

Low power design of the physical layer chain of

Narrow band LTE uplink receiver

Aya Adel Ismail

Karim Ahmed Alaa

Kareem Ahmed Farouk

Lina Eissa Hassan

Omar Mohamed Abdelkader

Zainab Adel Ibrahim

Under the supervision of

Associate prof. Hassan Mostafa

Si-Vision

A thesis Submitted to the Faculty of

Engineering at Cairo University

in Partial Fulfilment of the Requirements for the Degree of

Bachelor of Science

In

Electronics and Communications Engineering

Faculty of Engineering, Cairo University Giza, Egypt

JULY 2019

II

Abstract

 One of the main requirements to achieve integrity between humans and machines is the

need for a common ground where both of them can reach which gave birth to the evolution of

IoT (Internet-Of-Things), and by the support of LTE, NB-IoT shortened the path towards such

integrity.

One now can deploy a radio-access network with low battery, cover a wide area, efficiently

power low-cost devices, and match different spectrum allocations of operators.

With tons of applications like smart metering, monitoring, agriculture, and fleet and logistics

management. The optimization for such processes of detecting and reporting different variables

like temperature and humidity is now needed as we expand. As for sensor-heavy applications,

data rate and latency should be lower.

LTE NB-IoT is a solution that can match these requirements of power, range, and performance.

LTE NB-IoT technology supports a range of data rates for several applications and for several

environmental conditions. It depends on the channel quality, or the signal-to-noise ratio and the

quantity of resources in certain areas (bandwidth). In addition, each device has a specific power

budget, which leads to combine the power of several devices. Focus transmission energy without

losing performance to a narrower bandwidth. This efficiency frees up bandwidth for other

devices.

In this thesis a digital implementation of the Narrowband Physical Uplink Shared Channel

(NPUSCH) receiver which is based on NB-IoT LTE is proposed. The LTE NB-IoT is a new

cellular technology introduced in 3GPP Release 13 to support IoT applications.

The standard specifications were first studied well to extract the information needed for

implementation. Then a MATLAB model is developed for each block in the chain based on

understanding the standard and the models were checked using MATLAB built in functions and

assuming the existence of a dummy transmitter.

Then RTL model is implemented for each block in the chain and the RTL results were compared

and verified by MATLAB results. The blocks were fully synthesizable on Xilinx ISE and on DC

compiler using 130 nm technology. Also area and power for each block are reported.

III

Acknowledgments

We are using this opportunity to express our gratitude to everyone who supported us throughout

the graduation project.

Firstly, we would like to express our sincere gratitude to our supervisor Dr. Hassan Mostafa for

the continuous support and guidance.

We also wish to thank our advisors at Si-vision, Eng. Khaled Ismail and Eng. Ahmed Rady for

their patience, motivation, and immense knowledge.

Finally, we wish express the gratitude and appreciation we owe to our families for providing us

with unfailing support and continuous encouragement throughout our years of study.

This accomplishment would not have been possible without all of you. Thank you.

IV

Table of Contents

Abstract .. II

Acknowledgments ... III

Table of Contents .. IV

List of Figures .. IX

List of Tables .. XIV

Chapter 1 Introduction ... 1

1.1. Motivation .. 1

1.2. Multiple Access Techniques (OFDM overview) ... 2

1.3. Frame structure .. 3

1.4. Problem description ... 5

1.5. Thesis organization .. 5

Chapter 2 Receiver uplink chain and sub-blocks' function .. 6

2.1. Chain block diagram .. 6

2.2. Synchronization ... 6

2.2.1. Coarse frequency and timing estimation ... 7

2.2.2. CORDIC algorithm ... 9

2.3. Cyclic prefix removal and offset correction .. 11

2.4. FFT ... 11

2.5. RED.. 12

2.6. Channel estimation... 12

2.7. Equalizer .. 12

2.8. IDFT ... 13

2.9. De-mapper.. 15

2.10. Descrambler ... 15

2.11. Data Demultiplexing and Channel De-Interleaver .. 15

2.12. Rate De-Matcher .. 16

2.13. Turbo Decoder ... 17

2.13.1. CHANNEL CODING ... 17

2.13.2. TURBO DECODING ... 19

2.14. Cyclic Redundancy Check (CRC) ... 21

V

Chapter 3 Standard Specifications and Assumptions.. 22

3.1. FFT ... 22

3.2. RED.. 23

3.3. Channel estimation... 24

3.4. IDFT ... 28

3.5. Mapper ... 29

3.5.1. Clock Domain Crossing .. 30

3.6. Scrambler ... 33

3.7. Data multiplexing and Channel Interleaver ... 34

3.8. Rate De-Matching .. 36

3.9. Encoder .. 39

3.10. Cyclic Redundancy Check (CRC) ... 42

3.11. Equalizer .. 43

Chapter 4 Design Architecture and interfaces ... 45

4.1. Synchronization (Time and frequency offset estimation) .. 45

4.1.1. Top level ... 45

4.1.2. Block interface .. 45

4.1.3. Architecture... 46

4.1.4. Operation... 46

4.1.5. Sub blocks design ... 47

4.1.6. Results ... 49

4.2. CP removal and offset correction architecture ... 54

4.2.1. Top level ... 54

4.2.2. Block interface .. 54

4.2.3. Architecture... 54

4.2.4. Operation... 55

4.2.5. Sub blocks design ... 55

4.2.6. Results ... 56

4.3. Fast Fourier Transform (FFT) .. 57

4.3.1. Top level ... 57

4.3.2. Block Interface .. 57

4.3.3. Architecture... 61

VI

4.3.4. Operation... 62

4.3.5. Results ... 63

4.3.6. Synthesis Results .. 64

4.4. Resource Elements De-mapper .. 66

4.4.1. Top level ... 66

4.4.2. Block interface .. 66

4.4.3. Architecture... 67

4.4.4. Operation... 67

4.4.5. Results ... 68

4.4.6. Synthesis ... 70

4.5. Channel estimation... 71

4.5.1. Top level ... 71

4.5.2. Block interface .. 71

4.5.3. Architecture... 72

4.5.4. Operation... 72

4.5.5. Sub blocks design ... 72

4.5.6. Results ... 73

4.6. Equalizer .. 75

4.6.1. Top level ... 75

4.6.2. Block interface .. 75

4.6.3. Architecture... 76

4.6.4. Synthesis results .. 80

4.7. Inverse Discrete Fourier Transform (IDFT) .. 82

4.7.1. Top level ... 82

4.7.2. Block interface .. 82

4.7.3. Architecture... 82

4.7.4. Operation... 85

4.7.5. Results ... 88

4.7.6. Synthesis ... 90

4.8. De-mapper & FIFO .. 91

4.8.1. De-mapper... 91

4.8.2. FIFO .. 93

VII

4.9. Descrambler ... 96

4.9.1. Top level ... 96

4.9.2. Block interface .. 96

4.9.3. Architecture... 97

4.9.4. Operation... 97

4.9.5. Results ... 97

4.10. Data De-multiplexing and Channel De-interleaver ... 99

4.10.1. Top level ... 99

4.10.2. Block interface .. 99

4.10.3. Architecture... 100

4.10.4. Operation according to previous FSM .. 102

4.10.5. Challenges and enhancement .. 102

4.10.6. Testing Results .. 102

4.10.7. Synthesis result ... 105

4.11. Rate De-matching for Turbo Decoder ... 106

4.11.1. Top level ... 106

4.11.2. Block interface .. 106

4.11.3. Architecture... 107

4.11.4. Operation according to previous FSM .. 111

4.11.5. Challenges and enhancement .. 111

4.11.6. Testing Results .. 111

4.11.7. Synthesis result ... 114

4.11.8. Extra interconnection control unit .. 115

4.12. Turbo Decoder ... 116

4.12.1. Top level ... 116

4.12.2. Block interfaces .. 116

4.12.3. Architecture... 117

4.12.4. Sub-Blocks & operation .. 117

4.12.5. Results ... 128

4.12.6. Synthesis Results .. 134

4.13. Cyclic Redundancy Check (CRC) ... 135

4.13.1. Top level ... 135

VIII

4.13.2. Block Interface .. 135

4.13.3. Simulation Results .. 136

4.13.4. Synthesis Results .. 137

Chapter 5 Integration and Conclusion .. 138

Integration ... 138

Conclusion ... 138

References ... 139

IX

List of Figures

Figure 1.1-1 NB-IOT features ... 1

Figure 1.2-1 OFDM vs OFDMA .. 3
Figure 1.2-2 OFDM vs SC-FDMA ... 3
Figure 1.3-1 Type 1 frame .. 4
Figure 1.3-2 Relationship between a slot, symbols and Resource Blocks...................................... 4
Figure 1.3-3 Relationships between Channel Bandwidth, Transmission Bandwidth

Configuration, and Transmission Bandwidth ... 5
Figure 2.1-1 Uplink receiver chain block diagram ... 6
Figure 2.2-1 Synchronization flow in OFDM receiver ... 7
Figure 2.8-1 OFDMA vs SC-FDMA .. 13

Figure 2.8-2 OFDM vs SC-FDM Block diagram ... 14
Figure 2.9-1 BPSK and QPSK constellation .. 15

Figure 2.12-1 HARQ mechanism in LTE ... 16
Figure 2.13-1 Fundamental turbo code encoder ... 18
Figure 2.13-2 RSC conventional encoder with r = 1/2. ... 18

Figure 2.13-3 The trellis termination strategy for RSC encoder. ... 19
Figure 2.13-4 Turbo Decoder ... 19

Figure 3.1-1 SC-FDMA chain .. 22
Figure 3.2-1 Resource element (k,l) in the resource grid ... 23
Figure 3.5-1 BPSK constellation .. 29

Figure 3.5-2 QPSK constellation .. 30
Figure 3.5-3 Example of 2 clock domains .. 30

Figure 3.5-4 Meta-stability region .. 30
Figure 3.5-5 Meta-stability effect ... 31

Figure 3.5-6 Two flip-flop synchronizers ... 31
Figure 3.5-7 Setup and hold time violations due to CDC ... 32

Figure 3.5-8 FIFO as a solution to CDC ... 33
Figure 3.6-1 Scrambler architecture according to standard .. 34
Figure 3.8-1 Rate matching Block diagram .. 36
Figure 3.9-1 Structure of rate 1/3 turbo encoder (dotted lines apply for trellis termination only)

... 39
Figure 3.10-1 Block segment and CRC attached .. 42
Figure 3.11-1 Uplink Grid for each slot in LTE ... 43
Figure 3.11-2 Stair case approximation for equalization process ... 44
Figure 4.1-1 Time and frequency offset estimation Top Level .. 45

Figure 4.1-2 Architecture of the time and frequency offset estimation block 46
Figure 4.1-3 Correlation block design .. 47

Figure 4.1-4 Complex multiplier design ... 47
Figure 4.1-5 First Internal architecture of CORDIC sub block .. 48
Figure 4.1-6 Second Internal architecture of CORDIC sub block .. 49
Figure 4.1-7 MATLAB results for CORDIC block .. 49
Figure 4.1-8 RTL results of the CORDIC block... 50
Figure 4.1-9 Ideal out magnitude .. 50

file:///C:/Users/Blue/Desktop/My_edits/Final_Thesis_edited_Omar.docx%23_Toc13238192
file:///C:/Users/Blue/Desktop/My_edits/Final_Thesis_edited_Omar.docx%23_Toc13238193
file:///C:/Users/Blue/Desktop/My_edits/Final_Thesis_edited_Omar.docx%23_Toc13238195
file:///C:/Users/Blue/Desktop/My_edits/Final_Thesis_edited_Omar.docx%23_Toc13238196
file:///C:/Users/Blue/Desktop/My_edits/Final_Thesis_edited_Omar.docx%23_Toc13238201
file:///C:/Users/Blue/Desktop/My_edits/Final_Thesis_edited_Omar.docx%23_Toc13238202
file:///C:/Users/Blue/Desktop/My_edits/Final_Thesis_edited_Omar.docx%23_Toc13238216
file:///C:/Users/Blue/Desktop/My_edits/Final_Thesis_edited_Omar.docx%23_Toc13238217

X

Figure 4.1-10 RTL out magnitude .. 50
Figure 4.1-11 Ideal out phase.. 50
Figure 4.1-12 RTL out phase .. 50
Figure 4.1-13 MATLAB results for time and frequency offset estimation 51

Figure 4.1-14 RTL results of the synchronization block .. 52
Figure 4.1-15 Synchronization block area report ... 52
Figure 4.1-16 Synchronization block power report .. 53
Figure 4.1-17 Synchronization block total slack .. 53
Figure 4.2-1 CP removal and offset correction Top Level ... 54

Figure 4.2-2 Architecture of CP removal and offset correction block ... 55
Figure 4.2-3 CORDIC sub block internal design.. 55
Figure 4.2-4 Timing diagram for the RTL output after CP removal and offset correction 56
Figure 4.2-5 Ideal real out ... 56

Figure 4.2-6 RTL real out ... 56
Figure 4.2-7 Ideal imaginary out .. 56

Figure 4.2-8 RTL imaginary out ... 56
Figure 4.3-1 FFT Top Level ... 57

Figure 4.3-2 Decimation in time divide and conquer algorithm ... 58
Figure 4.3-3 Decimation in frequency divide and conquer algorithm .. 59
Figure 4.3-4 Time/space-embedded (TSE) signal flow graph of the 16-point memory-based FFT

... 60
Figure 4.3-5 FFT memory-based architecture .. 61

Figure 4.3-6 Flow chart of the Finite state machine control unit for the proposed 16-bit FFT 62
Figure 4.3-7 Real Values for FFT output.. 63
Figure 4.3-8 Imaginary Values for FFT output .. 63

Figure 4.3-9 Result of RTL ... 64

Figure 4.3-10 Area report for the 16-bits FFT .. 64
Figure 4.3-11 Power report for the 16-bits FFT ... 65
Figure 4.3-12 Timing report for the 16-bits FFT .. 65

Figure 4.4-1 Resource elements de-mapper Block Top-level .. 66
Figure 4.4-2 Resource elements de-mapper Architecture ... 67

Figure 4.4-3 RTL output waveforms for RED block at single subcarrier mode 68
Figure 4.4-4 MATLAB output for RED model at single subcarrier mode 68

Figure 4.4-5 RTL output waveforms for RED block at 3 subcarriers mode 68
Figure 4.4-6 MATLAB output for RED model at 3 subcarriers mode ... 68
Figure 4.4-7 RTL output waveforms for RED block at 6 subcarriers mode 69
Figure 4.4-8 MATLAB output for RED model at 6 subcarriers mode ... 69
Figure 4.4-9 RTL output waveforms for RED block at 12 subcarriers mode 69

Figure 4.4-10 MATLAB output for RED model at 12 subcarriers mode 69
Figure 4.4-11 Area report for RED Block .. 70

Figure 4.4-12 Timing report for RED Block .. 70
Figure 4.4-13 Power report for RED Block .. 70
Figure 4.5-1 Channel estimator Top Level ... 71
Figure 4.5-2 Architecture of channel estimator .. 72
Figure 4.5-3 MATLAB results for three pilots ... 73
Figure 4.5-4 RTL results for real part of the three pilots .. 73

file:///C:/Users/Blue/Desktop/My_edits/Final_Thesis_edited_Omar.docx%23_Toc13238242
file:///C:/Users/Blue/Desktop/My_edits/Final_Thesis_edited_Omar.docx%23_Toc13238243
file:///C:/Users/Blue/Desktop/My_edits/Final_Thesis_edited_Omar.docx%23_Toc13238244
file:///C:/Users/Blue/Desktop/My_edits/Final_Thesis_edited_Omar.docx%23_Toc13238245
file:///C:/Users/Blue/Desktop/My_edits/Final_Thesis_edited_Omar.docx%23_Toc13238245
file:///C:/Users/Blue/Desktop/My_edits/Final_Thesis_edited_Omar.docx%23_Toc13238246
file:///C:/Users/Blue/Desktop/My_edits/Final_Thesis_edited_Omar.docx%23_Toc13238247
file:///C:/Users/Blue/Desktop/My_edits/Final_Thesis_edited_Omar.docx%23_Toc13238248
file:///C:/Users/Blue/Desktop/My_edits/Final_Thesis_edited_Omar.docx%23_Toc13238249
file:///C:/Users/Blue/Desktop/My_edits/Final_Thesis_edited_Omar.docx%23_Toc13238250
file:///C:/Users/Blue/Desktop/My_edits/Final_Thesis_edited_Omar.docx%23_Toc13238251
file:///C:/Users/Blue/Desktop/My_edits/Final_Thesis_edited_Omar.docx%23_Toc13238252
file:///C:/Users/Blue/Desktop/My_edits/Final_Thesis_edited_Omar.docx%23_Toc13238253
file:///C:/Users/Blue/Desktop/My_edits/Final_Thesis_edited_Omar.docx%23_Toc13238254
file:///C:/Users/Blue/Desktop/My_edits/Final_Thesis_edited_Omar.docx%23_Toc13238255
file:///C:/Users/Blue/Desktop/My_edits/Final_Thesis_edited_Omar.docx%23_Toc13238256
file:///C:/Users/Blue/Desktop/My_edits/Final_Thesis_edited_Omar.docx%23_Toc13238257
file:///C:/Users/Blue/Desktop/My_edits/Final_Thesis_edited_Omar.docx%23_Toc13238258
file:///C:/Users/Blue/Desktop/My_edits/Final_Thesis_edited_Omar.docx%23_Toc13238259
file:///C:/Users/Blue/Desktop/My_edits/Final_Thesis_edited_Omar.docx%23_Toc13238260
file:///C:/Users/Blue/Desktop/My_edits/Final_Thesis_edited_Omar.docx%23_Toc13238261
file:///C:/Users/Blue/Desktop/My_edits/Final_Thesis_edited_Omar.docx%23_Toc13238262
file:///C:/Users/Blue/Desktop/My_edits/Final_Thesis_edited_Omar.docx%23_Toc13238263
file:///C:/Users/Blue/Desktop/My_edits/Final_Thesis_edited_Omar.docx%23_Toc13238264
file:///C:/Users/Blue/Desktop/My_edits/Final_Thesis_edited_Omar.docx%23_Toc13238265
file:///C:/Users/Blue/Desktop/My_edits/Final_Thesis_edited_Omar.docx%23_Toc13238266
file:///C:/Users/Blue/Desktop/My_edits/Final_Thesis_edited_Omar.docx%23_Toc13238270

XI

Figure 4.5-5 RTL results of the imaginary part of the three pilots ... 73
Figure 4.5-6 Channel estimation area report... 74
Figure 4.5-7 Channel estimation power report ... 74
Figure 4.6-1 Equalizer block Top Level ... 75

Figure 4.6-2 Architecture of the first approach for Equalizer .. 76
Figure 4.6-3 Flow chart for the control unit of the first approach of Equalizer 77
Figure 4.6-4 The Final Architecture of the Equalizer ... 78
Figure 4.6-5 The Control Unit for the final approach of the equalizer ... 79
Figure 4.6-6 Area report for the Equalizer.. 80

Figure 4.6-7 Power report for the Equalizer ... 80
Figure 4.6-8 Timing report for the Equalizer.. 81
Figure 4.7-1 IDFT block Top-level .. 82
Figure 4.7-2 IDFT Memory based Architecture ... 83

Figure 4.7-3 Radix-2 SFG... 85
Figure 4.7-4 Radix-3 SFG... 85

Figure 4.7-5 3-IDFT SFG ... 85
Figure 4.7-6 6-IDFT SFG ... 86

Figure 4.7-7 12-IDFT SFG ... 86
Figure 4.7-8 IDFT control unit FSM .. 87
Figure 4.7-9 RTL output waveforms of IDFT block at 12-IDFT operation 88

Figure 4.7-10 MATLAB output of IDFT model at 12-IDFT operation 88
Figure 4.7-11 RTL output waveforms of IDFT block at 6-IDFT operation 88

Figure 4.7-12 MATLAB output of IDFT model at 6-IDFT operation ... 88
Figure 4.7-13 MATLAB output of IDFT model at 3-IDFT operation ... 89
Figure 4.7-14 RTL output waveforms of IDFT block at 3-IDFT operation 89

Figure 4.7-15 RTL output waveforms of IDFT block at 1-IDFT operation 89

Figure 4.7-16 MATLAB output of IDFT model at 1-IDFT operation ... 89
Figure 4.7-17 Area report of IDFT Block ... 90
Figure 4.7-18 Timing report of IDFT Block ... 90

Figure 4.7-19 Power Report for IDFT Block.. 90
Figure 4.8-1 De-mapper block diagram .. 91

Figure 4.8-2 De-mapper RTL results .. 92
Figure 4.8-3 Area Report of the De-mapper ... 92

Figure 4.8-4 Power report of the De-mapper .. 92
Figure 4.8-5 FIFO top level .. 93
Figure 4.8-6 FIFO Architecture .. 94
Figure 4.8-7 FIFO input data .. 94
Figure 4.8-8 FIFO output .. 94

