

Graduation Project-2 Measurement of Code Coverage by Black Box Testing of Web-based Applications Final Report

CCE-E 1

Graduation Project-2

 “Measurement of Code Coverage by Black

Box Testing of Web-based Applications”

Final Report

Submitted by:

Shaimaa Gamal Abostiet

Waed Raed Sabri

Anoud Emad Abdelmoneim

Reem Sameh Mohammed

Loay Samy El Masry

Supervised by:

Prof. Dr. Hassan Mostafa

CUFE
CCE-E

Credit Hours System

Spring 2022
Senior-2 Level

Graduation Project-2

CCEN481

Graduation Project-2 Measurement of Code Coverage by Black Box Testing of Web-based Applications Final Report

CCE-E 2

Acknowledgment

Listed below are the names of the people who provided us with significant help in developing

our graduation project in addition to our sponsor Siemens EDA. To all we extend our sincere

thanks.

Dr. Hassan Mostafa

Dr. Eman El Mandouh

Eng. Haytham Shoukry

Eng. Abdelrahman Saleh

Eng. Ziad Abdelati

Eng. Salma Faheem

Graduation Project-2 Measurement of Code Coverage by Black Box Testing of Web-based Applications Final Report

CCE-E 3

Abstract

With the recent developments in software applications, the validation of such applications became

an important process to take into consideration. Software testing is a process of ratifying the

functionality of software. It is a crucial area which consumes a great deal of time and cost. There

are many metrics that can be used to confirm the efficiency and effectiveness of the software

testing such as code coverage. Code coverage is a software testing metric that determines the

number of lines of code that is successfully validated under a test procedure, which in turn, helps

in analysing how comprehensively a software is verified. Furthermore, we can use such code

coverage data to optimize the test cases to make it more effective.

This project aims to measure the code coverage data by executing black box testing on a web

application. Our approach was to calculate the code coverage data for the frontend and backend

separately, by executing test cases using a test automation tool. The raw data collected from the

test cases would then be formulated into readable html reports.

The test suite size tends to increase by including new test cases due to software evolution.

Consequently, the entire test suite cannot be executed considering budget and time limitations.

Which is why another objective was to utilize the code coverage data in reducing large test suites.

We did so by applying some machine learning algorithms.

Graduation Project-2 Measurement of Code Coverage by Black Box Testing of Web-based Applications Final Report

CCE-E 4

Table of Contents

Acknowledgment .. 2

Abstract ... 3

List of Figures ... 7

List of Tables .. 8

1. Introduction ... 9

1.1. Project Objective .. 9

1.2. Project phases ... 9

1.3. Background .. 10

1.4. Time plan.. 11

2. Building and testing a prototype Web Application... 11

2.1. Backend .. 12

2.2. Frontend ... 13

2.3. Test case automation .. 15

3. Code coverage research and implementation ... 15

3.1. Back-end Code Coverage ... 16

3.1.1. Proposed approaches ... 16

3.1.2. Best-fit approach implementation ... 16

3.1.3. Requirements .. 18

3.2. Front-End Code Coverage .. 19

3.2.1. ngWebdriver ... 19

3.2.2. Unit testing .. 20

3.2.3. Istanbul (NYC).. 20

3.2.4. Webpack challenges.. 22

3.2.5. Remap Istanbul approach .. 24

4. Merging code coverage results ... 25

4.1. Backend merging steps... 25

4.2. Frontend merging steps .. 27

5. Deployment on a Real Case Web Application ... 29

5.1. Applying the Code Coverage Measurement .. 29

5.1.1. Introduction ... 29

5.1.2. VIQ Workshops .. 30

5.1.3. Adjustments needed .. 31

Graduation Project-2 Measurement of Code Coverage by Black Box Testing of Web-based Applications Final Report

CCE-E 5

5.1.4. Deployment of Back-End code coverage measurement to the Real Case application

 32

5.1.5. Deployment of Front-End code coverage measurement to the Real Case application

 34

5.1.6. Edited Files ... 35

5.1.7. Summary for Deployment on Real Case Web Application 36

5.2. Running a full regression ... 36

5.2.1. Preparation steps for running a full regression ... 36

5.2.2. Processing Data for Test Cases ... 37

5.2.3. Useful hints for processing data .. 37

5.2.4. Processing Data for the Regression .. 39

5.2.5. Results of running a full Regression on Coverage Analyzer using Regression

Launcher Tool ... 40

5.3. Final Package ... 41

5.4. Challenges in Deployment Process .. 42

5.5. Formatting the results for usage in applications... 43

6. Applications of Code Coverage .. 44

6.1. Introduction to Code Coverage Applications ... 44

6.2. Applications Using Code Coverage Results .. 46

6.2.1. Selection and Prioritization ... 46

6.2.2. Exposure of Unused Code .. 49

6.2.3. Test Case Size Minimization .. 49

6.2.4. Test Suite Reduction (TSR) .. 49

6.3. Test Suite Reduction Implementation Using Code Coverage & Machine Learning 50

6.3.1. Introduction ... 50

6.3.2. K – Mean Clustering Algorithm ... 54

6.3.3. Greedy Algorithm ... 63

6.4. Future work and conclusion ... 69

7. Scalability of the Tool ... 70

7.1. Frontend Scalability ... 70

7.2. Backend Scalability .. 70

7.3. Test Automation Tool .. 71

7.4. Test Suite Reduction .. 71

8. Overhead Calculations .. 71

8.1. Disk Space .. 71

Graduation Project-2 Measurement of Code Coverage by Black Box Testing of Web-based Applications Final Report

CCE-E 6

8.2. Build Time.. 71

8.3. Memory Consumption.. 72

8.4. Runtime .. 72

Conclusion .. 73

References ... 74

Appendix ... 77

Appendix A: Code .. 77

Appendix B: Licenses ... 99

Graduation Project-2 Measurement of Code Coverage by Black Box Testing of Web-based Applications Final Report

CCE-E 7

List of Figures

FIGURE 1: TIME PLAN ... 11
FIGURE 2: API TESTING USING POSTMAN .. 13
FIGURE 3: FRONTEND API DESIGN ... 14
FIGURE 4: EMPLOYEE MANAGER WEB APPLICATION ... 15
FIGURE 5: LCOV - CODE COVERAGE REPORT ... 16
FIGURE 6: BUILDING JAR FILE USING INTELLIJ ... 17
FIGURE 7: EMPLOYEE MANAGER BACKEND COVERAGE REPORT USING JACOCO ... 18
FIGURE 8: EMPLOYEE MANAGER BACKEND COVERAGE REPORT - HITS & MISSES .. 18
FIGURE 9: NGWEBDRIVER TEST CASE SNIPPET.. 20
FIGURE 10: FRONTEND CODE SNIPPET FOR DUMPING COVERAGE DATA ... 21
FIGURE 11: EMPLOYEE MANAGER FRONTEND COVERAGE REPORT ... 22
FIGURE 12: EMPLOYEE MANAGER FRONTEND COVERAGE REPORT ERROR ... 22
FIGURE 13: WEBPACK INSTALLATION PROCESS ... 24
FIGURE 14: EMPLOYEE MANAGER BACKEND UNMERGED REPORTS .. 27
FIGURE 15: EMPLOYEE MANAGER BACKEND MERGED REPORT .. 27
FIGURE 16: EMPLOYEE MANAGER FRONTEND - ADD & DELETE FUNCTIONS HIT IN MERGED REPORT 28
FIGURE 17: EMPLOYEE MANAGER FRONTEND – DELETE FUNCTION HIT ... 28
FIGURE 18: EMPLOYEE MANAGER FRONTEND – ADD FUNCTION HIT .. 29
FIGURE 19: COVERAGE ANALYZER UI ... 30
FIGURE 20: GRADLE VS MAVEN ... 31
FIGURE 21: ADDED PLUGINS FOR GRADLE ... 32
FIGURE 22: COVERAGE ANALYZER BACKEND COVERAGE REPORT FOR A SINGLE TEST CASE 33
FIGURE 23: COVERAGE ANALYZER BACKEND COVERAGE REPORT FOR A SINGLE TEST CASE 33
FIGURE 24: COVERAGE ANALYZER BACKEND COVERAGE REPORT FOR A SINGLE TEST CASE - HITS & MISSES 33
FIGURE 25: DUMPCOVERAGE FUNCTION IN COMMON CLASS ... 35
FIGURE 26: FRONTEND MERGING FILE ... 39
FIGURE 27: BACKEND MERGING FILE .. 40
FIGURE 28: REGRESSION SUITE LAUNCHER TOOL RESULTS ... 40
FIGURE 29: COVERAGE ANALYZER - FULL REGRESSION BACKEND COVERAGE REPORT ... 41
FIGURE 30: COVERAGE ANALYZER - FULL REGRESSION FRONTEND COVERAGE REPORT .. 41
FIGURE 31: RESULTS OF MERGING SCRIPT ... 41
FIGURE 32: HTML NAVIGATOR/REPORT ... 42
FIGURE 33: VIQ CODE COVERAGE REPORT ... 42
FIGURE 34:BUILDNOPRODCOV TASK .. 43
FIGURE 35: APPLICATIONS USING TESTING METRICS .. 46
FIGURE 36: CLUSTERING ILLUSTRATION .. 54
FIGURE 37: K-MEAN PROCESS FLOW .. 56
FIGURE 38: VIQ BACKEND COVERAGE REPORT TO EXTRACT DATA ... 57
FIGURE 39: COVERAGE REPORT SOURCE PAGE TO EXTRACT TOTAL RESULTS .. 58
FIGURE 40: EXTRACTED DATA IN EXCEL FILE FORMAT ... 59
FIGURE 41: DESCRIPTIVE ANALYSIS TO COMPUTE Z-SCORES FOR K-MEAN ANALYSIS IN SPSS 60
FIGURE 42: RESULTS OF DESCRIPTIVE ANALYSIS... 60
FIGURE 43: K-MEAN CLUSTER ANALYSIS IN SPSS ... 61
FIGURE 44: K-MEAN CLUSTER ANALYSIS IN SPSS ... 61
FIGURE 45: BAR GRAPH SHOWING CLUSTERING CRITERIA .. 61
FIGURE 46: RESULTS OF K-MEAN ANALYSIS - DISTANCE FROM CLUSTER CENTER & CLUSTER MEMBERSHIP 62
FIGURE 47: SAMPLE OF REDUNDANT TEST CASES ... 63
FIGURE 48: REQUIREMENT LIST ... 66
FIGURE 49: INPUT TO SETCOVER GREEDY ALGORITHM .. 67
FIGURE 50: SNIPPET FROM THE OUTPUT OF SETCOVER ... 67

Graduation Project-2 Measurement of Code Coverage by Black Box Testing of Web-based Applications Final Report

CCE-E 8

FIGURE 51: SNIPPET FROM THE REDUCED LIST .. 68
FIGURE 52: BACKEND COVERAGE AFTER SETCOVER GREEDY ALGORITHM ... 68
FIGURE 54: FILES INCLUDED IN REACT ... 70

List of Tables

TABLE 3: MACHINE LEARNING ALGORITHMS FOR TEST SUITE REDUCTION[33] .. 51
TABLE 4: SUMMARY OF COVERAGE RESULTS .. 68
TABLE 5: COMPARISON BETWEEN GREEDY & K MEAN CLUSTERING .. 69
TABLE 6: MEMORY CONSUMPTION COMPARISON .. 72

Graduation Project-2 Measurement of Code Coverage by Black Box Testing of Web-based Applications Final Report

CCE-E 9

1. Introduction

1.1. Project Objective

We were required to build a framework that obtains the code coverage for a full stack web

application using automated test cases. Our aim is to create a tool “Cairo Code Coverage” which

achieves this objective. One of the major challenges facing us is how to measure the code coverage

with built files. Furthermore, look into the applications of code coverage results.

1.2. Project phases

In this section we will be discussing briefly the project phases. We were required to create a tool

that calculates the code coverage for a web application, and then try it on one of Siemens EDA

web applications.

Phase 1

In this phase we researched on the topic of building a single page web application, then created a

web application which will be used to emulate the actual web app that we will test later on in the

deployment. We created the backend using Java with Gradle[24]/Maven [18], then for the frontend

we used Angular 8[3].

Phase 2

Now that the web application is ready, we started getting familiar with the concept of test

automation tools. Our tool of choice, which was the one used by the company, was Selenium[7].

We started writing several, simple test cases for the web application. These test cases will generate

some raw data which will be the input for our tool later on so that it can process it and produce

readable coverage reports.

Phase 3

We started our code coverage research and implementation for both frontend and backend with

different tools.

Phase 4

After creating the fully functioning tool, we started working on a real case application, deploying

changes on the build process and generating code coverage reports.

Graduation Project-2 Measurement of Code Coverage by Black Box Testing of Web-based Applications Final Report

CCE-E 10

Phase 5

Analysis of our results and post processing to further understand how we can utilize the code

coverage data to enhance the test suites.

1.3. Background

In this project we focused on measuring code coverage for web application. Web applications has

become an essential business tool that enables companies to communicate with customers,

collaborate with employees, store vast volumes of data more effectively, and provide better

information management. Web based applications provide user collaboration and sharing, only

web browser is needed for the client and an only one powerful hardware for the server, and it

works in the cloud. Furthermore, it offers platform independence meaning browser can be invoked

on Linux, Windows, etc. However, web based applications have some challenges such as data

safety and browser compatibility. This illustrates how web based applications are excelling over

desktop application since desktop application are single user, machine dependent which

necessitates specific hardware and software requirements on machine to be able to host the

application, however it provides data security because it is completely isolated.

Another concept that we will be aiming the testing on is Single Page Applications (SPAs). Most

recently, many of the web applications are tending to use SPAs rather than Multiple Page

Applications (MPAs). On demand, SPAs reloads only the data necessary for the user using

JavaScript for dynamic rewriting, therefore code resources like HTML, CSS, and scripts don’t

need to be loaded with every interaction resulting in having higher speed/performance than the

MPAs where the entire web page content is refreshed. Moreover, SPAs Clear separation between

Front-End (UI), and the Back-End (Application Core), which in our case is an advantage to be able

to obtain code coverage data on both ends separately.

We need to get familiar with the concept of regression testing as well which is used by many large

software companies. Regression testing is a common maintenance procedure for revalidating

changed software. As software is modified and new test cases are added to the test-suite to test

new or changed requirements or to maintain test-suite adequacy, the size and complexity of

software systems is growing dramatically. In addition to this, the existence of automated tools,

such as Selenium, has led to the generation of a huge number of test cases, the execution of which

causes huge losses in cost and time.

The Code coverage data will be collected through testing the single page Web application therefore

we need to get familiar with the type of testing that can be performed. Testing can be classified

into 3 main types, White Box Testing, Grey Box Testing, and Black Box testing. The White Box

Testing is executed as a part of the application build step. For example, the Java coded tests JUnit,

Graduation Project-2 Measurement of Code Coverage by Black Box Testing of Web-based Applications Final Report

CCE-E 11

it mainly aims at testing the Backend only. The Grey Box Testing can be done after building the

application without having the UI. It can be tested by calling the same Application Programming

Interfaces (APIs) executed by the UI interactions and it returns JSON responses indicating whether

it was successful or not. Lastly, the Black Box Testing, which mimic the end user actions by

simulating the interactions with the GUI on the browser, this type of testing can be automated

using different automation frameworks/tools.

Once we figure out the measurement of code coverage we will apply it on a real case application

as a case study. The application we will be testing it on is Questa Verification IQ (VIQ). VIQ is a

web-based platform of applications having to do with visualizing and managing verification data

coming from simulation, emulation or Formal Verification of Hardware designs.

1.4. Time plan

In order to keep track of our work, we created this simple timeline for our project. It is to be noted

that we started documenting our thesis before June, we made sure to keep track of our progress.

Figure 1: Time Plan

2. Building and testing a prototype Web Application

In this step we are required to build a single page web application using Angular 8 in the frontend

and Java in the backend. In the beginning we did not have a web application to use for the testing,

furthermore, in order to fully understand the concept of web applications and how what to test, etc.

Starting Day

Merging code coverage

Test suite reduction using

machine learning

Thesis Documentation

Deployment on VIQ

Frontend code coverage

Backend code coverage

Aug

Research & implementation of single page web app

Sep 1, 2021

2021 2022

Sep Oct Nov Dec Jan Feb March April May June July

Graduation Project-2 Measurement of Code Coverage by Black Box Testing of Web-based Applications Final Report

CCE-E 12

we wanted to follow the steps from the beginning to build the web application. We found an online

tutorial that shows a step by step process to create an Angular 8 frontend and Java with Maven

backend web application. This web application will be used to perform the selenium test cases on.

During this phase we took some time to learn about web development, as we did not have much

background in it.

2.1. Backend

In order to get familiar with the concept of how to build a backend for a web application we started

by looking into Node.js[5] which is an open source, cross-platform, backend, JavaScript runtime

environment used to run the backend server. It’s one of the simplest environments to deal with,

especially if you are just getting started with web development. We looked at a backend example

based on Node.js in order to get familiar with the idea.

Generally, the API design for backend is divided into three stages, the first stage is receiving the

HTTP requests by the client then it is handled by the controller which calls the service stage that

can access the database directly through configuring the properties in the application.properties

file.

