m Facu of Engimeering - Cairo University
Cre it Hour System Programs

Communication and Computer Engineering . !

CCEE - &

Graduation Project Report
Spring 2022

Measurement of Code Coverage by Black
Box Testing of Web-based Applications

SIEMENS

Prepared by:

Shaimaa Gamal Abostiet
Waed Raed Sabri
Anoud Emad Abdelmoneim
Reem Sameh Mohammed
Loay Samy El Masry

Supervised by:

Prof. Dr. Hassan Mostafa

Graduation Project-2 Measurement of Code Coverage by Black Box Testing of Web-based Applications Final Report

CUFE Spring 2022
CCE-E Senior-2 Level
Credit Hours System Graduation Project-2
CCENA481

oG, w\"'

rg\ CAIRO CODE
¥, COVERAGE

Graduation Project-2
“Measurement of Code Coverage by Black

Box Testing of Web-based Applications”
Final Report

Submitted by:

Shaimaa Gamal Abostiet
Waed Raed Sabri
Anoud Emad Abdelmoneim
Reem Sameh Mohammed
Loay Samy EI Masry

Supervised by:

Prof. Dr. Hassan Mostafa

CCE-E

Graduation Project-2 Measurement of Code Coverage by Black Box Testing of Web-based Applications Final Report

Acknowledgment

Listed below are the names of the people who provided us with significant help in developing
our graduation project in addition to our sponsor Siemens EDA. To all we extend our sincere
thanks.

Dr. Hassan Mostafa
Dr. Eman El Mandouh
Eng. Haytham Shoukry

Eng. Abdelrahman Saleh

Eng. Ziad Abdelati

Eng. Salma Faheem

CCE-E 2

Graduation Project-2 Measurement of Code Coverage by Black Box Testing of Web-based Applications Final Report

Abstract

With the recent developments in software applications, the validation of such applications became
an important process to take into consideration. Software testing is a process of ratifying the
functionality of software. It is a crucial area which consumes a great deal of time and cost. There
are many metrics that can be used to confirm the efficiency and effectiveness of the software
testing such as code coverage. Code coverage is a software testing metric that determines the
number of lines of code that is successfully validated under a test procedure, which in turn, helps
in analysing how comprehensively a software is verified. Furthermore, we can use such code
coverage data to optimize the test cases to make it more effective.

This project aims to measure the code coverage data by executing black box testing on a web
application. Our approach was to calculate the code coverage data for the frontend and backend
separately, by executing test cases using a test automation tool. The raw data collected from the
test cases would then be formulated into readable html reports.

The test suite size tends to increase by including new test cases due to software evolution.
Consequently, the entire test suite cannot be executed considering budget and time limitations.
Which is why another objective was to utilize the code coverage data in reducing large test suites.
We did so by applying some machine learning algorithms.

CCE-E 3

Graduation Project-2 Measurement of Code Coverage by Black Box Testing of Web-based Applications Final Report

Table of Contents

ACKNOWIBAGMENT ...t et e e e et e re e s beebeaneesreesteaneesreenneas 2
Y 01 - Vo PSR P TP 3
LIST OF FIQUIES ...ttt et et e s et et s e et e e be e st e sreebeaneesreenna s 7
LISE OF TADIES ...t b e bbbttt bbbt eene e 8
I | 01 oo [0 Tox 1 o] USSP PRPRPRN 9
1.1, ProjeCt OBJECHIVEoiuieiiiiiieeeee et 9
1.2, PrOJECT PRASES ...ttt bbbttt 9
IR TR = 7 ot [(o1 Vo RSP SSS 10
LA, THME PIAN ..t bbbttt 11
2. Building and testing a prototype Web AppliCatioN...........cccooeiiiiiiiiiiiceeese s 11
2.1, BACKENot ettt e enes 12
N o (010111 o o SRR 13
P20 T =TS e KL=l U 1 (o] 4 LA o o SR 15
3. Code coverage research and implementationcccccevieiieie i s 15
3.1, Back-end CoUE COVEIAQE.ccuieiieiiierie ettt sttt bbb 16
3.1.1. PropoSed apPrOaCRES.......ccuiiiieieieie et 16
3.1.2. Best-fit approach implementation..............ccccoveveiieiiicie i 16

3. 1.3, REQUITEIMENTS ...ttt bbbttt nb e b 18

3.2, Front-ENd Co0E COVEIAQE........cieiieiiieiiesieste sttt sttt 19
32,1, NQWEDAIIVEL ...ttt et ste e nre e 19
3.2.2. UNIETESTING ...ttt b e bbbttt e bbb 20
3.2.3. ISEANDUL (NYC) e 20
3.2.4. Webpack ChallBNQES.c.vveiieiie et 22
3.2.5. Remap IStanbul @pproach..........cccoeiiiiiiiiiiiiee e 24

4. Merging COde COVEIAge MBSUILSoouiiiiiiieieiie st 25
4.1. Backend Merging STEPS......cccuiiiieiiieiie ittt e et e e e nbe e e rae 25
4.2, Frontend MErging STEPSccueiuiiiiiiieieieie ettt b e bbbttt bbbt 27
5. Deployment on a Real Case Web APPHCALIONccooiiiiiiiiiiieseeseee e 29
5.1. Applying the Code Coverage MeaSUIEMENTccccivueeirieiiieeiiesiee e e e e sreeseeeeeeas 29
511 INEOTUCTION ...t bbbttt 29
5.1.2. VIQ WOIKSNOPSvveieeiiiiie ittt ettt sneeteanaenneenneenee e 30
5.1.3. AdJUuStMENtS NEEUETceiiuiiiiiie e 31

CCE-E 4

Graduation Project-2 Measurement of Code Coverage by Black Box Testing of Web-based Applications Final Report

5.1.4. Deployment of Back-End code coverage measurement to the Real Case application

32
5.1.5. Deployment of Front-End code coverage measurement to the Real Case application
34

516, EQItEA FIIES .o bbb 35
5.1.7. Summary for Deployment on Real Case Web Application...........cccccvveninvnnnnnnn 36
5.2, RUNNING & Ul FEOIESSIONveevviciieciece ettt nas 36
5.2.1. Preparation steps for running a full regressionccccoeviveie i 36
5.2.2. Processing Data fOr TESt CaASES.......ccuriiiririiieieie et 37
5.2.3. Useful hints for processing data............cccccvuevveiiiienieie e 37
5.2.4. Processing Data for the RegreSSiONccccvvevieiieiieie e 39

5.2.5. Results of running a full Regression on Coverage Analyzer using Regression
LAUNCRET TOOL ...ttt bbbttt bbb sbesnenneas 40
5.3, FINAI PACKAGEeivieiieeete ittt 41
5.4. Challenges in DeployMENt PrOCESSooiiiiiiiieieieieie et 42
5.5. Formatting the results for usage in appliCations.............ccccoevieieeve i 43
6. Applications OF COAE COVEIAGEeoviieiiierieriesii ettt 44
6.1. Introduction to Code Coverage APPIICALIONS.........ccooviiiiiiieiiiirieeee s 44
6.2. Applications Using Code Coverage ReSUILSccceoveiveiieiieie e 46
6.2.1. Selection and PrioritiZation..........cccooeieiiiiiiiieiee e 46
6.2.2. EXposure of UNUSEd COUEccooiiiiiiiiiiriesieee e 49
6.2.3. Test Case Size MINIMIZALIONcceieiiiiiicieeeee e 49
6.2.4. Test Suite ReAUCHION (TSR) ...coviiiiiiiice et 49
6.3. Test Suite Reduction Implementation Using Code Coverage & Machine Learning..... 50
6.3.1. INTrOTUCTION ... ettt ettt sr e b 50
6.3.2. K —Mean Clustering Algorithmcccooiviiiiiiiic e 54
6.3.3. Greedy AlGOITNMooo i 63
6.4. Future Work and CONCIUSIONooiiiiiiiiiec s 69
7. Scalability 0f the TOOL.........ooiiie e 70
7.1, Frontend SCalabilitycooiiiiiii s 70
7.2, Backend SCalability..........cccueiiiiiiiiie e 70
7.3, TeSt AULOMALION TOO!c.eiiuiiiiiieiiee e et 71
7.4, TeSt SUIE REAUCTIONouiiiiiiiiiiieieiee e e 71
8. OVerhead CalCUIALIONSccueiiieie et b e e 71
8.1 DUSK SPACE ... eeeuiiitiiitieie sttt bbbt bbb b eneenrs 71

CCE-E 5

Graduation Project-2 Measurement of Code Coverage by Black Box Testing of Web-based Applications Final Report

ST = TV | o I I PSR 71
8.3, Memory CONSUMPLION.......ccviiieiieieeiesie st se et e steeste e ste et e e staesae e e sreesesreesneeeesneenras 72
Bi4. RUNTIME ...ttt ettt bbbt e ettt b et e b anes 72
(070 0 0d [11 [o PSSP 73
R EIENICES ...ttt bbb bbb bRt R ettt bbb ne e 74
N o] 01 0 L OSSR 77
APPENAIX AL COUR ...t b bbbttt e bbbt b e 77
APPENTIX B LICENSES ...t ciie sttt st te st te e s taesae st be et e s saesaeesaeeseesbeenbeaneesreenreanee e 99

CCE-E 6

Graduation Project-2 Measurement of Code Coverage by Black Box Testing of Web-based Applications Final Report

List of Figures

FIGURE L. TIME PLAN.eeeeeiettie et ettt ettt e e e ettt e e et e e et e e e eta e e e e tbeeeeeasaeeeeataeeeeasteeeseasseeeaatseeeansseseeassaeeeasseaeanns 11
FIGURE 2: APl TESTING USING POSTIMANooiiiiiiieiiiiie e ettt eetee e e ettt e eeete e e eettaeeeetaeeeeeateeeeeaseeeeetseeeessseeeeeseeeeasseaeanns 13
FIGURE 3: FRONTEND AP DESIGNcccttitieiiiieeeieeeeeiteeeeeeteeeeeteeeeeeteeeeeeseeeeetseeeesetaeeesassesesessseeeasseeeesssseeeeseseeansseeeanns 14
FIGURE 4: EMPLOYEE MANAGER WEB APPLICATION .15
FIGURE 5: LCOV - CODE COVERAGE REPORT ...ccuvteiiieitieesieeiteesteesreesiseesteesssessasessssessnsessssesssassssessssssessessssessnsessnses 16
FIGURE 6: BUILDING JAR FILE USING INTELLII .. uvteiieiiieeeteeiteeeteesiveesreesteesreesaveesaseesasesesessnsasesessssesensesssesensessnses 17
FIGURE 7: EMPLOYEE MANAGER BACKEND COVERAGE REPORT USING JACOCO..... .18
FIGURE 8: EMPLOYEE MANAGER BACKEND COVERAGE REPORT - HITS & MISSES.....cccviiiiiiieeeeiieeeeeee et 18
FIGURE 9: NGWEBDRIVER TEST CASE SNIPPET.....ciiiiittteeeiteeeeeitteeeeitteeeeeteeeeeseeeesitaeeeessseeeeassseesassseseesssssessssssesassseesanns 20
FIGURE 10: FRONTEND CODE SNIPPET FOR DUMPING COVERAGE DATAooiiteee ettt eeevee e eeaeeeeevvee e 21
FIGURE 11: EMPLOYEE MANAGER FRONTEND COVERAGE REPORToiiitiiiiieteeeeeteeeeetee e eeteeeeetreeeeeveeeeeaneeeeeaveeeenns 22
FIGURE 12: EMPLOYEE MANAGER FRONTEND COVERAGE REPORT ERRORcoiiiiiieieiiiieciieee e cireeeetee e eetee e e evaee e 22
FIGURE 13: WEBPACK INSTALLATION PROCESSciiitiieeiciitieeiiieeesiteeeestteeesetteeeesataeeessteeessasssaessssessensssssssssssessnssesennes 24
FIGURE 14: EMPLOYEE MANAGER BACKEND UNMERGED REPORTS ...ccciititieiiiieeeiiieeeeiiteeeesrteeestresessssseessssssesssseeennns 27
FIGURE 15: EMPLOYEE MANAGER BACKEND IMERGED REPORTuvviiieiiieeceieeeeeteeeeeetreeeeeneeeeetveeeenaneeeseneeeeesneeeenns 27
FIGURE 16: EMPLOYEE MANAGER FRONTEND - ADD & DELETE FUNCTIONS HIT IN MERGED REPORTcccceeeevveeene. 28
FIGURE 17: EMPLOYEE MANAGER FRONTEND — DELETE FUNCTION HIT ..ooiiiiiiiiicieee e et
FIGURE 18: EMPLOYEE MANAGER FRONTEND — ADD FUNCTION HIT
FIGURE 19: COVERAGE ANALYZER Ul ...ooiiiii ettt e ettt e e sttt e e e st e e e stta e e saaaaaasataeeeessaeesansaseeansaeseanns
FIGURE 20: GRADLE VS IMAVENcoti ittt eeitiee e ettt e ettt e e ettt e e setaeeeesataeesesttaeesassaaeesstaeseanstaeesssasesansseseanssssesassaseeansseeeanes
FIGURE 21: ADDED PLUGINS FOR GRADLE

FIGURE 22: COVERAGE ANALYZER BACKEND COVERAGE REPORT FOR A SINGLE TEST CASE

FIGURE 23: COVERAGE ANALYZER BACKEND COVERAGE REPORT FOR A SINGLE TEST CASE

FIGURE 24: COVERAGE ANALYZER BACKEND COVERAGE REPORT FOR A SINGLE TEST CASE - HITS & MISSES 33
FIGURE 25: DUMPCOVERAGE FUNCTION IN COMMON CLASS.....cccctteiieeeieeiieeeteesteesseesresesseessseesssessssssessesssssssssessnnes 35
FIGURE 26: FRONTEND IMERGING FILEciiittiiiiiiiie e ciiee e ettt e eeite e e etteeeeetteeesetteaaesataesesstaeesassaaaeastseseenssssesassaseeansseaeanns 39
FIGURE 27: BACKEND IMERGING FILEviiiiiiiiieiiiee e citee e ettt e eette e e st e e eeettseesettaaeesabaeeeastaeesaasaaeasstseseanssssessssesesasseaeanns 40
FIGURE 28: REGRESSION SUITE LAUNCHER TOOL RESULTSviiiiiiiieiiiiieeeiieeeeeitteeeeiteeeeiteeeseaaeeeesatseesenssseessnsaseesnssesennns 40
FIGURE 29: COVERAGE ANALYZER - FULL REGRESSION BACKEND COVERAGE REPORTcuvteeiiiieeeiieeeeciveeeeeivee e 41
FIGURE 30: COVERAGE ANALYZER - FULL REGRESSION FRONTEND COVERAGE REPORT.......coiiviiieeeiieeeceieee e 41
FIGURE 31: RESULTS OF MERGING SCRIPT ...eecutteiiteeteeiteesteesseesiseesseesseessessssessssesssesssesansessssesansesssesassesssssssssessses
FIGURE 32: HTML NAVIGATOR/REPORT

FIGURE 33: VIQ CoDE COVERAGE REPORT

FIGURE 34:BUILDNOPRODCOV TASKuutiiiiitiieeeiitieeeiitteeeaateeeeaiseseesassssaassssessassssasassssssasssssesssssssssssssssssssssessssssssassssssanns
FIGURE 35: APPLICATIONS USING TESTING METRICS .46
FIGURE 36: CLUSTERING ILLUSTRATION ...uttiiieiiieeeiitteeeeitteeeeeiteeaeatseeeeassseesassssaesssssseaassssesassssssassessasssssesassssesassssesanns 54
FIGURE 37: K-MEAN PROCESS FLOW......uuiiiiiiiiieiieeete e iteesteesteesiteesteesaeesateessseesasaesnsassasessnsessasassnsessnsesensesssssensessnses 56
FIGURE 38: VIQ BACKEND COVERAGE REPORT TO EXTRACT DATA ..ooocieiiieeetee ettt steeeteestaeevee s taeeneestaeenae s 57
FIGURE 39: COVERAGE REPORT SOURCE PAGE TO EXTRACT TOTAL RESULTS ...eeiviieieeiieeeteesreeereeeteeeneeevaeenee s 58
FIGURE 40: EXTRACTED DATA IN EXCEL FILE FORMAT ..ttt ittt sttt ete e steesreesve e steestaesnaesataesnaessaeennesnnes 59
FIGURE 41: DESCRIPTIVE ANALYSIS TO COMPUTE Z-SCORES FOR K-MEAN ANALYSISINSPSScoooiiiiieeeeieeees 60
FIGURE 42: RESULTS OF DESCRIPTIVE ANALYSIS...cciittteeeiieteeiiteeeeeitteeeeareeeeeisesaesstseseesssssesssssssssssssseasssssessssssssassssssanns
FIGURE 43: K-MEAN CLUSTER ANALYSIS IN SPSS

FIGURE 44: K-MEAN CLUSTER ANALYSIS IN SPSS

FIGURE 45: BAR GRAPH SHOWING CLUSTERING CRITERIAvteeiteeiieeeieeiteeereesreesseestesessessasaessesssssessessssesensessnses 61
FIGURE 46: RESULTS OF K-MEAN ANALYSIS - DISTANCE FROM CLUSTER CENTER & CLUSTER MEMBERSHIP62
FIGURE 47: SAMPLE OF REDUNDANT TEST CASES ...uvtiiieeeieeiieeeteesteesiteesteesseesateesssessasesssessssassnsesesssensessssssensessnses 63
FIGURE 48: REQUIREMENT LIST 1utttiiiiiiiiiitiitiieteeeieiitteeee e e e eesiateeeeesesesaabaseeesseesessbaaeseseessessbasasssessseasabsassesesesssnrararessessns 66
FIGURE 49: INPUT TO SETCOVER GREEDY ALGORITHMcuutiiiiiiieeeeitieeeeitteeeeeteeeeeiteeeeessteeeeesseeeesssseseesssesasessssessssseseanns 67
FIGURE 50: SNIPPET FROM THE OUTPUT OF SETCOVER......uuttieiiitieeeeteeeeeitteeeeeteeeeeteeseeesseseessseeesassseseesssssesssssesansseaeanns 67
CCE-E 7

Graduation Project-2 Measurement of Code Coverage by Black Box Testing of Web-based Applications Final Report

FIGURE 51: SNIPPET FROM THE REDUCED LIST ...uuitttiiiieiiiiiitieiieeceecitttre e e eeseitateee e e e e sesaataeeeeeesesnantaanesseeesssnsssnesseessnn 68
FIGURE 52: BACKEND COVERAGE AFTER SETCOVER GREEDY ALGORITHM ...ccoiitvtiiiieeiieiiirreeeeeeeeeintreeeeeeeesssnsnneeeseeesns 68
FIGURE 54 FILES INCLUDED IN REACT .. euttttiiiie ittt ettt e e ee sttt e e s e e e seabaae e e e s e s seababaeesesesesaataaesesseesssabaraeesseesan 70
List of Tables

TABLE 3: MACHINE LEARNING ALGORITHMS FOR TEST SUITE REDUCTIONE3 ..o oviieeieeeeeee et 51
TABLE 4: SUMMARY OF COVERAGE RESULTS .uvvveiiiiiiiiiitietieeeeeiiititeeeeeeeeiestaeeeeseeeiessssssesseessessssssesseessesssssssssesssessssssssees 68
TABLE 5: COMPARISON BETWEEN GREEDY & K MEAN CLUSTERING ...69
TABLE 6: MEMORY CONSUMPTION COMPARISONcoiiuutiiiieeiieiiiieeteeeetessitasteesesessssssseesssesssssssssessssssssssssesssssssssssessees 72

CCE-E 8

Graduation Project-2 Measurement of Code Coverage by Black Box Testing of Web-based Applications Final Report

1. Introduction

1.1. Project Objective

We were required to build a framework that obtains the code coverage for a full stack web
application using automated test cases. Our aim is to create a tool “Cairo Code Coverage” which
achieves this objective. One of the major challenges facing us is how to measure the code coverage
with built files. Furthermore, look into the applications of code coverage results.

1.2. Project phases

In this section we will be discussing briefly the project phases. We were required to create a tool
that calculates the code coverage for a web application, and then try it on one of Siemens EDA
web applications.

Phase 1
In this phase we researched on the topic of building a single page web application, then created a
web application which will be used to emulate the actual web app that we will test later on in the

deployment. We created the backend using Java with Gradle>//Maven (€] then for the frontend
we used Angular 8.

Phase 2

Now that the web application is ready, we started getting familiar with the concept of test
automation tools. Our tool of choice, which was the one used by the company, was Selenium[,
We started writing several, simple test cases for the web application. These test cases will generate
some raw data which will be the input for our tool later on so that it can process it and produce
readable coverage reports.

Phase 3

We started our code coverage research and implementation for both frontend and backend with
different tools.

Phase 4

After creating the fully functioning tool, we started working on a real case application, deploying
changes on the build process and generating code coverage reports.

CCE-E 9

Graduation Project-2 Measurement of Code Coverage by Black Box Testing of Web-based Applications Final Report

Phase 5

Analysis of our results and post processing to further understand how we can utilize the code
coverage data to enhance the test suites.

1.3. Background

In this project we focused on measuring code coverage for web application. Web applications has
become an essential business tool that enables companies to communicate with customers,
collaborate with employees, store vast volumes of data more effectively, and provide better
information management. Web based applications provide user collaboration and sharing, only
web browser is needed for the client and an only one powerful hardware for the server, and it
works in the cloud. Furthermore, it offers platform independence meaning browser can be invoked
on Linux, Windows, etc. However, web based applications have some challenges such as data
safety and browser compatibility. This illustrates how web based applications are excelling over
desktop application since desktop application are single user, machine dependent which
necessitates specific hardware and software requirements on machine to be able to host the
application, however it provides data security because it is completely isolated.

Another concept that we will be aiming the testing on is Single Page Applications (SPAs). Most
recently, many of the web applications are tending to use SPAs rather than Multiple Page
Applications (MPAs). On demand, SPAs reloads only the data necessary for the user using
JavaScript for dynamic rewriting, therefore code resources like HTML, CSS, and scripts don’t
need to be loaded with every interaction resulting in having higher speed/performance than the
MPASs where the entire web page content is refreshed. Moreover, SPAs Clear separation between
Front-End (Ul), and the Back-End (Application Core), which in our case is an advantage to be able
to obtain code coverage data on both ends separately.

We need to get familiar with the concept of regression testing as well which is used by many large
software companies. Regression testing is a common maintenance procedure for revalidating
changed software. As software is modified and new test cases are added to the test-suite to test
new or changed requirements or to maintain test-suite adequacy, the size and complexity of
software systems is growing dramatically. In addition to this, the existence of automated tools,
such as Selenium, has led to the generation of a huge number of test cases, the execution of which
causes huge losses in cost and time.

The Code coverage data will be collected through testing the single page Web application therefore
we need to get familiar with the type of testing that can be performed. Testing can be classified
into 3 main types, White Box Testing, Grey Box Testing, and Black Box testing. The White Box
Testing is executed as a part of the application build step. For example, the Java coded tests JUnit,

CCE-E 10

Graduation Project-2 Measurement of Code Coverage by Black Box Testing of Web-based Applications Final Report

it mainly aims at testing the Backend only. The Grey Box Testing can be done after building the
application without having the Ul. It can be tested by calling the same Application Programming
Interfaces (APIs) executed by the Ul interactions and it returns JSON responses indicating whether
it was successful or not. Lastly, the Black Box Testing, which mimic the end user actions by
simulating the interactions with the GUI on the browser, this type of testing can be automated
using different automation frameworks/tools.

