

Without using Fixed point 91.45% 

Total bits:64  Fraction bits:60 91.4% 

Total bits:32  Fraction bits:29 91.38% 

Total bits:20  Fraction bits:17 91.12% 

Total bits:16  Fraction bits:13 89.93% 

Total bits:8    Fraction bits:5 79.34% 

Table 7: Accuracy for different representations 

After further inspection of the network, it was noticed that some layers may need a 

different fixed-point configuration as shown in fig.66. 

These changes improved the accuracy from 89.93 To 90.8, while keeping stages where 

multiplication occurs, of same configuration to ease the multiplication process in 

hardware. 
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Figure 66: Different fixed-point configuration within layers 

 5.3 Batch Normalization And Convolution Merging: 

To increase the efficiency of the hardware used for batch normalization, new 

parameters were deduced from the normal batch normalization equation as shown in 

fig.67. The new parameters called a and b, where a was multiplied by the convolution 

weight the precedes it, and b was used as the bias of the convolution. 

Then a new network was created without a separate batch normalization layer and using 

convolution layers with biases.  

After testing the new model, we verified that the accuracy remained nearly the same. 

This enabled us to greatly reduce the size of the hardware used, while also saving power 

and having less delay. 

  

Figure 67: New batch normalization parameters 
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5.4 Test Vectors Generation: 

In order to be able to use the parameters generated in the hardware, and also test 

the hardware using the inputs and outputs generated, test vector files were generated. 

These files contain the output parameters, and the output and input of each stage in fixed 

point representation where each number has its own line inside the files to make reading 

the numbers and dealing with them easier, and each layer has its own file. 

 

5.5 Summary: 

This chapter discusses the software part where we trained different squeezeNext 

networks with different modifications and chose the suitable one. Also we discussed the 

batch normalization problem and its solution by merging the batch normalization with 

convolution. Finally, we covered the software model we developed according to our 

design to generate test vectors for each layer. 
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Chapter 6:  Optimizations For Squeezenext Architecture 

In this chapter, the goal is to enhance the design in terms of timing, area and 

power along with fixing the synthesis issues and solve any simulation and synthesis 

mismatch. 

The following aspects were categorized to make the most out of the required 

optimizations: 

• Timing and Pipelining 

• Area aware optimizations 

• Power Reduction Techniques 

• Accuracy enhancements 

6.1 Timing Enhancements 

We hardly met the 100 MHz constraints so we did many improvements to 

increase the frequency used and finally it can be in range between 150MHz to 200MHz. 

Also we applied other modifications to increase the throughput and reduce the latency. 

6.1.1 Break the critical paths to increase the operating frequency. 

We broke the paths which have the highest combinational logic delay, most of 

these paths were at the end points of the adder trees, BRAMs output pins, DSPs input pins 

and some paths were suggested using Vivado Timing Analysis. This modification 

improved the operating frequency from 75MHz to above 140MHz.Also we used the 

Register Retiming option in synthesis to shorten the clock cycle which will be discussed 

later in details. 

  

Figure 68: Combinational logic before breaking the critical path     Figure 69: Combinational logic after breaking the critical path 

6.1.2 Pipelining: 

We used pipelining techniques to increase the throughput of the network while 

sacrificing some area for the added registers. 



61 
 

6.1.2.1  Pipelining within the layers: 

We applied pipelining in layers through using pipelined adder trees to perform the 

convolution with higher throughput. 

  

Figure 70: Three input pipelined adder tree with 3 channels 

6.1.2.2  Pipelining between layers: 

Pipelining between layers is done in the data transition between layers, as the 

different layers can now do processing on different images at the same time, also we 

improved this by not using the Transition traditional pipelined as discussed before, but 

we improved the pipelining through the system controller and the transition dual port 

memories which makes the current layer not have to wait the previous layer to complete 

the data processing and store it in memory, but the current layer can start after a certain 

number of data is stored in memory, this method has much improved the total throughput 

and the time taken to do processing on an image from the first layer to the last layer.  

 

Figure 71: Connections between the first two layers 
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The next table shows the optimization effect on the total throughput: 

 Before Optimization After Optimization 
Total number of Clock cycles needed to 

get the first output 
194490 Clock Cycles 129678 Clock Cycles 

Total number of Clock cycles needed to 

get the rest outputs 
10805 Clock Cycles 10805 Clock Cycles 

Table 8: Optimization in Clock cycles after Pipelining between layers 

Improvement percentage for the first output=  
194490−129678

194490
∗ 100% = 33.324% 

 

6.1.3  Parallelism inside layers: 

Parallelism means many calculations or the execution of processes are carried out 

simultaneously, that will decrease the time of execution of CNN architectures. We used 

parallelism in filters by repeating the block N times to increase throughput. We used 

parallelism in channels by repeating the multiplier in one block M times to increase 

throughput. We say we have M×N parallelism. 

 

Figure 72: Parallelism process for multi-channel network 

6.1.4  Merging some Convolutions in layers: 

This is done by applying the convolutions at some layers which have skip 

connection memory to work at the same time, this method reduced the number of clock 

cycles needed by merging the normal convolution with the skip connection convolution. 

6.1.5  Pipelining inference of multiple images 

Our design support inferring multiple images one by one into the model (Pipeline 

inference) due to pipelining between layers, to make a prediction of the class of a specific 

image we can load a set of images on the FPGA not just one image which increases the 

total throughput of the system. 



63 
 

The next table shows the optimization effect on the total throughput: 

 Before Optimization After Optimization 

Total number of Clock cycles needed to 

get the first output 
127016 Clock Cycles 129678 Clock Cycles 

Total number of Clock cycles needed to 

get the rest outputs 
127016 Clock Cycles 10805 Clock Cycles 

 
Table 9: Optimization in Clock cycles after Pipelining inference 

Improvement percentage=  
127016−10805

127016
∗ 100% = 91.4932% 

 

6.2 Area Enhancement 

6.2.1  Using Counter-Based Controller instead of FSM 

This method has reduced the resources taken nearly to half, we thought in a more 

structural way about the resources needed and we didn’t use any additional resources, i.e. 

the controller of the first layer consists of two 2-bits counters and two 5-bits counters. 

 

 

Figure 73: Layer 1 controller 

 

6.2.2  Using one controller to some layers: 

We used the traditional pipelining for the layers from layer 10 to layer 16 as they 

work the same speed and have identical architectures, so we used only one controller for 

the seven layers instead of seven controllers. 
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Figure 74: Network layers from layer 10 to layer 16 

6.2.3  Stride Optimization 

Stride value in CONV8 in table 10, is equal 2, but we can make it equal 1 by 

making stride value in CONV2 and CONV7 is equal 2. Now we can make the size of 

skip connection memory in layer2 and output memory layer7 reduce to its half.  

