
1

Implementation and Functional Verification of

RISC-V

By

Abdelrahman Mohamed Adel

Dina Saad Mohamed

Mahmoud Abd El Mawgoed Ibrahim

Mohamed Alaa Sharshar

Zyad Ahmed Aboelkasem

A Thesis Submitted to the

Faculty of Engineering at Cairo University

In Partial Fulfillment of the

Requirements for the Degree of

BACHELOR OF SCIENCE

In

Electronics and Communications Engineering

FACULTY OF ENGINEERING, CAIRO UNIVERSITY

GIZA, EGYPT

July 2021

2

ACKNOWLEDGEMENTS

We would like to thank our supervisors: Dr. Hassan Mostafa, for his great support,

supervision and encouragement. Moreover, we are very grateful to Dr. Eman El-

Mandouh, Eng. Hala Ibrahim for their valuable technical support, patient guidance,

enthusiastic encouragement and useful critiques throughout the project's phases.

Special thanks to our Fund resources: ONE Lab. (Cairo University) and Mentor

Graphics (Mentor Siemens) Egypt.

3

Abstract

In the world of technology, we’re living in, and the huge increase in the number of IoT

(Internet of things) devices leading to a tremendous amount of data being sent mostly

using wireless low power technologies such as ZigBee and Bluetooth low energy

(BLE), this wireless data is prone to eavesdropping and being hacked and, thus ensuring

the security of the data being sent wirelessly in IoT applications is of the utmost

importance. Moreover, designs for security chips or ICs need to be verified before

fabrication or implementation on FPGAs. Verification has always been an ever-

increasing challenge. The gap between what a verification plan can offer nowadays,

and the current technology requirements is constantly widened. Verification can be

static or dynamic, this work demonstrates the power of static verification using Questa

tools as well as the power of dynamic verification using UVM (Universal Verification

Methodology). The Universal Verification Methodology has come in action as a literal

savior to the whole verification community, by offering a merge between System

Verilog and System C into one environment that is completely standardized,

constrained, and reusable, allowing a powerful verification methodology to a wide

range of design sizes and types. The main contribution that this work introduces for IoT

is designing a system on chip based on a processing core designed using RISC-V ISA,

the SoC encrypts and decrypts data for IoT devices, and the main contribution for

verification is developing an efficient UVM environment for our RISC-V ISA based core

and covering all of its corner cases, thus making the design ready for implementation.

.

4

Table of Contents

Chapter 1: Introduction 9

1.1 Problem Definition 9

1.2 What is RISC-V? 11

1.3 History 11

1.4 Why RISC-V? 11

1.5 RISC-V ISA Overview 13

1.6 Core vs SoC 14

1.7 Different platforms, SoCs and cores based on RISC-V ISA 15

1.7.1 SiFive platform 15

1.7.2 PULP platform 16

Chapter 2: Designing the Unpipelined 32 IM RISC-V core 18

2.1 RV32I (RISC-V Base Integer ISA) 18

2.1.1 The register file 20

2.1.2 Instruction memory 21

2.1.3 Data memory 22

2.1.4 ALU 23

2.1.5 Branch circuit 25

2.1.6 Immediate generator 25

2.1.7 The control unit 27

2.2 RV32M (M-extension) 30

2.2.1 Division using Restoring Algorithm 31

2.2.2 Multiplication using booth Algorithm 34

Chapter 3: Designing the Pipelined 32 IM RISC-V core 37

3.1 Hazards 37

3.2 Hazard detection Unit 38

3.3 Forwarding 39

3.4 Control hazards unit 41

Chapter 4: SoC peripherals and Integration 44

4.1 UART module 44

4.1.1 UART Transmitter 44

4.1.2 UART Receiver 45

5

4.1.3 Baud generator 45

4.2 Acorn security module 46

4.3 Integration of SoC 49

4.3.1 Reset Domain Crossing 49

4.3.2 Clock Domain Crossing 52

4.3.4 2-flop synchronizer 53

4.3.5 Handshake synchronizer 53

4.3.6 Asynchronous fifo 54

4.3.6 Integrating Core with Peripherals 57

Chapter 5: SoC testing and Static verification 61

5.1 SoC testing 61

5.2 Static Vs Dynamic Functional Verification 63

5.2.1 Questa LINT 63

5.2.3 Questa CDC 63

Chapter 6: Universal Verification Methodology (UVM) 65

6.1 History of UVM 65

6.2 Introduction to UVM 67

6.3 UVM classes 68

6.4 UVM factory 68

6.5 UVM phases 68

6.6 UVM Environment 70

6.7 DUT Wrapper 70

6.8 UVM interfaces 71

6.9 UVM components 72

6.9.1 Test 72

6.9.2 Environment 73

6.9.3 Agent 74

6.9.4 Driver 75

6.9.5 Monitor 76

6.9.6 Sequencer 77

6.9.7 Scoreboard 78

6.9.8 Subscriber 79

6.10 UVM objects 80

6.10.1 Sequence 80

6

6.10.2 Sequence item 81

6.11 Reactive Agent 82

6.12 Core bugs caught by UVM 84

6.13 UVM Results 86

Conclusion and Future work 87

References 89

7

List of figures

Figure 1: SoC conceptual design .. 9

Figure 2: Design Vs Verification time .. 10

Figure 3: Incremental ISAs of x86 processor .. 12

Figure 4: RV32I opcodes ... 18

Figure 5: RV 32I instructions ... 19

Figure 6: Register file .. 20

Figure 7: Instruction memory... 21

Figure 8: Memory circuit .. 22

Figure 9: Memory wrapper... 23

Figure 10: ALU .. 24

Figure 11: Branch circuit .. 25

Figure 12: Immediate generator ... 26

Figure 13: Control unit .. 27

Figure 14: Control unit design for the Core .. 28

Figure 15: M-extension instructions... 30

Figure 16: Combinational Multiplier ... 30

Figure 17: Restoring division algorithm implementation 31

Figure 18: Restoring division flowchart .. 32

Figure 19: Division Wrapper .. 33

Figure 20: Booth algorithm implementation ... 34

Figure 21: Booth algorithm flowchart ... 35

Figure 22: Multiplication Wrapper .. 36

Figure 23: 5-stages pipeline processor ... 37

Figure 24: Hazard detection unit .. 38

Figure 25: Stage 3 forwarding unit .. 40

Figure 26: Stage 4 forwarding unit .. 41

Figure 27: Control hazard in pipeline .. 42

Figure 28: UART block diagram .. 45

Figure 29: Authenticated Encryption ciphers ... 46

Figure 30: Authenticated ciphers API ... 47

Figure 31: AEAD top module ... 48

Figure 32: Reset domain crossing ... 49

Figure 33: RDC metastability ... 49

Figure 34: RDC common solutions .. 50

Figure 35: Reset de-assertion metastability ... 51

Figure 36: Asynchronous Reset synchronizer ... 51

Figure 37: Clock domain crossing metastability ... 52

Figure 38: Two flop synchronizer .. 53

Figure 39: 2-flop synchronizer re-convergence issue ... 53

Figure 40: Handshake synchronizer .. 54

Figure 41: Asynchronous fifo .. 54

Figure 42: SoC with AXI bus and clock domains ... 57

Figure 43: SoC integration using MMIO... 59

Figure 44: UART CSR... 59

file:///C:/Users/abdel/Downloads/Thesis_Final_V9.docx%23_Toc77880277
file:///C:/Users/abdel/Downloads/Thesis_Final_V9.docx%23_Toc77880287
file:///C:/Users/abdel/Downloads/Thesis_Final_V9.docx%23_Toc77880290
file:///C:/Users/abdel/Downloads/Thesis_Final_V9.docx%23_Toc77880291
file:///C:/Users/abdel/Downloads/Thesis_Final_V9.docx%23_Toc77880297

8

Figure 45: Security module CSR .. 60

Figure 46: Encryption Assembly code ... 61

Figure 47: Decryption Assembly code.. 62

Figure 48: Questa CDC ... 64

Figure 49: Questa CDC violations .. 64

Figure 50: Questa CDC results ... 64

Figure 51: UVM phases ... 69

Figure 52: UVM environment... 70

Figure 53: UVM DUT Wrapper ... 71

Figure 54: Reactive Agent operation .. 83

Figure 55: UVM results ... 86

file:///C:/Users/abdel/Downloads/Thesis_Final_V9.docx%23_Toc77880310
file:///C:/Users/abdel/Downloads/Thesis_Final_V9.docx%23_Toc77880312
file:///C:/Users/abdel/Downloads/Thesis_Final_V9.docx%23_Toc77880313

9

Chapter 1: Introduction

1.1 Problem Definition

The number of IoT devices is increasing significantly nowadays (almost 22 billion in

2018), and they are used in a lot of fields. Most of the data is being sent wirelessly,

making it vulnerable to eavesdropping and hacking, some of these data are really

sensitive and confidential (military data), so these data need to be encrypted and

checked to provide integrity and security. In this project, we propose a solution which

is installing Hardware security modules on the IOT end nodes, where a dedicated

System on Chip – with a processor based on RISC-V ISA - has a crypto accelerator that

implements a light cryptography algorithm (ACORN algorithm) with a reasonable

security level, thus saving power and achieving security simultaneously. Where the end

node sends the data to the chip via UART, then after being Encrypted/Decrypted it’s

sent back to the end node where it’s then sent to the server via the gateway as shown in

figure 1. SoCs in general are required to having multiple clock domains, so as not to

limit the frequency of the whole SoC to the slowest module, in our design, we chose to

have three clock/Reset domains. This choice is a pro and a con at the same time, where

a lot of issues and challenges will arise due to CDC and RDC which will be explained

later, on the other hand we will have a much faster system not limited to a single

frequency.

