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Project Summary

This project aims to create a formulal-class Al driver, developed to drive a
high performance autonomous racing vehicle. The approach that was used
combines state-of-the-art techniques from different fields of robotics,
computer vision and control. Specifically, perception, estimation, and
control are incorporated into one high performance autonomous car. Starting
with the perception, a robust & reliable software pipeline for a single
monocular camera was developed with the purpose of getting the most
accurate results in estimating the 3D positions of track landmarks, and then
fusing these results with a stereo camera pipeline to further improve
perception accuracy and achieve redundant-perception. For localization
and mapping, a simultaneous localization and mapping system that utilizes
data from various sensing technologies in the vehicle, ensuring that the

vehicle is accurately localized and the map is always updated in a real time
Manner. Subsequently, a path planning algorithm was applied such that it
chooses the mid-point path along the track length. Lastly, a model predictive
controller was implemented to generate a trajectory that maximizes the
vehicle’s performance, minimizes lap time, and uses low-level hardware
commands to control the vehicle.
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Abstract

This project aims to create a formula1-class Al driver, developed to drive a
high performance autonomous racing vehicle. This Al driver is created to replace
human drivers, in order to eliminate human error, and drive the vehicle to its fullest
allowing racing car manufacturers to test the full performance potential of the
vehicle. The project gives a contribution to the racing motorsports industry which in
turn serves for a development in the sense-plan-act cycle of the urban autonomous
vehicles that is trying to reach full autonomy.

In order to fulfill the Society of Automation Engineers (SAE) level 4 autonomy,
no driver attention must be required, even in emergency situations. Although a
major part of autonomous driving on the public roads will happen in standard
situations, a crucial aspect to reach full autonomy is the ability to operate a vehicle
close to its limits of handling. Much like traditional motorsports, autonomous racing
provides a platform to develop and validate new technologies under challenging
conditions. Self-driving race cars provide a unique opportunity to test software
required in autonomous transport, such as redundant perception, failure detection,
and control in challenging conditions.

The approach that was used combines state-of-the-art techniques from
different fields of robotics, computer vision and control. Specifically, perception,
estimation, and control are incorporated into one high performance autonomous car.
Starting with the perception, a robust & reliable software pipeline for a single
monocular camera was developed with the purpose of getting the most accurate
results in estimating the 3D positions of track landmarks, and then fusing these
results with a stereo camera pipeline to further improve perception accuracy and
achieve redundant-perception. For localization and mapping, a simultaneous
localization and mapping system that utilizes data from various sensing
technologies in the vehicle, ensuring that the vehicle is accurately localized and the
map is always updated in a real time manner. Subsequently, a path planning
algorithm was applied such that it chooses the mid-point path along the track
length. Lastly, a model predictive controller was implemented to generate a
trajectory that maximises the vehicle’s performance, minimizes lap time, and uses
low-level hardware commands to control the vehicle.

The project outputs a complete simulated intelligent model that is capable of
exploring an unknown track, detecting landmarks, while simultaneously mapping the
track and localizing itself, to finally generate a trajectory that enforces maximum
performance along the track, and hopefully getting deployed in the previously
developed electric racing vehicle by the team (Cairo University Racing Team)
developing this project.
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Chapter 1: Introduction

Autonomous racing has grown in popularity in the past years as a method of pushing
the state-of-the-art for various autonomous robots. Self-driving vehicles improved
safety, universal access, convenience, efficiency, and reduced costs compared to
conventional vehicles. There is no driver attention must be required to fulfil even in
emergency situations and under challenging weather conditions, a crucial aspect to
reach full autonomy is the ability to operate a vehicle close to its limits of handling.

We will describe in this report our project and give an entire autonomous racing
platform, covering all required software modules reaching from environment
perception to vehicle dynamics control. Our project is divided into three main parts
which is perception, simultaneous localization and mapping, and motion control.
Starting with the perception pipeline, the developed system works using stereo
camera and monocular camera.For localization and mapping, we utilize a graph
based SLAM system, facilitating the detection and association of landmarks.
Subsequently, we propose a custom approach to plan paths which takes the center
of the track boundaries. Lastly, we present a control framework that directly
minimizes lap time while obeying the vehicle’s traction limits and track boundary
constraints using a model predictive control controller.

This project aims to create a formula1-class Al driver developed to drive a high
performance autonomous racing vehicle which is created to replace human drivers,
in order to eliminate human error, and drive the vehicle to its fullest allowing racing
car manufacturers to test the full performance potential of the vehicle. The project is
divided into three main modules; Perception & Mapping, Trajectory Planning and
Motion Control. The perception and mapping module is divided into two
sub-modules; the perception sub-module which is concerned with detecting and
localizing blue and yellow cones, this information is then fed to the mapping
submodule, which constructs a full map of the track. The trajectory planning module
is concerned with using the suitable algorithms to figure out a path around the track.
The motion control module goal is to drive around the track as fast as possible while
respecting the vehicle’s model and track constraints.
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1.1. Motivation and Justification

This project presents the algorithms and system architecture of a high performance
autonomous racecar. The introduced vehicle is powered by a software stack
designed for robustness, reliability, and extensibility. In order to autonomously race
around a previously unknown track, the proposed project combines state-of-the-art
techniques from different fields of robotics. Specifically, perception, estimation, and
control are incorporated into one high-performance autonomous racecar.

This project aims to create a formula1-class Al driver, developed to drive a high
performance autonomous racing vehicle. This Al driver is created to replace human
drivers, in order to eliminate human error, and drive the vehicle to its fullest allowing
racing car manufacturers to test the full performance potential of the vehicle.

The project gives a contribution to the racing motorsports industry which in turn
serves for a development in the sense-plan-act cycle of the urban autonomous
vehicles that is trying to reach full autonomy.

The need for High Performance Autonomous Vehicles

Higher levels of autonomy have the potential to reduce risky and dangerous driver
behaviors. The greatest promise may be reducing the devastation of impaired
driving, drugged driving, unbelted vehicle occupants, speeding and distraction.
People with disabilities, like the blind, are capable of self-sufficiency, and highly
automated vehicles can help them live the life they want. In a fully automated
vehicle, all occupants could safely pursue more productive or entertaining activities,
like responding to email or watching a movie. Autonomous vehicles maintain a safe

Figure1.1: Autonomous Formula Race Car
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and consistent distance between vehicles, helping to reduce the number of stop
and-go waves that produce road congestion. Thus, Self-driving vehicles promise
significantly improved safety, universal access, convenience, efficiency, and reduced
costs compared to conventional vehicles.

In order to fulfill the Society of Automation Engineers level 4 autonomy, no driver
attention must be required, even in emergency situations and under challenging
weather conditions. Although a major part of autonomous driving on the public roads
will happen in standard situations, a crucial aspect to reach full autonomy is the
ability to operate a vehicle close to its limits of handling, i.e. in avoidance maneuvers
or in case of slippery surfaces.

In general, autonomous vehicles have lots of benefits as it helps in reducing traffic
deaths as they eliminate human error, drop in harmful emissions as fewer accidents
mean less traffic congestion which means drop in harmful emissions. It also will
improve fuel economy and reduce travel time.

1.2. The Essential Question

According to a report by statista[], one in each ten cars will be autonomous by
2030. Billions have been spent on R&D in the field of self-driving vehicles, and car
manufacturer giants, have all switched their interests into deploying self-driving cars.
That’s why, developing artificially intelligent agents capable of driving racing vehicles
into unknown territory, with high performance and reliability; serves the goal of
deploying autonomous vehicles into real roads.

We, in this project, are developing software and algorithms that create a driver
capable of achieving high performance, reliability, and robustness. Which makes us
competitive graduate engineers, indulged into international innovations and
researches, ready to continue research and definitely learning in the field, effectively
contributing to sustainable development in Egypt, and allowing us to serve
individuals, society and the environment.
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1.3. Project Objectives and Problem Definition

There are mainly two approaches that can be taken in order to develop an
autonomous car. An end-to-end approach through imitation learning and
learning-by demonstration and transfer learning. Such an approach firstly requires
creating a test environment in order to engineer such a system is not only
cumbersome and expensive, but also quite complex due to safety considerations.
Secondly, building an end-to-end system requires several complex engineered
systems, both in hardware and software, to work together - often such integrations
are challenging, and such dependencies can greatly impede rapid development of
individual systems (e.g., progress on autonomous software stack crucially depends
upon bug-free hardware). Finally, much of the recent autonomous system modules
depend upon the ability to collect a large amount of training data. Such data
collection is not scalable in real-world due to both the complexity as well as resource
requirements to carry out such training missions. These problems are alleviated by
training and validating an autonomous stack in simulation. Such simulations allow to
mitigate risks associated with safety, enable bypassing the need to access a closed
off-road track and minimize the dependency on the development of the hardware
stack. Most importantly, such simulations allow gathering data at scale, in a wide
variety of conditions, which is not feasible in the real-world. The simulations can
consist of a dynamic model of a custom car, a variety of racetrack scenes and
synthesis of different weather conditions. Such simulations can indeed be very useful
in building autonomous systems that can be deployed in the real-world.

The second approach combines state of the art techniques from different fields
of robotics. Specifically, perception, estimation, and control are incorporated into one
high performance autonomous car. Starting with the perception, systems can be
developed to work using either a LIDAR, vision sensors or both. Next, the motion
estimation subsystem fuses measurements from different sensors. For localization
and mapping, a SLAM system shall be used, facilitating the detection and
association of landmarks. Subsequently, an approach to plan paths can be taking the
most likely track boundaries into account, given a map and/or on-board perception.
Lastly, a control framework that directly minimizes lap time while obeying the
vehicle’s traction limits and track boundary constraints.
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Project Objectives:

e Provide an Al Driver ready to race and adapt with a racing vehicle by driving it
through the track as fast as possible to test and expose its dynamic power.

e Test the software required in autonomous transport in urban cities regarding
redundant perception, failure detection, and control in challenging conditions.

To achieve these objectives, our project’s goal is to create a formula1-class Al driver,
developed to drive a high performance autonomous racing vehicle. WE create this Al
driver to replace human drivers, in order to eliminate human error. This Project is
divided into 3 main modules which we will talk about each one in full details in our
document. these modules are:

1. Perception & mapping:
The goal of the perception pipeline is to efficiently provide accurate cone position
and color estimates as well as their uncertainties in real-time with very high speed.

2. Trajectory planning:

Processing steps that are used to output the reference path of the vehicle should
be always close to using cone colors and trigonometry which is the centerline of the
track. If the vehicle kept to this path, it will be sure that the vehicle will never report
an error by hitting a cone or getting out of its boundaries.

3. Motion Control:

The car now knows the track layout and can localize itself within the environment.
Given this capability, we can race the car around a known track. Which brings us to
our motion planning problem where the goal is to drive around the track as fast as
possible.
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1.4. Project Outcomes

The project outputs a complete simulated intelligent model that is capable of
exploring an unknown track , detecting landmarks(track cones) of an unknown track
with a full monocular perception pipeline with a stereo pipeline as a redundant
perception, while simultaneously mapping the track and localizing itself using the
K-means-based Global Mapping algorithm to build the map of the unknown track
using the sensor fusion and Extended Kalman Filter (EKF), to finally generate a
trajectory that enforces maximum performance along the track, and hopefully getting
deployed in the previously developed electric racing vehicle by the team (Cairo
University Racing Team) developing this project. The hardware platform of this
project is an autonomous kit with embedded computer and a lot of sensors like
Monocular camera, Stereo camera, IMU, and wheel odometry sensors.
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Figure 1.2 Project Main Outcomes
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1.5. Document Organization

We will talk in the following chapters in full details about market visibility study such
as targeted customers, market survey, and business case and financial analysis as
in chapter two.

Then in chapter three we will talk deeply about literature survey. We will talk about
each part of the three parts of our project which is perception and simultaneous
localization and mapping and motion control, background about each part,
implemented approach, and Comparative Study of Previous Work.

In chapter four we are going to discuss system design, architecture and algorithms
which is the most important part of our report . We will talk in this chapter about
overview and assumptions, functional description of architecture, modular
decomposition which we will divide each module into submodules and talk in details
about sensors and controllers and components that are used to build this
architecture, design constraints and some block diagrams.

In chapter five we will explain testing setup, testing plan and strategy, test schedule,
comparative results to previous work, faced challenges and future work. We also will
explain how we test each module individually then integrate modules in addition to
showing results of each module and in the overall system.
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Chapter 2: Market Feasibility Study

The global autonomous/driverless car market was valued at USD 24.1 billion
in 2019 and is expected to project a compound annual growth rate of 18.06%, during
the forecast period, 2020-2025. Although Level 4 and Level 5 (as scaled by SAE)
autonomous cars are unlikely to reach wide acceptance, by 2030, there will be a
rapid growth for Level 2 and Level 3 autonomous cars, which have advanced driver
assistance systems, like collision detection, lane departure warning, and adaptive
cruise control. Fully autonomous cars are not going to reach a wide customer base,
unless they are secure from cyber-attacks. If such concerns are addressed, the
autonomous car market is estimated to reach USD 60 billion, by 2030. Major
automaker companies, technology giants and specialist start-ups have invested
more than USD 50 billion over the past five years, in order to develop autonomous
vehicle (AV) technology, with 70% of the money coming from other than the
automotive industry. At the same time, public authorities see that AVs offer huge
potential economic and social benefits.

2.1 Targeted Customers

When it comes to marketing your business, it's all about defining your target.

In this section, targeted customers or better known as targeted markets will be
reviewed. Based on market needs and interests, two main domains of customers
were focused on.

2.1.1 Automotive Companies (Valeo)

Due to the fact of self-driving cars being the future, most if not all of

automotive companies around the globe are shifting their interests into the
development of autonomous vehicles. Companies now have dedicated teams that
are working day-in & day-out developing the needed software and hardware that
enables the deployment of autonomous cars.

On alocal level, Valeo is a main targeted company. Valeo, recently, added to
their interests the development of self driving car software. They are currently
working on the development of more robust and real time algorithms to be utilized
into self driving vehicles.

Our project outputs software that will be deployed on racing vehicles, which
makes it very robust, real time, and reliable. Additionally, our project paves the way
for more research and additional development of both software and hardware
needed in autonomous vehicles. We believe that our project can help Valeo
accomplish their goals in the field.
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2.1.2 Computer Vision & Robotics Companies

There are numerous companies in Egypt that are using deep learning
techniques, image processing and computer vision algorithms in a very wide range
of applications, like; real-time monitoring of manufacturing assembly lines, retails in
monitoring malls traffic activities, and robots.

In our project, we were able to create a perception pipeline for the vehicle,
that utilizes state-of-the-art computer vision and deep learning techniques, and
works in a real-time manner. Through tweaking such a pipeline software, one can
add a variety of features that enables such software to be used by such companies
in a wide variety of applications.

These companies are; Avidbeam, Sypron, Avelabs, Affectiva, The D. GmbH
and InnoVision Industries.

2.2. Market Survey

2.2.1. Roborace

Roborace is the world’s first racing series for
humans and artificial intelligence. It was created to
accelerate the development of autonomous g=
software by pushing the technology to its limits in a |
range of controlled environments. Roborace is a
platform for the development of autonomous
technology in an extreme environment and
educates the public about the benefits and safety of |
these technologies when they make it onto the
roads at scale. Figure: 2.1 Roborace cars

Roborace are developing autonomous racing electric vehicles with the target
of creating autonomous cars race competitions, where teams can excessively test
their software and compete against each other in a real world environment. It gives
organizations developing driverless technologies an extreme yet safe environment to
test their software and hardware pushing them to the limits of their capabilities.
Robocar’s Nvidia Drive PX2 GPU “brain” is capable of up to 24 trillion A.l. operations
per second.

Despite that Roborace can be seen as a competitor, we believe that it can be
better seen as an opportunity. Using our software and hardware experience in
developing a driverless racing vehicle, we can be among the teams participating in a
huge autonomous racing competition.
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2.3 Business Case and Financial Analysis

A business that develops reliable software for autonomous vehicles, and builds the
base of research in the field, would be the first of its kind in Egypt. We expect such a
business to boom in the entire middle east and the Arabic world due to it being the first of its
kind in the area. Such a business creates huge chances for having autonomous software
developed entirely in Egypt and by Egyptian engineers, only if it was studied and applied
correctly.

2.3.1 Business Case

Based on our market survey, over the next five years we expect that we can
get a collaboration deal with automotive company Valeo. We can work closely with
them in their research regarding self-driving vehicles, directly developing software
and algorithms in the field.

Regarding computer vision companies, we expect developing at least five
applications in the field. Applications that utilize computer vision and deep learning
techniques to provide solutions to modern problems.

2.3.2 Financial Analysis

a. The Capex (Capital Expenditure):

1. Two workstation machines:
1.1. 2x GPU GTX 2080 TI (48000 EGP)
1.2. 2x AMD Ryzen™ Threadripper™ 3970X (64000 EGP)
1.3. 2x 32GP RAM Corsair Vengeance RGB Pro DDR4 (4600 EGP)
1.4. 2x Case and other main peripherals (16000 EGP)

2. Worksight, mainly an apartment in a reputable place that is around 120
meters squared (800,000 EGP)

3. Office Equipment (chairs, disks, ...etc.) (20,000 EGP)

b. The Opex (Operational Expenses):

1. Monthly Salaries:
1.1 Four Team Leaders: (12000 x 4 = 48000 EGP).
1.2 Twelve software developers: (8000 x 12 = 96000 EGP).
1.3 Three marketing & social media moderators (5000 x 3 = 15000
EGP).
1.4 Two cleaners (2000 x 2 = 4000 EGP).

2. Facility costs:
2.1 Electricity (1000 EGP).
2.2 Water (150 EGP).
2.3 Maintenance costs (2500 EGP)

3. Online marketing and sales (500 EGP).
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Chapter 3: Literature Survey

Autonomous racing presents a unique opportunity to test commonly-applied, safety-critical
perception, and autonomy algorithms in extreme situations at the limit of vehicle handling
and provides the opportunity to test safety-critical perception pipelines at their limit. This
section describes a literature background for each module in the autonomous racing
platform, covering all required software modules reaching from environment perception to
mapping and control. The following graph shows the track of our literature survey process to
develop a driverless race car.
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Figure 3.1: Literature survey steps overview graph
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3.1 Literature Review on Perception techniques

For autonomous vehicles, perception is a crucial task to make decisions, plan, and
operate in real-world environments, by means of numerous functionalities and
operations from occupancy grid mapping to object detection. Nowadays, most
perception systems use machine learning (ML) techniques, ranging from classical to
deep-learning approaches. Machine learning for robotic perception can be in the
form of unsupervised learning, or supervised classifiers using handcrafted features,
or deep-learning neural networks (e.g., convolutional neural network (CNN)), or even
a combination of multiple methods.

Regardless of the ML approach considered, data from sensor(s) are the key
ingredient in autonomous vehicles perception. Data can come from a single or
multiple sensors, usually mounted on board the vehicle, but can also come from the
infrastructure or from another vehicle (e.g., cameras mounted on UAVs flying
nearby). In multiple detection sensors more than one sensor can be used in the
perception pipeline according to the design, and the data from these sensors can be
fused in a certain way to use it to localize and map the environment around the
vehicle. This section describes the different types of perception techniques and
approaches and describes the chosen approach in our driverless race car.

3.1.1 Background information

The main goal of the perception pipeline in the formula racing car is to estimate the
position and the color of the track cones in an accurate and fast way. These
estimations and detections are used in the mapping module to build the map of the
track. There are different ways to perceive the track environment:

1) LIDAR-based Sensing

LIDAR is a surveying technology that measures distance by illuminating a target with
a laser light. LIDAR is an acronym of Light Detection And Ranging, (sometimes Light
Imaging, Detection, And Ranging) and was originally created as a portmanteau of
“light” and “radar.”

In order to perceive the track cones’ position and color in this technique which based
on LIDAR the perception process and the information from the LiDAR is capitalized
in two ways:

1-The 3D information in the point cloud is used to detect cones on the track and find
their position with respect to the car.

2-The intensity data is used to differentiate between the various colored cones.
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In three main phases which are pre-processing, cone detection, and color

estimation, the cones which draw the track are detected and classified using the

LiDAR pipeline shown in the following figure.

PRE-PROCESSING

COME DETECTION

COLOUR ESTIMATION
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Figure3.2: The LIiDAR pipeline used to detect cones and estimate their color

a) Pre-Processing

Due to the placement of the LIDAR sensor on the car, only cones in front of the car
can be perceived, while the rear-view is occluded by the racecar. Thus the points
behind the sensor are filtered out. The LiDAR sensor cannot inherently estimate
motion which can lead to large distortions in the point cloud of a single scan and the
appearance of ghost cones if not accounted for. The scanned fractions are thus
undistorted by using the velocity estimates of the car.

An adaptive ground removal algorithm (Himmelsbach et al., 2010) that adapts to
changes in the inclination of the ground using a regression based approach is used
to estimate the ground plane and distinguish between the ground and non-ground
points, after which the ground points are discarded (Gosala et al., 2018). The ground
removal algorithm works by dividing the FoV of the LIiDAR into angular segments
and splitting each segment into radial bins Figure 3.3-a. A line is then regressed
through the lowermost points of all bins in a segment. All the points that are within a
threshold distance to this line are classified as ground points and are removed see
figure 3.3-b.
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(b) Isometric view ol the adaptive ground removal

imE
algorithm where the green circles represent the lowest
LiDAR point in each bin and the red lines represent
{a) The FoV of the LIDAR is divided into multiple the estimated ground plane. The ground plane is
segments and bins. regressed through the lowest points of all the bins in

cach segment and all points in the vicinity of these
regressed ground lines are classified as ground and
are subsequently removed.

Figure 3.3: View of LiDAR

b) Cone Detection
The aforementioned ground removal algorithm removes a substantial amount of
cone points in addition to those of the ground. This significantly reduces the already
small number of return points that can be used to detect and identify cones. This is
addressed by first clustering the point cloud after ground removal using
Euclidean-distance
based clustering
algorithm and then
reconstructing a
cylindrical area
around each cluster
center using points
from the point cloud
before ground
removal. This
recovers most of the
falsely removed

Figure 3.4: An illustration of the cone reconstruction process

points improving cone detection and color estimation. The reconstructed clusters are
then passed through a rule-based filter that checks whether the number of points in
that cluster is in accordance with the expected number of points in a cone.

In Figure 3.4, The top-left image shows the LIDAR point cloud after executing the
adaptive ground removal algorithm. One can note the sparsity of the point cloud and
the dearth of points in a cone. The cones are reconstructed by retrieving a cylindrical
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area around each cluster center (top-right) resulting in the bottom image wherein the
presence of cones is more evident.

c) Cone Pattern Estimation
According to the rule book (FSG, 2018) [1], a yellow cone has a yellow-black-yellow
pattern whereas a blue cone has a blue-white-blue pattern which results in differing
LiDAR intensity pattern as one moves along the vertical axis of the cone as shown in
Figure 3.5. When reading the intensity values along the vertical axis, one denotes
high-low-high and low-high-low patterns for the yellow and blue cones respectively.
These differing intensity patterns are used to differentiate between yellow and blue
cones.
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Figure 3.5: The intensity gradients for the pre-defined yellow and blue cones along
with their point cloud returns.

2) Camera based Sensing

Cameras are a crucial exteroceptive sensor for self-driving cars as they are low-cost
and small, provide appearance information about the environment, and work in
various weather conditions. They can be used for multiple purposes such as visual
navigation and obstacle detection.

a) Stereo Camera
The stereo vision system is one of the popular computer vision techniques.
The idea here is to use the parallax error to our advantage. A single scene is
recorded from two different viewing angles, and depth is estimated from the
measure of parallax error. This technique is more than a century old and has
proven useful in many applications. This field has made a lot of researchers
and mathematicians to devise novel algorithms for the accurate output of the
stereo systems. This system is particularly useful in the field of robotics. It
provides them with the 3D understanding of the scene by giving them
estimated object depths. Stereo depth estimation can be made a lot more
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efficient than the current techniques. The idea revolves around the fact that
stereo depth estimation is not necessary for all the pixels of the image. This
fact opens room for more complex and accurate depth estimation techniques
for the fewer regions of interest in the image scene.
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Figure: 3.6 The stereo Setup

This instrument was first described to us in 1838 by Charles Whitestone to
view relief pictures. He called it the stereoscope [2]. A lot of other inventors
and visionaries later used this concept to develop their versions of
stereoscopes. It even led to the establishment of the London Stereoscopic
Company in 1854. The concept of depth estimation using multiple views was
used even for the estimation of the distance of the far away astronomical
objects in the early times. The depth is also directly proportional to the
distance between the two cameras of the stereo vision system, also called the
baseline. Hence the estimation of such vast distances demanded us to use
the longest possible baseline length that we could use. So the data was
recorded from Earth being on either side of the sun, making the baseline
length to be the same as the diameter of the Earth’s orbit around the sun, and
then the depth of the astronomical objects is measured. This method was
called the stellar parallax or trigonometric parallax .
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Using the concept of stereo vision it is shown that it is possible to use the
stereo vision in the perception pipeline of the driverless racing vehicle and in
this case the region of interest that we need to know its depth is the track
cone and then to estimate the cone’s position in the 3D by using object
detection of the cones to extract the bounding boxes (Region of interest) and
then using the feature matching and triangulation between the left and right
frames the cone position in 3D will be estimated.

b) Mono camera
Unlike the stereo camera setup, mono camera setup can be used in the
perception pipeline by using a single camera we can localize and estimate the
3D position of the object (track cones in our case). The literature survey of this
problem is described in detail in Section 3.3.

