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Abstract 
 

 One of the main requirements to achieve integrity between humans and machines is the 

need for a common ground where both of them can reach which gave birth to the evolution of 

IoT (Internet-Of-Things), and by the support of LTE, NB-IoT shortened the path towards such 

integrity. 

One now can deploy a radio-access network with low battery, cover a wide area, efficiently 

power low-cost devices, and match different spectrum allocations of operators. 

With tons of applications like smart metering, monitoring, agriculture, and fleet and logistics 

management. The optimization for such processes of detecting and reporting different variables 

like temperature and humidity is now needed as we expand. As for sensor-heavy applications, 

data rate and latency should be lower.  

LTE NB-IoT is a solution that can match these requirements of power, range, and performance. 

LTE NB-IoT technology supports a range of data rates for several applications and for several 

environmental conditions. It depends on the channel quality, or the signal-to-noise ratio and the 

quantity of resources in certain areas (bandwidth). In addition, each device has a specific power 

budget, which leads to combine the power of several devices. Focus transmission energy without 

losing performance to a narrower bandwidth. This efficiency frees up bandwidth for other 

devices. 

In this thesis a digital implementation of the Narrowband Physical Uplink Shared Channel 

(NPUSCH) receiver which is based on NB-IoT LTE is proposed. The LTE NB-IoT is a new 

cellular technology introduced in 3GPP Release 13 to support IoT applications.  

The standard specifications were first studied well to extract the information needed for 

implementation. Then a MATLAB model is developed for each block in the chain based on 

understanding the standard and the models were checked using MATLAB built in functions and 

assuming the existence of a dummy transmitter. 

Then RTL model is implemented for each block in the chain and the RTL results were compared 

and verified by MATLAB results. The blocks were fully synthesizable on Xilinx ISE and on DC 

compiler using 130 nm technology. Also area and power for each block are reported. 
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Chapter 1  

Introduction 

1.1. Motivation 

The fourth generation of mobile phone standards LTE (Long Term Evolution), developed by 

the 3GPP (3rd Generation Partnership Project), offers an up to seven times faster upload speed 

with upload speeds of up to 50mbps. Retrofitting the infrastructure of UMTS (3G) to LTE-

Advanced (4G) will not be a hurdle, as the basic scheme of UMTS persists. In addition to the 

higher capacity, the benefits of 4G LTE are the significantly lower latency times. These play a 

key role in the smooth retrieval of IOT applications that rely on real-time information, such as 

data from production systems or traffic information. 

Narrow Band IoT (NB-IoT) is a new mobile network, which is based on the LTE standard and is 

used exclusively for IoT applications. Compared to mobile networks (2G, 3G and 4G), NB-IoT 

offers energy-saving capabilities that increase the battery life of simple IoT applications up to 10 

years. 

NB-IOT technology in particular supports a range of data rates. It depends on the channel 

quality, or the signal-to-noise ratio and the quantity of resources in certain areas (bandwidth). 

Also, each device has a specific power budget, which leads to combine the power of several 

devices.  

NB-IOT technology also focuses transmission energy without losing performance to a narrower 

bandwidth. This efficiency frees up bandwidth for other devices. NB-IOT uses tones or 

subcarriers rather than resource blocks. Its bandwidth is 15 kHz, a relevant difference when 

compared with a resource block, whose effective bandwidth is 180 kHz. 

There are many applications on IOT like smart homes, wearables, traffic management, water 

distribution, smart grid, connected cars, connected health, … etc. 

 

 

 
Figure 1.1-1 NB-IOT features 
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Narrow Band LTE, or NB-LTE is a new suite of technologies being developed by 3GPP, an 

international conglomerate of Telecommunications Company responsible for developing and 

maintaining the 4G LTE communications standard, among others. 

The Internet of Things (IOT) is the primary application area of NB-LTE technology. 

“Release 13” simply refers to the platform release number of the release. When 3GPP comes up 

with a new stable communication platform, they release it to the public. Release 13 is one of 

these releases, and it outlines the basic communication requirements of NB-LTE technology. 

NB-LTE is also sometimes referred to as “NB-IOT” or “Narrowband IOT” technology, given its 

usefulness and many handy applications for the Internet of Things. 

Essentially, NB-LTE allows devices to communicate over long distance with cellular networks, 

without using much bandwidth or power. 

 

1.2. Multiple Access Techniques (OFDM overview) 

OFDMA 

LTE takes advantage of OFDMA, a multi-carrier scheme that allocates radio resources to 

multiple users. OFDMA uses Orthogonal Frequency Division Multiplexing (OFDM). For LTE, 

OFDM splits the carrier frequency bandwidth into many small subcarriers spaced at 15 kHz. 

OFDMA assigns each user the bandwidth needed for their transmission. Unassigned subcarriers 

are off, thus reducing power consumption and interference. 

OFDMA uses OFDM; however, it is the scheduling and assignment of resources that makes 

OFDMA distinctive. The OFDM diagram in Fig. 1.3-1 below shows that the entire bandwidth 

belongs to a single user for a period. In the OFDMA diagram, multiple users are sharing the 

bandwidth at each point in time. 

 

SC-FDMA 

In the uplink, LTE uses a pre-coded version of OFDM called SC-FDMA. SC-FDMA has 

a lower PAPR (Peak-to-Average Power Ratio) than OFDM. This lower PAPR reduces battery 

power consumption, requires a simpler amplifier design and improves uplink coverage and cell-

edge performance. In SCFDMA, data spreads across multiple subcarriers, unlike OFDMA where 

each subcarrier transports unique data. The need for a complex receiver makes SC-FDMA 

unacceptable for the downlink. 
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Figure 1.2-1 OFDM vs OFDMA 

 

 

Figure 1.2-2 OFDM vs SC-FDMA 

1.3. Frame structure 

Ts is the basic time unit for LTE. Time domain fields are typically defined in terms ofTs.  

Ts is defined as = 1/ (15000 x 2048) seconds or about 32.6 nanoseconds. 

 Downlink and uplink transmissions are organized into frames of duration Tf= 307200Ts. 

 The 10 ms frames divide into 10 sub-frames. Each sub-frame divides into 2 slots of 0.5 ms. 

In the time domain, a slot is exactly one Resource Block long.     

 Two frame types are defined for LTE: Type 1, used in Frequency Division Duplexing (FDD) 

and Type 2, used in Time Division Duplexing (TDD).      

 Type 1 frames consist of 20 slots with slot duration of 0.5 ms.      

 Type 2 frames contain two half frames. Depending on the switch period, at least one of the 

half frames contains a special sub-frame carrying three fields of switch information: 

Downlink Pilot Time Slot (DwPTS), Guard Period (GP) and Uplink Pilot Time Slot 

(UpPTS). If the switch time is 10 ms, the switch information occurs only in sub-frame one. If 

the switch time is 5 ms, the switch information occurs in both half frames, first in sub-frame 

one, and again in sub-frame six. Sub-frames 0 and 5 and DwPTS are always reserved for 

downlink transmission. UpPTS and the sub-frame immediately following UpPTS are 

reserved for uplink transmission. Other sub-frames can be uplink or downlink. 
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Figure 1.3-1 Type 1 frame 

In LTE, ten 1 ms sub-frames compose a 10 ms frame. Each sub-frame divides into two slots. The 

smallest modulation structure in LTE is the Resource Element. A Resource Element is one 15 

kHz subcarrier by one symbol. Resource Elements aggregate into Resource Blocks. A Resource 

Block has dimensions of subcarriers by symbols. Twelve consecutive subcarriers in the 

frequency domain and six or seven symbols in the time domain form each Resource Block. 

The number of symbols depends on the Cyclic Prefix (CP) in use. When a normal CP is used, the 

Resource Block contains seven symbols. When an extended CP is used, the Resource Block 

contains six symbols. A delay spread that exceeds the normal CP length indicates the use of 

extended CP.  

 

Figure 1.3-2 Relationship between a slot, symbols and Resource Blocks 

Channel Bandwidth is the width of the channel as measured from the lowest channel edge to the 

highest channel edge. The channel edge is the center frequency ± (channel bandwidth/2). 

Transmission Bandwidth is the number of active Resource Blocks in a transmission. As the 

bandwidth increases, the number of Resource Blocks increases. The Transmission Bandwidth 

Configuration is the maximum number of Resource Blocks for the particular Channel 

Bandwidth. 
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Figure 1.3-3 Relationships between Channel Bandwidth, Transmission Bandwidth Configuration, and Transmission 

Bandwidth 

1.4. Problem description 

The target of this project is to implement low power uplink receiver for the Narrow Band 

Long Term Evolution (NB-LTE). 

The main goal is to design the Physical Layer chain of the LTE Rel.14 that targets the NB-LTE. 

The physical layer chain includes but not subjected to the following: 

 Scrambling  

 Modulation Mapper  

 OFDM signal generation  

 Turbo Coding 

 CRC 

 FFT  

 Interleaving 

The project has gone through the following phases: 

 Verilog Training  

 Standard and literature reading  

 System Modeling using MATLAB  

 Testing and verification using Synopsys VCS tool  

 RTL Design  

 Synthesis using Synopsys Design Compiler  

 Prototyping with FPGA (Optional) – Documentation 

 

1.5. Thesis organization 

In chapter 1 we give a brief overview about the NB-LTE and its use in the IOT applications. 

We also give an overview about the multiple access techniques used in LTE. 

In chanter 2, we give an overview about the uplink receiver chain and the algorithms chosen for 

implementation. 

In chanter 2, we explained the standard specifications and any assumptions needed for 

implementation. 

In chapter 4, we proposed the architecture and design for each block in the chain. We also 

showed the MATLAB, RTL and synthesis results on DC compiler. 
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Chapter 2  

Receiver uplink chain and sub-blocks' function 

2.1. Chain block diagram 

 

Figure 2.1-1 Uplink receiver chain block diagram

 

2.2. Synchronization 

OFDM systems are very sensitive towards carrier frequency offsets. Carrier frequency 

offset (CFO) happens due to mismatch of RF oscillator frequency at the transmitter and the 

receiver, and also due to Doppler shift. The frequency offset causes two problems, one is the 

reduction of amplitude of the signal and the other is introduction of Inter carrier interference 

(ICI).  

Synchronization of an OFDM signal is required and it consists of two major parts: carrier 

frequency offset (CFO) and symbol time offset (STO) which is an estimate of when the symbol 

starts. 

The estimation of synchronization error can be performed depending on the type of the training 

data and can be divided into two parts: pre-FFT synchronization and post-FFT synchronization. 

Post-FFT synchronization is based on the known pilot data or training data that are inserted in 

various location of the signal. The known pilot data may be one or two OFDM symbols and we 

can also name this method as data-aided or preamble-based synchronization and it is performed 

in the frequency domain as it depends on the location of pilots which is determined after the grid 

is fully recognizable. On the other hand, the pre-FFT synchronization is based on the cyclic 

prefix that can be used as training or data and. This method is also known as non-data aided 

synchronization or cyclic prefix-based synchronization and it is performed in time domain. 

Both time-domain and frequency-domain synchronization play important roles in correcting 

carrier frequency offset in OFDM systems. 
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2.2.1. Coarse frequency and timing estimation 

 System model 

 

 

 

Figure 2.2-1 Synchronization flow in OFDM receiver 

Figure 2-3 The OFDM system model. 
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The complex data symbols are modulated by inverse discrete Fourier transform on N parallel 

subcarriers then passed through the channel and demodulated at the receiver by discrete Fourier 

transform. The insertion of a cyclic prefix results in an equivalent parallel orthogonal channel 

structure and also decreases the ICI effect. 

The length of the transmitted OFDM symbol is (N+L) where N is the FFT points and L is the 

cyclic prefix length. 

In the analysis we consider the following: 

1. The channel is nondispersive and that the transmitted signal S(k) is only affected by complex 

additive white Gaussian noise (AWGN) n(k). 

2. The uncertainty in the arrival time of the OFDM symbol and is modelled as a delay in the 

channel impulse response δ(k − θ) where θ is the integer value representing the unknown 

arrival of the symbol. 

3. The uncertainty in carrier frequency (a difference in the local oscillators in the transmitter 

and receiver gives rise to a shift of all the subcarriers) and is modelled as a complex 

multiplicative distortion of the received data in the time domain ej2πεk/N, where ε is the 

frequency shift.  

These considerations give the following received signal 

 𝑟(𝑘) = S(𝑘 − 𝜃) 𝑒𝑗2𝜋𝜀𝑘/𝑁 + n(𝑘)                                                                                   (1)                                                                           

There is an observation here is that r(k) is not a white process even if S(k) approximates a 

complex Gaussian process whose real and imaginary parts are independent and that’s because 

the cyclic prefix yields a correlation between some pairs of samples, that are spaced N samples 

apart. But since r(k) has a probabilistic structure, it contains information about the time offset 

and the frequency offset. 

 ML Estimation of Time and Frequency Offset 

The maximum likelihood estimation is based on the idea that since the cyclic prefix is a part of 

the end of the symbol that is appended in its start so if we take a window of L (cyclic prefix 

length) and correlate it with another window that is N samples apart from the other one and keep 

doing this and move the window sample by sample, then there will be some time when this 

correlation gives a maximum value as there has to be some time when the two correlated 

windows are those that are in the beginning and the end of the symbol. At this time, we can 

detect the right start of the symbol. 

The coarse timing and FFO is obtained from the log likelihood function according to the below 

set of equations. 

𝛾 (n) = ∑ 𝑟(𝑘)𝑟∗(𝑘 + 𝑁)𝑚+𝐿−1
𝑘=𝑚  (2) 

Ф (n) = ∑ |𝑟(𝑘)|2 + |𝑟(𝑘 + 𝑁)|2𝑚+𝐿−1
𝑘=𝑚  (3)                 

𝑇�̂� = arg 𝑚𝑎𝑥
𝑛

{|𝛾 (𝑛)| − 𝜌Ф (𝑛)}  (4) 

𝜖̂  = 
−1

2π
 ∠ 𝛾 (n) (5) 
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Where 𝛾 (n) is the correlation, Ф (n) is the energy, 𝑇�̂� is the estimated time offset and ϵ̂ is the 

estimated frequency offset. 

Since the argument operator arg (.) is performed by using 𝑡𝑎𝑛−1(.), the range of FFO estimation 

in this equation is [
−𝜋,+𝜋

2𝜋
] = [-0.5, +0.5] so that |𝜖̂| ≤ 0.5. Hence, this technique is useful for the 

estimation of Fractional frequency offset and it does not estimate the integer offset.  

2.2.2. CORDIC algorithm 

 CORDIC is an iterative algorithm for the calculation of the rotation of a two-dimensional 

vector, in linear, circular and hyperbolic coordinate systems, using only add and shift operations. 

The algorithm can be used for generating sinusoidal waveform, multiplication and division 

operations, and evaluation of angle of rotation, trigonometric functions and logarithms. It 

consists of two operating modes, the rotation mode (RM) and the vectoring mode (VM). 

In the rotation mode a vector (X, Y) is rotated by an angle θ to obtain a new vector(X’, Y’). In 

every iteration i, fixed angles of the value arctan(2−1 ) which are stored in a ROM are 

subtracted or added from/to the remainder angleθi.     

In the vectoring mode, the magnitude and phase of a vector (X, Y) are computed. 

𝑥’ =  𝑥 𝑐𝑜𝑠(𝜑) –  𝑦 𝑠𝑖𝑛(𝜑)     

𝑦’ =  𝑦 𝑐𝑜𝑠(𝜑)  +  𝑥 𝑠𝑖𝑛(𝜑) 

Rather than computing sin(φ) directly, we iteratively rotate β towards φ.  

Step 1: set β = 45° 

Step 2: if   φ >= β then  

              𝛽 =  𝛽 +  (45/2)°  

   Else   𝛽 =  𝛽 −  (45/2)° 

𝑥’ =  𝑐𝑜𝑠(𝜑) [ 𝑥 −  𝑦 𝑡𝑎𝑛(𝜑) ]    

𝑦’ =  𝑐𝑜𝑠(𝜑) [ 𝑦 +  𝑥 𝑡𝑎𝑛(𝜑) ] 

 

Allow iterative rotation so that tan(β)  =  ±2−i     

  𝑥𝑖+1  =  𝑐𝑜𝑠( 𝑡𝑎𝑛−1(±2−𝑖))  ·  [ 𝑥𝑖  –  𝑦𝑖  ·  𝑑𝑖  ·  2−𝑖 ]     

 𝑦𝑖+1  =  𝑐𝑜𝑠( 𝑡𝑎𝑛−1(±2−𝑖))  ·  [ 𝑦𝑖 +   𝑥𝑖  ·  𝑑𝑖  ·  2−𝑖 ]     
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With the rotate direction di = ±1 

We know that the cosine is symmetric so 

𝑐𝑜𝑠( 𝑡𝑎𝑛−1(2−𝑖))  =  𝑐𝑜𝑠( 𝑡𝑎𝑛−1(−2−𝑖))  

𝑐𝑜𝑠( 𝑡𝑎𝑛−1(2−𝑖))  is the gain Ki of an iteration 

𝑘𝑖 = 𝑐𝑜𝑠( 𝑡𝑎𝑛−1(2−𝑖)) = 
1

√1+2−𝑖
 

 

 

 

We can compute K offline for all n iterations as k = ∏ kin  and it approaches 0.6037, if n goes to 

infinity. 

Now we will summarize the iterative equations needed for both vectoring and rotation mode. 