After getting familiar with building a backend server, we started the implementation by

bootstrapping the backend server using Spring Initializr[1] that was used to form the structure and

inject dependencies such as JPA repo and MySQL, the implementation can be found in Appendix

A: Backend Code.

During the implementation of the backend server, we used Postman[36], which is an API testing

tool. This tool allows us to test the server by sending requests and verifying them before starting

the implementation of the backend. Furthermore, we got familiar with Httpie[6], which is another

API testing tool that uses the command line interface directly.

Graduation Project-2 Measurement of Code Coverage by Black Box Testing of Web-based Applications Final Report

CCE-E 13

Figure 2: API Testing Using Postman

2.2. Frontend

In the previous phase we assumed the requests were sent by an unknown client. Throughout this

upcoming phase we will implement this client. We used Angular framework to develop our web

application. Angular is a framework and platform for building single page client applications. It is

written in Typescript [2] .The architecture of an Angular application relies on certain fundamental

concepts. The basic building blocks are angular components that are organized into NgModules[4].

An Ngmodule can associate its components with related code, such as services, to form functional

units. These components define views, which are sets of screen elements.

Next, we will dive into API design using Angular’s components, forms and services. The flow

begins with the users’ actions using the UI this triggers angular events that are handled by the

functions, included in the component, these functions call the services that construct the http

requests to be then handled by the backend as mentioned previously.

Graduation Project-2 Measurement of Code Coverage by Black Box Testing of Web-based Applications Final Report

CCE-E 14

Figure 3: Frontend API Design

Cors configuration[10] is done to give some permissions such as

 Allowing access to the servers and clients to be able to send requests

 Configure the headers of the requests

 Set allowed methods (GET, POST, PUT, DELETE)

A CORS configuration is a document that defines rules that identify the origins that you will allow

to access your bucket, the operations (HTTP methods) supported for each origin, and other

operation-specific information. The CORS configuration must be a JSON document.

After the configuration we start looking into how to create the GUI. In Angular, a template is a

section of HTML. It renders a user interface to include as a part of the page that the browser

displays. When, we built our Angular application the app.component.html file is the default

template containing placeholder HTML. We extended this HTML with special angular syntax in

our templates.

The following figure shows the final structure of our web application GUI. As we can see in the

GUI we added a button for add, delete, update functionalities of our application, as well as a search

bar for the search functionality.

Graduation Project-2 Measurement of Code Coverage by Black Box Testing of Web-based Applications Final Report

CCE-E 15

Figure 4: Employee Manager Web Application

2.3. Test case automation

In this step we are required to automate the testing of our application’s GUI. Selenium[7] is one of

the most commonly used automation testing tools. It simulates, using selenium web driver, the

user actions by locating elements using locator techniques and take action on the located elements

such as a click and send keys. It can also preform navigation commands.

The reason for choosing Selenium as our test automation tool is because we wanted to follow the

same structure as the one Siemens EDA had in VIQ web applications, this would make the

deployment phase simpler.

We created several test case for each of the functionalities we have which are: Add, Delete, Update

and Search.

3. Code coverage research and implementation

We started by doing research on code coverage and how to use it to measure the quality of testing.

Firstly, we came across LCOV[17] that helped us to visualize the end result of our coverage report.

LCOV is a graphical front-end for GCC's[16] coverage testing tool gcov[22]. It collects gcov data

for multiple source files and creates HTML pages containing the source code annotated with

coverage information. It also adds overview pages for easy navigation within the file structure.

LCOV supports statement, function and branch coverage measurement. It generates a code

coverage report as shown in the following figure:

Graduation Project-2 Measurement of Code Coverage by Black Box Testing of Web-based Applications Final Report

CCE-E 16

Figure 5: LCOV - Code Coverage Report

We found that in most code coverage tools you have access to the full source code, compiled files,

etc. However, in our case we only have access to the UI therefore, we must use selenium test cases.

While conducting our research, the vision we had was that the results of our selenium test cases

will be formulated into files from which we can extract the coverage data. Then, we can use the

data to make the output code coverage report.

3.1. Back-end Code Coverage

3.1.1. Proposed approaches

We thought of three approaches when searching for backend code coverage. The best-case

scenario was to not need any modification on source files or build files and collect coverage data

through API requests. However, we didn’t find any resources regarding this approach. The second

approach we thought of was to instrument the build files similar to what we did in the front-end.

We found several possible tracks, including EMMA[23]/JaCoCo [29][30], they instrument .jar files

and collect coverage data in a .exec file. We also found Codeception[20] which eases remote testing.

The third approach is the worst-case scenario in which we will need to modify the source files to

collect coverage data using Maven plugins[31].

3.1.2. Best-fit approach implementation

After analysing the previous three approaches and checking their resources, we found that the

second approach is the best one. This is due to the fact that most of the applications already work

with build files or Web application Archive (war) files, as well as having enough resources to

pursue this method. Here are the steps of this approach:

Graduation Project-2 Measurement of Code Coverage by Black Box Testing of Web-based Applications Final Report

CCE-E 17

1. Building Jar file using IntelliJ:

We started by creating a jar artifact with options “From modules with dependencies” and “copy to

the output directory and link via manifest” selected. This first option is needed to include the

dependencies in the build files and the second option is to avoid errors during instrumentation of

build files.

Figure 6: Building JAR File Using Intellij

2. Instrument and run Jar file using Jacoco:

We used the command:

3. Run test cases

4. Generate HTML Report from jacoco.exec file

We used the command:

java -javaagent:jars/org.jacoco.agent-0.8.7-runtime.jar –jar
employeemanagerjar2/employeemanager.jar

java -jar jars/org.jacoco.cli-0.8.7-nodeps.jar report jacoco.exec --classfiles=target/classes --
html coverage

Graduation Project-2 Measurement of Code Coverage by Black Box Testing of Web-based Applications Final Report

CCE-E 18

The following figures show the coverage html reports resulting from the previous steps. The

Missed instructions column refers to the java byte code instructions missed.

Figure 7: Employee Manager Backend Coverage Report Using JaCoCo

3.1.3. Requirements

In order to get the source files annotations of the hit and missed functions, a path to a copy of the

source files is needed as we didn’t find an option to include mapped source files like the case of

the front-end. This does not defy our main goal as we are still collecting coverage using the built

files.Also, java agents need to be installed with a version compatible with the java version of the

project.

Figure 8: Employee Manager Backend Coverage Report - Hits & Misses

Graduation Project-2 Measurement of Code Coverage by Black Box Testing of Web-based Applications Final Report

CCE-E 19

3.2. Front-End Code Coverage

In this section we will be discussing research and the several approaches we took in order to get

the code coverage results through executing the Selenium test cases.

3.2.1. ngWebdriver

ngWebDriver[9] is a small library of WebDriver locators and more for AngularJS (v1.x) and

Angular (v2 through v9), for Java. It works with Firefox, Chrome and all the other Selenium-

WebDriver browsers.

We have seen how we can use selenium webDriver and java to test angular JavaScript controls,

but there are few limitations like we need to stick to a particular locator strategy (xpath or css) as

selenium itself do not have locators method specific to angular controls (like ngbinding, ngrepeater

etc), and sometime angular element’s actions lag behind the selenium line by line execution

(synchronisation issue).

To overcome above said issues while testing angular js controls with selenium and java, a library

known as ngWebDriver came out to add features to selenium and can write the scripts in java (so

that we need not to switch or learn any other languages like javascript for protractor)

ngwebdriver basically taken the advantage of protractor and passing the javascript to browser to

handle angular controls and also allows to write scripts in java language without any

synchronisation issue.

Let’s list our few angular controls that are different than normal html elements:

• ng-model

• ng-binding

• ng-repeat

If your application has only the above attributes allocated for the browser elements, ngwebdriver

has capability to identify the above elements directly using:

• byAngular.binding()

• byAngular.model()

• byAngular.options()

• byAngular.repeater()

Note – Along with above angular specific locators, we even can use selenium specific locators like

id, name, className, css selector etc.

Graduation Project-2 Measurement of Code Coverage by Black Box Testing of Web-based Applications Final Report

CCE-E 20

The following figure shows a code snippet of the test case we wrote using ngWebDriver method.

Figure 9: ngWebDriver Test Case Snippet

Why not use ngWebDriver in our tests?

ngWebDriver won’t work because we don’t have access to the source code (i.e. bindings, etc.)

Therefore, our test cases will follow the same template as the Siemens EDA test automation team’s

test cases of the application, meaning we will use webDriver and the same algorithms we

implemented for our test cases.

3.2.2. Unit testing

The first idea that came to our minds was to make use of ng-test with option –code-coverage which

uses the test cases inside .spec.ts files. However, this method would require us to re-write the

existing java selenium test cases using javaScript and integrate them with Jasmine framework

which is not the most desirable conclusion for us. Therefore, we tried to find another method that

would perform the same functionalities as ng-test –code-coverage.

3.2.3. Istanbul (NYC)

Upon our search for an alternative method, we came across a framework called Istanbul[12].

Istanbul instruments your ES5 and ES2015+[25] JavaScript code with line counters, so that you can

track how well your unit-tests exercise your codebase. It has a command client called nyc[12] which

works well with many testing frameworks.

Using Istanbul with Selenium to Get Code Coverage:

First we build our project to get the build files that we will work on later. The option source-map

output source maps for scripts and styles in addition to the build files.

Graduation Project-2 Measurement of Code Coverage by Black Box Testing of Web-based Applications Final Report

CCE-E 21

Source mapping writes the source files in a compressed format.

Now, we instrument our build files using nyc. The following command modifies the built files in

order to record coverage data while the selenium test cases are running, and then it saves said data

in a variable called window.coverage. This is useless unless you actually do something with that

data.

 --exclude-after-remap=false: because source map from the ng build will map all the files,

however, in nyc there is an option to exclude specific files. So we need to exclude after

remap

 --all: Needed with the –source-map option to get the source files

Serving the application using lite-server, which is recommended by Angular, to be able to run our

test cases.

After the previous step, our web application will open. Now we can go ahead and run our test

cases. One of the problems we faced was not finding the window.coverage variable at first, so

instead, we took an easier approach which is writing a code for the process of getting the data

saved in window.coverage and saving it in a .json file that will be used later to generate the

coverage report.

Figure 10: Frontend Code Snippet for Dumping Coverage Data

Finally, we can generate the code coverage report using the .json file that we generated.

ng build –source-map

nyc instrument dist/myapp dist/myapp --exclude-after-remap=false --complete-copy --in-

place --all

lite-server –baseDir=“dist/myapp”

nyc report –reporter html –t coverage –report-dir coverage/coverage.json

Graduation Project-2 Measurement of Code Coverage by Black Box Testing of Web-based Applications Final Report

CCE-E 22

Figure 11: Employee Manager Frontend Coverage Report

At this point we have successfully generated a code coverage report for all our application’s source

files. However, we still couldn’t remap the source maps to the original source code. Our goal now

is to configure webpack so that it can remap the code files correctly, so that the nyc report

command can get the hits and misses within the code.

Figure 12: Employee Manager Frontend Coverage Report Error

3.2.4. Webpack challenges

Webpack[26] is a static module bundler for JavaScript applications. It takes modules, whether

custom files or files installed through npm[11], and converts them to static assets. This enables us

to take a fully dynamic application and package it into static files, which can then be uploaded or

deployed to a server. Webpack functionalities can be extended by using Plugins and Loaders. We

can configure webpack through webpack.config.js

Webpack Configuration

Webpack has an entry point which in our case was the project root file. It inspects that file and

traverses its import dependencies recursively, for example if you’re importing @angular/core, it

adds that to its dependency list for potential inclusion in the bundle. It opens the file and follows

its network of import statements until it has built the complete dependency graph from the root file

down.

Graduation Project-2 Measurement of Code Coverage by Black Box Testing of Web-based Applications Final Report

CCE-E 23

Loaders are transformations that are applied to the source code of a module; therefore, loaders are

kind of like “tasks” in other build tools and provide a powerful way to handle front-end build steps.

They can transform files from a different language like type script to java script.

Angular integrates with webpack when generating source maps during the build process. The

problem with using ng build –source-map is that we don’t have control over the build features and

which loaders are used. The error above is due to a missing step or configuration in remapping the

source files, so we first tried to add options in tsConfig.js file using several loaders like Istanbul-

loader or give webpack configuration as an option, but such an option was not found.

As we were trying to solve this error, we took several approaches:

Build using Webpack:

We thought of customizing our build options by using webpack to build our application instead of

ng build so we needed to install it with the following steps:

Webpack Installation

The following steps show how we can install webpack in our web application. To install the latest

release run the following command:

If you want to call webpack from the command line, you’ll also need to install the CLI.

To create the webpack.config.js which is going to contain the options.

The figure shown below are how we answered the questions after we ran the above command

npm install –save-dev webpack

npm install –save-dev webpack-cli

webpack-cli init

Graduation Project-2 Measurement of Code Coverage by Black Box Testing of Web-based Applications Final Report

CCE-E 24

Figure 13: Webpack Installation Process

This method did not build the styles and html files, therefore, we couldn’t serve the applications.

Custom Build

Since the build provided by angular has webpack implemented in it, as a work around to avoid the

webpack error ,we created a custom build script file called build.js also we gulp ,this didn’t include

Webpack, to build the application with. However, this approach failed because the build was

incomplete and hence the serving failed since there was no runtime or index files that are required

from the build.

3.2.5. Remap Istanbul approach

Previously the nyc command was generating code coverage on source files only, but it had no

access to the source maps via webpack. Therefore, we replaced the last command with a new

command using remap – Istanbul[13].

Remap-Istanbul command has 3 libraries that perform the following:

 lib/loadCoverage - does the basic loading of a Istanbul JSON coverage files.

 lib/remap - does the remapping of the coverage information. It iterates through all the files

in the coverage information and looks for JavaScript Source Maps which it will then use

to remap the coverage information to the original source.

 lib/writeReport - a wrapper for the Istanbul report writers to output the any final coverage

reports.

Graduation Project-2 Measurement of Code Coverage by Black Box Testing of Web-based Applications Final Report

CCE-E 25

The following steps were required to install the remap- Istanbul:

The following command was the one used instead the last previous one:

In this approach, we faced an error shown below, thus error states that it could not create such

directory ‘webpack:/’.

Error: EINVAL: invalid argument, mkdir

'C:\Users\anod\Desktop\employeemanager\employeemanagerapp\covOut\webpack:\

node_modules\@angular\common__ivy_ngcc__\fesm2015‘

Firstly, As a temporary solution, we replaced every ‘webpack:///’ with ‘webpack///’, which were

exactly 3 instances, in the coverage.json file. Then instead of replacing it manually we used the

following command:

(gc coverage/Add_coverage.json) -replace 'webpack:///' , 'webpack///' | Out-File

coverage/Add_coverage.json -encoding ASCII

4. Merging code coverage results

All the previous implementations and trials were tested on a single test case, However when we

start applying on the Coverage Analyzer which is the company’s web application we are required

to run a full regression. Therefore, we started in the following section to merge the coverage results

of several test cases on our application.

4.1. Backend merging steps

We want to merge the coverage results coming from different test cases; as we need to merge the

coverage of test cases under a single scope in order to deal with a single number. We can also

merge the statistics of several scopes later on.

npm install -g Istanbul

• npm install -g Istanbul

npm install remap-Istanbul

• npm install remap-Istanbul

• npm install -g Istanbul

./node_modules/.bin/remap-istanbul -i coverage.json -o html-report -t html --exclude

node_modules

Graduation Project-2 Measurement of Code Coverage by Black Box Testing of Web-based Applications Final Report

CCE-E 26

Steps

1. Run the first test case and dump coverage results in jacoco1.exec file

2. Run the second test case and dump coverage results in jacoco2.exec file

3. Merge .exec files

4. Get the merged html report

Results validating the merging steps

The first two figures show the results of the first and second test case separately, where in the first

test case add and delete employee functions were hit and in the second test case update employee

function was hit.

java -javaagent:jars/org.jacoco.agent-0.8.7-runtime.jar=destfile=jacoco1.exec -jar

employeemanagerjar2/employeemanager.jar

java -javaagent:jars/org.jacoco.agent-0.8.7-runtime.jar=destfile=jacoco2.exec -jar

employeemanagerjar2/employeemanager.jar

java -jar jacoco-0.8.7/lib/jacococli.jar merge jacoco1.exec jacoco2.exec --destfile merged.exec

java -jar jars/org.jacoco.cli-0.8.7-nodeps.jar report merged.exec --classfiles=target/classes --html
coveragemerge --sourcefiles=../Web/employeemanager/employeemanager/src/main/java

Graduation Project-2 Measurement of Code Coverage by Black Box Testing of Web-based Applications Final Report

CCE-E 27

Figure 14: Employee Manager Backend Unmerged Reports

In the following figure we can see the merged coverage report where the three functions are hit.

Figure 15: Employee Manager Backend Merged Report

4.2. Frontend merging steps

We used the same command but we included all the input .json files ,these files represent different

test case files ,For example, the command below include a file with the add functionality and the

other one include the delete functionality.

