

Bachelor Thesis

Narrowband IoT Physical Downlink Shared Channel Receiver

“NPDSCH RX R14”

Abanob Emil Sobhy

Abdallah Mahmoud Abostait

Ahmed Mohsen Abdel-Karim

Peter Emad Eskander

Aya Ahmed Magdy Ezz-Eldeen

Nouran Kassem Houssein Mohamed

Salma Ali Kamal

Under supervision of:

Associate prof. Mohamed Refki

Associate prof. Hassan Mostafa

Si-Vision

Cairo University
Faculty of Engineering
Electronics and Electrical
Communications Engineering

Department

I

Acknowledgment

We wish to thank our supervisor: Dr. Hassan Mustafa, for his endless support in resources and

encouragement. we are endlessly grateful to Si-Vision Inc. and ONE Lab, who supported, planned,

and guided this project through all its phases, especially Eng. Ahmed Nasr El-Din, Eng. Ahmed

Abdel-Motaal and Eng. Abdel-Rahman Hesham for their great efforts to help. Finally, we would

like to express gratitude to our professors and TAs for their sincerity in providing their knowledge

and expertise to us.

II

Abstract

Narrowband Internet of Things NB-IoT is a new cellular technology introduced in 3GPP

Release 13 for providing wide-area coverage for the Internet of Things IoT. This thesis provides a

hardware implementation of the physical downlink shared channel PDSCH in Release 14. We

describe how algorithms were constructed and hardware designed in accordance with the

requirements of the 3GPP standard to achieve specifications and good performance, low area, low

power and low complexity of design. We also provide insight on how the chain was integrated,

synthesized, simulated and tested.

III

Table of content
Acknowledgment ... I
Abstract ... II
Table of content .. III
List of Figures: .. VIII
List of Tables: ... XIV
Abbreviation .. XV
Chapter 1 Introduction ... 1

1.1. NB-IoT applications and Usage ... 1

1.2. NPDSCH Receiver design based on Release 14 (3GPP): ... 2

1.3. Physical Resource Block Structure for NB-IoT ... 3

1.4. Frame Structure .. 4

1.5. The flow of data according to our NPDSCH chain design: ... 5

1.6. Thesis out Lines: ... 6

Chapter 2 Theory .. 7
2.1. Coarse Synchronizer [6:12, 53] .. 7

Problem Definition .. 7

Operating Conditions ... 7

NPSS Signal ... 7

Functionality outline ... 9

Algorithm ... 9

Constructing the Algorithm ... 11

2.2. CFO correction [13:15]: ... 12

CORDIC algorithm (coordinate rotation digital computer) ... 12

2.3. FFT [16:31]: ... 15

Algorithm: ... 15

2.4. RESOURCE DE-MAPPER [32]: .. 23

2.5. Channel Estimation [33:38]: .. 25

Channel Model for LTE and NB-IoT. ... 25

Types of channel estimation ... 26

Channel Estimation Algorithms .. 28

2.6. NRS Value Generation: .. 30

2.7. NRS Location Generation: ... 31

2.8. Channel Equalizer: ... 32

Complex divider algorithm. ... 32

2.9. Fine Synchronization [39:40]: .. 33

2.9.1. Problem Definition:... 33

IV

Algorithm: ... 33

2.10. P/S and NRS removal: .. 34

2.11. Demodulation .. 35

2.12. Descrambling:.. 36

Descrambling Operation in NB-IoT .. 36

Descrambler initialization in NB-IoT: .. 36

2.13. Rate De-Matcher [41:50] .. 37

Rate Matcher ... 37

Rate De-Matcher: .. 39

2.14. Viterbi Decoder ... 41

Convolutional Codes ... 41

Tail Biting Convolutional Coding .. 42

Viterbi Decoder Description .. 43

1.14.4. Decoding of Convolutional Codes .. 46

2.15. Cyclic Redundancy Check .. 48

Cyclic Redundancy Check Algorithm ... 48

2.16. RAM Sharing .. 48

2.17. Design Specifications: ... 49

Chapter 3 Design implementation ... 50
3.1. Coarse Synchronizer ... 50

3.1.1. Block Diagram ... 50

3.1.2. State Diagram ... 51

3.1.3. Interface Tables ... 52

3.1.4. Results .. 54

3.2. CFO correction: .. 61

3.2.1. Block Diagram: ... 61

3.2.2. Interface Table: ... 61

3.2.3. Function of the design: ... 62

3.2.4. Design specification: ... 62

3.2.5. Detailed block diagram: ... 62

3.2.6. Design Interface: ... 63

3.2.7. Simulation Results: ... 63

3.3. FFT ... 66

3.3.1. Block Diagram: ... 66

3.3.2. Interface Table: ... 66

V

3.3.3. Function of the design: ... 67

3.3.4. Detailed implementation: ... 69

3.3.5. Design Interface: ... 70

3.3.6. Design Specification .. 71

3.3.7. Simulation Results: ... 71

3.4. RESOURCE DE-MAPPER ... 75

3.4.1. Block Diagram: ... 75

3.4.2. Interface Table: ... 75

3.4.3. Function of the design: ... 78

3.4.4. Design Interface: ... 80

3.4.5. Design Specification .. 80

3.4.6. Simulation Results: ... 81

3.5. Channel Estimation .. 85

3.5.1. Block Diagram: ... 85

3.5.2. Interface Table: ... 86

3.5.3. Function of the design: ... 87

3.5.4. Block Specification:... 87

3.5.5. Detailed Design Implementation: .. 88

3.5.6. Design Interface: ... 90

3.5.7. Simulation Results: ... 90

3.6. NRS Value Generation ... 93

3.6.1. Block Diagram: ... 93

3.6.2. Interface Table: ... 93

3.6.3. Function of the design: ... 94

3.6.4. Block Specification:... 94

3.6.5. Detailed Design Implementation: .. 95

3.6.6. Design Interface: ... 96

3.6.7. Simulation Results: ... 97

3.7. NRS Index Generation.. 99

3.7.1. Block Diagram: ... 99

3.7.2. Interface Table: ... 99

3.7.3. Function of the design: ... 100

3.7.4. Block Specification:... 100

3.7.5. Detailed Design Implementation: .. 100

3.7.6. Design Interface: ... 102

VI

3.7.7. Simulation Results: ... 102

3.8. Channel Equalizer .. 105

3.8.1. Block Diagram: ... 105

3.8.2. Interface Table: ... 105

3.8.3. Function of the design: ... 106

3.8.4. Block specification: ... 106

3.8.5. Detailed block diagram ... 106

3.8.6. Design Interface: ... 107

3.8.7. Simulation Results: ... 107

3.9. Fine Synchronization: ... 111

3.9.1. Block Diagram: ... 111

3.9.2. Interface Table: ... 111

3.9.3. Function of the design: ... 112

3.9.4. Block Specification:... 114

3.9.5. Design Interface: ... 114

3.9.6. Simulation Results: ... 114

3.10. P/S and NRS removal: .. 117

3.10.1. Block Diagram: ... 117

3.10.2. Interface Table: ... 118

3.10.3. Function of the design: ... 118

3.10.4. Design specification: ... 118

3.10.5. Design Interface: ... 118

3.10.6. Simulation Results: ... 118

3.11. De-Modulation: ... 121

3.11.1. Block Diagram: ... 121

3.11.2. Interface Table: ... 121

3.11.3. Function of the design ... 122

3.11.4. Design Interface... 122

3.11.5. Simulation Results: ... 122

3.12. Descrambling:.. 125

3.12.1. Block Diagram: ... 125

3.12.2. Interface Table: ... 125

3.12.3. Function of the design: ... 126

3.12.4. Design Interface: ... 126

3.12.5. Simulation Results: ... 126

VII

3.13. Rate De-Matcher ... 130

3.13.1. Block Diagram ... 130

3.13.2. Interface Table .. 132

3.13.3. Function of the design [49] [50] [51] .. 132

3.13.4. Design Interface... 133

3.13.5. Simulation Results... 133

3.13.6. Synthesis Reports .. 137

3.14. Viterbi Decoder ... 138

3.14.1 Block Diagram: ... 138

3.14.2 Interface Table: ... 138

3.14.3 Function of the design: ... 139

3.14.4 Design Interface: ... 140

3.14.5 Simulation Results: ... 140

3.15. Cyclic Redundancy Check .. 146

3.15.1. Block Diagram ... 146

3.15.2. Interface Table: ... 147

3.15.3. Function of the design: ... 147

3.15.4. Design Interface: This block is communicating with: .. 147

3.15.5. Simulation Results: ... 147

3.16. RAM Sharing .. 150

3.16.1. Block Diagram: ... 150

3.16.2. Interface Table: ... 151

Chapter 4 System Integration and Results ... 153
4.1. MATLAB integration: .. 153

4.2. RTL integration: ... 155

4.3. Synthesis: ... 156

4.3.1. DC results: ... 156

4.3.2. VIVADO results: ... 159

4.4. FPGA implementation:... 160

Chapter 5 Conclusion and Future Work .. 163
References .. 164

VIII

List of Figures:
Figure 1 Narrowband IoT usage.. 1
Figure 2 NB-IoT deployment modes .. 2
Figure 3 Range vs power consumption for LPWAN compared to other technologies 2
Figure 4 Frame structure for NB-IoT LTE transceiver .. 3
Figure 5 Radio frame structure type one .. 4
Figure 6 NPDSCH RX Chain Block Diagram .. 5
Figure 7 Mapping of Length-11 Code Cover to OFDM Symbols in Time-Domain 8
Figure 8 Mapping of Base Sequence in Frequency-Domain (occupying 11 consecutive tones) 8
Figure 9 Waveform of NPSS Symbols Generated at 1.92 MHz by Size-128 IFFT 9
Figure 10 Algorithm High-Level State Diagram .. 10
Figure 11 diagram show rotation of vector ... 13
Figure 12 Radix-2 butterfly unit [25] .. 17
Figure 13 Flow graph of 16-point Radix-2 FFT algorithm ... 17
Figure 14 Radix-4 butterfly unit [26] .. 18
Figure 15 Flow graph of 16-point Radix-4 FFT algorithm [26] .. 19
Figure 16 Split-radix butterfly unit [29] ... 20
Figure 17 Flow graph of 16-point SPLIT Radix FFT algorithm [30] .. 20

Figure 18 Radix-𝟐𝟐 butterfly unit [25] ... 21

Figure 19 Flow graph of 16-point Radix-𝟐𝟐 FFT algorithm [20] ... 21

Figure 20 Resource block [4].. 23
Figure 21 LTE Frame Structure [4] ... 24
Figure 22 Downlink resource grid ... 24
Figure 23 Multi-path fading channel model ... 25
Figure 24 Delay profile ... 25
Figure 25 Delay profile for ETU according to 3GPP ... 26
Figure 26 NB-IoT frame transmitted in an in-band mode over an LTE frame 27
Figure 27 Channel effect on transmitted signal ... 28
Figure 28 Zero-order interpolation ... 28
Figure 29 Slot interpolation ... 29
Figure 30 Sub-Frame interpolation ... 29
Figure 31 BER vs SNR Matlab simulation for the three designs to get a rough estimation about the

best performance ... 29
Figure 32 R0: refer to the resource element placed at 𝑵𝑰𝑫𝒄𝒆𝒍𝒍 = 𝟎 ... 31
Figure 33 Example for NRS location in subframe ... 33
Figure 34 QPSK constellation .. 35
Figure 35 Descrambling Algorithm ... 36
Figure 36 Rate Matcher in transmitter ... 37
Figure 37: Rate 1/3 tail biting convolutional encoder .. 41
Figure 38: Convolutional Encoding with tail bits .. 42
Figure 39: Trellis Transitions for Constraint length=4 ... 43
Figure 40: Error computation for constraints length=3 .. 44
Figure 41: State Diagram for constraints length=4. .. 45
Figure 42: Computed Distances for different paths... 45

file:///E:/PSCH/NPDSCH%20RX_CU20_Thesis.docx%23_Toc48374544
file:///E:/PSCH/NPDSCH%20RX_CU20_Thesis.docx%23_Toc48374545
file:///E:/PSCH/NPDSCH%20RX_CU20_Thesis.docx%23_Toc48374546
file:///E:/PSCH/NPDSCH%20RX_CU20_Thesis.docx%23_Toc48374548
file:///E:/PSCH/NPDSCH%20RX_CU20_Thesis.docx%23_Toc48374549
file:///E:/PSCH/NPDSCH%20RX_CU20_Thesis.docx%23_Toc48374550
file:///E:/PSCH/NPDSCH%20RX_CU20_Thesis.docx%23_Toc48374551
file:///E:/PSCH/NPDSCH%20RX_CU20_Thesis.docx%23_Toc48374552
file:///E:/PSCH/NPDSCH%20RX_CU20_Thesis.docx%23_Toc48374553
file:///E:/PSCH/NPDSCH%20RX_CU20_Thesis.docx%23_Toc48374564
file:///E:/PSCH/NPDSCH%20RX_CU20_Thesis.docx%23_Toc48374566
file:///E:/PSCH/NPDSCH%20RX_CU20_Thesis.docx%23_Toc48374567
file:///E:/PSCH/NPDSCH%20RX_CU20_Thesis.docx%23_Toc48374568
file:///E:/PSCH/NPDSCH%20RX_CU20_Thesis.docx%23_Toc48374569
file:///E:/PSCH/NPDSCH%20RX_CU20_Thesis.docx%23_Toc48374570
file:///E:/PSCH/NPDSCH%20RX_CU20_Thesis.docx%23_Toc48374571
file:///E:/PSCH/NPDSCH%20RX_CU20_Thesis.docx%23_Toc48374572
file:///E:/PSCH/NPDSCH%20RX_CU20_Thesis.docx%23_Toc48374573
file:///E:/PSCH/NPDSCH%20RX_CU20_Thesis.docx%23_Toc48374574
file:///E:/PSCH/NPDSCH%20RX_CU20_Thesis.docx%23_Toc48374574
file:///E:/PSCH/NPDSCH%20RX_CU20_Thesis.docx%23_Toc48374575
file:///E:/PSCH/NPDSCH%20RX_CU20_Thesis.docx%23_Toc48374577
file:///E:/PSCH/NPDSCH%20RX_CU20_Thesis.docx%23_Toc48374579

IX

Figure 43: Survivor path computation .. 46
Figure 44: Trellis Transitions .. 47
Figure 45: Trellis Transition at the end of the first iteration. ... 47
Figure 46: Trellis at the end of the second iteration. ... 48
Figure 47 CSYNCH Top-Level Block Diagram ... 50
Figure 48 Simplified State Diagram of the Block ... 51
Figure 49 CDF of PSS-Detection Latency in In-Band or Guard-Band Deployment 55
Figure 50 PMF of Synchronization Timing Error in In-Band or Guard-Band Deployment 55
Figure 51 CDF of Frequency Estimation Error in In-Band or Guard-Band Deployment 56
Figure 52 CDF of PSS-Detection Latency in Standalone Deployment ... 56
Figure 53 PMF of Synchronization Timing Error in Standalone Deployment 57
Figure 54 CDF of Frequency Estimation Error in Standalone Deployment 57
Figure 55 MATLAB Simulation Screenshot for Run 1 for CSYNCH ... 58
Figure 56 RTL Simulation Screenshot for Run 1 for CSYNCH .. 58
Figure 57 MATLAB Simulation Screenshot for Run 2 for CSYNCH ... 59
Figure 58 RTL Simulation Screenshot for Run 2 for CSYNCH .. 59
Figure 59 RTL Simulation Screenshot for Normal Operation for CSYNCH 59
Figure 60 Screenshot from Synthesis QOR Report for CSYNCH ... 60
Figure 61 Screenshot from Synthesis Power Report for CSYNCH ... 60
Figure 62 Screenshot from Synthesis Area Report for CSYNCH .. 60
Figure 63 CFO Block Diagram .. 61
Figure 64 CFO Detailed Block Diagram ... 62
Figure 65 : CORDIC block diagram ... 62
Figure 66 recursive pipelined CORDIC design .. 63
Figure 67 MATLAB result for different input offset CFO ... 63
Figure 68 RTL simulation results of CFO .. 64
Figure 69: comparing results of RTL and MATLAB in CFO .. 64
Figure 70: average error between RTL and MATLAB in CFO ... 64
Figure 71: Area report of CFO .. 65
Figure 72 : Power report of CFO .. 65
Figure 73: Timing report of CFO .. 66
Figure 74 16-point FFT radix𝟐𝟐 SDF block diagram .. 66
Figure 75 16-point FFT Block diagram before optimized ... 67
Figure 76 Optimized 16-point FFT block diagram .. 68
Figure 77 Stage 1&4 after optimization block diagram of FFT ... 69
Figure 78 Stage 2 block diagram of FFT .. 69
Figure 79 Stage 3 block diagram of FFT .. 70
Figure 80 interfacing blocks of FFT .. 70
Figure 81 16-point FFT MATLAB output of FFT ... 71
Figure 82 12 FFT output stored in resource de-mapper of FFT .. 71
Figure 83 16-point FFT RTL simulation of FFT.. 71
Figure 84 FIFO RTL simulation of FFT ... 72
Figure 85 Power Report of memory before FFT.. 72
Figure 86 Power Report of FFT... 73
Figure 87 Area Report of memory before FFT .. 73
Figure 88 Area Report of FFT ... 74
Figure 89 Timing Report of memory before FFT .. 74

file:///E:/PSCH/NPDSCH%20RX_CU20_Thesis.docx%23_Toc48374588
file:///E:/PSCH/NPDSCH%20RX_CU20_Thesis.docx%23_Toc48374590
file:///E:/PSCH/NPDSCH%20RX_CU20_Thesis.docx%23_Toc48374591
file:///E:/PSCH/NPDSCH%20RX_CU20_Thesis.docx%23_Toc48374592
file:///E:/PSCH/NPDSCH%20RX_CU20_Thesis.docx%23_Toc48374593
file:///E:/PSCH/NPDSCH%20RX_CU20_Thesis.docx%23_Toc48374594
file:///E:/PSCH/NPDSCH%20RX_CU20_Thesis.docx%23_Toc48374595
file:///E:/PSCH/NPDSCH%20RX_CU20_Thesis.docx%23_Toc48374596
file:///E:/PSCH/NPDSCH%20RX_CU20_Thesis.docx%23_Toc48374597
file:///E:/PSCH/NPDSCH%20RX_CU20_Thesis.docx%23_Toc48374598
file:///E:/PSCH/NPDSCH%20RX_CU20_Thesis.docx%23_Toc48374599
file:///E:/PSCH/NPDSCH%20RX_CU20_Thesis.docx%23_Toc48374600
file:///E:/PSCH/NPDSCH%20RX_CU20_Thesis.docx%23_Toc48374601
file:///E:/PSCH/NPDSCH%20RX_CU20_Thesis.docx%23_Toc48374602
file:///E:/PSCH/NPDSCH%20RX_CU20_Thesis.docx%23_Toc48374603
file:///E:/PSCH/NPDSCH%20RX_CU20_Thesis.docx%23_Toc48374604
file:///E:/PSCH/NPDSCH%20RX_CU20_Thesis.docx%23_Toc48374605
file:///E:/PSCH/NPDSCH%20RX_CU20_Thesis.docx%23_Toc48374606
file:///E:/PSCH/NPDSCH%20RX_CU20_Thesis.docx%23_Toc48374607

X

Figure 90 Timing Report of FFT ... 74
Figure 91 resource element de-mapper block diagram ... 75
Figure 92 Time multiplexing between NB-IoT downlink physical channels and signals [3] 79
Figure 93 interface block diagram .. 80
Figure 94 resource element de-mapper MATLAB results .. 81
Figure 95 resource element de-mapper RTL simulation ... 81
Figure 96 Storage element memory ... 82
Figure 97 Resource De-mapper memory .. 82
Figure 98 Storage Element Power Report .. 82
Figure 99 Resource element De-mapper Power Report .. 83
Figure 100 Storage Element Area Report ... 83
Figure 101 Resource Element De-Mapper Area Report ... 84
Figure 102 Storage Element Timing Report ... 84
Figure 103 Resource Element De-Mapper Timing Report ... 84
Figure 104 Channel Estimation Block Diagram .. 85
Figure 105 Channel Estimation Block diagram ... 87
Figure 106 Channel Estimation-Get Data Block Diagram .. 88
Figure 107 Channel Estimation-Complex Multiplier Block Diagram ... 88
Figure 108 Channel Estimation-Register file Block Diagram .. 89
Figure 109 Channel Estimation-Interpolation Block Diagram ... 89
Figure 110 Channel Estimation interface block diagram ... 90
Figure 111 Channel Estimation performance .. 90
Figure 112 RTL Channel estimation real outputs with fixed-point approximation 91
Figure 113 RTL Channel estimation area report .. 91
Figure 114 RTL Channel estimation power report ... 92
Figure 115 RTL Channel estimation timing report ... 92
Figure 116 NRS Generator Block Diagram .. 93
Figure 117 NRS values generator Block diagram .. 94
Figure 118 NRS generator Second m-sequence Generator block diagram ... 95
Figure 119 NRS Generator LFSR Block diagram ... 95
Figure 120 NRS generator Register files block diagram ... 96
Figure 121 NRS values generator interface Block diagram .. 96
Figure 122 NRS Values generated by built in MATLAB function for sub frame number = 6 97
Figure 123 NRS Values generated by created MATLAB function for sub frame number = 6 97
Figure 124 NRS Values generated by RTL block .. 97
Figure 125 NRS Values generated from the MATLAB ... 97
Figure 126 NRS Values generation block power report .. 98
Figure 127 NRS Values generation block area report ... 98
Figure 128 NRS Values generation block timing report ... 98
Figure 129 NRS Index Generator Block Diagram ... 99
Figure 130 NRS Location generator Block diagram ... 100
Figure 131 NRS index GEN mod-6 Block Diagram ... 100
Figure 132 NRS index GEN indices Generator .. 101
Figure 133 NRS Locations Generator ... 101
Figure 134 NRS Location generator Block diagram ... 102
Figure 135 figure of the MATLAB function output for 𝑵𝑰𝑫𝒄𝒆𝒍𝒍 = 𝟏 ... 102