 

Table 10: Size of network layers from 1 to 7 

6.2.4 DSPs Optimization  

  Due to the previous optimization in stride, we notice that layer2 and layer7 are 

faster than before. Layer2 was ended at 10800 clock cycles, but now it ends in 5400 only 

due to optimization in stride. So, we don’t need 256 DSPs to this layer.  We only need 
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164. And Layer6 finished after 7200 clock cycles, but now it finished after only 1800 due 

to optimization in stride. So, we don’t need 64 DSPs in this layer, we only need 16 DSPs. 

The next table shows the optimizations effect on the DSPs: 

 

Table 11: DSPs Optimization  

Improvement percentage = 5% 

 

6.3 Power Reduction Techniques 

These techniques effects on the dynamic power only and have no relation with the 

static power.  

6.3.1 Clock gating in the Stall Controller 

The Stall Controller is responsible for starting and stopping the layers, We used 

clock gating with enable and disable signals to achieve this, and instead of applying the 

clock gating to the Registers Enable Pins we applied it to the clock pins. 

The Clock gating main advantages are to reduce the dynamic (switching) power 

consumption and decrease the FAN OUT of the main clock, and simplify the routing. 

We faced glitch problems in the Latch Free Clock Gating which causes: 

 Pulse Clipping : that leads to Pulse Width Violation 

 Spurious Clocking: that leads to hold time and setup time violations 

 
Figure 75: Latch-Free clock gating 
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Figure 76: Glitch problem in the gated clock 

So to avoid these problems we used Latch Based Clock Gating which consists of Active 

Low Latch with AND Gate and put them together in Integrated Gated Clock (ICG) Cell to 

avoid the different routing delay. 

 

Figure 77: Latch-based clock gating 

 

Figure 78: No Glitch problem in the gated clock 

Clock gating location should be near to the clock source to avoid the power consumption 

in the buffers in the clock distribution network, and the buffers are placed after the clock 

gate. 

6.3.2 Operand Isolation: 

In case of doing some processing on data buses, we need to isolate or register the 

inputs to avoid unnecessary glitching power due to different arrival times of the bits of 

the data buses.  

 

Figure 79: Registering 32-bits multiplier inputs 
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6.3.3 Avoid XOR Gates:  

In XOR gate, any transition at any of its inputs will always cause a transition at 

the output which leads to high switching power consumption so it’s called Power 

Hungry. 

Comparator operations involve a lot of XORs, so we reduced our dependence on the 

comparisons in our design. 

 

Figure 80: 8-bits comparator 

Also the methods used in the Area Enhancements lead to reduce the consumed power. 

6.4 Accuracy Enhancements 

In Fixed-Point Multiplication and Addition, We used a fixed 16-bit data size (3 

bits for integer part and 13 bits for fraction part) for all the layers in the network, and we 

got accuracy less than the software with approximately 1.5% so we applied some 

modifications which make the HW accuracy reach nearly to the SW floating point 

accuracy. 

6.4.1 Change data size within the layer 

By increasing the number of bits to be 18-bits inside the adder trees only and 

trimming the extra bits before storing the data in memory. We increased the size to 

increase the number of fraction bits which effects on the accuracy, i.e. as shown in the 

next figure, if we used 5-bits output instead of 6-bits, the least fraction bit will be 

neglected and the output will be 111.101 instead of 111.1011. 
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Figure 81: Increasing the size of the output fraction bits 

6.4.2  Moving the Radix Point in the fixed point representation  

We did some software statistics to know the range of numbers in all layers 

(Max,Min and Avg ), We found that we don’t need to use the same number of integer and 

fraction bits in all layers, and then we found a way to move the radix point. 

6.4.2.1  Moving the Radix Point to Left: 

We use this method to increase the number of fraction bits (only if there’s no 

overflow in the output integer part). 

6.4.2.2  Moving the Radix Point to Right: 

We use this method to increase the number of integer bits by taking advantages of 

the overflow, this is done by applying Signed/Unsigned multiplication then calculate the 

radix point position. 

6.5 Summery 

This chapter discusses different optimization techniques and their effect on 

different fields, we applied the timing enhancements to increase the operating frequency 

and the total throughput, the area aware enhancements used to reduce the number of 

resources used, hence reduce the consumed power, Power reduction techniques are used 

to decrease the total dynamic power and the Accuracy Enhancements make the HW 

model accuracy reach to the SW model accuracy. 

Design optimization is considered as an incremental process which applies 

increasing engineering effort and tool computational time to make the design meet timing 

constraints. Good HDL coding can positively influence the ability of the design 

implementation tools to achieve the desired timing performance. 

But these techniques have tradeoffs, so we need to get the best strategy for our design. 
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Chapter 7: Synthesis And Implementation 

7.1  Synthesis Flow 

Synthesis is the process of transforming an RTL-specified design into a gate-level 

representation. Vivado® synthesis is timing-driven and optimized for memory usage and 

performance. FPGA synthesis is a vital phase in the deployment of Squeeze-Next CNN 

architecture. Xilinx Vivado offers a variety of options and switches for synthesis, and 

even ready-to-use strategies that help designers employ Vivado Synthesizer to achieve a 

target for their RTL, such as area, timing and so on. Now we are going to offer some 

strategies that affect our design in vivado. [24] 

7.1.1  flatten_hierarchy:  

Determines how Vivado synthesis controls hierarchy through these strategies: 

 none: The output of synthesis and the original RTL have the same hierarchy. 

 full: Leaving only the top level and do completely  flatten the hierarchy. 

 rebuilt: The synthesis tool is allowed to flatten the hierarchy and perform 

synthesis, then based on the original RTL , it rebuilds the hierarchy. 

7.1.2  gated_clock_conversion:  

Enables and disables the synthesis tool to convert the clocked logic with enables. 

Performing this conversion helps the tool to use the dedicated clocking resource, but it 

also uses different clock enables and it will need more control sets in the design which 

can have other effects.  

 
Figure 82: Clocking structure with LUT without gated clocks conversion 
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One way to fix these problems and to remove the gates is to rewrite the RTL code. 

However this needs a lot of work, and if the design is being prototyped in FPGAs, the 

RTL is not allowed to be changed.  Another way to fix this is to make the synthesis tool 

allow converting those gates, then the clock will directly drive the register clock pin and 

the gating logic will go to the clock enable pin. 

 

Figure 83: Same structure with gated clocks converted 

7.1.3  bufg:  

Controls how many BUFGs the tool infers in the design. If the -bufg option is set to 12 

and there are three BUFGs instantiated in the RTL, the Vivado synthesis tool infers up to 

nine more BUFGs. 