Results validating the merging steps

The following screenshot shows the coverage report when the two files are used

(Add_coverage.json, Delete_coverage.json). Here as shown both the Add and Delete functions

are hit

istanbul-merge --out <output.json> <input1.json> <input2.json>

Graduation Project-2 Measurement of Code Coverage by Black Box Testing of Web-based Applications Final Report

CCE-E 28

Figure 16: Employee Manager Frontend - Add & Delete Functions Hit in Merged Report

The following fig. shows the coverage report when the only one file is used (Add_coverage.json

or Delete_coverage.json). Here as shown either the Add or Delete functions are hit

Figure 17: Employee Manager Frontend – Delete Function Hit

Graduation Project-2 Measurement of Code Coverage by Black Box Testing of Web-based Applications Final Report

CCE-E 29

Figure 18: Employee Manager Frontend – Add Function Hit

5. Deployment on a Real Case Web Application

5.1. Applying the Code Coverage Measurement

5.1.1. Introduction

After emulating VIQ environment and getting the coverage results, we started deploying our

package on Coverage Analyzer which is a product that visualizes the RTL code coverage by HW

Verification saved as a Universal Coverage Data Base (UCDB). We started with coverage analyzer

because it’s a standalone branch from VIQ with an easier setup.

Graduation Project-2 Measurement of Code Coverage by Black Box Testing of Web-based Applications Final Report

CCE-E 30

Figure 19: Coverage Analyzer UI

5.1.2. VIQ Workshops

We viewed the structure of Coverage Analyzer test cases regression suite[15]. Regression Testing

is defined as a type of software testing to confirm that a recent program or code change has not

adversely affected existing features.We found that we have a tree of test cases and each leaf

containing selenium test cases for certain functionalities.

A Perl script is responsible for managing the process of running each test case. By running the test

script Coverage Analyzer is started, we observed the sequence of steps it uses which we will try

to imitate using our code coverage scripts.

The leaf test case flow:

1. Compile java files (mainly responsible for the functionality of the selenium test case)

2. Provide files needed for coverage analyzer to work properly, for example ucdb files

3. Launch the backend and frontend server using the war file and pass the required arguments,

for example the server port

4. Run compiled files of the test case

5. Kill the process of coverage analyzer and compare results with golden references

Afterwards, we unzipped the .war file of the application to view its structure, and how it’s created

from the build script.

Graduation Project-2 Measurement of Code Coverage by Black Box Testing of Web-based Applications Final Report

CCE-E 31

We found that the frontend and backend are built separately then copied in the same directory and

zipped into one Web Application Archive (war) file.

Furthermore, we investigated the build script and the tasks responsible for creating the war file.

Examples of the tasks used:

 Scrub: responsible for cleaning any files from a previous build and install needed

dependencies, like node modules

 Build: runs angular build responsible for building frontend

 Copy: copies the build files of the frontend to the same directory of the backend

After investigating the building method used for the application, we realized that the backend is

built by Gradle. Therefore, we needed to migrate our project from Maven to Gradle.

5.1.3. Adjustments needed

a) Migration from Maven to Gradle

As mentioned above, the Coverage Analyzer application uses Gradle not Maven for building, in

addition, Gradle is more customizable than Maven and provides a wide range of IDE support

custom builds while Maven has a limited number of parameters and requirements, so

customization is a bit complicated.

The following figure compares between Gradle and Maven for three types of builds in regards to

their duration. As shown in the figure, Gradle has less building times in all of the build types.

Figure 20: Gradle vs Maven

Graduation Project-2 Measurement of Code Coverage by Black Box Testing of Web-based Applications Final Report

CCE-E 32

We migrated the project by installing Gradle from their website, then inside the backend root we

ran the command “gradle init”

b) Generating WAR File

After migration, we generated the war file using the following steps:

 Added the war plugin inside the file ‘build.gradle’, this will produce a .war file upon

building

Figure 21: Added Plugins for Gradle

 Run command “gradlew build” to build the application, it will produce a war file similar

to the VIQ one but without the frontend.

Merging Frontend & Backend Into one WAR File

In order to add the frontend to the same war file as the backend, normally, a plugin provided by

gradle is used that automatically copies the build files of the frontend to the backend directory.

What we did was to first build and instrument the frontend like we would normally do, then we

manually copied the resulted build files to the backend in the following directory:

webapp\build\resources\main\static

Then we used Gradle build again to produce a war file containing both frontend and backend, and

we can run it using:

java -javaagent:jars/org.jacoco.agent-0.8.7-runtime.jar -jar employeeManager-0.0.1-

SNAPSHOT.war

5.1.4. Deployment of Back-End code coverage measurement to the Real Case application

We started with the backend because it does not need special handling in war file creation (i.e

instrumentation). It just needs a modification in the war file running command. We started on a

small scale and picked a random test case to use. We added the java agent to the java command

inside the perl script in order to collect coverage data for backend.

Graduation Project-2 Measurement of Code Coverage by Black Box Testing of Web-based Applications Final Report

CCE-E 33

Challenges

The challenge that faced us here was that the jacoco.exec file was empty after running the test

case. After analysis we found that the problem was inside subroutine

Cleaning_Coverage_Analyzer that terminated coverage analyzer using kill -9 which terminates

without saving the data. Consequently, we replaced this command with kill -15 which gracefully

terminates the program and saves data. These changes were in run_ca.pl file in running CA and

cleaning CA subroutines.

After this change we successfully ran the test case and got the backend coverage report.

Figure 22: Coverage Analyzer Backend Coverage Report for a Single Test Case

Figure 23: Coverage Analyzer Backend Coverage Report for a Single Test Case

The following figure shows the hits and misses illustrated by the highlights, where red indicates

a miss and green indicates a hit, inside the html report.

Figure 24: Coverage Analyzer Backend Coverage Report for a Single Test Case - Hits & Misses

Graduation Project-2 Measurement of Code Coverage by Black Box Testing of Web-based Applications Final Report

CCE-E 34

5.1.5. Deployment of Front-End code coverage measurement to the Real Case application

In this step we needed to adjust the build steps so we started by checking the build command that

was used “./gradlew -PScrubFe -Pqaprod clean build -x test”

We found that -P option with gradlew calls custom tasks defined in “gradle/profile_prod.gradle”,

where ScrubFe was used for cleaning and installing needed packages and qaprod runs the script in

package.json corresponding to QA production which runs with the production configurations

specified. Finally, we generate the war file.

QA Production build

There are several configurations in qaprod build but we’ll focus on three main configurations.

 Source map option: set to false

 Optimization: set to true

 Build Optimizer: set to true

Challenges

Build Failure with Source Maps Option

We first tried to set the Source maps option to true but the build failed. This was due to the conflict

that occurs between the source maps and optimization options. Consequently, we contacted the

R&D to find a solution and eventually came to the conclusion that we need to use the Development

build (Debug build) instead.

Memory Issue

Here we faced another problem with the memory, so we needed to increase it with the following

command:

node --max_old_space_size=8192 node_modules/@angular/cli/bin/ng build --

configuration=dev

Test Cases Failure

Due to the difference between the production and debug builds, for example the optimization

options, 8% of the test cases failed. This was acceptable percentage for now so we proceeded with

this solution.

Graduation Project-2 Measurement of Code Coverage by Black Box Testing of Web-based Applications Final Report

CCE-E 35

The next steps was to add the instrumentation command in package.json and add a corresponding

task to call it in gradle/profile_dev.gradle and defined task qacov to call the development build

with our configurations and the instrumentation task. Therefore the final build command is

“./gradlew -PScrubFe -Pqacov clean build -x test”

Finally, to dump the coverage data we added the snippet used to dump the coverage in the

coverage.json file in the EXIT function that is called at the end of each test case and defined

environmental variable (CA_COVERAGE) to only call the dump when we are collecting

coverage. We also created a script that adds the needed imports in Test Cases for the coverage data

dumping code.

Figure 25: dumpCoverage Function in Common Class

5.1.6. Edited Files

To further illustrate the changes mentioned above, the following files were modified as follows:

Run Common File

This is a common perl file that contains subroutines that are used to run all the test cases.

In this file, after running the test case we added the following in run test subroutine:

 A timestamp before the generation of the coverage reports to calculate the overhead

 The command for merging the json files of the frontend coverage reports. This was not

needed for the backend as the exec file is generated after closing the server so it will

already contain the coverage of the whole directory

 A code block for checking the number of json files in the directory to check if merging is

needed. The json files are named “test_case.json” and the merged file is “coverage.json”,

if there was only one file it’s renamed “coverage.json”

 A timestamp after report generation for overhead calculation

Graduation Project-2 Measurement of Code Coverage by Black Box Testing of Web-based Applications Final Report

CCE-E 36

Run_ca.pl File

In this file we edited the java command with java agent to run the war file subroutine running_CA

as well as editing the kill command (kill -15) in clean_CA subroutine

Post Script execution in the regression suite launcher tool

We edited the post script in the regression launcher tool when running on the full regression to

archive the coverage data as the regression launcher tool archives only the data of the failed test

cases.

5.1.7. Summary for Deployment on Real Case Web Application

To summarize the whole work on Coverage Analyzer, we modified parts of the flow starting from

the build to the launch of the application and the termination. Also, we generated frontend and

backend coverage reports for each leaf test case.

5.2. Running a full regression

Here, we are trying to collect coverage for the whole test case suite to:

 Measure the quality of testing from code coverage perspective

 Check if there are any challenges in getting coverage for the full regression

5.2.1. Preparation steps for running a full regression

1. Defining the required Shell environment variables:

 Set the required fields like "MTI-HALOS, MTI_HOME. TEST_SUITE, etc"

 Set "setenv" field with the additonal coverage variables and the archive directory (for

coverage results) → Example

 CA : CA_COVERAGE=1 CA_SRC=…/CA_main/main/coverageanalyzer (or

other <ws> specified)

archive_path="/bata/halos/viq_codecoverage/AllRegression_2""

 VIQ : VIQ_COVERAGE=1 VIQ_SRC=…/CA_main/main/coverageanalyzer

archive_path="/bata/halos/viq_codecoverage/AllRegression_2""

 You can find the post run script under <your main

workspace>/tests/viq_automation/run_scripts/post_run.csh

Graduation Project-2 Measurement of Code Coverage by Black Box Testing of Web-based Applications Final Report

CCE-E 37

2. Editing the post script

 Set "other options" field in the regression launcher tool with the following line → "--

postrun-script <post run absolute path> --force-completion --test-timeout=40 --

timeout=200" for example: "--postrun-

script=/bata/lelmasry/CA_main/main/tests/viq_automation/run_scripts/post_run.csh"

3. Results

 Raw coverage results can be found in your archive_path under <testcase_path from

ca>/coverage.json(or jacoco.exec) → example:

/bata/halos/viq_codecoverage/AllRegression_2/ca/code_coverage/codeEditor/branchesS

V1/coverage.json. " …/viq_codecoverage/AllRegression_2" was my archive_path and

"ca/code_coverage/codeEditor/branchesSV1: is the testname

5.2.2. Processing Data for Test Cases

 Generate frontend html coverage report : "remap-istanbul -i coverage.json -o

<Frontend_Coverage report_name> -t html --exclude node_modules"

 Generate backend html coverage report : "java -jar $JARS/org.jacoco.cli-0.8.7-nodeps.jar

report jacoco.exec --sourcefiles=$CA_SRC/src/main/java/ --

classfiles=$CA_SRC/build/classes --html <Backend_Coverage report_name>

 Merge front end results: "istanbul-merge --out <merge_file.json> <input1.json>

<input2.json> "

 Merge backend results: "java -jar $JARS/org.jacoco.cli-0.8.7-nodeps.jar

merge <input1.exec> <input2.exec> ... --destfile <merged.exec>"

 The whole processing data section can be automated "to be done"

5.2.3. Useful hints for processing data

Make a list with all the coverage.json and exec files for further processing

 cd to your archive_path

 To generate Jsonfiles list:

find * -name coverage.json > Jsonfiles.list

 To generate execfiles list from only testcases that finished run successfully:

cat Jsonfiles.list | sed 's,coverage.json,jacoco.exec,g' > Execfiles.list

Graduation Project-2 Measurement of Code Coverage by Black Box Testing of Web-based Applications Final Report

CCE-E 38

Merge files in sets then merge the final sets

The concept of merging files in sets can be used to make the results more organized, for example

merging the coverage files of test cases with similar functionality. This can be done using the

following steps:

 Merge json files in Jsonfiles.list from line_1 to line_99 (The first 100 lines) into first

merged set

istanbul-merge --out merge_1set.json `sed -n 1,99p Jsonfiles.list`

 Merge json files in Jsonfiles.list from line_100 to line_199 (The second 100 lines) into

second merged set

istanbul-merge --out merge_2set.json `sed -n 100,199p Jsonfiles.list`

 Merge the two output files

 Generate coverage report for the final exec or json file

The previous merging steps can be done both on the Back-End and Front-End files.

Merge all files at once

The following command can be used:

istanbul-merge --out merge_all.json `cat Jsonfiles.list`

Suggested solutions for common issues

In case you found corrupted .json or .exec files, you can remove them from the lists and run the

commands again

You can use merge_backend.pl to automate the process of merging exec files and remove the

corrupted files from the list after forming Execfiles.list.

In case you have an issue in the installation of packages you can use …/nodeJS/node-v10.16.3-

linux-x64/bin/istanbul-merge instead of istanbul-merge and same for all other npm commands.

Graduation Project-2 Measurement of Code Coverage by Black Box Testing of Web-based Applications Final Report

CCE-E 39

5.2.4. Processing Data for the Regression

Preparing the list of tests with coverage

This list can be prepared as mentioned previously.

Merge FrontEnd Coverage

 cd to Coverage Parent directory (archive_path)

 Run the following PERL program merge_frontend.pl

Figure 26: Frontend Merging File

 Merged file will be archive path/merged.json

Merge Backend Coverage

 cd to Coverage Parent directory (archive path)

 Run the following PERL program merge_Backend.pl

Graduation Project-2 Measurement of Code Coverage by Black Box Testing of Web-based Applications Final Report

CCE-E 40

Figure 27: Backend Merging File

 merged file will be archive_path/merged.json

Generate test: line coverage file per test case

 Generate a file that will state each file and line affected by this test case you should

do the following

 Loop on all directories that contain coverage ,json file and run the script as follows

5.2.5. Results of running a full Regression on Coverage Analyzer using Regression Launcher

Tool

The coverage data processing was performed on 521 Passing designs and failing designs with total

~620 raw coverage file (for each backend and frontend)

Figure 28: Regression suite launcher tool Results

Graduation Project-2 Measurement of Code Coverage by Black Box Testing of Web-based Applications Final Report

CCE-E 41

Figure 29: Coverage Analyzer - Full Regression Backend Coverage Report

Figure 30: Coverage Analyzer - Full Regression Frontend Coverage Report

5.3. Final Package

The Test Automation Team in Siemens EDA currently:

 Using our steps to build with coverage, and archive coverage results weekly for the

whole regression

 Running set of scripts to merge coverage data and generate frontend and backend reports

 Running script to generate summaries for each run (archived with its date)

Figure 31: Results of Merging Script

 Opening an html page which provides:

• The summary of the most recent run

• The ability to view the detailed frontend and backend coverage

• The ability to navigate to the coverage report of a previous run

• A list of all the previous archived results

Graduation Project-2 Measurement of Code Coverage by Black Box Testing of Web-based Applications Final Report

CCE-E 42

Figure 32: HTML Navigator/Report

Feedback from Siemens Test Automation Team

The test automation team started presenting our work and applying it to different VIQ web

applications other than Coverage Analyzer.

Figure 33: VIQ Code Coverage Report

The test automation team also started analysing the reduced test case list that resulted from the test

reduction tool mentioned above.

5.4. Challenges in Deployment Process

In this section we will discuss some of the challenges that the coverage test automation team

faced when using our tool on their applications.

1. Cannot work with fully Dev build

Our tool needs development build as it contains a high level of debugging, which is needed to

catch bugs. However, the customer will need to use a production build as debugging isn’t needed,

and also it’s more abstract than the dev build. And they need maximum optimization from the

build, this forms a contradiction in interests.

Graduation Project-2 Measurement of Code Coverage by Black Box Testing of Web-based Applications Final Report

CCE-E 43

Furthermore, Dev build can’t be used to run VIQ regression because all of the SQL files are saved

based on production VIQ build, and production SQL files can’t be used with dev build. To

overcome this issue, in the building steps instead of setting dev profile we added prod profile but

still execute buildnoprod task as shown in the figure. So by doing this we can create dev build,

instrument the build by setting profile = prod, the build will behave the same as the prod build and

we can run the test cases normally and collect code coverage for both the frontend and backend.

Figure 34:Buildnoprodcov task

2. Missing files in frontend that were not reported

Some required files were included as library files (in node modules) and not as source files,

therefore when collecting coverage these files were missing from the reports

3. Storage problem

Each test case coverage reports are about 62 MB to 38 GB for one regression run

4. All files under shared directory are now included in one file and not in separate files as

in the actual source codes

5.5. Formatting the results for usage in applications

After inspecting the HTML reports that were generated, we started collecting the useful coverage

data and formulating this data into files to be used in different applications. We created a parsing

script to extract information from the HTML reports into text files, each test case has a new file

that contains source file name as well as the numbers of lines (i.e. the number of the line in the

source code) that were hit by this test case.

Graduation Project-2 Measurement of Code Coverage by Black Box Testing of Web-based Applications Final Report

CCE-E 44

These parsed files can be used as input in various applications since it’s easier to extract the data

of each test case from them directly. One of the applications that can use the parsed files as input,

is reducing the size of the regression test suite, which will be discussed in the following section.