Figure 4.8-9 FIFO area report ... 95
Figure 4.8-10 FIFO power report .. 95

Figure 4.8-11 FIFO timing report for clock 1 ... 95
Figure 4.8-12 FIFO timing report for clock 2 ... 95
Figure 4.9-1 Descrambler block diagram ... 96
Figure 4.9-2 Scrambler architecture ... 97
Figure 4.9-3 RTL results of descrambler block .. 97
Figure 4.9-4 Descrambler area report ... 98

file:///C:/Users/Blue/Desktop/My_edits/Final_Thesis_edited_Omar.docx%23_Toc13238271
file:///C:/Users/Blue/Desktop/My_edits/Final_Thesis_edited_Omar.docx%23_Toc13238274
file:///C:/Users/Blue/Desktop/My_edits/Final_Thesis_edited_Omar.docx%23_Toc13238275
file:///C:/Users/Blue/Desktop/My_edits/Final_Thesis_edited_Omar.docx%23_Toc13238276
file:///C:/Users/Blue/Desktop/My_edits/Final_Thesis_edited_Omar.docx%23_Toc13238277
file:///C:/Users/Blue/Desktop/My_edits/Final_Thesis_edited_Omar.docx%23_Toc13238278
file:///C:/Users/Blue/Desktop/My_edits/Final_Thesis_edited_Omar.docx%23_Toc13238279
file:///C:/Users/Blue/Desktop/My_edits/Final_Thesis_edited_Omar.docx%23_Toc13238280
file:///C:/Users/Blue/Desktop/My_edits/Final_Thesis_edited_Omar.docx%23_Toc13238281
file:///C:/Users/Blue/Desktop/My_edits/Final_Thesis_edited_Omar.docx%23_Toc13238282
file:///C:/Users/Blue/Desktop/My_edits/Final_Thesis_edited_Omar.docx%23_Toc13238283
file:///C:/Users/Blue/Desktop/My_edits/Final_Thesis_edited_Omar.docx%23_Toc13238284
file:///C:/Users/Blue/Desktop/My_edits/Final_Thesis_edited_Omar.docx%23_Toc13238285
file:///C:/Users/Blue/Desktop/My_edits/Final_Thesis_edited_Omar.docx%23_Toc13238286
file:///C:/Users/Blue/Desktop/My_edits/Final_Thesis_edited_Omar.docx%23_Toc13238289
file:///C:/Users/Blue/Desktop/My_edits/Final_Thesis_edited_Omar.docx%23_Toc13238290
file:///C:/Users/Blue/Desktop/My_edits/Final_Thesis_edited_Omar.docx%23_Toc13238291
file:///C:/Users/Blue/Desktop/My_edits/Final_Thesis_edited_Omar.docx%23_Toc13238292
file:///C:/Users/Blue/Desktop/My_edits/Final_Thesis_edited_Omar.docx%23_Toc13238293
file:///C:/Users/Blue/Desktop/My_edits/Final_Thesis_edited_Omar.docx%23_Toc13238294
file:///C:/Users/Blue/Desktop/My_edits/Final_Thesis_edited_Omar.docx%23_Toc13238295
file:///C:/Users/Blue/Desktop/My_edits/Final_Thesis_edited_Omar.docx%23_Toc13238296
file:///C:/Users/Blue/Desktop/My_edits/Final_Thesis_edited_Omar.docx%23_Toc13238297
file:///C:/Users/Blue/Desktop/My_edits/Final_Thesis_edited_Omar.docx%23_Toc13238298
file:///C:/Users/Blue/Desktop/My_edits/Final_Thesis_edited_Omar.docx%23_Toc13238299
file:///C:/Users/Blue/Desktop/My_edits/Final_Thesis_edited_Omar.docx%23_Toc13238300

XII

Figure 4.9-5 Descrambler power report .. 98
Figure 4.9-6 Descrambler total slack .. 98
Figure 4.10-1 Data De-multiplexing and Channel De-interleaver block diagram 99
Figure 4.10-2 Basic Data flow for Data De-multiplexing and Channel De-interleaver according

to standard ... 100
Figure 4.10-3 Our proposed architecture for Data De-multiplexing and Channel De-interleaver

... 100
Figure 4.10-4 Architecture control unit for Data De-multiplexing and Channel De-interleaver 101
Figure 4.10-5 Flow chart of control unit for Data De-multiplexing and Channel De-interleaver

... 101
Figure 4.10-6 RTL wave form for test case 1 in Data De-multiplexing and Channel De-

interleaver ... 103
Figure 4.10-7 RTL memory data for test case 1 in Data De-multiplexing and Channel De-

interleaver ... 103
Figure 4.10-8 MATLAB memory data for test case 1 in Data De-multiplexing and Channel De-

interleaver ... 103
Figure 4.10-9 RTL wave form for test case 2 in Data De-multiplexing and Channel De-

interleaver ... 104
Figure 4.10-10 RTL memory data for test case 2 in Data De-multiplexing and Channel De-

interleaver ... 104

Figure 4.10-11 MATLAB memory data for test case 2 in Data De-multiplexing and Channel

De-interleaver ... 104

Figure 4.10-12 De-interleaver area report .. 105
Figure 4.10-13 De-interleaver power report ... 105
Figure 4.10-14 De-interleaver time report .. 105

Figure 4.11-1 Rate De-matching block diagram ... 106

Figure 4.11-2 Rate De-matching architecture according to standard ... 107
Figure 4.11-3 Our proposed architecture for Rate De-matching .. 108
Figure 4.11-4 Architecture control unit for Rate De-matching .. 108

Figure 4.11-5 Flow chart of control unit for Rate De-matching ... 109
Figure 4.11-6 RTL wave form for test case 1 in Rate De-matching ... 111

Figure 4.11-7 RTL memory1 data for test case 1 in Rate De-matching 111
Figure 4.11-8 RTL memory2 data for test case 1 in Rate De-matching 112

Figure 4.11-9 RTL memory3 data for test case 1 in Rate De-matching 112
Figure 4.11-10 MATLAB memory1 data for test case 1 in Rate De-matching 112
Figure 4.11-11 MATLAB memory2 data for test case 1 in Rate De-matching 112
Figure 4.11-12 MATLAB memory1 data for test case 1 in Rate De-matching 112
Figure 4.11-13 RTL wave form for test case 2 in Rate De-matching ... 113

Figure 4.11-14 RTL memory1 data for test case 2 in Rate De-matching 113
Figure 4.11-15 RTL memory2 data for test case 2 in Rate De-matching 113

Figure 4.11-16 RTL memory2 data for test case 3 in Rate De-matching 113
Figure 4.11-17 MATLAB memory1 data for test case 2 in Rate De-matching 113
Figure 4.11-18 MATLAB memory2 data for test case 2 in Rate De-matching 113
Figure 4.11-19 MATLAB memory3 data for test case 2 in Rate De-matching 114
Figure 4.11-20 Rate de-matcher area report ... 114
Figure 4.11-21 Rate de-matcher power report .. 114

XIII

Figure 4.11-22 Rate de-matcher timing report ... 114
Figure 4.11-23 Extra interconnection control unit block diagram .. 115
Figure 4.11-24 Flow chart of extra interconnection control unit between Rate De-matching and

Data De-multiplexing and Channel De-interleaver .. 115

Figure 4.12-1 Turbo Decoder block diagram ... 116
Figure 4.12-2 Turbo decoder architecture .. 117
Figure 4.12-3 8 state trails diagram .. 118
Figure 4.12-4 Branch Matric Unit block diagram .. 119
Figure 4.12-5 GAMMA equation ... 119

Figure 4.12-6 Branch Metric Unit modification foe tails ... 120
Figure 4.12-7 Forward and Backward Metric unit diagram ... 121
Figure 4.12-8 State 1 metric unit .. 123
Figure 4.12-9 Interleaver unit architecture ... 123

Figure 4.12-10 Hard limiter finite state machine .. 125
Figure 4.12-11 LLR unit architecture ... 125

Figure 4.12-12 RSC decoder stage flow ... 127
Figure 4.12-13 BCJR FSM ... 127

Figure 4.12-14Turbo decoder control flow ... 128
Figure 4.12-15 BER using turbo decoder Vs without decoding ... 128
Figure 4.12-16 BER Vs SNR for different decoding iterations .. 129

Figure 4.12-17 Effect of integer and fraction bits on decoding error at different values SNR .. 130
Figure 4.12-18 Effect of integer and fraction bits on decoding error at SNR=-2 dB 130

Figure 4.12-19 BER Vs SNR for 4 integer bits and different fraction bits 131
Figure 4.12-20 Testing Technique block diagram .. 132
Figure 4.12-21 Sample of the report file ... 133

Figure 4.12-22 Decoder output (Matlab) .. 133

Figure 4.12-23 Decoder output (RTL) .. 133
Figure 4.12-24 Turbo decoder area report .. 134
Figure 4.12-25 Turbo decoder power report ... 134

Figure 4.12-26 Turbo decoder timing report .. 134
Figure 4.13-1 CRC block diagram .. 135

Figure 4.13-2 CRC shift register ... 136
Figure 4.13-3 CRC output with zero error detection output ... 136

Figure 4.13-4 CRC output with high error detection output ... 136
Figure 4.13-5 CRC area report .. 137
Figure 4.13-6 CRC power report .. 137

file:///C:/Users/Blue/Desktop/My_edits/Final_Thesis_edited_Omar.docx%23_Toc13238384

XIV

List of Tables

Table 2.13-1 BCJR vs Viterbi ... 20

Table 3.2-1 Number of resource units (NRU) for NPUSCH .. 24
Table 3.2-2 Number of repetitions (NRep) for NPUSCH .. 24
Table 3.2-3 Set of allocated sub-carriers .. 24
Table 3.3-1 Definition of W (n) .. 25
Table 3.3-2 Definition of ɸ (n) for Nsc =3 ... 26

Table 3.3-3 Definition of ɸ (n) for Nsc =6 ... 26
Table 3.3-4 Definition of Definition of ɸ (n) for Msc = Nsc .. 27
Table 3.3-5 Definition of α ... 28
Table 3.4-1 Number of subcarriers per RU .. 28
Table 3.5-1 BPSK real and imaginary values ... 29

Table 3.5-2 QPSK real and imaginary values ... 29
Table 3.8-1 Inter-column permutation pattern for sub-block interleave 37

Table 3.9-1 Usage of channel coding scheme and coding rate ... 39
Table 3.9-2 NB-LTE standard inter-leaver constants ... 41

Table 4.1-1 Time and frequency offset estimation interface signals .. 45
Table 4.2-1 CP removal and offset correction interface signals ... 54
Table 4.3-1 FFT block interface signals ... 57

Table 4.4-1 Resource elements De-mapper interface signals ... 66
Table 4.5-1 Channel estimator interface signals ... 71

Table 4.6-1 Equalizer interface signals ... 75
Table 4.7-1 IDFT Interface signals ... 82
Table 4.8-1 De-mapper interfaces... 91

Table 4.8-2 FIFO interfaces .. 93

Table 4.9-1 Descrambler interface signals.. 96
Table 4.10-1 Data De-multiplexing and Channel De-interleaver interface signals 99
Table 4.11-1Rate De-matching interface signals .. 106

Table 4.12-1 Turbo decoder interface signals ... 116
Table 4.13-1 CRC interface signals .. 135

file:///C:/Users/Blue/Desktop/My_edits/Final_Thesis_edited_Omar.docx%23_Toc13238394
file:///C:/Users/Blue/Desktop/My_edits/Final_Thesis_edited_Omar.docx%23_Toc13238395

1

Chapter 1

Introduction

1.1. Motivation

The fourth generation of mobile phone standards LTE (Long Term Evolution), developed by

the 3GPP (3rd Generation Partnership Project), offers an up to seven times faster upload speed

with upload speeds of up to 50mbps. Retrofitting the infrastructure of UMTS (3G) to LTE-

Advanced (4G) will not be a hurdle, as the basic scheme of UMTS persists. In addition to the

higher capacity, the benefits of 4G LTE are the significantly lower latency times. These play a

key role in the smooth retrieval of IOT applications that rely on real-time information, such as

data from production systems or traffic information.

Narrow Band IoT (NB-IoT) is a new mobile network, which is based on the LTE standard and is

used exclusively for IoT applications. Compared to mobile networks (2G, 3G and 4G), NB-IoT

offers energy-saving capabilities that increase the battery life of simple IoT applications up to 10

years.

NB-IOT technology in particular supports a range of data rates. It depends on the channel

quality, or the signal-to-noise ratio and the quantity of resources in certain areas (bandwidth).

Also, each device has a specific power budget, which leads to combine the power of several

devices.

NB-IOT technology also focuses transmission energy without losing performance to a narrower

bandwidth. This efficiency frees up bandwidth for other devices. NB-IOT uses tones or

subcarriers rather than resource blocks. Its bandwidth is 15 kHz, a relevant difference when

compared with a resource block, whose effective bandwidth is 180 kHz.

There are many applications on IOT like smart homes, wearables, traffic management, water

distribution, smart grid, connected cars, connected health, … etc.

Figure 1.1-1 NB-IOT features

2

Narrow Band LTE, or NB-LTE is a new suite of technologies being developed by 3GPP, an

international conglomerate of Telecommunications Company responsible for developing and

maintaining the 4G LTE communications standard, among others.

The Internet of Things (IOT) is the primary application area of NB-LTE technology.

“Release 13” simply refers to the platform release number of the release. When 3GPP comes up

with a new stable communication platform, they release it to the public. Release 13 is one of

these releases, and it outlines the basic communication requirements of NB-LTE technology.

NB-LTE is also sometimes referred to as “NB-IOT” or “Narrowband IOT” technology, given its

usefulness and many handy applications for the Internet of Things.

Essentially, NB-LTE allows devices to communicate over long distance with cellular networks,

without using much bandwidth or power.

1.2. Multiple Access Techniques (OFDM overview)

OFDMA

LTE takes advantage of OFDMA, a multi-carrier scheme that allocates radio resources to

multiple users. OFDMA uses Orthogonal Frequency Division Multiplexing (OFDM). For LTE,

OFDM splits the carrier frequency bandwidth into many small subcarriers spaced at 15 kHz.

OFDMA assigns each user the bandwidth needed for their transmission. Unassigned subcarriers

are off, thus reducing power consumption and interference.

OFDMA uses OFDM; however, it is the scheduling and assignment of resources that makes

OFDMA distinctive. The OFDM diagram in Fig. 1.3-1 below shows that the entire bandwidth

belongs to a single user for a period. In the OFDMA diagram, multiple users are sharing the

bandwidth at each point in time.

SC-FDMA

In the uplink, LTE uses a pre-coded version of OFDM called SC-FDMA. SC-FDMA has

a lower PAPR (Peak-to-Average Power Ratio) than OFDM. This lower PAPR reduces battery

power consumption, requires a simpler amplifier design and improves uplink coverage and cell-

edge performance. In SCFDMA, data spreads across multiple subcarriers, unlike OFDMA where

each subcarrier transports unique data. The need for a complex receiver makes SC-FDMA

unacceptable for the downlink.

3

Figure 1.2-1 OFDM vs OFDMA

Figure 1.2-2 OFDM vs SC-FDMA

1.3. Frame structure

Ts is the basic time unit for LTE. Time domain fields are typically defined in terms ofTs.

Ts is defined as = 1/ (15000 x 2048) seconds or about 32.6 nanoseconds.

 Downlink and uplink transmissions are organized into frames of duration Tf= 307200Ts.

 The 10 ms frames divide into 10 sub-frames. Each sub-frame divides into 2 slots of 0.5 ms.

In the time domain, a slot is exactly one Resource Block long.

 Two frame types are defined for LTE: Type 1, used in Frequency Division Duplexing (FDD)

and Type 2, used in Time Division Duplexing (TDD).

 Type 1 frames consist of 20 slots with slot duration of 0.5 ms.

 Type 2 frames contain two half frames. Depending on the switch period, at least one of the

half frames contains a special sub-frame carrying three fields of switch information:

Downlink Pilot Time Slot (DwPTS), Guard Period (GP) and Uplink Pilot Time Slot

(UpPTS). If the switch time is 10 ms, the switch information occurs only in sub-frame one. If

the switch time is 5 ms, the switch information occurs in both half frames, first in sub-frame

one, and again in sub-frame six. Sub-frames 0 and 5 and DwPTS are always reserved for

downlink transmission. UpPTS and the sub-frame immediately following UpPTS are

reserved for uplink transmission. Other sub-frames can be uplink or downlink.

4

Figure 1.3-1 Type 1 frame

In LTE, ten 1 ms sub-frames compose a 10 ms frame. Each sub-frame divides into two slots. The

smallest modulation structure in LTE is the Resource Element. A Resource Element is one 15

kHz subcarrier by one symbol. Resource Elements aggregate into Resource Blocks. A Resource

Block has dimensions of subcarriers by symbols. Twelve consecutive subcarriers in the

frequency domain and six or seven symbols in the time domain form each Resource Block.

The number of symbols depends on the Cyclic Prefix (CP) in use. When a normal CP is used, the

Resource Block contains seven symbols. When an extended CP is used, the Resource Block

contains six symbols. A delay spread that exceeds the normal CP length indicates the use of

extended CP.

Figure 1.3-2 Relationship between a slot, symbols and Resource Blocks

Channel Bandwidth is the width of the channel as measured from the lowest channel edge to the

highest channel edge. The channel edge is the center frequency ± (channel bandwidth/2).

Transmission Bandwidth is the number of active Resource Blocks in a transmission. As the

bandwidth increases, the number of Resource Blocks increases. The Transmission Bandwidth

Configuration is the maximum number of Resource Blocks for the particular Channel

Bandwidth.

5

Figure 1.3-3 Relationships between Channel Bandwidth, Transmission Bandwidth Configuration, and Transmission

Bandwidth

1.4. Problem description

The target of this project is to implement low power uplink receiver for the Narrow Band

Long Term Evolution (NB-LTE).

The main goal is to design the Physical Layer chain of the LTE Rel.14 that targets the NB-LTE.

The physical layer chain includes but not subjected to the following:

 Scrambling

 Modulation Mapper

 OFDM signal generation

 Turbo Coding

 CRC

 FFT

 Interleaving

The project has gone through the following phases:

 Verilog Training

 Standard and literature reading

 System Modeling using MATLAB

 Testing and verification using Synopsys VCS tool

 RTL Design

 Synthesis using Synopsys Design Compiler

 Prototyping with FPGA (Optional) – Documentation

1.5. Thesis organization

In chapter 1 we give a brief overview about the NB-LTE and its use in the IOT applications.

We also give an overview about the multiple access techniques used in LTE.

In chanter 2, we give an overview about the uplink receiver chain and the algorithms chosen for

implementation.

In chanter 2, we explained the standard specifications and any assumptions needed for

implementation.

In chapter 4, we proposed the architecture and design for each block in the chain. We also

showed the MATLAB, RTL and synthesis results on DC compiler.

6

Chapter 2

Receiver uplink chain and sub-blocks' function

2.1. Chain block diagram

Figure 2.1-1 Uplink receiver chain block diagram

2.2. Synchronization

OFDM systems are very sensitive towards carrier frequency offsets. Carrier frequency

offset (CFO) happens due to mismatch of RF oscillator frequency at the transmitter and the

receiver, and also due to Doppler shift. The frequency offset causes two problems, one is the

reduction of amplitude of the signal and the other is introduction of Inter carrier interference

(ICI).

Synchronization of an OFDM signal is required and it consists of two major parts: carrier

frequency offset (CFO) and symbol time offset (STO) which is an estimate of when the symbol

starts.

The estimation of synchronization error can be performed depending on the type of the training

data and can be divided into two parts: pre-FFT synchronization and post-FFT synchronization.

Post-FFT synchronization is based on the known pilot data or training data that are inserted in

various location of the signal. The known pilot data may be one or two OFDM symbols and we

can also name this method as data-aided or preamble-based synchronization and it is performed

in the frequency domain as it depends on the location of pilots which is determined after the grid

is fully recognizable. On the other hand, the pre-FFT synchronization is based on the cyclic

prefix that can be used as training or data and. This method is also known as non-data aided

synchronization or cyclic prefix-based synchronization and it is performed in time domain.

Both time-domain and frequency-domain synchronization play important roles in correcting

carrier frequency offset in OFDM systems.

7

2.2.1. Coarse frequency and timing estimation

 System model

Figure 2.2-1 Synchronization flow in OFDM receiver

Figure 2-3 The OFDM system model.

8

The complex data symbols are modulated by inverse discrete Fourier transform on N parallel

subcarriers then passed through the channel and demodulated at the receiver by discrete Fourier

transform. The insertion of a cyclic prefix results in an equivalent parallel orthogonal channel

structure and also decreases the ICI effect.

The length of the transmitted OFDM symbol is (N+L) where N is the FFT points and L is the

cyclic prefix length.

In the analysis we consider the following:

1. The channel is nondispersive and that the transmitted signal S(k) is only affected by complex

additive white Gaussian noise (AWGN) n(k).

2. The uncertainty in the arrival time of the OFDM symbol and is modelled as a delay in the

channel impulse response δ(k − θ) where θ is the integer value representing the unknown

arrival of the symbol.

3. The uncertainty in carrier frequency (a difference in the local oscillators in the transmitter

and receiver gives rise to a shift of all the subcarriers) and is modelled as a complex

multiplicative distortion of the received data in the time domain ej2πεk/N, where ε is the

frequency shift.

These considerations give the following received signal

 𝑟(𝑘) = S(𝑘 − 𝜃) 𝑒𝑗2𝜋𝜀𝑘/𝑁 + n(𝑘) (1)

There is an observation here is that r(k) is not a white process even if S(k) approximates a

complex Gaussian process whose real and imaginary parts are independent and that’s because

the cyclic prefix yields a correlation between some pairs of samples, that are spaced N samples

apart. But since r(k) has a probabilistic structure, it contains information about the time offset

and the frequency offset.

 ML Estimation of Time and Frequency Offset

The maximum likelihood estimation is based on the idea that since the cyclic prefix is a part of

the end of the symbol that is appended in its start so if we take a window of L (cyclic prefix

length) and correlate it with another window that is N samples apart from the other one and keep

doing this and move the window sample by sample, then there will be some time when this

correlation gives a maximum value as there has to be some time when the two correlated

windows are those that are in the beginning and the end of the symbol. At this time, we can

detect the right start of the symbol.