Once we figure out the measurement of code coverage we will apply it on a real case application
as a case study. The application we will be testing it on is Questa Verification 1Q (VIQ). VIQ is a
web-based platform of applications having to do with visualizing and managing verification data
coming from simulation, emulation or Formal Verification of Hardware designs.

1.4. Time plan

In order to keep track of our work, we created this simple timeline for our project. It is to be noted
that we started documenting our thesis before June, we made sure to keep track of our progress.

Starting Day Sep 1, 2021 |

2021 2022

Feb March April May June July Aug

Nov ‘ Dec Jan

Research & implementation of single page web app

Frontend code coverage

Backend code coverage

Merging code coverage

Deployment on VIQ

Test suite reduction using
machine learning

Thesis Documentation

Figure 1: Time Plan

2. Building and testing a prototype Web Application
In this step we are required to build a single page web application using Angular 8 in the frontend

and Java in the backend. In the beginning we did not have a web application to use for the testing,
furthermore, in order to fully understand the concept of web applications and how what to test, etc.

CCE-E 11

Graduation Project-2 Measurement of Code Coverage by Black Box Testing of Web-based Applications Final Report

we wanted to follow the steps from the beginning to build the web application. We found an online
tutorial that shows a step by step process to create an Angular 8 frontend and Java with Maven
backend web application. This web application will be used to perform the selenium test cases on.
During this phase we took some time to learn about web development, as we did not have much
background in it.

2.1. Backend

In order to get familiar with the concept of how to build a backend for a web application we started
by looking into Node.js®® which is an open source, cross-platform, backend, JavaScript runtime
environment used to run the backend server. It’s one of the simplest environments to deal with,
especially if you are just getting started with web development. We looked at a backend example
based on Node.js in order to get familiar with the idea.

Generally, the API design for backend is divided into three stages, the first stage is receiving the
HTTP requests by the client then it is handled by the controller which calls the service stage that
can access the database directly through configuring the properties in the application.properties
file.

After getting familiar with building a backend server, we started the implementation by
bootstrapping the backend server using Spring Initializr™ that was used to form the structure and
inject dependencies such as JPA repo and MySQL, the implementation can be found in Appendix
A: Backend Code.

During the implementation of the backend server, we used Postmant®®!, which is an API testing
tool. This tool allows us to test the server by sending requests and verifying them before starting
the implementation of the backend. Furthermore, we got familiar with Httpiel®, which is another
API testing tool that uses the command line interface directly.

CCE-E 12

Graduation Project-2 Measurement of Code Coverage by Black Box Testing of Web-based Applications Final Report

Postman - m} X
File Edit View Help

Home Workspaces v~ Reports Explore Q, search Postman & o @ Signin
& Working locally in Scratch Pad. Switch to a Workspace X
Scratch Pad New Import Overview htt. 1 tt. t. DEL hit. + No Environment v
8 + = e http:/flocalhost:8080/employee/all [B) Save v o>
Collections
> New Collection
GET ~ http:/flocalhost:8080/employee/all Send v
Params Autharization Headers (6) Body Pre-request Script Tests Settings Cookies
=
vironments Query Params
KEY VALUE DESCRIPTION Ll Bulk Edit
Body Cookies Headers (8 Test Results @ 2000k 3295 746B Save Response “
Pretty Raw Preview Visualize JSON ~ I b Q
1
) 2
3 "id"
istory
4 “ni Anoud Emad", -
5 “em madss@gmail.com”,
i
i p com/q/pp_28.jpg",
"emplo Code": "907c8227-6c53-49f1-a295-1ff221856f89
Ed F B C o]

Figure 2: API Testing Using Postman

2.2. Frontend

In the previous phase we assumed the requests were sent by an unknown client. Throughout this
upcoming phase we will implement this client. We used Angular framework to develop our web
application. Angular is a framework and platform for building single page client applications. It is
written in Typescript [@ . The architecture of an Angular application relies on certain fundamental
concepts. The basic building blocks are angular components that are organized into NgModulest.
An Ngmodule can associate its components with related code, such as services, to form functional
units. These components define views, which are sets of screen elements.

Next, we will dive into API design using Angular’s components, forms and services. The flow
begins with the users’ actions using the Ul this triggers angular events that are handled by the
functions, included in the component, these functions call the services that construct the http
requests to be then handled by the backend as mentioned previously.

CCE-E 13

Graduation Project-2 Measurement of Code Coverage by Black Box Testing of Web-based Applications Final Report

API Design

Client Server

SERVICE e
COMPONENT =) (HTTP Requests) REST Controller

ﬂ
w =

MySQL

Figure 3: Frontend API Design
Cors configuration['® is done to give some permissions such as

« Allowing access to the servers and clients to be able to send requests
o Configure the headers of the requests
o Set allowed methods (GET, POST, PUT, DELETE)

A CORS configuration is a document that defines rules that identify the origins that you will allow
to access your bucket, the operations (HTTP methods) supported for each origin, and other
operation-specific information. The CORS configuration must be a JSON document.

After the configuration we start looking into how to create the GUI. In Angular, a template is a
section of HTML. It renders a user interface to include as a part of the page that the browser
displays. When, we built our Angular application the app.component.html file is the default
template containing placeholder HTML. We extended this HTML with special angular syntax in
our templates.

The following figure shows the final structure of our web application GUI. As we can see in the

GUI we added a button for add, delete, update functionalities of our application, as well as a search
bar for the search functionality.

CCE-E 14

Graduation Project-2 Measurement of Code Coverage by Black Box Testing of Web-based Applications Final Report

Employee Manager Add Employee

@ Loay EL- Reem Shaimaa
] Masry Waed Sameh Abostiet
Raed

CCE-E CCE-E CCE-E

Email : Loay3122@yahoo.com™

Phone :01203358839 . Email : Waed@yahoo.com®= Phone :01234567891 3 Phone :123456 N

et ”x 7

Anoud
Emad
CCE-E

Email : Anoud@gmail.com &

Phone :012366 b

Figure 4: Employee Manager Web Application

2.3. Test case automation

In this step we are required to automate the testing of our application’s GUI Selenium!”! is one of
the most commonly used automation testing tools. It simulates, using selenium web driver, the
user actions by locating elements using locator techniques and take action on the located elements
such as a click and send keys. It can also preform navigation commands.

The reason for choosing Selenium as our test automation tool is because we wanted to follow the
same structure as the one Siemens EDA had in VIQ web applications, this would make the
deployment phase simpler.

We created several test case for each of the functionalities we have which are: Add, Delete, Update
and Search.

3. Code coverage research and implementation

We started by doing research on code coverage and how to use it to measure the quality of testing.
Firstly, we came across LCOV!!] that helped us to visualize the end result of our coverage report.

LCOV is a graphical front-end for GCC's[*l coverage testing tool gcov!??. It collects gcov data
for multiple source files and creates HTML pages containing the source code annotated with
coverage information. It also adds overview pages for easy navigation within the file structure.
LCOV supports statement, function and branch coverage measurement. It generates a code
coverage report as shown in the following figure:

CCE-E 15

Graduation Project-2 Measurement of Code Coverage by Black Box Testing of Web-based Applications Final Report

LCOV - code coverage report

Current view: top level - £2 - t.cpp (source functions) Hit Total Coverage
Test: my.info Lines: 10 11 90.9 %
Date: 2020-04-05 14:06:54 Functions: 2 3

Line data Source code
#incl <

1
1: M)
int
1 : xed;
14 26 : forlint i25;
25 : std::icout <<
1 1
1

Generated by:

Figure 5: LCOV - Code Coverage Report

We found that in most code coverage tools you have access to the full source code, compiled files,
etc. However, in our case we only have access to the Ul therefore, we must use selenium test cases.

While conducting our research, the vision we had was that the results of our selenium test cases
will be formulated into files from which we can extract the coverage data. Then, we can use the
data to make the output code coverage report.

3.1. Back-end Code Coverage

3.1.1. Proposed approaches

We thought of three approaches when searching for backend code coverage. The best-case
scenario was to not need any modification on source files or build files and collect coverage data
through API requests. However, we didn’t find any resources regarding this approach. The second
approach we thought of was to instrument the build files similar to what we did in the front-end.
We found several possible tracks, including EMMA®/JaCoCo 23 they instrument jar files
and collect coverage data in a .exec file. We also found Codeception[? which eases remote testing.
The third approach is the worst-case scenario in which we will need to modify the source files to
collect coverage data using Maven pluginst4,

3.1.2. Best-fit approach implementation

After analysing the previous three approaches and checking their resources, we found that the
second approach is the best one. This is due to the fact that most of the applications already work
with build files or Web application Archive (war) files, as well as having enough resources to
pursue this method. Here are the steps of this approach:

CCE-E 16

Graduation Project-2 Measurement of Code Coverage by Black Box Testing of Web-based Applications Final Report

1. Building Jar file using IntelliJ:

We started by creating a jar artifact with options “From modules with dependencies” and “copy to
the output directory and link via manifest” selected. This first option is needed to include the
dependencies in the build files and the second option is to avoid errors during instrumentation of
build files.

Build the JAR artifact Create an artifact configuration for the JAR

1. From the main menu, select File | Project Structure Ctrl+Alt+Shift+S and dlick Artifacts.
1. From the main menu, select Build | Build Artifacts.

~

. A Click +, point to JAR, and select From modules with dependencies.
2. Point to the created . jar (HelloWorld:jar) and select Build.

If you now look at the out/artifacts folder, you'll find your . jar file there. 3. To the right of the Main Class field, click % and select the main class in the dialog that opens

(for example, k (com ple.helloworld))
eve HelloWorld - HelloWorld java IntelliJ IDEA creates the artifact configuration and shows its settings in the right-hand part of
=R S « 2 A HeloWord v b & G G ~ Q%o the Project Structure dizlog.
HelloWorld . out ~ artifacts Helloworld_jar = ||| Helloorid.jar
ji v s — @ Helloworld.
Project 0z x % Helcorkivn 4. Apply the changes and close the dialog.
4 Helloworld package com.example.helloworld; v
.idea
5 > public class HelloWorld {
antitacts > publ;c static void m{{x;(st:'ing[] a(gsl’(-
i ystem.out,printin("Hello, World!");
HelloWorld_jar } Project Settings
|| Helloworld.jar } Project
production Modules L N] Croate JAR from Modules
src Libraries Module % Helloworld
com.example.helloworld Facets
& Helloworld Main Class &
META-INF Platform Settings JAR files from libraries
MANIFEST.MF
o - SOKs © extract to the target JAR
 Helloworld.im! Global Libraries AR, i
11 External Libraries sttt jideren
0 Scratches and Consoles Problems ETA-INFMANIFE
Include tests
e I

Figure 6: Building JAR File Using Intellij

2. Instrument and run Jar file using Jacoco:
We used the command:

java -javaagent:jars/org.jacoco.agent-0.8.7-runtime.jar —jar

employeemanagerjar2/employeemanager.jar

3. Run test cases

4. Generate HTML Report from jacoco.exec file
We used the command:

java -jar jars/org.jacoco.cli-0.8.7-nodeps.jar report jacoco.exec --classfiles=target/classes --

html coverage

CCE-E 17

Graduation Project-2

Measurement of Code Coverage by Black Box Testing of Web-based Applications

Final Report

The following figures show the coverage html reports resulting from the previous steps. The
Missed instructions column refers to the java byte code instructions missed.

& -JaCoCo Coverage Report > # com reem ger > @ Empl
EmployeeResource
Source file " java” was not found during generation of report.
Element Missed Instructions« Cov. Missed Branches - Cov. Missed : Cxty Missed - Lines Missed: Methods
@ getEmployee(Long) e 0% nfa 1 1 2 2 1 1
© addEmployee([Employee) 100% na 0 1 0 2 0 1
L 100% n‘a 0 1 0 2 0 1
@ getAllEmployees() 100% nia 0 1 0 2 0 1
@ deleteEmployee(Long)] 100% nia 0 1 1] 2 1] 1
® 100% na 0 1 0 3 o 1
Total 11 0f 58 81% 00of0 na 1 6 2 13 1]
[JaCoCo Coverage Report > 8 com.reem.s ger.Senvice > @
EmployeeService
Source file " java" was nol found during generation of report
Element Missed Instructionse Cov. Missed Branches « Cov. Missed Cxty Missed: Lines Missed - Methods
° ong) = 0% wa 1 1 1 1 1
® ong 0% n'a 1 1 1 1 1 1
* 100% na 0 1] 2 0 1
@ EmployeeService(EmployeeRepa) mmmmmm 100% na 0 1 0 3 0 1
@ updateEmployee(Employee)] 100% na 0 1 0 1 0 1
@ deleteEmployee(Long) — 100% n‘a 0 1 0 2 0 1
@ findAllEmployees() 100% n'a 0 1 0 1 0 1
Total 230f 54 57% 0Oof0 na 2 I 1 10 2 7

Figure 7: Employee Manager Backend Coverage Report Using JaCoCo

3.1.3. Requirements

o Sessions

o Sessions

In order to get the source files annotations of the hit and missed functions, a path to a copy of the
source files is needed as we didn’t find an option to include mapped source files like the case of
the front-end. This does not defy our main goal as we are still collecting coverage using the built
files.Also, java agents need to be installed with a version compatible with the java version of the

project.

& JaCoCo Coverage Report > # com reem ervice > [El java
EmployeeService.java

CCE-E

package com.reem. enployeemanager .Service;

import com.reem. employeemanager . exception.UserllotFoundException;
import com.reem.employeemanager.model . Employee

import com.reem. employeemanager . repo. EmployeeRepo;

import org.springframework.beans.factory.annotation.Autowired;
import org.springframework stereotype.Service;

import java.util.list;
import java.util.wID;

@service
public class EmployeeService {
private final Employesfepo employeeRepo;

@Autowired
public EmployeeService (EmployeeRepo employeeRepo) [
this.employeeRepo = employeeRepo;

public Enployee addEmployee (Employee employee){
enployee. setEmployeeCode (WID. randomUUID() - toString());
return employeeRepo.save (employee) ;

public List<Employee> findAllEmployees() {
return employeeepo, findAl1();

public Enployee updateEmployee(Enployee employee) {
return employeeRepo. save (employee) ;

public void deleteEmployee(Long id) {
employeeRepo. deleteEmployeeByld (id);

public Employee findEmployeeByTd(Long id)
return employeeRepo. findEmployeeById(id). orElseThrow(() -> mew UsertotFoundException(“User by id" + id + "was mot found"));

Figure 8: Employee Manager Backend Coverage Report - Hits & Misses

18

Graduation Project-2 Measurement of Code Coverage by Black Box Testing of Web-based Applications Final Report

3.2. Front-End Code Coverage

In this section we will be discussing research and the several approaches we took in order to get
the code coverage results through executing the Selenium test cases.

3.2.1. ngWebdriver

ngWebDriver!® is a small library of WebDriver locators and more for AngularJS (v1.x) and
Angular (v2 through v9), for Java. It works with Firefox, Chrome and all the other Selenium-
WebDriver browsers.

We have seen how we can use selenium webDriver and java to test angular JavaScript controls,
but there are few limitations like we need to stick to a particular locator strategy (xpath or css) as
selenium itself do not have locators method specific to angular controls (like ngbinding, ngrepeater
etc), and sometime angular element’s actions lag behind the selenium line by line execution
(synchronisation issue).

To overcome above said issues while testing angular js controls with selenium and java, a library
known as ngWebDriver came out to add features to selenium and can write the scripts in java (so
that we need not to switch or learn any other languages like javascript for protractor)

ngwebdriver basically taken the advantage of protractor and passing the javascript to browser to
handle angular controls and also allows to write scripts in java language without any
synchronisation issue.

Let’s list our few angular controls that are different than normal html elements:

« ng-model
« ng-binding
« ng-repeat

If your application has only the above attributes allocated for the browser elements, ngwebdriver
has capability to identify the above elements directly using:

« byAngular.binding()
« byAngular.model()

« byAngular.options()
« byAngular.repeater()

Note — Along with above angular specific locators, we even can use selenium specific locators like
id, name, className, css selector etc.

CCE-E 19

Graduation Project-2 Measurement of Code Coverage by Black Box Testing of Web-based Applications Final Report

The following figure shows a code snippet of the test case we wrote using ngWebDriver method.

NgWebDriver ngdriver= new NgWebDriver (jsDriver);

driver.manage().deleteAllCookies();
driver.manage().window().maximize();
driver.manage().timeouts().implicitlyWait(30, TimeUnit.SECONDS);
driver.manage().timeouts().pagelLoadTimeout (30, TimeUnit.SECONDS);
driver.get("http://localhost:3000/");
ngdriver.waitForAngularRequestsToFinish();

Thread.sleep(1000);

System.out.print(" Source code as follows e \n");
System.out.print(driver. getPageSource()+ \n") --> File litti 10 functions
System.out.print("= = ======= = == Sourre code ended ======z=ss====ssss=sssssssss=ss=ss==\n");
System.out.print(" Element Source code as follows \n");
System.out.print(driver.findElement(By.className("nav-1link")).getAttribute("outerHTML")+"\n");
System.out.pr‘int(====s==m=zsssscss=zassssssssssssssssscesz====== Source code ended ======s===scsz=sccsscccsccssmcss====\n");
WebElement ele| t i e d a " link"
XSy tet
+ th; ++index) "
+ ts[0].attributes[index].value };"

out iver. e t item = arguments[@].attributes[2]; return item;", element));
INebElement xmplo > = driver hndElement(ByAngular btndlng(employee’ name D
ng repeat (f

Svstem.out _nrint(emnlovee _toStrine(

Figure 9: ngWebDriver Test Case Snippet

Why not use ngWebDriver in our tests?

ngWebDriver won’t work because we don’t have access to the source code (i.e. bindings, etc.)
Therefore, our test cases will follow the same template as the Siemens EDA test automation team’s
test cases of the application, meaning we will use webDriver and the same algorithms we
implemented for our test cases.

3.2.2. Unit testing

The first idea that came to our minds was to make use of ng-test with option —code-coverage which
uses the test cases inside .spec.ts files. However, this method would require us to re-write the
existing java selenium test cases using javaScript and integrate them with Jasmine framework
which is not the most desirable conclusion for us. Therefore, we tried to find another method that
would perform the same functionalities as ng-test —code-coverage.

3.2.3. Istanbul (NYC)

Upon our search for an alternative method, we came across a framework called Istanbull*?.
Istanbul instruments your ES5 and ES2015+[2°! JavaScript code with line counters, so that you can
track how well your unit-tests exercise your codebase. It has a command client called nyct*? which
works well with many testing frameworks.

Using Istanbul with Selenium to Get Code Coverage:

First we build our project to get the build files that we will work on later. The option source-map
output source maps for scripts and styles in addition to the build files.

CCE-E 20

Graduation Project-2 Measurement of Code Coverage by Black Box Testing of Web-based Applications Final Report

Source mapping writes the source files in a compressed format.

ng build —source-map

Now, we instrument our build files using nyc. The following command modifies the built files in
order to record coverage data while the selenium test cases are running, and then it saves said data
in a variable called window.coverage. This is useless unless you actually do something with that
data.

o --exclude-after-remap=false: because source map from the ng build will map all the files,
however, in nyc there is an option to exclude specific files. So we need to exclude after
remap

o --all: Needed with the —source-map option to get the source files

nyc instrument dist/myapp dist/myapp --exclude-after-remap=false --complete-copy --in-

place --all

Serving the application using lite-server, which is recommended by Angular, to be able to run our
test cases.

lite-server —baseDir="dist/myapp”

After the previous step, our web application will open. Now we can go ahead and run our test
cases. One of the problems we faced was not finding the window.coverage variable at first, so
instead, we took an easier approach which is writing a code for the process of getting the data
saved in window.coverage and saving it in a .json file that will be used later to generate the
coverage report.

JavascriptExecutor js = (JavascriptExecutor) driver;
Object str = js.executeScript("return window.__coverage_ ;");

GsonBuilder builder = new GsonBuilder();
Gson gson = builder.create();

String coverage = gson.toJson(str);
Files.write(Paths.get("C:\\Users\\Shaimaa Abostiet\\employeemanagerapp\\coverage\\coverage.json"), coverage.getBytes());

Figure 10: Frontend Code Snippet for Dumping Coverage Data

Finally, we can generate the code coverage report using the .json file that we generated.

nyc report —reporter html —t coverage —report-dir coverage/coverage.json

CCE-E 21

Graduation Project-2 Measurement of Code Coverage by Black Box Testing of Web-based Applications Final Report

All files srclapp

60.52% State 258 54.54% Brar 12/22 60.71% Functions 17/2a 58.06% Lir

Pre 5 the next un
File « Statements Branches Functions Lines
app-routing.madule. s | 100% 3/3 100% 212 100% 212 100% 22
app.component.ts 50% 13/26 37.5% 616 50% 18 47.82% 1123
app.module.ts I 100% 22 100% 212 100% 212 100% n

employee service.ls T1.42% 57 100% 212 66.66% 416 80% 45

Figure 11: Employee Manager Frontend Coverage Report

At this point we have successfully generated a code coverage report for all our application’s source
files. However, we still couldn’t remap the source maps to the original source code. Our goal now
is to configure webpack so that it can remap the code files correctly, so that the nyc report
command can get the hits and misses within the code.

All files / src/app employee.service.ts
71.42% s, 100% 212 66.66% s 80%

Figure 12: Employee Manager Frontend Coverage Report Error

3.2.4. Webpack challenges

Webpackl?®! is a static module bundler for JavaScript applications. It takes modules, whether
custom files or files installed through npml*!, and converts them to static assets. This enables us
to take a fully dynamic application and package it into static files, which can then be uploaded or
deployed to a server. Webpack functionalities can be extended by using Plugins and Loaders. We
can configure webpack through webpack.config.js

Webpack Configuration

Webpack has an entry point which in our case was the project root file. It inspects that file and
traverses its import dependencies recursively, for example if you’re importing @angular/core, it
adds that to its dependency list for potential inclusion in the bundle. It opens the file and follows
its network of import statements until it has built the complete dependency graph from the root file
down.

CCE-E 22

Graduation Project-2 Measurement of Code Coverage by Black Box Testing of Web-based Applications Final Report

Loaders are transformations that are applied to the source code of a module; therefore, loaders are
kind of like “tasks” in other build tools and provide a powerful way to handle front-end build steps.
They can transform files from a different language like type script to java script.

Angular integrates with webpack when generating source maps during the build process. The
problem with using ng build —source-map is that we don’t have control over the build features and
which loaders are used. The error above is due to a missing step or configuration in remapping the
source files, so we first tried to add options in tsConfig.js file using several loaders like Istanbul-
loader or give webpack configuration as an option, but such an option was not found.