 Rotation mode 

 𝑥𝑖+1  =  𝑘𝑖  ·  [ 𝑥𝑖 –   𝑦𝑖  ·  𝑑𝑖  ·  2−𝑖 ]                         𝑑𝑖 = {
−1, 𝑧𝑖 < 0  

    +1, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

 𝑦𝑖+1  =  𝑘𝑖  ·  [ 𝑦𝑖 +   𝑥𝑖  ·  𝑑𝑖  ·  2−𝑖 ]     

 𝑧𝑖+1   =  [ 𝑧𝑖  –    ·  𝑑𝑖  ·  𝑡𝑎𝑛−1(−2−𝑖) ]    
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After n iterations we get  

 𝑥𝑛  =  𝐴𝑛  ·  [  𝑥0 𝑐𝑜𝑠(𝑧0) –  𝑌0𝑠𝑖𝑛(𝑧0) ]                          

 𝑌𝑛  =  𝐴𝑛  ·  [  𝑌0 𝑐𝑜𝑠(𝑧0) +   𝑋0𝑠𝑖𝑛(𝑧0) ]           𝐴𝑛 = ∏ √1 + 2−𝑖𝑛
𝑖=0  

 𝑧𝑛  =   0 

 Vectoring mode 

 𝑥𝑖+1  =  𝑘𝑖  ·  [ 𝑥𝑖 –   𝑦𝑖  ·  𝑑𝑖  ·  2−𝑖 ]                         𝑑𝑖 = {
+1, 𝑦𝑖 < 0  

   −1, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

 𝑦𝑖+1  =  𝑘𝑖  ·  [ 𝑦𝑖 +   𝑥𝑖  ·  𝑑𝑖  ·  2−𝑖 ]     

 

 𝑧𝑖+1   = [ 𝑧𝑖 –    ·  𝑑𝑖  ·  𝑡𝑎𝑛−1(−2−𝑖) ]    

After n iterations we get  

 𝑥𝑛  =  𝐴𝑛  ·  √ 𝑥0
2 +   𝑦0

2 

 𝑌𝑛  =  0          

 𝑧𝑛  =   𝑧0  + 𝑡𝑎𝑛−1(
 𝑦0

 𝑥0
) 

The value of  tan−1(−2−i) at each iteration can be obtained from the table in the last figure and 

will later be stored in a LUT (look up table) in the hardware implementation. 

2.3. Cyclic prefix removal and offset correction 

In this block the cyclic prefix that was added at the transmitter side is removed. Also the 

frequency offset in the received data is corrected According to the offset estimated in the 

previous block. 

Since we earlier modelled the uncertainty in the offset as (𝑒𝑗2𝜋𝜀𝑘/𝑁) so correcting the offset will 

be simply done by multiplying the received data by (𝑒−𝑗2𝜋𝜀𝑘/𝑁). 

2.4. FFT 

FFT is an implementation of Discrete Fourier Transform (DFT) that is a digital way 

(digital input digital output) to implement Fourier transform which is only defined for continuous 

input signals. The FFT is an algorithm introduced in 1965, and it implements the DFT in a faster 

way due to the complexity of the DFT and the simplicity of FFT. 

Equation 6 shows the Discrete Fourier Transform. In this equation x (0) …, x(N−1) are the input 

samples.  

𝑥(𝑘) =  ∑ 𝑥(𝑛) ×  𝑒−𝑗2𝜋𝑛
𝑘

𝑁𝑛=𝑁−1
𝑛=0  , 𝑘 = 0,1, … . , 𝑁 − 1  (6) 

𝑊𝑁 =  𝑒−𝑗2𝜋𝑛
𝑘

𝑁  (7) 

𝑥(𝑘) =  ∑ 𝑥(𝑛) × 𝑊𝑁𝑛=𝑁−1
𝑛=0  (8) 
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According to Eq. (6), the complexity of the DFT is O (N2) so it is applicable for simple data size 

only, but for large data size it will be more complex and can’t be implemented on chip so FFT is 

used instead of DFT because it is more efficient and faster due to its complexity O (Nlog N), 

where N is the data size. 

The radix, r, stands for the number of parts that the input signal will be divided into. The radix-2 

algorithm is the simplest and most used form; it divides the input signal into 2 parts. The FFT of 

the two parts can be calculated separately and can then be combined to form the complete DFT. 

This dividing into smaller parts is done recursively, requiring the number of samples of the input, 

N, to be a power of 2. 

2.5. RED 

Resource element De-mapper's function is to take the output symbols of the FFT and get 

the proper allocated subcarriers for the NB-IoT bandwidth to the next block and this was 

provided as information from the upper layer assigned number of subcarriers can be 1, 3, 6 or 12 

subcarriers, in the case of 12 subcarriers; all the symbols are assigned to the 12 subcarriers. In 

the case of 6 point FFT, the output 6 symbols of the FFT will be assigned to a certain 6 

subcarriers of the 12 assigned subcarriers and the rest are padded with zeros and the same will be 

done with 3 point FFT results, the location of the symbols within the 12 subcarriers in case of 3 

and 6 subcarriers is calculated according to information from upper layer. 

2.6. Channel estimation 

The main function of this Block is to estimate the changes happens in the data bits while 

it goes through the channel so that we could reverse this changes and detect the data correctly, 

sure we can’t remove the channel effect perfectly but we can at least minimize it effect to the 

limit required to successfully detect the sent bits. 

This happened by sending pilots with the data bits which we be effected also by the channel, and 

as the receiver also can generate these pilots using upper layer parameters, then if we divide the 

received pilots on the generated ones we get the channel effect which will be delivered to the 

equalizer to reverse it. 

Also noise estimation is part of this block its function is to get the noise value so that we can 

calculate signal to noise ratio required by the de-mapper block. 

 We used the zero forcing technique to estimate the channel. Other techniques like interpolation 

get more accurate estimation but need higher area and power implementation and as the 

estimation difference not to large compared to the area and the power needed for it, so we used 

the implementation of the lower area and power. 

2.7. Equalizer 

In wireless communication data are sent in radio space, the channel exhibits multipath 

fading phenomenon which produces inter-symbol interference (ISI) in the signal received at the 

receiver side. The received signal is a filtered and noise-corrupted version of the transmitted 

sequence: 

𝑟𝑘 =𝑠𝑘 ⊗ 𝑐𝑘 + 𝑛𝑘 
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Where rk is the received signal, ck is the channel and nk is the noise added (usually it’s an 

AWGN noise) while the symbol ⊗ represents the convolution operation. The chief goal of 

equalization is to rebuild the actual signal with the help of filter or any other methods and 

remove the effect of ISI so that the reliability of data transmission is maintained.  

A linear equalizer is a filter that can undo the channel effect. Output of the equalizer can be 

documented as: 

𝑦𝑘 = 𝑟𝑘  ⊗ ℎ𝑒𝑞 

𝑦𝑘  = (𝑠𝑘⊗𝑐𝑘) ⊗ ℎ𝑒𝑞 + 𝑛𝑘 ⊗ ℎ𝑒𝑞 

Where ykthe output of the equalizer and  heq is the impulse response of the equalizer.

 

2.8. IDFT 

IDFT is a block added to demodulate SC-FDMA symbols instead of OFDM symbols 

which have high peak to average power ratio (PAPR) which require highly linear power 

amplifiers to avoid excessive intermodulation distortion, while SC-FDMA solves this problem 

by distributing given number of modulated symbols over all assigned subcarriers for 

transmission instead of distributing one symbol over one subcarrier as in OFDM, therefore the 

total PAPR decreased due to this fair distribution. 

Figure 2.8-1 OFDMA vs SC-FDMA 
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Uplink uses SC-FDMA which is a modified form of the OFDM with similar throughput 

performance and complexity, SC-FDMA is viewed as DFT-coded OFDM where time-domain 

symbols are transformed to frequency domain symbols and then go through the standard OFDM 

modulation as shown in Figure 2.8-1.

 

 

Figure 2.8-2 OFDM vs SC-FDM Block diagram 

SC-FDMA has all the advantages of OFDM like robustness against multi-path signal 

propagation, the block diagram for the SC-FDMA is shown in Figure 2.8-2. 
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2.9. De-mapper 

Symbol De-mapper in communication systems is the transition between complex valued 

signals into data bits. NB-LTE supports both QPSK and BPSK modulation schemes in the 

uplink. The De-mapper transforms the received symbols to bits according to symbol location 

represented by real and imaginary coordinates as shown in the following Figure 2.9-1. 

The De-mapper output is a soft output which is the log likelihood ratio (LLR) as the input to the 

turbo decoder must be a soft input. 

2.10. Descrambler 

Scrambling is very important in communication systems. By using the scrambling code, 

NodeB can separate signals coming simultaneously from many different UEs and UE can 

separate signals coming simultaneously from many different NodeB. 

The main role of scrambling is to randomize the data before they got modulated by the symbol 

De-mapper and also to avoid long sequence of zeros or ones as long sequence of zeros or ones 

cause transmission synchronization problems.  

2.11. Data Demultiplexing and Channel De-Interleaver 

The main function of this block is to reverse the operations done at the transmitter at the 

Data multiplexing and Channel interleaver Block. 

The main function of Data multiplexing and Channel interleaver Block is control and data 

multiplexing which is performed such that HARQ-ACK information is present on both slots and 

is mapped to resources around the demodulation reference signals.  

The multiplexing ensures that control and data information are mapped to different modulation 

symbols. 

The interleaver solve the problem of burst errors which happens because of deep fading channels 

effects relate bits, the error bits after the interleaver are not in the same code word and in each 

code word a single bit error which is easier to the random error decoder is to correct this single 

error than the entire burst.  
However, in narrowband we have no control data multiplexed; we keep using the block for the 

interleaver benefits. 

Figure 2.9-1 BPSK and QPSK constellation 
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2.12. Rate De-Matcher 

The main function of this block is to reverse the operations done at the transmitter at the 

Rate Matching Block. 

Rate matching in NPUSCH is a very important block in baseband processing. The main function 

of the Rate Matching Block is to ensure that the amount of data of the transport channel and the 

physical channel can adapt each other. The basic principle of rate matching is that when the 

amount of data of the transport channel is more than that carried by the physical channel, the 

system performs a punch operation; on the contrary, it operates repeatedly. 

It also used to adapt and control the rate as the turbo encoder gives fixed 1/3 rate, we can 

increase or decrease rate depending on channel quality. 

 HARQ and Redundancy Versions 

HARQ, which stands for Hybrid Automatic Repeat Request, is an error correction mechanism in 

LTE based on retransmission of packets, which are detected with error. The functionality of the 

HARQ can be seen in Fig below. The transmitted packet arrives after a certain propagation delay 

in receiver. Receiver produces either an ACK for the case of error-free transmission or a NACK, 

if some errors are detected. The ACK/NACK is produced after some processing time and sent 

back to transmitter and arrives there after a propagation delay. In the case of a NACK, after a 

certain processing delay in transmitter, the desired packet will be sent again. The bits, which are 

read out from the circular buffer and sent in each retransmission are different and depend on the 

position of the RV (Redundancy Version). There are four RVs (0, 1, 2, 3), which define the 

position of the starting point, where the bits are read out from the circular buffer. 

 

 

Figure 2.12-1 HARQ mechanism in LTE 
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2.13. Turbo Decoder 

2.13.1. CHANNEL CODING 

            In a digital transmission system, error control is achieved by the use of channel coding 

schemes. Channel coding schemes protect the signal from the effects of channel noise and 

interference and ensure that the received information is as close as possible to the transmitted 

information. They help to reduce the BER and improve reliability of information transmission. 

Channel coding schemes involve the insertion of redundant bits into the data stream that help to 

detect and correct bit errors in the received data stream. Due to the addition of the redundant bits, 

there is a decrease in data rate. Thus the price paid for using channel coding to reduce bit error 

rate is a reduction in data rate or an expansion in bandwidth. 

 Convolutional codes 

Convolutional codes are designed for real-time error correction. The code converts the entire 

input stream into one single code-word. The encoded bit depends not only on the current bit but 

also on the previous bit information 

The design of a channel code is always a trade-off between energy efficiency and bandwidth 

efficiency. Low rate codes having more redundant bits can usually correct more errors. That 

means that the communication system can operate at lower transmit power, tolerate more 

interference and noise and transmit at higher data rate.  

Thus, the code becomes more energy efficient. However, low rate codes also have a large 

overhead and have more bandwidth consumption. Also, the decoding complexity of the code 

also grows exponentially with code length. Thus, low rate codes set high computational 

requirements to the conventional decoders. 

The turbo codes consist of component encoders separated by inter-leaver so that each encoder 

uses an interleaved version of the same information sequence. It consists of two encoders 

separated by the inter-leaver. The two encoders recursive systematic convolutional (RSC) 

encoders used are identical and the code is systematic concatenated in parallel, for better 

decoding it is required to have high weight (Hamming weight of a code-word is the number of 

ones that it contains) transmitted code-word because it means that they are more distinct, and 

thus the decoder will have an easier time distinguishing among them.  

Inter-leaver is used to scramble bits before being input to the second encoder. This makes the 

output of one encoder different from the other encoder. Thus, even if one of the encoders 

occasionally produces a low-weight, the probability of both the encoders producing a low-weight 

output is extremely small. This improvement is known as inter-leaver gain. Another purpose of 

interleaving is to make the outputs of the two encoders uncorrelated from each other. Thus, the 

exchange of information between the two decoders while decoding yields more reliability. 

Both the RSC encoders are of short constraint length in order to avoid excessive decoding 

complexity. An RSC encoder is typically of rate r = 1/2 and is termed a component encoder. The 

two component encoders are separated by an inter-leaver. The output of the turbo encoder 

consists of the systematic input data and the parity outputs from two constituent RSC encoders. 
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The systematic outputs from the two RSC encoders are not needed because they are identical to 

each other (although ordered differently) and to the turbo code input. Thus the overall code rate 

becomes r = 1/3. 

Figure 2.13-1 shows the fundamental turbo code encoder. 

 

 
Figure 2.13-1 Fundamental turbo code encoder 

The generator matrix of the encoder then becomes  

G = [1,
g2

g1
]                         

Where 1 denotes the systematic output, g2 denotes the feed forward output, and g1 is the 

feedback to the input of the RSC encoder. 

Figure 2.13-2 shows the RSC encoder. 

 

Figure 2.13-2  RSC conventional encoder with r = 1/2. 

 Trellis termination 

Unlike conventional convolutional codes which always use a stream of zeros as tail bits, the tail 

bits of a RSC depend on the state of the encoder when all the data bits have been encoded. Also 

because of the presence of inter-leaver between the two encoders, the final states of the two 
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component encoders will be different. Thus, the trellis termination bits for the two encoders will 

also be different and an RSC cannot be brought to an all zero state; simply by passing a stream of 

zeros through it. However, this can be done by using the feedback bit as the encoder input. This 

is done by using a switch at the input as shown in Figure 2.13-3. 

The switch is in position A while encoding the input sequence and is switched to position B at 

the end of the input bit sequence for termination of trellis. The XOR of the bit with itself will be 

zero (output of left most XOR) and thus the encoder will return to all zero state 

Figure 2.13-3 The trellis termination strategy for RSC encoder. 

 

 QPP INTERLEAVER 

QPP-based inter-leaver is maximum contention free, implying that the decoding can be 

parallelized without the risk for contention when different parallel processes are accessing the 

inter-leaver memory. 

2.13.2. TURBO DECODING 

Turbo decoding operates on the noisy version of systematic bits and two sets of parity-check bits 

in two decoding stages to produce estimate of the original transmitted bits. 

Each of the two decoding stages uses a SISO decoder to solve the MAP detection problem. 

in the following figure the basic structure of the turbo decoder is shown:  

 

Figure 2.13-4 Turbo Decoder 
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(1) SISO decoding stages 

The SISO decoding stages could be implemented by: 

A) BCJR algorithm.   B) Modified Viterbi algorithm. 

(2) Inter-leaver/de-interleaver 

the interleaver used here is a QPP interleaver according to the standard specification. 

(3) Hard limiter 

to convert the soft output into hard bits. 

BCJR VITERBI 

Soft input soft output The original Viterbi is a soft input hard output 

algorithm, however it may be modified to be 

soft input soft output 

Has two recursions, one forward and the other 

backward, both of which involves soft 

decisions 

Has a single forward recursion involves soft 

decision. 

is a MAP decoder that minimize bit error rate 

by estimating probability of individual bits 

is a maximum likelihood sequence estimator 

that maximize the likelihood function for the 

whole sequence not each bit 

More Complex Less complex 

Has lower BER Has higher BER 

needs a hard limiter to transform its soft 

output into bits. 

the original Viterbi does not need hard limiter 

as its output is hard bits. 
Table 2.13-1 BCJR vs Viterbi 

After showing the comparison between the BCJR algorithm and the modified Viterbi algorithm, 

the BCJR is chosen for the SISO decoding stage to achieve the minimum BER. 

BCJR: 

BCJR algorithm is an algorithm for maximum a posteriori decoding for error correction codes 

defined on trellises (principally convolutional codes) to implement the MAP decoder. 

The LLR (log likelihood ratio) is defined as: 

𝐿(𝑢𝑘|𝑦) = 𝑙𝑛 (
𝑃(𝑢𝑘 = +1)

𝑃(𝑢𝑘 = −1)
) 

This could be written using joint probability of the received sequence as: 

𝐿(𝑢𝑘|𝑦) = 𝑙𝑛 (
∑ 𝑃(𝑠′, 𝑠, 𝑦)𝑅1

∑ 𝑃(𝑠′, 𝑠, 𝑦)𝑅0
) = 𝑙𝑛 (

∑ 𝛼𝑘−1(𝑠′)𝛾𝑘(𝑠′, 𝑠)𝛽𝑘(𝑠)𝑅1

∑ 𝛼𝑘−1(𝑠′)𝛾𝑘(𝑠′, 𝑠)𝛽𝑘(𝑠)𝑅0
) 

Where: 

 P (s’, s, y) represents the joint probability of receiving the N-bit sequence. 

 y the received N-bit sequence. 

 s’ is the state at time k-1. 
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 S is the state at time k. 

 α is the forward recursion function. 

 γ is the branch matric. 

 β is the backward recursion function. 

The BCJR algorithm contains log operation which is very complex to implement, so some 

simplified methods are used to calculate LLR thus implement MAP algorithm. In the next 

section two of those simplified methods will be discussed. 

Three new variables will be defined A, B and Γ. 