Figure 136 figure of the MODELSIM function output for 𝑵𝑰𝑫𝒄𝒆𝒍𝒍 = 𝟓 .. 103

file:///E:/PSCH/NPDSCH%20RX_CU20_Thesis.docx%23_Toc48374647
file:///E:/PSCH/NPDSCH%20RX_CU20_Thesis.docx%23_Toc48374648
file:///E:/PSCH/NPDSCH%20RX_CU20_Thesis.docx%23_Toc48374649
file:///E:/PSCH/NPDSCH%20RX_CU20_Thesis.docx%23_Toc48374650
file:///E:/PSCH/NPDSCH%20RX_CU20_Thesis.docx%23_Toc48374651
file:///E:/PSCH/NPDSCH%20RX_CU20_Thesis.docx%23_Toc48374652
file:///E:/PSCH/NPDSCH%20RX_CU20_Thesis.docx%23_Toc48374653
file:///E:/PSCH/NPDSCH%20RX_CU20_Thesis.docx%23_Toc48374654
file:///E:/PSCH/NPDSCH%20RX_CU20_Thesis.docx%23_Toc48374655
file:///E:/PSCH/NPDSCH%20RX_CU20_Thesis.docx%23_Toc48374656
file:///E:/PSCH/NPDSCH%20RX_CU20_Thesis.docx%23_Toc48374657
file:///E:/PSCH/NPDSCH%20RX_CU20_Thesis.docx%23_Toc48374658
file:///E:/PSCH/NPDSCH%20RX_CU20_Thesis.docx%23_Toc48374659
file:///E:/PSCH/NPDSCH%20RX_CU20_Thesis.docx%23_Toc48374660
file:///E:/PSCH/NPDSCH%20RX_CU20_Thesis.docx%23_Toc48374661
file:///E:/PSCH/NPDSCH%20RX_CU20_Thesis.docx%23_Toc48374662
file:///E:/PSCH/NPDSCH%20RX_CU20_Thesis.docx%23_Toc48374663
file:///E:/PSCH/NPDSCH%20RX_CU20_Thesis.docx%23_Toc48374664
file:///E:/PSCH/NPDSCH%20RX_CU20_Thesis.docx%23_Toc48374665
file:///E:/PSCH/NPDSCH%20RX_CU20_Thesis.docx%23_Toc48374666
file:///E:/PSCH/NPDSCH%20RX_CU20_Thesis.docx%23_Toc48374667
file:///E:/PSCH/NPDSCH%20RX_CU20_Thesis.docx%23_Toc48374668
file:///E:/PSCH/NPDSCH%20RX_CU20_Thesis.docx%23_Toc48374669
file:///E:/PSCH/NPDSCH%20RX_CU20_Thesis.docx%23_Toc48374670
file:///E:/PSCH/NPDSCH%20RX_CU20_Thesis.docx%23_Toc48374671
file:///E:/PSCH/NPDSCH%20RX_CU20_Thesis.docx%23_Toc48374672
file:///E:/PSCH/NPDSCH%20RX_CU20_Thesis.docx%23_Toc48374673
file:///E:/PSCH/NPDSCH%20RX_CU20_Thesis.docx%23_Toc48374674
file:///E:/PSCH/NPDSCH%20RX_CU20_Thesis.docx%23_Toc48374675
file:///E:/PSCH/NPDSCH%20RX_CU20_Thesis.docx%23_Toc48374676
file:///E:/PSCH/NPDSCH%20RX_CU20_Thesis.docx%23_Toc48374677
file:///E:/PSCH/NPDSCH%20RX_CU20_Thesis.docx%23_Toc48374678
file:///E:/PSCH/NPDSCH%20RX_CU20_Thesis.docx%23_Toc48374679

XI

Figure 137 NRS Location Generator block power report ... 103
Figure 138 NRS Location Generator block area report .. 103
Figure 139 NRS Location Generator block timing report .. 104
Figure 140 : Channel equalizer block diagram .. 105
Figure 141 : full detailed diagram of equalizer .. 106
Figure 142: comparison between input symbols and the output after equalization 107
Figure 143: inputs and outputs of equalizer ... 107
Figure 144: output of RTL of channel Equalizer ... 108
Figure 145: comparison between output from MATLAB and RTL .. 108
Figure 146: average error between MATLAB and RTL results .. 109
Figure 147: area report of channel equalizer ... 109
Figure 148: timing report of channel equalizer .. 109
Figure 149: power report of channel equalizer .. 110
Figure 150 Fine Synchronization Block Diagram .. 111
Figure 151 Fine Synchronization Detailed Block Diagram ... 112
Figure 152 Arctan Block Diagram .. 112
Figure 153 Arctan Curve .. 113
Figure 154 NRS in subframe .. 114
Figure 155 Values of NRS ... 114
Figure 156 Fine Synchronization MATLAB Output ... 115
Figure 157 Fine Synchronization RTL Output .. 115
Figure 158 Fine Synchronization Area Report .. 116
Figure 159 Fine Synchronization Power Report ... 116
Figure 160 Fine Synchronization Timing Report ... 117
Figure 161: output of P/S and NRS removal block .. 118
Figure 162: output of P/S and NRS removal .. 119
Figure 163: area report of P/S and NRS removal block .. 119
Figure 164: timing report of P/S and NRS removal block .. 119
Figure 165: power report of P/S and NRS removal block ... 120
Figure 166 Demapper Block Diagram .. 121
Figure 167 Input to demapper from p/s & NRS removal .. 122
Figure 168 MATLAB Output from Demapper .. 122
Figure 169 RTL Output from Demapper ... 123
Figure 170 Demapper Area Report ... 123
Figure 171 Demapper Power Report .. 124
Figure 172 Demapper Timing Report ... 124
Figure 173 Descrambling Block Diagram ... 125
Figure 174 Input to Descrambling from De-mapper ... 126
Figure 175 MATLAB Output from Descrambling for NcellID = 0, Ns = 2, Nf = 100 127
Figure 176 MATLAB Output from Descrambling for NcellID = 0, Ns = 3, Nf = 100 127
Figure 177 MATLAB Output from Descrambling for NcellID = 0, Ns = 3, Nf = 101 127
Figure 178 MATLAB Output from Descrambling for NcellID = 14, Ns = 3, Nf = 101 128
Figure 179 RTL Output from Descrambling for NcellID = 0, Ns = 2, Nf = 100 128
Figure 180 RTL Output from Descrambling for NcellID = 0, Ns = 3, Nf = 100 128
Figure 181 RTL Output from Descrambling for NcellID = 0, Ns = 3, Nf = 101 128
Figure 182 RTL Output from Descrambling for NcellID = 14, Ns = 3, Nf = 101 128
Figure 183 Descrambling Area Report ... 129

file:///E:/PSCH/NPDSCH%20RX_CU20_Thesis.docx%23_Toc48374680
file:///E:/PSCH/NPDSCH%20RX_CU20_Thesis.docx%23_Toc48374681
file:///E:/PSCH/NPDSCH%20RX_CU20_Thesis.docx%23_Toc48374682
file:///E:/PSCH/NPDSCH%20RX_CU20_Thesis.docx%23_Toc48374683
file:///E:/PSCH/NPDSCH%20RX_CU20_Thesis.docx%23_Toc48374684
file:///E:/PSCH/NPDSCH%20RX_CU20_Thesis.docx%23_Toc48374709
file:///E:/PSCH/NPDSCH%20RX_CU20_Thesis.docx%23_Toc48374716

XII

Figure 184 Descrambling Power Report ... 129
Figure 185 Descrambling Timing Report ... 130
Figure 186: Rate De-Matcher Block Diagram ... 130
Figure 187: Bit Collection Block Diagram .. 131
Figure 188 De-interleaver Block Diagram .. 131
Figure 189Rate De-matcher Output data from MATLAB block for E = 60 133
Figure 190:Rate De-matcher Output data from MATLAB function for E = 60 134
Figure 191:Rate De-matcher Output data from MATLAB block for E = 120 134
Figure 192 Rate De-matcher Output data from MATLAB function for E = 120 135
Figure 193 Rate De-matcher Output data from MATLAB block for E = 240 135
Figure 194 Rate De-matcher Output data from MATLAB function for E = 240 135
Figure 195 Rate De-matcher RTL output for E = 120 .. 136
Figure 196 Rate De-matcher MATLAB dataout1.. 136
Figure 197 Rate De-matcher MATLAB dataout2... 136
Figure 198 Rate De-matcher MATLAB dataout3.. 137
Figure 199 Rate De-matcher Synthesis area report ... 137
Figure 200 Rate De-matcher Synthesis power report .. 137
Figure 201 Rate De-matcher Synthesis Timing report .. 137
Figure 202: Trellis Structure ... 140
Figure 203: Next states in Trellis Diagram for (Rate=1/3, K=7)... 141
Figure 204: Trellis Diagram Expected Outputs ... 142
Figure 205: Path metric Results .. 143
Figure 206: Trace back start point .. 143
Figure 207: Hamming Distances .. 143
Figure 208: Adder, Compare and select unit results. .. 144
Figure 209: Decoded sequence ... 144
Figure 210: Power Report .. 145
Figure 211: Area Report .. 145
Figure 212: Timing Report... 145
Figure 213 CRC Block Diagram .. 146
Figure 214: CRC Detailed Block Diagram ... 146
Figure 215: output CRC block ... 147
Figure 216: output CRC function .. 148
Figure 217: output CRC RTL .. 148
Figure 218: output CRC function MATLAB ... 148
Figure 219: CRC Synthesis power report ... 149
Figure 220: CRC Synthesis timing report .. 149
Figure 221: CRC Synthesis area report .. 149
Figure 222 Shared RAM Block Diagram .. 150
Figure 223 MATLAB BER Vs SNR .. 153
Figure 224 MATLAB BLER Vs SNR .. 154
Figure 225 BLER Vs SNR for MATLAB and RTL designed model compared with ideal model .. 154
Figure 226 RTL BER Vs SNR ... 155
Figure 227 RTL BLER Vs SNR ... 155
Figure 228: Area report for each block .. 156
Figure 229: Power report for each block .. 156
Figure 230: Latency for each block ... 157

file:///E:/PSCH/NPDSCH%20RX_CU20_Thesis.docx%23_Toc48374729
file:///E:/PSCH/NPDSCH%20RX_CU20_Thesis.docx%23_Toc48374730
file:///E:/PSCH/NPDSCH%20RX_CU20_Thesis.docx%23_Toc48374731
file:///E:/PSCH/NPDSCH%20RX_CU20_Thesis.docx%23_Toc48374745
file:///E:/PSCH/NPDSCH%20RX_CU20_Thesis.docx%23_Toc48374747
file:///E:/PSCH/NPDSCH%20RX_CU20_Thesis.docx%23_Toc48374756
file:///E:/PSCH/NPDSCH%20RX_CU20_Thesis.docx%23_Toc48374757
file:///E:/PSCH/NPDSCH%20RX_CU20_Thesis.docx%23_Toc48374765

XIII

Figure 231 Whole Chain DC Area Report .. 157
Figure 232 Whole Chain DC Power Report ... 158
Figure 233 Whole Chain DC Timing Report .. 158
Figure 234 VIVADO Utilization for Vertex 7 for Whole Chain ... 159
Figure 235 VIVADO power summary for Vertex 7 for Whole Chain ... 159
Figure 236 VIVADO Behavioral Simulation .. 160
Figure 237 ILA FPGA Output ... 161
Figure 238 VIO FPGA Output .. 161
Figure 239 FPGA Output if reset is 0 .. 162
Figure 240 FPGA Output if enable 0 .. 162

XIV

List of Tables:
Table 1 Comparison of Pipelined FFT Architectures [17] .. 16
Table 2 FFT different radixes comparison ... 23
Table 3 QPSK constellation ... 35
Table 4 Permutation Table .. 38
Table 5 Design Specifications ... 49
Table 6 Usage of Important Components and Resources: ... 50
Table 7 Illustration of Transitions between States: ... 52
Table 8 csynch Interfacing Table of the Top-Level Module: ... 52
Table 9 Block’s Interfacing Table with Shared-Ram: ... 52
Table 10 csynch RTL Simulation Results Summary: .. 54
Table 11 Summary of the Synthesis Results for csynch: ... 58
Table 12 interface table of CFO correction .. 61
Table 13 interface table of FFT ... 66
Table 14 FFT comparison with [25] .. 75
Table 15 Storage Element Interface Table ... 75
Table 16 Resource De-mapper interface table ... 76
Table 17 Bit-reversing operation ... 79
Table 18 Channel Estimation interface table ... 86
Table 19 Channel Estimation interface table ... 91
Table 20 NRS generator interface table .. 93
Table 21 NRS Index Generator interface table .. 99
Table 22 MATLAB results for NRS index with 𝑵𝑰𝑫𝒄𝒆𝒍𝒍 = 𝟏 ... 102

Table 23 MATLAB results for NRS index with 𝑵𝑰𝑫𝒄𝒆𝒍𝒍 = 𝟓 .. 103
Table 24: interface table of channel equalizer .. 105
Table 25 Fine Synch interface table .. 111
Table 26 P/S and NRS removal interface table .. 118
Table 27 De-modulator interface table ... 121
Table 28 Descrambler Interface table ... 125
Table 29 De-Rate Matcher Interface Table .. 132
Table 30: Viterbi Decoder .. 138
Table 31: CRC Interface Table.. 147
Table 32 Shared RAM Interface Table ... 151

file:///E:/PSCH/NPDSCH%20RX_CU20_Thesis.docx%23_Toc48374805
file:///E:/PSCH/NPDSCH%20RX_CU20_Thesis.docx%23_Toc48374806

XV

Abbreviation

3GPP 3rd Generation Partnership Project

AWGN Additive White Gaussian Noise

BER Bit Error Rate

CBER Channel Bit Error Rate

CP Cyclic Prefix

CDF Cumulative Density Function

CFO Carrier Frequency Offset

CORDIC Coordinate Rotation Digital Computer

ETU Extended Typical Urban

FFO Fractional Frequency Offset

ICI Inter-Carrier Interference

IFO Integer Frequency Offset

ISI Inter-Symbol Interference

NPSS Narrowband Primary Synchronization Signal

PMF Probability Mass Function

RF Radio Frequency

SINR Signal to Interference Noise Ratio

SNR Signal to Noise Ratio

CRC Cyclic Redundancy Code or Cyclic Redundancy Check

FFT Fast Fourier Transform

IFFT Inverse Fast Fourier Transform

IoT Internet of Things

LTE Long-Term Evolution

MSB Most Significant Bit

NB-IoT Narrowband Internet of Things

NPBCH Narrowband Physical Broadcast Channel

NPDCCH Narrowband Physical Downlink Control Channel

NPDSCH Narrowband Physical Downlink Shared Channel

XVI

NPRACH Narrowband Physical Random-Access Channel

NPSS Narrowband Primary Synchronization Signal

NPUSCH Narrowband Physical Uplink Shared Channel

NRS Narrowband Reference Signal

NSSS Narrowband Secondary Synchronization Signal

OFDM Orthogonal Frequency-Division Multiplexing

QPSK Quadrature Phase-Shift Keying

RE Resource Element

UE User Equipment

Z-F Zero-Forcing

1

Chapter 1

Introduction

1.1. NB-IoT applications and Usage

Internet of Things is a network of physical objects or people called things, where electronics, software

and network work together to open the door for these things to be able to collect and exchange data

remotely. There is a lot of application for IoT devices such as smart cities, wearables and Health Monitoring,

security and surveillance. There are some requirements that are needed in order to support the IoT devices

for instance low cost and long battery life. Moreover, there are some requirements on the network like, low

data and low latency support, and extended coverage link budget. 3GPP also has taken some evolutionary

steps regards the network and devices in order to meet the connectivity of emerging to IoT segment. There

are solutions to meet the IoT requirements such as LTE-M and NB-IoT. [1]

The narrow band IoT proposal is set for approval in 3GPP Rel14 with following improvements. NB-

IoT or NB-LTE is a new 3GPP radio-access technology, which is designed to achieve the perfect co-

existence performance along with GSM, GPRS, and LTE technologies. One of the advantages of using

LTE is the mobility. It is also very popular as it has high data rate, high capacity and spectrum efficiency.

For NB-LTE Rel. 14 occupies 180 KHz of the spectrum.

Figure 1 Narrowband IoT usage

2

Modes of operation:

- In-band:

In this mode, an NB-IoT carrier is deployed occupying a physical resource block (PRB) within an LTE

carrier. This mode is the most efficient one as it allows the base station schedule to multiplex LTE and NB-

IoT traffic in the same spectrum.

- Guard band:

In this mode, an NB-IoT carrier is deployed within the guard band of an LTE carrier by using used Resource

Blocks within Blocks within LTE carrier Guard Band and it does not take any capacity from the main LTE

traffic carrier.

- Standalone:

In this mode, an NB-IoT carrier is deployed independently of any LTE carrier and it can work as a

replacement to GSM carriers. It also can provide deployment flexibility based on available spectrum and

use cases [2] .

1.2. NPDSCH Receiver design based on Release 14 (3GPP):
The project aims to implement and, simulate the Narrowband Physical Downlink Shared Channel

NPDSCH receiver based on release 14 for Third-Generation Partnership Project 3GPP.

NB-IoT is a cellular radio access technology based on Long Term Evolution LTE for Low-Power Wide-

Area Network LPWAN enables low data rates power and cost.

In 2014 through 2015, there are some proposals for NB until 2016 when 3GPP include all proposals as a

work item for release 13, then in mid of 2016 NB-IoT was recognized in release 13 followed by updated

versions with different Enhancements.

For quality of service improvement, release 14 come with more updates; New power class for the maximum

output User Equipment reduced to 14 dB, New Transport Block size support reach 2536 bits to improve

data rates and introduce the ability of second HARQ to enhance the reliability of the links for the UEs.

Figure 2 NB-IoT deployment modes

Figure 3 Range vs power consumption for LPWAN compared to other technologies

3

1.3. Physical Resource Block Structure for NB-IoT

Figure 4 Frame structure for NB-IoT LTE transceiver

The transmitted signal in each slot is described by one or several resource grids of 𝑁𝑅𝐵
𝐷𝐿𝑁𝑠𝑐

𝑅𝐵 subcarriers and

𝑁𝑠𝑦𝑚𝑏
𝐷𝐿 OFDM symbols. Where each resource grid consists of 𝑁𝑠𝑦𝑚𝑏

𝐷𝐿 × 𝑁𝑠𝑐
𝑅𝐵 resource elements. The

quantity 𝑁𝑅𝐵
𝐷𝐿 depends on the downlink transmission bandwidth configured in the cell and shall fulfil

DLmax,
RB

DL
RB

DLmin,
RB NNN 

Where 6DLmin,
RB =N and 110DLmax,

RB =N are the smallest and largest downlink bandwidths, respectively,

supported by the current version of this specification.

Resource block is also known as slot and its transmission time is about 0.5ms. Two slots are combining

together forming subframe and ten subframes are combining together forming a whole frame and it takes

10ms to transmit the whole frame where each subframe needs 1ms to be transmitted. Moreover, the length

of slot differs depends on the CP as in Normal CP slot contains 7 OFDM symbols and the time taken by

the first symbol is greater than the rest as discussed in section 1.3 while in Extended CP the slot contains 6

OFDM symbols and the slot’s time is divided equally between the symbols.

For NB-IoT Normal Cyclic Prefix is used and the number of Resource blocks used is 1 Resource Block for

the NB-IoT with 12 frequencies sub-carriers and 14 symbols for each sub frame with total BW=180 KHz.

4

1.4. Frame Structure
According to 3GPP there are three radio frame structures designed for LTE:

The radio frame structure type 1:

Is only applicable to FDD (for both full duplex and half duplex operation) and has a duration of 10ms

and consists of 20 slots with a slot duration of 0.5ms. Two adjacent slots form one sub-frame of length

1ms, except when the sub-carrier bandwidth is 1.25 kHz, in which case one slot forms one sub-frame.

The radio frame structure type 2:

Is only applicable to TDD and consists of two half-frames with a duration of 5ms each and containing

each either 10 slots of length 0.5ms, or 8 slots of length 0.5ms and three special fields (DwPTS, GP

and UpPTS) which have configurable individual lengths and a total length of 1ms.

The radio frame structure type 3:

Is only applicable to LAA secondary cell operation. It has a duration of 10ms and consists of 20 slots

with a slot duration of 0.5ms. Two adjacent slots form one sub-frame of length 1ms. Any sub-frame

may be available for downlink or uplink transmission.

For narrow band Downlink Physical shared channel, frame 1 is used.

Form the shown figure the frame time 𝑇𝑓 = 307200 𝑇𝑠 = 10𝑚𝑠, 𝑇𝑠𝑢𝑏𝑓𝑟𝑎𝑚𝑒 = 30720 𝑇𝑠 = 1𝑚𝑠

According to 3GPP

𝑇𝑠 =
1
(15000)(2048)⁄ 𝑚𝑠

𝑇𝑐𝑝 = 5.2𝑢𝑠 𝑓𝑜𝑟 1𝑠𝑡 𝑂𝐹𝐷𝑀 𝑠𝑦𝑚𝑏𝑜𝑙 𝑎𝑛𝑑 4.7𝑢𝑠 𝑓𝑜𝑟 𝑡ℎ𝑒 𝑟𝑒𝑠𝑡

𝑇𝑢 = 66.67 𝑢𝑠, 𝑇𝑠𝑦𝑚𝑏𝑜𝑙 =
1𝑚𝑠

14⁄ = 71.4𝑢𝑠

Number of samples for 𝑐𝑝 = 160 𝑓𝑜𝑟 1𝑠𝑡 𝑂𝐹𝐷𝑀 𝑠𝑦𝑚𝑏𝑜𝑙 𝑎𝑛𝑑 144 𝑓𝑜𝑟 𝑡ℎ𝑒 𝑟𝑒𝑠𝑡

So the Minimum number of samples used in LTE is 128 to get integer number of samples for 𝑐𝑝 =

10 𝑓𝑜𝑟 𝑡ℎ𝑒 1𝑠𝑡 𝑂𝐹𝐷𝑀 𝑠𝑦𝑚𝑏𝑜𝑙 𝑎𝑛𝑑 9 𝑓𝑜𝑟 𝑡ℎ𝑒 𝑟𝑒𝑠𝑡

For NB-IoT LTE it follows the numbers of the minimum samples which is 128 although its number of sub-

carriers is 12 so we use a down sampler in our design from 128 samples to 16 samples.