3.1.2 Comprehensive Study

LIDAR systems are currently large and expensive systems which must be mounted
outside of vehicles. The system Google uses is in the range of 80 kg and $70,000,
for example, and must be mounted on top of the vehicle with unobstructed sight
lines. Due to their current limitations, the systems are not useful for detecting
anything near the car. Current implementations have improved range substantially
from early 30 meter ranges up to 150 to 200 meter ranges, with increases in
resolution as well. At present, production systems with higher range and resolution
continue to be expensive. LIDAR works well in all light conditions, but starts failing
with increases in snow, fog, rain, and dust particles in the air due to its use of light
spectrum wavelengths. LIDAR cannot detect colour or contrast, and cannot provide
optical character recognition capabilities. Narrow-beam LIDAR has been used for 20
years, but current-generation LIDAR used on autonomous cars is less effective for
real-time speed monitoring.

Camera image recognition systems have become very cheap, small, and
high-resolution in recent years. They are less useful for very close proximity
assessment than they are for further distances. Their colour, contrast, and
optical-character recognition capabilities give them a full new capability set entirely
missing from all other sensors. They have the best range of any sensor but that’s in
good light conditions. Their range and performance degrades as light levels dim,
starting to depend — as human eyes do — on the light from headlights of the car. In
very bright conditions, it is apparently possible for some implementations to not
identify light objects against bright skies, which was reportedly a factor in the May
2016 Tesla Autopilot-related fatality in Florida. Digital signal processing makes it
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possible to determine speed, but not at the level of accuracy of radar or LIDAR
systems.
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Figure 3.7: Camera vs LIDAR comparative study

3.1.3 Implemented Approach

Due to the logistics and financial situation of bringing the LIDAR as mentioned in
Section3.3.2, the LIDAR is excluded from the perception pipeline, For the perception
pipeline two-camera architecture were deployed with a stereo camera used for
long-range detections and a monocular camera for short-range detections.

As shown in Figure 3.8. Because in our case we need a high performance
perception pipeline the idea of redundant perception was used, and by fusing the
data from the two camera setups we can build the track map in an accurate and fast
way.

The rationale for using the monocular camera for short-range rather than long-range
detections is that for a reasonable mounting height, a landmark’s 3D location on a
relatively flat surface is a much stronger function of pixel space location for
short-range objects than long-range objects. This relieves some of the challenges for
estimating landmark pose from a monocular camera. On the other hand, however,
estimating 3D pose of an object using a single measurement, i.e. a single image
from a monocular camera is an ill-posed problem. This is primarily due to ambiguity
in the scale of the scene arising from limited information of the surroundings. This
ill-posed problem of extracting pose information can be solved if a priori information
about the 3D object in the scene is available. The 3D priors about an object, in
addition to 2D information obtained from an image can be together leveraged to
extract 3D pose of this object captured in any arbitrary image of the scene. On a
real-time system, such as an autonomous race-car, it becomes even more crucial to
detect and estimate multiple object positions extremely efficiently, with a little latency
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and data overhead (in terms of transport and processing) as possible. The
implementation of the perception pipeline is briefly mentioned in chapter 4.

- 19.6 m
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Figure 3.8: Monocular and Stereo camera ranges

3.2 Literature review on Object Detection and
Recognition

Object detection is a crucial task for autonomous driving. In addition to
requiring high accuracy to ensure safety, object detection for
autonomous driving also requires real time inference speed to
guarantee prompt vehicle control, as well as small model size and
energy efficiency to enable embedded system deployment.

3.2.1 Background on Object Detection and
Recognition

Evaluating metrics

Evaluation metrics used in classification are not enough when working with
detection. In addition to evaluating how good a detector is at classifying an object,
we need a way to quantify how well the bounding boxes fits the objects.

AP (Average precision)

It is a popular metric in measuring the accuracy of object detectors like Faster
R-CNN, SSD, etc. Average precision computes the average precision value for recall
value over 0 to 1. Precision measures how accurate your predictions are. i.e. the
percentage of your predictions are correct.

Precision = TruePositives / (TruePositives + FalsePositives)

Recall measures how good you find all the positives. For example, we can find 80%
of the possible positive cases in our top K predictions.

Recall = TruePositives / (TruePositives + FalseNegatives)
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loU (Intersection over union)

loU measures the overlap between 2 boundaries. We use that to measure how much
our predicted boundary overlaps with the ground truth (the real object boundary). In
some datasets, we predefine an loU threshold (say 0.5) in classifying whether the
prediction is a true positive or a false positive.

loU(box1, box2) = (area(box1 N box2) / area(box1 U box2))

Mean Average Precision (mAP)

It is an evaluation metric often used to compare different detection systems. It is
calculated by taking the average of the maximum precisions at 11 recall levels
evenly spaced between 0 and 1. Predictions are required to have an loU > 0.5. All
predictions with loU < 0.5 are treated as a wrong prediction. The mAP is the average
of the AP for each class.

Frames Per Second (FPS)
It is the number of frames the object detection module can infer per one second.
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Figure 3.9 Different object detection approaches
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Deformable Part-based Model (DPM)

It was a revolution of object detectors at its time. DPM was originally proposed by P.
Felzenszwalb in 2008, and then a variety of improvements have been made by R.
Girshick. The DPM is based on the “divide and conquer” method, where the training
can be simply considered as the learning of a proper way of decomposing an object,
and the inference can be considered as an ensemble of detections on different
object parts. For example, detecting a person can be looked as detecting his head,
two arms and two legs. R. Girshick has further extended the star-model to the
“mixture models” to deal with the objects in the real world under more significant
variations. A typical DPM detector consists of a root-filter and a number of
part-filters. Instead of manually specifying the configurations of the part filters (e.g.,
size and location), a weakly supervised learning method is developed in DPM where
all configurations of part filters can be learned automatically as latent variables. R.
Girshick has further formulated this process as a special case of Multi-Instance
learning, and some other important techniques such as “hard negative mining”,
“bounding box regression”, and “context priming” are also applied for improving
detection accuracy. To speed up the detection, he developed a technique for
“‘compiling” detection models into a much faster one that implements a cascade
architecture, which has achieved over 10 times acceleration without sacrificing any
accuracy. Although today’s object detectors have far surpassed DPM in terms of the
detection accuracy, many of them are still deeply influenced by its valuable insights.

RCNN

It starts with the extraction of a set of object proposals (object candidate boxes) by
selective search, which is explained below. Then each proposal is rescaled to a fixed
size image and fed into a CNN model trained on ImageNet (say, AlexNet) to extract
features. Finally, linear SVM classifiers are used to predict the presence of an object
within each region and to recognize object categories. 4 RCNN yields a significant
performance boost on VOCO07, with a large improvement of mean Average Precision
(mAP) from 33.7% (DPM-v5) to 58.5%. Although RCNN has made great progress,
its drawbacks are obvious: the redundant feature computations on a large number of
overlapped proposals (over 2000 boxes from one image) leads to an extremely slow
detection speed (14s per image with GPU). Later in the same year, SPPNet was
proposed and has overcome this problem.

Selective search

1. Generate initial sub-segmentation, we generate many candidate regions.

2. Use greedy algorithms to recursively combine similar regions into larger ones.
3. Use the generated regions to produce the final candidate region proposals.
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Figure 3.10 R-CNN object detection

Spatial Pyramid Pooling Networks (SPPNet)

The main contribution of SPPNet is the introduction of a Spatial Pyramid Pooling
(SPP) layer, which enables a CNN to generate a fixed-length representation
regardless of the size of image/region of interest without resizing it. The technique
performs pooling (ex: Max pooling) on the last convolution layer (either convolution
or sub sampling) and produces a N*B dimensional vector (where N=Number of filters
in the convolution layer, B= Number of Bins). The vector is in turn fed to the FC layer.
The number of bins is a constant value. Therefore, the vector dimension remains
constant irrespective of the input image size. When using SPPNet for object
detection, the feature maps can be computed from the entire image only once, and
then fixed length representations of arbitrary regions can be generated for training
the detectors, which avoids repeatedly computing the convolutional features.
SPPNet is more than 20 times faster than R-CNN without sacrificing any detection
accuracy. Although SPPNet has effectively improved the detection speed, there are
still in a 2D single frame and assigns it to a class.
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Now, due to the advancements in some drawbacks: first, the training is still
multi-stage, second, SPPNet only fine-tunes its fully connected layers while simply
ignores all previous layers.
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Figure 3.11 Spatial Pyramid Pooling Networks

Fast RCNN

In 2015, R. Girshick proposed Fast RCNN detector, which is a further improvement
of R-CNN and SPPNet. The approach is similar to the R-CNN algorithm. But, instead
of feeding the region proposals to the CNN, we feed the input image to the CNN to
generate a convolutional feature map. From the convolutional feature map, we
identify the region of proposals and warp them into squares and by using a Rol
pooling layer we reshape them into a fixed size so that it can be fed into a fully
connected layer. From the Rol feature vector, we use a softmax layer to predict the
class of the proposed region and also the offset values for the bounding box. Fast
RCNN enables us to simultaneously train a detector and a bounding box regressor
under the same network configurations. On the VOCO07 dataset, Fast RCNN
increased the mAP from 58.5% (RCNN) to 70.0% while with a detection speed over
200 times faster than R-CNN. Although Fast-RCNN successfully integrates the
advantages of R-CNN and SPPNet, its detection speed is still limited by the proposal
detection.
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Faster RCNN
Faster RCNN is the first end-to-end,
and the first near real time deep
classifier

learning detector (COCO
MAP@.5=42.7%, COCO
MAP@)].5,.95]=21.9%, VOCO07
MAP=73.2%, VOC12 mAP=70.4%,
17fps with ZFNet). The main
contribution of Faster-RCNN is the
introduction of Region Proposal
Network (RPN) that enables nearly
cost-free region proposals. From
R-CNN to Faster RCNN, most
individual blocks of an object
detection system, e.g., proposal
detection, feature extraction,
bounding box regression, etc, have
been gradually integrated into a
unified, end-to-end learning
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Figure 3.13 Faster R-CNN

framework. Similar to Fast R-CNN, the image is provided as an input to a
convolutional network which provides a convolutional feature map. Instead of using a
selective search algorithm on the feature map to identify the region proposals, a
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separate network is used to predict the region proposals. The predicted region
proposals are then reshaped using a Rol pooling layer which is then used to classify
the image within the proposed region and predict the offset values for the bounding
boxes.

YOLO

YOLO was proposed by R. Joseph et al. in 2015. It stands for “You Only Look Once”.
It can be seen from its name that the authors have completely abandoned the
previous detection paradigm of “proposal detection + verification”. YOLO uses a
totally different approach. YOLO is a clever convolutional neural network (CNN) for
doing object detection in real-time. The algorithm applies a single neural network to
the full image, and then divides the image into regions and predicts bounding boxes
and probabilities for each region. These bounding boxes are weighted by the
predicted probabilities.

YOLO is popular because it achieves high accuracy while also being able to run in
real-time. The algorithm “only looks once” at the image in the sense that it requires
only one forward propagation pass through the neural network to make predictions.
After non-max suppression (which makes sure the object detection algorithm only
detects each object once), it then outputs recognized objects together with the
bounding boxes. YOLO suffers from a drop of the localization accuracy compared
with two-stage detectors, especially for some small objects. YOLO’s subsequent
versions and the latter proposed SSD have paid more attention to this
problem.YOLO is extremely fast: a fast version of YOLO runs at 155fps with VOCQ7
mAP=52.7%, while its enhanced version runs at 45fps with VOC07 mAP=63.4% and
VOC12 mAP=57.9%.
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Figure 3.14 YOLO obiject detection
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SSD

It was proposed by W. Liu et al. in 2015. The main contribution of SSD is the
introduction of the multi-reference and multi-resolution detection techniques, which
significantly improves the detection accuracy of a one-stage detector, especially for
some small objects. The SSD is a multibox detector:

e After going through a certain convolutions for feature extraction, we obtain a
feature layer of size mxn (number of locations) with p channels, such as 8x8
or 4x4 above. And a 3x3 conv is applied on this mxnxp feature layer.

e For each location, we got k bounding boxes. These k bounding boxes have
different sizes and aspect ratios. The concept is, maybe a vertical rectangle is
more fit for humans, and a horizontal rectangle is more fit for cars.

e For each of the bounding box, we will compute c class scores and 4 offsets
relative to the original default bounding box shape.

e Thus, we got (c+4)kmn outputs.
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Figure 3.15 SSD object detection

SSD has advantages in terms of both detection speed and accuracy (VOCO07
MAP=76.8%, VOC12 mAP=74.9%, COCO mAP@.5=46.5%, mAP@].5,.95]=26.8%,
a fast version runs at 59fps). The main difference between SSD and any previous
detectors is that the former one detects objects of 5 different scales on different
layers of the network, while the latter ones only run detection on their top layers. The
SSD, has fallen behind two stage detectors in terms of accuracy for years, till the
RetinaNet was introduced.
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Figure 3.16 SSD object detection layers
RetinaNet

It was developed by Facebook Al Research (FAIR), and is reviewed. It is discovered
that there is an extreme foreground-background class imbalance problem in
one-stage detector. And it is believed that this is the central cause which makes the
performance of one-stage detectors inferior to two-stage detectors. RetinaNet
achieves state-of-the-art performance, outperforming Faster R-CNN, the well-known
two-stage detectors. In essence, RetinaNet is a composite network composed of:

e A backbone network called Feature Pyramid Net, which is built on top of
ResNet and is responsible for computing convolutional feature maps of an
entire image;

e A subnetwork responsible for performing object classification using the
backbone’s output;

e A subnetwork responsible for performing bounding box regression using the
backbone’s output.
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Figure 3.17 RetinaNet object detection
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YOLOv3

YOLOv1, and YOLOv2 were the fastest and one of the most accurate object
detectors. However, after their release, other algorithms like SSD and RetinaNet
outperformed YOLO in terms of accuracy. YOLOV3, sorts out that issue by trading off
some of its speed to increase detection accuracy.

Most of the trick in YOLOV3 increase in accuracy, lies in its backbone, the deep
learning architecture, Darknet-53. Previous versions on YOLO using previous
versions of darknet were still lacking some of the most important elements that are
now staple in most of state-of-the art algorithms, they had no residual blocks, no skip
connections and no upsampling. YOLO v3 incorporates all of these.

YOLOVv3 architecture has a 53 layer network trained on Imagenet. For the task of
detection, 53 more layers are stacked onto it, giving us a 106 layer fully convolutional
underlying architecture for YOLO v3. This is the reason behind the slowness of
YOLO v3 compared to YOLO v2.

oncatenation / /.
Scale 1 —/
ddition 82 Stride: 32 4

‘esidual Block

Jetection Layer Scale 2

94 Stride: 16

L
7

K

Jpsampling Layer

urther Layers
Scale 3

106 Stride: 8

YOLO v3 network Architecture

Figure 3.18 YOLOV3 object detection
In YOLO v3, the detection is done by applying 1 x 1 detection kernels on feature

maps of three different sizes at three different places in the network. The first
detection is made by the 82nd layer. For the first 81 layers, the image is down
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sampled by the network, such that the 81st layer has a stride of 32. If we have an
image of 416 x 416, the resultant feature map would be of size 13 x 13. One
detection is made here using the 1 x 1 detection kernel, giving us a detection feature
map of 13 x 13 x 255.

Then, the feature map from layer 79 is subjected to a few convolutional layers before
being sampled by 2x to dimensions of 26 x 26. This feature map is then depth
concatenated with the feature map from layer 61. Then the combined feature map is
again subjected to a few 1 x 1 convolutional layers to fuse the features from the
earlier layer (61). Then, the second detection is made by the 94th layer, yielding a
detection feature map of 26 x 26 x 255.

A similar procedure is followed again, where the feature map from layer 91 is
subjected to few convolutional layers before being depth concatenated with a feature
map from layer 36. Like before, a few 1 x 1 convolutional layers follow to fuse the
information from the previous layer (36). We make the final of the 3 at 106th layer,
yielding a feature map of size 52 x 52 x 255.

3.2.2 Comparative Study on Object Detection and

Recognition
YOLOv3 massively outperforms other state of art detectors like RetinaNet, while
being considerably faster, at COCO mAP 50 benchmark. It is also better than the

SSD and it’s variants. Here’s a comparison of performances right from the paper
(loU =0.5).
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Figure 3.19 Comparative Study on Object Detection and Recognition
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In benchmarks where the loU is higher (say, COCO 75), the boxes need to be
aligned more perfectly to be not rejected by the evaluation metric. Here is where
YOLO is outdone by RetinaNet, as it's bounding boxes are not aligned as well as of
RetinaNet. Here'’s a detailed table for a wider variety of benchmarks.

backbone AP AP=n APy APs APy APpL
Two-stage methods
Faster R-CNN+++ [7] ResNet-101-C4 349 55.7 374 156 387 50,9
Faster R-CNN w FPN [£] ResNet-101-FPN 36.2 59.1 390 182 39.0 482
Faster R-CNN by G-RMI [5] | Inception-ResNet-v2 [21] 34.7 555 36.7 13.5 381 520
Faster R-CNN w TDM [20] | Inception-ResNet-v2-TDM | 36.8 51.7 39z 16.2 308 521
One-stage methods
YOLOvw2[15] DarkNet-19[15] 21.6 440 19.2 5.0 224 5.5
S8D513[11, 3] ResNet-101-S5D 31.2 504 333 10.2 345 49.8
DSSD513 [7] ResNet-101-DSSD 33z 533 5.2 13.0 354 51.1
RetinalNet [Y] ResNet-101-FPN 39.1 59.1 423 21.8 42.7 50.2
RetinalNet [7] ResNeXt-101-FPN 40.8 6l.1 4.1 24.1 44.2 51.2
YOLOv3 608 = 608 Darknet-53 330 579 44 18.3 i54 419

Table 3.1: Wider variety of object detection benchmarks

3.2.3 Implemented Approach of Object Detection

and Recognition

From comparing benchmark results on various state-of-the-art object detection
techniques, it can be concluded that there is a tradeoff between detection accuracy
and inference time. In an implementation of a driverless racing vehicle, an object
detection has to be accurate, but at the same time real time and able to process
frames at high FPS; that's why a YOLOv3 based approach was selected. YOLOv3
maintains a very good accuracy level, but is considerably faster than any other

object detection approach. Instead of using slow and computationally intensive

cascade and sliding window approaches, We employ a quick, real-time and powerful
object detector in our pipeline in the form of YOLOV3. Its ability to be fine-tuned with
lesser data pre-trained weights and robust outputs made it the right fit in our system.

We divided our cone detection process along two YOLOv3 networks that work
together simultaneously, one tinyYOLOv3 based network that detects the three cone
types all as one class, this ensures that the most number of cones in each frame is
detected and no cones are missed. The other one is a YOLOv3 based network that
classifies only cones at close distances from the vehicle into one of three classes
(yellow-blue-orange), ensuring maximum accuracy. Both the networks were
implemented by the team members from scratch in Python using the PyTorch
framework.
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The network architecture by default each YOLO layer has 255 outputs: 85 values per
anchor [4 box coordinates + 1 object confidence + 80 class confidences], times 3
anchors. The settings to filters=[5 + n] * 3 and classes=n, where n is the class count.
This modification was made in all 3 YOLO layers in both networks.

We customized the first network by making a changes in YOLOV3 pipeline and
reducing the number of classes that it detects, as “Our driverless high performance
formula race car” does not really care about detecting cats, dogs, airplanes or bikes
to name a few but needs to distinguish and detect ‘yellow’, ‘blue’ and ‘orange’ cones
that provide information about the track. We reduce the classes of the pre-trained
YOLOVv3 to 3 classes which are ‘yellow’, ‘blue’ and ‘orange’ cones as shown in the
following figure. For more information about the optimization and customization of
the modified YOLOVS to fit our high performance perception pipeline is described in
chapter4.

Figure 3.20 Yellow, blue, and orange cones
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3.3 Literature Review on 3D Object Localization and
Pose Estimation From Single Images

Object Detection and Recognition serves as an image 2D localization method where
it finds where the object is in a 2D single frame and assigns it to a class. Now, due to
the advancements in Computer Vision, 2D images can be used to identify the
position of the object in the scene captured by the camera just by knowing extra
information, and we are interested in introducing an accurate, robust and efficient
way to estimate the 3D position of the objects from single frames in which it complies
with our application i.e. mapping and finding cones in 3D space. This is to be the
most important contribution which is to accurately estimate the 3D position of an
object (Traffic cone in our application).

3.3.1 Background on 3D Object Localization and
Pose Estimation From Single Images

We believe that human vision can estimate the depth of an object with one eye; this
is due to the fact that the geometric features of different objects in life have been
previously added to the knowledge of the human brain in addition to the geometric
relationship between objects that serves to give a great estimate about where the
object is. In this problem, we suppose that a priori knowledge of the 3D geometric
information about the object is available alongside the camera intrinsic parameters
used to capture the frames.

Pose estimation and key points regression have appeared in previous research work
that is including [Viewpoint aware object detection and continuous pose estimation]
and [3d generic object categorization, localization and pose estimation]. Glasner et
al. estimate pose for images containing cars using an ensemble of voting SVMs,
Tulsiani et al. [S. Tulsiani and J. Malik. Viewpoints and keypoints. ] use features and
convolutional neural networks to predict viewpoints of different objects. Their work
captures the interplay between viewpoints of objects and key points for specific
objects. We will briefly demonstrate their approaches and limitations.

Viewpoint Aware Object Detection Approach
Glasner et al. introduced a method to directly integrate 3D reasoning with an
appearance based voting architecture. The method relies on a nonparametric

representation of a joint distribution of shape and appearance of the object class.
The voting method employs a novel parameterization of joint detection and viewpoint
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hypothesis space, allowing efficient accumulation of evidence. In addition to
combining this with a re-scoring and refinement mechanism, using an ensemble of
view-specific support vector machines.

This figure shows the voting process. Four patches from the test image (top left) are
matched to database patches. The matching patches are shown with the
corresponding color on the right column. Each match generates a vote in 6D pose
space. The point in pose space is parameterized as a projection of designated points
in 3D onto the image plane. These projections are shown here as dotted triangles.
The red, green and blue votes correspond to a true detection, the cast pose votes
are well clustered in pose space (bottom left) while the yellow match casts a false
vote.

Viewpoints and Key Points Approach

In this approach S. Tulsiani and J. Malik characterize the problem of pose estimation
for rigid objects in terms of determining viewpoint to explain coarse pose and
keypoint prediction to capture the finer details, And address both these tasks in two
different settings the constrained setting with known bounding boxes and the more
challenging detection setting where the aim is to simultaneously detect and correctly
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estimate pose of objects. And they present Convolutional Neural Network based
architectures for these and demonstrate that leveraging viewpoint estimates can
substantially improve local appearance based keypoint prediction.

The components of the proposed model is viewpoint prediction and Local
Appearance based Keypoint Activation. In the viewpoint prediction they trained a
CNN based architecture which can implicitly capture and aggregate local evidence
for predicting the euler angles to obtain a viewpoint estimate. In the Local
Appearance based Keypoint Activation they proposed a fully convolutional CNN
based architecture to model local part appearance. And capture the appearance at
multiple scales and combine the CNN responses across scales to obtain a resulting
heatmap which corresponds to a spatial log-likelihood distribution for each keypoint.

The following figure will illustrate an overview on this approach:

. , o Vicwpoint Conditioned
Viewpoint Prediction Keypaint Lag-Likeliliood

Keypoint Likelihood

Appearance based
Keypoint Log-Likelihood
Multiscale Convolutional
Keypoint Response Maps

Figure 3.22 Viewpoints and Key Points Approach
To recover an estimate of the global pose, they use a CNN based architecture to
predict viewpoint. For each keypoint, a spatial likelihood map is obtained via

combining multiscale convolutional response maps and it is then combined with a
likelihood conditioned on predicted viewpoint to obtain the final predictions.
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3.3.2 Comparative Study on 3D Object Localization
and Pose Estimation From Single Images

Although these approaches are considered solutions to the given problem, these are
not enough for our application as they don’t provide real time, accuracy, and
robustness.

The limitations of the viewpoint aware object detection approach is that the pose
estimates generated in the voting stage are not always accurate. When the pose
estimate is incorrect the wrong viewpoint specific classifier will be applied which
leads to that the 3D position will not be measured accurately. The experiments for
the approach gave a maximum average precision (AP) of 0.32 on the Pascal VOC
2007 cars dataset using the 3D voting and 8view-SVM detector.

2D voting 2D voting +5VM 3D voting 3D voting +SVM 3D voting
Bview-5VM

AP 1586% 24.34% 16.29% 27.97% 32.03%

Table 3.2: Pascal VOC 2007 cars. Average precision achieved by our detectors
compared to a 2D baseline.

(a) (P —
e 3D voting + Arie-Nachimson
8view SVM and Basri
0.8 3D voting + g 30 Our results
SVM 2
E 0.6 —3D voting %
o T2
9 o
u o
= 04 3
-' £ 10
0.2 \\- <
% 0.1 0.2 0.3 0.4 0.5 0 5 10 15 20
recall label difference

Figure 3.23: Pascal VOC 2007 cars

(a) Recall-precision. 3D voting followed by 8-view SVM (red) outperforms 3D voting
(blue) and 3D voting followed by SVM (green). The approach achieved an average
precision of 32.03% without using positive training examples from Pascal. (b) Pose
estimation. A subset of the cars was annotated with one of 40 different labels corre-
sponding to approximately uniform samples of the azimuth range. They showed their
label differences alongside those reported in a similar old approach proposed by [M.
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Arie-Nachimson, R. Basri, Constructing implicit 3D shape models for pose
estimation].