7.1.4  fanout_limit 

Specifies the maximum number of loads driven by a signal before it starts to replicate the 

logic. 

7.1.5  directive 

This option runs Vivado synthesis with different optimizations: 

 Default: performs the default settings in Vivado synthesis tool. 

 RuntimeOptimized: Reduces the synthesis run time. 

 AreaOptimized_high: 

 AreaOptimized_medium: 

 AlternateRoutability:  Algorithms to improve route-ability 

 AreaMapLargeShiftRegToBRAM: 

 AreaMapLargeShiftRegToBRAM: 

 FewerCarryChains: 
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7.1.6  retiming:  

The aim of this procedure is to shorten the clock cycle or reduce circuit area, as Register 

Retiming is an optimization technique in timing that moves registers forward or 

backward across combinational elements in a circuit to reduce the critical path. [25] 

As our target is throughput, we can sacrifice some area, because the total number of 

registers will increase, to serve the throughput by decreasing the critical paths. 

 

Figure 84: Before Retiming    Figure 85: After Retiming 

7.1.7  fsm_extraction:  

Controls how synthesis extracts and maps finite state machines with FSM Encoding 

protocols. We didn’t use this option as we used Counter-based controller instead of FSM 

as we found that it is better in area. 

7.1.8  keep_equivalent_registers:  

Prevents merging of registers with the same input logic, it increases the number of 

registers in design, hence the consumed power. So it’s kept Unchecked. 

7.1.9  resource_sharing:  

Sets the sharing of arithmetic operators between different signals. As our target is 

throughput, we didn’t use it and kept it OFF.   

7.1.10 Synthesis Options 

Flow_AreaOptimized_high 

-flatten_hierarchy : rebuilt 

-gated_clock_conversion : off 

-bufg : 12 

-fanout_limit : 10000 

-directive : AreaOptimized_high 

-retiming : Checked 
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7.2  Constraints: 

The requirements that must be met by the compilation is defined by the design 

constraints, they are used to ensure that the design is functional on the board. Not all 

constraints are used by all steps in the compilation flow, some of them are done in 

synthesis flow and others are critical in PAR. For example, physical constraints are used 

only during the implementation steps. [26] 

 

Figure 86: Constraints Editing Flow 

The four primary types of constraints are synthesis constraints, I/O constraints, timing 

constraints and area/location constraints. [27] 

 Synthesis constraints: They influence the details of how the synthesis tool will 

translate the HDL code to RTL. 

 I/O constraints (pin assignment): They are used to assign a signal to a specific 

I/O (pin) or I/O bank on the target board. 

 Timing constraints: They are used to specify the timing characteristics of the 

design. Timing constraints effect on all internal timing interconnections, and they 

can be either path-specific or global. 

 Area constraints: They are used to map specific design element or specific fixed 

resource to a range of resources within the FPGA. 
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Timing analysis for FPGA designs is easier than ASIC designs, as the FPGAs have Clock 

distribution network with minimum skew also Xilinx Vivado timing analysis engine has 

timing models for each cell in Virtex-7 FPGA on VC709 board (Our target FPGA). 

7.3 Implementation Flow 

The Vivado Design Suite implementation process transforms a logical netlist and 

constraints into a placed and routed design, ready for bitstream generation. The 

implementation process walks through the following sub-processes [28]:  

7.3.1 Opt Design:  

By optimizing the logical design to make it easier to fit onto the target Xilinx device. 

Directives provide different modes of behavior for the opt_design command. The 

available directives are described in the next table:  

Directive Description 

Explore Runs multiple passes of optimization. 

ExploreArea Runs multiple passes of optimization with emphasis on reducing 

combinational logic. 

AddRemap Runs the default logic optimization flow and includes LUT remapping 

to reduce logic levels. 

ExploreSequentialArea Runs multiple passes of optimization with emphasis on reducing 

registers and related combinational logic. 

RuntimeOptimized Runs minimal passes of optimization, trading design performance for 

faster run time. 

NoBramPowerOpt Runs all the default opt_design optimizations except block RAM 
Power Optimization. 

ExploreWithRemap Same as the Explore directive but includes the Remap optimization.  

Default Runs opt_design with default settings. 

Table 12: Opt Design directives descriptions 

From these directives we try to choose the one help us to improve timing problems, so we 

choose ExploreWithRemap directive combine between reducing combinational logic 

and LUT remapping to reduce logic levels.  

7.3.1 Power Opt Design (optional):  

Optimizes design elements to reduce the power demands of the target Xilinx device. 

Power optimization is an optional step that optimizes dynamic power using clock gating. 

The command also performs intelligent clock gating to optimize power.  
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7.3.2 Place Design:  

Places the design onto the target Xilinx device and performs Fan-out replication to 

improve timing. The available directives are described in the next table:  

Directive Description 

Explore Higher placer effort in detail placement and post-placement 

optimization. 

WLDrivenBlockPlacement Wirelength-driven placement of RAM and DSP blocks. Override 

timing-driven placement by directing the Placer to minimize the 

distance of connections to and from blocks. This directive can 

improve timing to and from RAM and DSP blocks. 

EarlyBlockPlacement Timing-driven placement of RAM and DSP blocks. The RAM and 

DSP block locations are finalized early in the placement process 

and are used as anchors to place the remaining logic. 

ExtraNetDelay_high Increases estimated delay of high fanout and long-distance nets. 

This directive can improve timing of critical paths that meet 

timing after place_design but fail timing in route_design due to 

overly optimistic estimated delays. Two levels of pessimism are 

supported: high and low. ExtraNetDelay_high applies the highest 

level of pessimism. 

ExtraNetDelay_low Increases estimated delay of high fanout and long-distance nets. 

This directive can improve timing of critical paths that have met 

timing after place_design but fail timing in route_design due to 

overly optimistic estimated delays. Two levels of pessimism are 

supported: high and low. ExtraNetDelay_low applies the lowest 

level of pessimism. 

ExtraPostPlacementOpt Higher placer effort in post-placement optimization. 

ExtraTimingOpt Use an alternate set of algorithms for timing-driven placement 

during the later stages. 

RuntimeOptimized Run fewest iterations, trade higher design performance for faster 

runtime. 

Quick Absolute, fastest run time, non-timing-driven, performs the 

minimum required for a legal design. 

Default Run place_design with default settings. 

Table 13: Place Design directives descriptions 

From these directives we choose the one achieve highest fanout by ExtraTimingOpt 

directive that uses an alternate set of algorithms to improve the timing of critical paths.   
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7.3.3 Post-Place Power Opt Design (optional):  

It is an additional optimization to reduce power after placement.  

