
Analog IC Layout Automation

by

Youssif Rabie

Mohamed Ewais

Nadeen Ibrahim

Thesis submitted to the
Department of Nanotechnology and Nanoelectronics Engineering

In partial fulfillment of the requirements
For the B.Sc. degree in

NANENG 599

Zewail City for Science and Technology
University of Science and Technology

Acknowledgements

We would like to express our sincere gratitude to our supervisor Dr. Hassan Mostafa for
his continuous support, assistance, and motivation throughout the project. This project
was partly supported by Si-Vision under the supervision of Eng. Soha Hamed who we
sincerely thank for her support, encouragement, immense knowledge and motivation.

ii

Table of Contents

List of Tables v

List of Figures vi

1 Introduction 1

1.1 General Introduction and Overview of the Topic 1

1.2 Problem Definition . 2

1.2.1 challenges and limitations of the traditional manual layout 2

1.2.2 Challenges related to analog design its self 3

1.3 Objectives . 5

1.3.1 Pattern Recognition . 6

1.3.2 Block and Global Routing . 6

1.4 Functional Requirements/product specification 7

1.5 Report Organization . 7

2 Standards to be used 8

3 Market and Literature Review 9

3.1 Placement . 9

3.1.1 The Absolute Representation . 10

3.1.2 The Topological Representation . 10

3.1.3 Slicing Representation . 10

3.1.4 Non- Slicing Representation . 10

3.1.5 Routing . 11

3.1.6 Problem Definition of Analog Routing 12

3.1.7 Routing Algorithms . 13

iii

4 Project Design 14

4.1 Project purpose and constraints . 14

4.1.1 Project purpose . 14

4.1.2 Constraints . 15

4.2 Project Technical Specifications . 16

4.2.1 Software Program Requirements Specifications 16

4.2.2 Layout Quality . 18

4.2.3 Functionality . 18

4.2.4 Consistency . 19

4.2.5 Layout Alternatives and Justification 20

4.2.6 Description of the Selected Design 22

4.3 Block Diagram and Functions of the Subsystems 23

5 Project Design 27

5.1 Description of Each Subsystem . 27

5.1.1 Graphical User Interface . 27

5.1.2 SKILL modifications . 31

5.1.3 Input file . 41

5.1.4 Project Testing and Evaluation . 43

6 Cost Analysis 52

7 Conclusion and Future Work 54

7.1 Conclusion . 54

References 57

References 57

iv

List of Tables

4.1 Technical specifications and how they were achieved 17

5.1 Outputs of each list of the algorithm M7 41

5.2 first test case . 43

5.3 Second test case . 44

v

List of Figures

1.1 Simplified illustration of the integrated circuit design flow. 2

1.2 Diagram of the whole layout automation cycle. 6

3.1 a) proximity, b) symmetry, c) Matching. 10

3.2 Slicing floor plan, slicing tree. 11

4.1 Flow chart of system actions and decisions. 24

5.1 Schematic of Loads and P current mirror 31

5.2 Single device representation . 32

5.3 Schematic Modification for P Load . 35

5.4 Schematic Modification Logic . 35

5.5 Schematic Modification Output . 36

5.6 P Load layout . 37

5.7 Dummy logic in Skill . 38

5.8 Schematic of P Current Mirror . 39

5.9 Schematic of N Current Mirror . 40

5.10 Flow chart of position generation . 41

5.11 Name degeneration flow chart . 45

5.12 Placement of PCurrentmirror . 46

5.13 Schematic modification file of P mirror . 46

5.14 Schematic modification in schematic file 46

5.15 Dummy logic in skill . 47

5.16 Layout . 48

5.17 DRC . 48

5.18 LVS . 49

5.19 Layout . 50

vi

5.20 DRC . 50

5.21 LVS . 51

vii

Chapter 1

Introduction

1.1 General Introduction and Overview of the Topic

In 1940s, Bell Labs researchers John Bardeen, Walter Brattain, and William Shockley
introduced the first point-contact transistor, an invention that significantly advanced the
field of electronics. This technological breakthrough played a pivotal role in the subsequent
emergence of the first integrated circuits, which first emerged in the late 1950s. Analog
circuits constituted a crucial element of the initial integrated circuit designs, facilitating
various applications such as audio amplification and signal processing. They were utilized
in voltage regulators, oscillator circuits, and phase-locked loops.

The layout process starts after the end of the schematic design phase in the analog IC
design flow. The layout process involves determining the physical arrangement, geometry,
and material of the components and interconnects of a circuit. Moreover, layout involves
defining the bond pads for the chip’s connections to its peripherals. This includes the
placement of transistors, resistors, capacitors, and other circuit elements, as well as the
routing of interconnects between them. The layout process is the bottle neck in the ana-
log design flow as it plays a critical role in determining the performance and reliability
of the final IC design. Moreover, an optimized layout can reduce power consumption and
increase the overall efficiency of the circuit. In addition, a well-designed layout improves
the manufacturing yield of chips and increases the chip’s tolerance to variations in the
manufacturing process. A robust layout can help to minimize parasitic capacitances and
resistances that degrade the circuit performance.

Analog IC layout process is a manual and takes timely tasks which requires skilled
engineers in contrast to digital IC layout which is fully automated. However, as IC designs
become more complex and the number of transistors on a chip increased exponentially over
the years, manual design became impractical. In response, analog layout automation tools
are now developed to help engineers create optimized layouts quickly and efficiently.

1

Figure 1.1: Simplified illustration of the integrated circuit design flow.

Today, analog layout automation is a critical component of the IC design process, and
there is intensive research to develop software tools to help designers in creating high-
performance, low-power analog circuits. Advanced algorithms are used to optimize layout
parameters including placement, routing, and parasitic effects, to help designers achieve
the best possible performance for their designs.

1.2 Problem Definition

Analog IC design cycle is much slower compared to digital IC design. The digital IC design
cycle is now fully automated through scripts and software. The digital designer mainly
focuses on system design, module partitioning, and writing HDL code for each module in
the design. Afterwards, EDA tools synthesize the code into netlist, which is then converted
into a full layout in a GDSI file. In contrast, analog design and layout lag far behind. This
problem results from two main reasons.

1.2.1 challenges and limitations of the traditional manual layout

The first reason is related to the challenges and limitations of the traditional manual layout
design process for analog integrated circuits.

The traditional manual layout design process for analog integrated circuits involves
the placement and routing of circuit components to create a physical layout that meets
the design specifications. This process is often time-consuming and requires expertise

2

and experience in circuit design, manufacturing processes, and design rules. The manual
layout design process can be time-consuming and may require multiple iterations to achieve
a satisfactory design. This can lead to delays in product development and time-to-market.
Additionally, the layout design process requires expertise and experience in circuit design,
manufacturing processes, and design rules. This makes it challenging for designers who
lack this expertise or experience.

Manual layout design is error-prone, as designers may make mistakes or overlook design
rules, leading to circuit malfunctions or poor performance. Moreover, the manual layout
design process can result in variability in design quality, as different designers may have
different design styles or interpretations of the design specifications. The manual layout
design process may not be scalable for complex circuits or large designs, as it may require
significant manual effort and time. Furthermore, the manual layout design process can be
costly, as it may require specialized tools and expertise and may lead to design iterations
and delays.

1.2.2 Challenges related to analog design its self

The second reason for the slow pace of analog IC design pertains to the design process itself.
In contrast to digital design, where the primary objective is often the size of the chip, analog
design focuses on optimizing circuit performance, matching, speed, and other functionality
concerns. Unlike digital ICs, there are no fixed heights for standard cells or grids to guide
placement. Additionally, the number of design rules governing analog ICs is significantly
fewer. As such, designers are more concerned with how the circuit will perform, rather
than meticulously ensuring that the cells fit together according to a predetermined set of
guidelines. Analog layout designers prioritize four primary criteria when designing analog
circuits, including design specifications, design objectives and restrictions, matching, and
design hierarchy levels. Furthermore, the process encompasses device generation, floor
planning, placement, and routing.

Design specifications, objectives and restrictions

Layout design is a complex optimization problem that involves searching for an optimal
solution within an immense solution space. In this process, design restrictions establish a
valid region within the solution space, while design objectives specify an optimum solution
within that valid region. Design restrictions can be categorized into three main groups.
Technological restrictions are intended to ensure the manufacturability of the integrated
circuit and are formulated as geometrical design rules that can be very complex. How-
ever, they typically belong to one of the following categories: minimum width, minimum
distance, minimum overlap, or minimum enclosure. Functional restrictions, also known as
electrical restrictions, aim to ensure the proper electrical functioning of the circuit. They
can be further divided into circuit-specific requirements (e.g., to prevent unwanted cou-
pling effects) and process-specific requirements (such as limiting current density in electrical
wires to prevent electromigration). Design-methodical restrictions are deliberately intro-
duced to reduce the complexity of the layout design problem, making it more amenable to

3

computer-aided automation approaches. For example, layer-dependent wire directions are
introduced to facilitate automated routing (e.g., metal1: horizontal, metal2: vertical).

While design restrictions are strict requirements that must be met, design objectives
represent gradual optimization goals that designers pursue to the best of their ability.
They can be broadly classified into economic optimization goals and functional optimiza-
tion goals. Economic optimization goals include minimizing product costs (e.g., by re-
ducing total chip area and the number of required metalization layers) and minimizing
development costs (e.g., by reducing the design effort through automation). Examples of
functional optimization goals include minimizing total wire length and optimizing heat
dissipation to prevent critical hot spots in the chip.

Matching

Matching is an essential technique employed in analog design to achieve high accuracy of
analog signals through ”electrical symmetry”. Due to the manufacturing tolerances ex-
hibited by various steps in the IC fabrication process, the absolute exactness of a circuit’s
components is extremely poor. However, the parametrical deviation among circuit com-
ponents of the same type is relatively good. Analog circuits are designed and laid out in
a way that takes advantage of this relative exactness by ”matching” certain components.
Matching involves equalizing the electrical behavior of these components in relation to
each other so that variations, including manufacturing tolerances, thermal gradients, and
parasitic effects, do not affect their overall electrical functioning. Without this technique,
achieving a functional analog integrated circuit would be virtually impossible. Therefore,
obtaining a good matching is one of the most crucial tasks in the daily work of analog lay-
out designers. The matching of circuit components requires that these components are of
the same type and have equal dimensions, which are taken care of by the circuit designer.
Further matching measures in the layout often involve placing these components with
consistent orientations and aligning them in a compact, interdigitated, common centroid
arrangement.