In addition, the limitations of Viewpoints and Key Points approach in our case of
designing a race driverless car in some climate conditions if the frame image has a
problem the detection of the viewpoint will not be accurately predicted. The detection
candidate has an associated viewpoint and the detection is labeled correct if it has a
correct predicted viewpoint bin as well as a correct localization because that the two
stages have a strong relation and the error will be highly propagated. The second
limitation is that this model is relatively slow compared to the realtime race vehicle
perception system. We must say that the fraction of error this approach proposes is
away from our targeted performance. The metrics used to evaluate the performance
are the median error and Accuracy at given viewport angle.

Median Error

The common confusions for the task of viewpoint estimation often are predictions
which are far apart (eg. left facing vs right facing car) and the median error (MedErr)
is a widely used metric that is robust to these if a significant fraction of the estimates
are accurate.

Accuracy at 0

A small median error does not necessarily imply accurate estimates for all instances,
a complementary performance measure is the fraction of instances whose predicted
viewpoint is within a fixed threshold of the target viewpoint. Denoted this metric by
Accb where 0 is the threshold. The results use 8 = 11/6.

aero  bike boat  bottle bus car chair table mbike sofa train tv mean

;'1cc-(_1j (Pool5-TNet) 027 018 036 0.81 071 036 0.52 0.52 0.38 0.67 0.7 0.71 0.52
Acc z (fc7-TNet) 0.5 044 039 0.88 0.81 0.7 0.39 0.38 0.48 044 078 065 0.57
Ace 3 (ours-TNet) 078 074 049 0.93 0.94 090 0.65 0.67 0.83 067 079 076 | 076
Ace x (ours-ONet) 0.81 077 059 0.93 0,98 0.89 0.80 0.62 0.88 0.82 080 0.80 | 081
MedErr (Pool5-TNet) 426 523  46.3 18.5 17.5 456 28.6 27.7 37 259 206 215 32

MedErr(fcT-TNet) 298 403 495 13.5 7.6 13.6 45.5 38.7 31.4 38.5 9.9 22.6 28.4
MedErr(ours-TNet) 14.7 186 312 13.5 6.3 8.8 17.7 17.4 17.6 15.1 8.9 17.8 15.6
M ed Err(ours-ONet) 138 17.7 213 12.9 58 9.1 14.8 15.2 14.7 13.7 8.7 154 13.6

Table3.3: Viewpoint Estimation with Ground Truth box Performance.
Accordingly, we looked for using state of the art solutions in computer vision and

image processing to accurately localize the landmark while racing on the track, and
we came up with the pipeline that provides the required performance.
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3.3.3 Implemented Approach on 3D Object
Localization and Pose Estimation From Single
Images

3D Pose estimation from a single frame has always been an ill-posed problem, but it
can be solved accurately when there is previous geometric knowledge about the
objects introduced in the model. In this work, we have decided to build a DNN based
on ResNet to extract accurately the key points from single image cone patches,
these key points are mapped to 3D known model points in the local frame of the
cone. At this point, a perspective n-points algorithm runs to find the 6 DOF of the
camera with respect to the cone position that includes 3D position and 3 orientation
angles, we are only interested in the XZ position that represents the top view location
in the base map with respect to the vehicle. These reactive cone mappings will be
used by the SLAM algorithm to get the global position of the cone in the world frame
Fw. This approach will be discussed in details in chapter 4.

-+ -

16 cony 16res 32.r¢$ &4 r.as . 128 IEH-
black block black block

Figure 3.24: The developed DNN to extract cone key points.
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3.4 Literature review on Mapping and Localization

At this instance of our progress in the full autonomous driving kit literature review, we
have concluded multiple decisions that provided us with the landmarks (cones)
estimates from our sensors. Now, we will research and discuss how these estimates
can be fused in order to get an accurate landmark 3D position. In addition, these
landmarks positions are referenced to the local vehicle frame that we need to
translate to a global map which we are interested in constructing in order to generate
accurate paths for the vehicle to drive itself through as accurately as possible and
with extreme performance. Absolutely, this translation needs extra input information
to be done which is the vehicle position and orientation that also needs to be the
output of a sensor fusion process from the vehicle input sensors. Lastly, we need to
combine the two past mentioned tasks which are Mapping and Localization into one
algorithm in order to manipulate uncertainty in the environment with a chosen
algorithm for Synchronous Localization and Mapping (SLAM). With this in mind, we
started our review with the work of Sabastian Thrun, Wolfram Burgard, and Dieter
Fox in the famous basis of Robotics which is presented in the reference book
Probabilistic Robotics [19].

3.4.1 Background on Mapping and Localization

One of the main motives in this work is our understanding of uncertainty, and how we
need to control the random process of what we are trying to achieve which is a
vehicle that has to drive itself accurately and with extreme performance on a given
track but the thing is, the way this vehicle act and react to the environment is not
absolute. This means that the place of the landmarks the vehicle receive is not an
absolute location but either the best estimate of where the cone is in the
environment, in addition, how the Al agent knows where is the vehicle position with
respect to the environment is not absolute but rather a good estimate of where the
vehicle could be. This understanding helps in introducing redundant perception; this
includes how we can fuse multiple sensor estimates to establish a system state that
best describes the vehicle and how it should react to the environment.
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Robot Uncertainty
Uncertainty arises if the robot lacks critical information for carrying out its task. It
arises from five different factors.

1. Environments. Physical worlds are inherently unpredictable. While the
degree of uncertainty in well-structured environments such as assembly lines
is small, environments such as highways and private homes are highly
dynamic and unpredictable.

2. Sensors. Sensors are inherently limited in what they can perceive.
Limitations arise from two primary factors. First, range and resolution of a
sensor is subject to physical laws. For example, Cameras can’t see through
walls, and even within the perceptual range the spatial resolution of camera
images is limited. Second, sensors are subject to noise, which perturbs
sensor measurements in unpredictable ways and hence limits the information
that can be extracted from sensor measurements.

3. Robots. Robot actuation involves motors that are, at least to some extent,
unpredictable, due effects like control noise and wear-and-tear. Some
actuators, such as heavy-duty industrial robot arms, are quite accurate.
Others, like low-cost mobile robots can be extremely inaccurate.

4. Models. Models are inherently inaccurate. Models are abstractions of the
real world. As such, they only partially model the underlying physical
processes of the robot and its environment. Model errors are a source of
uncertainty that has largely been ignored in robotics, despite the fact that
most robotic models used in state-or-the-art robotics systems are rather
crude.

5. Computation. Robots are real-time systems, which limits the amount of
computation that can be carried out. Many state-of-the-art algorithms are
approximate, achieving timely response through sacrificing accuracy.

All of these factors give rise to uncertainty. Traditionally, such uncertainty has mostly
been ignored in robotics. However, as robots are moving away from factory floors
into increasingly unstructured environments, the ability to cope with uncertainty is
critical for building successful robots.

To address the problem of mapping and localization we need to discuss some basics
regarding Recursive State Estimation, Gaussian Filters, and Simultaneous
Localization and Mapping.
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A. Recursive State Estimation

In order to deploy an accurate autonomous system that can map its surrounding and
localize itself in order to know what to do next, we should consider it as a mobile
wheeled robot in which we should discuss the core definition of probabilistic robotics
which is how to estimate useful information and quantities from multiple sensors data
which can’t be used directly because of the uncertainty by which each sensor implies
with its readings. Like the rest of robotics applications, once this information is known
it is easy to know what to do next. Let’'s say, we have a moving robot, it is easy to
know where to go if at each time instance we know exactly where all the landmarks
are and where the robot is. Unfortunately, these variables can’t be known directly
from the sensors data. Sensors import only partial information about these variables,
because their measurements are accompanied with noise. Accordingly, Thrun and
the rest introduced State estimation. A method used to recover what they called
state variables in which it generates and computes the possible world states which
the robot may be in, this is called belief distributions according to them.

Next, we will discuss what is concerned with the robot process while interacting with
its environment.

1) State. Environments can be identified by its state. It will be nice to think of the
state as the group of all elements that defines the robot and its environment
that can affect the future. The state may include variables regarding the robot
itself, such as its pose (position and orientation) and velocity. In the book, they

denoted the state by X ; although the specific variables included in X will

depend on the context. The state at time f will be denoted X, . Typical
concerned state variables are:

(1 The robot pose, simply it is the location and orientation relative to the
global coordinate frame.

1 The location and features of surrounding objects in the
environment. These objects (aka landmarks) may be a cone, tree, or
a wall. Robot environments may have a few dozen of these landmarks
and up to hundreds and billions of state variables.

O The location and velocities of moving objects and people.
Sometimes, there are other moving actors with the robot.These actors
have their own kinematic and dynamic state. In our work the dynamic
objects are irrelevant as we are only considering static objects (cones).

(1 There can be a huge number of other state variables such as
temperature, robot battery level, etc.
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2) Environment Interaction, We can classify the interactions of the mobile
vehicle with the environment into two main types; The vehicle can affect the
state of its environment through its motion. In addition, it can collect
information about the state by using its sensors. Both types of interactions
may occur at the same time.

(1 Sensor measurements. Perception is the process by which the robot
uses its sensors to obtain information about the state of its
environment. The result of such a perceptual interaction will be called a
measurement, although we will sometimes also call it observation or
percept. In fact, sensor measurements arrive with some delay. They
provide information about the state a few moments ago.

(1 Control actions. These are used by the robot to change the state of
the world. They do so by actively asserting forces on the robot’s
environment. Even if the robot does not perform any action itself, state
usually changes. Thus, for consistency, we will assume that the robot
always executes a control action, even if it chooses not to move any of
its motors. In practice, the robot continuously executes controls and
measurements are made concurrently.

Hypothetically, a robot may keep a record of all past sensor measurements
and control actions. We will refer to such a collection as the data (regardless
of whether they are being memorized). In accordance with the two types of
environment interactions, the robot has access to two different data streams.

1 Measurement data provides information about a momentary state of
the environment. Examples of measurement data include camera
images, range scans, and so on. For most parts, we will simply ignore
small timing effects (e.g., most lidar sensors scan environments
sequentially at very high speeds, but we will simply assume the
measurement corresponds to a specific point in time). The
measurement data at time t will be denoted as Z,

1 Control data carry information about the change of state in the
environment. In mobile robotics, a typical example of control data is the
velocity of a robot. Setting the velocity to 10 cm per second for the
duration of five seconds suggests that the robot’s pose, after executing
this motion command, is approximately 50 cm ahead of its pose before
command execution. Thus, its main information regards the change of
state. An alternative source of control data are odometers. Odometers
are sensors that measure the revolution of a robot’s wheels. As such
they convey information about the change of the state. Even though
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odometers are sensors, we will treat odometry as control data, since its
main information regards the change of the robot’s pose.

Control data will be denoted Y, . The variable u#; will always
correspond to the change of state in the time interval [t-1; t]. As before,
we will denote sequences of control data by U;1., ,for /1 < 2

Unp = Ups Upers Upags o5 Up
Since the environment may change even if a robot does not execute a
specific control action, the fact that time passed by constitutes,
technically speaking, control information. Hence, we assume that there
is exactly one control data item per time step t.

Important Note

The distinction between measurement and control is a crucial one, as both types of
data play fundamentally different roles in the material yet to come. Perception
provides information about the environment’s state, hence it tends to increase the
robot’s knowledge. Motion, on the other hand, tends to induce a loss of knowledge
due to the inherent noise in robot actuation and the stochasticity of robot
environments; although sometimes a control makes the robot more certain about the
state. By no means is our distinction intended to suggest that actions and
perceptions are separated in time, i.e., that the robot does not move while taking
sensor measurements. Rather, perception and control takes place concurrently;
many sensors affect the environment; and the separation is strictly for convenience.

Another key concept in probabilistic robotics is that of a belief. A belief reflects the
robot’s internal knowledge about the state of the environment. We already discussed

that state cannot be measured directly. For example, a robot’s pose might be

x=(14.12, 12.7, 0.755) in some global coordinate system, but it usually cannot
know its pose, since poses are not measurable directly (not even with a GPS!).
Instead, the robot must infer its pose from data. We therefore distinguish the true
state from its internal belief, or state of knowledge with regards to that state.
Probabilistic robotics represents beliefs through conditional probability distributions.
A belief distribution assigns a probability (or density value) to each possible
hypothesis with regards to the true state. Belief distributions are posterior
probabilities over state variables conditioned on the available data. We will denote

belief over a state variable X, by bel(x,)
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, Which is an abbreviation for the posterior
bel(x,) = p(x, |z, uy,)

This posterior is the probability distribution over the state X, at time t, conditioned on

all past measurements z,., and all past controls ;... Generally, the belief for any

system is modeled and updated using Filters with the help of the received sensor
measurements and the control inputs in the previous instant of time.

Bayes Filters

The most general algorithm for calculating beliefs is given by the Bayes filter
algorithm. This algorithm calculates the belief distribution from measurement and
control data.

1: Algorithm Baves filter(bel (1,_1). us. 2):

2: for all =; do

3: bel(z;) = [ paxy | ug, x4—1) bel(xi—q) dax
4: bel(xe) =1 p(ze | 2¢) bel ()

3: endfor

6: return bel(z,)

Table 3.4: Algorithm for Bayes Filter Update Rule

The Bayes filter is recursive, that is, the belief bel(x,) at time t is calculated from the
belief bel(x,_;) attime t-1. Its input is the belief bel at time t-1, along with the most
recent control U, and the most recent measurement z, . Its output is the belief
bel(x,) at time t.

The above table only depicts a single step of the Bayes Filter algorithm: the update
rule. This update rule is applied recursively, to calculate the belief bel(x,) from the

belief bel(x,_;), calculated previously.
The Bayes filter algorithm possesses two essential steps. In Line 3, it processes the
control U, . It does so by calculating a belief over the state X; based on the prior

belief over state X,_; and the control ¥, . In particular, the belief bel(x,) that the
robot assigns to state X, is obtained by the integral (sum) of the product of two

distributions: the prior assigned to X,_; , and the probability that control #; induces a
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transition from X,_; to X,. This update step is called the control update, or
prediction.

The second step of the Bayes filter is called the measurement update. In Line 4, the
Bayes filter algorithm multiplies the belief bel(x,) by the probability that the

measurement z, may have been observed. It does so for each hypothetical

posterior state X, .The resulting product is generally not a probability, that is, it may
not integrate to 1. Hence, the result is normalized, by virtue of the normalization
constant n . This leads to the final belief bel(x,) , which is returned in Line 6 of the
algorithm. [Refer to derivations in the appendix]

B. Gaussian Filters

Gaussian filters are efficient Bayes filter algorithms that represent the posterior

by multivariate Gaussians. It is known that Gaussians can be represented in two
different ways: The moments representation and the canonical representation.

The moments representation consists of the mean (first moment) and the
covariance (second moment) of the Gaussian.

p@) = det(2nZ) Fexp {- 40c- w7 (r - )}

This density over the variable X is characterized by two sets of parameters: The
mean and the covariance. The mean is a vector that possesses the same
dimensionality as the state X. The covariance is a quadratic matrix that is symmetric

and positive semidefinite. Its dimension is the dimensionality of the state X squared.
Thus, the number of elements in the covariance matrix depends quadratically on the
number of elements in the state vector. After this definition we are no longer in need
to deal with the complex gaussian in each update we only need to deal with the
mean and covariance to update the belief bel(x, ) in what is called a state transition
function that updates the new distribution moments from the old one.

The canonical, or natural, representation consists of an information matrix and an
information vector. Both representations are duals of each other, and each can be
recovered from the other via matrix inversion.

Bayes filters can be implemented for both representations. When using the moments
representation, the resulting filter is called Kalman filter. The dual of the Kalman
filter is the information filter, which represents the posterior in the canonical
representation. Updating a Kalman filter based on a control is computationally
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simple, whereas incorporating a measurement is more difficult. The opposite is the
case for the information filter, where incorporating a measurement is simple, but
updating the filter based on a control is difficult.

For both filters to calculate the correct posterior, three assumptions have to be
fulfilled. First, the initial belief must be Gaussian. Second, the state transition
probability must be composed of a function that is linear in its argument with
added independent Gaussian noise. Third, the same applies to the measurement
probability. It must also be linear in its argument, with added Gaussian noise.

Systems that meet these assumptions are called linear Gaussian systems.

Both filters can be extended to nonlinear problems. This technique calculates a
tangent to the nonlinear function. Tangents are linear, making the filters applicable.
The technique for finding a tangent is called Taylor expansion. Performing a Taylor
expansion involves calculating the first derivative of the target function, and
evaluating it at a specific point. The result of this operation is a matrix known as the
Jacobian. The resulting filters are called “extended.”

The accuracy of Taylor series expansions depends on two factors: The degree
of nonlinearity in the system, and the width of the posterior. Extended filters
tend to yield good results if the state of the system is known with relatively high
accuracy, so that the remaining covariance is small. The larger the uncertainty,
the higher the error introduced by the linearization.

One of the primary advantages of Gaussian filters is computational: The update
requires time polynomial in the dimensionality of the state space. The primary
disadvantage is their confinement to unimodal Gaussian distributions.

Within the multivariate Gaussian regime, both filters, the Kalman filter and the
information filter, have orthogonal strengths and weaknesses. However, The Kalman
filter and its nonlinear extension, the Extended Kalman Filter (EKF), are vastly
more popular than the information filter.

Kalman Filter

This filter represents the state transition function that solves for a linear system
model, where the probability distribution for state estimation based on motion is

p(x, | u,, X,_;) and based on the measurements is p(z, | x,) where both updates

the belief distribution bel(x,) in a consequent manner according to the bayes filter
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algorithm line 3 and 4, motion increases uncertainty and measurements decreases
it.

The KF applies three basic assumptions.

First
Linear Kalman Filter algorithm models the next state probability

P(xt | u, x,_l) as a linear function in its arguments with added Gaussian

noise. Consider this in the following expression.
x, =A,.x,_, +B,.u, + g

In this notation, x,and x
time t.

.., are state vectors, and u, is the control vector at
A, and B, are matrices. A4, is a square matrix of size n x n, where n is the
dimension of the state vector X,. B, is of size n x m, with m being the
dimension of the control vector Y,. By multiplying the state and control vector
with the matrices 4, and B, , respectively, the state transition function
becomes linear in its arguments. Thus, Kalman filters assume linear system
dynamics. The random variable g, is a Gaussian random vector that
models the randomness in the state transition. It is of the same dimension as
the state vector. Its mean is zero and its covariance will be denoted R, . The
mean of the posterior state is given by:

A, .x,_, T B, .y,
and the covariance by R, :
p(xt | Uy, xt—l) -

_1 _
det(2nR,)? exp(- %(xt - A4,.x_, - B,.u)'R, "o - A, .x,_, = B,.u,)

Until now we can predict the new distribution of the state based on the
previous state and the control inputs this will be used in evaluating the step
stated in line 3 in the bayes filter algorithm, this increases the uncertainty
because of the uncertainty factors stated above in the Robot Uncertainty
section.

Second
Next, KF algorithm models the measurement probability p(z, | x,) also as a
linear combination of its arguments, with added Gaussian noise.
z, = C,.x, + 0,

C, is a matrix of size k x n, where k is the dimension of the measurement
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vector Z,. The vector 9, describes the measurement noise. Again, the
distribution of 9, is a multivariate Gaussian with zero mean and covariance

Q, . Consider the following multivariate normal distribution that describes the
measurement probability.
plx) =

det(2nQ,) T expi-3(z, - C,.x)" 0,7\ - C".x")}

This step depicts line 4 in the Bayes Filter which is the correction step, as it
reduces the uncertainty of the state by using the sensor measurements.

The next algorithm shows how to apply KF algorithm for state estimation, by
updating the moments representation of the belief, the mean of the distribution p,,
and the covariance Z, .

[refer to the appendix for derivations]

1: Algorithm Kalman filter(p—1, 2¢—1, u¢, 2¢):
2: fit = Ag pre—1 + By ouy

3: Y =A: X1 AT+ R,

4: K,=%,Ccre, s, +Qp) !

5: pe = fig + Kz —7(’.-}_ fit)

6: Ye= (I — Ky Cy) Xy

7: return pug, 3¢

Table: Algorithm for Linear Kalman Filter
Kalman filters represent the belief bel(x,) at time t by the mean p, and the
covariance X, . The input of the Kalman filter is the belief at time t - 1, represented by
l,_; and X,_, . To update these parameters, Kalman filters require the control ¥,
and the measurement z, . The output is the belief at time t, represented by n, and
z,.

In Lines 2 and 3, the predicted belief 1 and Y is calculated representing the belief

bel(x,) one time step later, but before incorporating the measurement z, . This belief
is obtained by incorporating the control ¥, .

The mean L is calculated using the above mentioned equation, with the mean ,_,
substituted for the state X;_; . The update of the covariance considers the fact that

states depend on previous states through the linear matrix A4, . This matrix is
multiplied twice into the covariance, since the covariance is a quadratic matrix.
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The belief bel(x,) is subsequently transformed into the desired belief bel(x,) in

Lines 4 through 6, by incorporating the measurement z, . The variable K, computed
in Line 4 is called Kalman gain. It specifies the degree to which the measurement is
incorporated into the new state estimate. Line 5 manipulates the mean, by adjusting
it in proportion to the Kalman gain K, and the deviation of the actual measurement,

z,, and the measurement predicted according to the measurement probability

mentioned above.
Finally, the new covariance of the posterior belief is calculated in Line 6, adjusting for

the information gain resulting from the measurement.

For sure, there must be an initial state for this algorithm defined by the initial belief
distribution bel(x,) denoted by the mean of the distribution 1, , and the covariance

%,
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Figure 3.25: lllustration of Kalman filters: (a) initial belief, (b) a measurement (in bold)

48 | Page



with the associated uncertainty, (c) belief after integrating the measurement into the
belief using the Kalman filter algorithm, (d) belief after motion to the right (which
introduces uncertainty), (e) a new measurement with associated uncertainty, and (f)
the resulting belief.
Example
In order to make things more clear, we provide a simple example on applying
the Bayes Filter using Kalman Filter Algorithm.
We consider a simple construction of a car that exists in a one dimensional
environment where its motion is considered only in the x direction and the
state estimation transition is assumed to be linear. Consider the following

figure.
1 =Y. o, e, cf -1 .
bel(xy 1) e = Ay o1 + Be g ﬁt_ k t_f}{((f %t(ﬂ t_-i- Q¢) bel ()
S =A 51 AT+ R pie = fix + Ke(ze = Ct [ie) —
— 5= (I~ K: Cr)
bel ()

Probability 1
density

function
Optimal state estimate
bel ()
e v
I | ‘/I\\
| |/' I ‘\
|

varignce Predicted state |
. | Measurement
| estimate [ / I

bel(xy—1) bel(xy) plze | 1) Car's position x

Initial state estimate

Figure 3.26: Simple example on applying Bayes Filter by using Kalman Filter
Algorithm.

Each probability distribution function is modeled using the mean p and
covariance X (Variance in this case as we are considering one dimensional

state only which is the distance in X), the algorithm states how we can
translate from one state of the vehicle to the next state, the state here is the
distance in the x direction only but it may contain more information such as
the 3D position of the vehicle and the landmarks around it as mentioned in the
state description section above.

In this example, let’s say that car started at 0 m, and in the next state it
reached 5 m which is unknown to us and we need to find.
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The algorithm is divided into two parts the first is used to predict the next state
using the motion model as it is known what are the previous motion

commands of the vehicle such as distance request to the car motor %,. This

outputs the belief bel(x,) which is a distribution of Let's say a mean of 3.6m
which shows how this belief suffers from uncertainties because of the factors
mentioned before. The second step is the usage of sensors to improve the
predicted state estimation using the sensor model let’s say that the sensors
provide a probability distribution with the mean of 5.4m which again shows the
uncertainties depicted in the estimation. The algorithm then uses the both
motion and measurements distributions to output the optimal state estimation
of the next state which would be also a probability distribution in which the

mean is 5.01 m or something like that. The Kalman Gain K, decides whether
to rely more on the measurements or on the prediction based on motion.

Note: In the motion command we only stated the distance as a command i.e.
requesting the motor controller to move the car for 5 m. This is because the
Kalman Filter algorithm assumes that the system is linear in state
transitioning, as the mean and covariance is updated using matrices A, B, and
C in a system of linear equations. Accordingly, we can’t include commands
such as velocity and acceleration requests. In addition, in measurements we
can only receive position data as again we can’t estimate position from
acceleration received from accelerometers for example. That is why we need
to consider the Extended Kalman Filter.
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Extended Kalman Filter

The Extended Kalman filter (EKF) calculates an approximation to the true belief. It
represents this approximation by a Gaussian. In particular, the belief bel(x,) at time

tis represented by a mean #; and a covariance X, . Thus, the EKF inherits from the
Kalman filter the basic belief representation, but it differs in that this belief is only
approximate, not exact as was the case in Kalman filters.
The representation here is no longer a linear system of matrices.That is, the linear
predictions in Kalman filters are replaced by their nonlinear generalizations in EKFs.
This is done by linearizing the nonlinear state transformation (nonlinear motion and
nonlinear observation) at the current time step. Here the assumption is that the next
state probability and the measurement probabilities are governed by nonlinear
functions g and h, respectively. Where,

x, = glu, x,y) + g, z, = h(x,) + 9,
The main idea that constructs the EKF algorithm is linearization as we need to deal
with non linear relations between variables. For instance, suppose we need to
estimate the position from velocity or acceleration, this defines a nonlinear function.
In KF, the task would be to predict the position from a linear combination of the
velocity or acceleration command but we can’t as this violates the assumption of the
algorithm. By linearization, we can estimate a linear relation from the nonlinear
function as we go step by step in time.
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Figure3.27: The linearization process of the Extended Kalman Filter algorithm.

EKF does function linearization by computing jacobians using Taylor Expansion and
then prunes the expression to the linear part only in which it also uses a matrix

representation to model both the prediction and the correction steps. The algorithm
again updates the mean and covariance to update the probability distribution of the

belief state.

