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Project Summary 
 

This project aims to create a formula1-class AI driver, developed to drive a 

high performance autonomous racing vehicle. The approach that was used 

combines state-of-the-art techniques from different fields of robotics, 

computer vision and control. Specifically, perception, estimation, and 

control are incorporated into one high performance autonomous car. Starting 

with the perception, a robust & reliable software pipeline for a single 

monocular camera was developed with the purpose of getting the most 

accurate results in estimating the 3D positions of track landmarks, and then 

fusing these results with a stereo camera pipeline to further improve 

perception accuracy and achieve redundant-perception. For localization 

and mapping, a simultaneous localization and mapping system that utilizes 

data from various sensing technologies in the vehicle, ensuring that the 

vehicle is accurately localized and the map is always updated in a real time 
Manner. Subsequently, a path planning algorithm was applied such that it 
chooses the mid-point path along the track length. Lastly, a model predictive 
controller was implemented to generate a trajectory that maximizes the 
vehicle’s performance, minimizes lap time, and uses low-level hardware 
commands to control the vehicle. 
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Abstract  
This   project   aims   to   create   a   formula1-class   AI   driver,   developed   to   drive   a  

high   performance   autonomous   racing   vehicle.   This   AI   driver   is   created   to   replace  
human   drivers,   in   order   to   eliminate   human   error,   and   drive   the   vehicle   to   its   fullest  
allowing   racing   car   manufacturers   to   test   the   full   performance   potential   of   the  
vehicle.   The   project   gives   a   contribution   to   the   racing   motorsports   industry   which   in  
turn   serves   for   a   development   in   the   sense-plan-act   cycle   of   the   urban   autonomous  
vehicles   that   is   trying   to   reach   full   autonomy.  

 
In   order   to   fulfill   the   Society   of   Automation   Engineers   (SAE)   level   4   autonomy,  

no   driver   attention   must   be   required,   even   in   emergency   situations.   Although   a  
major   part   of   autonomous   driving   on   the   public   roads   will   happen   in   standard  
situations,   a   crucial   aspect   to   reach   full   autonomy   is   the   ability   to   operate   a   vehicle  
close   to   its   limits   of   handling.   Much   like   traditional   motorsports,   autonomous   racing  
provides   a   platform   to   develop   and   validate   new   technologies   under   challenging  
conditions.   Self-driving   race   cars   provide   a   unique   opportunity   to   test   software  
required   in   autonomous   transport,   such   as   redundant   perception,   failure   detection,  
and   control   in   challenging   conditions.  

 
The   approach   that   was   used   combines    state-of-the-art   techniques    from  

different   fields   of    robotics,   computer   vision   and   control .   Specifically,   perception,  
estimation,   and   control   are   incorporated   into   one   high   performance   autonomous   car.  
Starting   with   the   perception,   a   robust   &   reliable    software   pipeline   for   a   single  
monocular   camera    was   developed   with   the   purpose   of   getting   the   most   accurate  
results   in   estimating   the   3D   positions   of   track   landmarks,   and   then   fusing   these  
results   with   a    stereo   camera   pipeline    to   further   improve   perception   accuracy   and  
achieve    redundant-perception .   For   localization   and   mapping,   a   simultaneous  
localization   and   mapping   system   that   utilizes   data   from   various   sensing  
technologies   in   the   vehicle,   ensuring   that   the   vehicle   is   accurately   localized   and   the  
map   is   always   updated   in   a   real   time   manner.   Subsequently,   a    path   planning  
algorithm    was   applied   such   that   it   chooses   the   mid-point   path   along   the   track  
length.   Lastly,   a    model   predictive   controller    was   implemented   to   generate   a  
trajectory   that   maximises   the   vehicle’s   performance,   minimizes   lap   time,   and   uses  
low-level   hardware   commands   to   control   the   vehicle.  

  The   project   outputs   a   complete   simulated   intelligent   model   that   is   capable   of  
exploring   an   unknown   track,   detecting   landmarks,   while   simultaneously   mapping   the  
track   and   localizing   itself,   to   finally   generate   a   trajectory   that   enforces   maximum  
performance   along   the   track,   and   hopefully   getting   deployed   in   the   previously  
developed   electric   racing   vehicle   by   the   team   (Cairo   University   Racing   Team)  
developing   this   project.  
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 الملخص 
  
 ھدف   ھذا   المشروع   ھو   إنشاء   سائق   ذو   ذكاء   اصطناعي   من   فئة   الفورمولا    1،   تم   تطویره   لقیادة   سیارة   سباق   ذاتیة   التحكم 

 عالیة   الأداء.     بحیث   یتم   إنشاء   سائق   ذو   ذكاء   اصطناعي   لیحل   محل   البشر،   من   أجل   القضاء   على   الأخطاء   البشریة،   وقیادة 
 السیارة   إلى   أقصى   حد،   حیث   یسمح   لمصنعي   سیارات   السباق   باختبار   إمكانات   الأداء   الكامل   للسیارة.   ویعد   المشروع 

 مساھمة   في   مجال   ریاضة   السباق،   والتي   تساعد   بدورھا   في   تطویر   دورة   الاستشعار   والتخطیط   والفعل   التي   تتبعھا 
 السیارات   ذاتیة   القیادة،   والتي   تسعى   لتحقیق   الاستقلال   الكامل   عن   العنصر   البشري. 

 
 من   أجل   تحقیق   التحكم   الذاتي   من   المستوى   الرابع   لجمعیة   مھندسي   التشغیل   الآلي   (  SAE)،   لا   یجب   الانتباه   أو   الاعتماد 

 علي   السائق،   حتى   في   الحالات   الحرجة   والطارئة.   وبالرغم   من   أن   جزءًا   كبیرًا   من   القیادة   الذاتیة   على   الطرق   العامة 
 سیحدث   في   الحالات   الإعتیادیة،   فإن   أحد   الجوانب   الحاسمة   والمھمة   للغایة   للوصول   إلى   التحكم   الذاتي   الكامل   ھو   القدرة 

 على   تشغیل   السیارة   قریبة   من   اقصى   حدود   أدائھا. 
 وكما   یشبھ   إلى   حد   كبیر   ریاضة   السیارات،   فقد   وفر   سباق   السیارات   ذاتیة   القیادة   منصة   لتطویر   والتحقق   من   التقنیات 

 الجدیدة   في   ظل   ظروف   قیادة   صعبة.   وتوفر   سیارات   السباق   ذاتیة   القیادة   فرصة   فریدة   من   نوعھا   لاختبار   البرامج 
 المطلوبة   في   وسائل   النقل   ذاتیة   القیادة،   مثل   الإدراك   أو   المعرفة   الزائدة،   واكتشاف   الأعطال،   والتحكم   في   الظروف 

 الصعبة. 
 

     ویجمع   ھذا   النھج   الذي   تم   استخدامھ   بین   أحدث   التقنیات   من   مجالات   مختلفة   من   علم   الروبوتات   وأنظمة   إبصار   الحاسب 
 الآلي   والتحكم.   على   وجھ   التحدید،   یتم   دمج   الإدراك   والتقدیر   والتحكم   في   سیارة    ذاتیة   القیادة     عالیة   الأداء.   بدءًا   من 

 الإدراك،   تم   تطویر   خطوات   تنفیذ   البرمجیات   بشكل   قوي   وموثوق   بھ   كامیرا   أحادیة   العدسة   بھدف   الحصول   على   النتائج 
 الأكثر   دقة   في   تقدیر   المواضع   ثلاثیة   الأبعاد   للمسار،   ثم   دمج   ھذه   النتائج   مع   خطوات   تنفیذ   البرمجیات   كامیرا   ثنائیة 

 العدسات   لتحسین   دقة   الإدراك. 
 من   أجل   تحدید   موقع   السیارة   وتخطیط   المسار،   یستخدم   نظام   تحدید   موقع   السیارة   وتخطیط   المسار   بشكل   متزامن   البیانات 

 من   تقنیات   الاستشعار   المختلفة   في   السیارة،   مما   یضمن   تحدید   موقع   السیارة   بدقة   وتحدیث   الخریطة   دائمًا   في   الوقت 
 الفعلي. 

 
 بعد   ذلك،   تم   تطبیق   خوارزمیة   تخطیط   المسار   بحیث   یختار   مسار   نقطة   المنتصف   على   طول   المسار.   أخیرًا،   تم   تنفیذ 

 وحدة   تحكم   تنبؤیة   نموذجیة   لإنشاء   مسار   یزید   من   أداء   السیارة   إلى   أقصى   حد   ویقلل   وقت   الدورة   ویستخدم   الأوامر   سھلة 
 التعامل   مع   السیارة   بغرض   التحكم   في   السیارة. 

 ینتج   المشروع   نموذجًا   ذكیاً   كاملاً   ومحاكیاً   قادرًا   على   استكشاف   مسار   غیر   معروف،   واكتشاف   المعالم،   وفي   نفس   الوقت 
 رسم   خریطة   المسار   وتحدید   موقع   السیارة،   لإنشاء   مسار   یفرض   الحد   الأقصى   من   الأداء   على   طول   المسار،   ویتم   نشره 

 في   سیارة   السباق   الكھربائیة   التي   تم   تطویرھا   سابقاً   من   قبل   الفریق   (فریق   جامعة   القاھرة   لسباقات   السیارات). 
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Chapter   1:   Introduction  
Autonomous   racing   has   grown   in   popularity   in   the   past   years   as   a   method   of   pushing  
the   state-of-the-art   for   various   autonomous   robots.    Self-driving   vehicles   improved  
safety,   universal   access,   convenience,   efficiency,   and   reduced   costs   compared   to  
conventional   vehicles.   There   is    no   driver   attention   must   be   required   to   fulfil   even   in  
emergency   situations   and   under   challenging   weather   conditions,   a   crucial   aspect   to  
reach   full   autonomy   is   the   ability   to   operate   a   vehicle   close   to   its   limits   of   handling.  
 
We   will   describe   in   this   report   our   project   and   give   an   entire   autonomous   racing  
platform,   covering   all   required   software   modules   reaching   from   environment  
perception   to   vehicle   dynamics   control.   Our   project   is   divided   into   three   main   parts  
which   is   perception,   simultaneous   localization   and   mapping,   and   motion   control.  
Starting   with   the   perception   pipeline,   the   developed   system   works   using   stereo  
camera   and   monocular   camera.For   localization   and   mapping,   we   utilize   a   graph  
based   SLAM   system,   facilitating   the   detection   and   association   of   landmarks.  
Subsequently,   we   propose   a   custom   approach   to   plan   paths   which   takes   the    center  
of   the   track   boundaries.   Lastly,   we   present   a   control   framework   that   directly  
minimizes   lap   time   while   obeying   the   vehicle’s   traction   limits   and   track   boundary  
constraints   using   a   model   predictive   control   controller.  
 
This   project   aims   to   create   a   formula1-class   AI   driver   developed   to   drive   a   high  
performance   autonomous   racing   vehicle   which   is   created   to   replace   human   drivers,  
in   order   to   eliminate   human   error,   and   drive   the   vehicle   to   its   fullest   allowing   racing  
car   manufacturers   to   test   the   full   performance   potential   of   the   vehicle.   The   project   is  
divided   into   three   main   modules;    Perception   &   Mapping,   Trajectory   Planning   and  
Motion   Control.   The   perception   and   mapping   module   is   divided   into   two  
sub-modules;   the   perception   sub-module   which   is   concerned   with   detecting   and  
localizing   blue   and   yellow   cones,   this   information   is   then   fed   to   the   mapping  
submodule,   which   constructs   a   full   map   of   the   track.   The   trajectory   planning   module  
is   concerned   with   using   the   suitable   algorithms   to   figure   out   a   path   around   the   track.  
The   motion   control   module   goal   is   to   drive   around   the   track   as   fast   as   possible   while  
respecting   the   vehicle’s   model   and   track   constraints.   
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1.1. Motivation   and   Justification  
 
This   project   presents   the   algorithms   and   system   architecture   of   a   high   performance  
autonomous   racecar.   The   introduced   vehicle   is   powered   by   a   software   stack  
designed   for   robustness,   reliability,   and   extensibility.   In   order   to   autonomously   race  
around   a   previously   unknown   track,   the   proposed   project   combines   state-of-the-art  
techniques   from   different   fields   of   robotics.   Specifically,   perception,   estimation,   and  
control   are   incorporated   into   one   high-performance   autonomous   racecar.  
 
This   project   aims   to   create   a   formula1-class   AI   driver,   developed   to   drive   a   high  
performance   autonomous   racing   vehicle.   This   AI   driver   is   created   to   replace   human  
drivers,   in   order   to   eliminate   human   error,   and   drive   the   vehicle   to   its   fullest   allowing  
racing   car   manufacturers   to   test   the   full   performance   potential   of   the   vehicle.  
  The   project   gives   a   contribution   to   the   racing   motorsports   industry   which   in   turn  
serves   for   a   development   in   the   sense-plan-act   cycle   of   the   urban   autonomous  
vehicles   that   is   trying   to   reach   full   autonomy.  
 
          The   need   for   High   Performance   Autonomous   Vehicles  
  Higher   levels   of   autonomy   have   the   potential   to   reduce   risky   and   dangerous   driver  
behaviors.   The   greatest   promise   may   be   reducing   the   devastation   of   impaired  
driving,   drugged   driving,   unbelted   vehicle   occupants,   speeding   and   distraction.  
People   with   disabilities,   like   the   blind,   are   capable   of   self-sufficiency,   and   highly  
automated   vehicles   can   help   them   live   the   life   they   want.   In   a   fully   automated  
vehicle,   all   occupants   could   safely   pursue   more   productive   or   entertaining   activities,  
like   responding   to   email   or   watching   a   movie.   Autonomous   vehicles   maintain   a   safe   
 

  
                      Figure1.1:   Autonomous   Formula   Race   Car  
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and   consistent   distance   between   vehicles,   helping   to   reduce   the   number   of   stop   
and-go   waves   that   produce   road   congestion.   Thus,   Self-driving   vehicles   promise  
significantly   improved   safety,   universal   access,   convenience,   efficiency,   and   reduced  
costs   compared   to   conventional   vehicles.   
 
In   order   to   fulfill   the   Society   of   Automation   Engineers    level   4   autonomy,   no   driver  
attention   must   be   required,   even   in   emergency   situations   and   under   challenging  
weather   conditions.   Although   a   major   part   of   autonomous   driving   on   the   public   roads  
will   happen   in   standard   situations,   a   crucial   aspect   to   reach   full   autonomy   is   the  
ability   to   operate   a   vehicle   close   to   its   limits   of   handling,   i.e.   in   avoidance   maneuvers  
or   in   case   of   slippery   surfaces.  
In   general,   autonomous   vehicles   have   lots   of   benefits   as   it   helps   in   reducing   traffic  
deaths   as   they   eliminate   human   error,   drop   in   harmful   emissions   as   fewer   accidents  
mean   less   traffic   congestion   which   means   drop   in   harmful   emissions.   It   also   will  
improve   fuel   economy   and   reduce   travel   time.  
 

1.2. The     Essential   Question  
 

According   to   a   report   by   statista[],   one   in   each   ten   cars   will   be   autonomous   by  
2030.   Billions   have   been   spent   on   R&D   in   the   field   of   self-driving   vehicles,   and   car  
manufacturer   giants,   have   all   switched   their   interests   into   deploying   self-driving   cars.  
That’s   why,   developing   artificially   intelligent   agents   capable   of   driving   racing   vehicles  
into   unknown   territory,   with   high   performance   and   reliability;   serves   the   goal   of  
deploying   autonomous   vehicles   into   real   roads.   

We,   in   this   project,   are   developing   software   and   algorithms   that   create   a   driver  
capable   of   achieving   high   performance,   reliability,   and   robustness.   Which   makes   us  
competitive   graduate   engineers,   indulged   into   international   innovations   and  
researches,   ready   to   continue   research   and   definitely   learning   in   the   field,   effectively  
contributing   to   sustainable   development   in   Egypt,   and   allowing   us   to   serve  
individuals,   society   and   the   environment.   
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1.3. Project   Objectives   and   Problem   Definition  
 
There   are   mainly   two   approaches   that   can   be   taken   in   order   to   develop   an  
autonomous   car.    An   end-to-end   approach    through   imitation   learning   and  
learning-by   demonstration   and   transfer   learning.   Such   an   approach   firstly   requires  
creating   a   test   environment   in   order   to   engineer   such   a   system   is   not   only  
cumbersome   and   expensive,   but   also   quite   complex   due   to   safety   considerations.  
Secondly,   building   an   end-to-end   system   requires   several   complex   engineered  
systems,   both   in   hardware   and   software,   to   work   together   -   often   such   integrations  
are   challenging,   and   such   dependencies   can   greatly   impede   rapid   development   of  
individual   systems   (e.g.,   progress   on   autonomous   software   stack   crucially   depends  
upon   bug-free   hardware).   Finally,   much   of   the   recent   autonomous   system   modules  
depend   upon   the   ability   to   collect   a   large   amount   of   training   data.   Such   data  
collection   is   not   scalable   in   real-world   due   to   both   the   complexity   as   well   as   resource  
requirements   to   carry   out   such   training   missions.   These   problems   are   alleviated   by  
training   and   validating   an   autonomous   stack   in   simulation.   Such   simulations   allow   to  
mitigate   risks   associated   with   safety,   enable   bypassing   the   need   to   access   a   closed  
off-road   track   and   minimize   the   dependency   on   the   development   of   the   hardware  
stack.   Most   importantly,   such   simulations   allow   gathering   data   at   scale,   in   a   wide  
variety   of   conditions,   which   is   not   feasible   in   the   real-world.   The   simulations   can  
consist   of   a   dynamic   model   of   a   custom   car,   a   variety   of   racetrack   scenes   and  
synthesis   of   different   weather   conditions.   Such   simulations   can   indeed   be   very   useful  
in   building   autonomous   systems   that   can   be   deployed   in   the   real-world.   
 
The   second   approach     combines   state   of   the   art   techniques    from   different   fields  
of   robotics.   Specifically,   perception,   estimation,   and   control   are   incorporated   into   one  
high   performance   autonomous   car.   Starting   with   the   perception,   systems   can   be  
developed   to   work   using   either   a   LiDAR,   vision   sensors   or   both.   Next,   the   motion  
estimation   subsystem   fuses   measurements   from   different   sensors.   For   localization  
and   mapping,   a   SLAM   system   shall   be   used,   facilitating   the   detection   and  
association   of   landmarks.   Subsequently,   an   approach   to   plan   paths   can   be   taking   the  
most   likely   track   boundaries   into   account,   given   a   map   and/or   on-board   perception.  
Lastly,   a   control   framework   that   directly   minimizes   lap   time   while   obeying   the  
vehicle’s   traction   limits   and   track   boundary   constraints.   
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Project   Objectives:  

 ●  Provide  an  AI  Driver  ready  to  race  and  adapt  with  a  racing  vehicle  by  driving  it                   
through   the   track   as   fast   as   possible   to   test   and   expose   its   dynamic   power.  

 ●  Test  the  software  required  in  autonomous  transport  in  urban  cities  regarding              
redundant   perception,   failure   detection,   and   control   in   challenging   conditions.  
 
 
To   achieve   these   objectives,   our   project’s   goal   is   to   create   a   formula1-class   AI   driver,  
developed   to   drive   a   high   performance   autonomous   racing   vehicle.   WE   create   this   AI  
driver   to   replace   human   drivers,   in   order   to   eliminate   human   error.   This   Project   is  
divided   into   3   main   modules   which   we   will   talk   about   each   one   in   full   details   in   our  
document.   these   modules   are:  
 

1. Perception   &   mapping:  
 The  goal  of  the  perception  pipeline  is  to  efficiently  provide  accurate  cone  position               

and   color   estimates   as   well   as   their   uncertainties   in   real-time   with   very   high   speed.  
 

2. Trajectory   planning:  
 Processing  steps  that  are  used  to  output  the  reference  path  of  the  vehicle  should                

be  always  close  to  using  cone  colors  and  trigonometry  which  is  the  centerline  of  the                
track.  If  the  vehicle  kept  to  this  path,  it  will  be  sure  that  the  vehicle  will  never  report                   
an   error   by   hitting   a   cone   or   getting   out   of   its   boundaries.  
 

3. Motion   Control:  
 The  car  now  knows  the  track  layout  and  can  localize  itself  within  the  environment.                

Given  this  capability,  we  can  race  the  car  around  a  known  track.  Which  brings  us  to                 
our  motion  planning  problem  where  the  goal  is  to  drive  around  the  track  as  fast  as                 
possible.  
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1.4. Project   Outcomes  
 
  The   project   outputs   a   complete   simulated   intelligent   model   that   is   capable   of  
exploring   an   unknown   track   ,   detecting   landmarks(track   cones)   of   an   unknown   track  
with   a   full   monocular   perception   pipeline   with   a   stereo   pipeline   as   a   redundant  
perception,   while   simultaneously   mapping   the   track   and   localizing   itself   using   the  
K-means-based   Global   Mapping    algorithm   to   build   the   map   of   the   unknown   track  
using   the   sensor   fusion   and   Extended   Kalman   Filter   (EKF),   to   finally   generate   a  
trajectory   that   enforces   maximum   performance   along   the   track,   and   hopefully   getting  
deployed   in   the   previously   developed   electric   racing   vehicle   by   the   team   (Cairo  
University   Racing   Team)   developing   this   project.   The   hardware   platform   of   this  
project   is   an   autonomous   kit   with   embedded   computer   and   a   lot   of   sensors   like  
Monocular   camera,   Stereo   camera,   IMU,   and   wheel   odometry   sensors.  
 
 

 
 
 
      Figure   1.2   Project   Main   Outcomes  
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1.5. Document   Organization  
We   will   talk   in   the   following   chapters   in   full   details   about   market   visibility   study   such  
as   targeted   customers,   market   survey,   and   business   case   and   financial   analysis   as  
in   chapter   two.  
 
Then   in   chapter   three   we   will   talk   deeply   about   literature   survey.   We   will   talk   about  
each   part   of   the   three   parts   of   our   project   which   is   perception   and   simultaneous  
localization   and   mapping   and   motion   control,   background   about   each   part,  
implemented   approach,   and   Comparative   Study   of   Previous   Work.  
 
In   chapter   four   we   are   going   to   discuss   system   design,   architecture   and   algorithms  
which   is   the   most   important   part   of   our   report   .   We   will   talk   in   this   chapter   about  
overview   and   assumptions,   functional   description   of   architecture,   modular  
decomposition   which   we   will   divide   each   module   into   submodules   and   talk   in   details  
about   sensors   and   controllers   and   components   that   are   used   to   build   this  
architecture,   design   constraints   and   some   block   diagrams.  
 
In   chapter   five   we   will   explain    testing   setup,   testing   plan   and   strategy,   test   schedule,  
comparative   results   to   previous   work,   faced   challenges   and   future   work.   We   also   will  
explain   how   we   test   each   module   individually   then   integrate   modules   in   addition   to  
showing   results   of   each   module   and   in   the   overall   system.   
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Chapter   2:   Market   Feasibility   Study  
The  global  autonomous/driverless  car  market  was  valued  at  USD  24.1  billion            

in  2019  and  is  expected  to  project  a  compound  annual  growth  rate  of  18.06%,  during                
the  forecast  period,  2020-2025.  Although  Level  4  and  Level  5  (as  scaled  by  SAE)               
autonomous  cars  are  unlikely  to  reach  wide  acceptance,  by  2030,  there  will  be  a               
rapid  growth  for  Level  2  and  Level  3  autonomous  cars,  which  have  advanced  driver               
assistance  systems,  like  collision  detection,  lane  departure  warning,  and  adaptive           
cruise  control.  Fully  autonomous  cars  are  not  going  to  reach  a  wide  customer  base,               
unless  they  are  secure  from  cyber-attacks.  If  such  concerns  are  addressed,  the             
autonomous  car  market  is  estimated  to  reach  USD  60  billion,  by  2030.  Major              
automaker  companies,  technology  giants  and  specialist  start-ups  have  invested          
more  than  USD  50  billion  over  the  past  five  years,  in  order  to  develop  autonomous                
vehicle  (AV)  technology,  with  70%  of  the  money  coming  from  other  than  the              
automotive  industry.  At  the  same  time,  public  authorities  see  that  AVs  offer  huge              
potential   economic   and   social   benefits.  
 

2.1   Targeted   Customers  
When   it   comes   to   marketing   your   business,   it's   all   about   defining   your   target.  

In   this   section,   targeted   customers   or   better   known   as   targeted   markets   will   be  
reviewed.   Based   on   market   needs   and   interests,   two   main   domains   of   customers  
were   focused   on.   
 

2.1.1    Automotive   Companies   (Valeo)  
Due   to   the   fact   of   self-driving   cars   being   the   future,   most   if   not   all   of  

automotive   companies   around   the   globe   are   shifting   their   interests   into   the  
development   of   autonomous   vehicles.   Companies   now   have   dedicated   teams   that  
are   working   day-in   &   day-out   developing   the   needed   software   and   hardware   that  
enables   the   deployment   of   autonomous   cars.   
 

On   a   local   level,    Valeo    is   a   main   targeted   company.   Valeo,   recently,   added   to  
their   interests   the   development   of   self   driving   car   software.   They   are   currently  
working   on   the   development   of   more   robust   and   real   time   algorithms   to   be   utilized  
into   self   driving   vehicles.   

Our   project   outputs   software   that   will   be   deployed   on   racing   vehicles,   which  
makes   it   very   robust,   real   time,   and   reliable.   Additionally,   our   project   paves   the   way  
for   more   research   and   additional   development   of   both   software   and   hardware  
needed   in   autonomous   vehicles.   We   believe   that   our   project   can   help   Valeo  
accomplish   their   goals   in   the   field.   

 

8   |    Page  
 



/

 

 

2.1.2   Computer   Vision   &   Robotics   Companies  
There   are   numerous   companies   in   Egypt   that   are   using   deep   learning  

techniques,   image   processing   and   computer   vision   algorithms   in   a   very   wide   range  
of   applications,   like;   real-time   monitoring   of   manufacturing   assembly   lines,   retails   in  
monitoring   malls   traffic   activities,   and   robots.   

In   our   project,   we   were   able   to   create   a   perception   pipeline   for   the   vehicle,  
that   utilizes   state-of-the-art   computer   vision   and   deep   learning   techniques,   and  
works   in   a   real-time   manner.   Through   tweaking   such   a   pipeline   software,   one   can  
add   a   variety   of   features   that   enables   such   software   to   be   used   by   such   companies  
in   a   wide   variety   of   applications.   

These   companies   are;   Avidbeam,   Sypron,   Avelabs,   Affectiva,   The   D.   GmbH  
and   InnoVision   Industries.   
 

2.2.    Market   Survey  
 
2.2.1.   Roborace  

Roborace  is  the  world’s  first  racing  series  for         
humans  and  artificial  intelligence.  It  was  created  to         
accelerate  the  development  of  autonomous      
software  by  pushing  the  technology  to  its  limits  in  a           
range  of  controlled  environments.  Roborace  is  a        
platform  for  the  development  of  autonomous       
technology  in  an  extreme  environment  and       
educates  the  public  about  the  benefits  and  safety  of          
these  technologies  when  they  make  it  onto  the         
roads   at   scale.                                                               Figure:   2.1   Roborace   cars   

  
Roborace  are  developing  autonomous  racing  electric  vehicles  with  the  target           

of  creating  autonomous  cars  race  competitions,  where  teams  can  excessively  test            
their  software  and  compete  against  each  other  in  a  real  world  environment.  It  gives               
organizations  developing  driverless  technologies  an  extreme  yet  safe  environment  to           
test  their  software  and  hardware  pushing  them  to  the  limits  of  their  capabilities.              
Robocar’s  Nvidia  Drive  PX2  GPU  “brain”  is  capable  of  up  to  24  trillion  A.I.  operations                
per   second.  
 

Despite  that  Roborace  can  be  seen  as  a  competitor,  we  believe  that  it  can  be                
better  seen  as  an  opportunity.  Using  our  software  and  hardware  experience  in             
developing  a  driverless  racing  vehicle,  we  can  be  among  the  teams  participating  in  a               
huge   autonomous   racing   competition.   
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2.3   Business   Case   and   Financial   Analysis   
A   business   that   develops   reliable   software   for   autonomous   vehicles,   and   builds   the  

base   of   research   in   the   field,   would   be   the   first   of   its   kind   in   Egypt.   We   expect   such   a  
business   to   boom   in   the   entire   middle   east   and   the   Arabic   world   due   to   it   being   the   first   of   its  
kind   in   the   area.   Such   a   business   creates   huge   chances   for   having   autonomous   software  
developed   entirely   in   Egypt   and   by   Egyptian   engineers,   only   if   it   was   studied   and   applied  
correctly.   
  

2.3.1   Business   Case  
Based  on  our  market  survey,  over  the  next  five  years  we  expect  that  we  can                

get  a  collaboration  deal  with  automotive  company Valeo. We  can  work  closely  with              
them  in  their  research  regarding  self-driving  vehicles,  directly  developing  software           
and   algorithms   in   the   field.  
 

Regarding  computer  vision  companies,  we  expect  developing  at  least  five           
applications  in  the  field.  Applications  that  utilize  computer  vision  and  deep  learning             
techniques   to   provide   solutions   to   modern   problems.   
 

2.3.2   Financial   Analysis  
a. The   Capex   (Capital   Expenditure):   

1. Two   workstation   machines:  
1.1.   2x   GPU   GTX   2080   TI   (48000   EGP)  
1.2.   2x   AMD   Ryzen™   Threadripper™   3970X   (64000   EGP)  
1.3.   2x   32GP   RAM   Corsair   Vengeance   RGB   Pro   DDR4   (4600   EGP)  
1.4.   2x   Case   and   other   main   peripherals   (16000   EGP)  

2. Worksight,  mainly  an  apartment  in  a  reputable  place  that  is  around  120             
meters   squared   (800,000   EGP)  

3. Office   Equipment   (chairs,   disks,   ...etc.)   (20,000   EGP)  
b. The   Opex   (Operational   Expenses):  

1. Monthly   Salaries:   
1.1   Four   Team   Leaders:   (12000   x   4   =   48000   EGP).  
1.2   Twelve   software   developers:   (8000   x   12   =   96000   EGP).  
1.3  Three  marketing  &  social  media  moderators  (5000  x  3  =  15000             
EGP).  
1.4   Two   cleaners   (2000   x   2   =   4000   EGP).  

2. Facility   costs:  
2.1   Electricity   (1000   EGP).  
2.2   Water   (150   EGP).  
2.3   Maintenance   costs   (2500   EGP)   

3. Online   marketing   and   sales   (500   EGP).  

10   |    Page  
 



/

 

Chapter   3:   Literature   Survey  
 
Autonomous   racing   presents   a   unique   opportunity   to   test   commonly-applied,   safety-critical  
perception,   and   autonomy   algorithms   in   extreme   situations   at   the   limit   of   vehicle   handling  
and   provides   the   opportunity   to   test   safety-critical   perception   pipelines   at   their   limit.   This  
section   describes   a   literature   background   for   each   module   in   the   autonomous   racing  
platform,   covering   all   required   software   modules   reaching   from   environment   perception   to  
mapping   and   control.   The   following   graph   shows   the   track   of   our   literature   survey   process   to  
develop   a   driverless   race   car.  
 
 
 
 

 
 
              Figure   3.1:   Literature   survey   steps   overview   graph  
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3.1   Literature   Review   on   Perception   techniques  
 
For   autonomous   vehicles,    perception   is   a   crucial   task   to   make   decisions,   plan,   and  
operate   in   real-world   environments,   by   means   of   numerous   functionalities   and  
operations   from   occupancy   grid   mapping   to   object   detection.    Nowadays,   most  
perception   systems   use   machine   learning   (ML)   techniques,   ranging   from   classical   to  
deep-learning   approaches.   Machine   learning   for   robotic   perception   can   be   in   the  
form   of   unsupervised   learning,   or   supervised   classifiers   using   handcrafted   features,  
or   deep-learning   neural   networks   (e.g.,   convolutional   neural   network   (CNN)),   or   even  
a   combination   of   multiple   methods.  
Regardless   of   the   ML   approach   considered,   data   from   sensor(s)   are   the   key  
ingredient   in   autonomous   vehicles   perception.   Data   can   come   from   a   single   or  
multiple   sensors,   usually   mounted   on   board   the   vehicle,   but   can   also   come   from   the  
infrastructure   or   from   another   vehicle    (e.g.,   cameras   mounted   on   UAVs   flying  
nearby).   In   multiple   detection   sensors   more   than   one   sensor   can   be   used    in   the  
perception   pipeline   according   to   the   design,   and   the   data   from   these   sensors   can   be  
fused   in   a   certain   way   to   use   it   to   localize   and   map   the   environment   around   the  
vehicle.   This   section   describes   the   different   types   of   perception   techniques   and  
approaches   and   describes   the   chosen   approach   in   our   driverless   race   car.   
 

3.1.1   Background   information  
 
The   main   goal   of   the   perception   pipeline   in   the   formula   racing   car   is   to   estimate   the  
position   and   the   color   of   the   track   cones   in   an   accurate   and   fast   way.   These  
estimations   and   detections   are   used   in   the   mapping   module   to   build   the   map   of   the  
track.   There   are   different   ways   to   perceive   the   track   environment:  
 
1)   LIDAR-based   Sensing  
LIDAR   is   a   surveying   technology   that   measures   distance   by   illuminating   a   target   with  
a   laser   light.   LIDAR   is   an   acronym   of   Light   Detection   And   Ranging,   (sometimes   Light  
Imaging,   Detection,   And   Ranging)   and   was   originally   created   as   a   portmanteau   of  
“light”   and   “radar.”  
In   order   to   perceive   the   track   cones’   position   and   color   in   this   technique   which   based  
on   LIDAR   the   perception   process   and   the   information   from   the   LiDAR   is   capitalized  
in   two   ways:  
1-The   3D   information   in   the   point   cloud   is   used   to   detect   cones   on   the   track   and   find  
their   position   with   respect   to   the   car.  
2-The   intensity   data   is   used    to   differentiate   between   the   various   colored   cones.  
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In   three   main   phases   which   are   pre-processing,   cone   detection,   and   color  
estimation,   the   cones   which   draw   the   track   are   detected   and   classified   using   the  
LiDAR   pipeline   shown   in   the   following   figure.  
 

 
 
Figure3.2:   The   LiDAR   pipeline   used   to   detect   cones   and   estimate   their   color  
 
 

a) Pre-Processing  
 
Due   to   the   placement   of   the   LiDAR   sensor   on   the   car,   only   cones   in   front   of   the   car  
can   be   perceived,   while   the   rear-view   is   occluded   by   the   racecar.   Thus   the   points  
behind   the   sensor   are   filtered   out.   The   LiDAR   sensor   cannot   inherently   estimate  
motion   which   can   lead   to   large   distortions   in   the   point   cloud   of   a   single   scan   and   the  
appearance   of   ghost   cones   if   not   accounted   for.   The   scanned   fractions   are   thus  
undistorted   by   using   the   velocity   estimates   of   the   car.  
An   adaptive   ground   removal   algorithm   (Himmelsbach   et   al.,   2010)   that   adapts   to  
changes   in   the   inclination   of   the   ground   using   a   regression   based   approach   is   used  
to   estimate   the   ground   plane   and   distinguish   between   the   ground   and   non-ground  
points,   after   which   the   ground   points   are   discarded   (Gosala   et   al.,   2018).   The   ground  
removal   algorithm   works   by   dividing   the   FoV   of   the   LiDAR   into   angular   segments  
and   splitting   each   segment   into   radial   bins    Figure   3.3-a.   A   line   is   then   regressed  
through   the   lowermost   points   of   all   bins   in   a   segment.   All   the   points   that   are   within   a  
threshold   distance   to   this   line   are   classified   as   ground   points   and   are   removed   see  
figure   3.3-b.  
 