6. Applications of Code Coverage

6.1. Introduction to Code Coverage Applications

Software quality is an important issue that all developers of software systems want to achieve. It

currently attracts a lot of attention since software is everywhere and affects our lives on a daily

basis. Software testing is the main factor in enhancing and increasing the quality of software.

Regression testing necessitates running a large program on a large number of test cases, which can

be costly in both human and machine time. Software costs may be reduced if the regression testing

process could be improved. The goal of researchers using test-suite selection strategies is to reduce

costs. This is why they strive to find test-suite subsets that provide the same level of software

coverage as the original test-suite. As a result, a variety of approaches for dealing with test suits

have been investigated, including minimization, selection, and prioritising. Minimizing or

reducing the number of tests to execute is the goal of test suite minimization.

Now that we understand the importance of controlling the size of a test case regression, we can

take a look at the different metrics upon which we can make an optimum decision of whether or

not the test-suite is compact and efficient. Some of the various metrics are as follows:

Customer requirements:

In the customer requirements based selection techniques test cases are divided based on the factors

decided on the requirements of customers documented during the phase of requirements gathering.

Cost effective:

The test cases are classified on the basis of the cost factor in this approach. The cost can be the

cost of requirement gathering, cost of regression testing, cost of execution and validating test cases,

the cost of analyses to select and support a test case, cost of classification of test cases, cost of the

running time or any other implicit cost, e.g. test environment (hardware), competence or other cost

pending factors in the development or production cycle.

Graduation Project-2 Measurement of Code Coverage by Black Box Testing of Web-based Applications Final Report

CCE-E 45

History based:

The test cases are classified based upon the history of the test case itself which means priority of

test case depends upon its previous execution time, rate of finding failures and other performance

metrics.

Churn:

Testing can also be classified based on churn, e.g. changes. Meaning that you prioritize the test

cases affected by the latest code change. Depending on your architecture, programming language

choice and many other development factors e.g. how you associate and connect your tests with the

code.

Fault-based:

By constantly collecting statistics on every execution of the software, information from e.g.

customers, changes, and pass-fail history of the test case, classification can be based on the fault

history, including severity or occurrence.

Coverage based:

Owing to the fact that code coverage is one of the most important parameter to calculate in any

software testing, as well as being the output of our code coverage tool we will be using it as the

metric in our approaches for test reduction, it can be used along with other metrics or as a

standalone as we will explain later on.

Based on coverage the classification of the test cases are on the quantity of the source code of a

program that has been exercised during testing. In this approach the test cases having the capability

of testing a larger part of the code are classified. We can either use percentages only without having

any knowledge of the lines within the source code, or by also including the exact lines that were

covered. This means that this metric can be used for both white box testing and black box testing.

Coverage-based test suite reduction and prioritization techniques optimize test cases based on the

achieved coverage of different aspects (e.g. source code or model) of System Under Test (SUT).

The code coverage is used to measure the degree of SUT’s code exercised by the generated test

suite. Furthermore, it provides feedback about the strategy that should be used to enhance the

achieved coverage. The coverage criteria (e.g. statement, branch, or path) act as a stopping point

to decide whether the SUT is sufficiently tested or not.

Graduation Project-2 Measurement of Code Coverage by Black Box Testing of Web-based Applications Final Report

CCE-E 46

Figure 35: Applications Using Testing Metrics

6.2. Applications Using Code Coverage Results

In phase 1 of our project, we successfully obtained the code coverage data using selenium test

cases. For our next steps we started researching on how we can use this data to enhance the

development and testing productivity of any software application. Most of the applications

revolved around how to optimize a test suite either by prioritizing the test cases, reducing the test

cases, or even exposing the blocks of code that are unused, inside the source code or the test cases

themselves. In the following section, we will be discussing the major applications that we found,

and which can be useful for software testers/developers.

6.2.1. Selection and Prioritization

Test case prioritisation, as the name implies, is the process of prioritising test cases in a test suite

based on a variety of parameters. Code coverage, risk/critical modules, functionality, features, and

so on are all possible factors. The test suite increases in size when the software itself increases,

this also leads to more efforts in order to maintain the test suite. Test case prioritization is important

in order to detect bugs in software as early as possible so that important test cases can be executed

first.

Graduation Project-2 Measurement of Code Coverage by Black Box Testing of Web-based Applications Final Report

CCE-E 47

Types of Test Case Prioritization

 General Prioritization:

Test cases that will be relevant for future changed versions of the product are prioritised

in this type of prioritising. It does not require any information on the program’s

adjustments.

 Version – Specific Prioritization:

Test cases can also be prioritised so that they are only useful on specific versions of the

product. This type of prioritisation necessitates knowledge of program changes.

Prioritization Techniques

Coverage – based Test Case Prioritization:

This type of prioritization is based on code coverage i.e. test cases are prioritized on basis of

their code coverage.

 Total Statement Coverage Prioritization

In this technique, total number of statements covered by test case is used as factor to

prioritize test cases. For example, test case covering 10 statements will be given higher

priority than test case covering 5 statements.

 Additional Statement Coverage Prioritization

This technique involves iteratively selecting test case with maximum statement coverage,

then selecting test case which covers statements that were left uncovered by previous test

case. This process is repeated till all statements have been covered.

 Total Branch Coverage Prioritization

Using total branch coverage as factor for ordering test cases, prioritization can be

achieved. Here, branch coverage refers to coverage of each possible outcome of

condition.

 Additional Branch Coverage Prioritization

Similar to additional statement coverage technique, it first selects text case with

maximum branch coverage and then iteratively selects test case which covers branch

outcomes that were left uncovered by previous test case.

Graduation Project-2 Measurement of Code Coverage by Black Box Testing of Web-based Applications Final Report

CCE-E 48

 Total Fault-Exposing-Potential Prioritization

Fault-exposing-potential (FEP) refers to ability of test case to expose fault. Statement and

Branch Coverage Techniques do not take into account fact that some bugs can be more

easily detected than others and also that some test cases have more potential to detect

bugs than others. FEP depends on :

1. Whether test cases cover faulty statements or not.

2. Probability that faulty statement will cause test case to fail.

Risk – based Prioritization:

This technique uses risk analysis to identify potential problem areas which if failed, could lead to

bad consequences. Therefore, test cases are prioritized keeping in mind potential problem areas.

In risk analysis, following steps are performed:

 List potential problems.

 Assigning probability of occurrence for each problem.

 Calculating severity of impact for each problem.

After performing above steps, risk analysis table is formed to present results. The table consists

of columns like Problem ID, Potential problem identified, Severity of Impact, Risk exposure, etc.

Requirements – based Prioritization:

Some requirements are more important than others or are more critical in nature, hence test cases

for such requirements should be prioritized first. The following factors can be considered while

prioritizing test cases based on requirements:

 Customer assigned priority

the customer assigns weight to requirements according to his need or understanding of

requirements of product.

 Developer perceived implementation complexity

priority is assigned by developer on basis of efforts or time that would be required to

implement that requirement.

 Requirement volatility

this factor determines frequency of change of requirement.

Graduation Project-2 Measurement of Code Coverage by Black Box Testing of Web-based Applications Final Report

CCE-E 49

 Fault proneness of requirements

priority is assigned based on how error-prone requirement has been in previous versions

of software.

Metric for measuring Effectiveness of Prioritized Test Suite:

For measuring how effective prioritized test suite is, we can use metric called APFD (Average

Percentage of Faults Detected). AFPD value can range from 0 to 100. The higher APFD value,

faster faults detection rate. So simply put, APFD indicates of how quickly test suite can identify

faults or bugs in software. If test suite can detect faults quickly, then it is considered to be more

effective and reliable.

6.2.2. Exposure of Unused Code

Code coverage helps testers guide the testing by numerically and graphically visualizing the

aspects of code that have been tested and the ones that aren’t working correctly. We usually think

increasing test cases can only increase that code coverage, but you can increase the coverage

percentage of the code by removing unnecessary code.

In some cases, code coverage report can help you to find code which isn't used anymore. For

example, private methods, which aren't called anywhere. There is nothing pleasant about wasting

time on reading a dead code and trying to understand why it is needed. Code like this should be

removed promptly. If you think you may need this code in future - still remove it. You can restore

it from version control system if needed.

By exposing the parts of your code that are dead, you will effectively enhance the performance as

well as speed of page loading in your web application.

6.2.3. Test Case Size Minimization

Another less obvious example of dead code - dead code in tests. You can have a test method in

which you're looping over a list of some objects and make asserts on each of them. If the list for

some reason turns out to be empty, the test will pass although none of the asserts actually occur.

This kind of bugs is easy to discover with code coverage report because loop body will be shown

as not covered. Software testers can easily reduce the size of a test case manually by knowing the

code coverage data of each test case.

6.2.4. Test Suite Reduction (TSR)

The test suite reduction aims at identifying and removing all the redundant test cases; therefore,

we minimize the number of tests from the test suite. Test suite reduction approaches also speed up

Graduation Project-2 Measurement of Code Coverage by Black Box Testing of Web-based Applications Final Report

CCE-E 50

regression testing by removing redundant test cases. Traditional research on test-suite reduction is

rather diverse but shares three properties:

a) Requirements are defined by a coverage criterion such as statement coverage.

b) The reduced test suite has to satisfy all or almost all the requirements as the original test

suite.

c) The quality of the reduced test suites is measured.

With that being said, each of the above applications is proven to enhance the efficiency and

effectiveness of the testing process. In our project scope, we decided to focus only on the test suite

reduction. In the following sections we will be discussing the implementation and results of the

several approaches we took by applying several machine learning algorithms in order to reduce

the test suite without affecting the coverage results greatly.

6.3. Test Suite Reduction Implementation Using Code Coverage & Machine Learning

6.3.1. Introduction

Test suite reduction techniques aims at reducing the test suite size by removing the redundant test

cases from original test suite based on certain coverage requirement. In the context of open source

development or software evolution, developers often face test suites which have been developed

with no criteria and which may need to be adjusted or refined to ensure its dependability, or even

reduced to meet the runtime limits of the test suite regression. It is important to provide both

methodological and tool support to help people understand the limitations of test suites and their

possible redundancies, so as to be able to change them in a cost effective manner. To address this

problem in the case of black-box or white-box testing, we propose two methodologies based on

machine learning that have shown promising results regarding the test suite size as well as the

coverage data.

Test cases are abstracted under the form of category and choice combinations, as defined in

Category- Partition. These choice combinations characterize a test case in terms of input and

execution environment properties. A machine-learning algorithm is then used to learn about

relationships between inputs/environment conditions and outputs as they are exercised by the test

suite. This allows the tester to precisely understand the capabilities and weaknesses of the test

suite.

Graduation Project-2 Measurement of Code Coverage by Black Box Testing of Web-based Applications Final Report

CCE-E 51

Choosing the Suitable Algorithms

Before talking about the two machine learning algorithms that we went with in our project, we

will discuss briefly about other algorithms and techniques that could also be used for the same

purpose in the following table.

Table 1: Machine Learning Algorithms for Test Suite Reduction[33]

Algorithm Technique Advantages Disadvantages

Genetic

Algorithm

Builds the initial population based

on test history, it calculates the

fitness value using coverage and

cost (customized metric). Then the

fitness function is used to evaluate

the generated population to choose

the best candidates, then the

crossover and mutation process are

taking place.

Reduce the

number of test

cases and also

decreases total

running time.

Need to be

examined on the

fault detection

capability and

other criteria

Fuzzy Logic

Allows each feature to belong to

more than one cluster with different

membership degrees (between 0

and 1) and fuzzy boundaries

between clusters. In fuzzy

clustering, each point has a degree

of belonging to clusters, rather than

belonging completely to one cluster

only.

A safe technique

and reduce the

regression testing

size and

execution time

Need more

experiments and

studies

Greedy

algorithm

Greedy algorithm is used for test

suite reduction also called Set

Covering Technique. It starts by

determining test cases which can

satisfy all the requirements. If the

test case does not satisfy

requirements then the algorithm

repeatedly eliminate redundant test

cases then update the test suite and

Provide

significant

reduction in the

number of test

cases

Involve random

selection of test

case in a tie

situation.

Graduation Project-2 Measurement of Code Coverage by Black Box Testing of Web-based Applications Final Report

CCE-E 52

the remaining requirements that are

uncovered.

Clustering

Divide the test cases into clusters

according to the similarity in

profiling using data mining

approach

Produce smaller

representative

sets of test cases

Less fault

detection ability

also it’s a

statistical

method

Program

slicing

This technique is used to check a

program over a specific property

and to build a slice set, which is a

set of statements effect to determine

a statement; in many cases it is the

output statement of a program,

based on input values. Two

algorithms are used: the first one

generates a program called

differences, it captures the

difference between certified and

modified program, where certified

is the previously tested program

without changes and modified is the

program with modification. The

second algorithm uses existing test

cases to test components new in

modified, also it uses the test cases

for which modified and certified

program produced the same

outputs. The idea is to avoid the

cost of using new test cases and to

avoid rerunning test cases that

produce the same output.

Decrease the

number of

required test cases

and consequently

the cost and time

of testing will be

decreased.

Need to be

examined on the

fault detection

capability and

larger generated

data and high

complexity

Graduation Project-2 Measurement of Code Coverage by Black Box Testing of Web-based Applications Final Report

CCE-E 53

Hybrid

algorithm

Combine genetic algorithms and

greedy algorithms

Provide

significant

reduction in the

number of test

cases and multi-

objective

optimization

High

complexity

The first algorithm we chose was K-mean clustering. It’s the simplest clustering algorithm within

its category, as well as being the best fit option for our project. For example, one of the other

clustering algorithms is the Hierarchical Clustering Algorithm, which clusters the data in a

hierarchical fashion unlike in K-mean, which simply clusters them into groups. In our project we

did not care about the hierarchy of the test cases, furthermore, the hierarchical algorithm has a

higher complexity and works for smaller datasets.

One of the other clustering algorithms that were mentioned in table 3 is Fuzzy logic. It was not

chose because although convergence is always guaranteed, the process is very slow and this cannot

be used for larger data.

As seen in the above table, some algorithms had a high complexity which made it less appealing

to use, or they did not depend on the code coverage data for the reduction process which is a crucial

metric for us.

One of the algorithms that we researched on was k-nearest neighbour (KNN) algorithm, we did

not work with KNN because it’s a supervised classification algorithm where grouping is done

based on a prior class information, however, and in our project we did not have such information.

When we look at the two possible options remaining in the above table which are Genetic and

Greedy, we chose to work with Greedy and not Genetic. Our choice was based on the fact that

Genetic algorithm needs to work with white-box testing, meaning it needed to access the test case

source code in order to modify it to meet a certain reduction requirement.

Graduation Project-2 Measurement of Code Coverage by Black Box Testing of Web-based Applications Final Report

CCE-E 54

6.3.2. K – Mean Clustering Algorithm

a) Introduction to Clustering Algorithms

Clustering is essentially an unsupervised learning method. An unsupervised learning method is

one in which we draw references from datasets that only contain input data and no labelled

responses. It is commonly used as a process to discover meaningful structure, explanatory

underlying processes, generative features, and groupings inherent in a set of examples.

Clustering is the process of dividing a population or set of data points into groups so that data

points in the same group are more similar to other data points in the same group and dissimilar to

data points in other groups. It is essentially a collection of objects based on their similarity and

dissimilarity.

For example, the data points in the graph below clustered together can be classified into one single

group. We can distinguish the clusters, and we can identify that there are 3 clusters in the below

picture.

Figure 36: Clustering Illustration

Clustering is critical because it determines the intrinsic grouping of the unlabelled data present.

There are no requirements for good clustering. It is up to the user to determine what criteria they

will use to satisfy their needs. There are different types of clustering algorithms that handle all

kinds of unique data.

Density-based

Data is grouped in density-based clustering by areas of high concentrations of data points

surrounded by areas of low concentrations of data points. The algorithm basically finds places that

Graduation Project-2 Measurement of Code Coverage by Black Box Testing of Web-based Applications Final Report

CCE-E 55

are dense with data points and labels them as clusters. Because these clustering algorithms do not

attempt to assign outliers to clusters, they are ignored.

Distribution-based

A distribution-based clustering approach considers all data points to be members of a cluster based

on the probability that they belong to a given cluster.It works like this: there is a centre-point, and

the farther a data point is from the centre, the less likely it is to be part of that cluster.

Centroid-based

It's a little picky about the initial parameters you give it, but it's quick and efficient.These

algorithms separate data points based on the presence of multiple centroids in the data. A cluster

is assigned to each data point based on its squared distance from the centroid. This is the most

common clustering method.

Hierarchical-based

On hierarchical data, hierarchical-based clustering is commonly used. It creates a tree of clusters

to organise everything from the top down. This type of clustering is more restrictive than the

others, but it is ideal for certain types of data sets.

K-means clustering

It is the most popular clustering algorithm. It is the simplest unsupervised learning algorithm and

is centroid-based. The goal of this algorithm is to reduce the variance of data points within a

cluster. It's also how most people become acquainted with unsupervised machine learning.

Because it iterates over all of the data points, K-means is best used on smaller data sets. That means

it will take longer to classify data points if the data set contains a large number of them.