Thus, the sampling rate calculations become 𝑇𝑠 =
1
(15000)(128)⁄ = 1 1.92⁄ 𝑚𝑠 for NB-IoT LTE.

Figure 5 Radio frame structure type one

5

1.5. The flow of data according to our NPDSCH chain design:
In our design for the chain of NPDSCH, we take into consideration the effect of these enhancements on the

physical layer and finally reach for this Block Diagram for our chain:

The in-phase and quadrature-phase data input waveform starts to enter the NPDSCH receiver device

through the Coarse Synchronization Block, after the synchronization with the transmitter happen CP

removed and data went through down sampler then finally to CFO correction block so the frequency offset

estimation resulted from the Coarse Synchronization used in CFO correction.

FIFO based Memory used in storing the 16 OFDM symbols for preparation to the FFT process that

transform the signal from time domain to frequency domain storing the output in two consecutive memories

called Resource De-mapper.

Channel Estimation estimate the channel frequency response using the pilots stored in the Resource De-

mapper and pass the output to the equalizer for compensate the channel effect.

Fine synchronization is used to keep tracking time and frequency offset.

Data then pass through NRS removal block to remove pilots and transform parallel data flow into serial

data flow.

Real and Imaginary symbols pass through De-modulation to converts into bits based on QBSK constellation

and go to the scrambler in order to randomize the stream of data.

Figure 6 NPDSCH RX Chain Block Diagram

6

Bit stream finally go through Rate De-matcher block to Improve channel efficiency by changing the code

rate of the transmitted data, then pass through the channel De-coder to correct the received bit based on a

hard decision decoder and, finally reach the CRC block to get the ACK signal to the upper layer.

1.6. Thesis out Lines:
This thesis is divides into five chapters:

Chapter 1: The introduction to NB-IoT LTE, Release 14 enhancements, our chain block diagram and, brief

description for the functionality of each block.

Chapter 2: The Theory Background and the Algorithms used in implementing each block with detailed

explanations for the function and the role of each block.

Chapter 3: The block diagrams for each block design, Matlab results compared to simulation results, and

power and area synthesis results.

Chapter 4: The Matlab and RTL full Integration plain took to integrate the whole Matlab blocks' functions

and the RTL blocks, also include the MATLAB, Simulation and, power and area Synthesis Integration

Results for the whole chain and, FPGA Implementation and results.

Chapter 5: The conclusion of our design specs, improvements done in our design and, the future works.

7

Chapter 2

Theory

2.1. Coarse Synchronizer [6:12, 53]
Problem Definition

2.1.1.1. OFDM-Based Systems Sensitivity to Frequency and Time Offsets

Communication systems based on OFDM struggle with two main issues: ICI, inter-carrier interference and

ISI, inter-symbol interference. Firstly, the high sensitivity to ICI is due to a basic assumption in OFDM

systems, namely that signals on subcarriers are orthogonal to each other. That assumption means that the

spectrum of an arbitrary signal on an arbitrary subcarrier must have nulls at all other subcarriers’

frequencies. Hence, a frequency shift introduced to this system can undermine this assumption, and in this

case, there is ICI, that implies that the signals on different subcarriers interfere with one another, which

degrades the SINR. Secondly, the sensitivity to ISI is not unique to OFDM systems; it is a common issue

in communications systems generally. ISI occurs when two symbols interfere in the time-domain as they,

for example, are dispersed due to propagation through a multipath channel or due to poor pulse shaping at

the transmitter, that leads to overlapping between symbols and hence degrades the system performance.

However, as these previous problems are usually dealt with in other contexts, the ISI at hand is mainly

caused by another issue, that is synchronization error, which simply means to mistake one time-domain

sample as the beginning of a symbol when it is not.

2.1.1.2. Frequency and Time Offsets: Sources and Ranges

ICI and ISI have multiple sources. There are two main sources of ICI: CFO, which is the difference between

the carrier frequency at the transmitter and the receiver RF oscillators and the other source is the raster

offset. When a UE turns on it conducts a search in frequency domain looking for a carrier to facilitate the

synchronization process, referred to as an “anchor carrier”, this carrier is searched for on a 100KHz raster,

so the offset between the 100KHz raster and the center frequency of the anchor carrier is the raster offset.

As for the ranges of frequency offset sources, the carrier frequency offset can take a value up to 18KHz

assuming a maximum mismatch of 20ppm between the transmitter and receiver oscillators and a carrier

frequency around 900MHz, on the other hand, the NB-IoT’s cell search and acquisition are designed for

the UE to be able to synchronize having up to 7.5KHz raster offset. Hence, the maximum absolute frequency

offset is assumed to be 25.5KHz [6] [7]. Considering ISI, for this context, perfect pulse shaping is assumed;

also, it is assumed that the CP is longer than the multipath channel’s maximum excess tap delay. The

remaining source is the synchronization error: incorrectly defining the beginning of symbols. Initially, the

information about the beginning of symbols is not available to the receiver and must be acquired through

the synchronization process, thus errors in estimating the beginning of symbols in the synchronization

process are the source of ISI of interest in this context.

Operating Conditions

Due to coverage enhancement in the 14th release of 3GPP on NB-IoT, the minimum SNR when assuming

a maximum coupling loss of 164dB is -12.6dB in a guard-band or an in-band deployment [7]. The multipath

fading channel is modeled by the ETU model having 9 taps with a maximum excess tap delay of 5us and a

maximum Doppler frequency of 5Hz due to the stationary nature of the applications of NB-IoT [8].

NPSS Signal

The NPSS is a signal composed of concatenated short Zadoff-Chu sequences designed to facilitate the

frequency and time offsets estimation. It is mapped to the last 11 symbols in the 6th subframe in every radio

frame and thus has a periodicity of 10ms, the mapping excludes the first 3 OFDM symbols of the subframe

to avoid interference with legacy LTE for in-band deployment [7]. The signal is constructed in two layers:

a base sequence across eleven consecutive subcarriers in the frequency-domain and a code cover across

eleven OFDM symbols in the time-domain.

8

The base sequence 𝑑𝑙(𝑛) is defined as follows [9] [7],

𝑑𝑙(𝑛) = 𝑆(𝑙) ∙ 𝑒
−𝑗
𝜋𝑢𝑛(𝑛+1)

11 , 𝑢 = 5, 𝑛 = 0, 1, … , 10
(1)

The code cover 𝑆(𝑙) is defined as follows [9] [7],

𝑆(0: 10) = {1, 1, 1, 1,−1,−1, 1, 1, 1, −1, 1}, (2)

To illustrate the mapping process, Error! Reference source not found. shows the mapping of the code c

over to time-domain OFDM symbols and Figure 8 shows the mapping of the base sequence to frequency-

domain subcarriers [7].

Using a sampling frequency of 1.92MHz, an NPSS symbol should consist of 137 samples that can be

obtained by size-128, zero-padded IFFT in addition to a CP of size-9, that applies to all symbols except the

5th symbol that will need to have a CP of size-10 to achieve full compatibility with legacy LTE and ordinary

subframes [7]. Figure 9 illustrates the waveform.

Figure 8 Mapping of Base Sequence in Frequency-Domain (occupying 11 consecutive tones)

Figure 7 Mapping of Length-11 Code Cover to OFDM Symbols in Time-Domain

9

Functionality outline

From the previously mentioned givens, an outline of the functionality of the synchronization block can

be constructed. In short, the block should make use of the NPSS periodicity and good correlation properties

to estimate the time and frequency offsets with a reasonable accuracy that is discussed later, perform CP

removal and down-sampling after the synchronization process is finished and provide information about

symbol position to facilitate other chain operations or serve other higher-layer purposes.

Algorithm

The algorithm presented here is a three-step procedure. The first step is to use a reduced averaged time-

domain auto-correlation metric to acquire a coarse timing and an FFO estimate, leveraging in the process

the repetitive nature of the NPSS. The metric originally is supposed to have a length of 19200 samples, one

frame length, as this is the period of the NPSS, however, the metric is reduced by a factor of 16 to reduce

memory demands, and then it is averaged over frames to reduce the effect of AWGN. Figure 10 roughly

summarizes the algorithm.

Figure 9 Waveform of NPSS Symbols Generated at 1.92 MHz by Size-128 IFFT

10

Let 𝑥(𝑛) be a transmitted baseband OFDM signal, the received signal is given by,

𝑟(𝑛) = [𝑥(𝑛) ∗ ℎ(𝑛)] ∙ 𝑒−𝑗
2𝜋𝜀𝑛
𝑁 +𝑤(𝑛), 𝑁 = 128, 𝜀 = 𝜀𝑖 + 𝜀𝑓

(3)

Where ℎ(𝑛) is the impulse response of the multipath channel, 𝑤(𝑛) represents AWGN, and ∗ denotes

convolution. The frequency offset normalized to the subcarrier spacing is represented by 𝜀 and it has two

components, integer frequency offset represented by 𝜀𝑖, and fractional frequency offset represented by 𝜀𝑓.

Now, the metric 𝑅(𝑘) calculated in a single frame period can be defined as,

𝑅(𝑘) = ∑ (𝑟(𝑖) ∙ 𝑆 (𝑚𝑜𝑑 (𝑖 𝑁𝑠
⁄ , 11))) ∙ (𝑟(𝑖 + 𝑁𝑠) ∙ 𝑆 (𝑚𝑜𝑑 (

𝑖
𝑁𝑠
⁄ + 1, 11)))

∗𝑘+𝑁𝑤−1

𝑖=𝑘

(4)

Where 𝑘 covers 19200 positions, 𝑁𝑤 represents the auto-correlation window and it has a value of 1370, 𝑁𝑠

represents the symbol length and hence has a value of 137 and ∗ here denotes complex conjugation. Then,

𝑅𝑟(𝑚) representing the reduced metric can be defined as,

𝑅𝑟(𝑚) = ∑ 𝑅(𝑖)

16(𝑚+1)−1

𝑖=16𝑚

(5)

Where 𝑚 covers 1200 positions only. Then the averaged metric 𝐴(𝑚) can be given by,

𝐴(𝑚) = 𝐴(𝑚) ∙ (1 − 𝛼) + 𝑅𝑟(𝑚) ∙ 𝛼, 0 < 𝛼 < 1 (6)

Auto-Correlation at
1.92MHZ

Coarse Timing and
FFO Estimation

Cross-correlation at
1.92MHZ

Cross-correlation at
1.92MHZ

Peak Found

Peak Not Found

Peak Rejected

Peak
Confirmed

and IFO

Estimates Refined

Figure 10 Algorithm High-Level State Diagram

11

Now, coarse timing and FFO can jointly be estimated such that,

𝜏 = 𝑎𝑟𝑔𝑚𝑎𝑥∀𝑚 |𝐴| ∙ 16 − 8

(7)

𝜀𝑓 =
𝑁

2𝜋𝑁𝑠
∙ 𝑎𝑛𝑔𝑙𝑒 (𝐴 (

𝜏 + 8

16
))

(8)

However, this decision is only taken when,

max (|A|) > 𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑

(9)

Where the value of this threshold is a design parameter. The second step in this procedure is to refine timing

and estimate the IFO. It employs an NPSS matched filter to acquire these estimates.

Let us define the cross-correlation function, 𝐶(𝜏𝑐 , 𝜀𝑐) calculated in a single frame period,

𝐶(𝜏𝑐 , 𝜀𝑐) = ∑ 𝑟(𝑖) ∙ (𝑝(𝑖 − 𝜏𝑐) ∙ 𝑒
−𝑗
2𝜋𝜀𝑐(𝑖−𝜏𝑐)

𝑁)
∗

𝜏𝑐+𝑁𝑝−1

𝑖=𝜏𝑐

(10)

Where 𝑝 is a locally generated NPSS, 𝑁𝑝 is the length of the NPSS in samples, 𝜏𝑐 ∈ [𝜏 − ∆, 𝜏 + ∆], and

𝜀𝑐 ∈ [−2 , 2] + 𝜀𝑓. The range of 𝜀𝑖 is chosen to cover the range mentioned earlier while ∆ is considered a

design parameter. This metric is averaged over a number of frames, considered a design parameter, and

then if max (|𝐶|) > 𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 the estimation is acquired such that,

(𝜏, 𝜀) = 𝑎𝑟𝑔𝑚𝑎𝑥∀𝜏𝑐,𝜀𝑐 |𝐶|

(11)

However, if the maximum of the metric does not cross the threshold, another design parameter, the

procedure goes back to the first step, and if the maximum passes, the procedure is completed normally. The

third step is identical to the second, the difference only is that frequency hypotheses are taken around the

current estimate with a chosen step to refine the estimates and reach a better accuracy. This step can be

repeated. After finishing this procedure, the block switches to another mode of operation, where it removes

the CP from incoming symbols, down-samples these symbols and passes their position information.

Constructing the Algorithm

It is of great importance to add this part to explain how algorithms in academic literature on the

subject contributed to the algorithm presented here. Mainly, the algorithm presented earlier has the same

structure of that presented in [7], but implements a different first stage very similar to that in presented in

[11] except for the fact that the metric implemented here is a reduced one to save memory resources. There

are two reasons behind this choice: the first is that the first stage in [11] is faster, and this was important as

many like [11] and [12] emphasized speed as a means to reduce overhead power wasted by the RF stage

during the synchronization process, the second reason is the relative simplicity of implementation in the

first stage in [11]. This choice had its deteriorating effect on FFO estimation accuracy of the first stage, this

posed a challenge. The third stage was added to equalize that effect and was guided mainly by [10] and to

a less degree by [7]. Many techniques were inspired by the work in [7] like the peak finding process and

the filtering process. The work in [12] deserves more attention in the future using a shared ram technique

and possibly more resources, it was not implemented however as it needed more work and optimization to

increase its frequency resolution and to cover the required range.

12

2.2. CFO correction [13:15]:
The aim of this block is to cancel the effect of the estimated carrier frequency offset that divided into

two parts integer carrier frequency offset that come from synchronization block and fractional carrier

frequency offset that come from fine synchronization block, from the symbol and this offset happen due to:

• Frequency difference between the transmitter and receiver oscillator.

• Oscillator instabilities.

Carrier frequency offset introduces ICI and destroy the orthogonality of sub-carrier so, it is important to

correct it.

As the received signal 𝑏(𝑛) equation equals:

𝑏(𝑛) =
1

𝑁
∑ 𝐴(𝑘)𝐺(𝑘)𝑒

𝑖2𝜋(𝑘+𝜀)𝑛
𝑁 +𝑤(𝑛) , 𝑛 = 0,1,2,… .𝑁 − 1

𝑁−1

𝑘=0

(12)

Where A(k) is the modulated data, N is the number of sub-carriers used, G(k) is the channel gain at 𝑘𝑡ℎ

sub-carrier, w(n) is the AWGN noise and 𝜀 is the frequency offset and it is equal:

𝜀 = 𝜀𝐼𝐶𝐹𝑂 + 𝜀𝐹𝐶𝐹𝑂

(13)

Where 𝜀𝐼𝐶𝐹𝑂 is the integer carrier frequency offset and 𝜀𝐹𝐶𝐹𝑂 is the fractional carrier frequency offset.

From equation (12) it’s required to cancel the effect of the offset on the received symbol by multiplying the

equation by exponential raised to phase conjugate to the estimated offset as following equation:

�̂�(𝑛) = 𝑏(𝑛)𝑒
−𝑖2𝜋(𝜀)𝑛

𝑁
(14)

Where �̂�(𝑛) is the corrected symbol.

To achieve the effect of the conjugate exponential CORDIC algorithm is used to rotate the symbol by the

required offset.

CORDIC algorithm (coordinate rotation digital computer)

CORDIC algorithm is an iterative algorithm for calculating trigonometric functions like sine, cosine

and it is a hardware- efficient method which uses rotations to calculate a wide range of elementary functions

using only shift and add. It has two modes of operations rotation mode (RM) and vectoring mode (VM).

13

Figure 11 diagram show rotation of vector

Vector rotation can be generally calculated by following equations:

𝑥𝑖+1 = 𝑥𝑖 cos 𝛼𝑖 − 𝑦𝑖 sin𝛼𝑖

(15)

𝑦𝑖+1 = 𝑦𝑖 cos 𝛼𝑖 + 𝑥𝑖 sin 𝛼𝑖

(16)

𝜃𝑖+! = 𝜃𝑖 + 𝛼𝑖

(17)

By taking cos 𝛼𝑖 common factor we get:

𝑥𝑖+1 = cos𝛼𝑖 (𝑥𝑖 − 𝑦𝑖 tan 𝛼𝑖)

(18)

𝑦𝑖+1 = cos𝛼𝑖 (𝑦𝑖 + 𝑥𝑖 tan𝛼𝑖)

(19)

𝜃𝑖+! = 𝜃𝑖 + 𝛼𝑖

(20)

In order to simplify the implementation of algorithm tan𝛼𝑖 is chosen to be equal 2−𝑖 to make multiplication

implemented as shift operations. So, the final form of equation after n iterations is:

𝑥𝑖+1 = (𝑥𝑖 − 𝑑𝑖𝑦𝑖2
−𝑖)

(21)

𝑦𝑖+1 = (𝑦𝑖 + 𝑑𝑖𝑥𝑖2
−𝑖)

(22)

𝜃𝑖+! = 𝜃𝑖 − 𝑑𝑖𝛼𝑖 (23)

Where 𝑑𝑖 is the direction of rotation.

CORDIC in rotation mode:

𝑥𝑖+1 = (𝑥𝑖 − 𝑑𝑖𝑦𝑖2
−𝑖)

(24)

𝑦𝑖+1 = (𝑦𝑖 + 𝑑𝑖𝑥𝑖2
−𝑖)

(25)

𝜃𝑖+! = 𝜃𝑖 − 𝑑𝑖𝛼𝑖

(26)

14

And after n- iteration the equation will be:

𝑥𝑛 = 𝐾(𝑥0 cos 𝛼0 − 𝑦0 𝑠𝑖𝑛 𝛼0)

(27)

𝑦𝑛 = 𝐾(𝑦0 cos 𝛼0 + 𝑥0 sin𝛼0)

(28)

𝜃𝑛 = 0

(29)

The direction with each rotation takes obviously affects the accumulative angle that is rotated. Arbitrary

angles can be rotated in the range −99.7 ≤ 𝜃 ≤ 99.7 . The sum of all angles obeying the law tan𝛼𝑖 equal

2−𝑖 is 99.7.

For angles outside this range trigonometric identities can be used to convert the desired angle into one

within the range. The number of bits resolution in the angle is of course relevant to the final accuracy.

From the previous table we get that as the number of iterations increase the accuracy of the algorithm

increase and the constant multiplying by 𝑥𝑛 𝑎𝑛𝑑 𝑦𝑛 nearly equal 0.60725941.

CORDIC in vectoring mode:

𝑥𝑖+1 = (𝑥𝑖 − 𝑑𝑖𝑦𝑖2
−𝑖) (30)

𝑦𝑖+1 = (𝑦𝑖 + 𝑑𝑖𝑥𝑖2
−𝑖) (31)

𝜃𝑖+! = 𝜃𝑖 − 𝑑𝑖𝛼𝑖 (32)

After n iterations the equations will equal:

𝑥𝑛 = 𝐾√𝑥
2 + 𝑦2 (33)

𝑦𝑛 = 0 (34)

𝜃𝑛 = 𝜃0 + tan
−1
𝑦0
𝜃0

 (35)

15

2.3. FFT [16:31]:
The Fourier transform (FT) is used to transform a signal from the time domain to the frequency domain in

order to analyze the signal’s frequency components. In the frequency domain, the magnitude value for each

frequency represents its contribution in the original signal, and the complex value shows the phase offset

of the sinusoid at this frequency. The time domain signal is decomposed into a summation of multiple

sinusoid signals, FFT is very useful conversion tool for processing a signal which is difficult to handle in

the time domain, thus it is considered as one of the most important algorithms in digital signal processing

and many communication systems. In order to compute the N point DFT it is required O (𝑁2)

operations, however by using FFT, the required operations are down to O (𝑁 𝑙𝑜𝑔2(𝑁
2))

[16][17][18].

In the mid-1960s, The Cooley-Tukey algorithm was introduced and it was a breakthrough in implementing

Fast Fourier Transform (FFT) which reduce the complexity of a Discrete Fourier Transform (DFT). The

DFT of a signal time domain signal x(n) as shown in equation [36].

𝑥(𝑘) = ∑𝑥(𝑛)𝑊𝑁
𝑘𝑛

𝑛−1

𝑘=0

(36)

The 𝑊𝑁
𝑘𝑛 = 𝑒−𝑗

2𝜋𝑛𝑘

𝑁 is known as the twiddle factor and it is a complex value. Cooley-Tukey algorithm is a

divide and conquer algorithm as it breaks the given problem into sub problems of the same size and solve

these sub problems recursively. It combines the answers in at the end of the algorithm and generate the

output. Number of stages to generate the output is log2N where N is the data size.