13   |    Page  
 



/

 

Figure   3.3:   View   of   LiDAR  
 

b) Cone   Detection  
The   aforementioned   ground   removal   algorithm   removes   a   substantial   amount   of  
cone   points   in   addition   to   those   of   the   ground.   This   significantly   reduces   the   already  
small   number   of   return   points   that   can   be   used   to   detect   and   identify   cones.   This   is  
addressed   by   first   clustering   the   point   cloud   after   ground   removal   using  
Euclidean-distance  
based   clustering  
algorithm   and   then  
reconstructing   a  
cylindrical   area  
around   each   cluster  
center   using   points  
from   the   point   cloud  
before   ground  
removal.   This  
recovers   most   of   the  
falsely   removed   

       Figure   3.4:   An   illustration   of   the   cone   reconstruction   process  
 

points   improving   cone   detection   and   color   estimation.   The   reconstructed   clusters   are  
then   passed   through   a   rule-based   filter   that   checks   whether   the   number   of   points   in  
that   cluster   is   in   accordance   with   the   expected   number   of   points   in   a   cone.  
  In   Figure   3.4,   The   top-left   image   shows   the   LiDAR   point   cloud   after   executing   the  
adaptive   ground   removal   algorithm.   One   can   note   the   sparsity   of   the   point   cloud   and  
the   dearth   of   points   in   a   cone.   The   cones   are   reconstructed   by   retrieving   a   cylindrical  
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area   around   each   cluster   center   (top-right)   resulting   in   the   bottom   image   wherein    the  
presence   of   cones   is   more   evident.  
 
  

c) Cone   Pattern   Estimation   
According   to   the   rule   book   (FSG,   2018)    [1] ,   a   yellow   cone   has   a   yellow-black-yellow  
pattern   whereas   a   blue   cone   has   a   blue-white-blue   pattern   which   results   in   differing  
LiDAR   intensity   pattern   as   one   moves   along   the   vertical   axis   of   the   cone   as   shown   in  
Figure   3.5.    When   reading   the   intensity   values   along   the   vertical   axis,   one   denotes  
high-low-high   and   low-high-low   patterns   for   the   yellow   and   blue   cones   respectively.  
These   differing   intensity   patterns   are   used   to   differentiate   between   yellow   and   blue  
cones.  
 
 

Figure   3.5:   The   intensity   gradients   for   the   pre-defined   yellow   and   blue   cones   along  
with   their   point   cloud   returns.  
 
 
2)   Camera   based   Sensing   
Cameras   are   a   crucial   exteroceptive   sensor   for   self-driving   cars   as   they   are   low-cost  
and   small,   provide   appearance   information   about   the   environment,   and   work   in  
various   weather   conditions.   They   can   be   used   for   multiple   purposes   such   as   visual  
navigation   and   obstacle   detection.  
 

a) Stereo   Camera  
The   stereo   vision   system   is   one   of   the   popular   computer   vision   techniques.  
The   idea   here   is   to   use   the   parallax   error   to   our   advantage.   A   single   scene   is  
recorded   from   two   different   viewing   angles,   and   depth   is   estimated   from   the  
measure   of   parallax   error.   This   technique   is   more   than   a   century   old   and   has  
proven   useful   in   many   applications.   This   field   has   made   a   lot   of   researchers  
and   mathematicians   to   devise   novel   algorithms   for   the   accurate   output   of   the  
stereo   systems.   This   system   is   particularly   useful   in   the   field   of   robotics.   It  
provides   them   with   the   3D   understanding   of   the   scene   by   giving   them  
estimated   object   depths.   Stereo   depth   estimation   can   be   made   a   lot   more  
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efficient   than   the   current   techniques.   The   idea   revolves   around   the   fact   that  
stereo   depth   estimation   is   not   necessary   for   all   the   pixels   of   the   image.   This  
fact   opens   room   for   more   complex   and   accurate   depth   estimation   techniques  
for   the   fewer   regions   of   interest   in   the   image   scene.   
 
 
 

 
 
 

 
 
 

 
 
 
 
 
 
 

  Figure:   3.6   The   stereo   Setup   
 
This   instrument   was   first   described   to   us   in   1838   by   Charles   Whitestone   to  
view   relief   pictures.   He   called   it   the   stereoscope     [2] .   A   lot   of   other   inventors  
and   visionaries   later   used   this   concept   to   develop   their   versions   of  
stereoscopes.   It   even   led   to   the   establishment   of   the   London   Stereoscopic  
Company   in   1854.   The   concept   of   depth   estimation   using   multiple   views   was  
used   even   for   the   estimation   of   the   distance   of   the   far   away   astronomical  
objects   in   the   early   times.   The   depth   is   also   directly   proportional   to   the  
distance   between   the   two   cameras   of   the   stereo   vision   system,   also   called   the  
baseline.   Hence   the   estimation   of   such   vast   distances   demanded   us   to   use  
the   longest   possible   baseline   length   that   we   could   use.   So   the   data   was  
recorded   from   Earth   being   on   either   side   of   the   sun,   making   the   baseline  
length   to   be   the   same   as   the   diameter   of   the   Earth’s   orbit   around   the   sun,   and  
then   the   depth   of   the   astronomical   objects   is   measured.   This   method   was  
called   the   stellar   parallax   or   trigonometric   parallax   .  
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Using   the   concept   of   stereo   vision   it   is   shown   that   it   is   possible   to   use   the  
stereo   vision   in   the   perception   pipeline   of   the   driverless   racing   vehicle   and   in  
this   case   the   region   of   interest   that   we   need   to   know   its   depth   is   the   track  
cone   and   then   to   estimate   the   cone’s   position   in   the   3D   by   using   object  
detection   of   the   cones   to   extract   the   bounding   boxes   (Region   of   interest)   and  
then   using   the   feature   matching   and   triangulation   between   the   left   and   right  
frames   the   cone   position   in   3D   will   be   estimated.  
 

b) Mono   camera  
Unlike   the   stereo   camera   setup,   mono   camera   setup   can   be   used   in   the  
perception   pipeline   by   using   a   single   camera   we   can   localize   and   estimate   the  
3D   position   of   the   object   (track   cones   in   our   case).   The   literature   survey   of   this  
problem   is   described   in   detail   in   Section   3.3.  
 

 

3.1.2    Comprehensive   Study  
 
LIDAR    systems   are   currently   large   and   expensive   systems   which   must   be   mounted  
outside   of   vehicles.   The   system   Google   uses   is   in   the   range   of   80   kg   and   $70,000,  
for   example,   and   must   be   mounted   on   top   of   the   vehicle   with   unobstructed   sight  
lines.   Due   to   their   current   limitations,   the   systems   are   not   useful   for   detecting  
anything   near   the   car.   Current   implementations   have   improved   range   substantially  
from   early   30   meter   ranges   up   to   150   to   200   meter   ranges,   with   increases   in  
resolution   as   well.   At   present,   production   systems   with   higher   range   and   resolution  
continue   to   be   expensive.   LIDAR   works   well   in   all   light   conditions,   but   starts   failing  
with   increases   in   snow,   fog,   rain,   and   dust   particles   in   the   air   due   to   its   use   of   light  
spectrum   wavelengths.   LIDAR   cannot   detect   colour   or   contrast,   and   cannot   provide  
optical   character   recognition   capabilities.   Narrow-beam   LIDAR   has   been   used   for   20  
years,   but   current-generation   LIDAR   used   on   autonomous   cars   is   less   effective   for  
real-time   speed   monitoring.  
 
Camera    image   recognition   systems   have   become   very   cheap,   small,   and  
high-resolution   in   recent   years.   They   are   less   useful   for   very   close   proximity  
assessment   than   they   are   for   further   distances.   Their   colour,   contrast,   and  
optical-character   recognition   capabilities   give   them   a   full   new   capability   set   entirely  
missing   from   all   other   sensors.   They   have   the   best   range   of   any   sensor   but   that’s   in  
good   light   conditions.   Their   range   and   performance   degrades   as   light   levels   dim,  
starting   to   depend   —   as   human   eyes   do   —   on   the   light   from   headlights   of   the   car.   In  
very   bright   conditions,   it   is   apparently   possible   for   some   implementations   to   not  
identify   light   objects   against   bright   skies,   which   was   reportedly   a   factor   in   the   May  
2016   Tesla   Autopilot-related   fatality   in   Florida.   Digital   signal   processing   makes   it  
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possible   to   determine   speed,   but   not   at   the   level   of   accuracy   of   radar   or   LIDAR  
systems.  

Figure   3.7:   Camera   vs   LIDAR   comparative   study  
 

3.1.3   Implemented   Approach   
 
Due   to   the   logistics   and   financial   situation   of   bringing   the   LIDAR   as   mentioned   in   
Section3.3.2,   the   LIDAR   is   excluded   from   the   perception   pipeline,   For   the   perception  
pipeline   two-camera   architecture   were   deployed   with   a    stereo    camera   used   for  
long-range   detections   and   a    monocular    camera   for   short-range   detections.  
As   shown   in   Figure   3.8 .    Because   in   our   case   we   need   a   high   performance  
perception   pipeline   the   idea   of   redundant   perception   was   used,   and   by   fusing   the  
data   from   the   two   camera   setups   we   can   build   the   track   map   in   an   accurate   and   fast  
way.   
 
The   rationale   for   using   the   monocular   camera   for   short-range   rather   than   long-range  
detections   is   that   for   a   reasonable   mounting   height,   a   landmark’s   3D   location   on   a  
relatively   flat   surface   is   a   much   stronger   function   of   pixel   space   location   for  
short-range   objects   than   long-range   objects.   This   relieves   some   of   the   challenges   for  
estimating   landmark   pose   from   a   monocular   camera.      On   the   other   hand,   however,  
estimating   3D   pose   of   an   object   using   a   single   measurement,   i.e.   a   single   image  
from   a   monocular   camera   is   an   ill-posed   problem.   This   is   primarily   due   to   ambiguity  
in   the   scale   of   the   scene   arising   from   limited   information   of   the   surroundings.   This  
ill-posed   problem   of   extracting   pose   information   can   be   solved   if   a   priori   information  
about   the   3D   object   in   the   scene   is   available.   The   3D   priors   about   an   object,   in  
addition   to   2D   information   obtained   from   an   image   can   be   together   leveraged   to  
extract   3D   pose   of   this   object   captured   in   any   arbitrary   image   of   the   scene.   On   a  
real-time   system,   such   as   an   autonomous   race-car,   it   becomes   even   more   crucial   to  
detect   and   estimate   multiple   object   positions   extremely   efficiently,   with   a   little   latency  
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and   data   overhead   (in   terms   of   transport   and   processing)   as   possible.   The  
implementation   of   the   perception   pipeline   is   briefly    mentioned   in   chapter   4.  
 

 
  Figure   3.8:   Monocular   and   Stereo   camera   ranges  
 
3.2   Literature   review   on   Object   Detection   and  

Recognition  
 
Object   detection   is   a   crucial   task   for   autonomous   driving.   In   addition   to  
requiring   high   accuracy   to   ensure   safety,   object   detection   for  
autonomous   driving   also   requires   real   time   inference   speed   to  
guarantee   prompt   vehicle   control,   as   well   as   small   model   size   and  
energy   efficiency   to   enable   embedded   system   deployment.  
 

3.2.1   Background   on   Object   Detection   and  
Recognition  

 
Evaluating   metrics  
Evaluation   metrics   used   in   classification   are   not   enough   when   working   with  
detection.   In   addition   to   evaluating   how   good   a   detector   is   at   classifying   an   object,  
we   need   a   way   to   quantify   how   well   the   bounding   boxes   fits   the   objects.  
 
AP   (Average   precision)  
It   is   a   popular   metric   in   measuring   the   accuracy   of   object   detectors   like   Faster  
R-CNN,   SSD,   etc.   Average   precision   computes   the   average   precision   value   for   recall  
value   over   0   to   1.   Precision   measures   how   accurate   your   predictions   are.   i.e.   the  
percentage   of   your   predictions   are   correct.   
 

Precision   =   TruePositives   /   (TruePositives   +   FalsePositives)  
 
Recall   measures   how   good   you   find   all   the   positives.   For   example,   we   can   find   80%  
of   the   possible   positive   cases   in   our   top   K   predictions.  
 

Recall   =   TruePositives   /   (TruePositives   +   FalseNegatives)  
 

19   |    Page  
 



/

 

 
IoU   (Intersection   over   union)  
IoU   measures   the   overlap   between   2   boundaries.   We   use   that   to   measure   how   much  
our   predicted   boundary   overlaps   with   the   ground   truth   (the   real   object   boundary).   In  
some   datasets,   we   predefine   an   IoU   threshold   (say   0.5)   in   classifying   whether   the  
prediction   is   a   true   positive   or   a   false   positive.  
 

IoU(box1,   box2)   =   (area(box1   ∩   box2)   /   area(box1   ∪   box2))  
 
Mean   Average   Precision   (mAP)  
It   is   an   evaluation   metric   often   used   to   compare   different   detection   systems.   It   is  
calculated   by   taking   the   average   of   the   maximum   precisions   at   11   recall   levels  
evenly   spaced   between   0   and   1.   Predictions   are   required   to   have   an   IoU   >   0.5.   All  
predictions   with   IoU   <   0.5   are   treated   as   a   wrong   prediction.   The   mAP   is   the   average  
of   the   AP   for   each   class.  
 
Frames   Per   Second   (FPS)  
It   is   the   number   of   frames   the   object   detection   module   can   infer   per   one   second.  
 
 

 
 
     Figure   3.9   Different   object   detection   approaches  
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Deformable   Part-based   Model   (DPM)  
It   was   a   revolution   of   object   detectors   at   its   time.   DPM   was   originally   proposed   by   P.  
Felzenszwalb   in   2008,   and   then   a   variety   of   improvements   have   been   made   by   R.  
Girshick.   The   DPM   is   based   on   the   “divide   and   conquer”   method,   where   the   training  
can   be   simply   considered   as   the   learning   of   a   proper   way   of   decomposing   an   object,  
and   the   inference   can   be   considered   as   an   ensemble   of   detections   on   different  
object   parts.   For   example,   detecting   a   person   can   be   looked   as   detecting   his   head,  
two   arms   and   two   legs.   R.   Girshick   has   further   extended   the   star-model   to   the  
“mixture   models”   to   deal   with   the   objects   in   the   real   world   under   more   significant  
variations.   A   typical   DPM   detector   consists   of   a   root-filter   and   a   number   of  
part-filters.   Instead   of   manually   specifying   the   configurations   of   the   part   filters   (e.g.,  
size   and   location),   a   weakly   supervised   learning   method   is   developed   in   DPM   where  
all   configurations   of   part   filters   can   be   learned   automatically   as   latent   variables.   R.  
Girshick   has   further   formulated   this   process   as   a   special   case   of   Multi-Instance  
learning,   and   some   other   important   techniques   such   as   “hard   negative   mining”,  
“bounding   box   regression”,   and   “context   priming”   are   also   applied   for   improving  
detection   accuracy.   To   speed   up   the   detection,   he   developed   a   technique   for  
“compiling”   detection   models   into   a   much   faster   one   that   implements   a   cascade  
architecture,   which   has   achieved   over   10   times   acceleration   without   sacrificing   any  
accuracy.   Although   today’s   object   detectors   have   far   surpassed   DPM   in   terms   of   the  
detection   accuracy,   many   of   them   are   still   deeply   influenced   by   its   valuable   insights.  
 
RCNN  
 
It   starts   with   the   extraction   of   a   set   of   object   proposals   (object   candidate   boxes)   by  
selective   search,   which   is   explained   below.   Then   each   proposal   is   rescaled   to   a   fixed  
size   image   and   fed   into   a   CNN   model   trained   on   ImageNet   (say,   AlexNet)   to   extract  
features.   Finally,   linear   SVM   classifiers   are   used   to   predict   the   presence   of   an   object  
within   each   region   and   to   recognize   object   categories.   4   RCNN   yields   a   significant  
performance   boost   on   VOC07,   with   a   large   improvement   of   mean   Average   Precision  
(mAP)   from   33.7%   (DPM-v5)   to   58.5%.   Although   RCNN   has   made   great   progress,  
its   drawbacks   are   obvious:   the   redundant   feature   computations   on   a   large   number   of  
overlapped   proposals   (over   2000   boxes   from   one   image)   leads   to   an   extremely   slow  
detection   speed   (14s   per   image   with   GPU).   Later   in   the   same   year,   SPPNet   was  
proposed   and   has   overcome   this   problem.   
 
Selective   search  
1.   Generate   initial   sub-segmentation,   we   generate   many   candidate   regions.  
2.   Use   greedy   algorithms   to   recursively   combine   similar   regions   into   larger   ones.   
3.   Use   the   generated   regions   to   produce   the   final   candidate   region   proposals.  
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           Figure   3.10   R-CNN   object   detection  
 
Spatial   Pyramid   Pooling   Networks   (SPPNet)  
The   main   contribution   of   SPPNet   is   the   introduction   of   a   Spatial   Pyramid   Pooling  
(SPP)   layer,   which   enables   a   CNN   to   generate   a   fixed-length   representation  
regardless   of   the   size   of   image/region   of   interest   without   resizing   it.   The   technique  
performs   pooling   (ex:   Max   pooling)   on   the   last   convolution   layer   (either   convolution  
or   sub   sampling)   and   produces   a   N*B   dimensional   vector   (where   N=Number   of   filters  
in   the   convolution   layer,   B=   Number   of   Bins).   The   vector   is   in   turn   fed   to   the   FC   layer.  
The   number   of   bins   is   a   constant   value.   Therefore,   the   vector   dimension   remains  
constant   irrespective   of   the   input   image   size.   When   using   SPPNet   for   object  
detection,   the   feature   maps   can   be   computed   from   the   entire   image   only   once,   and  
then   fixed   length   representations   of   arbitrary   regions   can   be   generated   for   training  
the   detectors,   which   avoids   repeatedly   computing   the   convolutional   features.  
SPPNet   is   more   than   20   times   faster   than   R-CNN   without   sacrificing   any   detection  
accuracy.   Although   SPPNet   has   effectively   improved   the   detection   speed,   there   are  
still   in   a   2D   single   frame   and   assigns   it   to   a   class.   
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Now,   due   to   the   advancements   in    some   drawbacks:   first,   the   training   is   still  
multi-stage,   second,   SPPNet   only   fine-tunes   its   fully   connected   layers   while   simply  
ignores   all   previous   layers.  
 
 
 
 
 

 
 
 
 
 
 
 
 
 
  
                                 Figure   3.11   Spatial   Pyramid   Pooling   Networks  

 
Fast   RCNN  
 
In   2015,   R.   Girshick   proposed   Fast   RCNN   detector,   which   is   a   further   improvement  
of   R-CNN   and   SPPNet.   The   approach   is   similar   to   the   R-CNN   algorithm.   But,   instead  
of   feeding   the   region   proposals   to   the   CNN,   we   feed   the   input   image   to   the   CNN   to  
generate   a   convolutional   feature   map.   From   the   convolutional   feature   map,   we  
identify   the   region   of   proposals   and   warp   them   into   squares   and   by   using   a   RoI  
pooling   layer   we   reshape   them   into   a   fixed   size   so   that   it   can   be   fed   into   a   fully  
connected   layer.   From   the   RoI   feature   vector,   we   use   a   softmax   layer   to   predict   the  
class   of   the   proposed   region   and   also   the   offset   values   for   the   bounding   box.   Fast  
RCNN   enables   us   to   simultaneously   train   a   detector   and   a   bounding   box   regressor  
under   the   same   network   configurations.   On   the   VOC07   dataset,   Fast   RCNN  
increased   the   mAP   from   58.5%   (RCNN)   to   70.0%   while   with   a   detection   speed   over  
200   times   faster   than   R-CNN.   Although   Fast-RCNN   successfully   integrates   the  
advantages   of   R-CNN   and   SPPNet,   its   detection   speed   is   still   limited   by   the   proposal  
detection.  
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      Figure   3.12   Fast   RCNN  
 
Faster   RCNN  
 
Faster   RCNN   is   the   first   end-to-end,  
and   the   first   near   real   time   deep  
learning   detector   (COCO  
mAP@.5=42.7%,   COCO  
mAP@[.5,.95]=21.9%,   VOC07  
mAP=73.2%,   VOC12   mAP=70.4%,  
17fps   with   ZFNet).   The   main  
contribution   of   Faster-RCNN   is   the  
introduction   of   Region   Proposal  
Network   (RPN)   that   enables   nearly  
cost-free   region   proposals.   From  
R-CNN   to   Faster   RCNN,   most  
individual   blocks   of   an   object  
detection   system,   e.g.,   proposal  
detection,   feature   extraction,  
bounding   box   regression,   etc,   have  
been   gradually   integrated   into   a  
unified,   end-to-end   learning   
  
                                                                        Figure   3.13   Faster   R-CNN  
 
framework.   Similar   to   Fast   R-CNN,   the   image   is   provided   as   an   input   to   a  
convolutional   network   which   provides   a   convolutional   feature   map.   Instead   of   using   a  
selective   search   algorithm   on   the   feature   map   to   identify   the   region   proposals,   a  
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separate   network   is   used   to   predict   the   region   proposals.   The   predicted   region  
proposals   are   then   reshaped   using   a   RoI   pooling   layer   which   is   then   used   to   classify  
the   image   within   the   proposed   region   and   predict   the   offset   values   for   the   bounding  
boxes.  

 
YOLO   
 
YOLO   was   proposed   by   R.   Joseph   et   al.   in   2015.   It   stands   for   “You   Only   Look   Once”.  
It   can   be   seen   from   its   name   that   the   authors   have   completely   abandoned   the  
previous   detection   paradigm   of   “proposal   detection   +   verification”.   YOLO   uses   a  
totally   different   approach.   YOLO   is   a   clever   convolutional   neural   network   (CNN)   for  
doing   object   detection   in   real-time.   The   algorithm   applies   a   single   neural   network   to  
the   full   image,   and   then   divides   the   image   into   regions   and   predicts   bounding   boxes  
and   probabilities   for   each   region.   These   bounding   boxes   are   weighted   by   the  
predicted   probabilities.  
 
YOLO   is   popular   because   it   achieves   high   accuracy   while   also   being   able   to   run   in  
real-time.   The   algorithm   “only   looks   once”   at   the   image   in   the   sense   that   it   requires  
only   one   forward   propagation   pass   through   the   neural   network   to   make   predictions.  
After   non-max   suppression   (which   makes   sure   the   object   detection   algorithm   only  
detects   each   object   once),   it   then   outputs   recognized   objects   together   with   the  
bounding   boxes.   YOLO   suffers   from   a   drop   of   the   localization   accuracy   compared  
with   two-stage   detectors,   especially   for   some   small   objects.   YOLO’s   subsequent  
versions   and   the   latter   proposed   SSD    have   paid   more   attention   to   this  
problem.YOLO   is   extremely   fast:   a   fast   version   of   YOLO   runs   at   155fps   with   VOC07  
mAP=52.7%,   while   its   enhanced   version   runs   at   45fps   with   VOC07   mAP=63.4%   and  
VOC12   mAP=57.9%.  
 

 
 
 
 
 
 
 
      Figure   3.14   YOLO   object   detection  
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SSD  
It   was   proposed   by   W.   Liu   et   al.   in   2015.   The   main   contribution   of   SSD   is   the  
introduction   of   the   multi-reference   and   multi-resolution   detection   techniques,   which  
significantly   improves   the   detection   accuracy   of   a   one-stage   detector,   especially   for  
some   small   objects.   The   SSD   is   a   multibox   detector:  

● After   going   through   a   certain   convolutions   for   feature   extraction,   we   obtain   a  
feature   layer   of   size   m×n   (number   of   locations)   with   p   channels,   such   as   8×8  
or   4×4   above.   And   a   3×3   conv   is   applied   on   this   m×n×p   feature   layer.  

● For   each   location,   we   got   k   bounding   boxes.   These   k   bounding   boxes   have  
different   sizes   and   aspect   ratios.   The   concept   is,   maybe   a   vertical   rectangle   is  
more   fit   for   humans,   and   a   horizontal   rectangle   is   more   fit   for   cars.  

● For   each   of   the   bounding   box,   we   will   compute   c   class   scores   and   4   offsets  
relative   to   the   original   default   bounding   box   shape.  

● Thus,   we   got   (c+4)kmn   outputs.  
 
 
 
 
 
 
  
  

                                     Figure   3.15   SSD   object   detection  
 
SSD   has   advantages   in   terms   of   both   detection   speed   and   accuracy   (VOC07  
mAP=76.8%,   VOC12   mAP=74.9%,   COCO   mAP@.5=46.5%,   mAP@[.5,.95]=26.8%,  
a   fast   version   runs   at   59fps).   The   main   difference   between   SSD   and   any   previous  
detectors   is   that   the   former   one   detects   objects   of   5   different   scales   on   different  
layers   of   the   network,   while   the   latter   ones   only   run   detection   on   their   top   layers.   The  
SSD,   has   fallen   behind   two   stage   detectors   in   terms   of   accuracy   for   years,   till   the  
RetinaNet   was   introduced.  
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                                   Figure   3.16   SSD   object   detection   layers  
 
RetinaNet   
 
It   was   developed   by   Facebook   AI   Research   (FAIR),   and   is   reviewed.   It   is   discovered  
that   there   is   an   extreme   foreground-background   class   imbalance   problem   in  
one-stage   detector.   And   it   is   believed   that   this   is   the   central   cause   which   makes   the  
performance   of   one-stage   detectors   inferior   to   two-stage   detectors.   RetinaNet  
achieves   state-of-the-art   performance,   outperforming   Faster   R-CNN,   the   well-known  
two-stage   detectors.   In   essence,   RetinaNet   is   a   composite   network   composed   of:  

● A   backbone   network   called   Feature   Pyramid   Net,   which   is   built   on   top   of  
ResNet   and   is   responsible   for   computing   convolutional   feature   maps   of   an  
entire   image;  

● A   subnetwork   responsible   for   performing   object   classification   using   the  
backbone’s   output;  

● A   subnetwork   responsible   for   performing   bounding   box   regression   using   the  
backbone’s   output.  

 
                                         Figure   3.17   RetinaNet   object   detection  
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YOLOv3  
 
YOLOv1,   and   YOLOv2   were   the   fastest   and   one   of   the   most   accurate   object  
detectors.   However,   after   their   release,   other   algorithms   like   SSD   and   RetinaNet  
outperformed   YOLO   in   terms   of   accuracy.   YOLOv3,   sorts   out   that   issue   by   trading   off  
some   of   its   speed   to   increase   detection   accuracy.   
 
Most   of   the   trick   in   YOLOv3   increase   in   accuracy,   lies   in   its   backbone,   the   deep  
learning   architecture,   Darknet-53.   Previous   versions   on   YOLO   using   previous  
versions   of   darknet   were   still   lacking   some   of   the   most   important   elements   that   are  
now   staple   in   most   of   state-of-the   art   algorithms,   they   had   no   residual   blocks,   no   skip  
connections   and   no   upsampling.   YOLO   v3   incorporates   all   of   these.  

 
YOLOv3   architecture   has   a   53   layer   network   trained   on   Imagenet.   For   the   task   of  
detection,   53   more   layers   are   stacked   onto   it,   giving   us   a   106   layer   fully   convolutional  
underlying   architecture   for   YOLO   v3.   This   is   the   reason   behind   the   slowness   of  
YOLO   v3   compared   to   YOLO   v2.   
 

 
                                  Figure   3.18   YOLOV3    object   detection  
 
In   YOLO   v3,   the   detection   is   done   by   applying   1   x   1   detection   kernels   on   feature  
maps   of   three   different   sizes   at   three   different   places   in   the   network.   The   first  
detection   is   made   by   the   82nd   layer.   For   the   first   81   layers,   the   image   is   down  
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sampled   by   the   network,   such   that   the   81st   layer   has   a   stride   of   32.   If   we   have   an  
image   of   416   x   416,   the   resultant   feature   map   would   be   of   size   13   x   13.   One  
detection   is   made   here   using   the   1   x   1   detection   kernel,   giving   us   a   detection   feature  
map   of   13   x   13   x   255.  
Then,   the   feature   map   from   layer   79   is   subjected   to   a   few   convolutional   layers   before  
being   sampled   by   2x   to   dimensions   of   26   x   26.   This   feature   map   is   then   depth  
concatenated   with   the   feature   map   from   layer   61.   Then   the   combined   feature   map   is  
again   subjected   to   a   few   1   x   1   convolutional   layers   to   fuse   the   features   from   the  
earlier   layer   (61).   Then,   the   second   detection   is   made   by   the   94th   layer,   yielding   a  
detection   feature   map   of   26   x   26   x   255.  
A   similar   procedure   is   followed   again,   where   the   feature   map   from   layer   91   is  
subjected   to   few   convolutional   layers   before   being   depth   concatenated   with   a   feature  
map   from   layer   36.   Like   before,   a   few   1   x   1   convolutional   layers   follow   to   fuse   the  
information   from   the   previous   layer   (36).   We   make   the   final   of   the   3   at   106th   layer,  
yielding   a   feature   map   of   size   52   x   52   x   255.  
 

 
3.2.2   Comparative   Study   on   Object   Detection   and  
Recognition  
YOLOv3    massively   outperforms   other   state   of   art   detectors   like   RetinaNet,   while  
being   considerably   faster,   at   COCO   mAP   50   benchmark.   It   is   also   better   than   the  
SSD   and   it’s   variants.   Here’s   a   comparison   of   performances   right   from   the   paper  
(IoU   =   0.5).  

 

 
 
 
 
 
 
 
 
 
 
 

               Figure   3.19   Comparative   Study   on   Object   Detection   and   Recognition  
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In   benchmarks   where   the   IoU   is   higher   (say,   COCO   75),   the   boxes   need   to   be  
aligned   more   perfectly   to   be   not   rejected   by   the   evaluation   metric.   Here   is   where  
YOLO   is   outdone   by   RetinaNet,   as   it’s   bounding   boxes   are   not   aligned   as   well   as   of  
RetinaNet.   Here’s   a   detailed   table   for   a   wider   variety   of   benchmarks.  

 
Table   3.1:   Wider   variety   of   object   detection   benchmarks  

 
3.2.3   Implemented   Approach   of   Object   Detection  
and   Recognition  
From   comparing   benchmark   results   on   various   state-of-the-art   object   detection  
techniques,   it   can   be   concluded   that   there   is   a   tradeoff   between   detection   accuracy  
and   inference   time.   In   an   implementation   of   a   driverless   racing   vehicle,   an   object  
detection   has   to   be   accurate,   but   at   the   same   time   real   time   and   able   to   process  
frames   at   high   FPS;   that’s   why   a   YOLOv3   based   approach   was   selected.   YOLOv3  
maintains   a   very   good   accuracy   level,   but   is   considerably   faster   than   any   other  
object   detection   approach.     Instead   of   using   slow   and   computationally   intensive  
cascade   and   sliding   window   approaches,   We   employ   a   quick,   real-time   and   powerful  
object   detector   in   our   pipeline   in   the   form   of   YOLOv3.   Its   ability   to   be   fine-tuned   with  
lesser   data   pre-trained   weights   and   robust   outputs   made   it   the   right   fit   in   our   system.  
 
We   divided   our   cone   detection   process   along   two   YOLOv3   networks   that   work  
together   simultaneously,   one   tinyYOLOv3   based   network   that   detects   the   three   cone  
types   all   as   one   class,   this   ensures   that   the   most   number   of   cones   in   each   frame   is  
detected   and   no   cones   are   missed.   The   other   one   is   a   YOLOv3   based   network   that  
classifies   only   cones   at   close   distances   from   the   vehicle   into   one   of   three   classes  
(yellow-blue-orange),   ensuring   maximum   accuracy.   Both   the   networks   were  
implemented   by   the   team   members   from   scratch   in   Python   using   the   PyTorch  
framework.  
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The   network   architecture   by   default   each   YOLO   layer   has   255   outputs:   85   values   per  
anchor   [4   box   coordinates   +   1   object   confidence   +   80   class   confidences],   times   3  
anchors.   The   settings   to   filters=[5   +   n]   *   3   and   classes=n,   where   n   is   the   class   count.  
This   modification   was   made   in   all   3   YOLO   layers   in   both   networks.   
 
We   customized    the   first   network   by   making   a   changes   in   YOLOV3   pipeline   and  
reducing   the   number   of   classes   that   it   detects,   as   “Our   driverless   high   performance  
formula   race   car”   does   not   really   care   about   detecting   cats,   dogs,   airplanes   or   bikes  
to   name   a   few   but   needs   to   distinguish   and   detect   ‘yellow’,   ‘blue’   and   ‘orange’   cones  
that   provide   information   about   the   track.   We   reduce   the   classes   of   the   pre-trained  
YOLOv3   to   3   classes   which   are    ‘yellow’,   ‘blue’   and   ‘orange’   cones   as   shown   in   the  
following   figure.   For   more   information   about   the   optimization   and   customization   of  
the   modified   YOLOV3   to   fit   our   high   performance   perception   pipeline   is   described   in  
chapter4.  
 
 
 
 
 
 
 
 
 
 
               Figure   3.20   Yellow,   blue,   and   orange   cones  
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3.3   Literature   Review   on   3D   Object   Localization   and  
Pose   Estimation   From   Single   Images  
 

Object   Detection   and   Recognition   serves   as   an   image   2D   localization   method   where  
it   finds   where   the   object   is   in   a   2D   single   frame   and   assigns   it   to   a   class.   Now,   due   to  
the   advancements   in   Computer   Vision,   2D   images   can   be   used   to   identify   the  
position   of   the   object   in   the   scene   captured   by   the   camera   just   by   knowing   extra  
information,   and   we   are   interested   in   introducing   an   accurate,   robust   and   efficient  
way   to   estimate   the   3D   position   of   the   objects   from   single   frames   in   which   it   complies  
with   our   application   i.e.   mapping   and   finding   cones   in   3D   space.   This   is   to   be   the  
most   important   contribution   which   is   to   accurately   estimate   the   3D   position   of   an  
object   (Traffic   cone   in   our   application).   
 

3.3.1    Background   on   3D   Object   Localization   and  
Pose   Estimation   From   Single   Images  
 
We   believe   that   human   vision   can   estimate   the   depth   of   an   object   with   one   eye;   this  
is   due   to   the   fact   that   the   geometric   features   of   different   objects   in   life   have   been  
previously   added   to   the   knowledge   of   the   human   brain   in   addition   to   the   geometric  
relationship   between   objects   that   serves   to   give   a   great   estimate   about   where   the  
object   is.   In   this   problem,   we   suppose   that   a   priori   knowledge   of   the   3D   geometric  
information   about   the   object   is   available   alongside   the   camera   intrinsic   parameters  
used   to   capture   the   frames.   
 