Design hierarchy levels

The arrangement of analog integrated circuit (IC) layouts is typically hierarchical, with
design components nested within other components. The fundamental entities, such as
transistors, are presented as primitive devices without subhierarchy. Higher-level design
entities, which form functional units, can also be encapsulated as a hierarchical cell. These
functional units become modular library components that can be instantiated in a layout,
that is, inside another cell. To avoid any confusion when discussing cells, it is crucial to
classify them based on their characteristics in the design hierarchy. This thesis proposes
the following terminology for classifying cells: primitive devices, simple modules, advanced
modules, blocks, and chip. Primitive devices are the most fundamental components in
layout design, and they are made up of plain polygons. They typically represent tran-
sistors, resistors, and capacitors, and other structures such as wells and guardrings are

4

also frequently implemented as primitive devices. Simple modules are basic analog cir-
cuits with highly regular patterns. They consist of a set of identical primitive devices that
are arranged in a strictly tiled, matrix-like arrangement. Advanced modules are also basic
analog circuits, but they are composed of different components, including primitive devices
and simple modules. The components’ relative positions follow a well-established, often
symmetric arrangement, regardless of their actual dimensions. Blocks are large hierarchical
cells that perform high-level electrical functions. They contain unequal devices and mod-
ules, assembled in a rather irregular arrangement that must be determined individually by
a layout expert in each case. The chip is the top-level entity of a layout, which is composed
of hierarchical layout blocks. In the case of a mixed-signal chip, both analog and digital
blocks are included. The chip may also contain single devices such as power transistors
that realize high-current output stages. Although a family of chips may share topological
similarities, each chip is always a unique design.

Device Generation, Floor planning, Placement, Routing

Device generation is the task of designing layouts for various components of an input circuit
based on their size. This task was previously the responsibility of IC design teams, but
today, vendors supply primitive devices as part of a process design kit (PDK) through
procedural generators. Analog design requires layout variability to fulfill design challenges,
and primitive devices have diverse layouts due to device folding. During floor planning,
device generation is crucial for calculating the size of a layout block.

Floor planning involves minimizing overall layout space, total wire length, and optimiz-
ing power supply and current flow to reduce financial and electrical costs. The placement of
components requires rotation and varying their arrangement without interfering with their
electrical performance. Components must fit within the predetermined shape established
during floor planning. Some blocks must be placed near the chip boundary to reduce wire
length, while others require a specified minimum distance to prevent delicate signals from
being disrupted by undesirable thermal and electrical impacts.

Routing space between layout components is required to facilitate their routing, and
sensitive circuitry often prohibits electrical wires from being routed above these compo-
nents. The number of metal layers available for routing must also be limited. Routing
aims to reduce the number of vias and metal layers and homogenize the total wire density.
The size of a via and the width of a wire segment must be determined according to the
anticipated current load. The primary goals of routing are to reduce the number of vias,
the number of metal layers, and to homogenize the total wire density.

1.3 Objectives

When attempting to automate the layout design of an analog circuit, circuit classification
becomes an important tool. It is nearly impossible to create a scripted tool that can
automate the layout design of all analog circuits, as they vary in their restrictions regarding

5

matching and floor planning depending on their functionality. For this study, we will be
focusing on the folded OTA, which falls under the Low Frequency classification. The most
crucial aspect of the OTA circuit is matching the passive and active elements. By using
classification, we can narrow down the expected inputs for the scripting tool and improve
the identification and automation process.

1.3.1 Pattern Recognition

The input for the automation script will be a SPICE netlist text file that includes all
devices and nets in the schematic, along with their widths and lengths, and the number of
fingers and multipliers for each device.The script will then identify the building blocks of
the OTA circuit, which include various current mirrors, differential pairs, and active loads.
A suitable matching pattern will be applied to each building block. Next, the floorplan
and placement step will be executed, which can be run multiple times to obtain the best
routable netlist. During placement, symmetry constraints across the entire device will be
taken into account, and connected blocks will be placed in close proximity to one another.

1.3.2 Block and Global Routing

Figure 1.2: Diagram of the whole layout automation cycle.

The output of the floor planning step will provide the suitable coordinates for the
matched devices, which will then be placed using SKILL scripts. The same script will be

6

used to perform internal routing for all blocks, as well as global routing between different
blocks.

1.4 Functional Requirements/product specification

Analog layout design is a crucial aspect of analog design that involves placing and routing
components to meet the design specifications. This process is usually time-consuming and
requires high levels of expertise, which makes it a bottleneck in the analog design process.
Therefore, it is important to explore ways of automating this process to accelerate the de-
sign process. To achieve this goal, it is important to understand the challenges that need
to be addressed. One of the main challenges is the need to recognize the schematic of the
design and extract the required data from it. This is essential for automating the layout
process, as it allows for the tool to have a clear understanding of the design. Another
challenge is the need for accurate floor planning. Floor planning involves estimating the
area of the design and organizing the components in a way that meets the design speci-
fications. This is important as it determines the overall layout of the design and affects
the performance of the final product. The placement step is also critical as it involves
placing all components in the layout to meet the design specifications. This step requires a
high level of expertise and can be time-consuming, especially for complex designs. Finally,
the routing step involves connecting the placed components to create a complete circuit.
This step is divided into detailed routing and global routing. Detailed routing involves
connecting the components within a small area, while global routing involves connecting
components over a larger area. Both of these routing techniques are important for creating
an efficient and reliable circuit.

1.5 Report Organization

The structure of this graduation thesis is organized into the following sections. Section 2
presents the standards that will be utilized throughout the study. In Section 3, a review of
the literature and market trends regarding placement and routing will be discussed. Section
4 outlines the proposed work that will be carried out as part of this research project.

7

Chapter 2

Standards to be used

The main objective of this graduation project is to enhance an existing tool and create a
comprehensive layout automation framework capable of handling all stages of the layout
process. This includes pattern recognition from schematics, generating placement patterns,
optimizing them, auto-routing parameterized cells (PCs), performing global routing among
main blocks, and conducting verification checks such as Design Rule Checking (DRC) and
Layout vs. Schematic (LVS).

Our automation tool will focus on testing the Recycle Folded Operational Transconduc-
tance Amplifier (RFOTA), a fundamental analog circuit application, which is a key com-
ponent of the Analog to Digital Converter (ADC). To achieve this, we will divide the tool
into two primary software scripting components: a Python script for pattern recognition,
optimization, and placement pattern generation, and a Skill scripting component for PC
routing, global routing, and verification.

To ensure that our software meets industry standards, we will utilize the ISO/IEC/IEEE
12207:2017 standard, which is an international standard for software lifecycle processes that
defines all the necessary steps for developing and maintaining software systems, including
the outcomes and/or activities of each process. Throughout the development process, we
will adhere to these standards, from software acquisition to the design of the Graphic User
Interface (GUI). The software for the automation tool is the primary component of this
project, and we will strive to maintain the highest standards throughout all phases of its
development.

8

Chapter 3

Market and Literature Review

Although there are various proposed automated methods for analog layout, the full analog
design till that day is done manually. It is believed that the existing automated solutions
could not yet reach the high level of efficiency that human designers guarantee. However,
as will be explained, there are many tools that have been recently introduced that are
capable of partially helping in the automation of analog layout design but with some
limitations that require additional solutions. Hence, the possibility of finding a tool for
layout automation is really promising.

3.1 Placement

The first step of layout design is placement, where the physical floor plan of the circuit is
being constructed. It is quite challenging to perform placement in an automated manner as
there are many constraints that need to be considered in the process, such as minimum area,
DRC rules and parasitic effect. Additionally, thermal gradient and stress gradient on the
die are issues that need to be eliminated by applying the concepts of matching, symmetry,
and proximity. Matching is an essential step to prevent variation in device parameters
as a results of process variation, lithography variation, and temperature gradient on the
chip, it could be applied as common centroid, common gate, or interdigitated pattern
[1]. Placing devices symmetrically around a common axis, in some cases could be more
than one common axis, is crucial especially for differential analog circuits as any mismatch
could cause problems like degraded power supply rejection ratio and high offset voltages.
Moreover, devices placed symmetrically are less prone to thermal gradients and undesired
oscillations [2]. Proximity problem such as well proximity is most prominent for current
mirrors, where the threshold voltage of a device significantly changes shifting the saturation
point. Proximity is highly affected by blocks separation and guard rings insertion [3].

9

Figure 3.1: a) proximity, b) symmetry, c) Matching.

3.1.1 The Absolute Representation

The main feature of the absolute representation is that modules are assigned to an absolute
coordinate on a plane with no grid, where any manipulation required on the module is
done by changing these coordinates. Nevertheless, the absolute method could result in
placing overlapped modules which requires an additional post processing step to resolve
this problem. Therefore, the absolute method requires a relatively long computation time
when it is compared to other methods [2].

3.1.2 The Topological Representation

The topological representation is different from the absolute representation, the cells are not
recognised in terms of their fixed coordinates but rather in terms of the topological relations
between the other cells. In other words, the positions of the cells are identified in a relative
manner [1]. There are two types of topological representation, slicing representation and
non-slicing representation.

3.1.3 Slicing Representation

A slicing representation consists of horizontal and vertical lines that slices the main rect-
angular area into smaller rectangles where each rectangle is called a room that can acquire
set of modules of designed circuits. A slicing floor plan can be represented as a slicing tree
as shown in figure 2 or as a polish expression as shown in the expression below [4]. Polish
Expression: 2 3 * 1 + 4 5 + 6 7 * + *

3.1.4 Non- Slicing Representation

The non-slicing representation is known for the usage of constraints graphs, the vertical
relations of modules are associated with the vertical constraints, while the horizonal ones

10

Figure 3.2: Slicing floor plan, slicing tree.

are associated with the horizontal constraints. There are various algorithms developed for
non-slicing representation, such as bounded slicing grid structure (BSG), corner sequence
(CS), sequence pair (SP), the ordered tree, B*Tree, and transitive closure graph based
(TCG).