Algorithm:

FFT can be implemented using:

1- memory-based algorithm

2- pipeline algorithm

 where pipeline classified to Multi-Path Delay Commutator (MDC) and single pass delay feedback (SDF).

2.3.1.1. Comparison between Memory based, SDF, and MDC

In memory based, the architecture consists of a unique butterfly unit that performs all the operations of

the FFT, four two port RAMs to store the symbols, a memory with twiddle factors, address generators

and control logic. In this algorithm, the data inputs from one memory are passed through the processing

element to another memory and vice versa till the transform is completed, thus the latency in this

algorithm is high.

In MDC architectures, the input sequence is divided into multiple parallel data streams by commutator

then the data path through the butterfly and then multiplied by the twiddle factor.

For SDF architectures, a single data steam pass through the same multiplier and butterfly in each stage

and the share the same storage elements. SDF architectures require minimum memory compared to MDC

due to the efficient use of delay buffers. MDC architectures are not preferred for low power devices due to

the large number of multipliers [17].

16

Table 1 Comparison of Pipelined FFT Architectures [17]

Memory-based architecture SDF architecture

Memory bank r 𝑙𝑜𝑔2𝑁

Memory access times 2N𝑙𝑜𝑔𝑟𝑁 2N𝑙𝑜𝑔2𝑁

Complex multipliers r-1 𝑙𝑜𝑔𝑟𝑁-1

Complex adders 2r 2𝑙𝑜𝑔2𝑁

Clock frequency 𝑙𝑜𝑔𝑟𝑁/r 1

Clock cycle N𝑙𝑜𝑔𝑟𝑁/r N

To achieve a memory-based architecture needs to drive its clock 𝑙𝑜𝑔𝑟(N/r) times the processor

frequency to achieve the same performance as pipeline SDF architecture. So, pipeline architectures are the

best choice when power and performance are the main concern than complexity. While memory-based

architectures are good choice when the complexity is the main concern [17]. Thus, SDF is implemented

without parallelization to minimize the power consumption.

The radix, r, stands for the number of parts that the input signal will be divided into. There are a lot of

radix can be used with 16-point FFT such as Radix 2, Radix 4, Split Radix, Radix 22

2.3.1.2. Comparison between Radix 2, Radix 4, Split Radix, Radix 𝟐𝟐

i. Radix2

RAD2 DIF algorithm is obtained by using the divide and conquer approach to the DFT problem.

To compute the DFT, first split Equation [36] into two summations, one of which involves the sum

over the first data point while the other over the next data points as shown in Equation [37]

𝑥(𝑘) = ∑ 𝑥(𝑛) ∙ 𝑊𝑁
𝑘𝑛

𝑁
2
−1

𝑘=0

+ ∑ 𝑥(𝑛) ∙ 𝑊𝑁
𝑘𝑛

𝑁−1

𝑘=
𝑁
2

(37)

∵ 𝑊𝑁
𝑘
𝑁
2 = (−1)𝑘

(38)

∴ 𝑥(𝑘) = ∑(𝑥(𝑛)

𝑁
2
−1

𝑘=0

+ (−1)𝑘𝑥 (𝑛 +
𝑁

2
)) ∙ 𝑊𝑁

𝑘𝑛

(39)

17

Considering the even and odd-numbered frequency samples separately results in

𝑥(2𝑘) = ∑(𝑥(𝑛)

𝑁
2
−1

𝑘=0

+ 𝑥 (𝑛 +
𝑁

2
)) ∙ 𝑊𝑁

2

𝑘𝑛

(40)

∴ 𝑥(2𝑘 + 1) = ∑((𝑥(𝑛)

𝑁
2
−1

𝑘=0

− 𝑥 (𝑛 +
𝑁

2
)) ∙ 𝑊𝑁

2

𝑘𝑛) ∙ 𝑊𝑁
2

𝑘𝑛

(41)

Figure 12 Radix-2 butterfly unit [25]

Figure 13 Flow graph of 16-point Radix-2 FFT algorithm

As the output is out-of-ordered, then a bit reversed operation is required to place the frequency

samples in correct place. In RAD2 there is 𝑁𝑙𝑜𝑔2(𝑁) complex addition and
𝑁

2
𝑙𝑜𝑔2(𝑁) complex

multiplication.[16]

18

ii. Radix4

RAD4 algorithm is similar to RAD2, however instead of splitting the DFT computation into halves in

RAD2, it splits the DFT into four. Thus, the N-point input sequence is split into four subsequences, x(4n),

x(4n+1), x(4n+2), x(4n+3) where n=0,1, …... ,
𝑁

4
− 1

𝑥(𝑘) = ∑ 𝑥(𝑛) ∙ 𝑊𝑁
𝑘𝑛

𝑁
4
−1

𝑘=0

+ ∑ 𝑥(𝑛) ∙ 𝑊𝑁
𝑘𝑛

𝑁
2
−1

𝑘=
𝑁
4

+ ∑ 𝑥(𝑛) ∙ 𝑊𝑁
𝑘𝑛

3𝑁
4
−1

𝑘=
𝑁
2

+ ∑ 𝑥(𝑛) ∙ 𝑊𝑁
𝑘𝑛

𝑁−1

𝑘=
3𝑁
4

(42)

∴ 𝑥(𝑙, 𝑞) = ∑ 𝑥(𝑙, 𝑚) ∙ 𝑊𝑁/4
𝑘𝑛

𝑁
4
−1

𝑚=0

(43)

𝑥(𝑝 , 𝑞) = 𝑥(
𝑁

4
∙ 𝑝 + 𝑞)

(44)

𝑥(𝑙,𝑚) = 𝑥(4𝑚 + 𝑙)

𝑤ℎ𝑒𝑟𝑒 𝑙, 𝑞 = 0,1,2,3 𝑎𝑛𝑑 𝑚, 𝑞 = 0,1, … .
𝑁

4
− 1

(45)

Figure 14 Radix-4 butterfly unit [26]

19

Figure 15 Flow graph of 16-point Radix-4 FFT algorithm [26]

As the output is out-of-ordered, then a bit reversed operation is required to place the frequency

samples in correct place. In RAD4 butterfly there is 8 complex addition and 3 complex

multiplication and for 16-point FFT there is 96 complex addition and 8 complex multiplication

[24][25] [26][27].

iii. Split Radix

The SRFFT algorithm is based on the synthesis of one half-length DFT together with two quarter-

length DFTs. This is possible because, in the RAD2 computations, the even-indexed points can be

computed independent of the odd-indexed points. The SRFFT algorithm uses the RAD4 algorithm to

compute the odd-numbered points. Hence, the N-point DFT is decomposed into one N/2-point DFT and

two N/4-point DFTs

𝑥(2𝑘) = ∑(𝑥(𝑛) + 𝑥(𝑛 + 𝑁/2))𝑊4𝑘𝑛

𝑁
2
−1

𝑛=0

(46)

𝑥(4𝑘 + 3) = ∑(𝑔(𝑛) + 𝑗𝑓(𝑛))𝑊3𝑛 ∙ 𝑊4𝑘𝑛

𝑁
4
−1

𝑛=0

(47)

20

𝑥(4𝑘 + 1) = ∑(𝑔(𝑛) − 𝑗𝑓(𝑛))𝑊𝑛 ∙ 𝑊4𝑘𝑛

𝑁
4
−1

𝑛=0

(48)

𝑔(𝑛) = 𝑥(𝑛) − 𝑥 (𝑛 +
𝑁

2
)

(49)

𝑓(𝑛) = 𝑥(𝑛 + 𝑁/4) − 𝑥 (𝑛 +
3𝑁

4
)

(50)

Figure 16 Split-radix butterfly unit [29]

Figure 17 Flow graph of 16-point SPLIT Radix FFT algorithm [30]

21

As the output is out-of-ordered, then a bit reversed operation is required to place the frequency

samples in correct place. For 16-point FFT there is 64 complex addition and 8 complex

multiplication.

SRFFT has the same number of adders as in Radix 2 and same number of multipliers as in Radix4

so it is good architecture in terms of low power consumption. However, its irregular design makes

it not the best choice for RTL implementation [28][29][30].

iv. Radix 𝟐𝟐

Radix 22 was developed to inherit the radix 2 in terms of its simple control structure and it has the advantage

of saving hardware in other words reducing the number of multipliers used as in radix 4. The Discrete

Fourier Transform (DFT) of N-point input x(n) is defined as

𝑥(𝑘) = ∑ 𝑥(𝑛) ∙ 𝑊𝑁
𝑛𝑘 0 ≤ 𝑘 < 𝑁𝑁−1

𝑛=0 where 𝑊𝑁 = 𝑒
−𝑗

2𝜋

𝑁

(51)

𝑥(𝑘1 + 2𝑘2 + 4𝑘3) = ∑ 𝐻(𝑘1, 𝑘2, 𝑘3) ∙ 𝑊𝑁
𝑛3(𝑘1+2𝑘2))𝑊

𝑁/4

𝑛3(𝑘3)

𝑁
4
−1

𝑛3=0

(52)

H(𝑘1, 𝑘2, 𝑛3)=[x(𝑛3)+(-1)𝑘1 ∙x(𝑛3 +
𝑁

2
)]+ (-j)(𝑘1+2𝑘2)[x(𝑛3 +

𝑁

4
)+ (-1)𝑘1 ∙x(𝑛3 +

3𝑁

4
)]

(53)

Figure 18 Radix-22 butterfly unit [25]

Figure 19 Flow graph of 16-point Radix-22 FFT algorithm [20]

22

[

𝑆1[0]

𝑆1[1]

𝑆1[2]

𝑆1[3]

𝑆1[4]

𝑆1[5]

𝑆1[6]

𝑆1[7]]

 =

[

𝐼[0] + 𝐼[8]

𝐼[1] + 𝐼[9]

𝐼[2] + 𝐼[10]

𝐼[3] + 𝐼[11]

𝐼[4] + 𝐼[12]

𝐼[5] + 𝐼[13]

𝐼[6] + 𝐼[14]

𝐼[7] + 𝐼[15]]

[

𝑆1[8]

𝑆1[9]

𝑆1[10]

𝑆1[11]

𝑆1[12]

𝑆1[13]

𝑆1[14]

𝑆1[15]]

=

[

𝐼[0] − 𝐼[8]

𝐼[1] − 𝐼[9]

𝐼[2] − 𝐼[10]

𝐼[3] − 𝐼[11]

(𝐼[4] − 𝐼[12]) × −𝐽

(𝐼[5] − 𝐼[13]) × −𝐽
(𝐼[6] − 𝐼[14]) × −𝐽
(𝐼[7] − 𝐼[15]) × −𝐽]

Stage 1 16-point FFT arithmetical operations

[

𝑆2[0]

𝑆2[1]

𝑆2[2]

𝑆2[3]

𝑆2[4]

𝑆2[5]

𝑆2[6]

𝑆2[7]]

=

[

(𝑆1[0] + 𝑆1[4])

(𝑆1[1] + 𝑆1[5]) × (0.9239 − 𝐽0.3827)

(𝑆1[2] + 𝑆1[6]) × (0.7071 − 𝐽0.7071)

(𝑆1[3] + 𝑆1[7]) × (0.3827 − 𝐽0.9239)

(𝑆1[0] − 𝑆1[4])

(𝑆1[1] − 𝑆1[5]) × (0.3827 − 𝐽0.9239)

(𝑆1[2] − 𝑆1[6]) × (−0.7071 − 𝐽0.7071)

(𝑆1[3] − 𝑆1[7]) × (−0.9239 + 𝐽0.3827)]

[

𝑆2[8]

𝑆2[9]

𝑆2[10]

𝑆2[11]

𝑆2[12]

𝑆2[13]

𝑆2[14]

𝑆2[15]]

[

(𝑆1[8] + 𝑆1[12])

(𝑆1[9] + 𝑆1[13]) × (0.9239 − 𝐽0.3827)

(𝑆1[10] + 𝑆1[14]) × (0.7071 − 𝐽0.7071)

(𝑆1[11] + 𝑆1[15]) × (0.3827 − 𝐽0.9239)

(𝑆1[8] − 𝑆1[12])

(𝑆1[9] − 𝑆1[13]) × (0.3827 − 𝐽0.9239)

(𝑆1[10] − 𝑆1[14]) × (−0.7071 − 𝐽0.7071)

(𝑆1[11] − 𝑆1[15]) × (−0.9239 + 𝐽0.3827)]

Stage 2 16-point FFT arithmetical operations

[

𝑆3[0 + 𝑛]

𝑆3[1 + 𝑛]

𝑆3[2 + 𝑛]

𝑆3[3 + 𝑛]]

=

[

(𝑆2[0 + 𝑛] + 𝑆2[2 + 𝑛])

(𝑆2[1 + 𝑛] + 𝑆2[3 + 𝑛])
(𝑆2[0 + 𝑛] + 𝑆2[2 + 𝑛])

(𝑆2[1 + 𝑛] + 𝑆2[3 + 𝑛]) × −𝐽]

, n=0,4,8,12

Stage 3 16-point FFT arithmetical operations

[
𝑆4[0 + 𝑛]

𝑆4[1 + 𝑛]
] = [

(𝑆3[0 + 𝑛] + 𝑆3[1 + 𝑛])
(𝑆3[0 + 𝑛] − 𝑆3[1 + 𝑛])

] , n=0,2,4,6,8,10,12,14

Stage 4 16-point FFT arithmetical operations

As the output is out-of-ordered, then a bit reversed operation is required to place the frequency

samples in correct place. For 16-point FFT there is 64 complex addition and 8 complex

multiplication.

Radix 22 is the best choice for low power design and it is very popular with pipeline FFT

implementation to reduce the power consumption [20][21][22][23][31]

23

Table 2 FFT different radixes comparison

RADIX #complex addition #complex multiplication Complexity

RAD2 64 17 Simple

RAD4 96 9 Complex

SPLIT RADIX 64 8 Simple

RADIX 22 64 8 Simple

All the algorithms’ have been implemented using MATLAB. RAD2 and RAD4 are not the best choice

when it comes to area and power, also the split radix has irregular design which make it not suitable for

digital design. Therefore, RADIX 22 is the one which is implemented in RTL as it is the best in terms of

area and power. Moreover, we implement the algorithm using SDF and using some optimization techniques,

to minimize the power, area, and latency.

2.4. RESOURCE DE-MAPPER [32]:
Resource block is used to represent the mapping of certain physical channels to resource elements.

DL
symbN consecutive OFDM symbols in the time domain and RB

scN consecutive subcarriers in the frequency

domain are used to define the resource clock because the resource block consists of RB
sc

DL
symb NN  resource

elements, corresponding to one slot in the time domain and 180 kHz in the frequency domain. Physical

resource blocks are numbered from 0 to 1DL
RB −N in the frequency domain. [5][6]

Figure 20 Resource block [4]

24

Resource block pair consists of two

resource blocks the even numbered

frame and the odd numbered frame. As

in NB-IOT the Normal cyclic prefix is

used then the ∆𝑓 = 15 𝑘𝐻𝑧, RB
scN =12,

and DL
symbN =7. Then the subframe is

12×14 and only one antenna port used.

Then the NB-IOT carrier uses one LTE

PRB in the frequency domain where there

is twelve 15kHz subcarriers for a total of

180kHz.[5][6]

Each frame is 10ms and it consists of 10 subframe each subframe is 1ms in time access. Each subframe consists of

two slots where each slot is 0.5 msec. Slot is known as resource block and the resource block contains 7 OFDM

symbols [32]

DL
symbN OFDM symbols

One downlink slot slotT

0=l 1DL
symb −= Nl

R
B

sc
D

L
R

B
N

N


s
u

b
c
a

rr
ie

r

s

R
B

sc
N

s
u

b
c
a

rr
ie

r

s

RB
sc

DL
symb NN 

Resource

block resource

elements

Resource

element
),(lk

0=k

1RB
sc

DL
RB −= NNk

Figure 22 Downlink resource grid

Figure 21 LTE Frame Structure [4]

25

2.5. Channel Estimation [33:38]:
Channel Model for LTE and NB-IoT.

• Channel Models:

o Static propagation

Static Channel model present the channel as an additive white Gaussian noise to the signal with

power related to the SNR and no multi-path propagation or fading took into consideration for

this model

o Multi-path fading propagation

Multi-path fading channel model present the channel with multi-path fading and Doppler shift

there are many different environments differ from each other in the delay profile.

The delay profile means that The receiver

found multipath signals with different

propagation delays called Taps, these copies

either make constructive or destructive

interference as found in figure 22 there are

three paths for the signals with different

delays due to different obstacles as shown in

the power delay profile thus two

classifications can be describe the wireless

channel environment:

▪ Large-scale fading:

Determine the large variations found in the received signal amplitude or the power

level may cause through:

• Path loss: The received signal strength decreases over large distance between

the transmitter and the receiver.

• Shadowing: Caused by some obstacles found along the path between

transmitter and receiver.

Figure 24 Delay profile

Figure 23 Multi-path fading channel model

26

▪ Small-scale fading:

 A small variation happened in phase and amplitude caused by interference between

versions of these paths due to moving of either transmitter or the receiver (Doppler

effect) or nearby reflecting wall.

o High-speed train condition

High-speed train channel model presents the channel to simulate the high-speed movement of

the UE (user Equipment) but without fading and an AWGN could be added.

• Specification of Used Channel Model

The multi-path fading channel is used in our project to simulate the channel model and get the

performance of the chain when the medium between the transmitter and the receiver follow the multi-

path fading channel model

Specifically, the Channel model used in our project is, Extended typical Urban model (ETU)

As shown from (figure3) taken from the 3GPP standard, that is the delay profile of our multi-path fading

channel model

Specification for the channel model used in simulation is:

Rayleigh fading channel with an Extended

Typical Urban delay profile, maximum

Doppler frequency shift equal 5 Hz, and with

sampling frequency equal 1.92 MHz.

Types of channel estimation

Channel estimation process used in compensate the effect of the channel on the transferring signals and

removing inter symbol interference and noise that affect the signal

Channel Estimation can be grouped into three categories as pilot based, blind and semi-blind.

• Pilot based Channel Estimation, some of data symbols are used to estimate channel.

• Blind Channel Estimation statistical properties of channel are used.

• Semi-blind Channel Estimation, take information about channel from data symbols and statistical

properties, so both used in the channel estimation process.

Narrowband-IoT and LTE use Orthogonal Frequency Division Multiplexing (OFDM) scheme

The channel Estimation in Narrow band Physical Downlink Shared Channel (NPDSCH) use Pilot-based

channel estimation throughout putting some known symbols at the transmitter and generate the same

symbols at the receiver to find the relation between the received and the original symbols and get a rough

estimation for the channel.

These pilots called Narrow band Resource Elements (NRS). Their values and locations calculated using

some equations and sequence generators. They are found also inside all the sub frames transmitted except

the Narrow band primary synchronization signals (NPSS) and Narrow band secondary synchronization

signals (NSSS).

Figure 25 Delay profile for ETU according to

3GPP

27

This figure illustrates the distribution of the pilots over a NB-IoT frame transmitted in in-band mode

consists of 20 slots, each two slots formed one sub-frame with 12 subcarrier frequencies and 14 symbols in

frequency and time respectively.

It is obvious that pilots denoted by NRS are found in all the subframes except the NPSS, and NSSS sub-

frames, while CRS is referred to the Cell specific Reference Signal that related to the LTE structure.

Figure 26 NB-IoT frame transmitted in an in-band mode over an LTE frame

28

Channel Estimation Algorithms

There are many channel estimation algorithms used in NB-IoT receiver but the problem appears in

form of a tradeoff between high complexity with high performance of the design and the required low

power and area.

From these algorithms, there is Linear Minimum Mean Square error (LMMS) Algorithm with high

performance but the complexity of the design also high so Least Square channel estimation algorithm is

preferred to use in our chain and to compensate the performance we use interpolation process to get better

performance with low complexity.

Least Square (LS) Channel Estimation

After the channel effect assuming the input to the

receiver is 𝑦:

𝑦 = 𝑥𝐻 + 𝑛

𝑥: The required transmitted signal.

𝐻: The channel effects.

𝑛: Additive White Gaussian Noise.

𝑦: The received signal.

Least Square channel estimation algorithm:

𝐻𝐿𝑆 = 𝑥
−1𝑦

LS algorithm ignores the effect of the AWGN so its performance is low but also with low complexity.

Channel Estimation Block aims to divide the received pilots over the transmitted pilots to get the channel

effect and then the equalizer divided the channel effect over all the transmitted symbols to compensate the

effect of the channel for all the transmitted symbols.

Interpolation

From the previous explanation it is obvious that there should be an interpolation process after the estimation

process as pilots found in four only sub carrier but the sub frame contains

twelve subcarriers

Therefore, there are three different case for the interpolation process after

Channel Estimator:

1. The zero-order interpolation:

In this case the interpolation is constant so each three subcarriers contain

one pilot divide by the same channel 𝐻𝐿𝑆

In each slot the Channel Estimation, get four different outputs 𝐻𝐿𝑆 each

one used by the equalizer with three consecutive sub-carriers.

This design is simpler with less hardware but less performance and the

variation of Channel Estimation output happened each slot.

𝐻
(Channel)

𝑛
(AWGN)

𝑥 y

Figure 27 Channel effect on transmitted

signal

Figure 28 Zero-order

interpolation

29

2. Interpolation over each slot:

In this case the interpolation is linear and calculated every slot

In each slot the Channel Estimation, get twelve different outputs

(𝐻𝐿𝑆) each one used by the equalizer with one of the twelve sub-

carriers.

This design in more complex than the previous with extra

hardware, but Small variations in performance compared to the

previous, and variation of Channel Estimation output happened

each slot.

3. Interpolation over Sub-frame:

In this case, the interpolation is linear and calculated every Sub-Frame.

In each Sub-Frame the Channel Estimation, get twelve

different outputs (𝐻𝐿𝑆) each one used by the equalizer with

one of the twelve sub-carriers.