The coarse timing and FFO is obtained from the log likelihood function according to the below

set of equations.

𝛾 (n) = ∑ 𝑟(𝑘)𝑟∗(𝑘 + 𝑁)𝑚+𝐿−1
𝑘=𝑚 (2)

Ф (n) = ∑ |𝑟(𝑘)|2 + |𝑟(𝑘 + 𝑁)|2𝑚+𝐿−1
𝑘=𝑚 (3)

𝑇�̂� = arg 𝑚𝑎𝑥
𝑛

{|𝛾 (𝑛)| − 𝜌Ф (𝑛)} (4)

𝜖̂ =
−1

2π
 ∠ 𝛾 (n) (5)

9

Where 𝛾 (n) is the correlation, Ф (n) is the energy, 𝑇�̂� is the estimated time offset and ϵ̂ is the

estimated frequency offset.

Since the argument operator arg (.) is performed by using 𝑡𝑎𝑛−1(.), the range of FFO estimation

in this equation is [
−𝜋,+𝜋

2𝜋
] = [-0.5, +0.5] so that |𝜖̂| ≤ 0.5. Hence, this technique is useful for the

estimation of Fractional frequency offset and it does not estimate the integer offset.

2.2.2. CORDIC algorithm

 CORDIC is an iterative algorithm for the calculation of the rotation of a two-dimensional

vector, in linear, circular and hyperbolic coordinate systems, using only add and shift operations.

The algorithm can be used for generating sinusoidal waveform, multiplication and division

operations, and evaluation of angle of rotation, trigonometric functions and logarithms. It

consists of two operating modes, the rotation mode (RM) and the vectoring mode (VM).

In the rotation mode a vector (X, Y) is rotated by an angle θ to obtain a new vector(X’, Y’). In

every iteration i, fixed angles of the value arctan(2−1) which are stored in a ROM are

subtracted or added from/to the remainder angleθi.

In the vectoring mode, the magnitude and phase of a vector (X, Y) are computed.

𝑥’ = 𝑥 𝑐𝑜𝑠(𝜑) – 𝑦 𝑠𝑖𝑛(𝜑)

𝑦’ = 𝑦 𝑐𝑜𝑠(𝜑) + 𝑥 𝑠𝑖𝑛(𝜑)

Rather than computing sin(φ) directly, we iteratively rotate β towards φ.

Step 1: set β = 45°

Step 2: if φ >= β then

 𝛽 = 𝛽 + (45/2)°

 Else 𝛽 = 𝛽 − (45/2)°

𝑥’ = 𝑐𝑜𝑠(𝜑) [𝑥 − 𝑦 𝑡𝑎𝑛(𝜑)]

𝑦’ = 𝑐𝑜𝑠(𝜑) [𝑦 + 𝑥 𝑡𝑎𝑛(𝜑)]

Allow iterative rotation so that tan(β) = ±2−i

 𝑥𝑖+1 = 𝑐𝑜𝑠(𝑡𝑎𝑛−1(±2−𝑖)) · [𝑥𝑖 – 𝑦𝑖 · 𝑑𝑖 · 2−𝑖]

 𝑦𝑖+1 = 𝑐𝑜𝑠(𝑡𝑎𝑛−1(±2−𝑖)) · [𝑦𝑖 + 𝑥𝑖 · 𝑑𝑖 · 2−𝑖]

10

With the rotate direction di = ±1

We know that the cosine is symmetric so

𝑐𝑜𝑠(𝑡𝑎𝑛−1(2−𝑖)) = 𝑐𝑜𝑠(𝑡𝑎𝑛−1(−2−𝑖))

𝑐𝑜𝑠(𝑡𝑎𝑛−1(2−𝑖)) is the gain Ki of an iteration

𝑘𝑖 = 𝑐𝑜𝑠(𝑡𝑎𝑛−1(2−𝑖)) =
1

√1+2−𝑖

We can compute K offline for all n iterations as k = ∏ kin and it approaches 0.6037, if n goes to

infinity.

Now we will summarize the iterative equations needed for both vectoring and rotation mode.

 Rotation mode

 𝑥𝑖+1 = 𝑘𝑖 · [𝑥𝑖 – 𝑦𝑖 · 𝑑𝑖 · 2−𝑖] 𝑑𝑖 = {
−1, 𝑧𝑖 < 0

 +1, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 𝑦𝑖+1 = 𝑘𝑖 · [𝑦𝑖 + 𝑥𝑖 · 𝑑𝑖 · 2−𝑖]

 𝑧𝑖+1 = [𝑧𝑖 – · 𝑑𝑖 · 𝑡𝑎𝑛−1(−2−𝑖)]

11

After n iterations we get

 𝑥𝑛 = 𝐴𝑛 · [𝑥0 𝑐𝑜𝑠(𝑧0) – 𝑌0𝑠𝑖𝑛(𝑧0)]

 𝑌𝑛 = 𝐴𝑛 · [𝑌0 𝑐𝑜𝑠(𝑧0) + 𝑋0𝑠𝑖𝑛(𝑧0)] 𝐴𝑛 = ∏ √1 + 2−𝑖𝑛
𝑖=0

 𝑧𝑛 = 0

 Vectoring mode

 𝑥𝑖+1 = 𝑘𝑖 · [𝑥𝑖 – 𝑦𝑖 · 𝑑𝑖 · 2−𝑖] 𝑑𝑖 = {
+1, 𝑦𝑖 < 0

 −1, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 𝑦𝑖+1 = 𝑘𝑖 · [𝑦𝑖 + 𝑥𝑖 · 𝑑𝑖 · 2−𝑖]

 𝑧𝑖+1 = [𝑧𝑖 – · 𝑑𝑖 · 𝑡𝑎𝑛−1(−2−𝑖)]

After n iterations we get

 𝑥𝑛 = 𝐴𝑛 · √ 𝑥0
2 + 𝑦0

2

 𝑌𝑛 = 0

 𝑧𝑛 = 𝑧0 + 𝑡𝑎𝑛−1(
 𝑦0

 𝑥0
)

The value of tan−1(−2−i) at each iteration can be obtained from the table in the last figure and

will later be stored in a LUT (look up table) in the hardware implementation.

2.3. Cyclic prefix removal and offset correction

In this block the cyclic prefix that was added at the transmitter side is removed. Also the

frequency offset in the received data is corrected According to the offset estimated in the

previous block.

Since we earlier modelled the uncertainty in the offset as (𝑒𝑗2𝜋𝜀𝑘/𝑁) so correcting the offset will

be simply done by multiplying the received data by (𝑒−𝑗2𝜋𝜀𝑘/𝑁).

2.4. FFT

FFT is an implementation of Discrete Fourier Transform (DFT) that is a digital way

(digital input digital output) to implement Fourier transform which is only defined for continuous

input signals. The FFT is an algorithm introduced in 1965, and it implements the DFT in a faster

way due to the complexity of the DFT and the simplicity of FFT.

Equation 6 shows the Discrete Fourier Transform. In this equation x (0) …, x(N−1) are the input

samples.

𝑥(𝑘) = ∑ 𝑥(𝑛) × 𝑒−𝑗2𝜋𝑛
𝑘

𝑁𝑛=𝑁−1
𝑛=0 , 𝑘 = 0,1, … . , 𝑁 − 1 (6)

𝑊𝑁 = 𝑒−𝑗2𝜋𝑛
𝑘

𝑁 (7)

𝑥(𝑘) = ∑ 𝑥(𝑛) × 𝑊𝑁𝑛=𝑁−1
𝑛=0 (8)

12

According to Eq. (6), the complexity of the DFT is O (N2) so it is applicable for simple data size

only, but for large data size it will be more complex and can’t be implemented on chip so FFT is

used instead of DFT because it is more efficient and faster due to its complexity O (Nlog N),

where N is the data size.

The radix, r, stands for the number of parts that the input signal will be divided into. The radix-2

algorithm is the simplest and most used form; it divides the input signal into 2 parts. The FFT of

the two parts can be calculated separately and can then be combined to form the complete DFT.

This dividing into smaller parts is done recursively, requiring the number of samples of the input,

N, to be a power of 2.

2.5. RED

Resource element De-mapper's function is to take the output symbols of the FFT and get

the proper allocated subcarriers for the NB-IoT bandwidth to the next block and this was

provided as information from the upper layer assigned number of subcarriers can be 1, 3, 6 or 12

subcarriers, in the case of 12 subcarriers; all the symbols are assigned to the 12 subcarriers. In

the case of 6 point FFT, the output 6 symbols of the FFT will be assigned to a certain 6

subcarriers of the 12 assigned subcarriers and the rest are padded with zeros and the same will be

done with 3 point FFT results, the location of the symbols within the 12 subcarriers in case of 3

and 6 subcarriers is calculated according to information from upper layer.

2.6. Channel estimation

The main function of this Block is to estimate the changes happens in the data bits while

it goes through the channel so that we could reverse this changes and detect the data correctly,

sure we can’t remove the channel effect perfectly but we can at least minimize it effect to the

limit required to successfully detect the sent bits.

This happened by sending pilots with the data bits which we be effected also by the channel, and

as the receiver also can generate these pilots using upper layer parameters, then if we divide the

received pilots on the generated ones we get the channel effect which will be delivered to the

equalizer to reverse it.

Also noise estimation is part of this block its function is to get the noise value so that we can

calculate signal to noise ratio required by the de-mapper block.

 We used the zero forcing technique to estimate the channel. Other techniques like interpolation

get more accurate estimation but need higher area and power implementation and as the

estimation difference not to large compared to the area and the power needed for it, so we used

the implementation of the lower area and power.

2.7. Equalizer

In wireless communication data are sent in radio space, the channel exhibits multipath

fading phenomenon which produces inter-symbol interference (ISI) in the signal received at the

receiver side. The received signal is a filtered and noise-corrupted version of the transmitted

sequence:

𝑟𝑘 =𝑠𝑘 ⊗ 𝑐𝑘 + 𝑛𝑘

13

Where rk is the received signal, ck is the channel and nk is the noise added (usually it’s an

AWGN noise) while the symbol ⊗ represents the convolution operation. The chief goal of

equalization is to rebuild the actual signal with the help of filter or any other methods and

remove the effect of ISI so that the reliability of data transmission is maintained.

A linear equalizer is a filter that can undo the channel effect. Output of the equalizer can be

documented as:

𝑦𝑘 = 𝑟𝑘 ⊗ ℎ𝑒𝑞

𝑦𝑘 = (𝑠𝑘⊗𝑐𝑘) ⊗ ℎ𝑒𝑞 + 𝑛𝑘 ⊗ ℎ𝑒𝑞

Where ykthe output of the equalizer and heq is the impulse response of the equalizer.

2.8. IDFT

IDFT is a block added to demodulate SC-FDMA symbols instead of OFDM symbols

which have high peak to average power ratio (PAPR) which require highly linear power

amplifiers to avoid excessive intermodulation distortion, while SC-FDMA solves this problem

by distributing given number of modulated symbols over all assigned subcarriers for

transmission instead of distributing one symbol over one subcarrier as in OFDM, therefore the

total PAPR decreased due to this fair distribution.

Figure 2.8-1 OFDMA vs SC-FDMA

14

Uplink uses SC-FDMA which is a modified form of the OFDM with similar throughput

performance and complexity, SC-FDMA is viewed as DFT-coded OFDM where time-domain

symbols are transformed to frequency domain symbols and then go through the standard OFDM

modulation as shown in Figure 2.8-1.

Figure 2.8-2 OFDM vs SC-FDM Block diagram

SC-FDMA has all the advantages of OFDM like robustness against multi-path signal

propagation, the block diagram for the SC-FDMA is shown in Figure 2.8-2.

15

2.9. De-mapper

Symbol De-mapper in communication systems is the transition between complex valued

signals into data bits. NB-LTE supports both QPSK and BPSK modulation schemes in the

uplink. The De-mapper transforms the received symbols to bits according to symbol location

represented by real and imaginary coordinates as shown in the following Figure 2.9-1.

The De-mapper output is a soft output which is the log likelihood ratio (LLR) as the input to the

turbo decoder must be a soft input.

2.10. Descrambler

Scrambling is very important in communication systems. By using the scrambling code,

NodeB can separate signals coming simultaneously from many different UEs and UE can

separate signals coming simultaneously from many different NodeB.

The main role of scrambling is to randomize the data before they got modulated by the symbol

De-mapper and also to avoid long sequence of zeros or ones as long sequence of zeros or ones

cause transmission synchronization problems.

2.11. Data Demultiplexing and Channel De-Interleaver

The main function of this block is to reverse the operations done at the transmitter at the

Data multiplexing and Channel interleaver Block.

The main function of Data multiplexing and Channel interleaver Block is control and data

multiplexing which is performed such that HARQ-ACK information is present on both slots and

is mapped to resources around the demodulation reference signals.

The multiplexing ensures that control and data information are mapped to different modulation

symbols.

The interleaver solve the problem of burst errors which happens because of deep fading channels

effects relate bits, the error bits after the interleaver are not in the same code word and in each

code word a single bit error which is easier to the random error decoder is to correct this single

error than the entire burst.
However, in narrowband we have no control data multiplexed; we keep using the block for the

interleaver benefits.

Figure 2.9-1 BPSK and QPSK constellation

16

2.12. Rate De-Matcher

The main function of this block is to reverse the operations done at the transmitter at the

Rate Matching Block.

Rate matching in NPUSCH is a very important block in baseband processing. The main function

of the Rate Matching Block is to ensure that the amount of data of the transport channel and the

physical channel can adapt each other. The basic principle of rate matching is that when the

amount of data of the transport channel is more than that carried by the physical channel, the

system performs a punch operation; on the contrary, it operates repeatedly.

It also used to adapt and control the rate as the turbo encoder gives fixed 1/3 rate, we can

increase or decrease rate depending on channel quality.

 HARQ and Redundancy Versions

HARQ, which stands for Hybrid Automatic Repeat Request, is an error correction mechanism in

LTE based on retransmission of packets, which are detected with error. The functionality of the

HARQ can be seen in Fig below. The transmitted packet arrives after a certain propagation delay

in receiver. Receiver produces either an ACK for the case of error-free transmission or a NACK,

if some errors are detected. The ACK/NACK is produced after some processing time and sent

back to transmitter and arrives there after a propagation delay. In the case of a NACK, after a

certain processing delay in transmitter, the desired packet will be sent again. The bits, which are

read out from the circular buffer and sent in each retransmission are different and depend on the

position of the RV (Redundancy Version). There are four RVs (0, 1, 2, 3), which define the

position of the starting point, where the bits are read out from the circular buffer.

Figure 2.12-1 HARQ mechanism in LTE

17

2.13. Turbo Decoder

2.13.1. CHANNEL CODING

 In a digital transmission system, error control is achieved by the use of channel coding

schemes. Channel coding schemes protect the signal from the effects of channel noise and

interference and ensure that the received information is as close as possible to the transmitted

information. They help to reduce the BER and improve reliability of information transmission.

Channel coding schemes involve the insertion of redundant bits into the data stream that help to

detect and correct bit errors in the received data stream. Due to the addition of the redundant bits,

there is a decrease in data rate. Thus the price paid for using channel coding to reduce bit error

rate is a reduction in data rate or an expansion in bandwidth.

 Convolutional codes

Convolutional codes are designed for real-time error correction. The code converts the entire

input stream into one single code-word. The encoded bit depends not only on the current bit but

also on the previous bit information

The design of a channel code is always a trade-off between energy efficiency and bandwidth

efficiency. Low rate codes having more redundant bits can usually correct more errors. That

means that the communication system can operate at lower transmit power, tolerate more

interference and noise and transmit at higher data rate.

Thus, the code becomes more energy efficient. However, low rate codes also have a large

overhead and have more bandwidth consumption. Also, the decoding complexity of the code

also grows exponentially with code length. Thus, low rate codes set high computational

requirements to the conventional decoders.

The turbo codes consist of component encoders separated by inter-leaver so that each encoder

uses an interleaved version of the same information sequence. It consists of two encoders

separated by the inter-leaver. The two encoders recursive systematic convolutional (RSC)

encoders used are identical and the code is systematic concatenated in parallel, for better

decoding it is required to have high weight (Hamming weight of a code-word is the number of

ones that it contains) transmitted code-word because it means that they are more distinct, and

thus the decoder will have an easier time distinguishing among them.

Inter-leaver is used to scramble bits before being input to the second encoder. This makes the

output of one encoder different from the other encoder. Thus, even if one of the encoders

occasionally produces a low-weight, the probability of both the encoders producing a low-weight

output is extremely small. This improvement is known as inter-leaver gain. Another purpose of

interleaving is to make the outputs of the two encoders uncorrelated from each other. Thus, the

exchange of information between the two decoders while decoding yields more reliability.

Both the RSC encoders are of short constraint length in order to avoid excessive decoding

complexity. An RSC encoder is typically of rate r = 1/2 and is termed a component encoder. The

two component encoders are separated by an inter-leaver. The output of the turbo encoder

consists of the systematic input data and the parity outputs from two constituent RSC encoders.

18

The systematic outputs from the two RSC encoders are not needed because they are identical to

each other (although ordered differently) and to the turbo code input. Thus the overall code rate

becomes r = 1/3.

Figure 2.13-1 shows the fundamental turbo code encoder.

Figure 2.13-1 Fundamental turbo code encoder

The generator matrix of the encoder then becomes

G = [1,
g2

g1
]

Where 1 denotes the systematic output, g2 denotes the feed forward output, and g1 is the

feedback to the input of the RSC encoder.

Figure 2.13-2 shows the RSC encoder.

Figure 2.13-2 RSC conventional encoder with r = 1/2.

 Trellis termination

Unlike conventional convolutional codes which always use a stream of zeros as tail bits, the tail

bits of a RSC depend on the state of the encoder when all the data bits have been encoded. Also

because of the presence of inter-leaver between the two encoders, the final states of the two

19

component encoders will be different. Thus, the trellis termination bits for the two encoders will

also be different and an RSC cannot be brought to an all zero state; simply by passing a stream of

zeros through it. However, this can be done by using the feedback bit as the encoder input. This

is done by using a switch at the input as shown in Figure 2.13-3.

The switch is in position A while encoding the input sequence and is switched to position B at

the end of the input bit sequence for termination of trellis. The XOR of the bit with itself will be

zero (output of left most XOR) and thus the encoder will return to all zero state

Figure 2.13-3 The trellis termination strategy for RSC encoder.

 QPP INTERLEAVER

QPP-based inter-leaver is maximum contention free, implying that the decoding can be

parallelized without the risk for contention when different parallel processes are accessing the

inter-leaver memory.

2.13.2. TURBO DECODING

Turbo decoding operates on the noisy version of systematic bits and two sets of parity-check bits

in two decoding stages to produce estimate of the original transmitted bits.

Each of the two decoding stages uses a SISO decoder to solve the MAP detection problem.

in the following figure the basic structure of the turbo decoder is shown:

Figure 2.13-4 Turbo Decoder

20

(1) SISO decoding stages

The SISO decoding stages could be implemented by:

A) BCJR algorithm. B) Modified Viterbi algorithm.

(2) Inter-leaver/de-interleaver

the interleaver used here is a QPP interleaver according to the standard specification.

(3) Hard limiter

to convert the soft output into hard bits.

BCJR VITERBI

Soft input soft output The original Viterbi is a soft input hard output

algorithm, however it may be modified to be

soft input soft output

Has two recursions, one forward and the other

backward, both of which involves soft

decisions

Has a single forward recursion involves soft

decision.

is a MAP decoder that minimize bit error rate

by estimating probability of individual bits

is a maximum likelihood sequence estimator

that maximize the likelihood function for the

whole sequence not each bit

More Complex Less complex

Has lower BER Has higher BER

needs a hard limiter to transform its soft

output into bits.

the original Viterbi does not need hard limiter

as its output is hard bits.
Table 2.13-1 BCJR vs Viterbi

After showing the comparison between the BCJR algorithm and the modified Viterbi algorithm,

the BCJR is chosen for the SISO decoding stage to achieve the minimum BER.

BCJR:

BCJR algorithm is an algorithm for maximum a posteriori decoding for error correction codes

defined on trellises (principally convolutional codes) to implement the MAP decoder.

The LLR (log likelihood ratio) is defined as:

𝐿(𝑢𝑘|𝑦) = 𝑙𝑛 (
𝑃(𝑢𝑘 = +1)

𝑃(𝑢𝑘 = −1)
)

This could be written using joint probability of the received sequence as:

𝐿(𝑢𝑘|𝑦) = 𝑙𝑛 (
∑ 𝑃(𝑠′, 𝑠, 𝑦)𝑅1

∑ 𝑃(𝑠′, 𝑠, 𝑦)𝑅0
) = 𝑙𝑛 (

∑ 𝛼𝑘−1(𝑠′)𝛾𝑘(𝑠′, 𝑠)𝛽𝑘(𝑠)𝑅1

∑ 𝛼𝑘−1(𝑠′)𝛾𝑘(𝑠′, 𝑠)𝛽𝑘(𝑠)𝑅0
)

Where:

 P (s’, s, y) represents the joint probability of receiving the N-bit sequence.

 y the received N-bit sequence.

 s’ is the state at time k-1.

21

 S is the state at time k.

 α is the forward recursion function.

 γ is the branch matric.

 β is the backward recursion function.

The BCJR algorithm contains log operation which is very complex to implement, so some

simplified methods are used to calculate LLR thus implement MAP algorithm. In the next

section two of those simplified methods will be discussed.

Three new variables will be defined A, B and Γ.