7.3.4 Post-Place Phys Opt Design (optional):  

By optimizing the logic and placement using estimated timing based on 

placement by including the replication of high fan-out drivers. The directives provide 

different modes of behavior for the phys_opt_design command. Only one directive can 

be specified at a time, and the directive option is incompatible with other options. The 

available directives are described in the next table:  

Directive Description 

Explore Run different algorithms in multiple passes of optimization, including 

replication for very high fanout nets, SLR crossing optimization, and a 

final phase called Critical Path Optimization where a subset of physical 

optimizations are run on the top critical paths of all endpoint clocks, 

regardless of slack. 

ExploreWithHoldFix Run different algorithms in multiple passes of optimization, 

including hold violation fixing, SLR crossing optimization and 

replication for very high fanout nets. 

ExploreWithAggressiveHoldFix Run different algorithms in multiple passes of 

optimization,including aggressive hold violation fixing, SLR 

crossing optimization and replication for very high fanout nets. 

AggressiveExplore Similar to Explore but with different optimization algorithms and 

more aggressive goals. Includes a SLR crossing optimization 

phase that is allowed to degrade WNS which should be regained 

in subsequent optimization algorithms. Also includes a hold 

violation fixing optimization. 

AlternateReplication Use different algorithms for performing critical cell replication. 

AggressiveFanoutOpt Uses different algorithms for fanout-related optimizations with 

more aggressive goals. 

AddRetime Performs the default phys_opt_design flow and adds register 

retiming. 

AlternateFlowWithRetiming Perform more aggressive replication and DSP and block RAM 

optimization, and enable register retiming. 

Default Run phys_opt_design with default settings. 

Table 14: Post-Place Phys Opt Design directives descriptions 

By choosing AggressiveExplore directive which allowed to degrade WNS and includes a 

hold violation fixing optimization, so it is the best option to improve timing problems. 
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7.3.5  Route Design:  

The Vivado router performs routing on the placed design, and performs 

optimization on the routed design to resolve hold time violations. When routing the entire 

design, directives provide different modes of behavior for the route_design command. 

Only one directive can be specified at a time. The directive option is incompatible with 

most other options to prevent conflicting optimizations.  

The available directives are described in the next table:  

Directive Description 

Explore Allows the router to explore different critical path placements after an 

initial route. 

AggressiveExplore Directs the router to further expand its exploration of critical path routes 

while maintaining original timing budgets. The router runtime might be 

significantly higher compared to the Explore directive because the 

router uses more aggressive optimization thresholds to attempt to meet 

timing constraints. 

NoTimingRelaxation Prevents the router from relaxing timing to complete routing. If the 

router has difficulty meeting timing, it runs longer to try to meet the 

original timing constraints. 

MoreGlobalIterations Uses detailed timing analysis throughout all stages instead of just the 
final stages, and runs more global iterations even when timing improves 

only slightly. 

 

HigherDelayCost Adjusts the internal cost functions of the router to emphasize delay over 

iterations, allowing a tradeoff of run time for better performance. 

RuntimeOptimized Run fewest iterations, trade higher design performance for faster run 

time. 

AlternateCLBRouting Chooses alternate routing algorithms that require extra runtime but may 

help resolve routing congestion. 

Quick Absolute, fastest compile time, non-timing-driven, performs the 

minimum required for a legal design. 

Default Run route_design with default settings. 

Table 15: Route Design directives descriptions 

From these directives we try to choose the one help us to improve timing problems, so we 

choose NoTimingRelaxation that make the router never release until meeting the 

original timing constraints.  
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7.3.6  Post-Route Phys Opt Design (optional):  

By optimizing the logic, placement, and routing using actual routed delays.  

The available directives in Post-Route Phys Opt Design are described in previous 

tables. By choosing the AggressiveExplore option where the router uses more aggressive 

optimization thresholds to attempt to meet timing constraints. 

7.3.7  Write Bitstream:  

Typically, bitstream generation follows implementation. Although not technically part of 

an implementation run, bitstream generation is available as an incremental step for Xilinx 

device configuration. 

 

7.4  Downloading The Bitstream Into The FPGA 

7.4.1  Bitstream Overview 

A bitstream is a binary sequence that comprises a sequence of bits. These are used 

in FPGA applications for programming purposes and to establish communication 

channels. FPGA bitstream is a file containing the programming data associated with your 

FPGA chip. It is a file containing binary data that codes for all of the configuration 

information of a given FPGA. Not only that, but it also has the commands needed to 

control the functionality of the chip. All of this information is arranged in frames which 

make up the fundamental blocks for the FPGA configuration memory space. The 

bitstream file is generated after an elaborate process that comprises a lot of designing, 

synthesis, and validation. 

7.4.2  Frequency Synthesis  

The clock on the virtex-7 board is differential with frequency 200MHZ, where we 

want different output frequencies than the 200MHZ, so we used the IBUFGDS primitive 

to give single output clock that can be used then by the PLL or MMCM block to give the 

required frequency.  
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7.4.2.1  IBUFGDS 

The IBUF and IBUFG primitives are the same. IBUFGs are used when an input 

buffer is used as a clock input. In the Xilinx tools, an IBUFG is automatically placed at 

the clock input sites.[] 

And the same is valid for IBUFDS and IBUFGDS for differential IO. 

 

Figure 87: IBUFGDS differential input clock 

 

7.4.2.2  MMCM  

Mixed Mode Clock Manager is a PLL with some small part of a DCM tacked on 

to do fine phase shifting, so its mixed mode , the PLL is analog, but the phase shift is 

digital. Thus the MMCM can do everything the PLL can do and the phase shifting from 

the DCM block.  

We can choose any output frequency to be synthesized; synthesizing frequencies higher 

than 200MHZ is available. Also we can choose different clock outputs with different 

frequencies and phases. MMCM is generated using the IP CORE Clocking Wizard. 

The IP CORE Clocking Wizard. This LogiCORE ™ IP simplifies the creation of HDL 

source code wrappers for clock circuits customized to the clocking requirements. The 

Wizard guides in setting the appropriate attributes for the clocking primitive, and allows 

overriding any wizard-calculated parameter. In addition to providing an HDL wrapper for 

implementing the desired clocking circuit, the Clocking Wizard also delivers a timing 

parameter summary generated by the Xilinx ® timing tools for the circuit. [29] 
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7.4.3 Output Observation  

We used VIO and ILA for output observation.  

7.4.3.1 VIO (Virtual Input Output)  

The LogiCORE™ IP Virtual Input/Output (VIO) core is a customizable core that 

can both monitor and drive internal FPGA signals in real time. The number and width of 

the input and output ports are customizable in size to interface with the FPGA design. 

Because the VIO core is synchronous to the design being monitored and/or driven, all 

design clock constraints that are applied to your design are also applied to the 

components inside the VIO core. Run time interaction with this core requires the use of 

the Vivado® logic analyzer feature. [30] 

The VIO provides virtual LEDS and many input ports for the observation of the output 

and changing the inputs from the software instead of the FPGA in/out ports. 