Figure 1: SoC conceptual design

10

When comparing Hardware security methods like the method we are using to software

security, hardware security is much better. Attacks in hardware security needs physical

access, so it will be difficult to gain access to the hardware since the system will trigger

an alarm or delete the critical data if it detects a threat. It uses dedicated encryption

hardware, which makes it faster to execute as it lifts the burden off the system hardware

itself and makes it safer as it becomes difficult to crack. On the other hand, software

security use shared hardware as it runs on general-purpose processors making it slower

to execute. Hardware based security is supported by a dedicated software, so it doesn’t

depend on the operating system unlike software-based security that depends on the

operating system.

Moreover, software security is vulnerable to software bugs or code logical errors which

can be exploited by hackers. Encryption is used to secure confidential information by

carrying out effective algorithmic schemes based on complex cryptographic

mathematics. The objective of conducting data encryption is developing a

cryptographic system that achieves confidentiality, authentication, and data integrity.

The other problem targeted in our project developing an efficient universal verification

methodology (UVM) environment for our RISC-V based microprocessor. Digital

designers spend almost 50% of their time verifying their designs, so not having a UVM

environment for efficiently testing the core and covering all of its corner cases increases

the time to market and the design may have errors that would lead to a huge loss after

the ASIC tape out.

Figure 2: Design Vs Verification time

11

1.2 What is RISC-V?

RISC-V (pronounced “risk-five") is an open-source free ISA (Instruction Set

Architecture) based on RISC principles enabling a new era of processor innovation

through open standard collaboration. Born in academia and research, RISC-V ISA

delivers a new level of free, extensible software and hardware freedom on architecture,

paving the way for the next 50 years of computing design and innovation. An ISA is a

group of codes for a computer architecture in machine language which describes the

way in which the software talks to the underlying processor. The RISC-V ISA is

designed for a wide range of uses. It aims to be a standard ISA for all computing

devices, from simple IOT device to complex supercomputers.

1.3 History

It's all started at University of California Berkley in 2010 by a group of academics as

an alternative for ARM and x86 architecture. They made it free and open source and

there are many variants of RISC-V, for educational uses and for advanced computing.

This is the fifth generation; the first two generations influenced the SPARC processor.

RISC-V foundation was launched in late 2015 to control the RISC-V activities and the

ISA specification itself was published in 2011.

1.4 Why RISC-V?

• Open source and globally supported.

• Simple: RISC-V is far smaller than other commercial ISAs.

• Stable: Base and first standard extensions are already frozen. There is no need

to worry about major updates.

• Extensibility: Specific functions can be added on the base ISA based on

extensions.

• Cost: Due to extensibility and simplicity the die size shrinks which leads to

lower cost.

• Modular: RISC-V has a small standard base ISA (RV32I/E) with multiple

standard extensions (depending on the needs of the application). This

12

modularity enables very small and low energy implementations of RISC-V,

which can be critical for embedded applications.

• The conventional approach is incremental ISAs where new processors must

implement not only new ISA extensions but also all extensions of the past. The

purpose is to maintain backwards binary-compatibility so that binary versions

of decades-old programs can still run correctly on the latest processor. As an

analogy, suppose a restaurant serves only a fixed-price meal, which starts out as

a small dinner of just a hamburger and a milkshake. Over time, it adds fries,

and then an ice

cream sundae, followed by salad, pie, wine, vegetarian pasta, steak, beer, ad

infinitum until it becomes a gigantic banquet. It may make little sense in total,

but diners can find whatever they’ve ever eaten in a past meal at that restaurant.

The bad news is that diners must pay the rising cost of the expanding banquet

for each dinner. RISC-V offers a menu instead of a buffet; the chef need cook

only what the customer wants, and the customer pay only for what they order.

Figure 3: Incremental ISAs of x86 processor

13

1.5 RISC-V ISA Overview

The base integer ISAs are very similar to the RISC processors except with no branch

delay slots and with support for optional variable length instruction encodings.

• Base ISAs:

1. RV32I

2. RV64I

3. RV32E subset variant of the RV32I base (support small

microcontrollers).

4. RV128I (future work).

Each base ISA can be extended with one or more optional instruction set extensions to

support more general software development. The base integer ISA (“I” extension)

contains integer computations, integer loads, integer stores and control flow signals.

• Standard extensions:

1. “M”: Integer multiply and divide extension.

2. “A”: Atomic memory operations (AMO) (read, modify, and write

memory).

3. “F”: Single-precision floating-point extension.

4. “D”: Double-precision floating-point extension.

5. “C”: Compressed instruction extension provides narrower 16-bit forms

of common instructions.

6. “G”: (“IMAFD”) General-purpose ISA which contains all the above

extension.

Comparing the RISC-V base ISA with other ISAs, First, there are only six formats in

the base ISA and all instructions are 32 bits long, which simplifies instruction decoding.

ARM-32 and particularly x86-32 have numerous formats, which make decoding

expensive in low-end implementations and a performance challenge for medium and

14

high-end processor designs. Second, RISC-V instructions offer three register operands,

rather than having one field shared for source and destination, as with x86-32. When

an operation naturally has three distinct operands, but the ISA provides only a two-

operand instruction, the compiler or assembly language programmer must use an extra

move instruction to preserve the destination operand. Third, in RISC-V the specifiers

of the registers to be read and written are always in the same location in all instructions,

which means the register accesses can begin before decoding the instruction. Many

other ISAs reuse a field as a source in some instructions and as a destination in others

(e.g., ARM-32 and MIPS-32), which forces addition of extra hardware to be placed in

a potentially time-critical path to select the proper field. Fourth, the immediate fields in

these formats are always sign extended, and the sign bit is always in the most significant

bit of the instruction. This decision means sign extension of the immediate, which may

also be on a critical timing path, can proceed before decoding the instruction.

1.6 Core vs SoC

A core (CPU) is simply a computation engine. It fetches data from memory, and then

performs some kind of arithmetic (add, multiply) or logical (and, or, not) operation on

that data. The more expensive/complex the CPU, the more data it can process, the faster

your chip. A CPU (core) itself is not a standalone system. There must be many other

components integrated with the core to form a good and complex application. If we

took a personal computer as an example, there should be memory to hold the data, an

audio chip to decode and amplify your music, a graphics processor to draw pictures on

your monitor, and hundreds of smaller components (beside your core) that all have a

very important task. A SoC, or system-on-a-chip to give its full name, integrates almost

all these components into a single silicon chip. Along with a CPU (core), a SoC usually

contains a GPU (a graphics processor), memory, USB controller, power management

circuits, and wireless radios (WiFi, 3G, 4G LTE, and so on). Whereas a CPU cannot

function without dozens of other chips, it’s not possible to build complete computers

with just a single core. A SoC has some advantages like having much shorter wiring,

high level integration, much smaller size, less power and much cheaper.

15

1.7 Different platforms, SoCs and cores based on RISC-V ISA

• Platforms

• SiFive

• E-Cores

• S-Cores

• U-cores

• PULP

• PULPino – SOC

• PULPissimo -SOC

o Riscy - Cores

o Ariane - Cores

o Ibex - Cores

1.7.1 SiFive platform

SiFive’s founders are the same UC Berkeley professor and PhDs who invented and

have been developing the RISC-V Instruction Set Architecture (ISA) since 2010. In

2016, SiFive released the freedom everywhere for about 310 SoCs and the HiFive

development board, making SiFive the first company to produce a chip that implements

the RISC-V ISA. SiFive founders took the designing stage of your core to another level

where they made this stage completely customizable according to the customer’s

choice. On their site, you can choose the extensions you need, number of pipeline

stages, cache size, power modes and the number of cores you need.

As we mentioned before SiFive cores are:

1- E-cores: 32-bit embedded cores used for MCUs, AI, IoT and edge

computing.

2- S-cores: 64-bit embedded cores used for storage, AR/VR and machine

learning.

3- U-cores: 64-bit application processors used for Linux, datacenter, and

network baseband.

16

1.7.2 PULP platform

It stands for Parallel Ultra Low Power targeted for high energy efficiency. They have

implemented a set of efficient RISC-V based cores such as:

1- 32-bit 4 stage core CV32E40P (formerly RI5CY)

2- 64-bit 6 stage core CVA6 (formerly Ariane)

3- 32-bit 2 stage core Ibex (formerly Zero-Riscy)

 They also have implemented some SoCs such as:

1- Single core microcontrollers (PULPissimo,PULPino)

2- Multi-core IoT processors (OpenPULP)

3- Multi-cluster heterogeneous accelerators (Hero)

• PULPino

A minimal single-core RISC-V SoC, the first open-source release that has attracted a

lot of attention (the small pulp)

• PULPissimo

It’s an advanced version of PULPino SoC. It contains a uDMA that can copy data

directly between peripherals and memory, as well as optional accelerators that we call

Hardware Processing Engines (HWPEs).