𝛤𝑘(𝑠′, 𝑠) = 𝑙𝑛(𝛾𝑘(𝑠′, 𝑠)) = 𝑙𝑛 𝐶𝑘 +
𝑢𝑘𝐿(𝑢𝑘)

2
+

𝐿𝑐

2
 ∑ 𝑥𝑙𝑘𝑦𝑙𝑘

𝑛

𝑙=1

𝐴𝑘(𝑠) = 𝑙𝑛(𝛼𝑘(𝑠)) = 𝑚𝑎𝑥𝑠′[𝐴𝑘−1(𝑠′) + 𝛤𝑘(𝑠′, 𝑠)]

𝐵𝑘−1(𝑠′) = 𝑙𝑛(𝛽𝑘−1(𝑠′)) = 𝑚𝑎𝑥𝑠[𝐵𝑘(𝑠) + 𝛤𝑘(𝑠′, 𝑠)]

𝑚𝑎𝑥 (𝑎, 𝑏) {
𝑚𝑎𝑥(𝑎, 𝑏) + 𝑙𝑛(1 + 𝑒−|𝑎−𝑏|) 𝑙𝑜𝑔 − 𝑀𝐴𝑃 𝑎𝑙𝑔𝑜𝑟𝑖𝑡ℎ𝑚

 𝑚𝑎𝑥(𝑎, 𝑏) 𝑚𝑎𝑥 𝑙𝑜𝑔 − 𝑀𝐴𝑃 𝑎𝑙𝑔𝑜𝑟𝑖𝑡ℎ𝑚

L(u|y) = maxR1[Ak−1(s′) + Γk(s′, s) + Bk(s)] − maxR0[Ak−1(s′) + Γk(s′, s) + Bk(s)]

Max log-MAP algorithm will be used to implement the turbo decoding BCJR algorithm.

2.14. Cyclic Redundancy Check (CRC)

The function of this block is to detect the errors in the whole transport block by adding 24

redundancy check bits at the end of each transport block at transmitter, while at receiver

recalculated 24 bit CRC is compared with last 24 bit.

22

Chapter 3

Standard Specifications and Assumptions

In this Chapter, the standard specifications and any assumptions taken for

each block in the chain are stated according to(3GPP TS 36)

3.1. FFT

In communication systems FFT block is used to convert data from time domain to

frequency domain in order to be processed in the whole chain. FFT is used for OFDM

and SC-FDMA chains to generate the subcarriers needed to be transmitted in Tx and

to recover the symbols again in Rx. SC-FDMA is the modified version of OFDM, it is

the same efficiency and complexity but low Peak to Average Power Ratio due to the

presence of IDFT and FFT with each other so it is used in Uplink due to the low

power of the user equipment. In Downlink OFDM is used because base station

operates at high power so power is not a constraint.

 Assumptions

LTE in general uses resource blocks; each block is 180 KHz to transmit at high

rate (usually in Mbps). Each RB is 15 KHz or 3.75 KHz sub-carrier spacing as

mentioned in the 3GPP standard. In Narrow Band LTE we have only one RB per slot

due to low power constraint, so the BW is 180 KHz and we use 15KHz. 15 KHz lead

us to 12 sub-carriers so we choose the size of the FFT to be 16-bits to support the 12

sub-carriers. Symbol duration is based on the sub-carrier spacing; we can calculate it

by knowing the duration of the whole frame of the NB-LTE. Frame duration is 1ms

long and it consists of 10 sub-frames, each sub-frame consists of 2 time slots each one

is 0.5ms long. Each time slot is 7 SC-FDMA symbols in case of normal Cyclic Prefix

and 6 in case of extended Cyclic Prefix and we operate in normal Cyclic Prefix for

simplicity. So, 0.5ms over 7 symbols gives symbol duration of 66.7µs and a CP of

5.08µs for first symbol and 4.67µs for the rest of symbols. Each one symbol SC-

FDMA consists of 12 symbols so the whole RB is 84 symbols, it gives a data rate of

336Kbps.

Figure 3.1-1 SC-FDMA chain

23

3.2. RED

 Complex valued symbols 𝑧(0), … , 𝑧(𝑀𝑠𝑦𝑚𝑏
𝑁𝑃𝑈𝑆𝐶𝐻 − 1) which are FFT block

outputs shall mapped to a resource element ak,l increasing k (symbols) then increasing

l (subcarrier) until reaching 𝑁𝑠𝑙𝑜𝑡𝑠 symbols, the 𝑁𝑠𝑙𝑜𝑡𝑠 symbols will be repeated

𝑀𝑖𝑑𝑒𝑛𝑡𝑖𝑐𝑎𝑙
𝑁𝑃𝑈𝑆𝐶𝐻 − 1 times before continuing mapping as stated in [1].

Where,

Midentical
NPUSCH = {

min (⌈
Mrep

NPUSCH

2
⌉ , 4) Nsc

RU > 1

1 Nsc
RU = 1

Nslots = {
1 ∆f = 3.75kHz
2 ∆f = 15kHz

The resource allocation information in uplink DCI format N0 for NPUSCH

transmission indicates to a scheduled UE as stated in [3].

− A set of contiguously allocated subcarriers (nsc) of a resource unit determined

by the Subcarrier indication field in the corresponding DCI,

− A number of resource units (NRU) determined by the resource assignment field

in the corresponding DCI according to Table 3.2-1.

− A repetition number (NREP) determined by the repetition number field in the

corresponding DCI according to Table 3.2-2.

Figure 3.2-1 Resource element (k,l) in the resource grid

24

For NPUSCH transmission with subcarrier spacing ∆f = 15 kHz, the subcarrier

indication field (Isc) in the DCI determines the set of contiguously allocated

subcarriers (nsc) according to Table 3.2-3.

In this design the carrier spacing is assumed to be 15 kHz with no repetition which is

left for future work.

3.3. Channel estimation

Standard supports different number of Demodulation reference signals (pilots)

 1, 3,6and 12 each has its own parameter to be generated

Demodulation reference signal

 The reference signal sequence)(nru for 1RU
sc N is defined by

 NPUSCH UL

rep slots RU

1
() 1 1 2 mod16 , 0

2
ur n j c n w n n M N N

Where the binary sequence nc shall be initialized with 35init c at the start of the

NPUSCH transmission. Where 16modNcell
IDNu for NPUSCH format 1if group

hopping is not enabled.

IREP NREP

0 1

1 2

2 4

3 8

4 16

5 32

6 64

7 128

IRU NRU

0 1

1 2

2 3

3 4

4 5

5 6

6 8

7 10

Table 3.2-1 Number of resource units (NRU) for NPUSCH

Subcarrier Indication Field (Isc) Set of allocated subcarriers (nsc)

0 – 11 Isc

12 – 15 3(Isc – 12) + {0, 1, 2}

16 – 17 6(Isc – 16) + {0, 1, 2, 3, 4, 5}

18 {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11}

19 – 63 Reserved

Table 3.2-2 Number of repetitions (NRep) for NPUSCH

Table 3.2-3 Set of allocated sub-carriers

25

u 15,...,0 ww

0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 -1 1 -1 1 -1 1 -1 1 -1 1 -1 1 -1 1 -1

2 1 1 -1 -1 1 1 -1 -1 1 1 -1 -1 1 1 -1 -1

3 1 -1 -1 1 1 -1 -1 1 1 -1 -1 1 1 -1 -1 1

4 1 1 1 1 -1 -1 -1 -1 1 1 1 1 -1 -1 -1 -1

5 1 -1 1 -1 -1 1 -1 1 1 -1 1 -1 -1 1 -1 1

6 1 1 -1 -1 -1 -1 1 1 1 1 -1 -1 -1 -1 1 1

7 1 -1 -1 1 -1 1 1 -1 1 -1 -1 1 -1 1 1 -1

8 1 1 1 1 1 1 1 1 -1 -1 -1 -1 -1 -1 -1 -1

9 1 -1 1 -1 1 -1 1 -1 -1 1 -1 1 -1 1 -1 1

10 1 1 -1 -1 1 1 -1 -1 -1 -1 1 1 -1 -1 1 1

11 1 -1 -1 1 1 -1 -1 1 -1 1 1 -1 -1 1 1 -1

12 1 1 1 1 -1 -1 -1 -1 -1 -1 -1 -1 1 1 1 1

13 1 -1 1 -1 -1 1 -1 1 -1 1 -1 1 1 -1 1 -1

14 1 1 -1 -1 -1 -1 1 1 -1 -1 1 1 1 1 -1 -1

15 1 -1 -1 1 -1 1 1 -1 -1 1 1 -1 1 -1 -1 1

Table 3.3-1 Definition of W (n)

The reference signal sequence for NPUSCH format 1 is given by:

 nrnr uu

The reference signal sequence for NPUSCH format 2 is given by

 2,1,0,)(3 mnrmwmnr uu

Where the sequence index chosen according to 3mod28

7

0

i

i
s inc with Ncell

IDinit Nc .

Reference signal sequence for 1RU
sc N

The reference signal sequences)(nru for 1RU
sc N is defined by a cyclic shift of a base

sequence according to

() 4 RU

sc() , 0j n j n

ur n e e n N ,

If group hopping is not enabled, the base sequence index u is given by higher layer

parameters threeTone-BaseSequence, sixTone-BaseSequence, and twelveTone-

BaseSequence for 3RU
sc N , 6RU

sc N , and 12RU
sc N , respectively. If not signalled by

higher layers, the base sequence is given by

12for 30mod

6for 14mod

3for 12mod

RU
sc

Ncell
ID

RU
sc

Ncell
ID

RU
sc

Ncell
ID

NN

NN

NN

u

The cyclic shift for 3RU
sc N and 6RU

sc N is derived from higher layer parameters

threeTone-CyclicShift and sixTone-CyclicShift, respectively, as defined in Table

below. For 12RU
sc N , 0 .

26

Table 3.3-2 Definition of ɸ (n) for Nsc =3

Table 3.3-3 Definition of ɸ (n) for Nsc =6

27

u)11(),...,0(

0 -1 1 3 -3 3 3 1 1 3 1 -3 3

1 1 1 3 3 3 -1 1 -3 -3 1 -3 3

2 1 1 -3 -3 -3 -1 -3 -3 1 -3 1 -1

3 -1 1 1 1 1 -1 -3 -3 1 -3 3 -1

4 -1 3 1 -1 1 -1 -3 -1 1 -1 1 3

5 1 -3 3 -1 -1 1 1 -1 -1 3 -3 1

6 -1 3 -3 -3 -3 3 1 -1 3 3 -3 1

7 -3 -1 -1 -1 1 -3 3 -1 1 -3 3 1

8 1 -3 3 1 -1 -1 -1 1 1 3 -1 1

9 1 -3 -1 3 3 -1 -3 1 1 1 1 1

10 -1 3 -1 1 1 -3 -3 -1 -3 -3 3 -1

11 3 1 -1 -1 3 3 -3 1 3 1 3 3

12 1 -3 1 1 -3 1 1 1 -3 -3 -3 1

13 3 3 -3 3 -3 1 1 3 -1 -3 3 3

14 -3 1 -1 -3 -1 3 1 3 3 3 -1 1

15 3 -1 1 -3 -1 -1 1 1 3 1 -1 -3

16 1 3 1 -1 1 3 3 3 -1 -1 3 -1

17 -3 1 1 3 -3 3 -3 -3 3 1 3 -1

18 -3 3 1 1 -3 1 -3 -3 -1 -1 1 -3

19 -1 3 1 3 1 -1 -1 3 -3 -1 -3 -1

20 -1 -3 1 1 1 1 3 1 -1 1 -3 -1

21 -1 3 -1 1 -3 -3 -3 -3 -3 1 -1 -3

22 1 1 -3 -3 -3 -3 -1 3 -3 1 -3 3

23 1 1 -1 -3 -1 -3 1 -1 1 3 -1 1

24 1 1 3 1 3 3 -1 1 -1 -3 -3 1

25 1 -3 3 3 1 3 3 1 -3 -1 -1 3

26 1 3 -3 -3 3 -3 1 -1 -1 3 -1 -3

27 -3 -1 -3 -1 -3 3 1 -1 1 3 -3 -3

28 -1 3 -3 3 -1 3 3 -3 3 3 -1 -1

29 3 -3 -3 -1 -1 -3 -1 3 -3 3 1 -1

Table 3.3-4 Definition of Definition of ɸ (n) for Msc = Nsc

28

3RU
sc N 6RU

sc N

threeTone-

CyclicShift

sixTone-

CyclicShift

0 0 0 0

1 3/2 1 6/2

2 3/4 2 6/4

 3 6/8

Table 3.3-5 Definition of α

3.4. IDFT

For each symbol 𝑥(0), 𝑥(1), … , 𝑥(𝑀𝑠𝑦𝑚𝑏
𝑙𝑎𝑦𝑒𝑟

− 1) will be divided into

𝑀𝑠𝑦𝑚𝑏
𝑙𝑎𝑦𝑒𝑟

/𝑀𝑠𝑐
𝑁𝑃𝑈𝑆𝐶𝐻 sets each set represents a SC-FDMA pre-coded by the following

equation

y(𝑙 ∙ 𝑀𝑠𝑐
𝑁𝑃𝑈𝑆𝐶𝐻 + 𝑘) =

1

√𝑀𝑠𝑐
𝑁𝑃𝑈𝑆𝐶𝐻

 ∑ 𝑥(𝑙 ∙ 𝑀𝑠𝑐
𝑁𝑃𝑈𝑆𝐶𝐻 + 𝑖)𝑒

−𝑗
2𝜋𝑖𝑘

𝑀𝑠𝑐
𝑁𝑃𝑈𝑆𝐶𝐻

𝑀𝑠𝑐
𝑁𝑃𝑈𝑆𝐶𝐻−1

𝑖=0

𝑘 = 0, … , 𝑀𝑠𝑐
𝑁𝑃𝑈𝑆𝐶𝐻 − 1 (𝑖𝑑𝑓𝑡 𝑝𝑜𝑖𝑛𝑡𝑠 𝑑𝑒𝑝𝑒𝑛𝑑 𝑜𝑛 𝑀𝑠𝑐

𝑁𝑃𝑈𝑆𝐶𝐻)

𝑙 = 0, … ,
𝑀𝑠𝑦𝑚𝑏

𝑙𝑎𝑦𝑒𝑟

𝑀𝑠𝑐
𝑁𝑃𝑈𝑆𝐶𝐻 − 1

Resulting in a block of complex-valued symbols 𝑦(0), … , 𝑦(𝑀𝑠𝑦𝑚𝑏
𝑙𝑎𝑦𝑒𝑟

− 1).

Where 𝑀𝑠𝑐
𝑁𝑃𝑈𝑆𝐶𝐻 = 𝑁𝑠𝑐

𝑅𝑈and, 𝑁𝑠𝑐
𝑅𝑈 is the number of allocated subcarriers can be

determined from the Table 3.9.

NPUSCH format ∆𝒇 𝑵𝒔𝒄
𝑹𝑼 𝑵𝒔𝒍𝒐𝒕𝒔

𝑼𝑳 𝑵𝒔𝒚𝒎𝒃𝒐𝒍𝒔
𝑼𝑳

1 15 kHz

1 16

7
3 8

6 4

12 2
Table 3.4-1 Number of subcarriers per RU

Resource units are used to describe the mapping of the NPUSCH to resource

elements. A resource unit is defined as 𝑁𝑠𝑙𝑜𝑡𝑠
𝑈𝐿 ∗ 𝑁𝑠𝑦𝑚𝑏𝑜𝑙𝑠

𝑈𝐿 consecutive SC-FDMA

symbols in the time domain and, 𝑁𝑠𝑐
𝑅𝑈 consecutive subcarriers in the frequency

domain, where 𝑁𝑠𝑙𝑜𝑡𝑠
𝑈𝐿 , 𝑁𝑠𝑦𝑚𝑏𝑜𝑙𝑠

𝑈𝐿 , and 𝑁𝑠𝑐
𝑅𝑈, are given by Table 3-9.

In our design we assumed working with NPUSCH format 1 with 15 KHz spacing.

29

3.5. Mapper

According to 3GPP Narrow band LTE standard Release 14 the modulation

scheme used for uplink is either BPSK or QPSK depends on the channel condition to

minimize the bit error rate (BER).

 BPSK:

Modulating a single bit into a symbol and map it to the constellation according to the

following Table:

b(i) I Q

0 1/√2 1/√2

1 -1/√2 -1/√2

Table 3.5-1 BPSK real and imaginary values

Figure 3.5-1 BPSK constellation

 QPSK:

Modulating 2 bits to a symbol and map it to the constellation according to the

following Table:

b(i),b(i+1) I Q

00 1/√2 1/√2

01 1/√2 -1/√2

10 -1/√2 1/√2

11 -1/√2 -1/√2

Table 3.5-2 QPSK real and imaginary values

30

Figure 3.5-2 QPSK constellation

3.5.1. Clock Domain Crossing

A clock domain crossing occurs whenever data is transferred from a flip-flop

driven by one clock to a flip-flop driven by another clock. This will occur if there is a

change in phase, frequency or both of them. Leading to a meta-stability region

between the 2 clock domains.

Figure 3.5-3 Example of 2 clock domains

Meta-Stability:

One of the biggest problems due to CDC is meta-stability because the time

available for a signal keeps changing for each edge pair. Hence, even if the timing is

met for some specific pairs of clock edges, there is quite a likelihood that for some

other pair of edges, the setup or hold might not be met. Also, the extent of violation

would keep varying across different pairs. Thus, sometimes the setup and hold

requirements would be met with sufficient slack, sometimes they would be just met,

sometimes they would be just violated and sometimes, there would be gross

violations.

Figure 3.5-4 Meta-stability region

31

Figure 3.5-5 Meta-stability effect

Problems of Meta-stability region:

 Setup and hold time violations which lead to data corruption.

 Short circuit path is established between supply and ground if an input to a set

of CMOS transistors is some way between ‘0’ and ‘1’.

 Error propagation along the receiver chain.

Proposed solution to Clock Domain Crossing (CDC) problem:

 Synchronizer (two flip-flops).

 RAM

 FIFO

3.5.1.1. Synchronizer

Synchronization is the solution to the above problem as the main

responsibility of a synchronizer is to allow sufficient time such that any meta-sable

output can settle down to a stable value in the destination clock domain. The most

common synchronizer used by designers is Double Flop (2-FF) synchronizers.

Figure 3.5-6 Two flip-flop synchronizers

The main problem of the synchronizer is the data loss due to the change in frequency

between the 2 clock domains.

32

Let’s consider 2 scenarios for the data loss problem:

A. Slow to fast crossing:

Considering a situation, where the source flop is generating the data at a lower

frequency. And, the destination flop is getting triggered by a faster clock. In this case,

before the source flop generates another data, the destination flop would have

sampled the previous data. Thus, for slow to fast crossing, there might not be a risk of

data loss. However, if the destination clock is only marginally faster than the source

clock, the data loss risk would still be there. This happens because once the edges of

the two clocks are almost aligned they will come very close together for next several

cycles.

Figure 3.5-7 Setup and hold time violations due to CDC

to ensure no loss of data, it is required to take care of all kinds of uncertainty. The

factors that cause this uncertainty are:

 Setup requirement of the destination flop.

 Hold requirement of the destination flop.

 Clock Jitter for both launch and capture clock.

 Path delay differential for fastest and slowest path from the launch to the

capture.

B. Fast to slow crossing:

Consider a situation, where the source flop is generating the data at a higher

frequency. And, the destination flop is getting triggered by a slower clock. In this

case, before the destination flop captures a data, the source clock would have

launched the next data. Thus, for fast to slow crossing, there is always a risk that only

intermediate data might get captured, and, several data might get lost.

3.5.1.2. FIFO

Data Loss can be prevented using FIFO (First in First out) based mechanism.

FIFO based mechanism is very useful for either of the two situations:

 The two clocks have very close frequency.

 The data launch is in bursts, i.e. after launching several data in consecutive

cycles, it then becomes quiet for several cycles. In such cases, even if the launch clock

is faster than the capture clock, the FIFO based mechanism can be found to be useful.

The data launched in the bursts keep getting stored in the FIFO. While, the launch

side becomes quiet, the capture side keeps picking up the data stored in the FIFO.

33

Figure 3.5-8 FIFO as a solution to CDC

3.5.1.3. FIFO structure

The FIFO is a 2 port memory which input and the output bit stream is in the

same sequence. However, the address of this memory cannot be accessed from its

interfaces. The data is entered or read each clock cycle using Read and Write enables.

It also has 2 signals to indicate that either the FIFO is full or empty to prevent writing

or reading from it if there is no free memory to write or no data to read.

3.5.1.4. FIFO Depth

Size of the FIFO basically refers to the amount of data available at a given

time. In asynchronous FIFO this depends on both read and write clock domain

frequencies and number of data written and read (data rate). Data rate can vary

depending on the two-clock domain operation and requirement and of course

frequency. The worst case condition is the maximum data rate difference between

read and write clock. This can happen when data rate of writing operation is

maximum and for read operation data rate is minimum.

𝐹𝐼𝐹𝑂 𝑆𝑖𝑧𝑒 = 𝐷𝑚𝑎𝑥 −
𝐷𝑚𝑎𝑥 ∗ 𝐹𝑟𝑒𝑎𝑑 ∗ 𝐷𝑟𝑒𝑎𝑑

𝐹𝑤𝑟𝑖𝑡𝑒 ∗ 𝐷𝑤𝑟𝑖𝑡𝑒

Where:

 Dmax is the maximum number of words that could be written.

 Fread is the read frequency.

 Fwrite is the write frequency.

 Dread is the number of words that is read each clock cycle.

 Dwrite is the number of words that is written each clock cycle.

In the case of NB-LTE uplink receiver the FIFO based solution is used.

3.6. Scrambler

Scrambler mainly consists of two linear feedback shift registers which simply

generating an L=31- Golden Sequence C(n) by 2 paths of flip flops which initialized

by two different values as shown in figure 3.6-1.