This design is more complex than the previous with more

hardware but have great impact on the performance compared

to the previous, and variation of Channel Estimation output

happened each sub-frame.

Therefore, it considered the optimal design to achieve the best

performance with the optimal hardware.

Figure 29 Slot interpolation

Figure 30 Sub-Frame interpolation

No Channel Estimation

Z-O interpolation

Linear slot interpolation

Linear Sub-Frame interpolation

Figure 31 BER vs SNR Matlab simulation for the three designs to

get a rough estimation about the best performance

30

2.6. NRS Value Generation:
NRS stands for Narrow band Reference Signals that acts as pilots, which help in channel estimation

process to get an estimate for the channel and equalize the effect of this channel. These pilots found inside

each Sub-frame except two Sub-frames NPSS and NSSS Sub-frame.

According to 3GPP, there are specific equation to get out the values of these pilots and other equations to

get the Location of these NRS signals.

Theoretical Method to get NRS values:

NRS value depends on three variables 𝑙, 𝑛𝑠, 𝑎𝑛𝑑 𝑚 so that the value of NRS changes according to any

variation of these parameters.

𝑙: 𝑑𝑒𝑛𝑜𝑡𝑒 𝑓𝑜𝑟 𝑡ℎ𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑦𝑚𝑏𝑜𝑙𝑒𝑠 𝑡ℎ𝑎𝑡 𝑐𝑜𝑛𝑡𝑎𝑖𝑛 𝑡ℎ𝑒 𝑁𝑅𝑆 𝑒𝑞𝑢𝑎𝑙 5,6

𝑛𝑠: 𝑑𝑒𝑛𝑜𝑡𝑒 𝑓𝑜𝑟 𝑡ℎ𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡ℎ𝑒 𝑟𝑒𝑐𝑖𝑒𝑣𝑒𝑑 𝑠𝑙𝑜𝑡 𝑖𝑡𝑠 𝑟𝑎𝑛𝑔𝑒 [0,9]

𝑚 = 0,1,⋯ ,2𝑁𝑅𝐵
max𝐷𝐿 − 1 𝑓𝑜𝑟 𝑛𝑎𝑟𝑟𝑜𝑤 𝑏𝑎𝑛𝑑 𝑁𝑅𝐵

max𝐷𝐿 = 1 𝑎𝑠 𝑡ℎ𝑒𝑟𝑒 𝑎𝑟𝑒 𝑜𝑛𝑙𝑦 𝑜𝑛𝑒 𝑟𝑒𝑠𝑜𝑢𝑟𝑐𝑒 𝑏𝑙𝑜𝑐𝑘

𝑠𝑜 𝑚 = 0,1

𝑁𝑅𝑆 𝑣𝑎𝑙𝑢𝑒𝑠 𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛: 𝑟𝑙,𝑛𝑠(𝑚) =
1

√2
(1 − 2𝑐(2𝑚)) + 𝑗

1

√2
(1 − 2𝑐(2𝑚 + 1))

(54)

𝐶: 𝑖𝑠 𝑟𝑒𝑓𝑒𝑟 𝑡𝑜 𝑝𝑠𝑒𝑢𝑑𝑜 − 𝑟𝑎𝑛𝑑𝑜𝑚 𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛 𝑑𝑒𝑓𝑖𝑛𝑒𝑑 𝑏𝑦 𝑎 𝑙𝑒𝑛𝑔𝑡ℎ − 31 𝐺𝑜𝑙𝑑 𝑆𝑒𝑞𝑢𝑒𝑛𝑐𝑒

𝐶 𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛: 𝑐(𝑛) = (𝑥1(𝑛 + 𝑁𝑐) + 𝑥2(𝑛 + 𝑁𝑐))𝑚𝑜𝑑2

(55)

𝑥1(𝑛 + 31) = (𝑥1(𝑛 + 3) + 𝑥1(𝑛))𝑚𝑜𝑑2

(56)

𝑥2(𝑛 + 31) = (𝑥2(𝑛 + 3) + 𝑥2(𝑛 + 2) + 𝑥2(𝑛 + 1) + 𝑥2(𝑛))𝑚𝑜𝑑2

(57)

The initialization of the first m-sequence is constant so

𝑥1 𝑖𝑛𝑖𝑡𝑖𝑎𝑙𝑖𝑧𝑒𝑑 𝑤𝑖𝑡ℎ 𝑥1(0) = 1, 𝑎𝑛𝑑 𝑥1(𝑛) = 0, 𝑛 = 1,2,⋯ ,30

(58)

While the second m-sequence depends on the application so for NRS generation 𝑥2 initialized with

𝐶𝑖𝑛𝑖𝑡 = 2
10(7(𝑛𝑠 + 1) + 𝑙 + 1)(2𝑁𝐼𝐷

𝑐𝑒𝑙𝑙 + 1) + 2𝑁𝐼𝐷
𝑐𝑒𝑙𝑙 +𝑁𝐶𝑃

(59)

𝑤ℎ𝑒𝑟𝑒 𝑁𝑐 = 1600, 𝑁𝐼𝐷
𝑐𝑒𝑙𝑙 𝑖𝑠 𝑎𝑛 𝑖𝑛𝑝𝑢𝑡, 𝑎𝑛𝑑 𝑁𝐶𝑃 = 1 𝑓𝑜𝑟 𝑛𝑜𝑟𝑚𝑎𝑙 𝐶𝑃.

31

2.7. NRS Location Generation:

As Narrowband Reference Signals have equations to get

their values, also there are equations to get the places where

these pilots found inside the resource block grid.

These places generated at the transmitter and at the receiver by

the same values to be same.

Theoretical Method to get NRS values:

NRS Location depends on three variables 𝑣, 𝑣𝑠ℎ𝑖𝑓𝑡 , 𝑎𝑛𝑑 𝑚

𝑁𝑅𝑆 𝐿𝑜𝑐𝑎𝑡𝑖𝑜𝑛 𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛:

𝑘 = 6𝑚 + (𝑣 + 𝑣𝑠ℎ𝑖𝑓𝑡)𝑚𝑜𝑑𝑒6

(60)

𝑙 = 𝑁𝑠𝑦𝑚𝑏
𝐷𝐿 − 2, 𝑁𝑠𝑦𝑚𝑏

𝐷𝐿 − 1 = 5, 6 𝑖𝑛 𝑒𝑎𝑐ℎ 𝑠𝑙𝑜𝑡

(61)

𝑘: refer to the place of a pilot to be in which row, ranged from 0 to 11 as row refer to the subcarrier

𝑙: refer to the symbol number, ranged from 0 to 6.

𝑁𝑠𝑦𝑚𝑏
𝐷𝐿 : refer to number of symbols in one slot for downlink and equal to 7.

𝑣 = {
0 𝑖𝑓 𝑙 = 5
3 𝑖𝑓 𝑙 = 6

(62)

𝑣𝑠ℎ𝑖𝑓𝑡 = 𝑁𝐼𝐷
𝑐𝑒𝑙𝑙𝑚𝑜𝑑6

(63)

𝑚 = 0,1,⋯ ,2𝑁𝑅𝐵
max𝐷𝐿 − 1 𝑓𝑜𝑟 𝑛𝑎𝑟𝑟𝑜𝑤 𝑏𝑎𝑛𝑑 𝑁𝑅𝐵

max𝐷𝐿 = 1 𝑎𝑠 𝑡ℎ𝑒𝑟𝑒 𝑎𝑟𝑒 𝑜𝑛𝑙𝑦 𝑜𝑛𝑒 𝑟𝑒𝑠𝑜𝑢𝑟𝑐𝑒 𝑏𝑙𝑜𝑐𝑘

𝑠𝑜 𝑚 = 0,1

(64)

Figure 32 R0: refer to the resource element

placed at 𝑁𝐼𝐷
𝑐𝑒𝑙𝑙 = 0

32

2.8. Channel Equalizer:
In digital communication wireless system, data transmitted from transmitter through channel to the

receiver and the data affected by some noise and multipath fading problems so the received data at receiver

can expressed by the following equation:

𝑟𝑘 = 𝑠𝑘⊗ ℎ𝑘 + 𝑛𝑘 (65)

Where 𝑟𝑘 is the received data, ℎ𝑘 represent the channel and 𝑛𝑘represent the effect of noise which is usually

AWGN. This equation is in time domain.

In order to receive all symbols, correct as possible we need to know the effect of channel to cancel it. So,

after the effect of channel is estimated for all frequencies in the resource block, equalizer needs to cancel

this estimated effect from all symbols by dividing each symbol by the corresponding value of channel

estimated.

After equalization the received data can be expressed in frequency domain by the following equation:

𝑦𝑘 = 𝑠𝑘 ∗
ℎ𝑘
ℎ𝑒𝑞

+
𝑛𝑘
ℎ𝑒𝑞

(66)

Where ℎ𝑒𝑞 is the estimated value of channel.

In channel equalizer block it is required to divide the channel contribution that the channel estimator

estimates by the symbol that get out from resource de-mapper block. So, the block depending on complex

divider algorithm.

Complex divider algorithm.

We can implement complex divider block directly but it isn’t commonly used as it take large area and

power and complex design so, the commonly used block used is the complex multiplier so, let’s see how

can we use it to perform the desired function.

For example, we want to divide 𝑎 + 𝑖𝑏 by 𝑐 + 𝑖𝑑 (
𝑎+𝑖𝑏

𝑐+𝑖𝑑
) if we multiply the numerator and denumerator

by the complex conjugate of denumerator (𝑐 − 𝑖𝑑) the result will be
(ac+bd)+j(bc−ad)

𝑐2+𝑑2
 the numerator of the result

can be out from a complex multiplier between the symbol and complex conjugate of estimated channel and

the denumerator is a real positive number which is only a scaling factor can be done by real divider or the

scaling factor can be neglected without having any degradation in the accuracy of the chain as the de-

modulator block only need the sign of the real and imaginary to detect the true bits as it works with hard

decision.

33

2.9. Fine Synchronization [39:40]:

2.9.1. Problem Definition:

After coarse estimation phase the rule of this block ends, but there are some problems and mismatches

are made on the chain such as the channel effect and oscillator effect. So, for this purpose we make use of

NB reference signals (NRSs) for tracking time and frequency offsets. NRS signals are distributed across

frequency and time grid as shown in Figure 33.

Figure 33 Example for NRS location in subframe

Our used algorithm (Kiran Kuchi, 2019) achieve significant detection performance even at low SNR values

like -12 dB which is typical operation range of low power NB-IoT devices [40].

Algorithm:

2.9.1.1. Residual Time Offset (RTO):

As shown in Figure 33 NRSs signals in an OFDM symbol are seperated by 90 kHz. And the frequency.

As the frequency response of a channel with high delay spreads varies across 6 subcarriers. So NRS signals

of two consecutive OFDM symbols is considered to track timing offsets.

We apply conjugate product on one consecutive pair of NRSs and compare the product with the conjugate

product of the consecutive pair of NRSs generated by NRSs generation block as shown in equation [67]

𝑅𝑙(𝑝)𝑅𝑙+1
∗ (𝑝 + 𝑣)

𝑋𝑙(𝑝)𝑋𝑙+1
∗ (𝑝 + 𝑣)

= 𝐾1𝑒
−𝑗2𝜋(𝜏𝑟𝑣−𝜀𝑟(𝑁+𝑁𝐶𝑃))

𝑁
(67)

Then we repeat this equation but for between the non-consecutive pilots as shown in equation [68]

𝑅𝑙
∗(𝑝 + 𝑁𝑠 − 1)𝑅𝑙+1(𝑝 + 𝑣)

𝑋𝑙
∗(𝑝 + 𝑁𝑠 − 1)𝑋𝑙+1(𝑝 + 𝑣)

= 𝐾2𝑒
−𝑗2𝜋(𝜏𝑟𝑣+𝜀𝑟(𝑁+𝑁𝐶𝑃))

𝑁
(68)

By solving the two equations and eliminating the effects of residual frequency offset (RFO), estimate of

residual time offset (RTO) is obtained as in equation 69

𝜏𝑟 =
𝑁

4𝜋|𝑣|
[∠ (

𝑅𝑙(𝑝)𝑅𝑙+1
∗ (𝑝 + 𝑣)

𝑋𝑙(𝑝)𝑋𝑙+1
∗ (𝑝 + 𝑣)

) + ∠(
𝑅𝑙
∗(𝑝 + 𝑁𝑠 − 1)𝑅𝑙+1(𝑝 + 𝑣)

𝑋𝑙
∗(𝑝 + 𝑁𝑠 − 1)𝑋𝑙+1(𝑝 + 𝑣)

)]
(69)

34

• Where

• 𝑝 → Frequency domain argument (Vertical axes in the grid).

• 𝑙 → Time domain argument. (Horizontal axes in the grid)

• 𝑅𝑙(𝑝)𝑅𝑙+1
∗ (𝑝 + 𝑣) → Indicates to the two received consecutive OFDM symbols.

• 𝑋𝑙(𝑝)𝑋𝑙+1
∗ (𝑝 + 𝑣) → Indicates to the two generated consecutive OFDM symbols.

• 𝑣 → Indicates to the v-shift.

• 𝜏𝑟 → Residual time offset in samples

• 𝜀𝑟 → Residual frequency offset in samples.

• 𝑁 → number of elements in the single sub-frame

• 𝑁𝐶𝑃 → Length of CP.

• 𝐾1, 𝐾2 → Constants.

2.9.1.2. Residual Frequency Offset (RFO):

RFO is estimated by tracking the frequency offset effects on NRS signals of different OFDM symbols.

The NRS signals positioned on the same subcarrier index of different OFDM symbols are considered for

RFO estimation as they are uniformly affected by RTO. Four such pairs of NRS exists in each sub-frame

of NB-IoT frame.

OFDM symbols which are Ns symbols apart carry NRS on same subcarrier indices. So, we estimate the

RFO using conjugate product –as in equation [70] – between pair symbols one of them are located at 𝑙

position and the other are in 𝑙 + 𝑁𝑠, which are 𝑁𝑠 symbols apart between both NRSs on the same sub-frame.

𝑅𝑙 (𝑝)𝑅𝑙+𝑁𝑠
∗ (𝑝)

𝑋𝑙 (𝑝)𝑋𝑙+𝑁𝑆(𝑝)
= 𝐾3𝑒

−𝑗2𝜋𝑁𝑠((𝑁+𝑁𝐶𝑃))𝜀𝑟
𝑁

(70)

The phase of conjugate product on one pair of considered samples is proportional to the frequency offset

as in equation [71]

𝜀𝑟 =
−𝑁

2𝜋𝑁𝑠(𝑁 + 𝑁𝐶𝑃)
[∠(∑

𝑅𝑙(𝑝)𝑅𝑙+𝑁𝑆
∗ (𝑝)

𝑋𝑙(𝑝)𝑋𝑙+𝑁𝑆
∗ (𝑝)

)]
(71)

2.10. P/S and NRS removal:
Starting from demodulation block to CRC block the inputs must enter serial and the input must contain

the data only without NRS symbols as the transmitted data at the transmitter doesn’t contain NRS and it is

inserted in the middle of the transmitter chain. So, NRS symbol must be removed from the data get out

from the equalizer and as demodulation must be serial it should also change the parallel input into serial

output.

35

2.11. Demodulation
There are two main schemes of modulation in NB-IoT, QPSK and BPSK, both are supported in uplink

and only QPSK is supported for downlink. QPSK is a modulation scheme maps every to bits to one of four

symbols on the scheme constellation as shown in Figure 34. In this section we discuss the demodulation

operation, which will de-map the received – after noise and channel effects – to ‘0’ or ‘1’ based on the

below table. We faced two technique to operate demodulation, hard decision and soft decision

demodulation using Log Likelihood Ratio (LLR). Soft decision gets BER better than hard decision, but due

to using QPSK modulation which gives small BER compared to e.g. 16QAM we can use hard decision

technique.

Table 3 QPSK constellation

𝒃𝒊, 𝒃𝒊+𝟏 𝑰 𝑄

00 1/√2 1/√2

01 1/√2 −1/√2

10 −1/√2 1/√2

11 −1/√2 −1/√2

Figure 34 QPSK constellation

36

2.12. Descrambling:
Scrambling is an important block in communication systems which used to randomize the stream of

data before doing any operation on it e.g. mapping. The objective of using it is to eliminate long run of

zeros or ones to avoid both idle and reset cases and helps in clock recovery and having no DC component.

Also, changing in the scrambling codes helps in security.

Scrambling / Descrambling implementation is based on pseudo random sequence that generated from 31-

bit linear feedback shift register (LFSR) and XOR gates as shown in Figure 35. The two sequences of the

two LFSR get XORed and the output is called a Gold sequence.

Descrambling Operation in NB-IoT

Figure 35 Descrambling Algorithm

The sequence of each LFSR is configure by the following two polynomials [72],[73]:

𝑥1(𝑛) = 1 + 𝐷
3 + 𝐷0 (72)

𝑥2(𝑛) = 1 + 𝐷
3 + 𝐷2 + 𝐷1 + 𝐷0 (73)

Then the two outputs get XORed to generate gold sequence 𝑐𝑛. Finally, the gold sequenced get XORed

with the input data.

Descrambler initialization in NB-IoT:

LFSRs of the Gold sequence generator must be initialized,

𝑥1 will be initialized as follow:

𝑥1(0) = 1, 𝑥1(𝑛) = 0, 𝑛 = 1,2, … ,30 (74)

𝑥2 will be initialized using the following equation:

𝐶𝑖𝑛𝑖𝑡 = {𝑛𝑅𝑁𝑇𝐼 . 2
14 + 𝑞. 213 + (

𝑛𝑠
2
) . 29 +𝑁𝐼𝐷

𝑐𝑒𝑙𝑙} 𝑓𝑜𝑟 𝑃𝐷𝑆𝐶𝐻
(75)

37

2.13. Rate De-Matcher [41:50]
Rate Matcher

The main function of the rate matcher block is improving the channel efficiency, which can be

done by changing the code rate of the transmitted data. With the purpose of generating any

arbitrary code rate, the rate matching procedure repeats, for code rates less than
1

3
 , or punctures,

for code rates greater than
1

3
, the bits of the mother code word [47].

The rate matcher consists of 3 sub-blocks which are called sub-blocks inter-leavers, these blocks

take their inputs from Tail biting convolutional encoder, collect these bits in a virtual circular

buffer whose size is 3 times that of one sub-block inter-leaver, then select or prune bits from the

circular buffer to be transmitted [49].

2.13.1.1. Rate Matcher Algorithm

2.13.1.1.1. Sub-block inter-leaver

The inputs to sub block inter-leavers are [dk
 (1) , dk

(2) , d k
(3)] which are the outputs from the tail biting

convolutional encoder block. Where “k” is varying from “0” to “D-1”, where “D” is the number of bits.

The following points explain the inter-leaver algorithm [49].

Tail biting

Convolutional

Encoder

Rate

Matcher

Dataout1

Dataout2

Dataout3

Figure 36 Rate Matcher in transmitter

38

1- Assign the number of columns to be 32 columns in these sub-blocks which will be called 𝐶𝑠𝑢𝑏𝑏𝑙𝑜𝑐𝑘
𝐶𝐶 ,

these columns will be numbered from “0” to"𝐶𝑠𝑢𝑏𝑏𝑙𝑜𝑐𝑘
𝐶𝐶 − 1".

2- Determine the number of rows in the matrix by finding minimum integer such

 𝐷 ≤ 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑜𝑙𝑢𝑚𝑛𝑠 𝑥 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑟𝑜𝑤𝑠, where 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑟𝑜𝑤𝑠 will be 𝑅𝑠𝑢𝑏𝑏𝑙𝑜𝑐𝑘
𝐶𝐶 ,

these rows will be numbered from “0” to "𝑅𝑠𝑢𝑏𝑏𝑙𝑜𝑐𝑘
𝐶𝐶 − 1".

3- If (𝑅𝑠𝑢𝑏𝑏𝑙𝑜𝑐𝑘
𝐶𝐶 𝑥 𝐶𝑠𝑢𝑏𝑏𝑙𝑜𝑐𝑘

𝐶𝐶) > D, then 𝑁𝐷 = ((𝑅𝑠𝑢𝑏𝑏𝑙𝑜𝑐𝑘
𝐶𝐶 𝑥 𝐶𝑠𝑢𝑏𝑏𝑙𝑜𝑐𝑘

𝐶𝐶)– D)

where ND
 is the number of dummy bits. dummy bits are padded such that yk = <NULL>

for k = 0,1,2,…..,ND-1, then 𝑦𝑁𝐷+𝑘 = 𝑑𝑘
(𝑖)

, k= 0,1,2,….,D-1. The bit sequence yk is written into the

matrix:

4- Perform the inter-column permutation for the matrix based on the pattern

𝑃(𝑗)𝑗∈{0,1,2,…, 𝐶𝑠𝑢𝑏𝑏𝑙𝑜𝑐𝑘
𝐶𝐶 } that is shown in the following table, where P(j) is the original column

position of the jth permuted column. After permutation of the columns, the inter-column permuted

matrix (𝑅𝑠𝑢𝑏𝑏𝑙𝑜𝑐𝑘
𝐶𝐶 𝑥 𝐶𝑠𝑢𝑏𝑏𝑙𝑜𝑐𝑘

𝐶𝐶) is equal to

Table 4 Permutation Table

5- The output of the block inter-leaver is the bit sequence read out column by column from the inter-

column permuted (𝑅𝑠𝑢𝑏𝑏𝑙𝑜𝑐𝑘
𝐶𝐶 𝑥 𝐶𝑠𝑢𝑏𝑏𝑙𝑜𝑐𝑘

𝐶𝐶) matrix. The bits after sub-block interleaving are

denoted by 𝑣0
(𝑖)
, 𝑣1
(𝑖)
, … , 𝑣𝑘𝛑−1

(𝑖)
. Where 𝑣0

(𝑖)
 is corresponds to 𝑦𝑃(0),

𝑣1
(𝑖)
 is corresponds to 𝑦𝑃(0) 𝑦𝑃(0)+ 𝐶𝑠𝑢𝑏𝑏𝑙𝑜𝑐𝑘

𝐶𝐶 and 𝑘𝛑 = (𝑅𝑠𝑢𝑏𝑏𝑙𝑜𝑐𝑘
𝐶𝐶 𝑥 𝐶𝑠𝑢𝑏𝑏𝑙𝑜𝑐𝑘

𝐶𝐶).