 

Figure 88: VIO block diagram 

7.4.3.2  ILA (Integrated Logic Analyzer)  

The ILA IP block is customized for monitoring the internal signals of the design; 

the ILA shows the signals in timing waveforms and the state of each signal.                                                                  

The ILA is as VIO, since it’s synchronous to the design so all the design constraints 

related to the clock is also applied to the ILA IP. [31]  
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7.4.3 Top Module Setup  

For downloading the bitstream and testing the code we used the following setup in fig1. 

  

Figure 89: The used setup for downloading the code 

7.4.4  I/O Constraints 

The following table shows the I/O constraints and those we chose from the datasheet of 

the VIRTEX-7 VC709 FPGA. 

Signal IOSTANDARD GPIO Pin Pin PULLTYPE 

Clk_N DIFF_SSTL15 __ G18 __ 

CLK_P DIFF_SSTL15 __ H19 __ 

reset LVCMOS18 SW2.10 BA30 PULL_UP 

OUT[3:0] LVCMOS18 DS2.2, DS3.2, 

DS4.2, DS5.2 

AM39, AN39, 

AR37, AT37 

respectively 

PULL_UP 

Table 16: I/O constraints 

7.5 Summary: 

This chapter provides a discussion on the synthesis flow and which strategies give 

the best results for our design, the constraints including timing constraints and physical 

constraints, the implementation flow and the best strategies for our design, generating and 

downloading bitstream on FPGA. 
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Chapter 8:  ASIC Flow 

 In this part we will introduce many sections, the first section is introducing the 

purpose why we want to complete in ASIC flow and what problem we face in ASIC 

implementation, the Methodology we followed to test and implement the whole 

system.[32] 

 

8.1 Purpose for ASIC flow implementation 

 At first our project aim is to choose and implement a CNN network for image 

detection in FPGA, but we thought it would be better if we add more goals to the project 

to enhance the project and increase our experiences like completing the ASIC flow. 

So, for that purpose we want to participate in this field and have more experiences in this 

field that is rich with knowledge, and have the highest opportunity to cooperate in this 

important field of technology. We also need to make our specific design to squeeznext 

network to achieve better delay and power. 

 

Figure 90: Application Specific Integrated Circuit example 
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8.2 Problems in ASIC Flow Design 

 In this section, we will shed a light on some problems we faced when we start 

ASIC flow until we finish, and how we solve those problems. 

8.2.1 Arithmetic Blocks  

 There are many differences between any digital design RTL implemented in 

FPGA and ASIC, especially memories and arithmetic blocks and this is because the 

differences in the internal designs in both FPGA and ASIC, FPGA’s building block is 

LUTS and Registers, while ASIC’s building block is standard cells, each one of them 

differs in their delay, area and the internal design, Also the tool complexity and algorithm 

is differing from FPGA than ASIC, as FPGA IC is limited with a number of resources 

and special blocks, while ASIC is unlimited, so it’s important to optimize resources usage 

in FPGA, also there is a high performance and high speed Arithmetic block called DSP 

which is more important for multiplication operation in the convolution block. 

So, we faced a problem when we merge between our RTL design that targeting FPGA to 

a design that target ASIC. For an example we use DSP block to implement multiplication 

block which is essential in convolution block, so we need to replace the DSP with a block 

as efficient as the DSP, fortunately there are many multiplications algorithms like Booth 

multiplier, and at last we use the multiplier implemented with tool itself as it’s fast and 

suitable for large size data width. 

8.2.2 Memory Blocks 

 The main important block in any design RTL is the memory especially if this 

design is pipelined, our design use pipeline between 18 layers and we need separate 

numbers of memory for data and for weight essential for each convolution, we use 

BRAMs when we implement the RTL design of memory, but in ASIC we need to 

implement an efficient memory with low power usage and high throughput but it’s 

difficult to implement memories in ASIC, especially for large size memories, so we 

search a lot until we found an open source that implement memories in ASIC which 

called OPEN SOURCE RAM, and replace each memory in the design with the new 

memory. 
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We faced problem from the size of memory we want to implement, at first, we want to 

implement memory has size same as the size of BRAMs which is 1024 word, However, 

this size is not suitable as the propagation delay increases especially the last element in 

the memory, to solve this problem we divide this memory that includes 1024 word into 

32 parts and their output is connected with multiplexer and this way reduce the worst 

propagation delay taken by the memory path. 

8.2.3 Setup Violation 

 One of the most important targets is the clock speed we need the whole system to 

be faster and have as much throughput as it can, however the digital design engineer is 

more cautious from the timing and violation, and there are two types of violation and they 

are independent on each other, which are setup violation and hold violation. 

Setup time is an amount of time that data of a synchronous input must be stable before 

the active edge, and if the input change at this window it causes Meta-stability, while 

Hold time is an amount of time the data should of a synchronous input must be stable 

after the active edge, and also cause Meta-stability if the input data violates. 

At first there are many specifications that limit some constrains, like clock frequency, 

output and input delays and clock uncertainty, then after the design tool elaborate the 

RTL file into netlist of simple logic blocks the propagation delay (for worst and best 

delay) is no longer unknown, and after Place and Route is finished the routing delay 

becomes known, so the whole delays are all known especially so we can now calculate 

and estimate the critical path that identify the worst case scenario that could have setup 

violation, and the how much slack remains. 

But if we have setup violation, then we can either reduce the clock speed which is not 

applicable or we can break the critical path, so that the propagation delay reduced and we 

can now have plenty of positive slack to increase the clock frequency. 

Many critical paths exist in the paths contains complex compositional circuit like 

arithmetic circuit and also in the paths contain large memory size so to avoid any 

violation we should increase number of pipelines inside these paths and break the largest 

paths, in our design critical paths exist in path from filter to memory or from memory to 
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filter due to large memory that lead to large propagation delay also the filter itself 

contains sequential layers of adders preceded with layer of multipliers that have largest 

propagation delay, also in the last layer there is comparator tree which have sequential 

layers of comparators to get the index of the predicted input image, so how we solve the 

violation at these paths? For memories we break it to mini memories and their output 

connected to multiplexer and for the filter and comparator tree we separate each layer 

from the following layer with layer of registers, 

What about hold time violation? At first hold time violation occurs in the path that have 

small propagation delay like path between two register and there is no combinational 

block exist between them, and this path can be found inside controller and also inside the 

filter itself, so this problem can be solved if we put some large buffers to increase the 

propagation delay and avoid the hold time violation. Both violations can be accurately 

calculated after the PNR (Place and Route) after all delays becomes no longer unknown 

like standard cell delay, routing delay and parasitic delay. 