EKFs use Jacobians G, and H, instead of the corresponding linear system

matrices A,, B,,and C, in Kalman filters. The Jacobian G, corresponds to the

matrices 4, and B,, and the Jacobian H, correspondsto C,.

oW R =

=1 oy Lh

C. Simultaneous Localization and Mapping (SLAM)

Algorithm Extended Kalman filter(z, ,2; 1,1, 2¢):
e = gue, pre—1)
Y, =Gy 51 GT + Ry
Ky=%,H'(H, %, H +Q;)™!
pe = jie + Ki(ze — h(jiz))

(I — K; Hy) %,

return pes, 24

Table 3.5: Algorithm for Extended Kalman Filter
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(1 Mobile Robot Localization

Mobile robot localization is the problem of determining the pose of a robot
relative to a given map of the environment. It is often called position
estimation or position tracking. Mobile robot localization is an instance of the
general localization problem, which is the most basic perceptual problem in
robotics. This is because nearly all robotics tasks require knowledge of the
location of the robots and the objects that are being manipulated (although not
necessarily within a global map).

Localization can be seen as a problem of coordinate transformation. Maps are
described in a global coordinate system, which is independent of a robot’s
pose. Localization is the process of establishing correspondence between the
map coordinate system and the robot’s local coordinate system. Knowing this
coordinate transformation enables the robot to express the location of objects
of interests within its own coordinate frame—a necessary prerequisite for
robot navigation. As the reader easily verifies, knowing the pose

x, = (x,, ®)” of the robot is sufficient to determine this coordinate
transformation, assuming that the pose is expressed in the same coordinate
frame as the map.

Localization problems are characterized by the type of knowledge that is
available initially and at run-time. We distinguish three types of localization
problems with an increasing degree of difficulty.

Position tracking. Position tracking assumes that the initial robot pose is
known. Localizing the robot can be achieved by accommodating the noise in
robot motion. The effect of such noise is usually small. Hence, methods for
position tracking often rely on the assumption that the pose error is small. The
pose uncertainty is often approximated by a unimodal distribution (e.g., a
Gaussian). The position tracking problem is a local problem, since the
uncertainty is local and confined to a region near the robot’s true pose.

Global localization. Here the initial pose of the robot is unknown. The robot
is initially placed somewhere in its environment, but it lacks knowledge of
where it is. Approaches to global localization cannot assume boundedness of
the pose error. As we shall see later in this chapter, unimodal probability
distributions are usually inappropriate. Global localization is more difficult than
position tracking; in fact, it subsumes the position tracking problem.

Kidnapped robot problem. This problem is a variant of the global
localization problem, but one that is even more difficult. During operation, the
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robot can get kidnapped and teleported to some other location. The
kidnapped robot problem is more difficult than the global localization problem,
in that the robot might believe it knows where it is while it does not. In global
localization, the robot knows that it doesn’t know where it is. One might argue
that robots are rarely kidnapped in practice. The practical importance of this
problem, however, arises from the observation that most state-of-the-art
localization algorithms cannot be guaranteed never to fail. The ability to
recover from failures is essential for truly autonomous robots. Testing a
localization algorithm by kidnapping it measures its ability to recover from
global localization failures.

Another aspect that characterizes different localization problems pertains to
the fact whether or not the localization algorithm controls the motion of the
robot.

Passive localization. In passive approaches, the localization module only
observes the robot operating. The robot is controlled through some other
means, and the robot’s motion is not aimed at facilitating localization. For
example, the robot might move randomly or perform its everyday’s tasks.
Active localization. Active localization algorithms control the robot so as to
minimize the localization error and/or the costs arising from moving a poorly
localized robots into a hazardous place.

Markov Localization

Probabilistic localization algorithms are variants of the Bayes filter. The
straightforward application of Bayes filters to the localization problem is called
Markov localization. This algorithm is derived from

the algorithm Bayes filter. Notice that Markov localization

also requires a map m as input. The map plays a role in the measurement
model p(z, | x,, m) (Line 4). It often, but not always, is incorporated in the
motion model. Just like the Bayes filter, Markov localization

transforms a probabilistic belief at time t - 1 into a belief at time t. Markov
localization addresses the global localization problem, the position tracking
problem, and the kidnapped robot problem in static environments.

EKF Robot Localization
The extended Kalman filter localization algorithm, or EKF localization, is a
special case of Markov localization. EKF localization represents beliefs

bel(x,) by their first and second moment, that is, the mean . and the

covariance X, . The basic EKF algorithm was stated before.
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1 Mapping
In fact, mapping is one of the core competencies of truly autonomous robots.
Acquiring maps with mobile robots is a challenging problem for a number of
reasons.
The hypothesis space, that is the space of all possible maps, is huge. Since
maps are defined over a continuous space, the space of all maps has
infinitely many dimensions. Even under discrete approximations, such as the
grid approximation which shall be used in this chapter, maps can easily be
described 10> or more variables. The sheer size of this high-dimensional
space makes it challenging to calculate full posteriors over maps; hence, the
Bayes filtering approach that worked well for localization is inapplicable to the
problem of learning maps, at least in its naive form discussed thus far.

Learning maps is a “chicken-and-egg” problem, for which reason is often
referred to as the simultaneous localization and mapping (SLAM) or
concurrent mapping and localization problem problem. When the robot moves
through its environment, it accumulates errors in odometry, making it
gradually less certain as to where it is. Methods exist for determining the
robot’s pose when a map is available, as we have seen in the previous
chapter. Likewise, constructing a map when the robot’s poses are known is
also relatively easy—a claim that will be substantiated by this chapter and
subsequent chapters. In the absence of both an initial map and exact pose
information, however, the robot has to do both; estimating the map and
localizing itself relative to this map.

Mapping Localization SLAM
Building a map for the Estimating the robot’s Building a map and
environment. location. localizing the robot
simultaneously.

Table 3.6: Differentiating between Mapping, Localization, and SLAM.
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Figure 3.28: Localization example, finding the robot’s pose from landmarks location
and sensor measurements. (Having a prior knowledge about the environment map)

Figure 3.29: Mapping example, finding landmarks location from robot’s pose and
sensor measurements. (Having a prior knowledge about the position of the robot’s

position and orientation)

Figure 3.30: SLAM example, finding landmarks locations and robot’s pose at the
same time using sensor measurements. (Robot’s pose and landmarks locations are

evaluated with uncertainty attached in a consecutive manner)

3.4.2 Implemented approach for Mapping and
Localization

Vehicle pose state estimation is an essential part of any mobile robotic application
as it enables the robust operation of other system components. Several sensors are
fused to estimate the pose and velocity of the ground vehicle. To take advantage of
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redundancy in state estimation, the contribution of each sensor input to the overall
estimated state has to be quantified in function of the sensor’s accuracy and
previous state knowledge. This is why we have chosen The Extended Kalman
Filter (EKF) localization for the vehicle as it is the state-of-the-art estimator for fast,
mildly nonlinear systems. For systems with white zero-mean additive gaussian noise
corrupting the sensors and the motion model, it is a good approximation of the
optimal solution. (i.e vehicle position and orientation in the map)

Localization is achieved by combining and fusing the readings from visual
odometry, wheel speed encoders and IMU sensors. All the sensors will be fed to
the Extended Kalman Filter (EKF) algorithm which estimates the current location of
the car. The wheel speed sensor will send the current velocity of the car, the IMU
sensor sends the lateral movement that is the steering angle of the car thus using
these value state estimation will be done and thus the data can be filtered and a
more accurate localization is processed.

For mapping, to create a map, we use k-means clustering to estimate the position
of each cone in the track. This is performed by evaluating cone locations from
repeated sampling and identifying a cone as being at the average location of a
cluster of positions (Understanding k-means clustering in machine learning. Towards
Data Science). Sampled cone locations can be determined to be part of a previously
identified cone if it is found to be too close to it. Similarly, if a cluster becomes too
large, it can be inferred that it is in fact a cluster containing position data for two
cones instead of one, so we can then split it into two clusters for more accurate cone
placement. In addition, if the cone position samples received are too sparse then the
uncertainty of its location is increased which is expressed visually by increasing the
size of the ellipse around the average values of the samples until the landmark is
removed from the map, in the other hand, if the samples lies at the same position the
uncertainty decreases and also the size of the ellipse, indicating how certain are we
about the position of the landmark. This will be discussed later in section 4.6

3.5 Literature Survey on Motion Control

In this chapter we will talk about a very important topic in our project which is motion
control. After the car knows the track layout and it can localize itself within the
environment after finishing the first lap and mapping the complete track using
Simultaneous localization and mapping algorithm. The main objective that we use
motion control for is to compute trajectory of future control inputs with states of plant
to optimize future behavior of plant output or in other words we can race the car
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around a known track with maximum speed and how to make this need without
oversteering in corners or slipping in acceleration.

3.5.1 Background on Motion control

In the last few years there has been a huge improvement and advancement in
algorithms and controller techniques used in motion control on autonomous vehicles
on track which we will talk about in this chapter. The most important controller
technique used in motion control is Model Predictive Contouring Control (MPCC) or
also known as Model Predictive Control (MPC). Using an MPC has proved to
generalize to all scenarios where it keeps pushing the vehicle to its limits safely
where the vehicle is about to reach its traction circle (Oversteering in Corners,
Slipping in acceleration, Braking and propelling timing).

In this chapter we will talk about engineering and non-engineering backgrounds that
we see important for complete understanding of part of our project which is motion
control, discuss any pivotal knowledge to our project and give short literature review
of the latest publications related to our project.

Controller Techniques

The motion control of an autonomous system, also known as execution
competency, as we said before can be defined as the ability to race the car around a
known track with maximum speed and how to make this need without oversteering in
corners or slipping in acceleration or in other words it is the process of converting
intentions into actions; its main purpose is to execute the planned intentions by
providing necessary inputs to the hardware level that will generate the desired
motions. Controllers map the interaction in the real world in terms of forces, and
energy, on the other hand the cognitive navigation and planning algorithms in an
autonomous system are usually concerned with the velocity and position of the
vehicle with respect to its environment. Measurements inside the control system play
an important role in controlling motion of the plant (Vehicle). Measurements inside
the control system can be used to determine how well the system is behaving, and
therefore the controller can react to reject disturbances and alter the dynamics of the
system to the desired state. Models of the system can be used to describe the
desired motion in greater detail, which is essential for satisfactory motion execution.

Let us talk in this part of the chapter about some controllers that might be used in
controlling motion of our vehicle, know the weakness and strength points of each
controller and which one is better in describing and dealing with our project.
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We will talk about Proportional-Integral-Derivative (PID) and Model predictive control
(MPC) and explain why we use Model predictive control instead of using
Proportional-Integral-Derivative.

3.5.2 Comparative Study on Motion Control

Classical Control

Before talking about how to use Proportional-Integral-Derivative in controlling motion
of vehicles we have to clarify some points about feedback control.

e Feedback control is the most common controller structure found in many
applications.

e Feedback control uses the measured system response and actively
compensates for any deviations from the desired behavior.

e Feedback control can reduce the negative effects of parameter changes,
modelling errors, as well as unwanted disturbances.

e Feedback control can also modify the transient behavior of a system, as well
as the effects of measurement noise.

Proportional-Integral-Derivative (PID) controller is the most common form of classical
feedback control. The Proportional-Integral-Derivative controller is the most widely
used controller in the process control industry. PID controllers are easy to
understand and the concept of PID control is relatively simple. It requires no system
model, and the control law is based on the error signal as:

where e is the error signal, Kp, Ki, and Kd are the proportional, integral, and
derivative gains of the controller, respectively.

However, we can’t use only feedback terms as the use of only feedback terms in a
controller may suffer from several limitations. The first significant limitation of a
feedback only controller is that it has delayed response to errors, as it only responds
to errors as they occur. In addition to purely feedback controllers also suffer from the
problem of coupled response, as the response to disturbances, modelling error, and
measurement noise are all computed by the same mechanism. It is more logical then
to manipulate the response to a reference independently from the response to
errors.

ut)= Kd e+ Kp e+ Ki[e(t)dt

where e is the error signal, Kp, Ki , and Kd are the proportional, integral, and
derivative gains of the controller, respectively.
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Figure 3.31: PID Controller

However, we can’t use only feedback terms as the use of only feedback terms in a
controller may suffer from several limitations. The first significant limitation of a
feedback only controller is that it has delayed response to errors, as it only responds
to errors as they occur. In addition to purely feedback controllers also suffer from the
problem of coupled response, as the response to disturbances, modelling error, and
measurement noise are all computed by the same mechanism. It is more logical then
to manipulate the response to a reference independently from the response to
errors.

Feedback Control
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Figure 3.32: Feedback Control

We can add another degree of freedom to the controller. This is done by including a
feedforward term to the controller. Feedback control and Feedforward control
complete each other as the addition of a feedforward term in the controller can help
to overcome the limitations of feedback control. The feedforward term is added to the
control signal without considering any measurement of the controlled system.
However, the feedforward term may involve the measurement of disturbances. A
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model reference is used for the feedforward controller as designing a feedforward
control requires a more complete understanding of the physical system.

Feedforward Control
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Figure 3.33: Feedforward Control

We can combine feedforward term and feedback term in the controller. The method
of combining a feedforward and a feedback term in the controller is also known as
two degree of freedom controller.
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Figure 3.34: Feedforward and Feedback Control

To sum up the roles of feedforward and feedback control:

Feedback:
e Removes Unpredictable Errors and Disturbances
e Does not remove Predictable Errors and Disturbances
e Does not remove Errors and Disturbances Before They Happen
e Cannot remove Errors and Disturbances Before They Happen
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e Does not require Model of a System
e Affects Stability of the System

On the other hand, Feedforward:

e Does not remove Unpredictable Errors and Disturbances
e Removes Predictable Errors and Disturbances

e Removes Errors and Disturbances Before They Happen

e Requires Model of a System

e Does not affect Stability of the System.

State space control, often referred to as modern control, is a technique that tries to
control the entire vector of the system as a unit by examining the states of the
system. a state-space representation is a mathematical model of a physical system
as a set of input, output and state variables related by first-order differential
equations or difference equations. State variables are variables whose values
evolve through time in a way that depends on the values they have at any given
time and also depends on the externally imposed values of input variables. Output
variables’ values depend on the values of the state variables.

A linear state space model can be written as:
X(t) = A@) xx(t) + B(t)  u(®) » y(£) = C(£) * x(t) + D) * u(?)

where x(1) is the system state vector, u(t) is the control input vector, and y(t) is the
output of the system.

The observations in an autonomous system are mostly nonlinear due to change of
dynamics of the car as a result of changes of velocity, and therefore a linear model
of the nonlinear system may have to be produced by first linearizing the state space
equation of the system.

X(t) = f(x(@),u(®) = () = h(x(?), u(?))

The feedback and feedforward (two degree of freedom controller) can also be
applied to nonlinear systems. Feedforward is used to generate a reference
trajectory, while the feedback is used to compensate for disturbances and errors.
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The nonlinear system can be linearized about a reference trajectory to produce
linearized error dynamics.

S X(f) = A(t) » dx(£) + B(t)  du(t) » dy(f) = C(t) x dx(£) + D(t) » du(t))

where A, B, C, and D are the appropriate Jacobians. If there exists a trajectory
generation process that can be designed to produce a reference input, such that
reference input generates a feasible trajectory which satisfies the nonlinear system
dynamics of the system, state space controllers can be configured to perform
feedback compensation for the linearized error dynamics.

Model Predictive Control

After talking about classical control especially Proportional-Integral-Derivative (PID),
now we will talk about another controller which we can say that it is one of the most
important controllers nowadays and the widely used controller in autonomous
vehicles.Autonomous systems need motion models for planning and prediction
purposes. Models can also be used in control execution. A control approach which
uses system modelling to optimize over a forward time horizon is commonly referred
to in the literature as Model Predictive Control (MPC).

Model predictive control has seen tremendous and massive success in the industrial
process control applications, due mainly to its simple concept and its ability to handle
complicated process models with input constraints and nonlinearities and because it
has multi inputs multi outputs (MIMO) and easy to be understood.

Model predictive control has been developed to integrate the performance of optimal
control and the robustness of robust control. Typically the prediction is performed for
a short time horizon called the prediction horizon, where the goal of the model
predictive controller is to compute the optimal solution over this prediction horizon.
The model, and thus the controller can be changed online to adapt to different
conditions.The basic structure of MPC is shown in the figure below.
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Figure 3.35:The basic structure of MPC

using an MPC has proved to generalize to all scenarios where it keeps pushing the
vehicle to its limits safely where the vehicle is about to reach its traction circle
(Oversteering in corners, Slipping in acceleration, Braking and propelling timing).

Model predictive control has several other attractive features, such as the simplicity
of designing a multi variable feedback controller. It also allows for easy specification
of system inputs, states, and outputs that must be enforced by the controller. MPC
furthermore permits specification of an objective function to optimize the control
effort. MPC can also address time delay, rejecting measured and unmeasured
disturbances and taking advantage of previously stored information of expected
future information. This feature can be very useful for repeated tasks, such as
following a fixed path. MPC embodies both optimization and feedback adjustment,
thus mimicking natural processes.Model predictive control has also been widely
adapted to automotive applications.

The operations of the overall vehicle system must be optimal throughout the
operating range. However, applying a model predictive controller in an automotive
system meets different challenges than those faced in the process control industry.

In the process control industry, the sampling time is relatively longer, and the
computing resources available are huge. The sampling period for processes in an
automobile is a few milliseconds, and the amount of computing resources available
is limited due to space constraints.Pushing the adoption of MPC into greater spread
in the automotive industry is due to advances in processor speed and memory, as
well as development of new algorithms.
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Figure 3.36:MPC Main Components

MPC has already been applied in several automotive control applications, including
traction control, braking and steering, lane.

x(k + 1|0 = flxtk | £), u(k | 1)) y(k |ty = h(xe(k | ), u(k | £))

These two equations are the discrete time model of the system dynamics with
sampling period Ts where x is the system’s state, u is the control input, and y is the
system output. tis the discrete time index. The notation for a vector v(h|t) denotes
the value for v predicted at h time steps as referenced from time t, based on
information up to t. The optimizer is the control input sequence U(t) = (u(Olt), - - -,
u(N — 1]t)), where N is the prediction horizon. .

minimize U(t)  FxWV[)) + [N=1 X k= 0] L(x(kl|), y(klr), u(kl|r))

The cost function represents the performance objective that consists of the stage
cost L and the terminal cost F. The constraints on the states and outputs are
enforced along the horizons Nc and Ncu, respectively. The control horizon Nu is
given as the number of optimized steps before the terminal control law is applied. At
any control cycle t, the model predictive control strategy for the general problem
operates as follows: system outputs are measured and the state x(t) is estimated.
This state estimation is acquired to initialize the above equation . Once the MPC
optimization problem is solved and the optimal input sequence Ux (t) is obtained, the
first element of the optimal input sequence is then applied to the system. At the
following cycle, the process is repeated using the newly acquired state estimate,
thus applying the feedback.

65 | Page



Vehicle Model

It is challenging to drive a vehicle at its operational limits due to the highly nonlinear
behavior in this operation range. So we have to model the dynamics of our vehicle
as a dynamic bicycle model with nonlinear tire force laws where the car is modeled
as one rigid body, and the symmetry of the car is used to reduce it to a bicycle. Only
the in-plane motions are considered, i.e. the pitch and roll dynamics as well as load
changes are neglected.

The advantages of using a bicycle model to model our car is that the model is able to
match the performance of the car even in racing conditions, while at the same time
being simple enough to allow the MPC problem to be solved in real-time.

Our vehicle model is derived under the following assumptions:

the vehicle drives on a flat surface

load transfer can be neglected

combined slip can be neglected

the longitudinal drive-train forces (from motor) act on the center of gravity

The Matrix below shows the equation of motion

X Uy COS @ — Uy Sin

Y Uy SN + vy, COS @

@ _ . "

D, —(FR,2 — Fpysind + muvyr)

By IE{FR-U | FF_IH cos d — mu,r)
_f*d _E(FF.T;IFCOE‘?() Fp_yfn ¢ T’l“".,-']_

where the car has a mass m and an inertia Iz, IR and IF represent the distance from
the center of gravity to the rear and the front wheel respectively, FR,y and FF,y are
the lateral tire forces of the rear/front wheel, Fx is the combined force produced by
the drive-train and 1TV the additional moment produced by the torque vectoring
system.

X,Y, ¢, vx, vy, r represent the state of the model where (X, Y) represent the position
¢ represent heading angle, (vx, vy) represent the longitudinal and lateral velocities
and r represent the Yaw rate.
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While [0, D] represent the control inputs where & represent the steering angle and
D represent driving command which is like pedals of a driver where d D =1
corresponds to full throttle and D = -1 to full braking.

This model is the dynamic model where the rate of change of states is the function of
inputs and states.

This model is used in high velocities and can not be used in slow velocities. The
model is ill defined for slow velocities due to slip angles.

Hff‘yn

Figure 3.37: Tire Model

In the above figure the green colour represents the position vectors, while red colors
represent forces where Fr,y and Ff,y represent the interaction between tires and
track surface where r is the rear wheel and f is the front wheel and the third force
which is Fx which represent the longitudinal force acting on the car which depends
on input D (Driver command ). In addition to the last color which is blue which
represents the velocities.

Equations of forces can be shown below:
Fr,y = Dr sin (Crarctan (Br % ar))
Ff,y = Df sin (Cf arctan (Bf % of))
where

oR = arctan (vy —Ir xr)/vx) , aF = arctan ((vy + If xr)/ vx) =&
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Where B,C,D are coefficients of the mode and A are rear and front angles.

In addition to third force which is longitudinal force which is equal

Fx =Cm«D—Cr0—Cr2x Vx2.
Where Cm + D is motor model Cr0 is rolling resistance 2 is drag.

As we said that the problem of the dynamical bicycle model is that the model is
ill-defined for slow velocities due to the slip angles. However, slow velocities are
important for race start and in sharp corners. For slow driving normally kinematic
models are used which do not depend on slip angles. However, kinematic models
are not suited for fast driving as they neglect the interaction of the tires and the
ground. So, to get the best of both models within one formulation we propose a novel
vehicle model combining a dynamic and a kinematic vehicle model.

we first formulate the kinematic model using the state of the dynamic model

X [ Uz COS 0 — Uy SIN Q]

)% Vg SIN O + Uy COS P

f{ﬁ — i 3

Uy _ m

?}y ((?’Ux T 5?):6) fHEfEF
7 | (0v, +5?}I)IH_LF |

cos (6)*2 = 1 and tan (&) = 0. Is due to the assumption that & is very small. The
resulting model is the kinematic model or in other words the model that does not
depend on forces. Where the rate of change of states does not only depend on
states and inputs of the system but also on the rate of change of input.

Both kinematic and dynamic models are formulated using the same states which
allows us to combine them. The resulting vehicle model is generated by linearly
blended the two models.Below a certain velocity Vmin we use purely the kinematic
model while for velocities above certain velocities Vmax we use purely the dynamic
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model, and we combined the models and use the combined model in range of
velocity between Vmax and Vmin.

3.5.3 Implemented Approach on motion control

From the above two controller techniques that we present. We can say that both
Proportional-Integral-Derivative (PID) controller and Model Predictive Control (MPC)
controller can be used to control motion of our vehicle. Each controller has its pros
and cons or in another words there is a tradeoff between them.

In our project we use Model Predictive Control (MPC) to control motion of our
autonomous vehicle because many teams all over the world use Model Predictive
Control (MPC) instead of adaptive PID in there vehicles such as: Akademischer
Motorsportverein Zirich (AMZ) which is one of the biggest formula students racing
teams in the world, and many other teams.

Proportional-Integral-Derivative (PID) control has such advantages as a simple
structure, good control effect and robust and easy implementation. Unfortunately,
this method does not deal with parameter optimization and automatically adapts to
the environment caused by the complexity of vehicle dynamics, uncertainty of the
external environments and the non-holonomic constraint of the vehicle. Butin
solving the problem of trajectory tracking of unmanned vehicles, also the reference
model of adaptive PID control based on the model reference is hard to ascertain
because the motion model of the vehicle is influenced greatly by environments. The
design of fuzzy adaptive PID control requires much priori knowledge. The vehicle
finds it hard to obtain comprehensive priori knowledge when the vehicle travels in
unknown environments. Adaptive PID control based on a neural network generally
uses supervised learning to optimize the parameters, so it is also limited by some
application conditions, for instance, the teacher signal of supervised learning is hard
to obtain exactly. Although the design of adaptive PID control based on evolutionary
algorithms requires less priori knowledge, it has the disadvantage of long computing
times, i.e., not real time on line optimization.

That is why we use Model Predictive Control (MPC) to control the motion of our
vehicle as The two main advantages of the proposed MPC is the direct consideration
of the vehicle limits when computing the command and that the algorithm does not
need any pre-determined logic, only the track layout, and the vehicle model.

In addition to it is flexible, open and intuitive formulation in time domain., solve
problems with linear and non linear systems or variable and multivariable systems
without change the controller formulation this is shown in the figure below which
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shows us the a multivariable system with multi inputs and multi outputs (MIMO) , and
it is the only controller that deals with constraints. This approach will be discussed in
details in chapter 4.
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Figure 3.38: Model Predictive Controller

In the next chapter we will talk in some details about model predictive control (MPC)
, how it works, its parameters, why it is important in autonomous vehicles and how it
is used to optimize output to be similar to a reference path with maximum speed and
without slipping or oversteering in corners.

3.6 Literature Survey on the Deployment of the
modules and communication between them

In order to deploy and integrate all of our modules on a real car there must be a
framework that will run all of the implemented modules and ensure that the
communication between them is fast and accurate, so in this section we will discuss
different types of frameworks that we faced and by the end of this section we will
choose our framework which ensures the fast communication between the high
performance driverless race car modules.