How it Works:

First, Initialize K random centroids. You could pick K random data points and make those your

starting points. Otherwise, you pick K random values for each variable. For every data point, look

at which centroid is nearest to it. Using some sort of measurement like Euclidean or Cosine

distance. Assign the data point to the nearest centroid. For every centroid, move the centroid to the

average of the points assigned to that centroid. Repeat the last three steps until the centroid

assignment no longer changes. Works Best on Numeric Data Since the k-means algorithm

computes the distance between two points, you can’t really do that with categorical (low, medium,

high) variables. A simple workaround for multiple categorical variables is to calculate the percent

of times each variable matches in comparison to the cluster centroid.

Graduation Project-2 Measurement of Code Coverage by Black Box Testing of Web-based Applications Final Report

CCE-E 56

Advantages of K-means:

 It is very simple to implement.

 It is scalable to a huge data set and also faster to large datasets.

 It adapts the new examples very frequently.

 Generalization of clusters for different shapes and sizes.

b) Methodology

Given a program such as our web application Employee Manager or Coverage Analyzer from VIQ,

a set of test cases is defined to test the program traces including instructions, lines, methods,

branches, classes and the cyclomatic complexity. We use our tool to get the code coverage results

from those test cases. In order to reduce the number of generated test cases according to their

coverage, K-mean clustering is applied.

The software that we used to apply K mean clustering is called SPSS[35]. SPSS is a powerful

statistical software platform. It offers a user-friendly interface and a robust set of features that lets

you quickly extract useful insights from your data. It is used by market researchers, health

researchers, survey companies, marketing organizations, data miners and others. It applies k mean

clustering to generate a decision metric such as distance or density.

The following figure shows the overall flow of our approach, it also includes the names of the

software that were used to perform each step.

Figure 37: K-mean Process Flow

Graduation Project-2 Measurement of Code Coverage by Black Box Testing of Web-based Applications Final Report

CCE-E 57

Step 1: Getting Code Coverage

Using our tool, we calculate the code coverage results for Coverage Analyzer backend and produce

an HTML report containing all coverage data needed, it includes also the total values for each

coverage result as seen in figure 38.

Figure 38: VIQ Backend Coverage Report to Extract Data

We generated an HTML report for 538 test cases which is a full directory. These HTML files

will be the source of data that we will create our dataset from.

Step 2: Creating the Dataset

The second step is the most important in our approach because it is the framework for the following

phases. In order to build the dataset we need to select the most important and effective attributes

for the test cases. The average cyclomatic complexity and the code coverage are the most two

effective attributes in test case selection, so our dataset will contain the complexity and the

coverage for each test case.

Cyclomatic complexity of a code section is the quantitative measure of the number of linearly

independent paths in it. It is a software metric used to indicate the complexity of a program. It is

computed using the Control Flow Graph of the program. The nodes in the graph indicate the

smallest group of commands of a program, and a directed edge in it connects the two nodes.

Graduation Project-2 Measurement of Code Coverage by Black Box Testing of Web-based Applications Final Report

CCE-E 58

Cyclomatic complexity is measured by counting the splitting nodes, in our case, our tool already

calculates the cyclomatic complexity for the backend and it was not needed to calculate it

manually. Cyclomatic complexity can make sure that every path have been tested at least once.

And help to focus more on uncovered paths.

To begin building our dataset, we extracted the total values of data from the HTML report into an

EXCEL file, then we computed the hits for each of the instructions, lines, methods, classes,

branches, as the report contained the missed and the total of each attribute, and the missed

cyclomatic complexity.

We created a python script that will extract the total values only from the HTML files. To write

such script, we opened any HTML file and viewed its page source.

Figure 39: Coverage Report Source Page to Extract Total Results

We used the following function in the parsing script to extract the required coverage numbers

def parsefile (file_html):

 html = open(file_html,"r")

 reading = html.read()

 content = str(reading)

 info = re.findall(r"Total.*?</tfoot>",content)

 info_rep = info[0].replace(',','')

 coverageN = re.findall(r"\d+",info_rep)

 return coverage

Then, we write these numbers in an excel sheet by subtracting the missed number of lines,

instructions, etc. from the total values to get the number of hits. The cyclomatic complexity is

Graduation Project-2 Measurement of Code Coverage by Black Box Testing of Web-based Applications Final Report

CCE-E 59

taken as it is, indicating the missed complexity, which means the less complexity, the better the

test case is. This dataset excel sheet is the input to the next step.

for i in files:

 list = parsefile(i)

 if (list):

 coverageN.append(list)

 worksheet.write(c+1,0,os.path.basename(os.path.dirname(i)))

 worksheet.write(c+1,1, int(coverageN[c][9]))

 worksheet.write(c+1,2, int(coverageN[c][1])-int(coverageN[c][0]))

 worksheet.write(c+1,3, int(coverageN[c][15])-int(coverageN[c][13]))

 worksheet.write(c+1,4, int(coverageN[c][19])-int(coverageN[c][17]))

 worksheet.write(c+1,5, int(coverageN[c][23])-int(coverageN[c][21]))

 worksheet.write(c+1,6, int(coverageN[c][5])-int(coverageN[c][4]))

Figure 40: Extracted Data in EXCEL File Format

Step 3: Applying K-mean Clustering

In this step, we will apply K clustering machine learning algorithm using the previous data. We

import the excel sheet to a software called SPSS.

Firstly, we perform descriptive analysis to calculate the z scores of the attributes which is needed

SPSS to apply the k mean analysis

Graduation Project-2 Measurement of Code Coverage by Black Box Testing of Web-based Applications Final Report

CCE-E 60

Figure 41: Descriptive Analysis to Compute Z-scores for K-mean Analysis in SPSS

Figure 42: Results of Descriptive Analysis

Secondly, we apply the analysis by choosing the number of clusters and the number of iterations.

The clusters centres are randomly selected, and the new centres are recalculated every iteration.

We choose 3 clusters based on a previously made research paper [32] and 12 iterations as they were

sufficient for convergence after trials.

Graduation Project-2 Measurement of Code Coverage by Black Box Testing of Web-based Applications Final Report

CCE-E 61

Figure 43: K-mean Cluster Analysis in SPSS

Figure 44: K-mean Cluster Analysis in SPSS

The final cluster centers are based on the values of Zscores for example, test cases which have a

large positive Zscore for the cyclomatic complexity are placed in the third clusters as shown in the

following figure.

Figure 45: Bar Graph Showing Clustering Criteria

Graduation Project-2 Measurement of Code Coverage by Black Box Testing of Web-based Applications Final Report

CCE-E 62

The following figures shows the distance of each test cases to the center of the clusters which will

be our decision metric in the next step and the cluster which each test case belongs to.

Figure 46: Results of K-mean Analysis - Distance from Cluster Center & Cluster Membership

Step 4: Decision Metric

K-mean Algorithm works on partitioning of a given data set into groups or clusters to maximize

the intra cluster similarity, each test case within the cluster displays the same behavior.

After clustering the Euclidian distance that measure the distance between any given test case and

the centroid is calculated.

Where Cj is the cluster centre and dbi is the data point of each test case

Along the distance from the centre of cluster, we also consider the cyclomatic complexity as a

decision metric in the removal of the redundant test cases.

Step 5: Removing redundant test cases

A test cases 𝑡𝑖 is considered redundant with 𝑡𝑗 if dist(𝑡𝑖 ,centroid) ≈ dist(𝑡𝑗 ,centroid), in which

𝑡𝑖, 𝑡𝑗 belong to the same cluster. In this case, pick the test case with minimum Cyclomatic

Complexity. Test cases in the same cluster with an approximately equal distance are considered

redundant because since they exhibit the same behavior, they are expected to give the same code

coverage results.

Graduation Project-2 Measurement of Code Coverage by Black Box Testing of Web-based Applications Final Report

CCE-E 63

For example, the following figure shows two cases, first case we have two test cases (test21 and

test21_1), they have approximately equal distances. In this case, we remove the test case with

higher cyclomatic complexity which is test21.

The second case is having two test cases (test14 and test14_1) with the exact same distance and

complexity. In this case, one of the test cases is chosen randomly.

Figure 47: Sample of Redundant Test Cases

c) Result Analysis

By applying the reduction, we obtained 250 test cases out of the original 538 test cases. To check

the effectiveness of our approach, we recomputed the code coverage percentage with the new set

of test cases. The reduced list achieved Total Code Coverage of 71 % while the original list had

73%.

This method is statistical, it doesn’t guarantee that important test cases won’t be removed as it

doesn’t depend on a specific set of requirements. It only ensures a reduced list of test cases with

an acceptable code coverage percentage compared to the original list. This reduction will reduce

the cost and the time required for running the regression.

With that being said, it’s to be noted that even though it’s a statistical approach, it has a very

important advantage which is not needing an access to the source code. Therefore, it’s totally black

box method.

6.3.3. Greedy Algorithm

a) Introduction to Greedy algorithm

The Greedy algorithm is one of the most common machine learning algorithms. It has many types

depending on a given problem, such as selection sort, knapsack problem, Set cover problem, and

minimum spanning tree. And each type works in a certain way. However, the general idea is that

it builds up a solution piece by piece, always choosing the next piece that offers the most obvious

and immediate benefit.

Graduation Project-2 Measurement of Code Coverage by Black Box Testing of Web-based Applications Final Report

CCE-E 64

The general steps of Greedy algorithm work by recursively constructing a set of objects from the

smallest possible constituent parts applying the following steps:

 To begin with, the solution set (containing answers) is empty.

 At each step, an item is added to the solution set until a solution is reached.

 If the solution set is feasible, the current item is kept.

 Else, the item is rejected and never considered again.

It is quite easy to come up with a greedy algorithm (or even multiple greedy algorithms) for a

problem. Analysing the run time for greedy algorithms will generally be much easier than for other

techniques (like Divide and conquer). For the Divide and conquer technique, it is not clear whether

the technique is fast or slow. This is because at each level of recursion the size of gets smaller and

the number of sub-problems increases.

Our problem here is similar to Set cover problem.

In the set cover problem, we are given a universe U of n elements, a collection of subsets of U say

S = {S1, S2…, Sm} we are searching for the minimum subset that covers all the elements of U. It

starts forming the new subset by selecting the set that covers the largest number of elements in U

which are the requirements. Then, it loops on the other sets and choose the next set that has the

most elements which are not covered in the subset.

Example:

The Output of set cover is { S2, S3}

b) Methodology

In the previous approach, we only took the number hits from the code coverage report. This

approach is a white box one where we want to make use of the information we have on the source

code. The input we have is the files generated from HTML reports, which we extracted before,

using a parsing script. Each test case has a file that contains the file name of the source code and

the lines hit by the test case.

U = {1, 2, 3, 4, 5}

S = {S1, S2, S3}

S1 = {4, 1, 3},

S2 = {2, 5},

S3 = {1, 4, 3, 2},

Graduation Project-2 Measurement of Code Coverage by Black Box Testing of Web-based Applications Final Report

CCE-E 65

Having this input, we consider the lines numbers as the list of requirements, and we are trying to

reach the minimum set of test cases that satisfy this list. Therefore, our problem is similar to the

set cover problem. The following format is the input format of the set cover greedy algorithm [34]

which is a predefined open-source C++ algorithm.

For example, if we have 10 requirements and 5 test cases the input format should be like the

following

When we run the set cover algorithm the expected output is:

Where sets {4, 5, 1, 3}, which represents the test case number, satisfy all the requirements.

Now, we will apply on coverage analyzer App to generate the reduced list. The first step is using

the parsed file to generate the requirement list which includes the different line hits for each test

case by making a python script.

Then, we we generate the text file including each test case and which requirement it satisfies in

the same format as the previous example.

This part generates the requirement list

for i in files:

 contentinfo = openfile(i)

 contentinfo=contentinfo.split(", ")

 for j in contentinfo:

 contentinfo[c] = re.findall(r'".*?"',contentinfo[c])

 if contentinfo[c] not in Req_list:

 Req_list.append(contentinfo[c])

Number of requirements Number of sets

A line for each set indicating which requirements from the list are satisfied by this set

10 5
5 7 8 9 10
5 7
1 3 6 10
4 6 7 9 10
1 2 8 10

Set id 4 Element: 4, 6, 7, 9, 10,
Set id 5 Element: 1, 2, 8,
Set id 1 Element: 5,
Set id 3 Element: 3,

Graduation Project-2 Measurement of Code Coverage by Black Box Testing of Web-based Applications Final Report

CCE-E 66

 c=c+1

 print(dc)

 dc=dc+1

 c=0

Figure 48: Requirement List

And then we generate a test data file which is in the correct format using the previous output

for i in files:

 contentinfo2 = openfile(i)

 contentinfo2=contentinfo2.split(", ")

 for j in contentinfo2:

 contentinfo2[c] = re.findall(r'".*?"',contentinfo2[c])

 index = find_element_in_list(contentinfo2[c], Req_list)

 datafile.write(str(index+1)+' ')

 c=c+1

 c=0

 datafile.write('/n')

The test data file contains the total number of lines hit by all test cases which is 24175 and the total

number of test cases in the regression which is 538. And a line for each test case stating the

requirements satisfied by it.

Graduation Project-2 Measurement of Code Coverage by Black Box Testing of Web-based Applications Final Report

CCE-E 67

Figure 49: Input to setcover Greedy Algorithm

The next step is running the set cover algorithm to get the output. We ran the code on Ubuntu to

get the executable file. The output will be the minimum set of test cases that satisfy all the

requirements as mentioned before. We used the following command

The following figure shows the output

Figure 50: Snippet from the Output of setcover

Finally, we create a python script that maps the ids to the test cases paths

def parsefile (text_file):

 reducedFile = open(text_file,"r")

 reading = reducedFile.read()

 content = str(reading)

 indexLine = re.findall(r"set id.*?:",content)

 index = []

 c=0

 for i in indexLine:

 index.append(re.findall(r"\d+",i))

 c = c+1

 return index

make
./setcover testdatafile.txt

Graduation Project-2 Measurement of Code Coverage by Black Box Testing of Web-based Applications Final Report

CCE-E 68

Now we have the reduced list of test cases with the correct path in the directory that cover the

requirements.

Figure 51: Snippet from the Reduced List

c) Result Analysis

To sum up our work in this section we compared code coverage results before and after the

reduction. The result states that we reduced the test cases list from 538 to 196 and this Reduced

list achieved 73% Backend code coverage which is the same as before reduction. It also achieved

72.44% frontend code coverage which is very close to the result before reduction (72.5%).

The following figure shows the Backend code coverage after our reduction:

Figure 52: Backend Coverage after setcover Greedy Algorithm

Table 2: Summary of Coverage Results

 Before Reduction After Reduction

Number of Test Cases 538 196

Backend Code

Coverage
73% 73%

Frontend Code

Coverage
72.5% 72.44%

Graduation Project-2 Measurement of Code Coverage by Black Box Testing of Web-based Applications Final Report

CCE-E 69

The following table compares between the results of K mean clustering and Greedy algorithm:

Table 3: Comparison between Greedy & K mean clustering

 K mean clustering Greedy

Access to source

code
Does not need access

Needs access to source code to

generate requirement list

Suite after reduction Reduced to 250 Reduced to 196

Coverage

Percentages
Reduced by 2 % Maintain same code cover

6.4. Future work and conclusion

The future work regarding the K-mean, we can apply the same methodology to frontend as we

have the required code coverage percentages and we only need to calculate the cyclomatic

complexity, this can be obtained from open source packages such as ts-complex. To validate the

efficiency and effectiveness of our methodology we can test it on different larger applications. In

this approach we only included the code coverage percentages so to increase the quality we can

add other decision metrics such as lines hit by each test case.

To conclude, today software development and testing are dominated not by the design of new

software, but by the rework and maintenance of existing software. Such software maintenance

activities may account for as much as two-thirds of the overall cost of software production

therefore test reduction, test prioritization, etc. are important applications. Hence, code coverage

data can also be a useful metric for those applications not only in determining the code coverage

for a specific test suite.

Graduation Project-2 Measurement of Code Coverage by Black Box Testing of Web-based Applications Final Report

CCE-E 70

7. Scalability of the Tool

Since our project was mainly tailored for angular frontend and java spring boot backend web

applications, we checked the scalability of the solution if it can be further used for other

applications.

7.1. Frontend Scalability

For the frontend we found that Istanbul-nyc works with any web application that is using

TypeScript/JavaScript, for example React, Vue.js, Aurelia. However, there are some limitations

which will be based on the framework itself like finding an option that is similar –source-map in

other frameworks. For example, React uses the command npm run build to build the frontend.

The environment variable GENERATE_SOURCEMAP=true by default in CRA. That means once

you build the generated folder there will be extra ".map" files generated. It will look something

like this:

Figure 53: Files included in React

7.2. Backend Scalability

JaCoCo tool we used will work with any web application that is using Java or Java like syntax

such as Groovy in the backend. So, Frameworks like Claris FileMaker, OutSystems and G2 Deals

should be compatible. Accordingly, the only limitation is if the application’s backend uses a

language different from Java such as Python.

Graduation Project-2 Measurement of Code Coverage by Black Box Testing of Web-based Applications Final Report

CCE-E 71

7.3. Test Automation Tool

Any test automation tool can be used as long as it imitates the user’s interaction. The only

limitation here is to make sure the code snippet that generates the coverage.json file needed for

the frontend is written in the same language used for the tests.