34

For each code word q , the block of bits)1(),...,0()(
bit

)()(qqq Mbb , where
)(

bit
qM is the

number of bits transmitted in code word q on the physical uplink shared channel in

one sub frame, shall be scrambled with a UE-specific scrambling sequence prior to

modulation, resulting in a block of scrambled bits)1(
~

),...,0(
~ (q)

bit
)()(Mbb qq .

)()(ic q
 Is the scrambling sequence and to get the required output, the first LFSR shall

be initialized withx1(0) = 1, x1(n) = 0 , n=1,2,….30.

While the second LFSR shall be initialized with

cell
ID

9
s

1314
RNTIinit 2222 Nnqnc

Where RNTIn corresponds to the RNTI associated with the PUSCH transmission.

Figure 3.6-1 Scrambler architecture according to standard

3.7. Data multiplexing and Channel Interleaver

In narrowband interleaving is applied per resource unit without any control

information in order to apply a time-first rather than frequency-first mapping, where

the input sequence is the portion of e for a resource unit instead of f

1. Data and control multiplexing:

The inputs to the data and control multiplexing are the coded bits of the control

information denoted by 13210 ,...,,,, CQIL QNqqqqq and the coded bits of the UL-SCH

denoted by 13210 ,...,,,, Gfffff . The output of the data and control multiplexing

operation is denoted by
13210

,...,,,,
H

ggggg , where CQIL QNGH and

 mL QNHH / , and where
i

g , 1,...,0 Hi are column vectors of length Lm NQ . H

is the total number of coded bits allocated for UL-SCH data and CQI/PMI

information across the LN transmission layers of the transport block.

In narrowband Qm is 1 for π/2-BPSK and 2 for π/4-QPSK, NL=1.

We will skip the control part so QcQiwill be take value Zero.

35

in the case of single transport block transmission, and assuming that LN is the number

of layers onto which the UL-SCH transport block is mapped, the control information

and the data shall be multiplexed as follows:

Set i, j, k to 0

While Gi -- place the data
T

NQiik Lm
ffg] ... [1

Lm NQii

1 kk

end while

2. Channel interleaver

The input to the channel interleaver are denoted by
1210

,...,,,
H

gggg ,

RI

Q

RIRIRI

RI
qqqq

1210
,...,,,

 and

ACK

Q

ACKACKACK

ACK

qqqq
1210

,...,,,

. In case where more than one

UL-SCH transport block are transmitted in a sub-frame of an UL cell, the HARQ-

ACK and RI information are multiplexed with data on both UL-SCH transport blocks.

The number of modulation symbols per layer in the sub-frame is given by
'
RItotal QHH . The output bit sequence from the channel interleaver is derived as

follows:

(1) Assign UL

slots

UL

symb 1 NNCmux to be the number of columns of the matrix. The

columns of the matrix are numbered 0, 1, 2,…, 1muxC from left to right.

Nsymb
UL is the number of SC-FDMA symbols for NPUSCH in a UL resource

unit.

(2) The number of rows of the matrix is muxLmtotalmux CNQHR / and we

define Lmmuxmux NQRR / .

The rows of the rectangular matrix are numbered 0, 1, 2,…, 1muxR from

top to bottom.

(3) Write the input vector sequence, for k = 0, 1,…, 1H , into the

 muxmux CR matrix by sets of Lm NQ rows starting with the vector
0

y in

column 0 and rows 0 to 1 Lm NQ :

)1(2)1(1)1()1(

1221

1210

muxmuxmuxmuxmuxmuxmuxmux

muxmuxmuxmux

mux

CRCRCRCR

CCCC

C

yyyy

yyyy

yyyy

The pseudocode is as follows:

Set i, k to 0.

While k < H ,

if
i

y is not assigned to RI symbols

ki
gy

k = k + 1

36

end if

i = i+1

end while

(4) The output of the block interleaver is the bit sequence read out column by

column from the muxmux CR matrix. The bits after channel interleaving

are denoted by 1210 ,...,,, RIL QNHhhhh .

3.8. Rate De-Matching

Figure 3.8-1 Rate matching Block diagram

The Block is divided into the main blocks

1. Sub-block interleaver: is defined for each output stream from Turbo coding. The

streams include a systematic bit stream 𝑑𝑘 (0), a parity bit stream 𝑑𝑘 (1) and an

interleaved parity stream 𝑑𝑘 (2) coming from turbo-encoder.

The bit stream)0(
kd is interleaved according to the first sub-block interleaver with an

output sequence defined as
)0(

1

)0(
2

)0(
1

)0(
0 ,...,,,

K
vvvv and where TC

subblock
TC
subblock CRK

The bit stream)1(
kd is interleaved according to the second sub-block interleaver with

an output sequence defined as
)1(

1

)1(
2

)1(
1

)1(
0 ,...,,,

K
vvvv .

The bit stream)2(
kd is interleaved according to the third sub-block interleaver with an

output sequence defined as
)2(

1

)2(
2

)2(
1

)2(
0 ,...,,,

K
vvvv .

The bits input to the block interleaver are denoted by)(
1

)(
2

)(
1

)(
0 ,...,,,

i
D

iii
dddd , where D is

the number of bits. The output bit sequence from the block interleaver is derived as

follows:

(1) Assign 32TC
subblockC to be the number of columns of the matrix. The columns of

the matrix are numbered 0, 1, 2,…, 1TC
subblockC from left to right.

(2) Determine the number of rows of the matrix TC
subblockR , by finding minimum

integer
TC

subblockR such that:

37

 TC
subblock

TC
subblock CRD

The rows of rectangular matrix are numbered 0, 1, 2,…, 1TC
subblockR from top to bottom.

(3) If DCR TC
subblock

TC
subblock , then DCRN TC

subblock
TC
subblockD dummy bits are

padded such that yk = <NULL> for k = 0, 1,…, ND - 1. Then,)(i
kkN dy

D
 , k = 0, 1,…,

D-1, and the bit sequence yk is written into the TC
subblock

TC
subblock CR matrix row by row

starting with bit y0 in column 0 of row 0:

)1(2)1(1)1()1(

1221

1210

TC
subblock

TC
subblock

TC
subblock

TC
subblock

TC
subblock

TC
subblock

TC
subblock

TC
subblock

TC
subblock

TC
subblock

TC
subblock

TC
subblock

TC
subblock

CRCRCRCR

CCCC

C

yyyy

yyyy

yyyy

For)0(
kd and)1(

kd :

(4) Perform the inter-column permutation for the matrix based on the pattern

 1,...,1,0 TC
subblockCj

jP that is shown in Table 3.8-1, where P(j) is the original column

position of the j-th permuted column. After permutation of the columns, the inter-

column permuted TC
subblock

TC
subblock CR matrix is equal to

TC
subblock

TC
subblock

TC
subblock

TC
subblock

TC
subblock

TC
subblock

TC
subblock

TC
subblock

TC
subblock

TC
subblock

TC
subblock

TC
subblock

TC
subblock

TC
subblock

TC
subblock

CRCPCRPCRPCRP

CCPCPCPCP

CPPPP

yyyy

yyyy

yyyy

)1()1()1()2()1()1()1()0(

)1()2()1()0(

)1()2()1()0(

(5) The output of the block interleaver is the bit sequence read out column by

column from the inter-column permuted TC
subblock

TC
subblock CR matrix. The bits after sub-

block interleaving are denoted by
)(

1

)(
2

)(
1

)(
0 ,...,,,

i

K

iii
vvvv

, where)(

0
i

v corresponds to)0(Py ,

)(
1

i
v to TC

subblockCP
y

)0(
… .

For)2(
kd :

(6) The output of the sub-block interleaver is denoted by
)2(

1

)2(
2

)2(
1

)2(
0 ,...,,,

K
vvvv , where

)(
)2(

kk yv and where

 KRkC

R

k
Pk TC

subblock
TC
subblockTC

subblock

mod1mod)(

The permutation function P is defined in Table 3.8-1.

Number of columns
TC
subblockC

Inter-column permutation pattern

)1(),...,1(),0(TC
subblockCPPP

32

< 0, 16, 8, 24, 4, 20, 12, 28, 2, 18, 10, 26, 6,

22, 14, 30, 1, 17, 9, 25, 5, 21, 13, 29, 3, 19,

11, 27, 7, 23, 15, 31 >

Table 3.8-1 Inter-column permutation pattern for sub-block interleave

38

2. Bit collection: is used to concatenate the three bit streams 𝑣𝑘𝜋 (0) , 𝑣𝑘𝜋 (1) and

 𝑣𝑘(2) which represent the systematic bit stream, parity bit stream and interleaved

parity stream respectively together at the circular buffer.

(1) The circular buffer of length KK w 3 for the r-th coded block is generated as

follows:

(2))0(
kk vw for k = 0,…, 1K

(3))1(
2 kkK vw

 for k = 0,…, 1K

(4))2(
12 kkK vw

 for k = 0,…, 1K

3. Bit selection: extracts consecutive bits from the circular buffer to the extent that

fits into the assigned physical resource. Combined with the Turbo coding, the

circular buffer can puncture or repeat the collected coded bits to achieve an

alterable channel coding rate under different scenarios.

Denoting by E the rate matching output sequence length for the r-th coded block, and

rvidx the redundancy version number for this transmission (rvidx = 0, 1, 2 or 3), the rate

matching output bit sequence is ke , k = 0,1,..., 1E .

Define by G the total number of bits available for the transmission of one transport

block.

Set mL QNGG

NL is equal to the number of layers a transport block is mapped onto

Set CG mod , where C is the number of code blocks

if 1 Cr

set CGQNE mL /

else

set CGQNE mL /

end if

In narrowband C=1

Set

 2

8
20 idxTC

subblock

cbTC
subblock rv

R

N
Rk , where TC

subblockR the number of rows is

Set k = 0 and j = 0

while {k < E}

39

if NULLw
cbNjk mod)(0

cbNjkk we mod)(0

k = k +1

end if

j = j +1

end while

wcb KN for UL-SCH

3.9. Encoder

 According to 3GPP narrowband LTE IOT Standard release 14 for UL-SCH

channel codding is turbo coding with rate 1/3 as show in Table 3.9-1

TrCH Coding scheme Coding rate

UL-SCH

Turbo coding 1/3

DL-SCH

PCH

MCH

SL-SCH

SL-DCH

BCH Tail biting

convolutional

coding

1/3
SL-BCH

Table 3.9-1 Usage of channel coding scheme and coding rate

Turbo Encoder is consisting of two recursive Convolutional Encoder and one Turbo

internal interleaver, the overall code rate is approximately r = 1/3. Figure 3.9-1 shows

a 3GPP turbo encoder.

Figure 3.9-1 Structure of rate 1/3 turbo encoder (dotted lines apply for trellis termination only)

40

Convolutional Encoder

The two convolutional encoders used in the Turbo code are identical with generator

polynomials

𝐺(𝐷) = [1,
𝑔1(𝐷)

𝑔0(𝐷)
]

 𝑔0(𝐷) = 1 + 𝐷2 + 𝐷3

𝑔1(𝐷) = 1 + 𝐷 + 𝐷3

The data bits are transmitted together with the parity bits generated by two constituent

convolutional encoders. Prior to encoding, both the convolutional encoders are set to

all zero state, each shift register is filled with zeros. The turbo encoder consists of an

internal inter-leaver which interleaves the input data bits c1, c2 …….ck to c´1, c´2

……. c´k which are then input to the second constituent encoder. Thus, the data is

encoded by the first encoder in the natural order and by the second encoder after

being interleaved. The systematic output of the second encoder is not used and thus

the output of the turbo coder is serialized combination of the systematic bits ck, parity

bits from the first (upper) encoder ZK and parity bits from the second encoder Z´k for

k = 1, 2, …K.

After all the data bits K have been encoded, trellis termination is performed by

passing tail bits from the constituent encoders bringing them to all zeros state. To

achieve this, the switches in Figure 3.13 are moved in the down position. Because of

the interleaver, the states of both the constituent encoders will usually be different, so

the tail bits will also be different and need to be dealt separately.

For tails bits the transmitted bit stream includes not only the tail bits {Xk+1, X k+2,

Xk+3} corresponding to the upper encoder but also tail bits corresponding to the lower

encoder {X´k+1, X´k+2, X´k+3}. In addition to these six tail bits, six corresponding

parity bits {Zk+1, Zk+2, Zk+3} and {Z´k+1, Z´k+2, Z´k+3} for the upper and lower encoder

respectively are also transmitted. First, the switch in the upper (first) encoder is

brought to lower (flushing) position and then the switch in the lower (second)

encoder. The tail bits are then transmitted at the end of the encoded data frame.

According to 3GPP release 14 the tail bits’ sequence is:

𝑑𝑘
(0)

= 𝑥𝑘 , 𝑑𝑘+1
(0)

= 𝑧𝑘+1, 𝑑𝑘+2
(0)

= 𝑥′𝑘, 𝑑𝑘+3
(0)

= 𝑧′𝑘+1

𝑑𝑘
(1)

= 𝑧𝑘, 𝑑𝑘+1
(1)

= 𝑥𝑘+2, 𝑑𝑘+2
(1)

= 𝑧′𝑘, 𝑑𝑘+3
(1)

= 𝑥′𝑘+1

𝑑𝑘
(2)

= 𝑥𝑘+1, 𝑑𝑘+1
(2)

= 𝑧𝑘+2, 𝑑𝑘+2
(2)

= 𝑥′𝑘+1, 𝑑𝑘+3
(2)

= 𝑧′𝑘+2

For number of input bits K, the total length of the encoded bit sequence now becomes

3K+12, 3K being the coded data bits and 12 being the tail bits. The code rate of the

encoder is thus

 r = K / (3K+12). However, for large size of input K, the fractional loss in code rate

due to tail bits in negligible and thus, the code rate is approximated at 1/3.

Internal inter-leaver

The bits input to the turbo code internal inter-leaver are denoted by 𝐶0, 𝐶1, 𝐶2, … 𝐶k-1,

where K is the number of input bits = TBS + 24 CRC bits.

41

The relationship between the output index (𝑖) and the input index 𝑖 according to the

following equation is:

𝜋(𝑖) = (𝑓1 ∗ 𝑖 + 𝑓2 ∗ 𝑖2)% 𝑘

Where 𝑓1 and 𝑓2 are constants depending on K (TBS + 24 CRC bits), Table 3.9-2

shows standard values for 𝑓1 and 𝑓2 for every K, the size of the input data ranges

from 40 to 2560 bits for NB-LTE.

i K 1f 2f i K 1f 2f i K 1f 2f

1 40 3 10 48 416 25 52 95 1120 67 140

2 48 7 12 49 424 51 106 96 1152 35 72

3 56 19 42 50 432 47 72 97 1184 19 74

4 64 7 16 51 440 91 110 98 1216 39 76

5 72 7 18 52 448 29 168 99 1248 19 78

6 80 11 20 53 456 29 114 100 1280 199 240

7 88 5 22 54 464 247 58 101 1312 21 82

8 96 11 24 55 472 29 118 102 1344 211 252

9 104 7 26 56 480 89 180 103 1376 21 86

10 112 41 84 57 488 91 122 104 1408 43 88

11 120 103 90 58 496 157 62 105 1440 149 60

12 128 15 32 59 504 55 84 106 1472 45 92

13 136 9 34 60 512 31 64 107 1504 49 846

14 144 17 108 61 528 17 66 108 1536 71 48

15 152 9 38 62 544 35 68 109 1568 13 28

16 160 21 120 63 560 227 420 110 1600 17 80

17 168 101 84 64 576 65 96 111 1632 25 102

18 176 21 44 65 592 19 74 112 1664 183 104

19 184 57 46 66 608 37 76 113 1696 55 954

20 192 23 48 67 624 41 234 114 1728 127 96

21 200 13 50 68 640 39 80 115 1760 27 110

22 208 27 52 69 656 185 82 116 1792 29 112

23 216 11 36 70 672 43 252 117 1824 29 114

24 224 27 56 71 688 21 86 118 1856 57 116

25 232 85 58 72 704 155 44 119 1888 45 354

26 240 29 60 73 720 79 120 120 1920 31 120

27 248 33 62 74 736 139 92 121 1952 59 610

28 256 15 32 75 752 23 94 122 1984 185 124

29 264 17 198 76 768 217 48 123 2016 113 420

30 272 33 68 77 784 25 98 124 2048 31 64

31 280 103 210 78 800 17 80 125 2112 17 66

32 288 19 36 79 816 127 102 126 2176 171 136

33 296 19 74 80 832 25 52 127 2240 209 420

34 304 37 76 81 848 239 106 128 2304 253 216

35 312 19 78 82 864 17 48 129 2368 367 444

36 320 21 120 83 880 137 110 130 2432 265 456

37 328 21 82 84 896 215 112 131 2496 181 468

38 336 115 84 85 912 29 114 132 2560 39 80

Table 3.9-2 NB-LTE standard inter-leaver constants

42

3.10. Cyclic Redundancy Check (CRC)

 According to Release 14 specifications, the parity bits are generated by one of

the following cyclic generator polynomials:

- gCRC24A(D) = [D24 + D23 + D18 + D17 + D14 + D11 + D10 + D7 + D6 + D5 + D4 + D3 + D + 1] and;

- gCRC24B(D) = [D24 + D23 + D6 + D5 + D + 1] for a CRC length L = 24 and;

- gCRC16(D) = [D16 + D12 + D5 + 1] for a CRC length L = 16.

- gCRC8(D) = [D8 + D7 + D4 + D3 + D + 1] for a CRC length of L = 8.

y when code (D) is added onlCRC24B(D) is added after each code block, gCRC24AWhere g

is attached to the Master Information Block CRC16block segmentation is applied, g

(MIB) and Downlink Control Information (DCI) messages is employed by and8 CRCg

some uplink channels (PUCCH and PUSCH) for transmitting Channel Quality

Indicator (CQI) information.

For NB-IOT maximum ULSH (uplink shared channel) with maximum TBS=2536 bits

while the maximum transmitted code block size Z before segmentation =6144

.” polynomial equation is usedCRC24Atherefore “g

s (D) iCRC24Aegmentation to code blocks and gshows transport block s 1-103. Figure

added to each code block.

Figure 3.10-1 Block segment and CRC attached

43

3.11. Equalizer

In our project we split the equalizer block into two blocks, channel estimation block

and equalization block. Equalization block in this case is very simple, it’s just a divider. It

reflects the channel effect by divide the symbols corrupted by the channel estimated through

channel estimation block. As we mentioned we have a power and cost constraints so we use

memory-based architecture to use one complex divider. Complex divider is done using

restoring algorithm. Equalizer takes input symbols from resource element De-mapper block

and the channel information from the channel estimation block and divides symbols by

channel pilots to produce the correct symbols to IDFT block.

In LTE uplink grid as shown in Figure 3.11-1, pilots are generated in the 4th symbol in each

slot so we save 1st three symbols in memory and wait for channel information from channel

estimation. When receiving channel information in equalizer we saved it in memory and wait

for other 3 symbols to be generated.

Symbols/Sub-

carriers

Symbol1 Symbol2 Symbol3 Pilots Symbol5 Symbol6 Symbol7

Sub-carrier1

Sub-carrier2

Sub-carrier3

Sub-carrier4

Sub-carrier5

Sub-carrier6

Sub-carrier7

Sub-carrier8

Sub-carrier9

Sub-carrier10

Sub-carrier11

Sub-carrier12

Figure 3.11-1 Uplink Grid for each slot in LTE

44

We assumed a stair case channel for equalization, we receive the channel in symbol 4 only so

we can assume it a linear channel and give each symbol a factor depending on the space

between the channel or we simply assumed that the whole slot sees the same channel

(coherence time is bigger than the slot time) and this is the stair case approximation, the next

slot will face another channel factor so we save the channel for each slot.

Figure 3.11-2 Stair case approximation for equalization process

45

Chapter 4

Design Architecture and interfaces

4.1. Synchronization (Time and frequency offset estimation)

4.1.1. Top level

4.1.2. Block interface

Signal name Direction Description Size (bits)

SYN_in_Real input Real input data 16

SYN_in_Imag input Imaginary input data 16

SYN_in_CLK input clock 1

SYN_in_reset input reset signal 1

SYN_out_freq_off output Estimated time offset 20

SYN_out_valid output Valid out to the correction block 1

Table 4.1-1 Time and frequency offset estimation interface signals

 Figure 4.1-1 Time and frequency offset estimation Top Level

46

4.1.3. Architecture

Figure 4.1-2 Architecture of the time and frequency offset estimation block

4.1.4. Operation

 First of all, the incoming data (real and imaginary) is collected in the real and

imaginary buffers.

 According to the standard, the cyclic prefix length is (L=2) so the buffer is

designed to out four values I_real [i], I_real[i+1], I_real[i+N+1], I_real[i+N+2]

Where N is the FFT points (symbol length).

 The correlation block performs equation (2) in chapter 2 on the real and

imaginary data coming from the real and imaginary buffers.

 The energy block performs equation (3) on the real and imaginary data coming

from the real and imaginary buffers.

 If we look at equation (4) and equation (5) we will notice that it’s required to get

the magnitude and phase of the correlation out and here comes the rule of the

CORDIC block in its vectoring mode.

 The out of the CORDIC blocks takes a specific number of cycles according to the

number of bits and accuracy needed as will be discussed later, but to perform

equation (4) we need the output from the CORDIC and the output from the

energy block to be input at the SUM block at the same time and since the output

of the energy block comes earlier, we need a delay block.

47

 The peak detector block gets the maximum of the input data according to equation

(4) and then gets the phase according to this value and this will be the frequency

offset estimated.