Both PULPino and PULPissimo SOCs target high energy efficiency and ultra-low

power and used in IoT applications.

17

• RI5CY

A Single-issue core with 4 pipeline stages and it has an IPC close to 1.

It supports:

o Base integer instruction set (RV32I)

o Compressed instructions (RV32C)

o Multiplication instruction set extension (RV32M)

o It can be configured to have single-precision floating-point instruction set

extension (RV32F)

• Ibex

A single-issue core that has been designed to target ultra-low-power and ultra-low-

area constraints with 2 pipeline stages.

It supports:

o Base integer instruction set (RV32I)

o Compressed instructions (RV32C).

o It can be configured to support the multiplication instruction set extension

(RV32M) and the reduced number of registers extension (RV32E).

18

Chapter 2: Designing the Unpipelined 32 IM RISC-V core

2.1 RV32I (RISC-V Base Integer ISA)

Below listed are the six base instruction formats:

• R-type for register-register operations

• I-type for short immediate and loads

• S-type for stores

• B-type for conditional branches

• U-type for long immediate

• J-type for unconditional jumps

Figure 4 lists the opcodes of the RV32I instructions.

Figure 4: RV32I opcodes

19

Figure 5: RV 32I instructions

In RISC-V the specifiers of the registers to be read and written are always in the same

location in all instructions, which means the register accesses can begin before

decoding the instruction. Many other ISAs reuse a field as a source in some

instructions and as a destination in others which forces addition of extra hardware.

The sign bit is always in the most significant bit of the instruction. This decision

means sign extension of the immediate, which may also be on a critical timing path,

can proceed before decoding the instruction.

20

2.1.1 The register file

The register file is required for the processor to load its operands from and to store the

result in it with a much faster access than the data memory, being the result of an

arithmetic operation or a memory load operation or any operation that needs to store an

output. The register file consists of 32 registers (locations) thus much faster than the

RAM, each of a width of 32-bits, register of location zero is hardwired to zero to speed

up operations that need a zero operand, dedicating a register to zero is a surprisingly

large factor in simplifying RISC-V ISA.

Figure 6: Register file

21

2.1.2 Instruction memory

The instruction memory is the memory holding the instructions to be executed by the

processor. The instruction memory has a single read port, from which we read the

instruction. The instruction memory is of size 256 KB thus require 18-bit address lines.

The address of the next instruction to be executed is stored in the program counter

register. Each instruction is a fixed 32 bits in length and must be aligned on a four-byte

boundary in memory, so the program counter is incremented by 4 each time we load a

new instruction.

At the very least, the program counter must have a reset signal to initialize its value

when the processor turns on, for simplicity we will reset the program counter to 0.

Figure 7: Instruction memory

22

2.1.3 Data memory

The presence of data memory in addition to the instruction memory is due to

following Harvard architecture and eliminating any structural hazards that may arise

as will be explained later in the section 3.

The data memory (RAM) is used to store the temporary data used by the processor

during its operation, it’s a random-access memory with a size of 256 KB, and thus

needs 18 address lines (218 = 256 𝐾). The two main instructions for the memory are

the load and store instructions with all their derivatives. To perform the store

instructions, a MemWrite signal is outputted from the control unit to the data

memory, the MemWrite signal determines whether we are storing a byte, half word,

or a full word. In order to perform load instructions, the memory would always load a

full word and a memory circuit was designed to choose whether we are loading a

byte, half word or a full word as shown, where Id_ext and WHB (Word, Halfword,

Byte) are signals from the control unit.

Figure 8: Memory circuit

To use memories in our design, BRAM IPs were instantiated, to prevent the synthesis

tool from using up all the registers present in the FPGA’s slices. The BRAM however

needs 2 clock cycles for correct operation.

So, to interface with our memories, a wrapper was instantiated on top of the instruction

and data memory. As 256 KB is very large memory to be synthesized so we must use

BRAM inside targeted FPGA (virtex-7 vc707), and VIVADO IP to generate block

23

memory. VIVADO IP memory have different access technique than our memory as

VIVADO IP cannot be accessed to get word from 2 different addresses, so we must

reconfigure it.

One solution of that issue is to use dual port memory for reading from memory and

always assign the first address to get the first word and second address to first address

+ 1 to get the following word and use wrapper to concatenate the required word from

the two accessed words depend on the instruction used (word accessing / half word

accessing / byte accessing). Note that this issue will not appear in case we are accessing

byte.

Figure 9: Memory wrapper

2.1.4 ALU

The ALU is basically the muscles of the processor, where any Arithmetic or logic

operation of an instruction gets executed in the ALU. An ALUOP signal is outputted

from the control unit and given to an ALU controller along with bits 30 and 14 to 12

in the instruction (called ALU_control_in), the ALU controller then outputs an

ALU_select signal that determines which operation the ALU will execute on its

operands as shown in figure 10.

24

Figure 10: ALU

The ALU outputs the result along with 4 more flags, 3 of which are really important

in the branch instructions as will be illustrated, the 4 flags are the carry, zero,

overflow and sign flag as shown.

25

2.1.5 Branch circuit

The Branch circuit serves the B-type instructions that executes the conditional

branches. The conditional branches test a given condition and decided upon it whether

to branch to a given location in the instruction memory (by loading the program

counter) or not. The branch circuit was designed as shown in figure 11.

Figure 11: Branch circuit

2.1.6 Immediate generator

For instruction that have an immediate field, some immediate values have to be

modified in certain ways for proper execution by the processor. The block that performs

these modifications is the immediate generator. The generator takes the instruction as

an input and outputs the proper immediate for each type based on the opcode as shown

below in figure 12.

26

Figure 12: Immediate generator

27

2.1.7 The control unit

The control unit is one of the most important blocks in the processor because it basically

acts as the mind of the processor that tells the data path what to do in each instruction,

so it has to be designed with care for every single instruction.

After the full processor was drawn with all the required mux signals and all the control

signals, the control unit was then designed to determine which signals are going to be

high, low or don’t care during each input instruction, where the instruction’s opcode

(bits 6 to 0) and func3 (bits 14 to 12) are mux-ed inside the control unit and the control

signals are the outputted accordingly.

Figure 13: Control unit

The following are the control signals for the instructions in the “I” and “M” extensions

in the control unit design, then writing the RTL code for it.

28

Figure 14: Control unit design for the Core

29

30

2.2 RV32M (M-extension)

The second extension implemented in the RISC-V core is the M extension (Standard

Extension for Integer Multiplication and Division). The M extension consists of 8

instructions.

Figure 15: M-extension instructions

The first implementation to the M-extension block was two combinational blocks for

Multiplication and division, where the multiplication block consisted of a series of full

adders as shown in figure 16.

Figure 16: Combinational Multiplier

But after implementing this combinational implementation, the frequency was limited

to 2.4 Mhz as the critical path was this combinational multiplier.

31

In order to solve this problem, a pipelined implementation was used for both the

division and multiplication blocks, where the division used the restoring algorithm, and

the multiplication block used the booth algorithm for multiplication.

2.2.1 Division using Restoring Algorithm

The Restoring division algorithm depends on the shift and add method. The used

hardware is much simpler than the combinational divider, thus uses less area and power.

The hardware implemented is a 32-bit ALU, a 64-bit shift register, a simple control test

that decides on addition or subtraction in the ALU and decides on shifting left in the

shift register or not and decides whether we will write the result from the ALU or not.

Figure 17: Restoring division algorithm implementation

32

The Algorithm follows the following flowchart

Figure 18: Restoring division flowchart

33

When we reach the stop state, the quotient will be in lower 32-bits and the remainder

in the upper 32-bits of the shift register.

After designing the Divider block using restoring division algorithm, we concluded that

it only works with unsigned numbers, therefore a wrapper was instantiated on top of

the block in order to perform our signed and unsigned instructions as shown in figure

19.

Figure 19: Division Wrapper

34

Dealing with just unsigned numbers, the algorithm should see the positive version of

the number thus, taking the 2’s complement of the inputs if the number is negative and

the instruction is signed (“Div” or “Rem”). After that, to ensure that there is a zero in

the most significant bit, the Dividend and the divisor gets an appended zero in the most

significant bit. After the division algorithm is done, we want to restore the signs of the

quotient and the remainder. Then the Quotient would take the sign of the dividend XOR

the sign of the divisor. The temporary remainder, however would take the sign of the

dividend, so if the dividend was negative, 2’s complement would be performed on the

remainder, and if positive the remainder is as it is, then a MUX chooses between the

temporary remainder and the original dividend, given that the instruction is “Remu”

and the dividend is smaller than the divisor, the remainder is the original dividend Rs1,

as shown in the wrapper.

2.2.2 Multiplication using booth Algorithm

Booth algorithm for multiplication is very similar to the restoring division algorithm, it

also depends on the shift and add mechanism and consists of the same hardware as the

division algorithm which is a 32-bit ALU, a shift register and a small control test to

determine the ALU and shift register operation as shown in figure 20.