𝛤𝑘(𝑠′, 𝑠) = 𝑙𝑛(𝛾𝑘(𝑠′, 𝑠)) = 𝑙𝑛 𝐶𝑘 +
𝑢𝑘𝐿(𝑢𝑘)

2
+

𝐿𝑐

2
 ∑ 𝑥𝑙𝑘𝑦𝑙𝑘

𝑛

𝑙=1

 

𝐴𝑘(𝑠) = 𝑙𝑛(𝛼𝑘(𝑠)) = 𝑚𝑎𝑥𝑠′[𝐴𝑘−1(𝑠′) + 𝛤𝑘(𝑠′, 𝑠)] 

 

𝐵𝑘−1(𝑠′) = 𝑙𝑛(𝛽𝑘−1(𝑠′)) = 𝑚𝑎𝑥𝑠[𝐵𝑘(𝑠) + 𝛤𝑘(𝑠′, 𝑠)] 

 

𝑚𝑎𝑥 (𝑎, 𝑏) {
𝑚𝑎𝑥(𝑎, 𝑏) + 𝑙𝑛(1 + 𝑒−|𝑎−𝑏|)              𝑙𝑜𝑔 − 𝑀𝐴𝑃 𝑎𝑙𝑔𝑜𝑟𝑖𝑡ℎ𝑚

    𝑚𝑎𝑥(𝑎, 𝑏)                                          𝑚𝑎𝑥 𝑙𝑜𝑔 − 𝑀𝐴𝑃 𝑎𝑙𝑔𝑜𝑟𝑖𝑡ℎ𝑚
 

L(u|y) = maxR1[Ak−1(s′) + Γk(s′, s) + Bk(s)] − maxR0[Ak−1(s′) + Γk(s′, s) + Bk(s)] 

Max log-MAP algorithm will be used to implement the turbo decoding BCJR algorithm. 

2.14. Cyclic Redundancy Check (CRC) 

The function of this block is to detect the errors in the whole transport block by adding 24 

redundancy check bits at the end of each transport block at transmitter, while at receiver 

recalculated 24 bit CRC is compared with last 24 bit.  
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Chapter 3  

Standard Specifications and Assumptions 
 

In this Chapter, the standard specifications and any assumptions taken for 

each block in the chain are stated according to(3GPP TS 36) 

 

3.1. FFT 

In communication systems FFT block is used to convert data from time domain to 

frequency domain in order to be processed in the whole chain. FFT is used for OFDM 

and SC-FDMA chains to generate the subcarriers needed to be transmitted in Tx and 

to recover the symbols again in Rx. SC-FDMA is the modified version of OFDM, it is 

the same efficiency and complexity but low Peak to Average Power Ratio due to the 

presence of IDFT and FFT with each other so it is used in Uplink due to the low 

power of the user equipment. In Downlink OFDM is used because base station 

operates at high power so power is not a constraint. 

 Assumptions 

 

LTE in general uses resource blocks; each block is 180 KHz to transmit at high 

rate (usually in Mbps). Each RB is 15 KHz or 3.75 KHz sub-carrier spacing as 

mentioned in the 3GPP standard. In Narrow Band LTE we have only one RB per slot 

due to low power constraint, so the BW is 180 KHz and we use 15KHz. 15 KHz lead 

us to 12 sub-carriers so we choose the size of the FFT to be 16-bits to support the 12 

sub-carriers. Symbol duration is based on the sub-carrier spacing; we can calculate it 

by knowing the duration of the whole frame of the NB-LTE. Frame duration is 1ms 

long and it consists of 10 sub-frames, each sub-frame consists of 2 time slots each one 

is 0.5ms long. Each time slot is 7 SC-FDMA symbols in case of normal Cyclic Prefix 

and 6 in case of extended Cyclic Prefix and we operate in normal Cyclic Prefix for 

simplicity. So, 0.5ms over 7 symbols gives symbol duration of 66.7µs and a CP of 

5.08µs for first symbol and 4.67µs for the rest of symbols. Each one symbol SC-

FDMA consists of 12 symbols so the whole RB is 84 symbols, it gives a data rate of 

336Kbps. 

 

 

 

Figure 3.1-1 SC-FDMA chain 
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3.2. RED 

 Complex valued symbols 𝑧(0),  … ,  𝑧(𝑀𝑠𝑦𝑚𝑏
𝑁𝑃𝑈𝑆𝐶𝐻 − 1) which are FFT block 

outputs shall mapped to a resource element ak,l increasing k (symbols) then increasing 

l (subcarrier) until reaching 𝑁𝑠𝑙𝑜𝑡𝑠 symbols, the 𝑁𝑠𝑙𝑜𝑡𝑠 symbols will be repeated 

𝑀𝑖𝑑𝑒𝑛𝑡𝑖𝑐𝑎𝑙
𝑁𝑃𝑈𝑆𝐶𝐻 − 1 times before continuing mapping as stated in [1]. 

Where, 

Midentical
NPUSCH = {

min (⌈
Mrep

NPUSCH

2
⌉ , 4)   Nsc

RU > 1

1                                       Nsc
RU = 1

 

Nslots = {
1                               ∆f = 3.75kHz
2                                  ∆f = 15kHz

 

 

The resource allocation information in uplink DCI format N0 for NPUSCH 

transmission indicates to a scheduled UE as stated in [3]. 

− A set of contiguously allocated subcarriers (nsc) of a resource unit determined 

by the Subcarrier indication field in the corresponding DCI,  

− A number of resource units (NRU) determined by the resource assignment field 

in the corresponding DCI according to Table 3.2-1. 

− A repetition number (NREP) determined by the repetition number field in the 

corresponding DCI according to Table 3.2-2. 

Figure 3.2-1 Resource element (k,l) in the resource grid 
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For NPUSCH transmission with subcarrier spacing ∆f = 15 kHz, the subcarrier 

indication field (Isc) in the DCI determines the set of contiguously allocated 

subcarriers (nsc) according to Table 3.2-3. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In this design the carrier spacing is assumed to be 15 kHz with no repetition which is 

left for future work. 

 

3.3. Channel estimation 

Standard supports different number of Demodulation reference signals (pilots) 

 1, 3,6and 12 each has its own parameter to be generated  

Demodulation reference signal 

 The reference signal sequence )(nru for 1RU
sc N  is defined by  

       NPUSCH UL

rep slots RU

1
( ) 1 1 2 mod16 , 0

2
ur n j c n w n n M N N      

Where the binary sequence  nc  shall be initialized with 35init c  at the start of the 

NPUSCH transmission. Where 16modNcell
IDNu   for NPUSCH format 1if group 

hopping is not enabled. 

IREP NREP 

0 1 

1 2 

2 4 

3 8 

4 16 

5 32 

6 64 

7 128 

IRU NRU 

0 1 

1 2 

2 3 

3 4 

4 5 

5 6 

6 8 

7 10 

Table 3.2-1 Number of resource units (NRU) for NPUSCH 

Subcarrier Indication Field (Isc) Set of allocated subcarriers (nsc) 

0 – 11 Isc 

12 – 15 3( Isc – 12) + {0, 1, 2} 

16 – 17 6( Isc – 16) + {0, 1, 2, 3, 4, 5} 

18 {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11} 

19 – 63 Reserved 

Table 3.2-2 Number of repetitions (NRep) for NPUSCH 

Table 3.2-3 Set of allocated sub-carriers 
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u     15,...,0 ww  

0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

1 1 -1 1 -1 1 -1 1 -1 1 -1 1 -1 1 -1 1 -1 

2 1 1 -1 -1 1 1 -1 -1 1 1 -1 -1 1 1 -1 -1 

3 1 -1 -1 1 1 -1 -1 1 1 -1 -1 1 1 -1 -1 1 

4 1 1 1 1 -1 -1 -1 -1 1 1 1 1 -1 -1 -1 -1 

5 1 -1 1 -1 -1 1 -1 1 1 -1 1 -1 -1 1 -1 1 

6 1 1 -1 -1 -1 -1 1 1 1 1 -1 -1 -1 -1 1 1 

7 1 -1 -1 1 -1 1 1 -1 1 -1 -1 1 -1 1 1 -1 

8 1 1 1 1 1 1 1 1 -1 -1 -1 -1 -1 -1 -1 -1 

9 1 -1 1 -1 1 -1 1 -1 -1 1 -1 1 -1 1 -1 1 

10 1 1 -1 -1 1 1 -1 -1 -1 -1 1 1 -1 -1 1 1 

11 1 -1 -1 1 1 -1 -1 1 -1 1 1 -1 -1 1 1 -1 

12 1 1 1 1 -1 -1 -1 -1 -1 -1 -1 -1 1 1 1 1 

13 1 -1 1 -1 -1 1 -1 1 -1 1 -1 1 1 -1 1 -1 

14 1 1 -1 -1 -1 -1 1 1 -1 -1 1 1 1 1 -1 -1 

15 1 -1 -1 1 -1 1 1 -1 -1 1 1 -1 1 -1 -1 1 

Table 3.3-1 Definition of W (n) 

The reference signal sequence for NPUSCH format 1 is given by: 

   nrnr uu   

The reference signal sequence for NPUSCH format 2 is given by 

    2,1,0,)(3  mnrmwmnr uu  

Where the sequence index chosen according to   3mod28

7

0















i

i
s inc  with Ncell

IDinit Nc  . 

Reference signal sequence for 1RU
sc N  

The reference signal sequences )(nru for 1RU
sc N is defined by a cyclic shift   of a base 

sequence according to  

( ) 4 RU

sc( ) , 0j n j n

ur n e e n N     , 

If group hopping is not enabled, the base sequence index u  is given by higher layer 

parameters threeTone-BaseSequence, sixTone-BaseSequence, and twelveTone-

BaseSequence for 3RU
sc N , 6RU

sc N , and 12RU
sc N , respectively. If not signalled by 

higher layers, the base sequence is given by 

















12for 30mod

6for 14mod

3for 12mod

RU
sc

Ncell
ID

RU
sc

Ncell
ID

RU
sc

Ncell
ID

NN

NN

NN

u

 

The cyclic shift   for 3RU
sc N  and 6RU

sc N  is derived from higher layer parameters 

threeTone-CyclicShift and sixTone-CyclicShift, respectively, as defined in Table 

below. For 12RU
sc N , 0 .  
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Table 3.3-2 Definition of ɸ (n) for Nsc =3 

Table 3.3-3 Definition of ɸ (n) for Nsc =6 
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u  )11(),...,0(   

0 -1 1 3 -3 3 3 1 1 3 1 -3 3 

1 1 1 3 3 3 -1 1 -3 -3 1 -3 3 

2 1 1 -3 -3 -3 -1 -3 -3 1 -3 1 -1 

3 -1 1 1 1 1 -1 -3 -3 1 -3 3 -1 

4 -1 3 1 -1 1 -1 -3 -1 1 -1 1 3 

5 1 -3 3 -1 -1 1 1 -1 -1 3 -3 1 

6 -1 3 -3 -3 -3 3 1 -1 3 3 -3 1 

7 -3 -1 -1 -1 1 -3 3 -1 1 -3 3 1 

8 1 -3 3 1 -1 -1 -1 1 1 3 -1 1 

9 1 -3 -1 3 3 -1 -3 1 1 1 1 1 

10 -1 3 -1 1 1 -3 -3 -1 -3 -3 3 -1 

11 3 1 -1 -1 3 3 -3 1 3 1 3 3 

12 1 -3 1 1 -3 1 1 1 -3 -3 -3 1 

13 3 3 -3 3 -3 1 1 3 -1 -3 3 3 

14 -3 1 -1 -3 -1 3 1 3 3 3 -1 1 

15 3 -1 1 -3 -1 -1 1 1 3 1 -1 -3 

16 1 3 1 -1 1 3 3 3 -1 -1 3 -1 

17 -3 1 1 3 -3 3 -3 -3 3 1 3 -1 

18 -3 3 1 1 -3 1 -3 -3 -1 -1 1 -3 

19 -1 3 1 3 1 -1 -1 3 -3 -1 -3 -1 

20 -1 -3 1 1 1 1 3 1 -1 1 -3 -1 

21 -1 3 -1 1 -3 -3 -3 -3 -3 1 -1 -3 

22 1 1 -3 -3 -3 -3 -1 3 -3 1 -3 3 

23 1 1 -1 -3 -1 -3 1 -1 1 3 -1 1 

24 1 1 3 1 3 3 -1 1 -1 -3 -3 1 

25 1 -3 3 3 1 3 3 1 -3 -1 -1 3 

26 1 3 -3 -3 3 -3 1 -1 -1 3 -1 -3 

27 -3 -1 -3 -1 -3 3 1 -1 1 3 -3 -3 

28 -1 3 -3 3 -1 3 3 -3 3 3 -1 -1 

29 3 -3 -3 -1 -1 -3 -1 3 -3 3 1 -1 

 

Table 3.3-4 Definition of Definition of ɸ (n) for Msc = Nsc 
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3RU
sc N  6RU

sc N  

threeTone-

CyclicShift 
  

sixTone-

CyclicShift 
  

0 0  0 0  

1 3/2  1 6/2  

2 3/4  2 6/4  

  3 6/8  

 

Table 3.3-5 Definition of α 

 

3.4. IDFT 

For each symbol 𝑥(0),  𝑥(1), … , 𝑥(𝑀𝑠𝑦𝑚𝑏
𝑙𝑎𝑦𝑒𝑟

− 1) will be divided into 

𝑀𝑠𝑦𝑚𝑏
𝑙𝑎𝑦𝑒𝑟

/𝑀𝑠𝑐
𝑁𝑃𝑈𝑆𝐶𝐻 sets each set represents a SC-FDMA pre-coded by the following 

equation  

y(𝑙 ∙ 𝑀𝑠𝑐
𝑁𝑃𝑈𝑆𝐶𝐻 + 𝑘) =

1

√𝑀𝑠𝑐
𝑁𝑃𝑈𝑆𝐶𝐻

 ∑ 𝑥(𝑙 ∙ 𝑀𝑠𝑐
𝑁𝑃𝑈𝑆𝐶𝐻 + 𝑖)𝑒

−𝑗
2𝜋𝑖𝑘

𝑀𝑠𝑐
𝑁𝑃𝑈𝑆𝐶𝐻

𝑀𝑠𝑐
𝑁𝑃𝑈𝑆𝐶𝐻−1

𝑖=0

 

 

𝑘 = 0, … , 𝑀𝑠𝑐
𝑁𝑃𝑈𝑆𝐶𝐻 − 1 (𝑖𝑑𝑓𝑡 𝑝𝑜𝑖𝑛𝑡𝑠 𝑑𝑒𝑝𝑒𝑛𝑑 𝑜𝑛 𝑀𝑠𝑐

𝑁𝑃𝑈𝑆𝐶𝐻) 

 

𝑙 = 0, … ,
𝑀𝑠𝑦𝑚𝑏

𝑙𝑎𝑦𝑒𝑟

𝑀𝑠𝑐
𝑁𝑃𝑈𝑆𝐶𝐻 − 1 

 

Resulting in a block of complex-valued symbols 𝑦(0), … ,  𝑦(𝑀𝑠𝑦𝑚𝑏
𝑙𝑎𝑦𝑒𝑟

− 1). 

Where 𝑀𝑠𝑐
𝑁𝑃𝑈𝑆𝐶𝐻 = 𝑁𝑠𝑐

𝑅𝑈and, 𝑁𝑠𝑐
𝑅𝑈 is the number of allocated subcarriers can be 

determined from the Table 3.9. 

 

 

NPUSCH format ∆𝒇 𝑵𝒔𝒄
𝑹𝑼 𝑵𝒔𝒍𝒐𝒕𝒔

𝑼𝑳  𝑵𝒔𝒚𝒎𝒃𝒐𝒍𝒔
𝑼𝑳  

1 15 kHz 

1 16 

7 
3 8 

6 4 

12 2 
Table 3.4-1 Number of subcarriers per RU 

Resource units are used to describe the mapping of the NPUSCH to resource 

elements. A resource unit is defined as 𝑁𝑠𝑙𝑜𝑡𝑠
𝑈𝐿 ∗  𝑁𝑠𝑦𝑚𝑏𝑜𝑙𝑠

𝑈𝐿  consecutive SC-FDMA 

symbols in the time domain and, 𝑁𝑠𝑐
𝑅𝑈 consecutive subcarriers in the frequency 

domain, where 𝑁𝑠𝑙𝑜𝑡𝑠
𝑈𝐿 , 𝑁𝑠𝑦𝑚𝑏𝑜𝑙𝑠

𝑈𝐿 , and 𝑁𝑠𝑐
𝑅𝑈, are given by Table 3-9. 

In our design we assumed working with NPUSCH format 1 with 15 KHz spacing. 
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3.5. Mapper 

According to 3GPP Narrow band LTE standard Release 14 the modulation 

scheme used for uplink is either BPSK or QPSK depends on the channel condition to 

minimize the bit error rate (BER). 

 BPSK: 

Modulating a single bit into a symbol and map it to the constellation according to the 

following Table: 

 

b(i) I Q 

0 1/√2 1/√2 

1 -1/√2 -1/√2 

Table 3.5-1 BPSK real and imaginary values 

 

Figure 3.5-1 BPSK constellation 

 QPSK: 

Modulating 2 bits to a symbol and map it to the constellation according to the 

following Table: 

 

b(i),b(i+1) I Q 

00 1/√2 1/√2 

01 1/√2 -1/√2 

10 -1/√2 1/√2 

11 -1/√2 -1/√2 

Table 3.5-2 QPSK real and imaginary values 
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Figure 3.5-2 QPSK constellation 

 

3.5.1. Clock Domain Crossing 

 

A clock domain crossing occurs whenever data is transferred from a flip-flop 

driven by one clock to a flip-flop driven by another clock. This will occur if there is a 

change in phase, frequency or both of them. Leading to a meta-stability region 

between the 2 clock domains. 

 

Figure 3.5-3 Example of 2 clock domains 

 

Meta-Stability: 

 

One of the biggest problems due to CDC is meta-stability because the time 

available for a signal keeps changing for each edge pair. Hence, even if the timing is 

met for some specific pairs of clock edges, there is quite a likelihood that for some 

other pair of edges, the setup or hold might not be met. Also, the extent of violation 

would keep varying across different pairs. Thus, sometimes the setup and hold 

requirements would be met with sufficient slack, sometimes they would be just met, 

sometimes they would be just violated and sometimes, there would be gross 

violations. 

 

 
Figure 3.5-4 Meta-stability region 
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Figure 3.5-5 Meta-stability effect 

 

Problems of Meta-stability region: 

 Setup and hold time violations which lead to data corruption. 