4.1.5. Sub blocks design

4.1.5.1. Correlation sub block

Figure 4.1-3 Correlation block design

4.1.5.2. Complex multiplier

For multiplying two complex numbers (real_1 + j imag_1) and(real_2 + j imag_2)

Figure 4.1-4 Complex multiplier design

48

4.1.5.3. CORDIC sub-block

As mentioned before, the CORDIC is an iterative algorithm so the output value of

each iteration depends on the input from the last iteration.

The number of iterations is choosed according to the number of bits and accuracy

needed. For example, if the number of bits is 16 bits then we will not need more than

15 iterations to get a very high accuracy. But we can get an acceptable accuracy using

less number of iterations.

The CORDIC can be designed using two approaches:

1. A unit for each iteration

Figure 4.1-5 First Internal architecture of CORDIC sub block

The cost for this implementation is:

 Three ADD/SUB ALU units for each iteration.

 Shift operations: hardwired.

But typically, with a pipeline registers after each iteration, we can get a very high

throughput.

2. Only one unit and feedback.

49

Figure 4.1-6 Second Internal architecture of CORDIC sub block

The cost for this implementation is:

 Very low throughput (n times less).

 The shifter is variable and costs logic.

But of course, this design has lower area compared to the first one.

4.1.6. Results

4.1.6.1. CORDIC results

The first approach is the one implemented in the frequency estimation block. The

CORDIC block was implemented first on MATLAB to see the effect of increasing the

number of iterations on the error.

Figure 4.1-7 MATLAB results for CORDIC block

50

4.1.6.2. CORDIC RTL results

The design was tested with 80 complex numbers.

Figure 4.1-8 RTL results of the CORDIC block

The last figure shows inputs and outputs of the CORDIC block. Each output takes 9

cycles (number of iterations +1).

 The inputs and outputs (real and imaginary) are represented in 17 bits (5 bits

integer and 12 fraction) as this is the out from the correlation block.

 The input and output angles are represented in 20 bits (12 bits integer and 8 bits

fraction).

The outputs are taken from the RTL and transformed from fixed point into decimal

then compared to MATLAB and the results were as follows.

Figure 4.1-9 Ideal out magnitude

Figure 4.1-10 RTL out magnitude

Figure 4.1-11 Ideal out phase

Figure 4.1-12 RTL out phase

The average error between the ideal outputs and the RTL outputs for magnitude and

phase is calculated.

51

 Average error for magnitude = 0.0032

 Average error for phase = 0.1443

4.1.6.3. Block results

To test the whole block, we have to assume that there’s a dummy transmitter that

sends the data and that the data has passed through a channel and suffered from time

and frequency shift.

The block was first implemented on MATLAB and it was found that it gives very

good and accurate results for the timing offset if the FFT points and cyclic prefix

length are very large.

For example,

 FFT points = 1024

 Cyclic prefix length = 128

 Number of symbols = 7

 Assumed frequency offset of 0.25

 Assumed timing offset of 4

Figure 4.1-13 MATLAB results for time and frequency offset estimation

The peaks in the last figure defines the start of every symbol and the corresponding

value on the frequency plot represents the frequency offset and it’s the same for each

symbol.

52

In our case, the FFT points and the cyclic prefix length are not very large so the

correlation doesn’t give very accurate results for timing offset that’s why the block is

implemented in RTL with only offset estimation and it’s assumed that there is no

timing offset.

Frequency offset estimated from MATLAB = 0.2591 rad = 14.8 deg.

Figure 4.1-14 RTL results of the synchronization block

Frequency offset = 20’hff105 (fixed point representation of 12 bits integer and 8 bits

fraction).

Frequency offset in decimal = -14.98 deg.

The output is negative to be input directly to the next block.

4.1.6.4. Synthesis results

The block was synthesized on Xilinx and DC compiler and the results were as

follows.

Figure 4.1-15 Synchronization block area report

53

Figure 4.1-16 Synchronization block power report

Figure 4.1-17 Synchronization block total slack

54

4.2. CP removal and offset correction architecture

4.2.1. Top level

Figure 4.2-1 CP removal and offset correction Top Level

4.2.2. Block interface

Table 4.2-1 CP removal and offset correction interface signals

4.2.3. Architecture

Signal name Direction Description Size (bits)

CP_in_real input Real input data 16

CP_in_imag input Imaginary input data 16

CP_in_angle input Frequency offset estimated from synchronization block 20

CP_in_valid input Valid input indicated that the offset is valid 1

CP_in_CLK output clock 1

CP_out_real output Real output to the FFT block 20

CP_out_imag output Imaginary output to the FFT block 16

CP_out_valid output Valid out to the FFT block 16

55

Figure 4.2-2 Architecture of CP removal and offset correction block

4.2.4. Operation

 The cyclic prefix is removed by controlling which address to read from the real

and imaginary buffers.

 To correct the offset, we have to multiply the input by (e−j2πεk/N) and here comes

the rule of the CORDIC block in its rotation mode.

4.2.5. Sub blocks design

The CORDIC block has the same design mentioned before with an additional unit that

is responsible for pre rotation of the input angle to be in the range of

(−
π

4
 ,

π

4
) as the CORDIC block works only if the angle of rotation is in this range.

Figure 4.2-3 CORDIC sub block internal design

56

4.2.6. Results

The block was integrated with the frequency estimation block and tested with the

output of it then the results were compared to MATLAB.

Figure 4.2-4 Timing diagram for the RTL output after CP removal and offset correction

Figure 4.2-5 Ideal real out

Figure 4.2-6 RTL real out

Figure 4.2-7 Ideal imaginary out

Figure 4.2-8 RTL imaginary out

The average error is calculated for the real and imaginary outputs.

 Average error for real = 0.0034

 Average error for imaginary = 0.0027

57

4.3. Fast Fourier Transform (FFT)

4.3.1. Top level

4.3.2. Block Interface

Signal name Direction Description Size

FFT_in_real Input FFT input real part 16

FFT_in_imag Input FFT input imaginary part 16

clock Input FFT input clock 1

FFT_enable Input FFT block enable 1

FFT_reset Input FFT block reset 1

FFT_out_real Output FFT output real part 16

FFT_out_imag Output FFT output imaginary part 16

FFT_valid_out Output Signal indicates that output is valid 1

FFT_out_done Output Signal indicates that output is done 1

Table 4.3-1 FFT block interface signals

Figure 4.3-1 FFT Top Level

58

Algorithm

FFT has a lot of algorithms to be implemented but since our project is NB-IOT LTE we

have a power and cost constraints so we choose the Cooley-Tukey algorithm in our design as it

provides low cost and complexity.

Cooley-Tukey algorithm is a divide and conquer algorithm. Divide means break the

given problem into sub problems of the same size and Conquer means recursively solve these

sub problems. It combines the answers in at the end of the algorithm and generate the output.

Number of stages to generate the output is log2 N where N is the data size.

Two methods to compute Cooley-Tukey algorithm:

1- Decimation in time.

2- Decimation in frequency.

Those two methods give nearly same throughput but differ in input/output pattern.

1- Decimation in time

FFT can be performed using DFT of even and odd points. Its input is out of order and its

output is in order.

Figure 4.3-2 Decimation in time divide and conquer algorithm

59

2- Decimation in frequency

FFT can be decomposed using a first-half/second-half approach. Its input is ordered and

its output is out of order.

We choose decimation in frequency for easier integration between blocks due to ordered input

and we can re-arrange the output through output buffer.

Figure 4.3-3 Decimation in frequency divide and conquer algorithm

60

 Figure 4.3-4 shows the signal flow graph of our architecture. Output is in order due to ordering

in buffering phase. Next section shows the detailed architecture and operation for FFT block.

Figure 4.3-4 Time/space-embedded (TSE) signal flow graph of the 16-point memory-based FFT

61

4.3.3. Architecture

A faster way to implement the FFT is to use 16 multipliers to compute each stage in one

cycle results in a log2 N cycles and this is the fastest way but it has a large power consumption

and large cost due to the 16 multipliers. In our project NB-IOT power and cost are constraints so

we won’t use 16 multipliers we will use only one multiplier to reduce the power and cost.

We choose memory-based architecture as shown in Figure 4.3-5. This is a lower speed method

but speed is not our constraint.

Figure 4.3-5 FFT memory-based architecture

62

4.3.4. Operation

 Preload Phase: load data x[2r] and x[2r+1] into the rth address of RAM A and RAM C,

respectively.

Where r=0,1…,
N

4
− 1 and N is the number of points for FFT operations.

 Decomposition phases: ((log2 N) − 1) decomposition stages are required for an N-point

FFT processor. In the first decomposition stage, data is read from address r = 0 to

address r =
N

2
− 1 of RAM A and RAM C, and rest of data is read from the external

input buffer. In the second stage computation data is read from the four RAMs. The N-

point FFT is decomposed into two N/2-point FFTs, the upper and the lower FFT. Upper

and lower are the same procedure with different inputs. The subsequent decomposition

operation can be executed in a similar fashion until the last decomposition operation is

completed.

 Buffering phase: this phase reorders the output sequence through the RAMs.

The below figure shows the whole operation for the memory-based FFT.

Figure 4.3-6 Flow chart of the Finite state machine control unit for the proposed 16-bit FFT

63

4.3.5. Results

We use fixed point representation to can deal with floating point numbers. Floating point

representation is more complex because of the infinite probability of the point place, so we need

a complex processor to can deal with a floating point accurately 100%. In our project NB-IOT

we have constraints on power and cost so we used fixed point. We choose 12-bits fraction and 4-

bits integer based on best accuracy and range of numbers will be around one so 4-bits will fit

well.

Real values

Imaginary values

Figure 4.3-7 Real Values for FFT output

Figure 4.3-8 Imaginary Values for FFT output

64

We can see that the outputs are nearly the same, due to fixed point accuracy there is

some error but it’s nearly zero.

4.3.6. Synthesis Results

FFT is synthesised using Xilinx ISE and Synopsis Design Complier at clock equal to

10MHz.

The result are as follows for Area, Power and Timing.

Figure 4.3-9 Result of RTL

Figure 4.3-10 Area report for the 16-bits FFT

65

Figure 4.3-11 Power report for the 16-bits FFT

Figure 4.3-12 Timing report for the 16-bits FFT

66

4.4. Resource Elements De-mapper

4.4.1. Top level

4.4.2. Block interface

Signal Name Direction Description Size

RED_in_real input Resource element De-mapper input real part 16

RED_in_imag input Resource element De-mapper input imaginary part 16

RED_in_clock input Resource element De-mapper input clock 1

RED_in_reset input RED reset 1

RED_in_enable input RED enable 1

Isc input allocated set of subcarriers from an upper layer 6

RED_out_real output RED output real part 16

RED_out_img output RED output imaginary part 16

RED_out_isRefrence output
to determine if the signal is a reference signal or

data
1

RED_out_done output RED done operation 1

RED_in_SymbolNum input current SCFDMA symbol number in the slot 2

Table 4.4-1 Resource elements De-mapper interface signals

Figure 4.4-1 Resource elements de-mapper Block Top-level

67

4.4.3. Architecture

 The Resource Elements De-mapper consists of A single RAM and a

control unit as shown in Figure 4.4.1-1 which gives the control signals

according and addresses to the given upper layer input Isc.

4.4.4. Operation

 The resource elements de-mapper stores the FFT output and chooses

the correct set of allocated subcarriers as mentioned before according to the

Table 3.2-3. It operates serially by collecting the symbols provided by FFT

then output the correct set of subcarriers to the next block also is tells the

Channel Estimation block if the data is a reference signal in order for it to get

them.

Figure 4.4-2 Resource elements de-mapper Architecture

68

4.4.5. Results

 Shown below the results of the RTL simulation and MATLAB model results for several cases

 At Isc = 3

 At Isc = 12

Figure 4.4-3 RTL output waveforms for RED block at single subcarrier mode

Figure 4.4-4 MATLAB output for RED model at single subcarrier mode

Figure 4.4-5 RTL output waveforms for RED block at 3 subcarriers mode

Figure 4.4-6 MATLAB output for RED model at 3 subcarriers mode

69

 At Isc = 16

At Isc = 18

Figure 4.4-10 MATLAB output for RED model at 12 subcarriers mode

Figure 4.4-8 MATLAB output for RED model at 6 subcarriers mode

Figure 4.4-7 RTL output waveforms for RED block at 6 subcarriers mode

Figure 4.4-9 RTL output waveforms for RED block at 12 subcarriers mode

70

4.4.6. Synthesis

Figure 4.4-11 Area report for RED Block

Figure 4.4-12 Timing report for RED Block

Figure 4.4-13 Power report for RED Block

71

4.5. Channel estimation

4.5.1. Top level

Figure 4.5-1 Channel estimator Top Level

4.5.2. Block interface

Signal name Direction Description Size (bits)

CH_in_real input Real input from resource element De-mapper 16

CH_in_imag input
Imaginary input from resource element De-

mapper
16

CH_in_Ncell_id input Cell ID(upper layer parameter) 9

CH_in_three_tone input First slot (upper layer) 20

CH_in_valid input
Indicates that the inputs from resource element

De-mapper are valid
1

CH_in_clk input clock 1

CH_in_reset input reset signal 1

CH_in_enable input Enable signal 1

CH_out_real output Real outputs for estimated channel 16

CH_out_imag output Imaginary outputs for estimated channel 16

CH_out_valid output
Input to the equalizer that indicates that the

channel is estimated and ready
1

Table 4.5-1 Channel estimator interface signals

72

4.5.3. Architecture

Figure 4.5-2 Architecture of channel estimator

4.5.4. Operation

 When the (CH_in_valid) signal is high, this means that the values of the pilots

from the resource element De-mapper are ready and valid.

 The control unit outputs enable signal to the pilot’s generator so it starts

calculating the pilots according to the upper layer inputs.

 When the pilots are done the pilot, generator outputs a valid signal to the control

unit.

 The control unit enables the write signal into the real and imaginary buffers.

 When all pilots are generated, the control unit enables the read signal from the real

and imaginary buffers and the complex divider starts to divide the incoming pilots

by the generated pilots to get an estimate of the channel at the pilots’ positions.

4.5.5. Sub blocks design

4.5.5.1. Pilots generator sub block

an exponential equation and to implement this we used the CORDIC block in its

rotation mode with the real input equals to(one) , the imaginary input equals to(zero)

and the angle input comes from a combinational unit that calculates the angle

according to the upper layer inputs.

The Ф (n) Tables mentioned before in the standard part are stored in LUTs.

The block was first designed with a CORDIC block for each pilot so the pilots were

generated at the same time which means high throughput (speed) but of course very

high area and power consumption.

So, the block was then designed with only one CORDIC block so the area is reduced

but each pilot is generated each nine cycles.

73

4.5.6. Results

4.5.6.1. MATLAB and RTL

The block was tested to generate pilots at the following parameters:

 NcellID = 1

 Three tone cyclic shift = 0

Figure 4.5-3 MATLAB results for three pilots

Figure 4.5-5 RTL results of the imaginary part of the three pilots

Figure 4.5-4 RTL results for real part of the three pilots

74

4.5.6.2. Synthesis results

Figure 4.5-6 Channel estimation area report

Figure 4.5-7 Channel estimation power report

75

4.6. Equalizer

4.6.1. Top level

4.6.2. Block interface

Signal Direction Description Size

EQ_in_real Input Equalizer input real part 12

EQ_in_imag Input Equalizer input imaginary part 12

Channel_in_real Input Channel Information real part 12

Channel_in_imag Input
Channel Information imaginary

part
12

Clock Input Equalizer clock 1

EQ_enable Input Equalizer enable 1

EQ_reset Input Equalizer reset 1

IDFT_done Input
Input from next block to handle

integration between them
1

EQ_out_real Output Equalizer output real part 12

EQ_out_imag Output Equalizer output imaginary part 12

EQ_valid_out Output Signal indicates the valid output 1

EQ_out_done Output
Signal indicates the end of the

output
1

Table 4.6-1 Equalizer interface signals

Figure 4.6-1 Equalizer block Top Level

76

4.6.3. Architecture

We design our own architecture, memory-based architecture is simply a memory and divider

with multiplexing between symbols and a control Unit to control the whole design.

We tried 2 approaches, first approach rate is higher than the next block, IDFT, so when we

started integration this architecture failed because IDFT work symbol by symbol so we

modified it to fit with IDFT block.

First Architecture

Control unit

Control unit is simple in the first approach; it saves the 1st three symbols waiting for the

channel information to be stored. Symbol 5 is then stored and symbol 1 is out through the

complex divider. Figure 4.6-3 shows the whole states of the control unit of the equalizer in

first approach.

Figure 4.6-2 Architecture of the first approach for Equalizer

77

As we said, this approach out the symbols in sequential way and the IDFT block needs one

symbol at a specific time because IDFT is memory-based so it takes more than one cycle to

generates the output.

Second approach is to save the 7 symbols (6 symbols and the channel information), out the

first symbol and wait for IDFT to end and out symbol 2 and so on. Figure 4.6-4 shows the

architecture of the second approach which is the final approach of the Equalizer and Figure

4.6-5 shows the control unit of the second approach.

Figure 4.6-3 Flow chart for the control unit of the first approach of Equalizer

78

Second Architecture (Final Architecture)

Final approach is memory-based too but with a waiting state as shown in Figure 4.6-5. It

allows the equalizer to wait for IDFT to be done and send the current symbol and so on.

Figure 4.6-4 The Final Architecture of the Equalizer

79

Control Unit

Figure 4.6-5 The Control Unit for the final approach of the equalizer

80

4.6.4. Synthesis results

Area unit is µm2. Area is very big due to the area of complex divider. Complex

Divider consists of 6 multipliers and a lot of adders so it takes a big area. In general,

the Equalizer block is the most complex block in the whole chain due to its function,

it predicts and undo the channel effect.

Figure 4.6-6 Area report for the Equalizer

Figure 4.6-7 Power report for the Equalizer

81

Figure 4.6-8 Timing report for the Equalizer

82

4.7. Inverse Discrete Fourier Transform (IDFT)

4.7.1. Top level

4.7.2. Block interface

4.7.3. Architecture

 Memory based architecture as in [13] was implemented as it is the most

suitable choice for low power implementation which is the main goal in case of IoT

systems, this reduces the area, power, and test cost. Memory-based architecture

usually performs the FFT in serial, i.e. one butterfly operation at a time instead of

more than one in parallel, and this result in a low area cost for implementing the

Signal Name Direction Description Size

IDFT_in_real input IDFT input real part 16

IDFT_in_imag input IDFT input imaginary part 16

IDFT_in_clock input IDFT input clock 1

IDFT_in_reset input IDFT reset block 1

IDFT_in_enable input IDFT enable block 1

IDFT_in_N input Choose between 1/3/6/12-IDFT operation 2

IDFT_out_real output IDFT output real part 16

IDFT_out_imag output IDFT output imaginary part 16

IDFT_out_done output IDFT done operation 1

IDFT_out_validOut output IDFT Output is valid 1

Table 4.7-1 IDFT Interface signals

Figure 4.7-1 IDFT block Top-level

83

memory-based FFT processor and also using single port memories which requires

lower power than dual port memories the design was modified to perform IDFT.

 As shown in figure 4.7-2, Data path of this design consists of four single port

RAMs to store and compute intermediate results of the 3,6,12-point IFFT, seven

multiplexers, two adders, one multiplier, one ROM, and one controller.

The four single-port RAMs are used for buffering the computational data. The

multiplexers are responsible for switching the data flow between the storage and

arithmetic components.

 The adder and multiplier execute the computation of the two-point IFFT. The

ROM stores the twiddle factors. The addend and augend of the left adder can be

changed by controlling the Ch signal. For example, if Ch=0, then the adder executes

A-B. However, if Ch=1, then the adder executes B-A. A controller, generates the

controlling signals for the multiplexers and the four RAMs.

 The subtraction unit was modified by adding another control signal which

shifts right (multiplies by 1/2) the subtrahend to satisfy the 2nd stage in radix-3 which

implicated that the input to the subtraction unit i.e. subtrahend should be multiplied by

1/2.

Figure 4.7-2 IDFT Memory based Architecture

84

Another modification is a division unit at the output to contribute the division in the

IDFT equation controlled by signal N which chooses the mode of operation 1/3/6/12-

IDFT which simply is a multiplexer and a multiplier by 1/3 working as the following

pseudo code.

If N=0

 Bypass the data to output directly

Else if N=1 (divide by 3)

 Pass the data to multiply by 1/3 then to output

Else if N=2 (divide by 6)

 Pass the data shifted right once to multiply by 1/3 then to output

Else if N=3 (divide by 12)

 Pass the data shifted right twice to multiply by 1/3 then to output

85

4.7.4. Operation

 As discussed before the NB-IoT supports different number of subcarriers in format 1,

1-IDFT, 3-IDFT, 6-IDFT, and 12-IDFT therefor a mixed radix algorithm from radix-2 and

radix-3 will be implemented as was stated in [13].

Figure 4.7-3 and 4.7-4 show the signal flow graph of radix-2 and radix-3.

 Taking 4 bits for integer value and 12 bits for fraction value for twiddle factors and output for

 high SQNR.

SFG for 3-IDFT, 6-IDFT and 12-IDFT are shown in Figures 4.7-5, 4.7-6 and 4.7-7

respectively.

 Legend:

 Data in is written into the address k of the memory V at the ith clock

 and the data of the address k of the memory V is read to Out at the

 jth clock.