3.1.5 Routing

Routing is a crucial and complex stage in the layout of analog circuits due to their perfor-
mance dependency on circuit parasitics. Stray resistance in interconnects causes voltage
drops, which necessitates the use of short and wide wires or higher metals. In order to pre-
vent crosstalk and coupling effects, it is essential to leave routing spaces between sensitive
circuits that do not permit electrical wires above them. Crosstalk results from unwanted
communication between signals caused by the coupling between two parallel nets. Digital
sections of the circuit generate coupling noise that is coupled into analog circuits through
power supplies and over the substrate, leading to performance degradation. Parasitic re-
sistance and capacitance may also result in significant signal delays. Some signals are so

11

sensitive that they require extra protection through shielding, such as the differential signal
in the differential pair [5].

The way metal is selected for routing is another factor to consider, and it is generally
agreed upon to use the first two available routing metals in lower design levels and use
the remaining metal layers for routing the top-level. To connect different metal segments,
vertical interconnect access (via) is used. The current load determines the wire width and
via size. It is crucial to decide on the wire width to avoid electromigration, which occurs
when material moves due to the gradual transport of ions in conducting wires, causing
voids or hillocks that may result in an open or short circuit.

The main objectives of routing are to reduce the number of metal layers, to reduce
the number of photolithographic masks, homogenize the overall wire density, minimize
the number of vias in fear of metal layer crossing, and fully verify routing with minimal
parasitics. Some nets require symmetric routing. This project also aims to develop a
technology-independent automated routing skill code. In this section, the analog routing
problem definition is further discussed, along with state-of-the-art routers and suggested
solutions. Digital solutions are also included since digital and analog routers face similar
challenges in specific parts [6].

3.1.6 Problem Definition of Analog Routing

The analog routing problem deals with finding suitable paths among the electrical nets
terminals, while meeting the routability and analog constraints. The problem involves a
three-dimensional graph with terminals and non-terminals as its vertices. The terminals
include device and input/output pins, and every electrical net has terminals connected with
one another. The non-terminals are the intermediate vertices that connect the terminal in
the graph. The netlist is the input of the analog routing problem, while the paths among
the terminals in the netlist are the output.

There are two main types of analog routers: general-purpose routers and analog con-
straint specific (ACS) routers. General-purpose routers attempt to satisfy multiple con-
straints simultaneously, while ACS routers focus on a particular constraint such as wire
length, electromigration, IR-drop, and mismatch effect. The sequential analog routers
route the nets one after another, while the ACS routers aim to satisfy a distinct purpose.

Academic layout synthesis tools started the development of general-purpose analog
routers. ANAGRAM II is an example of such tools, which uses an algorithm for wire
expanding to look for the path that achieves the lowest constraints such as wire length and
crosstalk. This tool was updated to become one of the first commercial tools in analog
layout [7].

Many routers were introduced to handle several constraints, like exact length and topol-
ogy matching and symmetry, using integer linear programming (ILP). However, their de-
sign had low efficiency because of the high complexity of LP. A configurable design was
proposed that uses a unified constraint method from schematic to layout, and the layout
was recursively partitioned according to the driven constraints from the placement. A*

12

algorithm and maze router were used to wire critical and general nets. The maze routing
algorithm is a low overhead method that finds possible paths between any two nodes, while
the A* algorithm is a search algorithm that finds the shortest path between the two nodes
[8].

Electromigration [1] is becoming more challenging to avoid as the feature size shrinks.
Many post-processing algorithms have been proposed to promote the layout reliability
against EM failure. Another idea for solving EM-aware routing was proposed using viola-
tion and reserved-path finder schemes to set up LP formulation so that a minimum routing
area could be achieved [9].

3.1.7 Routing Algorithms

Using abstraction, the devices is assumed to get presented by points and routings to be lines
connecting these points, concepts and algorithms of graph theory can be used in analog
layout designing [10]. One of the widely used algorithms is the Maze Routing algorithm
[11], also known as Lee’s Algorithm. Its primary objective is to find the shortest path
between two locations within a maze, namely the entry and exit points. Furthermore,
it can identify the number of paths between these two nodes. To accomplish this, the
algorithm employs a priority queue that scans cells in ascending order of distance from the
starting point to the endpoint. Once the final point is reached, the path of cells is checked
in reverse order back to the starting point to determine the shortest path efficiently [12].
The major disadvantage of this algorithm is its long runtime. However, optimization is
possible at the cost of increased complexity.

Due to the fact that routing is an open problem, more than one algorithm may be used
depending on the design. The second is the Dijkstra Algorithm, which is used to identify
the shortest paths between nodes in a graph. A commonly used variant of this algorithm
is used to identify the shortest paths from a selected source point to all other points in the
graph. During each step of the algorithm, the distance from each node to the source node
is stored and updated until the shortest path is reached. Once the shortest path between
the source node and another node is identified, that node is marked as ”visited” and added
to the path [13]. This process continues until the shortest path between the source and
final nodes is found. However, the Dijkstra Algorithm [14] fails when dealing with negative
edges, and it cannot handle 3D graphs, which are its main drawbacks.

13

Chapter 4

Project Design

4.1 Project purpose and constraints

4.1.1 Project purpose

For many years, analog layout designers have grappled with the arduous task of managing
multiple tools for simulation and verification across an array of designs. This complexity is
exacerbated by the requirement to wield expertise in several programming languages, such
as TCL, Python, SKILL, and Shell, each with their own unique syntax and operational
quirks. This convoluted workflow can often result in inefficiencies and errors, and thus,
there is a compelling need for a more streamlined, integrative solution.

In response to these challenges, the idea of creating a simple yet powerful unified plat-
form - a Python-based Linux desktop application - has been conceived. This proposed
application serves as a holistic platform to manage the various stages involved in analog
layout design. By adopting Python as the underlying programming language, the platform
capitalizes on the extensive libraries and versatile capabilities of Python, promoting greater
ease of use and accessibility for designers.

The innovation of this platform extends beyond its unified nature and Python basis.
This application will have the ability to convert a schematic to a layout automatically,
eliminating the time-consuming and error-prone process of manual conversion. This feature
offers designers a unique opportunity to expedite the early stages of design, allowing them
to devote more time and energy to critical aspects of the design process.

Additionally, the platform incorporates a novel approach to post-layout simulations. By
simply clicking a mouse button, designers will be able to initiate and run these simulations.
This feature further simplifies the design process, making the task of simulation, which is
typically a complex and laborious process, more user-friendly and efficient. In doing so,
this platform promises to revolutionize the workflow of analog layout designers, potentially
leading to significant improvements in productivity and design quality.

14

4.1.2 Constraints

Constraints for First Component

The initial module-pattern acknowledgment and generation- is mainly layout depend upon
the concept of obtaining the optimum matching pattern for below obstructs to lessen the
symmetry, matching, as well as proximity issues of pattern generation. The function was as
getting the netlist info of schematic, making use of terminals of every device to specify the
sorts of subblocks, standard layout formula to obtain optimum area, producing matching
pattern for each and every sub obstructs- usual centroid or interdigitated, and also finally
composing the output in a text documents in a standard format to be prepared for the
second module-placement and routing. The main constraints in this module were working
with different PDK technologies, estimation of area due to the difference of tool properties
from schematic to format, and generation the names and also dummies to be matched with
the Cadence virtuoso procedure.

Constraints for Second Module

The restraints of this job can be divided into two main groups. The first group has
the formalized constraints while the second group includes the non-formalized ones. The
defined constraints are easier to deal with as they are distinct, do not need to be interpreted
as they are straight, can be checked using mathematical or logical models, and they are
usually written clearly in a file stored in the used PDK. The non-formalized constraints
are related to the design itself so they might contain some unpredictable conditions if
the circuit layout is not well understood. They depend on the human experience so they
usually are educated by the layout engineer verbally or by agreed tags on the schematic.
In the SKILL device, The DRC and LVS constraints were followed for the chip to be able
to get produced. The non-formalized constraints can be split into two parts; the matching
and the routing parts.

Matching is in the pattern generation component which is in the Python code. Matching
is performed in every element of the OTA circuit to minimize the differences in device
specifications due to distance, lithography variations, process variations, rotation, biasing,
and temperature gradients on the chip . There are rules that must be followed to get better
matching which are:

1. Putting the transistors in close proximity.

2. Positioning the transistors in low-stress gradients area.

3. The layout should be as compact as possible.

4. The transistors positioning should be in the same direction.

For the current mirror pattern, common centroid matching pattern is used as it reduces
the stress and temperature gradient as much as possible. Its main object is that the

15

centroids of each device should coincide . Inter-digitization is used in differential pair as
all the transistors are in an interleaved pattern. The load pattern is also inter-digitization
as they consist of 2 transistors each like the differential pair.

For the routing constraints, routing is matched for a single device so that each transistor
in a device is affected by the same parasitics and stress. Electromigration is also considered
as the length of each route is determined based on the current being carried by it. In the
differential pair, the input (Differential signal) is routed close to each other with no other
signal merging with them in order to cancel out any noise. No routing was done across
any device to reduce the parasitics such as merging effects. To achieve the matching
requirements, the same number of metals is used in each row of a single device. Source
sharing is obtained for each device besides the PMOS load as no terminal is shared. Source
sharing was used in order to reduce area and parasitics. For devices with odd number
of multipliers, an extra dummy is added to preserve the matching pattern. The bulk
connections were made to have near minimum length as there is no large current passing
through the body of the transistors. Dummies are added at both sides of each device as
different undercut due to the etching can be greater on the sides than in the center.

4.2 Project Technical Specifications

This module was mainly written in Python 3.11 language using the online compiler pro-
vided by pycharm educational liscence, which adheres to the ISO/IEC/IEEE 12207:2017
standard requirements. This choice was made due to the difficulty of executing this com-
ponent using skill code, as it involved a significant number of computations and formulas.
The technological requirements were primarily focused on the code itself, and this will be
demonstrated.