Pose   estimation   and   key   points   regression   have   appeared   in   previous   research   work  
that   is   including   [Viewpoint   aware   object   detection   and   continuous   pose   estimation]  
and   [3d   generic   object   categorization,   localization   and   pose   estimation].   Glasner   et  
al.    estimate   pose   for   images   containing   cars   using   an   ensemble   of   voting   SVMs,  
Tulsiani   et   al.   [S.   Tulsiani   and   J.   Malik.   Viewpoints   and   keypoints.   ]   use   features   and  
convolutional   neural   networks   to   predict   viewpoints   of   different   objects.   Their   work  
captures   the   interplay   between   viewpoints   of   objects   and   key   points   for   specific  
objects.   We   will   briefly   demonstrate   their   approaches   and   limitations.  
 
Viewpoint   Aware   Object   Detection   Approach  
 
Glasner   et   al.   introduced   a   method   to   directly   integrate   3D   reasoning   with   an  
appearance   based   voting   architecture.   The   method   relies   on   a   nonparametric  
representation   of   a   joint   distribution   of   shape   and   appearance   of   the   object   class.  
The   voting   method   employs   a   novel   parameterization   of   joint   detection   and   viewpoint  
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hypothesis   space,   allowing   efficient   accumulation   of   evidence.   In   addition   to  
combining   this   with   a   re-scoring   and   refinement   mechanism,   using   an   ensemble   of  
view-specific   support   vector   machines.  

 
Figure   3.21    The   voting   process   in   Viewpoint   Aware   Object   Detection   Approach  
 
This   figure   shows   the   voting   process.   Four   patches   from   the   test   image   (top   left)   are  
matched   to   database   patches.   The   matching   patches   are   shown   with   the  
corresponding   color   on   the   right   column.   Each   match   generates   a   vote   in   6D   pose  
space.   The   point   in   pose   space   is   parameterized   as   a   projection   of   designated   points  
in   3D   onto   the   image   plane.   These   projections   are   shown   here   as   dotted   triangles.  
The   red,   green   and   blue   votes   correspond   to   a   true   detection,   the   cast   pose   votes  
are   well   clustered   in   pose   space   (bottom   left)   while   the   yellow   match   casts   a   false  
vote.  
 
Viewpoints   and   Key   Points   Approach  
 
In   this   approach   S.   Tulsiani   and   J.   Malik   characterize   the   problem   of   pose   estimation  
for   rigid   objects   in   terms   of   determining   viewpoint   to   explain   coarse   pose   and  
keypoint   prediction   to   capture   the   finer   details,    And   address   both   these   tasks   in   two  
different   settings   the   constrained   setting   with   known   bounding   boxes   and   the   more  
challenging   detection   setting   where   the   aim   is   to   simultaneously   detect   and   correctly  
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estimate   pose   of   objects.   And   they   present   Convolutional   Neural   Network   based  
architectures   for   these   and   demonstrate   that   leveraging   viewpoint   estimates   can  
substantially   improve   local   appearance   based   keypoint   prediction.  
 
The   components   of   the   proposed   model   is   viewpoint   prediction   and   Local  
Appearance   based   Keypoint   Activation.   In   the   viewpoint   prediction   they   trained   a  
CNN   based   architecture   which   can   implicitly   capture   and   aggregate   local   evidence  
for   predicting   the   euler   angles   to   obtain   a   viewpoint   estimate.   In   the   Local  
Appearance   based   Keypoint   Activation   they   proposed   a   fully   convolutional   CNN  
based   architecture   to   model   local   part   appearance.   And   capture   the   appearance   at  
multiple   scales   and   combine   the   CNN   responses   across   scales   to   obtain   a   resulting  
heatmap   which   corresponds   to   a   spatial   log-likelihood   distribution   for   each   keypoint.  
 
The   following   figure   will   illustrate   an   overview   on   this   approach:  

 
                   Figure   3.22   Viewpoints   and   Key   Points   Approach  
 
To   recover   an   estimate   of   the   global   pose,   they   use   a   CNN   based   architecture   to  
predict   viewpoint.   For   each   keypoint,   a   spatial   likelihood   map   is   obtained   via  
combining   multiscale   convolutional   response   maps   and   it   is   then   combined   with   a  
likelihood   conditioned   on   predicted   viewpoint   to   obtain   the   final   predictions.  
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3.3.2    Comparative   Study   on   3D   Object   Localization  
and   Pose   Estimation   From   Single   Images  
 
Although   these   approaches   are   considered   solutions   to   the   given   problem,   these   are  
not   enough   for   our   application   as   they   don’t   provide   real   time,   accuracy,   and  
robustness.   
 
The   limitations   of   the   viewpoint   aware   object   detection   approach   is   that   the   pose  
estimates   generated   in   the   voting   stage   are   not   always   accurate.   When   the   pose  
estimate   is   incorrect   the   wrong   viewpoint   specific   classifier   will   be   applied   which  
leads   to   that   the   3D   position   will   not   be   measured   accurately.   The   experiments   for  
the   approach   gave   a   maximum   average   precision   (AP)   of   0.32   on   the   Pascal   VOC  
2007   cars   dataset   using   the   3D   voting   and   8view-SVM   detector.  
 

 
Table   3.2:   Pascal   VOC   2007   cars.   Average   precision   achieved   by   our   detectors  
compared   to   a   2D   baseline.  
 

 
Figure   3.23:   Pascal   VOC   2007   cars  
 
  (a)   Recall-precision.   3D   voting   followed   by   8-view   SVM   (red)   outperforms   3D   voting  
(blue)   and   3D   voting   followed   by   SVM   (green).   The   approach   achieved   an   average  
precision   of   32.03%   without   using   positive   training   examples   from   Pascal.   (b)   Pose  
estimation.   A   subset   of   the   cars   was   annotated   with   one   of   40   different   labels   corre-  
sponding   to   approximately   uniform   samples   of   the   azimuth   range.   They   showed   their  
label   differences   alongside   those   reported   in   a   similar   old   approach   proposed   by   [M.  
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Arie-Nachimson,   R.   Basri,   Constructing   implicit   3D   shape   models   for   pose  
estimation].  
 
In   addition,   the   limitations   of   Viewpoints   and   Key   Points   approach   in   our   case   of  
designing   a   race   driverless   car   in   some   climate   conditions   if   the   frame   image   has   a  
problem   the   detection   of   the   viewpoint   will   not   be   accurately   predicted.   The   detection  
candidate   has   an   associated   viewpoint   and   the   detection   is   labeled   correct   if   it   has   a  
correct   predicted   viewpoint   bin   as   well   as   a   correct   localization   because   that   the   two  
stages   have   a   strong   relation   and   the   error   will   be   highly   propagated.   The   second  
limitation   is   that   this   model   is   relatively   slow   compared   to   the   realtime   race   vehicle  
perception   system.   We   must   say   that   the   fraction   of   error   this   approach   proposes   is  
away   from   our   targeted   performance.   The   metrics   used   to   evaluate   the   performance  
are   the   median   error   and   Accuracy   at   given   viewport   angle.  
 
Median   Error  
The   common   confusions   for   the   task   of   viewpoint   estimation   often   are   predictions  
which   are   far   apart   (eg.   left   facing   vs   right   facing   car)   and   the   median   error   (MedErr)  
is   a   widely   used   metric   that   is   robust   to   these   if   a   significant   fraction   of   the   estimates  
are   accurate.  
 
Accuracy   at   θ  
A   small   median   error   does   not   necessarily   imply   accurate   estimates   for   all   instances,  
a   complementary   performance   measure   is   the   fraction   of   instances   whose   predicted  
viewpoint   is   within   a   fixed   threshold   of   the   target   viewpoint.   Denoted   this   metric   by  
Accθ   where   θ   is   the   threshold.   The   results   use   θ   =   π/6.  
 
 

 
  Table3.3:   Viewpoint   Estimation   with   Ground   Truth   box   Performance.  
 
Accordingly,   we   looked   for   using   state   of   the   art   solutions   in   computer   vision   and  
image   processing   to   accurately   localize   the   landmark   while   racing   on   the   track,   and  
we   came   up   with   the   pipeline   that   provides   the   required   performance.  
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3.3.3    Implemented   Approach   on   3D   Object  
Localization   and   Pose   Estimation   From   Single  
Images  
 
3D   Pose   estimation   from   a   single   frame   has   always   been   an   ill-posed   problem,   but   it  
can   be   solved   accurately   when   there   is   previous   geometric   knowledge   about   the  
objects   introduced   in   the   model.   In   this   work,   we   have   decided   to   build   a   DNN   based  
on   ResNet   to   extract   accurately   the   key   points   from   single   image   cone   patches,  
these   key   points   are   mapped   to   3D   known   model   points   in   the   local   frame   of   the  
cone.   At   this   point,   a   perspective   n-points   algorithm   runs   to   find   the   6   DOF   of   the  
camera   with   respect   to   the   cone   position   that   includes   3D   position   and   3   orientation  
angles,   we   are   only   interested   in   the   XZ   position   that   represents   the   top   view   location  
in   the   base   map   with   respect   to   the   vehicle.   These   reactive   cone   mappings   will   be  
used   by   the   SLAM   algorithm   to   get   the   global   position   of   the   cone   in   the   world   frame  
Fw .   This   approach   will   be   discussed   in   details   in   chapter   4.  
 

 
  Figure   3.24:   The   developed   DNN   to   extract   cone   key   points.  
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3.4   Literature   review   on   Mapping   and   Localization  
 
At   this   instance   of   our   progress   in   the   full   autonomous   driving   kit   literature   review,   we  
have   concluded   multiple   decisions   that   provided   us   with   the   landmarks   (cones)  
estimates   from   our   sensors.   Now,   we   will   research   and   discuss   how   these   estimates  
can   be   fused   in   order   to   get   an   accurate   landmark   3D   position.   In   addition,   these  
landmarks   positions   are   referenced   to   the   local   vehicle   frame   that   we   need   to  
translate   to   a   global   map   which   we   are   interested   in   constructing   in   order   to   generate  
accurate   paths   for   the   vehicle   to   drive   itself   through   as   accurately   as   possible   and  
with   extreme   performance.   Absolutely,   this   translation   needs   extra   input   information  
to   be   done   which   is   the   vehicle   position   and   orientation   that   also   needs   to   be   the  
output   of   a   sensor   fusion   process   from   the   vehicle   input   sensors.   Lastly,   we   need   to  
combine   the   two   past   mentioned   tasks   which   are   Mapping   and   Localization   into   one  
algorithm   in   order   to   manipulate   uncertainty   in   the   environment   with   a   chosen  
algorithm   for   Synchronous   Localization   and   Mapping   (SLAM).   With   this   in   mind,   we  
started   our   review   with   the   work   of   Sabastian   Thrun,   Wolfram   Burgard,   and   Dieter  
Fox   in   the   famous   basis   of   Robotics   which   is   presented   in   the   reference   book  
Probabilistic   Robotics   [19].  
 
3.4.1   Background   on   Mapping   and   Localization  
 
One   of   the   main   motives   in   this   work   is   our   understanding   of   uncertainty,   and   how   we  
need   to   control   the   random   process   of   what   we   are   trying   to   achieve   which   is   a  
vehicle   that   has   to   drive   itself   accurately   and   with   extreme   performance   on   a   given  
track   but   the   thing   is,   the   way   this   vehicle   act   and   react   to   the   environment   is   not  
absolute.   This   means   that   the   place   of   the   landmarks   the   vehicle   receive   is   not   an  
absolute   location   but   either   the   best   estimate   of   where   the   cone   is   in   the  
environment,   in   addition,   how   the   AI   agent   knows   where   is   the   vehicle   position   with  
respect   to   the   environment   is   not   absolute   but   rather   a   good   estimate   of   where   the  
vehicle   could   be.   This   understanding   helps   in   introducing   redundant   perception;   this  
includes   how   we   can   fuse   multiple   sensor   estimates   to   establish   a   system   state   that  
best   describes   the   vehicle   and   how   it   should   react   to   the   environment.  
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Robot   Uncertainty  
Uncertainty   arises   if   the   robot   lacks   critical   information   for   carrying   out   its   task.   It  
arises   from   five   different   factors.  
 

1.    Environments .   Physical   worlds   are   inherently   unpredictable.   While   the  
degree   of   uncertainty   in   well-structured   environments   such   as   assembly   lines  
is   small,   environments   such   as   highways   and   private   homes   are   highly  
dynamic   and   unpredictable.  
2.    Sensors .   Sensors   are   inherently   limited   in   what   they   can   perceive.  
Limitations   arise   from   two   primary   factors.   First,   range   and   resolution   of   a  
sensor   is   subject   to   physical   laws.   For   example,   Cameras   can’t   see   through  
walls,   and   even   within   the   perceptual   range   the   spatial   resolution   of   camera  
images   is   limited.   Second,   sensors   are   subject   to   noise,   which   perturbs  
sensor   measurements   in   unpredictable   ways   and   hence   limits   the   information  
that   can   be   extracted   from   sensor   measurements.  
3.    Robots .   Robot   actuation   involves   motors   that   are,   at   least   to   some   extent,  
unpredictable,   due   effects   like   control   noise   and   wear-and-tear.   Some  
actuators,   such   as   heavy-duty   industrial   robot   arms,   are   quite   accurate.  
Others,   like   low-cost   mobile   robots   can   be   extremely   inaccurate.  
4.    Models .   Models   are   inherently   inaccurate.   Models   are   abstractions   of   the  
real   world.   As   such,   they   only   partially   model   the   underlying   physical  
processes   of   the   robot   and   its   environment.   Model   errors   are   a   source   of  
uncertainty   that   has   largely   been   ignored   in   robotics,   despite   the   fact   that  
most   robotic   models   used   in   state-or-the-art   robotics   systems   are   rather  
crude.  
5.    Computation .   Robots   are   real-time   systems,   which   limits   the   amount   of  
computation   that   can   be   carried   out.   Many   state-of-the-art   algorithms   are  
approximate,   achieving   timely   response   through   sacrificing   accuracy.  

 
All   of   these   factors   give   rise   to   uncertainty.   Traditionally,   such   uncertainty   has   mostly  
been   ignored   in   robotics.   However,   as   robots   are   moving   away   from   factory   floors  
into   increasingly   unstructured   environments,   the   ability   to   cope   with   uncertainty   is  
critical   for   building   successful   robots.  
 
 
To   address   the   problem   of   mapping   and   localization   we   need   to   discuss   some   basics  
regarding    Recursive   State   Estimation ,    Gaussian   Filters ,   and    Simultaneous  
Localization   and   Mapping .  
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A. Recursive   State   Estimation  
 
In   order   to   deploy   an   accurate   autonomous   system   that   can   map   its   surrounding   and  
localize   itself   in   order   to   know   what   to   do   next,   we   should   consider   it   as   a   mobile  
wheeled   robot   in   which   we   should   discuss   the   core   definition   of   probabilistic   robotics  
which   is   how   to   estimate   useful   information   and   quantities   from   multiple   sensors   data  
which   can’t   be   used   directly   because   of   the   uncertainty   by   which   each   sensor   implies  
with   its   readings.   Like   the   rest   of   robotics   applications,   once   this   information   is   known  
it   is   easy   to   know   what   to   do   next.   Let’s   say,   we   have   a   moving   robot,   it   is   easy   to  
know   where   to   go   if   at   each   time   instance   we   know   exactly   where   all   the   landmarks  
are   and   where   the   robot   is.   Unfortunately,   these   variables   can’t   be   known   directly  
from   the   sensors   data.   Sensors   import   only   partial   information   about   these   variables,  
because   their   measurements   are   accompanied   with   noise.   Accordingly,   Thrun   and  
the   rest   introduced    State   estimation.    A   method   used   to   recover   what   they   called  
state   variables   in   which   it   generates   and   computes   the   possible   world   states   which  
the   robot   may   be   in,   this   is   called    belief   distributions    according   to   them.  
 
Next,   we   will   discuss   what   is   concerned   with   the   robot   process   while   interacting   with  
its   environment.  
 

1) State.    Environments   can   be   identified   by   its   state.   It   will   be   nice   to   think   of   the  
state   as   the   group   of   all   elements   that   defines   the   robot   and   its   environment  
that   can   affect   the   future.   The   state   may   include   variables   regarding   the   robot  
itself,   such   as   its   pose   (position   and   orientation)   and   velocity.   In   the   book,   they  
denoted   the   state   by   ;   although   the   specific   variables   included   in      will  x  x  
depend   on   the   context.   The   state   at   time      will   be   denoted   .   Typical  t  xt  
concerned   state   variables   are:  

 
❏ The   robot   pose ,   simply   it   is   the   location   and   orientation   relative   to   the  

global   coordinate   frame.  
❏ The   location   and   features   of   surrounding   objects   in   the  

environment .   These   objects   (aka   landmarks)   may   be   a   cone,   tree,   or  
a   wall.   Robot   environments   may   have   a   few   dozen   of   these   landmarks  
and   up   to   hundreds   and   billions   of   state   variables.  

❏ The   location   and   velocities   of   moving   objects   and   people .  
Sometimes,   there   are   other   moving   actors   with   the   robot.These   actors  
have   their   own   kinematic   and   dynamic   state.   In   our   work   the   dynamic  
objects   are   irrelevant   as   we   are   only   considering   static   objects   (cones).   

❏ There   can   be   a   huge   number   of   other   state   variables   such   as  
temperature,   robot   battery   level,   etc.  
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2) Environment   Interaction,    We   can   classify   the   interactions   of   the   mobile  

vehicle   with   the   environment   into   two   main   types;   The   vehicle   can   affect   the  
state   of   its   environment   through   its   motion.   In   addition,   it   can   collect  
information   about   the   state   by   using   its   sensors.   Both   types   of   interactions  
may   occur   at   the   same   time.   
❏ Sensor   measurements .   Perception   is   the   process   by   which   the   robot  

uses   its   sensors   to   obtain   information   about   the   state   of   its  
environment.   The   result   of   such   a   perceptual   interaction   will   be   called   a  
measurement,   although   we   will   sometimes   also   call   it   observation   or  
percept.   In   fact,   sensor   measurements   arrive   with   some   delay.   They  
provide   information   about   the   state   a   few   moments   ago.  

❏ Control   actions .   These   are   used   by   the   robot   to   change   the   state   of  
the   world.   They   do   so   by   actively   asserting   forces   on   the   robot’s  
environment.   Even   if   the   robot   does   not   perform   any   action   itself,   state  
usually   changes.   Thus,   for   consistency,   we   will   assume   that   the   robot  
always   executes   a   control   action,   even   if   it   chooses   not   to   move   any   of  
its   motors.   In   practice,   the   robot   continuously   executes   controls   and  
measurements   are   made    concurrently .  
 

Hypothetically,   a   robot   may   keep   a   record   of   all   past   sensor   measurements  
and   control   actions.   We   will   refer   to   such   a   collection   as   the   data   (regardless  
of   whether   they   are   being   memorized).   In   accordance   with   the   two   types   of  
environment   interactions,   the   robot   has   access   to   two   different   data   streams.  
 
❏ Measurement   data    provides   information   about   a   momentary   state   of  

the   environment.   Examples   of   measurement   data   include   camera  
images,   range   scans,   and   so   on.   For   most   parts,   we   will   simply   ignore  
small   timing   effects   (e.g.,   most   lidar   sensors   scan   environments  
sequentially   at   very   high   speeds,   but   we   will   simply   assume   the  
measurement   corresponds   to   a   specific   point   in   time).   The  
measurement   data   at   time   t   will   be   denoted   as    Z t  

❏ Control   data    carry   information   about   the   change   of   state   in   the  
environment.   In   mobile   robotics,   a   typical   example   of   control   data   is   the  
velocity   of   a   robot.   Setting   the   velocity   to   10   cm   per   second   for   the  
duration   of   five   seconds   suggests   that   the   robot’s   pose,   after   executing  
this   motion   command,   is   approximately   50   cm   ahead   of   its   pose   before  
command   execution.   Thus,   its   main   information   regards   the   change   of  
state.   An   alternative   source   of   control   data   are   odometers.   Odometers  
are   sensors   that   measure   the   revolution   of   a   robot’s   wheels.   As   such  
they   convey   information   about   the   change   of   the   state.   Even   though  
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odometers   are   sensors,   we   will   treat   odometry   as   control   data,   since   its  
main   information   regards   the   change   of   the   robot’s   pose.  
Control   data   will   be   denoted    .   The   variable     will   always  ut  ut  
correspond   to   the   change   of   state   in   the   time   interval   [t-1;   t].   As   before,  
we   will   denote   sequences   of   control   data   by      ,   for   :  ut1:t2 1 t2  t ≤    
 

u , u , u , .... , u  ut1:t2 =  t1  t1+1  t1+2   t2  
Since   the   environment   may   change   even   if   a   robot   does   not   execute   a  
specific   control   action,   the   fact   that   time   passed   by   constitutes,  
technically   speaking,   control   information.   Hence,   we   assume   that   there  
is   exactly   one   control   data   item   per   time   step   t.  

 
 
 
 
Important   Note  
The   distinction   between   measurement   and   control   is   a   crucial   one,   as   both   types   of  
data   play   fundamentally   different   roles   in   the   material   yet   to   come.   Perception  
provides   information   about   the   environment’s   state,   hence   it   tends   to   increase   the  
robot’s   knowledge.   Motion,   on   the   other   hand,   tends   to   induce   a   loss   of   knowledge  
due   to   the   inherent   noise   in   robot   actuation   and   the   stochasticity   of   robot  
environments;   although   sometimes   a   control   makes   the   robot   more   certain   about   the  
state.   By   no   means   is   our   distinction   intended   to   suggest   that   actions   and  
perceptions   are   separated   in   time,   i.e.,   that   the   robot   does   not   move   while   taking  
sensor   measurements.   Rather,   perception   and   control   takes   place   concurrently;  
many   sensors   affect   the   environment;   and   the   separation   is   strictly   for   convenience.  
 
 
Another   key   concept   in   probabilistic   robotics   is   that   of   a    belief .   A   belief   reflects   the  
robot’s   internal   knowledge   about   the   state   of   the   environment.   We   already   discussed  
that   state   cannot   be   measured   directly.   For   example,   a   robot’s   pose   might   be  

  in   some   global   coordinate   system,   but   it   usually   cannot 14.12, 12.7, 0.755)  x = (    
know   its   pose,   since   poses   are   not   measurable   directly   (not   even   with   a   GPS!).  
Instead,   the   robot   must   infer   its   pose   from   data.   We   therefore   distinguish   the   true  
state   from   its   internal   belief,   or   state   of   knowledge   with   regards   to   that   state.  
Probabilistic   robotics   represents   beliefs   through   conditional   probability   distributions.  
A   belief   distribution   assigns   a   probability   (or   density   value)   to   each   possible  
hypothesis   with   regards   to   the   true   state.   Belief   distributions   are   posterior  
probabilities   over   state   variables   conditioned   on   the   available   data.   We   will   denote  
belief   over   a   state   variable     by  xt )  bel(xt  
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,   which   is   an   abbreviation   for   the   posterior  
 

el(x ) p(x  ∣ z , u )  b t =  t 1:t  1:t  
 
This   posterior   is   the   probability   distribution   over   the   state     at   time   t,   conditioned   on  xt  
all   past   measurements     and   all   past   controls   .    Generally,   the   belief   for   any z1:t  u1:t  
system   is   modeled   and   updated   using    Filters    with   the   help   of   the   received   sensor  
measurements   and   the   control   inputs   in   the   previous   instant   of   time .  
 
Bayes   Filters  
The   most   general   algorithm   for   calculating   beliefs   is   given   by   the   Bayes   filter  
algorithm.   This   algorithm   calculates   the   belief   distribution   from   measurement   and  
control   data.  
 
 

 
Table   3.4:   Algorithm   for   Bayes   Filter   Update   Rule  

 
The   Bayes   filter   is   recursive,   that   is,   the   belief      at   time   t   is   calculated   from   the el(x )  b t  
belief     at   time   t-1.   Its   input   is   the   belief   bel   at   time   t-1,   along   with   the   most el(x )  b t 1−  
recent   control      and   the   most   recent   measurement   .   Its   output   is   the   belief  ut zt  

  at   time   t. el(x )  b t  
 
The   above   table   only   depicts   a   single   step   of   the   Bayes   Filter   algorithm:   the   update  
rule.   This   update   rule   is   applied   recursively,   to   calculate   the   belief     from   the el(x )  b t  
belief   ,   calculated   previously. el(x )  b t 1−  
The   Bayes   filter   algorithm   possesses   two   essential   steps.   In   Line   3,   it   processes   the  
control   .   It   does   so   by   calculating   a   belief   over   the   state     based   on   the   prior  ut  xt  
belief   over   state     and   the   control   .   In   particular,   the   belief     that   the  xt 1−  ut el(x )  b t  
robot   assigns   to   state     is   obtained   by   the   integral   (sum)   of   the   product   of   two  xt  
distributions:   the   prior   assigned   to   ,   and   the   probability   that   control     induces   a  xt 1−  ut  
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transition   from     to   .   This   update   step   is   called   the   control   update,   or  xt 1−  xt  
prediction.  
 
The   second   step   of   the   Bayes   filter   is   called   the   measurement   update.   In   Line   4,   the  
Bayes   filter   algorithm   multiplies   the   belief     by   the   probability   that   the el(x )  b t  
measurement      may   have   been   observed.   It   does   so   for   each   hypothetical zt  
posterior   state   .The   resulting   product   is   generally   not   a   probability,   that   is,   it   may  xt  
not   integrate   to   1.   Hence,   the   result   is   normalized,   by   virtue   of   the   normalization  
constant   .   This   leads   to   the   final   belief   ,   which   is   returned   in   Line   6   of   the η el(x )  b t  
algorithm.   [Refer   to   derivations   in   the   appendix]  
 
B.   Gaussian   Filters  
Gaussian   filters   are   efficient   Bayes   filter   algorithms   that   represent   the   posterior  
by   multivariate   Gaussians.   It   is   known   that   Gaussians   can   be   represented   in   two  
different   ways:   The    moments   representation    and   the    canonical   representation .   
 
The    moments   representation    consists   of   the    mean   (first   moment)    and   the  
covariance   (second   moment)    of   the   Gaussian.   
 

(x) det(2πΣ) exp  p =  − 2
1

(x ) Σ (x ){− 2
1 − μ T 1− − μ } 

 
This   density   over   the   variable      is   characterized   by   two   sets   of   parameters:   The  x  
mean   and   the   covariance.   The   mean    is   a   vector   that   possesses   the   same  
dimensionality   as   the   state   .   The   covariance   is   a   quadratic   matrix   that   is   symmetric  x  
and   positive   semidefinite.   Its   dimension   is   the   dimensionality   of   the   state   squared.  x  
Thus,   the   number   of   elements   in   the   covariance   matrix   depends   quadratically   on   the  
number   of   elements   in   the   state   vector.   After   this   definition   we   are   no   longer   in   need  
to   deal   with   the   complex   gaussian   in   each   update   we   only   need   to   deal   with   the  
mean   and   covariance   to   update   the   belief   )    in   what   is   called   a   state   transition el(x  b t  
function   that   updates   the   new   distribution   moments   from   the   old   one.  
 
The    canonical,   or   natural,   representation    consists   of   an   information   matrix   and   an  
information   vector.   Both   representations   are   duals   of   each   other,   and   each   can   be  
recovered   from   the   other   via   matrix   inversion.  
 
Bayes   filters   can   be   implemented   for   both   representations.   When   using   the   moments  
representation,   the   resulting   filter   is   called    Kalman   filter .   The   dual   of   the   Kalman  
filter   is   the    information   filter ,   which   represents   the   posterior   in   the   canonical  
representation.   Updating   a   Kalman   filter   based   on   a   control   is   computationally  
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simple,   whereas   incorporating   a   measurement   is   more   difficult.   The   opposite   is   the  
case   for   the   information   filter,   where   incorporating   a   measurement   is   simple,   but  
updating   the   filter   based   on   a   control   is   difficult.  
 
For   both   filters   to   calculate   the   correct   posterior,   three   assumptions   have   to   be  
fulfilled.    First ,   the   initial   belief   must   be   Gaussian.    Second ,   the   state   transition  
probability   must   be   composed   of   a   function   that   is   linear   in   its   argument   with  
added   independent   Gaussian   noise.    Third ,   the   same   applies   to   the   measurement  
probability.   It   must   also   be   linear   in   its   argument,   with   added   Gaussian   noise.  
 
Systems   that   meet   these   assumptions   are   called    linear   Gaussian   systems .  
Both   filters   can   be    extended   to   nonlinear   problems .   This   technique   calculates   a  
tangent   to   the   nonlinear   function.   Tangents   are   linear,   making   the   filters   applicable.  
The   technique   for   finding   a   tangent   is   called    Taylor   expansion .   Performing   a   Taylor  
expansion   involves   calculating   the   first   derivative   of   the   target   function,   and  
evaluating   it   at   a   specific   point.   The   result   of   this   operation   is   a   matrix   known   as   the  
Jacobian .   The   resulting   filters   are   called   “ extended .”  
 
The   accuracy   of   Taylor   series   expansions   depends   on   two   factors:   The   degree  
of   nonlinearity   in   the   system,   and   the   width   of   the   posterior.   Extended   filters  
tend   to   yield   good   results   if   the   state   of   the   system   is   known   with   relatively   high  
accuracy,   so   that   the   remaining   covariance   is   small.   The   larger   the   uncertainty,  
the   higher   the   error   introduced   by   the   linearization.  
 
 
 
One   of   the   primary   advantages   of   Gaussian   filters   is   computational:   The   update  
requires   time   polynomial   in   the   dimensionality   of   the   state   space.   The   primary  
disadvantage   is   their   confinement   to   unimodal   Gaussian   distributions.  
Within   the   multivariate   Gaussian   regime,   both   filters,   the   Kalman   filter   and   the  
information   filter,   have   orthogonal   strengths   and   weaknesses.   However,    The   Kalman  
filter    and   its   nonlinear   extension,   the    Extended   Kalman   Filter   (EKF) ,   are   vastly  
more   popular   than   the   information   filter.  
 
Kalman   Filter  
 
This   filter   represents   the   state   transition   function   that   solves   for   a   linear   system  
model,   where   the   probability   distribution   for   state   estimation   based   on   motion   is  

   and   based   on   the   measurements   is      where   both   updates (x  ∣ u , x )  p t t  t 1− (z  ∣ x )  p t t  
the   belief   distribution     in   a   consequent   manner   according   to   the   bayes   filter el(x )  b t  
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algorithm   line   3   and   4,   motion   increases   uncertainty   and   measurements   decreases  
it.  
 
The   KF   applies   three   basic   assumptions.  
 
First  

Linear   Kalman   Filter   algorithm   models   the   next   state   probability  
   as   a   linear   function   in   its   arguments   with   added   Gaussian (x  ∣ u , x )  p t t  t 1−  

noise.   Consider   this   in   the   following   expression.  
 A  . x  B  . u  ε  xt =  t t 1− +  t t +  t  

 
In   this   notation,   and     are   state   vectors,   and     is   the   control   vector   at xt xt 1− ut  
time   t.  

  and   are   matrices.     is   a   square   matrix   of   size   n   x   n,   where   n   is   the At Bt At  
dimension   of   the   state   vector   .     is   of   size   n   x   m,   with   m   being   the  xt Bt  
dimension   of   the   control   vector   .   By   multiplying   the   state   and   control   vector  ut  
with   the   matrices     and   ,   respectively,   the   state   transition   function At Bt  
becomes   linear   in   its   arguments.   Thus,   Kalman   filters   assume   linear   system  
dynamics.   The   random   variable     is   a    Gaussian   random   vector    that εt  
models   the    randomness    in   the   state   transition.   It   is   of   the   same   dimension   as  
the   state   vector.   Its   mean   is   zero   and   its   covariance   will   be   denoted   .   The Rt  
mean   of   the   posterior   state   is   given   by:  

 . x  B  . u  At t 1− +  t t   

and   the   covariance   by   : Rt  
(x  ∣ u , x )  p t t  t 1− =  
det(2πR ) exp( (x  A  . x  B  . u ) R (x  A  . x B  . u ))   t

 − 2
1

−  2
1

t −  t t 1− −  t t
T

t
1− t −  t t 1  − −  t t  

 
Until   now   we   can   predict   the   new   distribution   of   the   state   based   on   the  
previous   state   and   the   control   inputs   this   will   be   used   in   evaluating   the   step  
stated   in   line   3   in   the   bayes   filter   algorithm,   this   increases   the   uncertainty  
because   of   the   uncertainty   factors   stated   above   in   the   Robot   Uncertainty  
section.   

 
Second  

Next,   KF   algorithm   models   the   measurement   probability     also   as   a (z  ∣ x )  p t t  
linear   combination   of   its   arguments,   with   added   Gaussian   noise.  

 C  . x  δ  zt =  t t +  t   
  is   a   matrix   of   size   k   x   n,   where   k   is   the   dimension   of   the   measurement C t  
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vector   .   The   vector     describes   the    measurement   noise .   Again,   the Z t  δt  
distribution   of   is   a   multivariate   Gaussian   with   zero   mean   and   covariance  δt  

.   Consider   the   following   multivariate   normal   distribution   that   describes   the Qt  
measurement   probability.  

(z  ∣ x )  p t t =   
exp{ (z  C  . x ) Q (z  C . x )}  det(2πQ )t

− 2
1

− 2
1

t −  t t
T

t
1− t −  t t  

 
This   step   depicts   line   4   in   the   Bayes   Filter   which   is   the   correction   step,   as   it  
reduces   the   uncertainty   of   the   state   by   using   the   sensor   measurements.  
 

The   next   algorithm   shows   how   to   apply   KF   algorithm   for   state   estimation,   by  
updating   the   moments   representation   of   the   belief;   the   mean   of   the   distribution   , μt  
and   the   covariance   .  Σt   
[refer   to   the   appendix   for   derivations]  

 
Table:   Algorithm   for   Linear   Kalman   Filter  

Kalman   filters   represent   the   belief     at   time   t   by   the   mean      and   the el(x )  b t μt  
covariance   .   The   input   of   the   Kalman   filter   is   the   belief   at   time   t   -   1,   represented   by  Σt  

  and   .   To   update   these   parameters,   Kalman   filters   require   the   control   μt 1−  Σt 1−  ut  
and   the   measurement   .   The   output   is   the   belief   at   time   t,   represented   by      and zt μt  

.  Σt  

In   Lines   2   and   3,   the   predicted   belief     and     is   calculated   representing   the   belief μ Σ  

  one   time   step   later,   but   before   incorporating   the   measurement   .   This   belief bel(x )t zt  
is   obtained   by   incorporating   the   control   .  ut   
The   mean     is   calculated   using   the   above   mentioned   equation,   with   the   mean   μ μt 1−  
substituted   for   the   state   .   The   update   of   the   covariance   considers   the   fact   that  xt 1−  
states   depend   on   previous   states   through   the   linear   matrix   .   This   matrix   is At  
multiplied   twice   into   the   covariance,   since   the   covariance   is   a   quadratic   matrix.  
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The   belief     is   subsequently   transformed   into   the   desired   belief     in bel(x )t el(x )  b t  
Lines   4   through   6,   by   incorporating   the   measurement   .   The   variable   computed zt K t  
in   Line   4   is   called   Kalman   gain.   It   specifies   the   degree   to   which   the   measurement   is  
incorporated   into   the   new   state   estimate.   Line   5   manipulates   the   mean,   by   adjusting  
it   in   proportion   to   the   Kalman   gain     and   the   deviation   of   the   actual   measurement, K t  

,   and   the   measurement   predicted   according   to   the   measurement   probability zt  
mentioned   above.  
Finally,   the   new   covariance   of   the   posterior   belief   is   calculated   in   Line   6,   adjusting   for  
the   information   gain   resulting   from   the   measurement.  
 