Figure 4.7-5 3-IDFT SFG

1-A(0)

2-C(0)-4

3-A(1)-4 5-B(0)-

+

jk

A(0)-6

5-C(0)-6

7-A(0)

-

+

1/2 7-D(0)-8

B(0)-8

9-D(0)-10

9-C(1)-11-

+

A(0)-9X(0)

X(1)

X(2)

Y(0)

Y(1)

Y(2)

Figure 4.7-3 Radix-2 SFG Figure 4.7-4 Radix-3 SFG

86

Figure 4.7-6 6-IDFT SFG

 Figure 4.7-7 12-IDFT SFG

13-A(0)

14-C(0)-19

15-A(1)-19 20-B(3)-

+

jk

A(0)-27

20-C(0)-27

28-D(0)

-

+

1/2 28-C(0)-33

B(3)-33

34-C(0)-42

34-B(3)-46-

+

D(0)-38X(0)

X(1)

X(2)

Y(0)

Y(4)

Y(8)

13-D(1)

14-B(2)-21

15-D(2)-21 22-A(1)-

+

jk

D(1)-29

22-B(2)-29

30-A(0)

-

+

1/2 30-B(2)-35

A(1)-35

36-B(2)-44

36-A(1)-48-

+

A(0)-40X(3)

X(4)

X(5)

Y(2)

Y(6)

Y(10)

+

+

-

+

W0
12

-

-

W4
12

W2
12

7-A(0)-12

8-C(0)-13

9-A(1)-14

16-C(1)

17-A(2)-23

18-C(2)-23 24-C(2)-

+

jk

C(1)-30

24-D(3)-30

31-C(1)

-

+

1/2 31-D(3)-36

C(2)-36

37-D(3)-43

37-C(2)-47-

+

C(1)-39X(6)

X(7)

X(8)

Y(1)

Y(5)

Y(9)

16-B(0)

17-D(0)-25

18-B(1)-25 26-B(1)-

+

jk

B(0)-31

26-A(2)-31

32-B(0)

-

+

1/2 32-A(2)-37

B(1)-37

38-A(2)-45

38-B(1)-49-

+

B(0)-41X(9)

X(10)

X(11)

Y(3)

Y(7)

Y(11)

+

+

-

+

W0
12

-

-

W4
12

W2
12

7-B(0)-15

8-D(0)-16

9-B(1)-17

W0
12

W1
12

W2
12

10-B(3)-12

11-B(2)-13

12-D(2)-14

10-C(1)-15

11-A(2)-16

12-C(2)-17

W3
12

W4
12

W5
12

1-A(0)-6

2-C(0)-7

3-A(1)-8

4-C(1)-9

5-A(2)-10

6-A(2)-11

+

+

+

+

+

+

-

-

-

-

-

-

4-A(0)

5-C(0)-7

6-A(1)-7 8-A(1)-

+

jk

A(0)-10

8-D(0)-10

11-A(0)

-

+

1/2
11-D(0)-

12

A(1)-12

13-D(0)-
16

13-
A(1)18

-

+

A(0)-14X(0)

X(1)

X(2)

Y(0)

Y(2)

Y(4)

4-B(0)

5-B(1)-9

6-D(1)-9 10-B(1)-

+

jk

B(0)-11

10-C(0)-
11

12-B(0)

-

+

1/2
12-C(0)-

13

B(1)-13

14-C(0)-
17

14-B(1)-
19

-

+

B(0)-15X(3)

X(4)

X(5)

Y(1)

Y(3)

Y(5)

+

+

-

+

W0
12

-

-

W4
12

W2
12

1-C(1)-3

2-C(0)-4

3-A(1)-5

87

The following FSM in Figure 4.7-8 shows the operation of the IDFT block and how the 1/3/6/12-

IDFT was implemented.

States:

 Preload state: the needed input data are loaded in memory.

 Decomposition states: the radix-2 stages in case of 12-IDFT 2 stages in case

of 6-IDFT just 1 stage.

 3-Points states: the radix-3 stages which are included in all cases except

 1-IDFT.

 Buffering state: the output is reordered and delivered to next block in the

 chain.

Reset Preload Buffering

1st
Decomposit

ion

2nd
Decopositio

n

3-Points
1st State

3-Points
3rd State

1/X

1/3 1/2 1/1

1/0

0/X

3-Points
2nd State

X

0/X

Reset signal/N Where N:
0 = 1-point IDFT
1 = 3-point IDFT
2 = 6-point IDFT

3 = 12-point IDFT

Figure 4.7-8 IDFT control unit FSM

88

4.7.5. Results

 Several test cases were conducted and compared with MATLAB model shown in the

figures below the output of the simulator at 1/3/6/12-IDFT.

12-IDFT simulation results on RTL and MATLAB.

 6-IDFT simulation results on RTL and MATLAB

Figure 4.7-9 RTL output waveforms of IDFT block at 12-IDFT operation

Figure 4.7-10 MATLAB output of IDFT model at 12-IDFT operation

Figure 4.7-11 RTL output waveforms of IDFT block at 6-IDFT operation

Figure 4.7-12 MATLAB output of IDFT model at 6-IDFT operation

89

 3-IDFT simulation results on RTL and MATLAB

 1-IDFT simulation results on RTL and MATLAB

Figure 4.7-14 RTL output waveforms of IDFT block at 3-IDFT operation

Figure 4.7-13 MATLAB output of IDFT model at 3-IDFT operation

Figure 4.7-15 RTL output waveforms of IDFT block at 1-IDFT operation

Figure 4.7-16 MATLAB output of IDFT model at 1-IDFT operation

90

4.7.6. Synthesis

Shown below the area, power and timing reports

Figure 4.7-17 Area report of IDFT Block

Figure 4.7-19 Power Report for IDFT Block

Figure 4.7-18 Timing report of IDFT Block

91

4.8. De-mapper & FIFO

4.8.1. De-mapper

4.8.1.1. Top level

Figure 4.8-1 De-mapper block diagram

4.8.1.2. Block interfaces

Signal Name Direction Description Size

in_real input real part input from IDFT 8

in_imag input imag part input from IDFT 8

in_start input indicates valid data 1

in_Done input indicates that data transmission is over 1

in_full input From FIFO to hold operation 1

o_LLR_1 output bit-0 soft output to FIFO to be saved 8

o_LLR_2 output bit-1 soft output to FIFO to be saved 8

o_hold output
from De-mapper to IDFT to hold

operation
1

o_WE output to enable writing data to FIFO 1

Table 4.8-1 De-mapper interfaces

4.8.1.3. Operation

This block is a combinational block that takes I and Q values from IDFT and output

the probability of the bit represented in 8 bits. Negative values represent zeros

probability and positive values represent one’s probability. Taking the advantage of

symmetry in the QPSK and BPSK constellations, the imaginary part (Q) can be

considered as the probability of bit [0] and the real part to be considered as the

probability of bit (1). So, for BPSK only the real part is containing information,

however for QPSK both real and imaginary are containing information.

92

4.8.1.4. Simulation Results

Figure 4.8-2 De-mapper RTL results

4.8.1.5. Synthesis results

Figure 4.8-3 Area Report of the De-mapper

Figure 4.8-4 Power report of the De-mapper

93

4.8.2. FIFO

4.8.2.1. Top level

Figure 4.8-5 FIFO top level

4.8.2.2. Block interfaces

Signal Name Direction Description Size

in_data_1 input input data from De-mapper (real real) 8

in_data_2 input input data from De-mapper (imag part) 8

in_clock_1 input write clock (slow one) 1

in_clock_2 input read clock (fast one) 1

in_WE input Write enable 1

in_RE input Read enable 1

in_mode input 0 for BPSK and 1 for QPSK 1

in_reset input reset signal (active low) 1

o_data output Output data to the descrambler 8

o_full output to indicates that the FIFO is full 1

o_empty output to indicates that the FIFO is empty 1

Table 4.8-2 FIFO interfaces

94

4.8.2.3. Architecture

Figure 4.8-6 FIFO Architecture

4.8.2.4. Operation

 The FIFO block is added to solve the CDC problem as the QPSK contains 2

bits so the rate is different before and after the de-mapper. The de-mapper converts

the symbol into 2 bits and writes them in the FIFO in parallel, as the FIFO has 2 input

ports. Then the descrambler activates the read enable to read the data bits one by one

using higher frequency clock.

 The FIFO has 2 signals to indicate either empty, full or none of them. When

the FIFO is full a hold signal is activated to hold the de-mapper until the descrambler

read some data. Also the descrambler operation is stopped if the FIFO is empty. The

FIFO is a circular FIFO to make the best use of the memory.

4.8.2.5. Simulation results

Comparing the FIFO input with the output operating with different frequencies:

Figure 4.8-7 FIFO input data

Figure 4.8-8 FIFO output

95

4.8.2.6. Synthesis report

Figure 4.8-9 FIFO area report

Figure 4.8-10 FIFO power report

Figure 4.8-11 FIFO timing report for clock 1

Figure 4.8-12 FIFO timing report for clock 2

96

4.9. Descrambler

4.9.1. Top level

Figure 4.9-1 Descrambler block diagram

4.9.2. Block interface

Signal name Direction Description Size (bits)

DESC_in_data input input bits from De-mapper 8

DESC_in_Ncell_id input Cell ID(upper layer parameter) 9

DESC_in_RNTI input Radio Network Identifier(upper layer) 16

DESC_in_ns input First slot (upper layer) 4

DESC_in_nf input First frame(upper layer) 1

DESC_in_clk input clock 1

DESC_in_reset input reset signal 1

DESC_in_empty input
Input from De-mapper indicates that the

FIFO is not empty
1

DESC_in_enable input Enable signal 1

DESC_out_data output Out data to the DE rate matching 8

DESC_out_valid output Indicates that the out data is valid 1

DESC_out_read_enable output
Read enable signal to the De-mapper to

enable reading from the FIFO
1

Table 4.9-1 Descrambler interface signals

97

4.9.3. Architecture

Figure 4.9-2 Scrambler architecture

4.9.4. Operation

 The control part calculates the initializations for each LFSR according to the upper layer

input parameters.

 The difference in the scrambler between the uplink and downlink is that in the uplink the

descrambler receives soft input from the De-mapper not hard input and it also outputs soft

output.

 The Golden sequence is generated bit by bit by xoring the first two bits of the LFSRs

 Instead of xor gate at the output, there’s a MUX that outputs the input as it is or flipped

according to the scrambling bit.

 Polynomial of LFSR1 = 1 + D + D2 + D3 + D31

 Polynomial of LFSR2 = 1 + D3 + D31

4.9.5. Results

4.9.5.1. RTL results

The descrambler was tested at the following upper layer parameters

 RNTI =65535

 NcellID = 504

 nf = 1

 ns = 28

Figure 4.9-3 RTL results of descrambler block

98

4.9.5.2. Synthesis results

Figure 4.9-4 Descrambler area report

Figure 4.9-5 Descrambler power report

Figure 4.9-6 Descrambler total slack

99

4.10. Data De-multiplexing and Channel De-interleaver

4.10.1. Top level

Figure 4.10-1 Data De-multiplexing and Channel De-interleaver block diagram

4.10.2. Block interface

Signal name Direction Description Size

INT_in_data input Data In for channel de-interleaver 8

INT_in_H input The number of modulation symbols 13

INT_in_Qm input Modulation order parameter 1

INT_in_slots input The number of columns of the matrix 4

INT_in_reset input Reset for channel de-interleaver 1

INT_in_clk input Clock for channel de-interleaver 1

INT_in__enable input Enable signal 1

INT_in__valid input valid data signal 1

INT_out_data output Data Out for channel de-interleaver 8

INT_out_ready output Ready flag 1

Table 4.10-1 Data De-multiplexing and Channel De-interleaver interface signals

100

4.10.3. Architecture

4.10.3.1. Data flow according to standard description

Figure 4.10-2 Basic Data flow for Data De-multiplexing and Channel De-interleaver according to standard

Design consists of:

 De-interleaver Block supports BPSK and QPSK modes, also handles variable number of

columns and rows.

 De-multiplexing Block takes one stream in BPSK Case and pass it on, and takes two

streams and combined them in one in QPSK case.

4.10.3.2. Our proposed Architecture

Figure 4.10-3 Our proposed architecture for Data De-multiplexing and Channel De-interleaver

101

Figure 4.10-4 Architecture control unit for Data De-multiplexing and Channel De-interleaver

Figure 4.10-5 Flow chart of control unit for Data De-multiplexing and Channel De-interleaver

The Design consists of:

 One RAM support Data size starts from 144*8bit and multiple of that size

As 144 referred to the data exists in one frame and * (8 bits) to support soft Data.

 Control unit to perform the de-multiplexing and de-interleaving operations.

102

4.10.3.2.1. Control unit

Control unit consists of:

 Finite State Machine (FSM): is the brain of the block and it handles controlling signal for

all the memory and address calculating unit required in each state.

 Address calculating unit: create the address or manipulate the existing address to

calculate the new address.

Multi-operation could happen on the address at the same clock cycle.

Containing adders/subtractor, comparators and one multiplier Block

This unit changes the de-multiplexing and de-interleaving sequence according to the

upper layer parameters Qm which determine BPSK or QPSK Case and the Number of

slots which change number of columns and rows.

4.10.3.2.2. Structural issues in our proposed architecture

1. We merge the de-multiplexing process and the de-interleaving process together.

2. We calculate the address in BPSK case every clock cycle, and in QPSK case we calculated it

at the first clock cycle and write the data of the second clock cycle at the address+1 then we

calculate the new address again at the new first clock cycle.

4.10.3.3. Another proposed Architecture

 Same pervious architecture but we write in the memory column by column and read it row by

row to reduce the complexity of address calculations but this design need S/P converter at the

input data path and P/S converter at the output data path.

But such solution will need that memory to has maximum dimension in both columns and rows

and such memory will consume large area and power and there is need for that as there always

large part of it will never be used .

4.10.4. Operation according to previous FSM

1. Get the valid signal and the upper layer parameters.

2. Calculate the number of columns and the rows .

3. Start filling the RAM according the sequence required in this case of parameters.

4. If the RAM is fully filled start the write process .

5. If all data out wait till you get new valid signal and upper layer parameters to start

working again .

4.10.5. Challenges and enhancement

 Merge the de-multiplexing process and the de-interleaving process together decrease power

and area.

4.10.6. Testing Results

Results in decimal form

103

4.10.6.1. Test case1

 QM=1(QPSK case)

 Number of slots=2 (columns=12)

 H=144

4.10.6.1.1. RTL Simulation result

Figure 4.10-6 RTL wave form for test case 1 in Data De-multiplexing and Channel De-interleaver

Figure 4.10-7 RTL memory data for test case 1 in Data De-multiplexing and Channel De-interleaver

4.10.6.1.2. MATLAB Simulation result

Figure 4.10-8 MATLAB memory data for test case 1 in Data De-multiplexing and Channel De-interleaver

104

4.10.6.2. Test case2

 QM=0(BPSK case)

 Number of slots=4 (columns=24)

 H=144

4.10.6.2.1. RTL Simulation result

Figure 4.10-9 RTL wave form for test case 2 in Data De-multiplexing and Channel De-interleaver

Figure 4.10-10 RTL memory data for test case 2 in Data De-multiplexing and Channel De-interleaver

4.10.6.2.2. MATLAB Simulation result

Figure 4.10-11 MATLAB memory data for test case 2 in Data De-multiplexing and Channel De-interleaver

105

4.10.7. Synthesis result

4.10.7.1. Area Report

Figure 4.10-12 De-interleaver area report

4.10.7.2. Power Report

Figure 4.10-13 De-interleaver power report

4.10.7.3. Timing Report

Figure 4.10-14 De-interleaver time report

106

4.11. Rate De-matching for Turbo Decoder

4.11.1. Top level

Figure 4.11-1 Rate De-matching block diagram

4.11.2. Block interface

Signal name Direction Description Size

RM_in_data input Input data for rate de- matching 8

RM_in_G input The total number of actual transmitted data bits 13

RM_in_TB input Transport block size for each interleaver 12

RM_in_RSN input
Retransmission number for each token at the

DataIn port (rvidx)
1

RM_in_clk input Clock for rate de-matching 1

RM_in_reset input Reset for rate de-matching 1

RM_in_valid input valid data signal 1

RM_in_enable input Enable signal 1

RM_out_data1 output First Output data after rate de-matching 8

RM_out_data2 output second Output data after rate de- matching 8

RM_out_data3 output Third Output data after rate de-matching 8

RM_out_ready output Ready flag 1

Table 4.11-1Rate De-matching interface signals

107

4.11.3. Architecture

4.11.3.1. Architecture according to standard description

Figure 4.11-2 Rate De-matching architecture according to standard

This design consists of :

 Control unit handles the position calculation for the buffer and addresses calculation for the

three RAMs so that the deinterleaving and demultiplixing process has been excuted ,also

handles their control signals.

 Three RAMs to handle interleaving process each of size ((2560+4)*8) to support

larger(TB)added to the tail bits and to pass soft data(8bits needed for each input)

 The circular buffer concatenate the three stream so the size of it will be

(3*larger(TB)+12bit)*8bits =((3*2560)+12)*8= 61,536 bit.

 We need extra block which to memorize the dummy bits position to avoid write in the buffer

in this position .

108

 Permutation sequence block to store in the sequence mentioned in the standard

 Input multiplexer to fill the empty postion by zeros and no external input enter here the

perivous block should stop the sending process.

4.11.3.2. Our proposed Architecture

Figure 4.11-3 Our proposed architecture for Rate De-matching

Figure 4.11-4 Architecture control unit for Rate De-matching

109

Figure 4.11-5 Flow chart of control unit for Rate De-matching

The Design consists of:

 Three RAMs one for each sub block interleaver of size 2564 *8 each to support maximum

transport block size and passing soft data.

 Control unit to perform the bit selection, bit collection and de-interleaving operations.

 Permutation sequence Block to save the sequence mentioned in the standard

4.11.3.2.1. Control unit

Control unit consists of:

 Finite State Machine (FSM): is the brain of the block and it handles controlling signal for

all the other units required in each state.

 Address calculating unit: create the address or manipulate the existing address by

addition, subtraction and shifting to calculate the new address.

Multi-operation could happen on the address at the same cycle.

This unit is that is directly connected to the permutation sequence Block.

 Dummy bit counter to count the skipping cycle to be able to know when the zero filling

of the data starts.

 Input multiplexer same usage as explained before.

110

4.11.3.2.2. Structural issues in our proposed architecture

1. In this design we removed the Circular buffer to reduce the huge area and power

consumed by the buffer.

So control unit now handles only the addresses for the three RAMs and their control signals.

But that also introduce a difficulty of the starting point of the bit selection

To solve this problem, we trace the starting point equation

 2

8
20 idxTC

subblock

cbTC
subblock rv

R

N
Rk

We get that it takes only two values as rvidx takes also two values only

So when rvidx=0, K0=2Rsubblock
TC , this means we start filling in the first RAM From third

permutation column

And when rvidx=2, K0=50Rsubblock
TC , this means we start filling in the second RAM From

eighteenth permutation column because each sub block interleaver consist of 32column

only.

2. We calculate the address so the deinterleaving and demultiplixing process has been

excuted

So now we know that the Dummy bits exist at the begin of the memory so we only need

for it extra counter to get the correct input data size.

We skip writing any thing in the memory at the Dummy bit cycles as we do not care

about it also when we read the data.

But we Still have to stop the reading process at their adddresses cycle and this cause a

gap between this block and the block before so extra control is needed to disable the

block before and this problem exist also in the previous design according to the standard

3. Also to minimize the combinational in the third equation we trace it and it gives same

Permutation sequence saved +1 but in range of 5 bits only which means if 32 is reached

make it 0,And then do the deinterleaving operation as the other two streams

4.11.3.3. Another proposed Architecture

Same pervious architecture but we write in the memory column by column and read it

row by row to reduce the complexity of address calculations but this design need S/P converter at

the input data path and P/S converter at the output data path.

111

4.11.4. Operation according to previous FSM

6. Get the valid signal and the upper layer parameters

7. Calculate the number of rows and the null size

8. get the starting point according to the upper layer input RSN

9. Start filling the RAMs according to the standard descripition of the filling

sequence,While doing so keep count the null cycles

10. If you reached the intial 1/3 rate that the decoder require to start it’s operation , start

sending the three streams to the decoder

11. If all data out wait till you get new valid signal and upper layer parameters to start

working again .

4.11.5. Challenges and enhancement

 All equations are executed without making any multiplication or divisions only used

operations are addition, subtraction and shifting.

 Removing the circular buffer and the Dummy position Blocks introduce diffeculity to the

control unit block but improve both power and area .

4.11.6. Testing Results

Results in decimal form

4.11.6.1. Test case1(No Zero filling)

 TB=40(TBS = 44)

 G = 132

 RSN = 0

4.11.6.1.1. RTL Simulation result

Figure 4.11-6 RTL wave form for test case 1 in Rate De-matching

Figure 4.11-7 RTL memory1 data for test case 1 in Rate De-matching

112

Figure 4.11-8 RTL memory2 data for test case 1 in Rate De-matching

Figure 4.11-9 RTL memory3 data for test case 1 in Rate De-matching

4.11.6.1.2. MATLAB Simulation result

Figure 4.11-10 MATLAB memory1 data for test case 1 in Rate De-matching

Figure 4.11-11 MATLAB memory2 data for test case 1 in Rate De-matching

Figure 4.11-12 MATLAB memory1 data for test case 1 in Rate De-matching

4.11.6.2. Test case2(Zero filling)

 TB=40(TBS = 44)

 G = 100

 RSN = 0

113

4.11.6.2.1. RTL Simulation result

Figure 4.11-13 RTL wave form for test case 2 in Rate De-matching

Figure 4.11-14 RTL memory1 data for test case 2 in Rate De-matching

Figure 4.11-15 RTL memory2 data for test case 2 in Rate De-matching

Figure 4.11-16 RTL memory2 data for test case 3 in Rate De-matching

4.11.6.2.2. MATLAB Simulation result

Figure 4.11-17 MATLAB memory1 data for test case 2 in Rate De-matching

Figure 4.11-18 MATLAB memory2 data for test case 2 in Rate De-matching

114

Figure 4.11-19 MATLAB memory3 data for test case 2 in Rate De-matching

4.11.7. Synthesis result

Figure 4.11-20 Rate de-matcher area report

Figure 4.11-21 Rate de-matcher power report

Figure 4.11-22 Rate de-matcher timing report

115

4.11.8. Extra interconnection control unit

Figure 4.11-23 Extra interconnection control unit block diagram

Figure 4.11-24 Flow chart of extra interconnection control unit between Rate De-matching and Data De-

multiplexing and Channel De-interleaver

The control unit consist of FSM only which handle the enable signals for the two blocks attached

to it.