4.2.1 Software Program Requirements Specifications

The software application requirements specifications focus on the functionality and orga-
nization of the code. The quality of the output is closely tied to the design quality aspect.
The software specifications will be discussed in detail in the following subsections.

Product Features

The product features of this project are outlined below for each block:

• A. Current mirror

1. Positioning

2. Source and drain routing

3. Gate transmission

16

Technical specifications How it was achieved
Accessibility Python code can be run easily with upload-

ing the netlist file and only one click on run.
Adding a demo video is attached with tool.

Availability The code can be run on Google colab at
any time freely.

Data quality The input must be in text format and also
the output.

Human error The assumption that tool will be worked
with professional engineer, the human er-
ror is be limited by only error in number of
figures and multipliers, else any error the
error massage will be appeared.

Interoperability The code can be worked with any netlist
file from number of technologies are as-
signed in consideration before.

Maintainability The code is clean with free errors and do
not need any modification to do its task.

Performance The average time is depended on the num-
ber of multipliers are assigned, but it not
be greater than 50 seconds in worst case
and 18 seconds in best case.

Productivity The output is automated and updated it-
self with any number of runs.

Standards The code is following the ISO/IEC/IEEE
12207:2017 standard requirements for com-
piling and execution.

Table 4.1: Technical specifications and how they were achieved

4. Dummy routing

5. Mass tie and guard ring routing

6. Pin placement

Similar features with different specifications are utilized in the differential pair and the
load. These features will be elaborated upon in Section 4.5.

Operating Environment

The operating environment utilized in this project is Cadence Virtuoso. The position-
ing and routing parts are implemented using the Skill language. However, the pattern
recognition and pattern generation parts were implemented using Python to facilitate the
utilization of complex formulas and achieve improved outcomes.

17

Constraints on Design and Implementation

The design and implementation process is subject to certain constraints imposed by the
coding environment. These constraints, along with the requirements of the design tool, are
summarized in the table provided below.

User Interface

The tool should allow users to specify certain required inputs, such as the facet ratio used
to determine the positioning of the blocks and the source current required to determine
the width of the routing wires. Additionally, it should display the output format once the
code execution is completed.

Performance Requirements

The following performance requirements are expected:

1. Short runtime (in seconds).

2. Low space complexity.

3. Error-free execution when applied to different technologies.

4.2.2 Layout Quality

The generated output layout quality of the code consists of two key aspects: capability
and consistency, as illustrated in Figure 13. These aspects vary according to the circuit’s
specifications. In this project, these facets are developed for the current mirrors, differen-
tial pair, and the load. The specific facets will be discussed in detail in the subsequent
subsections.

4.2.3 Functionality

Functionality of an Integrated Circuit (IC) is contingent upon the adherence to capability
requirements, ensuring the fabricated IC derived from the outcome format of the code
operates correctly. It considers three primary factors: precision, reliability, and yield,
which are not explicitly defined in the designed code and depend on the design engineer’s
experience. Therefore, the implementation of such elements will likely differ across different
blocks.

Precision denotes the ability of the IC to operate within an acceptable range. To achieve
this, it is imperative for the generated format to generate robust and accurate signals,
capable of functioning adequately under minor or severe conditions. This requirement
involves devising the best matching strategy in placement and routing for each block.

18

Maintaining the same orientation is crucial to ensure all block signals are influenced by an
identical gradient.

To enhance signal precision, dummies should be added on both sides of each device
to shield it from Layout Dependent Effects (LDE) such as well proximity effect and dif-
fusion length. Consideration must also be given to the bulk contacts, ensuring a uniform
equidistant bulk for all devices, which will provide a consistent substrate bias across the
entire IC, thereby producing accurate results. To minimize the parasitics as much as pos-
sible, channel routing is employed over device routing, leading to increased reliability and
precision.

Reliability measures the ability of the chip to endure constant cycles that may cause
electromigration and failure. To prevent electromigration, which is discussed in Section
3.2, the width of routing wires must be calculated considering the current capacity of each
metal layer, without using minimum values. This is to mitigate future electromigration
issues.

If the calculated width exceeds the maximum available wire width, stacking strategies
are used, employing two or more metal layers until the current is less than the maximum
width. Repeated cycles may also lead to Minority Carrier Injection in the substrate, causing
power leakage and potential device lockup. This issue can be mitigated by adding guard
rings.

Furthermore, if the circuit is subjected to high voltage, the dummy devices could suffer
breakdown as their gates are often connected to GND or VDD. To preclude this issue, the
dummy gates should be connected to connect low or connect high terminals, rather than
directly to the power rails.

The yield factor pertains to the percentage of properly functioning manufactured chips
relative to the total chips produced. Certain design practices could adversely affect the
yield and should be avoided. For instance, reducing the number of vias and using more
than one via decreases the chance of electromigration, hence enhancing reliability. This
also lessens the chance of via issues causing chip defects. Dual vias are often employed to
circumvent these problems.

4.2.4 Consistency

Consistency is a requisite attribute, ensuring the generated layout is compatible with an
analog design tool harmonious with Cadence tools and verification methodologies. The
code should be versatile enough to be used after Process Design Kit (PDK) updates,
with different PDKs, and in various projects. To articulate the concept of consistency,
”Maintainability” is introduced. It deals with managing the layout along the toolchain,
either in combination with other elements in the tool such as a floor planner, or during
verification.

Achieving consistency requires modularizing certain layout structures. This modularity
facilitates PDK updates and the management of technology-dependent constraints without

19

altering the code. The tool should manage the devices as components susceptible to input
changes, thus constants should not be used.

For the tool to pass Layout versus Schematic (LVS), the inclusion of dummies must be
considered in the schematic to make it compatible with the layout. The tool should be
technology-independent to be used effectively without necessitating changes in the code.
However, it is only compatible with Cadence, as it is written in SKILL.

The interface with Python should be established efficiently to enable seamless data
exchange between the layout tool and Python.

4.2.5 Layout Alternatives and Justification

Throughout the project duration, we encountered multiple instances where various design
options were presented. These scenarios required an evaluation of the advantages and
disadvantages of each alternative, leading us to select the most suitable design based on
this assessment. A few of these instances are briefly discussed in the ensuing subsections.

Design Alternatives and Justification for the First Module

The first module, encompassing pattern recognition and generation, presented numerous
layout alternatives or strategies for achieving optimal output. The selection depended heav-
ily on the experience-based opinions from both the industrial and academic supervisors.
The specifics of these alternatives are discussed in the following subsections.

Design Alternatives for Pattern Recognition The initial approach proposed in-
volved obtaining the types of subblocks directly from the user. This method was limited
as it required an in-depth understanding of the layout and was consequently only applicable
to a subset of users. The second method allowed the user to choose the matching patterns
and devices, although this could lead to significant errors and routing complications if
improper input was given.

Following an extensive literature review in the area of analog pattern recognition, a tool
utilizing the concept of complexity level was introduced. This tool employed the sharing
of device net terminals to identify the block type, with further details provided in Section
4.4.1.3.

Design Alternatives for Pattern Generation The first proposed approach involved
taking the number of rows from the user. However, this method was somewhat limited
and proved ineffective on a larger scale. After conducting several trials and consultations
with experts, an alternative method was adopted. This approach used the device bounding
box information and the current requirement to gauge the required routers, provided in
the netlist data. An optimal algorithm was chosen to estimate the area and determine the
number of rows for each subblock, as discussed in Section 4.4.1.

20

Design Alternatives and Justification for the Second Module

Matching Technique Used and Justification In this topology, structures such as
differential pairs and current mirrors were used, where matching of device characteristics
is crucial. The goal of these matching techniques was to minimize differences in device
parameters due to distance, lithography variations, rotation, process variations, biasing,
and temperature gradients on the chip. By using dummies on the sides, all multipliers
were ensured to undergo the same environmental conditions, reducing etching variations
between edge and center transistors.

In the differential pair block, inter-digitization was employed for matching, with all
transistors in an interleaved pattern (Figure 14). The main reason for choosing this strategy
was to maintain equal path lengths and thereby minimize mismatching effects. Conversely,
in current mirror blocks, a common centroid strategy was used for matching (Figure 15).

In differential pair devices, shielding was used around the paths carrying the input
signal to isolate sensitive signals from other routing, reduce noise impact, and prevent
crosstalk. Lastly, dummies were added to counteract variations from over-etching at the
edges (Figure 16).

Detailed Horizontal Routing Paths and Justification In the differential pair and
P-load blocks, the horizontal paths of the inputs at gates could be placed in two locations:
at the end of the block or between the rows. The first approach facilitates global routing,
providing easier and shorter connections with other devices. However, it also presents
disadvantages that can affect the performance of the matching.

The second approach addresses this issue by positioning devices further away from other
routes, reducing the impact of noise and crosstalk. Additionally, it achieves better matching
performance as both input routes have almost the same length. Moreover, it results in a
shorter route, thereby minimizing parasitic effects. Hence, the second approach is chosen
to enhance the performance

of the differential pair.

Detailed Vertical Routing Paths and Justification Two strategies were examined
during routing: ”over device routing” and ”channel routing”. The first strategy’s advan-
tages are smaller routing area and simpler global routing. However, it increases parasitics
since routes pass over the device, potentially leading to failure under certain conditions.

Conversely, channel routing addresses these issues by confining routes to only pass over
the metal terminals, achieving the least possible parasitics. Although it may result in a
larger routing area, this approach was chosen for this project to ensure the best performance
of crucial device matching.

21

4.2.6 Description of the Selected Design

Overview of How the Subsystems Interact

When the graphical user interface (GUI) is activated within a specified directory, it first
initializes the Cadence Virtuoso environment, a critical precursor to the operational func-
tionality of the platform. Following this initiation, the GUI presents a window, prompting
the user to make a selection between two options: creating a new schematic view or selecting
from an existing schematic view. These options offer flexibility to the user, accommodating
both the inception of new design projects and the continuation of existing ones.