Number of columns

 𝐶𝑠𝑢𝑏𝑏𝑙𝑜𝑐𝑘
𝐶𝐶

Inter-column permutation pattern

(P(0), P(1),……, P(𝐶𝑠𝑢𝑏𝑏𝑙𝑜𝑐𝑘
𝐶𝐶 − 1))

32

< 1, 17, 9, 25, 5, 21, 13, 29, 3, 19, 11, 27, 7,

23, 15, 31, 0, 16,8, 24, 4, 20, 12, 28, 2, 18,

10, 26, 6, 22, 14, 30>

https://ar.wikipedia.org/wiki/%D8%B7_(%D8%B1%D9%8A%D8%A7%D8%B6%D9%8A%D8%A7%D8%AA)
https://ar.wikipedia.org/wiki/%D8%B7_(%D8%B1%D9%8A%D8%A7%D8%B6%D9%8A%D8%A7%D8%AA)

39

2.13.1.1.2. Bit collection, selection, and transmission

The circular buffer length is 𝑘𝑤 = 3𝑘𝛑 which is generated as follows [49]:

𝑤𝑘 = 𝑣𝑘
(0)
 𝑓𝑜𝑟 𝑘 = 0,1, … , 𝑘𝛑 − 1.

𝑤𝑘+𝑘𝛑 = 𝑣𝑘
(1)
 𝑓𝑜𝑟 𝑘 = 0,1, … , 𝑘𝛑 − 1.

𝑤𝑘+2𝑘𝛑 = 𝑣𝑘
(2)
 𝑓𝑜𝑟 𝑘 = 0,1, … , 𝑘𝛑 − 1.

Denoting by E the rate matching output sequence length, the rate matching output bit sequence is 𝑒𝑘,

k = 0, 1,..., E -1. Where “E” is upper layer parameter and input to the block.

Set k = 0 and j = 0: Each time it starts from the beginning of the buffer not as turbo.
while {k < E}: it iterates till reach the length of data which is required.

if 𝑤𝑗 𝑚𝑜𝑑 𝑘𝐰 ≠ < 𝑁𝑈𝐿𝐿 >: ignoring the dummy bits which was added in the interleaver.

𝑒𝑘 = 𝑤𝑗 𝑚𝑜𝑑 𝑘𝐰 : The output is the data inside the circular buffer.

k = k + 1.

𝑒𝑛𝑑 𝑖𝑓

j = j + 1.

end while

Rate De-Matcher:

The function of this block is to reverse the rate matcher process, the output of this block is three original

data streams that were generated from the tail biting convolutional encoder in the transmitter [43].

2.13.1.2. Rate De-Matcher Algorithm

2.13.1.2.1. Bit Collection

This block consists of one memory with size of (3 x (max TBS +24) * 𝑙𝑜𝑔2(max repetition

size)) which will be (7680 * 12), and a control unit to manage the data stream saving in this

memory in all cases. The size of this memory is large, because in this release the max TBS is

“2536 bits” [51] as mentioned in the standard, and the maximum repetitions is “2048

repetitions”.

The input to this block is the bit stream, which is the circular buffer data stream in the transmitter with any

length according to the upper layer parameter “E”. There are three cases to deal with this data:

1- If the data length is as circular buffer length: this will be saved as it and then will be passed to the

inter-leavers to be permutated.

Sub-block

Inter-leaver

Bit

Collection

Sub-block

Inter-leaver

Sub-block

Inter-leaver

Input data

Output data

Output data

Output data

Viterbi

Decoder

https://ar.wikipedia.org/wiki/%D8%B7_(%D8%B1%D9%8A%D8%A7%D8%B6%D9%8A%D8%A7%D8%AA)
https://ar.wikipedia.org/wiki/%D8%B7_(%D8%B1%D9%8A%D8%A7%D8%B6%D9%8A%D8%A7%D8%AA)
https://ar.wikipedia.org/wiki/%D8%B7_(%D8%B1%D9%8A%D8%A7%D8%B6%D9%8A%D8%A7%D8%AA)
https://ar.wikipedia.org/wiki/%D8%B7_(%D8%B1%D9%8A%D8%A7%D8%B6%D9%8A%D8%A7%D8%AA)
https://ar.wikipedia.org/wiki/%D8%B7_(%D8%B1%D9%8A%D8%A7%D8%B6%D9%8A%D8%A7%D8%AA)
https://ar.wikipedia.org/wiki/%D8%B7_(%D8%B1%D9%8A%D8%A7%D8%B6%D9%8A%D8%A7%D8%AA)
https://ar.wikipedia.org/wiki/%D8%B7_(%D8%B1%D9%8A%D8%A7%D8%B6%D9%8A%D8%A7%D8%AA)
https://ar.wikipedia.org/wiki/%D8%B7_(%D8%B1%D9%8A%D8%A7%D8%B6%D9%8A%D8%A7%D8%AA)

40

2- If the data length is greater than the circular buffer length which occurs due to the repetition of data

in the circular buffer: this will be saved to reach the circular buffer length then the remained data

will be added to they until they end, then get the average of these data.

3- If the data length is less than the circular buffer length which occurs due to the puncturing of data

in the circular: in this case the data will enter the buffer till its length, then padding zeros to it till

reaches the circular buffer length.

2.13.1.2.2. Sub block de-inter-leaver

This block consists of four memories each one is (number of columns * number of rows for the max

TBS(
Max 𝑇𝐵𝑆+24

32
)) which is (32*80) [49]. This block should be 3 memories to store the whole data, but

here there are four memories, the fourth memory is used for the consecutive input stream. This means

if the data stream is still inside the three rams and new input come to the block it will be saved in

the first ram, and the remained three memories will pass the data to the next block at the same

time. This block deals with the input as the transmitter deals.

41

2.14. Viterbi Decoder
In Communication Systems, when data represented in bits is sent from source to destination, they suffer

from corruption due to the presence of noisy channels, Channel coding techniques is used to overcome the

effect of those noisy channels and interference and ensure that the received information is as close as

possible to the transmitted information. Which results in improve in the BER and improve reliability of

information transmission.

Forward error correction (FEC) is one of the techniques used to detect and correct errors in the transmitted

data without the need for retransmission. Convolution Encoding with Viterbi Decoding is a powerful

method for Forward Error correction and Detection, where data is convoluted and then transmitted into a

noisy channel, this process involves the insertion of redundant data which helps in detecting and correcting

errors due to those noisy channels. Decoding of convoluted data is done using Viterbi algorithm which

appears to be the most powerful method in terms of efficiency and bit error rates. The algorithm tracks

down the most likely sequences the encoder went through in encoding the data, and uses this information

to discover the original message.

Convolutional Codes

D D D DD D

G0 = 133 (octal)

G1 = 171 (octal)

G2 = 165 (octal)

kc

)0(
kd

)1(
kd

)2(
kd

Figure 37: Rate 1/3 tail biting convolutional encoder

 Convolutional encoder is implemented using shift registers. The contents of the shift register are

known as the state of the encoder. At each time instant contents of the shift register are shifted declaring a

new state for the encoder, The bit sequence input for a given code block to channel coding is denoted by

13210 ,...,,,, −Kccccc
, where K is the number of bits to encode. After encoding the bits are denoted by

)(
1

)(
3

)(
2

)(
1

)(
0 ,...,,,,

i
D

iiii
ddddd − , where D is the number of encoded bits per output stream and i indexes the

encoder output stream. The relation between and between K and D is dependent on the channel coding

scheme.

A (k, n, m) can be seen as a convolutional encoder having m stages, k bits entering the shift register at each

time instant and n output bits. Output bits are formed using generator sequences:

𝐺0 = [1 0 1 1 0 1 1], 𝐺0 = 1 + 2 + 8 + 16 = 133(𝑜𝑐𝑡𝑎𝑙)

𝐺1 = [1 1 1 1 0 0 1], 𝐺1 = 1 + 8 + 16 + 32 + 64 = 171(𝑜𝑐𝑡𝑎𝑙)

𝐺2 = [1 1 1 0 1 0 1], 𝐺2 = 1 + 4 + 16 + 32 + 64 = 165(𝑜𝑐𝑡𝑎𝑙)

The rate of the encoder is denoted by 𝑅 = 𝑘/𝑛.

42

Tail Biting Convolutional Coding

Tail biting technique overcomes the problem of the added cost of transmitting extra termination bits

experienced by trellis terminations. A tail biting convolutional code with constraint length 7 and coding

rate 1/3 is defined in Figure 37. The initial value of the shift register of the encoder shall be set to the values

corresponding to the last 6 information bits in the input stream so that the initial and final states of the shift

register are the same. Therefore, denoting the shift register of the encoder by 5210 ,...,,, ssss , then the initial

value of the shift register shall be set to

The encoder output streams)0(
kd ,)1(

kd and)2(
kd correspond to the first, second and third parity streams,

respectively as shown in Figure 37.

Figure 38: Convolutional Encoding with tail bits

()iKi cs −−= 1

43

Tail biting is done by:

1) The encoder shift register is first initialized with the last n data bits before packet transmission

where 𝑛 = 𝐶𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡 𝑙𝑒𝑛𝑔𝑡ℎ − 1, Resulting in an equal initial and final state.

2) For constraint length=7, the encoder is initialized with the last six bits of the packet, Transmission

starts when Data=d0 and last symbol is formed when Data=Dn-1. One more shift puts the encoder

back into the initial state where decoder can begin tracing back the packet from that state.

Encoding with this technique has the advantage of:

1) Code rate is not affected.

2) Error correction properties of the convolution code are not affected.

But also having disadvantages of:

1) Decoding latency is increased due to the fact that initial and final states are required to correctly

start tracing back.

2) Receiver complexity is increased.

Viterbi Decoder Description

Viterbi decoder is a maximum likelihood method to detect the most probable sequence of hidden states.

Viterbi decoder uses a tree search procedure to optimally detect the received sequence of data. It calculates

a measure of similarity between the received signal and all the trellis paths entering each state at time.

Remove all the candidates that are not possible based on the maximum likelihood choice. Remove all the

candidates that are not possible based on the maximum likelihood choice. When two paths enter the same

state, the one with the best path metrics (the sum of the distance of all branches) along the path is chosen.

This path is called the surviving path. This selection of surviving paths is done for all the states and makes

decisions to eliminate some of the least likely paths in early calculation stages to reduce the decoding

complexity. A more redundant description of the same process is shown in Fig. 39, this description is called

trellis.

2.14.1.1. Trellis Diagram

Figure 39: Trellis Transitions for Constraint length=4

44

Figure 40: Error computation for constraints length=3

Trellis Diagram states is decided according to the constraint length. Consider K and being the

constraint length thus trellis states would be equal to 2𝑘−1. For each received sequence of bits several

computations take place. Those computations decide which path is best suited or the path which faced the

least number of errors based on trellis expected outputs. In Figure 39, Trellis is implemented for

constraint length equal to 4 and rate equal to 1 2⁄ , thus having 23 states. Each received sequence goes

through a no. of computations starting with Branch Metric computation. Where Hamming Distance is

calculated. Hamming Distance is the measure of how likely is the received sequence to the Expected

outputs. Followed by path metric computation where errors are accumulated and saved to be used in

decision making. At the end of the received sequence, trace back procedure start from the path with the

least Number of errors.

 Hidden states or observed sequence is obtained using the convolutional encoder. The computed

sequence is based on state machine pattern as shown in Figure 40. The encoder tells the receiver about its

movement through the state machine. Viterbi Algorithm operates on that state machine assumption.

45

Figure 41: State Diagram for constraints length=4.

State diagram shows 8 states with all possible transitions in case of the input bit is 0 or 1. To

better understand how Viterbi traces the movement through the state machine consider the example

shown in Figure 42 and Figure 43. For the sequence (1011000), the hidden states obtained according to

the state diagram starting from state 000 are (11 11 10 10 10 11 10).

Case 1:

In case of no error occurred, the received sequence is (11 11 10 10 10 11 10). The decoder starts from

State 000, followed by a sequence of steps which could be summed up into:

1) For each state there is two possible branches, one for the case of the input being 1 and one for the

input being 0, for each case there is a possible output as shown in Figure. For the received

sequence 11 starting from state 000, the branch output which matches the received sequence is

the second branch. Same step is repeated for each received sequence until the end of message.

2) The survived path is now computed so trace back procedure start from state 000 at t8, Extracting

an output of (0001101). This result is saved in a LIFO memory.

Figure 42: Computed Distances for different paths

46

Case 2:

 Consider the received sequence being 10111010101110, thus error occurred in second bit so

corruption occurred due to the presence of noisy channels, the procedure that the Viterbi go through is:

1) Starting from state 000, the received sequence suffers an error =1 in both paths, so it is up to the

algorithm chosen to choose whether to continue with the first path or the second path, if number

of errors in one of the paths is smaller than the other, this path is chosen and the other one is

discarded, then same procedure is taken for each bit stream till the end of message.

2) After computing the survival path, Trace back unit computes the decoded sequence as before.

Figure 43: Survivor path computation

1.14.4. Decoding of Convolutional Codes

2.14.1.2. 1.14.4.1. Two Step SOVA-Based Decoding Algorithm for Tail biting Codes.

In this method the Viterbi decoding is done on two fixed steps one for computing most likely paths and

the other one is to start decoding from a specific state based on the information taken from the previous

step

 Decoding steps:

1. Start from all initial states with path metrics set to zero.

2. Compute errors throughout the trellis stages.

3. Choose the final state with the minimum accumulated metric.

4. Trace back the chosen survival path and record likelihood of the states.

5. Based on the previous step an initial and final state is chosen and a second Viterbi is done.

Disadvantages:

1. Large number of processing steps.

2. An error could occur in case of a bad selection of initial and final states.

47

2.14.1.3. 1.14.4.2. Modified Circular Viterbi Algorithm.

The chosen algorithm is based on performing several iterations of the Viterbi algorithm until a

tail biting pattern is found,

 Decoding Steps:

1. Start the Viterbi algorithm with initial metrics set to zero.

2. Compute the survival path based on the path with the least accumulated metric.

Figure 44: Trellis Transitions

3. If this path is a tail biting path, decoding stops and the survival path is decoded.

4. If the survival path is not a tail biting path, metrics are updated with final metrics of the previous

iteration.

5. Apply the Viterbi algorithm on the same message, until a new survivor path is obtained.

6. If the new survivor path is a tail biting path, algorithms stops.

7. If maximum number of iterations is reached, algorithm stops and the best survival path is

decoded.

Figure 45: Trellis Transition at the end of the first iteration.

48

Figure 46: Trellis at the end of the second iteration.

2.15. Cyclic Redundancy Check

 Cyclic Redundancy check (CRC) is an error detecting code. It is used commonly in digital networks to

detect any changes in the row data. In the transmitter it appends bits to the row data which is the remainder

of a polynomial division, and in the receiver, it uses the same technique as the transmitter if the remainder

was zero that means the data is correct, otherwise the data is wrong.

Cyclic Redundancy Check Algorithm

Denote the input bits to the CRC computation by 𝑎0, 𝑎1, … , 𝑎𝐴−1, and the parity bits

by 𝑝0, 𝑝1, … , 𝑝𝐿−1 , where A is the size of the input sequence and L is the number of parity bits.

The parity bits are generated by the following polynomial [51].

𝑐𝑟𝑐24(𝐷) = 𝐷24 + 𝐷23 + 𝐷18 + 𝐷17 + 𝐷14 + 𝐷11 + 𝐷10 + 𝐷7 + 𝐷6 + 𝐷5 + 𝐷4 + 𝐷3 + 𝐷 + 1 (76)

The bits after CRC attachment are denoted by 𝑏0, 𝑏1, … , 𝑏𝐵−1, where B = A+ L. The relation

between 𝑎𝑘 and 𝑏𝑘 is:

𝑏𝑘 = 𝑎𝑘 , For k = 0,1,2,…, A-1 (77)

𝑏𝑘 = 𝑝𝑘−𝐴 , For k = A , A+1 ,…, A+L-1. (78)

There is no segmentation in NB-IoT, because the maximum TBS is 2536 and which is less than

6144 (the minimum number to segment the Transport block into code blocks).

2.16. RAM Sharing
Due to the large similarly-sized memory requirements in the synchronization block and the rate de-

matcher block also the fact that the two blocks never simultaneously access their memories, it became

appealing to share the ram resources of these blocks. Mainly, the sharing was made possible by

multiplexing the two clocks of the blocks with the selection of the LOCKED signal which indicates the

activity of the synchronization process, this signal was also used to multiplex the inputs to the ram, the

pointers, and the enables. Also, a multiplexing process was implemented to help implement the rate de-

matcher ram as multiple smaller rams. The ram module consists mainly of 15 separate rams, 14 of these

are numbered in pairs real and imaginary from 1 to 7 and another single ram module annotated by ram0.

The size of each ram matches its address width.

49

2.17. Design Specifications:

Table 5 Design Specifications

Parameter Specs

Channel Model
ETA with a maximum Doppler shift of 5 𝐻𝑧, 𝑁𝐶ℎ = 9 𝑡𝑎𝑝𝑠, and

maximum excess tap delay of 5 𝑢𝑠

Minimum Required SNR −12.6 𝑑𝐵

Frequency Offset [-35:35] KHz, estimated with 50 Hz accuracy

Time Offset [0:19200] samples, estimated with a maximum error of 2 samples

CORDIC stages 15

FFT size 16

Decoding Hard

Modulation scheme 𝑄𝐵𝑆𝐾

System BW 200 𝐾𝐻𝑧

Sampling frequency 1.92 𝑀𝐻𝑧

• Output data rate for NPDSCH layer:

– Output clock: clk_260 = 3.84 Mbps

– Calculated max peak Rate according to our design:

• Max TBS = 2536 including pilots, and coding 1/3 then take 24 sub-frame

including NPSS, NSSS overhead, and pilots,

Max Rate =
2536

24𝑚𝑠 + 6𝑚𝑠
= 84.533 𝐾𝑏𝑝𝑠

• Max TBS = 2536 including pilots, and coding 1/1 then take 8 sub-frames

including NPSS, NSSS overhead, and pilots,

Max Rate =
2536

8𝑚𝑠 + 2𝑚𝑠
= 253.6 𝐾𝑏𝑝𝑠

– Calculated for any NPDSCH layer

Max Rate =
336

1𝑚𝑠
= 336 𝐾𝑏𝑝𝑠

• Calculated rates according to some assumptions:

– our TBS = 296 including pilots, and coding 1/3 then take 3 sub frames with respect to

upper layer

Max Rate =
296

3ms
= 98.666 Kbps

• Whole Chain Latency with TBS = 296:

– Clock cycles: 2793 clk_520.

– Latency delay time: 1.45 ms.

• Clocks used: clk_520 = 520 ns, clk_260 = 260 ns, clk_130 = 130 ns

50

Chapter 3

Design implementation

3.1. Coarse Synchronizer
As the block implements its functionality as a finite state machine, no detailed block diagrams are presented

in this part. There is, however, a state diagram explaining the block as a state machine and its operation and

naturally, there is a top-level block diagram illustrated in the following figure and the inputs and outputs of

this block diagram are defined in Table 8 and Table 9. Firstly, in Table 6 some statistics are illustrated about

this implementation and its use of important resources.

Table 6 Usage of Important Components and Resources:

Resource Usage

Ram 10.3KB

Complex Multipliers
Real Multiplications: 2 of (1Byte*1Byte)

Real Multiplications: 2 of (4Bits*1Byte)

Real Multipliers

2 of (2Bytes*2Bytes)

2 of (28Bits*28Bits)

1 of (28Bits*17Bits)

CORDIC Units
1 arctan-calculator unit

5 phase rotator units

3.1.1. Block Diagram

Figure 47 CSYNCH Top-Level Block Diagram

CLOCK

RESET

ENABLE

INPUT SAMPLE

RAM OUTPUT

TOP MODULE

OUTPUT

SAMPLE

LOCKED

ENABLE

CFO LOCKED

FRAME NUMBER

SLOT NUMBER

RAM INPUT

FREQUENCY

ESTIMATE

32

32

17

10

5

TOP MODULE

51

3.1.2. State Diagram

Let the states illustrated in Figure 48 Simplified State Diagram of the Blockbe defined as follows:

State 0: this state sets the stage for step 1 in the algorithm; it calculates the metric in the first frame and

stores the metric data in a shared ram. It also implements the function of applying the code cover to the

products.

State 1: this is mainly the state where step 1 of the algorithm is implemented as it updates the metric by

averaging, it sorts the metric, and checks if the maximum passes the threshold.

State 2: this state serves mainly two purposes, it captures time-domain data required to implement the

matched filter step and it also sorts and decides on estimates in step 2 and 3.

State 3: this state loads the time-domain samples of a complete NPSS symbol from a 65-element ROM.

State 4: this state calculates and updates the matched filter metric through the use of combinational

CORDIC units.

State 5: this state prepares for going back to step 1 again in the case of a false auto-correlation peak.

State 6: this is the state of normal post-synchronization operation; it implements the functions of CP

removal, down-sampling, and symbol-position data acquirement.