Figure 20: Booth algorithm implementation

35

The algorithm follows the following flowchart:

Figure 21: Booth algorithm flowchart

After designing the multiplier block using booth’s algorithm, we concluded that it only

works with signed numbers, therefore a wrapper was instantiated on top of the block in

order to perform our signed and unsigned instructions as shown in figure 22.

36

Figure 22: Multiplication Wrapper

Booth algorithm only deals with signed numbers, so to ensure that the most significant

bit will contain the sign, the multiplier and multiplicand will get a bit appended in the

most significant location which is zero in case the instruction is unsigned, or 1 in case

the instruction is signed.

After converting the combinational MUL/DIV block to a pipelined block using the

previous two algorithms, the frequency increased to 16 MHz and the Multiplier/Divider

were no longer the critical paths.

37

Chapter 3: Designing the Pipelined 32 IM RISC-V core

Now for speeding up our processor, pipelining is a very important step. Pipelining is a

process of arrangement of hardware elements of the CPU such that its overall

performance is increased. It basically breaks up our single instruction path into a

number of stages allowing simultaneous execution of more than one instruction takes

place in a pipelined processor. The following is a 5-stages pipeline, we chose our

processor to be five stages as well.

Figure 23: 5-stages pipeline processor

3.1 Hazards

1- Structural hazards: occurs due to resource contention, where in case of having one

memory for both instructions and data (von-Neumann architecture), an instruction

would want to write in the memory and another would want to read from the memory

at the same time, this was avoided using separate instruction and data memories.

2- Data hazards: Data hazards occur due to data dependency, where a value that is still

being calculated in a stage is required in another stage at the same time. Ignoring

potential data hazards can result in race conditions. There are 3 types of data hazards:

- Read After Write (RAW) - Write After Read (WAR) - Write After Write (WAW)

3- Control hazards: Control hazard occurs when the pipeline makes wrong decisions

on branch prediction and therefore brings instructions into the pipeline that must

subsequently be discarded. The term branch hazard also refers to a control hazard.

https://en.wikipedia.org/wiki/Race_condition

38

3.2 Hazard detection Unit

Hazard detection unit is a unit in the decode stage responsible for generating a stall

signal to stop the first two stages for one clock cycle, by disabling the PC register enable

and IF/ID register enable. But why do we need to generate a stall signal? Data hazards

can have 2 different shapes. The first one is data dependency between stages, where the

values needed are generated but is not stored yet (no need to generate stalls in this case,

problem can be solved with forwarding unit). Second one is data dependency between

stages, but the values needed are not generated yet (we need one more clock to generate

value to forward it in the next clock cycle). We need to generate stalls for any data

dependency between load instructions coming before any R-Type instruction. The

following section explains the reason for that.

In this case we there is a load instruction that will update the register x5 with value

stored in memory location = 20 + val(R4). For this timing diagram we will notice that

the add instruction needs the updated value of x5 at clk4 but the memory will load its

Figure 24: Hazard detection unit

39

value by the end of clk4 so it will be ready at clk5, so we can’t forward the value (value

isn’t generated yet to be forwarded).

So, solution for that case is to generate stall signal that disable enables of both PC and

IF/ID register the instruction in the fetch and decode stage will hold for one more clock.

Now the add instruction needs the value of R5 at clk5 and the data loaded from memory

will be ready so we can forward it.

3.3 Forwarding

Forwarding unit is a unit that generate signals to control MUXs’ selection lines to select

data output from other stages instead of regular data bus, there are two forwarding units:

• Forward unit at stage 3:

Used to forward data needed for stage 3 only. We need to check if there are data

dependency between stage3 and (stage 4/stage 5). If Rs1 and/or Rs2 addresses are

equal to Rd address of stage 4 and/or stage 5, this means that the instruction in stage

3 needs a value from stage 4 or stage 5. The forwarding unit will generate FA

(forward operand A) signal and FB (forward operand B) that control the input

operands of the ALU to select a proper signal forwarded from the next stages.

40

Figure 25: Stage 3 forwarding unit

• Forward unit at stage 4:

Used to forward data needed for stage 4 only that access the memory. We check if

there are data dependency between stage 4 and stage 5. If Rs1 and/or Rs2 addresses

of stage 4 are equal to Rd address of stage 5, this means that the instruction in stage

4 needs a value from stage 5. The forwarding unit will generate FADD signal and

FDATA signal that control the input operands of the memory to select a proper

signal forwarded from stage 5.

41

Figure 26: Stage 4 forwarding unit

3.4 Control hazards unit

So far, we have limited our concern to hazards involving arithmetic operations and data

transfers. However, there are also pipeline hazards involving conditional branches.

Figure 27 shows a sequence of instructions and indicates when the branch would occur

in this pipeline. An instruction must be fetched at every clock cycle to sustain the

pipeline, yet in our design the decision about whether to branch or not doesn’t occur

until the MEM pipeline stage (4th stage). This delay in determining the proper

instruction to fetch is called a control hazard or branch hazard, in contrast to the data

hazards we have just examined, control hazards are relatively simple to understand,

they occur less frequently than data hazards, and there is nothing as effective against

control hazards as forwarding is against data hazards.

42

Hence, we use simpler schemes. There are multiple schemes for resolving control

hazards, the scheme we chose to follow is that we will always assume that the Branch

is not taken, and if it's taken, we will flush the three instructions that have entered the

pipeline in the first three stages after branch to ensure the right instructions sequence.

Assume we have the following instructions:

Figure 27: Control hazard in pipeline

43

In the previous figure, we have a sequence of instructions starting with instruction

(BEQ x1, x2, label), which means that if x1 is equal to x2, the program counter should

jump to the instruction that is at the label. Assuming x1 and x2 are equal, so branch is

taken in that case and the instructions coming after the BEQ shouldn't be executed and

flushed, but unfortunately, branch is evaluated at the fourth stage so 3 instructions

would have been fetched and entered the pipeline in the first 3 stages, these instructions

must be FLUSHED from the processor (have no effect) as the branch is taken. A flush

signal is added in the pipeline control which have one basic operation which is to

remove the instructions at the Registers (IF/ID, ID/EX, and Ex/MEM), thus eliminating

any control hazards that might occur.

44

Chapter 4: SoC peripherals and Integration

4.1 UART module

The UART (Universal Asynchronous Receiver and transmitter) module is used to send

and receive the data required to be encrypted and decrypted by the IoT server or the IoT

device. The UART module consists of 3 main blocks: UART transmitter, UART

receiver and a baud generator for sampling. The transmitter is essentially a special shift

register that loads data in parallel and then shifts it out bit by bit at a specific rate. The

receiver, on the other hand, shifts in data bit by bit and then reassembles the data. The

serial line is 1 when it is idle.

The most commonly used sampling rate is 16 times the baud rate, which means that

each serial bit is sampled 16 times. The oversampling scheme basically performs the

function of a clock signal. Instead of using the rising edge to indicate when the input

signal is valid, it utilizes sampling ticks to estimate the middle point of each bit.

4.1.1 UART Transmitter

The UART transmitter was written as a finite state machine with 4 states as shown.

Idle: There is no data to be sent and the UART tx is high.

Start: Tx changed from high to low indicating the start bit

Data: the actual data transmission which is shifting a shift register loaded with the

data byte required to be sent

Stop: the data byte was sent and the tx returns to active high indicating idle state.

45

4.1.2 UART Receiver

The UART receiver has the same states and operates very similarly to the transmitter

except for the shift register’s input bit, where it receives the MSb as the shift in bit and

shifts right, where the transmitter sends the LSb and keep shifting right with zero as the

shift in bit.

4.1.3 Baud generator

The Baud generator is responsible for the oversampling of bits, where it generates a

sampling signal with frequency equals to 16 times the UART’s baud rate, to avoid

creating a new clock domain and violating the synchronous design principle, the

sampling signal should function as enable ticks rather than the clock signal to the UART

receiver and UART transmitter as shown in figure 28.

Figure 28: UART block diagram

46

4.2 Acorn security module

In order to Encrypt/Decrypt our data, we need an Encryption algorithm and the

hardware to implement that algorithm. The CEASAR competition which is short for:

Competition for Authenticated Encryption: Security, Applicability and Robustness, is

a competition for authenticated encryption ciphers which targets 3 main categories, the

first category is ciphers for lightweight applications (resource limited environments),

the second category is High performance applications, for applications that require high

throughput, and the last category is defense in depth, which is for applications which

require a very high level of security.

Authenticated encryption ciphers take a message (M), an associated data (AD), a public

message number (Npub), and an optional secret message number (Nsec) as an input and

generate resulting cipher text (C), Tag (Tag) and optional encrypted (Nsec). Integrity

of data and authenticity of sender are ensured by a keyed-hash computation which

occurs on all blocks of (Npub), (AD) and (M). The result of these computations is

forwarded to the recipient as a Tag. In authenticated decryption, the recipient receives

original (AD) and (Npub), along with (C) and (Tag), and uses Key to decrypt (C) to

(M).