Should the user opt to create a new schematic view, the GUI responds by presenting a
dialog box. This interactive element invites the user to provide specific details, such as the
library name and the cell view name, necessary for the creation of a new schematic view.
This user-driven input mechanism ensures that the new schematic is tailored to the user’s
precise specifications, encouraging a more efficient and personalized design process.

Alternatively, if the user elects to choose from existing schematics, the GUI facilitates
this process by presenting a comprehensive list of available libraries, each containing multi-
ple cell views. The user is then able to peruse these options and make an informed selection
of the cell view that best suits their current needs.

Once a cell view has been selected, whether newly created or pre-existing, the GUI
undertakes the task of layout generation and post-layout verification. This encompasses
comprehensive checks including, but not limited to, Design Rule Checks (DRC) and Layout
Versus Schematic (LVS) checks.

These advanced features, which are readily accessible at a single mouse click, ensure the
accuracy of the layout generation and the integrity of the post-layout verification process.
This GUI logic ensures that users can proceed with their design tasks confident in the
knowledge that the platform is taking appropriate steps to maintain design quality and
uphold adherence to established design rules.

22

4.3 Block Diagram and Functions of the Subsystems

Placement of Blocks (4.5.2.1)

In this action, the output of the previous step (gadgets’ collaborates) is read and utilized.
Using features in skill, all instances are placed at their determined positions according to
their selected matching pattern. The transmitting location is estimated in the positioning
stage, which may lead to unrouteable layout if inadequate area was designated, or area
loss if the routing location is overestimated. Likewise, guard ring positioning is done after
establishing the minimal area between the routes, blocks, and bulk ties to pass DRCs and
LVS.

Inputs:

• Innovation parameters

• A list of all gadgets’ coordinates and names

Results:

• All tools positioned and matched to be prepared for routing.

Routing Blocks (4.5.2.2)

Vertical Routing and Via Positioning

Inputs:

• Placed tools

• Technology PDK and DRCs

Results:

• All S/D terminals of the same gadget are connected and encompassed the predefined
coordinates of the horizontal rails using network routing strategy.

• All vertical entrance paths and connections are done. Additionally, vias are added
on all terminals and at the junction points of vertical and horizontal paths if any.

Horizontal Routing

Inputs:

– Positioned gadgets

– Required path length for current capacity

– Technology PDK and DRCs

23

Figure 4.1: Flow chart of system actions and decisions.

24

Results:

– The horizontal routes of S/D/G terminals, with the appropriate determined
width, are positioned at the minimum distance possible to pass DRC.

– Protection of input routes is done if needed, for example, at the differential pair
block.

Gate Routing

According to each type of gadgets (current mirror, differential pair, or load), the
gate connections will be executed differently. For example, at current mirror devices,
the routing of diode-connected devices ”gate shorted with drain” needs to be done.
However, in differential pair devices, each device should have its own gate routing as
they have different input signals.

Inputs:

– Positioned gadgets

– Required path length for current capacity

– Technology PDK and DRCs

Results:

– All gates are routed (horizontally or vertically) according to the configuration
of the devices.

Dummies Routing

To have fewer parasitics, mos-cap dummies are used, where all terminals (S/D/G)
are shorted and connected with the same point according to the configuration of each
device.

Inputs:

– Positioned gadgets and their paths

– Technology PDK and DRCs

Results:

– All dummies are connected as a mos-cap according to the configuration of the
devices.

5.1.3)]N/P Well Extension (4.

5.1.3)

According to the type of devices and the number of rows in each block, the extension
of Nwell/P-well is performed to pass the DRC and LVS.

Inputs:

25

– Positioned devices and their paths

– Technology PDK and DRCs

Results:

– All blocks with multiple rows are connected to the same N/P-well according to
the devices’ type.

Global Routing (4.5.1.4)

Routing all blocks together is a challenging task that requires considering various
considerations such as space, detailed routing of blocks, placement of VDD/Tie high
and GND/Tie low rails, and the locations of blocks and pins to communicate with
other devices.

Inputs:

– Placed tools and their routes

– Technology PDK and DRCs

Results:

– Global routing is achieved through three main stages: block routing, input/output
routes and pins, and VDD/Tie high and GND/Tie low rails and routing.

Pattern Recognition and Generation (4.5.1.5)

The first module of pattern recognition and generation can be divided into subsys-
tems. The parsing design is used to convert the input netlist into a standardized
format. The second version of pattern recognition utilizes the concept of connectiv-
ity terminals. The third version of layout estimation incorporates all elements in the
floorplan, including devices, routing, and DRC areas. The fourth version of pattern
generation focuses on generating the pattern according to the type of block. The final
version involves preparing the result in a fixed-layout text file for multiplier place-
ments and schematic modification, including the addition of dummies and updating
device properties.

26

Chapter 5

Project Design

5.1 Description of Each Subsystem

5.1.1 Graphical User Interface

GUI Logic

When the graphical user interface (GUI) is activated within a specified directory, it
first initializes the Cadence Virtuoso environment, a critical precursor to the oper-
ational functionality of the platform. Following this initiation, the GUI presents a
window, prompting the user to make a selection between two options: creating a
new schematic view or selecting from an existing schematic view. These options offer
flexibility to the user, accommodating both the inception of new design projects and
the continuation of existing ones.

When the graphical user interface (GUI) is activated within a specified directory, it
first initializes the Cadence Virtuoso environment, a critical precursor to the oper-
ational functionality of the platform. Following this initiation, the GUI presents a
window, prompting the user to make a selection between two options: creating a
new schematic view or selecting from an existing schematic view. These options offer
flexibility to the user, accommodating both the inception of new design projects and
the continuation of existing ones.

Should the user opt to create a new schematic view, the GUI responds by presenting a
dialog box. This interactive element invites the user to provide specific details, such as
the library name and the cell view name, necessary for the creation of a new schematic
view. This user-driven input mechanism ensures that the new schematic is tailored to
the user’s precise specifications, encouraging a more efficient and personalized design
process.

Alternatively, if the user elects to choose from existing schematics, the GUI facilitates
this process by presenting a comprehensive list of available libraries, each containing
multiple cell views. The user is then able to peruse these options, and make an
informed selection of the cell view that best suits their current needs.

27

Once a cell view has been selected, whether newly created or pre-existing, the GUI un-
dertakes the task of layout generation and post-layout verification. This encompasses
comprehensive checks including, but not limited to, Design Rule Checks (DRC) and
Layout Versus Schematic (LVS) checks.

These advanced features, which are readily accessible at a single mouse click, ensure
the accuracy of the layout generation and the integrity of the post-layout verifica-
tion process. This GUI logic ensures that users can proceed with their design tasks
confident in the knowledge that the platform is taking appropriate steps to maintain
design quality and uphold adherence to established design rules.

Initialization of cadence directory

Upon activation, the Graphical User Interface (GUI) executes a critical preliminary
check to determine whether the Cadence initialization files exist within the operating
directory. In the absence of these files, the GUI initiates the creation of three pri-
mary files: ’cds.lib’, ’.cdsinit’, and ’.cdsenv’, each of which serves a distinct
purpose within the Cadence Virtuoso environment.

The function cdsenv() carries the responsibility of creating or overwriting a .cdsenv
file in the current working directory. This file is instrumental in the configuration of
specific settings for Cadence Virtuoso. To facilitate this, the function writes the string
"ddserv.ciw promptOnExit boolean nil\n" into the .cdsenv file, effectively dis-
abling the prompt that typically requests exit confirmation within Cadence Virtuoso.
In cases where a .cdsenv file already exists, its existing content is overwritten; if ab-
sent, a new file is generated. If an IOError is encountered during the write operation,
the function raises an exception.

The second function, cdslib(), focuses on the creation or overwriting of a cds.lib

file in the current directory. This file is crucial in defining libraries that are utilized
within Cadence Virtuoso, notably the TSMC 65 nm library. To achieve this, the
function compiles the content of the cds.lib file by concatenating several text lines,
incorporating the path to the TSMC 65 nm library. The behavior of this function
mirrors cdsenv(), overwriting any pre-existing cds.lib file, or establishing a new
file if one does not already exist.

The third function, cdsinit(), orchestrates the creation of a .cdsinit file in the
current working directory. This file is paramount for customizing the Cadence Vir-
tuoso environment as it serves as a startup file, loaded each time the environment is
initiated. The content of the .cdsinit file comprises a significant amount of SKILL
code, tasked with setting various environment variables, defining bind keys, loading
libraries, and performing other configurations. Like its counterparts, if a .cdsinit

file is already present, it is overwritten; if not, a new file is created. The function
also raises an exception if an IOError occurs during file creation.

The function init dir() is essentially the primary point of entry for the script. This
function sequentially invokes cdsinit(), cdslib(), and cdsenv() to establish the
necessary configuration files for the initiation of Cadence Virtuoso in a new directory.

28

Design rules check

The function drc check tsmc65nm(cadence directory, drc rules path, library name,

top Cell) is designed to execute a Design Rule Check (DRC) on a given design spec-
ified by top Cell from a library specified by library name using the 65nm TSMC
technology. This function employs the Calibre tool from Mentor Graphics. The
procedure executed by this function includes:

1. Exporting Layout to GDS: The function first exports the layout of the top
cell in the given library to a GDSII (GDS) format file. GDSII is a database file
format which is a standard for data exchange of IC layout artwork. The function
export layout to gds performs this task. It navigates to the Cadence directory
where the library is defined and executes the strmout command to output the
GDS file.

2. Creating DRC Directory: Next, a new directory named ”drc” is created in
the current working directory. This directory will be used to store the results
of the DRC.

3. Editing DRC Rule File: The function edit calibre drc is then used to edit
the DRC rule file by updating the paths of the layout file (GDS file), the top
cell, and the DRC results database. The path of the edited DRC rule file is
returned.

4. Running DRC: The function run calibre drc runs the DRC using the Cal-
ibre tool. It takes the path of the edited DRC rule file as an argument. The
DRC rule file contains all the design rules to be checked on the IC layout. Any
stdout or stderr messages are printed.

5. Running Calibre RVE: Finally, the function run calibre drc rve is used to
launch the Calibre RVE tool. Calibre RVE is used to review the results of the
DRC. The DRC results are stored in a database file. The path to this database
file is passed to the run calibre drc rve function.