This Finite state machine focuses on the writing state in the Data De-multiplexing and Channel

De-interleaver which is the Reading state in Rate De-matching block.

116

4.12. Turbo Decoder

4.12.1. Top level

Figure 4.12-1 Turbo Decoder block diagram

4.12.2. Block interfaces

Signal name Direction Description Size

DEC_in_Systematic input systematic vectors received from rate de-matcher 8

DEC_in_Parity_1 input parity1 vectors received from rate de-matcher 8

DEC_in_Parity_2 input parity2 vectors received from rate de-matcher 8

DEC_in_TBS input Block size for interleaver and De-interleaver 12

DEC_in_enable input handshake with rate de-matcher to start decoding 1

DEC_in_clock input System clock 1

DEC_in_reset input Asynchronous reset 1

DEC_out_Hard_out output Stream output bits 1

DEC_out_Done output Decoding is done 1

DEC_out_CRC_enable output handshake with CRC block 1

Table 4.12-1 Turbo decoder interface signals

117

4.12.3. Architecture

Figure 4.12-2 Turbo decoder architecture

4.12.4. Sub-Blocks & operation

4.12.4.1. Branch matric (𝜸)

Branch matric (γ) is the conditional probability that the received symbol is γk at time k

and the current state is Sk = S, knowing that the state from which the connecting branch came

was Sk−1 = S′.

The trellis structure used by the RSC decoder is shown in Figure 4.12-3. Each state has

two branches leaving it, one corresponding to an input one and one for input zero. Solid lines

indicate data one and dotted lines indicate data zero. The branches indicate which next state can

be reached from a particular state.

118

Figure 4.12-3 8 state trails diagram

The branch metric connecting state Si (previous state, on left) and state Sj (present state,

on right) is denoted as γij . The branch metric depends on the data bit X(i, j) as well as the parity

bit Z(i, j) associated with the branch. The branch metric is given as:

𝛾𝑖𝑗 = 𝑠𝑦𝑠 ∗ 𝑋(𝑖, 𝑗) + 𝑝𝑎𝑟 ∗ 𝑍(𝑖, 𝑗) + 𝑋(𝑖, 𝑗) ∗ 𝐸𝑋𝑇 (1)

Where sys and par are received soft value from channel and EXT is the extrinsic information

from previous decoding stage initially is zero.

The RSC encoder being rate r=1/2, only four distinct branch metrics are possible:

𝛾0 = 𝑠𝑦𝑠 + 𝑝𝑎𝑟 + 𝐸𝑋𝑇 𝑋(𝑖, 𝑗) = 1, 𝑍(𝑖, 𝑗) = 1

𝛾1 = 𝑠𝑦𝑠 − 𝑝𝑎𝑟 + 𝐸𝑋𝑇 𝑋(𝑖, 𝑗) = 1, 𝑍(𝑖, 𝑗) = 0

𝛾2 = −𝑠𝑦𝑠 + 𝑝𝑎𝑟 − 𝐸𝑋𝑇 𝑋(𝑖, 𝑗) = 0, 𝑍(𝑖, 𝑗) = 1

𝛾3 = −𝑠𝑦𝑠 − 𝑝𝑎𝑟 − 𝐸𝑋𝑇 𝑋(𝑖, 𝑗) = 0, 𝑍(𝑖, 𝑗) = 0

119

Figure 4.12-4 shows diagram of branch matric unit of decoder 1 and 2 stages, input is

multiplexed for each decoder stage.

After the calculation of the branch metrics, they should be stored in RAM modules to be used

later in calculation of LLRs and backward State Metric Block β

Figure 4.12-4 Branch Matric Unit block diagram

Figure 4.12-5 GAMMA equation

120

Figure 4.12-6 Branch Metric Unit modification foe tails

Trellis termination

Tail bits are included at the end of each block to force trellis diagram to reach zero state,

Tails are used to ensure the initial value for backward state metric β0 to be the highest

probability which is one and states from β1 to β7 have zero probability.

Without using tails, we can assume equal probability for backward state metric initial value.

According to the standard tail bits are transmitted in different order unlike original data, for

code-word with length K and original data from 0 to k-1, received systematic data= K+4,

received parity1 data= K+4 and received parity2 data= K+4.

Each 4 extra data include systematic or parity1 or parity2 or systematic interleaved tails therefore

systematic, parity1, parity2 and systematic interleaved must be reorders before decoding.

Systematic received tail bits’ location

𝑆𝑦𝑠𝑡𝑒𝑚𝑎𝑡𝑖𝑐 𝑡𝑎𝑖𝑙1 = 𝑠𝑦𝑠𝑡𝑒𝑚𝑎𝑡𝑖𝑐𝐾 ,

𝑆𝑦𝑠𝑡𝑒𝑚𝑎𝑡𝑖𝑐 𝑡𝑎𝑖𝑙2 = 𝑃𝑎𝑟𝑖𝑡𝑦2 𝐾,

𝑆𝑦𝑠𝑡𝑒𝑚𝑎𝑡𝑖𝑐 𝑡𝑎𝑖𝑙3 = 𝑃𝑎𝑟𝑖𝑡𝑦1 𝐾+1

Parity 1 received tail bits’ location

𝑃𝑎𝑟𝑖𝑡𝑦1 𝑡𝑎𝑖𝑙1 = 𝑃𝑎𝑟𝑖𝑡𝑦1𝐾 ,

𝑃𝑎𝑟𝑖𝑡𝑦1 𝑡𝑎𝑖𝑙2 = 𝑆𝑦𝑠𝑡𝑒𝑚𝑎𝑡𝑖𝑐 𝐾,

𝑃𝑎𝑟𝑖𝑡𝑦1 𝑡𝑎𝑖𝑙3 = 𝑃𝑎𝑟𝑖𝑡𝑦2𝐾+1

121

Parity 2 received tail bits’ location

𝑃𝑎𝑟𝑖𝑡𝑦2 𝑡𝑎𝑖𝑙1 = 𝑃𝑎𝑟𝑖𝑡𝑦1𝐾+2 ,

 𝑃𝑎𝑟𝑖𝑡𝑦2 𝑡𝑎𝑖𝑙2 = 𝑆𝑦𝑠𝑡𝑒𝑚𝑎𝑡𝑖𝑐 𝐾+3,

𝑃𝑎𝑟𝑖𝑡𝑦2 𝑡𝑎𝑖𝑙3 = 𝑃𝑎𝑟𝑖𝑡𝑦 2𝐾+3

Systematic interleaved received tail bits’ location

𝑆𝑦𝑠𝑡𝑒𝑚𝑎𝑡𝑖𝑐_𝑖𝑛𝑡𝑒𝑟𝑙𝑒𝑎𝑣𝑒𝑑 𝑡𝑎𝑖𝑙1 = 𝑠𝑦𝑠𝑡𝑒𝑚𝑎𝑡𝑖𝑐𝐾+2,

𝑆𝑦𝑠𝑡𝑒𝑚𝑎𝑡𝑖𝑐 𝑡𝑎𝑖𝑙2 = 𝑃𝑎𝑟𝑖𝑡𝑦2 𝐾+2,

𝑆𝑦𝑠𝑡𝑒𝑚𝑎𝑡𝑖𝑐 𝑡𝑎𝑖𝑙3 = 𝑃𝑎𝑟𝑖𝑡𝑦1 𝐾+3

Figure 4.12-6 shows added Multiplexer at systematic and parity input to Branch metric unit for

tails bits and its control signals are controlled using control unit.

4.12.4.2. Forward and Backward State Metric (𝜶, 𝜷)

Forward α estimation of state probabilities indicates probability of each state in case of

moving in the forward direction in the trellis diagram, While Backward state probability of a

certain state at a certain time indicates probability of transition to this state given a certain

received code-word after this time. The calculation of the backward state probabilities is similar

to that of forward state probabilities.

Figure 4.12-7 Forward and Backward Metric unit diagram

αK(SK) =max∗(αK−1 (SK−1) + γ(SK−1, SK))

βK(SK) =max∗(βK+1 (SK+1) + γ(SK+1, SK))

122

According to previous equations the computation is the same but the state transitions are

different.

Therefore, MUXs are used to multiplex between α and β and between γK and γK+1.

Those equations are implemented on 8 states.

The previous figure shows forward and backward calculation unit for one state.

Due to RSC encoder starts from zero state therefor initial value for Forward states

 α0 = 1, α1to α7 = 0 at time 0, Same for Backward states due to trails termination encoding

ends ant zero stateβ0 = 1, β1to β7 = 0 at time K + 1.

Probability of 1 in log scale is represented by zero and Probability of 0 in log scale is represented

by -4.

Normalization is done by comparing all 8 states values and subtracting each value by the

maximum value, the key idea is that the main concern is not in the value of the state metric itself,

but in the value of the difference between the state metrics.

The main drawback in implementing state metrics is the recursive computation. This may lead to

an arithmetic overflow. To avoid overflow, a large number of bits is needed for representation of

state metrics. This means more area, hardware resources, higher storage requirements, and

increased delay therefore limitation on certain range [-4:4] is done.

Also the drawback of state metric normalization is the increase in the critical path of the state

metric unit. It is considered the bottleneck of the SISO decoder that limits the maximum

frequency of operation. The critical path implies Addition, comparison, MUX, and normalization

which includes both comparison and subtraction.

123

Figure 4.12-8 State 1 metric unit

4.12.4.3. Interleaver

Figure 4.12-9 Interleaver unit architecture

124

The interleaver block consists of 4 sub-blocks:

1. Address generator.

2. Extrinsic information calculation.

3. Hard limiter and CRC enable.

4. ROM

1. Address generator:

As shown in figure 4.12-9 the address generator sub-block is a QPP interleaver that performs the

equation specified in the standard which is:

π(i) = (f1 ∗ i + f2 ∗ i2)% k

The equation is done using 3 multiplications and mod operation. To reduce the number of

multiplication and replace it with shift and addition operations a recursive way of calculation is

used according to the following equation:

Address[i] = {2*Address [i-1] – Address [i-2] + 2*F_2} mod {block_size}

 Where:

 F_2 is a constant that depends on the block size.

 Block_size is the data length and it is received from upper layer.

To generate the new address, the mod operation must be used. And it is not synthesizable, so it is

replaced by the following equation that contains subtraction, multiplication and division:

A mod B = A – A/B

Where A/B is an integer division implemented using Restoring Division algorithm.

2. Extrinsic information calculation:

It is a combinational circuit of subtractor and limiter, to calculate the extrinsic information

needed for the second decoding stage and limit it by {4, -4}.

125

3. Hard limiter and CRC enable:

Figure 4.12-10 Hard limiter finite state machine

The hard limiter is a finite state machine of 3 states:

1. State 1: idle state as the decoder is not enabled yet or it is not performing the last

iteration.

2. State 2: write data in the memory state, in which the hard limiter takes the MSB of the

sequence, invert it and write it in a column memory sequentially.

3. State 3: output data to CRC sequentially at each clock cycle along with the CRC enable

signal.

4.12.4.4. LLR

Figure 4.12-11 LLR unit architecture

As shown in the figure 4.12-11, The LLR unit is a combinational unit that performs addition and

comparison for the values of the branch matric and Forward & backward recursions to produce

the LLR (log likelihood ratio) and limits the output to {4, -4} which represents infinity for the

decoder.

126

4.12.4.5. Control unit

Control unit is used to control decoding flow between sub-blocks Input memories (Systematic,

parity1, parity2)

 Branch Metric unit multiplexer’s selections (tails bits, decoder1 or decoder2 mode)

 Gamma γ memory

 State metric unit multiplexer’s selections (α or β mode)

 Alpha α memory

 Inter-leaver and de-interleaver enable

 Number of decoding iterations

Figure 4.12-13 shows BCJR decoding flowchart and FSM, starting from storing data from rate

de-matcher then controlling MUXs for GAMMA, ALPHA and BETA calculation and storing in

RAMs after processing on total block calculating LRR and extrinsic information start and finally

data is ready to interleave for second decoder stage.

After second decoding stage LLR and extrinsic information de-interleaved to start new iteration.

Figure 4.12-14 shows Turbo decoder control flow starting from first decoding stage to calculate

extrinsic information which is interleaved and passed to second decoder stage to calculate

extrinsic information which is passed to first decoder stage and LLR which is interleaved and

used to calculate final hard decision value this is done after N times decoding iterations.

127

Figure 4.12-12 RSC decoder stage flow

Figure 4.12-13 BCJR FSM

128

Figure 4.12-14Turbo decoder control flow

4.12.5. Results

4.12.5.1. Matlab Results

The turbo code was simulated for frame size K = 2560 over a AWGN channel.

Figure 4.12-15 shows BER for un-coded bits and BER for turbo encoded bits, the number of

decoder iterations was chosen to be 5.

For low SNR BER for turbo is worse than un-coded bits, as SNR increases BER for turbo has

great improvement.

Figure 4.12-15 BER using turbo decoder Vs without decoding

The SNR range was used from -5 to 1 dB, 4 integer bits and 3 fraction bits. The number of

decoder iterations was chosen to be 5.

129

Figure 4.12-16 shows BER for decoding iterations from 1 to 7, for small SNR as number of

iteration increases it has small effect on BER, for SNR greater than -2 dB as number of iteration

increases BER decreases.

It can be seen that as the number of iteration increases, the BER performance improves.

However, the rate of improvement decreases.

Figure 4.12-16 BER Vs SNR for different decoding iterations

The SNR range was used from -5 to -0.5 dB, 8-bit word length with 1 bit for sign, N integer bits

and (7-N) fraction bits. The number of decoder iterations was chosen to be 5.

Figure 4.12-17 and 4.12-18 shows quantization error due to integer and fraction bits,

Quantization error is large for small integer bits and high fraction bits and also for high integer

bits and small fraction bits as.

For 8-bit word length with 4 integer bits and 3 fraction bits’ quantization error has smallest

quantization error.

130

Figure 4.12-17 Effect of integer and fraction bits on decoding error at different values SNR

Figure 4.12-18 Effect of integer and fraction bits on decoding error at SNR=-2 dB

The SNR range was used from -5 to 1 dB, 4 integer bits and fraction bits from 1 to 5 bits. The

number of decoder iterations was chosen to be 5.

Figure 4.12-19 shows the effect of increasing number of fraction bits on decoding performance, as

number of fraction bits increases BER improves

131

Figure 4.12-19 BER Vs SNR for 4 integer bits and different fraction bits

132

4.12.5.2. RTL Results

Figure 4.12-20 Testing Technique block diagram

As shown in figure 4.12-30 the block is tested and verified by creating a Matlab dummy

transmitter that consists of a turbo encoder and BPSK/QPSK modulator. The output data of this

transmitter is added to the channel noise then demodulated to be passed to two paths one is the

Matlab turbo decoder model and the other is the RTL turbo decoder model, coded in Verilog,

then the results is compared between the Matlab and the RTL model and the BER is calculated.

The output of the testing plan is a Report.txt file that contains:

1. The Herd bits output from the decoder.

2. Number of errors compared to the transmitted bits.

3. Bit error rate.

4. Number of errors compared to Matlab model of the turbo decoder.

A sample of the output file is shown in the next figure, tested for data block size of 128 and SNR

of -2dB:

133

Figure 4.12-21 Sample of the report file

Comparing Simulation results with RTL results for a block size of 40 and SNR of -1dB:

Figure 4.12-22 Decoder output (Matlab)

Figure 4.12-23 Decoder output (RTL)

134

4.12.6. Synthesis Results

Figure 4.12-24 Turbo decoder area report

Figure 4.12-25 Turbo decoder power report

Figure 4.12-26 Turbo decoder timing report

135

4.13. Cyclic Redundancy Check (CRC)

4.13.1. Top level

This division is commonly implemented using LFSR circuits. Implementing Internal or Galois

LFSR, takes the highest order bit (MSB) as the feedback term that is feedback into the relevant

flip-flops through the XOR gates placed between the flip-flops. This form is the more popular

because it is faster.

When input data is ready and CRC enable is high CRC starts its function when CRC enable falls

from high to low this indicates that all code word enters CRC block, CRC_out_error is one if error

exists otherwise is zero and CRC_out_valid indicates that CRC_out_error signal is valid to be read

or not this happened when decoder and CRC are done.

Figure 4.13-1 CRC block diagram

4.13.2. Block Interface

Signal name Direction Description Size

CRC_in_enable Input Indicates that input data is valid 1

CRC_in_reset Input
Asynchronous reset, Resets LFSR and

output
1

CRC_in_clk Input System Clock 1

CRC_in_input_bit Input Input stream 1

CRC_in_Decoder_Done Input
Indicates that decoder had finished, used for

CRC_vaild output
1

CRC_out_error Output Indicates error exists or not 1

CRC_out_valid Output
Indicates that CRC_out_error signal valid to

be read or not
1

Table 4.13-1 CRC interface signals

136

4.13.3. Simulation Results

Figure 4.13-3 and 4.13-4 Simulation on data stream output from decoder with and without error

and CRC_out_error is taken into consideration only when CRC_valid is high.

Figure 4.13-3 CRC output with zero error detection output

Figure 4.13-4 CRC output with high error detection output

Figure 4.13-2 CRC shift register

137

4.13.4. Synthesis Results

4.13.4.1. Area Report

Figure 4.13-5 CRC area report

4.13.4.2. Power Report

Figure 4.13-6 CRC power report

138

Chapter 5

Integration and Conclusion

Integration

 First, we integrated each two blocks and most of the blocks explained in chapter 4 were

already tested with the output of other blocks. Then we had four separated parts of the chain.

 The first one includes (Synchronization, Offset correction, FFT)

 The second part includes (Resource element De-mapper, channel estimation and equalizer)

 The third part includes (IDFT, De-mapper and descrambler)

 The forth part includes (De-Interleaver, Rate De-Matching, Decoder and CRC)

Each part of them was integrated, synthesized, tested and compared with MATLAB.

Then we integrated the four parts together to get the full chain and made Shure that signals go

correctly from one block to the other one.

Conclusion

 In this thesis a full chain for narrow band LTE uplink receiver was proposed. The full

Architecture for each block was explained. Each block was modelled by MATLAB and was

RTL implemented. Each block was tested and the results were verified and compared with

MATLAB. The blocks were fully synthesized on Xilinx ISE and on DC compiler and the area

and power were reported. Finally, all blocks were integrated and tested.

Out future plan is based on testing more cases for the full chain, optimizing in the blocks to get

less area and power consumption and test the chain on FPGA.

139

References

[1] 3GPP Technical Specifications 36.211, “Physical channel and modulation.

[2] 3GPP Technical Specifications 36.212, “Physical channel and modulation.

[3] 3GPP Technical Specifications 36.213, “Physical channel and modulation.

[4] Optimized Rate Matching Architecture for a LTE Advanced FPGA-

based PHY by Karlo G. Lenzi, José A. Bianco F., Felipe A. de

Figueiredo, Fabrício L. Figueiredo DRC – Convergent Networks

Department CPqD – Research and Development Center Campinas, SP

– Brazil.

[5] LTE Rate Matching Performance with Code Block Balancing by Josep

Colom Ikuno, Stefan Schwarz, Michal ˇSimko Institute of

Communications and Radio-Frequency Engineering Vienna University

of Technology, Austria Gusshausstrasse 25/389, A-1040 Vienna,

Austria.

[6] M. Sandell, J.-J. van de Beek, and P. O. Borjesson, “ML Estimation of

Timing and Frequency Offset in Multicarrier Systems,” Signal

Processing, no. April, 1996.

[7] N. P. Samavedam, “Mobile Cell Search and Synchronization in LTE,”

vol. 4, no. 5, p. 75, 2011.

[8] B. Lakshmi and A. S. Dhar, “CORDIC architectures: A survey,” VLSI

Des., vol. 2010, 2010.

[9] S. Dirlik, “A comparison of FFT processor designs,” 2013.

[10] P. S. Pariyal, D. M. Koyani, D. M. Gandhi, S. F. Yadav, D. J. Shah, and

A. Adesara, “Comparison based Analysis of Different FFT

Architectures,” Int. J. Image, Graph. Signal Process., vol. 8, no. 6, pp.

41–47, 2016.

[11] M. Eroglu S., Toprak S., Urgan O, MD, Ozge E. Onur, MD, Arzu

Denizbasi, MD, Haldun Akoglu, MD, Cigdem Ozpolat, MD, Ebru

Akoglu, Digital Signal Processing with Field Programmable Gate

Arrays, vol. 33. 2012.

140

[12] Yu, M. H. Yen, P. A. Hsiung, and S. J. Chen, “A low-power 64-point

pipeline FFT/IFFT processor for OFDM applications,” IEEE Trans.

Consum. Electron., vol. 57, no. 1, pp. 40–45, 2011.

[13] Design of Cost-Efficient Memory-Based FFT Processors Using Single-

Port Memories, Yao-Xian Yang, Jin-Fu Li, Hsiang-Ning Liu, and Chin-

Long Wey Department of Electrical, Engineering National Central

University Jhongli, Taiwan, 320.