As we were trying to solve this error, we took several approaches:
Build using Webpack:

We thought of customizing our build options by using webpack to build our application instead of
ng build so we needed to install it with the following steps:

Webpack Installation

The following steps show how we can install webpack in our web application. To install the latest
release run the following command:

npm install —save-dev webpack

If you want to call webpack from the command line, you’ll also need to install the CLI.

npm install —save-dev webpack-cli

To create the webpack.config.js which is going to contain the options.

webpack-cli init

The figure shown below are how we answered the questions after we ran the above command

Graduation Project-2

Measurement of Code Coverage by Black Box Testing of Web-based Applications

webpack-cli init
Which of the following JS solutions do you want to use?
Do you want to use webpack-dev-server?
Do you want to simplify the creation of HTML files for your bundle?
Do you want to add PWA support?
Which of the following CSS solutions do you want to use?
Will you be using PostCSS in your project?
Do you want to extract CSS for every file?
Do you like to install prettier to format generated configuration?
[webpack-cli] Initialising project...
package.json
Overwrite package.json?
force package.json
src\index.js
README .md
Overwrite README.md?
force README.md
index.html
webpack.config.js
Overwrite webpack.config.js?
force webpack.config.js
= .babelrc

Figure 13: Webpack Installation Process

Final Report

This method did not build the styles and html files, therefore, we couldn’t serve the applications.

Custom Build

Since the build provided by angular has webpack implemented in it, as a work around to avoid the
webpack error ,we created a custom build script file called build.js also we gulp ,this didn’t include
Webpack, to build the application with. However, this approach failed because the build was
incomplete and hence the serving failed since there was no runtime or index files that are required

from the build.

3.2.5. Remap Istanbul approach

Previously the nyc command was generating code coverage on source files only, but it had no
access to the source maps via webpack. Therefore, we replaced the last command with a new
command using remap — Istanbull*3l,

Remap-Istanbul command has 3 libraries that perform the following:

e lib/loadCoverage - does the basic loading of a Istanbul JSON coverage files.

¢ lib/remap - does the remapping of the coverage information. It iterates through all the files
in the coverage information and looks for JavaScript Source Maps which it will then use
to remap the coverage information to the original source.
e lib/writeReport - a wrapper for the Istanbul report writers to output the any final coverage

reports.

CCE-E

24

Graduation Project-2 Measurement of Code Coverage by Black Box Testing of Web-based Applications Final Report

The following steps were required to install the remap- Istanbul:

npm install -g Istanbul

npm install remap-Istanbul

The following command was the one used instead the last previous one:

.Inode_modules/.bin/remap-istanbul -i coverage.json -o html-report -t html --exclude

node_modules

In this approach, we faced an error shown below, thus error states that it could not create such
directory ‘webpack:/’.

Error: EINVAL.: invalid argument, mkdir
'C:\Users\anod\Desktop\employeemanager\employeemanagerapp\covOut\webpack:\
node_modules\@angular\common__ivy ngcc__ \fesm2015¢

Firstly, As a temporary solution, we replaced every ‘webpack:///> with ‘webpack///’, which were
exactly 3 instances, in the coverage.json file. Then instead of replacing it manually we used the
following command:

(gc coverage/Add_coverage.json) -replace ‘webpack://', ‘webpack///' | Out-File

coverage/Add_coverage.json -encoding ASCII

4. Merging code coverage results

All the previous implementations and trials were tested on a single test case, However when we
start applying on the Coverage Analyzer which is the company’s web application we are required
to run a full regression. Therefore, we started in the following section to merge the coverage results
of several test cases on our application.

4.1. Backend merging steps
We want to merge the coverage results coming from different test cases; as we need to merge the

coverage of test cases under a single scope in order to deal with a single number. We can also
merge the statistics of several scopes later on.

CCE-E 25

Graduation Project-2 Measurement of Code Coverage by Black Box Testing of Web-based Applications Final Report

Steps
1. Run the first test case and dump coverage results in jacocol.exec file

java -javaagent:jars/org.jacoco.agent-0.8.7-runtime.jar=destfile=jacocol.exec -jar

employeemanagerjar2/employeemanager.jar

2. Run the second test case and dump coverage results in jacoco2.exec file

java -javaagent:jars/org.jacoco.agent-0.8.7-runtime.jar=destfile=jacoco2.exec -jar
employeemanagerjar2/employeemanager.jar

3. Merge .exec files

java -jar jacoco-0.8.7/lib/jacococli.jar merge jacocol.exec jacoco2.exec --destfile merged.exec

4. Get the merged html report

java -jar jars/org.jacoco.cli-0.8.7-nodeps.jar report merged.exec --classfiles=target/classes --html

coveragemerge --sourcefiles=../Web/employeemanager/employeemanager/src/main/java

Results validating the merging steps

The first two figures show the results of the first and second test case separately, where in the first
test case add and delete employee functions were hit and in the second test case update employee
function was hit.

I JaCoCo Coverage Report > B com.reem.employeemanager. Service > & EmployeeService

EmployeeService

Element Missed Instructions+= Cowv.© Missed Branches - Cov.© Missed® Cxty~ Missed Lines Missed Methods
@ lambdasfindEmployesBylds0(Long) EE—— 0% na 1 1 1 1 1 1
@ findEmployeeByld(Long) e 0% na 1 1 1 1 1 1
@ updateEmployee(Employes) = 0% na 1 1 1 1 1 1
@ addFmployee(Employee)] 100% na 0 1 0 2 0 1
@ EmployeeSenvice(EmployeeRepo) 100% na 4] 1 [+] 3 1] 1
@ deleteEmployee(Long) | 100% n'a 4] 1 4] 2 1] 1
@ findAlFmployees() 100% na 0 1 1] 1 o 1

Total 29 0f 54 48% OQofd na 3 7 2 10 3 7

CCE-E 26

Graduation Project-2 Measurement of Code Coverage by Black Box Testing of Web-based Applications Final Report

lm JaCoCo Coverage Report > & com reem employeemanager.Service > (& EmployesService

EmployeeService

Element Missed Instruclions+ Cov. ¢ Missed Branches® Cov. ¢ Missed® Cxty® Missed® Lines® Missed: Methods
@ lambda$findEmployesByldsD(long) 0% na 1 1 9 1 1
@ sddEmployes(Employes) e 0% na 1 1 2 2 1 1
@ findEmployeeByld(L ong) — 0% na 1 1 1 1 1 1
@ deleteEmployee(Long)] 0% na 1 1 2 2 1 1
@ EmployeeService(EmployeeRepo) B2 100% na] 1 0 3 0 1
@ updateEmployee(Employee) | 100% na 0 1 0 1 0 1
@ findAlEmployees() == 100% na 1] 1 4] 1 0 1
Total 38 of 54 20% Oof0 na 4 7 5 10 4 i

Figure 14: Employee Manager Backend Unmerged Reports

In the following figure we can see the merged coverage report where the three functions are hit.

EmployeeService

Element Missed Instructions= Cov.- Missed Branches Cov.© Missed Cxty- Missed Lines- Missed Methods
@ lambda$findEmplovesBylds0(Long) 0% na 1 1 1 1 1 1
@ findEmployeseByldiLong) — 0% na 1 1 1 1 1 1
@ addEmployee(Employee)] 1004 n‘a 1] 1] 2 1] 1
@ EmployeeService(EmployeeRepo) Emmm 100% na 0 1 0 3 0 1
@ updateEmployea(Employea) == 100% na [+] 1 0 1 0 1
@ deleleEmployee(Long) == 100% na 1] 1 [i] 2 il 1
@ findAlIEmployees() 100% na 1] 1 0 1 1] 1
Total 23 of 54 57% QOof0 na 2 i 1 10 2 i

Figure 15: Employee Manager Backend Merged Report

4.2. Frontend merging steps

We used the same command but we included all the input .json files ,these files represent different
test case files ,For example, the command below include a file with the add functionality and the
other one include the delete functionality.

istanbul-merge --out <output.json> <inputl.json> <input2.json>

Results validating the merging steps
The following screenshot shows the coverage report when the two files are used

(Add_coverage.json, Delete_coverage.json). Here as shown both the Add and Delete functions
are hit

CCE-E 27

Graduation Project-2 Measurement of Code Coverage by Black Box Testing of Web-based Applications

public onAddEmloyee(addForm: NgForm): void {
getel *add-empl form')!.click();
4 this.employeeService. addEmployee (addForm.value). subscribe(
(response: Employee) => {
console. log(response);
this.getEmployees();
addForm.reset();

(error: HttpErrorResponse) => {
alert(error.message);
addForm.reset();

}

public loyee (empl 1)i void {
this). subscribe(
(response: Employee) => {
console. log(response);
this.getEmployees();

h
(error: HttpErrorResponse) => {
alert(error.message);

public onDeleteEmloyee(employeeld: number): void
this.employeeService.deleteEmployee(employeeld). subscribe(
(response: void) => {
console.log(response);
this.getEmployees();

(error: HttpErrorResponse) => {

Figure 16: Employee Manager Frontend - Add & Delete Functions Hit in Merged Report

Final Report

The following fig. shows the coverage report when the only one file is used (Add_coverage.json

or Delete_coverage.json). Here as shown either the Add or Delete functions are hit

public onAddémloyee(addForm: NgForm): void (
document . getElementByld(add-employee-form')! . click();
3 this.employeeService.addEmployee(addForm.value). subscribe(
(response: Employee) => {
console. log(response);
this.getEmployees();
addForm.reset();

(error: MttpErrorResponse) => {
alert(error.message);
addForm.reset();

public onUpdateEmloyee(employee: Employee): void {
this loy ice.updi ployee(employee) . subscribe(
(response: Employee) => {
console. log(response);
this.getEmployees();

I

(error: HttpErrorfResponse) => {
alert(error.message);

}

< public onDeleteEmloyee(employeeld: number): void {
75 Ix this.employeeService.deleteEmployee(employeeld). subscribe(
(response: void) =» {
console.log(response);
this.getEmployees();

(error: HttpErrorResponse) «> {

Figure 17: Employee Manager Frontend — Delete Function Hit

CCE-E

28

Graduation Project-2 Measurement of Code Coverage by Black Box Testing of Web-based Applications

public onAddEmloyee(addForm: NgForm void
document . getElementByld(" add-employee-form click();
this.employeeService. addEmployee(addForm.value).subscribe
response: Employee
console.log(response);
this.getEmployees();
addform.reset();

(error: HttpErrorResponse) => {
alert(error.message);
addForm.reset();

public onUpdateEmloyee(employee: Employee): wvoid {
this.employeeService. updateEmployeeemployee) . subscribe(
(response: Employee) => {
console.log(response);
this.getEmployees();

error: HttpErrorResponse) => (
alert(error.message);

public onDeleteEmloyee(employeeld: number): void {
this.employeeService.deleteEmployee(employeeld). subscribe(
(response: void) =» {
console. log(response);
this.getEmployees();

(error: HttpErrorResponse) => {

Figure 18: Employee Manager Frontend — Add Function Hit

5. Deployment on a Real Case Web Application
5.1. Applying the Code Coverage Measurement

5.1.1. Introduction

Final Report

After emulating VIQ environment and getting the coverage results, we started deploying our
package on Coverage Analyzer which is a product that visualizes the RTL code coverage by HW
Verification saved as a Universal Coverage Data Base (UCDB). We started with coverage analyzer

because it’s a standalone branch from VIQ with an easier setup.

CCE-E

29

Graduation Project-2 Measurement of Code Coverage by Black Box Testing of Web-based Applications Final Report

Coverage Analyzer | # Home %' Functional ~ Tests (= Testplan Pascor B Loo o trackscaib
Total Coverage: MMEIF21 M
A Desion

Design Bin Distribution @ Total Coverage

Figure 19: Coverage Analyzer Ul

5.1.2. VIQ Workshops

We viewed the structure of Coverage Analyzer test cases regression suitel**l. Regression Testing
is defined as a type of software testing to confirm that a recent program or code change has not
adversely affected existing features.We found that we have a tree of test cases and each leaf
containing selenium test cases for certain functionalities.

A Perl script is responsible for managing the process of running each test case. By running the test
script Coverage Analyzer is started, we observed the sequence of steps it uses which we will try
to imitate using our code coverage scripts.

The leaf test case flow:

1. Compile java files (mainly responsible for the functionality of the selenium test case)

Provide files needed for coverage analyzer to work properly, for example ucdb files

3. Launch the backend and frontend server using the war file and pass the required arguments,
for example the server port

4. Run compiled files of the test case

5. Kill the process of coverage analyzer and compare results with golden references

N

Afterwards, we unzipped the .war file of the application to view its structure, and how it’s created
from the build script.

CCE-E 30

Graduation Project-2 Measurement of Code Coverage by Black Box Testing of Web-based Applications Final Report

We found that the frontend and backend are built separately then copied in the same directory and
zipped into one Web Application Archive (war) file.

Furthermore, we investigated the build script and the tasks responsible for creating the war file.
Examples of the tasks used:

» Scrub: responsible for cleaning any files from a previous build and install needed
dependencies, like node modules

» Build: runs angular build responsible for building frontend

» Copy: copies the build files of the frontend to the same directory of the backend

After investigating the building method used for the application, we realized that the backend is
built by Gradle. Therefore, we needed to migrate our project from Maven to Gradle.

5.1.3. Adjustments needed

a) Migration from Maven to Gradle

As mentioned above, the Coverage Analyzer application uses Gradle not Maven for building, in
addition, Gradle is more customizable than Maven and provides a wide range of IDE support
custom builds while Maven has a limited number of parameters and requirements, so
customization is a bit complicated.

The following figure compares between Gradle and Maven for three types of builds in regards to
their duration. As shown in the figure, Gradle has less building times in all of the build types.

Apache Commons Lang 3 build time

303
M Gradle 5.4 W Maven 3.6

26.185 25852

duration [s)

25

20

Clean build with tests Clean build (cache Compile single change
enabled) with tests

Figure 20: Gradle vs Maven

CCE-E 31

Graduation Project-2 Measurement of Code Coverage by Black Box Testing of Web-based Applications Final Report

We migrated the project by installing Gradle from their website, then inside the backend root we
ran the command “gradle init”

b) Generating WAR File

After migration, we generated the war file using the following steps:
e Added the war plugin inside the file ‘build.gradle’, this will produce a .war file upon
building

plugins {

id version

id version
id

id

Figure 21: Added Plugins for Gradle

e Run command “gradlew build” to build the application, it will produce a war file similar
to the VIQ one but without the frontend.

Merging Frontend & Backend Into one WAR File

In order to add the frontend to the same war file as the backend, normally, a plugin provided by
gradle is used that automatically copies the build files of the frontend to the backend directory.
What we did was to first build and instrument the frontend like we would normally do, then we
manually copied the resulted build files to the backend in the following directory:

webapp\build\resources\main\static

Then we used Gradle build again to produce a war file containing both frontend and backend, and
we can run it using:

java -javaagent:jars/org.jacoco.agent-0.8.7-runtime.jar -jar employeeManager-0.0.1-
SNAPSHOT .war

5.1.4. Deployment of Back-End code coverage measurement to the Real Case application

We started with the backend because it does not need special handling in war file creation (i.e
instrumentation). It just needs a modification in the war file running command. We started on a
small scale and picked a random test case to use. We added the java agent to the java command
inside the perl script in order to collect coverage data for backend.

CCE-E 32

Graduation Project-2 Measurement of Code Coverage by Black Box Testing of Web-based Applications Final Report

Challenges

The challenge that faced us here was that the jacoco.exec file was empty after running the test
case. After analysis we found that the problem was inside subroutine
Cleaning_Coverage_Analyzer that terminated coverage analyzer using kill -9 which terminates
without saving the data. Consequently, we replaced this command with Kkill -15 which gracefully
terminates the program and saves data. These changes were in run_ca.pl file in running CA and
cleaning CA subroutines.

After this change we successfully ran the test case and got the backend coverage report.

JaCoCo Coverage Report

Element Missed Instructions+ Cov.: Missed Branches : Cov.: Missed Cxty: Missed: Lines: Missed: Methods: Missed: Classes
 com.mentor.dvt. service.impl 6% 2% 5362 5673 11,310 12165 1438 17m 16 81

com.mentor.dvt.coverageanalyzer.model = 5% s 1% 2252 2414 3841 4247 1,203 1,358 68 81
VE.cove alyzerjnl.mapper = 19% == 1% 866 994 2173 2,729 160 244) 21
tordvt.coverageanalyzerservice.dto = 6% = 0% 1,700 1,837 2,540 2,754 1,287 1,423 77 91

ervice. mapper = 9% = 3% 617 710 1711 1,923 168 258 18 88

analysis k z 0% B 0% 553 553 904 904 263 263 1 1

& com.mentor.dvt web.rest] 1% 1% 260 304 564 654 180 224 3 29
com.mentordvt.coverageanalyzer.covergroups service i 1% 1 0% 179 185 452 461 61 67 0 5
com, ordvt.shared.web,rest.util i % 3 2% 255 270 465 504 56 70 9 12
& com.mentor.dyt domain] 8% 5% 126 155 230 335 64 89 13 25
com.mentor.dvt.coverageanalyzer.coveraroups.analysis ' 0% i 0% 163 163 360 360 66 66 6 6

Figure 22: Coverage Analyzer Backend Coverage Report for a Single Test Case

BinsClusteringService

Element Missed Instructions+ Cov.: Missed Branches - Cov.: Missed: Cxty: Missed: Lines: Missed: Methods
o buildHistogramBinsRanges(List, Integer, Integer 0% 0% 20 20 49 49 1 1
o glusteronBins(List, Integer) —_— 0% == 0% 5 5 20 20 1 1
o getBinsQistribution(List, Integer, Integer, integer) j— 0% == 0% 5 24 24 1 1
© clusterOnCoverage(List) fromm— 0% === 0% 6 6 18 18 1 1
o buildCoverageClusterDTO(AbstractCoverElementWithAvgBins, List, int) === 0% I 0% 2 2 15 15 1 1
o getNumClusters(integer) t 0% = 0% 3 3 1 1 1 1
o getFinalMinBinValue(integer i 0% = 0% 2 2 1 1 1 1
o getFinalMaxBinvalue(integer) ! 0% B 0% 2 2 1 1 1 1
o static {...} = 100% na 0 1 0 3 0 1
Total 683 of 741 7% 740f74 0% 45 46 129 132 8 9

Figure 23: Coverage Analyzer Backend Coverage Report for a Single Test Case

The following figure shows the hits and misses illustrated by the highlights, where red indicates
a miss and green indicates a hit, inside the html report.

Figure 24: Coverage Analyzer Backend Coverage Report for a Single Test Case - Hits & Misses

CCE-E 33

Graduation Project-2 Measurement of Code Coverage by Black Box Testing of Web-based Applications Final Report

5.1.5. Deployment of Front-End code coverage measurement to the Real Case application

In this step we needed to adjust the build steps so we started by checking the build command that
was used “./gradlew -PScrubFe -Pgaprod clean build -x test”

We found that -P option with gradlew calls custom tasks defined in “gradle/profile_prod.gradle”,
where ScrubFe was used for cleaning and installing needed packages and gaprod runs the script in
package.json corresponding to QA production which runs with the production configurations
specified. Finally, we generate the war file.

QA Production build
There are several configurations in gaprod build but we’ll focus on three main configurations.
» Source map option: set to false

» Optimization: set to true
> Build Optimizer: set to true

Challenges

Build Failure with Source Maps Option

We first tried to set the Source maps option to true but the build failed. This was due to the conflict
that occurs between the source maps and optimization options. Consequently, we contacted the
R&D to find a solution and eventually came to the conclusion that we need to use the Development
build (Debug build) instead.

Memory Issue

Here we faced another problem with the memory, so we needed to increase it with the following
command:

node --max_old_space_size=8192 node_modules/@angular/cli/bin/ng build --
configuration=dev

Test Cases Failure
Due to the difference between the production and debug builds, for example the optimization

options, 8% of the test cases failed. This was acceptable percentage for now so we proceeded with
this solution.

CCE-E 34

Graduation Project-2 Measurement of Code Coverage by Black Box Testing of Web-based Applications Final Report

The next steps was to add the instrumentation command in package.json and add a corresponding
task to call it in gradle/profile_dev.gradle and defined task gacov to call the development build
with our configurations and the instrumentation task. Therefore the final build command is
«./gradlew -PScrubFe -Pgacov clean build -x test”

Finally, to dump the coverage data we added the snippet used to dump the coverage in the
coverage.json file in the EXIT function that is called at the end of each test case and defined
environmental variable (CA_COVERAGE) to only call the dump when we are collecting
coverage. We also created a script that adds the needed imports in Test Cases for the coverage data
dumping code.

BRSO NP COVERgE (webDriver driver) t Exception {
(System.getenv("CA COVERAGE") I="")
{

JavascriptExecutor js = (JavascriptExecutor) driver;

Object str = js.executeScript("return window overage ;");
GsonBuilder builder = GsonBuilder();

Gson gson = builder.create();

String coverage = gson.tolson(str);
Files.write(Paths.get("coverage.json"), coverage.getBytes());

Figure 25: dumpCoverage Function in Common Class

5.1.6. Edited Files
To further illustrate the changes mentioned above, the following files were modified as follows:
Run Common File
This is a common perl file that contains subroutines that are used to run all the test cases.
In this file, after running the test case we added the following in run test subroutine:
e A timestamp before the generation of the coverage reports to calculate the overhead
e The command for merging the json files of the frontend coverage reports. This was not
needed for the backend as the exec file is generated after closing the server so it will
already contain the coverage of the whole directory
e A code block for checking the number of json files in the directory to check if merging is
needed. The json files are named “test_case.json” and the merged file is “coverage.json”,

if there was only one file it’s renamed “coverage.json”

e A timestamp after report generation for overhead calculation

CCE-E 35

Graduation Project-2 Measurement of Code Coverage by Black Box Testing of Web-based Applications Final Report

Run_ca.pl File

In this file we edited the java command with java agent to run the war file subroutine running_CA
as well as editing the kill command (kill -15) in clean_CA subroutine

Post Script execution in the regression suite launcher tool

We edited the post script in the regression launcher tool when running on the full regression to
archive the coverage data as the regression launcher tool archives only the data of the failed test
cases.

5.1.7. Summary for Deployment on Real Case Web Application

To summarize the whole work on Coverage Analyzer, we modified parts of the flow starting from
the build to the launch of the application and the termination. Also, we generated frontend and
backend coverage reports for each leaf test case.