Figure 29: Authenticated Encryption ciphers

The authenticated decryption recreates a Tag (Tag’) and releases the cipher text if and

only if Tag = Tag’, the module outputs a word “E0” indicating success, then

authentication and integrity of the transaction are assured, otherwise the decrypted

cipher text is not released and the module outputs a word “F0” indicating failure, thus

achieve Authentication. Our project falls under the first category which is the

lightweight applications as our project targets IoT security. Therefore, the algorithm we

47

chose to implement on our SoC is the ACORN algorithm, which is the winner of the

lightweight category as it achieves best balance between Area, security level and low

power.

Figure 30: Authenticated ciphers API

In order to be able to easily test the algorithms, the Hardware Application Programming

Interface (API) for authenticated ciphers has been developed to meet all the

requirements of all algorithms that have been submitted to the CAESAR competition.

The top level of the API is the Authenticated Encryption with Associated Data (AEAD)

core. The architecture of the AEAD core consists of three main blocks: pre-processor,

cipher core, and post-processor. The main difference between the different algorithms

is in the cipher core implementation, as it contains the hardware blocks that perform

either encryption or decryption and authentication algorithm steps.

Pre-processor, it is the first block of the AEAD core, which receives public and secret

data and start processing them.

Postprocessor, the postprocessor carries out the following functions: clearing any

portion of the output block that does not belong to the message, parallel-in serial-out

conversion of the output blocks and generates the status block.

Cipher Core, the cipher core is divided into two blocks: the core data path and the core

controller. The core data path contains the hardware, which is responsible for

encryption or decryption and processing the associative data to perform tag generation.

The core controller is a state machine that controls the data path.

48

Bypass First-In-First-Out (FIFO), which bypasses the tags, header, associated data

and any data blocks that are used in the authentication process and will not be encrypted.

Auxiliary First-In-First-Out (FIFO), it is the memory used by the post-processor to

temporarily store the decrypted message until the result of authentication is ready.

Figure 31: AEAD top module

49

4.3 Integration of SoC

4.3.1 Reset Domain Crossing

The term "reset domain crossing" (RDC) refers to a design method in which the source

and destination parts (flops, latches, and clock gates) operate on different independent

resets.

Figure 32: Reset domain crossing

Metastability occurs when an asynchronous reset from one reset domain causes a

transition too close to the clock edge of a flip-flop in another reset domain or without a

reset, causing a non-deterministic flip-flop value that propagates throughout the design

resulting in functional failures, in the next figure, the rst2 signal changes very clock to

the 6th clock edge, causing data on q2 to be metastable.

Figure 33: RDC metastability

50

The most common solutions for RDC issues include performing clock gating on the

second domain in case we are resetting the first domain or using an isolation gate to

isolate data changing on the flop output during resetting, another solution is adding

another flip flop to the receiving domain to act as a synchronizer as shown in figure 32.

Having used asynchronous fifo to eliminate metastability due to CDC as will be

explained later, this problem has also been avoided, as when exchanging the pointers

between the reading and writing domains, the pointers are gray encoded and a

synchronizer is added, thus eliminating the metastability that may occur.

Using asynchronous reset in our SoC however, will cause a similar problem to that in

the RDC even in the same reset domain which is the reset de-assertion.

The problem here is that the reset signal can be de-asserted very close to a clock edge

thus violating the recovery time (analogous to Tsu) of the reset, where data can change

on the flop input just before the clock edge leading to a metastability due to setup

Figure 34: RDC common solutions

51

violation, and violating the removal time (analogous to Thold) of the reset where if the

reset is de-asserted after the clock edge but very close to it, the clock edge may still be

in effect so it can cause metastability due to a hold violation.

Figure 35: Reset de-assertion metastability

The solution we used is a 2D-flop synchronizer for the asynchronous reset signal, so

that the reset assertion is done normally, but the reset de-assertion is synchronized to

the clock edge and won’t cause the flip-flops to go into a metastable state.

Figure 36: Asynchronous Reset synchronizer

52

4.3.2 Clock Domain Crossing

Having 3 clock domains in our SoC design, it was required to think of how we are going

to synchronize between these 3 domains. But why do we require synchronization?

In multiple clock domains, if we are transferring data from one domain to another

domain, if the 2 clocks are not an integer multiple of each other, data from domain one

will inevitably arrive at the setup or hold time of the second domain leading to a

metastability as shown in the following in figure 35.

Figure 37: Clock domain crossing metastability

A setup violation means that the data didn’t have enough time to be latched correctly

in the master latch of the flop before the clock edge came, where a hold violation means

that the data changed right after the clock edge, so it would change the data in the flop

during the 1-1 overlap of the clock.

When a setup or hold time violation occur, the data enters what is called a metastable

state, where we don’t know what the value that this data will stabilize into, hence this

is a failure. Even if the data stabilized into the correct value, it would need time for this

which will be added to the path delay of the next pipeline path, hence it may cause setup

violations and still this is a failure. Another problem that may occur due to clock domain

crossing is data loss, where if the transmitting domain is faster than the receiving

domain even if both are synchronized, some data may not be matched by the second

domain and leads to data loss. So now that we concluded that we must synchronize

between our clock domains, there are multiple ways to do that.

53

4.3.4 2-flop synchronizer

The simplest approach used for synchronization is the 2-flop synchronizer as shown

below. In some cases, in higher speed designs, a three-flop synchronizer may be used.

Figure 38: Two flop synchronizer

Simple as it is, it’s only useful in synchronizing only a single bit, and fails to

synchronize a multiple bit bus between two clock domains, this is due to the re-

convergence issue. The re-convergence issue is due to the one cycle uncertainty present

in the 2-flop synchronizer.

Figure 39: 2-flop synchronizer re-convergence issue

In figure 37, a data bus (D3 to D0) from domain one is being synchronized to domain

two with Clk2. The problem here is that we can’t determine if the correct data arrived

at (Q3 to Q0) after one clock cycle, or a metastability occurred and the correct data was

latched correctly after the second clock cycle.

4.3.5 Handshake synchronizer

Another approach was to be used for synchronization which is the handshake

synchronizer, where the transmitting domain outputs a request signal and the required

54

data on the data bus, the receiving domain outputs an acknowledgment signal, as shown

in figure 38.

Figure 40: Handshake synchronizer

The req and ack signals are one bit signals, so no re-convergence issue here, the problem

here is the large overhead required to send one word of data. The correct transmission

of one word of data takes about 9 clock cycles, so this solution would be efficient only

for small data rates. The most suitable approach to our design was the Asynchronous

fifo. Where we could send words of data between the two clock domains with a much

smaller overhead cycles and there would be no data loss and no metastability.

4.3.6 Asynchronous fifo

Figure 41: Asynchronous fifo

55

The Asynchronous fifo basically is a block of memory, with 2 different clocks, no

address bus, instead we have two pointers, a read pointer having the address of the next

location to be read, and a write pointer having the address of the next location to be

written into. We also have 2 important flags, the full flag and the empty flag which

show the status of our fifo.

The full flag is synchronized to the writing domain and is calculated by comparing the

write pointer in the writing domain with the read pointer from the reading domain, and

the empty flag is synchronized to the reading domain and is calculated by comparing

the reading pointer in the read domain to the write pointer from the write domain, so to

pass these pointers between the 2 domains, a synchronizer is required.

Two-flop synchronizers are used here to synchronize the read pointer to the writing

domain and synchronize the read pointer to the writing domain. But we just mentioned

that two-flop synchronizers fail to synchronize a multi-bit bus between 2 domains and

these pointers are multi-bit. The answer to this is that these pointers should be gray

encoded, so only one-bit changes from a count to the next count, so at the other domain

we either see the correct change in the synchronized pointer, or we see no change at all.

So now that we found our synchronizer, asynchronous fifos were instantiated between

the core and the UART and between the core and the security module. After adding the

Asynchronous fifos to each of the Security module and the UART module, the

connection was as shown.

56

So now that we have added our synchronizers, it was time we integrated these blocks

together on the SoC so that the core can interface with the UART and the security

module.

57

4.3.6 Integrating Core with Peripherals

After finishing the RISC-V IM core's design, the UART peripheral and the hardware

security crypto accelerator, it's time to integrate them together on the SoC. For the core

to interface with the UART and the security module, the first solution was a shared bus

(e.g., AXI) to connect them together with the core being the master and the slaves being

the memory, the UART and the security module.

Figure 42: SoC with AXI bus and clock domains

But due to the complexity of this solution, a simpler approach was used, which is the

MMIO (Memory Mapped Input Output). The idea of the MMIO is to interface with

peripherals on the SoC simply by using Load/store instructions. As mentioned before,

we only used 18 bits as address bus for the memory of size 256 KB, 2 more bits were

added to the address in the most significant part. These 2 bits were to be given to an

address decoder, where the address decoder would output an enable signal which is

called a chip select to select either the memory, the UART or the security module to

interface with, if a wrong address is entered an address error signal is set to 1.

58

An MMIO wrapper was designed to instantiate the 3 blocks that the core would

interface with as shown:

Then a data bus, an address bus and a control bus were connected to the three blocks,

where the data bus would carry the required input/output data, the address bus would

select a register to write to or read from and the control bus would select either reading

59

or writing and whether we are reading/writing a byte, a half word or a complete word,

as shown in figure 41.