3.6.1 Background Information
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Robot Operating System (ROS): ROS [3] is a flexible framework for writing robot
software. It is a collection of tools, libraries, and conventions that aim to simplify the
task of creating complex and robust robot behavior across a wide variety of robotic
platforms.

1) Message Passing
A communication system is often one of the first needs to arise when implementing a
new robot application. ROS's built-in and well-tested messaging system saves you
time by managing the details of communication between distributed nodes via the
anonymous publish/subscribe mechanism. Another benefit of using a message
passing system is that it forces you to implement clear interfaces between the nodes
in your system, thereby improving encapsulation and promoting code reuse. The
structure of these message interfaces is defined in the message IDL (Interface
Description Language).

2) Recording and Playback of Messages
Because the publish/subscribe system is anonymous and asynchronous, the data
can be easily captured and replayed without any changes to code. Say you have
Task A that reads data from a sensor, and you are developing Task B that processes
the data produced by Task A. ROS makes it easy to capture the data published by
Task A to a file, and then republish that data from the file at a later time. The
message-passing abstraction allows Task B to be agnostic with respect to the source
of the data, which could be Task A or the log file. This is a powerful design pattern
that can significantly reduce your development effort and promote flexibility and
modularity in your system.

3) Standard Robot Messages
The asynchronous nature of publish/subscribe messaging works for many
communication needs in robotics, but sometimes you want synchronous
request/response interactions between processes. The ROS middleware provides
this capability using services. Like topics, the data being sent between processes in
a service call are defined with the same simple message IDL.

4) Robot Geometry Library
A common challenge in many robotics projects is keeping track of where different
parts of the robot are with respect to each other. For example, if you want to combine
data from a camera with data from a laser, you need to know where each sensor is,
in some common frame of reference. This issue is especially important for humanoid
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robots with many moving parts. We address this problem in ROS with the tf
(transform) library, which will keep track of where everything is in your robot system.

Designed with efficiency in mind, the tf library has been used to manage coordinate
transform data for robots with more than one hundred degrees of freedom and
update rates of hundreds of Hertz. The tf library allows you to define both static
transforms, such as a camera that is fixed to a mobile base, and dynamic
transforms, such as a joint in a robot arm. You can transform sensor data between
any pair of coordinate frames in the system. The tf library handles the fact that the
producers and consumers of this information may be distributed across the network,
and the fact that the information is updated at varying rates.

5) Diagnostics
ROS provides a standard way to produce, collect, and aggregate diagnostics about
your robot so that, at a glance, you can quickly see the state of your robot and
determine how to address issues as they arise.

6) Tools
One of the strongest features of ROS is the powerful development toolset. These
tools support introspecting, debugging, plotting, and visualizing the state of the
system being developed. The underlying publish/subscribe mechanism allows you to
spontaneously introspect the data flowing through the system, making it easy to
comprehend and debug issues as they occur. The ROS tools take advantage of this
introspection capability through an extensive collection of graphical and command
line utilities that simplify development and debugging.

a- Command-Line Tools:

Do you spend all of your time remotely logged into a robot? ROS can be used 100%
without a GUI. All core functionality and introspection tools are accessible via one of
our more than 45 command line tools. There are commands for launching groups of
nodes; introspecting topics, services, and actions; recording and playing back data;
and a host of other situations. If you prefer to use graphical tools, rviz and rqt provide
similar (and extended) functionality.

b- rviz

Perhaps the most well-known tool in ROS, rviz provides general purpose,
three-dimensional visualization of many sensor data types and any URDF-described
robot.
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rviz can visualize many of the common message types provided in ROS, such as
laser scans, three-dimensional point clouds, and camera images. It also uses
information from the tf library to show all of the sensor data in a common coordinate
frame of your choice, together with a three-dimensional rendering of your robot.
Visualizing all of your data in the same application not only looks impressive, but
also allows you to quickly see what your robot sees, and identify problems such as
sensor misalignments or robot model inaccuracies.

c- rqt

ROS provides rqt, a Qt-based framework for developing graphical interfaces for your
robot. You can create custom interfaces by composing and configuring the extensive
library of built-in rgt plugins into tabbed, split-screen, and other layouts. You can also
introduce new interface components by writing your own rqt plugins .

The rqt_graph plugin provides introspection and visualization of a live ROS system,
showing nodes and the connections between them, and allowing you to easily debug
and understand your running system and how it is structured.

With the rgt_plot plugin, you can monitor encoders, voltages, or anything that can be
represented as a number that varies over time. The rqt_plot plugin allows you to
choose the plotting backend (e.g., matplotlib, Qwt, pyqtgraph) that best fits your
needs.

For monitoring and using topics, you have the rqt_topic and rqt_publisher plugins.
The former lets you monitor and introspect any number of topics being published
within the system. The latter allows you to publish your own messages to any topic,
facilitating ad hoc experimentation with your system.

For data logging and playback, ROS uses the bag format. Bag files can be created
and accessed graphically via the rqt_bag plugin. This plugin can record data to bags,
playback selected topics from a bag, and visualize the contents of a bag, including
display of images and plotting of numerical values over time.

3.6.2 Implemented approach

By Implementing our pipeline from perception to mapping and localization of the
vehicle it is found that most of pipeline modules needs to interact and send data to
each other starting from camera sensing ending with producing the torque request
and steering angle, so the pipeline’s modules are run as nodes using Robot
Operating System or ROS as the framework that eases handling of communication
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and data messages across multiple systems as well as different nodes. Different
modules communicate via messages, they receive data and output processed
information. Another important aspect is that ROS is open-source and provides tools
for visualization, monitoring and simulation, making it easy to integrate, test,
diagnose and develop the complete software system. More information about the
deployment of the pipeline on the ROS framework is described in chapter 4.

Chapter 4: System Design and

Architecture
4.1. Overview and Assumptions

Autonomous racing presents a unique opportunity to test commonly-applied, safety-critical
perception, and autonomy algorithms in extreme situations at the limit of vehicle handling
and provides the opportunity to test safety-critical perception pipelines at their limit. Accurate
and low-latency visual perception is applicable to many domains, from autonomous driving
to augmented reality. We present challenges that require us to optimize known solutions to
develop designs optimized for Formula Driverless. This section describes the practical
challenges and solutions to applying state-of-the-art computer vision algorithms to build a
low latency, high-accuracy perception system for a high performance formula student racing
vehicle. The key components of the car modules include YOLOv3-based object detection,
pose estimation and time synchronization on its dual stereo vision/monovision camera
setup. We highlight modifications required to adapt perception CNNs to racing domains,
improvements to loss functions used for pose estimation, and methodologies for
sub-microsecond camera synchronization among other improvements. And describes an
overview on the entire autonomous racing platform, covering all required software modules
reaching from environment perception to mapping and control. Starting with the perception
pipeline, the developed system works using a mono camera and stereo camera and the
motion estimation subsystem fuses the measurements from different sensors using
Extended Kalman Filter (EKF) to estimate the odometry of the vehicle and landmarks to use
it in the localization and mapping algorithm.




Figure 4.1: The restricted environment (Track and cones)

For the perception pipeline two-camera architecture were deployed with a stereo camera
used for long-range detections and a monocular camera for short-range detections.

As shown in Figure 4.2 the camera system will be mounted within the roll hoop of the
vehicle, which satisfies the constraints from the competition rules and allows the cameras to
be as high as possible to limit the effects of occlusions between landmarks.

The rationale for using the monocular camera for short-range rather than long-range
detections is that for a reasonable mounting height, a landmark’s 3D location on a relatively
flat surface is a much stronger function of pixel space location for short-range objects than
long-range objects. This relieves some of the challenges for estimating landmark pose from
a monocular camera. On the other hand, however, estimating 3D pose of an object using a
single measurement, i.e. a single image from a monocular camera is an ill-posed problem.
This is primarily due to ambiguity in the scale of the scene arising from limited information of
the surroundings. This ill-posed problem of extracting pose information can be solved if a
priori information about the 3D object in the scene is available. The 3D priors about an
object, in addition to 2D information obtained from an image can be together leveraged to
extract 3D pose of this object captured in any arbitrary image of the scene. On a real-time
system, such as an autonomous race-car, it becomes even more crucial to detect and
estimate multiple object positions extremely efficiently, with as little latency and data
overhead (in terms of transport and processing) as possible.

.. 19.6m
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Figure 4.2: Monocular and Stereo camera ranges

In the two vision pipelines (Mono and Stereo) the landmarks (Track Cones) are detected
using 2D customized, trained, and optimized detection algorithm which is YOLOV3 the
detection algorithm not only fastly detects the 2D position of the cones but also used to
detect the cones colors for mapping purposes, then the detected cones enter to the
implemented keypoints extraction Residual neural network to extract the seven points for
each cone to use it in the PNP algorithm which is used to estimate the 3D position for each
cone relatively to the car position. We believe that it is possible to estimate the 3D position
from a single frame mono camera but in our case we assume that this perception pipeline
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works in a restricted environment in our case the restricted environment is a track with a
prior knowledge of its cones 3D models.

For localization and mapping algorithms, we utilize a K-means-based Global Mapping
algorithm to construct the global map of the track using the 3D Cones’ local positions which
are estimated in the perception pipeline and fuse sensors’ readings to build a relation
between the 3D local positions of cones with the odometry of the car to construct the 3D
global map of the track.
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Figure 4.3 : The track layout of a trackdrive discipline (FSG, 2018). Blue and yellow cones
mark the track boundaries

Lastly, we present a control framework that directly minimizes lap time while obeying the
vehicle’s traction limits and track boundary constraints. Figure 4.3 shows the track layout of
a trackdrive discipline. Blue and yellow cones mark the track boundaries. It is important to
note that the track is completely unknown before starting the race which increases the
challenge considerably. In addition, all computations and sensing are required to happen
on-board.

This pipeline is integrated over a very powerful operating system which is the robot
operating system (ROS) and each stage in the pipeline is represented with a node in ROS to
easily communicate with each other and transfer the data in an accurate and fast way.

4.2. System Architecture

In this section, the architecture of the autonomous software system is discussed that
is used to drive the vehicle in real time. Referring to the block diagram figure below.

Sensors
The input sensors (blue boxes) are attached to a well known location in the vehicle in
order to be relatively translated during operation.

Monocular Camera
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A sensor selected under the design constraints in order to provide a stream of
2D image frames which are fed to the monocular pipeline to extract the near
objects in scene (cones) 3D positions with respect to the vehicle.

Stereo Camera

A sensor selected under the design constraints in order to provide two
streams of 2D image frames from two cameras which are placed with very
specific distance between each other which are fed to the stereo camera
pipeline to generate a depth map and extract the far objects in scene (cones)
3D positions with respect to the vehicle.

Inertial Measurement Unit (IMU)

A sensor selected under the design constraints in order to provide
acceleration in x, y, z and orientation about them in order to be used by the
vehicle localization extended kalman filter algorithm (EKF) to evaluate the
position of the vehicle at each time frame.

Wheels Encoders

A sensor selected under the design constraints in order to provide the velocity
of the vehicle’s wheels which is used to estimate the velocity vector of the
vehicle (i.e. Longitudinal and Lateral velocities) in order to be used by the
vehicle localization extended kalman filter algorithm (EKF) to evaluate the
position of the vehicle at each time frame.

Pipelines
The diagram also shows the pipelines used in the vehicle operating system (dashed
lines) where inside each pipeline there exist the modules that compose the pipeline
(red boxes).

Monocular Pipeline

The pipeline responsible for getting the 3D position of near cones from a
single frame, it consists of three modules that are responsible for extracting
the 3D positions of the cones from the scene information provided by the
camera, in addition it uses the 3D model of the cone and the intrinsic
parameters of the camera.

1) 2D Space Localization Cone Detection used to find the cones in the
image frame by a bounding box and recognize their colors.

2) Keypoints Extraction DNN a developed DNN used to estimate
specific set of 7 keypoints for each cone coming in the shape of image
batches

3) 3D Space Localization PNP algorithm uses the 7 points detected by
the DNN for each batch and the corresponding points in the 3D model
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provided to the algorithm to extract the 6 DOF of the cone with respect
to the camera in the vehicle.

Stereo Pipeline

The pipeline responsible for acquiring 3D position of far cones from 2 image
frames specifically distant from each other, it is divided into two processing
modules according to the input frame as the stereo camera inputs two frames
left and right. The pipeline includes 4 modules.

1)

2)

3)

4)

2D Space Localization Cone Detection used to find the cones in the
left image frame by a bounding box and recognize their colors.
Feature Extraction used to extract the features of the left frame image
batches that represent cones in order to be shifted to match that of the
right frame.

Bounding Box Propagation uses the features extracted from the left
frame boxes to extract the location of the corresponding bounding box
in the right frame and then propagate the right frame bounding boxes
features.

SIFT Feature Matching and Triangulation uses the received left and
right features to match and triangulate between them using the known
distance between the cameras to evaluate the depth map of the
received cones which are used to evaluate the 3D position of the
cones.

Localization and Mapping Pipeline is responsible for fusing the input stream
of cones 3D position from the monocular and stereo pipeline while receiving
vehicle odometry inputs to produce a 3D World Map Construction that
describes the track and the cones position. The pipeline consists of 4
modules.

1)

2)

3)

4)

K-means Cone Mapping Fusion used to fuse the two cone estimates
from monocular and stereo pipelines by using sampled data in a
k-means clustering scheme.

Visual Tracking Pose Estimation continuous mapping between
frames to give estimates about the position of the vehicle.

EKF Robot Localization fuses the IMU, wheels encoders, and the
position estimation from the visual tracking module to produce the final
position of the vehicle in the global map.

Global Mapping uses the final fused reactive cones mapping from the
k-means Mapping and the final position from the EKF Robot
Localization to produce 3D map of the track and cones.
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Path Planning and Motion Control Pipeline is responsible for processing
the received track map and generates the trajectory that the vehicle should
follow and uses a model predictive control algorithm (MPC) to generate the
actuation commands which are sent to the vehicle control unit.

Actuators
Steering Angle is the instant angle the steering wheel should be for the
vehicle to follow the generated trajectory.
Longitudinal Velocity is the instant speed command sent to the motor
controller to run the vehicle on the generated trajectory as fast as possible.

4.2.1. Block Diagram
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Figure4.4: Overall system block diagram

4.3 2D Space Localization / Cone Position and Color
Detection

4.3.1. Functional Description

The object detector should be efficient in that it is fast, requires lesser memory and is
still decently accurate in its detections to cope with our high performance perception
pipeline of the racing driverless vehicle. We choose and customize YOLOv3 for the
purpose of detecting different colored cones. Thresholds for it are chosen such that
false positives, incorrect detections and misclassification are avoided at any cost;
even if that translates to not being able to detect all cones in a given image. We
customized YOLOV3 by reducing the number of classes that it detects, as “Our
driverless high performance formula race car” does not really care about detecting
cats, dogs, airplanes or bikes to name a few but needs to distinguish and detect
‘vellow’, ‘blue’ and ‘orange’ cones that provide information about the track. We
reduce the classes of the pre-trained YOLOV3 to 3 classes which are ‘yellow’, ‘blue’
and ‘orange’ cones. More than 50k formula student track cones were collected and
manually labelled by drawing boundary boxes around the cones.

Figure 4.5: Exemplary images from varying lighting and weather conditions

We then developed a fast and accurate labeling tool which labels the color of the
boundary boxes in each frame using the keyboard and produces the CSV file which
contains the bounding box and the color of each cone in each frame to use it in the
training of the object detection module and producing the CFG files and the CNN
weights of the model. Figure showing robust performance from the object detection
to detect ‘yellow’, ‘blue’ and ‘orange’ cones. It is imperative to have a robust cone

80 | Page



detection as it is the first module in the pipeline and directly affects performance of
the modules that follow because they depend on it, eventually the final output as
well.

These images in diverse weather and lighting conditions which are in Figure 4.5
show the robustness of this particular object detection module, customized to detect
colored cones.

4.3.2. Modular Decomposition

Diving into this module and to divide the module into smaller fine ones the work in
this module is divided according to the next five submodules:

1) Dataset Collection

To ensure our concept of a fast and accurate perception pipeline of our Driverless
racing vehicle, we collected a dataset for the perception neural network that can
generalize across different domains (weather, lighting, scenery) to produce more
robust detections and in turn localize landmarks with higher accuracy. To ensure this
with our networks, training data was collected on multiple image sensors and lenses
from various perspectives in different settings.

The dataset for the object detection module is more than 50k formula student track
cones. The data for training and testing was collected by contributing 600 images to
Formula Student Objects in Context (FSOCOQO) with the concept of Sharing is caring.
This dataset lives from the contribution of all formula student teams who want to
access a dataset of more than 50k cones of formula student track cones.The data is
divided as a sequence of on board track drive video frames which collected in the
whole formula student competitions and some of the data which is shared by the
teams like us was in a park or a college it is not matter where the images were
captured but it matters that the cones of the formula student competition are the
same in all images in the dataset. Here are samples from the dataset of the track
cones in Figure 4.6
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Figure 4.6 Samples from the object detection dataset of the track cones

2- Self Developed Labeling Tool

Bounding Box Labeling Tool:

Eight thousand images of on-track footage containing about 50 thousand cones
were manually labeled using a self-developed labeling tool that exploits similar
structure between consecutive frames in a video sequence. Objects of interest are
easily labeled by drawing rectangle through click-drag click using a mouse. To speed
up the tedious labeling procedure, the tool tracks annotated rectangles over frames
and propagates them to prevent re-labeling for future frames, treating propagated
bounding boxes as annotations. After some frames, the trackers may lose their
objects due to fast movement or change in view points. At such points, one can
refresh and re-label again. Since the annotations for cones are long and thin
rectangular bounding boxes, we exploit such prior information by re-calculating the
anchor boxes used by YOLOV3. This is done by performing k-means clustering on
the aspect-ratio of the rectangle annotations in the dataset and improves the object
detector’s performance.

2) Cone Color Labeling Tool:

An annotation tool was developed to label the cones into one of three classes;
yellow, blue, or orange. The tool begins by reading the boundary box coordinates for
each cone in each image, shows the boundary box around the corresponding cone,
and by clicking one of three buttons (A for blue, D for yello, S for orange) a cone can
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be classified into one of the three classes. The boundary boxes and the classified
classes are then saved together in the correct format to be used in training the

YOLOV3 network.

3) YoloV3 customization and optimization

For accurate 2D localization, the synchronized images are batched together and
passed through a full YOLOv3 [4] neural network using the TensorRT inference

framework. Weights were
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Figure 4.7 CV-C Data Loader Pre-processing Stages

A drawback of this process is that the distribution of landmark bounding box (BB)
sizes (in pixels) in the training set no longer was representative of what would be
seen by the network in the wild. To mitigate this, each set of training images from a
specific sensor/lens/perspective combination was uniformly rescaled such that their
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landmark size distributions matched that of the camera system on the vehicle. Each
training image was then padded if too small or split up into multiple images if too
large. This process is illustrated in Figure 4.7.

Since YOLOv3 makes width and height predictions of detections by resizing
predefined bounding boxes, k-means clustering was done on the post-scaled training
data in height and width space to give the network strong priors. An additional
modification made during the training process was tuning the hyperparameters in
front of each of the terms in the loss function.

Each bounding box prediction consisted of estimates at x, y, width, height, class
(foreground or background), and confidence, which are penalized differently during
training as follows:

Liotal = YelsLicls—ce + 7B LBG-bee + YTFGLFG —bee
+Yxy(Lz—mae + Ly—mse) + Ywh(Lw—mse + Lh=mase)

A distributed Bayesian hyperparameter search for the five coefficients resulted in
significant gains in precision when weighting the foreground loss two-orders of
magnitude greater than the background loss.

The converged upon values from the optimization process are yBG=25.41, yF
G=0.09, yXY =1.92 and yWH=1.33.

Further gains were obtained by switching from the SGD optimizer in the initial
implementation to Adam [5]. The compounding benefits for each of these changes
are shown in Figure 4.8
as precision-recall curves. The resulting final mAP was 85.1% with 87.2% recall and
86.8% precision.
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Figure 4.8: The compounding benefits for the changes in YOLOv3
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4.3.3. Design Constraints

Similar to most perception systems for autonomous racing, the goal of our
perception system is to accurately localize environment landmarks (traffic cones)
that demarcate the racetrack. The track is delineated by blue cones on the left,
yellow cones on the right, and orange cones at the start and finish. Downstream
mapping and planning systems use these landmarks to create and update the track
map with a sample illustrated in Figure 4.9. Our perception system adheres to
regulations set by Formula Student Driverless.
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Figure 4.9: Sample of landmarks which are used to create and update the track map

Our perception system was designed to meet four high-level requirements:

1) Mapping Accuracy: accuracy of landmark localization.

2) Latency: total time between a landmark coming into view of the perception system
to the time at which it is localized.

3) Look-ahead Distance: longest straight-line distance in which accuracy is
maintained.

4) Horizontal Field-of-View (FOV): arc of visibility in front of the car, related to
visibility through a hairpin.

To guide design choices, we derived quantitative targets for each requirement.
Mapping accuracy was driven by the error tolerances of the mapping and motion
control algorithms that will be illustrated in the next modules. This dictated maximum
tolerable localization error of <0.5m at the maximum look-ahead distance.
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For latency the object detector YOLOV3 was optimized to meet our requirement of
designing a high performance perception pipeline of a racing vehicle and the
communication between the object detection modules itself and with the other
systems constructed over ROS which minimize the communication losses and
improves the speed of the processes communication time.

Horizontal FOV is lower-bounded by unmapped hairpin turns Figure 4.9. In such
turns, the system must perceive landmarks on the inside apex of a hairpin turn from
the start of the turn in order to plan an optimal trajectory.

Given legal track dimensions, this results in a minimum FOV of 101- .

Look-ahead requirements depend on full-stack-latency, car dynamics, and camera
properties. In particular, minimum landmark size, the number of pixels required to
detect a landmark, plays a crucial role in determining look-ahead. To understand this
more clearly, the camera and kinematics models generate a characterization of the
relationship between the minimal landmark size, camera focal length, and the
physical size of pixels on the camera sensor.

We assume a conservative minimum
detectable landmark size of 20 pixels
(consistent with state-of-art work [4,6] ); this is
represented by the dashed line in

Figure 4.10. The optimal solution is a system
that:

(1) stays close but above this line,

(2) maximizes pixel size (i.e., maximizing light
capture), and

(3) minimizes focal length (i.e., maximizing Focd Lot toen| | |
FOV). Figure 4.10 illustrates the trade-off P IR P 8 ekt PR e
between these properties. Based on these
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Figure 4.10 Cone size vs focal length

models and fixed values of prior constraints, we derived a look-ahead requirement of
19.6m. As there is an inherent trade-off between look-ahead distance and FOV in
camera-based perception systems, the two cases outlined in Figure 4.9 have
mutually exclusive requirements: wide FOV while maintaining long look-ahead.

To meet this design requirement for the redundant perception pipeline with stereo
and monovision the chosen on board hardware of our autonomous kit is specified in
the Appendix.
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4.4. Key Points extraction Residual Network
And 3D localization of cones -PnP algorithm

4.4.1. Functional Description

Till now we have the cone batches in each frame Figure 4.12 so in this module we
will take another step to solve the problem of estimating the 3D position of an object
(the track cone) using a single measurement, i.e. a single image/frame of a
monocular camera. Estimating the 3D pose of an object using a single measurement
is an ill-posed problem. This is primarily due to ambiguity in the scale of the scene
arising from limited information of the surroundings. This ill-posed problem of
extracting pose information can be solved if a priori information about the 3D object
in the scene is available. The 3D priors about an object, in addition to 2D information
obtained from an image can be together leveraged to extract 3D pose of this object
captured in any arbitrary image of the scene.The priori information about the 3D
object in our case is the 3D model of the track cone as shown in Figure 4.11 we
have a prior knowledge of the formula student standard track cones’ 3D model and
we defined a 7 key points on the 3D model in a defined locations as in

Figure 4.11 and for the detected cone batches from the previous module

Figure 4.11: Cone’s 3D Model with the 7 key points

We detect the 7 key points for each cone batch at the same location of the points
which are in the 3D mode as in Figure 4.12 | of the cone, so we developed an
accurate and fast Deep Neural Network (DNN) to detect the seven points for each
cone batch. The 2D information which we talked about is obtained from the output of
the keypoint extraction DNN, and it will be used in the next module in the pipeline
with the prior knowledge of the 3D model of the track cone to estimate the 3D
position of each cone batch. The “keypoint regression” scheme that exploits prior
information about the object’s shape and size to regress and find specific feature
points on the image. Further, in addition to the “keypoint regression” which provides
2D information, a priori 3D information about the object is used to match 2D-3D
correspondences which will be explained in the next module. To extract depth
estimates from a single camera a residual neural network is implemented and
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trained with 3.2k images based off of work by [7]is run to detect seven key points on
each batch detected with the object detection module for use in a
Perspective-n-Point (PnP) algorithm which is described in the next module.
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Figure 4.12: Cone batches (left) and Cone batches with key points detected (right)

4.4.2. Modular Decomposition

As explained in the previous section, with the help of an object detector, one can find
multiple objects of interest in a single image. The question here is to go from objects
on the image to their positions in 3D. This in itself is not solvable from a single view
of the scene, because of ambiguities due to scale. However, since there is prior
information about the 3D shape, size and geometry of the cone, one has hope to
recover 3D pose from a single measurement as will be discussed in the next module,
but now we interested in extracting the key points from the landmarks (cones) which
were detected in the object detection module so, in the next submodules we will
describe the process of extracting the key points and the detailed architecture of the
developed DNN and the modifications which we made to it.