 Short circuit path is established between supply and ground if an input to a set 

of CMOS transistors is some way between ‘0’ and ‘1’. 

 Error propagation along the receiver chain. 

 

Proposed solution to Clock Domain Crossing (CDC) problem: 

 Synchronizer (two flip-flops). 

 RAM 

 FIFO 

 

3.5.1.1. Synchronizer 

 

Synchronization is the solution to the above problem as the main 

responsibility of a synchronizer is to allow sufficient time such that any meta-sable 

output can settle down to a stable value in the destination clock domain. The most 

common synchronizer used by designers is Double Flop (2-FF) synchronizers. 

 

 
Figure 3.5-6 Two flip-flop synchronizers 

The main problem of the synchronizer is the data loss due to the change in frequency 

between the 2 clock domains. 
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Let’s consider 2 scenarios for the data loss problem: 

 

A. Slow to fast crossing: 

 

Considering a situation, where the source flop is generating the data at a lower 

frequency. And, the destination flop is getting triggered by a faster clock. In this case, 

before the source flop generates another data, the destination flop would have 

sampled the previous data. Thus, for slow to fast crossing, there might not be a risk of 

data loss. However, if the destination clock is only marginally faster than the source 

clock, the data loss risk would still be there. This happens because once the edges of 

the two clocks are almost aligned they will come very close together for next several 

cycles. 

 
Figure 3.5-7 Setup and hold time violations due to CDC 

to ensure no loss of data, it is required to take care of all kinds of uncertainty. The 

factors that cause this uncertainty are: 

 Setup requirement of the destination flop. 

 Hold requirement of the destination flop. 

 Clock Jitter for both launch and capture clock. 

 Path delay differential for fastest and slowest path from the launch to the 

capture. 

 

B. Fast to slow crossing: 

 

Consider a situation, where the source flop is generating the data at a higher 

frequency. And, the destination flop is getting triggered by a slower clock. In this 

case, before the destination flop captures a data, the source clock would have 

launched the next data. Thus, for fast to slow crossing, there is always a risk that only 

intermediate data might get captured, and, several data might get lost. 

 

3.5.1.2. FIFO 

 

Data Loss can be prevented using FIFO (First in First out) based mechanism. 

FIFO based mechanism is very useful for either of the two situations:  

 The two clocks have very close frequency.  

 The data launch is in bursts, i.e. after launching several data in consecutive 

cycles, it then becomes quiet for several cycles. In such cases, even if the launch clock 

is faster than the capture clock, the FIFO based mechanism can be found to be useful. 

The data launched in the bursts keep getting stored in the FIFO. While, the launch 

side becomes quiet, the capture side keeps picking up the data stored in the FIFO. 
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Figure 3.5-8 FIFO as a solution to CDC 

 

3.5.1.3. FIFO structure 

The FIFO is a 2 port memory which input and the output bit stream is in the 

same sequence. However, the address of this memory cannot be accessed from its 

interfaces. The data is entered or read each clock cycle using Read and Write enables. 

It also has 2 signals to indicate that either the FIFO is full or empty to prevent writing 

or reading from it if there is no free memory to write or no data to read. 

 

3.5.1.4. FIFO Depth 

Size of the FIFO basically refers to the amount of data available at a given 

time. In asynchronous FIFO this depends on both read and write clock domain 

frequencies and number of data written and read (data rate). Data rate can vary 

depending on the two-clock domain operation and requirement and of course 

frequency. The worst case condition is the maximum data rate difference between 

read and write clock. This can happen when data rate of writing operation is 

maximum and for read operation data rate is minimum. 

 

𝐹𝐼𝐹𝑂 𝑆𝑖𝑧𝑒 = 𝐷𝑚𝑎𝑥 −  
𝐷𝑚𝑎𝑥 ∗  𝐹𝑟𝑒𝑎𝑑 ∗  𝐷𝑟𝑒𝑎𝑑

𝐹𝑤𝑟𝑖𝑡𝑒 ∗ 𝐷𝑤𝑟𝑖𝑡𝑒
 

 

Where: 

 Dmax is the maximum number of words that could be written. 

 Fread is the read frequency. 

 Fwrite is the write frequency. 

 Dread is the number of words that is read each clock cycle. 

 Dwrite is the number of words that is written each clock cycle. 

 

In the case of NB-LTE uplink receiver the FIFO based solution is used. 

 

3.6. Scrambler 

Scrambler mainly consists of two linear feedback shift registers which simply 

generating an L=31- Golden Sequence C(n) by 2 paths of flip flops which initialized 

by two different values as shown in figure 3.6-1.  
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For each code word q , the block of bits )1(),...,0( )(
bit

)()( qqq Mbb , where 
)(

bit
qM  is the 

number of bits transmitted in code word q  on the physical uplink shared channel in 

one sub frame, shall be scrambled with a UE-specific scrambling sequence prior to 

modulation, resulting in a block of scrambled bits )1(
~

),...,0(
~ (q)

bit
)()( Mbb qq . 

)()( ic q
 Is the scrambling sequence and to get the required output, the first LFSR shall 

be initialized withx1(0) = 1, x1(n) = 0 , n=1,2,….30. 

While the second LFSR shall be initialized with

 
cell
ID

9
s

1314
RNTIinit 2222 Nnqnc                                                                    

Where RNTIn  corresponds to the RNTI associated with the PUSCH transmission. 

Figure 3.6-1 Scrambler architecture according to standard 

3.7.  Data multiplexing and Channel Interleaver 

In narrowband interleaving is applied per resource unit without any control 

information in order to apply a time-first rather than frequency-first mapping, where 

the input sequence is the portion of e for a resource unit instead of f 

1. Data and control multiplexing: 

 

The inputs to the data and control multiplexing are the coded bits of the control 

information denoted by 13210 ,...,,,,  CQIL QNqqqqq and the coded bits of the UL-SCH 

denoted by 13210 ,...,,,, Gfffff . The output of the data and control multiplexing 

operation is denoted by 
13210

,...,,,,
H

ggggg , where  CQIL QNGH   and 

 mL QNHH  /  , and where
i

g , 1,...,0  Hi  are column vectors of length  Lm NQ  . H 

is the total number of coded bits allocated for UL-SCH data and CQI/PMI 

information across the LN  transmission layers of the transport block. 

In narrowband Qm is 1 for π/2-BPSK and 2 for π/4-QPSK, NL=1. 

We will skip the control part so QcQiwill be take value Zero. 
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in the case of single transport block transmission, and assuming that LN  is the number 

of layers onto which the UL-SCH transport block is mapped, the control information 

and the data shall be multiplexed as follows: 

Set i, j, k to 0 

 

While Gi   -- place the data 
T

NQiik Lm
ffg ] ... [ 1  

Lm NQii   

1 kk  

end while 
 

 

2. Channel interleaver 

The input to the channel interleaver are denoted by 
1210

,...,,,
H

gggg , 

RI

Q

RIRIRI

RI
qqqq

1210
,...,,,


 and 

ACK

Q

ACKACKACK

ACK

qqqq
1210

,...,,,


. In case where more than one 

UL-SCH transport block are transmitted in a sub-frame of an UL cell, the HARQ-

ACK and RI information are multiplexed with data on both UL-SCH transport blocks.  

The number of modulation symbols per layer in the sub-frame is given by 
'
RItotal QHH  . The output bit sequence from the channel interleaver is derived as 

follows: 

(1) Assign   UL

slots

UL

symb 1 NNCmux    to be the number of columns of the matrix. The 

columns of the matrix are numbered 0, 1, 2,…, 1muxC  from left to right. 

Nsymb
UL is the number of SC-FDMA symbols for NPUSCH in a UL resource 

unit. 

(2) The number of rows of the matrix is   muxLmtotalmux CNQHR /  and we 

define  Lmmuxmux NQRR  / . 

The rows of the rectangular matrix are numbered 0, 1, 2,…, 1muxR  from 

top to bottom. 

(3) Write the input vector sequence, for k = 0, 1,…, 1H , into the 

 muxmux CR   matrix by sets of  Lm NQ   rows starting with the vector 
0

y  in 

column 0 and rows 0 to  1 Lm NQ : 



























)1(2)1(1)1()1(

1221

1210

muxmuxmuxmuxmuxmuxmuxmux

muxmuxmuxmux

mux

CRCRCRCR

CCCC

C

yyyy

yyyy

yyyy









 

 

The pseudocode is as follows: 

Set i, k to 0. 

While k < H  , 

if 
i

y  is not assigned to RI symbols 

ki
gy   

k = k + 1 
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end if 

i = i+1 

end while 

(4) The output of the block interleaver is the bit sequence read out column by 

column from the  muxmux CR   matrix. The bits after channel interleaving 

are denoted by 1210 ,...,,,  RIL QNHhhhh . 

3.8. Rate De-Matching 

 

Figure 3.8-1 Rate matching Block diagram 

The Block is divided into the main blocks  

1. Sub-block interleaver: is defined for each output stream from Turbo coding. The 

streams include a systematic bit stream 𝑑𝑘 (0), a parity bit stream 𝑑𝑘 (1) and an 

interleaved parity stream 𝑑𝑘 (2) coming from turbo-encoder. 

The bit stream )0(
kd is interleaved according to the first sub-block interleaver with an 

output sequence defined as 
)0(

1

)0(
2

)0(
1

)0(
0 ,...,,,

K
vvvv and where  TC

subblock
TC
subblock CRK    

The bit stream )1(
kd  is interleaved according to the second sub-block interleaver with 

an output sequence defined as
)1(

1

)1(
2

)1(
1

)1(
0 ,...,,,

K
vvvv . 

The bit stream )2(
kd  is interleaved according to the third sub-block interleaver  with an 

output sequence defined as
)2(

1

)2(
2

)2(
1

)2(
0 ,...,,,

K
vvvv . 

The bits input to the block interleaver are denoted by )(
1

)(
2

)(
1

)(
0 ,...,,,

i
D

iii
dddd  , where D is 

the number of bits. The output bit sequence from the block interleaver is derived as 

follows: 

(1) Assign 32TC
subblockC to be the number of columns of the matrix. The columns of 

the matrix are numbered 0, 1, 2,…, 1TC
subblockC from left to right. 

(2) Determine the number of rows of the matrix TC
subblockR , by finding minimum 

integer 
TC

subblockR  such that: 
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 TC
subblock

TC
subblock CRD   

The rows of rectangular matrix are numbered 0, 1, 2,…, 1TC
subblockR from top to bottom. 

(3) If   DCR TC
subblock

TC
subblock  , then  DCRN TC

subblock
TC
subblockD   dummy bits are 

padded such that yk = <NULL> for k = 0, 1,…, ND - 1. Then, )(i
kkN dy

D
 , k = 0, 1,…, 

D-1, and the bit sequence yk is written into the  TC
subblock

TC
subblock CR   matrix row by row 

starting with bit y0 in column 0 of row 0: 



























)1(2)1(1)1()1(

1221

1210

TC
subblock

TC
subblock

TC
subblock

TC
subblock

TC
subblock

TC
subblock

TC
subblock

TC
subblock

TC
subblock

TC
subblock

TC
subblock

TC
subblock

TC
subblock

CRCRCRCR

CCCC

C

yyyy

yyyy

yyyy









 

For )0(
kd and )1(

kd : 

 

(4) Perform the inter-column permutation for the matrix based on the pattern

   1,...,1,0  TC
subblockCj

jP  that is shown in Table 3.8-1, where P(j) is the original column 

position of the j-th permuted column. After permutation of the columns, the inter-

column permuted  TC
subblock

TC
subblock CR   matrix is equal to 



























TC
subblock

TC
subblock

TC
subblock

TC
subblock

TC
subblock

TC
subblock

TC
subblock

TC
subblock

TC
subblock

TC
subblock

TC
subblock

TC
subblock

TC
subblock

TC
subblock

TC
subblock

CRCPCRPCRPCRP

CCPCPCPCP

CPPPP

yyyy

yyyy

yyyy

)1()1()1()2()1()1()1()0(

)1()2()1()0(

)1()2()1()0(









 

 

(5) The output of the block interleaver is the bit sequence read out column by 

column from the inter-column permuted  TC
subblock

TC
subblock CR  matrix. The bits after sub-

block interleaving are denoted by
)(

1

)(
2

)(
1

)(
0 ,...,,,

i

K

iii
vvvv


, where )(

0
i

v  corresponds to )0(Py ,

)(
1

i
v  to TC

subblockCP
y

)0(
… . 

For )2(
kd : 

(6) The output of the sub-block interleaver is denoted by
)2(

1

)2(
2

)2(
1

)2(
0 ,...,,,

K
vvvv , where 

)(
)2(

kk yv   and where 

  







































 KRkC

R

k
Pk TC

subblock
TC
subblockTC

subblock

mod1mod)(  

The permutation function P is defined in Table 3.8-1. 

 

Number of columns 
TC
subblockC  

Inter-column permutation pattern 

 )1(),...,1(),0( TC
subblockCPPP  

32 

< 0, 16, 8, 24, 4, 20, 12, 28, 2, 18, 10, 26, 6, 

22, 14, 30, 1, 17, 9, 25, 5, 21, 13, 29, 3, 19, 

11, 27, 7, 23, 15, 31 > 

Table 3.8-1 Inter-column permutation pattern for sub-block interleave  
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2. Bit collection: is used to concatenate the three bit streams 𝑣𝑘𝜋 (0) , 𝑣𝑘𝜋 (1) and 

 𝑣𝑘(2) which represent the systematic bit stream, parity bit stream and interleaved 

parity stream respectively together at the circular buffer. 

 

(1) The circular buffer of length  KK w 3  for the r-th coded block is generated as 

follows: 

(2) )0(
kk vw   for k = 0,…, 1K  

(3) )1(
2 kkK vw 

 for k = 0,…, 1K  

(4) )2(
12 kkK vw 

 for k = 0,…, 1K  

 

3. Bit selection: extracts consecutive bits from the circular buffer to the extent that 

fits into the assigned physical resource. Combined with the Turbo coding, the 

circular buffer can puncture or repeat the collected coded bits to achieve an 

alterable channel coding rate under different scenarios.      

Denoting by E the rate matching output sequence length for the r-th coded block, and 

rvidx the redundancy version number for this transmission (rvidx = 0, 1, 2 or 3), the rate 

matching output bit sequence is ke , k = 0,1,..., 1E . 

Define by G the total number of bits available for the transmission of one transport 

block. 

Set  mL QNGG    

NL is equal to the number of layers a transport block is mapped onto 

Set CG mod , where C is the number of code blocks 

if 1 Cr  

set  CGQNE mL /  

else 

set  CGQNE mL /  

end if 

In narrowband C=1 

Set


























 2

8
20 idxTC

subblock

cbTC
subblock rv

R

N
Rk , where TC

subblockR the number of rows is  

Set k = 0 and j = 0 

while {k < E} 
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if  NULLw
cbNjk mod)( 0

 

cbNjkk we mod)( 0
  

k = k +1 

end if 

j = j +1 

end while 

wcb KN   for UL-SCH 

 

3.9. Encoder 

      According to 3GPP narrowband LTE IOT Standard release 14 for UL-SCH 

channel codding is turbo coding with rate 1/3 as show in Table 3.9-1   
 

TrCH Coding scheme Coding rate 

UL-SCH 

Turbo coding 1/3 

DL-SCH 

PCH 

MCH 

SL-SCH 

SL-DCH 

BCH Tail biting 

convolutional 

coding 

1/3 
SL-BCH 

Table 3.9-1 Usage of channel coding scheme and coding rate 

Turbo Encoder is consisting of two recursive Convolutional Encoder and one Turbo 

internal interleaver, the overall code rate is approximately r = 1/3. Figure 3.9-1 shows 

a 3GPP turbo encoder. 
 

 
Figure 3.9-1  Structure of rate 1/3 turbo encoder (dotted lines apply for trellis termination only) 
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Convolutional Encoder 

The two convolutional encoders used in the Turbo code are identical with generator 

polynomials 

𝐺(𝐷) = [1,
𝑔1(𝐷)

𝑔0(𝐷)
]           

 𝑔0(𝐷) = 1 + 𝐷2 + 𝐷3        

  

𝑔1(𝐷) = 1 + 𝐷 + 𝐷3        

  

The data bits are transmitted together with the parity bits generated by two constituent 

convolutional encoders. Prior to encoding, both the convolutional encoders are set to 

all zero state, each shift register is filled with zeros.  The turbo encoder consists of an 

internal inter-leaver which interleaves the input data bits c1, c2 …….ck   to c´1, c´2 

…….  c´k which are then input to the second constituent encoder. Thus, the data is 

encoded by the first encoder in the natural order and by the second encoder after 

being interleaved. The systematic output of the second encoder is not used and thus 

the output of the turbo coder is serialized combination of the systematic bits ck, parity 

bits from the first (upper) encoder ZK and parity bits from the second encoder Z´k for 

k = 1, 2, …K. 

After all the data bits K have been encoded, trellis termination is performed by 

passing tail bits from the constituent encoders bringing them to all zeros state. To 

achieve this, the switches in Figure 3.13 are moved in the down position. Because of 

the interleaver, the states of both the constituent encoders will usually be different, so 

the tail bits will also be different and need to be dealt separately. 

 

For tails bits the transmitted bit stream includes not only the tail bits {Xk+1, X k+2, 

Xk+3} corresponding to the upper encoder but also tail bits corresponding to the lower 

encoder {X´k+1, X´k+2, X´k+3}. In addition to these six tail bits, six corresponding 

parity bits {Zk+1, Zk+2, Zk+3} and {Z´k+1, Z´k+2, Z´k+3} for the upper and lower encoder 

respectively are also transmitted. First, the switch in the upper (first) encoder is 

brought to lower (flushing) position and then the switch in the lower (second) 

encoder. The tail bits are then transmitted at the end of the encoded data frame. 