For   sure,   there   must   be   an   initial   state   for   this   algorithm   defined   by   the   initial   belief  
distribution      denoted   by   the   mean   of   the   distribution   ,    and   the   covariance el(x )  b 0 μ0  

.  Σ0  
 
 

 
Figure   3.25:   Illustration   of   Kalman   filters:   (a)   initial   belief,   (b)   a   measurement   (in   bold)  
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with   the   associated   uncertainty,   (c)   belief   after   integrating   the   measurement   into   the  
belief   using   the   Kalman   filter   algorithm,   (d)   belief   after   motion   to   the   right   (which  
introduces   uncertainty),   (e)   a   new   measurement   with   associated   uncertainty,   and   (f)  
the   resulting   belief.  
Example  

In   order   to   make   things   more   clear,   we   provide   a   simple   example   on   applying  
the   Bayes   Filter   using   Kalman   Filter   Algorithm.  
We   consider   a   simple   construction   of   a   car   that   exists   in   a   one   dimensional  
environment   where   its   motion   is   considered   only   in   the   x   direction   and   the  
state   estimation   transition   is   assumed   to   be   linear.   Consider   the   following  
figure.  

 
Figure   3.26:   Simple   example   on   applying   Bayes   Filter   by   using   Kalman   Filter  
Algorithm.  
 
Each   probability   distribution   function   is   modeled   using   the   mean     and μ  
covariance      (Variance   in   this   case   as   we   are   considering   one   dimensional Σ  
state   only   which   is   the   distance   in   ),   the   algorithm   states   how   we   can  x  
translate   from   one   state   of   the   vehicle   to   the   next   state,   the   state   here   is   the  
distance   in   the   x   direction   only   but   it   may   contain   more   information   such   as  
the   3D   position   of   the   vehicle   and   the   landmarks   around   it   as   mentioned   in   the  
state   description   section   above.  
In   this   example,   let’s   say   that   car   started   at   0   m,   and   in   the   next   state   it  
reached   5   m   which   is   unknown   to   us   and   we   need   to   find.  
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The   algorithm   is   divided   into   two   parts   the   first   is   used   to   predict   the   next   state  
using   the   motion   model   as   it   is   known   what   are   the   previous   motion  
commands   of   the   vehicle   such   as   distance   request   to   the   car   motor   .   This  ut  

outputs   the   belief     which   is   a   distribution   of   Let's   say   a   mean   of   3.6m bel(x )t  
which   shows   how   this   belief   suffers   from   uncertainties   because   of   the   factors  
mentioned   before.   The   second   step   is   the   usage   of   sensors   to   improve   the  
predicted   state   estimation   using   the   sensor   model   let’s   say   that   the   sensors  
provide   a   probability   distribution   with   the   mean   of   5.4m   which   again   shows   the  
uncertainties   depicted   in   the   estimation.   The   algorithm   then   uses   the   both  
motion   and   measurements   distributions   to   output   the   optimal   state   estimation  
of   the   next   state   which   would   be   also   a   probability   distribution   in   which   the  
mean   is   5.01   m   or   something   like   that.   The   Kalman   Gain      decides   whether K t  
to   rely   more   on   the   measurements   or   on   the   prediction   based   on   motion.   
 
Note:    In   the   motion   command   we   only   stated   the   distance   as   a   command   i.e.  
requesting   the   motor   controller   to   move   the   car   for   5   m.   This   is   because   the  
Kalman   Filter   algorithm   assumes   that   the   system   is   linear   in   state  
transitioning,   as   the   mean   and   covariance   is   updated   using   matrices   A,   B,   and  
C   in   a   system   of   linear   equations.   Accordingly,   we   can’t   include   commands  
such   as   velocity   and   acceleration   requests.   In   addition,   in   measurements   we  
can   only   receive   position   data   as   again   we   can’t   estimate   position   from  
acceleration   received   from   accelerometers   for   example.   That   is   why   we   need  
to   consider   the   Extended   Kalman   Filter.   
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Extended   Kalman   Filter  
 
The   Extended   Kalman   filter   (EKF)   calculates   an   approximation   to   the   true   belief.   It  
represents   this   approximation   by   a   Gaussian.   In   particular,   the   belief     at   time el(x )  b t  
t   is   represented   by   a   mean     and   a   covariance   .   Thus,   the   EKF   inherits   from   the  ut Σt  
Kalman   filter   the   basic   belief   representation,   but   it   differs   in   that   this   belief   is   only  
approximate,   not   exact   as   was   the   case   in   Kalman   filters.  
The   representation   here   is   no   longer   a   linear   system   of   matrices.That   is,   the   linear  
predictions   in   Kalman   filters   are   replaced   by   their   nonlinear   generalizations   in   EKFs.   
This   is   done   by   linearizing   the   nonlinear   state   transformation   (nonlinear   motion   and  
nonlinear   observation)   at   the   current   time   step.   Here   the   assumption   is   that   the   next  
state   probability   and   the   measurement   probabilities   are   governed   by   nonlinear  
functions   g   and   h,   respectively.   Where,  

,            g(u , x ) ε  xt =  t  t 1− +  t  h(x ) δ  zt =  t +  t  
The   main   idea   that   constructs   the   EKF   algorithm   is   linearization   as   we   need   to   deal  
with   non   linear   relations   between   variables.   For   instance,   suppose   we   need   to  
estimate   the   position   from   velocity   or   acceleration,   this   defines   a   nonlinear   function.  
In   KF,   the   task   would   be   to   predict   the   position   from   a   linear   combination   of   the  
velocity   or   acceleration   command   but   we   can’t   as   this   violates   the   assumption   of   the  
algorithm.   By   linearization,   we   can   estimate   a   linear   relation   from   the   nonlinear  
function   as   we   go   step   by   step   in   time.  
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Figure3.27:   The   linearization   process   of   the   Extended   Kalman   Filter   algorithm.  
 
EKF   does   function   linearization   by   computing   jacobians   using   Taylor   Expansion   and  
then   prunes   the   expression   to   the   linear   part   only   in   which   it   also   uses   a   matrix  
representation   to   model   both   the   prediction   and   the   correction   steps.   The   algorithm  
again   updates   the   mean   and   covariance   to   update   the   probability   distribution   of   the  
belief   state.  
 
EKFs   use   Jacobians      and      instead   of   the   corresponding   linear   system Gt H t  
matrices    ,    ,   and      in   Kalman   filters.   The   Jacobian      corresponds   to   the At Bt C t Gt  
matrices      and    ,   and   the   Jacobian      corresponds   to    . At Bt H t C t  

 
Table   3.5:   Algorithm   for   Extended   Kalman   Filter  

 
C.   Simultaneous   Localization   and   Mapping   (SLAM)  
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❏ Mobile   Robot   Localization  
 
Mobile   robot   localization   is   the   problem   of   determining   the   pose   of   a   robot  
relative   to   a   given   map   of   the   environment.   It   is   often   called   position  
estimation   or   position   tracking.   Mobile   robot   localization   is   an   instance   of   the  
general   localization   problem,   which   is   the   most   basic   perceptual   problem   in  
robotics.   This   is   because   nearly   all   robotics   tasks   require   knowledge   of   the  
location   of   the   robots   and   the   objects   that   are   being   manipulated   (although   not  
necessarily   within   a   global   map).   
 
Localization   can   be   seen   as   a   problem   of   coordinate   transformation.   Maps   are  
described   in   a   global   coordinate   system,   which   is   independent   of   a   robot’s  
pose.   Localization   is   the   process   of   establishing   correspondence   between   the  
map   coordinate   system   and   the   robot’s   local   coordinate   system.   Knowing   this  
coordinate   transformation   enables   the   robot   to   express   the   location   of   objects  
of   interests   within   its   own   coordinate   frame—a   necessary   prerequisite   for  
robot   navigation.   As   the   reader   easily   verifies,   knowing   the   pose  

  of   the   robot   is   sufficient   to   determine   this   coordinate  (x, y, Θ)  xt =    T  
transformation,   assuming   that   the   pose   is   expressed   in   the   same   coordinate  
frame   as   the   map.  

 
Localization   problems    are   characterized   by   the   type   of   knowledge   that   is  
available   initially   and   at   run-time.   We   distinguish   three   types   of   localization  
problems   with   an   increasing   degree   of   difficulty.  
 
Position   tracking .   Position   tracking   assumes   that   the   initial   robot   pose   is  
known.   Localizing   the   robot   can   be   achieved   by   accommodating   the   noise   in  
robot   motion.   The   effect   of   such   noise   is   usually   small.   Hence,   methods   for  
position   tracking   often   rely   on   the   assumption   that   the   pose   error   is   small.   The  
pose   uncertainty   is   often   approximated   by   a   unimodal   distribution   (e.g.,   a  
Gaussian).   The   position   tracking   problem   is   a   local   problem,   since   the  
uncertainty   is   local   and   confined   to   a   region   near   the   robot’s   true   pose.  
 
Global   localization .   Here   the   initial   pose   of   the   robot   is   unknown.   The   robot  
is   initially   placed   somewhere   in   its   environment,   but   it   lacks   knowledge   of  
where   it   is.   Approaches   to   global   localization   cannot   assume   boundedness   of  
the   pose   error.   As   we   shall   see   later   in   this   chapter,   unimodal   probability  
distributions   are   usually   inappropriate.   Global   localization   is   more   difficult   than  
position   tracking;   in   fact,   it   subsumes   the   position   tracking   problem.  
 
Kidnapped   robot   problem .   This   problem   is   a   variant   of   the   global  
localization   problem,   but   one   that   is   even   more   difficult.   During   operation,   the  
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robot   can   get   kidnapped   and   teleported   to   some   other   location.   The  
kidnapped   robot   problem   is   more   difficult   than   the   global   localization   problem,  
in   that   the   robot   might   believe   it   knows   where   it   is   while   it   does   not.   In   global  
localization,   the   robot   knows   that   it   doesn’t   know   where   it   is.   One   might   argue  
that   robots   are   rarely   kidnapped   in   practice.   The   practical   importance   of   this  
problem,   however,   arises   from   the   observation   that   most   state-of-the-art  
localization   algorithms   cannot   be   guaranteed   never   to   fail.   The   ability   to  
recover   from   failures   is   essential   for   truly   autonomous   robots.   Testing   a  
localization   algorithm   by   kidnapping   it   measures   its   ability   to   recover   from  
global   localization   failures.  
 
Another   aspect   that   characterizes   different   localization   problems   pertains   to  
the   fact   whether   or   not   the   localization   algorithm   controls   the   motion   of   the  
robot.   
 
Passive   localization .   In   passive   approaches,   the   localization   module   only  
observes   the   robot   operating.   The   robot   is   controlled   through   some   other  
means,   and   the   robot’s   motion   is   not   aimed   at   facilitating   localization.   For  
example,   the   robot   might   move   randomly   or   perform   its   everyday’s   tasks.  
Active   localization .   Active   localization   algorithms   control   the   robot   so   as   to  
minimize   the   localization   error   and/or   the   costs   arising   from   moving   a   poorly  
localized   robots   into   a   hazardous   place.  
 
Markov   Localization  
Probabilistic   localization   algorithms   are   variants   of   the   Bayes   filter.   The  
straightforward   application   of   Bayes   filters   to   the   localization   problem   is   called  
Markov   localization.   This   algorithm   is   derived   from  
the   algorithm   Bayes   filter.   Notice   that   Markov   localization  
also   requires   a   map   m   as   input.   The   map   plays   a   role   in   the   measurement  
model     (Line   4).   It   often,   but   not   always,   is   incorporated   in   the (z  ∣ x , m)  p t t   
motion   model.   Just   like   the   Bayes   filter,   Markov   localization  
transforms   a   probabilistic   belief   at   time   t   -   1   into   a   belief   at   time   t.   Markov  
localization   addresses   the   global   localization   problem,   the   position   tracking  
problem,   and   the   kidnapped   robot   problem   in   static   environments.  

 
EKF   Robot   Localization  
The   extended   Kalman   filter   localization   algorithm,   or   EKF   localization,   is   a  
special   case   of   Markov   localization.   EKF   localization   represents   beliefs  

  by   their   first   and   second   moment,   that   is,   the   mean     and   the el(x )  b t μt  
covariance   .   The   basic   EKF   algorithm   was   stated   before. Σt   
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❏ Mapping  
In   fact,   mapping   is   one   of   the   core   competencies   of   truly   autonomous   robots.  
Acquiring   maps   with   mobile   robots   is   a   challenging   problem   for   a   number   of  
reasons.  
The   hypothesis   space,   that   is   the   space   of   all   possible   maps,   is   huge.   Since  
maps   are   defined   over   a   continuous   space,   the   space   of   all   maps   has  
infinitely   many   dimensions.   Even   under   discrete   approximations,   such   as   the  
grid   approximation   which   shall   be   used   in   this   chapter,   maps   can   easily   be  
described     or   more   variables.   The   sheer   size   of   this   high-dimensional  105  
space   makes   it   challenging   to   calculate   full   posteriors   over   maps;   hence,   the  
Bayes   filtering   approach   that   worked   well   for   localization   is   inapplicable   to   the  
problem   of   learning   maps,   at   least   in   its   naive   form   discussed   thus   far.  
 
Learning   maps   is   a   “chicken-and-egg”   problem,   for   which   reason   is   often  
referred   to   as   the   simultaneous   localization   and   mapping   (SLAM)   or  
concurrent   mapping   and   localization   problem   problem.   When   the   robot   moves  
through   its   environment,   it   accumulates   errors   in   odometry,   making   it  
gradually   less   certain   as   to   where   it   is.   Methods   exist   for   determining   the  
robot’s   pose   when   a   map   is   available,   as   we   have   seen   in   the   previous  
chapter.   Likewise,   constructing   a   map   when   the   robot’s   poses   are   known   is  
also   relatively   easy—a   claim   that   will   be   substantiated   by   this   chapter   and  
subsequent   chapters.   In   the   absence   of   both   an   initial   map   and   exact   pose  
information,   however,   the   robot   has   to   do   both;   estimating   the   map   and  
localizing   itself   relative   to   this   map.  
 

Mapping  Localization  SLAM  

Building   a   map   for   the  
environment.  

Estimating   the   robot’s  
location.  

Building   a   map   and  
localizing   the   robot  
simultaneously.  

 
Table   3.6:   Differentiating   between   Mapping,   Localization,   and   SLAM.  
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Figure   3.28:   Localization   example,   finding   the   robot’s   pose   from   landmarks   location  
and   sensor   measurements.   (Having   a   prior   knowledge   about   the   environment   map)  
 
 
 
 
 
 
 
 
Figure   3.29:   Mapping   example,   finding   landmarks   location   from   robot’s   pose   and  
sensor   measurements.   (Having   a   prior   knowledge   about   the   position   of   the   robot’s  
position   and   orientation)  
 

 
 
 
 
 
 
 
 
Figure   3.30:   SLAM   example,   finding   landmarks   locations   and   robot’s   pose   at   the  
same   time   using   sensor   measurements.   (Robot’s   pose   and   landmarks   locations   are  
evaluated   with   uncertainty   attached   in   a   consecutive   manner)  
 
3.4.2   Implemented   approach   for   Mapping   and  
Localization  
 
Vehicle   pose   state   estimation    is   an   essential   part   of   any   mobile   robotic   application  
as   it   enables   the   robust   operation   of   other   system   components.   Several   sensors   are  
fused   to   estimate   the   pose   and   velocity   of   the   ground   vehicle.   To   take   advantage   of  
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redundancy   in   state   estimation,   the   contribution   of   each   sensor   input   to   the   overall  
estimated   state   has   to   be   quantified   in   function   of   the   sensor’s   accuracy   and  
previous   state   knowledge.   This   is   why   we   have   chosen    The   Extended   Kalman  
Filter   (EKF)   localization    for   the   vehicle   as   it   is   the   state-of-the-art   estimator   for   fast,  
mildly   nonlinear   systems.   For   systems   with   white   zero-mean   additive   gaussian   noise  
corrupting   the   sensors   and   the   motion   model,   it   is   a   good   approximation   of   the  
optimal   solution.   (i.e   vehicle   position   and   orientation   in   the   map)  
 
Localization   is   achieved   by   combining   and   fusing   the   readings   from    visual  
odometry ,    wheel   speed   encoders    and    IMU    sensors.   All   the   sensors   will   be   fed   to  
the   Extended   Kalman   Filter   (EKF)   algorithm   which   estimates   the   current   location   of  
the   car.   The   wheel   speed   sensor   will   send   the   current   velocity   of   the   car,   the   IMU  
sensor   sends   the   lateral   movement   that   is   the   steering   angle   of   the   car   thus   using  
these   value   state   estimation   will   be   done   and   thus   the   data   can   be   filtered   and   a  
more   accurate   localization   is   processed.   
 
 
For    mapping ,   to   create   a   map,   we   use    k-means   clustering    to   estimate   the   position  
of   each   cone   in   the   track.   This   is   performed   by   evaluating   cone   locations   from  
repeated   sampling   and   identifying   a   cone   as   being   at   the   average   location   of   a  
cluster   of   positions   (Understanding   k-means   clustering   in   machine   learning.   Towards  
Data   Science).   Sampled   cone   locations   can   be   determined   to   be   part   of   a   previously  
identified   cone   if   it   is   found   to   be   too   close   to   it.   Similarly,   if   a   cluster   becomes   too  
large,   it   can   be   inferred   that   it   is   in   fact   a   cluster   containing   position   data   for   two  
cones   instead   of   one,   so   we   can   then   split   it   into   two   clusters   for   more   accurate   cone  
placement.   In   addition,   if   the   cone   position   samples   received   are   too   sparse   then   the  
uncertainty   of   its   location   is   increased   which   is   expressed   visually   by   increasing   the  
size   of   the   ellipse   around   the   average   values   of   the   samples   until   the   landmark   is  
removed   from   the   map,   in   the   other   hand,   if   the   samples   lies   at   the   same   position   the  
uncertainty   decreases   and   also   the   size   of   the   ellipse,   indicating   how   certain   are   we  
about   the   position   of   the   landmark.   This   will   be   discussed   later   in   section   4.6  
 
 

3.5   Literature   Survey   on   Motion   Control  
 
In   this   chapter   we   will   talk   about   a   very   important   topic   in   our   project   which   is   motion  
control.   After   the   car   knows   the   track   layout   and   it   can   localize   itself   within   the  
environment   after   finishing   the   first   lap   and   mapping   the   complete   track   using  
Simultaneous   localization   and   mapping   algorithm.   The   main   objective   that   we   use  
motion   control   for   is   to   compute   trajectory   of   future   control   inputs   with   states   of   plant  
to   optimize   future   behavior   of   plant   output   or   in   other   words   we   can   race   the   car  
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around   a   known   track   with   maximum   speed   and   how   to   make   this   need   without  
oversteering   in   corners   or   slipping   in   acceleration.  

  
3.5.1   Background   on   Motion   control   
In   the   last   few   years   there   has   been   a   huge   improvement   and   advancement   in  
algorithms   and   controller   techniques   used   in   motion   control   on   autonomous   vehicles  
on   track   which   we   will   talk   about   in   this   chapter.   The   most   important   controller  
technique   used   in   motion   control   is   Model   Predictive   Contouring   Control   (MPCC)   or  
also   known   as   Model   Predictive   Control   (MPC).   Using   an   MPC   has   proved   to  
generalize   to   all   scenarios   where   it   keeps   pushing   the   vehicle   to   its   limits   safely  
where   the   vehicle   is   about   to   reach   its   traction   circle   (Oversteering   in   Corners,  
Slipping   in   acceleration,   Braking   and   propelling   timing).  

In   this   chapter   we   will   talk   about   engineering   and   non-engineering   backgrounds   that  
we   see   important   for   complete   understanding   of   part   of   our   project   which   is   motion  
control,   discuss   any   pivotal   knowledge   to   our   project   and   give   short   literature   review  
of   the   latest   publications   related   to   our   project.  

Controller   Techniques  

The   motion   control   of   an   autonomous   system,   also   known    as    execution  
competency,   as   we   said   before   can   be   defined   as   the   ability   to    race   the   car   around   a  
known   track   with   maximum   speed   and   how   to   make   this   need   without   oversteering   in  
corners   or   slipping   in   acceleration   or   in   other   words   it   is   the   process   of   converting  
intentions   into   actions;   its   main   purpose   is   to   execute   the   planned   intentions   by  
providing   necessary   inputs   to   the   hardware   level   that   will   generate   the   desired  
motions.   Controllers   map   the   interaction   in   the   real   world   in   terms   of   forces,   and  
energy,   on   the   other   hand   the   cognitive   navigation   and   planning   algorithms   in   an  
autonomous   system   are   usually   concerned   with   the   velocity   and   position   of   the  
vehicle   with   respect   to   its   environment.   Measurements   inside   the   control   system   play  
an   important   role   in   controlling   motion   of   the   plant   (Vehicle).   Measurements   inside  
the   control   system    can   be   used   to   determine   how   well   the   system   is   behaving,   and  
therefore   the   controller   can   react   to   reject   disturbances   and   alter   the   dynamics   of   the  
system   to   the   desired   state.   Models   of   the   system   can   be   used   to   describe   the  
desired   motion   in   greater   detail,   which   is   essential   for   satisfactory   motion   execution.  

Let   us   talk   in   this   part   of   the   chapter   about   some   controllers   that   might   be   used   in  
controlling   motion   of   our   vehicle,   know   the   weakness   and   strength   points   of   each  
controller   and   which   one   is   better   in   describing   and   dealing   with   our   project.  
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We   will   talk   about   Proportional-Integral-Derivative   (PID)   and   Model   predictive   control  
(MPC)   and   explain   why   we   use   Model   predictive   control   instead   of   using  
Proportional-Integral-Derivative.  

3.5.2    Comparative   Study   on   Motion   Control  

Classical   Control  

Before   talking   about   how   to   use   Proportional-Integral-Derivative   in   controlling   motion  
of   vehicles   we   have   to   clarify   some   points   about   feedback   control.  

● Feedback   control   is   the   most   common   controller   structure   found   in   many  
applications.  

● Feedback   control   uses   the   measured   system   response   and   actively  
compensates   for   any   deviations   from   the   desired   behavior.  

●   Feedback   control   can   reduce   the   negative   effects   of   parameter   changes,  
modelling   errors,   as   well   as   unwanted   disturbances.  

● Feedback   control   can   also   modify   the   transient   behavior   of   a   system,   as   well  
as   the   effects   of   measurement   noise.  

Proportional-Integral-Derivative   (PID)   controller   is   the   most   common   form   of   classical  
feedback   control.   The   Proportional-Integral-Derivative   controller   is   the   most   widely  
used   controller   in   the   process   control   industry.   PID   controllers   are   easy   to  
understand   and   the   concept   of   PID   control   is   relatively   simple.   It   requires   no   system  
model,   and   the   control   law   is   based   on   the   error   signal   as:  

where   e   is   the   error   signal,   Kp,   Ki,   and   Kd   are   the   proportional,   integral,   and  
derivative   gains   of   the   controller,   respectively.  

However,   we   can’t   use   only   feedback   terms   as   the   use   of   only   feedback   terms   in   a  
controller   may   suffer   from   several   limitations.   The   first   significant   limitation   of   a  
feedback   only   controller   is   that   it   has   delayed   response   to   errors,   as   it   only   responds  
to   errors   as   they   occur.   In   addition   to   purely   feedback   controllers   also   suffer   from   the  
problem   of   coupled   response,   as   the   response   to   disturbances,   modelling   error,   and  
measurement   noise   are   all   computed   by   the   same   mechanism.   It   is   more   logical   then  
to   manipulate   the   response   to   a   reference   independently   from   the   response   to  
errors.  

u(t)   =     e   +    e   +     ∫   e(t)dt d  K   Kp   i  K  
 

where   e   is   the   error   signal,   ,   ,   and   are   the   proportional,   integral,   and   Kp    Ki  Kd  
derivative   gains   of   the   controller,   respectively.  
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                                          Figure   3.31:   PID   Controller    

However,   we   can’t   use   only   feedback   terms   as   the   use   of   only   feedback   terms   in   a  
controller   may   suffer   from   several   limitations.   The   first   significant   limitation   of   a  
feedback   only   controller   is   that   it   has   delayed   response   to   errors,   as   it   only   responds  
to   errors   as   they   occur.   In   addition   to   purely   feedback   controllers   also   suffer   from   the  
problem   of   coupled   response,   as   the   response   to   disturbances,   modelling   error,   and  
measurement   noise   are   all   computed   by   the   same   mechanism.   It   is   more   logical   then  
to   manipulate   the   response   to   a   reference   independently   from   the   response   to  
errors.  

 

                                              Figure   3.32:   Feedback   Control  

We   can   add   another   degree   of   freedom   to   the   controller.   This   is   done   by   including   a  
feedforward   term   to   the   controller.   Feedback   control   and   Feedforward   control  
complete   each   other   as   the   addition   of   a   feedforward   term   in   the   controller   can   help  
to   overcome   the   limitations   of   feedback   control.   The   feedforward   term   is   added   to   the  
control   signal   without   considering   any   measurement   of   the   controlled   system.  
However,   the   feedforward   term   may   involve   the   measurement   of   disturbances.   A  
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model   reference   is   used   for   the   feedforward   controller   as   designing   a   feedforward  
control   requires   a   more   complete   understanding   of   the   physical   system.   

 

 

                                               Figure   3.33:   Feedforward   Control  

We   can   combine   feedforward   term   and   feedback   term   in   the   controller.   The   method  
of   combining   a   feedforward   and   a   feedback   term   in   the   controller   is   also   known   as  
two   degree   of   freedom   controller.  

 

 

 

                                  Figure   3.34:   Feedforward   and   Feedback   Control  

To   sum   up   the   roles   of   feedforward   and   feedback   control:  

Feedback:  

●    Removes   Unpredictable   Errors   and   Disturbances  
●    Does   not   remove   Predictable   Errors   and   Disturbances  
●    Does   not   remove   Errors   and   Disturbances   Before   They   Happen  
●    Cannot   remove   Errors   and   Disturbances   Before   They   Happen  
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●    Does   not   require   Model   of   a   System  
●    Affects   Stability   of   the   System  

On   the   other   hand,   Feedforward:  

●    Does   not   remove   Unpredictable   Errors   and   Disturbances  
● Removes   Predictable   Errors   and   Disturbances  
● Removes   Errors   and   Disturbances   Before   They   Happen  
●   Requires   Model   of   a   System  
● Does   not   affect   Stability   of   the   System.  

  

State   space   control,   often   referred   to   as   modern   control,   is   a   technique   that   tries   to  
control   the   entire   vector   of   the   system   as   a   unit   by   examining   the   states   of   the  
system.     a     state-space   representation   is   a   mathematical   model   of   a   physical   system  
as   a   set   of   input,   output   and   state   variables   related   by   first-order    differential  
equations    or    difference   equations .   State   variables   are   variables   whose   values  
evolve   through   time   in   a   way   that   depends   on   the   values   they   have   at   any   given  
time   and   also   depends   on   the   externally   imposed   values   of   input   variables.   Output  
variables’   values   depend   on   the   values   of   the   state   variables.  

A   linear   state   space   model   can   be   written   as:  

 

(t) A(t) (t) B(t) (t) (t) C(t) (t) D(t) (t)  Ẋ =  * x +  * u * y =  * x +  * u  

 

where   x(t)   is   the   system   state   vector,   u(t)   is   the   control   input   vector,   and   y(t)   is   the  
output   of   the   system.  

The   observations   in   an   autonomous   system   are   mostly   nonlinear   due   to   change   of  
dynamics   of   the   car   as   a   result   of   changes   of   velocity,   and   therefore   a   linear   model  
of   the   nonlinear   system   may   have   to   be   produced   by   first   linearizing   the   state   space  
equation   of   the   system.  

(t) f (x(t), (t)) (t) h(x(t), (t))  Ẋ =  u * y =  u  

  

The   feedback   and   feedforward   (two   degree   of   freedom   controller)   can   also   be  
applied   to   nonlinear   systems.   Feedforward   is   used   to   generate   a   reference  
trajectory,   while   the   feedback   is   used   to   compensate   for   disturbances   and   errors.  
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The   nonlinear   system   can   be   linearized   about   a   reference   trajectory    to   produce  
linearized   error   dynamics.  

 Ẋ(t) A(t) x(t) B(t) u(t) y(t) C(t) x(t) D(t) u(t))  δ =  * δ +  * δ * δ =  * δ +  * δ  

where   A,   B,   C,   and   D   are   the   appropriate   Jacobians.   If   there   exists   a   trajectory  
generation   process   that   can   be   designed   to   produce   a   reference   input,   such   that  
reference   input   generates   a   feasible   trajectory   which   satisfies   the   nonlinear   system  
dynamics   of   the   system,   state   space   controllers   can   be   configured   to   perform  
feedback   compensation   for   the   linearized   error   dynamics.  

 

 

 

Model   Predictive   Control  

After   talking   about   classical   control   especially   Proportional-Integral-Derivative   (PID),  
now   we   will   talk   about   another   controller   which   we   can   say   that   it   is   one   of   the   most  
important   controllers   nowadays   and   the   widely   used   controller   in   autonomous  
vehicles.Autonomous   systems   need   motion   models   for   planning   and   prediction  
purposes.   Models   can   also   be   used   in   control   execution.   A   control   approach   which  
uses   system   modelling   to   optimize   over   a   forward   time   horizon   is   commonly   referred  
to   in   the   literature   as   Model   Predictive   Control   (MPC).   

Model   predictive   control   has   seen   tremendous   and   massive   success   in   the   industrial  
process   control   applications,   due   mainly   to   its   simple   concept   and   its   ability   to   handle  
complicated   process   models   with   input   constraints   and   nonlinearities   and   because   it  
has   multi   inputs   multi   outputs   (MIMO)   and   easy   to   be   understood.  

Model   predictive   control   has   been   developed   to   integrate   the   performance   of   optimal  
control   and   the   robustness   of   robust   control.   Typically   the   prediction   is   performed   for  
a   short   time   horizon   called   the   prediction   horizon,   where   the   goal   of   the   model  
predictive   controller   is   to   compute   the   optimal   solution   over   this   prediction   horizon.  
The   model,   and   thus   the   controller   can   be   changed   online   to   adapt   to   different  
conditions.The   basic   structure   of   MPC   is   shown   in   the   figure   below.  
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                                          Figure   3.35:The   basic   structure   of   MPC  

using   an   MPC   has   proved   to   generalize   to   all   scenarios   where   it   keeps   pushing   the  
vehicle   to   its   limits   safely   where   the   vehicle   is   about   to   reach   its   traction   circle  
(Oversteering   in   corners,   Slipping   in   acceleration,   Braking   and   propelling   timing).  

Model   predictive   control   has   several   other   attractive   features,   such   as   the   simplicity  
of   designing   a   multi   variable   feedback   controller.   It   also   allows   for   easy   specification  
of   system   inputs,   states,   and   outputs   that   must   be   enforced   by   the   controller.   MPC  
furthermore   permits   specification   of   an   objective   function   to   optimize   the   control  
effort.   MPC   can   also   address   time   delay,   rejecting   measured   and   unmeasured  
disturbances   and   taking   advantage   of   previously   stored   information   of   expected  
future   information.   This   feature   can   be   very   useful   for   repeated   tasks,   such   as  
following   a   fixed   path.   MPC   embodies   both   optimization   and   feedback   adjustment,  
thus   mimicking   natural   processes.Model   predictive   control   has   also   been   widely  
adapted   to   automotive   applications.  

The   operations   of   the   overall   vehicle   system   must   be   optimal   throughout   the  
operating   range.   However,   applying   a   model   predictive   controller   in   an   automotive  
system   meets   different   challenges   than   those   faced   in   the   process   control   industry.  

  In   the   process   control   industry,   the   sampling   time   is   relatively   longer,   and   the  
computing   resources   available   are   huge.   The   sampling   period   for   processes   in   an  
automobile   is   a   few   milliseconds,   and   the   amount   of   computing   resources   available  
is   limited   due   to   space   constraints.Pushing   the   adoption   of   MPC   into   greater   spread  
in   the   automotive   industry   is   due   to   advances   in   processor   speed   and   memory,   as  
well   as   development   of   new   algorithms.  
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                              Figure   3.36:MPC   Main   Components  

MPC   has   already   been   applied   in   several   automotive   control   applications,   including  
traction   control,   braking   and   steering,   lane.  

(k 1│t) f (x(k│t), (k│t))                y(k│t) h(x(k│t), (k│t))   x +  =  u =  u   

 

These   two   equations   are   the   discrete   time   model   of   the   system   dynamics   with  
sampling   period   Ts   where   x   is   the   system’s   state,   u   is   the   control   input,   and   y   is   the  
system   output.    t   is   the   discrete   time   index.   The   notation   for   a   vector   v(h|t)   denotes  
the   value   for   v   predicted   at   h   time   steps   as   referenced   from   time   t,   based   on  
information   up   to   t.   The   optimizer   is   the   control   input   sequence   U(t)   =   (u(0|t),   ·   ·   ·   ,  
u(N   −   1|t)),   where   N   is   the   prediction   horizon.   .  

 

minimize   (t)        F (x(N ∣t)) [N−1 ∑ k ] L(x(k∣t), y(k∣t), u(k∣t))   U +  = 0     

  The   cost   function   represents   the   performance   objective   that   consists   of   the   stage  
cost   L   and   the   terminal   cost   F.   The   constraints   on   the   states   and   outputs   are  
enforced   along   the   horizons   Nc   and   Ncu,   respectively.   The   control   horizon   Nu   is  
given   as   the   number   of   optimized   steps   before   the   terminal   control   law   is   applied.   At  
any   control   cycle   t,   the   model   predictive   control   strategy   for   the   general   problem  
operates   as   follows:   system   outputs   are   measured   and   the   state   x(t)   is   estimated.  
This   state   estimation   is   acquired   to   initialize   the   above   equation   .   Once   the   MPC  
optimization   problem   is   solved   and   the   optimal   input   sequence   U∗   (t)   is   obtained,   the  
first   element   of   the   optimal   input   sequence   is   then   applied   to   the   system.   At   the  
following   cycle,   the   process   is   repeated   using   the   newly   acquired   state   estimate,  
thus   applying   the   feedback.  
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Vehicle   Model  

It   is   challenging   to   drive   a   vehicle   at   its   operational   limits   due   to   the   highly   nonlinear  
behavior   in   this   operation   range.   So   we   have   to   model   the   dynamics   of   our   vehicle  
as   a   dynamic   bicycle   model   with   nonlinear   tire   force   laws   where   the   car   is   modeled  
as   one   rigid   body,   and   the   symmetry   of   the   car   is   used   to   reduce   it   to   a   bicycle.   Only  
the   in-plane   motions   are   considered,   i.e.   the   pitch   and   roll   dynamics   as   well   as   load  
changes   are   neglected.  

The   advantages   of   using   a   bicycle   model   to   model   our   car   is   that   the   model   is   able   to  
match   the   performance   of   the   car   even   in   racing   conditions,   while   at   the   same   time  
being   simple   enough   to   allow   the   MPC   problem   to   be   solved   in   real-time.  