1) Design and architecture
In the context of classical computer vision, there are mainly three kinds of features.
The least informative ones are the “flat features” which in the vicinity are not
distinguishable at all, for instance the patch on a plain, flat wall is one such example.
“‘Edges” are a little more interesting as they have a gradient in a particular direction
(crossing-over the edge). However, if one moves in a direction perpendicular to this
gradient one is unable to distinguish; this is also known as the aperture problem. By
far, the most interesting features are the “corners”. They have change in gradient in
two major directions and are quite distinguishable from areas in the vicinity, making
them unique and fascinating. With this in mind, we design a convolutional neural
network (CNN) inspired by finding “corner” like points given a patch of the image.
The primary difference between this scheme and any other feature extraction
process is that this is very specific as compared to commonly used techniques. This
does not mean that it cannot be used for other objects. This “keypoint Extraction”
scheme works for a specific object but can be easily extended to different types of
objects. In our case, we want to find positions of very specific points on the image
that correspond to 3D counterparts whose locations can be measured in 3D from an
arbitrary world frame Fw.
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Figure4.13 :3D model of the cone and a representative sub-image patch with the
image of the cone. The red markers correspond to the 7 specific “key points” the
“keypoint network” regresses to given an image patch with a cone in it.

As depicted in Figure 4.13 , the key points on the 3D and its corresponding 2D
image are very specific. There are two primary reasons to have these key points at
those places. First, the key-point regressor locates the position of 7 very specific
features that are also visually distinct and can be considered as “corners” such as
points between the merging of distinct textures and points at the interface of the
foreground and the background. Second, and more importantly, these 7 points are
relatively easy to measure in 3D from a fixed world frame Fw. For convenience Fw is
chosen to be the base of the 3D cone, enabling easy measurement of 3D position of
these 7 points in this world frame, Fw. The 7 keypoints are the apex of the cone, two
points (one on either side) at the base of the cone, 4 points where the center stripe,
background and upper or lower stripes meet. The customized CNN inspired from
“corner” features takes as input a 80 x 80 x 3 sub-image patch which presumably
contains a cone, as detected by the object detector in the previous module and maps

Hin + 2 x padding[0] — dilation[0] x (kernel_size[0] — 1) — 1
Hmrf - - r + 1

stride[0]
; Win + 2 x padding[1] — dilation[1] x (kernel size[1] — 1) — 1
Ii"auf = : r 3 ' + 1
stride/[1]
it to R14.

The input dimensions are chosen as 80 x 80 spatially, as this was the average size
of bounding boxes detected. The output vector of R14 are the (x, y) coordinates of
the 7 key points relative to the patch. The architecture of the convolutional neural
network consists of basic residual blocks inspired from ResNet [8]. The reasoning
here is that since the convolution operation reduces spatial dimen-sions, we apply
‘same’ convolutions that result from a 3 x 3 kernel with padding=1 and stride=1 via a
residual block. As analyzed in [9], with more layers, the tensor volume has more
channels and fewer spatial dimensions, implying the tensors contain more generic,
global information than specific, local information. Since, we eventually care about
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location of keypoints which is extremely specific and local. Using such an
architecture prevents loss of spatial information as it is crucial to predict the position
of keypoints accurately as the input volume is processed deeper into the network.
Also, the residual blocks can easily learn identity transforms drastically reducing the
chance of over-fitting.

The first block in the network is a convolution layer with a batch norm (BN) followed
by rectified linear units (ReLU) as the non-linear activation. The next 4 blocks are
basic residual blocks with increasing channels C =64, C =128, C =256 and C =
512 as depicted in Figure 4.14. Finally, there is a fully-connected layer that regresses
the location of the keypoints.
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Figure 4.14: Architecture of the “keypoint network”. It takes a sub-image patch of 80
x 80 x 3 as input and maps it to R14, the (x, y) coordinates for the 7 key points.

The cross-ratio (Cr) is a scalar quantity and can be calculated using 4 collinear
points or 5 or more

non-collinear points [10].

Since it is invariant under Cr(p1,p2,p3.P1) = (A13/A14)/(A23/Asyg) €R
a projection and a / ) o

camera in essence is a Ay = V Zn=1(T; xz; )5, D€ {2,3}
projective transform, this

implies that the

cross-ratio is preserved.

It is preserved irrespective of the viewpoint of the scene and whether it is calculated
in 3D or in 2D (on the image plane, after the projective transform).

In our case, we use 4 collinear points p1, p2, p3, p4 to calculate the cross-ratio as
defined in Equation. Depending on whether the value is calculated for 3D points
(D = 3) or their projected 2D counterparts (D = 2), the distance Ajj , between two
points pi and pj is defined.

Jointly minimizing the squared error and the cross ratio
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In addition to the cross-ratio to act as a regularizer, the loss has a squared error
term. This forces the output to be as close as possible to the ground-truth annotation
of the keypoints. The effect of the cross-ratio is controlled by the factor y.

.7 (x) (x) 2 ) (v) 2
Li:l {Ijl.' o pi_yrrmr.lrﬂ.rmfh] + {pi o pi_grrmﬂrﬂr'uth}
2

+4(Cr(p1,p2,p3,p1) — Crap)
+7(Cr(p1,ps, pe: p7) — Crap)?

Equation:represents the Loss function (Lmse) minimized while
training the “keypoint regressor”..

The second and third term minimize the error between the
cross-ratio measured in 3D (Cr3D)and the cross-ratio calculated
in 2D based on the “keypoint regression” output, indirectly having
an influence on the locations output by the CNN. The second
term in the equation represents the left arm of the cone while the
third term is for the right arm, as illustrated in Figure 4.7. For the
cross-ratio, we choose to minimize the squared error term
between the already known 3D estimate

(Cr3D = 1.3940842428872968) and its 2D counterpart.

Figure4.15: An exemplary 80%80 cone patch with extracted “key points” overlaid in
red. Depiction of the left (p1, p2, p3, p4) and right arm (p1, p5, p6, p7) of the cone.
Both of which are used to calculate the cross-ratio terms and minimize the error
between themselves and the cross-ratio on the 3D object (Cr3D).

2) Modifications applied to the network architecture: Along with a sample
output, is shown in Figure 4.16 To make the algorithm robust to single
keypoint outliers all subset permutations of the keypoints with one point
removed are calculated if the reprojection error from the PnP estimate using
all keypoints is above a threshold. The permutation with the lowest error is
used as the final estimate.

151.'.:.0nv 16res ﬁz.res '64 ".!s I 128rasl 7;onv
block block block block

Figure 4.16: ResNet architecture (left). Vectors used in geometric loss function (right)
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Two important modifications were made to the network:

First, the fully connected output layer was replaced with a convolutional layer, which
predicts a probability heatmap over the image for each keypoint, and the expected
value over the heatmap [11] is used as the keypoint location. The use of a fully
convolutional network not only reduces the number of network parameters for faster
convergence, but is also a better choice given the benefits of convolutional layers for
tasks of predicting features that are spatially interrelated.

The second modification is an additional term in the loss function to leverage the
geometric relationship between points. Since the key points on the sides of a cone
are collinear, the dot products of the unit vectors between points on these lines
should be one. One minus the values of these dot products are used directly in the
loss function. The same is done for the three horizontal vectors across the cone. An
illustration of these vectors is shown in Figure 4.16. Because the keypoint locations
now need to be back propagated, the differentiable expected value function [11] is
used to extract coordinates from heatmaps. The final loss function is as follows:

Ltotal = Lmse + yhorz(2 - V12 - V34 - V34 - V56)+
yvert(4 - V01-V13-V13:V35-V02-V24 - V24 -V46)

Using a Bayesian optimization framework like the one previously described, the
values were determined to be :

yvert =0.038 and yhorz = 0.055.

3) Training the dataset

The DNN was trained with 3.2k images with 18k cone patches like in Figure 4.12
(right) to run to detect seven key points on each cone patch detection for use in a
Perspective-n-Point (PnP) algorithm(next module). Cone patches were extracted
from full images and manually hand-labeled. The dataset was further augmented by
transforming the image with 20 random transforms consisting of rotation, scaling and
translation. The data is split as 16,000 cone patches for training and 2,000 cone
patches for testing. During the training procedure, the data is further augmented on
the fly in the form of contrast, saturation and brightness. Stochastic Gradient
Descent (SGD) was used for optimization,with a learning rate, Ir = 0.0001 and
momentum = 0.9 and a batch size of 128. The learning rate is scaled by 0.1 after the
first 75 and 100 epochs. The network is trained for 250 epochs.
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4) 3D Localization of cones - Pnp algorithm
The “Keypoint Extraction Network” provides accurate locations of very specific
features, the key points. Since, there is a priori information available about the
shape, size, appearance and 3D geometry of the object, the cone in this case,
2D-3D correspondences can be matched. With access to a calibrated camera and
2D-3D correspondences, it is possible to estimate the pose of the object in question
from a single image.

We define the camera frame as Fc¢ and the world frame as Fw . Fw can be
chosen arbitrarily, as long as it is used consistently. In this case, we choose the
world frame, Fw to be at the base of the cone, for ease of measurement of the 3D
location of the keypoints (with respect to Fw ) and convenience of calculation, as
will become apparent. We use Perspective n-Point or PnP to estimate the pose of
every detected cone. This works by estimating the transform Ct between the
camera coordinate system and the world coordinate system. Since, the world
coordinate system is located at the base of the cone, lying at an arbitrary location
(that we want to estimate) in R3 This transform is exactly the pose we are looking
for.

A pose consists of a translation and a rotation. The fact that the cone is
symmetric along the axis through its apex and center of the base simplifies the
situation. As we are concerned only with the translation between Fc¢ and Fw ,
which is exactly the position that we care to estimate, we can discard the orientation
due to the cone’s symmetric geometry.

Figure 4.17 Schematic illustrating matching of 2D-3D correspondence and
estimation of transformation between the camera frame and the world frame.
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To estimate the position of the cone accurately, we use the non-linear version of the
PnP implemented in the OpenCYV library [12] that uses Levenberg-Marquardt to
obtain the transformation. In addition, RANSAC PnP is used instead of vanilla PnP,
tackling noise correspondences. RANSAC PnP can be done for every cone
detected, that is extract the 7 features by passing the patch through the “keypoint
regressor” and use the pre-computed 3D correspondences to estimate the
transform, allowing to estimate pose of multiple objects from a single image using a
priori knowledge about the object of interest.

4.4.3. Design Constraints

In computer vision one of the most important steps in most of the computer vision
algorithms is the feature extraction module because it is used to detect the changes
in intensity or in the shape or to detect corners and edges and the key points which
are special for this object so these things can be helpful in object classification,
structure from motion, place recognition, locating “points of interest” that are unique
and distinguishable and has always been a fundamental technique for decades.
Most of the feature extraction algorithms are generic and work for extracting fine
details in the images. There has been a large collection of work that focuses on
finding better, faster, more efficient, robust feature extraction techniques.Most of
these are very generic and can be used in arbitrary applications.A desirable property
that many of these possess is invariance to transformations such as scale, rotation
and illumination. Such work includes Harris corners [13], renowned
SIFT[141,SURF[15], efficient features with binary descriptors: BRISK[16] and
BRIEF[17].

The intrinsic parameters of the monocular camera are known as a result of the
calibration using a large checker- board to a distance up to 15 meters. One would be
able to estimate an object’s 3D pose, if there is a 2D-3D correspondence between
the 3D object and the 2D image, additionally the calibration parameters of the
camera.

The problem with the generic feature extraction technique is that it detects any
changes or fine changes with the image and if the resolution of the image is low it
will not detect the all points that we need , so in our case we need exactly 7 points
on a specific locations on the cone patch as discussed in the last section. For
instance, a Harris corner does not distinguish whether it lies on a cone or on a crack
on the asphalt. This makes it hard to draw the relevant correspondences and match
them to their 3D counterparts.In our case the mapping accuracy and the 3D
positions of the cones in the 3D map will depend on these 7 key points. To this end,
we implemented a feature extraction scheme that is inspired by classical computer
vision but has a flavor of learning from data via machine learning and deep learning
algorithms.

4.5 Stereo camera pipeline
4.5.1 Functional description
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In order to achieve the redundant perception concept which we talked about in the
system architecture, using the monocular camera in short range and the stereo
camera in the long range (up to 20m), we developed a stereo pipeline which uses
the left frame and the depth map of the stereo camera and produce the 3D cone
positions in each frame. In this module we will describe the implemented stereo
camera pipeline which is used to detect and localize the track cones in the 3D space
up to 20m using the stereo camera.

Using the first module (2D space localization and cone detection) to detect the cone
batches (bounding boxes) in each frame and estimate the 2D position of each cone
in the 2D space (image space), then using the intrinsic camera parameters of the
stereo camera and the depth map we localize each cone in the 3D world.

_____________________________________________

Stereo Depth Map Left frame image

Cones bounding boxes

3D Space
Localization of Cones

Figure 4.18 Stereo camera pipeline’s block diagram

4.5.2 Modular decomposition
In this section the stereo pipeline will be described using the ZED stereo camera.
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The used sensor message from the stereo camera are:

-left/image_rect_color: Left camera color rectified image
-depth/depth_registered: Depth map image registered on left image (32-bit float in
meters by default)

In order to get the 3D position of each cone in the frame by using these sensor data
from the stereo camera the following steps are applied on these data:

1- Object detection on the rectified left image

Using the left frame rectified image frame as input from the stereo camera we pass it
to the object detection module to extract the cone boundary boxes which exists in
the rectified image, so we can know the 2D position of each cone in the rectified
image

Image rectification is a transformation process used to project images onto a
common image plane. This process has several degrees of freedom and there are
many strategies for transforming images to the common plane. It is used in computer
stereo vision to simplify the problem of finding matching points between images (i.e.
the correspondence problem).
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Figure 4.19: Image rectification example

Till now we have the bounding boxes of the cones (2D position of each cone) on the
left rectified image frame in form if [xmin,ymin,xmax,ymax] as shown in Figure 4.20,
so the next step is to calculate the position of the center of each cone bounding box
in the 2D left rectified image frame.

96 | Page



Calculations:
- for each detected cone (boundary box) [xmin,ymin,xmax,ymax] are given
from the detection pipeline as shown in Figure 4.20 (right)
- box_width = Xmax - Xmin
- box_height = Ymax - Ymin
- center_x= Xmin+box_width/2
- center_y=Ymin+box_height/2

The center point [center_x,center_y] will be used in the next step to identify the
position of the cone in the depth map in the next step.

(Xmin.Y'min)

.xellow_cones
| ﬁlowﬁ;

(Xmax, Y max)

Figure 4.20: 2D Cone bounding box detection(left) boundary box points (right)

2- Depth map

The ZED stereo camera reproduces the way human binocular vision works. Human
eyes are horizontally separated by about 65 mm on average. Thus, each eye has a
slightly different view of the world around. By comparing these two views, our brain
can infer not only depth but also 3D motion in space.

Likewise, Stereolabs stereo cameras have two eyes separated by 6 to 12 cm which
allow them to capture high-resolution 3D video of the scene and estimate depth and
motion by comparing the displacement of pixels between the left and right images.

Depth maps captured by the ZED stereo camera store a distance value (Z) for each
pixel (X, Y) in the image. The distance is expressed in metric units (meters for
example) and calculated from the back of the left eye of the camera to the scene
object.

Depth maps cannot be displayed directly as they are encoded on 32 bits. To display
the depth map, a monochrome (grayscale) 8-bit representation is necessary with
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values between [0, 255], where 255 represents the closest possible depth value and
0 the most distant possible depth value.

Figure 4.21: Stereo camera depth map 2D image

Using the center point [center_x,center_y] which is produced from the previous step
we can find the cone depth in the depth map and using the intrinsic camera
parameters (cx,cy,fx,fy) to convert from pixel coordinate to world coordinate we can
calculate the 3D position of the cone in the world coordinates by the following
calculations:
- By taking the depth from a square area around the center of the cone for
better results We can calculate Z by:
Z = lastFrame.depth(center) taking into consideration the square area and
calculating the mean.
-y _world = (round(y+h/2) - cy) / fy * z
- x_world = (round(x+w/2) - cx) / fx * z
So now we have the XYZ (3D position) of each cone in the stereo camera frame.
These cone positions will be fused with the Monocular pipeline using extended
kalman filter (EKF) to ensure the redundant perception in the simultaneous
localization and mapping (SLAM) algorithm which will be described in the next
module in detail and how the mapping algorithms works and fuses all of these
sensors’ data.

4.5.3 Design constraints

While designing the Stereo camera pipeline and choosing the stereo camera
specifications, we take into consideration the perception design concept which is the
redundant perception Monocular camera for the short range and the stereo camera
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for the long range up to 20m, so the specifications and limitations of the chosen
algorithm and hardware works with the following constraints:

- Depth range corresponds to the minimum and maximum distance at which the
depth of an object can be estimated, so the depth range of the stereo pipeline
is
min=0.3m, and max=20m but taking into account the depth accuracy Stereo
vision uses triangulation to estimate depth from a disparity image, with the
following formula describing how depth resolution changes over the range of a
stereo camera:

Dr=Z"2*alpha, where Dr is depth resolution, Z the distance and alpha a
constant.

Depth accuracy decreases quadratically over the z-distance, with a stereo
depth accuracy of 1% of the distance in the near range to 9% in the far range.
Depth accuracy can also be affected by outliers’ measurements on
homogenous and textureless surfaces such as white walls, green screens and
specular areas. These surfaces usually generate temporal instability in depth
measurements.

So the chosen range for the stereo pipeline is up to 20m to estimate the cone
positions in an accurate way for the long range.

- Depth FOV: The chosen field of view for the stereo pipeline to match with the
design concept of mapping taking into account the track width is
110° (H) x 70° (V) x 120° (D) max.

- Depth FPS: In order to achieve the max performance of the perception

pipeline of the high performance autonomous vehicle the chosen frame per
seconds of the stereo camera is up to 100Hz
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4.6 EKF Robot Localization and Mapping

E Wheels Encoders
Visual Tracking Pose !

Estimation

EKF Robot
Localization

[ K-means Clustering
Ml of cone 3D positions

Global Mapping

Figure 4.22: EKF Robot localization and mapping block diagram
4.6.1 Overview and Assumptions

In this section we will describe the implementation of three modules, EKF robot
localization module, Visual odometry module received from the stereo camera, and
k-means-based global mapping module. These modules are responsible to output
two main things; a real time map of the environment and the vehicle pose in this
environment in order for the path planning algorithm to use these information and
output the trajectory of the vehicle to the MPC module in which it will use it for
sending actuating commands to the motors controllers.

EKF Robot Localization

We implemented the module within a node in the Robotics Operating Systems ROS
(see section 4.9) the module is an implementation of an extended Kalman filter. It
uses an omnidirectional motion model to project the state forward in time, and
corrects that projected estimate using perceived sensor data. Using a
15-dimensional state of the vehicle

X, Y, Z, pitch, yaw, roll, x', y', z', pitch’, yaw’, roll’, x", y", z'")
We fuse the IMU, wheel encoders, and the visual odometry in order to get an

accurate vehicle pose estimation. We will discuss the parameters selection in the
next subsection.
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Visual Odometry

We are using the ZED Stereo Camera developed by StereoLabs which is a camera
system based on the concept of human stereo vision. In addition to viewing RGB,
stereovision also allows the perception of depth. Advanced computer vision and
geometric techniques can use depth perception to accurately estimate the 6DoF
pose (x,y,z,roll,pitch,yaw) of the camera and therefore also the pose of the system it
is mounted on. Visual Odometry is the process of estimating the motion of a camera
in real-time using successive images. We used a visual odometry as an input to the
ekf robot localization module alongside the IMU which gives

(pitch’, yaw', roll’, x", y", z'") and wheel speed encoders that give indication about
the speed and orientation.

K-means-based Global Mapping

We will be using a database of cones that includes the cones positions, colors and
the mean and covariance that define the uncertainties of the cones detections. In this
sense, we are using the sampled data to increase and decrease the uncertainty
according to the number of hits and the difference of position estimates for existing
cones and the added cones to the database. These detections are first translated
from the vehicle frame to the global frame according to the pose estimation from the
EKF localization module as shown in the next figure.
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Figure 4.23: Vehicle Frame to Global Frame Transformation
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This is done by multiplying the received cone positions (Xw, Yw, Zw) by the
transformation matrix containing the translation vector and the rotation matrix of the
vehicle to get the global position of the cones (Xc¢, Yc¢, Zc¢) in order to update the
map with the new samples.
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4.6.2 EKF Robot localization Design Parameters

Each sensor reading updates some or all of the filter's state. These options give
greater control over which values from each measurement are fed to the filter.The
order of the values is

(x, v, z, roll, pitch, yaw, vx, vy, vz, vroll, vpitch, vyaw, ax, ay, az) .

When measuring one pose variable with two sensors, a situation can arise in which
both sensors under-report their covariances. This can lead to the filter rapidly
jumping back and forth between each measurement as they arrive. In these cases, it
often makes sense to (a) correct the measurement covariances, or (b) if velocity is
also measured by one of the sensors, let one sensor measure pose, and the other
velocity. However, doing (a) or (b) isn't always feasible, and so we expose the
differential parameter. When differential mode is enabled, all absolute pose

data is converted to velocity data by differentiating the absolute pose measurements.
These velocities are then integrated as usual.

EKF Localization uses a 3D omnidirectional motion model. The robot's position in the
vehicle frame will drift over time, but is accurate in the short term and should be
continuous; this short term accuracy is enough to estimate the track trajectory and
boundaries. The vehicle frame is therefore the best frame for executing local motion
plans. The global frame, unlike the vehicle frame, is a world-fixed coordinate frame,
and while it contains the most globally accurate position estimate for our vehicle, it is
subject to discrete jumps, e.g., due to the fusion of IMU data or a correction from a
global-based localization node.
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All of that was implemented in the ROS node receiving data from IMU, wheel
encoders, and visual odometry and publishes the pose of the vehicle to the Global
Mapping Module .

4.6.3 Visual Odometry Modular Decomposition

Stereo visual odometry consists of five steps. Firstly, the stereo image pair is
rectified, which undistorts and projects the images onto a common plane. Feature
detection extracts local features from the two images of the stereo pair. Then, Stereo
Matching tries to find feature correspondences between the two image feature sets.
Since the images are rectified, the search is done only on the same image row.
Usually the search is further restricted to a range of pixels on the same line. There is
also an extra step of feature matching, but this time between two successive frames
in time. Finally, an algorithm such as RANSAC is used for every stereo pair to
incrementally estimate the camera pose. This is done by using the features that were
tracked in the previous step and by rejecting outlier feature matches.

Figure 4.24: Stereo Rectification
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Figure 4.25: Stereo Feature Matching

Figure 4.26: Stereo Camera Visual Odometry Pose Estimation

Due to the incremental nature of this particular type of pose estimation, error
accumulation is inevitable. The longer the system operates, the bigger the error
accumulation will be. Therefore, we improve the pose estimation algorithm by fusing
the visual odometry with the IMU and the wheel encoders to provide a more robust

pose estimate.
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4.6.4 K-means-based Global Mapping Modular
Decomposition

As mentioned before, we are using a database containing the positions of the cones
(landmarks) in the track, their colors, and the covariance R that indicates the amount
of uncertainty about this information that is updated or augmented using the samples
received. Each sample here is a global cone position (after being transformed from
the vehicle frame to the global frame as illustrated above) and the cone color. The
sample received is either for a previously received cone information thus it will
change the covariance R (changing the uncertainty based on the euclidean distance
between the new sample and the mean of previous samples for the same cone) OR
the sample is for a new cone that was previously unseen and this is again
determined by using thresholding on the euclidean distance between the sample and
the previous samples, that is if the new sample is away from previous samples then
it might be a new cone information so it is added to the database with the maximum
covariance R until receiving more samples at the same location or close to it in order
to decrease this covariance. In addition, if the cone estimate in the database remains
with high covariance between samples until it is out of the field of view (FOV) of the
vehicle, it is then removed from the database as it will be considered as a random
noise. The next figure illustrates the process of adding cones and updating them in
the database.
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Real World Global Map New sample received.
I Adding Cone to database with maximum
covariance.
Notice the size of the circle.
Indicating that the cone can be anywhere
inside.

Reactive mapping of the cones First cone detection perceived by the robot
in the vehicle frame.

Real World Notice how the cone Global Map
is a little bit closer.

Receiving more samples
close to the cone position.
Decreases the uncertainty.
Notice the size of the circle

decreases.

Real World Global Map

After receiving a lot of samples
close to the mean.
Decreasing the covariance much.
Decreasing the circle size.

New cones enters the FOV.
Adding new cones to the database.
And so on the process continues.

Figure 4.27: The process of adding and updating cone estimates in the global map.
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4.6.5 K-means-based Global Mapping Design
Constraints

Thinking about the constraints that lead to this implementation can be illustrated with
this tradeoff; between the accuracy with which we need to map the track, and the
time we need to finish the SLAM round for perceiving the track layout and pass it to
the motion control algorithm. This is simply thought of as when the vehicle is moving
slowly while receiving samples then the map will receive more samples to build a
more accurate track, while when moving fast the amount of samples received for the
same landmarks decreases and thus the accuracy of building the map decreases. In
addition, controlling the threshold of the FOV prune the uncertain cone estimates
received and depend more on the close cone estimates which the vehicle can be
more confident about. Hence, our objective was more to build an accurate map of
the track and then race with maximum performance in this track. In addition, we
proposed modes of operation in order for the vehicle to work with, these modes of
operation will decide which parameters it will use while mapping the environment
and will range between being inaccurately fast and being accurately slow in
mapping. Here, we must assure that this is just for mapping where after the SLAM
round is finished the vehicle can race the track with its maximum performance.

The modes of operation will change the configuration parameters which we will
discuss now.

Maximum Depth FOV, the maximum depth of a cone estimate to be considered as a
received sample.