7.4. Test Suite Reduction

Any python script can parse the needed input using the code coverage results from our tool, and

can then proceed to generate the reduced list based on the used algorithm.

8. Overhead Calculations

There are several types for overhead like:

 Disk space

 Build time

 Memory consumption

 Runtime

8.1. Disk Space

To calculate this overhead, we built the war file once with instrumentation and another time

without instrumentation and compared the size. We found that:

 Size without instrumentation: 270 MB

 Size with instrumentation 291 MB

Also, the coverage data occupies 61MB in disk space for each test case. Therefore, the overhead

in disk space is minor.

8.2. Build Time

To calculate this, we built the war file once with instrumentation and another time without

instrumentation and found that:

 Build time without instrumentation 2 min. 34 sec.

 Build time with instrumentation 3 min. 34 sec.

Graduation Project-2 Measurement of Code Coverage by Black Box Testing of Web-based Applications Final Report

CCE-E 72

Therefore, the overhead of the build time is also minor. Also, the overhead of the build time is

not crucial as we only build the war file once.

8.3. Memory Consumption

Table 4: Memory Consumption Comparison

Type Memory Time

With Coverage 14736112K 455 seconds

Without Coverage 14716760K 342 seconds

This difference in memory is 19.352 MB which is negligible compared to the 14 GB used

8.4. Runtime

This is the main overhead that concerns us as this will affect each and every run. In addition, time

is the main metric knowing that memory is not an issue as they have very powerful machines with

large capacities.

We ran the test cases multiple times with the instrumented war file and other times with non-

instrumented war file and calculated the difference in run times. We found that with

instrumentation the run time is doubled.

The first thought that comes to mind is that this overhead is not acceptable, but in code coverage

industry we can see that this overhead is actually very satisfying. For example, LCOV, which is

the other code coverage tool that Mentor uses, gives an overhead of X5 to X10 of the runtime.

Graduation Project-2 Measurement of Code Coverage by Black Box Testing of Web-based Applications Final Report

CCE-E 73

Conclusion

In this project we demonstrated the importance of software testing and its applications by

measuring code coverage using Selenium black box testing on a web application. We measured

the code coverage using Istanbul framework in the frontend and JaCoCo in the backend. After

validating our results, we started deploying on VIQ Coverage Analyzer from Siemens,

accordingly, any needed adjustments in our tool were made to accommodate the environment of

VIQ.

We successfully measured the code coverage results for Coverage Analyzer web app, and we

validated these results with test automation team. The next step was creating an HTML page that

summarized the coverage results for both frontend and backend, as well as allowing the user to

navigate the results.

We also demonstrated how we can use the coverage data to reduce large test suites using K-mean

clustering algorithm as well as Greedy algorithm. We applied these approaches on Coverage

Analyzer, which resulted in reducing the test suite to less than half its original size, while

maintaining approximately the same coverage percentages. We researched for the possibility of

finding other packages that give the same service but we didn’t find any. Therefore, our package

is exclusive in regards what it does and its results.

Graduation Project-2 Measurement of Code Coverage by Black Box Testing of Web-based Applications Final Report

CCE-E 74

References

1. Spring Initializr. (n.d.). Retrieved September 15, 2021, from https://start.spring.io/

2. JavaScript with syntax for types. TypeScript. (n.d.). Retrieved September 15, 2021, from

https://www.typescriptlang.org/

3. Angular. (n.d.). Retrieved September 15, 2021, from https://angular.io/

4. Angular. (n.d.). Retrieved September 15, 2021, from https://angular.io/guide/ngmodules

5. Node.js. (n.d.). About. Node.js. Retrieved September 15, 2021 from

https://nodejs.org/en/about/

6. API testing client that flows with you. HTTPie. (n.d.). Retrieved September 22, 2021 from

https://httpie.io/

7. Selenium. (n.d.). Retrieved October 1, 2021, from https://www.selenium.dev/

8. Patro, S. (2020, December 30). ngWebDriver - a way to automate angular apps in selenium

using java. Qavalidation. Retrieved October 1, 2021, from

https://qavalidation.com/2017/10/ngwebdriver-way-automateangular-apps-selenium-using-

java.html/

9. Selvanathan, K. (2020, May 19). ngWebdriver overview - QAFox. QAFox | The Easiest

Tutorial Site on Software Testing. Retrieved October 2, 2021, from

https://www.qafox.com/ngwebdriver-overview/

10. What is Cors (cross-origin resource sharing)? tutorial & examples: Web security academy.

What is CORS (cross-origin resource sharing)? Tutorial & Examples | Web Security

Academy. (n.d.). Retrieved October 14, 2021, from https://portswigger.net/web-security/cors

11. NPM. npm. (n.d.). Retrieved November 5, 2021, from https://www.npmjs.com/

12. Istanbuljs. (n.d.). Istanbuljs/NYC: The Istanbul Command Line Interface. GitHub. Retrieved

November 12, 2021, from https://github.com/istanbuljs/nyc

13. Remap-istanbul. npm. (n.d.). Retrieved December 5, 2021, from

https://www.npmjs.com/package/remap-istanbul

14. What is instrumentation in nyc istanbul? (2019, September 24). Stack Overflow. Retrieved

November 12, 2021, from https://stackoverflow.com/questions/58075076/what-is-

instrumentation-in-nyc-istanbul

file:///C:/Users/home/Downloads/%20https:/start.spring.io
https://www.typescriptlang.org/
https://angular.io/guide/ngmodules
https://nodejs.org/en/about/
https://httpie.io/
https://www.selenium.dev/
https://qavalidation.com/2017/10/ngwebdriver-way-automateangular-apps-selenium-using-java.html/
https://qavalidation.com/2017/10/ngwebdriver-way-automateangular-apps-selenium-using-java.html/
https://www.qafox.com/ngwebdriver-overview/
https://www.npmjs.com/
https://github.com/istanbuljs/nyc
https://www.npmjs.com/package/remap-istanbul
https://stackoverflow.com/questions/58075076/what-is-instrumentation-in-nyc-istanbul
https://stackoverflow.com/questions/58075076/what-is-instrumentation-in-nyc-istanbul

Graduation Project-2 Measurement of Code Coverage by Black Box Testing of Web-based Applications Final Report

CCE-E 75

15. Priya, Jaya, Jaya, Lucky, Thakar, R., Swathi, Sunitha, Krishna, Negma, Zahrani, S., Kumar,

P., S, P., Artem, Sfdsdfsdfdfdfds, Luba, Monkeypants, M., Wadyalkar, S., MEntor, Q. A.,

Aschwanden, P., … Skok, S. (2022, May 5). What is regression testing? definition, tools,

method, and example. Software Testing Help. Retrieved Retrieved June 17, 2022, from

https://www.softwaretestinghelp.com/regression-testing-tools-and-methods/

16. GCC, the GNU compiler collection. GCC, the GNU Compiler Collection - GNU Project.

(n.d.). Retrieved June 17, 2022, from https://gcc.gnu.org/

17. Lcov. Codecov. (2021, July 15). Retrieved June 17, 2022, from

https://about.codecov.io/tool/lcov/

18. Porter, B., Zyl, J. van, & Lamy, O. (n.d.). Welcome to Apache Maven. Maven. Retrieved June

17, 2022, from https://maven.apache.org/

19. Casey, J. (2005, June 24). Introduction to maven plugin development. Maven. Retrieved June

18, 2022, from https://maven.apache.org/guides/introduction/introduction-to-plugins.html

20. Codeception. (n.d.). Retrieved June 17, 2022, from https://codeception.com/docs/11-

Codecoverage

21. Protractor. (n.d.). Retrieved June 17, 2022, from

https://protractor.angular.io/#:~:text=Protractor%20is%20made%20specifically%20for,setup

%20effort%20on%20your%20part

22. Oracle Linux 6: Porting guide. Moved. (2021, March 31). Retrieved June 17, 2022, from

https://docs.oracle.com/en/operating-systems/oracle-linux/6/porting/ch02s05s01.html

23. Emma code coverage - intellij IDES plugin: Marketplace. JetBrains Marketplace. (n.d.).

Retrieved January 3, 2022, from https://plugins.jetbrains.com/plugin/103-emma-code-

coverage

24. Gradle Build Tool. Gradle. (n.d.). Retrieved February 19, 2022, from from https://gradle.org/

25. JavaScript ES5. (n.d.). Retrieved June 17, 2022, from

https://www.w3schools.com/js/js_es5.asp

26. Webpack. webpack. (n.d.). Retrieved Retrieved November 28, 2021, from from

https://webpack.js.org/

27. What will happen if sourcemap is set as false in Angular. (2019, February 26). Stack

Overflow. https://stackoverflow.com/questions/54879588/what-will-happen-if-sourcemap-is-

set-asfalse-in-angular

https://www.softwaretestinghelp.com/regression-testing-tools-and-methods/
https://www.softwaretestinghelp.com/regression-testing-tools-and-methods/
https://gcc.gnu.org/
https://maven.apache.org/
https://maven.apache.org/guides/introduction/introduction-to-plugins.html
https://codeception.com/docs/11-Codecoverage
https://codeception.com/docs/11-Codecoverage
https://protractor.angular.io/#:~:text=Protractor%20is%20made%20specifically%20for,setup%20effort%20on%20your%20part
https://protractor.angular.io/#:~:text=Protractor%20is%20made%20specifically%20for,setup%20effort%20on%20your%20part
https://plugins.jetbrains.com/plugin/103-emma-code-coverage
https://plugins.jetbrains.com/plugin/103-emma-code-coverage
https://gradle.org/
https://www.w3schools.com/js/js_es5.asp
https://webpack.js.org/
https://stackoverflow.com/questions/54879588/what-will-happen-if-sourcemap-is-set-asfalse-in-angular
https://stackoverflow.com/questions/54879588/what-will-happen-if-sourcemap-is-set-asfalse-in-angular

Graduation Project-2 Measurement of Code Coverage by Black Box Testing of Web-based Applications Final Report

CCE-E 76

28. Getting Code Coverage for e2e tests run on a Java codebase. (2021, April 13).

Ankeetmaini.Dev. Retrieved December 3, 2021, https://ankeetmaini.dev/posts/getting-e2e-

tests-coverage-for-java/

29. Raika, J. (2019, September 9). JaCoCo End-to-End Code Coverage at Runtime. Dzone.Com.

Retrieved December 3, 2021, from https://dzone.com/articles/code-coverage-report-

generator-for-java-projects-a

30. JaCoCo- Command Line Interface. Jacoco.Org. Retrieved December 3, 2021, from

https://www.jacoco.org/jacoco/trunk/doc/cli.html

31. Java code coverage with Jacoco. Merge exec files collected from different application

versions. (2019, July 4).Stack Overflow. Retrieved December 3, 2021, from

https://stackoverflow.com/questions/56891525/java-code-coverage-with-jacoco-merge-exec-

files-collected-from-different-applic

32. Saifan, Ahmad & Alsukhni, Emad & Alawneh, Hanadi & Sbaih, Ayat. (2016). Test Case

Reduction Using Data Mining Technique. International Journal of Software Innovation. 4.

56-70. 10.4018/IJSI.2016100104.

33. Alian, Marwah & Suleiman, Dima & Shaout, Adnan. (2016). Test Case Reduction

Techniques - Survey. International Journal of Advanced Computer Science and Applications.

7. 264-275. 10.14569/IJACSA.2016.070537.

34. Martin-Steinegger. (n.d.). Martin-Steinegger/Setcover: Linear (time,space) greedy set cover

implementation. GitHub. Retrieved from https://github.com/martin-steinegger/setcover

35. SPSS software. IBM. (n.d.). Retrieved June 18, 2022, from

https://www.ibm.com/analytics/spss-statistics-software

36. What is postman? Postman API Platform. (n.d.). Retrieved June 18, 2022, from

https://www.postman.com/product/what-is-postman/

https://ankeetmaini.dev/posts/getting-e2e-tests-coverage-for-java/
https://ankeetmaini.dev/posts/getting-e2e-tests-coverage-for-java/
https://dzone.com/articles/code-coverage-report-generator-for-java-projects-a
https://dzone.com/articles/code-coverage-report-generator-for-java-projects-a
https://www.jacoco.org/jacoco/trunk/doc/cli.html
https://stackoverflow.com/questions/56891525/java-code-coverage-with-jacoco-merge-exec-files-collected-from-different-applic
https://stackoverflow.com/questions/56891525/java-code-coverage-with-jacoco-merge-exec-files-collected-from-different-applic
https://github.com/martin-steinegger/setcover
https://www.ibm.com/analytics/spss-statistics-software
https://www.postman.com/product/what-is-postman/

Graduation Project-2 Measurement of Code Coverage by Black Box Testing of Web-based Applications Final Report

CCE-E 77

Appendix

Appendix A: Code

Employee manager web application code snippets

Employee resources – request mapping

package tech.getarrays.employeeManager;

import org.springframework.http.HttpStatus;

import org.springframework.http.ResponseEntity;

import org.springframework.transaction.annotation.Transactional;

import org.springframework.web.bind.annotation.*;

import tech.getarrays.employeeManager.model.Employee;

import tech.getarrays.employeeManager.service.EmployeeService;

import java.io.Console;

import java.util.List;

@RestController

@RequestMapping("/employee")

public class EmployeeResource {

private final EmployeeService employeeService;

 public EmployeeResource(EmployeeService employeeService) {

 this.employeeService = employeeService;

 }

 @GetMapping("/all")

 public ResponseEntity<List<Employee>> getAllEmployees (){

 List<Employee> employees = employeeService.findAllEmployees();

 return new ResponseEntity<>(employees, HttpStatus.OK);

 }

 @GetMapping("/find/{id}")

 public ResponseEntity<Employee> getEmployeeById (@PathVariable("id") Long id){

 Employee employee = employeeService.findEmployeeById(id);

 return new ResponseEntity<>(employee, HttpStatus.OK);

 }

 @PostMapping("/add")

 public ResponseEntity<Employee> addEmployee(@RequestBody Employee employee){

 Employee newEmployee = employeeService.addEmployee(employee);

 return new ResponseEntity<>(newEmployee, HttpStatus.CREATED);

 }

 @PutMapping("/update")

 public ResponseEntity<Employee> updateEmployee(@RequestBody Employee employee){

 Employee updateEmployee = employeeService.updateEmployee(employee);

Graduation Project-2 Measurement of Code Coverage by Black Box Testing of Web-based Applications Final Report

CCE-E 78

 return new ResponseEntity<>(updateEmployee, HttpStatus.OK);

 }

 @Transactional

 @DeleteMapping("/delete/{id}")

 public ResponseEntity<?> deleteEmployee(@PathVariable("id") Long id) {

 employeeService.deleteEmployee(id);

 System.out.println(id);

 return new ResponseEntity<>(HttpStatus.OK);

 }

}

Employee model

package tech.getarrays.employeeManager.model;

import javax.persistence.*;

import java.io.Serializable;

@Entity

public class Employee implements Serializable {

 @Id

 @GeneratedValue(strategy = GenerationType.AUTO)

 @Column(nullable = false, updatable = false)

 private long id;

 private String name;

 private String email;

 private String jobTitle;

 private String phone;

 private String imageUrl;

 @Column(nullable = false, updatable = false)

 private String employeeCode;

 public Employee() {}

 public Employee(String name, String email, String jobTitle, String phone, String imageUrl, String

employeeCode){

 this.name = name;

 this.email = email;

 this.jobTitle = jobTitle;

 this.phone = phone;

 this.imageUrl = imageUrl;

 this.employeeCode = employeeCode;

 }

 public long getId(){

 return this.id;

 }

 public void setId(long id){

 this.id = id;

 }

 public String getName() {

Graduation Project-2 Measurement of Code Coverage by Black Box Testing of Web-based Applications Final Report

CCE-E 79

 return name;

 }

 public void setName(String name){

 this.name = name;

 }

 public String getEmail() {

 return email;

 }

 public void setEmail(String email) {

 this.email = email;

 }

 public String getEmployeeCode() {

 return employeeCode;

 }

 public void setEmployeeCode(String employeeCode) {

 this.employeeCode = employeeCode;

 }

 public String getImageUrl() {

 return imageUrl;

 }

 public void setImageUrl(String imageUrl) {

 this.imageUrl = imageUrl;

 }

 public String getJobTitle() {

 return jobTitle;

 }

 public void setJobTitle(String jobTitle) {

 this.jobTitle = jobTitle;

 }

 public String getPhone() {

 return phone;

 }

 public void setPhone(String phone) {

 this.phone = phone;

 }

 @Override

 public String toString()

 {

 return "Employee{"+

Graduation Project-2 Measurement of Code Coverage by Black Box Testing of Web-based Applications Final Report

CCE-E 80

 "id="+ id +

 ", name='"+ name +'\''+

 ", email='"+ email +'\''+

 ", jobTitle='"+ jobTitle +'\''+

 ", phone='" + phone + '\''+

 ", imageUrl='" + imageUrl + '\''+

 '}';