According to 3GPP release 14 the tail bits’ sequence is: 

 

𝑑𝑘 
(0)

=  𝑥𝑘 , 𝑑𝑘+1 
(0)

=  𝑧𝑘+1, 𝑑𝑘+2 
(0)

=  𝑥′𝑘, 𝑑𝑘+3 
(0)

=  𝑧′𝑘+1      

𝑑𝑘 
(1)

=  𝑧𝑘, 𝑑𝑘+1 
(1)

=  𝑥𝑘+2, 𝑑𝑘+2 
(1)

=  𝑧′𝑘, 𝑑𝑘+3 
(1)

=  𝑥′𝑘+1      

𝑑𝑘 
(2)

=  𝑥𝑘+1, 𝑑𝑘+1 
(2)

=  𝑧𝑘+2, 𝑑𝑘+2 
(2)

=  𝑥′𝑘+1, 𝑑𝑘+3 
(2)

=  𝑧′𝑘+2    

  

 

For number of input bits K, the total length of the encoded bit sequence now becomes 

3K+12, 3K being the coded data bits and 12 being the tail bits. The code rate of the 

encoder is thus 

 r = K / (3K+12). However, for large size of input K, the fractional loss in code rate 

due to tail bits in negligible and thus, the code rate is approximated at 1/3. 
 

Internal inter-leaver 

The bits input to the turbo code internal inter-leaver are denoted by 𝐶0, 𝐶1, 𝐶2, … 𝐶k-1, 

where K is the number of input bits = TBS + 24 CRC bits.  
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The relationship between the output index (𝑖) and the input index 𝑖 according to the 

following equation is:  

𝜋(𝑖) = (𝑓1 ∗ 𝑖 + 𝑓2 ∗ 𝑖2)% 𝑘 

Where 𝑓1 and 𝑓2 are constants depending on K (TBS + 24 CRC bits), Table 3.9-2 

shows standard values for 𝑓1 and 𝑓2 for every K, the size of the input data ranges 

from 40 to 2560 bits for NB-LTE. 

 

i K 1f  2f  i K 1f  2f  i K 1f  2f  

1 40 3 10 48 416 25 52 95 1120 67 140 

2 48 7 12 49 424 51 106 96 1152 35 72 

3 56 19 42 50 432 47 72 97 1184 19 74 

4 64 7 16 51 440 91 110 98 1216 39 76 

5 72 7 18 52 448 29 168 99 1248 19 78 

6 80 11 20 53 456 29 114 100 1280 199 240 

7 88 5 22 54 464 247 58 101 1312 21 82 

8 96 11 24 55 472 29 118 102 1344 211 252 

9 104 7 26 56 480 89 180 103 1376 21 86 

10 112 41 84 57 488 91 122 104 1408 43 88 

11 120 103 90 58 496 157 62 105 1440 149 60 

12 128 15 32 59 504 55 84 106 1472 45 92 

13 136 9 34 60 512 31 64 107 1504 49 846 

14 144 17 108 61 528 17 66 108 1536 71 48 

15 152 9 38 62 544 35 68 109 1568 13 28 

16 160 21 120 63 560 227 420 110 1600 17 80 

17 168 101 84 64 576 65 96 111 1632 25 102 

18 176 21 44 65 592 19 74 112 1664 183 104 

19 184 57 46 66 608 37 76 113 1696 55 954 

20 192 23 48 67 624 41 234 114 1728 127 96 

21 200 13 50 68 640 39 80 115 1760 27 110 

22 208 27 52 69 656 185 82 116 1792 29 112 

23 216 11 36 70 672 43 252 117 1824 29 114 

24 224 27 56 71 688 21 86 118 1856 57 116 

25 232 85 58 72 704 155 44 119 1888 45 354 

26 240 29 60 73 720 79 120 120 1920 31 120 

27 248 33 62 74 736 139 92 121 1952 59 610 

28 256 15 32 75 752 23 94 122 1984 185 124 

29 264 17 198 76 768 217 48 123 2016 113 420 

30 272 33 68 77 784 25 98 124 2048 31 64 

31 280 103 210 78 800 17 80 125 2112 17 66 

32 288 19 36 79 816 127 102 126 2176 171 136 

33 296 19 74 80 832 25 52 127 2240 209 420 

34 304 37 76 81 848 239 106 128 2304 253 216 

35 312 19 78 82 864 17 48 129 2368 367 444 

36 320 21 120 83 880 137 110 130 2432 265 456 

37 328 21 82 84 896 215 112 131 2496 181 468 

38 336 115 84 85 912 29 114 132 2560 39 80 

Table 3.9-2 NB-LTE standard inter-leaver constants  
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3.10. Cyclic Redundancy Check (CRC) 

    According to Release 14 specifications, the parity bits are generated by one of 

the following cyclic generator polynomials:   

- gCRC24A(D) = [D24 + D23 + D18 + D17 + D14 + D11 + D10 + D7 + D6 + D5 + D4 + D3 + D + 1] and; 

- gCRC24B(D) = [D24 + D23 + D6 + D5 + D + 1] for a CRC length L = 24 and; 

- gCRC16(D) = [D16 + D12 + D5 + 1] for a CRC length L = 16. 

- gCRC8(D) = [D8 + D7 + D4 + D3 + D + 1] for a CRC length of L = 8. 

y when code (D) is added onlCRC24B(D) is added after each code block, gCRC24AWhere g

is attached to the Master Information Block  CRC16block segmentation is applied, g

(MIB) and Downlink Control Information (DCI) messages is employed by  and8 CRCg

some uplink channels (PUCCH and PUSCH) for transmitting Channel Quality 

Indicator (CQI) information.  

 

For NB-IOT maximum ULSH (uplink shared channel) with maximum TBS=2536 bits 

while the maximum transmitted code block size Z before segmentation =6144 

.” polynomial equation is usedCRC24Atherefore “g 

 

s (D) iCRC24Aegmentation to code blocks and gshows transport block s 1-103. Figure

added to each code block. 

 

 

Figure 3.10-1 Block segment and CRC attached 
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3.11. Equalizer  

In our project we split the equalizer block into two blocks, channel estimation block 

and equalization block. Equalization block in this case is very simple, it’s just a divider. It 

reflects the channel effect by divide the symbols corrupted by the channel estimated through 

channel estimation block. As we mentioned we have a power and cost constraints so we use 

memory-based architecture to use one complex divider. Complex divider is done using 

restoring algorithm. Equalizer takes input symbols from resource element De-mapper block 

and the channel information from the channel estimation block and divides symbols by 

channel pilots to produce the correct symbols to IDFT block.  

In LTE uplink grid as shown in Figure 3.11-1, pilots are generated in the 4th symbol in each 

slot so we save 1st three symbols in memory and wait for channel information from channel 

estimation. When receiving channel information in equalizer we saved it in memory and wait 

for other 3 symbols to be generated. 

Symbols/Sub-

carriers 

Symbol1 Symbol2 Symbol3 Pilots Symbol5 Symbol6 Symbol7 

Sub-carrier1        

Sub-carrier2        

Sub-carrier3        

Sub-carrier4        

Sub-carrier5        

Sub-carrier6        

Sub-carrier7        

Sub-carrier8        

Sub-carrier9        

Sub-carrier10        

Sub-carrier11        

Sub-carrier12        

Figure 3.11-1 Uplink Grid for each slot in LTE 
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We assumed a stair case channel for equalization, we receive the channel in symbol 4 only so 

we can assume it a linear channel and give each symbol a factor depending on the space 

between the channel or we simply assumed that the whole slot sees the same channel 

(coherence time is bigger than the slot time) and this is the stair case approximation, the next 

slot will face another channel factor so we save the channel for each slot.  

 

 

 

 

 

 

 

 

 

 

Figure 3.11-2 Stair case approximation for equalization process 
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Chapter 4  

Design Architecture and interfaces 
 

4.1.  Synchronization (Time and frequency offset estimation) 

4.1.1. Top level 

 

 

4.1.2. Block interface 

 

  

Signal name Direction Description Size (bits) 

SYN_in_Real input Real input data 16 

SYN_in_Imag input Imaginary input data 16 

SYN_in_CLK input clock 1 

SYN_in_reset input reset signal 1 

SYN_out_freq_off output Estimated time offset 20 

SYN_out_valid output Valid out to the correction block 1 

Table 4.1-1 Time and frequency offset estimation interface signals 

  Figure 4.1-1 Time and frequency offset estimation Top Level 
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4.1.3. Architecture 

Figure 4.1-2 Architecture of the time and frequency offset estimation block 

4.1.4. Operation 

 First of all, the incoming data (real and imaginary) is collected in the real and 

imaginary buffers. 

 According to the standard, the cyclic prefix length is (L=2) so the buffer is 

designed to out four values I_real [i], I_real[i+1], I_real[i+N+1], I_real[i+N+2] 

Where N is the FFT points (symbol length).  

 The correlation block performs equation (2) in chapter 2 on the real and 

imaginary data coming from the real and imaginary buffers. 

 The energy block performs equation (3) on the real and imaginary data coming 

from the real and imaginary buffers. 

 If we look at equation (4) and equation (5) we will notice that it’s required to get 

the magnitude and phase of the correlation out and here comes the rule of the 

CORDIC block in its vectoring mode. 

 The out of the CORDIC blocks takes a specific number of cycles according to the 

number of bits and accuracy needed as will be discussed later, but to perform 

equation (4) we need the output from the CORDIC and the output from the 

energy block to be input at the SUM block at the same time and since the output 

of the energy block comes earlier, we need a delay block. 
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 The peak detector block gets the maximum of the input data according to equation 

(4) and then gets the phase according to this value and this will be the frequency 

offset estimated. 

4.1.5. Sub blocks design 

4.1.5.1. Correlation sub block 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.1-3 Correlation block design 

 

4.1.5.2. Complex multiplier 

For multiplying two complex numbers (real_1 + j imag_1) and(real_2 + j imag_2) 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.1-4 Complex multiplier design  
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4.1.5.3. CORDIC sub-block 

As mentioned before, the CORDIC is an iterative algorithm so the output value of 

each iteration depends on the input from the last iteration. 

The number of iterations is choosed according to the number of bits and accuracy 

needed. For example, if the number of bits is 16 bits then we will not need more than 

15 iterations to get a very high accuracy. But we can get an acceptable accuracy using 

less number of iterations. 

The CORDIC can be designed using two approaches: 

1. A unit for each iteration 

Figure 4.1-5 First Internal architecture of CORDIC sub block 

The cost for this implementation is: 

 Three ADD/SUB ALU units for each iteration.  

 Shift operations: hardwired. 

But typically, with a pipeline registers after each iteration, we can get a very high 

throughput. 

2. Only one unit and feedback.
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Figure 4.1-6 Second Internal architecture of CORDIC sub block 

The cost for this implementation is: 

 Very low throughput (n times less).  

 The shifter is variable and costs logic. 

But of course, this design has lower area compared to the first one. 

4.1.6. Results 

4.1.6.1. CORDIC results 

The first approach is the one implemented in the frequency estimation block. The 

CORDIC block was implemented first on MATLAB to see the effect of increasing the 

number of iterations on the error. 

 

Figure 4.1-7 MATLAB results for CORDIC block 
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4.1.6.2. CORDIC RTL results 

The design was tested with 80 complex numbers. 

 

Figure 4.1-8 RTL results of the CORDIC block 

The last figure shows inputs and outputs of the CORDIC block. Each output takes 9 

cycles (number of iterations +1).  

 The inputs and outputs (real and imaginary) are represented in 17 bits (5 bits 

integer and 12 fraction) as this is the out from the correlation block. 

 The input and output angles are represented in 20 bits (12 bits integer and 8 bits 

fraction). 

The outputs are taken from the RTL and transformed from fixed point into decimal 

then compared to MATLAB and the results were as follows. 

 

Figure 4.1-9 Ideal out magnitude 

 

Figure 4.1-10 RTL out magnitude 

 

Figure 4.1-11 Ideal out phase 

 

Figure 4.1-12 RTL out phase 

The average error between the ideal outputs and the RTL outputs for magnitude and 

phase is calculated. 
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 Average error for magnitude = 0.0032 

 Average error for phase = 0.1443 

4.1.6.3. Block results 

To test the whole block, we have to assume that there’s a dummy transmitter that 

sends the data and that the data has passed through a channel and suffered from time 

and frequency shift. 

The block was first implemented on MATLAB and it was found that it gives very 

good and accurate results for the timing offset if the FFT points and cyclic prefix 

length are very large. 

For example,  

 FFT points = 1024 

 Cyclic prefix length = 128 

 Number of symbols = 7 

 Assumed frequency offset of 0.25 

 Assumed timing offset of 4  

Figure 4.1-13 MATLAB results for time and frequency offset estimation 

The peaks in the last figure defines the start of every symbol and the corresponding 

value on the frequency plot represents the frequency offset and it’s the same for each 

symbol.
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In our case, the FFT points and the cyclic prefix length are not very large so the 

correlation doesn’t give very accurate results for timing offset that’s why the block is 

implemented in RTL with only offset estimation and it’s assumed that there is no 

timing offset. 

Frequency offset estimated from MATLAB = 0.2591 rad = 14.8 deg. 

 

Figure 4.1-14 RTL results of the synchronization block 

Frequency offset = 20’hff105 (fixed point representation of 12 bits integer and 8 bits 

fraction). 

Frequency offset in decimal = -14.98 deg. 

The output is negative to be input directly to the next block. 

4.1.6.4. Synthesis results 

The block was synthesized on Xilinx and DC compiler and the results were as 

follows. 

 

Figure 4.1-15 Synchronization block area report 
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Figure 4.1-16 Synchronization block power report 

 

 

 

Figure 4.1-17 Synchronization block total slack 
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4.2. CP removal and offset correction architecture 

4.2.1. Top level 

 

 

 

 

Figure 4.2-1 CP removal and offset correction Top Level 

4.2.2. Block interface 

 

Table 4.2-1 CP removal and offset correction interface signals 

4.2.3. Architecture 

 

Signal name Direction Description Size (bits) 

CP_in_real input Real input data 16 

CP_in_imag input Imaginary input data 16 

CP_in_angle input Frequency offset estimated from synchronization block 20 

CP_in_valid input Valid input indicated that the offset is valid 1 

CP_in_CLK output clock 1 

CP_out_real output Real output to the FFT block 20 

CP_out_imag output Imaginary  output to the FFT block 16 

CP_out_valid output Valid out to the FFT block 16 



55 

 

 

Figure 4.2-2 Architecture of CP removal and offset correction block 

4.2.4. Operation 

 The cyclic prefix is removed by controlling which address to read from the real 

and imaginary buffers. 

 To correct the offset, we have to multiply the input by (e−j2πεk/N) and here comes 

the rule of the CORDIC block in its rotation mode. 

4.2.5. Sub blocks design 

The CORDIC block has the same design mentioned before with an additional unit that 

is responsible for pre rotation of the input angle to be in the range of  

(− 
π

4
 ,

π

4
 )  as the CORDIC block works only if the angle of rotation is in this range. 

Figure 4.2-3 CORDIC sub block internal design  
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4.2.6. Results 

The block was integrated with the frequency estimation block and tested with the 

output of it then the results were compared to MATLAB. 

 

 

Figure 4.2-4 Timing diagram for the RTL output after CP removal and offset correction 

 

Figure 4.2-5 Ideal real out 

 

Figure 4.2-6 RTL real out 

 

Figure 4.2-7 Ideal imaginary out 

 

Figure 4.2-8 RTL imaginary out 

The average error is calculated for the real and imaginary outputs. 

 Average error for real = 0.0034 

 Average error for imaginary = 0.0027
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4.3. Fast Fourier Transform (FFT) 

4.3.1. Top level 

 

 

 

 

 

 

 

 

 

 

 

 

 

4.3.2. Block Interface 

   

Signal name Direction Description Size 

FFT_in_real Input FFT input real part 16 

FFT_in_imag Input FFT input imaginary part 16 

clock Input FFT input clock 1 

FFT_enable Input FFT block enable 1 

FFT_reset Input FFT block reset 1 

FFT_out_real Output FFT output real part 16 

FFT_out_imag Output FFT output imaginary part 16 

FFT_valid_out Output Signal indicates that output is valid 1 

FFT_out_done Output Signal indicates that output is done 1 

Table 4.3-1 FFT block interface signals 

Figure 4.3-1 FFT Top Level 
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Algorithm 

FFT has a lot of algorithms to be implemented but since our project is NB-IOT LTE we 

have a power and cost constraints so we choose the Cooley-Tukey algorithm in our design as it 

provides low cost and complexity.  

Cooley-Tukey algorithm is a divide and conquer algorithm. Divide means break the 

given problem into sub problems of the same size and Conquer means recursively solve these 

sub problems. It combines the answers in at the end of the algorithm and generate the output. 

Number of stages to generate the output is log2 N where N is the data size. 

Two methods to compute Cooley-Tukey algorithm: 

1- Decimation in time.  

2- Decimation in frequency. 

Those two methods give nearly same throughput but differ in input/output pattern. 

1- Decimation in time 

FFT can be performed using DFT of even and odd points. Its input is out of order and its 

output is in order. 

Figure 4.3-2 Decimation in time divide and conquer algorithm 
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2- Decimation in frequency 

FFT can be decomposed using a first-half/second-half approach. Its input is ordered and 

its output is out of order. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

We choose decimation in frequency for easier integration between blocks due to ordered input 

and we can re-arrange the output through output buffer. 

Figure 4.3-3 Decimation in frequency divide and conquer algorithm 
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 Figure 4.3-4 shows the signal flow graph of our architecture. Output is in order due to ordering 

in buffering phase. Next section shows the detailed architecture and operation for FFT block. 

 

 

 

  

 

Figure 4.3-4 Time/space-embedded (TSE) signal flow graph of the 16-point memory-based FFT 
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4.3.3. Architecture  

A faster way to implement the FFT is to use 16 multipliers to compute each stage in one 

cycle results in a log2 N cycles and this is the fastest way but it has a large power consumption 

and large cost due to the 16 multipliers. In our project NB-IOT power and cost are constraints so 

we won’t use 16 multipliers we will use only one multiplier to reduce the power and cost. 

We choose memory-based architecture as shown in Figure 4.3-5. This is a lower speed method 

but speed is not our constraint. 

 

 

 

 

 

 

Figure 4.3-5 FFT memory-based architecture 
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4.3.4. Operation 

 Preload Phase: load data x[2r] and x[2r+1] into the rth address of RAM A and RAM C, 

respectively. 