Minimum Depth FOV, the minimum depth of a cone estimate to be considered as a
received sample, as some vehicles may have some difficulties sensing close cones
because of the positioning of cameras on the vehicle.

Angle FOV, the angle in front of the vehicle by which the cone estimates inside this
angle of view is considered as a cone estimate.

Maximum Hits, the number of samples received for the same cone (close to the
mean of samples) after which we are extremely confident about its position and we
don’t need to consider any samples for it again, because if there was a drifting error
in the sensors which accumulate with time adding more samples would influence the
cluster with wrong estimates.

Minimum Hits, the number of samples received away from the mean of the samples,
in which if the cone estimate reached and the mean became out of the FOV then the
cone estimate will be removed from the database. Note: the hits number is increased
or decreased according to the received samples, that is if the samples are close to
the mean, then the hits number is increased, while if they are away from it, it will be
decreased to finally reach the maximum hits or the minimum hits or somewhere in
between.
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Minimum Covariance, the number in which if the covariance of a cone estimate
becomes below even if it exists in the FOV it will be removed from the database
directly because it represents a random error.

Maximum Covariance, the number in which if the covariance of a cone estimate
reaches, it will never be considered for removal from the database.

Hit-sample Covariance, the number added to the covariance when a hit happens,
that is receiving a sample close to the mean of the cluster of samples.
Failure-sample Covariance, the number subtracted from the covariance when a
failure happens, that is receiving a sample for the cone estimate away from the
mean of the clusters of samples.

The Covariance of a cone estimate is updated as follows,

. Maxy;,, -1
ACOV a Maxcov Max’hznz
Cone.,, = Max,,, — A, * Cone,,

where, Max,,, is the maximum covariance, Max,,  is the maximum hits, Cone,,, is
what we are updating, and Cone,;, is the number of hits the cone estimate has
received till now.

4.7 Model Predictive Control
4.7.1 Overview and Assumptions

In this section we will talk about motion control in full details. This chapter
represents the body of our project so we should answer some questions like “what
has been done ?”, and “how it has been done?”. We also will discuss and clarify our
scientific approaches and methodologies.

After the first successfully finished lap, the complete track is mapped using the
SLAM algorithm. After this step the vehicle now has the knowledge of the track
layout and has the ability to localize itself within the environment. By having this
capability, we can race the car around a known track. Which brings us to our motion
planning problem where the goal is to drive around the track as fast as possible and
avoid oversteering in corners and hard braking. For this purpose we tried to solve
this problem by using nonlinear Model Predictive Control which aims to maximize the
progress along a given reference path (in our case the center line) while respecting
the vehicle model and track constraints. The two main advantages of our Model
Predictive Control is the direct consideration of the vehicle limits when computing the
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command and that the algorithm does not need any pre-determined logic, only the
track layout, and the vehicle model.

4.7.2 MPC Design parameters

Before talking about how an MPC controller works and showing its architecture we
first have to talk about its parameters.

Choosing proper values for these parameters is important as they affect not only the
controller performance but also the
computational complexity of the MPC
algorithm that solves an online
optimization problem at each time
step. We will also talk about how to
choose these parameters.
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Figure 4.28: parameters of MPC

By choosing the sample time we determine the rate at which the controller executes
the control algorithm if it is too big, when a disturbance comes in, the controller will
not be able to react to the disturbance fast enough. On the contrary, if the sample
time is too small, the controller can react much faster to disturbances and setpoint
changes but this causes an excessive computational load. To find the right balance
between performance and computational effort the recommendation is to fit 10 to 20
samples within the rise time of the open-loop system response.

As we will discuss, at each time step, the MPC controller makes predictions about
the future plant output.and the optimizer finds the optimal sequence of control inputs
that drives the predicted plant output as close to the setpoint as possible.The
number of the predicted future time steps is called the prediction horizon and shows
how far the controller predicts the future. What happens if it is too short?. Think of
this example, while going at 50 mph you know that it will take your car 5 seconds to
stop if you press on the brake pedal. If your prediction horizon is 2 seconds, by the
time you see the traffic lights, it will be too late to apply the brakes. The car will only
be able to stop after passing the traffic lights. So we have to choose the prediction
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horizon that will cover the significant dynamics of the system, but why do not we
select a much longer prediction horizon? The answer is because of computational
loads. Another example is when replacing traffic lights with corners this may lead to
death if we drive a formula car with maximum speed and we did not see the corner
on time we will make an accident. Another design parameter is the control horizon
which is shown in the above figure. Each control move in the control horizon can be
thought of as a free variable that can be computed by the optimizer. So the smaller
the control horizon the fewer the computations. If we make it only one step it may not
give us the best maneuver. And by increasing the control horizon we can get better
predictions but at the cost of increasing the complexity and usually the first couple of
moves have a significant effect on the predicted output behavior while the remaining
moves have only minor effects. So choosing a large control horizon only increases
computational complexity. The best way to choose a control horizon is to set it to
10% or 20% of the prediction horizon.  MPC can incorporate constraints on inputs,
rate of change of inputs and the output. These can be hard or soft constraints. Hard
constraints can not be violated while soft constraints can be violated. The
recommendation is to set output constraints as soft and avoid having hard
constraints on both inputs and rate of change of inputs. MPC has multiple goals, we
want outputs to track as close as possible their setpoints but at the same time we
want to have smooth control moves to avoid aggressive control maneuvers. The way
to achieve a balanced performance between these competing goals is to weigh the
input rates and outputs relative to each other. We also adjust relative weights within
the groups as well. For example if in a 2x2 system it is more critical to perform
reference tracking of the first output than the second output so we assign a larger
weight to the first output.
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4.7.3 Block Diagram
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Figure 4.29: Architecture of implemented MPC

4.7.4 Functional Description

In this part we will talk about and describe functionality of our controller which is
Model Predictive Control (MPC) controller to control motion of our vehicle from the
complete track that is mapped using simultaneous localization and mapping
algorithm which is mapped successfully in the first lap. MPC utilizes the model of the
system to predict its future behavior and it solves an online optimization problem to
select the best control action that drives the predicted output to the reference. In the
control problem the goal of the controller is to calculate the input to the plant such
that the plant output follows the desired reference. In model predictive controller’s
strategy to compute this input is to predict the future, it sounds like fortune-telling but
we will discuss how it works. MPC uses the model of the plant to make predictions
about the future plant output behavior. It also uses an optimizer which ensures that
the predicted future control output tracks the desired reference. In our design let us
say that we control our vehicle by
model predictive control controller to

keep it in the middle of the lane for 15 1
simplicity we assume that our speed 101
is constant and our control input is 05

just the steering angle which is used
to control our car.
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First we will talk about how the controller uses the car model then later we will
discuss the optimizer. As we said before that we consider the middle of the lane to
be our reference. At the current time the MPC controller uses the car model to
simulate the vehicle’s path in the p (where p is the prediction horizon) next time
steps if the steering wheel would be turned as in the below figure where reference
path is in green and path controlled by steering angle is in purple color. P is the
measure of how far ahead MPC looks into the future and is referred to as the
prediction horizon.it is often represented by the length of time into the future or the
number of future time steps.

Figure 4.30: Vehicle’s path in blue car vs reference path in red color

The MPC controller needs to find the best predicted path that is the closest to the
reference. So it simulates multiple future scenarios. These scenarios are simulated
in a systematic way not in a random order and this is why the optimizer comes into
the picture.By solving the optimization problem the MPC controller tries to minimize
the error between the reference and predicted path of the car. It also tries to
minimize the change in the steering

1

past | future
|

)

] e Ty !

reference ‘ ; P ' &
1 1
)

Y

Figure 4.31: best predicted path close to reference taken over p time steps

wheel angle from one time step to the next because if the steering wheel is turned
sharply, the ride may become uncomfortable for the passengers. The cost function J
of this optimization problem is used to choose the best path. While minimizing this
cost function MPC also makes sure that the steering angle and vehicle’s position
stay within prescribed limits. These are referred to as constraints. There is a limit on
how far the steering wheel can be turned as we know.

At the current time step the MPC controller is solving the optimization problem over
the prediction horizon while satisfying the constraints. The predicted path with the
smallest or minimum J gives the optimal solution, and therefore determines the
optimal steering wheel angle and other control input sequences that will get the car
as close as possible to the reference path.
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At the current time, MPC applies only the first step of this optimal sequence to the
car and disregards the rest, based on the applied steering wheel angle the car
travels some distance. At the next time step the controller gets a new measurement
of the car position and it might be slightly different than what MPC controller has
predicted before. This could be because of some unmeasured disturbances acting
on the vehicle it might be the wind or slippery road surface. Now the prediction
horizon shifts forward one time step and the controller repeats the same cycle of
calculations to compute the optimal steering wheel angle for the next time.

In the above figure manipulated variables are the inputs to the plant which is our
vehicle that is used to control the vehicle these inputs are steering angle and torque
request or in other word manipulated variables are signals computed by the
controller and sent to the plant. While output variables are variables that we try our
best to make it the same as our reference that is mapped using the SLAM algorithm
in the first lap.

In a feedback diagram there is a state estimator that is used if we could not directly
measure the states so these states can be estimated using this state estimator and
fed back to the model predictive control controller.

4.8 Communication and Simulation module

4.8.1 Functional Description

In order to ensure the reliability of our modules a high performance framework is
chosen to build a communication environment which enable us to visualize and see
the interaction between the pipeline’s modules, and by Implementing our pipeline
from perception to mapping and localization of the vehicle it is found that most of
pipeline modules needs to interact and send data to each other starting from camera
sensing ending with producing the torque request and steering angle, so the
pipeline’s modules are run as nodes using Robot Operating System or ROS as the
framework that eases handling of communication and data messages across
multiple systems as well as different nodes. Different modules communicate via
messages, they receive data and output processed information. Another important
aspect is that ROS is open-source and provides tools for visualization, monitoring
and simulation, making it easy to integrate, test, diagnose and develop the complete
software system. In this module, a detailed description of the deployment of the
pipeline modules and transform them to ROS nodes. Each node in the ROS
framework represents a module or submodule in the pipeline and each node takes
its input data by subscribing to a topic which another node produced. This
messaging system which based on publish and subscribe methodology is used to
manage the communication between modules in an effective way and used to
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reduce the time to make a low latency and efficient pipeline. Also, ROS framework is
used to visualize and simulate the pipeline using rViz by visualizing the detected
cones and the produced map of the track as shown in figure. and these simulations
and visualization are used in testing and validation of the pipeline as will be
described in chapter 5.

:::ROS aL

Figure 4.32 Robot operating system environment

4.8.3 Modular Decomposition

The object detection node and its topics in ROS:

The object detection and color recognition are the first two nodes which exists in
the ROS framework and they take the input data from the sensor (mono camera)
directly as explained in the block diagram and take the input data from the camera
as a set of frames and the object detection module works on each frame (image) in
the input set of frames, so this node takes the input from the Mono camera and
produces the output as a set of detected cone batches for each frame (image) this
output is published on the bbox_det topic as in the following Figure 4.33. This set of
batches which are published on the bbox_det topic are used in the color detection
node, then the color detection node publishes the boundary boxes with its colors on
the Frame_BBox_Color topic which is used as an input to the next module (key
points extraction ResNet)

—™ finput_frames fhbox_det {Frame_BBox fcolor_det fFrame_BBox_Color {KP_det

Figure 4.33: ROS nodes and published topics of the object detection module

The 7 key points extraction node and its topics in ROS:

114 | Page



The “keypoint extraction DNN” is implemented and used via ROS’s rospy interface
and the node is created on ROS to take the cone patches from the object detection
module and for each patch it detects the 7 key points in the extract landmarks node
and publish the 7 key points for each patch on the perception cones topic as shown
in the Figure 4.34, and then the perception cone module integrates each cone in the
frame with its extracted landmarks and apply PNP algorithm on it to extract its 3D
position and then publishes the localized cones to the reactive mapping node to
integrate the perception pipeline with the localization and mapping algorithm.

/Frame_BBox_Color_Kps JExtract_Landmarks
[reactive_mapping

/perception_cones

Figure 4.34: ROS nodes and published topics of the Key points extraction

Mapping and Localization to visualization:

For the localization and mapping nodes there is a node for the extended kalman filter
which takes the IMU and wheel encoders sensors readings as shown in

Figure 4.35 and by applying the EKF algorithm on it it publishes the filtered odometry
to the odometry node which integrates the localization of the vehicle’s location with
the mapping algorithm, the mapping algorithm subscribing two nodes which are the
reactive mapping which have the cone position in the corresponding frame, then the
global mapping algorithm subscribes to the odometry filtered node which publishes
the odometry of the vehicle, the global mapping node publishes the landmarks
locations and the vehicle location in the global map to the rViz node to visualize the
map and landmarks in real time as shown in Figure 4.35

Jodom
/

/imu

fimu/data | |

/set_pose
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/reactive_mapping

/reactive_cones

Jodometry

Jodometry/filtered ||

/global_mapping

/global_map_markers

/glob_map_rviz

Figure 4.35: Rqt Graph of the ROS nodes and topics in mapping and localization
algorithm connected to the node of ROS visualization rViz

All of these nodes and topics can be visualized on the ROS using rViz which can
subscribe to any topic and shows its data in form of camera, image, pointcloud,
and/or map, rViz is used to validate and test the pipeline outputs with the help of
rosbags which described in chapter 5 in details. The following figure shows an

example of the rViz tool.
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default.niz’ - RViz

ROS Time: 1591731996.96 | ROSElapsed: 1080.16 Wiall Time: 159173198699 | Wiall Elapsed: |1080.13

Experimental

Figure 4.36 shows a sample from the rViz tool window

Chapter 5: System Testing and
Verification

In order to test and verify our pipeline, all of the vehicle’s modules were integrated on
the ROS environment see chapter 4. The ROS environment helped us to visualize
each module as a node with its inputs and outputs represented as ROS topics and
messages , and using rViz the topics and messages of each module can be
subscribed and visualized in the shape of 3D map, pointcloud, and/or graphs. The
readings of each sensor can be visualized on rViz to help us to verify the pipeline by
comparing the results of many sensors. Another shape of testing that will be shown
in this chapter is the model testing using the testing and validation datasets and this
type of testing exists in two modules, object detection and keypoints extraction
modules because that each of these two modules have a deep learning model that's
needed to be trained and tested using appropriate datasets. In this chapter we will
describe in full details the testing setup, strategy and environment of our project. The
Figure 5.2 shows an overview of the testing procedure and the track that we went
with during the testing phase. Going from the perception pipeline which detects the
position and color of each cone to mapping and localization of each cone on the
track and building the global map of the track, ending with the control commands that
controls the motion of the car in the given track path. Each of these modules was
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tested individually and tested after integration with another module and so on, as
shown in Figure 5.2 which summarizes the testing phase procedure. Also, this
chapter aims to verify that our project reached its main goal as shown in Figure 5.1
by taking the testing procedure that is shown in the following page.

Path planning

et A N\ 1 A
*\/"Bpded Retuast [ LAY
IR’ |V | V!

100 00 00 0 20 S0 4 Motion control—

I A " I n N J
01 «~ 5 7\ Steering Angle | | r o\

dot{deita} [rads]

Figure 5.1: The Main Goal of the project

5.1. Testing Setup

First of all our plan was to deploy these modules and this pipeline on Cairo
University Racing team (CURT) Electric Vehicle (EV) to test the pipeline in the real
environment and on a real vehicle that already joined Formula Student UK
competition 2019 as an Electric Vehicle. OUr aim was to transform it into a Driverless
Racing Vehicle (DV). But unfortunately due to the Covid-19 epidemic that we are
facing in the last 5 months, our plan was totally changed from deploying these
modules on our real vehicle to test our software modules by simulating these
modules on Robot Operating System (ROS).

With the help of Formula Student Artificial Intelligence (FSAI) Competition, which
provided us with some real time data in the form of rosbags which includes some of
real time sensors’ readings like Monocular camera frames, stereo camera (left and
right) frames, LIDAR, wheel odometry, and IMU data(as shown in the following
figure). We used these data in our testing phase by taking the required inputs to the
modules and testing the behaviour of the pipeline according to these real time data.
All of these works were done on the ROS environment and using the ROS tools to

118 | Page



Table 5.1: Rosbags topics and input sensors’ data

Topic Type Freq Source Notes

& DoF IMU Data from X-Sens

. . X-Sens MTi-G IN5 with embedded
fimu/data sensor_msgs,/ Imu 10Hz o .
MTi-G Kalman Filter. Includes
orientation data.
X-Sens
Simu/mag sensor_msgs/MagneticField 10Hz -
MTi-G
3 . . X-Sens Unreliable as far as our tests
ffix sensor_msgs/NavSatFix 10Hz -
MTi-G go.
. Velodyne Full 360 degree data. Testbed
fvelodyne_points sensor_msgs/PointCloud2 10Hz . y ) d
VLP-16 must be filtered out.
" . . ZED . :
fleft/image_rect_color/compressed sensor_msgs/CompressedImage 30Hz - 672 x 376 resolution
Camera
e . : ZED PR .
fright/image_rect_color/compressed sensor_msgs/CompressedImage 30Hz — 672 % 376 resolution
Camera
- ZED -
/odom nav_msgs,/Odometry 30Hz _ Visual odometry. Very good!!
Camera
ZED Slightly filtered 3D
voxel_frid/output sensor_msgs/PointCloud2 30Hz ~ pointcloud from the stereo
Camera
- camera.
. Contains odom->base_link
Itf tf2_msgs/TFMessage 30Hz ) 3 o
published by the ZED camera
. . Transforms for all sensors on
ftf_static tf2_msgs/TFMessage once

the car

visualize the inputs and outputs of the pipeline and modules the most important ROS
tool is rViz which we used to visualize, simulate, and test our work using it.

We have collected more than 10GB of real time sensors’ readings of a real formula
student Driverless Vehicle (DV) on a track which is shown in the above figure, and
we use these data to test and visualize the behaviour of our modules and validate it
in the real environment. All of these datasets come in a rosbag format which can be
used directly in ROS. Another strategy of testing that we used in our project in the
module testing is the testing datasets which exist in the modules which are based on
deep learning models or machine learning algorithms In the following part we will talk
in full details about the testing of each module according to its type and the
integration testing which based on the ROS environment.
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5.2. Testing Plan and Strategy

Test the cone 2D position detection
module in diffierent climate conditions

Test the cone color detection module

A J

Integrate and test the cone 2D position[* Test the Keypoints extraction network
and color detection modules on a cone patches

v

Integrate and test the detection with Test the PnP algorithm by extracting

keypoints extraction of the detected the 3D position of a cone from 2D
cones image using its 30 model

-~

v
Integrate and test the PnP with the
detection and keypoints extraction — Test the Stereo Depth map

modules

!

A

) ) ] IMU and Wheel encoders sensor
Test the Sensor fusion using EKF S - > =
in the Reactive mapping algorithm SEul chGEfitﬂm B

!

Integrate and test the localization and
local mapping to construct the global
map of the track

-~

v
Validate the cone positions in the
global map with the LIDAR point cloud
readings using ROS environment
(rviz)

s SO LA A Integrate and test the Global map i )
§ LY A" I - 5 Test the Motion control algorithm
generated patr;m::ﬁ motion control (MPC) with a simulated track paths ﬂ

‘[ v
Validate the Torgue and the steering

angle output on the whole track map

Fy

Figure 5.2: Testing Setup and Procedure overview

As explained in the testing setup Figure 5.2the testing process which is applied on
the pipeline is for each module and integrated with the other modules step by step to
the end of the pipeline as shown in the testing procedure in Figure 5.2 in the
following subsections each block in the figure above will be tested and integrated
with the corresponding blocks.
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5.2.1 Testing the cone 2D localization module
-Customized YOLOv3

35%

—— Small Cones: 5px to 15px
30% Il —— Medium Cones: 15px to 26px /
0566 |- Large Cones: Larger than 26px

20% [

15% |
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5%

Likelihood of Occurrence

0% == a1 | | |
30% 40% 50% 60% 70% 80% 90% 100%

IoU

Figure 5.3: Intersection-over-union - examined detection accuracy across three
landmark sizes

To characterize accuracy of the localization phase of the pipeline, we examined
detection accuracy across three landmark sizes. The results are shown in Table5.2.
We use a widely-used metric, intersection-over-union (loU), that measures alignment
of our bounding box with ground truth [30]. We examined loU across >24,000
landmarks. We achieve a median loU of 88% for large cones, and 83-84% for

smaller cones. This bounding box tightness enables whole system localization
accuracy described next.

Our final accuracy metrics for detecting traffic cones on the racing track:

Table 5.2: The results of detection accuracy

mAP Recall Precision

89.35%  92.77/%  86.94%
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Testing the detection module in different climate conditions:
1) Sunny

Boundry box detection

Detected Cone batches

uuﬂﬂu“illnuu RN I

Figure 5.4: Testing the detection module in sunny climate condition
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2) High light

Cone boundry boxes

Detected cones batches

B HFE HEg i. L l!.

Figure 5.5: Testing the detection module in high light climate condition
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Figure 5.6: Testing the detection module in cloudy climate condition

124 | Page



4) Low light

Figure 5.7: Testing the detection module in low light climate condition
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5) Rainy
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Figure 5.8: Testing the detection module in rainy climate condition
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5.2.1 Testing the Cone Color Detection module

The following figure shows the testing metrics for multiple saturated epochs
compared to the ground truth labels.
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Figure 5.9: Color detection module testing metrics on the saturated epochs of

training.

The mean average precision mAP of color recognition for confidence which is more
than 50% is about 80.
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Testing the color detection with object detection:
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Figure 5.10: Testing the color detection with object detection
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5.2.3 7 Key Points Extraction Network

1) validation test
The feature extraction network was trained with 3.2k images 2720 for training and
about 480 for validation as shown in the figure:

training image number: 2718
validation image number: 479 n
Including geometric loss: True

Loss type: 12 softargmax

Figure 5.11: Key points extraction network dataset
By training on this dataset the best loss, loss: location/geometric/total which is
loss: 0.011191/0.0/0.011191 was found in EPOCH 48 as shown in the following

figure.

Epoch with
lower loss

EPOCH 47

Training: MSE/Geometric/Total Loss: 8.0211922256/0.0/0.0211922256

Starting validation...

validation: MSE/Geometric/Total Loss: 0.018063846/0.0,/0.018063846
Saving model to outputs/april-2020-experiments/testTwo/47_loss_0.02.pt
EPOCH 48

Training: MSE/Geometric/Total Loss: 0.0170994289/0.0/0.0170994289

Starting validation...

Validation: MSE/Geometric/Total Loss: ©.0111918962/0.0/0.0111918962

.

Saving ONNX model to outputs/april-2028-experiments/testTwo/best_keypoints_86806.onnx

EPOCH 49

Training: MSE/Geometric/Total Loss: 0.0156765056/0.0/0.0156765056

Starting validation...|

Validation: MSE/Geometric/Total Loss: 0.0131025789/0.0/0.0131025789
EPOCH 508

Training: MSE/Geometric/Total Loss: 8.0152619437/0.0/0.0152619437

Starting validation...

vValidation: MSE/Geometric/Total Loss: 0.0132306492/0.0/0.0132306492
EPOCH 51

Training: MSEfGeometric/Total Loss: 0.0149801664/0.0/0.0149801664

Starting validation...

validation: MSE/Geometric/Total Loss: ©.8115105509/6.6/0.0115185509
Saving model to outputs/april-2028-experiments/testTwo/51_loss_06.61.pt
EPOCH 52

Training: MSE/Geometric/Total Loss: 0.01526335/0.0/0.01526335

Starting validation...

validation: MSE/Geometric/Total Loss: ©.8127581186/0.0/0.0127581186
EPOCH 53

Training: MSE/fGeometric/Total Loss: 0.0146441231/0.0/0.0146441231

Starting validation...

Validation: MSE/Geometric/Total Loss: ©.0123967328/0.0/0.0123967328
EPOCH 54

Training: MSE/Geometric/Total Loss: 0.0137630213/0.0/0.0137630213

Starting validation...

validation: MSE/Geometric/Total Loss: 0.0126291188/0.0/0.0126291188
EPOCH 55

Training: MSE/Geometric/Total Loss: 8.0138158908/0.0/0.0138158908

Starting validation...

validation: MSE/Geometric/Total Loss: ©.01231168787/0.8/0.0123118787
Saving model to outputs/april-2020-experiments/testTwo/55_loss_0.01.pt
EPOCH 56

Training: MSE/Geometric/Total Loss: 0.0134418112/0.0/0.0134418112

Starting validation...

Validation: MSE/Geometric/Total Loss: 0.0131435319/0.0/0.0131435319

tlrzggi ——PTraining is stopped due; loss no longer decreases. Epoch 48 is has the best validation loss.

Figure 5.12: Key points extraction network’s best loss result
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2) Visual test
Samples for the key points extraction on different cone batches and the heat map
which is the output of the last layer (7 Conv) which gives 7 heat maps one for each
point:

=4 -

Heat map Heat map Heat map Heat map

Figure 5.13: Key points extraction network’s results and points’ heatmap
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5.2.4 Testing 3D space localization of cone:

The recorded data is from Rosbag with the given information about the camera
parameters which is given in the Camera_Info topic , by using these camera
parameters with the prior knowledge of the 3D cone model as shown in the following
Figure 5.14, we tested our PnP algorithm to estimate the 3D cone position with
respect to the vehicle’s center. All of these simulations and data from Rosbags are
tested and visualized on the rViz tool , on the Robot Operating System (ROS)
environment as shown in Figure 5.14.

.model_points = np.ar

D model 7 keypointSeg.