 

8.3 Step and Method 

 At first, we have RTL design of 18 layers each layer may have one or more 

memories and they have all controllers that have multiple of counters and there is big 

controller that control the stall action inside layers, and each layer have filters contains 

layers of multiplier and adders. 

8.3.1 Method 

 So at first we did not start to follow the ASIC flow for the whole system that 

include 18 layers, instead we need to start as easy as simple so we began with small 

blocks like memory of small size, multiplier and even adder all with same size in the 

design, and after that we began with large blocks like filter of one output then the real 

filter (of several outputs contains parallism) controller alone and even large memories, 

then we go higher with a whole layer but the small one then we start with large one like 

layers from layer7 to 18, after that we start with the whole system and all that to avoid 

getting violation and to be clear to trace. But we face problems when the layer is bigger 
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because of the performance of our processors, so not all layers are performed, but this the 

way we need to follow. 

8.3.2 Steps 

 What about steps, first step after design the RTL code we began with synthesis in 

this step its input is RTL design code written in Verilog or VHDL language and the 

output is a Netlist of logic gates connected and mapped with standard cells in the library.  

8.3.2.1 Synthesis  

 In Synthesis step we began to define the top module name, the paths of the 

standard cells library, then we define the work library and the paths of the RTL files after 

that we began with elaboration which change the RTL complex design into small logic 

gates connected together which perform the same functionality of the RTL design after 

this we link between the standard cells and the logic gates after optimization occurs and 

then check constrains are met and there are no violations and we choose the effort to be 

medium, after this we generate the sdc file and all reports (area, power , resources and 

timing analysis of worst 10 paths) then we go to the next step PNR. 

 In Synthesis we input the RTL, constrains and SC.libs. Then we get netlist.v and 

.svf files. We used DC shell to synthesis our design. 

 

Figure 91:Logic synthesis inputs and outputs 
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8.3.2.2 PNR 

 In PNR which is Backend digital design engineer are specialized with the whole 

magic occurs here, first we identify the top module name and the target and the link 

library and search path, then we identify the library of routing wires delay model, and we 

pass the constrain file. 

After this we go in the next step in the PNR which is floorplan in this step we want to 

calculate the width and height of the IC chip from the sizes of cells used and we identify 

a parameter which is the utilization which identify the ratio between the size of the cells 

to the IC size, after this we go to the next step which is power network. 

The power network step is to identify the metal layer positions vertical or horizontal 

from layer 6 to layer 10 and here we identify also the VSS source network and how it’s 

connected to the whole cells and also the ground signal and then we define the VSS and 

GND pins, after floor planning and power network we check for the ignored layers to 

make sure they wanted and also chick congestion and physical constrains and then go to 

the next step which is placement. 

Placement, at first, we start with initial placement for the cells and then the tool checks 

for legality and timing and estimate them and then do some optimization to get the 

optimum place for each cell so that the routing becomes easier, according to an algorithm 

and the effort we give to the tool, it goes into finite loop until it founds the optimum 

places for each cell and met the placement constrains with low congestion and then go to 

the next step CTS. 

CTS, here we want to identify all things that related to the input clock to the IC chip and 

define the type of tree network and the types of buffer used in the clock tree, we define 

the clock tree clock, early delay, skew, max capacitance, max fan out, maximum 

transition and the buffer size, then synthesize, optimize and route the clock tree network, 

so after that we generate all previous reports in addition to clock tree timing, clock tree 

summary and timing reports, after that we go to the next step which is Routing. 

Routing, before routing we define some spare cells and tell the tool not to touch them, 

after that we start routing at first the tool starts with routing each cell with target cell until 
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the routing fails and then try again from the previous routing until route each cell with the 

target cells and then check if there are violation in timing and try to reduce the violation 

as much as it can, the routing becomes easier if there are several metal layers and low 

utilization and can be easier also if exert more effort in the placement step. 

At the end, we check all constrain are met and generate the last timing report in addition 

to the parasitic report and get the GDS file to be ready to for fabrication. 

 

Figure 92: PNR inputs and outputs 

 

In PNR we input the prefloorplan netlist, floorplan constrains, constrains, TLUplus files 

and SC.libs. Then we get LEF files and .GDS file. We used ICC shell to place and route 

our design. 
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8.4 ASIC Results 

An average power of 1000 mw for each layer was needed to satisfy the required 

constraints: 

 Clk period: 6ns 

 Clock uncertainty: 0.09 ns 

 Input delay: 2 ns 

 Output delay: 2 ns 

 
 

Table 17: ASIC Results 

 

8.4 Summary 

 This part introduces the ASIC part for the project and why we choose to follow 

the ASIC flow and the problems we have faced in ASIC and how we solve them like 

memories, the method and steps we followed in the ASIC flow. 

 

 

P.O.C Layer 1 Layer 2 Layer3 Layer 4 Layer 5 Layer 6 

Power(mw) 1000 1000 1000 1000 1000 1000 

Area (um
2
) 626157.879 372314.88 50727.529 122876.571 246560.71 101758.8307 

Combinational 

Cell Count 

216051 124244 18864 45972 93279 39441 

Sequential 

Cell Count 

54047 29599 3883 10786 21054 9395 
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Chapter 9:  Design Results  

9.1 Testing Functionality and RTL Verification Methodology 

9.1.1  Verification for each layer 

First, we developed a python system model with the details of the design and 

input output memories (BRAMS) as described previously. Then we generated test vector 

files for each convolution layer. Files containing the inputs and the expected output in 

each BRAM in the inputs and outputs BRAMS, so we can get the RTL output of each 

layer alone and compare it with the test vectors to track the source of the errors in the 

RTL faster. 

 

Figure 93: RTL verification methodology 

After the input data passes through the RTL layers the output files are generated then 

taken to be compared with the system model output files of the layer.  

9.1.2  Verification of the overall system and results  

First, we tested the Fixed-point representation impact on the accuracy using the 

python software model of the squeeze-Next CNN network where we found the accuracy 

decreased from 91.45% to 90.8%. This test is a result of 10,000 testing images, where 

9080 images of the 10000 are detected right as in the dataset.     



90 
 

Then we Fetched 1040 images from the dataset to test the accuracy of the hardware 

implemented system. The accuracy was 90.96% for the 1040 images, where 946 images 

of the 1040 images were detected right as in the dataset. And the 1040 images outputs are 

the same as the software python CNN model outputs. 

 

Figure 94: 20-image example for the tested images 

 

Figure 95: 20-image example dataset vs hardware output 
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Figure 96: image number 741 from the dataset 

As shown in the figures, the output of random 20 images from the hardware versus the 

dataset labels. All the images are detected right except the image number 744 is wrong, 

and the RTL detect the image number 741 from the dataset correctly which is a horse 

with size of 32*32 pixels. 