Where r=0,1…, 
N

4
− 1 and N is the number of points for FFT operations. 

 Decomposition phases: ( (log2 N) − 1 ) decomposition stages are required for an N-point 

FFT processor. In the first decomposition stage, data is read from address r = 0 to 

address r =
N

2
− 1 of RAM A and RAM C, and rest of data is read from the external 

input buffer. In the second stage computation data is read from the four RAMs. The N-

point FFT is decomposed into two N/2-point FFTs, the upper and the lower FFT. Upper 

and lower are the same procedure with different inputs. The subsequent decomposition 

operation can be executed in a similar fashion until the last decomposition operation is 

completed. 

 Buffering phase: this phase reorders the output sequence through the RAMs. 

 

The below figure shows the whole operation for the memory-based FFT.

Figure 4.3-6 Flow chart of the Finite state machine control unit for the proposed 16-bit FFT 
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4.3.5. Results 

We use fixed point representation to can deal with floating point numbers. Floating point 

representation is more complex because of the infinite probability of the point place, so we need 

a complex processor to can deal with a floating point accurately 100%. In our project NB-IOT 

we have constraints on power and cost so we used fixed point. We choose 12-bits fraction and 4-

bits integer based on best accuracy and range of numbers will be around one so 4-bits will fit 

well. 

Real values 

 

 

 

 

 

 

 

 

 

 

Imaginary values 

Figure 4.3-7 Real Values for FFT output 

Figure 4.3-8 Imaginary Values for FFT output 
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We can see that the outputs are nearly the same, due to fixed point accuracy there is 

some error but it’s nearly zero. 

4.3.6. Synthesis Results 

FFT is synthesised using Xilinx ISE and Synopsis Design Complier at clock equal to 

10MHz. 

The result are as follows for Area, Power and Timing.

 

 

Figure 4.3-9 Result of RTL 

Figure 4.3-10 Area report for the 16-bits FFT 
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Figure 4.3-11 Power report for the 16-bits FFT 

Figure 4.3-12 Timing report for the 16-bits FFT 
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4.4. Resource Elements De-mapper 

4.4.1. Top level 

4.4.2. Block interface 
 

 

Signal Name Direction Description Size 

RED_in_real input Resource element De-mapper input real part 16 

RED_in_imag input Resource element De-mapper input imaginary part 16 

RED_in_clock input Resource element De-mapper input clock 1 

RED_in_reset input RED reset 1 

RED_in_enable input RED enable 1 

Isc input allocated set of subcarriers from an upper layer 6 

RED_out_real output RED output real part 16 

RED_out_img output RED output imaginary part 16 

RED_out_isRefrence output 
to determine if the signal is a reference signal or 

data 
1 

RED_out_done output RED done operation 1 

RED_in_SymbolNum input current SCFDMA symbol number in the slot 2 

Table 4.4-1 Resource elements De-mapper interface signals 

Figure 4.4-1 Resource elements de-mapper Block Top-level 
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4.4.3. Architecture 

 The Resource Elements De-mapper consists of A single RAM and a 

control unit as shown in Figure 4.4.1-1 which gives the control signals 

according and addresses to the given upper layer input Isc.  

 

 

4.4.4. Operation 

 The resource elements de-mapper stores the FFT output and chooses 

the correct set of allocated subcarriers as mentioned before according to the 

Table 3.2-3. It operates serially by collecting the symbols provided by FFT 

then output the correct set of subcarriers to the next block also is tells the 

Channel Estimation block if the data is a reference signal in order for it to get 

them.  

Figure 4.4-2 Resource elements de-mapper Architecture 
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4.4.5. Results 

 Shown below the results of the RTL simulation and MATLAB model results for several cases 

 At Isc = 3 

 

 

 

 At Isc = 12 

 

Figure 4.4-3 RTL output waveforms for RED block at single subcarrier mode 

Figure 4.4-4 MATLAB output for RED model at single subcarrier mode 

Figure 4.4-5 RTL output waveforms for RED block at 3 subcarriers mode 

Figure 4.4-6 MATLAB output for RED model at 3 subcarriers mode 
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 At Isc = 16 

 

 

 

 

At Isc =  18 

 

 

Figure 4.4-10 MATLAB output for RED model at 12 subcarriers mode 

Figure 4.4-8 MATLAB output for RED model at 6 subcarriers mode  

Figure 4.4-7 RTL output waveforms for RED block at 6 subcarriers mode  

 

 

 

Figure 4.4-9 RTL output waveforms for RED block at 12 subcarriers mode 
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4.4.6. Synthesis 

 

 

 

Figure 4.4-11 Area report for RED Block 

Figure 4.4-12 Timing report for RED Block 

Figure 4.4-13 Power report for RED Block 
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4.5. Channel estimation 

4.5.1. Top level 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.5-1 Channel estimator Top Level 

4.5.2. Block interface 

Signal name Direction Description Size (bits) 

CH_in_real input Real input from resource element De-mapper 16 

CH_in_imag input 
Imaginary input from resource element De-

mapper 
16 

CH_in_Ncell_id input Cell ID(upper layer parameter) 9 

CH_in_three_tone input First slot (upper layer) 20 

CH_in_valid input 
Indicates that the inputs from resource element 

De-mapper are valid 
1 

CH_in_clk input clock 1 

CH_in_reset input reset signal 1 

CH_in_enable input Enable signal 1 

CH_out_real output Real outputs for estimated channel 16 

CH_out_imag output Imaginary outputs for estimated channel 16 

CH_out_valid output 
Input to the equalizer that indicates that the 

channel is estimated and ready 
1 

Table 4.5-1 Channel estimator interface signals 
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4.5.3. Architecture 

Figure 4.5-2 Architecture of channel estimator 

 

4.5.4. Operation 

 When the (CH_in_valid) signal is high, this means that the values of the pilots 

from the resource element De-mapper are ready and valid. 

 The control unit outputs enable signal to the pilot’s generator so it starts 

calculating the pilots according to the upper layer inputs. 

 When the pilots are done the pilot, generator outputs a valid signal to the control 

unit. 

 The control unit enables the write signal into the real and imaginary buffers. 

 When all pilots are generated, the control unit enables the read signal from the real 

and imaginary buffers and the complex divider starts to divide the incoming pilots 

by the generated pilots to get an estimate of the channel at the pilots’ positions. 

4.5.5. Sub blocks design 

4.5.5.1. Pilots generator sub block 

an exponential equation and to implement this we used the CORDIC block in its 

rotation mode with the real input equals to(one) , the imaginary input equals to(zero) 

and the angle input comes from a combinational unit that calculates the angle 

according to the upper layer inputs. 

The Ф (n) Tables mentioned before in the standard part are stored in LUTs. 

The block was first designed with a CORDIC block for each pilot so the pilots were 

generated at the same time which means high throughput (speed) but of course very 

high area and power consumption. 

So, the block was then designed with only one CORDIC block so the area is reduced 

but each pilot is generated each nine cycles. 
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4.5.6. Results 

4.5.6.1. MATLAB and RTL 

The block was tested to generate pilots at the following parameters: 

 NcellID = 1 

 Three tone cyclic shift = 0 

 

Figure 4.5-3 MATLAB results for three pilots 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.5-5 RTL results of the imaginary part of the three pilots 

 

Figure 4.5-4 RTL results for real part of the three pilots 
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4.5.6.2. Synthesis results 

 

 

Figure 4.5-6 Channel estimation area report 

 

 

Figure 4.5-7 Channel estimation power report 
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4.6. Equalizer 

 

4.6.1. Top level 

4.6.2. Block interface 

 

Signal Direction Description Size 

EQ_in_real Input  Equalizer input real part 12 

EQ_in_imag Input Equalizer input imaginary part 12 

Channel_in_real Input Channel Information real part 12 

Channel_in_imag Input 
Channel Information imaginary 

part 
12 

Clock Input Equalizer clock 1 

EQ_enable Input Equalizer enable 1 

EQ_reset Input Equalizer reset 1 

IDFT_done Input 
Input from next block to handle 

integration between them 
1 

EQ_out_real Output Equalizer output real part 12 

EQ_out_imag Output Equalizer output imaginary part 12 

EQ_valid_out Output Signal indicates the valid output  1 

EQ_out_done Output 
Signal indicates the end of the 

output 
1 

Table 4.6-1 Equalizer interface signals  

Figure 4.6-1 Equalizer block Top Level 
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4.6.3. Architecture 

We design our own architecture, memory-based architecture is simply a memory and divider 

with multiplexing between symbols and a control Unit to control the whole design. 

We tried 2 approaches, first approach rate is higher than the next block, IDFT, so when we 

started integration this architecture failed because IDFT work symbol by symbol so we 

modified it to fit with IDFT block.  

First Architecture 

 

Control unit 

Control unit is simple in the first approach; it saves the 1st three symbols waiting for the 

channel information to be stored. Symbol 5 is then stored and symbol 1 is out through the 

complex divider. Figure 4.6-3 shows the whole states of the control unit of the equalizer in 

first approach.  

Figure 4.6-2 Architecture of the first approach for Equalizer 
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As we said, this approach out the symbols in sequential way and the IDFT block needs one 

symbol at a specific time because IDFT is memory-based so it takes more than one cycle to 

generates the output. 

Second approach is to save the 7 symbols (6 symbols and the channel information), out the 

first symbol and wait for IDFT to end and out symbol 2 and so on.  Figure 4.6-4 shows the 

architecture of the second approach which is the final approach of the Equalizer and Figure 

4.6-5 shows the control unit of the second approach.

Figure 4.6-3 Flow chart for the control unit of the first approach of Equalizer 



78 

 

Second Architecture (Final Architecture) 

 

Final approach is memory-based too but with a waiting state as shown in Figure 4.6-5. It 

allows the equalizer to wait for IDFT to be done and send the current symbol and so on. 

Figure 4.6-4 The Final Architecture of the Equalizer 
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Control Unit  

  

Figure 4.6-5 The Control Unit for the final approach of the equalizer 
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4.6.4. Synthesis results 

 

Area unit is µm2. Area is very big due to the area of complex divider. Complex 

Divider consists of 6 multipliers and a lot of adders so it takes a big area. In general, 

the Equalizer block is the most complex block in the whole chain due to its function, 

it predicts and undo the channel effect. 

Figure 4.6-6 Area report for the Equalizer 

Figure 4.6-7 Power report for the Equalizer 
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Figure 4.6-8 Timing report for the Equalizer 
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4.7. Inverse Discrete Fourier Transform (IDFT) 

4.7.1. Top level 

 

 

 

4.7.2. Block interface 
 

 

 

4.7.3. Architecture 

 Memory based architecture as in [13] was implemented as it is the most 

suitable choice for low power implementation which is the main goal in case of IoT 

systems, this reduces the area, power, and test cost. Memory-based architecture 

usually performs the FFT in serial, i.e. one butterfly operation at a time instead of 

more than one in parallel, and this result in a low area cost for implementing the 

Signal Name Direction Description Size 

IDFT_in_real input IDFT input real part 16 

IDFT_in_imag input IDFT input imaginary part 16 

IDFT_in_clock input IDFT input clock 1 

IDFT_in_reset input IDFT reset block 1 

IDFT_in_enable input IDFT enable block 1 

IDFT_in_N input Choose between 1/3/6/12-IDFT operation 2 

IDFT_out_real output IDFT output real part 16 

IDFT_out_imag output IDFT output imaginary part 16 

IDFT_out_done output IDFT done operation 1 

IDFT_out_validOut output IDFT Output is valid 1 

Table 4.7-1 IDFT Interface signals 

Figure 4.7-1 IDFT block Top-level 
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memory-based FFT processor and also using single port memories which requires 

lower power than dual port memories the design was modified to perform IDFT. 

 

 As shown in figure 4.7-2, Data path of this design consists of four single port 

RAMs to store and compute intermediate results of the 3,6,12-point IFFT, seven 

multiplexers, two adders, one multiplier, one ROM, and one controller. 

  

The four single-port RAMs are used for buffering the computational data. The 

multiplexers are responsible for switching the data flow between the storage and 

arithmetic components.  

 The adder and multiplier execute the computation of the two-point IFFT. The 

ROM stores the twiddle factors. The addend and augend of the left adder can be 

changed by controlling the Ch signal. For example, if Ch=0, then the adder executes 

A-B. However, if Ch=1, then the adder executes B-A. A controller, generates the 

controlling signals for the multiplexers and the four RAMs. 

 

 The subtraction unit was modified by adding another control signal which 

shifts right (multiplies by 1/2) the subtrahend to satisfy the 2nd stage in radix-3 which 

implicated that the input to the subtraction unit i.e. subtrahend should be multiplied by 

1/2. 

Figure 4.7-2 IDFT Memory based Architecture 
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Another modification is a division unit at the output to contribute the division in the 

IDFT equation controlled by signal N which chooses the mode of operation 1/3/6/12-

IDFT which simply is a multiplexer and a multiplier by 1/3 working as the following 

pseudo code. 

 

 

If N=0  

 Bypass the data to output directly 

Else if N=1 (divide by 3) 

 Pass the data to multiply by 1/3 then to output 

Else if N=2 (divide by 6) 

 Pass the data shifted right once to multiply by 1/3 then to output 

Else if N=3 (divide by 12) 

 Pass the data shifted right twice to multiply by 1/3 then to output 
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4.7.4. Operation 

 As discussed before the NB-IoT supports different number of subcarriers in format 1, 

1-IDFT, 3-IDFT, 6-IDFT, and 12-IDFT therefor a mixed radix algorithm from radix-2 and 

radix-3 will be implemented as was stated in [13]. 

Figure 4.7-3 and 4.7-4 show the signal flow graph of radix-2 and radix-3. 

 

 

 

 

 

 

   

 

 Taking 4 bits for integer value and 12 bits for fraction value for twiddle factors and output for  

 high SQNR. 

SFG for 3-IDFT, 6-IDFT and 12-IDFT are shown in Figures 4.7-5, 4.7-6 and 4.7-7 

respectively.  

 

 

  

 Legend: 

   Data in is written into the address k of the memory V at the ith clock 

   and the data of the address k of the memory V is read to Out at the  

   jth clock. 

 

Figure 4.7-5 3-IDFT SFG 
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Figure 4.7-6 6-IDFT SFG 

 

 Figure 4.7-7 12-IDFT SFG
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The following FSM in Figure 4.7-8 shows the operation of the IDFT block and how the 1/3/6/12-

IDFT was implemented. 

 

 

States: 

 Preload state:  the needed input data are loaded in memory. 

 Decomposition states: the radix-2 stages in case of 12-IDFT 2 stages in case 

of 6-IDFT just 1 stage. 

 3-Points states: the radix-3 stages which are included in all cases except 

 1-IDFT. 

 Buffering state: the output is reordered and delivered to next block in the 

 chain.

Reset Preload Buffering

1st 
Decomposit

ion

2nd 
Decopositio

n

3-Points
1st State

3-Points
3rd  State

1/X

1/3 1/2 1/1

1/0

0/X

3-Points
2nd  State

X

0/X

Reset signal/N Where N:
0 = 1-point IDFT
1 = 3-point IDFT
2 = 6-point IDFT

3 = 12-point IDFT

Figure 4.7-8 IDFT control unit FSM 
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4.7.5. Results 

 Several test cases were conducted and compared with MATLAB model shown in the 

figures below the output of the simulator at 1/3/6/12-IDFT.  

 

12-IDFT simulation results on RTL and MATLAB.  

 

 

 

 6-IDFT simulation results on RTL and MATLAB 

 

 

 

Figure 4.7-9 RTL output waveforms of IDFT block at 12-IDFT operation 

Figure 4.7-10 MATLAB output of IDFT model at 12-IDFT operation 

Figure 4.7-11 RTL output waveforms of IDFT block at 6-IDFT operation 

Figure 4.7-12 MATLAB output of IDFT model at 6-IDFT operation 
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 3-IDFT simulation results on RTL and MATLAB 

 

 

 1-IDFT simulation results on RTL and MATLAB 

 

Figure 4.7-14 RTL output waveforms of IDFT block at 3-IDFT operation 

Figure 4.7-13 MATLAB output of IDFT model at 3-IDFT operation 

Figure 4.7-15 RTL output waveforms of IDFT block at 1-IDFT operation 

Figure 4.7-16 MATLAB output of IDFT model at 1-IDFT operation 
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4.7.6. Synthesis

Shown below the area, power and timing reports 

 

 

 

 

 

 

  

Figure 4.7-17 Area report of IDFT Block 

Figure 4.7-19 Power Report for IDFT Block 

Figure 4.7-18 Timing report of IDFT Block 
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4.8. De-mapper & FIFO 

4.8.1. De-mapper 

4.8.1.1. Top level 

Figure 4.8-1 De-mapper block diagram 

4.8.1.2. Block interfaces 

 

Signal Name Direction Description Size 

in_real input real part input from IDFT 8 

in_imag input imag part input from IDFT 8 

in_start input indicates valid data 1 

in_Done input indicates that data transmission is over 1 

in_full input From FIFO to hold operation 1 

o_LLR_1 output bit-0 soft output to FIFO to be saved 8 

o_LLR_2 output bit-1 soft output to FIFO to be saved 8 

o_hold output 
from De-mapper to IDFT to hold 

operation  
1 

o_WE output to enable writing data to FIFO 1 

Table 4.8-1 De-mapper interfaces 

4.8.1.3. Operation 

This block is a combinational block that takes I and Q values from IDFT and output 

the probability of the bit represented in 8 bits. Negative values represent zeros 

probability and positive values represent one’s probability. Taking the advantage of 

symmetry in the QPSK and BPSK constellations, the imaginary part (Q) can be 

considered as the probability of bit [0] and the real part to be considered as the 

probability of bit (1). So, for BPSK only the real part is containing information, 

however for QPSK both real and imaginary are containing information. 
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4.8.1.4. Simulation Results 

 

Figure 4.8-2 De-mapper RTL results 

 

4.8.1.5. Synthesis results 

 

 

Figure 4.8-3 Area Report of the De-mapper 

 

 

 

 

Figure 4.8-4 Power report of the De-mapper 
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4.8.2. FIFO 

4.8.2.1. Top level 

 

Figure 4.8-5 FIFO top level 

4.8.2.2. Block interfaces 

 

Signal Name Direction Description Size 

in_data_1 input input data from De-mapper (real real) 8 

in_data_2 input input data from De-mapper (imag part) 8 

in_clock_1 input write clock (slow one) 1 

in_clock_2 input read clock (fast one) 1 

in_WE input Write enable 1 

in_RE input Read enable 1 

in_mode input 0 for BPSK and 1 for QPSK 1 

in_reset input reset signal (active low) 1 

o_data output Output data to the descrambler 8 

o_full output to indicates that the FIFO is full 1 

o_empty output to indicates that the FIFO is empty 1 

Table 4.8-2 FIFO interfaces 
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4.8.2.3. Architecture 

 

 

Figure 4.8-6 FIFO Architecture 

4.8.2.4. Operation 

 The FIFO block is added to solve the CDC problem as the QPSK contains 2 

bits so the rate is different before and after the de-mapper. The de-mapper converts 

the symbol into 2 bits and writes them in the FIFO in parallel, as the FIFO has 2 input 

ports. Then the descrambler activates the read enable to read the data bits one by one 

using higher frequency clock. 