.camera_matrix = np.a

iz in ROS environment

Metefimage rect_owior
[ ——

Camera frames which is
in Rosbag visualized as
o frames of images in rviz

Rosbag which contain a
real ime sensors' data -

Figure 5.14: 3D Cone points, camera information, visualization of the rosbag in rViz
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To test this module it must be tested with the existence of the detection and
keypoints extraction, so the PnP algorithm will be applied on the extracted 7 key
points (7 features) and then it estimates the cone 3D position in the world
coordinates as shown in the following figures the 3D positions of each detected cone
exists on the top of the batch square with respect to the car center.

= CF T (X,Y)Position of cone s
. | respect to the car
. center

"-n.-.-“-
T— e boundary box Reactive cone
with its color estimates
7 Key points in
real time frames .

LT
‘i

»

X Y}Posmon of cone
respect to the car
center

Cone boundary box
with its color Reactive cone
estimates
¥ I(ey points in ==
real time frames

Figure 5.15: Testing the 3D localization PnP algorithm with the detection and key
points extraction modules
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5.2.5 Testing EKF Robot Localization and Mapping
Modules

1 Testing EKF Robot Localization module

In order to test our EKF localization module we needed to get a superior source of
vehicle locations, so we used the data found by the team to include GPS vehicle
locations to indicate a performance measure to our module, then we tested the EKF
Robot Localization by computing the mean average euclidean distance between
vehicle pose estimations and the GPS location computed. The redline shows the
vehicle trajectory of pose estimated through visual odometry, IMU, and wheel
encoders, while the green line shows the gps locations.

GPS: Green, EKF: Red

5
X (m)

Figure 5.16: Difference between GPS positioning (green) and EKF pose estimation
position (red).

It's clear that GPS has this spiky noise behaviour because of its high latency in
receiving vehicle positions, but the average of these locations will serve as a
measure for our results. Our results seem more smooth and robust, with low mean
average difference with the GPS locations, as you can see from the next table.
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Table 5.3: X, Y locations received from both EKF Localization module and GPS
positions
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The mean average euclidean distance is evaluated to be about 0.13669 m. This
difference is acceptable as it does not exceed 10% of the average width of a vehicle,
and 3% of an average track width.
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1 K-means-based global mapping module
In order to test our complete mapping system we have used another piece of data
sent in the rosbags, the velodyne points of the cones (velodyne is a 3D laser
scanner that scans the surrounds of the vehicle and map it directly in reference to
the vehicle position) we will compare the cone locations in the global map from the
3D laser scanner (Velodyne) and our simple monocular camera pipeline, this will
show the performance of our simple approach and the laser scanner taking into
consideration the cost of each system and the logistic difficulties of the velodyne.

Monocular Camera based Pipeline

wy

/ (1,519, -1.908)
XY
7> (0.890, 1.305)

Velodyne 3D scans

(1.527,-1.899 )

> (0.887, 1.308)

Figure 5.17: Visualizing the difference between Monocular Mapping pipeline and
velodyne 3D scans. |
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Qur Monocular Pipeline Cone
Estimate

3D Scans Point-cloud

Figure 5.18: Visualizing the difference between our pipeline and the 3D scanned
point-cloud. ||
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Figure 5.19: Visualizing the difference between our pipeline and the 3D scanned
point-cloud. |||

The difference is averaged between many samples and it seemed it doesn’t exceed
0.15m inside the FOV which is very impressive results.
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5.2.5 Testing Model Predictive Controller

Now we have the map of the track from the localization and mapping algorithm and
tested on a real time sensor data from the ROSbag and we built the track and
validated it, so it's the time for motion control testing on this given track map as
shown in the following figure the chosen path for the path planning algorithm is the
simplest path at the center of the estimated track map as shown in the figure below.

Global Map
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Figure 5.20: Simplest path at the center of the estimated track map from the
mapping algorithm

1) Path tracking
The motion control algorithm will be tested by sending this path to it and evaluating
how much the generated path from the motion control algorithm will match the given
track, based on the vehicle model and track width. The following figure shows how
much the MPC is close to the generated path from the mapping and path planning
algorithm.
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Figure 5.21: The actual track which produced by the MPC algorithm with the
estimated map track
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2) MPC control outputs
After receiving the vehicle trajectory the MPC outputs the control parameters
estimated to race the vehicle along the track, these estimated parameters are
estimated by optimizing a cost function over the motion model as illustrated in

section 4.7.

The following is an example of the manipulated and state variables that

resulted in our simulations. Further testing will be needed in reality, but the simulated
output is as expected to build a competent racing autonomous vehicle.

Figure 5.22:

Figure 5.23:
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5.3. Testing Schedule

Drlverless RaCIng Klt SIMPLE GANTT CHART by Vertexd2.com

hittps S, venexd 2 .com/E xoelT emplates /simple-gant-chant him|
Test Schedule
Testing Start Man, 4/13/2020 ‘

May 11, 2020

15 16 17

13 14 15 16 17 18 18|20 21 22 33 24 25 26 27 2B 20 30 1 2 3|4 5 6 7 B © 1011 12 13 14

Testing Units.

Perception Pipeline

Cone 2D position detection 4/13/20 4/16/20
Cone color detection 4/16/20 4/18/20
Cone position and color detection 4/19/20 422120
Keypoints extraction 4123120 427120
Detection with Keypoints extraction 4/28/20 5/1/20
3D cone locallzation PnP algorithm 52720 5/5/20
Perception Pipeline 5/6/20 5/11/20
Localization and mapping 5/11/20 &4/20

K-means clustring of cone 30 positiens  5/11/20 5/15/20

EKF Robot Localization 5/16/20 5/21/20 -
Global Mapping 5/22/20 52720
30 Map Construction 5/28/20 6/4/20
Path Planning and Motion Control B/5/20 B/21/20
Vehicle and track mode| 6/5/20 6/10420
Model predictive control B6/11/20 6/15/20
Integration of all medules on ROS 6/16/20 B/21/20

Table 5.4: Gant chart for the testing schedule
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5.4. Comparative Results to Previous Work

The basic computer vision architecture is by using a stereo camera pipeline, using
the data collected in the rosbags the 3D mapping error based on the monocular
camera and the stereo camera pipeline is given with reference to the distance. It's
clear how important is the perception redundancy, as the error of the monocular
camera in the short range is way better than the stereo camera while the stereo
camera exceeds the performance of the monocular camera in the mid and long
range, this is according to the setup of the camera as illustrated in the system
architecture. The following figure shows the results of the comparative study.
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Figure 5.24 Distance errors over various distances of Monocular and Stereo Camera

Distance errors over various distances are shown in Figure. Mean errors for the 20
seconds of recorded data were below 0.5m for both pipelines, and standard
deviations were below 5cm for the monocular pipeline and 10cm for the stereo
pipeline. Ground truth values for Euclidean distances from the cameras were
measured using a Leica Disto D1. The experiment was done statically to remove the
dependency on the vehicle’s state estimation system. The results reveal a maximum
effective disparity offset of 0.15 pixels in the stereovision pipeline achieved through
the clustering algorithm, which is 40% lower than the reported value on the
datasheet.
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Chapter 6: Conclusions and Future
Work

Autonomous driving is a fast growing field and a very challenging one,
combining computer vision algorithms, robotics, deep learning and creative
engineering. Developing software and testing it on hardware for autonomous
racing is even more challenging, but it massively quickens the creation of reliable
and robust autonomous urban vehicles that are ready to be deployed. With this
project, we have achieved very convincing results of using a single monocular
camera to guide a vehicle into unknown territories within a reliable redundant
perception pipeline, a localization & mapping module that effectively maps the track
being explored by the vehicle, and finally, a path planer & motion control module that
drives the vehicle to its fullest autonomously. This paves the way for testing this
software on real hardware, and builds the base for research in the field.

6.1. Faced Challenges

Every member in this project believed in it, and wanted to achieve the
greatest of results possible with whatever resources available. There were a lot of
challenges and hardships that we faced during our journey with this project, but with
enough dedication, out of the box thinking, and support from our supervisor, we were
able to get through them and accomplish a goal that we aspired for so long.

Building a workstation: In our project, we train highly complicated deep learning
models, develop complex modules and algorithms, and use ROS to integrate and
communicate between them, this requires a PC with a decent GPU and CPU. At the
start of the project, we didn't have such a PC, during the research and literature
review phase, we were able to save enough money and get our hands on a decent
PC that will satisfy the project needs.

Collecting cones dataset: For the perception pipeline, the object detector
functionality is to detect and classify blue and yellow cones, we weren’t able to find
any open source cones images dataset. Later on, we found a dataset by Formula
Student Driverless teams that required a contribution of at least 600 cones images to
be downloadable for other teams, we were able to get our hands on cones, and
obtain 600 images and download a 8000 images dataset containing more than
30,000 cones.
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Labelling cones dataset: The cones dataset was a very good dataset, containing
images of cones in very random and challenging conditions, however, it wasn’t
labelled by cones color. Labelling such a huge dataset was such a big challenge, but
we were able to develop a manual annotation tool using Python, and spent three
full days, working about 16 hours per each day, labelling the dataset.

Recorded vehicle data: In order to be able to test the developed software for the
vehicle, and then deploy such software on real hardware, we needed recorded data
of a vehicle moving, such data shall contain various sensor readings and recorded
frames through a camera on the vehicle. In our initial plan, we were willing to use the
Cairo Uni Racing Team 2019 electric vehicle, but due the COVID-19 issues that was
not possible anymore. We were then able to reach out to other formula student
teams, and get our hands on some of their recorded data, we fused a lot of sent data
together and were able to create our own test cases and scenarios that are going to
match with the hardware we will be using in the future.

6.2. Gained Experience

This project was a great journey overall, throughout our work we learnt and
gained hand-on experience in lots of fields.

First things first, in the beginning of this project, we began a research phase
that lasted for about 3-4 months. Throughout this phase, we finished two Udacity
Nanodegrees; Deep Learning Nanodegree, and Self-Driving Car Engineer
Nanodegree. In these two nanodegrees, we gained extensive academic and
practical knowledge in; neural networks, CNNs, recurrent neural networks,
sensor fusion, robot localization, path planning, and control.

Additionally, we completely studied more than 15 research papers; in pose
estimation, robot localization and mapping, object detection, autonomous racing
vehicles, PNP algorithm, depth estimation and many more. All that added to our
academic knowledge and allowed us to gain extensive experience in many fields and
apply gained knowledge and experience in our project.

Secondly, we gained a broad experience in PyTorch, and implementing deep
learning models completely using the framework. PyTorch is a very important and
reputable framework in deep learning, we gained experience in debugging model
training and inference, in data parallelism, and dynamic computational graphs.
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Thirdly, we gained respectable experience in deep learning models training
and optimization of training. During the literature survey, we trained multiple object
detectors to select the most suitable approach. That enhanced our understanding of
terms like precision, recall and mAP. Additionally, learning about selecting the best
training hyperparameters, and optimization algorithms.

Last, but not least, we gained great experience and became very familiar in
dealing with Robot Operating System (ROS). We developed a skeleton for the entire
project, using ROS. Additionally, integrated all the modules together, defining the
communication between all these modules.

6.3. Conclusions

Through hard work and dedication, time management, and support from our
supervisor, we are able to develop a complete, reliable and robust software of an
autonomous racing vehicle.

The software consists of a perception pipeline; that consists of two main
embedded pipelines, a monocular camera and a stereo camera pipelines, that work
together parrelly. The monocular pipeline effectively detects cones in a track, in a
real-time manner, and then classifies them according to their color, such detected
cones are then localized within the local map, their depth is estimated through the
application of key-points extraction and PNP algorithm. These cones locations
estimates are then fused with estimates from the stereo vision pipeline, which
provides more accuracy, and reliability through redundant perception. We believe
that with more time and research put into this pipeline, we can achieve results that,
in terms of accuracy, can be very close to results using a Lidar based sensing.
However, the vision range of the Lidar is much better than any vision sensors.

A localization and mapping module then localizes the vehicle in the global
map, while updating the map the cones position, additionally, the team developed
additional correctional algorithms, making the global mapping more intelligent and
error-prune.

The global map is then fed to a path planning and control module, that
generates the low level commands for the movement of the vehicle across the track,
with the target of achieving maximum performance and driving the vehicle to its
absolute limits.
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6.4. Future Work

1.

Create a Gazebo simulation, that is close as possible to the environment the
vehicle will deal with. The simulated vehicle model shall contain all the
sensing technologies that are on the vehicle. This simulation shall be used to
obtain more test data for software testing.

Obtain the actual hardware components; monocular & stereo camera, IMU
sensor, wheel odometry sensors, and vehicle embedded computer. Such
hardware shall be installed into the vehicle, and be used to record data of the
vehicle moving.

Test the developed software on Cairo Uni Racing Team 2019 electric vehicle,
after installing the hardware and software, and taking enough precautions.
Update the Model Predictive Controller to be a controller that utilizes
Reinforcement learning. A controller that gains experience within the
operation of the vehicle, and applies that experience in improving the vehicle
performance along the track.
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Appendix A: Development Platforms and
Tools

This section explains used tools, platforms, and hardware kits. Any ready-made
module used to build the AutoRace system. At first we will look for the hardware
used to develop this autonomous kit and then the software tools which are used to
construct and develop the full pipeline from the perception , localization, mapping, to
the motion control system.

A.1. Hardware Platforms

The following figure describes the Autonomous kit sensors and actuators which are
needed to convert cairo university racing team’s electric vehicles into autonomous
vehicles and to match the system architecture which is mentioned in chapter 4.

USB3
: Embedded Computer

Stereo Camera
CPU: Intel core i7-9750H,
RAM: 16 GB

GPU: NVIDIA GeForce RTX

2060 6 GB
UsSB3
CAN BUS

CAN BUS

Mono Camera

Torque Request

Eee e Electric VERIClE b+ o rreremomenensnsmenssnnes Steering angle

Steering wheel's — —a
Motor veu M

1
] _m Accelerator Pedal
; Motor
|II | °
[ =]
¥

““““““““

:

Figure A.1 Overview of the hardware sensors and actuators of the autonomous kit
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A.2. Software Tools

AutoRace was developed with python and C++, where python is used in the high
level tasks, and the C++ was used in the motion control when executed commands
by sending them to the VCU. Some packages are used in order to build the full
software stack.

A.2.1 NumPy

NumPYy is a library for the Python programming language, adding support for large,
multi-dimensional arrays and matrices, along with a large collection of high-level
mathematical functions to operate on these arrays.

A.2.2 OpenCV

OpenCV is a library of programming functions mainly aimed at real-time computer
vision. Originally developed by Intel, it was later supported by Willow Garage then
Itseez (which was later acquired by Intel). The library is cross-platform and free for
use under the open-source BSD license.

A.2.3 TensorFlow

TensorFlow is a free and open-source software library for dataflow and differentiable
programming across a range of tasks. It is a symbolic math library, and is also used
for machine learning applications such as neural networks. It is used for both
research and production at Google.

A.2.4 PyTorch

PyTorch is an open source machine learning library based on the Torch library, used
for applications such as computer vision and natural language processing, primarily
developed by Facebook's Al Research lab (FAIR). It is free and open-source
software released under the Modified BSD license.

A.2.5 ROS

Robot Operating System (ROS or ros) is robotics middleware (i.e. collection of
software frameworks for robot software development). Although ROS is not an
operating system, it provides services designed for a heterogeneous computer
cluster such as hardware abstraction, low-level device control, implementation of
commonly used functionality, message-passing between processes, and package
management. Running sets of ROS-based processes are represented in a graph
architecture where processing takes place in nodes that may receive, post and
multiplex sensor data, control, state, planning, actuator, and other messages.
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Despite the importance of reactivity and low latency in robot control, ROS itself is not
a real-time OS (RTOS). It is possible, however, to integrate ROS with real-time code.
The lack of support for real-time systems has been addressed in the creation of ROS
2.0, a major revision of the ROS API which will take advantage of modern libraries
and technologies for core ROS functionality and add support for real-time code and
embedded hardware.

A.2.6 Basic Detection Network YOLO

YOLO, is a new approach to object detection. Prior work on object detection
repurposes classifiers to perform detection. Instead, it frames object detection as a
regression problem to spatially separated bounding boxes and associated class
probabilities. A single neural network predicts bounding boxes and class probabilities
directly from full images in one evaluation. Since the whole detection pipeline is a
single network, it is optimized end-to-end directly on detection performance. We
have used the basic idea of the network to customize for our 2D object detection
module.
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Appendix B: Use Cases
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Figure A.2 Use case of the project
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Appendix C: User Guide

NVIDIA RTX 1060 Super or higher (with CUDA capabilities)
AMD Ryzen 5 3600xt or higher
DDR4 RAM - 16GB or higher

Install ROS Melodic : http://wiki.ros.org/melodic/Installation

Install CONDA Environment With Python 3.7 :

1) Hardware Platform

2) Software Platform
Install Linux-Ubuntu 18.04 LTS : https://releases.ubuntu.com/18.04/

https://docs.conda.io/projects/conda/en/latest/user-quide/tasks/manage-environment

s.html

3) Software Packages Requirements

CUDA>=10.1
python==3.6
numpy==1.16.4
matplotlib==3.1.0
torchvision==0.3.0

opencv_python==4.1.0.25

torch==1.1.0
requests==2.20.0
pandas==0.24.2
imgaug==0.3.0
onnx==1.6.0
optuna==0.19.0
Pillow==6.2.1
protobuf==3.11.0
pymysql==0.9.3
retrying==1.3.3
tensorboardX==1.9
tqdm==4.39.0
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4) Training and Inference The detection network
Get the cones dataset and extract it.
Get the labels of the dataset as a CSV file.
Training command:
pythong3 train.py --model_cfg=model_cfg/yolo_baseline.cfg
--weights_path=dataset/sample-yolov3.weights
Once you've finished training, you can access the weights file in ./outputs/
Inference command:
python3 detect.py --model=<path to .pt weights file> --img=<path to an
image>
Once you've finished inference, you can access the result in
Joutputs/visualization/

5) Training and Inference The feature extraction network
Get the cones dataset and extract it.
Get the labels of the dataset as a CSV file.
Training command:
python3 train_eval.py --study_name=<name for this experiment>
Once you've finished training, you can access the weights file in ./outputs/
Inference command:
python3 detect.py --model=<path to .pt weights file> --img=<path to an
image>
Once you've finished inference, you can access the result in
Joutputs/visualization/

6) Launching the whole program on ROS

To simulate and visualize the whole project get the rosbag and go to in the
terminal to its directory and play it by this command:

-rosbag play “Name of the rosbag”

Open rViz to visualize and simulate the project by this command:

-ros run rViz rViz
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Appendix E: Feasibility Study
E.1 Economic Feasibility

In this section, the initial costs needed for the development and completion of

the project are stated. Additionally, the cost estimation for future improvements of the
project, and testing the developed software on real hardware is also added.

E.1.1 Initial Costs

Table E.1 Initial costs of the project

Item Cost Description Fulfilled
NVIDIA RTX 2060 8300 EGP | Graphical processing unit of workstation to develop YES
Super the project on. It will be mainly used to train deep

learning models and test the project modules.

AMD Ryzen 5 3600xt | 5000 EGP CPU of workstation. It was found that this processor YES
will give us enough computing power with its
multithreading properties and fairly fast clock speed.

DDR4 RAM - 16GB 1800 EGP Memory of the workstation. YES
1TB HDD + 250GB 2200 EGP HDD drive is for larger local files, SSD is mainly for
SSD workstations operating system to allow for faster

operation.
Other workstation 2700 EGP Casing - power supply - motherboard - Ethernet YES
components module.
Total: 20,000 EGP
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E.1.2 Cost Estimation for Future Improvements

Table E.2 Initial costs of the project

Item Cost Description Fulfilled
Embedded Computer | 31,000 EGP | This will act as the brain of the vehicle. The NO
- ASUS g731gv embedded computer will run and process the entire

code, and run the operating systems (ROS). It must
be compatible with TensorRT technology to allow
for real time capabilities.

Monocular Camera - 8200 EGP | The monocular camera that will input frames into NO
GoPro HERO 8 Black the perception pipeline. It must be an action camera
to ensure high quality frames at a high FPS.

Stereo Camera - ZED | 10800 EGP | The stereo camera for the stereo vision pipeline. NO
2
Total: 50,000 EGP
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E.2 Technical Feasibility

In this section, the risk assessment and solutions we anticipated will be stated.

Tables E.3, E.4, and E.5 show the criterias we used to evaluate a potential risk.

Likelihood

1= Very unlikely
2= Unlikely

3= Likely

4= “ery Likely
5= Almost certain

Potential
Severity
Minimal
Delay of 1-2
1= day(s)
Medium-ran
ge delay of
2= 3-6 days.
High delay
3= of 1 week.
More than 1
4= week delay.
A delay that
will directly
delay a goal
from being
5= achieved.

Risk Rating

14 Low

5-8 Medium
9.25
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Table E.6 shows our risk assessment and solutions.

Risk

Existing controls

Econimical inability to buy a
workstation.

Use online resources like Google
Colab or AWS.

Research phase fails to prepare
members for the next phases of
the project.

The team members already have fairly
good knowledge in the field, the
courses that were selected have high
ratings and excellent reviews, and the
papers used have excellent results,
were published in reputable articles.

Risk Rating
(L X 5)

Additional controls

Additional controls can be using CUFE
existing servers or GPUs with
coordination with our supervisor.
Additionally, there are a lot of internet
cafes with decent workstations, we can
get a deal with one of them and use with
their machines regularly.

The timeline schedule gives the team the
opportunity to extend the research phase,
if needed, and still be able to finish the
design within the deadline.

Selecting false approaches, or
big errors in the designs.

Research phase should have given the
members the enough knowledge to be
able to select the proper approaches
and designs.

Team members failing to
implement selected approaches.

The research phase should have given
the teams the enough knowledge.
Additionally, spending enough time in
the modeling phase should give the
team members the ability to select the
right approaches, that are feasible.

The timeline schedule shall give the team
enough time to redesign or reselect
different approaches and still be able to
finish the project within the deadline.

The timeline schedule gives the team
members a fairly big period of time, that
shall be more than enough to finish all the
project modules, test them and finally
integrate them.
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E.3 Schedule Feasibility

In order to finish this project efficiently and manage to stay within the time
limits, we managed to plan a timeline for the entire project. Figure E.1 shows a
Gantt chart that shows how we divided the project into four main phases.

The research phase (09/01/19 - 01/01/20); is the learning period, throughout
this phase the team members should study two main courses and start literature
review, gathering enough knowledge and background information that shall give the
team enough push to start designing and implementing the project.

The modeling phase (01/10/20 - 02/10/20); this is mainly the design phase,
in this phase an initial design shall be made for all the modules of the project,
modeling these designs in the form of block diagrams, selecting software and
simulation tools and preparing an integration plan.

The prototyping phase (02/10/20 - 06/10/20); this is the phase where the
designs shall be implemented, programming all the main modules, doing system
testing, integrating all the modules and then testing the entire system.

The documentation phase (04/10/20 - 07/10/20); in this phase, the entire
project shall be documented, focusing on documenting the approaches & the
implementations used, the testing procedures, and the outputs of the project.

158 | Page



1.1

1.2

1.3

1.4

1.5

21

2.2

2.3

2.4

3.1

3.2

3.3

3.4

4.1

4.2

Table E.7 shows the Gantt chart of the prototyping (implementation phase).

Task

Research Phase

Bachine Leaming Nancdegres

Self Driving Car Manodegres

Research Paper (Literature Review)

Hardware Compaonent Selection

YOLOw3 High fps Cone Detection and Classifier using OpenCv and CUDA
Modeling Phase

bodeling Pernception Pipeline Software Architecture
Bodeling Localization & Mapping Architecture
rodeling Trajectony planning Architecture

Design of a Complete Circuit Schenmatic
Prototyping Phase

Implementing Designs

Unit Testing

Integrating All Systems

System Testing

Documentation phase

GP Document and Presentation

Research Reporting

Start
Sun 9/0L19

Wed L0120

Mon 2/10/20

Fri 4110420

End
wied 1i01/20

Mon 2/10020

Wed &/10/20

wed 7/22/20

Progress

100%
100%
100%
100%
100%
100%
100%
100%
100%
100%
100%
100%
100%
100%
100%
100%
100%

100%

Due to the complexity and difficulty of the prototyping phase, we created a dedicated
timeline for that phase. Table E.7 and E.8 shows the Gantt chart of the prototyping

(implementation phase).
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Table E.8 shows the Gantt chart of the prototyping (implementation phase).

WES Task Start End Progress %
1 Monocular Camera Perception Module Mon 211020 Fri /10420 10096
11 Training ohject detection module with 50,000 cone images dataset. 10074
12 Implement key points extraction deep neural network (Reshet). 10084
13 Trairing ResMet module with 200,000 cone batches dataset. 1004
14 Integrate object detection module with the Reshiet. 1004
15 Test with a video input and owtput cone batches with 7 key points. 1004
16 Discover different moton control algorithms to drive the vehicle through the planed path 1004
2 Monocular Camera Localization Module Fri 410420 Fri 50020 1009
21 Implement PP algarithm to localize 30 position of cones. 10074
232 Intagrate the PMP algarithm with the two modules. 10084
23 Test PMP algorithm on single frames (set of batches). 1004
24 Integrate the three modules 1o work on video [set of frames). 1004
25 Impelement & simulink MPC model and run simulatiors 1004
3 Mapping and visualization Fri 5/01/20 ‘Wed B1020 100%
3.1 Implement the seli Iocalization algorithm from estimated cones poistions. 10094
3.2 Construct & 30 map of complete track from input videa. 10084
33 Constructad & skeleton to integrate the vehicle modules using & Robaotics Operating Systems (ROS) 10084
34 Implemented a 30 visuakzation map using the robotics operating system (rviz) 1004
35 Imposted the vehicle and rack cones model into the visualization for simulagon and testing 1004
36 Impelement & MPC C++ node o be deployed in the vehicle skeleton 1004
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