Our   vehicle   model   is   derived   under   the   following   assumptions:  

●   the   vehicle   drives   on   a   flat   surface  
● load   transfer   can   be   neglected  
● combined   slip   can   be   neglected  
● the   longitudinal   drive-train   forces   (from   motor)   act   on   the   center   of   gravity  

  

The    Matrix   below   shows   the   equation   of   motion   

  

where   the   car   has   a   mass   m   and   an   inertia   Iz,   lR   and   lF   represent   the   distance   from  
the   center   of   gravity   to   the   rear   and   the   front   wheel   respectively,   FR,y   and   FF,y   are  
the   lateral   tire   forces   of   the   rear/front   wheel,   Fx   is   the   combined   force   produced   by  
the   drive-train   and   τTV   the   additional   moment   produced   by   the   torque   vectoring  
system.    

X,   Y,   ϕ,   vx,   vy,   r   represent   the   state   of   the   model   where   (X,   Y)   represent   the   position  
ϕ   represent   heading   angle,    (vx,   vy)   represent   the   longitudinal   and   lateral   velocities  
and   r   represent   the   Yaw   rate.  
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While   [δ,   D]   represent   the   control   inputs    where   δ   represent   the    steering   angle   and  
D   represent  driving   command   which   is   like   pedals   of   a   driver   where   d   D   =   1  
corresponds   to   full   throttle   and   D   =   −1   to   full   braking.  

This   model   is   the   dynamic   model   where   the   rate   of   change   of   states   is   the   function   of  
inputs   and   states.  

This   model   is   used   in   high   velocities   and   can   not   be   used   in   slow   velocities.   The  
model   is   ill   defined    for   slow   velocities   due   to   slip   angles.  

 

 

                                             Figure   3.37:   Tire   Model  

In   the   above   figure   the   green   colour   represents   the   position   vectors,   while   red   colors  
represent   forces   where   Fr,y   and   Ff,y   represent    the   interaction   between   tires   and  
track   surface   where   r   is   the   rear   wheel   and   f   is   the   front   wheel   and   the   third   force  
which   is   Fx   which   represent   the   longitudinal   force   acting   on   the   car   which   depends  
on   input   D   (Driver   command   ).   In   addition   to   the   last   color   which   is   blue   which  
represents   the   velocities.  

Equations   of   forces   can   be   shown   below:  

r,  Dr  sin  (Cr arctan  (Br r))  F y =  * α  

f ,  Df  sin  (Cf  arctan  (Bf f ))  F y =  * α  

where   

R arctan ((vy − lr )  vx)  , αF  arctan ((vy lf )   vx)  − δ  α =  * r /  =  +  * r /  
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Where   B,C,D   are   coefficients   of   the   mode   and    α    are   rear   and   front   angles.  

In   addition   to   third   force   which   is   longitudinal   force   which   is   equal   

x Cm  − Cr0 − Cr2 V x 2.  F =  * D *  ˆ  

Where     is   motor   model   is   rolling   resistance      is   drag. m  C * D Cr0   V x 2   ˆ  

As   we   said   that    the   problem   of   the   dynamical   bicycle   model   is   that   the   model   is  
ill-defined   for   slow   velocities   due   to   the   slip   angles.   However,   slow   velocities   are  
important   for   race   start   and   in   sharp   corners.   For   slow   driving   normally   kinematic  
models   are   used   which   do   not   depend   on   slip   angles.   However,   kinematic   models  
are   not   suited   for   fast   driving   as   they   neglect   the   interaction   of   the   tires   and   the  
ground.   So,   to   get   the   best   of   both   models   within   one   formulation   we   propose   a   novel  
vehicle   model   combining   a   dynamic   and   a   kinematic   vehicle   model.  

 

we   first   formulate   the   kinematic   model   using   the   state   of   the   dynamic   model  

 

 

 

cos   (δ)^2   ≈   1   and   tan   (δ)   ≈   δ.   Is   due   to   the   assumption   that   δ   is   very   small.   The  
resulting   model   is   the   kinematic   model   or   in   other   words   the   model   that   does   not  
depend   on   forces.   Where   the   rate   of   change   of   states   does   not   only   depend   on  
states   and   inputs   of   the   system   but   also   on   the   rate   of   change   of   input.  

Both   kinematic   and   dynamic    models   are   formulated   using   the   same   states   which  
allows   us   to   combine   them.   The   resulting   vehicle   model   is   generated   by   linearly  
blended   the   two   models.Below   a   certain   velocity   Vmin   we   use   purely   the   kinematic  
model   while   for   velocities   above   certain   velocities   Vmax   we   use   purely   the   dynamic  

68   |    Page  
 



/

 

model,   and   we   combined   the   models   and   use   the   combined   model   in   range   of  
velocity   between   Vmax   and   Vmin.  

 
3.5.3    Implemented   Approach   on   motion   control   
From   the   above   two   controller   techniques   that   we   present.   We   can   say   that   both  
Proportional-Integral-Derivative   (PID)   controller   and   Model   Predictive   Control   (MPC)  
controller   can   be   used   to   control   motion   of   our   vehicle.   Each   controller   has   its   pros  
and   cons   or   in   another   words   there   is   a   tradeoff   between   them.   

In   our   project   we   use    Model   Predictive   Control   (MPC)    to   control   motion   of   our  
autonomous    vehicle   because   many   teams   all   over   the   world   use    Model   Predictive  
Control   (MPC)    instead   of   adaptive   PID   in   there   vehicles   such   as:   Akademischer  
Motorsportverein   Zürich   (AMZ)   which   is   one   of   the   biggest   formula   students   racing  
teams   in   the   world,   and   many   other   teams.  

Proportional-Integral-Derivative   ( PID)   control   has   such   advantages   as   a   simple  
structure,   good   control   effect   and   robust   and   easy   implementation.   Unfortunately,  
this   method   does   not   deal   with   parameter   optimization   and   automatically   adapts   to  
the   environment   caused   by   the   complexity   of   vehicle   dynamics,   uncertainty   of   the  
external   environments   and   the   non-holonomic   constraint   of   the   vehicle.      But   in  
solving   the   problem   of   trajectory   tracking   of   unmanned   vehicles,   also   the   reference  
model   of   adaptive   PID   control   based   on   the   model   reference   is   hard   to   ascertain  
because   the   motion   model   of   the   vehicle   is   influenced   greatly   by   environments.   The  
design   of   fuzzy   adaptive   PID   control   requires   much   priori   knowledge.   The   vehicle  
finds   it   hard   to   obtain   comprehensive   priori   knowledge   when   the   vehicle   travels   in  
unknown   environments.   Adaptive   PID   control   based   on   a   neural   network   generally  
uses   supervised   learning   to   optimize   the   parameters,   so   it   is   also   limited   by   some  
application   conditions,   for   instance,   the   teacher   signal   of   supervised   learning   is   hard  
to   obtain   exactly.   Although   the   design   of   adaptive   PID   control   based   on   evolutionary  
algorithms   requires   less   priori   knowledge,   it   has   the   disadvantage   of   long   computing  
times,   i.e.,   not   real   time   on   line   optimization.   

That   is   why   we   use   Model   Predictive   Control   (MPC)   to   control   the   motion   of   our  
vehicle   as   The   two   main   advantages   of   the   proposed   MPC   is   the   direct   consideration  
of   the   vehicle   limits   when   computing   the   command   and   that   the   algorithm   does   not  
need   any   pre-determined   logic,   only   the   track   layout,   and   the   vehicle   model.  

In   addition   to   it   is    flexible,   open   and   intuitive   formulation   in   time   domain.,   solve  
problems   with   linear   and   non   linear   systems   or   variable   and   multivariable   systems  
without   change   the   controller   formulation   this   is   shown   in   the   figure   below   which  
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shows   us   the   a   multivariable   system   with   multi   inputs   and   multi   outputs   (MIMO)   ,   and  
it   is   the   only   controller   that   deals   with   constraints.    This   approach   will   be   discussed   in  
details   in   chapter   4.  

 

 

                                Figure   3.38:   Model   Predictive   Controller  

In   the   next   chapter   we   will   talk   in   some   details   about   model   predictive   control   (MPC)  
,   how   it   works,   its   parameters,   why   it   is   important   in   autonomous   vehicles   and   how   it  
is   used   to   optimize   output   to   be   similar   to   a   reference   path   with   maximum   speed   and  
without   slipping   or   oversteering   in   corners.  

 

 
 
3.6   Literature   Survey   on   the   Deployment   of   the  

modules   and   communication   between   them  
 
In   order   to   deploy   and   integrate   all   of   our   modules   on   a   real   car   there   must   be   a  
framework   that   will   run   all   of   the   implemented   modules   and   ensure   that   the  
communication   between   them   is   fast   and   accurate,   so   in   this   section   we   will   discuss  
different   types   of   frameworks   that   we   faced   and   by   the   end   of   this   section   we   will  
choose   our   framework   which   ensures   the   fast   communication   between   the   high  
performance   driverless   race   car   modules.  
 

3.6.1   Background   Information  
 

70   |    Page  
 



/

 

Robot   Operating   System   (ROS):    ROS    [3]    is   a   flexible   framework   for   writing   robot  
software.   It   is   a   collection   of   tools,   libraries,   and   conventions   that   aim   to   simplify   the  
task   of   creating   complex   and   robust   robot   behavior   across   a   wide   variety   of   robotic  
platforms.  
 

1) Message   Passing   
A   communication   system   is   often   one   of   the   first   needs   to   arise   when   implementing   a  
new   robot   application.   ROS's   built-in   and   well-tested   messaging   system   saves   you  
time   by   managing   the   details   of   communication   between   distributed   nodes   via   the  
anonymous   publish/subscribe   mechanism.   Another   benefit   of   using   a   message  
passing   system   is   that   it   forces   you   to   implement   clear   interfaces   between   the   nodes  
in   your   system,   thereby   improving   encapsulation   and   promoting   code   reuse.   The  
structure   of   these   message   interfaces   is   defined   in   the   message   IDL   (Interface  
Description   Language).  
 

2) Recording   and   Playback   of   Messages  
Because   the   publish/subscribe   system   is   anonymous   and   asynchronous,   the   data  
can   be   easily   captured   and   replayed   without   any   changes   to   code.   Say   you   have  
Task   A   that   reads   data   from   a   sensor,   and   you   are   developing   Task   B   that   processes  
the   data   produced   by   Task   A.   ROS   makes   it   easy   to   capture   the   data   published   by  
Task   A   to   a   file,   and   then   republish   that   data   from   the   file   at   a   later   time.   The  
message-passing   abstraction   allows   Task   B   to   be   agnostic   with   respect   to   the   source  
of   the   data,   which   could   be   Task   A   or   the   log   file.   This   is   a   powerful   design   pattern  
that   can   significantly   reduce   your   development   effort   and   promote   flexibility   and  
modularity   in   your   system.  
 
 
 
 

3) Standard   Robot   Messages  
The   asynchronous   nature   of   publish/subscribe   messaging   works   for   many  
communication   needs   in   robotics,   but   sometimes   you   want   synchronous  
request/response   interactions   between   processes.   The   ROS   middleware   provides  
this   capability   using   services.   Like   topics,   the   data   being   sent   between   processes   in  
a   service   call   are   defined   with   the   same   simple   message   IDL.  
 

4) Robot   Geometry   Library  
A   common   challenge   in   many   robotics   projects   is   keeping   track   of   where   different  
parts   of   the   robot   are   with   respect   to   each   other.   For   example,   if   you   want   to   combine  
data   from   a   camera   with   data   from   a   laser,   you   need   to   know   where   each   sensor   is,  
in   some   common   frame   of   reference.   This   issue   is   especially   important   for   humanoid  
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robots   with   many   moving   parts.   We   address   this   problem   in   ROS   with   the   tf  
(transform)   library,   which   will   keep   track   of   where   everything   is   in   your   robot   system.  
 
Designed   with   efficiency   in   mind,   the   tf   library   has   been   used   to   manage   coordinate  
transform   data   for   robots   with   more   than   one   hundred   degrees   of   freedom   and  
update   rates   of   hundreds   of   Hertz.   The   tf   library   allows   you   to   define   both   static  
transforms,   such   as   a   camera   that   is   fixed   to   a   mobile   base,   and   dynamic  
transforms,   such   as   a   joint   in   a   robot   arm.   You   can   transform   sensor   data   between  
any   pair   of   coordinate   frames   in   the   system.   The   tf   library   handles   the   fact   that   the  
producers   and   consumers   of   this   information   may   be   distributed   across   the   network,  
and   the   fact   that   the   information   is   updated   at   varying   rates.  
 

5) Diagnostics   
ROS   provides   a   standard   way   to   produce,   collect,   and   aggregate   diagnostics   about  
your   robot   so   that,   at   a   glance,   you   can   quickly   see   the   state   of   your   robot   and  
determine   how   to   address   issues   as   they   arise.  
 

6) Tools  
One   of   the   strongest   features   of   ROS   is   the   powerful   development   toolset.   These  
tools   support   introspecting,   debugging,   plotting,   and   visualizing   the   state   of   the  
system   being   developed.   The   underlying   publish/subscribe   mechanism   allows   you   to  
spontaneously   introspect   the   data   flowing   through   the   system,   making   it   easy   to  
comprehend   and   debug   issues   as   they   occur.   The   ROS   tools   take   advantage   of   this  
introspection   capability   through   an   extensive   collection   of   graphical   and   command  
line   utilities   that   simplify   development   and   debugging.  
 
 
 
a-   Command-Line   Tools:  
Do   you   spend   all   of   your   time   remotely   logged   into   a   robot?   ROS   can   be   used   100%  
without   a   GUI.   All   core   functionality   and   introspection   tools   are   accessible   via   one   of  
our   more   than   45   command   line   tools.   There   are   commands   for   launching   groups   of  
nodes;   introspecting   topics,   services,   and   actions;   recording   and   playing   back   data;  
and   a   host   of   other   situations.   If   you   prefer   to   use   graphical   tools,   rviz   and   rqt   provide  
similar   (and   extended)   functionality.  
 
b-   rviz  
Perhaps   the   most   well-known   tool   in   ROS,   rviz   provides   general   purpose,  
three-dimensional   visualization   of   many   sensor   data   types   and   any   URDF-described  
robot.  
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rviz   can   visualize   many   of   the   common   message   types   provided   in   ROS,   such   as  
laser   scans,   three-dimensional   point   clouds,   and   camera   images.   It   also   uses  
information   from   the   tf   library   to   show   all   of   the   sensor   data   in   a   common   coordinate  
frame   of   your   choice,   together   with   a   three-dimensional   rendering   of   your   robot.  
Visualizing   all   of   your   data   in   the   same   application   not   only   looks   impressive,   but  
also   allows   you   to   quickly   see   what   your   robot   sees,   and   identify   problems   such   as  
sensor   misalignments   or   robot   model   inaccuracies.  
 
c-   rqt  
ROS   provides   rqt,   a   Qt-based   framework   for   developing   graphical   interfaces   for   your  
robot.   You   can   create   custom   interfaces   by   composing   and   configuring   the   extensive  
library   of   built-in   rqt   plugins   into   tabbed,   split-screen,   and   other   layouts.   You   can   also  
introduce   new   interface   components   by   writing   your   own   rqt   plugins   .  
 
 
The   rqt_graph   plugin   provides   introspection   and   visualization   of   a   live   ROS   system,  
showing   nodes   and   the   connections   between   them,   and   allowing   you   to   easily   debug  
and   understand   your   running   system   and   how   it   is   structured.  
 
With   the   rqt_plot   plugin,   you   can   monitor   encoders,   voltages,   or   anything   that   can   be  
represented   as   a   number   that   varies   over   time.   The   rqt_plot   plugin   allows   you   to  
choose   the   plotting   backend   (e.g.,   matplotlib,   Qwt,   pyqtgraph)   that   best   fits   your  
needs.  
 
For   monitoring   and   using   topics,   you   have   the   rqt_topic   and   rqt_publisher   plugins.  
The   former   lets   you   monitor   and   introspect   any   number   of   topics   being   published  
within   the   system.   The   latter   allows   you   to   publish   your   own   messages   to   any   topic,  
facilitating   ad   hoc   experimentation   with   your   system.  
 
For   data   logging   and   playback,   ROS   uses   the   bag   format.   Bag   files   can   be   created  
and   accessed   graphically   via   the   rqt_bag   plugin.   This   plugin   can   record   data   to   bags,  
playback   selected   topics   from   a   bag,   and   visualize   the   contents   of   a   bag,   including  
display   of   images   and   plotting   of   numerical   values   over   time.  
 

3.6.2   Implemented   approach  
 
By   Implementing   our   pipeline   from   perception   to   mapping   and   localization   of   the  
vehicle   it   is   found   that   most   of   pipeline   modules   needs   to   interact   and   send   data   to  
each   other   starting   from   camera   sensing   ending   with   producing   the   torque   request  
and   steering   angle,   so   the   pipeline’s   modules   are   run   as   nodes   using   Robot  
Operating   System   or   ROS   as   the   framework   that   eases   handling   of   communication  
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and   data   messages   across   multiple   systems   as   well   as   different   nodes.   Different  
modules   communicate   via   messages,   they   receive   data   and   output   processed  
information.   Another   important   aspect   is   that   ROS   is   open-source   and   provides   tools  
for   visualization,   monitoring   and   simulation,   making   it   easy   to   integrate,   test,  
diagnose   and   develop   the   complete   software   system.   More   information   about   the  
deployment   of   the   pipeline   on   the   ROS   framework   is   described   in   chapter   4.  
 
 
 
 
 
Chapter   4:   System   Design   and  
Architecture  
4.1.   Overview   and   Assumptions  
Autonomous   racing   presents   a   unique   opportunity   to   test   commonly-applied,   safety-critical  
perception,   and   autonomy   algorithms   in   extreme   situations   at   the   limit   of   vehicle   handling  
and   provides   the   opportunity   to   test   safety-critical   perception   pipelines   at   their   limit.   Accurate  
and   low-latency   visual   perception   is   applicable   to   many   domains,   from   autonomous   driving  
to   augmented   reality.   We   present   challenges   that   require   us   to   optimize   known   solutions   to  
develop   designs   optimized   for   Formula   Driverless.    This   section   describes   the   practical  
challenges   and   solutions   to   applying   state-of-the-art   computer   vision   algorithms   to   build   a  
low   latency,   high-accuracy   perception   system   for   a   high   performance   formula   student   racing  
vehicle.   The   key   components   of   the   car   modules   include   YOLOv3-based   object   detection,  
pose   estimation   and   time   synchronization   on   its   dual   stereo   vision/monovision   camera  
setup.   We   highlight   modifications   required   to   adapt   perception   CNNs   to   racing   domains,  
improvements   to   loss   functions   used   for   pose   estimation,   and   methodologies   for  
sub-microsecond   camera   synchronization   among   other   improvements.   And   describes   an  
overview   on   the   entire   autonomous   racing   platform,   covering   all   required   software   modules  
reaching   from   environment   perception   to   mapping   and   control.   Starting   with   the   perception  
pipeline,   the   developed   system   works   using   a   mono   camera   and   stereo   camera   and   the  
motion   estimation   subsystem   fuses   the   measurements   from   different   sensors   using  
Extended   Kalman   Filter   (EKF)   to   estimate   the   odometry   of   the   vehicle   and   landmarks    to   use  
it   in   the   localization   and   mapping   algorithm.   
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  Figure   4.1:   The   restricted   environment   (Track   and   cones)  
 
 
For   the   perception   pipeline     two-camera   architecture   were   deployed   with   a    stereo    camera  
used   for   long-range   detections   and   a   monocular   camera   for   short-range   detections.  
As   shown   in   Figure   4.2   the   camera   system   will   be   mounted   within   the   roll   hoop   of   the  
vehicle,   which   satisfies   the   constraints   from   the   competition   rules   and   allows   the   cameras   to  
be   as   high   as   possible   to   limit   the   effects   of   occlusions   between   landmarks.  
 
The   rationale   for   using   the   monocular   camera   for   short-range   rather   than   long-range  
detections   is   that   for   a   reasonable   mounting   height,   a   landmark’s   3D   location   on   a   relatively  
flat   surface   is   a   much   stronger   function   of   pixel   space   location   for   short-range   objects   than  
long-range   objects.   This   relieves   some   of   the   challenges   for   estimating   landmark   pose   from  
a   monocular   camera.      On   the   other   hand,   however,   estimating   3D   pose   of   an   object   using   a  
single   measurement,   i.e.   a   single   image   from   a   monocular   camera   is   an   ill-posed   problem.  
This   is   primarily   due   to   ambiguity   in   the   scale   of   the   scene   arising   from   limited   information   of  
the   surroundings.   This   ill-posed   problem   of   extracting   pose   information   can   be   solved   if   a  
priori   information   about   the   3D   object   in   the   scene   is   available.   The   3D   priors   about   an  
object,   in   addition   to   2D   information   obtained   from   an   image   can   be   together   leveraged   to  
extract   3D   pose   of   this   object   captured   in   any   arbitrary   image   of   the   scene.   On   a   real-time  
system,   such   as   an   autonomous   race-car,   it   becomes   even   more   crucial   to   detect   and  
estimate   multiple   object   positions   extremely   efficiently,   with   as   little   latency   and   data  
overhead   (in   terms   of   transport   and   processing)   as   possible.   
 

 
   Figure   4.2:   Monocular   and   Stereo   camera   ranges  
 
In   the   two   vision   pipelines   (Mono   and   Stereo)   the   landmarks   (Track   Cones)   are   detected  
using   2D   customized,   trained,   and   optimized   detection   algorithm   which   is   YOLOV3   the  
detection   algorithm   not   only   fastly   detects   the   2D   position   of   the   cones   but   also   used   to  
detect   the   cones   colors   for   mapping   purposes,   then   the   detected   cones   enter   to   the  
implemented   keypoints   extraction   Residual   neural   network   to   extract   the   seven   points   for  
each   cone   to   use   it   in   the   PNP   algorithm   which   is   used   to   estimate   the   3D   position   for   each  
cone   relatively   to   the   car   position.   We   believe   that   it   is   possible   to   estimate   the   3D   position  
from   a   single   frame   mono   camera   but   in   our   case   we   assume   that   this   perception   pipeline  
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works   in   a   restricted   environment   in   our   case   the   restricted   environment   is   a   track   with   a  
prior   knowledge   of   its   cones   3D   models.   
 
For   localization   and   mapping   algorithms,    we   utilize   a   K-means-based   Global   Mapping  
  algorithm   to   construct   the   global   map   of   the   track   using   the   3D   Cones’   local   positions   which  
are   estimated   in   the   perception   pipeline   and   fuse   sensors’    readings   to   build   a   relation  
between   the   3D   local   positions   of   cones   with   the   odometry   of   the   car   to   construct   the   3D  
global   map   of   the   track.   
 

Figure   4.3   :   The   track   layout   of   a   trackdrive   discipline   (FSG,   2018).   Blue   and   yellow   cones  
mark   the   track   boundaries  
 
Lastly ,   we   present   a   control   framework   that   directly   minimizes   lap   time   while   obeying   the  
vehicle’s   traction   limits   and   track   boundary   constraints.   Figure   4.3     shows   the   track   layout   of  
a   trackdrive   discipline.   Blue   and   yellow   cones   mark   the   track   boundaries.   It   is   important   to  
note   that   the   track   is   completely   unknown   before   starting   the   race   which   increases   the  
challenge   considerably.   In   addition,   all   computations   and   sensing   are   required   to   happen  
on-board.  
This   pipeline   is   integrated   over   a   very   powerful   operating   system   which   is   the   robot  
operating   system   (ROS)   and   each   stage   in   the   pipeline   is   represented   with   a   node   in   ROS   to  
easily   communicate   with   each   other   and   transfer   the   data   in   an   accurate   and   fast   way.  

 
4.2.   System   Architecture  
In   this   section,   the   architecture   of   the   autonomous   software   system   is   discussed   that  
is   used   to   drive   the   vehicle   in   real   time.   Referring   to   the   block   diagram   figure   below.  
 
 
Sensors  
The   input   sensors   (blue   boxes)   are   attached   to   a   well   known   location   in   the   vehicle   in  
order   to   be   relatively   translated   during   operation.  
 

Monocular   Camera  
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A   sensor   selected   under   the   design   constraints   in   order   to   provide   a   stream   of  
2D   image   frames   which   are   fed   to   the   monocular   pipeline   to   extract   the   near  
objects   in   scene   (cones)   3D   positions   with   respect   to   the   vehicle.  

 
Stereo   Camera  
A   sensor   selected   under   the   design   constraints   in   order   to   provide   two  
streams   of   2D   image   frames   from   two   cameras   which   are   placed   with   very  
specific   distance   between   each   other   which   are   fed   to   the   stereo   camera  
pipeline   to   generate   a   depth   map   and   extract   the   far   objects   in   scene   (cones)  
3D   positions   with   respect   to   the   vehicle.  

 
Inertial   Measurement   Unit   (IMU)  
A   sensor   selected   under   the   design   constraints   in   order   to   provide  
acceleration   in   x,   y,   z   and   orientation   about   them   in   order   to   be   used   by   the  
vehicle   localization   extended   kalman   filter   algorithm   (EKF)   to   evaluate   the  
position   of   the   vehicle   at   each   time   frame.  

 
Wheels   Encoders  
A   sensor   selected   under   the   design   constraints   in   order   to   provide   the   velocity  
of   the   vehicle’s   wheels   which   is   used   to   estimate   the   velocity   vector   of   the  
vehicle   (i.e.   Longitudinal   and   Lateral   velocities)   in   order   to   be   used   by   the  
vehicle   localization   extended   kalman   filter   algorithm   (EKF)   to   evaluate   the  
position   of   the   vehicle   at   each   time   frame.  

 
Pipelines  
The   diagram   also   shows   the   pipelines   used   in   the   vehicle   operating   system   (dashed  
lines)   where   inside   each   pipeline   there   exist   the   modules   that   compose   the   pipeline  
(red   boxes).  

 
Monocular   Pipeline  
The   pipeline   responsible   for   getting   the   3D   position   of   near   cones   from   a  
single   frame,   it   consists   of   three   modules   that   are   responsible   for   extracting  
the   3D   positions   of   the   cones   from   the   scene   information   provided   by   the  
camera,   in   addition   it   uses   the   3D   model   of   the   cone   and   the   intrinsic  
parameters   of   the   camera.  

1) 2D   Space   Localization   Cone   Detection    used   to   find   the   cones   in   the  
image   frame   by   a   bounding   box   and   recognize   their   colors.  

2) Keypoints   Extraction   DNN    a   developed   DNN   used   to   estimate  
specific   set   of   7   keypoints   for   each   cone   coming   in   the   shape   of   image  
batches  

3) 3D   Space   Localization   PNP   algorithm    uses   the   7   points   detected   by  
the   DNN   for   each   batch   and   the   corresponding   points   in   the   3D   model  
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provided   to   the   algorithm   to   extract   the   6   DOF   of   the   cone   with   respect  
to   the   camera   in   the   vehicle.  

 
 

Stereo   Pipeline  
The   pipeline   responsible   for   acquiring   3D   position   of   far   cones   from   2   image  
frames   specifically   distant   from   each   other,   it   is   divided   into   two   processing  
modules   according   to   the   input   frame   as   the   stereo   camera   inputs   two   frames  
left   and   right.   The   pipeline   includes   4   modules.  

1) 2D   Space   Localization   Cone   Detection    used   to   find   the   cones   in   the  
left   image   frame   by   a   bounding   box   and   recognize   their   colors.  

2) Feature   Extraction    used   to   extract   the   features   of   the   left   frame   image  
batches   that   represent   cones   in   order   to   be   shifted   to   match   that   of   the  
right   frame.  

3) Bounding   Box   Propagation    uses   the   features   extracted   from   the   left  
frame   boxes   to   extract   the   location   of   the   corresponding   bounding   box  
in   the   right   frame   and   then   propagate   the   right   frame   bounding   boxes  
features.   

4) SIFT   Feature   Matching   and   Triangulation    uses   the   received   left   and  
right   features   to   match   and   triangulate   between   them   using   the   known  
distance   between   the   cameras   to   evaluate   the   depth   map   of   the  
received   cones   which   are   used   to   evaluate   the   3D   position   of   the  
cones.   

 
Localization   and   Mapping   Pipeline    is   responsible   for   fusing   the   input   stream  
of   cones   3D   position   from   the   monocular   and   stereo   pipeline   while   receiving  
vehicle   odometry   inputs   to   produce   a   3D   World   Map   Construction   that  
describes   the   track   and   the   cones   position.   The   pipeline   consists   of   4  
modules.  

1) K-means   Cone   Mapping   Fusion    used   to   fuse   the   two   cone   estimates  
from   monocular   and   stereo   pipelines   by   using   sampled   data   in   a  
k-means   clustering   scheme.  

2) Visual   Tracking   Pose   Estimation    continuous   mapping   between  
frames   to   give   estimates   about   the   position   of   the   vehicle.  

3) EKF   Robot   Localization    fuses   the   IMU,   wheels   encoders,   and   the  
position   estimation   from   the   visual   tracking   module   to   produce   the   final  
position   of   the   vehicle   in   the   global   map.  

4) Global   Mapping    uses   the   final   fused   reactive   cones   mapping   from   the  
k-means   Mapping   and   the   final   position   from   the   EKF   Robot  
Localization   to   produce   3D   map   of   the   track   and   cones.  
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Path   Planning   and   Motion   Control   Pipeline    is   responsible   for   processing  
the   received   track   map   and   generates   the   trajectory   that   the   vehicle   should  
follow   and   uses   a   model   predictive   control   algorithm   (MPC)   to   generate   the  
actuation   commands   which   are   sent   to   the   vehicle   control   unit.  

 
Actuators  

Steering   Angle    is     the   instant   angle   the   steering   wheel   should   be   for   the  
vehicle   to   follow   the   generated   trajectory.  
Longitudinal   Velocity    is   the   instant   speed   command   sent   to   the   motor  
controller   to   run   the   vehicle   on   the   generated   trajectory   as   fast   as   possible.  

 
4.2.1.   Block   Diagram  
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Figure4.4:   Overall   system   block   diagram  
 

 
 
4.3    2D   Space   Localization   /   Cone   Position   and   Color  

Detection  
4.3.1.   Functional   Description  
The   object   detector   should   be   efficient   in   that   it   is   fast,   requires   lesser   memory   and   is  
still   decently   accurate   in   its   detections   to   cope   with   our   high   performance   perception  
pipeline   of   the   racing   driverless   vehicle.   We   choose   and   customize   YOLOv3   for   the  
purpose   of   detecting   different   colored   cones.   Thresholds   for   it   are   chosen   such   that  
false   positives,   incorrect   detections   and   misclassification   are   avoided   at   any   cost;  
even   if   that   translates   to   not   being   able   to   detect   all   cones   in   a   given   image.   We  
customized   YOLOv3   by   reducing   the   number   of   classes   that   it   detects,   as   “Our  
driverless   high   performance   formula   race   car”   does   not   really   care   about   detecting  
cats,   dogs,   airplanes   or   bikes   to   name   a   few   but   needs   to   distinguish   and   detect  
‘yellow’,   ‘blue’   and   ‘orange’   cones   that   provide   information   about   the   track.   We  
reduce   the   classes   of   the   pre-trained   YOLOv3   to   3   classes   which   are    ‘yellow’,   ‘blue’  
and   ‘orange’   cones.   More   than   50k   formula   student   track   cones   were   collected   and  
manually   labelled   by   drawing   boundary   boxes   around   the   cones.  
 
 
 
 
 
 
 
 
 
 
 

Figure   4.5:   Exemplary   images   from   varying   lighting   and   weather   conditions   
 
We   then   developed   a   fast   and   accurate   labeling   tool   which   labels   the   color   of   the  
boundary   boxes   in   each   frame   using   the   keyboard   and   produces   the   CSV   file   which  
contains   the   bounding   box   and   the   color   of   each   cone   in   each   frame   to   use   it   in   the  
training   of   the   object   detection   module   and   producing   the   CFG   files   and   the   CNN  
weights   of   the   model.   Figure   showing   robust   performance   from   the   object   detection  
to   detect   ‘yellow’,   ‘blue’   and   ‘orange’   cones.   It   is   imperative   to   have   a   robust   cone  
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detection   as   it   is   the   first   module   in   the   pipeline   and   directly   affects   performance   of  
the   modules   that   follow   because   they   depend   on   it,   eventually   the   final   output   as  
well.  
These   images   in   diverse   weather   and   lighting   conditions    which   are   in   Figure   4.5  
show   the   robustness   of   this   particular   object   detection   module,   customized   to   detect  
colored   cones.  
 

4.3.2.   Modular   Decomposition  
Diving   into   this   module   and   to   divide   the    module   into   smaller   fine   ones   the   work   in  
this   module   is   divided   according   to   the   next   five   submodules:  
 
1)   Dataset   Collection  
To   ensure   our   concept   of   a   fast   and   accurate   perception   pipeline   of   our   Driverless  
racing   vehicle,   we   collected   a   dataset   for   the   perception   neural   network   that   can  
generalize   across   different   domains   (weather,   lighting,   scenery)   to   produce   more  
robust   detections   and   in   turn   localize   landmarks   with   higher   accuracy.   To   ensure   this  
with   our   networks,   training   data   was   collected   on   multiple   image   sensors   and   lenses  
from   various   perspectives   in   different   settings.  
The   dataset   for   the   object   detection   module   is   more   than   50k   formula   student   track  
cones.   The   data   for   training   and   testing   was   collected   by   contributing   600   images   to  
Formula   Student   Objects   in   Context   (FSOCO)   with   the   concept   of   Sharing   is   caring.  
This   dataset   lives   from   the   contribution   of   all   formula   student   teams   who   want   to  
access   a   dataset   of   more   than    50k   cones    of   formula   student   track   cones.The   data   is  
divided   as   a   sequence   of   on   board    track   drive   video   frames   which   collected   in   the  
whole   formula   student   competitions   and   some   of   the   data   which   is   shared   by   the  
teams   like   us   was   in   a   park   or   a   college   it   is   not   matter   where   the   images   were  
captured   but   it   matters   that   the   cones   of   the   formula   student   competition   are   the  
same   in   all   images   in   the   dataset.   Here   are   samples   from   the   dataset   of   the   track  
cones   in   Figure   4.6  
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Figure   4.6   Samples   from   the   object   detection   dataset   of   the   track   cones  
 
2-   Self   Developed   Labeling   Tool  
 
Bounding   Box   Labeling   Tool:   
Eight   thousand   images   of   on-track   footage   containing   about   50   thousand   cones  
were   manually   labeled   using   a   self-developed   labeling   tool   that   exploits   similar  
structure   between   consecutive   frames   in   a   video   sequence.   Objects   of   interest   are  
easily   labeled   by   drawing   rectangle   through   click-drag   click   using   a   mouse.   To   speed  
up   the   tedious   labeling   procedure,   the   tool   tracks   annotated   rectangles   over   frames  
and   propagates   them   to   prevent   re-labeling   for   future   frames,   treating   propagated  
bounding   boxes   as   annotations.   After   some   frames,   the   trackers   may   lose   their  
objects   due   to   fast   movement   or   change   in   view   points.   At   such   points,   one   can  
refresh   and   re-label   again.   Since   the   annotations   for   cones   are   long   and   thin  
rectangular   bounding   boxes,   we   exploit   such   prior   information   by   re-calculating   the  
anchor   boxes   used   by   YOLOv3.   This   is   done   by   performing   k-means   clustering   on  
the   aspect-ratio   of   the   rectangle   annotations   in   the   dataset   and   improves   the   object  
detector’s   performance.   
 