 

9.2 FPGA Results 

First we implemented the network at a frequency of 100MHz then we did many 

optimizations to enhance the design in terms of timing and area and breaking all the 

critical paths in the design, and that made the design to work at a frequency of 200MHz 

after synthesis and 150MHz after implementation. Our target is throughput so we 

sacrificed some area to achieve our target.  

The FPGA used is Virtex-7 on VC709 board and all results are calculated using Vivado 

2018.3 Software. 

We will discuss the design utilization on the target FPGA with the timing information 

and power dissipation at frequencies of 100MHz, 125MHz, 166.6MHz and 200MHz. 
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9.2.1 FPGA Results at 100MHz 

9.2.1.1 Utilization Results 

Resources Utilizations after Synthesis using the Vivado Synthesis tool: 

 

 

Figure 97: Resources Utilizations after Synthesis 

Resources Utilizations after implementation using the Vivado implementation tool: 

 

 

Figure 98: Resources Utilizations after implementation 
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After implementation the number of BUFGs and FFs has increased but the number of 

LUTs is reduced due to the optimization strategies we used in the implementation flow. 

The difference in resources before and after implementation is shown in the next table: 

Resources After Synthesis After implementation 

LUT 325689 75% 322508 74% 

FF 346037 40% 348224 40% 

BRAM 491 17% 491 17% 

DSP 3328 92% 3328 92% 

BUFG 12 38% 14 44% 

MMCM 0 0% 1 5% 

Table 18: Resources before and after implementation 

9.2.1.2 Timing information  

After Synthesis: 

All user specified timing constraints are met and there’s no hold or setup time violation. 

The next figure shows the worst 10 paths and there’s a positive slack of 4.286 which 

means we can increase the operating frequency. 

 

Figure 99: worst 10 paths after synthesis 

After Implementation: 

Still there’s no violations in setup or hold time and there’s positive slack in both of them, 

the slack is lower than the one after synthesis as the wiring delay is considered. We can 

reduce the routing delay by optimizing the routing in implementation steps but this will 

take much higher run-time.   
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Figure 100:Setup and hold timing information after implementation 

Also all nets in the design are routed successfully and there’s no routing violation.  

 

Figure 101: Fully routed nets 

 

Figure 102: Router Utilization Summary 

 

 

 

 

 

 

 

                  Figure 103: Device implementation                   Figure 104: Global Vertical/Horizontal routing utilization  

9.2.1.3 Power Analysis  

After Synthesis: 

The following Figure shows the power consumption of the design after Synthesis.  
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Total power on chip equals to 15.575 Watt. 

 

Figure 105: Total power on chip after synthesis 

 

After Implementation: 

The following Figure shows the power consumption of the design after Implementation 

on Virtex 7 FPGA.  

Total power on chip equals to 15.96 Watt. 

 

Figure 106: Total power on chip after implementation 

9.2.1.4 Throughput Calculations 

The following table shows the total number of clock cycles to get the outputs: 

Total number of Clock cycles needed to get the first output 127016 Clock Cycles 

Total number of Clock cycles needed to get the rest outputs 10805 Clock Cycles 

Table 19: The total number of clock cycles to get the outputs 

For 100MHz : The Total throughput= 
100∗106

10805
= 𝟗𝟐𝟓𝟒. 𝟗𝟕𝟓 𝒊𝒎𝒂𝒈𝒆/𝒔𝒆𝒄𝒐𝒏𝒅 (FPS) 

            Latency =108.05 µ Second 

9.2.1.4 Efficiency (Energy Per Image) 

It’s also called power delay product (PDP) or figure of merit. The small number of Power 

delay product indicates how the design is good. 
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After Synthesis: Power delay product= 108.05  µ * 15.575 = 1.68  m joule 

After Implementation: Power delay product= 108.05 µ * 15.96= 1.72448  m joule 

 

9.2.2 FPGA Results at 125 MHz 

9.2.1.2 Timing information  

 

All user specified timing constraints are met and there’s no hold or setup time violation. 

The next figure shows the worst 10 paths and there’s a positive slack of 2.927 nsec which 

means we still can increase the operating frequency. 

 

Figure 107: worst 10 paths  

9.2.1.3 Power Analysis  

After Synthesis: 

The following Figure shows the power consumption of the design after Synthesis.  

Total power on chip equals to 18.606 Watt. 

 

Figure 108: Total power on chip after synthesis 
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After Implementation: 

The following Figure shows the power consumption of the design after Implementation 

on Virtex 7 FPGA.  

Total power on chip equals to 19.899 Watt. 

 

Figure 109: Total power on chip after implementation 

9.2.1.4 Throughput Calculations 

For 125MHz : The Total throughput= 
125∗106

10805
= 𝟏𝟏𝟓𝟔𝟖. 𝟕𝟐 𝒊𝒎𝒂𝒈𝒆/𝒔𝒆𝒄𝒐𝒏𝒅 (FPS) 

            Latency =89.44 µ Second 

9.2.1.4 Efficiency (Energy Per Image) 

It’s also called power delay product (PDP) or figure of merit. The small number of Power 

delay product indicates how the design is good. 

After Synthesis: Power delay product= 89.44  µ * 18.606 = 1.664  m joule 

After Implementation: Power delay product= 89.44 µ * 19.899= 1.7798  m joule 
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9.2.2 FPGA Results at 166.6 MHz 

9.2.1.2 Timing information  

All user specified timing constraints are met and there’s no hold or setup time violation. 

The next figure shows the worst 10 paths and there’s a positive slack of 0.927 nsec which 

means we still can increase the operating frequency. 

 

Figure 110: worst 10 paths   

9.2.1.3 Power Analysis  

After Synthesis: 

The following Figure shows the power consumption of the design after Synthesis.  

Total power on chip equals to 24.771 Watt. 

 

Figure 111: Total power on chip after synthesis 
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After Implementation: 

The following Figure shows the power consumption of the design after Implementation 

on Virtex 7 FPGA.  

Total power on chip equals to 26.513Watt. 

 

Figure 112: Total power on chip after implementation 

 

9.2.1.4 Throughput Calculations 

For 166.6MHz : The Total throughput= 
166.6∗106

10805
= 𝟏𝟓𝟒𝟏𝟖. 𝟕𝟖𝟖 𝒊𝒎𝒂𝒈𝒆/𝒔𝒆𝒄𝒐𝒏𝒅 (FPS) 

            Latency =64.8559 µ Second 

9.2.1.4 Efficiency (Energy Per Image) 

It’s also called power delay product (PDP) or figure of merit. The small number of Power 

delay product indicates how the design is good. 