After running this function, the user should be able to see the DRC results in the
”drc” directory that was created. If any design rule violations were detected, they
will be indicated in the results.

Layout vs Schematic

The function lvs check tsmc65nm(cadence directory, lvs rules path, library name,

cell view name) performs a Layout Versus Schematic (LVS) check on the specified
design. It compares the physical layout and the schematic of the design to verify
that they match. Here’s a breakdown of what it does:

1. Initializing the SI Environment File: This function starts by generat-
ing an SI environment file in the specified Cadence directory. The function

29

init si env file performs this task. It writes certain variables and their val-
ues into the SI environment file, such as the library name, cell view name, and
various simulation settings.

2. Converting the Schematic to SPICE: The function schematic to spice

is then used to convert the schematic of the design to a SPICE netlist. The
SPICE netlist represents the schematic in a format that can be read by circuit
simulation tools. The conversion is done using the si command-line tool from
Cadence.

3. Editing the LVS Rule File: After generating the SPICE netlist, the function
edit calibre lvs is called to edit the LVS rule file. The paths of the layout
file (GDS file) and the SPICE netlist, as well as the name of the top cell, are
updated in this file. The path of the edited LVS rule file is returned.

4. Running LVS: The function run calibre lvs is then used to run the LVS
using the Calibre tool. It takes the path of the edited LVS rule file as an
argument. The LVS rule file contains the instructions and rules for the LVS
check. Any stdout or stderr messages are printed.

5. Launching the Calibre RVE: Finally, the function run calibre lvs rve is
used to launch the Calibre RVE tool. Calibre RVE is a review tool that provides
an interface for viewing the results of the LVS.

Once this function has completed, the LVS check results can be reviewed in the
Calibre RVE tool. Any discrepancies between the layout and the schematic will be
flagged.

30

5.1.2 SKILL modifications

P-Load Block Description

The P-Load block in the OTA circuit comprises two PMOS devices denoted as M8
and M9 as shown in Figure 1. The gates of these two transistors are interconnected.
The drain of M8 is connected with the drain of the N load transistor M10 while the
drain of M9 is associated with the drain of the N load transistor M11 and the output
node. As there are no common source or drain connections between these devices in
the P load sub-block, the matching process becomes more challenging.

Figure 5.1: Schematic of Loads and P current mirror

A viable solution is to utilize the ”matching in space” technique. This method is
based on placing devices as close to each other as possible, ensuring that the matching
space distance is the same between all devices to minimize process variations. Despite
its promising potential, this method introduces parasitic capacitance and resistance,
which can lead to a degree of mismatching between devices.

Another solution entails matching these devices with dummy devices, implying the
insertion of dummy devices between those that are neither common source nor com-
mon drain. This configuration forms a continuous bridge between devices, which
helps reduce the process variations previously mentioned. However, the dummy con-
nections must ensure that the dummy device remains off to prevent short circuits in
the main block routing.

The matching pattern chosen for this block to accommodate the routing of devices

31

along with the dummy devices is interdigitation. This pattern involves inserting a
dummy device between each consecutive device.

Pattern and Names Generation

Two Python functions were developed to apply the matching pattern described above.
The first function determines the positioning pattern of each device and dummy, while
the second generates names to be parsed later by the skill code for further use in the
layout.

Matching Pattern

The following list represents the matching pattern: [D P load81 , M08.1, D P load9,
M09.1, D P load8, M08.2, D P load9, M09.2, D P load91].

Name Generation The positions of the devices correspond to the coordinates of the
bottom-left corner of the gate of each specific device. To get the full length of
the device, one must add the bounding box, the gate length, and the source/drain
terminal length, as illustrated in Figure 2.

Figure 5.2: Single device representation

A starting point representing the beginning of the block is required to get the posi-
tions of all devices. This starting point is the position of the end of the last device
in the adjacent block (either vertically or horizontally), plus the minimum spacing
multiplied by a safety factor. This methodology helps determine a starting point for
the X and Y positions.

To calculate the position of the next device in the X direction, the ending position
of the device is computed and added to the gate length of the dummy since source

32

and drains are shared with adjacent devices. For the Y positions, the position of
the device ending in the vertical direction is calculated and added to the minimum
spacing multiplied by a safety factor, along with the bounding box of the device.

The X position of the dummy devices placed between the devices is determined as
the position of the previous device (M8/M9) plus the gate length and source/drain
length of the device. For the first dummy at the right, it is inserted separately, and
its position is the position of the first device subtracted from the gate length and
source/ drain length of the device itself.

The output of this operation is four lists: one for the X positions of devices and
dummies combined, one for the Y positions, one for the X positions of devices, and
one for dummy devices. All lists have the same length corresponding to a single row
of multipliers.

First, the names of the device list and the dummy device list are generated separately.
For M8 and M9, the naming follows the pattern ”device name.index” (M8.1, M9.1,
M8.2, M9.2, etc.), while the dummy devices are named in the form of D P load(index)
(D P load1, D P load2, etc.).

To determine the required matching pattern, the device names need to be combined
in a single list alternately. This task is accomplished by the following algorithm:

Algorithm 1 Device Name Combination

1: Determine the dimensions for a new 2D list:

– Get the size of ’device names’

– Get the size of ’x list p load with dummy’ (positions of devices and dummy de-
vices)

2: Create a new 2D list ’device names with dummy’, initializing all elements to 0
3: for each entry in ’device names’ do
4: for each entry in ’x list p load with dummy’ do
5: if index is even then
6: Assign the corresponding entry from ’dummy names’ to ’de-

vice names with dummy’
7: else
8: Assign the corresponding entry from ’device names’ to ’de-

vice names with dummy’
9: end if
10: end for
11: end for

Input File and Schematic Modification

There are four main categories of dummy devices in the P load block, each differing
from the others in terminal connections. To simplify routing and schematic modifica-

33

tion, each category was assigned a unique naming method, allowing for differentiation
between these devices and their connections.

For each row, the first dummy on the left is named D P load81(index), while the last
dummy on the right is named D P load91(index). The dummy before the M9 device
is named D P load9(index), while that before M8 is named D P load8(index).

The names of these dummy devices were updated according to the criteria explained
above using the following logic when writing to the input file:

Algorithm 2 Dummy Devices Name Update

1: for each device name do
2: for each element in ’x list p load with dummy’ do
3: if index is 0 and the name contains ”D p load” then
4: Replace ”D p load” with ”D p load.81” in the name
5: Write the updated name, corresponding element from

’x list p load with dummy’, and corresponding y-value to the file with
spaces in between

6: else if index is the last in the list and the name contains ”D p load” then
7: Replace ”D p load” with ”D p load.91” in the name
8: Write the updated name, corresponding element from

’x list p load with dummy’, and corresponding y-value to the file
9: else if name contains ”D p load” then
10: if next name contains ”M08” then
11: Replace ”D p load” with ”D p load8” in the name
12: Write the updated name, corresponding element from

’x list p load with dummy’, and corresponding y-value to the file with
spaces in between

13: else if next name contains ”M09” then
14: Replace ”D p load” with ”D p load9” in the name
15: Write the updated name, corresponding element from

’x list p load with dummy’, and corresponding y-value to the file with
spaces in between

16: end if
17: else
18: Write the current name, corresponding element from

’x list p load with dummy’, and corresponding y-value to the file with
spaces in between

19: end if
20: end for
21: end for

In the schematic modification, new dummy devices, along with their information in-
cluding net connections, technology, transistor type, length, width, number of fingers,
and number of multipliers, are written in a file named ”Schematic Modification”.

34

Figure 5.3: Schematic Modification for P Load

The input file and schematic modifications are two output files extracted from the
Python program and are given as inputs to the skill code. The first part to be
executed in the skill code will be the schematic modification, which adds the new
dummy devices of the P Load to the schematic file with proper connections to pass
the LVS test.

Figure 5.4: Schematic Modification Logic

Routing

Drain Connection

Each device’s drain is linked to a unique horizontal rail, as illustrated in Figure 5.6,
because they each connect to separate blocks. Consequently, a pair of horizontal
rails are established at the block’s upper section, aiding the subsequent stage of
global routing.

35

Figure 5.5: Schematic Modification Output

The P-load drains are guided using appropriate metal strata, with their width de-
termined based on the user’s input current and the metal’s current capacity, which
varies according to the utilized technology.

Devices constituting the P-load are initially pinpointed and stored in variables, allow-
ing for the individual routing of each device. Horizontal pathways, created beneath
the P-load block, employ a suitable metal layer. Vertical pathways stem from the
drain terminals of each device, connecting to one of the horizontal paths via vias.
The count of vias bridging the vertical and horizontal routes is contingent on the
width of the horizontal pathways, calculated to span the width of the horizontal
route with two columns of cuts. If stacking is utilized, the second and fourth metal
layers are employed for vertical routing, while the third and fifth metal layers are
used for horizontal routing. Stacked vias are used in lieu of standard vias. Labels
are appended as required for future stages in global routing.

As described earlier, there are 4 categories of dummy devices, where the only differ-
ence between these categories is the connections of the nets.

The first dummy in the row is the dummy on the very left of the row , this dummy
device, regardless of which row it exists, has the three terminals (source, drain, gate)
connected to the first signal rail. This dummy is named as D P Load81(index).

The second dummy is the one having the M8 device before it and M9 device after
it, so it is sharing a drain with the source of M9 connected to the second signal rail
and a source with the source of M8 connected to the first signal rail. The gate is
connected to the source of the dummy in this case, which is the first signal rail.

The third dummy is the one having the M9 device before it and M8 device after it, so
it is sharing a drain with the source of M8 connected to the second signal rail and a

36

source with the source of M9 connected to the first signal rail. The gate is connected
to the source of the dummy in this case, which is the second signal rail.

The fourth dummy is the dummy on the very right of the row. This dummy de-
vice, regardless of which row it exists, has the three terminals (source, drain, gate)
connected to the second signal rail. This dummy is named as D P Load91(index).