2)   Cone   Color   Labeling   Tool:  
An   annotation   tool   was   developed   to   label   the   cones   into   one   of   three   classes;  
yellow,   blue,   or   orange.   The   tool   begins   by   reading   the   boundary   box   coordinates   for  
each   cone   in   each   image,   shows   the   boundary   box   around   the   corresponding   cone,  
and   by   clicking   one   of   three   buttons   (A   for   blue,   D   for   yello,   S   for   orange)   a   cone   can  
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be   classified   into   one   of   the   three   classes.   The   boundary   boxes   and   the   classified  
classes   are   then   saved   together   in   the   correct   format   to   be   used   in   training   the  
YOLOv3   network.   
 
3)   YoloV3   customization   and   optimization   
 
For   accurate   2D   localization,   the   synchronized   images   are   batched   together   and  
passed   through   a   full   YOLOv3    [4]    neural   network   using   the   TensorRT   inference  
framework.   Weights   were  
calibrated   to   int-8   precision  
using   50k   pictures   from   the  
network   training   dataset  
resulting   in   inference  
speeds   10x   faster   than   a  
similar   PyTorch  
implementation.  
Non-maximal   suppression  
thresholds   were   set   to   10%  
to   filter   out   occluded  
landmarks   as   these   were  
found   to   be   problematic   for  
depth   estimation   later   in   the  
pipeline.  
A   perception   neural  
network   that   can   generalize  
across   different   domains  
(weather,   lighting,   scenery)  
will   produce   more   robust  
detections   and   in   turn  
localize   landmarks   with  
higher   accuracy.   To   ensure  
this   with   our   networks,  
training   data   was   collected  
on   multiple   image   sensors  
and   lenses   from   various  
perspectives   in   different   
settings.         Figure   4.7   CV-C   Data   Loader   Pre-processing   Stages  
 
A   drawback   of   this   process   is   that   the   distribution   of   landmark   bounding   box   (BB)  
sizes   (in   pixels)   in   the   training   set   no   longer   was   representative   of   what   would   be  
seen   by   the   network   in   the   wild.   To   mitigate   this,   each   set   of   training   images   from   a  
specific   sensor/lens/perspective   combination   was   uniformly   rescaled   such   that   their  
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landmark   size   distributions   matched   that   of   the   camera   system   on   the   vehicle.   Each  
training   image   was   then   padded   if   too   small   or   split   up   into   multiple   images   if   too  
large.   This   process   is   illustrated   in   Figure   4.7.  
 
 
  Since   YOLOv3   makes   width   and   height   predictions   of   detections   by   resizing  
predefined   bounding   boxes,   k-means   clustering   was   done   on   the   post-scaled   training  
data   in   height   and   width   space   to   give   the   network   strong   priors.   An   additional  
modification   made   during   the   training   process   was   tuning   the   hyperparameters   in  
front   of   each   of   the   terms   in   the   loss   function.  
  Each   bounding   box   prediction   consisted   of   estimates   at   x,   y,   width,   height,   class  
(foreground   or   background),   and   confidence,   which   are   penalized   differently   during  
training   as   follows:  
 
 
 
  A   distributed   Bayesian   hyperparameter   search   for   the   five   coefficients   resulted   in  
significant   gains   in   precision   when   weighting   the   foreground   loss   two-orders   of  
magnitude   greater   than   the   background   loss.   
The   converged   upon   values   from   the   optimization   process   are   γBG=25.41,   γF  
G=0.09,   γXY   =1.92   and   γWH=1.33.  
  Further   gains   were   obtained   by   switching   from   the   SGD   optimizer   in   the   initial  
implementation   to   Adam    [5] .   The   compounding   benefits   for   each   of   these   changes  
are   shown   in   Figure   4.8   
as   precision-recall   curves.   The   resulting   final   mAP   was   85.1%   with   87.2%   recall   and  
86.8%   precision.   
 
 
 
 
 
 
 
 

 
 
 
 
Figure   4.8:   The   compounding   benefits   for   the   changes   in   YOLOv3  
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4.3.3.   Design   Constraints  
Similar   to   most   perception   systems   for   autonomous   racing,   the   goal   of   our  
perception   system   is   to   accurately   localize   environment   landmarks   (traffic   cones)  
that   demarcate   the   racetrack.   The   track   is   delineated   by   blue   cones   on   the   left,  
yellow   cones   on   the   right,   and   orange   cones   at   the   start   and   finish.   Downstream  
mapping   and   planning   systems   use   these   landmarks   to   create   and   update   the   track  
map   with   a   sample   illustrated   in     Figure   4.9.   Our   perception   system   adheres   to  
regulations   set   by   Formula   Student   Driverless.   

 
 
Figure   4.9:   Sample   of   landmarks   which   are   used   to   create   and   update   the   track   map   
 
Our   perception   system   was   designed   to   meet   four   high-level   requirements:  
1)   Mapping   Accuracy:   accuracy   of   landmark   localization.  
2)   Latency:   total   time   between   a   landmark   coming   into   view   of   the   perception   system  
to   the   time   at   which   it   is   localized.   
3)   Look-ahead   Distance:   longest   straight-line   distance   in   which   accuracy   is  
maintained.   
4)   Horizontal   Field-of-View   (FOV):   arc   of   visibility   in   front   of   the   car,   related   to  
visibility   through   a   hairpin.  
 
To   guide   design   choices,   we   derived   quantitative   targets   for   each   requirement.  
Mapping   accuracy   was   driven   by   the   error   tolerances   of   the   mapping   and   motion  
control   algorithms   that   will   be   illustrated   in   the   next   modules.   This   dictated   maximum  
tolerable   localization   error   of   <0.5m   at   the   maximum   look-ahead   distance.   
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For   latency    the   object   detector   YOLOV3   was   optimized   to   meet   our   requirement   of  
designing   a   high   performance   perception   pipeline   of   a   racing   vehicle   and   the  
communication   between   the   object   detection   modules   itself   and   with   the   other  
systems   constructed   over   ROS   which   minimize   the   communication   losses   and  
improves   the   speed   of   the   processes   communication   time.  
 
Horizontal   FOV    is   lower-bounded   by   unmapped   hairpin   turns   Figure   4.9.   In   such  
turns,   the   system   must   perceive   landmarks   on   the   inside   apex   of   a   hairpin   turn   from  
the   start   of   the   turn   in   order   to   plan   an   optimal   trajectory.   
Given   legal   track   dimensions,   this   results   in   a   minimum   FOV   of   101◦   .   
 
Look-ahead    requirements   depend   on   full-stack-latency,   car   dynamics,   and   camera  
properties.   In   particular,   minimum   landmark   size,   the   number   of   pixels   required   to  
detect   a   landmark,   plays   a   crucial   role   in   determining   look-ahead.   To   understand   this  
more   clearly,   the   camera   and   kinematics   models   generate   a   characterization   of   the  
relationship   between   the   minimal   landmark   size,   camera   focal   length,   and   the  
physical   size   of   pixels   on   the   camera   sensor.   
 
We   assume   a   conservative   minimum  
detectable   landmark   size   of   20   pixels  
(consistent   with   state-of-art   work     [4,6]    );   this   is  
represented   by   the   dashed   line   in   
Figure   4.10.   The   optimal   solution   is   a   system  
that:  
(1)   stays   close   but   above   this   line,  
(2)   maximizes   pixel   size   (i.e.,   maximizing   light  
capture),   and   
(3)   minimizes   focal   length   (i.e.,   maximizing  
FOV).      Figure   4.10   illustrates   the   trade-off  
between   these   properties.   Based   on   these   
 
                                                                             Figure   4.10   Cone   size   vs   focal   length  
 
models   and   fixed   values   of   prior   constraints,   we   derived   a   look-ahead   requirement   of  
19.6m.   As   there   is   an   inherent   trade-off   between   look-ahead   distance   and   FOV   in  
camera-based   perception   systems,   the   two   cases   outlined   in   Figure   4.9   have  
mutually   exclusive   requirements:   wide   FOV   while   maintaining   long   look-ahead.  
To   meet   this   design   requirement   for   the   redundant   perception   pipeline   with   stereo  
and   monovision   the   chosen   on   board   hardware   of   our   autonomous   kit   is   specified   in  
the   Appendix.  
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4.4.   Key   Points   extraction   Residual   Network  
And   3D   localization   of   cones   -PnP   algorithm  
4.4.1.   Functional   Description  
Till   now   we   have   the   cone   batches   in   each   frame   Figure   4.12    so   in   this   module   we  
will   take   another   step   to   solve   the   problem   of   estimating   the   3D   position   of   an   object  
(the   track   cone)   using   a   single   measurement,   i.e.   a   single   image/frame   of   a  
monocular   camera.   Estimating   the   3D   pose   of   an   object   using   a   single   measurement  
is   an   ill-posed   problem.   This   is   primarily   due   to   ambiguity   in   the   scale   of   the   scene  
arising   from   limited   information   of   the   surroundings.   This   ill-posed   problem   of  
extracting   pose   information   can   be   solved   if   a     priori   information   about   the   3D     object  
in   the   scene   is   available.   The   3D   priors   about   an   object,   in   addition   to   2D   information  
obtained     from   an   image   can   be   together   leveraged   to   extract   3D   pose   of   this   object  
captured   in   any   arbitrary   image   of   the   scene.The   priori   information   about   the   3D  
object    in   our   case   is   the   3D   model   of   the   track   cone   as   shown   in   Figure   4.11   we  
have   a   prior   knowledge   of   the   formula   student   standard   track   cones’   3D   model   and  
we   defined   a   7   key   points   on   the   3D   model   in   a   defined   locations   as   in  
  Figure   4.11   and   for   the   detected   cone   batches   from   the   previous   module   
 
  
 
  
 
 
  
 
 
                               Figure   4.11:   Cone’s   3D   Model   with   the   7   key   points   
 
We   detect   the   7   key   points   for   each   cone   batch   at   the    same   location   of   the   points  
which   are   in   the   3D   mode   as   in   Figure   4.12   l   of   the   cone,   so   we   developed   an  
accurate   and   fast   Deep   Neural   Network   (DNN)   to   detect   the   seven   points   for   each  
cone   batch.   The   2D   information   which   we   talked   about   is   obtained   from   the   output   of  
the   keypoint   extraction   DNN,   and   it   will   be   used   in   the   next   module   in   the   pipeline  
with   the   prior   knowledge   of   the   3D   model   of   the   track   cone   to   estimate   the   3D  
position   of   each   cone   batch.   The   “keypoint   regression”   scheme   that   exploits   prior  
information   about   the   object’s   shape   and   size   to   regress   and   find   specific   feature  
points   on   the   image.   Further,   in   addition   to   the   “keypoint   regression”   which   provides  
2D   information,   a   priori   3D   information   about   the   object   is   used   to   match   2D-3D  
correspondences   which   will   be   explained   in   the   next   module.   To   extract   depth  
estimates   from   a   single   camera   a   residual   neural   network   is   implemented   and  
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trained   with   3.2k   images   based   off   of   work   by     [7]    is   run   to   detect   seven   key   points   on  
each   batch   detected   with   the   object   detection   module   for   use   in   a  
Perspective-n-Point   (PnP)   algorithm   which   is   described   in   the   next   module.  

 
 
 
 
 
 
 
 
 
 

Figure   4.12:   Cone   batches   (left)   and   Cone   batches   with   key   points   detected   (right)  
 

4.4.2.   Modular   Decomposition  
 
As   explained   in   the   previous   section,   with   the   help   of   an   object   detector,   one   can   find  
multiple   objects   of   interest   in   a   single   image.   The   question   here   is   to   go   from   objects  
on   the   image   to   their   positions   in   3D.   This   in   itself   is   not   solvable   from   a   single   view  
of   the   scene,   because   of   ambiguities   due   to   scale.   However,   since   there   is   prior  
information   about   the   3D   shape,   size   and   geometry   of   the   cone,   one   has   hope   to  
recover   3D   pose   from   a   single   measurement   as   will   be   discussed   in   the   next   module,  
but   now   we   interested   in   extracting   the   key   points   from   the   landmarks   (cones)   which  
were   detected   in   the   object   detection   module   so,   in   the   next   submodules   we   will  
describe   the   process   of   extracting   the   key   points   and   the   detailed   architecture   of   the  
developed   DNN   and   the   modifications   which   we   made   to   it.  
 

1) Design   and   architecture   
In   the   context   of   classical   computer   vision,   there   are   mainly   three   kinds   of   features.  
The   least   informative   ones   are   the   “flat   features”   which   in   the   vicinity   are   not  
distinguishable   at   all,   for   instance   the   patch   on   a   plain,   flat   wall   is   one   such   example.  
“Edges”   are   a   little   more   interesting   as   they   have   a   gradient   in   a   particular   direction  
(crossing-over   the   edge).   However,   if   one   moves   in   a   direction   perpendicular   to   this  
gradient   one   is   unable   to   distinguish;   this   is   also   known   as   the   aperture   problem.   By  
far,   the   most   interesting   features   are   the   “corners”.   They   have   change   in   gradient   in  
two   major   directions   and   are   quite   distinguishable   from   areas   in   the   vicinity,   making  
them   unique   and   fascinating.   With   this   in   mind,   we   design   a   convolutional   neural  
network   (CNN)   inspired   by   finding   “ corner ”   like   points   given   a   patch   of   the   image.  
The   primary   difference   between   this   scheme   and   any   other   feature   extraction  
process   is   that   this   is   very   specific   as   compared   to   commonly   used   techniques.   This  
does   not   mean   that   it   cannot   be   used   for   other   objects.   This   “keypoint   Extraction”  
scheme   works   for   a   specific   object   but   can   be   easily   extended   to   different   types   of  
objects.   In   our   case,   we   want   to   find   positions   of   very   specific   points   on   the   image  
that   correspond   to   3D   counterparts   whose   locations   can   be   measured   in   3D   from   an  
arbitrary   world   frame   Fw.  
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Figure4.13   :3D   model   of   the   cone   and   a   representative   sub-image   patch   with   the  
image   of   the   cone.   The   red   markers   correspond   to   the   7   specific   “key   points”   the  
“keypoint   network”   regresses   to   given   an   image   patch   with   a   cone   in   it.  
 
As   depicted   in   Figure   4.13   ,   the   key   points   on   the   3D   and   its   corresponding   2D  
image   are   very   specific.   There   are   two   primary   reasons   to   have   these   key   points   at  
those   places.   First,   the   key-point   regressor   locates   the   position   of   7   very   specific  
features   that   are   also   visually   distinct   and   can   be   considered   as   “corners”   such   as  
points   between   the   merging   of   distinct   textures   and   points   at   the   interface   of   the  
foreground   and   the   background.   Second,   and   more   importantly,   these   7   points   are  
relatively   easy   to   measure   in   3D   from   a   fixed   world   frame   Fw.   For   convenience   Fw   is  
chosen   to   be   the   base   of   the   3D   cone,   enabling   easy   measurement   of   3D   position   of  
these   7   points   in   this   world   frame,   Fw.   The   7   keypoints   are   the   apex   of   the   cone,   two  
points   (one   on   either   side)   at   the   base   of   the   cone,   4   points   where   the   center   stripe,  
background   and   upper   or   lower   stripes   meet.   The   customized   CNN   inspired   from  
“corner”   features   takes   as   input   a   80   ×   80   ×   3   sub-image   patch   which   presumably  
contains   a   cone,   as   detected   by   the   object   detector   in   the   previous   module   and   maps  

it   to   R14.   
The   input   dimensions   are   chosen   as   80   ×   80   spatially,   as   this   was   the   average   size  
of   bounding   boxes   detected.   The   output   vector   of   R14   are   the   (x,   y)   coordinates   of  
the   7   key   points   relative   to   the   patch.   The   architecture   of   the   convolutional   neural  
network   consists   of   basic   residual   blocks   inspired   from   ResNet    [8] .   The   reasoning  
here   is   that   since   the   convolution   operation   reduces   spatial   dimen-sions,   we   apply  
‘same’   convolutions   that   result   from   a   3   ×   3   kernel   with   padding=1   and   stride=1   via   a  
residual   block.   As   analyzed   in    [9] ,   with   more   layers,   the   tensor   volume   has   more  
channels   and   fewer   spatial   dimensions,   implying   the   tensors   contain   more   generic,  
global   information   than   specific,   local   information.   Since,   we   eventually   care   about  
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location   of   keypoints   which   is   extremely   specific   and   local.   Using   such   an  
architecture   prevents   loss   of   spatial   information   as   it   is   crucial   to   predict   the   position  
of   keypoints   accurately   as   the   input   volume   is   processed   deeper   into   the   network.  
Also,   the   residual   blocks   can   easily   learn   identity   transforms   drastically   reducing   the  
chance   of   over-fitting.  
The   first   block   in   the   network   is   a   convolution   layer   with   a   batch   norm   (BN)   followed  
by   rectified   linear   units   (ReLU)   as   the   non-linear   activation.   The   next   4   blocks   are  
basic   residual   blocks   with   increasing   channels   C   =   64,   C   =   128,   C   =   256   and   C   =  
512   as   depicted   in   Figure   4.14.   Finally,   there   is   a   fully-connected   layer   that   regresses  
the   location   of   the   keypoints.  

 
Figure   4.14:   Architecture   of   the   “keypoint   network”.   It   takes   a   sub-image   patch   of   80  
×   80   ×   3   as   input   and   maps   it   to   R14,   the   (x,   y)   coordinates   for   the   7   key   points.  
 
The   cross-ratio   (Cr)   is   a   scalar   quantity   and   can   be   calculated   using   4   collinear  
points   or   5   or   more  
non-collinear   points    [10] .  
Since   it   is   invariant   under  
a   projection   and   a  
camera   in   essence   is   a  
projective   transform,   this  
implies   that   the  
cross-ratio   is   preserved.  
It   is   preserved   irrespective   of   the   viewpoint   of   the   scene   and   whether   it   is   calculated  
in   3D   or   in   2D   (on   the   image   plane,   after   the   projective   transform).  
In   our   case,   we   use   4   collinear   points   p1,   p2,   p3,   p4   to   calculate   the   cross-ratio   as  
defined   in   Equation.   Depending   on   whether   the   value   is   calculated   for   3D   points   
(D   =   3)   or   their   projected   2D   counterparts   (D   =   2),   the   distance   ∆ij   ,   between   two  
points   pi   and   pj   is   defined.  
 
Jointly   minimizing   the   squared   error   and   the   cross   ratio  
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In   addition   to   the   cross-ratio   to   act   as   a   regularizer,   the   loss   has   a   squared   error  
term.   This   forces   the   output   to   be   as   close   as   possible   to   the   ground-truth   annotation  
of   the   keypoints.   The   effect   of   the   cross-ratio   is   controlled   by   the   factor   γ.  
 
 
 
 
 
 
 
 
Equation:represents   the   Loss   function   ( L mse )   minimized   while  
training   the   “keypoint   regressor”..  
 
The   second   and   third   term   minimize   the   error   between   the  
cross-ratio   measured   in   3D   (Cr3D)and   the   cross-ratio   calculated  
in   2D   based   on   the   “keypoint   regression”   output,   indirectly   having  
an   influence   on   the   locations   output   by   the   CNN.   The   second  
term   in   the   equation   represents   the   left   arm   of   the   cone   while   the  
third   term   is   for   the   right   arm,   as   illustrated   in   Figure   4.7.   For   the  
cross-ratio,   we   choose   to   minimize   the   squared   error   term  
between   the   already   known   3D   estimate   
(Cr3D   =   1.3940842428872968)   and   its   2D   counterpart.  
 
 
Figure4.15:   An   exemplary   80×80   cone   patch   with   extracted   “key   points”   overlaid   in  
red.   Depiction   of   the   left   (p1,   p2,   p3,   p4)   and   right   arm   (p1,   p5,   p6,   p7)   of   the   cone.  
Both   of   which   are   used   to   calculate   the   cross-ratio   terms   and   minimize   the   error  
between   themselves   and   the   cross-ratio   on   the   3D   object   (Cr3D).  
 
 

2) Modifications   applied   to   the   network   architecture:    Along   with   a   sample  
output,   is   shown   in   Figure   4.16   To   make   the   algorithm   robust   to   single  
keypoint   outliers   all   subset   permutations   of   the   keypoints   with   one   point  
removed   are   calculated   if   the   reprojection   error   from   the   PnP   estimate   using  
all   keypoints   is   above   a   threshold.   The   permutation   with   the   lowest   error   is  
used   as   the   final   estimate.   

 
Figure   4.16:   ResNet   architecture   (left).   Vectors   used   in   geometric   loss   function   (right)  
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Two   important   modifications   were   made   to   the   network :  
 
First ,   the   fully   connected   output   layer   was   replaced   with   a   convolutional   layer,   which  
predicts   a   probability   heatmap   over   the   image   for   each   keypoint,   and   the   expected  
value   over   the   heatmap    [11]     is   used   as   the   keypoint   location.   The   use   of   a   fully  
convolutional   network   not   only   reduces   the   number   of   network   parameters   for   faster  
convergence,   but   is   also   a   better   choice   given   the   benefits   of   convolutional   layers   for  
tasks   of   predicting   features   that   are   spatially   interrelated.   
The   second    modification   is   an   additional   term   in   the   loss   function   to   leverage   the  
geometric   relationship   between   points.   Since   the   key   points   on   the   sides   of   a   cone  
are   collinear,   the   dot   products   of   the   unit   vectors   between   points   on   these   lines  
should   be   one.   One   minus   the   values   of   these   dot   products   are   used   directly   in   the  
loss   function.   The   same   is   done   for   the   three   horizontal   vectors   across   the   cone.   An  
illustration   of   these   vectors   is   shown   in   Figure   4.16.   Because   the   keypoint   locations  
now   need   to   be   back   propagated,   the   differentiable   expected   value   function    [11]    is  
used   to   extract   coordinates   from   heatmaps.   The   final   loss   function   is   as   follows:  
 
L total    =   L mse    +   γ horz (2   −   V12   ·   V34   −   V34   ·   V56)+   
                γ vert (4   −   V01   ·   V13   −   V13   ·   V35   −   V02   ·   V24   −   V24   ·   V46)  
 
Using   a   Bayesian   optimization   framework   like   the   one   previously   described,   the  
values   were   determined   to   be   :  
 
γvert   =   0.038   and   γhorz   =   0.055.  
 

 
3) Training   the   dataset  

 
The   DNN   was   trained   with   3.2k   images   with   18k   cone   patches   like   in   Figure   4.12  
(right)   to   run   to   detect   seven   key   points   on   each   cone   patch   detection   for   use   in   a  
Perspective-n-Point   (PnP)   algorithm(next   module).   Cone   patches   were   extracted  
from   full   images   and   manually   hand-labeled.   The   dataset   was   further   augmented   by  
transforming   the   image   with   20   random   transforms   consisting   of   rotation,   scaling   and  
translation.   The   data   is   split   as   16,000   cone   patches   for   training   and   2,000   cone  
patches   for   testing.   During   the   training   procedure,   the   data   is   further   augmented   on  
the   fly   in   the   form   of   contrast,   saturation   and   brightness.   Stochastic   Gradient  
Descent   (SGD)   was   used   for   optimization,with   a   learning   rate,   lr   =   0.0001   and  
momentum   =   0.9   and   a   batch   size   of   128.   The   learning   rate   is   scaled   by   0.1   after   the  
first   75   and   100   epochs.   The   network   is   trained   for   250   epochs.  
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4) 3D   Localization   of   cones   -   Pnp   algorithm   
The   “Keypoint   Extraction   Network”   provides   accurate   locations   of   very   specific  
features,   the   key   points.   Since,   there   is   a    priori    information   available   about   the  
shape,   size,   appearance   and   3D   geometry   of   the   object,   the   cone   in   this   case,  
2D-3D   correspondences   can   be   matched.   With   access   to   a    calibrated    camera   and  
2D-3D   correspondences,   it   is   possible   to   estimate   the   pose   of   the   object   in   question  
from   a    single    image.  
          We   define   the   camera   frame   as     and   the   world   frame   as     .      can   be c  F w  F w  F  
chosen   arbitrarily,   as   long   as   it   is   used   consistently.   In   this   case,   we   choose   the  
world   frame,     to   be   at   the   base   of   the   cone,   for   ease   of   measurement   of   the   3D w  F  
location   of   the   keypoints   (with   respect   to     )   and   convenience   of   calculation,   as w  F  
will   become   apparent.   We   use   Perspective   n-Point   or   PnP   to   estimate   the   pose   of  
every   detected   cone.   This   works   by   estimating   the   transform      between   the t  C  
camera   coordinate   system   and   the   world   coordinate   system.   Since,   the   world  
coordinate   system   is   located   at   the   base   of   the   cone,   lying   at   an   arbitrary   location  
(that   we   want   to   estimate)   in     This   transform   is   exactly   the   pose   we   are   looking 3  R  
for.   
            A   pose   consists   of   a   translation   and   a   rotation.   The   fact   that   the   cone   is  
symmetric   along   the   axis   through   its   apex   and   center   of   the   base   simplifies   the  
situation.   As   we   are   concerned   only   with   the   translation   between     and     , c  F w  F  
which   is   exactly   the   position   that   we   care   to   estimate,   we   can   discard   the   orientation  
due   to   the   cone’s   symmetric   geometry.   
 

 
 
 
Figure   4.17   Schematic   illustrating   matching   of   2D-3D   correspondence   and  
estimation   of   transformation   between   the   camera   frame   and   the   world   frame.  
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To   estimate   the   position   of   the   cone   accurately,   we   use   the   non-linear   version   of   the  
PnP   implemented   in   the   OpenCV   library    [12]    that   uses   Levenberg-Marquardt   to  
obtain   the   transformation.   In   addition,   RANSAC   PnP   is   used   instead   of   vanilla   PnP,  
tackling   noise   correspondences.   RANSAC   PnP   can   be   done   for   every   cone  
detected,   that   is   extract   the   7   features   by   passing   the   patch   through   the   “keypoint  
regressor”   and   use   the   pre-computed   3D   correspondences   to   estimate   the  
transform,   allowing   to   estimate   pose   of   multiple   objects   from   a   single   image   using   a  
priori   knowledge   about   the   object   of   interest.  
 
4.4.3.   Design   Constraints  
 
     In   computer   vision   one   of   the   most   important   steps   in   most   of   the   computer   vision  
algorithms   is   the   feature   extraction   module   because   it   is   used   to   detect   the   changes  
in   intensity   or   in   the   shape   or   to   detect   corners   and   edges   and   the   key   points   which  
are   special   for   this   object   so   these   things   can   be   helpful   in   object   classification,  
structure   from   motion,   place   recognition,   locating   “points   of   interest”   that   are   unique  
and   distinguishable   and   has   always   been   a   fundamental   technique   for   decades.  
Most   of   the   feature   extraction   algorithms   are   generic   and   work   for   extracting   fine  
details   in   the   images.   There   has   been   a   large   collection   of   work   that   focuses   on  
finding   better,   faster,   more   efficient,   robust   feature   extraction   techniques.Most   of  
these   are   very   generic   and   can   be   used   in   arbitrary   applications.A   desirable   property  
that   many   of   these   possess   is   invariance   to   transformations   such   as   scale,   rotation  
and   illumination.   Such   work   includes   Harris   corners    [13] ,   renowned  
SIFT [14] ,SURF [15] ,   efficient   features   with   binary   descriptors:   BRISK [16]    and  
BRIEF [17] .  
      The   intrinsic   parameters   of   the   monocular   camera    are   known   as   a   result   of   the  
calibration   using   a   large   checker-   board   to   a   distance   up   to   15   meters.   One   would   be  
able   to   estimate   an   object’s   3D   pose,   if   there   is   a   2D-3D   correspondence   between  
the   3D   object   and   the   2D   image,   additionally   the   calibration   parameters   of   the  
camera.   
       The   problem   with   the   generic   feature   extraction   technique   is   that   it   detects   any  
changes   or   fine   changes   with   the   image   and   if   the   resolution   of   the   image   is   low   it  
will   not   detect   the   all   points   that   we   need   ,   so   in   our   case   we   need   exactly   7   points  
on   a   specific   locations   on   the   cone   patch   as   discussed   in   the   last   section.   For  
instance,   a   Harris   corner   does   not   distinguish   whether   it   lies   on   a   cone   or   on   a   crack  
on   the   asphalt.   This   makes   it   hard   to   draw   the   relevant   correspondences   and   match  
them   to   their   3D   counterparts.In   our   case   the   mapping   accuracy   and   the   3D  
positions   of   the   cones   in   the   3D   map   will   depend   on   these   7   key   points.   To   this   end,  
we   implemented   a   feature   extraction   scheme   that   is   inspired   by   classical   computer  
vision   but   has   a   flavor   of   learning   from   data   via   machine   learning   and   deep   learning  
algorithms.   
4.5   Stereo   camera   pipeline  
4.5.1   Functional   description  
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In   order   to   achieve   the   redundant   perception   concept   which   we   talked   about   in   the  
system   architecture,   using   the   monocular   camera   in   short   range   and   the   stereo  
camera   in   the   long   range   (up   to   20m),   we   developed   a   stereo   pipeline   which   uses  
the   left   frame   and   the   depth   map   of   the   stereo   camera   and   produce   the   3D   cone  
positions   in   each   frame.   In   this   module   we   will   describe   the   implemented   stereo  
camera   pipeline   which   is   used   to   detect   and   localize   the   track   cones   in   the   3D   space  
up   to   20m   using   the   stereo   camera.  
 
Using   the   first   module   (2D   space   localization   and   cone   detection)   to   detect   the   cone  
batches   (bounding   boxes)   in   each   frame   and   estimate   the   2D   position   of   each   cone  
in   the   2D   space   (image   space),   then   using   the   intrinsic   camera   parameters   of   the  
stereo   camera   and   the   depth   map   we   localize   each   cone   in   the   3D   world.   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
                                  Figure   4.18   Stereo   camera   pipeline’s   block   diagram  
 
 
 
 
 
 
4.5.2   Modular   decomposition  
 
In   this   section   the   stereo   pipeline   will   be   described   using   the   ZED   stereo   camera.  
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The   used   sensor   message   from   the   stereo   camera   are:  
 
-left/image_rect_color :   Left   camera   color   rectified   image  
-depth/depth_registered:   Depth   map   image   registered   on   left   image   (32-bit   float   in  
meters   by   default)  
 
In   order   to   get   the   3D   position   of   each   cone   in   the   frame   by   using   these   sensor   data  
from   the   stereo   camera   the   following   steps   are   applied   on   these   data:   
 
1-   Object   detection   on   the   rectified   left   image  
 
Using   the   left   frame   rectified   image   frame   as   input   from   the   stereo   camera   we   pass   it  
to   the   object   detection   module   to   extract   the   cone   boundary   boxes   which   exists   in  
the   rectified   image,   so   we   can   know   the   2D   position   of   each   cone   in   the   rectified  
image   
 
Image   rectification    is   a   transformation   process   used   to   project   images   onto   a  
common   image   plane.   This   process   has   several   degrees   of   freedom   and   there   are  
many   strategies   for   transforming   images   to   the   common   plane.   It   is   used   in    computer  
stereo   vision    to   simplify   the   problem   of   finding   matching   points   between   images   (i.e.  
the   correspondence   problem).  
 

 
 
 
 
Figure   4.19:   Image   rectification   example  
 
 
 
Till   now   we   have   the   bounding   boxes   of   the   cones   (2D   position   of   each   cone)   on   the  
left   rectified   image   frame   in   form   if   [xmin,ymin,xmax,ymax]   as   shown   in   Figure   4.20,  
so   the   next   step   is   to   calculate   the   position   of   the   center   of   each   cone   bounding   box  
in   the   2D   left   rectified   image   frame.  
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Calculations:  
- for   each   detected   cone   (boundary   box)   [xmin,ymin,xmax,ymax]    are   given  

from   the   detection   pipeline   as   shown   in   Figure   4.20   (right)  
- box_width   =   Xmax   -   Xmin  
- box_height    =   Ymax   -   Ymin  
- center_x=   Xmin+box_width/2  
- center_y=Ymin+box_height/2  

 
 
The   center   point   [center_x,center_y]    will   be   used   in   the   next   step   to   identify   the  
position   of   the   cone   in   the   depth   map   in   the   next   step.  
 

 
 
 
 
 
 
 
 
 
 

 
 
Figure   4.20:   2D   Cone   bounding   box   detection(left)    boundary   box   points   (right)  
  
 
2-   Depth   map  

The   ZED   stereo   camera   reproduces   the   way   human   binocular   vision   works.   Human  
eyes   are   horizontally   separated   by   about   65   mm   on   average.   Thus,   each   eye   has   a  
slightly   different   view   of   the   world   around.   By   comparing   these   two   views,   our   brain  
can   infer   not   only   depth   but   also   3D   motion   in   space.  

Likewise,   Stereolabs   stereo   cameras   have   two   eyes   separated   by   6   to   12   cm   which  
allow   them   to   capture   high-resolution   3D   video   of   the   scene   and   estimate   depth   and  
motion   by   comparing   the   displacement   of   pixels   between   the   left   and   right   images.  

Depth   maps   captured   by   the   ZED   stereo   camera   store   a   distance   value   (Z)   for   each  
pixel   (X,   Y)   in   the   image.   The   distance   is   expressed   in   metric   units   (meters   for  
example)   and   calculated   from   the   back   of   the   left   eye   of   the   camera   to   the   scene  
object.  

 

 

Depth   maps   cannot   be   displayed   directly   as   they   are   encoded   on   32   bits.   To   display  
the   depth   map,   a   monochrome   (grayscale)   8-bit   representation   is   necessary   with  
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values   between   [0,   255],   where   255   represents   the   closest   possible   depth   value   and  
0   the   most   distant   possible   depth   value.  

 

 
 
Figure   4.21:   Stereo   camera   depth   map   2D   image  
 
Using   the   center   point   [center_x,center_y]   which   is   produced   from   the   previous   step  
we   can   find   the   cone   depth   in   the   depth   map   and   using   the   intrinsic   camera  
parameters   (cx,cy,fx,fy)   to   convert   from   pixel   coordinate   to   world   coordinate   we   can  
calculate   the   3D   position   of   the   cone   in   the   world   coordinates   by   the   following  
calculations:  

- By   taking   the   depth   from   a   square   area   around   the   center   of   the   cone   for  
better   results   We   can   calculate   Z   by:   
Z   =   lastFrame.depth(center)   taking   into   consideration   the   square   area   and  
calculating   the   mean.  

- y_world   =   (round(y+h/2)   -   cy)   /   fy   *   z  
- x_world   =   (round(x+w/2)   -   cx)   /   fx   *   z  
-  

So   now   we   have   the   XYZ   (3D   position)    of   each   cone   in   the   stereo   camera   frame.  
These   cone   positions   will   be   fused   with   the   Monocular   pipeline   using   extended  
kalman   filter   (EKF)   to   ensure   the   redundant   perception   in   the   simultaneous  
localization   and   mapping   (SLAM)   algorithm    which   will   be   described   in   the   next  
module   in   detail   and   how   the   mapping   algorithms   works   and   fuses   all   of   these  
sensors’   data.   
  