 The FIFO has 2 signals to indicate either empty, full or none of them. When 

the FIFO is full a hold signal is activated to hold the de-mapper until the descrambler 

read some data. Also the descrambler operation is stopped if the FIFO is empty. The 

FIFO is a circular FIFO to make the best use of the memory.  

 

4.8.2.5. Simulation results 

Comparing the FIFO input with the output operating with different frequencies: 

 

Figure 4.8-7 FIFO input data 

 

Figure 4.8-8 FIFO output 
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4.8.2.6. Synthesis report 

 

 

Figure 4.8-9 FIFO area report 

 

Figure 4.8-10 FIFO power report 

 

Figure 4.8-11 FIFO timing report for clock 1 

 

Figure 4.8-12 FIFO timing report for clock 2 
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4.9. Descrambler 

4.9.1. Top level 

 

Figure 4.9-1 Descrambler block diagram 

4.9.2. Block interface 

Signal name Direction Description Size (bits) 

DESC_in_data input input bits from De-mapper 8 

DESC_in_Ncell_id input Cell ID(upper layer parameter) 9 

DESC_in_RNTI input Radio Network Identifier(upper layer) 16 

DESC_in_ns input First slot (upper layer) 4 

DESC_in_nf input First frame(upper layer) 1 

DESC_in_clk input clock 1 

DESC_in_reset input reset signal 1 

DESC_in_empty input 
Input from De-mapper indicates that the 

FIFO is not empty 
1 

DESC_in_enable input Enable signal 1 

DESC_out_data output Out data to the DE rate matching 8 

DESC_out_valid output Indicates that the out data is valid 1 

DESC_out_read_enable output 
Read enable signal to the De-mapper to 

enable reading from the FIFO 
1 

Table 4.9-1 Descrambler interface signals 
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4.9.3. Architecture 

 

Figure 4.9-2 Scrambler architecture 

4.9.4. Operation 

 The control part calculates the initializations for each LFSR according to the upper layer 

input parameters. 

 The difference in the scrambler between the uplink and downlink is that in the uplink the 

descrambler receives soft input from the De-mapper not hard input and it also outputs soft 

output. 

 The Golden sequence is generated bit by bit by xoring the first two bits of the LFSRs 

 Instead of xor gate at the output, there’s a MUX that outputs the input as it is or flipped 

according to the scrambling bit. 

 Polynomial of LFSR1 =  1 + D +  D2  +  D3  +  D31 

 Polynomial of LFSR2 =  1 +  D3  +  D31 

4.9.5. Results 

4.9.5.1. RTL results 

The descrambler was tested at the following upper layer parameters 

 RNTI =65535  

 NcellID = 504    

 nf = 1 

 ns = 28 

 

Figure 4.9-3 RTL results of descrambler block 
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4.9.5.2. Synthesis results 

 

Figure 4.9-4 Descrambler area report 

 

Figure 4.9-5 Descrambler power report 

 

 

Figure 4.9-6 Descrambler total slack 
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4.10. Data De-multiplexing and Channel De-interleaver 

4.10.1. Top level 

 

 

 

Figure 4.10-1 Data De-multiplexing and Channel De-interleaver block diagram 

4.10.2. Block interface 

 

Signal name Direction Description Size 

INT_in_data input Data In for channel de-interleaver 8 

INT_in_H input The number of modulation symbols 13 

INT_in_Qm input Modulation order parameter 1 

INT_in_slots input The number of columns of the matrix 4 

INT_in_reset input Reset for channel de-interleaver 1 

INT_in_clk input Clock for channel de-interleaver 1 

INT_in__enable input Enable signal 1 

INT_in__valid input valid data signal 1 

INT_out_data output Data Out for channel de-interleaver 8 

INT_out_ready output Ready flag 1 

Table 4.10-1 Data De-multiplexing and Channel De-interleaver interface signals 
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4.10.3. Architecture 

4.10.3.1. Data flow according to standard description  

 

 

Figure 4.10-2 Basic Data flow  for  Data De-multiplexing and Channel De-interleaver according to standard  

Design consists of: 

 De-interleaver Block supports BPSK and QPSK modes, also handles variable number of 

columns and rows. 

 De-multiplexing Block takes one stream in BPSK Case and pass it on, and takes two 

streams and combined them in one in QPSK case. 

 

4.10.3.2. Our proposed Architecture 

 

 

Figure 4.10-3 Our proposed architecture for Data De-multiplexing and Channel De-interleaver 
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Figure 4.10-4 Architecture control unit for Data De-multiplexing and Channel De-interleaver 

 

Figure 4.10-5 Flow chart of control unit for Data De-multiplexing and Channel De-interleaver 

The Design consists of: 

 One RAM support Data size starts from 144*8bit and multiple of that size  

As 144 referred to the data exists in one frame and * (8 bits) to support soft Data.  

 Control unit to perform the de-multiplexing and de-interleaving operations.
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4.10.3.2.1. Control unit 

Control unit consists of: 

 Finite State Machine (FSM): is the brain of the block and it handles controlling signal for 

all the memory and address calculating unit required in each state. 

 Address calculating unit: create the address or manipulate the existing address to 

calculate the new address. 

Multi-operation could happen on the address at the same clock cycle. 

Containing adders/subtractor, comparators and one multiplier Block 

This unit changes the de-multiplexing and de-interleaving sequence according to the 

upper layer parameters Qm which determine BPSK or QPSK Case and the Number of 

slots which change number of columns and rows. 

4.10.3.2.2. Structural issues in our proposed architecture 

1. We merge the de-multiplexing process and the de-interleaving process together. 

2. We calculate the address in BPSK case every clock cycle, and in QPSK case we calculated it 

at the first clock cycle and write the data of the second clock cycle at the address+1 then we 

calculate the new address again at the new first clock cycle. 

4.10.3.3. Another proposed Architecture 

 Same pervious architecture but we write in the memory column by column and read it row by 

row to reduce the complexity of address calculations but this design need S/P converter at the 

input data path and P/S converter at the output data path. 

But such solution will need that memory to has maximum dimension in both columns and rows 

and such memory will consume large area and power and there is need for that as there always 

large part of it will never be used . 

 

4.10.4. Operation according to previous FSM 

1. Get the valid signal and the upper layer parameters. 

2. Calculate the number of columns and the  rows  . 

3. Start filling the RAM according the sequence required in this case of parameters. 

4. If the RAM is fully filled start the write process . 

5. If all data out wait till you get  new valid signal and upper layer parameters to start 

working again . 

4.10.5. Challenges and enhancement 

 Merge the de-multiplexing process and the de-interleaving process together decrease power 

and area. 

4.10.6. Testing Results 

Results in decimal form 



103 

 

 

4.10.6.1. Test case1 

 QM=1(QPSK case) 

 Number of slots=2 (columns=12) 

 H=144 

4.10.6.1.1. RTL Simulation result 

 

Figure 4.10-6 RTL wave form  for test case 1 in Data De-multiplexing and Channel De-interleaver 

 

 

Figure 4.10-7 RTL memory data   for test case 1 in Data De-multiplexing and Channel De-interleaver 

4.10.6.1.2. MATLAB Simulation result 

 

 

Figure 4.10-8 MATLAB memory data   for test case 1 in Data De-multiplexing and Channel De-interleaver 
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4.10.6.2. Test case2 

 QM=0(BPSK case) 

 Number of slots=4 (columns=24) 

 H=144 

4.10.6.2.1. RTL Simulation result 

 

Figure 4.10-9 RTL wave form  for test case 2 in Data De-multiplexing and Channel De-interleaver 

 

Figure 4.10-10 RTL memory data   for test case 2 in Data De-multiplexing and Channel De-interleaver 

 

4.10.6.2.2. MATLAB Simulation result 

 

 

Figure 4.10-11 MATLAB memory data   for test case 2 in Data De-multiplexing and Channel De-interleaver 
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4.10.7. Synthesis result 

4.10.7.1. Area Report 

 

Figure 4.10-12 De-interleaver area report 

 

4.10.7.2. Power Report 

 

Figure 4.10-13 De-interleaver power report 

 

4.10.7.3. Timing Report 

 

Figure 4.10-14 De-interleaver time report 
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4.11. Rate De-matching for Turbo Decoder 

4.11.1. Top level 

 

Figure 4.11-1 Rate De-matching block diagram 

4.11.2. Block interface 

Signal name Direction Description Size 

RM_in_data input Input data for rate de- matching 8 

RM_in_G input The total number of actual transmitted data bits 13 

RM_in_TB input Transport block size for each interleaver 12 

RM_in_RSN input 
Retransmission number for each token at the 

DataIn port ( rvidx) 
1 

RM_in_clk input Clock for rate de-matching 1 

RM_in_reset input Reset for rate de-matching 1 

RM_in_valid input valid data signal 1 

RM_in_enable input Enable signal 1 

RM_out_data1 output First Output data after rate de-matching 8 

RM_out_data2 output second Output data after rate de- matching 8 

RM_out_data3 output Third Output data after rate de-matching 8 

RM_out_ready output Ready flag 1 

Table 4.11-1Rate De-matching interface signals 
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4.11.3. Architecture 

4.11.3.1. Architecture according to standard description  

 

 

 

Figure 4.11-2 Rate De-matching architecture according to standard  

This design consists of :   

 Control unit handles the  position calculation for the buffer  and addresses calculation for the 

three RAMs so that the deinterleaving and demultiplixing process has been excuted ,also 

handles their control signals. 

 Three RAMs to handle interleaving process each of  size ((2560+4)*8) to support 

larger(TB)added to the tail bits and  to pass soft data(8bits needed for each input) 

 The circular buffer concatenate the three stream so the size of it will be 

(3*larger(TB)+12bit)*8bits  =((3*2560)+12)*8= 61,536 bit. 

 We need extra block which  to memorize the dummy bits position to avoid write in the buffer 

in this position . 
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 Permutation sequence block to store in the sequence mentioned in the standard 

 Input multiplexer to fill the empty postion by zeros and no external input enter here the 

perivous block should stop the sending process. 

 

4.11.3.2. Our proposed Architecture 

 

 

Figure 4.11-3 Our proposed architecture for Rate De-matching 

 

Figure 4.11-4 Architecture control unit for Rate De-matching  
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Figure 4.11-5 Flow chart of control unit for Rate De-matching 

The Design consists of: 

 Three RAMs one for each sub block interleaver of size 2564 *8 each to support maximum 

transport block size and passing soft data.  

 Control unit to perform the bit selection, bit collection and de-interleaving operations. 

 Permutation sequence Block to save the sequence mentioned in the standard 

4.11.3.2.1. Control unit 

Control unit consists of: 

 Finite State Machine (FSM): is the brain of the block and it handles controlling signal for 

all the other units required in each state. 

 Address calculating unit: create the address or manipulate the existing address by 

addition, subtraction and shifting to calculate the new address. 

Multi-operation could happen on the address at the same cycle. 

This unit is that is directly connected to the permutation sequence Block. 

 Dummy bit counter to count the skipping cycle to be able to know when the zero filling 

of the data starts. 

 Input multiplexer same usage as explained before.  
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4.11.3.2.2. Structural issues in our proposed architecture  

 

1. In this design we removed the Circular buffer to reduce the huge area and power 

consumed by the buffer. 

So control unit now handles only the addresses for the three RAMs and their control signals. 

But that also introduce a difficulty of the starting point of the bit selection 

To solve this problem, we trace the starting point equation  



























 2

8
20 idxTC

subblock

cbTC
subblock rv

R

N
Rk  

We get that it takes only two values as rvidx takes also two values only 

So when rvidx=0, K0=2Rsubblock
TC  , this means we start filling in the first RAM From third 

permutation column 

And when rvidx=2, K0=50Rsubblock
TC  , this means we start filling in the second RAM From 

eighteenth permutation column because each sub block interleaver consist of  32column 

only. 

 

2. We calculate the address so the deinterleaving and demultiplixing process has been 

excuted 

So now we know that the Dummy bits exist at the begin of the memory so we only need 

for it extra counter  to get the correct input data size. 

We skip writing any thing in the memory at the Dummy bit cycles as we do not care 

about it also when we read the data. 

But we Still have to stop  the reading process at their adddresses cycle and this cause a 

gap between this block and the block before so extra control is needed to disable the 

block before and this problem exist also in the previous design according to the standard 

3. Also to minimize the combinational  in the third equation we trace it and  it gives same 

Permutation sequence saved +1 but in range of 5 bits only which means if 32 is reached 

make it 0,And then do the deinterleaving operation as the other two streams 

 

 

4.11.3.3. Another proposed Architecture 

Same pervious architecture but we write in the memory column by column and read it 

row by row to reduce the complexity of address calculations but this design need S/P converter at 

the input data path and P/S converter at the output data path. 
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4.11.4. Operation according to previous FSM 

6. Get the valid signal and the upper layer parameters 

7. Calculate the number of rows and the null size 

8.  get the starting point according to the upper layer input RSN  

9. Start filling the RAMs according to  the standard descripition of the filling 

sequence,While doing so keep count the null cycles 

10. If you reached the intial 1/3 rate that the decoder require to start it’s operation , start 

sending the three streams to the decoder  

11. If all data out wait till you get  new valid signal and upper layer parameters to start 

working again . 

4.11.5. Challenges and enhancement 

 All equations are executed without making any multiplication or divisions only used 

operations are addition, subtraction and shifting. 

 Removing the circular buffer and the Dummy position Blocks introduce diffeculity to the 

control unit block but improve both power and area . 

4.11.6. Testing Results 

Results in decimal form 

4.11.6.1. Test case1(No Zero filling) 

 TB=40(TBS = 44) 

 G = 132 

 RSN = 0 

4.11.6.1.1. RTL Simulation result 

 

 

Figure 4.11-6 RTL wave form for test case 1 in Rate De-matching 

 

Figure 4.11-7 RTL memory1 data   for test case 1 in Rate De-matching 
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Figure 4.11-8 RTL memory2 data   for test case 1 in Rate De-matching 

 

Figure 4.11-9 RTL memory3 data   for test case 1 in Rate De-matching 

 

4.11.6.1.2. MATLAB Simulation result 

 

Figure 4.11-10 MATLAB memory1 data   for test case 1 in Rate De-matching 

 

Figure 4.11-11 MATLAB memory2 data   for test case 1 in Rate De-matching 

 

Figure 4.11-12 MATLAB memory1 data   for test case 1 in Rate De-matching 

4.11.6.2. Test case2(Zero filling) 

 TB=40(TBS = 44) 

 G = 100 

 RSN = 0 
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4.11.6.2.1. RTL Simulation result 

 

Figure 4.11-13 RTL wave form for test case 2 in Rate De-matching 

 

Figure 4.11-14 RTL memory1 data   for test case 2 in Rate De-matching 

 

Figure 4.11-15 RTL memory2 data   for test case 2 in Rate De-matching 

 

Figure 4.11-16 RTL memory2 data   for test case 3 in Rate De-matching 

4.11.6.2.2. MATLAB Simulation result 

 

Figure 4.11-17 MATLAB  memory1 data   for test case 2 in Rate De-matching 

 

Figure 4.11-18 MATLAB  memory2 data   for test case 2 in Rate De-matching
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Figure 4.11-19 MATLAB memory3 data   for test case 2 in Rate De-matching 

 

4.11.7. Synthesis result 

 

 

Figure 4.11-20 Rate de-matcher area report 

 

 

 

Figure 4.11-21 Rate de-matcher power report 

 

Figure 4.11-22 Rate de-matcher timing report 
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4.11.8. Extra interconnection control unit  

 

 

Figure 4.11-23 Extra interconnection control unit block diagram 

 

Figure 4.11-24 Flow chart of extra interconnection control unit between Rate De-matching and Data De-

multiplexing and Channel De-interleaver 

The control unit consist of FSM only which handle the enable signals for the two blocks attached 

to it. 

This Finite state machine focuses on the writing state in the Data De-multiplexing and Channel 

De-interleaver which is the Reading state in Rate De-matching block. 
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4.12. Turbo Decoder 

4.12.1. Top level 

 

Figure 4.12-1 Turbo Decoder block diagram 

4.12.2. Block interfaces 

 

Signal name Direction Description Size 

DEC_in_Systematic input systematic vectors received from rate de-matcher 8 

DEC_in_Parity_1 input parity1 vectors received from rate de-matcher 8 

DEC_in_Parity_2 input parity2 vectors received from rate de-matcher 8 

DEC_in_TBS input Block size for interleaver and De-interleaver 12 

DEC_in_enable input handshake with rate de-matcher to start decoding 1 

DEC_in_clock input System clock 1 

DEC_in_reset input Asynchronous reset 1 

DEC_out_Hard_out output Stream output bits 1 

DEC_out_Done output Decoding is done 1 

DEC_out_CRC_enable output handshake with CRC block 1 

Table 4.12-1 Turbo decoder interface signals 
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4.12.3. Architecture  

 

Figure 4.12-2 Turbo decoder architecture 

 

4.12.4. Sub-Blocks & operation 

 

4.12.4.1. Branch matric (𝜸) 

 

Branch matric (γ) is the conditional probability that the received symbol is γk at time k 

and the current state is Sk = S, knowing that the state from which the connecting branch came 

was Sk−1 = S′. 