Note that the gates of all dummies are connected to their own sources, which is the
source of the previous device as well. This ensures that VGS of the dummy device is
always zero, making sure the dummy is off.

Figure 5.6: P Load layout

In order to output the connections seen in Figure 5.6, the skill code logic flow is as
follows for the P Load Gate part.

For the drain and source connections

of the dummy devices, they all have common sources and drains with the sources of
the adjacent devices, so no new connections were established in this section. However,
the source of the first dummy in the row and the drain of the last dummy in the row
are not connected since there exist no devices to their other side.

37

Figure 5.7: Dummy logic in Skill

In the drain section of the skill code, a check condition is added: if the instance name
is D P Load81, which means that this is the leftmost dummy in any row, a vertical
path is created connecting all vertical devices and a via connecting this path with
the first signal rail.

In the source section of the skill code, a check condition is added: if the instance
name is D P Load91, which means that this is the rightmost dummy in any row, a
vertical path is created connecting all vertical devices and a via connecting this path
with the second signal rail.

P and N Current Mirrors

For the P Current Mirror, it consists of three PMOS transistors (M5, M6, M7) where
the gates of the three transistors are connected to the drain of the M5 device, and
the sources are pulled up to VDD while drains of each device are connected to a
separate signal according to the OTA main schematic. While for the N Current
mirror, it consists of three NMOS transistors (M2, M3, M4) where the gates of the
three devices are connected together along with the drain of M2 that is connected
to the IBIAS signal, and the sources of all devices are pulled down to ground. Each
device’s drain is connected to a separate signal.

The matching pattern associated with these blocks is common centroid, as it acts as
the most reliable method for matching the three devices of the current mirror. In
previous designs, if the input of any of the device’s multipliers is an odd number,
the python algorithm would change the width of the unit cell in order to adjust the
multiplier to be an even number. Making sure that the product of (multipliers ×
fingers × width) is constant, the number of multipliers could change accordingly to
be an even number. An even number of multipliers is required for easier and better
matching. However, designers may find it very restrictive to change the width of the

38

devices in some applications. For this reason, an option was encountered where if the
number of multipliers is odd, instead of changing width, the new algorithm would
add a number of dummies as to round up the number of multipliers to the next 2n.
Extra dummy devices are added to enhance matching and remove the mentioned
restriction. Nevertheless, the pattern by which these extra dummy devices are added
is very crucial; it must serve the matching purpose without altering block operation.
Not to mention that these dummy devices would be required to be off. Figure
5.8 shows the schematic of the P Current mirror block, while Figure 5.9 shows the
schematic of the N Current mirror.

Figure 5.8: Schematic of P Current Mirror

Pattern and names generation

The detailed explanation in this section is performed on the P Mirror, however, the
exact algorithms go applied to N Mirror. For these two blocks, the

user is allowed to choose the option of whether they prefer to add dummy devices to
the odd number of multipliers or just change the width and perform the previous algo-
rithm. The matching pattern for the P Current mirror for a single row is [D P mirror,
M7.1, M7.2, M6.1, M5.1, M5.2, M6.2, M7.3, M7.4, D P mirror]. Let’s assume that
the M7 device has an odd number of multipliers; therefore, the matching pattern
would instead be [D P mirror, M7.1, D P mirrorM7(1), M6.1, M5.1, M5.2, M6.2,
M7.3, M7.4, D P mirror], where D P mirrorM7(1) is the added dummy to compen-
sate for the missing multiplier in the row. Accordingly, for the N Current mirror for
the same case, the matching pattern would be [D N mirror, M4.1, D N mirrorM2(1),
M3.1, M2.1, M2.2, M3.2, M4.3, M4.4, D N mirror].

The following pseudo code shows how the coordinates of the devices’ positions are
generated along with the dummy devices’ positions.

The previous flow chart explains how the positions of devices are calculated and
handled if there exist extra dummies that need to be inserted. It is worth noting
that until this step, the dummy is treated as a normal device in terms of positioning;
it is not yet differentiated from the other devices. The variable center x3 is the
starting point from which the very first device in the row would be located. This

39

Figure 5.9: Schematic of N Current Mirror

method is used for the X positions. On the other hand, for the Y positions, the
following pseudo code explains the process.

1. Initialize an empty list y list p mirror.

2. Iterate through the range of n row p mirror p load.

(a) Calculate the value of y for each iteration using the formula: i×(min device spacing×
1.5 + b box oxide× 2 + x 6 2) + y 2.

(b) Append the calculated y value to the y list p mirror list.

3. The resulting y list p mirror will contain the calculated y values for each iter-
ation.

Where n row p mirror p load is the number of rows of the P mirror block, x 6 2 is
the vertical dimension of the device itself, and Y 2 is the starting position of the first
block.

In order to define the required pattern, the generated coordinates should be assigned
to correct names that correspond to each device. In this section, the dummy devices
will be differentiated from the other devices. The dummy devices of each device are
named after it, as this naming method will be essential for schematic modification
for connecting nets as well as for routing.

40

Figure 5.10: Flow chart of position generation

The following flow chart describes the name degeneration of both dummies and de-
vices.

Let’s assume M7 has a number of multipliers equal to 5, therefore, 3 dummies need
to be added.

Devices names Dummies names
M7.1 D P LoadM7(1)
M7.3 D P LoadM7(3)

M7 left M7 right
M7.1 M7.2
M7.3 M7.4

Table 5.1: Outputs of each list of the algorithm M7

sectionInput file and Schematic modification

5.1.3 Input file

In order to obtain the pattern shown in figure 11, the skill code should run taking
proper input and schematic modification files. Therefore, the dummies added should
be written to the input file. The following pseudo code shows how this operation
takes place.

1. Iterate over each row in arr_pattern_p_mirror using the outer loop variable i.

2. Within each row, iterate over each element using the inner loop variable j.

3. Check if the substring of arr_pattern_p_mirror[i][j] before the first occurrence of "(" is equal to "D_p_mirrorM7".

4. If the condition is true, perform the following sub-steps:

4.1 Write the concatenated string of arr_pattern_p_mirror[i][j], x_list_p_mirror_with_dummy[j], and y_list_p_mirror[i] to a file.

4.2 Repeat steps 2-4 for all elements in each row of arr_pattern_p_mirror.

5. Repeat steps 1-5 for all rows in arr_pattern_p_mirror.

Note that the list arr pattern p mirror is the final concatenated list just obtained,
this example is on M7, same goes for all other devices of both blocks.

41

Schematic modification The extra dummies should be inserted in the schematic
modification file.

Dummy connection For each block, there exists three categories of dummies, one
for each device. It is important to realize that the three categories have different nam-
ing and that it’s essential to assign each category with the correct nets connections
according to the device it is associated with. The dummy device would be sharing
sources and with the sources of the adjacent devices so no modification done in this
part. Note that this dummy would have 2 fingers like the device itself. The dummy
is treated as a device and its gate is connected to the gates of the rest of the devices.
Since we need the dummy to be off for proper operation the drain must be connected
to VDD to incur a VDS of zero and an off state. The VDD is a really strong and
stable single, therefore, it is acceptable to have a value for the VGS, the device will
never be on due to the high stability of the VDD that will ensure zero VDS.

42

5.1.4 Project Testing and Evaluation

Finally, the code was tested on several cases in different technologies and all test
results were reviewed and evaluated; all aims of the code such as constraints, DRC
LVS, non-formal constrains, layout quality and consistency of the layout generated
structures were achieved successfully. These requirements are met by using good
matching techniques and shielding that enhance immunity to noise, accurate coor-
dinates and pattern generation, etc. For reliability, metal widening was done to
overcome electromigration, double cut vias was used in all the structures even the
big ones to increase yield. Furthermore, the LUP issue was solved by adding a guard
ring strips in the layout to isolate the unwanted low impedance path between supply
and ground. In addition, bulk contacts were created at top and bottom of the chip
to achieve minimum area and to enhance reliability. The runtime of the skill code is
less than 1.5 min.

First test case

Block Length (um) Width(um) Fingers Multipliers
M5 1 4 2 16
M6 1 4 2 15
M7 1 4 2 9
M8 1 4 2 16
M9 1 4 2 16
M2 2 2 2 32
M3 2 2 2 16
M4 2 2 2 16
M10 2 2.5 2 8
M11 2 2.5 2 8
M0 2 2.5 2 32
M1 2 2.5 2 32

Table 5.2: first test case

43

Second test case

Block Length (um) Width(um) Fingers Multipliers
M5 1 5 2 8
M6 1 5 2 8
M7 1 5 2 15
M8 1 4.4 2 16
M9 1 4.4 2 16
M2 2 2 2 32
M3 2 2 2 16
M4 2 2 2 17
M10 2 2.5 2 8
M11 2 2.5 2 8
M0 2 2.5 2 32
M1 2 2.5 2 32

Table 5.3: Second test case

44

Figure 5.11: Name degeneration flow chart

45

Figure 5.12: Placement of PCurrentmirror

Figure 5.13: Schematic modification file of P mirror

Figure 5.14: Schematic modification in schematic file

46

Figure 5.15: Dummy logic in skill

47

Figure 5.16: Layout

Figure 5.17: DRC

48

Figure 5.18: LVS

49

Figure 5.19: Layout

Figure 5.20: DRC

50

Figure 5.21: LVS

51

Chapter 6

Cost Analysis

Cost Analysis

Cost

Recurring expenditures account for the majority of ongoing costs. On the other
hand, non-recurring expenditures are associated with the ongoing maintenance and
functionality enhancement of the code. However, these expenditures are insignificant
compared to the cost of manual layout design, as it consumes more time and effort.
Furthermore, layout automation technologies may provide time savings, allowing
engineers to dedicate more time to optimization rather than manually routing and
rectifying Design Rule Check (DRC) and Layout Versus Schematic (LVS) problems.

Another cost factor is the Computer-Aided Design (CAD) software that will be used
to test the design and/or build the integration. In our situation, Zewail City provides
the Cadence Virtuoso license and student Process Design Kit (PDK).