5.2. Running a full regression
Here, we are trying to collect coverage for the whole test case suite to:

e Measure the quality of testing from code coverage perspective
e Check if there are any challenges in getting coverage for the full regression

5.2.1. Preparation steps for running a full regression
1. Defining the required Shell environment variables:

e Set the required fields like "MTI-HALOS, MTI_HOME. TEST_SUITE, etc"
e Set "setenv" field with the additonal coverage variables and the archive directory (for
coverage results) — Example

e CA :CA_COVERAGE=1CA_SRC-=.../CA_main/main/coverageanalyzer (or
other <ws> specified)
archive_path="/bata/halos/viq_codecoverage/AllRegression_2""

e VIO :VIQ COVERAGE=1 VIQ_SRC=.../CA_main/main/coverageanalyzer
archive_path="/bata/halos/viq_codecoverage/AllRegression_2""

e You can find the post run script under <your main
workspace>/tests/vig_automation/run_scripts/post_run.csh

CCE-E 36

Graduation Project-2 Measurement of Code Coverage by Black Box Testing of Web-based Applications Final Report

2. Editing the post script

e Set "other options™ field in the regression launcher tool with the following line — "--
postrun-script <post run absolute path> --force-completion --test-timeout=40 --
timeout=200" for example: "--postrun-
script=/bata/lelmasry/CA_main/main/tests/viq_automation/run_scripts/post_run.csh”

3. Results

e Raw coverage results can be found in your archive_path under <testcase path from
ca>/coverage.json(or jacoco.exec) — example:

/bata/halos/vig_codecoverage/AllRegression_2/ca/code_coverage/codeEditor/branchesS

V1/coverage.json. " .../viq_codecoverage/AllRegression_2" was my archive_path and
"ca/code_coverage/codeEditor/branchesSV1: is the testname

5.2.2. Processing Data for Test Cases

e Generate frontend html coverage report :_"remap-istanbul -i coverage.json -0
<Frontend_Coverage report_name> -t html --exclude node_modules"

e Generate backend html coverage report :_"java -jar $JARS/org.jacoco.cli-0.8.7-nodeps.jar

report jacoco.exec --sourcefiles=$CA_SRC/src/main/java/ --
classfiles=3CA_SRC/build/classes --html <Backend_Coverage report_name>

e Merge front end results: "istanbul-merge --out <merge_file.json> <inputl.json>
<input2.json> "

e Merge backend results: "java -jar $JARS/org.jacoco.cli-0.8.7-nodeps.jar
merge <inputl.exec> <input2.exec> ... --destfile <merged.exec>"

e The whole processing data section can be automated "to be done"

5.2.3. Useful hints for processing data
Make a list with all the coverage.json and exec files for further processing

e cd to your archive_path
e To generate Jsonfiles list:

find * -name coverage.json > Jsonfiles.list

e To generate execfiles list from only testcases that finished run successfully:

cat Jsonfiles.list | sed 's,coverage.json,jacoco.exec,q' > Execfiles.list

CCE-E

37

Graduation Project-2 Measurement of Code Coverage by Black Box Testing of Web-based Applications Final Report

Merge files in sets then merge the final sets

The concept of merging files in sets can be used to make the results more organized, for example
merging the coverage files of test cases with similar functionality. This can be done using the
following steps:

e Merge json files in Jsonfiles.list from line_1 to line_99 (The first 100 lines) into first
merged set

istanbul-merge --out merge_1set.json “sed -n 1,99p Jsonfiles.list’

e Merge json files in Jsonfiles.list from line_100 to line_199 (The second 100 lines) into
second merged set

istanbul-merge --out merge_2set.json “sed -n 100,199p Jsonfiles.list’

e Merge the two output files
e Generate coverage report for the final exec or json file

The previous merging steps can be done both on the Back-End and Front-End files.
Merge all files at once
The following command can be used:

istanbul-merge --out merge_all.json “cat Jsonfiles.list’

Suggested solutions for common issues

In case you found corrupted .json or .exec files, you can remove them from the lists and run the
commands again

You can use merge_backend.pl to automate the process of merging exec files and remove the
corrupted files from the list after forming Execfiles.list.

In case you have an issue in the installation of packages you can use .../nodeJS/node-v10.16.3-
linux-x64/bin/istanbul-merge instead of istanbul-merge and same for all other npm commands.

CCE-E 38

Graduation Project-2 Measurement of Code Coverage by Black Box Testing of Web-based Applications Final Report

5.2.4. Processing Data for the Regression
Preparing the list of tests with coverage

This list can be prepared as mentioned previously.
Merge FrontEnd Coverage

e cd to Coverage Parent directory (archive_path)
e Run the following PERL program merge frontend.pl

#OpEN({PASSN, '>', "./Ffile"};
int"Merging frontend startedin”;
* /home/1elmasry/Development/nodels/node-vie. 16, 3-linux-x64/bin/istanbul -merge --out merged.json \'cat Jsonfiles.listy™";

fre

print "§2 \n";
while{$? ne "a")
{

“rm file';

cpen{PASSH, ">
pri PASSN

#3
= "tail -1 file | sed 's,.*ca,ca,g'’;
ineTodelete is corrupted”;
Todelete);

#print “echo -n '$lineTodelete’ | sed 's,/,\/,g""

#tline = “echo -n "$lineTodelete’ sed s,/ sed "s,%\\.,,8
line = “eche -n "glineTodelete’ | sed 's,W\.\%,,2'";
otemeta($lineTodelete);

t $line;
#gprint " sed 's,.*$line,,g' -1 file'";
orint™ sed 's,3line,,g" -i Jsonfiles.list™";
“sed 's,$line,,g' -1 JIsonfiles.list’;
$results=" /home/lelmasry/Development/nodels/node-vla, 16, 3-linux-x64/bin/istanbul -merge --out merged.json ' cat Jsonfiles,listy™ °;
close{PASSN);
print "$? \n";
}

sprint™ sed '/o\g/d" File' "
Figure 26: Frontend Merging File
e Merged file will be archive path/merged.json
Merge Backend Coverage

e cd to Coverage Parent directory (archive path)
e Run the following PERL program merge Backend.pl

CCE-E

Graduation Project-2 Measurement of Code Coverage by Black Box Testing of Web-based Applications Final Report

#0pen{PASSN,">', "./file"};

print "Merging backend started\n";

sresults="java -jar SENV{"1aR5"}/org.jacoco.cli-@.8.7-nodeps.jar merge \'cat Execriles,listhy” --destfile merged.ex=c’;
print "$? \n";

while{3? ne "e")

i

“rm file";

cpen{PASSH, '»", "./file");

print PASSN $results;

slineTodelete = “tail -1 file | sed 's,.*ca,ca,g"’;

print "$lineTodelete is corrupted”;

chomp($lineTodelete);

#orint "echo -n "$lineTodelete' | sed 's,/,\/,g"";

#§line = “echo -n "$lineTodelete' | sed 's,/,\\\\\\/,g' | sed 's,\\.,,g'";
$line = "eche -n ‘$lineTodelste’ | sed 's,%\\.\%,,2'";
#quotemeta($lineTodelete);

#print $line;

#print ""sed ‘s,.*$line,,g" -1 file'";

orint™ zed 's,3line,,g" -1 ExecFiles.list’";

“sed 's,$line,,g' -i ExecFiles.list’;

$results="java -jar SENV{"JARS"}/org.jacoco.cli-@.8.7-nodeps.jar merge %\ cat ExecFiles.listh” --destfile merged.exsc’;
closz (PASSN);

print "$? \n";

1

#print""sed '/M\8/d' file™™;

Figure 27: Backend Merging File
e merged file will be archive_path/merged.json
Generate test: line coverage file per test case

o Generate a file that will state each file and line affected by this test case you should
do the following
e Loop on all directories that contain coverage ,json file and run the script as follows

5.2.5. Results of running a full Regression on Coverage Analyzer using Regression Launcher
Tool

The coverage data processing was performed on 521 Passing designs and failing designs with total
~620 raw coverage file (for each backend and frontend)

Pass: 521 068.73\

Make Done: o
Falil: 234 30.87\

Make Errors: o
KFall: 0 o

Total: 758
T/O: o o

Pending: 3
Miss: 0 o
Running: o N/A: o iy

Re-running: 3
N/R: L] o

Figure 28: Regression suite launcher tool Results

CCE-E 40

Graduation Project-2 Measurement of Code Coverage by Black Box Testing of Web-based Applications Final Report

§ com.mentordvi.coverageanalyzer|ogback 18% 0% 4] [1 2 3

0 1
B oM. ared. plugln 12% % 14 18 56 6 7 11 2 3
[43] yZzerlicense mals I 5% 3% 158 167 47 168 80 89 7 9
vi.coverageanalyzeranalysis datamode I 0% 0% 161 161 331 331 65 65 1 1
8 default 0% 0% 55 55 121 121 40 40 5]
i com.méntor.dvt.coverageanalyzerintegration halos 0% 0% 26 26 92 92 14 14 3]
H com.mentor.dvt. coverageanalyzer.visitor 0% 0% 13 13 i3 i3 11 11 1l 1
H com mentordvt.coverageanalyzerweb.intercepto 0% nfa 1 1 1 1 1 1 1 1
Total 40,935 of 158,345 14% 66400f 17,134 61% 6,320 16,392 8,972 33569 1,739 1,663 105 12
Figure 29: Coverage Analyzer - Full Regression Backend Coverage Report
J
74,39% [ETRYE 71.35% Branc! sea/18s12 72.02% ns 2e4s/4es T74.33% 10
File = Slalemenls
webappapp, | 100%
webapp/app/blocks/intercepto I 100

Figure 30: Coverage Analyzer - Full Regression Frontend Coverage Report

5.3. Final Package
The Test Automation Team in Siemens EDA currently:

» Using our steps to build with coverage, and archive coverage results weekly for the
whole regression

» Running set of scripts to merge coverage data and generate frontend and backend reports

» Running script to generate summaries for each run (archived with its date)

backend Line : @

rontend line : 12.68
frontend Tunction

Line =

rage function

Figure 31: Results of Merging Script

» Opening an html page which provides:
» The summary of the most recent run
* The ability to view the detailed frontend and backend coverage

» The ability to navigate to the coverage report of a previous run
» Alist of all the previous archived results

CCE-E 41

Graduation Project-2 Measurement of Code Coverage by Black Box Testing of Web-based Applications Final Report

VIQ code coverage report

-
20220504
20220404 Coverage report : 20220508

20220403 Statment/Line coverage : 6.34%
Function coverage: 11.79%

* Go to Frontend detailed coverage report
* Go to Backend detailed coverage report

Figure 32: HTML Navigator/Report

Feedback from Siemens Test Automation Team

The test automation team started presenting our work and applying it to different VIQ web
applications other than Coverage Analyzer.

VIQ code coverage report
Selected Run : 20220517
FE Line Coverage : 72.25% 0
FE Function Coverage :60.36% .’ ; 1 2 /O
k]
BackEnd Line Coverage :42%
for more info go to Central VIQ server

Average Line Coverage : 57.12%

FE Line Coverage FE Func Coverage BE Line Coverage

Figure 33: VIQ Code Coverage Report

The test automation team also started analysing the reduced test case list that resulted from the test
reduction tool mentioned above.

5.4. Challenges in Deployment Process

In this section we will discuss some of the challenges that the coverage test automation team
faced when using our tool on their applications.

1. Cannot work with fully Dev build
Our tool needs development build as it contains a high level of debugging, which is needed to
catch bugs. However, the customer will need to use a production build as debugging isn’t needed,

and also it’s more abstract than the dev build. And they need maximum optimization from the
build, this forms a contradiction in interests.

CCE-E 42

Graduation Project-2 Measurement of Code Coverage by Black Box Testing of Web-based Applications Final Report

Furthermore, Dev build can’t be used to run VIQ regression because all of the SQL files are saved
based on production VIQ build, and production SQL files can’t be used with dev build. To
overcome this issue, in the building steps instead of setting dev profile we added prod profile but
still execute buildnoprod task as shown in the figure. So by doing this we can create dev build,
instrument the build by setting profile = prod, the build will behave the same as the prod build and
we can run the test cases normally and collect code coverage for both the frontend and backend.

ext { 6 lext {
! logbackLoglevel = "INFO" 7! logbackLoglevel = "DEBUG"
!

!

!

dependencies {
|

} 8
9
! def profiles = 'prod’ ™ 10 !def profiles = 'dev’
project.ext.profile=profiles 11 |project.ext.profile=profiles

if (project.hasProperty('no-liquibase')) { w12 |if (project.hasProperty('no-liquibase'})) {

ask buildnonprodcov(type: NpmTask){
workingDir file("${project.projectDir}")
args = ['run', 'buildnonprodcov’

41

¥

43 task Instrument(type: NpmTask , dependsOn: ['buildnonprodcov']){
44 workingDir file("${project.projectDir}")

15 args = ['run', 'instrument"’]

46 }

Figure 34:Buildnoprodcov task

2. Missing files in frontend that were not reported

Some required files were included as library files (in node modules) and not as source files,
therefore when collecting coverage these files were missing from the reports

3. Storage problem
Each test case coverage reports are about 62 MB to 38 GB for one regression run

4. All files under shared directory are now included in one file and not in separate files as
in the actual source codes

5.5. Formatting the results for usage in applications

After inspecting the HTML reports that were generated, we started collecting the useful coverage
data and formulating this data into files to be used in different applications. We created a parsing
script to extract information from the HTML reports into text files, each test case has a new file
that contains source file name as well as the numbers of lines (i.e. the number of the line in the
source code) that were hit by this test case.

CCE-E 43

Graduation Project-2 Measurement of Code Coverage by Black Box Testing of Web-based Applications Final Report

These parsed files can be used as input in various applications since it’s easier to extract the data
of each test case from them directly. One of the applications that can use the parsed files as input,
is reducing the size of the regression test suite, which will be discussed in the following section.

6. Applications of Code Coverage

6.1. Introduction to Code Coverage Applications

Software quality is an important issue that all developers of software systems want to achieve. It
currently attracts a lot of attention since software is everywhere and affects our lives on a daily
basis. Software testing is the main factor in enhancing and increasing the quality of software.

Regression testing necessitates running a large program on a large number of test cases, which can
be costly in both human and machine time. Software costs may be reduced if the regression testing
process could be improved. The goal of researchers using test-suite selection strategies is to reduce
costs. This is why they strive to find test-suite subsets that provide the same level of software
coverage as the original test-suite. As a result, a variety of approaches for dealing with test suits
have been investigated, including minimization, selection, and prioritising. Minimizing or
reducing the number of tests to execute is the goal of test suite minimization.

Now that we understand the importance of controlling the size of a test case regression, we can
take a look at the different metrics upon which we can make an optimum decision of whether or
not the test-suite is compact and efficient. Some of the various metrics are as follows:

Customer requirements:

In the customer requirements based selection techniques test cases are divided based on the factors
decided on the requirements of customers documented during the phase of requirements gathering.

Cost effective:

The test cases are classified on the basis of the cost factor in this approach. The cost can be the
cost of requirement gathering, cost of regression testing, cost of execution and validating test cases,
the cost of analyses to select and support a test case, cost of classification of test cases, cost of the
running time or any other implicit cost, e.g. test environment (hardware), competence or other cost
pending factors in the development or production cycle.

CCE-E 44

Graduation Project-2 Measurement of Code Coverage by Black Box Testing of Web-based Applications Final Report

History based:

The test cases are classified based upon the history of the test case itself which means priority of
test case depends upon its previous execution time, rate of finding failures and other performance
metrics.

Churn:

Testing can also be classified based on churn, e.g. changes. Meaning that you prioritize the test
cases affected by the latest code change. Depending on your architecture, programming language
choice and many other development factors e.g. how you associate and connect your tests with the
code.

Fault-based:

By constantly collecting statistics on every execution of the software, information from e.g.
customers, changes, and pass-fail history of the test case, classification can be based on the fault
history, including severity or occurrence.

Coverage based:

Owing to the fact that code coverage is one of the most important parameter to calculate in any
software testing, as well as being the output of our code coverage tool we will be using it as the
metric in our approaches for test reduction, it can be used along with other metrics or as a
standalone as we will explain later on.

Based on coverage the classification of the test cases are on the quantity of the source code of a
program that has been exercised during testing. In this approach the test cases having the capability
of testing a larger part of the code are classified. We can either use percentages only without having
any knowledge of the lines within the source code, or by also including the exact lines that were
covered. This means that this metric can be used for both white box testing and black box testing.

Coverage-based test suite reduction and prioritization techniques optimize test cases based on the
achieved coverage of different aspects (e.g. source code or model) of System Under Test (SUT).
The code coverage is used to measure the degree of SUT’s code exercised by the generated test
suite. Furthermore, it provides feedback about the strategy that should be used to enhance the
achieved coverage. The coverage criteria (e.g. statement, branch, or path) act as a stopping point
to decide whether the SUT is sufficiently tested or not.

CCE-E 45

Graduation Project-2 Measurement of Code Coverage by Black Box Testing of Web-based Applications Final Report

Test suite Covatit: Birea
minimization 4 Loverage- Dasec
Regression v &t Test case Requirement-
{ f - based
Testing v selection
Risk-based
Test Case

prioritization ‘\

Search-based

¢ Cost-aware
' Fault-based |
\ A based

Bayesian-

' History based)
Network based

Others-based F

3 types of
regression . Test case prioritization
technigues . approaches

Figure 35: Applications Using Testing Metrics

6.2. Applications Using Code Coverage Results

In phase 1 of our project, we successfully obtained the code coverage data using selenium test
cases. For our next steps we started researching on how we can use this data to enhance the
development and testing productivity of any software application. Most of the applications
revolved around how to optimize a test suite either by prioritizing the test cases, reducing the test
cases, or even exposing the blocks of code that are unused, inside the source code or the test cases
themselves. In the following section, we will be discussing the major applications that we found,
and which can be useful for software testers/developers.

6.2.1. Selection and Prioritization

Test case prioritisation, as the name implies, is the process of prioritising test cases in a test suite
based on a variety of parameters. Code coverage, risk/critical modules, functionality, features, and
so on are all possible factors. The test suite increases in size when the software itself increases,
this also leads to more efforts in order to maintain the test suite. Test case prioritization is important
in order to detect bugs in software as early as possible so that important test cases can be executed
first.

CCE-E 46

Graduation Project-2 Measurement of Code Coverage by Black Box Testing of Web-based Applications Final Report

Types of Test Case Prioritization

General Prioritization:

Test cases that will be relevant for future changed versions of the product are prioritised
in this type of prioritising. It does not require any information on the program’s
adjustments.

Version — Specific Prioritization:
Test cases can also be prioritised so that they are only useful on specific versions of the
product. This type of prioritisation necessitates knowledge of program changes.

Prioritization Techniques

Coverage — based Test Case Prioritization:

This type of prioritization is based on code coverage i.e. test cases are prioritized on basis of

their co

CCE-E

de coverage.
Total Statement Coverage Prioritization

In this technique, total number of statements covered by test case is used as factor to
prioritize test cases. For example, test case covering 10 statements will be given higher
priority than test case covering 5 statements.

Additional Statement Coverage Prioritization

This technique involves iteratively selecting test case with maximum statement coverage,
then selecting test case which covers statements that were left uncovered by previous test
case. This process is repeated till all statements have been covered.

Total Branch Coverage Prioritization

Using total branch coverage as factor for ordering test cases, prioritization can be
achieved. Here, branch coverage refers to coverage of each possible outcome of
condition.

Additional Branch Coverage Prioritization
Similar to additional statement coverage technique, it first selects text case with

maximum branch coverage and then iteratively selects test case which covers branch
outcomes that were left uncovered by previous test case.

47

Graduation Project-2 Measurement of Code Coverage by Black Box Testing of Web-based Applications Final Report

e Total Fault-Exposing-Potential Prioritization

Fault-exposing-potential (FEP) refers to ability of test case to expose fault. Statement and
Branch Coverage Techniques do not take into account fact that some bugs can be more
easily detected than others and also that some test cases have more potential to detect
bugs than others. FEP depends on :

1. Whether test cases cover faulty statements or not.
2. Probability that faulty statement will cause test case to fail.

Risk — based Prioritization:

This technique uses risk analysis to identify potential problem areas which if failed, could lead to
bad consequences. Therefore, test cases are prioritized keeping in mind potential problem areas.
In risk analysis, following steps are performed:

e List potential problems.
e Assigning probability of occurrence for each problem.
e Calculating severity of impact for each problem.

After performing above steps, risk analysis table is formed to present results. The table consists
of columns like Problem ID, Potential problem identified, Severity of Impact, Risk exposure, etc.

Requirements — based Prioritization:

Some requirements are more important than others or are more critical in nature, hence test cases
for such requirements should be prioritized first. The following factors can be considered while
prioritizing test cases based on requirements:

e Customer assigned priority
the customer assigns weight to requirements according to his need or understanding of
requirements of product.

e Developer perceived implementation complexity
priority is assigned by developer on basis of efforts or time that would be required to
implement that requirement.

e Requirement volatility
this factor determines frequency of change of requirement.

CCE-E 48

Graduation Project-2 Measurement of Code Coverage by Black Box Testing of Web-based Applications Final Report

e Fault proneness of requirements
priority is assigned based on how error-prone requirement has been in previous versions
of software.

Metric for measuring Effectiveness of Prioritized Test Suite:

For measuring how effective prioritized test suite is, we can use metric called APFD (Average
Percentage of Faults Detected). AFPD value can range from 0 to 100. The higher APFD value,
faster faults detection rate. So simply put, APFD indicates of how quickly test suite can identify
faults or bugs in software. If test suite can detect faults quickly, then it is considered to be more
effective and reliable.

6.2.2. Exposure of Unused Code

Code coverage helps testers guide the testing by numerically and graphically visualizing the
aspects of code that have been tested and the ones that aren’t working correctly. We usually think
increasing test cases can only increase that code coverage, but you can increase the coverage
percentage of the code by removing unnecessary code.

In some cases, code coverage report can help you to find code which isn't used anymore. For
example, private methods, which aren't called anywhere. There is nothing pleasant about wasting
time on reading a dead code and trying to understand why it is needed. Code like this should be
removed promptly. If you think you may need this code in future - still remove it. You can restore
it from version control system if needed.

By exposing the parts of your code that are dead, you will effectively enhance the performance as
well as speed of page loading in your web application.

6.2.3. Test Case Size Minimization

Another less obvious example of dead code - dead code in tests. You can have a test method in
which you're looping over a list of some objects and make asserts on each of them. If the list for
some reason turns out to be empty, the test will pass although none of the asserts actually occur.
This kind of bugs is easy to discover with code coverage report because loop body will be shown
as not covered. Software testers can easily reduce the size of a test case manually by knowing the
code coverage data of each test case.

6.2.4. Test Suite Reduction (TSR)

The test suite reduction aims at identifying and removing all the redundant test cases; therefore,
we minimize the number of tests from the test suite. Test suite reduction approaches also speed up

CCE-E 49

Graduation Project-2 Measurement of Code Coverage by Black Box Testing of Web-based Applications Final Report

regression testing by removing redundant test cases. Traditional research on test-suite reduction is
rather diverse but shares three properties:

a) Requirements are defined by a coverage criterion such as statement coverage.

b) The reduced test suite has to satisfy all or almost all the requirements as the original test
suite.

c) The quality of the reduced test suites is measured.

With that being said, each of the above applications is proven to enhance the efficiency and
effectiveness of the testing process. In our project scope, we decided to focus only on the test suite
reduction. In the following sections we will be discussing the implementation and results of the
several approaches we took by applying several machine learning algorithms in order to reduce
the test suite without affecting the coverage results greatly.

6.3. Test Suite Reduction Implementation Using Code Coverage & Machine Learning

6.3.1. Introduction

Test suite reduction techniques aims at reducing the test suite size by removing the redundant test
cases from original test suite based on certain coverage requirement. In the context of open source
development or software evolution, developers often face test suites which have been developed
with no criteria and which may need to be adjusted or refined to ensure its dependability, or even
reduced to meet the runtime limits of the test suite regression. It is important to provide both
methodological and tool support to help people understand the limitations of test suites and their
possible redundancies, so as to be able to change them in a cost effective manner. To address this
problem in the case of black-box or white-box testing, we propose two methodologies based on
machine learning that have shown promising results regarding the test suite size as well as the
coverage data.

Test cases are abstracted under the form of category and choice combinations, as defined in
Category- Partition. These choice combinations characterize a test case in terms of input and
execution environment properties. A machine-learning algorithm is then used to learn about
relationships between inputs/environment conditions and outputs as they are exercised by the test
suite. This allows the tester to precisely understand the capabilities and weaknesses of the test
suite.