After Synthesis: Power delay product= 64.8559  µ * 24.771 = 1.60656  m joule 

After Implementation: Power delay product= 64.8559  µ * 26.513= 1.7195  m joule 
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9.2.2 FPGA Results at 200 MHz 

9.2.1.2 Timing information  

user specified timing constraints are not met and there’s setup time violation. The next 

figure shows the worst 10 paths and there’s a negative slack of 0.073 nsec which means 

we can’t work at this operating frequency after implementation. 

 

Figure 113: worst 10 paths  

9.2.1.3 Power Analysis  

After Synthesis: 

The following Figure shows the power consumption of the design after Synthesis.  

Total power on chip equals to 29.748 Watt. 

 

Figure 114: Total power on chip after synthesis 
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After Implementation: 

The following Figure shows the power consumption of the design after Implementation 

on Virtex 7 FPGA.  

Total power on chip equals to 31.858 Watt. 

 

Figure 115: Total power on chip after implementation 

 

9.2.4  Result Comparison At Different Frequencies 

We can summarize all the previous results in the next tables: 

After synthesis: 

 At 100 MHz At 125 MHz At 167 MHz At 200 MHz 

Power(watt) 15.575 18.606 24.771 29.748 

Time (µ s) 108.05 89.44 64.8559 - 

Throughput(image/sec) 9254.975 11568.72 15418.788 - 

Energy (mJ) 2.105 1.664 1.60656 - 

Utilization BRAMS 17% 17% 17% 17% 

Utilization DSPs 92% 92% 92% 92% 

Utilization FF 40% 40% 40% 40% 

Utilization LUTs 74% 74% 74% 74% 

Table 20: FPGA results at different frequencies after synthesis 
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After implementation: 

 At 100 MHz At 125 MHz At 167 MHz At 200 MHz 

Power(watt) 15.96 19.899 26.513 31.858 

Time (µ s) 108.05 89.44 64.8559 - 

Throughput(image/sec) 9254.975 11568.72 15418.788 - 

Energy (mJ) 1.68 1.7798 1.7195 - 

Utilization BRAMS 17% 17% 17% 17% 

Utilization DSPs 92% 92% 92% 92% 

Utilization FF 40% 40% 40% 40% 

Utilization LUTs 75% 75% 75% 75% 

Table 21: FPGA results at different frequencies after implementation 

The accuracy is same in all cases. 

9.3 Hardware Testing 

In the following Figures the test of two random images on the FPGA using the setup 

shown in Fig 107. 

1
st
 image : Testing the image205 in the dataset CIFAR10 with output = 3 

 

Figure 116: Image205 label in the dataset CIFAR10 

 
Figure 117: Image 205 in the dataset CIFAR10 (cat) 
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The output on the FPGA GPIO LEDS: 

 

Figure 118: The output on the FPGA LEDs 

VIO output: 

 

Figure 119: VIO output 

The outputs of the FPGA GPIO and the VIO are the same as the dataset output. 

2
nd

 image: Testing the image1015 in the dataset CIFAR10 with output = 4 

 

Figure 120: Image1015 label in the dataset CIFAR10 
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Figure 121: Image 1015 in the dataset CIFAR10 (dear) 

 

 

VIO output: 

 

Figure 122: VIO output 

ILA Output: 

 

Figure 123: ILA output 

The outputs of the ILA and the VIO are the same as the dataset output.  
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9.4 Other Works 

We compared our network implementation (16-bit fixed point representation) with other 

works that implemented one of CNNs with only 10 classes for a certain application on 

FPGA, as shown in the next table: 

 [33] [34]  [35]  [36] This 

implementation 

CNN PC-BNN  RAd-

MobileNet 

Squeeze-Net 

 

Zynq-Net Squeeze-Next 

 

FPGA PYNQ Z1  

XC7Z020 

Virtex-7 

xc7vx980 

Virtex-7 

VC709 

 

Virtex-7 

VC709 

 

Virtex-7 VC709 

 

Data Set Cifar-10 Cifar-10 Image-Net Image-Net Cifar-10 

No. of Classes 10 10 10 10 10 

Accuracy 86% 72.61% 66.8% - 90.96% 

Frequency 

(MHz) 

143 225 100 125 100 

Power(watt) 2.4 3.25 8.9 11.5 19.483 

Throughput 

(image/second) 

930 - 248.756 1.5625 𝟗𝟐𝟓𝟒. 𝟗𝟕𝟓 

Time (ms) 21.84 - 4.02 640 0.10805 

Energy (mJ) 2.58 - 35.78 736 1.68 

Utilization 

BRAMS 

- - 

 

992  
(67.48%) 

 

1413.5 

(96.12%) 

245.5 

(17%) 

Utilization 

DSPs 

- 937 2658  
(73.8%) 

 

3552 

(98.67%) 

3328 

(92%) 

Utilization FF - 79,327 159772  
(18.44%) 

184723 

(17.5%) 

348224 

(40%) 

Utilization 

LUTs 

23,436  

 

57,438 96990  
(22.39%) 

 

338922 

(65.3%) 

322508 

(75%) 

Table 22: Comparison with different implementations for CNNs on FPGA 

As shown in the previous table, our implementation requires the highest power that is 

equal 19.483 watts, but the latency is the smallest ,the throughput is the highest among 

the other networks and the energy is the smallest as well.  
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9.5 Summary 

In this chapter we shows the RTL verification methodology and calculated the 

accuracy for our implementation then calculated the results including utilization, power, 

timing, throughput and energy using VIVADO 18.3 at different frequencies. Finally we 

compared our design with other networks which implemented on FPGA with only 10 

classes for a certain application and we found that our design has the highest power and 

area but it’s the best in timing, throughput and energy. 
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Chapter 10:  Future Work  
 

10.1 Change Fixed-Point Representation to reduce the Computational 

Power 

We can change the fixed-point representation with lower number of bits so we 

can reduce the computational power as we found that the most of the dissipated power is 

due to the multiplication. This may affect the accuracy and this is a tradeoff and we need 

to make the best strategy to get the best design. But it will be acceptable if the accuracy is 

decreased 1 or 2% (to become 89% or 88%) with great reduction in the power. 

 

10.2 Using Multiple Clock Domains  

 We can use clocks with different frequencies in layers to increase the throughput 

and reduce the latency instead of working with the critical path frequency in the entire 

network, we can work with critical path frequency in each layers and solving the 

metastability and synchronization issues. 

 

10.3 Do The Verification Flow To The Network 

Performing the verification different techniques to all the network and check if 

there are any corner cases we missed or any issues, that will make our design more 

reliable. 

 

10.4 Complete ASIC flow for whole network 

 We can complete the ASIC flow for whole network to have .GDS file contain our 

network and doing formal verification for our design. 
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