Figure 48 Simplified State Diagram of the Block

 STATE

3

 STATE

6

 STATE

4

 STATE

0

 STATE

1

 STATE

2

 STATE

5

52

Table 7 Illustration of Transitions between States:

Current State Next State Event

S0 S1 Always after it is executed

S1 S2 When the maximum metric value crosses the assigned threshold

S2 S3 At the first time a matched filter step is executed

S2 S4 Every time a matched filter step is executed except for the first time

S2 S5 If the maximum of step 2 metric does not pass the assigned threshold

S2 S6 After all steps of the procedure are executed

S3 S4 Always after it is executed

S4 S3 Always after it is executed

S5 S0 Always after it is executed

S6 … Does not end

3.1.3. Interface Tables

As the used ram is a shared ram, it is outside the block and hence has an interface with the block. And

because the used ram is accessed as separate 15 rams, it has its own interface table, Table 9, separate from

the main interface table, Table 8.

Table 8 csynch Interfacing Table of the Top-Level Module:

Signal Name Direction Width Description

Clock Input 1 A 1.92MHZ clock signal

Reset Input 1 An edge-sensitive negative logic global reset signal

Enable Input 1 A level-sensitive signal that permits the block to operate

Input Sample Input 32
The serial input samples from the ADC with 2Bytes for real part

and 2Bytes for imaginary part

Ram Output Input … Clearly specified in table 3

Locked Output 1
A level sensitive signal that indicates the success and end of the

synchronization procedure

CFO Locked Output 1
A level sensitive signal that indicates the beginning of data

receiving and it is used to enable the next block in the chain

Enable Output 1
A level sensitive signal that informs the next block in the chain of

a new valid sample

Output Sample Output 32 The serial output samples of CP-removed down-sampled symbols

Frequency Estimate Output 17
The final estimates of FFO and IFO added together as a frequency

offset estimate

Frame Number Output 10
A counter that indicates the number of frames processed since the

block was enabled and it resets after 1024 frames

Slot Number Output 5
A counter that indicates the number of slots processed in the

current frame and it resets after counting 20 slots

Ram Input Output … Clearly specified in table 3

Table 9 Block’s Interfacing Table with Shared-Ram:

Signal Name Direction Width Description

Ram0 Enable Output 1 Ram0 write enable level-sensitive signal

Real Ram1 Enable Output 1 Real ram1 write enable level-sensitive signal

Imaginary Ram1 Enable Output 1 Imaginary ram1 write enable level-sensitive signal

53

Real Ram2 Enable Output 1 Real ram2 write enable level-sensitive signal

Imaginary Ram2 Enable Output 1 Imaginary ram2 write enable level-sensitive signal

Real Ram3 Enable Output 1 Real ram3 write enable level-sensitive signal

Imaginary Ram3 Enable Output 1 Imaginary ram3 write enable level-sensitive signal

Ram4 Enable Output 1 Real&Imaginary ram4 write enable level-sensitive signal

Ram5 Enable Output 1 Real&Imaginary ram5 write enable level-sensitive signal

Real Ram6 Enable Output 1 Real ram6 enable level-sensitive signal

Imaginary Ram6 Enable Output 1 Imaginary ram6 write enable level-sensitive signal

Ram7 Enable Output 1 Real&Imaginary ram7 write enable level-sensitive signal

Ram0 Address Output 8 Ram0 read&write address

Ram1 Address Output 9 Real&Imaginary ram1 read&write address

Ram2 Address Output 9 Real&Imaginary ram2 read&write address

Ram3 Address Output 8 Real&Imaginary ram3 read&write address

Ram4 Address Output 8 Real&Imaginary ram4 read&write address

Ram5 Address Output 8 Real&Imaginary ram5 read&write address

Ram6 Address Output 9 Real&Imaginary ram6 read&write address

Write Ram7 Address Output 11 Real&Imaginary ram7 write address

Read Ram7 Address Output 11 Real&Imaginary ram7 read address

Ram0 Write Data Output 16 Ram0 input data

Real Ram1 Write Data Output 16 Real ram1 input data

Imaginary Ram1 Write Data Output 16 Imaginary ram1 input data

Real Ram2 Write Data Output 16 Real ram2 input data

Imaginary Ram2 Write Data Output 16 Imaginary ram2 input data

Real Ram3 Write Data Output 16 Real ram3 input data

Imaginary Ram3 Write Data Output 16 Imaginary ram3 input data

Real Ram4 Write Data Output 16 Real ram4 input data

Imaginary Ram4 Write Data Output 16 Imaginary ram4 input data

Real Ram5 Write Data Output 16 Real ram5 input data

Imaginary Ram5 Write Data Output 16 Imaginary ram5 input data

Real Ram6 Write Data Output 16 Real ram6 input data

Imaginary Ram6 Write Data Output 16 Imaginary ram6 input data

Real Ram7 Write Data Output 16 Real ram7 input data

Imaginary Ram7 Write Data Output 16 Imaginary ram7 input data

Ram0 Read Data Input 16 Ram0 output data

Real Ram1 Read Data Input 16 Real ram1 output data

Imaginary Ram1 Read Data Input 16 Imaginary ram1 output data

Real Ram2 Read Data Input 16 Real ram2 output data

Imaginary Ram2 Read Data Input 16 Imaginary ram2 output data

Real Ram3 Read Data Input 16 Real ram3 output data

Imaginary Ram3 Read Data Input 16 Imaginary ram3 output data

Real Ram4 Read Data Input 16 Real ram4 output data

Imaginary Ram4 Read Data Input 16 Imaginary ram4 output data

Real Ram5 Read Data Input 16 Real ram5 output data

Imaginary Ram5 Read Data Input 16 Imaginary ram5 output data

Real Ram6 Read Data Input 16 Real ram6 output data

Imaginary Ram6 Read Data Input 16 Imaginary ram6 output data

Real Ram7 Read Data Input 16 Real ram7 output data

Imaginary Ram7 Read Data Input 16 Imaginary ram7 output data

54

3.1.4. Results

3.1.4.1. RTL Results

The following results were obtained twice from RTL simulations on a 100 random cases in the

operating conditions mentioned earlier with randomized frequency and time offsets, assuming in one time

in-band or guard-band deployment and assuming in another time standalone deployment, each under the

same channel model mentioned earlier and assuming in each case the minimum SNR namely, -13dB and -

5dB. Table 9 summarizes the results shown in figures 49 to 54. The residual frequency offset estimates are

well below 0.05 of the carriers spacing which according to [53] results in an SNR degradation below 0.5dB

at the minimum SNRs. The residual time offset and latency results are comparable to those in [7] and [11].

Table 10 csynch RTL Simulation Results Summary:

Metric Standalone Deployment In-Band or Guard-Band Deployment

PSS-Detection Latency

(50% percentile)
90𝑚𝑠 200𝑚𝑠

PSS-Detection Latency

(90% percentile)
140𝑚𝑠 370𝑚𝑠

PSS-Detection Latency

(95% percentile)
170𝑚𝑠 480𝑚𝑠

False Alarm Probability 0% 1%

Timing Error −1.04𝜇𝑠 ~ 1.04𝜇𝑠 −1.04𝜇𝑠 ~ 1.04𝜇𝑠
Frequency Estimation Error

(95% percentile)
−30𝐻𝑧 ~ 30𝐻𝑧 −60𝐻𝑧 ~ 60𝐻𝑧

55

Figure 49 CDF of PSS-Detection Latency in In-Band or Guard-Band Deployment

Figure 50 PMF of Synchronization Timing Error in In-Band or Guard-Band Deployment

56

Figure 52 CDF of PSS-Detection Latency in Standalone Deployment

Figure 51 CDF of Frequency Estimation Error in In-Band or Guard-Band Deployment

57

Figure 54 CDF of Frequency Estimation Error in Standalone Deployment

Figure 53 PMF of Synchronization Timing Error in Standalone Deployment

58

3.1.4.2. Synthesis Results

The Block was synthesized on Design Compiler at technology node 45nm; table 10 summarizes the

synthesis results. The synthesis results do not include the shared ram module.

Table 11 Summary of the Synthesis Results for csynch:

Metric Value

Total Cell-Area 109445𝜇𝑚2

Combinational Cell-Area 89080𝜇𝑚2

Non-Combinational Cell-Area 20365𝜇𝑚2

Critical Path Length 3.86𝑛𝑠
Leakage Power 445𝜇𝑤

3.1.4.3. Screenshots

Illustrated in figures from 55 to 59 screenshots of two runs in MATLAB and ModelSim, the results can

vary in estimates between MATLAB and the RTL due to discretization in the RTL. In addition, figure 56

captures a screenshot from the normal operation mode of the block. Figures from 60 to 62 present

screenshots from synthesis reports.

Figure 55 MATLAB Simulation Screenshot for Run 1 for CSYNCH

Figure 56 RTL Simulation Screenshot for Run 1 for CSYNCH

59

Figure 57 MATLAB Simulation Screenshot for Run 2 for CSYNCH

Figure 58 RTL Simulation Screenshot for Run 2 for CSYNCH

Figure 59 RTL Simulation Screenshot for Normal Operation for CSYNCH

60

Figure 62 Screenshot from Synthesis Area Report for CSYNCH

Figure 61 Screenshot from Synthesis Power Report for CSYNCH

Figure 60 Screenshot from Synthesis QOR Report for CSYNCH

61

3.2. CFO correction:
3.2.1. Block Diagram:

3.2.2. Interface Table:
Table 12 interface table of CFO correction

Signal Name Direction Width Description

𝐈𝒔𝒚𝒎 Input 16 Symbol real part

𝐐𝒔𝒚𝒎 Input 16 Symbol imaginary part

Syn_Offset Input 22 Synchronization Offset error

Fine_Offset Input 1 Fine synchronization offset error

Syn_Enable Input 1 CFO enable

clk Input 1 CFO clock

Rst_n Input 1 CFO reset

𝐈𝐬𝐲𝐦_𝐨𝐮𝐭 Output 16 corrected symbol real part

𝑸𝐬𝐲𝐦_𝐨𝐮𝐭 Output 16 corrected symbol imaginary part

Done Output 1 Signal indicate that block is done

cl
k

𝐼𝑠𝑦𝑚

𝑄𝑠𝑦𝑚

Syn_offset

Syn_Enable

 CFO correction

R
st

_
n

𝐼𝑠𝑦𝑚_𝑜𝑢𝑡

𝑄𝑠𝑦𝑚_𝑜𝑢𝑡

Done
Fine_offset

Figure 63 CFO Block Diagram

62

3.2.3. Function of the design:

• Rotate the symbol to correct the CFO using CORDIC algorithms using the offset that come

out from phase accumulator.

3.2.4. Design specification:

• The clock used for the block has period equal 260 ns.

• Latency of the block is 16 clock cycle.

3.2.5. Detailed block diagram:

3.2.5.1. Phase accumulator

Phase accumulator used to accumulate the offset as initially the offset that get out from phase accumulator

equal 0 then it accumulates every clock with the value of the offset that come from synchronization block

until the offset exceeds 2pi the new value will be equal to offset-2pi and so on.

3.2.5.2. CORDIC

CORDIC is used to rotate the symbol to correct the offset occurred. To achieve a high accuracy, we should

make n iterations as we mentioned before as iterations increase the accuracy increase but we can achieve

an acceptable accuracy by 15 iterations.

3.2.5.2.1.1. CORDIC design

Figure 65 : CORDIC block diagram

Phase

accumulator
CORDIC

Figure 64 CFO Detailed Block Diagram

63

But this design has many disadvantages:

• Consumes high power which contradict with the project that should be low power.

• Large area as there is n shifters and adders.

We reached to a design that has lower area and consumes lower power than the first design.

Figure 66 recursive pipelined CORDIC design

• This design has lower number of shifters and adders n times than first design.

• But it has lower throughput.

3.2.6. Design Interface:

• The interface of the block with the synchronization block is the 16-bit real and imaginary part of

the symbol and 22-bit of the offset and 1-bit enable signal to make the block start of operate.

• The interface of the block with the fine synchronization block is 22-bit of the fine offset.

• The interface of the block with the FFT block is the 16-bit real and imaginary part of the corrected

symbol and 1-bit done signal.

3.2.7. Simulation Results:

3.2.7.1. MATLAB Results:

Figure 67 MATLAB result for different input offset CFO

64

3.2.7.2. RTL Results:

Figure 68 RTL simulation results of CFO

3.2.7.3. Comparison between RTL and MATLAB

By entering the same input in the RTL and MATLAB we get the following result

Figure 69: comparing results of RTL and MATLAB in CFO

And by calculating the average error in the real and imaginary

Figure 70: average error between RTL and MATLAB in CFO

65

3.2.7.4. Synthesis Reports:

Figure 71: Area report of CFO

Figure 72 : Power report of CFO

66

Figure 73: Timing report of CFO

3.3. FFT
3.3.1. Block Diagram:

Figure 74 16-point FFT radix22 SDF block diagram

3.3.2. Interface Table:
Table 13 interface table of FFT

Signal Name Direction Width Description

clk_260 Input 1-bit Input clock

Reset Input 1bit Asynchronous reset

67

Enable_CFO Input 1-bit Enable from the FIFO before the FFT to enable the FFT

realINPUT_CU Input 16-bit The real input symbols

imagINPUT_CU Input 16-bit The imaginary input symbols

nf_SYNC_CU Input 10-bit NF is passing through the FFT to reach fine in the proper

time along with the data

ns_SYNC_CU Input 5-bit NS is passing through the FFT to reach fine in the proper

time along with the data

nf_FFT_CU Output 10-bit NF output

ns_FFT_CU Output 5-bit NS output

done_FFT_CU Output 1-bit FFT is done to enable the resource mapper

enable_RS_CU Output 1-bit Enable signal indicates that the FFT is done and the

resource de-mapper can start saving the FFT output

S1_outputR_CU Output 16-bit The real output symbols

S1_outputI_CU Output 16-bit The real output symbols

3.3.3. Function of the design:

i. Before optimization

Figure 75 16-point FFT Block diagram before optimized

Data flow through stages:

Firstly, the 16 OFDM symbols are stored in 8×4 memory and to improve system latency the first stage will

start to operate as soon as the nineth symbols stored in the memory. The output of this stage is stored in

68

8× 2 memory when the eight symbols are ready, they will transfer parallel to 4×4 memory and the second

stage arithmetic operation starts to proceed then the output of this operation is stored in memory 4×2 and

then transferred parallelly to 2×4 memory and enable signal to stage 3 is raised. Similarly, stage 3 starts

doing the arithmetic operation and store the output in memory 2×2 which is then be copied parallelly to

another 2×2 memory and an enable to stage 4 is raised to start operating and the output are stored in the

resource element de-mapper.

In this design, the 3D memory is used in order to optimize the address generating circuit, that’s was

accomplished by storing the values which the arithmetic operation will be executed in the same row so by

using only one counter, we get the data from the memory.

The size of the memories depends on the algorithm RADIX 22 for instance in second stage, the first symbol

is added to the fifth one and the second is added to sixth one and the third data is added to the seventh one

and the fourth is added on the eighth one. Then the required memory is 8-words memory for real and other

8-words memory for imaginary.

The bit reverse operation which is important as the FFT output is out-of-order. This operation is done while

storing in the resource element de-mapper.

ii. After optimization

Figure 76 Optimized 16-point FFT block diagram

The algorithm has further been optimized by sharing the resource between stage one and stage four; the

first stage is done before the stage four start. As noticed from Figure 75 and Figure 76, both 2×2 memory

and stage 4 are no longer in the block diagram that has been merged and a MUX was used, that multiplex

the input of FFT and the third stage output as the FFT input is entered serially to the block so less number

of MUXs were used compared to parallel input way. An enable signal is used to store only the first stage

output and avoid storing the fourth stage output as it is the FFT output. The register file is used instead of

the shift register in order to reduce the switching. The shift reg is used to optimize the power by reducing

the switching activity.

69

3.3.4. Detailed implementation:

Figure 77 Stage 1&4 after optimization block diagram of FFT

The 16 mux is used to decide which state, of the sixteen states, is next. Depending on the stage the control

signal is sent to the arithmetic block which is designed to be a combinational block to do the operation once

the inputs and control signal come within a clock cycle.

Figure 78 Stage 2 block diagram of FFT

When the enable signal “S2” is high that means the input is ready. Then the state and the control signal will

be used to determine the next arithmetic operation and the value of the twiddle factors. The arithmetic block

consists of two adder/subtractor and one multiplier. There is a mux between the output of adder/subtractor

and the input of the arithmetic block and there is another mux between the multiplier and the input of the

arithmetic block.

70

Figure 79 Stage 3 block diagram of FFT

Stage 3 starts when the fourth output of stage 2 is ready so the enable signal “S3” is high. Bear in mind, the

mux used here is 4×1 as there is only four states and they are repeated one after the other.

3.3.5. Design Interface:

Figure 80 interfacing blocks of FFT

The CFO gives output each sixteen-clock cycle which is not suitable for the implemented algorithm of FFT,

thus a FIFO is added to store 16 symbols then gives enable to FFT to start it operation the output of this

buffer is serial output. The output of the FFT is saved in Resource mapper, and the output is out serially.

71

3.3.6. Design Specification

• Clock used is 260ns

• Block latency is 38 clock cycle

3.3.7. Simulation Results:

3.3.7.1. MATLAB Results:

Figure 81 16-point FFT MATLAB output of FFT

Figure 82 12 FFT output stored in resource de-mapper of FFT

3.3.7.2. RTL Results:

Figure 83 16-point FFT RTL simulation of FFT

72

FIFO simulation

Figure 84 FIFO RTL simulation of FFT

3.3.7.3. Synthesis Reports:

i. Screenshots for synthesis results

Figure 85 Power Report of memory before FFT

73

Figure 86 Power Report of FFT

Figure 87 Area Report of memory before FFT

74

Figure 88 Area Report of FFT

Figure 89 Timing Report of memory before FFT

Figure 90 Timing Report of FFT

75

ii. Comparison for synthesis results with [25]

Table 14 FFT comparison with [25]

3.4. RESOURCE DE-MAPPER

3.4.1. Block Diagram:

Figure 91 resource element de-mapper block diagram

3.4.2. Interface Table:

Storage Element memory

Table 15 Storage Element Interface Table

Signal Name Direction Width Description

clk_260 INPUT 1-bit Input clock to block

Reset INPUT 1-bit Reset signal

done_FFT INPUT 1-bit The control signal that indicates that FFT output

is ready and resource de-mapper can start

operation

RS_INPUT_REAL INPUT 16-bit Input real data to resource de-mappper

RS_INPUT_IMAG INPUT 16-bit Input imaginary data to resource de-mappper

Done_RS OUTPUT 1-bit The resource de-mapper is full

FFT comparison

Areas in [25]
technology node 0.18
𝜇m

Design area
technology node
45nm

Power in [25]
technology node
0.18𝜇m

Design power technology
node 45nm

0.5314𝑚𝑚2 22890.896427𝜇𝑚2 22.4mW 121.6345 𝜇𝑊

76

RS_subframe OUTPUT 1-bit Subframe number

done_ResourceDemapper OUTPUT 1-bit Resource de-mapper has the subframe ready

Read_REM OUTPUT 1-bit Enable to resource de-mapper

Read_REM_counter OUTPUT 4-bit Counter from 0 to 11 to store in the resource de-

mapper

input_resourceR0 OUTPUT 16-bit Real output parallel of index 0

input_resourceR1 OUTPUT 16-bit Real output parallel of index 1

input_resourceR2 OUTPUT 16-bit Real output parallel of index 2

input_resourceR3 OUTPUT 16-bit Real output parallel of index 3

input_resourceR4 OUTPUT 16-bit Real output parallel of index 4

input_resourceR5 OUTPUT 16-bit Real output parallel of index 5

input_resourceR6 OUTPUT 16-bit Real output parallel of index 6

input_resourceR7 OUTPUT 16-bit Real output parallel of index 7

input_resourceR8 OUTPUT 16-bit Real output parallel of index 8

input_resourceR9 OUTPUT 16-bit Real output parallel of index 9

input_resourceR10 OUTPUT 16-bit Real output parallel of index 10

input_resourceR11 OUTPUT 16-bit Real output parallel of index 11

input_resourceI0 OUTPUT 16-bit Imaginary output parallel of index 0

input_resourceI1 OUTPUT 16-bit Imaginary output parallel of index 1

input_resourceI2 OUTPUT 16-bit Imaginary output parallel of index 2

input_resourceI3 OUTPUT 16-bit Imaginary output parallel of index 3

input_resourceI4 OUTPUT 16-bit Imaginary output parallel of index 4

input_resourceI5 OUTPUT 16-bit Imaginary output parallel of index 5

input_resourceI6 OUTPUT 16-bit Imaginary output parallel of index 6

input_resourceI7 OUTPUT 16-bit Imaginary output parallel of index 7

input_resourceI8 OUTPUT 16-bit Imaginary output parallel of index 8

input_resourceI9 OUTPUT 16-bit Imaginary output parallel of index 9

input_resourceI10 OUTPUT 16-bit Imaginary output parallel of index 10

input_resourceI11 OUTPUT 16-bit Imaginary output parallel of index 11

Resource De-mapper

Table 16 Resource De-mapper interface table

Signal Name Direction Width Description

clk_260 INPUT 1-bit Input clock to block

Reset INPUT 1-bit Reset signal

done_FFT INPUT 1-bit The control signal that indicates that

FFT output is ready and resource

de-mapper can start operation

Read_REM INPUT 1-bit Enable to resource de-mapper

Read_REM_counter INPUT 4-bit Counter from 0 to 11 to store in the

resource de-mapper

input_resourceR0 INPUT 16-bit Real output parallel of index 0

input_resourceR1 INPUT 16-bit Real output parallel of index 1

input_resourceR2 INPUT 16-bit Real output parallel of index 2

input_resourceR3 INPUT 16-bit Real output parallel of index 3

input_resourceR4 INPUT 16-bit Real output parallel of index 4

input_resourceR5 INPUT 16-bit Real output parallel of index 5

77

input_resourceR6 INPUT 16-bit Real output parallel of index 6

input_resourceR7 INPUT 16-bit Real output parallel of index 7

input_resourceR8 INPUT 16-bit Real output parallel of index 8

input_resourceR9 INPUT 16-bit Real output parallel of index 9

input_resourceR10 INPUT 16-bit Real output parallel of index 10

input_resourceR11 INPUT 16-bit Real output parallel of index 11

input_resourceI0 INPUT 16-bit Imaginary output parallel of index 0

input_resourceI1 INPUT 16-bit Imaginary output parallel of index 1

input_resourceI2 INPUT 16-bit Imaginary output parallel of index 2

input_resourceI3 INPUT 16-bit Imaginary output parallel of index 3

input_resourceI4 INPUT 16-bit Imaginary output parallel of index 4

input_resourceI5 INPUT 16-bit Imaginary output parallel of index 5

input_resourceI6 INPUT 16-bit Imaginary output parallel of index 6

input_resourceI7 INPUT 16-bit Imaginary output parallel of index 7

input_resourceI8 INPUT 16-bit Imaginary output parallel of index 8

input_resourceI9 INPUT 16-bit Imaginary output parallel of index 9

input_resourceI10 INPUT 16-bit Imaginary output parallel of index

10

input_resourceI11 INPUT 16-bit Imaginary output parallel of index

11

channel_estimation_address_row0 INPUT 4-bit Channel estimation address for first

row

channel_estimation_address_column0 INPUT 4-bit Channel estimation address for first