Figure 43: SoC integration using MMIO

The UART had 3 locations for 3 registers, a data in register, a data out registers and a

control and status register (CSR) for controlling the UART peripheral, each register is

one byte. The CSR register is coded to be as follows:

Figure 44: UART CSR

Two Read-only bits were to determine the status of the FIFOs connected to the UART

transmitter and receiver, and two Write bits would carry the read and write signals from

and to the FIFOs and the core, where the Core is in the writing domain relative to the

Tx fifo and in the Reading domain relative to the Rx fifo. The remaining four bits were

hardcoded to zero as we will not need them.

The AEAD block as discussed before has 3 ports, the PDI, the SDI and the DO, each is

32-bit long so each had to take 4 locations from our address, starting from a base

60

address, and we would increment to select our desired register in case of byte selectable

instructions (e.g. store byte in PDI 2nd byte location).

 A control and status register (CSR) which is one byte. The CSR of the security module

was coded as follows:

Figure 45: Security module CSR

The Security module has three writable bits which are used to write in the PDI or SDI

fifos and read from the DO fifo, and 3 read-only bits to determine the status of each fifo

relative to the core, which is in the reading domain in case of the DO fifom and in the

writing domain in case of the SDI fifo and PDI fifo. The remaining 2 bits were hard

coded to zeros.

61

Chapter 5: SoC testing and Static verification

5.1 SoC testing

A simple testbench was written using Verilog to verify using waveforms the operation

of the SoC after integration. The following Assembly code was written and converted

to hex, then loaded into the core’s instruction memory.

Figure 46: Encryption Assembly code

The AEAD API manual shows how the headers for each of the PDI, and SDI should

be entered and the order of entry depending on the size of the words used. The

purpose of the simulation was to encrypt the string “Mentor Graphics” and then

decrypt it. When converting the string “Mentor Graphics” to hex to enter it as the

cipher text to the encryption module, it was “4d656e746f72204772617068696373”,

After encrypting it and the cipher outputted “E0” indicating successful encryption, the

resulting string was “#`Nÿ r¤a-_-/@&Ï?”, which has absolutely no meaning, and if

a hacker tries to decrypt it he won’t be able to without the Key. After that we sent this

encrypted data over the UART using the following assembly code.

62

When entering the encrypted string as the cipher text and testing the decryption, the

following assembly code was written:

The cipher outputted “E0” indicating successful decryption and when converting the

resulting hex to string, the decoded string was “Mentor graphics”. As we can see, both

the encryption and decryption were done using the same key, this is because the

Authenticated encryption ciphers are Symmetric key ciphers, or sometimes called

shared key ciphers, which means that both encryption and decryption are done using

the same key, so the key itself is at risk of being stolen. Another type of encryption

uses asymmetric key or public key encryption, where the encryption and decryption

are performed using different keys, ensuring more security, but using this technique is

slower than the symmetric encryption. However, a hybrid of symmetric and

asymmetric key ciphers are being developed where only the key is encrypted using

asymmetric encryption and the data itself is encrypted using symmetric encryption.

Figure 47: Decryption Assembly code

63

5.2 Static Vs Dynamic Functional Verification

Throughout our design, static verification checks were being performed. Static

verification is extremely useful to discover errors that may result in undefined or wrong

behavior that might occur in circuit simulation, or any bad RTL coding that might result

in a synthesis error in the early stages of the design thus saving time. The main

difference between static verification tools (like LINT tool, CDC tool and formal

verification tools) and dynamic verification tools is that static verification doesn’t need

actual data propagation or actual stimulus with a reference model to discover errors in

the outputs, instead, static analysis uses lookup tables, structural analysis, state traversal

and mathematical models to predict the output and the potential problems without the

need of actual data.

5.2.1 Questa LINT

LINTING is one of the basic static checks done for modern designs, it points out errors

as in width issues, synthesis issues, RTL issues, Clock issues (sequential block with

multi clocks), reset issues (signal used as both synchronous and asynchronous resets)

and Naming convention checks. After running Questa LINT on our design, the results

were organized into a table with the ones with the highest priority (errors) in the top,

followed by the warnings. Some of the warnings were waived.

5.2.3 Questa CDC

Having multiple clock domains in our design, Traditional methods like simulation and

static timing analysis alone are not sufficient to verify that the data is transferred

consistently and reliably across clock domains. Hence, new verification methodologies

are required. Questa CDC was used to detect the metastability in the design and whether

the added synchronizers solved them or not. Questa CDC identifies errors using

structural analysis to recognize clock-domains, synchronizers, and low power

structures via the Unified Power Format (UPF). It generates assertions for protocol

verification along with metastability models for reconvergence verification as shown

in the figure below.

64

Figure 48: Questa CDC

After running Questa CDC, the output reports showed the number of clock groups

found, the number of CDC violations and their types (single bit or multi bit), design

information and port domain information. When examining the violations, the tool

could suggest synchronizers to solve each type of violation.

After adding the synchronizers and rerunning Questa CDC, all the violations due to

CDC and RDC were solved and the SoC was ready for the dynamic verification.

Figure 49: Questa CDC violations

Figure 50: Questa CDC results

65

Chapter 6: Universal Verification Methodology (UVM)

6.1 History of UVM

Design Verification is simply the process of checking that a given design parameter

correctly implements the target, specifications, and the required functionality.

Traditionally, 70% of a chip development cycle is dedicated to design verification.

Based on that, the verification to design team ratio ranges from 2:1 to 3:1; that major

overhead in the whole process led to a new trend in the verification arena: striving

towards standardized, and reusable test benches.

That is when newer methodologies have been introduced like the Open Verification

Methodology (OVM) and the Verification Methodology Manual (VMM), both have

been fine for a while, however the industry needs a non-proprietary approach; thus,

finally in 2011, major technology giants joined together through Accellera and created

the Universal Verification Methodology (UVM). UVM has opened new horizons in the

verification world, and its highly configurable features have made the generic proposal

really possible; as the old saying goes: “You can never go wrong with an object-

oriented-based line of code”. Normally a System on Chip (SOC) can be verified

effectively using a simulation testbench that provides data to the SoC inputs and checks

resulting data at the SoC outputs. The problem is that running all the possible testing

scenarios is computationally impossible. On the other hand, a modern testbench-based

verification environment automatically generates randomized stimulus for the SoC

inputs under control of user-specified constraints and checks the results of each test

automatically. UVM is the best verification approach that has been created to develop

2 constrained-random testbenches in a uniform fashion and to permit limited reuse of

testbench components. The most common term in verification is known as functionality

testing or functional verification which is the process of demonstrating functional

correctness of a processor design with respect to its specifications, this process is

preceded by creating a verification plan that defines: which properties and

functionalities need to be verified, different methods and approaches that will be used

in processor testing, the expected behavior of an appropriate design, defining functional

coverage models and functional specifications of the verification, and finally the testing

strategy; such major decisions must be taken in the verification planning phase . Due to

complex aspects of an IC design, these processes tend to be very challenging; during

66

the past decade alone, average time spent by verification engineers to verily the

complete functionality of their designs wasted more than 60 percent of the total design

time. Even developers of smaller chips and FPGAs designs are facing difficulties with

former verification approaches. The wanted goal of verification is becoming more

difficult to achieve using conventional verification techniques, and hence solving this

issue requires a detailed review of common testing methodology. Directed testing was

more convenient for testing single functionalities, however, it is hard to hit more

complex scenarios using only directed testing. On the other hand, constrained-random

verification (CRV) can be very efficient in tackling processor verification challenges,

such as: complex instruction sets, multiple pipeline-stages, in6 order or out of order

execution strategies, instruction parallelism, and multi precision operations. The most

important module of a CRV environment is the test-case generator, which plays a very

significant role in most of the recent approaches towards developing automated

processor verification environments. A test-case generator generates a large set of valid

test cases in a pseudo-random way, controlled and guided by constrained randomness.

The development of such test generators has started to get the attention of functional

verification engineers, and researchers since the early 2000s. However, the

development of these generators has been categorized as a software problem due to

poor and weak features of Hardware Description Languages (HDLs) available back

then in terms of verification and software, like Verilog and VHDL. However, recent

efforts have been spent towards the utilization of SystemVerilog features as a Hardware

Verification Language (HVL) to improve stimulus generation quality; and then UVM

gradually dominated the verification world, as it covers these needs. UVM is a powerful

verification methodology that was designed to be able to verify a variety of different

design sizes and design types that could be in Verilog, SystemVerilog, VHDL, and

SystemC code. It is an open source SystemVerilog library allowing creation of flexible,

reusable verification components and assembling powerful test environments utilizing

constrained random stimulus generation and functional coverage models. It is based

upon the three C’s of random verification:

Checkers: If the stimulus is automated, in addition you must write self-checking test

benches in System-Verilog.

67

Coverage: The question “Are we done yet?” have to be answered, as in addition is

known as “Functional Coverage”, it is about recording the progress during a verification

run and identifying how thoroughly the design have been exercised.