CCE-E 50

Graduation Project-2

Measurement of Code Coverage by Black Box Testing of Web-based Applications

Choosing the Suitable Algorithms

Final Report

Before talking about the two machine learning algorithms that we went with in our project, we
will discuss briefly about other algorithms and techniques that could also be used for the same
purpose in the following table.

Table 1: Machine Learning Algorithms for Test Suite Reduction[33]

Algorithm Technique Advantages Disadvantages
Genetic Builds the initial population based | Reduce the Need to be
Algorithm on test history, it calculates the number of test examined on the

fitness value using coverage and cases and also fault detection
cost (customized metric). Then the | decreases total capability and
fitness function is used to evaluate | running time. other criteria
the generated population to choose

the best candidates, then the

crossover and mutation process are

taking place.

Fuzzy Logic | Allows each feature to belong to A safe technique | Need more
more than one cluster with different | and reduce the experiments and
membership degrees (between 0 regression testing | studies
and 1) and fuzzy boundaries size and
between clusters. In fuzzy execution time
clustering, each point has a degree
of belonging to clusters, rather than
belonging completely to one cluster
only.

Greedy Greedy algorithm is used for test Provide Involve random

algorithm suite reduction also called Set significant selection of test
Covering Technique. It starts by reduction in the case in a tie
determining test cases which can number of test situation.
satisfy all the requirements. If the cases
test case does not satisfy
requirements then the algorithm
repeatedly eliminate redundant test
cases then update the test suite and

CCE-E

51

Graduation Project-2

Measurement of Code Coverage by Black Box Testing of Web-based Applications

Final Report

the remaining requirements that are
uncovered.

and to build a slice set, which is a
set of statements effect to determine
a statement; in many cases it is the
output statement of a program,
based on input values. Two
algorithms are used: the first one
generates a program called
differences, it captures the
difference between certified and
modified program, where certified
is the previously tested program
without changes and modified is the
program with modification. The
second algorithm uses existing test
cases to test components new in
modified, also it uses the test cases
for which modified and certified
program produced the same
outputs. The idea is to avoid the
cost of using new test cases and to
avoid rerunning test cases that
produce the same output.

required test cases
and consequently
the cost and time
of testing will be
decreased.

Divide the test cases into clusters Produce smaller | Less fault
Clustering according to the similarity in representative detection ability
profiling using data mining sets of test cases | also it’s a
approach statistical
method
Program This technique is used to check a Decrease the Need to be
slicing program over a specific property number of examined on the

fault detection
capability and
larger generated
data and high
complexity

CCE-E

52

Graduation Project-2 Measurement of Code Coverage by Black Box Testing of Web-based Applications Final Report

Hybrid Combine genetic algorithms and Provide High
algorithm greedy algorithms significant complexity
reduction in the
number of test
cases and multi-
objective
optimization

The first algorithm we chose was K-mean clustering. It’s the simplest clustering algorithm within
its category, as well as being the best fit option for our project. For example, one of the other
clustering algorithms is the Hierarchical Clustering Algorithm, which clusters the data in a
hierarchical fashion unlike in K-mean, which simply clusters them into groups. In our project we
did not care about the hierarchy of the test cases, furthermore, the hierarchical algorithm has a
higher complexity and works for smaller datasets.

One of the other clustering algorithms that were mentioned in table 3 is Fuzzy logic. It was not
chose because although convergence is always guaranteed, the process is very slow and this cannot
be used for larger data.

As seen in the above table, some algorithms had a high complexity which made it less appealing
to use, or they did not depend on the code coverage data for the reduction process which is a crucial
metric for us.

One of the algorithms that we researched on was k-nearest neighbour (KNN) algorithm, we did
not work with KNN because it’s a supervised classification algorithm where grouping is done
based on a prior class information, however, and in our project we did not have such information.
When we look at the two possible options remaining in the above table which are Genetic and
Greedy, we chose to work with Greedy and not Genetic. Our choice was based on the fact that
Genetic algorithm needs to work with white-box testing, meaning it needed to access the test case
source code in order to modify it to meet a certain reduction requirement.

CCE-E 53

Graduation Project-2 Measurement of Code Coverage by Black Box Testing of Web-based Applications Final Report

6.3.2. K — Mean Clustering Algorithm

a) Introduction to Clustering Algorithms

Clustering is essentially an unsupervised learning method. An unsupervised learning method is
one in which we draw references from datasets that only contain input data and no labelled
responses. It is commonly used as a process to discover meaningful structure, explanatory
underlying processes, generative features, and groupings inherent in a set of examples.

Clustering is the process of dividing a population or set of data points into groups so that data
points in the same group are more similar to other data points in the same group and dissimilar to
data points in other groups. It is essentially a collection of objects based on their similarity and
dissimilarity.

For example, the data points in the graph below clustered together can be classified into one single
group. We can distinguish the clusters, and we can identify that there are 3 clusters in the below
picture.

A A
® o.o
...
o‘. ®e e [I.
" . .°.. . e/
'

Figure 36: Clustering Illustration

Clustering is critical because it determines the intrinsic grouping of the unlabelled data present.
There are no requirements for good clustering. It is up to the user to determine what criteria they
will use to satisfy their needs. There are different types of clustering algorithms that handle all
kinds of unique data.

Density-based
Data is grouped in density-based clustering by areas of high concentrations of data points

surrounded by areas of low concentrations of data points. The algorithm basically finds places that

CCE-E 54

Graduation Project-2 Measurement of Code Coverage by Black Box Testing of Web-based Applications Final Report

are dense with data points and labels them as clusters. Because these clustering algorithms do not
attempt to assign outliers to clusters, they are ignored.

Distribution-based

A distribution-based clustering approach considers all data points to be members of a cluster based
on the probability that they belong to a given cluster.It works like this: there is a centre-point, and
the farther a data point is from the centre, the less likely it is to be part of that cluster.

Centroid-based

It's a little picky about the initial parameters you give it, but it's quick and efficient.These
algorithms separate data points based on the presence of multiple centroids in the data. A cluster
is assigned to each data point based on its squared distance from the centroid. This is the most
common clustering method.

Hierarchical-based

On hierarchical data, hierarchical-based clustering is commonly used. It creates a tree of clusters
to organise everything from the top down. This type of clustering is more restrictive than the
others, but it is ideal for certain types of data sets.

K-means clustering

It is the most popular clustering algorithm. It is the simplest unsupervised learning algorithm and
is centroid-based. The goal of this algorithm is to reduce the variance of data points within a
cluster. It's also how most people become acquainted with unsupervised machine learning.
Because it iterates over all of the data points, K-means is best used on smaller data sets. That means
it will take longer to classify data points if the data set contains a large number of them.

How it Works:

First, Initialize K random centroids. You could pick K random data points and make those your
starting points. Otherwise, you pick K random values for each variable. For every data point, look
at which centroid is nearest to it. Using some sort of measurement like Euclidean or Cosine
distance. Assign the data point to the nearest centroid. For every centroid, move the centroid to the
average of the points assigned to that centroid. Repeat the last three steps until the centroid
assignment no longer changes. Works Best on Numeric Data Since the k-means algorithm
computes the distance between two points, you can’t really do that with categorical (low, medium,
high) variables. A simple workaround for multiple categorical variables is to calculate the percent
of times each variable matches in comparison to the cluster centroid.

CCE-E 55

Graduation Project-2 Measurement of Code Coverage by Black Box Testing of Web-based Applications Final Report

Advantages of K-means:
e Itis very simple to implement.
e Itisscalable to a huge data set and also faster to large datasets.
e |t adapts the new examples very frequently.
e Generalization of clusters for different shapes and sizes.

b) Methodology

Given a program such as our web application Employee Manager or Coverage Analyzer from VIQ,
a set of test cases is defined to test the program traces including instructions, lines, methods,
branches, classes and the cyclomatic complexity. We use our tool to get the code coverage results
from those test cases. In order to reduce the number of generated test cases according to their
coverage, K-mean clustering is applied.

The software that we used to apply K mean clustering is called SPSSE3. SPSS is a powerful
statistical software platform. It offers a user-friendly interface and a robust set of features that lets
you quickly extract useful insights from your data. It is used by market researchers, health
researchers, survey companies, marketing organizations, data miners and others. It applies k mean
clustering to generate a decision metric such as distance or density.

The following figure shows the overall flow of our approach, it also includes the names of the
software that were used to perform each step.

Step 1: Step 2: Step 3: Step 4: Step 5:
Generate Generate Apply k- Decision Removing
coverage the mean metric redundant

report dataset clustering J| calculation | test cases

SPSS
software: K
mean
analysis

SPSS
software:
Descriptives

Python and

Jacoco tool MSexcal

Figure 37: K-mean Process Flow

CCE-E 56

Graduation Project-2 Measurement of Code Coverage by Black Box Testing of Web-based Applications Final Report

Step 1: Getting Code Coverage

Using our tool, we calculate the code coverage results for Coverage Analyzer backend and produce
an HTML report containing all coverage data needed, it includes also the total values for each
coverage result as seen in figure 38.

JaCoCo Coverage Report

Element Missed Instructions Cov. Missed Branches Cov. Missed Cxty Missed Lines Missed Methods Missed Classes
com.mentor.dvt.coverageanalyzer.service.impl 1#.52,01115.10,648 16%4.6,7145.1,043 13%4,945 5,711 9,989 12.2271,269 1,718 15 82
com.mentor.dvt.coverageanalyzer.model #.13.982053.281 19%4.21,794[,272 13%2,064 2,422 3,357 4,161 1,074 1,363 51 81
com.mentor.dvt.coverageanalyzer. jni.mapper 1#.9.902(,.3,.935 28%,.1,209,,.301 19%3812 1,000 1,946 2,744 120 245 2 21
com.mentor.dvt.coverageanalyzer.service.dto 1#.8,0531,.1,061 11% ,.767 7% 1,626 1,841 2,424 2,760 1,231 1427 75 91
com.mentor.dvt.coverageanalyzer.service.mapper |#.7,449(,.11,206 13% 0178950117 129583 711 1,674 1,930 162 258 18 88
com.mentor.dvt.coverageanalyzer.web.rest #.2,913 14% | p2157 1% 252 304 548 654 172 224 2 29
com.mentor.dvt.coverageanalyzer.covergroups.service #2401 1% |».231 0% 177 185 449 461 59 67 0 5
com.mentor.dvt.shared. web.rest.util 1#.2,230 12%|,.378 3% 250 270 451 504 52 70 7 12
com.mentor.dvt.coverageanalyzer.covergroups.analysis . 1,880 0% |,.194 0% 163 163 360 360 66 66 6 6
com.mentor.dvt.coverageanalyzer.analysis.expressions |0.1.804[,.2.424 57%|8.3245.256 44%336 553 393 904 132 263 1 11
com.mentor.dvt.coverageanalyzer.domain 1#.1.635 12% 52121 0% 297 325 506 577 236 264 1 12
com.mentor.dvt.coverageanalyzer.domain.enumeration 15.1.6235.2.336 59% .91 13% 109 155 193 335 48 89 9 25
com.mentor.dvt.coverageanalyzer.covergroups.exclusions w1461 0% |».80 0% 159 159 296 296 119 119 8 8
com.mentor.dvt.coverageanalyzer.license.mgls #.1.459 5% 52149 3% 158 167 347 368 80 89 7 9
com.mentor.dvt.coverageanalyzer.analysis.datamodel 191,420 0% [51192 0% 161 161 331 331 65 65 1 1
com.mentor.dvt.coverageanalyzer.covergroups.domain #1354 0% [51132 0% 157 157 300 300 91 91 8 8
com.mentor.dvt.coverageanalyzer.interceptor #.1.286 7% |#.293 2% 179 185 240 266 30 35 3 5
com.mentor.dvt.coverageanalyzer.service 2931 6% |»2104 0% 66 68 180 184 14 16 0 2
com.mentor.dvt.coverageanalyzer.covergroups.service.dto #.887 6% |»2110 0% 161 172 245 265 106 117 7 8
com.mentor.dvt.tpa.service |#.868 7% |ea128 3% 88 97 203 222 23 31 0 2
com.mentor.dvt.coverageanalyzer.license.salt #1735 38%/,.95 24%86 117 152 266 24 54 0 4
com.mentor.dvt.coverageanalyzer.constant #7006 0% na 7 7 122 122 7 7 6 6
com.mentor.dvt.coverageanalyzer.util |#16000,.777 56% .70 38%73 116 156 326 22 59 0 10
com.mentor.dvt.coverageanalyzer.exception #.588 23% 28%105 131 169 227 98 124 45 51
com.mentor.dvt.coverageanalyzer.shell #5365 20%|,.65 9% 67 80 134 175 31 44 4 10
com.mentor.dvt.tpa.model 0% 0% 94 94 134 134 64 64 4 4
com.mentor.dvt.coverageanalyzer.web.resolver 93% 75%1 5 1 12 0 3 0 1
com.mentor.dvt.coverageanalyzer.web.interceptor 0% n/a 1 1 1 1 1 1 1 1
Total 125.504 of 158,34520% 14.797 of 17,134 13% 13,925 16.39226.848 33.5695.830 7.663 327 712

Created with JaCoCo 0.8.7.202105040129

Figure 38: VIQ Backend Coverage Report to Extract Data

We generated an HTML report for 538 test cases which is a full directory. These HTML files
will be the source of data that we will create our dataset from.

Step 2: Creating the Dataset

The second step is the most important in our approach because it is the framework for the following
phases. In order to build the dataset we need to select the most important and effective attributes
for the test cases. The average cyclomatic complexity and the code coverage are the most two
effective attributes in test case selection, so our dataset will contain the complexity and the
coverage for each test case.

Cyclomatic complexity of a code section is the quantitative measure of the number of linearly
independent paths in it. It is a software metric used to indicate the complexity of a program. It is
computed using the Control Flow Graph of the program. The nodes in the graph indicate the
smallest group of commands of a program, and a directed edge in it connects the two nodes.

CCE-E 57

Graduation Project-2 Measurement of Code Coverage by Black Box Testing of Web-based Applications Final Report

Cyclomatic complexity is measured by counting the splitting nodes, in our case, our tool already
calculates the cyclomatic complexity for the backend and it was not needed to calculate it
manually. Cyclomatic complexity can make sure that every path have been tested at least once.
And help to focus more on uncovered paths.

To begin building our dataset, we extracted the total values of data from the HTML report into an
EXCEL file, then we computed the hits for each of the instructions, lines, methods, classes,
branches, as the report contained the missed and the total of each attribute, and the missed
cyclomatic complexity.

We created a python script that will extract the total values only from the HTML files. To write
such script, we opened any HTML file and viewed its page source.

Line wrap 4 Total mo oA v X
1 <?xml version="1.0" encoding="UTF-8"2?> C77UTUT AT TME TTY ST YCT7 7T —
<html xmlns="http://www.w3.0rg/1999/xhtml" lang="en"><head>
<meta http-equiv="Content-Type" content="text/html;charset=UTF-8"/><link rel="stylesheet" href="jacoco-
resources/report.css" type="text/css"/><link rel="shortcut icon" href="jacoco-resources/report.gif"
type="image/gif"/><title>JaCoCo Coverage Report</title><script type="text/javascript" src="jacoco-
resources/sort.js"></script></head><body onload="initialSort(['breadcrumb’', ‘coveragetable'])"><div
class="breadcrumb" id="breadcrumb"><a href="jacoco-sessions.html"
class="el_session">SessionsJaCoCo Coverage Report</div><hl>JaCoCo
Coverage Report</hl><table class="coverage" cellspacing="0" id="coveragetable"><thead><tr><td class="sortable"
id="a" onclick="toggleSort(this)">Element</td><td class="down sortable bar" id="b"
onclick="toggleSort(this)">Missed Instructions</td><td class="sortable ctr2" id="c"
onclick="toggleSort(this)">Cov.</td><td class="sortable bar" id="d" onclick="toggleSort(this)">Missed
Branches</td><td class="sortable ctr2" id="e" onclick="toggleSort(this)">Cov.</td><td class="sortable ctrl"
id="f" onclick="toggleSort(this)">Missed</td><td class="sortable ctr2" id="g"
onclick="toggleSort(this)">Cxty</td><td class="sortable ctrl" id="h" onclick="toggleSort(this)">Missed</td><td
class="sortable ctr2" id="i" onclick="toggleSort(this)">Lines</td><td class="sortable ctrl" id="j"
onclick="toggleSort(this)">Missed</td><td class="sortable ctr2" id="k" onclick="toggleSort(this)">Methods</td><td
class="sortable ctrl" id="1" onclick="toggleSort(this)">Missed</td><td class="sortable ctr2" id="m"
onclick="toggleSort(this)">Classes</td></tr></thead><tfoot><tr><td> (IR PRS- M ETTE FToub S PNV o) o
58,345</td><td class="ctr2">20%</td><td class="bar">14,797 of 17,134</td><td class="ctr2">13%</td><td
lass="ctr1">13,925¢</td><td class="ctr2">16,392</td><td class="ctrl">26,848</td><td class="ctr2">33,569</td><td
lass="ctrl">5,830</td><td class="ctr2">7,663</td><td class="ctrl"”>327</td><td class="ctr2">712</td></tr></tfoot
<tbody><tr><td id="a37"><a href="com.mentor.dvt.coverageanalyzer.service.impl/index.html"

Figure 39: Coverage Report Source Page to Extract Total Results

We used the following function in the parsing script to extract the required coverage numbers

def parsefile (file_html):
html = open(file_html,"r")
reading = html.read()
content = str(reading)
info = re.findall(r"Total.*?</tfoot>",content)
info_rep = info[0].replace(’,,")
coverageN = re.findall(r"\d+",info_rep)
return coverage

Then, we write these numbers in an excel sheet by subtracting the missed number of lines,
instructions, etc. from the total values to get the number of hits. The cyclomatic complexity is

CCE-E 58

Graduation Project-2

Measurement of Code Coverage by Black Box Testing of Web-based Applications

Final Report

taken as it is, indicating the missed complexity, which means the less complexity, the better the
test case is. This dataset excel sheet is the input to the next step.

foriin files:

list = parsefile(i)

if (list):

coverageN.append(list)

worksheet.write(c+1,0,0s.path.basename(os.path.dirname(i)))
worksheet.write(c+1,1, int(coverageN[c][9]))
worksheet.write(c+1,2, int(coverageN[c][1])-int(coverageN[c][0]))

worksheet.write(c+1,3, int(coverageN[c][15])-int(coverageN[c][13]))
worksheet.write(c+1,4, int(coverageN[c][19])-int(coverageN[c][17]))
worksheet.write(c+1,5, int(coverageN[c][23])-int(coverageN[c][21]))

worksheet.write(c+1,6, int(coverageN[c][5])-int(coverageN[c][4]))

A

breadCrur
breadCrur
breadCrur
breadCrur
branchess
branchess
branchess
branchess
codeEdito
codeEdito
codeEdito
codeEdito
comment:
condition:
condition:
condition:
condition:
expressio
expressio

U] P PR) Y (I ())
S0 e~ nkwNo0®NOuEWwN =

B

ITes‘tca se _I Cxty

13925
13715
13849
13787
12540
14488
14280
14211
13787
13926
13791
13864
12146
12020
14210
13925
14326
14130
14333

Inst

32841
3ATTO
34002
34716
26051
27033
29764
I0814
34762
I3ITSO0
34754
34239
I0894
33005
30422
33885
28853
31244
29065

Lime

6721
7199
8957
7101
5293
5471
5063
6288
F103
6870
FOTT
8967
6286
6737
6168
6903
5891
6332
5921

neth
1833
2149
1860
1876
1530
1528
1670
1733
18TE
1829
1855
1844
1745
12816
1720
1838
1694
1745
16569

F
Classes
3IB5
414
385
386
362
368
376
384
3IBS
383
383
384
379
383
379
384
376
379
=

S
Branch
2337
2070
2446
2569
1535
1595
1917
1926
2574
2388
2611
2499
2057
2249
1959
2419
1751
2091
1787

Figure 40: Extracted Data in EXCEL File Format

Step 3: Applying K-mean Clustering

In this step, we will apply K clustering machine learning algorithm using the previous data. We
import the excel sheet to a software called SPSS.

Firstly, we perform descriptive analysis to calculate the z scores of the attributes which is needed
SPSS to apply the k mean analysis

CCE-E

59

Graduation Project-2

Measurement of Code Coverage by Black Box Testing of Web-based Applications

13 Descriptives

Variable(s):

& Cxty

& Inst

& Line
& Meth
& Classes
é’ Branch

[iSave standardized values as variables

(L)) o) [

*

Options...

Bootstrap...

Figure 41: Descriptive Analysis to Compute Z-scores for K-mean Analysis in SPSS

ZCxty

-.58432
-86259
- 68503
- 76719
23061
16171
-11301
- 20534
- 76719
- 58300
- 76189
- 66515
-29147
- 45844
- 20667
-.58432
- 05296
-.31268

Zinst

53639
72964
65216
72335

- 14068
-04276

22956
33426
72794
62703
72714
67579
34224
55274
29518
64049
13872
37714

ZLine

51382
74082
62590
69428
- 16431
-07978
20135
30820
69523
58458
68288
63064
30725
52142
25121
60025
11967
32009

ZMeth

37087
05076
42042
44978
-18516
- 18883
07175
18736
45345
36353
41124
39106
20938
33967
16351
38005
1579
20938

ZClasses
32830
64694
32830
33929
07559
14152
22042
31732
32830
30633
30633
31732
26238
30633
26238
31732
22942
26238

Figure 42: Results of Descriptive Analysis

ZBranch

84436
52320
87547
12342

-12033
- 04815

33916
34099
12043
80570
17394
03922
50736
73851
38968
84299
13049
54846

Final Report

Secondly, we apply the analysis by choosing the number of clusters and the number of iterations.
The clusters centres are randomly selected, and the new centres are recalculated every iteration.
We choose 3 clusters based on a previously made research paper 21 and 12 iterations as they were
sufficient for convergence after trials.

CCE-E

60

Graduation Project-2 Measurement of Code Coverage by Black Box Testing of Web-based Applications Final Report

#3 K-Means Cluster Analysisi., X

Maximum lterations:

Convergence Criterion:EI

[7] Use running means

| Continue | [Cancel || Help |

Figure 43: K-mean Cluster Analysis in SPSS

#3 K-Means Cluster Analysis >
Wariables:
& Cxty & Zscore(Cxty) [ZCxty]
& Inst & Zscore(lnst) [ZInst] E -
& Line .« & Zscore(Ling) [ZLing] -l:m
& Meth . & Zscore(Meth) [ZMeth]
& Classes & Zscore(Classes) [ZClasses] =
& Branch == " 7’ B
Label Cases by:
~» &a Tesicase |

@ Iterate and classify © Classify only

Mumber of Clusters: "MElhDd ‘

rCluster Center:
[] Read initial:

@

] Write final-

@

(L oK [Beste || Beset]| Cancel|[_Help

Figure 44: K-mean Cluster Analysis in SPSS

The final cluster centers are based on the values of Zscores for example, test cases which have a

large positive Zscore for the cyclomatic complexity are placed in the third clusters as shown in the
following figure.

Final Cluster Centers

Variabhles
W Zscore(Cxty)
M zscors(inst)
[Zscore(Ling)
B ZscorsiMeth)
(] Zscore(Classes)
B Zscore(Branch)

Values

T T T
Cluster 1 Cluster 2 Cluster 3

Cluster

Figure 45: Bar Graph Showing Clustering Criteria

CCE-E 61

Graduation Project-2 Measurement of Code Coverage by Black Box Testing of Web-based Applications Final Report

The following figures shows the distance of each test cases to the center of the clusters which will
be our decision metric in the next step and the cluster which each test case belongs to.