 }

}

Communication with the database – Employee services

package tech.getarrays.employeeManager.service;

import org.springframework.beans.factory.annotation.Autowired;

import org.springframework.beans.factory.parsing.EmptyReaderEventListener;

import org.springframework.stereotype.Service;

import tech.getarrays.employeeManager.exception.UserNotFoundException;

import tech.getarrays.employeeManager.model.Employee;

import tech.getarrays.employeeManager.repo.EmployeeRepo;

import java.util.List;

import java.util.UUID;

@Service

public class EmployeeService {

 private final EmployeeRepo employeeRepo;

 @Autowired

 public EmployeeService(EmployeeRepo employeeRepo) {

 this.employeeRepo = employeeRepo;

 }

 public Employee addEmployee(Employee employee){

 employee.setEmployeeCode(UUID.randomUUID().toString());

 return employeeRepo.save(employee);

 }

 public List<Employee> findAllEmployees() {

 return employeeRepo.findAll();

 }

 public Employee updateEmployee(Employee employee) {

 return employeeRepo.save(employee);

 }

 public Employee findEmployeeById(Long id){

Graduation Project-2 Measurement of Code Coverage by Black Box Testing of Web-based Applications Final Report

CCE-E 81

 return employeeRepo.findEmployeeById(id).

 orElseThrow(()-> new UserNotFoundException("user by id "+id+"was not found"));

 }

 public void deleteEmployee(Long id) {

 employeeRepo.deleteEmployeeById(id);

 }

}

Frontend: app component’s functions handling the user actions

import { HttpErrorResponse } from '@angular/common/http';

import { EmitterVisitorContext } from '@angular/compiler';

import { Component, OnInit } from '@angular/core';

import { NgForm } from '@angular/forms';

import { Employee } from './employee';

import { EmployeeService } from './employee.service';

@Component({

 selector: 'app-root',

 templateUrl: './app.component.html', // One page

 styleUrls: ['./app.component.css']

})

export class AppComponent implements OnInit {

 employees! : Employee[] ;

 editEmployee?:Employee;

 deleteEmployee?:Employee;

 employeesToBeSearched! : Employee[] ;

 key! : string;

 constructor(private employeeService: EmployeeService) {

 }

 ngOnInit(){

 this.getEmployees();

 }

 public getEmployees(): void {

 this.employeeService.getEmployees().subscribe(

 (response: Employee[]) => {

 this.employees = response;

 this.employeesToBeSearched = this.employees;

 },

 (error : HttpErrorResponse) => {

 alert(error.message);

Graduation Project-2 Measurement of Code Coverage by Black Box Testing of Web-based Applications Final Report

CCE-E 82

 }

);

 }

 public onAddEmployee(addForm: NgForm):void {

 document.getElementById("add-employee-form")?.click();

 this.employeeService.addEmployee(addForm.value).subscribe(

 (response:Employee)=>{

 console.log(response);

 this.getEmployees();

 this.employeesToBeSearched = this.employees;

 addForm.reset();

 },

 (error: HttpErrorResponse) => {

 alert(error.message);

 addForm.reset();

 }

);

 }

 public onUpdateEmployee(employee: Employee):void {

 this.employeeService.updateEmployee(employee).subscribe(

 (response:Employee)=>{

 console.log(response);

 this.getEmployees();

 this.employeesToBeSearched = this.employees;

 },

 (error: HttpErrorResponse) => {

 alert(error.message);

 }

);

 }

 public onDeleteEmployee(employeeId?: number):void {

 this.employeeService.deleteEmployee(employeeId).subscribe(

 (response:void)=>{

 console.log(response);

 this.getEmployees();

 this.employeesToBeSearched = this.employees;

 },

 (error: HttpErrorResponse) => {

 alert(error.message);

 }

);

 }

 public searchEmployees(key: string): void {

 console.log(key); // hit

 const results: Employee[] = []; //hit

 this.key = key; // hit

 for (const employee of this.employeesToBeSearched) { // hit

 if (employee.name.toLowerCase().indexOf(key.toLowerCase()) !== -1 // hit

 || employee.email.toLowerCase().indexOf(key.toLowerCase()) !== -1

Graduation Project-2 Measurement of Code Coverage by Black Box Testing of Web-based Applications Final Report

CCE-E 83

 || employee.phone.toLowerCase().indexOf(key.toLowerCase()) !== -1

 || employee.jobTitle.toLowerCase().indexOf(key.toLowerCase()) !== -1) {

 results.push(employee); // hit

 }

 }

 this.employees = results; // hit

 if (!key) { // hit

 this.getEmployees(); // hit

 }

 }

 public onOpenModal(employee?: Employee, mode?: string): void {

 const container = document.getElementById('main-container');

 const button = document.createElement('button');

 button.type = 'button';

 button.style.display = 'none';

 button.setAttribute('data-toggle', 'modal');

 if (mode === 'add') {

 button.setAttribute('data-target', '#addEmployeeModal');

 }

 if (mode === 'edit') {

 this.editEmployee = employee;

 button.setAttribute('data-target', '#updateEmployeeModal');

 }

 if (mode === 'delete') {

 this.deleteEmployee = employee;

 button.setAttribute('data-target', '#deleteEmployeeModal');

 }

 container?.appendChild(button);

 button.click();

 }

}

Frontend: Services that construct the http requests

import { Injectable } from '@angular/core';

import { Observable } from 'rxjs';

import { HttpClient, HttpClientModule } from '@angular/common/http';

import { Employee } from './employee';

import { environment } from 'src/environments/environment';

@Injectable({

 providedIn: 'root'

})

export class EmployeeService {

 private apiServerUrl= environment.apiBaseUrl;

 constructor(private http: HttpClient) { }

 public getEmployees (): Observable<Employee[]> {

 return this.http.get<Employee[]>(`${this.apiServerUrl}/employee/all`);

Graduation Project-2 Measurement of Code Coverage by Black Box Testing of Web-based Applications Final Report

CCE-E 84

 }

 public addEmployee (employee: Employee): Observable<Employee> {

 return this.http.post<Employee>(`${this.apiServerUrl}/employee/add`,employee);

 }

 public updateEmployee (employee: Employee): Observable<Employee> {

 return this.http.put<Employee>(`${this.apiServerUrl}/employee/update`,employee);

 }

 public deleteEmployee (id?: number): Observable<void> {

 return this.http.delete<void>(`${this.apiServerUrl}/employee/delete/${id}`);

 }

}

Frontend: HTML components

 <nav class="navbar navbar-expand-lg navbar-dark bg-dark">

 Employee Manager

 <button class="navbar-toggler" type="button" data-toggle="collapse" data-target="#navbarColor02" aria-

controls="navbarColor02" aria-expanded="false" aria-label="Toggle navigation">

 </button>

 <div class="collapse navbar-collapse" id="navbarColor02">

 <ul class="navbar-nav mr-auto">

 <li class="nav-item active">

 Add Employee <span class="sr-

only">(current)

 <form class="form-inline my-2 my-lg-0">

 <input type="search" (ngModelChange)="searchEmployees(key.value)" #key="ngModel" ngModel

 name="key" id="searchName" class="form-control mr-sm-2" placeholder="Search employees..."

required>

 </form>

 </div>

 </nav>

<div class="container" id="main-container">

 <div class="row">

 <div *ngFor="let employee of employees" class=" col-md-6col-xl-3">

 <div class="card m-b-30">

 <div class="card-body row">

 <div class="col-6">

 <img src="{{employee?.imageUrl}}" alt="" class="img-fluid rounded-circle w-

60">

 </div>

 <div class="col-6 card-title align-self-center mb-0">

 <h5>{{employee?.name}}</h5>

 <p class="m-0">{{employee?.jobTitle}}</p>

Graduation Project-2 Measurement of Code Coverage by Black Box Testing of Web-based Applications Final Report

CCE-E 85

 </div>

 </div>

 <ul class="list-group list-group-flush">

 <li class="list-group-item"><i class="fa fa-envelope float-right"></i>Email : {{employee?.email}}

 <li class="list-group-item"><i class="fa fa-phone float-right"></i>Phone

:{{employee?.phone}}

 <div class="card-body">

 <div class="float-right btn-group btn-group-sm">

 <a (click)="onOpenModal(employee, 'edit')" class="btn btn-primary tooltips" data-

placement="top" data-toggle="tooltip" data-original-title="Edit"><i class="fa fa-pencil"></i>

 <a (click)="onOpenModal(employee, 'delete')" class="btn btn-secondary tooltips" data-

placement="top" data-toggle="tooltip" data-original-title="Delete"><i class="fa fa-times"></i>

 </div>

 <ul class="social-links list-inline mb-0">

 <li class="list-inline-item"><a title="" data-placement="top" data-toggle="tooltip"

class="tooltips" href="" data-original-title="Facebook"><i class="fa fa-facebook-f"></i>

 <li class="list-inline-item"><a title="" data-placement="top" data-toggle="tooltip"

class="tooltips" href="" data-original-title="Twitter"><i class="fa fa-twitter"></i>

 <li class="list-inline-item"><a title="" data-placement="top" data-toggle="tooltip"

class="tooltips" href="" data-original-title="Skype"><i class="fa fa-skype"></i>

 </div>

 </div>

 </div>

 </div>

</div>

<!-- Add Employee Modal -->

<div class="modal fade" id="addEmployeeModal" tabindex="-1" role="dialog" aria-

labelledby="addEmployeeModalLabel" aria-hidden="true">

 <div class="modal-dialog" role="document">

 <div class="modal-content">

 <div class="modal-header">

 <h5 class="modal-title" id="addEmployeeModalLabel">Add Employee</h5>

 <button type="button" class="close" data-dismiss="modal" aria-label="Close">

 ×

 </button>

 </div>

 <div class="modal-body">

 <form #addForm="ngForm" (ngSubmit)="onAddEmployee(addForm)">

 <div class="form-group">

 <label for="name">Name</label>

 <input type="text" ngModel name="name" class="form-control" id="name" placeholder="Name"

required>

 </div>

 <div class="form-group">

 <label for="email">Email Address</label>

Graduation Project-2 Measurement of Code Coverage by Black Box Testing of Web-based Applications Final Report

CCE-E 86

 <input type="email" ngModel name="email" class="form-control" id="email" placeholder="Email"

required>

 </div>

 <div class="form-group">

 <label for="phone">Job title</label>

 <input type="text" ngModel name="jobTitle" class="form-control" id="jobTitle" placeholder="Job

title" required>

 </div>

 <div class="form-group">

 <label for="phone">Phone</label>

 <input type="text" ngModel name="phone" class="form-control" id="phone" placeholder="Phone"

required>

 </div>

 <div class="form-group">

 <label for="phone">Image URL</label>

 <input type="text" ngModel name="imageUrl" class="form-control" id="imageUrl"

placeholder="Image URL" required>

 </div>

 <div class="modal-footer">

 <button type="button" id="add-employee-form" class="btn btn-secondary" data-

dismiss="modal">Close</button>

 <button [disabled]="addForm.invalid" type="submit" class="btn btn-primary" >Save

changes</button>

 </div>

 </form>

 </div>

 </div>

 </div>

 </div>

 <!-- Edit Modal -->

<div class="modal fade" id="updateEmployeeModal" tabindex="-1" role="dialog" aria-

labelledby="employeeEditModalLabel" aria-hidden="true">

 <div class="modal-dialog" role="document">

 <div class="modal-content">

 <div class="modal-header">

 <h5 class="modal-title" id="updateEmployeeModalLabel">Edit Employee {{editEmployee?.name}}

</h5>

 <button type="button" class="close" data-dismiss="modal" aria-label="Close">

 ×

 </button>

 </div>

 <div class="modal-body">

 <form #editForm="ngForm" >

 <div class="form-group">

 <label for="name">Name</label>

 <input type="text" ngModel="{{editEmployee?.name}}" name="name" class="form-control"

id="name" aria-describedby="emailHelp" placeholder="Name">

 </div>

Graduation Project-2 Measurement of Code Coverage by Black Box Testing of Web-based Applications Final Report

CCE-E 87

 <input type="hidden" ngModel="{{editEmployee?.id}}" name="id" class="form-control" id="id"

placeholder="Email">

 <input type="hidden" ngModel="{{editEmployee?.employeeCode}}" name="userCode" class="form-

control" id="userCode" placeholder="Email">

 <div class="form-group">

 <label for="email">Email Address</label>

 <input type="email" ngModel="{{editEmployee?.email}}" name="email" class="form-control"

id="email" placeholder="Email">

 </div>

 <div class="form-group">

 <label for="phone">Job title</label>

 <input type="text" ngModel="{{editEmployee?.jobTitle}}" name="jobTitle" class="form-control"

id="jobTitle" placeholder="Job title">

 </div>

 <div class="form-group">

 <label for="phone">Phone</label>

 <input type="text" ngModel="{{editEmployee?.phone}}" name="phone" class="form-control"

id="phone" name="phone" placeholder="Phone">

 </div>

 <div class="form-group">

 <label for="phone">Image URL</label>

 <input type="text" ngModel="{{editEmployee?.imageUrl}}" name="imageUrl" class="form-

control" id="imageUrl" placeholder="Image URL">

 </div>

 <div class="modal-footer">

 <button type="button" id="" data-dismiss="modal" class="btn btn-secondary">Close</button>

 <button (click)="onUpdateEmployee(editForm.value)" data-dismiss="modal" class="btn btn-

primary" >Save changes</button>

 </div>

 </form>

 </div>

 </div>

 </div>

 </div>

<!-- Delete Modal -->

<div class="modal fade" id="deleteEmployeeModal" tabindex="-1" role="dialog" aria-

labelledby="deleteModelLabel" aria-hidden="true">

 <div class="modal-dialog" role="document">

 <div class="modal-content">

 <div class="modal-header">

 <h5 class="modal-title" id="deleteModelLabel">Delete Employee</h5>

 <button type="button" class="close" data-dismiss="modal" aria-label="Close">

 ×

 </button>

 </div>

 <div class="modal-body">

 <p>Are you sure you want to delete employee {{deleteEmployee?.name}}</p>

 <div class="modal-footer">

 <button type="button" class="btn btn-secondary" data-dismiss="modal">No</button>

Graduation Project-2 Measurement of Code Coverage by Black Box Testing of Web-based Applications Final Report

CCE-E 88

 <button (click)="onDeleteEmployee(deleteEmployee?.id)" class="btn btn-danger" data-

dismiss="modal">Yes</button>

 </div>

 </div>

 </div>

 </div>

 </div>

 <!-- Notification for no employees -->

<div *ngIf="employees?.length == 0" class="col-lg-12 col-md-12 col-xl-12">

 <div class="alert alert-info" role="alert">

 <h4 class="alert-heading">NO EMPLOYEES!</h4>

 <p>No Employees were found.</p>

 </div>

 </div>

Selenium test cases code

package level2;

import java.nio.file.Files;

import java.nio.file.Paths;

import java.util.List;

import java.util.concurrent.TimeUnit;

import org.openqa.selenium.*;

import org.openqa.selenium.By;

import org.openqa.selenium.Keys;

import org.openqa.selenium.WebDriver;

import org.openqa.selenium.firefox.FirefoxDriver;

import org.openqa.selenium.JavascriptExecutor;

import org.openqa.selenium.interactions.Action;

import org.openqa.selenium.interactions.Actions;

import org.openqa.selenium.interactions.internal.MouseAction.Button;

//import com.google.common.io.Files;

import com.google.gson.Gson;

import com.google.gson.GsonBuilder;

import com.paulhammant.ngwebdriver.*;

public class Test3 {

 public static void main(String[] args) {

 try {

 int passedTestsCount=0;

 int failedTestsCount=0;

 // flush all // Noisy //

 System.setProperty("webdriver.gecko.driver","C:\\geckodriver.exe");

 WebDriver driver = new FirefoxDriver();

 JavascriptExecutor jsDriver = (JavascriptExecutor) driver;

 NgWebDriver ngdriver= new NgWebDriver (jsDriver);

Graduation Project-2 Measurement of Code Coverage by Black Box Testing of Web-based Applications Final Report

CCE-E 89

 driver.manage().deleteAllCookies();

 driver.manage().window().maximize();

 driver.manage().timeouts().implicitlyWait(30, TimeUnit.SECONDS);

 driver.manage().timeouts().pageLoadTimeout(30, TimeUnit.SECONDS);

 driver.get("http://localhost:3000/");

 ngdriver.waitForAngularRequestsToFinish();

 Thread.sleep(1000);

 System.out.print("=== Source code as

follows ====================================\n");

 System.out.print(driver.getPageSource()+"\n"); // --> File (splitting 10 functions)

 System.out.print("=== Source code ended

====================================\n");

 System.out.print("=== Element Source code

as follows ====================================\n");

 System.out.print(driver.findElement(By.className("nav-link")).getAttribute("outerHTML")+"\n");

 System.out.print("=== Source code ended

====================================\n");

 System.out.print("===Add test

started===\n");

 System.out.print(driver.findElement(By.className("navbar")).getAttribute("innerHTML"));

 driver.findElement(By.className("nav-link")).click(); // loop 10 functions --> fucntion.Hit=true ..

function.Hit=false --> true

 driver.findElement(By.id("name")).sendKeys("Loay Samy");

 Thread.sleep(500);

 driver.findElement(By.id("email")).sendKeys("Loaysamy13@yahoo.com");

 Thread.sleep(500);

 driver.findElement(By.id("jobTitle")).sendKeys("Hunter");

 Thread.sleep(500);

 driver.findElement(By.id("phone")).sendKeys("0123456789");