Environmental Impact

The tool primarily consists of software and does not have a direct impact on the envi-
ronment. However, as our tool makes it easier for fabrication houses to increase yield
and improve the fabrication process, the environment may be negatively affected if
the operation of fabrication in industries is not well controlled, leading to an increase
in the pollution rate.

Manufacturability

The developed tool ensures DRC and LVS clean layouts, saving several hours of work,
as layout engineers usually spend a significant amount of time repairing unintentional
DRC violations during the placement and routing process. The tool creates a match-
ing pattern for the devices while also allowing the designer to change the locations
of any of them, ensuring flexibility and saving time in creating a matching pattern

52

for frequently used blocks. As engineers encounter fewer DRC and LVS issues, the
company may reduce the number of licensed products it purchases, especially when
human modifications to the generated design are required.

Ethics

The company can potentially reduce the number of licensed products it purchases,
especially when human modifications to the generated design are required.

Social and Economic Impact

The social and economic impact can be clearly observed in the design cycle. Analog
layout automation, in general, shortens the design cycle time and effort, which may
encourage businesses to include more analog components in their devices. In the
long run, analog layout automation may impact the manual analog layout business,
with certain cases transitioning to a more engineering-supervised process or even full
automation.

Sustainability

Sustainability and working with a wide range of technologies pose real challenges to
our work. However, the code is designed to be technology independent. Although it
has been tested and achieved 100

53

Chapter 7

Conclusion and Future Work

7.1 Conclusion

In conclusion, the automation of analog layout design is a critical area of research and
development in the field of integrated circuit design. The historical advancements in
transistor technology and the emergence of integrated circuits have paved the way
for the need to automate the layout process, especially for analog circuits.

The layout process plays a crucial role in determining the performance, reliability,
and manufacturing yield of analog integrated circuits. Manual layout design, while
effective, has become impractical due to the increasing complexity of IC designs and
the need for faster turnaround times. This has led to the development of automated
analog layout tools that leverage advanced algorithms to optimize layout parameters
and improve overall circuit performance.

By automating the layout process, designers can achieve optimized layouts more
efficiently, reduce power consumption, increase circuit efficiency, and enhance the
manufacturing yield of chips. Automation also helps minimize the impact of parasitic
effects and enables designers to focus more on the performance and functionality of
the circuit rather than the intricate details of layout design.

However, there are still challenges and limitations that need to be addressed in the
field of automated analog layout design. These include the need for adaptable and
technology-agnostic tools, addressing the complexities of advanced technology nodes,
improving user-friendliness, handling parasitic effects, and integrating power opti-
mization capabilities.

Despite these challenges, ongoing research and development efforts continue to push
the boundaries of analog layout automation. As technology continues to advance,
automated analog layout design tools will play an increasingly vital role in enabling
the creation of high-performance, low-power analog circuits. With the advancements
in machine learning, cloud-based collaboration, and power optimization, the future
of automated analog layout design looks promising, offering designers more efficient
and effective tools to bring their analog circuit designs to life.

54

Extended Future Work for Automated Analog Lay-

out Program

There are several avenues of future work to enhance the functionality of the auto-
mated analog layout program for OTA circuit design. Firstly, there is potential to
evolve the graphical user interface into a technology-agnostic script, bolstering its
adaptability across diverse technology platforms. Secondly, the objective of creating
a parameterized cell could be set as a milestone, contributing to the establishment
of a valuable intellectual property.

The future scope could also involve the strategic optimization of the area consumed by
incorporating features such as routing over devices and employing a variable global
routing approach. This would potentially result in a more compact design, thus
enhancing the efficiency of the layout. Additionally, making the tool adaptable to
handle different aspect ratios could offer greater flexibility in design choices.

The idea of developing a mechanism that rectifies designer errors in real-time, en-
hancing the robustness of the tool, could also be pursued. In the realm of supply
current circuits, advancements could be made to the PMOS and NMOS current mir-
rors, including biasing the differential pair and the amplifier. The intention is to aim
for a complete automation of the current mirror design specifications and its layout
generation.

A more user-centric approach can be adopted by enabling the user to choose the
matching method. This could enhance the customization and user-friendliness of the
tool. Additionally, the tool could be designed to handle more than one finger, offering
more flexibility in the design process.

Finally, an additional feature could be created for designs with an odd number of
multipliers. This feature could provide two options to the designer: working matching
with dummies or adjusting the design specifications. This would enable the user to
make a choice based on their specific needs and design constraints, thus making the
tool more versatile and adaptive.

Furthermore, exploring the integration of machine learning algorithms into the au-
tomated analog layout program holds great potential for future advancements. By
leveraging the power of machine learning, the program can learn from previous de-
signs and layout iterations, allowing it to generate more optimized layouts with mini-
mal human intervention. This could significantly reduce the time and effort required
for manual layout adjustments and fine-tuning.

Another avenue for future work involves enhancing the program’s ability to handle
parasitic effects. By incorporating advanced modeling techniques and algorithms,
the program can accurately account for parasitic capacitances, resistances, and in-
ductances that affect circuit performance. This would enable the tool to provide
more accurate estimations of circuit behavior and improve the overall design quality.

Moreover, extending the program’s functionality to support advanced technology
nodes, such as FinFET or nanoscale CMOS, would be a significant step forward.

55

These advanced technologies pose unique layout challenges due to their complex
structures and manufacturing processes. Adapting the program to handle these chal-
lenges would open up new possibilities for designing high-performance analog circuits
using cutting-edge technologies.

To foster collaboration and knowledge sharing among analog circuit designers, incor-
porating a cloud-based platform for the automated analog layout program could be
explored. This would allow multiple designers to work on the same project simul-
taneously, facilitating teamwork and enabling real-time feedback and collaboration.
Additionally, the cloud platform could serve as a centralized repository of design
libraries, templates, and best practices, further enhancing productivity and design
quality.

Lastly, considering the increasing demand for energy-efficient and low-power analog
circuits, integrating power optimization capabilities into the automated layout pro-
gram would be highly valuable. This could involve developing algorithms that analyze
the circuit’s power consumption and suggest layout modifications to minimize power
dissipation while maintaining performance requirements. By incorporating power
optimization as an integral part of the layout process, the program would contribute
to the development of energy-efficient analog designs.

In conclusion, the future work for the automated analog layout program involves
expanding its adaptability to different technology platforms, optimizing layout area
and flexibility, improving robustness and user-friendliness, exploring machine learn-
ing integration, addressing parasitic effects, supporting advanced technology nodes,
introducing cloud-based collaboration, and incorporating power optimization capa-
bilities. By pursuing these avenues, the program can evolve into a comprehensive
tool that empowers designers to create high-performance analog circuits efficiently
and effectively.

56

References

[1] “Analog Layout Synthesis” (2011). Available at: https://doi.org/10.1007/978-1-
4419-6932-3.

[2] Placement with symmetry constraints for analog . (Accessed: March 4, 2023).

[3] Implications of proximity effects for analog design (no date). Available at: https://picture.iczhiku.com/resource/eetop/sHIgSkDzJFqraXxm.pdf
(Accessed: March 4, 2023).

[4] L. Minghorng, D.G. Wong, Slicing tree is a complete floorplan representation,
inproceedings on Design, Automation and Test in Europe (DATE), Mar 2001, pp.
228–232.

[5] Sajid, Khusro Carothers, Jo Rodriguez, Jefrey Holman, W.. (2001). Global rout-
ing methodology for analog and mixed-signal layout. Microporous and Mesoporous
Materials - MICROPOROUSMESOPOROUSMAT. 442 - 446. 10.1109/ASIC.2001.954742.

[6] Marolt, Daniel. (2019). Layout automation in analog IC design with formalized
and non formalized expert knowledge.

[7] Torabi, M., (2018). Analog Layout Design Automation: ILP-Based Analog
Routers.

[8] H.-C. Ou, H.-C. C. Chien, and Y.-W. Chang, ”Nonuniform multilevel analog
routing with matching
constraints,” IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems, vol. 33, no. 12, pp. 1942-1954, 2014.

[9] S. Bigalke and J. Lienig, ”Load-aware redundant via insertion for electromigra-
tionavoidance,” in Proc. of International Symposium on Physical Design - ISPD ’16,
pp. 99- 106, 2016.

[10] Electromigration in metals - IOPscience - Institute of Physics. Available at:
https://iopscience.iop.org/article/10.1088/0034-4885/52/3/002/meta (Accessed: March
4, 2023). [11] Fast maze router - janders.eecg.utoronto.ca (no date). Available
at: https://janders.eecg.utoronto.ca/1387/readings/soukup.pdf (Accessed: March 4,
2023).

[12] Sedgewick, Robert (2002), Algorithms in C++: Graph Algorithms (3rd ed.)

[13] Gass, Saul; Fu, Michael (2013). Gass, Saul I; Fu, Michael C (eds.). ”Dijk-
stra’s Algorithm”. Encyclopedia of Operations Research and Management Science.
doi:10.1007/978-1-4419-1153-7

57

[14] A method for the shortest path search by extended Dijkstra algorithm Avail-
able at: https://ieeexplore.ieee.org/abstract/document/886462/citations (Accessed:
March 4, 2023).

58

	List of Tables
	List of Figures
	Introduction
	General Introduction and Overview of the Topic
	Problem Definition
	challenges and limitations of the traditional manual layout
	Challenges related to analog design its self

	Objectives
	Pattern Recognition
	Block and Global Routing

	Functional Requirements/product specification
	Report Organization

	Standards to be used
	Market and Literature Review
	Placement
	The Absolute Representation
	The Topological Representation
	Slicing Representation
	Non- Slicing Representation
	Routing
	Problem Definition of Analog Routing
	Routing Algorithms

	Project Design
	Project purpose and constraints
	Project purpose
	Constraints

	Project Technical Specifications
	Software Program Requirements Specifications
	Layout Quality
	Functionality
	Consistency
	Layout Alternatives and Justification
	Description of the Selected Design

	Block Diagram and Functions of the Subsystems

	Project Design
	Description of Each Subsystem
	Graphical User Interface
	SKILL modifications
	Input file
	Project Testing and Evaluation

	Cost Analysis
	Conclusion and Future Work
	Conclusion

	Nomenclature
	References
	References