Cxty Inst Line Meth Classes Branch QcL_1 Distance va
13925 32841 6721 1833 385 2337 2 40308
13715 34779 7199 2149 414 2070 2 47673
13849 34002 6957 1860 385 2446 2 34473
13787 34716 7101 1876 386 2569 2 44161
14540 26051 5293 1530 362 1535 1 1.10618
14488 27033 5471 1528 368 1595 1 1.26366
14280 20764 6063 1670 376 1917 2 1.14926
14211 30814 6288 1733 384 1926 2 94327
13787 34762 7103 1878 385 2574 2 44766
13926 33750 6870 1829 383 2388 2 38260
13791 34754 7077 1855 383 2611 2 50838
13864 34239 6967 1844 384 2499 2 40869
14146 30894 6286 1745 379 2057 2 83902
14020 33005 6737 1816 383 2249 2 45820
14210 30422 6168 1720 379 1959 2 98620
13925 33885 6903 1838 384 2419 2 37834
14326 28853 5891 1694 376 1751 2 1.31455
14130 31244 6332 1745 379 2091 2 79376
14333 29065 5921 1669 377 1787 2 1.30258
14389 28203 5738 1618 375 1708 2 1.49771

2

13976 33083 6749 1811 383 2308 43839

Figure 46: Results of K-mean Analysis - Distance from Cluster Center & Cluster Membership

Step 4: Decision Metric

K-mean Algorithm works on partitioning of a given data set into groups or clusters to maximize
the intra cluster similarity, each test case within the cluster displays the same behavior.

After clustering the Euclidian distance that measure the distance between any given test case and
the centroid is calculated.

dist = J >, (db; - ¢)°

Where Cjis the cluster centre and db; is the data point of each test case
Along the distance from the centre of cluster, we also consider the cyclomatic complexity as a
decision metric in the removal of the redundant test cases.

Step 5: Removing redundant test cases

A test cases t; is considered redundant with ¢; if dist(¢; ,centroid) =~ dist(¢; ,centroid), in which
t; t; belong to the same cluster. In this case, pick the test case with minimum Cyclomatic

Complexity. Test cases in the same cluster with an approximately equal distance are considered
redundant because since they exhibit the same behavior, they are expected to give the same code
coverage results.

CCE-E 62

Graduation Project-2 Measurement of Code Coverage by Black Box Testing of Web-based Applications Final Report

For example, the following figure shows two cases, first case we have two test cases (test21 and
test21 1), they have approximately equal distances. In this case, we remove the test case with
higher cyclomatic complexity which is test21.

The second case is having two test cases (test14 and testl4 1) with the exact same distance and
complexity. In this case, one of the test cases is chosen randomly.

240 test21 13793 35896 7425 2058 398 2293 2 0.27158
241 test21_1 13792 35917 7431 2058 398 2297 2 0.27551
242|testl4 13772 35711 7417 2068 399 2280 2 0.27858
243|test14 1 13772 35711 7417 2068 399 2280 2 0.27858
244 testl3 13772 35715 7417 2068 399 2282 2 0.27904

Figure 47: Sample of Redundant Test Cases

¢) Result Analysis

By applying the reduction, we obtained 250 test cases out of the original 538 test cases. To check
the effectiveness of our approach, we recomputed the code coverage percentage with the new set
of test cases. The reduced list achieved Total Code Coverage of 71 % while the original list had
73%.

This method is statistical, it doesn’t guarantee that important test cases won’t be removed as it
doesn’t depend on a specific set of requirements. It only ensures a reduced list of test cases with
an acceptable code coverage percentage compared to the original list. This reduction will reduce
the cost and the time required for running the regression.

With that being said, it’s to be noted that even though it’s a statistical approach, it has a very
important advantage which is not needing an access to the source code. Therefore, it’s totally black
box method.

6.3.3. Greedy Algorithm

a) Introduction to Greedy algorithm

The Greedy algorithm is one of the most common machine learning algorithms. It has many types
depending on a given problem, such as selection sort, knapsack problem, Set cover problem, and
minimum spanning tree. And each type works in a certain way. However, the general idea is that
it builds up a solution piece by piece, always choosing the next piece that offers the most obvious
and immediate benefit.

CCE-E 63

Graduation Project-2 Measurement of Code Coverage by Black Box Testing of Web-based Applications Final Report

The general steps of Greedy algorithm work by recursively constructing a set of objects from the
smallest possible constituent parts applying the following steps:

e To begin with, the solution set (containing answers) is empty.

e Ateach step, an item is added to the solution set until a solution is reached.
e If the solution set is feasible, the current item is kept.

e Else, the item is rejected and never considered again.

It is quite easy to come up with a greedy algorithm (or even multiple greedy algorithms) for a
problem. Analysing the run time for greedy algorithms will generally be much easier than for other
techniques (like Divide and conquer). For the Divide and conquer technique, it is not clear whether
the technique is fast or slow. This is because at each level of recursion the size of gets smaller and
the number of sub-problems increases.

Our problem here is similar to Set cover problem.

In the set cover problem, we are given a universe U of n elements, a collection of subsets of U say
S ={S;, S...., Sn} we are searching for the minimum subset that covers all the elements of U. It
starts forming the new subset by selecting the set that covers the largest number of elements in U
which are the requirements. Then, it loops on the other sets and choose the next set that has the
most elements which are not covered in the subset.

Example:

Uu={1,2 3,45}
S={Sy, S, Sz}
S1={4,1, 3},

S2 ={2, 5},
Ss={1, 4, 3, 2},

The Output of set cover is { Sz, Sz}

b) Methodology

In the previous approach, we only took the number hits from the code coverage report. This
approach is a white box one where we want to make use of the information we have on the source
code. The input we have is the files generated from HTML reports, which we extracted before,
using a parsing script. Each test case has a file that contains the file name of the source code and
the lines hit by the test case.

CCE-E 64

Graduation Project-2 Measurement of Code Coverage by Black Box Testing of Web-based Applications Final Report

Having this input, we consider the lines numbers as the list of requirements, and we are trying to
reach the minimum set of test cases that satisfy this list. Therefore, our problem is similar to the
set cover problem. The following format is the input format of the set cover greedy algorithm 34
which is a predefined open-source C++ algorithm.

Number of requirements ~ Number of sets
A line for each set indicating which requirements from the list are satisfied by this set

For example, if we have 10 requirements and 5 test cases the input format should be like the
following

When we run the set cover algorithm the expected output is:

Set id 4 Element: 4, 6, 7, 9, 10,
Set id 5 Element: 1, 2, 8,

Set id 1 Element: 5,

Set id 3 Element: 3,

Where sets {4, 5, 1, 3}, which represents the test case number, satisfy all the requirements.

Now, we will apply on coverage analyzer App to generate the reduced list. The first step is using
the parsed file to generate the requirement list which includes the different line hits for each test
case by making a python script.

Then, we we generate the text file including each test case and which requirement it satisfies in
the same format as the previous example.

This part generates the requirement list

for i in files:
contentinfo = openfile(i)
contentinfo=contentinfo.split(", ")
for j in contentinfo:
contentinfo[c] = re.findall(r"".*?"",contentinfo[c])
if contentinfo[c] not in Req_list:
Req_list.append(contentinfo[c])

CCE-E 65

Graduation Project-2

Measurement of Code Coverage by Black Box Testing of Web-based Applications

Final Report

c=c+l
print(dc)
dc=dc+1
c=0
[[""webapp/app/app.animations.ts:4""], ['"webapp/app/app.constants:1"'], ['"webapp/app/app.constants:2""']
['"webapp/app/app-constants:3"'], ['""webapp/app/app.constants:4"'], ['"webapp/app/app.module.ts:75™"]

[' "webapp/app/app-route.ts:5""],
['"webapp/app/polyfills.ts:4™"],
['"webapp/app/assertions-directives/assertions—directives.
['"webapp/app/assertions-directives/assertions-directives
['"webapp/app/assertions-directives/assertions-directives.
['"webapp/app/assertions—directives/assertions—directives.
['"webapp/app/assertions—directives/assertions—directives.
['"webapp/app/assertions-directives/assertions-directives.
['"webapp/app/assertions-directives/assertions—-directives.
['"webapp/app/assertions-directives/assertions—directives.

['"webapp/app/assertions-directives/assertions-directives.
['"webapp/app/assertions—directives/assertions—directives.
['"webapp/app/assertions—directives/assertions—directives.

[*"webapp/app/polyfills.ts:1"'], [""webapp/app/polyfills.ts:2"'],
[*"webapp/app/assertions—

directives/assertions—directives.component.ts:33"'],
component.ts:1482""'],

.module.ts:28"'],

route.ts:5"'],

service.ts:13""
service.ts:27""
service.ts:28""
service.ts:36""
service.ts:42""

service.ts:44""'
service.ts:45""
service.ts:46""

['"webapp/app/assertions-directives/assertions-directives.service.ts:47""
['"webapp/app/assertions-directives/assertions-directives.service.ts:54""

]
]
]
1
1
['"webapp/app/assertions-directives/assertions-directives.service.ts:43""]
]
]
]
]
1
['"webapp/app/assertions-directives/assertions-directives.service.ts:479""

['"webapp/app/blocks/config/uib-pagination.config.ts:6""],
['"webapp/app/blocks/config/uib-pagination.config.ts:13""'],
['"webapp/app/blocks/interceptor/auth.interceptor.ts:4""'],
[' "webapp/app/blocks/interceptor/auth.interceptor.ts:7""1,
[' "webapp/app/blocks/interceptor/auth.interceptor.ts:15""'],
['"webapp/app/blocks/interceptor/auth.interceptor.ts:17"'1,
['"webapp/app/blocks/interceptor/http.provider.ts:30""], ['"webapp/app/blocks/interceptor/http.provider.ts:37"'],

Figure 48: Requirement List

And then we generate a test data file which is in the correct format using the previous output

foriin files:
contentinfo2 = openfile(i)

contentinfo2=contentinfo2.split(", ")

for j in contentinfo2:

contentinfo2[c] = re.findall(r"".*?"",contentinfo2[c])
index = find_element_in_list(contentinfo2[c], Req_list)

datafile.write(str(index+1)+" ")
c=c+1

c=0

datafile.write('/n")

The test data file contains the total number of lines hit by all test cases which is 24175 and the total
number of test cases in the regression which is 538. And a line for each test case stating the

requirements satisfied by it.

CCE-E

66

Graduation Project-2 Measurement of Code Coverage by Black Box Testing of Web-based Applications

Final Report

R4175 538

1234567891011
42 43 44 45 46 47 48 49
80 81 82 83 84 85 86 87
113 114 115 116 117 118
141 142 143 144 145 146
169 170 171 172 173 174
197 198 199 200 201 202
205 226 227 228 229 230
253 254 255 256 257 258

28 29 30 31 32 33 34 35
66 67 68 69 70 71 72 13
103 104 105 106 107 108
131 132 133 134 135 136
159 160 161 162 163 164
187 188 189 190 191 192
212 213 214 215 216 217 218 219 220
231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248
259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276
Figure 49: Input to setcover Greedy Algorithm

12 13 14 15
50 51 52 53
88 89 90 91
119 120 121
147 148 149
175 176 1M

16 17 18 19 20 21 22 23
54 55 56 57 58 59 60 61
92 93 94 95 96 97 98 99
122 123 124 125 126 1217
150 151 152 153 154 155
178 179 180 181 182 183
203 204 205 206 207 208 209 210 211

24 25 26 27
62 63 64 65
100 101 102
128 129 130
156 157 158
184 185 186

36 37 38 39 40 41
747576 77 18 19
109 110 111 112
137 138 139 140
165 166 167 168
193 194 195 196
221 222 223 224
249 250 251 252
277 278 279 280

The next step is running the set cover algorithm to get the output. We ran the code on Ubuntu to
get the executable file. The output will be the minimum set of test cases that satisfy all the

requirements as mentioned before. We used the following command

make
./setcover testdatafile.txt

The following figure shows the output

157
328

Element:
Element:
286 Element:
122 Element:
75 Element:
388 Element:
504 Element:
342 Element:
115 Element:
412 Element:
208 Element:
40 Element: 10655,
1 Element: 4558,
266 Element: 19744,
367 Element:

347 Element:

15159,
19951,
19874,
14355,

13521,
20676,
23612,
20178,
14572,
21163,
17921,

Figure 50: Snippet from the Output of setcover

Finally, we create a python script that maps the ids to the test cases paths

def parsefile (text_file):

reducedFile = open(text_file,"r")

reading = reducedFile.read()

content = str(reading)

indexLine = re.findall(r"set id.*?:",content)

index =[]

c=0

for i in indexLine:
index.append(re.findall(r"\d+",i))
c=c+l

return index

CCE-E

67

Graduation Project-2 Measurement of Code Coverage by Black Box Testing of Web-based Applications Final Report

Now we have the reduced list of test cases with the correct path in the directory that cover the
requirements.

1 |ca/Exclusion/dashBeoardNavigation/coverage.json
2 ca/func_coverage/assertionsfassertionsExclusions_dashBoardl1/coverage.json
3 ca/code_coverage/patternsMatching/patternsExclusion TreeNode3/coverage.json
4 ca/func_coverage/transitive/transitive3/coverage.json
5 ca/PA/sanityPA/coverage.json
& ca/Exclusion/view_applied exclusicns/test_2_ import_exclusions_appy view_available exclusions/coverage.json
ca/testAnalysis/TestsRanking/newConfigRankTestCovMetrics/coverage.json
ca/testPlanhuthor/excludeCodeCov/coverage. json
9 ca/code_coverage/fsm/fsmExclusion_dashBoard/coverage.json
10 ca/BExclusion/test4é/coverage.json
11 ca/func_coverage/holeRnalysis/excludeHole2/coverage.json
12 Cafcode_coverage/togglea/togglesExcluaion_checkUCDBlchverage.json
13 ca/Bxclusion/import exclusions/test 9 1/coverage.json
14 ca/Exclusion/adaptiveExclusions/test0l/coverage.json
15 ca/summaryDashBoard/globalSearch/searchInstances/coverage.json
16 ca/PA/PA_Design_Dashboard/Include_ Exclude Icens/coverage.json
17 ca/testBAnalysis/rankTests2/coverage.json
12 ca/Exclusion/expTreeNode/coverage.json
19 ca/code_coverage/misc/mulInstances_heatMap2/coverage.json
20 ca/Bxclusion/VM-10586_broken heatmap distribution/coverage.json
21 ca/testPlanfAuthor/coverageFilters3/coverage.json
22 ca/PA/Exclusion_Dashbeard/Right_Click Context_ Menu/coverage.json
23 ca/func coverage/holeAnalysis/singleCross2/coverage.json
24 ca/code coverage/fsm/fsmExclusion fsml/coverage.json
25 ca/func_coverage/assertions/assertionsExclusions_checkUCDB/coverage.json
26 ca/testBnalysis/testHitDatal2/coverage.json
27 ca/BExclusion/import exclusions/test 14 Dashboard filter button/coveraae.ison

Figure 51: Snippet from the Reduced List
¢) Result Analysis
To sum up our work in this section we compared code coverage results before and after the
reduction. The result states that we reduced the test cases list from 538 to 196 and this Reduced

list achieved 73% Backend code coverage which is the same as before reduction. It also achieved
72.44% frontend code coverage which is very close to the result before reduction (72.5%).

The following figure shows the Backend code coverage after our reduction:

99% n/a 1 7 1 122 1 T (8} 6
93% 75% 1 5 1 12 [¢] 3] 1
0% n/a 1 1 1 1 1 1 1 1
Jnapper 99% 95% 1 18 o 63 o 7 [¢] 3
42,508 of 158,345 73% 6,937 of 17,134 59% 6,527 16,392 9,234 33,569 1,754 7,663 105 712
Figure 52: Backend Coverage after setcover Greedy Algorithm
Table 2: Summary of Coverage Results
Before Reduction After Reduction

Number of Test Cases 538 196
Backend Code
Coverage
Frontend Code
Coverage

73% 73%

72.5% 72.44%

CCE-E 68

Graduation Project-2 Measurement of Code Coverage by Black Box Testing of Web-based Applications Final Report

The following table compares between the results of K mean clustering and Greedy algorithm:

Table 3: Comparison between Greedy & K mean clustering

K mean clustering Greedy
Access to source Needs access to source code to
Does not need access . :
code generate requirement list
Suite after reduction | Reduced to 250 Reduced to 196
Coverage Reduced by 2 % Maintain same code cover
Percentages

6.4. Future work and conclusion

The future work regarding the K-mean, we can apply the same methodology to frontend as we
have the required code coverage percentages and we only need to calculate the cyclomatic
complexity, this can be obtained from open source packages such as ts-complex. To validate the
efficiency and effectiveness of our methodology we can test it on different larger applications. In
this approach we only included the code coverage percentages so to increase the quality we can
add other decision metrics such as lines hit by each test case.

To conclude, today software development and testing are dominated not by the design of new
software, but by the rework and maintenance of existing software. Such software maintenance
activities may account for as much as two-thirds of the overall cost of software production
therefore test reduction, test prioritization, etc. are important applications. Hence, code coverage
data can also be a useful metric for those applications not only in determining the code coverage
for a specific test suite.

CCE-E 69

Graduation Project-2 Measurement of Code Coverage by Black Box Testing of Web-based Applications Final Report

7. Scalability of the Tool

Since our project was mainly tailored for angular frontend and java spring boot backend web
applications, we checked the scalability of the solution if it can be further used for other
applications.

7.1. Frontend Scalability

For the frontend we found that Istanbul-nyc works with any web application that is using
TypeScript/JavaScript, for example React, Vue.js, Aurelia. However, there are some limitations
which will be based on the framework itself like finding an option that is similar —source-map in
other frameworks. For example, React uses the command npm run build to build the frontend.
The environment variable GENERATE_SOURCEMAP=true by default in CRA. That means once
you build the generated folder there will be extra ".map" files generated. It will look something
like this:

Figure 53: Files included in React

7.2. Backend Scalability

JaCoCo tool we used will work with any web application that is using Java or Java like syntax
such as Groovy in the backend. So, Frameworks like Claris FileMaker, OutSystems and G2 Deals
should be compatible. Accordingly, the only limitation is if the application’s backend uses a
language different from Java such as Python.

CCE-E 70

Graduation Project-2 Measurement of Code Coverage by Black Box Testing of Web-based Applications Final Report

7.3. Test Automation Tool
Any test automation tool can be used as long as it imitates the user’s interaction. The only

limitation here is to make sure the code snippet that generates the coverage.json file needed for
the frontend is written in the same language used for the tests.

7.4. Test Suite Reduction

Any python script can parse the needed input using the code coverage results from our tool, and
can then proceed to generate the reduced list based on the used algorithm.

8. Overhead Calculations

There are several types for overhead like:
Disk space
Build time

Memory consumption
Runtime

>
>
>
>
8.1. Disk Space

To calculate this overhead, we built the war file once with instrumentation and another time
without instrumentation and compared the size. We found that:

> Size without instrumentation: 270 MB
» Size with instrumentation 291 MB

Also, the coverage data occupies 61MB in disk space for each test case. Therefore, the overhead
in disk space is minor.

8.2. Build Time

To calculate this, we built the war file once with instrumentation and another time without
instrumentation and found that:

> Build time without instrumentation 2 min. 34 sec.
> Build time with instrumentation 3 min. 34 sec.

CCE-E 71

Graduation Project-2 Measurement of Code Coverage by Black Box Testing of Web-based Applications Final Report

Therefore, the overhead of the build time is also minor. Also, the overhead of the build time is
not crucial as we only build the war file once.

8.3. Memory Consumption

Table 4: Memory Consumption Comparison

Type Memory Time
With Coverage 14736112K 455 seconds
Without Coverage 14716760K 342 seconds

This difference in memory is 19.352 MB which is negligible compared to the 14 GB used

8.4. Runtime

This is the main overhead that concerns us as this will affect each and every run. In addition, time
is the main metric knowing that memory is not an issue as they have very powerful machines with
large capacities.

We ran the test cases multiple times with the instrumented war file and other times with non-
instrumented war file and calculated the difference in run times. We found that with
instrumentation the run time is doubled.

The first thought that comes to mind is that this overhead is not acceptable, but in code coverage

industry we can see that this overhead is actually very satisfying. For example, LCOV, which is
the other code coverage tool that Mentor uses, gives an overhead of X5 to X10 of the runtime.

CCE-E 72

Graduation Project-2 Measurement of Code Coverage by Black Box Testing of Web-based Applications Final Report

Conclusion

In this project we demonstrated the importance of software testing and its applications by
measuring code coverage using Selenium black box testing on a web application. We measured
the code coverage using Istanbul framework in the frontend and JaCoCo in the backend. After
validating our results, we started deploying on VIQ Coverage Analyzer from Siemens,
accordingly, any needed adjustments in our tool were made to accommodate the environment of
VIQ.

We successfully measured the code coverage results for Coverage Analyzer web app, and we
validated these results with test automation team. The next step was creating an HTML page that
summarized the coverage results for both frontend and backend, as well as allowing the user to
navigate the results.

We also demonstrated how we can use the coverage data to reduce large test suites using K-mean
clustering algorithm as well as Greedy algorithm. We applied these approaches on Coverage
Analyzer, which resulted in reducing the test suite to less than half its original size, while
maintaining approximately the same coverage percentages. We researched for the possibility of
finding other packages that give the same service but we didn’t find any. Therefore, our package
is exclusive in regards what it does and its results.

CCE-E 73

Graduation Project-2 Measurement of Code Coverage by Black Box Testing of Web-based Applications Final Report

References

[E=N

. Spring Initializr. (n.d.). Retrieved September 15, 2021, from_https://start.spring.io/

2. JavaScript with syntax for types. TypeScript. (n.d.). Retrieved September 15, 2021, from
https://www.typescriptlang.org/

3. Angular. (n.d.). Retrieved September 15, 2021, from https://angular.io/

4. Angular. (n.d.). Retrieved September 15, 2021, from https://angular.io/guide/ngmodules

5. Node.js. (n.d.). About. Node.js. Retrieved September 15, 2021 from
https://nodejs.org/en/about/

6. API testing client that flows with you. HTTPie. (n.d.). Retrieved September 22, 2021 from
https://httpie.io/

7. Selenium. (n.d.). Retrieved October 1, 2021, from https://www.selenium.dev/

8. Patro, S. (2020, December 30). ngWebDriver - a way to automate angular apps in selenium
using java. Qavalidation. Retrieved October 1, 2021, from
https://qavalidation.com/2017/10/ngwebdriver-way-automateangular-apps-selenium-using-

java.html/

9. Selvanathan, K. (2020, May 19). ngWebdriver overview - QAFox. QAFox | The Easiest
Tutorial Site on Software Testing. Retrieved October 2, 2021, from
https://www.gafox.com/ngwebdriver-overview/

10. What is Cors (cross-origin resource sharing)? tutorial & examples: Web security academy.
What is CORS (cross-origin resource sharing)? Tutorial & Examples | Web Security
Academy. (n.d.). Retrieved October 14, 2021, from https://portswigger.net/web-security/cors

11. NPM. npm. (n.d.). Retrieved November 5, 2021, from_https://www.npmjs.com/

12. Istanbuljs. (n.d.). Istanbuljs/NYC: The Istanbul Command Line Interface. GitHub. Retrieved
November 12, 2021, from https://github.com/istanbuljs/nyc

13. Remap-istanbul. npm. (n.d.). Retrieved December 5, 2021, from
https://www.npmjs.com/package/remap-istanbul

14. What is instrumentation in nyc istanbul? (2019, September 24). Stack Overflow. Retrieved
November 12, 2021, from https://stackoverflow.com/questions/58075076/what-is-
instrumentation-in-nyc-istanbul

CCE-E

file:///C:/Users/home/Downloads/%20https:/start.spring.io
https://www.typescriptlang.org/
https://angular.io/guide/ngmodules
https://nodejs.org/en/about/
https://httpie.io/
https://www.selenium.dev/
https://qavalidation.com/2017/10/ngwebdriver-way-automateangular-apps-selenium-using-java.html/
https://qavalidation.com/2017/10/ngwebdriver-way-automateangular-apps-selenium-using-java.html/
https://www.qafox.com/ngwebdriver-overview/
https://www.npmjs.com/
https://github.com/istanbuljs/nyc
https://www.npmjs.com/package/remap-istanbul
https://stackoverflow.com/questions/58075076/what-is-instrumentation-in-nyc-istanbul
https://stackoverflow.com/questions/58075076/what-is-instrumentation-in-nyc-istanbul

Graduation Project-2 Measurement of Code Coverage by Black Box Testing of Web-based Applications Final Report

15.