Constraints: What if holes have been covered, or if the design have not been exercised

thoroughly enough. That is where constraints come into play, the constraints have to be

increased on those random vectors in order to increase test coverage. A UVM test bench

is composed of verification components that are encapsulated, reusable, ready-to-use,

and configurable elements, checking an interface protocol, a design sub-module, or a

full system. The architecture of each component is logical. It includes a complete set of

elements enabling the stimulation, check and collection of coverage information related

to the specific protocol or design. This test bench instantiates the Design under Test

module and the UVM Test class, then configures all connections between them.

Module-based components are instantiated under the UVM test bench as well. The

UVM Test is dynamically instantiated at run-time, allowing the UVM test bench to be

compiled once and run with many different tests.

6.2 Introduction to UVM

The Universal Verification Methodology (UVM) is a set of guidelines for creating

and reusing verification environments. It's a set of class libraries developed using

System Verilog's syntax and semantics, and it's now an IEEE standard. UVM's major

goal is to help creating modular, reusable, and scalable testbench frameworks that

may be used to validate numerous designs usually named DUTs (Design Under Test).

The UVM class library includes generic utilities such as configuration databases,

TLM, and component hierarchy. It adds a layer of abstraction by assigning roles to

each component. A driver class object, for example, will be responsible for driving

signals to the design under test (DUT), whereas a monitor will merely monitor the

DUT signals but not drive them. We will talk about UVM main components and

objects in details in section 10.9.

68

6.3 UVM classes

The basic building blocks of any verification environment are components (drivers,

sequencers, monitors … etc.) and objects (sequences and transactions). Transactions

(A class that contain actual data) are used to communicate between objects and

components in the environment. Most of the classes in UVM are derived (by

inheritance) from a set of core classes and adding onto it more functions than the base

functions implemented in these base classes to form your own verification

environment.

6.4 UVM factory

UVM uses what is called UVM factory to build its components and objects. Each

component or object created gets registered in the factory using UVM factory macros

(`uvm_component_utils and `uvm_object_utils), then the object or component is

created using the type_id::Create() function, this is called deferred construction as the

actual instantiation of the object or component class is done later when calling the new()

function of the class. The main purpose of the UVM factory is making the Verification

environment as flexible as possible, where if we want to modify the environment with

a new version of any class, we don’t have to modify classes or instances from the old

version, we can simply override the old instances with our new class of the new version

we want. Overriding In factory is done using methods such as

6.5 UVM phases

UVM operation is divided into phases to provide a synchronization mechanism in the

lifetime of the simulation. They start from “run_test” and are divided into:

1. Build time phases

2. Run time phases

3. Clean-Up phases

set_inst_override_by_type() set_inst_override_by_name()

set_type_override_by_type() set_type_override_by_name()

https://verificationacademy.com/verification-methodology-reference/uvm/docs_1.1a/html/files/base/uvm_factory-svh.html#uvm_factory.set_inst_override_by_type
https://verificationacademy.com/verification-methodology-reference/uvm/docs_1.1a/html/files/base/uvm_factory-svh.html#uvm_factory.set_inst_override_by_name

69

Figure 51: UVM phases

Below is the function of some of the important phases:

A- Build time phases

1- Build phase: A function so it doesn’t consume time, used to build testbench

components and create their instances, executed top down, which means from

the top of the class hierarchy towards the bottom.

2- Connect phase: A function so it doesn’t consume time, used to connect between

different testbench components via TLM ports, executes bottom up.

B- Run time phase: Actual simulation that consumes time therefore a task, happens in

this UVM phase and runs parallel to other UVM run-time phases.

C- Clean-Up phases: Used to extract outputs from scoreboards and perform checks on

this and display the results and reports and perform final checks before ending the

simulation.

70

6.6 UVM Environment

Figure 52: UVM environment

6.7 DUT Wrapper

The DUT in the UVM environment shown in figure 52 is actually a wrapper

encapsulating the device under verification (which is the RISC-V core implemented

in section 2) and the RAM (Data memory) shown in figure 53. Even if the RAM is

not to be verified but it is an essential component to make the processor function

correctly as the core contains load and store instructions, so the memory is required to

be inserted alongside the core. Inside the wrapper signals to be read and written from

and to memory are connected to the core. The wrapper allows having a clear interface

in which only the signals to be driven by UVM framework are available.

71

Figure 53: UVM DUT Wrapper

 6.8 UVM interfaces

As the DUT is considered static in the UVM, the communication between testbench

and the DUT cannot be directly done as the users do in classic testbenches. In UVM,

Virtual interface feature is used, it represents a collection of signals used to drive and

monitor the DUT from the testbench. Using this approach, the UVM can access the

DUT signals through the virtual interface and vice versa. Each UVM component that

needs to monitor or drive interface signals must create a virtual interface instance of

the interface and obtain the interface's reference from the interface database of UVM

configurations. There are two types of interfaces:

• Input interface

The input interface, described in “in_intf” (connected with Driver Agent

components) and contains a set of signals to be driven and another set of

signals to be monitored by input monitor. The following code snippet is the

signals used in the input interface.

72

• Output interface

The output interface “out_intf” (connected with DUT_Agent components) is

used to collect internal signals of the DUT. It represents the collection of the

actual results provided by the DUT after the operations is completed. Here

signals are going only from the DUT to the UVM. The following code snippet

is the signals used in the output interface.

All these signals are sampled by the output monitor and are sent to the

scoreboard to check the results with the C++ model. Write_Data, rd and

reg_file_en are used to check the correctness of the R-Type, I-Type and U-

Type instructions as they only write their results as data in the Register File.

RAM_DataIn, RAM_Address and MemWrite are used to check the

correctness of the S-Type instructions as they only write their results into the

Data Memory. PC_Out and FLUSH are used to check the correctness of J-

Type and B-Type instructions. Stall, MULDIV_ready and MULDIV_enable

are used to prevent the output monitor from sampling the output of the DUT

when the core is stalled or in multiplication or division process.

6.9 UVM components

6.9.1 Test

The highest level UVM component in the environment is the UVM test. It is

responsible for creating the top-level environment. It provides stimulus to the DUT by

73

invoking UVM sequences through the environment to the DUT. The following is a

code snippet from the test class.

6.9.2 Environment

A UVM environment contains multiple, reusable verification components and defines

their default configuration as required by the application. For example, a UVM

environment may have multiple agents for different interfaces, a common scoreboard,

and a functional coverage collector. The following is a code snippet from the

environment class.

74

6.9.3 Agent

An agent encapsulates the sequencer, driver and monitor into a single entity by

instantiating and linking the components together via TLM interfaces. There are

different kinds of agents:

o Active agent:

It contains the driver, sequencer and the monitor. It enables the driver

to drive the data to the DUT

o Passive agent (DUT_Agent):

It contains only the monitor which sense data from the DUT, no data to

be driven to the DUT.

o Reactive agent (Driver Agent):

They are same as active agents, but the stimulus driven to the DUT by

the driver is controlled based on past stimulus or current response from

the DUT

75

The following is a code snippet from the DUT_Agent class.

6.9.4 Driver

The driver is responsible for receiving sequence items (transactions) from the

sequencer and driving it to the DUT. Thus transaction-level stimulus is converted to

pin-level stimulus. To accept transactions from the sequencer, it is connected to it

through a TLM connection. The following is a code snippet from the Driver class.

76

6.9.5 Monitor

It captures signals from the DUT and converts them from pin level to transaction

level, which may subsequently be transmitted to other components in the

environment. Monitors could be input monitors which has a crucial importance as the

scoreboard need to know if the transactions sent to the DUT has been received

correctly. Monitors could also be output monitors which is used to collect signals

which represent the actual results of the instructions sent by the driver. The following

is a code snippet from input monitor class.

77

.

6.9.6 Sequencer

A sequencer controls the flow of transactions generated by one or multiple UVM

sequences and send it to the driver to forward it to the DUT. It is recommended to

extend uvm_sequencer base class as it contains all the functionality required to allow

the sequence to communicate with a driver. The following is a code snippet from

sequencer class.

78

6.9.7 Scoreboard

The Scoreboard is the most complex component in the UVM framework. It is

inherited from the uvm_scoreboard base class. It has the important role of verifying

that everything has worked by comparing the output signals from the DUT and the

output from the C++ reference model. The following is a code snippet from

scoreboard class.

79

6.9.8 Subscriber

This class implements an analysis export that receives transactions from another

analysis export. This component is "subscribed" to any transactions emitted by the

linked analysis port when this connection is made. This class is particularly useful

when designing a coverage collector. The following is a code snippet from subscriber

class.

80

6.10 UVM objects

6.10.1 Sequence

A UVM sequence is a set of System-Verilog code that is executed to make "things

happen". In most cases, a sequence generates a transaction, randomizes it, and sends it

to a sequencer, which then delivers it to a driver. The created transaction will typically

produce some activity on the interface pins in the driver which is connected to the

DUT. The following is a code snippet from sequence class.

81

6.10.2 Sequence item

The UVM sequence item base class in the UVM System Verilog library is used to

define data items. The transactions to be gathered or driven in the DUT are known as

data items. There are two different sequence items, the first one is related to the input

transactions which is made up of the data fields that are needed to create the stimulus

and are specified as rand in that instance, with constraint ranges defined. The second

one is related to the output transactions and contains signals that are used to check the

results of the DUT. The following is a code snippet from sequence item class.