 
 
 
 
4.5.3   Design   constraints   
 
While   designing   the   Stereo   camera   pipeline   and   choosing   the   stereo   camera  
specifications,   we   take   into   consideration   the   perception   design   concept   which   is   the  
redundant   perception   Monocular   camera   for   the   short   range   and   the   stereo   camera  
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for   the   long   range   up   to   20m,   so   the   specifications   and   limitations   of   the   chosen  
algorithm   and   hardware   works   with   the   following   constraints:  
 

- Depth   range   corresponds   to   the   minimum   and   maximum   distance   at   which   the  
depth   of   an   object   can   be   estimated,   so   the   depth   range   of   the   stereo   pipeline  
is   
min=0.3m,   and   max=20m   but   taking   into   account   the   depth   accuracy   Stereo  
vision   uses   triangulation   to   estimate   depth   from   a   disparity   image,   with   the  
following   formula   describing   how   depth   resolution   changes   over   the   range   of   a  
stereo   camera:  
 
Dr=Z^2*alpha,   where   Dr   is   depth   resolution,   Z   the   distance   and   alpha   a  
constant.  
 
Depth   accuracy   decreases   quadratically   over   the   z-distance,   with   a   stereo  
depth   accuracy   of   1%   of   the   distance   in   the   near   range   to   9%   in   the   far   range.  
Depth   accuracy   can   also   be   affected   by   outliers’   measurements   on  
homogenous   and   textureless   surfaces   such   as   white   walls,   green   screens   and  
specular   areas.   These   surfaces   usually   generate   temporal   instability   in   depth  
measurements.  
 
So   the   chosen   range   for   the   stereo   pipeline   is   up   to   20m   to   estimate   the   cone  
positions   in   an   accurate   way   for   the   long   range.  

- Depth   FOV:   The   chosen   field   of   view   for   the   stereo   pipeline   to   match   with   the  
design   concept   of   mapping   taking   into   account   the   track   width   is   
110°   (H)   x   70°   (V)   x   120°   (D)   max.  
 

- Depth   FPS:   In   order   to   achieve   the   max   performance   of   the   perception  
pipeline   of   the   high   performance   autonomous   vehicle   the   chosen   frame   per  
seconds   of   the   stereo   camera   is   up   to   100Hz  
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4.6   EKF   Robot   Localization   and   Mapping  
 
 
 
 
 
 
 
 
 
 
                   Figure   4.22:   EKF   Robot   localization   and   mapping   block   diagram  
 
4.6.1   Overview   and   Assumptions   
 
In   this   section   we   will   describe   the   implementation   of   three   modules,   EKF   robot  
localization   module,   Visual   odometry   module   received   from   the   stereo   camera,   and  
k-means-based   global   mapping   module.   These   modules   are   responsible   to   output  
two   main   things;   a   real   time   map   of   the   environment   and   the   vehicle   pose   in   this  
environment   in   order   for   the   path   planning   algorithm   to   use   these   information   and  
output   the   trajectory   of   the   vehicle   to   the   MPC   module   in   which   it   will   use   it   for  
sending   actuating   commands   to   the   motors   controllers.   
 
EKF   Robot   Localization  
We   implemented   the   module   within   a   node   in   the   Robotics   Operating   Systems   ROS  
(see   section   4.9)   the   module   is   an    implementation   of   an    extended   Kalman   filter .   It  
uses   an   omnidirectional   motion   model   to   project   the   state   forward   in   time,   and  
corrects   that   projected   estimate   using   perceived   sensor   data.    Using    a  
15-dimensional   state   of   the   vehicle  
 

X , Y , Z, pitch, yaw, roll, x , y , z , pitch , yaw , roll , x , y , z )  (       ′  ′  ′  ′  ′  ′  ′′  ′′  ′′  
 
We   fuse   the   IMU,   wheel   encoders,    and   the   visual   odometry   in   order   to   get   an  
accurate   vehicle   pose   estimation.   We   will   discuss   the   parameters   selection   in   the  
next   subsection.  
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Visual   Odometry  
We   are   using    the   ZED   Stereo   Camera   developed   by   StereoLabs     which   is   a   camera  
system   based   on   the   concept   of   human   stereo   vision.   In   addition   to   viewing   RGB,  
stereovision   also   allows   the   perception   of   depth.   Advanced   computer   vision   and  
geometric   techniques   can   use   depth   perception   to   accurately   estimate   the   6DoF  
pose   (x,y,z,roll,pitch,yaw)   of   the   camera   and   therefore   also   the   pose   of   the   system   it  
is   mounted   on.   Visual   Odometry   is   the   process   of   estimating   the   motion   of   a   camera  
in   real-time   using   successive   images.   We   used   a   visual   odometry   as   an   input   to   the  
ekf   robot   localization   module   alongside   the   IMU   which   gives 

and   wheel   speed   encoders   that   give   indication   about (pitch , yaw , roll , x , y , z )   ′  ′  ′  ′′  ′′  ′′  
the   speed   and   orientation.  
 
K-means-based   Global   Mapping  
We   will   be   using   a   database   of   cones   that   includes   the   cones   positions,   colors   and  
the   mean   and   covariance   that   define   the   uncertainties   of   the   cones   detections.   In   this  
sense,   we   are   using   the   sampled   data   to   increase   and   decrease   the   uncertainty  
according   to   the   number   of   hits   and   the   difference   of   position   estimates   for   existing  
cones   and   the   added   cones   to   the   database.   These   detections   are   first   translated  
from   the   vehicle   frame   to   the   global   frame   according   to   the   pose   estimation   from   the  
EKF   localization   module   as   shown   in   the   next   figure.  

Figure   4.23:   Vehicle   Frame   to   Global   Frame   Transformation  
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This   is   done   by   multiplying   the   received   cone   positions     by   the Xw, Y w, Zw)  (    
transformation   matrix   containing   the   translation   vector   and   the   rotation   matrix   of   the  
vehicle   to   get   the   global   position   of   the   cones      in   order   to   update   the Xc, Y c, Zc)  (    
map   with   the   new   samples.   
 
 
 
 
 
4.6.2   EKF   Robot   localization   Design   Parameters  
 
Each   sensor   reading   updates   some   or   all   of   the   filter's   state.   These   options   give  
greater   control   over   which   values   from   each   measurement   are   fed   to   the   filter.The  
order   of   the   values   is  

. x, y, z, roll, pitch, yaw, vx, vy, vz, vroll, vpitch, vyaw, ax, ay, az)  (                 
 
When   measuring   one   pose   variable   with   two   sensors,   a   situation   can   arise   in   which  
both   sensors   under-report   their   covariances.   This   can   lead   to   the   filter   rapidly  
jumping   back   and   forth   between   each   measurement   as   they   arrive.   In   these   cases,   it  
often   makes   sense   to   (a)   correct   the   measurement   covariances,   or   (b)   if   velocity   is  
also   measured   by   one   of   the   sensors,   let   one   sensor   measure   pose,   and   the   other  
velocity.   However,   doing   (a)   or   (b)   isn't   always   feasible,   and   so   we   expose   the  
differential   parameter.   When   differential   mode   is   enabled,   all   absolute   pose  
data   is   converted   to   velocity   data   by   differentiating   the   absolute   pose   measurements.  
These   velocities   are   then   integrated   as   usual.   
 
EKF   Localization   uses   a   3D   omnidirectional   motion   model.   The   robot's   position   in   the  
vehicle   frame   will   drift   over   time,   but   is   accurate   in   the   short   term   and   should   be  
continuous;   this   short   term   accuracy   is   enough   to   estimate   the   track   trajectory   and  
boundaries.   The   vehicle   frame   is   therefore   the   best   frame   for   executing   local   motion  
plans.   The   global   frame,   unlike   the   vehicle   frame,   is   a   world-fixed   coordinate   frame,  
and   while   it   contains   the   most   globally   accurate   position   estimate   for   our   vehicle,   it   is  
subject   to   discrete   jumps,   e.g.,   due   to   the   fusion   of   IMU   data   or   a   correction   from   a  
global-based   localization   node.  
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All   of   that   was   implemented   in   the   ROS   node   receiving   data   from   IMU,   wheel  
encoders,   and   visual   odometry   and   publishes   the   pose   of   the   vehicle   to   the   Global  
Mapping   Module   .  
 

4.6.3   Visual   Odometry   Modular   Decomposition  
 
Stereo   visual   odometry   consists   of   five   steps.   Firstly,   the   stereo   image   pair   is  
rectified,   which   undistorts   and   projects   the   images   onto   a   common   plane.   Feature  
detection   extracts   local   features   from   the   two   images   of   the   stereo   pair.   Then,   Stereo  
Matching   tries   to   find   feature   correspondences   between   the   two   image   feature   sets.  
Since   the   images   are   rectified,   the   search   is   done   only   on   the   same   image   row.  
Usually   the   search   is   further   restricted   to   a   range   of   pixels   on   the   same   line.   There   is  
also   an   extra   step   of   feature   matching,   but   this   time   between   two   successive   frames  
in   time.   Finally,   an   algorithm   such   as   RANSAC   is   used   for   every   stereo   pair   to  
incrementally   estimate   the   camera   pose.   This   is   done   by   using   the   features   that   were  
tracked   in   the   previous   step   and   by   rejecting   outlier   feature   matches .  
 
 
 
 
 
 
 
 

 
 
 
Figure   4.24:   Stereo   Rectification  
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Figure   4.25:   Stereo   Feature   Matching  
 

 
Figure   4.26:   Stereo   Camera   Visual   Odometry   Pose   Estimation  
 
 
Due   to   the   incremental   nature   of   this   particular   type   of   pose   estimation,   error  
accumulation   is   inevitable.   The   longer   the   system   operates,   the   bigger   the   error  
accumulation   will   be.   Therefore,   we   improve   the   pose   estimation   algorithm   by   fusing  
the   visual   odometry   with   the   IMU   and   the   wheel   encoders   to   provide   a   more   robust  
pose   estimate.  
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4.6.4   K-means-based   Global   Mapping   Modular  
Decomposition  
 
As   mentioned   before,   we   are   using   a   database   containing   the   positions   of   the   cones  
(landmarks)   in   the   track,   their   colors,   and   the   covariance   R   that   indicates   the   amount  
of   uncertainty   about   this   information   that   is   updated   or   augmented   using   the   samples  
received.   Each   sample   here   is   a   global   cone   position   (after   being   transformed   from  
the   vehicle   frame   to   the   global   frame   as   illustrated   above)   and   the   cone   color.   The  
sample   received   is   either   for   a   previously   received   cone   information   thus   it   will  
change   the   covariance   R   (changing   the   uncertainty   based   on   the   euclidean   distance  
between   the   new   sample   and   the   mean   of   previous   samples   for   the   same   cone)   OR  
the   sample   is   for   a   new   cone   that   was   previously   unseen   and   this   is   again  
determined   by   using   thresholding   on   the   euclidean   distance   between   the   sample   and  
the   previous   samples,   that   is   if   the   new   sample   is   away   from   previous   samples   then  
it   might   be   a   new   cone   information   so   it   is   added   to   the   database   with   the   maximum  
covariance   R   until   receiving   more   samples   at   the   same   location   or   close   to   it   in   order  
to   decrease   this   covariance.   In   addition,   if   the   cone   estimate   in   the   database   remains  
with   high   covariance   between   samples   until   it   is   out   of   the   field   of   view   (FOV)   of   the  
vehicle,   it   is   then   removed   from   the   database   as   it   will   be   considered   as   a   random  
noise.   The   next   figure   illustrates   the   process   of   adding   cones   and   updating   them   in  
the   database.   
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Figure   4.27:   The   process   of   adding   and   updating   cone   estimates   in   the   global   map.  
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4.6.5   K-means-based   Global   Mapping   Design  
Constraints  
 
Thinking   about   the   constraints   that   lead   to   this   implementation   can   be   illustrated   with  
this   tradeoff;   between   the   accuracy   with   which   we   need   to   map   the   track,   and   the  
time   we   need   to   finish   the   SLAM   round   for   perceiving   the   track   layout   and   pass   it   to  
the   motion   control   algorithm.   This   is   simply   thought   of   as   when   the   vehicle   is   moving  
slowly   while   receiving   samples   then   the   map   will   receive   more   samples   to   build   a  
more   accurate   track,   while   when   moving   fast   the   amount   of   samples   received   for   the  
same   landmarks   decreases   and   thus   the   accuracy   of   building   the   map   decreases.   In  
addition,   controlling   the   threshold   of   the   FOV   prune   the   uncertain   cone   estimates  
received   and   depend   more   on   the   close   cone   estimates   which   the   vehicle   can   be  
more   confident   about.   Hence,   our   objective   was   more   to   build   an   accurate   map   of  
the   track   and   then   race   with   maximum   performance   in   this   track.   In   addition,   we  
proposed   modes   of   operation   in   order   for   the   vehicle   to   work   with,   these   modes   of  
operation   will   decide   which   parameters   it   will   use   while   mapping   the   environment  
and   will   range   between   being   inaccurately   fast   and   being   accurately   slow   in  
mapping.   Here,   we   must   assure   that   this   is   just   for   mapping   where   after   the   SLAM  
round   is   finished   the   vehicle   can   race   the   track   with   its   maximum   performance.  
 
The   modes   of   operation   will   change   the   configuration   parameters   which   we   will  
discuss   now.   
Maximum   Depth   FOV,   the   maximum   depth   of   a   cone   estimate   to   be   considered   as   a  
received   sample.  
Minimum   Depth   FOV,   the   minimum   depth   of   a   cone   estimate   to   be   considered   as   a  
received   sample,   as   some   vehicles   may   have   some   difficulties   sensing   close   cones  
because   of   the   positioning   of   cameras   on   the   vehicle.  
Angle   FOV,   the   angle   in   front   of   the   vehicle   by   which   the   cone   estimates   inside   this  
angle   of   view   is   considered   as   a   cone   estimate.   
Maximum   Hits,   the   number   of   samples   received   for   the   same   cone   (close   to   the  
mean   of   samples)   after   which   we   are   extremely   confident   about   its   position   and   we  
don’t   need   to   consider   any   samples   for   it   again,   because   if   there   was   a   drifting   error  
in   the   sensors   which   accumulate   with   time   adding   more   samples   would   influence   the  
cluster   with   wrong   estimates.  
Minimum   Hits,   the   number   of   samples   received   away   from   the   mean   of   the   samples,  
in   which   if   the   cone   estimate   reached   and   the   mean   became   out   of   the   FOV   then   the  
cone   estimate   will   be   removed   from   the   database.   Note:   the   hits   number   is   increased  
or   decreased   according   to   the   received   samples,   that   is   if   the   samples   are   close   to  
the   mean,   then   the   hits   number   is   increased,   while   if   they   are   away   from   it,   it   will   be  
decreased   to   finally   reach   the   maximum   hits   or   the   minimum   hits   or   somewhere   in  
between.  
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Minimum   Covariance,   the   number   in   which   if   the   covariance   of   a   cone   estimate  
becomes   below   even   if   it   exists   in   the   FOV   it   will   be   removed   from   the   database  
directly   because   it   represents   a   random   error.  
Maximum   Covariance,   the   number   in   which   if   the   covariance   of   a   cone   estimate  
reaches,   it   will   never   be   considered   for   removal   from   the   database.  
Hit-sample   Covariance,   the   number   added   to   the   covariance   when   a   hit   happens,  
that   is   receiving   a   sample   close   to   the   mean   of   the   cluster   of   samples.  
Failure-sample   Covariance,   the   number   subtracted   from   the   covariance   when   a  
failure   happens,   that   is   receiving   a   sample   for   the   cone   estimate   away   from   the  
mean   of   the   clusters   of   samples.  
 
The    Covariance    of   a   cone   estimate   is   updated   as   follows,  

 Max  Δcov =  cov Maxhits2
Max 1hits −  

one  Max Δ  one  C cov =  cov −  cov × C hits  
 

where,     is   the   maximum   covariance,     is   the   maximum   hits,     is ax  M cov ax  M hits one  C cov  
what   we   are   updating,   and     is   the   number   of   hits   the   cone   estimate   has one  C hits  
received   till   now.  
 
 

4.7   Model   Predictive   Control  
4.7.1   Overview   and   Assumptions   
 
In   this   section   we   will   talk   about   motion   control    in   full   details.   This   chapter  
represents   the   body   of   our   project   so   we   should   answer   some   questions   like   “what  
has   been   done   ?”,   and   “how   it   has   been   done?”.   We   also   will   discuss   and   clarify   our  
scientific   approaches   and   methodologies.  

After   the   first   successfully   finished   lap,   the   complete   track   is   mapped   using   the  
SLAM   algorithm.   After   this   step    the   vehicle   now   has   the   knowledge   of   the   track  
layout   and   has   the   ability   to   localize   itself   within   the   environment.   By   having   this  
capability,   we   can   race   the   car   around   a   known   track.   Which   brings   us   to   our   motion  
planning   problem   where   the   goal   is   to   drive   around   the   track   as   fast   as   possible   and  
avoid   oversteering   in   corners   and   hard   braking.   For   this   purpose   we   tried   to   solve  
this   problem   by   using   nonlinear   Model   Predictive   Control   which   aims   to   maximize   the  
progress   along   a   given   reference   path   (in   our   case   the   center   line)   while   respecting  
the   vehicle   model   and   track   constraints.   The   two   main   advantages   of   our   Model  
Predictive   Control   is   the   direct   consideration   of   the   vehicle   limits   when   computing   the  
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command   and   that   the   algorithm   does   not   need   any   pre-determined   logic,   only   the  
track   layout,   and   the   vehicle   model.   

4.7.2    MPC   Design   parameters   

Before   talking   about   how   an   MPC   controller   works   and   showing   its   architecture   we  
first   have   to   talk   about   its   parameters.  

Choosing   proper   values   for   these   parameters   is   important   as   they   affect   not   only   the  
controller   performance   but   also   the  
computational   complexity   of   the   MPC  
algorithm   that   solves   an   online  
optimization   problem   at   each   time  
step.   We   will   also   talk   about   how   to  
choose   these   parameters.  

These   parameters   are:  

● Sample   time  
● Prediction   Horizon  
● Control   Horizon  
● Constraints  
● Weights  

  

  Figure   4.28:   parameters   of   MPC  

By   choosing   the   sample   time   we   determine   the   rate   at   which   the   controller   executes  
the   control   algorithm   if   it   is   too   big,   when   a   disturbance   comes   in,   the   controller   will  
not   be   able   to   react   to   the   disturbance   fast   enough.   On   the   contrary,   if   the   sample  
time   is   too   small,   the   controller   can   react   much   faster   to   disturbances   and   setpoint  
changes   but   this   causes   an   excessive   computational   load.   To   find   the   right   balance  
between   performance   and   computational   effort   the   recommendation   is   to   fit   10   to   20  
samples   within   the   rise   time   of   the   open-loop   system   response.  

As   we   will   discuss,   at   each   time   step,   the   MPC   controller   makes   predictions   about  
the   future   plant   output.and   the   optimizer   finds   the   optimal   sequence   of   control   inputs  
that   drives   the   predicted   plant   output   as   close   to   the   setpoint   as   possible.The  
number   of   the   predicted   future   time   steps   is   called   the   prediction   horizon   and   shows  
how   far   the   controller   predicts   the   future.   What   happens   if   it   is   too   short?.   Think   of  
this   example,   while   going   at   50   mph   you   know   that   it   will   take   your   car   5   seconds   to  
stop   if   you   press   on   the   brake   pedal.   If   your   prediction   horizon   is   2   seconds,   by   the  
time   you   see   the   traffic   lights,   it   will   be   too   late   to   apply   the   brakes.   The   car   will   only  
be   able   to   stop   after   passing   the   traffic   lights.   So   we   have   to   choose   the   prediction  
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horizon   that   will   cover   the   significant   dynamics   of   the  system,   but   why   do   not   we  
select    a   much   longer   prediction   horizon?   The   answer   is   because   of    computational  
loads.   Another   example   is   when   replacing   traffic   lights   with   corners   this   may   lead   to  
death   if   we   drive   a   formula   car   with   maximum   speed   and   we   did   not   see   the   corner  
on   time   we   will   make   an   accident.   Another   design   parameter   is   the   control   horizon  
which   is   shown   in   the   above   figure.   Each   control   move   in   the   control   horizon   can   be  
thought   of   as   a   free   variable   that   can   be   computed   by   the   optimizer.   So   the   smaller  
the   control   horizon   the   fewer   the   computations.   If   we   make   it   only   one   step   it   may   not  
give   us   the   best   maneuver.   And   by   increasing   the   control   horizon   we   can   get   better  
predictions   but   at   the   cost   of   increasing   the   complexity   and   usually   the   first   couple   of  
moves   have   a   significant   effect   on   the   predicted   output   behavior   while   the   remaining  
moves   have   only   minor   effects.   So   choosing   a   large   control   horizon   only   increases  
computational   complexity.   The   best   way   to   choose   a   control   horizon   is   to   set   it   to  
10%   or   20%   of   the   prediction   horizon.       MPC   can   incorporate   constraints   on   inputs,  
rate   of   change   of   inputs   and   the   output.   These   can   be   hard   or   soft   constraints.   Hard  
constraints   can   not   be   violated   while   soft   constraints   can   be   violated.   The  
recommendation   is   to   set   output   constraints   as   soft    and   avoid   having   hard  
constraints   on   both   inputs   and   rate   of   change   of   inputs.   MPC   has   multiple   goals,   we  
want   outputs   to   track   as   close   as   possible   their   setpoints   but   at   the   same   time   we  
want   to   have   smooth   control   moves   to   avoid   aggressive   control   maneuvers.   The   way  
to   achieve   a   balanced   performance   between   these   competing   goals   is   to   weigh   the  
input   rates   and   outputs   relative   to   each   other.   We   also   adjust   relative   weights   within  
the   groups   as   well.   For   example   if   in   a   2x2   system   it   is   more   critical   to   perform  
reference   tracking   of   the   first   output   than   the   second   output   so   we   assign   a   larger  
weight   to   the   first   output.  
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4.7.3   Block   Diagram  

Figure   4.29:   Architecture   of   implemented   MPC  

4.7.4    Functional   Description  

In   this   part   we   will   talk   about   and   describe   functionality   of   our   controller   which   is  
Model   Predictive   Control   (MPC)   controller   to   control   motion   of   our   vehicle   from   the  
complete   track   that   is   mapped   using   simultaneous   localization   and   mapping  
algorithm   which   is   mapped   successfully   in   the   first   lap.   MPC   utilizes   the   model   of   the  
system   to   predict   its   future   behavior   and   it   solves   an   online   optimization   problem   to  
select   the   best   control   action   that   drives   the   predicted   output   to   the   reference.   In   the  
control   problem   the   goal   of   the   controller   is   to   calculate   the   input   to   the   plant   such  
that   the   plant   output   follows   the   desired   reference.   In   model   predictive   controller’s  
strategy   to   compute   this   input   is   to   predict   the   future,   it   sounds   like   fortune-telling   but  
we   will   discuss   how   it   works.   MPC   uses   the   model   of   the   plant   to   make   predictions  
about   the   future   plant   output   behavior.   It   also   uses   an   optimizer   which   ensures   that  
the   predicted   future   control   output   tracks   the   desired   reference.   In   our   design   let   us  
say   that   we   control   our   vehicle   by  
model   predictive   control   controller   to  
keep   it   in   the   middle   of   the   lane   for  
simplicity   we   assume   that   our   speed  
is   constant   and   our   control   input   is  
just   the   steering   angle   which   is   used  
to   control   our   car.  
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First   we   will   talk   about   how   the   controller   uses   the   car   model   then   later   we   will  
discuss   the   optimizer.   As   we   said   before   that   we   consider   the   middle   of   the   lane   to  
be   our   reference.   At   the   current   time   the   MPC   controller   uses   the   car   model   to  
simulate   the    vehicle’s   path   in   the   p   (where   p   is   the   prediction   horizon)   next   time  
steps   if   the   steering   wheel   would   be   turned   as   in   the   below   figure   where   reference  
path   is   in   green   and   path   controlled   by   steering   angle   is   in   purple   color.   P   is   the  
measure   of   how   far   ahead   MPC   looks   into   the   future   and   is   referred   to   as   the  
prediction   horizon.it   is   often   represented   by   the   length   of   time   into   the   future   or   the  
number   of   future   time   steps.   

                            Figure   4.30:   Vehicle’s   path   in   blue   car   vs   reference   path   in   red   color   

The   MPC   controller   needs   to   find   the   best   predicted   path    that   is   the   closest   to   the  
reference.   So   it   simulates   multiple   future   scenarios.   These   scenarios   are   simulated  
in   a   systematic   way   not   in   a   random   order   and   this   is   why   the   optimizer   comes   into  
the   picture.By   solving   the   optimization   problem   the   MPC   controller   tries   to   minimize  
the   error   between   the   reference   and   predicted   path   of   the   car.   It   also   tries   to  
minimize   the   change   in   the   steering   

 

  Figure   4.31:   best    predicted   path   close   to    reference    taken   over   p   time   steps   

wheel   angle   from   one   time   step   to   the   next   because   if   the   steering   wheel   is   turned  
sharply,   the   ride   may   become   uncomfortable   for   the   passengers.   The   cost   function   J  
of   this   optimization   problem   is   used   to   choose   the   best   path.   While   minimizing   this  
cost   function   MPC    also   makes   sure   that   the   steering   angle   and   vehicle’s   position  
stay   within   prescribed   limits.   These   are   referred   to   as   constraints.   There   is   a   limit   on  
how   far   the   steering   wheel   can   be   turned   as   we   know.   

At   the   current   time   step   the   MPC   controller   is   solving   the   optimization   problem   over  
the   prediction   horizon   while   satisfying   the   constraints.   The   predicted   path   with   the  
smallest   or   minimum   J   gives   the   optimal   solution,   and   therefore   determines   the  
optimal   steering   wheel   angle   and   other   control   input   sequences   that   will   get   the   car  
as   close   as   possible    to   the   reference   path.  
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At   the   current   time,   MPC   applies   only   the   first   step   of   this   optimal   sequence   to   the  
car   and   disregards   the   rest,   based   on   the   applied   steering   wheel   angle   the   car  
travels   some   distance.   At   the   next   time   step   the   controller   gets   a   new   measurement  
of   the   car   position   and   it   might   be   slightly   different   than   what   MPC   controller   has  
predicted   before.   This   could   be   because   of   some   unmeasured   disturbances   acting  
on   the   vehicle   it   might   be   the   wind   or   slippery   road   surface.   Now   the   prediction  
horizon   shifts   forward   one   time   step   and   the   controller   repeats   the   same   cycle   of  
calculations   to   compute   the   optimal   steering   wheel   angle   for   the   next   time.  

In   the   above   figure   manipulated   variables   are   the   inputs   to   the   plant   which   is   our  
vehicle   that   is   used   to   control   the   vehicle   these   inputs   are   steering   angle   and   torque  
request   or   in   other   word   manipulated   variables   are   signals   computed   by   the  
controller   and   sent   to   the   plant.   While   output   variables   are   variables   that   we   try   our  
best   to   make   it   the   same   as   our   reference   that   is   mapped   using   the   SLAM   algorithm  
in   the   first   lap.  

  In   a   feedback   diagram   there   is   a   state   estimator   that   is   used   if   we   could   not   directly  
measure   the   states   so   these   states   can   be   estimated   using   this   state   estimator   and  
fed   back   to   the   model   predictive   control   controller.  

4.8   Communication   and   Simulation   module  

4.8.1   Functional   Description  
 
In   order   to   ensure   the   reliability   of   our   modules   a   high   performance   framework   is  
chosen   to   build   a   communication   environment   which   enable   us   to   visualize   and   see  
the   interaction   between   the   pipeline’s   modules,   and   by   Implementing   our   pipeline  
from   perception   to   mapping   and   localization   of   the   vehicle   it   is   found   that   most   of  
pipeline   modules   needs   to   interact   and   send   data   to   each   other   starting   from   camera  
sensing   ending   with   producing   the   torque   request   and   steering   angle,   so   the  
pipeline’s   modules   are   run   as   nodes   using   Robot   Operating   System   or   ROS   as   the  
framework   that   eases   handling   of   communication   and   data   messages   across  
multiple   systems   as   well   as   different   nodes.   Different   modules   communicate   via  
messages,   they   receive   data   and   output   processed   information.   Another   important  
aspect   is   that   ROS   is   open-source   and   provides   tools   for   visualization,   monitoring  
and   simulation,   making   it   easy   to   integrate,   test,   diagnose   and   develop   the   complete  
software   system.   In   this   module,   a   detailed   description   of   the   deployment   of   the  
pipeline   modules   and   transform   them   to   ROS   nodes.   Each   node   in   the   ROS  
framework   represents   a   module   or   submodule   in   the   pipeline   and   each   node   takes  
its   input   data   by   subscribing   to   a   topic   which   another   node   produced.   This  
messaging   system   which   based   on   publish   and   subscribe   methodology   is   used   to  
manage   the   communication   between   modules   in   an   effective   way   and   used   to  
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reduce   the   time   to   make   a   low   latency   and   efficient   pipeline.   Also,   ROS   framework   is  
used   to   visualize   and   simulate   the   pipeline   using   rViz   by   visualizing   the   detected  
cones   and   the   produced   map   of   the   track   as   shown   in    figure.    and   these   simulations  
and   visualization   are   used   in   testing   and   validation   of   the   pipeline   as   will   be  
described   in   chapter   5.  
 
 
 
 
 
 
 
 
 
 
Figure   4.32   Robot   operating   system   environment  
 
4.8.3   Modular   Decomposition  
 
The   object   detection   node   and   its   topics   in   ROS:  
 
The  object  detection  and  color  recognition  are  the  first two nodes  which  exists  in               
the  ROS  framework  and  they  take  the  input  data  from  the  sensor  (mono  camera)               
directly  as  explained  in  the  block  diagram  and  take  the  input  data  from  the  camera                
as  a  set  of  frames  and  the  object  detection  module  works  on  each  frame  (image)  in                 
the  input  set  of  frames,  so  this  node  takes  the  input  from  the  Mono  camera  and                 
produces  the  output  as  a  set  of  detected  cone  batches  for  each  frame  (image)  this                
output  is  published  on  the bbox_det  topic  as  in  the  following  Figure  4.33.  This  set  of                 
batches  which  are  published  on  the bbox_det topic  are  used  in  the  color  detection               
node,  then  the  color  detection  node  publishes  the  boundary  boxes  with  its  colors  on               
the Frame_BBox_Color  topic  which  is  used  as  an  input  to  the  next  module  (key               
points   extraction   ResNet)   

Figure   4.33:   ROS   nodes   and   published   topics   of   the   object   detection   module  
 
 
The   7   key   points   extraction   node   and   its   topics   in   ROS:  
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The   “keypoint   extraction   DNN”   is   implemented   and   used   via   ROS’s   rospy   interface  
and   the   node   is   created   on   ROS   to   take   the   cone   patches   from   the   object   detection  
module   and   for   each   patch   it   detects   the   7   key   points   in   the   extract   landmarks   node  
and   publish   the   7   key   points   for   each   patch   on   the   perception   cones   topic   as   shown  
in   the   Figure   4.34,     and   then   the   perception   cone   module   integrates   each   cone   in   the  
frame   with   its   extracted   landmarks   and   apply   PNP   algorithm   on   it   to   extract   its   3D  
position   and   then   publishes   the   localized   cones   to   the   reactive   mapping   node   to  
integrate   the   perception   pipeline   with   the   localization   and   mapping   algorithm. 

 
 
Figure   4.34:   ROS   nodes   and   published   topics   of   the   Key   points   extraction  
 
 
 
Mapping   and   Localization   to   visualization:  
 
For   the   localization   and   mapping   nodes   there   is   a   node   for   the   extended   kalman   filter  
which   takes   the   IMU   and   wheel   encoders   sensors   readings   as   shown   in   
Figure   4.35   and   by   applying   the   EKF   algorithm   on   it   it   publishes   the   filtered   odometry  
to   the   odometry   node   which   integrates   the   localization   of   the   vehicle’s   location   with  
the   mapping   algorithm,   the   mapping   algorithm   subscribing   two   nodes   which   are   the  
reactive   mapping   which   have   the   cone   position   in   the   corresponding   frame,   then   the  
global   mapping   algorithm   subscribes   to   the   odometry   filtered   node   which   publishes  
the   odometry   of   the   vehicle,   the   global   mapping   node   publishes   the   landmarks  
locations   and   the   vehicle   location   in   the   global   map   to   the   rViz   node   to   visualize   the  
map   and   landmarks   in   real   time   as   shown   in   Figure   4.35   
 

 
 
 
 
 

115   |    Page  
 



/

 

 
 
Figure   4.35:   Rqt   Graph   of   the   ROS   nodes   and   topics   in   mapping   and   localization  
algorithm   connected   to   the   node   of   ROS   visualization   rViz  
 
 
All   of   these   nodes   and   topics   can   be   visualized   on   the   ROS   using   rViz   which   can  
subscribe   to   any   topic   and   shows   its   data   in   form   of   camera,   image,   pointcloud,  
and/or   map,   rViz   is   used   to   validate   and   test   the   pipeline   outputs   with   the   help    of  
rosbags   which   described   in   chapter   5   in   details.   The   following   figure   shows   an  
example   of   the   rViz   tool.  
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  Figure   4.36   shows   a   sample   from   the   rViz   tool   window   
 

Chapter   5:   System   Testing   and  
Verification  
In  order  to  test  and  verify  our  pipeline,  all  of  the  vehicle’s  modules  were  integrated  on                 
the  ROS  environment  see  chapter  4.  The  ROS  environment  helped  us  to  visualize              
each  module  as  a  node  with  its  inputs  and  outputs  represented  as  ROS  topics  and                
messages  ,  and  using  rViz  the  topics  and  messages  of  each  module  can  be               
subscribed  and  visualized  in  the  shape  of  3D  map,  pointcloud,  and/or  graphs.  The              
readings  of  each  sensor  can  be  visualized  on  rViz  to  help  us  to  verify  the  pipeline  by                  
comparing  the  results  of  many  sensors.  Another  shape  of  testing  that  will  be  shown               
in  this  chapter  is  the  model  testing  using  the  testing  and  validation  datasets  and  this                
type  of  testing  exists  in  two  modules,  object  detection  and  keypoints  extraction             
modules  because  that  each  of  these  two  modules  have  a  deep  learning  model  that's               
needed  to  be  trained  and  tested  using  appropriate  datasets.  In  this  chapter  we  will               
describe  in  full  details  the  testing  setup,  strategy  and  environment  of  our  project.  The               
Figure  5.2  shows  an  overview  of  the  testing  procedure  and  the  track  that  we  went                
with  during  the  testing  phase.  Going  from  the  perception  pipeline  which  detects  the              
position  and  color  of  each  cone  to  mapping  and  localization  of  each  cone  on  the                
track  and  building  the  global  map  of  the  track,  ending  with  the  control  commands  that                
controls  the  motion  of  the  car  in  the  given  track  path.  Each  of  these  modules  was                 
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tested  individually  and  tested  after  integration  with  another  module  and  so  on,  as              
shown  in  Figure  5.2 which  summarizes  the  testing  phase  procedure.  Also,  this             
chapter  aims  to  verify  that  our  project  reached  its  main  goal  as  shown  in  Figure  5.1                 
by   taking   the    testing   procedure   that   is   shown   in   the   following   page.  