16.

17.

18.

19.

20.

21.

22.

23.

24,

25.

26.

27.

Priya, Jaya, Jaya, Lucky, Thakar, R., Swathi, Sunitha, Krishna, Negma, Zahrani, S., Kumar,
P., S, P., Artem, Sfdsdfsdfdfdfds, Luba, Monkeypants, M., Wadyalkar, S., MEntor, Q. A.,
Aschwanden, P, ... Skok, S. (2022, May 5). What is regression testing? definition, tools,
method, and example. Software Testing Help. Retrieved Retrieved June 17, 2022, from
https://www.softwaretestinghelp.com/regression-testing-tools-and-methods/

GCC, the GNU compiler collection. GCC, the GNU Compiler Collection - GNU Project.
(n.d.). Retrieved June 17, 2022, from https://gcc.gnu.org/

Lcov. Codecov. (2021, July 15). Retrieved June 17, 2022, from
https://about.codecov.io/tool/Icov/

Porter, B., Zyl, J. van, & Lamy, O. (n.d.). Welcome to Apache Maven. Maven. Retrieved June
17, 2022, from https://maven.apache.org/

Casey, J. (2005, June 24). Introduction to maven plugin development. Maven. Retrieved June
18, 2022, from https://maven.apache.org/quides/introduction/introduction-to-plugins.html

Codeception. (n.d.). Retrieved June 17, 2022, from https://codeception.com/docs/11-
Codecoverage

Protractor. (n.d.). Retrieved June 17, 2022, from
https://protractor.angular.io/#:~:text=Protractor%20is%20made%20specifically%20for,setup
%20effort%200n%20your%20part

Oracle Linux 6: Porting guide. Moved. (2021, March 31). Retrieved June 17, 2022, from
https://docs.oracle.com/en/operating-systems/oracle-linux/6/porting/ch02s05s01.html

Emma code coverage - intellij IDES plugin: Marketplace. JetBrains Marketplace. (n.d.).
Retrieved January 3, 2022, from https://plugins.jetbrains.com/plugin/103-emma-code-

coverage

Gradle Build Tool. Gradle. (n.d.). Retrieved February 19, 2022, from from https://gradle.org/

JavaScript ES5. (n.d.). Retrieved June 17, 2022, from
https://www.w3schools.com/js/js es5.asp

Webpack. webpack. (n.d.). Retrieved Retrieved November 28, 2021, from from
https://webpack.js.org/

What will happen if sourcemap is set as false in Angular. (2019, February 26). Stack
Overflow. https://stackoverflow.com/questions/54879588/what-will-happen-if-sourcemap-is-
set-asfalse-in-anqular

CCE-E 75

https://www.softwaretestinghelp.com/regression-testing-tools-and-methods/
https://www.softwaretestinghelp.com/regression-testing-tools-and-methods/
https://gcc.gnu.org/
https://maven.apache.org/
https://maven.apache.org/guides/introduction/introduction-to-plugins.html
https://codeception.com/docs/11-Codecoverage
https://codeception.com/docs/11-Codecoverage
https://protractor.angular.io/#:~:text=Protractor%20is%20made%20specifically%20for,setup%20effort%20on%20your%20part
https://protractor.angular.io/#:~:text=Protractor%20is%20made%20specifically%20for,setup%20effort%20on%20your%20part
https://plugins.jetbrains.com/plugin/103-emma-code-coverage
https://plugins.jetbrains.com/plugin/103-emma-code-coverage
https://gradle.org/
https://www.w3schools.com/js/js_es5.asp
https://webpack.js.org/
https://stackoverflow.com/questions/54879588/what-will-happen-if-sourcemap-is-set-asfalse-in-angular
https://stackoverflow.com/questions/54879588/what-will-happen-if-sourcemap-is-set-asfalse-in-angular

Graduation Project-2 Measurement of Code Coverage by Black Box Testing of Web-based Applications Final Report

28.

29.

30.

31.

32.

33.

34.

35.

36.

Getting Code Coverage for e2e tests run on a Java codebase. (2021, April 13).
Ankeetmaini.Dev. Retrieved December 3, 2021, https://ankeetmaini.dev/posts/getting-e2e-
tests-coverage-for-java/

Raika, J. (2019, September 9). JaCoCo End-to-End Code Coverage at Runtime. Dzone.Com.
Retrieved December 3, 2021, from https://dzone.com/articles/code-coverage-report-
generator-for-java-projects-a

JaCoCo- Command Line Interface. Jacoco.Org. Retrieved December 3, 2021, from
https://www.jacoco.org/jacoco/trunk/doc/cli.html

Java code coverage with Jacoco. Merge exec files collected from different application
versions. (2019, July 4).Stack Overflow. Retrieved December 3, 2021, from
https://stackoverflow.com/questions/56891525/java-code-coverage-with-jacoco-merge-exec-
files-collected-from-different-applic

Saifan, Ahmad & Alsukhni, Emad & Alawneh, Hanadi & Sbaih, Ayat. (2016). Test Case
Reduction Using Data Mining Technique. International Journal of Software Innovation. 4.
56-70. 10.4018/1JS1.2016100104.

Alian, Marwah & Suleiman, Dima & Shaout, Adnan. (2016). Test Case Reduction
Techniques - Survey. International Journal of Advanced Computer Science and Applications.
7.264-275. 10.14569/1JACSA.2016.070537.

Martin-Steinegger. (n.d.). Martin-Steinegger/Setcover: Linear (time,space) greedy set cover
implementation. GitHub. Retrieved from https://github.com/martin-steinegger/setcover

SPSS software. IBM. (n.d.). Retrieved June 18, 2022, from
https://www.ibm.com/analytics/spss-statistics-software

What is postman? Postman API Platform. (n.d.). Retrieved June 18, 2022, from
https://www.postman.com/product/what-is-postman/

CCE-E 76

https://ankeetmaini.dev/posts/getting-e2e-tests-coverage-for-java/
https://ankeetmaini.dev/posts/getting-e2e-tests-coverage-for-java/
https://dzone.com/articles/code-coverage-report-generator-for-java-projects-a
https://dzone.com/articles/code-coverage-report-generator-for-java-projects-a
https://www.jacoco.org/jacoco/trunk/doc/cli.html
https://stackoverflow.com/questions/56891525/java-code-coverage-with-jacoco-merge-exec-files-collected-from-different-applic
https://stackoverflow.com/questions/56891525/java-code-coverage-with-jacoco-merge-exec-files-collected-from-different-applic
https://github.com/martin-steinegger/setcover
https://www.ibm.com/analytics/spss-statistics-software
https://www.postman.com/product/what-is-postman/

Graduation Project-2 Measurement of Code Coverage by Black Box Testing of Web-based Applications

Appendix

Appendix A: Code
Employee manager web application code snippets

Employee resources — request mapping

package tech.getarrays.employeeManager;

import org.springframework.http.HttpStatus;

import org.springframework.http.ResponseEntity;

import org.springframework.transaction.annotation. Transactional;
import org.springframework.web.bind.annotation.*;

import tech.getarrays.employeeManager.model.Employee;

import tech.getarrays.employeeManager.service.EmployeeService;

import java.io.Console;
import java.util.List;

@RestController
@RequestMapping("/employee™)

public class EmployeeResource {

private final EmployeeService employeeService;

public EmployeeResource(EmployeeService employeeService) {
this.employeeService = employeeService;

}

@GetMapping("/all")

public ResponseEntity<List<Employee>> getAllEmployees (){
List<Employee> employees = employeeService.find AlIEmployees();
return new ResponseEntity<>(employees, HttpStatus.OK);

}

@GetMapping("/find/{id}")

public ResponseEntity<Employee> getEmployeeByld (@PathVariable("id") Long id){
Employee employee = employeeService.findEmployeeByld(id);
return new ResponseEntity<>(employee, HttpStatus.OK);

}

@PostMapping("/add™)

public ResponseEntity<Employee> addEmployee(@RequestBody Employee employee){

Employee newEmployee = employeeService.addEmployee(employee);

return new ResponseEntity<>(newEmployee, HttpStatus. CREATED);

}

@PutMapping("'/update™)

public ResponseEntity<Employee> updateEmployee(@RequestBody Employee employee){
Employee updateEmployee = employeeService.updateEmployee(employee);

CCE-E

Final Report

77

Graduation Project-2 Measurement of Code Coverage by Black Box Testing of Web-based Applications

return new ResponseEntity<>(updateEmployee, HttpStatus.OK);

}

@Transactional

@DeleteMapping("/delete/{id}™)

public ResponseEntity<?> deleteEmployee(@PathVariable("id") Long id) {
employeeService.deleteEmployee(id);
System.out.printin(id);
return new ResponseEntity<>(HttpStatus.OK);

}

}

Employee model

package tech.getarrays.employeeManager.model;

import javax.persistence.*;
import java.io.Serializable;
@Entity
public class Employee implements Serializable {
@Id
@GeneratedValue(strategy = GenerationType.AUTO)
@Column(nullable = false, updatable = false)
private long id;
private String name;
private String email;
private String jobTitle;
private String phone;
private String imageUrl;
@Column(nullable = false, updatable = false)
private String employeeCode;
public Employee() {}
public Employee(String name, String email, String jobTitle, String phone, String imageUrl, String
employeeCode){
this.name = name;
this.email = email;
this.jobTitle = jobTitle;
this.phone = phone;
this.imageUrl = imageUrl;
this.employeeCode = employeeCode;
}
public long getld(){
return this.id;

}

public void setld(long id){
this.id = id;

}

public String getName() {

CCE-E

Final Report

78

Graduation Project-2 Measurement of Code Coverage by Black Box Testing of Web-based Applications Final Report

return name;

}

public void setName(String name){
this.name = name;

}

public String getEmail() {
return email;

}

public void setEmail(String email) {
this.email = email;

}

public String getEmployeeCode() {
return employeeCode;

}

public void setEmployeeCode(String employeeCode) {
this.employeeCode = employeeCode;

}

public String getimageUrl() {
return imageUrl;

}

public void setlmageUrl(String imageUrl) {
this.imageUrl = imageUrl;

}

public String getJobTitle() {
return jobTitle;

}

public void setJobTitle(String jobTitle) {
this.jobTitle = jobTitle;
}

public String getPhone() {
return phone;

}

public void setPhone(String phone) {
this.phone = phone;

}

@Override

public String toString()

{

return "Employee{"+

CCE-E

Graduation Project-2 Measurement of Code Coverage by Black Box Testing of Web-based Applications

"id="+id +

" name="'+ name +'\"+

" email=""+ email +'\"+

", jobTitle=""+ jobTitle +\"+

", phone=""+ phone + '\"+

", imageUrl="" + imageUrl + '\"+

1

Communication with the database — Employee services

package tech.getarrays.employeeManager.service;

import org.springframework.beans.factory.annotation. Autowired;

import org.springframework.beans.factory.parsing.EmptyReaderEventListener;

import org.springframework.stereotype.Service;

import tech.getarrays.employeeManager.exception.UserNotFoundException;

import tech.getarrays.employeeManager.model.Employee;
import tech.getarrays.employeeManager.repo.EmployeeRepo;

import java.util.List;
import java.util. UUID;

@Service
public class EmployeeService {
private final EmployeeRepo employeeRepo;
@Autowired
public EmployeeService(EmployeeRepo employeeRepo) {
this.employeeRepo = employeeRepo;
}
public Employee addEmployee(Employee employee){

employee.setEmployeeCode(UUID.randomUUID().toString());

return employeeRepo.save(employee);

}
public List<Employee> find AIIEmployees() {

return employeeRepo.findAll();

}
public Employee updateEmployee(Employee employee) {
return employeeRepo.save(employee);

}
public Employee findEmployeeByld(Long id){

CCE-E

Final Report

80

Graduation Project-2 Measurement of Code Coverage by Black Box Testing of Web-based Applications

return employeeRepo.findEmployeeByld(id).
orElseThrow(()-> new UserNotFoundException(“user by id "+id+"was not found"));
}
public void deleteEmployee(Long id) {
employeeRepo.deleteEmployeeByld(id);
}
}

Frontend: app component’s functions handling the user actions

import { HttpErrorResponse } from ‘@angular/common/http’;
import { EmitterVisitorContext } from '‘@angular/compiler’;
import { Component, Onlnit } from ‘@angular/core’;

import { NgForm } from ‘@angular/forms’;

import { Employee } from "./employee’;

import { EmployeeService } from "./employee.service';

@Component({
selector: ‘app-root,
templateUrl: "./app.component.html’, // One page
styleUrls: ['./app.component.css']

)

export class AppComponent implements Oninit {
employees! : Employee[] ;
editEmployee?:Employee;
deleteEmployee?:Employee;
employeesToBeSearched! : Employee[] ;
key! : string;

constructor(private employeeService: EmployeeService) {
}
ngOnlInit(){

this.getEmployees();

}

public getEmployees(): void {
this.employeeService.getEmployees().subscribe(

(response: Employee[]) =>{
this.employees = response;
this.employeesToBeSearched = this.employees;

H

(error : HttpErrorResponse) => {
alert(error.message);

CCE-E

Final Report

81

Graduation Project-2 Measurement of Code Coverage by Black Box Testing of Web-based Applications

}
);
}
public onAddEmployee(addForm: NgForm):void {
document.getElementByld("add-employee-form™)?.click();
this.employeeService.addEmployee(addForm.value).subscribe(
(response:Employee)=>{
console.log(response);
this.getEmployees();
this.employeesToBeSearched = this.employees;
addForm.reset();
b
(error: HttpErrorResponse) => {
alert(error.message);
addForm.reset();

}
);
}
public onUpdateEmployee(employee: Employee):void {
this.employeeService.updateEmployee(employee).subscribe(
(response:Employee)=>{
console.log(response);
this.getEmployees();
this.employeesToBeSearched = this.employees;
b
(error: HttpErrorResponse) => {
alert(error.message);

}
);
}
public onDeleteEmployee(employeeld?: number):void {
this.employeeService.deleteEmployee(employeeld).subscribe(
(response:void)=>{
console.log(response);
this.getEmployees();
this.employeesToBeSearched = this.employees;
h
(error: HttpErrorResponse) => {
alert(error.message);

}
);
}
public searchEmployees(key: string): void {
console.log(key); // hit
const results: Employee[] = []; //hit
this.key = key; // hit
for (const employee of this.employeesToBeSearched) { // hit
if (employee.name.toLowerCase().indexOf(key.toLowerCase()) !==-1// hit
|| employee.email.toLowerCase().indexOf(key.toLowerCase()) !== -

CCE-E

Final Report

82

Graduation Project-2 Measurement of Code Coverage by Black Box Testing of Web-based Applications

|| employee.phone.toLowerCase().indexOf(key.toLowerCase()) == -
|| employee.jobTitle.toLowerCase().indexOf(key.toLowerCase()) !==-1) {
results.push(employee); // hit

}
}

this.employees = results; // hit
if ('key) {// hit
this.getEmployees(); // hit
}
}
public onOpenModal(employee?: Employee, mode?: string): void {
const container = document.getElementByld('main-container');
const button = document.createElement('button’);
button.type = 'button’;
button.style.display = 'none’;
button.setAttribute('data-toggle’, ‘modal’);
if (mode ==="add") {
button.setAttribute('data-target’, #addEmployeeModal’);
}
if (mode === "edit") {
this.editEmployee = employee;
button.setAttribute('data-target', #updateEmployeeModal’);
}
if (mode === "delete’) {
this.deleteEmployee = employee;
button.setAttribute('data-target’, '#deleteEmployeeModal’);
}
container?.appendChild(button);
button.click();

}

Frontend: Services that construct the http requests
import { Injectable } from ‘@angular/core’;
import { Observable } from 'rxjs’;
import { HttpClient, HttpClientModule } from ‘@angular/common/http’;
import { Employee } from "./employee’;
import { environment } from 'src/environments/environment’;
@Injectable({

providedlIn: 'root’
D
export class EmployeeService {

private apiServerUrl= environment.apiBaseUrl;

constructor(private http: HttpClient) { }

public getEmployees (): Observable<Employee[]> {
return this.http.get<Employee[]>("${this.apiServerUrl}/employee/all’);

CCE-E

Final Report

83

Graduation Project-2 Measurement of Code Coverage by Black Box Testing of Web-based Applications Final Report

}

public addEmployee (employee: Employee): Observable<Employee> {
return this.http.post<Employee>(${this.apiServerUrl}/employee/add” ,employee);
}

public updateEmployee (employee: Employee): Observable<Employee> {
return this.http.put<Employee>("${this.apiServerUrl}/employee/update” ,employee);
}

public deleteEmployee (id?: number): Observable<void> {
return this.http.delete<void>(${this.apiServerUrl}/employee/delete/${id}");
}

Frontend: HTML components
<nav class=""navbar navbar-expand-lg navbar-dark bg-dark">
Employee Manager

<button class=""navbar-toggler' type=""button" data-toggle=""collapse'" data-target=""#navbarColor02" aria-

controls=""navbarColor02" aria-expanded=""false" aria-label=""Toggle navigation'>

</button>
<div class=""collapse navbar-collapse' id=""navbarColor02"'>
<ul class=""navbar-nav mr-auto*'>
<li class=""nav-item active'>
Add Employee <span class=""sr-
only*>(current)

<form class=""form-inline my-2 my-lg-0"">
<input type=""search" (ngModelChange)=""searchEmployees(key.value)" #key=""ngModel"* ngModel
name=""key"" id=""searchName class=""form-control mr-sm-2"* placeholder=""Search employees...""
required>
</form>
</div>
</hav>
<div class=""container" id=""main-container'>
<div class=""row"">
<div *ngFor=""let employee of employees" class="" col-md-6col-xI-3"">
<div class=""card m-b-30"">
<div class=""card-body row"">
<div class=""col-6"">
<img src=""{{employee?.imageUrl}}" alt=

class=""img-fluid rounded-circle w-
60"">
</div>
<div class=""col-6 card-title align-self-center mb-0"*>
<h5>{{employee?.name}}</h5>
<p class=""m-0"">{{employee?.jobTitle}}</p>

CCE-E

84

Graduation Project-2 Measurement of Code Coverage by Black Box Testing of Web-based Applications Final Report

</div>
</div>
<ul class=""list-group list-group-flush**>
<li class=""list-group-item""><i class=""fa fa-envelope float-right'></i>Email : {{employee?.email}}
<li class=""list-group-item""><i class=""fa fa-phone float-right'*></i>Phone
:{{employee?.phone}}

<div class=""card-body'">
<div class=""float-right btn-group btn-group-sm">
<a (click)=""onOpenModal(employee, ‘edit")"" class=""btn btn-primary tooltips’* data-
placement=""top"" data-toggle=""tooltip"" data-original-title=""Edit"'><i class=""fa fa-pencil''></i>
<a (click)=""onOpenModal(employee, 'delete’)" class=""btn btn-secondary tooltips"" data-
placement=""top"* data-toggle=""tooltip'* data-original-title=""Delete**><i class=""fa fa-times"'></i>
</div>
<ul class=""social-links list-inline mb-0"">
<li class=""list-inline-item"*><a title="""" data-placement=""top"* data-toggle=""tooltip™
class=""tooltips" href=""" data-original-title=""Facebook’"><i class=""fa fa-facebook-f""></i>
<li class=""list-inline-item""><a title=""" data-placement=""top"* data-toggle=""tooltip"’
class=""tooltips™ href="" data-original-title=""Twitter"><i class=""fa fa-twitter"'></i>
<li class=""list-inline-item""><a title="" data-placement=""top"" data-toggle=""tooltip"*
class=""tooltips™ href=""" data-original-title=""Skype"'><i class=""fa fa-skype"'></i>

</div>
</div>
</div>
</div>
</div>
<!-- Add Employee Modal -->
<div class=""modal fade" id=""addEmployeeModal"* tabindex=""-1"" role=""dialog"" aria-
labelledby=""addEmployeeModalLabel'" aria-hidden=""true"">
<div class=""modal-dialog" role=""document'*>
<div class=""modal-content">
<div class=""modal-header"'>
<h5 class=""modal-title’ id=""addEmployeeModalLabel*>Add Employee</h5>
<button type=""button'* class=""close™ data-dismiss=""modal'* aria-label=""Close"">
×
</button>
</div>
<div class=""modal-body"'>
<form #addForm=""ngForm"" (ngSubmit)=""onAddEmployee(addForm)"'>
<div class=""form-group"'>
<label for=""name'*>Name</label>
<input type=""text"" ngModel name=""name" class=""form-control** id=""name"* placeholder=""Name"
required>
</div>
<div class=""form-group"">
<label for=""email**>Email Address</label>

CCE-E

Graduation Project-2 Measurement of Code Coverage by Black Box Testing of Web-based Applications Final Report

<input type=""email”" ngModel name=""email’* class=""form-control" id=""email"* placeholder="Email"
required>
</div>
<div class=""form-group"'>
<label for=""phone"">Job title</label>
<input type=""text"" ngModel name=""jobTitle" class=""form-control™ id="jobTitle" placeholder=""Job
title™ required>
</div>
<div class=""form-group''>
<label for=""phone'">Phone</label>
<input type=""text" ngModel name=""phone"* class=""form-control™ id=""phone"" placeholder=""Phone""
required>
</div>
<div class=""form-group’>
<label for=""phone">Image URL</label>
<input type=""text" ngModel name=""imageUrI"* class=""form-control** id="imageUrI""
placeholder=""Image URL"" required>
</div>
<div class=""modal-footer"'>
<button type=""button" id=""add-employee-form"" class=""btn btn-secondary"* data-
dismiss=""modal’*>Close</button>
<button [disabled]=""addForm.invalid" type=""submit" class=""btn btn-primary"* >Save
changes</button>
</div>
</form>
</div>
</div>
</div>
</div>
<!-- Edit Modal -->
<div class=""modal fade" id=""updateEmployeeModal"" tabindex=""-1"" role=""dialog"" aria-
labelledby=""employeeEditModalLabel'" aria-hidden=""true"">
<div class=""modal-dialog" role=""document"'>
<div class=""modal-content**>
<div class=""modal-header"'>
<h5 class=""modal-title’ id=""updateEmployeeModalLabel"*>Edit Employee {{editEmployee?.name}}
</h5>
<button type=""button'* class=""close™ data-dismiss=""modal’* aria-label=""Close"">
×
</button>
</div>
<div class=""modal-body"'>
<form #editForm=""ngForm" >
<div class=""form-group'>
<label for=""name"">Name</label>
<input type=""text" ngModel=""{{editEmployee?.name}}'* name=""name"" class=""form-control*
id=""name"" aria-describedby=""emailHelp"* placeholder=""Name"'>
</div>