 Thread.sleep(500);

 driver.findElement(By.id("imageUrl")).sendKeys("../../assets/images/Loay.jpg");

 Thread.sleep(500);

 driver.findElement(By.xpath("//button[normalize-space()=\"Save changes\"]")).click();

 Thread.sleep(500);

 if(driver.findElement(By.xpath("//h5[text() = 'Loay Samy']"))!=null)

 {

 System.out.print("Test Passed \n");

 passedTestsCount++;

 }else {

 System.out.print("Test failed \n");

 failedTestsCount++;

 }

 System.out.print("===Add test

ended===\n");

 System.out.print("===Edit test

started===\n");

 Thread.sleep(500);

Graduation Project-2 Measurement of Code Coverage by Black Box Testing of Web-based Applications Final Report

CCE-E 90

 driver.findElements(By.xpath("//i[@class='fa fa-pencil']")).get(5).click();

 Thread.sleep(500);

 driver.findElement(By.xpath("//div[@id='updateEmployeeModal']//input[@id='name']")).clear();

 Thread.sleep(500);

 driver.findElement(By.xpath("//div[@id='updateEmployeeModal']//input[@id='name']")).sendKeys("Loay

Sam");

 Thread.sleep(500);

 driver.findElement(By.xpath("//div[@id='updateEmployeeModal']//button[normalize-space()=\"Save

changes\"]")).click();

 Thread.sleep(500);

 if(driver.findElement(By.xpath("//h5[text() = 'Loay Sam']"))!=null)

 {

 System.out.print("Test Passed \n");

 passedTestsCount++;

 }else {

 System.out.print("Test failed \n");

 failedTestsCount++;

 }

 System.out.print("===Edit test

ended===\n");

 System.out.print("===delete test

started===\n");

 Thread.sleep(500);

 driver.findElements(By.xpath("//i[@class='fa fa-times']")).get(5).click();

 Thread.sleep(500);

 driver.findElement(By.xpath("//div[@id='deleteEmployeeModal']//button[normalize-

space()=\"Yes\"]")).click();

 Thread.sleep(500);

 if(driver.findElements(By.xpath("//i[@class='fa fa-pencil']")).size()==5)

 {

 System.out.print("Test Passed \n");

 passedTestsCount++;

 }else {

 System.out.print("Test failed \n");

 failedTestsCount++;

 }

 System.out.print("===delete test

ended===\n");

 System.out.print("===Search tests

started===\n");

 driver.findElement(By.id("searchName")).sendKeys("L");

 Thread.sleep(500);

 if(driver.findElements(By.xpath("//i[@class='fa fa-pencil']")).size()==3)

 {

 System.out.print("Test Passed \n");

 passedTestsCount++;

 }else {

Graduation Project-2 Measurement of Code Coverage by Black Box Testing of Web-based Applications Final Report

CCE-E 91

 System.out.print("Test failed \n");

 failedTestsCount++;

 }

 driver.findElement(By.id("searchName")).sendKeys("o");

 Thread.sleep(500);

 if(driver.findElements(By.xpath("//i[@class='fa fa-pencil']")).size()==1)

 {

 System.out.print("Test Passed \n");

 passedTestsCount++;

 }else {

 System.out.print("Test failed \n");

 failedTestsCount++;

 }

 driver.findElement(By.id("searchName")).sendKeys("s");

 Thread.sleep(500);

 if(driver.findElement(By.xpath("//h4[text() = 'NO EMPLOYEES!']"))!=null)

 {

 System.out.print("Test Passed \n");

 passedTestsCount++;

 }else {

 System.out.print("Test failed \n");

 failedTestsCount++;

 }

 driver.findElement(By.id("searchName")).sendKeys(Keys.BACK_SPACE);

 Thread.sleep(500);

 driver.findElement(By.id("searchName")).sendKeys(Keys.BACK_SPACE);

 Thread.sleep(500);

 if(driver.findElements(By.xpath("//i[@class='fa fa-pencil']")).size()==3)

 {

 System.out.print("Test Passed \n");

 passedTestsCount++;

 }else {

 System.out.print("Test failed \n");

 failedTestsCount++;

 }

 driver.findElement(By.id("searchName")).sendKeys(Keys.BACK_SPACE);

 Thread.sleep(500);

 if(driver.findElements(By.xpath("//i[@class='fa fa-pencil']")).size()==5)

 {

 System.out.print("Test Passed \n");

 passedTestsCount++;

 }else {

 System.out.print("Test failed \n");

 failedTestsCount++;

 }

 System.out.print("===Search tests

ended===\n");

 System.out.print(passedTestsCount+" tests passed\n");

Graduation Project-2 Measurement of Code Coverage by Black Box Testing of Web-based Applications Final Report

CCE-E 92

 System.out.print(failedTestsCount+" tests failed\n");

 Object str = jsDriver.executeScript("return window._coverage_");

 GsonBuilder builder = new GsonBuilder();

 Gson gson = builder.create();

 String Coverage = gson.toJson(str);

 Files.write(Paths.get("C:\\Users\\loay

samy\\AngularApp\\employeemanagerapp\\.nyc_output\\coverage.json"),Coverage.getBytes());

 // driver.close();

 } catch (Exception e) {

 // TODO Auto-generated catch block

 e.printStackTrace();

 }

 }

}

Deployment on VIQ Coverage Analyzer

Merge frontend coverage

#open(PASSN,'>', "./file");

print"Merging frontend started\n";

$results=`/home/lelmasry/Development/nodeJS/node-v10.16.3-linux-x64/bin/istanbul-merge --out

merged.json \`cat Jsonfiles.list\``;

print "$? \n";

while($? ne "0"){`rm file`;open(PASSN,'>', "./file");

print PASSN $results;

$lineTodelete = `tail -1 file | sed 's,.*ca,ca,g'`;

print "$lineTodelete is corrupted";

chomp($lineTodelete);

#print "echo -n '$lineTodelete' | sed 's,/,\/,g'";#$line = `echo -n '$lineTodelete' | sed 's,/,\\\\\\/,g' | sed 's,\\.,,g'`;

$line = `echo -n '$lineTodelete' | sed 's,\\.\$,,g'`;

#quotemeta($lineTodelete);#print $line;#print "`sed 's,.*$line,,g' -i file`";print"`sed 's,$line,,g' -i Jsonfiles.list`";

`sed 's,$line,,g' -i Jsonfiles.list`;

 $results=`/home/lelmasry/Development/nodeJS/node-v10.16.3-linux-x64/bin/istanbul-merge --out

merged.json \`cat Jsonfiles.list\` `;close(PASSN);

print "$? \n";

}#print"`sed '/^\$/d' file`";

Graduation Project-2 Measurement of Code Coverage by Black Box Testing of Web-based Applications Final Report

CCE-E 93

Merge BackEnd Coverage

#open(PASSN,'>', "./file");

print "Merging backend started\n";

$results=`java -jar $ENV{"JARS"}/org.jacoco.cli-0.8.7-nodeps.jar merge \`cat ExecFiles.list\` --destfile

merged.exec`;

print "$? \n";

while($? ne "0"){`rm file`;open(PASSN,'>', "./file");

print PASSN $results;

$lineTodelete = `tail -1 file | sed 's,.*ca,ca,g'`;

print "$lineTodelete is corrupted";

chomp($lineTodelete);#print "echo -n '$lineTodelete' | sed 's,/,\/,g'";#$line = `echo -n '$lineTodelete' | sed 's,/,\\\\\\/,g'

| sed 's,\\.,,g'`;

$line = `echo -n '$lineTodelete' | sed 's,\\.\$,,g'`;

#quotemeta($lineTodelete);#print $line;#print "`sed 's,.*$line,,g' -i file`";print"`sed 's,$line,,g' -i ExecFiles.list`";

`sed 's,$line,,g' -i ExecFiles.list`;

$results=`java -jar $ENV{"JARS"}/org.jacoco.cli-0.8.7-nodeps.jar merge \`cat ExecFiles.list\` --destfile

merged.exec`;close(PASSN);

print "$? \n";

}#print"`sed '/^\$/d' file`";

Wrapper

foreach e (`cat Jsonfiles.list | sed 's,/coverage.json,,g'`) ##Jsonfiles_red.list

cd $e;

echo $e;

/zin/tools/python/3.6.3/bin/python /home/lelmasry/parse_all.py "./FrontendCoverage" "./BackendCoverage";

cd -;

end

Parsing script to generate ln_cov.info file which contains both frontend and backend

import sys

import os

import re

from pathlib import Path

def parsefile_front (filename):

 html = open(filename,"r")

 content = str(html.read())

 #getting lines

Graduation Project-2 Measurement of Code Coverage by Black Box Testing of Web-based Applications Final Report

CCE-E 94

 lines = re.findall(r"",content)

 coverage=[] index=0 #getting hits

 for i in lines:

 if ("-yes" in i):

 hits = re.findall(r"\b\d+\b",i)

 coverage.append({"index":index+1,"hits":int(hits[0])}) index+=1

 return coverage

def parsefile_back (filename):

 html = open(filename,"r")

 reading = html.read()

 content = str(reading)

 #getting lines

 lines = re.findall(r"",content)

 coverage=[]

 for i in lines:

 index = re.findall(r"\d+",i)

 coverage.append(int(index[0]))

 return coverage

def generate_file_list(pathlist,option):

 filelist=[]

 if (option=="front"):

 for i in pathlist_front:

 coverage=parsefile_front(i)

 if (coverage):

 filelist.append(i) else:

 for i in pathlist_back:

 coverage=parsefile_back(i)

 if (coverage):

 filelist.append(i)

 return filelist

def write_front(filelist,info):

 for j in filelist:

 filename = re.findall(r".*?.ts",str(j))

 name = re.sub(r'FrontendCoverage/', '', filename[0])

 coverage = parsefile_front(j)

 for i in coverage:

 if (j==filelist[-1] and i==coverage[-1]):

 info.write("\""+name+":"+str(i["index"])+"\""+": "+str(i["hits"]))

 else:

 info.write("\""+name+":"+str(i["index"])+"\""+": "+str(i["hits"])+", ")

 return

def write_back(filelist,info):

 for j in filelist:

 filename = re.findall(r".*?.java",str(j))

Graduation Project-2 Measurement of Code Coverage by Black Box Testing of Web-based Applications Final Report

CCE-E 95

 name = re.sub(r'BackendCoverage/', '', filename[0])

 coverage = parsefile_back(j)

 for i in coverage:

 info.write(", \""+name+":"+str(i)+"\""+": "+"1") return

path_dir_front = sys.argv[1]

path_dir_back = sys.argv[2]

pathlist_front = Path(path_dir_front).glob('*/.ts.html')

pathlist_back = Path(path_dir_back).glob('*/.java.html')

filelist_front = generate_file_list(pathlist_front,"front")

filelist_back = generate_file_list(pathlist_back,"back")

info = open("ln_cov.info","w")

info.write("{")write_front(filelist_front,info)write_back(filelist_back,info)info.write("}")info.close()

Test suite reduction applications

kmeanParse:

import sys

import os

import re

from operator import itemgetter

from pathlib import Path

import xlsxwriter

path_dir=sys.argv[1]

excelfile=sys.argv[2]

def parsefile (file_html):

 html = open(file_html,”r”)

 reading = html.read()

 content = str(reading)

 info = re.findall(r”Total.*?</tfoot>”,content)

 info_rep = info[0].replace(‘,’,’’)

 95overage = re.findall(r”\d+”,info_rep)

 return 95overage

files = Path(path_dir).glob(‘**/*index.html’)

workbook = xlsxwriter.Workbook(excelfile)

worksheet = workbook.add_worksheet()

worksheet.write(‘A1’, ‘Testcase’)

Graduation Project-2 Measurement of Code Coverage by Black Box Testing of Web-based Applications Final Report

CCE-E 96

worksheet.write(‘B1’,’Cxty’)

worksheet.write(‘C1’, ‘Inst’)

worksheet.write(‘D1’, ‘Line’)

worksheet.write(‘E1’, ‘Meth’)

worksheet.write(‘F1’, ‘Classes’)

worksheet.write(‘G1’, ‘Branch’)

96overage=[]

c=0

for I in files:

 list = parsefile(i)

 if (list):

 96overage.append(list)

 worksheet.write(c+1,0,os.path.basename(os.path.dirname(i)))

 worksheet.write(c+1,1, int(96overage[c][9]))

 worksheet.write(c+1,2, int(96overage[c][1])-int(96overage[c][0]))

 worksheet.write(c+1,3, int(96overage[c][15])-int(96overage[c][13]))

 worksheet.write(c+1,4, int(96overage[c][19])-int(96overage[c][17]))

 worksheet.write(c+1,5, int(96overage[c][23])-int(96overage[c][21]))

 worksheet.write(c+1,6, int(96overage[c][5])-int(96overage[c][4]))

 c=c+1

workbook.close()

GreedyParse:

import sys

import os

import re

from operator import itemgetter

from pathlib import Path

path_dir=sys.argv[1]

def openfile (infofile):

 info = open(infofile,"r")

 reading = info.read()

 content = str(reading)

 return content

def find_element_in_list(element, list_element):

 index_element = list_element.index(element)

 return index_element

Graduation Project-2 Measurement of Code Coverage by Black Box Testing of Web-based Applications Final Report

CCE-E 97

files = Path(path_dir).glob('**/*ln_cov.info')

Req_list=[]

c=0

dc=1

for i in files:

 contentinfo = openfile(i)

 contentinfo=contentinfo.split(", ")

 for j in contentinfo:

 contentinfo[c] = re.findall(r'".*?"',contentinfo[c])

 if contentinfo[c] not in Req_list:

 Req_list.append(contentinfo[c])

 c=c+1

 print(dc)

 dc=dc+1

 c=0

output=open("output.txt","w")

output.write(str(Req_list))

output.close

datafile=open("testdatafile.txt","w")

datafile.write(str(len(Req_list))+' '+str(dc-1))

datafile.write('/n')

c=0

files = Path(r'C:/Users/anod/Desktop/GP/list/ca').glob('**/*ln_cov.info')

for i in files:

 contentinfo2 = openfile(i)

 contentinfo2=contentinfo2.split(", ")

 for j in contentinfo2:

 contentinfo2[c] = re.findall(r'".*?"',contentinfo2[c])

 index = find_element_in_list(contentinfo2[c], Req_list)

 datafile.write(str(index+1)+' ')

 c=c+1

 c=0

 datafile.write('/n')

datafile.close

GreedyReducedList:

import sys

import os

import re

Graduation Project-2 Measurement of Code Coverage by Black Box Testing of Web-based Applications Final Report

CCE-E 98

from operator import itemgetter

from pathlib import Path

import xlsxwriter

path_dir=sys.argv[1]

reducedList=sys.argv[2]

text_file is the reduced list that came from setcover (testfiledata)

def parsefile (text_file):

 reducedFile = open(text_file,"r")

 reading = reducedFile.read()

 content = str(reading)

 indexLine = re.findall(r"set id.*?:",content)

 index = []

 c=0

 for i in indexLine:

 index.append(re.findall(r"\d+",i))

 c = c+1

 return index

files = Path(path_dir).glob('**/*ln_cov.info')

totalTestcases = []

c = 0

for i in files:

 totalTestcases.append(os.path.dirname(i))

index = parsefile(reducedList)

reducedFile = open("greedyReducedList.txt","w")

for j in index:

 reducedFile.write(totalTestcases[int(j[0])]+'\coverage.json')

 reducedFile.write('\n')

reducedFile.close

Graduation Project-2 Measurement of Code Coverage by Black Box Testing of Web-based Applications Final Report

CCE-E 99

Appendix B: Licenses

Istanbul

ISC License

Copyright (c) 2015, Contributors

Permission to use, copy, modify, and/or distribute this software for any purpose with or without

fee is hereby granted, provided that the above copyright notice and this permission notice appear

in all copies.

THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL

WARRANTIES

WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES

OF MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE

LIABLE FOR ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES

OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR

PROFITS,

WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS

ACTION,

ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS

SOFTWARE.

JaCoCo

Copyright © 2009, 2022 Mountainminds GmbH & Co. KG and Contributors

The JaCoCo Java Code Coverage Library and all included documentation is made available by

Mountainminds GmbH & Co. KG, Munich. Except indicated below, the Content is provided to

you under the terms and conditions of the Eclipse Public License Version 2.0 ("EPL"). A copy of

the EPL is provided with this Content and is also available at https://www.eclipse.org/legal/epl-

2.0/.

Set-cover Greedy algorithm

The MIT License (MIT)

Copyright (c) 2013 Martin Steinegger

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and

associated documentation files (the "Software"), to deal in the Software without restriction,

including without limitation the rights to use, copy, modify, merge, publish, distribute,

sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is

furnished to do so, subject to the following conditions:

https://www.jacoco.org/jacoco/trunk/doc/epl-2.0.html
https://www.eclipse.org/legal/epl-2.0/
https://www.eclipse.org/legal/epl-2.0/

Graduation Project-2 Measurement of Code Coverage by Black Box Testing of Web-based Applications Final Report

CCE-E 100

The above copyright notice and this permission notice shall be included in all copies or

substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,

EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF

MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND

NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT

HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,

WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,

OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER

DEALINGS IN THE SOFTWARE.