82

6.11 Reactive Agent

As explained in the section 3 of the pipelined core, a stall could be introduced due to

dependencies between instructions. This stall should prevent the core from fetching a

new instruction and thus we need the randomization of the sequence items in the

sequence to be stalled as well to make sure that no new instructions are driven to the

DUT by the driver during the stall period. A similar case to the stall is when a

multiplication or division instructions enter the core where the randomization process

should also be stopped as the whole core is frozen for multiple clock cycles as

explained in section 2.2 of the M-extension (for the rest of this section we will take

the stall signal as an example for simplicity).

83

As the randomization process of the sequence items derived to the DUT is controlled

by a signal monitored from the DUT itself, a Reactive Agent should be used in this

case instead of an Active Agent.

The reactive agent-based verification approach can be used to verify a design that

works as shown in figure. Device-1 and Device-2 are communicating with each other,

where Device-2 is generating a request (which is the stall signal in our case) whereas

Device-1 is responding to the request (By sending a new random sequence item no

stalls occurred or by freezing the randomization process if stalls occurred). Device-2

is the Design under Test (DUT) and Device-1 is replaced with the Reactive Agent.

Figure 54: Reactive Agent operation

There are several approaches for implementing a Reactive agent. In our UVM

environment, we have used the Monitor-sequencer approach. The monitor serves as

the sampler in this method. The monitor delivers the request to the sequencer after

sampling it. UVM offers a number of ways for the monitor to transmit the request to

the sequencer. However, using the analysis port connection between the monitor and

the sequencer is preferred. The user could obtain access to sequencer properties inside

the sequence using the m_sequencer handle, which implies the user can monitor

sampled requests inside the sequence using this handle. After sampling the stall from

the DUT, the sequence could stop the randomization process according to the value of

the sampled stall signal.

84

6.12 Core bugs caught by UVM

Due to large number of randomizations of the instructions derived to the DUT, we

caught some extreme cases that might occur that may make the core to fail. The

problems caught are:

1- First problem: Branch / Jump instructions with MULDIV instructions

If the MULDIV instruction is at the execute stage and the branch at memory stage,

there are two events that will happen, MULDIV unit wants to disable all the five

pipeline registers as MULDIV takes 34 clock cycles and the second event is FLUSH

if branch is taken. We noticed that the scoreboard would skip an iteration due to

MULDIV enable = 1, however the priority of the FLUSH is greater than the

MULDIV enable. The three following instructions after the branch must be

FLUSHED, so MULDIV enable mustn't be enabled, so scoreboard mustn't skip any

iteration. So, we modified the DUT so as when a FLUSH exists, the MULDIV enable

will be zero so, scoreboard won't skip anything, and the registers will not be disabled.

2- Second problem: SRA and SRL instructions wasn't implemented efficiently (when

comparing with a RISC-V simulator)

If we have SRA x2, x1, x3 and the value inside x1 = 2 and the value inside x3 = 32,

so the output of this instruction that will be written back in x2 is 2, why? As we are

shifting by the value of the least five bits in x3 (the randomization helped us to catch

this problem)

3- Third problem: BLT and SLT instructions

Suppose we have this instruction BLT x1, x2, pcrel_13 and the value inside x1 =

1895109858 and the value inside x2 = -2142972622, branch less than instruction will

subtract the value of x1 from x2 so we will get

11110000101100000011111110110000. We will notice that the MSB = 1, which

means that the number is negative, however when doing this calculation, we will see

that the answer will be positive as we are subtracting positive number from negative

number, so the branch will be taken, however it mustn't be taken here, so to solve this

85

problem we added an overflow flag and XORed it with the sign flag to decide if we

will branch or no.

4- Fourth problem: Branch / Jump instructions with stall

Suppose we have the following instructions:

beq x0, x0, L1

lw x2, 0(x0)

addi x3, x0, 12

addi x4, x0, 13

addi x5, x0, 15

L1: addi x6, x0, 16

When branch is at memory stage, load at execute stage and add at decode stage, there

will be two events will happen, stall signal will be equal to “1” and FLUSH signal

will be “1” if the branch is taken. As stall = 1, the sequence will be blocked and won't

send a transaction in the next cycle due to the reactive agent. Stall signal disable the

first two registers (PC and IF/ID), however the priority of the FLUSH is greater than

the stall, so the first two registers won't be disabled and in the next clock cycle we will

see that branch will be at write back stage, load will be at memory stage, (addi x3, x0,

12) will be at execute, (addi x4, x0, 13) will be at decode and also (addi x4, x0, 13)

will be at fetch as the sequence is blocked at this cycle as stall signal was equal 1, so

(addi x5, x0, 15) will be blocked and won't be sent to the fetch stage, so (addi x4, x0,

13) is now exists twice. Due to FLUSH = 1, we must see three zeros after this signal,

but what happened here is that we saw zero (load), then gap (addi x3, x0, 12), then

zero (addi x4, x0, 13), then (addi x4, x0, 13), but how we saw (addi x4, x0, 13) and

this instruction is one of the three instructions after the branch? We noticed this due to

the blocked sequence. We solved this problem by modifying hazard detection unit by

making stall = 0 when there is a FLUSH.

86

6.13 UVM Results

The output of the UVM environment in the verification phase was very acceptable.

After modifying the core according to the bugs in section 10.12, we ran 10,000

randomized instructions with no errors at all. As shown in figure 55, a snippet from the

report shows these results obtained when comparing the output of the C++ reference

model and the output of the DUT.

Figure 55: UVM results

87

Conclusion and Future work

• Conclusion

IoT security is a very important field that we should be aware of, hardware security has

proven to be more robust than software security, being faster and immune to software

bugs and having a dedicated hardware to execute, thus provide more security to the IoT

data. The huge increase in the complexity of SoCs nowadays has led EDA companies

to develop powerful tools to deal with the issues that may arise while designing and

discover these issues in the early phases to save time and money. In this work, a SoC

was designed for IoT hardware security applications, and a generic UVM environment

was designed to test our RISC-V based Core and will be able to test other RISC-V cores

as well.

Future work

1-Formal verification

Formal verification tools are a collection of technologies that employ static analysis to

ensure the correctness of hardware or software behavior in terms of a formal

specification or a written property. Formal verification uses state traversal to find the

output without actual input stimulus as shown.

Formal verification has 2 types:

1- Equivalency checking: This technology uses mathematical modeling techniques to

prove that two representations of design exhibit the same behavior.

2- Assertion-based Verification: Assertions are written in languages as System

Verilog or PSL to ensure the required properties are satisfied.

88

2-UVM Coverage

The Coverage collector or the subscriber is responsible for performing the coverage

either on our corner cases or our random stimulus. Code and functionality coverage can

be furthermore considered to make sure that no corner cases or verification holes are

left unchecked. Questa Auto check will also be run to increase the coverage.

3-SoC UVM environment

The UVM environment designed was for testing the RISC-V Core, the UVM

environment can be furthermore improved to be able to test the whole SoC.

89

References

[1] The Morgan Kaufmann Series in Computer Architecture and Design RISC-V

Edition.

[2] Doulos.com. (2019). UVM Verification Primer.

[3] FPGA Prototyping by Verilog Examples: Xilinx Spartan-3 Version 1st Edition.

[4] CAESAR hardware Application Programming Interface (API) for authenticated

ciphers. Available at https://eprint.iacr.org/2016/626.pdf

[5] The RISC-V Instruction Set Manual Volume I: Unprivileged ISA Document

Version 20191213

[6] The RISC-V Reader: An Open Architecture Atlas First Edition, 1.0.0

[7] System Verilog Reference Guide. Available at: http://svref.renerta.com/.

[8] MASTERING REACTIVE SLAVES IN UVM. available at:

https://www.verilab.com/files/mastering_reactive_slaves.pdf

[9] Verificationacademy.com. (2019). UVM Factory. [online] Available at:

https://verificationacademy.com/verification

methodologyreference/uvm/docs_1.1a/html/files/base/uvm_factory-svh.html.

[10] Handbook of Digital CMOS Technology, Circuits, and Systems by Dr. Karim

abbas

[11] Introduction to UVM at John Aynsley YouTube channel:

https://youtu.be/imH4CFmVGWE?list=PLLn6Zp_o9-jSI_HXqN9bkvE70YY4dDfub.

[12] https://competitions.cr.yp.to/caesar.html

[13] https://www.eetimes.com/fifo-handshake-synchronizers-a-challenge-for-cdc-

analysis/

[14] https://www.eetimes.com/understanding-clock-domain-crossing-issues/

[15] https://www.embedded.com/asynchronous-reset-synchronization-and-

distribution-challenges-and-solutions/

[16] https://vlsiuniverse.blogspot.com/2017/04/recovery-and-removal-checks.html

90

[17] Low Area and Low Power Implementation for Competition for Authenticated

Encryption, Security, Applicability, and Robustness Authenticated Ciphers.

[18] Using UVM Virtual Sequencers & Virtual Sequences

CummingsDVCon2016_Vsequencers.pdf

[19] https://www.chipverify.com/uvm/

[20] https://verificationguide.com/uvm

[21] SYSTEMVERILOG FOR VERIFICATION A Guide to Learning the Testbench

Language Features