CCE-E 86

Graduation Project-2 Measurement of Code Coverage by Black Box Testing of Web-based Applications Final Report

<input type=""hidden"* ngModel=""{{editEmployee?.id}}"* name=""id"" class=""form-control** id=""id""
placeholder=""Email**>
<input type=""hidden"" ngModel="{{editEmployee?.employeeCode}}" name=""userCode" class=""form-
control* id=""userCode"" placeholder=""Email**>
<div class=""form-group"">
<label for=""email"*>Email Address</label>
<input type=""email" ngModel=""{{editEmployee?.email}}'* name=""email" class=""form-control"
id=""email** placeholder=""Email"">
</div>
<div class=""form-group"*>
<label for=""phone"">Job title</label>
<input type=""text" ngModel=""{{editEmployee?.jobTitle}}"" name=""jobTitle" class=""form-control"
id=""jobTitle" placeholder=""Job title"">
</div>
<div class=""form-group*>
<label for=""phone**>Phone</label>
<input type=""text" ngModel=""{{editEmployee?.phone}}"* name=""phone’* class=""form-control*
id=""phone’ name=""phone" placeholder=""Phone"">
</div>
<div class=""form-group"*>
<label for=""phone’">Image URL</label>
<input type=""text" ngModel=""{{editEmployee?.imageUrl}}"" name="imageUrl" class=""form-
control™ id=""imageUrI"" placeholder=""Image URL"">
</div>
<div class=""modal-footer**>
<button type=""button’ id="""" data-dismiss=""modal’* class=""btn btn-secondary’*>Close</button>
<button (click)=""onUpdateEmployee(editForm.value)" data-dismiss=""modal’* class=""btn btn-
primary"* >Save changes</button>
</div>
</form>
</div>
</div>
</div>
</div>
<!-- Delete Modal -->
<div class=""modal fade" id=""deleteEmployeeModal'* tabindex=""-1"" role=""dialog"" aria-
labelledby=""deleteModelLabel’" aria-hidden=""true"*>
<div class=""modal-dialog" role=""document’*>
<div class=""modal-content">
<div class=""modal-header"'>
<h5 class=""modal-title" id=""deleteModelLabel"">Delete Employee</h5>
<button type=""button" class=""close"" data-dismiss=""modal’* aria-label=""Close"">
×
</button>
</div>
<div class=""modal-body"">
<p>Are you sure you want to delete employee {{deleteEmployee?.name}}</p>
<div class=""modal-footer*'>
<button type=""button" class=""btn btn-secondary" data-dismiss=""modal'*>No</button>

CCE-E 87

Graduation Project-2 Measurement of Code Coverage by Black Box Testing of Web-based Applications Final Report

<button (click)=""onDeleteEmployee(deleteEmployee?.id)" class=""btn btn-danger"* data-
dismiss=""modal"">Yes</button>
</div>
</div>
</div>
</div>
</div>
<I-- Notification for no employees -->
<div *nglf=""employees?.length == 0"* class=""col-lg-12 col-md-12 col-xI-12"">
<div class=""alert alert-info"" role=""alert"">
<h4 class=""alert-heading"">NO EMPLOYEES!</h4>
<p>No Employees were found.</p>
</div>
</div>

Selenium test cases code

package level2;

import java.nio.file.Files;

import java.nio.file.Paths;

import java.util.List;

import java.util.concurrent. TimeUnit;

import org.openga.selenium.™;

import org.openga.selenium.By;

import org.openga.selenium.Keys;

import org.openga.selenium.WebDriver;

import org.openga.selenium.firefox.FirefoxDriver;

import org.openga.selenium.JavascriptExecutor;

import org.openga.selenium.interactions.Action;

import org.openga.selenium.interactions.Actions;

import org.openga.selenium.interactions.internal.MouseAction.Button;

/limport com.google.common.io.Files;

import com.google.gson.Gson;

import com.google.gson.GsonBuilder;

import com.paulhammant.ngwebdriver.*;

public class Test3 {

public static void main(String[] args) {
try {

int passedTestsCount=0;
int failedTestsCount=0;
/I flush all // Noisy //
System.setProperty(“webdriver.gecko.driver","C:\\geckodriver.exe");
WebDriver driver = new FirefoxDriver();
JavascriptExecutor jsDriver = (JavascriptExecutor) driver;

NgWebDriver ngdriver= new NgWebDriver (jsDriver);

CCE-E

88

Graduation Project-2 Measurement of Code Coverage by Black Box Testing of Web-based Applications Final Report

driver.manage().deleteAliCookies();
driver.manage().window().maximize();
driver.manage().timeouts().implicitlyWait(30, TimeUnit. SECONDS);
driver.manage().timeouts().pageLoad Timeout(30, TimeUnit.SECONDS);
driver.get("http://localhost:3000/");
ngdriver.waitForAngularRequestsToFinish();

Thread.sleep(1000);

System.out.print("'=== Source code as
follows ====================================\n");

System.out.print(driver.getPageSource()+"\n"); // --> File (splitting 10 functions)

System.out.print("'=== Source code ended
S===================================\n");

System.out.print('================——==---———-----o-o——----————==== Flement Source code
as follows ======= == ===============\n");

System.out.print(driver.findElement(By.className("nav-link")).getAttribute("outerHTML")+"\n");

System.out.print('=================—==---————----————----————==== Source code ended
S=======s=s=ssssss=sss==s=s==s========\n'Y);

System.out.print("=========================ooooooooooooooooooo=== Add test
started===\n");

System.out.print(driver.findElement(By.className("navbar")).getAttribute("innerHTML"));

driver.findElement(By.className("nav-link™)).click(); // loop 10 functions --> fucntion.Hit=true ..
function.Hit=false --> true

driver.findElement(By.id("name™)).sendKeys("Loay Samy");

Thread.sleep(500);
driver.findElement(By.id("email")).sendKeys("Loaysamyl3@yahoo.com");
Thread.sleep(500);

driver.findElement(By.id("jobTitle")).sendKeys("Hunter");

Thread.sleep(500);
driver.findElement(By.id("phone™)).sendKeys("0123456789");
Thread.sleep(500);
driver.findElement(By.id("imageUrl")).sendKeys("../../assets/images/Loay.jpg");
Thread.sleep(500);
driver.findElement(By.xpath("//button[normalize-space()=\"Save changes\"]")).click();
Thread.sleep(500);

if(driver.findElement(By.xpath("//n5[text() = ‘Loay Samy']"))!=null)
{
System.out.print("Test Passed \n");
passedTestsCount++;
Jelse {
System.out.print("Test failed \n");
failedTestsCount++;

}
Sys‘[em_out_print(":::Add test
ended===================—==—==——=——=———=——=—————=——=—=—=—=—=====\),
Sys‘[em_out_print(":::Edi'[test
started================—====——=—=——=—=————=—————=—=——=—===—====\p),
Thread.sleep(500);

CCE-E 89

Graduatio

Sam");

changes\

n Project-2 Measurement of Code Coverage by Black Box Testing of Web-based Applications Final Report

driver.findElements(By.xpath("//i[@class="fa fa-pencil']")).get(5).click();

Thread.sleep(500);
driver.findElement(By.xpath("//div[@id="updateEmployeeModal//input[@id="name']")).clear();
Thread.sleep(500);

driver.findElement(By.xpath("//div[@id="updateEmployeeModal']//input[@id="name']")).sendKeys("Loay

Thread.sleep(500);

driver.findElement(By.xpath("//div[@id="updateEmployeeModal']//button[normalize-space()=\"Save

“1").click();
Thread.sleep(500);
if(driver.findElement(By.xpath("//n5[text() = 'Loay Sam']"))!=null)
{
System.out.print(" Test Passed \n");
passedTestsCount++;
Jelse {
System.out.print("Test failed \n");
failedTestsCount++;

}

Sys‘[em_out_print(":::Edit test

Sys‘[em_out_print(":::de|e'[e test

Thread.sleep(500);

driver.findElements(By.xpath("//i[@class="fa fa-times']")).get(5).click();
Thread.sleep(500);
driver.findElement(By.xpath("//div[@id="deleteEmployeeModal'l//button[normalize-

space()=\"Yes\"]").click();

Thread.sleep(500);
if(driver.findElements(By.xpath("//i[@class="fa fa-pencil']")).size()==5)
{
System.out.print("Test Passed \n");
passedTestsCount++;
Yelse {
System.out.print("Test failed \n");
failedTestsCount++;

}

System_out_print(":::de|ete test
ended:::\n");

System.out.print("===================== Search tests
Started:::\n");

CCE-E

driver.findElement(By.id("'searchName")).sendKeys("'L");
Thread.sleep(500);
if(driver.findElements(By.xpath("//i[@class='fa fa-pencil']")).size()==3)
{
System.out.print("Test Passed \n");
passedTestsCount++;

Yelse {

90

Graduation Project-2 Measurement of Code Coverage by Black Box Testing of Web-based Applications

CCE-E

System.out.print("'Test failed \n");
failedTestsCount++;
}
driver.findElement(By.id("'searchName")).sendKeys("0");
Thread.sleep(500);
if(driver.findElements(By.xpath("//i[@class="fa fa-pencil']™)).size()==1)
{
System.out.print("Test Passed \n");
passedTestsCount++;
Yelse {
System.out.print("'Test failed \n");
failedTestsCount++;
}
driver.findElement(By.id("searchName™)).sendKeys("'s");
Thread.sleep(500);
if(driver.findElement(By.xpath("//h4[text() = 'NO EMPLOYEES!T")!=null)
{
System.out.print("Test Passed \n");
passedTestsCount++;
Yelse {
System.out.print("Test failed \n");
failedTestsCount++;
}
driver.findElement(By.id("searchName™)).sendKeys(Keys.BACK_SPACE);
Thread.sleep(500);
driver.findElement(By.id("searchName™)).sendKeys(Keys.BACK_SPACE);
Thread.sleep(500);
if(driver.findElements(By.xpath("//i[@class="fa fa-pencil’]")).size()==3)
{
System.out.print("Test Passed \n");
passedTestsCount++;
Yelse {
System.out.print("'Test failed \n");
failedTestsCount++;
}
driver.findElement(By.id("'searchName")).sendKeys(Keys.BACK_SPACE);
Thread.sleep(500);
if(driver.findElements(By.xpath("//i[@class="fa fa-pencil]")).size()==5)
{
System.out.print("Test Passed \n");
passedTestsCount++;
Yelse {
System.out.print("Test failed \n");
failedTestsCount++;

}

Final Report

Sys‘[em_out_print(":::Search tests

System.out.print(passedTestsCount+" tests passed\n");

91

Graduation Project-2 Measurement of Code Coverage by Black Box Testing of Web-based Applications Final Report

System.out.print(failedTestsCount+" tests failed\n");

Object str = jsDriver.executeScript("return window._coverage_");

GsonBuilder builder = new GsonBuilder();

Gson gson = builder.create();

String Coverage = gson.toJson(str);

Files.write(Paths.get("C:\\Users\\loay
samy\\AngularApp\\employeemanagerapp\\.nyc_output\\coverage.json"),Coverage.getBytes());

/I driver.close();

} catch (Exception e) {
// TODO Auto-generated catch block
e.printStackTrace();

}

Deployment on VIQ Coverage Analyzer

Merge frontend coverage

#open(PASSN,">', " [file™);

print"Merging frontend started\n";
$results="/home/lelmasry/Development/nodeJS/node-v10.16.3-linux-x64/bin/istanbul-merge --out
merged.json \"cat Jsonfiles.list\"";

print "$? \n";

while($? ne "0"){JERiIEY ; open(PASSN, >, " /file™);

print PASSN $results;

SIIEARLEIEICR tail -1 file | sed 's,.*ca,ca,g" B

print "$lineTodelete is corrupted™;

chomp($lineTodelete);

#print "echo -n ‘$lineTodelete' | sed 's,/,V,g"";#$line = “echo -n '$lineTodelete' | sed 's,/\\W\V,g' | sed 's,\\.,,q";
$line = EumEslineTodelete I RANEER;
#quotemeta($lineTodelete);#print $line;#print *"sed 's,.*$line,,g" -1 file™;print
sed 's.&IIf " -i Jsonfiles.list]

BENIIES " /home/lelmasry/Development/nodeJS/node-v10.16.3-linux-x64/bin/istanbul-merge --out
merged.json \'cat Jsonfiles.list\" "ReK:I(RFASKIN)K

print "$? \n";

Hprint"sed '/M\$/d' file™;

"

sed 's,$line,,g' -i Jsonfiles.list™;

CCE-E 92

Graduation Project-2 Measurement of Code Coverage by Black Box Testing of Web-based Applications Final Report

Merge BackEnd Coverage

#open(PASSN,>', " [file");

print "Merging backend started\n";

BIERIIEE java -jar SN ' JARS " Yorg.jacoco.cli-0.8.7-nodeps.jar merge \'cat ExecFiles.list\" --destfile]
merged.exec 8

print "$? \n";

while(3? ne "0"){ITRRIEY; 0pen(PASSN, >, * /file");

print PASSN $results;

MR EECE tail -1 file | sed 's,.*ca,ca,g"h

print "$lineTodelete is corrupted™;

chomp($lineTodelete);#print "echo -n '$lineTodelete' | sed 's,/,\V,g";#$line = “echo -n '$lineTodelete' | sed 's,/,\\WV,g'
| sed 's,\\.,,g";

$line = FREESlineTodelete WL AR,
#quotemeta($lineTodelete);#print $line;#print *"sed 's,.*$line,,g" -i file™;print
sed 's Al g' -i ExecFiles.list }

BIERIIES java -jar SN " JARS ' Horg.jacoco.cli-0.8.7-nodeps.jar merge \'cat ExecFiles.list\" --destfile
NETEEES close(PASSN);

print "$? \n";

Hprint"sed '/M\$/d' file™;

sed 's,$line,,g' -i ExecFiles.list™;

Wrapper

foreach e (ReEIaEILI RIS e RENIOVET o EHElaMe) ##Jsonfiles_red.list
cd $e;
echo $e;

/zin/tools/python/3.6.3/bin/python /home/lelmasry/parse_all.py "./FrontendCoverage" "'./BackendCoverage";
cd -;
end

Parsing script to generate In_cov.info file which contains both frontend and backend

import sys

import os

import re

from pathlib import Path

def parsefile_front (filename):
html = open(filename,"r")
content = str(html.read())
#getting lines

CCE-E 93

Graduation Project-2 Measurement of Code Coverage by Black Box Testing of Web-based Applications

lines = re.findall(r"",content)
coverage=[] index=0 #getting hits
foriin lines:
if ("-yes"ini):
hits = re.findall(r"\b\d+\b",i)
coverage.append({"index":index+1,"hits":int(hits[0])}) index+=1
return coverage

def parsefile_back (filename):
html = open(filename,"r")
reading = html.read()
content = str(reading)
#getting lines
lines = re.findall(r"" content)
coverage=[]
for iin lines:
index = re.findall(r"\d+",i)
coverage.append(int(index[0]))
return coverage

def generate_file_list(pathlist,option):
filelist=]
if (option=="front"):
for i in pathlist_front:
coverage=parsefile_front(i)
if (coverage):
filelist.append(i) else:
for i in pathlist_back:
coverage=parsefile_back(i)
if (coverage):
filelist.append(i)
return filelist
def write_front(filelist,info):
for j in filelist:
filename = re.findall(r".*?.ts",str(j))
name = re.sub(r'FrontendCoverage/', ", filename[0])
coverage = parsefile_front(j)
for i in coverage:
if (j==filelist[-1] and i==coverage[-1]):
info.write("\""+name+":"+str(i["index"T)+"\""+": "+str(i["hits"]))
else:
info.write("\""+name+":"+str(i["index")+"\""+": "+str(i["hits"])+", ")
return

def write_back(filelist,info):
for j in filelist:
filename = re.findall(r".*?.java”,str(j))

CCE-E

Final Report

94

Graduation Project-2 Measurement of Code Coverage by Black Box Testing of Web-based Applications

name = re.sub(r'BackendCoverage/', ", filename[0])

coverage = parsefile_back(j)

for i in coverage:

info.write(", \""+name+":"+str(i)+"\""+": "+"1") return

path_dir_front = sys.argv[1]
path_dir_back = sys.argv[2]
pathlist_front = Path(path_dir_front).glob(**/.ts.html")
pathlist_back = Path(path_dir_back).glob('*/.java.html")

filelist_front = generate_file_list(pathlist_front,"front™)
filelist_back = generate_file_list(pathlist_back,"back")

info = open("'In_cov.info","w")

info.write("{")write_front(filelist_front,info)write_back(filelist_back,info)info.write("}")info.close()

Test suite reduction applications

kmeanParse:

import sys

import os

import re

from operator import itemgetter
from pathlib import Path
import xIsxwriter

path_dir=sys.argv[1]
excelfile=sys.argv[2]

def parsefile (file_html):
html = open(file_html,”r”)
reading = html.read()
content = str(reading)
info = re.findall(r"Total. *?</tfoot>",content)
info_rep = info[0].replace(",”,”")
95overage = re.findall(r""\d+",info_rep)
return 95overage

files = Path(path_dir).glob(***/*index.html’)

workbook = xlIsxwriter.Workbook(excelfile)
worksheet = workbook.add_worksheet()

worksheet.write(*A1’, “Testcase’)

CCE-E

Final Report

Graduation Project-2 Measurement of Code Coverage by Black Box Testing of Web-based Applications

worksheet.write(‘B1°,"Cxty’)
worksheet.write(‘C1°, “Inst’)
worksheet.write(‘D1°, ‘Line’)
worksheet.write(‘E1’, ‘Meth’)
worksheet.write(‘F1°, ‘Classes’)
worksheet.write(‘G1°, ‘Branch’)

960verage=[]
c=0
for I in files:
list = parsefile(i)
if (list):
960verage.append(list)

worksheet.write(c+1,0,0s.path.basename(os.path.dirname(i)))
worksheet.write(c+1,1, int(96overage[c][9]))
worksheet.write(c+1,2, int(96overage[c][1])-int(960overage[c][0]))
worksheet.write(c+1,3, int(96overage[c][15])-int(960overage[c][13]))
worksheet.write(c+1,4, int(96overage[c][19])-int(960verage[c][17]))
worksheet.write(c+1,5, int(96overage[c][23])-int(960overage[c][21]))
worksheet.write(c+1,6, int(96overage[c][5])-int(96overage[c][4]))

c=c+1

workbook.close()

GreedyParse:

import sys

import 0s

import re

from operator import itemgetter
from pathlib import Path

path_dir=sys.argv[1]

def openfile (infofile):
info = open(infofile,"r")
reading = info.read()
content = str(reading)
return content

def find_element_in_list(element, list_element):
index_element = list_element.index(element)
return index_element

CCE-E

96

Graduation Project-2 Measurement of Code Coverage by Black Box Testing of Web-based Applications

files = Path(path_dir).glob('**/*In_cov.info")

Req_list=[]
c=0

dc=1
foriin files:

contentinfo = openfile(i)
contentinfo=contentinfo.split(",)
for j in contentinfo:
contentinfo[c] = re.findall(r".*?"",contentinfo[c])
if contentinfo[c] not in Req_list:
Req_list.append(contentinfo[c])
c=c+1
print(dc)
dc=dc+1
c=0
output=open("output.txt","w")
output.write(str(Req_list))
output.close
datafile=open("testdatafile.txt","w")

datafile.write(str(len(Req_list))+' '+str(dc-1))
datafile.write('/n")

c=0
files = Path(r'C:/Users/anod/Desktop/GP/list/ca’).glob(**/*In_cov.info")

for i in files:
contentinfo2 = openfile(i)
contentinfo2=contentinfo2.split(", ")

for j in contentinfo2:
contentinfo2[c] = re.findall(r".*?"",contentinfo2[c])
index = find_element_in_list(contentinfo2[c], Req_list)
datafile.write(str(index+1)+" ")
c=c+1

c=0

datafile.write('/n")

datafile.close

GreedyReducedList:
import sys

import os
import re

CCE-E

Final Report

97

Graduation Project-2 Measurement of Code Coverage by Black Box Testing of Web-based Applications Final Report

from operator import itemgetter
from pathlib import Path
import xlIsxwriter

path_dir=sys.argv[1]
reducedList=sys.argv[2]

text_file is the reduced list that came from setcover (testfiledata)
def parsefile (text_file):
reducedFile = open(text_file,"r")
reading = reducedFile.read()
content = str(reading)
indexLine = re.findall(r"set id.*?:",content)
index =]
c=0
for i in indexLine:
index.append(re.findall(r*\d+",i))
c=c+l
return index

files = Path(path_dir).glob('**/*In_cov.info")
total Testcases = []
c=0
for i in files:
totalTestcases.append(os.path.dirname(i))
index = parsefile(reducedL.ist)
reducedFile = open("greedyReducedList.txt"," w")
for j in index:
reducedFile.write(total Testcases[int(j[0])]+"\coverage.json’)

reducedFile.write("\n’)

reducedFile.close

CCE-E

Graduation Project-2 Measurement of Code Coverage by Black Box Testing of Web-based Applications Final Report

Appendix B: Licenses
Istanbul

ISC License

Copyright (c) 2015, Contributors

Permission to use, copy, modify, and/or distribute this software for any purpose with or without
fee is hereby granted, provided that the above copyright notice and this permission notice appear
in all copies.

THE SOFTWARE IS PROVIDED "AS I1S" AND THE AUTHOR DISCLAIMS ALL
WARRANTIES

WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES

OF MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE
LIABLE FOR ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES
OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR
PROFITS,

WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS
ACTION,

ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS
SOFTWARE.

JaCoCo
Copyright © 2009, 2022 Mountainminds GmbH & Co. KG and Contributors

The JaCoCo Java Code Coverage Library and all included documentation is made available by
Mountainminds GmbH & Co. KG, Munich. Except indicated below, the Content is provided to
you under the terms and conditions of the Eclipse Public License Version 2.0 ("EPL"). A copy of
the EPL is provided with this Content and is also available at https://www.eclipse.org/legal/epl-
2.0/.

Set-cover Greedy algorithm

The MIT License (MIT)

Copyright (c) 2013 Martin Steinegger

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and
associated documentation files (the "Software"), to deal in the Software without restriction,
including without limitation the rights to use, copy, modify, merge, publish, distribute,
sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

CCE-E 99

https://www.jacoco.org/jacoco/trunk/doc/epl-2.0.html
https://www.eclipse.org/legal/epl-2.0/
https://www.eclipse.org/legal/epl-2.0/

Graduation Project-2 Measurement of Code Coverage by Black Box Testing of Web-based Applications Final Report

The above copyright notice and this permission notice shall be included in all copies or
substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
DEALINGS IN THE SOFTWARE.

CCE-E 100