 
 
 
 
 
 

 
 
 
 
 
 
                                    Figure   5.1:   The   Main   Goal   of   the   project   

5.1.   Testing   Setup  
First   of   all   our   plan   was   to   deploy   these   modules   and   this   pipeline   on   Cairo  
University   Racing   team   (CURT)   Electric   Vehicle   (EV)   to   test   the   pipeline   in   the   real  
environment   and   on   a   real   vehicle   that   already   joined   Formula   Student   UK  
competition   2019   as   an   Electric   Vehicle.   OUr   aim   was   to   transform   it   into   a   Driverless  
Racing   Vehicle   (DV).   But   unfortunately   due   to   the   Covid-19   epidemic   that   we   are  
facing   in   the   last   5   months,   our   plan   was   totally   changed   from   deploying   these  
modules   on   our   real   vehicle   to   test   our   software   modules   by   simulating   these  
modules   on   Robot   Operating   System   (ROS).  
 
With   the   help   of   Formula   Student   Artificial   Intelligence   (FSAI)   Competition,   which  
provided   us   with   some   real   time   data   in   the   form   of    rosbags    which   includes   some   of  
real   time   sensors’   readings   like   Monocular   camera   frames,   stereo   camera   (left   and  
right)   frames,   LIDAR,   wheel   odometry,   and   IMU   data(as   shown   in   the   following  
figure).   We   used   these   data   in   our   testing   phase   by   taking   the   required   inputs   to   the  
modules   and   testing   the   behaviour   of   the   pipeline   according   to   these   real   time   data.  
All   of   these   works   were   done   on   the   ROS   environment   and   using   the   ROS   tools   to   
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Table   5.1:   Rosbags   topics   and   input   sensors’   data  
 
 
 
  

visualize   the   inputs   and   outputs   of   the   pipeline   and   modules   the   most   important   ROS  
tool   is    rViz    which   we   used   to   visualize,   simulate,   and   test   our   work   using   it.   
 
We   have   collected   more   than   10GB   of   real   time   sensors’   readings   of   a   real   formula  
student   Driverless   Vehicle   (DV)   on   a   track   which   is   shown    in   the   above   figure,   and  
we   use   these   data   to   test   and   visualize   the   behaviour   of   our   modules   and   validate   it  
in   the   real   environment.   All   of   these   datasets   come   in   a   rosbag   format   which   can   be  
used   directly   in   ROS.    Another   strategy   of   testing   that   we   used   in   our   project   in   the  
module   testing   is   the   testing   datasets   which   exist   in   the   modules   which   are   based   on  
deep   learning   models   or   machine   learning   algorithms   In   the   following   part   we   will   talk  
in   full   details   about   the   testing   of   each   module   according   to   its   type   and   the  
integration   testing   which   based   on   the   ROS   environment.  
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5.2.   Testing   Plan   and   Strategy  
 

 
Figure   5.2:   Testing   Setup   and   Procedure   overview  
 
As  explained  in  the  testing  setup  Figure  5.2the  testing  process  which  is  applied  on               
the  pipeline  is  for  each  module  and  integrated  with  the  other  modules  step  by  step  to                 
the  end  of  the  pipeline  as  shown  in  the  testing  procedure  in  Figure  5.2  in  the                 
following  subsections  each  block  in  the  figure  above  will  be  tested  and  integrated              
with   the   corresponding   blocks.  
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5.2.1   Testing   the   cone   2D   localization   module  
  -Customized   YOLOv3  
 

 
Figure   5.3:   Intersection-over-union   -   examined   detection   accuracy   across   three  
landmark   sizes  
 
To   characterize   accuracy   of   the   localization   phase   of   the   pipeline,   we   examined  
detection   accuracy   across   three   landmark   sizes.   The   results   are   shown   in   Table5.2.  
We   use   a   widely-used   metric,   intersection-over-union   (IoU),   that   measures   alignment  
of   our   bounding   box   with   ground   truth    [30].     We   examined   IoU   across   >24,000  
landmarks.   We   achieve   a   median   IoU   of   88%   for   large   cones,   and   83-84%   for  
smaller   cones.   This   bounding   box   tightness   enables   whole   system   localization  
accuracy   described   next.  
 
Our   final   accuracy   metrics   for   detecting   traffic   cones   on   the   racing   track:  
 
Table   5.2:   The   results   of   detection   accuracy  
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Testing   the   detection   module   in   different   climate   conditions:  
1) Sunny  

 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
                    Figure   5.4:   Testing   the   detection   module   in   sunny   climate   condition  
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2) High   light  

 
 
 
Figure   5.5:   Testing   the   detection   module   in   high   light   climate   condition  
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3) Cloudy  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
                       Figure   5.6:   Testing   the   detection   module   in   cloudy   climate   condition  
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4) Low   light  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
                Figure   5.7:   Testing   the   detection   module   in   low   light   climate   condition  
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5) Rainy  

 
            Figure   5.8:   Testing   the   detection   module   in   rainy   climate   condition  
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5.2.1   Testing   the   Cone   Color   Detection   module  
 
The   following   figure   shows   the   testing   metrics   for   multiple   saturated   epochs  
compared   to   the   ground   truth   labels.  
  

 
Figure   5.9:   Color   detection   module   testing   metrics   on   the   saturated   epochs   of  
training.  
 
The   mean   average   precision   mAP   of   color   recognition   for   confidence   which   is   more  
than   50%   is   about   80.  
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Testing   the   color   detection   with   object   detection:  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure   5.10:   Testing   the   color   detection   with   object   detection  
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5.2.3    7   Key   Points   Extraction   Network  

1) validation   test  
The   feature   extraction   network   was   trained   with   3.2k   images   2720   for   training   and  
about   480   for   validation   as   shown   in   the   figure:   
 

 
 
Figure   5.11:   Key   points   extraction   network   dataset  
By   training   on   this   dataset   the   best   loss,   loss:   location/geometric/total   which   is   
loss:   0.011191/0.0/0.011191    was   found   in   EPOCH   48   as   shown   in   the   following  
figure.  
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
     Figure   5.12:   Key   points   extraction   network’s   best   loss   result  
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2) Visual   test  
Samples   for   the   key   points   extraction   on   different   cone   batches   and   the   heat   map  
which   is   the   output   of   the   last   layer   (7   Conv)   which   gives   7   heat   maps   one   for   each  
point:  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
     Figure   5.13:   Key   points   extraction   network’s   results   and   points’   heatmap  
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5.2.4   Testing   3D   space   localization   of   cone:  
The   recorded   data   is   from   Rosbag   with   the   given   information   about   the   camera  
parameters   which   is   given   in   the   Camera_Info   topic   ,   by   using   these   camera  
parameters   with   the   prior   knowledge   of   the   3D   cone   model   as   shown   in   the   following  
Figure   5.14,   we   tested   our   PnP   algorithm   to   estimate   the   3D   cone   position   with  
respect   to   the   vehicle’s   center.    All   of   these   simulations   and   data   from   Rosbags   are  
tested   and   visualized   on   the   rViz   tool   ,   on   the   Robot   Operating   System   (ROS)  
environment   as   shown   in   Figure   5.14.  

 

     Figure   5.14:   3D   Cone   points,   camera   information,   visualization   of   the   rosbag   in   rViz   
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To   test   this   module   it   must   be   tested   with   the   existence   of   the   detection   and  
keypoints   extraction,   so   the   PnP   algorithm   will   be   applied   on   the   extracted   7   key  
points   (7   features)   and   then   it   estimates   the   cone   3D   position   in   the   world  
coordinates   as   shown   in   the   following   figures   the   3D   positions   of   each   detected   cone  
exists   on   the   top   of   the   batch   square   with   respect   to   the   car   center.  

Figure   5.15:   Testing   the   3D   localization   PnP   algorithm   with   the   detection   and   key  
points   extraction   modules  

132   |    Page  
 



/

 

5.2.5   Testing   EKF   Robot   Localization   and   Mapping  
Modules  
 
❏ Testing   EKF   Robot   Localization   module  

 
In   order   to   test   our   EKF   localization   module   we   needed   to   get   a   superior   source   of  
vehicle   locations,   so   we   used   the   data   found   by   the   team   to   include   GPS   vehicle  
locations   to   indicate   a   performance   measure   to   our   module,   then   we   tested   the   EKF  
Robot   Localization   by   computing   the   mean   average   euclidean   distance   between  
vehicle   pose   estimations   and   the   GPS   location   computed.   The   redline   shows   the  
vehicle   trajectory   of   pose   estimated   through   visual   odometry,   IMU,   and   wheel  
encoders,   while   the   green   line   shows   the   gps   locations.  

Figure   5.16:   Difference   between   GPS   positioning   (green)   and   EKF   pose   estimation  
position   (red).  
 
It's   clear   that   GPS   has   this   spiky   noise   behaviour   because   of   its   high   latency   in  
receiving   vehicle   positions,   but   the   average   of   these   locations   will   serve   as   a  
measure   for   our   results.   Our   results   seem   more   smooth   and   robust,   with   low   mean  
average   difference   with   the   GPS   locations,   as   you   can   see   from   the   next   table.   
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Table   5.3:   X,   Y   locations   received   from   both   EKF   Localization   module   and   GPS  
positions  

 
 
The   mean   average   euclidean   distance   is   evaluated   to   be   about   0.13669   m.   This  
difference   is   acceptable   as   it   does   not   exceed   10%   of   the   average   width   of   a   vehicle,  
and   3%   of   an   average   track   width.  
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❏ K-means-based   global   mapping   module   
In   order   to   test   our   complete   mapping   system   we   have   used   another   piece   of   data  
sent   in   the   rosbags,   the   velodyne   points   of   the   cones   (velodyne   is   a   3D   laser  
scanner   that   scans   the   surrounds   of   the   vehicle   and   map   it   directly   in   reference   to  
the   vehicle   position)   we   will   compare   the   cone   locations   in   the   global   map   from   the  
3D   laser   scanner   (Velodyne)   and   our   simple   monocular   camera   pipeline,   this   will  
show   the   performance   of   our   simple   approach   and   the   laser   scanner   taking   into  
consideration   the   cost   of   each   system   and   the   logistic   difficulties   of   the   velodyne.  

 
Figure   5.17:   Visualizing   the   difference   between   Monocular   Mapping   pipeline   and  
velodyne   3D   scans.   |  
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Figure   5.18:   Visualizing   the   difference   between   our   pipeline   and   the   3D   scanned  
point-cloud.   ||  
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Figure   5.19:   Visualizing   the   difference   between   our   pipeline   and   the   3D   scanned  
point-cloud.   |||   

 
The   difference   is   averaged   between   many   samples   and   it   seemed   it   doesn’t   exceed  
0.15m   inside   the   FOV   which   is   very   impressive   results.  
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5.2.5   Testing   Model   Predictive   Controller  
 
Now   we   have   the   map   of   the   track   from   the   localization   and   mapping   algorithm   and  
tested   on   a   real   time   sensor   data   from   the   ROSbag   and   we   built   the   track   and  
validated   it,   so   it’s   the   time   for   motion   control   testing   on   this   given   track   map   as  
shown   in   the   following   figure   the   chosen   path   for   the   path   planning   algorithm   is   the  
simplest   path   at   the   center   of   the   estimated   track   map   as   shown   in   the   figure   below.  
 

 
  Figure   5.20:   Simplest   path   at   the   center   of   the   estimated   track   map   from   the  
mapping   algorithm  
  
 

1) Path   tracking  
The   motion   control   algorithm   will   be   tested   by   sending   this   path   to   it   and   evaluating  
how   much   the   generated   path   from   the   motion   control   algorithm   will   match   the   given  
track,   based   on   the   vehicle   model   and   track   width.   The   following   figure   shows   how  
much   the   MPC   is   close   to   the   generated   path   from   the   mapping   and   path   planning  
algorithm.  
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Figure   5.21:   The   actual   track   which   produced   by   the   MPC   algorithm   with   the  
estimated   map   track  
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2) MPC   control   outputs  
After   receiving   the   vehicle   trajectory   the   MPC   outputs   the   control   parameters  
estimated   to   race   the   vehicle   along   the   track,   these   estimated   parameters   are  
estimated   by   optimizing   a   cost   function   over   the   motion   model   as   illustrated   in  
section   4.7.   The   following   is   an   example   of   the   manipulated   and   state   variables   that  
resulted   in   our   simulations.   Further   testing   will   be   needed   in   reality,   but   the   simulated  
output   is   as   expected   to   build   a   competent   racing   autonomous   vehicle.  
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure   5.22:   State   variables   during   the   testing   simulation   of   the   MPC   module.  
 
  

 
 
 
 
 
 
 
 
 
Figure   5.23:   Control   variables   during   testing   simulation   of   the   MPC   module.  
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5.3.   Testing   Schedule  

Table   5.4:   Gant   chart   for   the   testing   schedule  
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5.4.   Comparative   Results   to   Previous   Work  
The  basic  computer  vision  architecture  is  by  using  a  stereo  camera  pipeline,  using              
the  data  collected  in  the  rosbags  the  3D  mapping  error  based  on  the  monocular               
camera  and  the  stereo  camera  pipeline  is  given  with  reference  to  the  distance.  It’s               
clear  how  important  is  the  perception  redundancy,  as  the  error  of  the  monocular              
camera  in  the  short  range  is  way  better  than  the  stereo  camera  while  the  stereo                
camera  exceeds  the  performance  of  the  monocular  camera  in  the  mid  and  long              
range,  this  is  according  to  the  setup  of  the  camera  as  illustrated  in  the  system                
architecture.    The   following   figure   shows   the   results   of   the   comparative   study.  
 

 
Figure   5.24   Distance   errors   over   various   distances   of   Monocular   and   Stereo   Camera  
 
Distance  errors  over  various  distances  are  shown  in Figure .  Mean  errors  for  the  20               
seconds  of  recorded  data  were  below  0.5m  for  both  pipelines,  and  standard             
deviations  were  below  5cm  for  the  monocular  pipeline  and  10cm  for  the  stereo              
pipeline.  Ground  truth  values  for  Euclidean  distances  from  the  cameras  were            
measured  using  a  Leica  Disto  D1.  The  experiment  was  done  statically  to  remove  the               
dependency  on  the  vehicle’s  state  estimation  system.  The  results  reveal  a  maximum             
effective  disparity  offset  of  0.15  pixels  in  the  stereovision  pipeline  achieved  through             
the  clustering  algorithm,  which  is  40%  lower  than  the  reported  value  on  the              
datasheet.  
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Chapter   6:   Conclusions   and   Future  
Work  

Autonomous   driving   is   a   fast   growing   field   and   a   very   challenging   one,  
combining   computer   vision   algorithms,   robotics,   deep   learning   and   creative  
engineering.   Developing   software   and   testing   it   on   hardware   for    autonomous  
racing    is   even   more   challenging,   but   it   massively   quickens   the   creation   of   reliable  
and   robust   autonomous   urban   vehicles   that   are   ready   to   be   deployed.   With   this  
project,   we   have   achieved   very   convincing   results   of   using   a   single   monocular  
camera   to   guide   a   vehicle   into   unknown   territories   within   a   reliable   redundant  
perception   pipeline,   a   localization   &   mapping   module   that   effectively   maps   the   track  
being   explored   by   the   vehicle,   and   finally,   a   path   planer   &   motion   control   module   that  
drives   the   vehicle   to   its   fullest   autonomously.   This   paves   the   way   for   testing   this  
software   on   real   hardware,   and   builds   the   base   for   research   in   the   field.   
 

6.1.   Faced   Challenges  
Every   member   in   this   project   believed   in   it,   and   wanted   to   achieve   the  

greatest   of   results   possible   with   whatever   resources   available.   There   were   a   lot   of  
challenges   and   hardships   that   we   faced   during   our   journey   with   this   project,   but   with  
enough   dedication,   out   of   the   box   thinking,   and   support   from   our   supervisor,   we   were  
able   to   get   through   them   and   accomplish   a   goal   that   we   aspired   for   so   long.   
 
Building  a  workstation:  In  our  project,  we  train  highly  complicated  deep  learning             
models,  develop  complex  modules  and  algorithms,  and  use  ROS  to  integrate  and             
communicate  between  them,  this  requires  a  PC  with  a  decent  GPU  and  CPU.  At  the                
start  of  the  project,  we  didn’t  have  such  a  PC,  during  the  research  and  literature                
review  phase,  we  were  able  to  save  enough  money  and  get  our  hands  on  a  decent                 
PC   that   will   satisfy   the   project   needs.   
 
Collecting  cones  dataset:  For  the  perception  pipeline,  the  object  detector           
functionality  is  to  detect  and  classify  blue  and  yellow  cones,  we  weren’t  able  to  find                
any  open  source  cones  images  dataset.  Later  on,  we  found  a  dataset  by  Formula               
Student  Driverless  teams  that  required  a  contribution  of  at  least  600  cones  images  to               
be  downloadable  for  other  teams,  we  were  able  to  get  our  hands  on  cones,  and                
obtain  600  images  and  download  a  8000  images  dataset  containing  more  than             
30,000   cones.  
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Labelling  cones  dataset:  The  cones  dataset  was  a  very  good  dataset,  containing             
images  of  cones  in  very  random  and  challenging  conditions,  however,  it  wasn’t             
labelled  by  cones  color.  Labelling  such  a  huge  dataset  was  such  a  big  challenge,  but                
we  were  able  to  develop  a manual  annotation  tool  using  Python,  and  spent  three               
full   days,   working   about   16   hours   per   each   day,   labelling   the   dataset.  
 
Recorded  vehicle  data:  In  order  to  be  able  to  test  the  developed  software  for  the                
vehicle,  and  then  deploy  such  software  on  real  hardware,  we  needed  recorded  data              
of  a  vehicle  moving,  such  data  shall  contain  various  sensor  readings  and  recorded              
frames  through  a  camera  on  the  vehicle.  In  our  initial  plan,  we  were  willing  to  use  the                  
Cairo  Uni  Racing  Team  2019  electric  vehicle,  but  due  the  COVID-19  issues  that  was               
not  possible  anymore.  We  were  then  able  to  reach  out  to  other  formula  student               
teams,  and  get  our  hands  on  some  of  their  recorded  data,  we  fused  a  lot  of  sent  data                   
together  and  were  able  to  create  our  own  test  cases  and  scenarios  that  are  going  to                 
match   with   the   hardware   we   will   be   using   in   the   future.   
 

6.2.   Gained   Experience  
This   project   was   a   great   journey   overall,   throughout   our   work   we   learnt   and  

gained   hand-on   experience   in   lots   of   fields.   
 

First   things   first,   in   the   beginning   of   this   project,   we   began   a   research   phase  
that   lasted   for   about   3-4   months.   Throughout   this   phase,   we   finished   two   Udacity  
Nanodegrees;   Deep   Learning   Nanodegree,   and   Self-Driving   Car   Engineer  
Nanodegree.   In   these   two   nanodegrees,   we   gained   extensive   academic   and  
practical   knowledge   in;    neural   networks,   CNNs,   recurrent   neural   networks,  
sensor   fusion,   robot   localization,   path   planning,   and   control.   

Additionally,   we   completely   studied   more   than   15   research   papers;   in   pose  
estimation,   robot   localization   and   mapping,   object   detection,   autonomous   racing  
vehicles,   PNP   algorithm,   depth   estimation   and   many   more.   All   that   added   to   our  
academic   knowledge   and   allowed   us   to   gain   extensive   experience   in   many   fields   and  
apply   gained   knowledge   and   experience   in   our   project.   

 
Secondly,   we   gained   a   broad   experience   in   PyTorch,   and   implementing   deep  

learning   models   completely   using   the   framework.   PyTorch   is   a   very   important   and  
reputable   framework   in   deep   learning,   we   gained   experience   in   debugging   model  
training   and   inference,   in   data   parallelism,   and   dynamic   computational   graphs.  
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Thirdly,   we   gained   respectable   experience   in   deep   learning   models   training  
and   optimization   of   training.   During   the   literature   survey,   we   trained   multiple   object  
detectors   to   select   the   most   suitable   approach.   That   enhanced   our   understanding   of  
terms   like   precision,   recall   and   mAP.   Additionally,   learning   about   selecting   the   best  
training   hyperparameters,   and   optimization   algorithms.   

 
Last,   but   not   least,   we   gained   great   experience   and   became   very   familiar   in  

dealing   with   Robot   Operating   System   (ROS).   We   developed   a   skeleton   for   the   entire  
project,   using   ROS.   Additionally,   integrated   all   the   modules   together,   defining   the  
communication   between   all   these   modules.  
 

6.3.   Conclusions  
Through   hard   work   and   dedication,   time   management,   and   support   from   our  

supervisor,   we   are   able   to   develop   a   complete,   reliable   and   robust   software   of   an  
autonomous   racing   vehicle.   

 
The   software   consists   of   a   perception   pipeline;   that   consists   of   two   main  

embedded   pipelines,   a   monocular   camera   and   a   stereo   camera   pipelines,   that   work  
together   parrelly.The   monocular   pipeline   effectively   detects   cones   in   a   track,   in   a  
real-time   manner,   and   then   classifies   them   according   to   their   color,   such   detected  
cones   are   then   localized   within   the   local   map,   their   depth   is   estimated   through   the  
application   of   key-points   extraction   and   PNP   algorithm.   These   cones   locations  
estimates   are   then   fused   with   estimates   from   the   stereo   vision   pipeline,   which  
provides   more   accuracy,   and   reliability   through   redundant   perception.   We   believe  
that   with   more   time   and   research   put   into   this   pipeline,   we   can   achieve   results   that,  
in   terms   of   accuracy,   can   be   very   close   to   results   using   a   Lidar   based   sensing.  
However,   the   vision   range   of   the   Lidar   is   much   better   than   any   vision   sensors.   

 
A   localization   and   mapping   module   then   localizes   the   vehicle   in   the   global  

map,   while   updating   the   map   the   cones   position,   additionally,   the   team   developed  
additional   correctional   algorithms,   making   the   global   mapping   more   intelligent   and  
error-prune.   

 
The   global   map   is   then   fed   to   a   path   planning   and   control   module,   that  

generates   the   low   level   commands   for   the   movement   of   the   vehicle   across   the   track,  
with   the   target   of   achieving   maximum   performance   and   driving   the   vehicle   to   its  
absolute   limits.   
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6.4.   Future   Work  
1. Create  a  Gazebo  simulation,  that  is  close  as  possible  to  the  environment  the              

vehicle  will  deal  with.  The  simulated  vehicle  model  shall  contain  all  the             
sensing  technologies  that  are  on  the  vehicle.  This  simulation  shall  be  used  to              
obtain   more   test   data   for   software   testing.  

2. Obtain  the  actual  hardware  components;  monocular  &  stereo  camera,  IMU           
sensor,  wheel  odometry  sensors,  and  vehicle  embedded  computer.  Such          
hardware  shall  be  installed  into  the  vehicle,  and  be  used  to  record  data  of  the                
vehicle   moving.  

3. Test  the  developed  software  on  Cairo  Uni  Racing  Team  2019  electric  vehicle,             
after   installing   the   hardware   and   software,   and   taking   enough   precautions.   

4. Update  the  Model  Predictive  Controller  to  be  a  controller  that  utilizes            
Reinforcement  learning.  A  controller  that  gains  experience  within  the          
operation  of  the  vehicle,  and  applies  that  experience  in  improving  the  vehicle             
performance   along   the   track.   
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Appendix   A :   Development   Platforms   and  
Tools  
This  section  explains  used  tools,  platforms,  and  hardware  kits.  Any  ready-made            
module  used  to  build  the  AutoRace  system.  At  first  we  will  look  for  the  hardware                
used  to  develop  this  autonomous  kit  and  then  the  software  tools  which  are  used  to                
construct  and  develop  the  full  pipeline  from  the  perception  ,  localization,  mapping,  to              
the   motion   control   system.  

A.1.   Hardware   Platforms  
The  following  figure  describes  the  Autonomous  kit  sensors  and  actuators  which  are             
needed  to  convert  cairo  university  racing  team’s  electric  vehicles  into  autonomous            
vehicles   and   to   match   the   system   architecture   which   is   mentioned   in   chapter   4.  
 
 
 
 
 
 
 

 
 
 

Figure   A.1   Overview   of   the   hardware   sensors   and   actuators   of   the   autonomous   kit  
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A.2.   Software   Tools  
 
AutoRace   was   developed   with   python   and   C++,   where   python   is   used   in   the   high  
level   tasks,   and   the   C++   was   used   in   the   motion   control   when   executed   commands  
by   sending   them   to   the   VCU.   Some   packages   are   used   in   order   to   build   the   full  
software   stack.  
 
A.2.1   NumPy  
NumPy     is   a   library   for   the   Python   programming   language,   adding   support   for   large,  
multi-dimensional   arrays   and   matrices,   along   with   a   large   collection   of   high-level  
mathematical   functions   to   operate   on   these   arrays.  
 

A.2.2   OpenCV  
OpenCV    is   a   library   of   programming   functions   mainly   aimed   at   real-time   computer  
vision.   Originally   developed   by   Intel,   it   was   later   supported   by   Willow   Garage   then  
Itseez   (which   was   later   acquired   by   Intel).   The   library   is   cross-platform   and   free   for  
use   under   the   open-source   BSD   license.  
 
A.2.3   TensorFlow  
TensorFlow   is   a   free   and   open-source   software   library   for   dataflow   and   differentiable  
programming   across   a   range   of   tasks.   It   is   a   symbolic   math   library,   and   is   also   used  
for   machine   learning   applications   such   as   neural   networks.     It   is   used   for   both  
research   and   production   at   Google.  
 
A.2.4   PyTorch  
PyTorch   is   an   open   source   machine   learning   library   based   on   the   Torch   library,   used  
for   applications   such   as   computer   vision   and   natural   language   processing,     primarily  
developed   by   Facebook's   AI   Research   lab   (FAIR).   It   is   free   and   open-source  
software   released   under   the   Modified   BSD   license.  
 
A.2.5   ROS  
Robot   Operating   System   (ROS   or   ros)   is   robotics   middleware   (i.e.   collection   of  
software   frameworks   for   robot   software   development).   Although   ROS   is   not   an  
operating   system,   it   provides   services   designed   for   a   heterogeneous   computer  
cluster   such   as   hardware   abstraction,   low-level   device   control,   implementation   of  
commonly   used   functionality,   message-passing   between   processes,   and   package  
management.   Running   sets   of   ROS-based   processes   are   represented   in   a   graph  
architecture   where   processing   takes   place   in   nodes   that   may   receive,   post   and  
multiplex   sensor   data,   control,   state,   planning,   actuator,   and   other   messages.  
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Despite   the   importance   of   reactivity   and   low   latency   in   robot   control,   ROS   itself   is    not  
a   real-time   OS   (RTOS).   It   is   possible,   however,   to   integrate   ROS   with   real-time   code.  
The   lack   of   support   for   real-time   systems   has   been   addressed   in   the   creation   of   ROS  
2.0,      a   major   revision   of   the   ROS   API   which   will   take   advantage   of   modern   libraries  
and   technologies   for   core   ROS   functionality   and   add   support   for   real-time   code   and  
embedded   hardware.  
 
A.2.6   Basic   Detection   Network   YOLO  
YOLO,   is   a   new   approach   to   object   detection.   Prior   work   on   object   detection  
repurposes   classifiers   to   perform   detection.   Instead,   it   frames   object   detection   as   a  
regression   problem   to   spatially   separated   bounding   boxes   and   associated   class  
probabilities.   A   single   neural   network   predicts   bounding   boxes   and   class   probabilities  
directly   from   full   images   in   one   evaluation.   Since   the   whole   detection   pipeline   is   a  
single   network,   it   is   optimized   end-to-end   directly   on   detection   performance.   We  
have   used   the   basic   idea   of   the   network   to   customize   for   our   2D   object   detection  
module.  
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Appendix   B:   Use   Cases  
 
 
 
 

 
 
Figure   A.2   Use   case   of   the   project  
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Appendix   C:   User   Guide  
 
 

1) Hardware   Platform  
 

   NVIDIA   RTX   1060   Super   or   higher   (with   CUDA   capabilities)  
   AMD   Ryzen   5   3600xt   or   higher  
   DDR4   RAM   -   16GB   or   higher  
  
  

2) Software   Platform  
Install   Linux-Ubuntu   18.04   LTS   :     https://releases.ubuntu.com/18.04/  
 
Install   ROS   Melodic   :    http://wiki.ros.org/melodic/Installation  
 
Install   CONDA   Environment   With   Python   3.7   :  
https://docs.conda.io/projects/conda/en/latest/user-guide/tasks/manage-environment 
s.html  
 

 
3) Software   Packages   Requirements   

 
● CUDA>=10.1  
● python==3.6  
● numpy==1.16.4  
● matplotlib==3.1.0  
● torchvision==0.3.0  
● opencv_python==4.1.0.25  
● torch==1.1.0  
● requests==2.20.0  
● pandas==0.24.2  
● imgaug==0.3.0  
● onnx==1.6.0  
● optuna==0.19.0  
● Pillow==6.2.1  
● protobuf==3.11.0  
● pymysql==0.9.3  
● retrying==1.3.3  
● tensorboardX==1.9  
● tqdm==4.39.0  
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4) Training   and   Inference   The   detection   network  
● Get   the   cones   dataset   and   extract   it.  
● Get   the   labels   of   the   dataset   as   a   CSV   file.  
● Training   command:  

python3   train.py   --model_cfg=model_cfg/yolo_baseline.cfg  
--weights_path=dataset/sample-yolov3.weights  

● Once   you've   finished   training,   you   can   access   the   weights   file   in   ./outputs/  
●   Inference   command:  

python3   detect.py   --model=<path   to   .pt   weights   file>   --img=<path   to   an  
image>  

● Once   you've   finished   inference,   you   can   access   the   result   in  
./outputs/visualization/  
 

5) Training   and   Inference   The   feature   extraction   network  
● Get   the   cones   dataset   and   extract   it.  
● Get   the   labels   of   the   dataset   as   a   CSV   file.  
● Training   command:  

python3   train_eval.py   --study_name=<name   for   this   experiment>  
● Once   you've   finished   training,   you   can   access   the   weights   file   in   ./outputs/  
● Inference   command:  

python3   detect.py   --model=<path   to   .pt   weights   file>   --img=<path   to   an  
image>  

● Once   you've   finished   inference,   you   can   access   the   result   in  
./outputs/visualization/  

 
 

6) Launching   the   whole   program   on   ROS  
 

●   To   simulate   and   visualize   the   whole   project   get   the   rosbag   and   go   to   in   the  
terminal   to   its   directory   and   play   it   by   this   command:   
-rosbag   play   “Name   of   the   rosbag”  

● Open   rViz   to   visualize   and   simulate   the   project   by   this   command:  
-ros   run   rViz   rViz  
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Appendix   E:   Feasibility   Study  
E.1   Economic   Feasibility  

In   this   section,   the   initial   costs   needed   for   the   development   and   completion   of  
the   project   are   stated.   Additionally,   the   cost   estimation   for   future   improvements   of   the  
project,   and   testing   the   developed   software   on   real   hardware   is   also   added.   
 

E.1.1   Initial   Costs  
 
Table   E.1   Initial   costs   of   the   project  
Item  Cost  Description  Fulfilled  

NVIDIA   RTX   2060  
Super  

8300   EGP  Graphical   processing   unit   of   workstation   to   develop  
the   project   on.   It   will   be   mainly   used   to   train   deep  
learning   models   and   test   the   project   modules.  

YES  

AMD   Ryzen   5   3600xt  5000   EGP  CPU   of   workstation.   It   was   found   that   this   processor  
will   give   us   enough   computing   power   with   its  
multithreading   properties   and   fairly   fast   clock   speed.  

YES  

DDR4   RAM   -   16GB  1800   EGP  Memory   of   the   workstation.  YES  

1TB   HDD   +   250GB  
SSD  

2200   EGP  HDD   drive   is   for   larger   local   files,   SSD   is   mainly   for  
workstations   operating   system   to   allow   for   faster  
operation.  

 

Other   workstation  
components  

2700   EGP  Casing   -   power   supply   -   motherboard   -   Ethernet  
module.  

YES  

Total:  20,000   EGP    
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E.1.2   Cost   Estimation   for   Future   Improvements  
 
Table   E.2   Initial   costs   of   the   project  
Item  Cost  Description  Fulfilled  

Embedded   Computer  
-   ASUS   g731gv  

31,000   EGP  This   will   act   as   the   brain   of   the   vehicle.   The  
embedded   computer   will   run   and   process   the   entire  
code,   and   run   the   operating   systems   (ROS).   It   must  
be   compatible   with   TensorRT   technology   to   allow  
for   real   time   capabilities.   

NO  

Monocular   Camera   -  
GoPro   HERO   8   Black  

8200   EGP  The   monocular   camera   that   will   input   frames   into  
the   perception   pipeline.   It   must   be   an   action   camera  
to   ensure   high   quality   frames   at   a   high   FPS.  

NO  

Stereo   Camera   -   ZED  
2  

10800   EGP  The   stereo   camera   for   the   stereo   vision   pipeline.   NO  

Total:  50,000   EGP    
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E.2   Technical   Feasibility  
In   this   section,   the   risk   assessment   and   solutions   we   anticipated   will   be   stated.  
 
Tables   E.3,   E.4,   and   E.5   show   the   criterias   we   used   to   evaluate   a   potential   risk.  
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Table   E.6   shows   our   risk   assessment   and   solutions.   
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E.3   Schedule   Feasibility  

In   order   to   finish   this   project   efficiently   and   manage   to   stay   within   the   time  
limits,   we   managed   to   plan   a    timeline    for   the   entire   project.   Figure   E.1   shows   a  
Gantt   chart   that   shows   how   we   divided   the   project   into   four   main   phases.   
 

The   research   phase   (09/01/19   -   01/01/20) ;   is   the   learning   period,   throughout  
this   phase   the   team   members   should   study   two   main   courses   and   start   literature  
review,   gathering   enough   knowledge   and   background   information   that   shall   give   the  
team   enough   push   to   start   designing   and   implementing   the   project.   

The   modeling   phase   (01/10/20   -   02/10/20);    this   is   mainly   the   design   phase,  
in   this   phase   an   initial   design   shall   be   made   for   all   the   modules   of   the   project,  
modeling   these   designs   in   the   form   of   block   diagrams,   selecting   software   and  
simulation   tools   and   preparing   an   integration   plan.  

The   prototyping   phase   (02/10/20   -   06/10/20);    this   is   the   phase   where   the  
designs   shall   be   implemented,   programming   all   the   main   modules,   doing   system  
testing,   integrating   all   the   modules   and   then   testing   the   entire   system.   

The   documentation   phase   (04/10/20   -   07/10/20);    in   this   phase,   the   entire  
project   shall   be   documented,   focusing   on   documenting   the   approaches   &   the  
implementations   used,   the   testing   procedures,   and   the   outputs   of   the   project.   
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Table   E.7   shows   the   Gantt   chart   of   the   prototyping   (implementation   phase).  

 
 
 

 
Due   to   the   complexity   and   difficulty   of   the   prototyping   phase,   we   created   a   dedicated  
timeline   for   that   phase.   Table   E.7   and    E.8   shows   the   Gantt   chart   of   the   prototyping  
(implementation   phase).  
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Table   E.8   shows   the   Gantt   chart   of   the   prototyping   (implementation   phase).  
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