The trellis structure used by the RSC decoder is shown in Figure 4.12-3. Each state has 

two branches leaving it, one corresponding to an input one and one for input zero. Solid lines 

indicate data one and dotted lines indicate data zero. The branches indicate which next state can 

be reached from a particular state. 
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Figure 4.12-3 8 state trails diagram 

The branch metric connecting state Si (previous state, on left) and state Sj (present state, 

on right) is denoted as γij  . The branch metric depends on the data bit X(i, j) as well as the parity 

bit Z(i, j) associated with the branch. The branch metric is given as: 

𝛾𝑖𝑗 = 𝑠𝑦𝑠 ∗ 𝑋(𝑖, 𝑗) + 𝑝𝑎𝑟 ∗ 𝑍(𝑖, 𝑗) + 𝑋(𝑖, 𝑗) ∗ 𝐸𝑋𝑇     (1) 

 

Where sys and par are received soft value from channel and EXT is the extrinsic information 

from previous decoding stage initially is zero. 

The RSC encoder being rate r=1/2, only four distinct branch metrics are possible: 

 

𝛾0 = 𝑠𝑦𝑠 + 𝑝𝑎𝑟 + 𝐸𝑋𝑇                 𝑋(𝑖, 𝑗) = 1, 𝑍(𝑖, 𝑗) = 1  

 

𝛾1 = 𝑠𝑦𝑠 − 𝑝𝑎𝑟 + 𝐸𝑋𝑇                 𝑋(𝑖, 𝑗) = 1, 𝑍(𝑖, 𝑗) = 0  

     

𝛾2 = −𝑠𝑦𝑠 + 𝑝𝑎𝑟 − 𝐸𝑋𝑇                 𝑋(𝑖, 𝑗) = 0, 𝑍(𝑖, 𝑗) = 1 

 

𝛾3 = −𝑠𝑦𝑠 − 𝑝𝑎𝑟 − 𝐸𝑋𝑇                 𝑋(𝑖, 𝑗) = 0, 𝑍(𝑖, 𝑗) = 0    
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Figure 4.12-4 shows diagram of branch matric unit of decoder 1 and 2 stages, input is 

multiplexed for each decoder stage.  

After the calculation of the branch metrics, they should be stored in RAM modules to be used 

later in calculation of LLRs and backward State Metric Block β 

 

 

Figure 4.12-4 Branch Matric Unit block diagram 

 

Figure 4.12-5 GAMMA equation 
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Figure 4.12-6 Branch Metric Unit modification foe tails 

Trellis termination 

Tail bits are included at the end of each block to force trellis diagram to reach zero state, 

Tails are used to ensure the initial value for backward state metric β0 to be the highest 

probability which is one and states from β1 to β7 have zero probability.  

 

Without using tails, we can assume equal probability for backward state metric initial value. 

According to the standard tail bits are transmitted in different order unlike original data, for 

code-word with length K and original data from 0 to k-1, received systematic data= K+4, 

received parity1 data= K+4 and received parity2 data= K+4. 

Each 4 extra data include systematic or parity1 or parity2 or systematic interleaved tails therefore 

systematic, parity1, parity2 and systematic interleaved must be reorders before decoding. 

 

Systematic received tail bits’ location 

𝑆𝑦𝑠𝑡𝑒𝑚𝑎𝑡𝑖𝑐 𝑡𝑎𝑖𝑙1 = 𝑠𝑦𝑠𝑡𝑒𝑚𝑎𝑡𝑖𝑐𝐾 , 

𝑆𝑦𝑠𝑡𝑒𝑚𝑎𝑡𝑖𝑐 𝑡𝑎𝑖𝑙2 = 𝑃𝑎𝑟𝑖𝑡𝑦2 𝐾, 

𝑆𝑦𝑠𝑡𝑒𝑚𝑎𝑡𝑖𝑐 𝑡𝑎𝑖𝑙3 = 𝑃𝑎𝑟𝑖𝑡𝑦1 𝐾+1 

Parity 1 received tail bits’ location 

𝑃𝑎𝑟𝑖𝑡𝑦1 𝑡𝑎𝑖𝑙1 = 𝑃𝑎𝑟𝑖𝑡𝑦1𝐾 ,  

𝑃𝑎𝑟𝑖𝑡𝑦1 𝑡𝑎𝑖𝑙2 = 𝑆𝑦𝑠𝑡𝑒𝑚𝑎𝑡𝑖𝑐 𝐾, 

𝑃𝑎𝑟𝑖𝑡𝑦1 𝑡𝑎𝑖𝑙3 = 𝑃𝑎𝑟𝑖𝑡𝑦2𝐾+1 



121 

 

Parity 2 received tail bits’ location 

𝑃𝑎𝑟𝑖𝑡𝑦2 𝑡𝑎𝑖𝑙1 = 𝑃𝑎𝑟𝑖𝑡𝑦1𝐾+2 , 

  𝑃𝑎𝑟𝑖𝑡𝑦2 𝑡𝑎𝑖𝑙2 = 𝑆𝑦𝑠𝑡𝑒𝑚𝑎𝑡𝑖𝑐 𝐾+3, 

𝑃𝑎𝑟𝑖𝑡𝑦2 𝑡𝑎𝑖𝑙3 = 𝑃𝑎𝑟𝑖𝑡𝑦 2𝐾+3 

Systematic interleaved received tail bits’ location 

𝑆𝑦𝑠𝑡𝑒𝑚𝑎𝑡𝑖𝑐_𝑖𝑛𝑡𝑒𝑟𝑙𝑒𝑎𝑣𝑒𝑑 𝑡𝑎𝑖𝑙1 = 𝑠𝑦𝑠𝑡𝑒𝑚𝑎𝑡𝑖𝑐𝐾+2,  

𝑆𝑦𝑠𝑡𝑒𝑚𝑎𝑡𝑖𝑐 𝑡𝑎𝑖𝑙2 = 𝑃𝑎𝑟𝑖𝑡𝑦2 𝐾+2, 

𝑆𝑦𝑠𝑡𝑒𝑚𝑎𝑡𝑖𝑐 𝑡𝑎𝑖𝑙3 = 𝑃𝑎𝑟𝑖𝑡𝑦1 𝐾+3 

Figure 4.12-6 shows added Multiplexer at systematic and parity input to Branch metric unit for 

tails bits and its control signals are controlled using control unit. 

4.12.4.2. Forward and Backward State Metric (𝜶, 𝜷) 

Forward α estimation of state probabilities indicates probability of each state in case of 

moving in the forward direction in the trellis diagram, While Backward state probability of a 

certain state at a certain time indicates probability of transition to this state given a certain 

received code-word after this time. The calculation of the backward state probabilities is similar 

to that of forward state probabilities. 

 

 

 

Figure 4.12-7 Forward and Backward Metric unit diagram 

αK(SK) =max∗(αK−1 (SK−1) + γ(SK−1, SK)) 

βK(SK) =max∗(βK+1 (SK+1) + γ(SK+1, SK)) 
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According to previous equations the computation is the same but the state transitions are 

different. 

Therefore, MUXs are used to multiplex between α and β and between γK and γK+1. 

Those equations are implemented on 8 states. 

The previous figure shows forward and backward calculation unit for one state. 

Due to RSC encoder starts from zero state therefor initial value for Forward states 

 α0 = 1, α1to α7 = 0 at time 0, Same for Backward states due to trails termination encoding 

ends ant zero stateβ0 = 1, β1to β7 = 0 at time K + 1. 

Probability of 1 in log scale is represented by zero and Probability of 0 in log scale is represented 

by -4. 

Normalization is done by comparing all 8 states values and subtracting each value by the 

maximum value, the key idea is that the main concern is not in the value of the state metric itself, 

but in the value of the difference between the state metrics. 

 

The main drawback in implementing state metrics is the recursive computation. This may lead to 

an arithmetic overflow. To avoid overflow, a large number of bits is needed for representation of 

state metrics. This means more area, hardware resources, higher storage requirements, and 

increased delay therefore limitation on certain range [-4:4] is done. 

 

Also the drawback of state metric normalization is the increase in the critical path of the state 

metric unit. It is considered the bottleneck of the SISO decoder that limits the maximum 

frequency of operation. The critical path implies Addition, comparison, MUX, and normalization 

which includes both comparison and subtraction. 
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Figure 4.12-8 State 1 metric unit 

4.12.4.3. Interleaver 

 

 

Figure 4.12-9 Interleaver unit architecture 
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The interleaver block consists of 4 sub-blocks: 

1. Address generator. 

2. Extrinsic information calculation. 

3. Hard limiter and CRC enable. 

4. ROM 

1. Address generator: 

As shown in figure 4.12-9 the address generator sub-block is a QPP interleaver that performs the 

equation specified in the standard which is: 

π(i) = (f1 ∗ i + f2 ∗ i2)% k 

The equation is done using 3 multiplications and mod operation. To reduce the number of 

multiplication and replace it with shift and addition operations a recursive way of calculation is 

used according to the following equation: 

Address[i] = {2*Address [i-1] – Address [i-2] + 2*F_2} mod {block_size} 

 Where: 

 F_2 is a constant that depends on the block size. 

 Block_size is the data length and it is received from upper layer. 

To generate the new address, the mod operation must be used. And it is not synthesizable, so it is 

replaced by the following equation that contains subtraction, multiplication and division: 

A mod B = A – A/B 

Where A/B is an integer division implemented using Restoring Division algorithm. 

2. Extrinsic information calculation: 

It is a combinational circuit of subtractor and limiter, to calculate the extrinsic information 

needed for the second decoding stage and limit it by {4, -4}. 
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3. Hard limiter and CRC enable: 

 

Figure 4.12-10 Hard limiter finite state machine 

 

The hard limiter is a finite state machine of 3 states: 

1. State 1: idle state as the decoder is not enabled yet or it is not performing the last 

iteration. 

2. State 2: write data in the memory state, in which the hard limiter takes the MSB of the 

sequence, invert it and write it in a column memory sequentially. 

3. State 3: output data to CRC sequentially at each clock cycle along with the CRC enable 

signal. 

4.12.4.4. LLR 

 

Figure 4.12-11 LLR unit architecture 

As shown in the figure 4.12-11, The LLR unit is a combinational unit that performs addition and 

comparison for the values of the branch matric and Forward & backward recursions to produce 

the LLR (log likelihood ratio) and limits the output to {4, -4} which represents infinity for the 

decoder. 
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4.12.4.5. Control unit 

Control unit is used to control decoding flow between sub-blocks Input memories (Systematic, 

parity1, parity2) 

 Branch Metric unit multiplexer’s selections (tails bits, decoder1 or decoder2 mode) 

 Gamma γ memory  

 State metric unit multiplexer’s selections (α or β mode) 

 Alpha α memory  

 Inter-leaver and de-interleaver enable  

 Number of decoding iterations 

 

 

 

Figure 4.12-13 shows BCJR decoding flowchart and FSM, starting from storing data from rate 

de-matcher then controlling MUXs for GAMMA, ALPHA and BETA calculation and storing in 

RAMs after processing on total block calculating LRR and extrinsic information start and finally 

data is ready to interleave for second decoder stage. 

After second decoding stage LLR and extrinsic information de-interleaved to start new iteration. 

 

Figure 4.12-14 shows Turbo decoder control flow starting from first decoding stage to calculate 

extrinsic information which is interleaved and passed to second decoder stage to calculate 

extrinsic information which is passed to first decoder stage and LLR which is interleaved and 

used to calculate final hard decision value this is done after N times decoding iterations. 
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Figure 4.12-12 RSC decoder stage flow 

 

Figure 4.12-13 BCJR FSM 
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Figure 4.12-14Turbo decoder control flow 

4.12.5. Results 

4.12.5.1. Matlab Results 

The turbo code was simulated for frame size K = 2560 over a AWGN channel. 

Figure 4.12-15 shows BER for un-coded bits and BER for turbo encoded bits, the number of 

decoder iterations was chosen to be 5. 

For low SNR BER for turbo is worse than un-coded bits, as SNR increases BER for turbo has 

great improvement.  

 

Figure 4.12-15 BER using turbo decoder Vs without decoding 

The SNR range was used from -5 to 1 dB, 4 integer bits and 3 fraction bits. The number of 

decoder iterations was chosen to be 5.  
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Figure 4.12-16 shows BER for decoding iterations from 1 to 7, for small SNR as number of 

iteration increases it has small effect on BER, for SNR greater than -2 dB as number of iteration 

increases BER decreases. 

It can be seen that as the number of iteration increases, the BER performance improves. 

However, the rate of improvement decreases.  

 

Figure 4.12-16 BER Vs SNR for different decoding iterations 

The SNR range was used from -5 to -0.5 dB, 8-bit word length with 1 bit for sign, N integer bits 

and (7-N) fraction bits. The number of decoder iterations was chosen to be 5. 

Figure 4.12-17 and 4.12-18 shows quantization error due to integer and fraction bits, 

Quantization error is large for small integer bits and high fraction bits and also for high integer 

bits and small fraction bits as. 

For 8-bit word length with 4 integer bits and 3 fraction bits’ quantization error has smallest 

quantization error. 
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Figure 4.12-17 Effect of integer and fraction bits on decoding error at different values SNR 

 

Figure 4.12-18 Effect of integer and fraction bits on decoding error at SNR=-2 dB 

The SNR range was used from -5 to 1 dB, 4 integer bits and fraction bits from 1 to 5 bits. The 

number of decoder iterations was chosen to be 5.  

Figure 4.12-19 shows the effect of increasing number of fraction bits on decoding performance, as 

number of fraction bits increases BER improves 
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Figure 4.12-19 BER Vs SNR for 4 integer bits and different fraction bits 
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4.12.5.2. RTL Results 

 

 

Figure 4.12-20 Testing Technique block diagram 

As shown in figure 4.12-30 the block is tested and verified by creating a Matlab dummy 

transmitter that consists of a turbo encoder and BPSK/QPSK modulator. The output data of this 

transmitter is added to the channel noise then demodulated to be passed to two paths one is the 

Matlab turbo decoder model and the other is the RTL turbo decoder model, coded in Verilog, 

then the results is compared between the Matlab and the RTL model and the BER is calculated. 

 

The output of the testing plan is a Report.txt file that contains: 

1. The Herd bits output from the decoder. 

2. Number of errors compared to the transmitted bits. 

3. Bit error rate. 

4. Number of errors compared to Matlab model of the turbo decoder. 

A sample of the output file is shown in the next figure, tested for data block size of 128 and SNR 

of -2dB: 
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Figure 4.12-21 Sample of the report file 

Comparing Simulation results with RTL results for a block size of 40 and SNR of -1dB: 

 

 

Figure 4.12-22 Decoder output (Matlab) 

 

Figure 4.12-23 Decoder output (RTL) 
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4.12.6. Synthesis Results 

 

 

Figure 4.12-24 Turbo decoder area report 

 

 

 

Figure 4.12-25 Turbo decoder power report 

 

 

Figure 4.12-26 Turbo decoder timing report 
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4.13. Cyclic Redundancy Check (CRC) 

4.13.1. Top level  

This division is commonly implemented using LFSR circuits. Implementing Internal or Galois 

LFSR, takes the highest order bit (MSB) as the feedback term that is feedback into the relevant 

flip-flops through the XOR gates placed between the flip-flops. This form is the more popular 

because it is faster. 

When input data is ready and CRC enable is high CRC starts its function when CRC enable falls 

from high to low this indicates that all code word enters CRC block, CRC_out_error is one if error 

exists otherwise is zero and CRC_out_valid indicates that CRC_out_error signal is valid to be read 

or not this happened when decoder and CRC are done. 

 

Figure 4.13-1 CRC block diagram  

4.13.2. Block Interface  

Signal name Direction Description Size 

CRC_in_enable Input Indicates that input data is valid 1 

CRC_in_reset Input 
Asynchronous reset, Resets LFSR and 

output 
1 

CRC_in_clk Input System Clock 1 

CRC_in_input_bit Input Input stream 1 

CRC_in_Decoder_Done Input 
Indicates that decoder had finished, used for 

CRC_vaild output 
1 

CRC_out_error Output Indicates error exists or not 1 

CRC_out_valid Output 
Indicates that CRC_out_error signal valid to 

be read or not 
1 

Table 4.13-1 CRC interface signals 
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4.13.3. Simulation Results  

Figure 4.13-3 and 4.13-4 Simulation on data stream output from decoder with and without error 

and CRC_out_error is taken into consideration only when CRC_valid is high. 

 

 

Figure 4.13-3 CRC output with zero error detection output 

 

Figure 4.13-4 CRC output with high error detection output 

 

Figure 4.13-2 CRC shift register 
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4.13.4. Synthesis Results 

4.13.4.1. Area Report 

 

 

Figure 4.13-5 CRC area report 

 

4.13.4.2. Power Report 

 

Figure 4.13-6 CRC power report 
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Chapter 5  

Integration and Conclusion 
  

Integration  

 First, we integrated each two blocks and most of the blocks explained in chapter 4 were 

already tested with the output of other blocks. Then we had four separated parts of the chain.  

 The first one includes (Synchronization, Offset correction, FFT)  

 The second part includes (Resource element De-mapper, channel estimation and equalizer) 

 The third part includes (IDFT, De-mapper and descrambler) 

 The forth part includes (De-Interleaver, Rate De-Matching, Decoder and CRC) 

Each part of them was integrated, synthesized, tested and compared with MATLAB. 

Then we integrated the four parts together to get the full chain and made Shure that signals go 

correctly from one block to the other one. 

Conclusion 

 In this thesis a full chain for narrow band LTE uplink receiver was proposed. The full 

Architecture for each block was explained. Each block was modelled by MATLAB and was 

RTL implemented. Each block was tested and the results were verified and compared with 

MATLAB. The blocks were fully synthesized on Xilinx ISE and on DC compiler and the area 

and power were reported. Finally, all blocks were integrated and tested. 

Out future plan is based on testing more cases for the full chain, optimizing in the blocks to get 

less area and power consumption and test the chain on FPGA.  
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