column

channel_estimation_address_row1 INPUT 4-bit Channel estimation address for

second row

channel_estimation_address_column1 INPUT 4-bit Channel estimation address for

second column

channel_equalization_address_column1 INPUT 4-bit Channel equalization address

column

fine_address_row INPUT 4-bit Fine address row

fine_address_column INPUT 4-bit Fine address column

channel_estimation_Real_0 OUTPUT 16-bit Channel estimation real data of

index 0

channel_estimation_imag_0 OUTPUT 16-bit Channel estimation imaginary data

of index 0

channel_estimation_real_1 OUTPUT 16-bit Channel estimation real data of

index 1

channel_estimation_imag_1 OUTPUT 16-bit Channel estimation imaginary data

of index 1

channel_equalization_real_0 OUTPUT 16-bit Channel equalization real data of

index 0

channel_equalization_imag_0 OUTPUT 16-bit Channel equalization imaginary

data of index 0

channel_equalization_real_1 OUTPUT 16-bit Channel equalization real data of

index 1

channel_equalization_imag_1 OUTPUT 16-bit Channel equalization imaginary

data of index 1

78

channel_equalization_real_2 OUTPUT 16-bit Channel equalization real data of

index 2

channel_equalization_imag_2 OUTPUT 16-bit Channel equalization imaginary

data of index 2

channel_equalization_real_3 OUTPUT 16-bit Channel equalization real data of

index 3

channel_equalization_imag_3 OUTPUT 16-bit Channel equalization imaginary

data of index 3

channel_equalization_real_4 OUTPUT 16-bit Channel equalization real data of

index 4

channel_equalization_imag_4 OUTPUT 16-bit Channel equalization imaginary

data of index 4

channel_equalization_real_5 OUTPUT 16-bit Channel equalization real data of

index 5

channel_equalization_imag_5 OUTPUT 16-bit Channel equalization imaginary

data of index 5

channel_equalization_real_6 OUTPUT 16-bit Channel equalization real data of

index 6

channel_equalization_imag_6 OUTPUT 16-bit Channel equalization imaginary

data of index 6

channel_equalization_real_7

OUTPUT 16-bit Channel equalization real data of

index 7

channel_equalization_imag_7 OUTPUT 16-bit Channel equalization imaginary al

data of index 7

channel_equalization_real_8 OUTPUT 16-bit Channel equalization real data of

index 8

channel_equalization_imag_8 OUTPUT 16-bit Channel equalization imaginary

data of index 8

channel_equalization_real_9 OUTPUT 16-bit Channel equalization real data of

index 9

channel_equalization_imag_9 OUTPUT 16-bit Channel equalization imaginary

data of index 9

channel_equalization_real_10 OUTPUT 16-bit Channel equalization real data of

index 10

channel_equalization_imag_10 OUTPUT 16-bit Channel equalization imaginary

data of index 10

channel_equalization_real_11 OUTPUT 16-bit Channel equalization real data of

index 11

channel_equalization_imag_11

OUTPUT 16-bit Channel equalization imaginary

data of index 11

fine_real OUTPUT 16-bit Fine real output

fine_imag OUTPUT 16-bit Fine imaginary output

3.4.3. Function of the design:

The block is divided into two modules the first one is a storage element memory consists of a memory

16×14 that stores the output of the FFT and when a whole subframe is ready an enable signal is raised to

let the resource element de-mapper get the symbols column by column so it takes 14 clock cycle to fill the

resource de-mapper. Thus, the time in which the resource de-mapper is kept unchanged for approximately

1ms as stated in the standard.[5]

79

The main reason for having the storage element memory is that it takes 128 clocks cycle to get a new OFDM

symbol, so the data would change in less than 1ms and it is important for blocks that follow the resource

de-mapper performance as they need the data to stay for a period of time till they finish their operation. For

instance, the channel equalization is working after the channel estimation is done so if the data in the

resource de-mapper is changed the channel estimation cannot work correctly.

The channel estimation, channel equalization, fine can access the memory using the row and column

address and the process of accessing the memory with the address and get the data works as a combinational

process.

Figure 92 Time multiplexing between NB-IoT downlink physical channels and signals [3]

The subframe 5 contains the NPSS as shown in fig 5 used by the coarse synchronization so it is not passing through

the chain and subframe 9 which contains the NSSS is also not passing through the chain, as well. Therefore, the

subframe number is 0, 1, 2, 3, 4, 6, 7, 8 instead of from 0 to 9.

In the storage element memory, the bit-reversing operation for the FFT output takes place, so the symbols stored

in this memory are in-order. Then, when transferring the data from storage element memory to resource element de-

mapper the symbols are resorted as the last six symbols stored in first six symbols and the first six symbols are stored

in last six places in memory as shown in table 3.

Table 17 Bit-reversing operation

FFT output out-of order FFT output Index in which data stored in in the

Resource De-mapper

0 0 6

1 8

2 4 10

3 12 2

4 2 8

5 10 0

6 6

7 14 4

8 1 7

9 9

10 5 11

11 13 3

12 3 9

13 11 1

14 7

15 15 5

80

3.4.4. Design Interface:

Figure 93 interface block diagram

The resource de-mapper is taking the output of the FFT then the output is stored in its memory to be then

used by the channel estimation, channel equalization and fine using the row and column address.

3.4.5. Design Specification

• Clock used is 260ns

• Block latency is 3581 clock cycle

81

3.4.6. Simulation Results:

3.4.6.1. MATLAB Results:

Figure 94 resource element de-mapper MATLAB results

3.4.6.2. RTL Results:

Figure 95 resource element de-mapper RTL simulation

82

Figure 96 Storage element memory

Figure 97 Resource De-mapper memory

3.4.6.3. Synthesis Reports:

Screenshots for synthesis results

Figure 98 Storage Element Power Report

83

Figure 99 Resource element De-mapper Power Report

Figure 100 Storage Element Area Report

84

Figure 101 Resource Element De-Mapper Area Report

Figure 102 Storage Element Timing Report

Figure 103 Resource Element De-Mapper Timing Report

85

3.5. Channel Estimation
3.5.1. Block Diagram:

Channel

Estimation

CLK

RST

RM_done

NRS_values_done

NRS_LOC_done

4-bit
NRS_LOC_data

16-bit

16-bit

16-bit

16-bit

4-bit

4-bit

4-bit

4-bit

RM_real_1

RM_imag_1

RM_real_2

RM_imag_2

RM_row_1

RM_col_1

RM_row_2

RM_col_2

16-bit

16-bit

16-bit

16-bit

3-bit

3-bit

NRS_real_1

NRS_imag_2

NRS_add_1

NRS_add_2

NRS_imag_1

NRS_real_2

16-bit
H6_real

16-bit
H1_real

16-bit
H1_imag

16-bit
H2_real

16-bit
H2_ imag

16-bit
H3_real

16-bit
H3_ imag

16-bit
H4_real

16-bit
H4_ imag

16-bit
H5_real

16-bit
H5_ imag

16-bit
H6_ imag

16-bit
H12_real

16-bit
H7_real

16-bit
H7_imag

16-bit
H8_real

16-bit
H8_ imag

16-bit
H9_real

16-bit
H9_ imag

16-bit
H10_real

16-bit
H10_ imag

16-bit
H11_real

16-bit
H11_ imag

16-bit
H12_ imag

Have_finished

Figure 104 Channel Estimation Block Diagram

86

3.5.2. Interface Table:

Table 18 Channel Estimation interface table

Signal Name
Directi

on
Width Description

CLK Input 1-bit Clock of the system 520 ns

RST Input 1-bit Reset of the system

RM_done Input 1-bit
Output Resource Mapper enable to be high after symbols

storing finished

NRS_values_done Input 1-bit
Output NRS values enable to be high after NRS values storing

finished

NRS_LOC_done Input 1-bit
Output NRS indices enable to be high after NRS indices storing

finished

RM_real_1 Input 16-bits Received real value pilots of the 1st slot

RM_imag_1 Input 16-bits Received imaginary value pilots of the 1st slot

RM_real_2 Input 16-bits Received real value pilots of the 2nd slot

RM_imag_2 Input 16-bits Received imaginary value pilots of the 2nd slot

NRS_real_1 Input 16-bits Transmitted real value pilots of the 1st slot

NRS_imag_1 Input 16-bits Transmitted imaginary value pilots of the 1st slot

NRS_real_2 Input 16-bits Transmitted real value pilots of the 2nd slot

NRS_imag_2 Input 16-bits Transmitted imaginary value pilots of the 2nd slot

NRS_LOC_data Input 4-bits Indices values of the received pilots

RM_row_1 Output 4-bits
1st Address of the rows to get the data from the Resource

Mapper

RM_col_1 Output 4-bits
1st Address of the columns to get the data from the Resource

Mapper

RM_row_2 Output 4-bits
2nd Address of the rows to get the data from the Resource

Mapper

RM_col_2 Output 4-bits
2nd Address of the columns to get the data from the Resource

Mapper

NRS_add_1 Output 3-bits
Address for the Transmitted/Generated Pilots of the 1st slot and

the indices values.

NRS_add_2 Output 3-bits Address for the Transmitted/Generated Pilots of the 2nd slot.

H1_real Output 16-bits 1st sub-carrier real channel frequency response(𝐻𝐿𝑆).
H1_imag Output 16-bits 1st sub-carrier imaginary channel frequency response(𝐻𝐿𝑆).
H2_real Output 16-bits 2nd sub-carrier real channel frequency response(𝐻𝐿𝑆).
H2_imag Output 16-bits 2nd sub-carrier imaginary channel frequency response(𝐻𝐿𝑆).
H3_real Output 16-bits 3rd sub-carrier real channel frequency response(𝐻𝐿𝑆).
H3_imag Output 16-bits 3rd sub-carrier imaginary channel frequency response(𝐻𝐿𝑆).
H4_real Output 16-bits 4th sub-carrier real channel frequency response(𝐻𝐿𝑆).
H4_imag Output 16-bits 4th sub-carrier imaginary channel frequency response(𝐻𝐿𝑆).
H5_real Output 16-bits 5th sub-carrier real channel frequency response(𝐻𝐿𝑆).
H5_imag Output 16-bits 5th sub-carrier imaginary channel frequency response(𝐻𝐿𝑆).
H6_real Output 16-bits 6th sub-carrier real channel frequency response(𝐻𝐿𝑆).
H6_imag Output 16-bits 6th sub-carrier imaginary channel frequency response(𝐻𝐿𝑆).
H7_real Output 16-bits 7th sub-carrier real channel frequency response(𝐻𝐿𝑆).
H7_imag Output 16-bits 7th sub-carrier imaginary channel frequency response(𝐻𝐿𝑆).

87

H8_real Output 16-bits 8th sub-carrier real channel frequency response(𝐻𝐿𝑆).
H8_imag Output 16-bits 8th sub-carrier imaginary channel frequency response(𝐻𝐿𝑆).
H9_real Output 16-bits 9th sub-carrier real channel frequency response(𝐻𝐿𝑆).
H9_imag Output 16-bits 9th sub-carrier imaginary channel frequency response(𝐻𝐿𝑆).
H10_real Output 16-bits 10th sub-carrier real channel frequency response(𝐻𝐿𝑆).
H10_imag Output 16-bits 10th sub-carrier imaginary channel frequency response(𝐻𝐿𝑆).
H11_real Output 16-bits 11th sub-carrier real channel frequency response(𝐻𝐿𝑆).
H11_imag Output 16-bits 11th sub-carrier imaginary channel frequency response(𝐻𝐿𝑆).
H12_real Output 16-bits 12th sub-carrier real channel frequency response(𝐻𝐿𝑆).
H12_imag Output 16-bits 12th sub-carrier imaginary channel frequency response(𝐻𝐿𝑆).

Have_finished Output 1-bit
Output Enable from the channel estimation to indicate that

calculation of all channel frequency responses finished

3.5.3. Function of the design:

Channel estimation process take several stages to get the channel frequency response to the equalizer

to compensate the effect of the channel:

1. Get the Transmitted/Generated pilots out from the NRS generator.

2. Get the Received pilots out from the Resource Mapper.

3. Calculate the channel frequency response.

4. Store the four channel frequency responses got from the eight pilots.

5. Interpolate the output to get finally the twelve channel frequency responses to the equalizer.

3.5.4. Block Specification:

• Rate: the clock used is 520 ns

• Latency: the design is pipeline to use the same hardware with low latency so it uses 7 clock cycles

to get the finish enable high.

 Get

Data

Get

Data

Complex

Multiplier

MEM Interpolation

Tx_1

Rx_1

Tx_1

Rx_1
Complex

Multiplier

RM
NRS_v

NRS_L

RM
NRS_v

NRS_L

H

Figure 105 Channel Estimation Block

diagram

88

3.5.5. Detailed Design Implementation:

A. Get Data from the RM and the NRS generator:

B. Calculate the channel frequency response using pilots:

Get

Data

CLK

RST

Done_All

NRS_LOC_data

4-bit

16-bit
RM_data_1

16-bit

RM_add_1

RM_data_2
4-bit

RM_add_2

4-bit

16-bit
NRS_data_1

16-bit

NRS_add_1

16-bit
NRS_data_2

16-bit

NRS_add_2

16-bit
Tx_data_1

16-bit
Rx_data_1

16-bit
Tx_data_1

16-bit
Rx_data_1

3-bit

1st_NRS_index

The purpose of this block is to get the data

synchronously from the Resource Mapper and

the NRA generator to provide the transmitted

and received pilots to the complex multiplier.

Timing is very important in this block, as each

pilot taken to the first path should be equal in

the sub carrier but differ in the slot number

from that taken to the second path.

So that we can take the average of the right

pilots.

This stage is corresponding to the divider (𝑥−1𝑦)

but to optimize in area and hardware so we

benefit from the idea of that the value of any

pilot is 1
√2
⁄ whatever the sign is.

Hence, conjugate will transfer the division

operation into multiplication operation and the

shift lift operation divide the value by two.

Then the output from the two paths added to take

the average.

(±
1

√2
±
1

√2
𝑖) (±

1

√2
∓
1

√2
𝑖) = 1

Complex

Multiplier
16-bit

Tx_data_1

16-bit
Rx_data_1

16-bit

h_data_1

RST

Figure 106 Channel Estimation-Get Data Block

Diagram

Figure 107 Channel Estimation-Complex

Multiplier Block Diagram

89

C. Register file to store the four channels

frequency response:

D. Interpolation:

Register

file
16-bit

h_data

16-bit

h_data_1

16-bit

h_data_2

16-bit

h_data_3

16-bit

h_data_4

CLK

RST

w_enable

2-bit

w_add

Sequential block to store the values of the

channel frequency response for the four sub-

carriers that contain the eight pilots.

Interpolation

RST

16-bit

h_data_1

16-bit

h_data_2

16-bit
h_data_3

16-bit
h_data_4

3-bit

Index_1st_NRS

16-bit

h_data_1

16-bit
h_data_2

16-bit

h_data_3

16-bit
h_data_4

16-bit
h_data_5

16-bit

h_data_6

16-bit

h_data_7

16-bit

h_data_8

16-bit

h_data_9

16-bit

h_data_10

16-bit

h_data_11

16-bit

h_data_12

Combinational block and its function are to

calculate the linear interpolation of the four

pilots to get the twelve channel frequency

responses.

The idea based on two MUXs one with 2-bits

selection and the other with 1-bit selection to

get the 6 possible probabilities according to the

different of the location of each input channel

frequency response as it depend on the 𝑁𝐼𝐷
𝑐𝑒𝑙𝑙.

So, the input "index_1st_NRS" come from the

NRS Location generator used as the selection of

the two MUXs according to the Location of the

first pilot that change when 𝑁𝐼𝐷
𝑐𝑒𝑙𝑙 change.

Figure 108 Channel Estimation-Register file Block

Diagram

Figure 109 Channel Estimation-Interpolation Block Diagram

90

3.5.6. Design Interface:

Channel Estimation block communicate with four blocks:

Provide the input data from NRS values generator, NRS Location generator, and the Resource

mapper

Support its output channel frequency response data to the channel equalizer

3.5.7. Simulation Results:

3.5.7.1. MATLAB Results:

H

Pilot Generator

Channel
Estimation

Channel
Equalizer

Resource
mapper

NRS_LOC NRS_V_Tx

NRS_V_Rx

Figure 110 Channel Estimation interface block diagram

Figure 111 Channel Estimation performance

The performance of channel

estimation calculated with the BER.

So, the BER < 10% for SNR > 3 dB.

Test case depend on take BER

average of 10 different input data

repetitions for each SNR value.

91

3.5.7.2. RTL Results:

Table 19 Channel Estimation interface table

Expected output: Actual output:

0 0

1 1.001953125

2 2.00390625

3 3

2.25 2.25390625

1.5 1.5029296875

0.75 0.75

1.5 1.5029296875

2.25 2.25390625

3 3

3.75 3.751953125

4.5 4.502929688

3.5.7.3. Synthesis Reports:

The Input assumptions:

NRS_done = 1; Tx_real = 1,2,1,2 2,2,1,1

LOC_done = 1; NRS_LOC = 0,3,6,9 0,3,6,9

RM_done = 1; Rx_real = 0,2,4,6 0,1,2,3

Figure 112 RTL Channel estimation real outputs

with fixed-point approximation

Figure 113 RTL Channel estimation area report

92

Figure 114 RTL Channel estimation power report

Figure 115 RTL Channel estimation timing report

93

3.6. NRS Value Generation
3.6.1. Block Diagram:

3.6.2. Interface Table:

Table 20 NRS generator interface table

Signal Name Direction Width Description

CLK Input 1-bit
The clock for the synchronous blocks should be fast

clock due to the very high latency

RST Input 1-bit To the reset the block

RM_done Input 1-bit
To start and restart when the resource mapper finish

storing data

𝑁𝐼𝐷
𝑐𝑒𝑙𝑙 Input 9-bits Input to get the NRS Location

Subframe_num Input 4-bits Number of the sub frame ranged from 0 to 9

CH_add_1 Input 3-bits
Address for 1st path of the Channel estimation that read

NRS

Pilots_finish

RST

CLK

NRS

Generator

16-bit

16-bit

16-bit

16-bit

3-bit

3-bit

RM_done

9-bit
𝑁𝐼𝐷
𝑐𝑒𝑙𝑙

4-bit
Subframe_num

Real_Fine_data

Imag_Fine_data

Fine_add

16-bit

16-bit

3-bit

Real_CH_data_1

Imag_CH_data_1

CH_add_1

Real_CH_data_2

Imag_CH_data_2

CH_add_2

Figure 116 NRS Generator Block Diagram

94

CH_add_2 Input 3-bits
Address for 2nd path of the Channel Estimation that

read NRS

Fine_add Input 3-bits
Address for the Fine Synchronization block that read

NRS

Real_CH_data_1 Output 16-bits
Real NRS data output from the pilot generation to the

Channel Estimation 1st path

Imag_CH_data_1 Output 16-bits
Imaginary NRS data output from the pilot generation

to the Channel Estimation 1st path

Real_CH_data_2 Output 16-bits
Real NRS data output from the pilot generation to the

Channel Estimation 2nd path

Imag_CH_data_2 Output 16-bits
Imaginary NRS data output from the pilot generation

to the Channel Estimation 2nd path

Real_Fine_data Output 16-bits
Real NRS data output from the pilot generation to the

Fine Synchronization

Imag_Fine_data Output 16-bits
Imaginary NRS data output from the pilot generation

to the Fine Synchronization

Pilots_finish Output 1-bit
The output to indicate the finish of the pilot generation

process

3.6.3. Function of the design:

The NRS Generation Block aim to generate the real and imaginary values of the narrowband reference

signals and store them in a right order inside a register file to be available.

The sequence of generating NRS real and imaginary values is:

1. Get the second m-sequence generator.

2. Use Lift Feedback Shift Register to get the required sequence.

3. Get the values of the pilots according to the fixed point and the sequence result

"16'b111111_01_00101011 / 16'b000000_1011010101".

4. Store the final values inside a register file in a right order.

3.6.4. Block Specification:

• Rate: the clock used is 130 ns

• Latency: 6424 clock cycle.

Figure 117 NRS values generator Block diagram

1

0
1
√2
⁄

−1
√2
⁄

𝑥1

𝑥2

95

3.6.5. Detailed Design Implementation:

A. 𝐶𝑖𝑛𝑖𝑡 initializing of second m-sequence:

B. LFSR with parallel input to generate the pilots for each sub frame:

Second

m-sequence

GEN

9-bit

𝑁𝐼𝐷
𝑐𝑒𝑙𝑙

4-bit

16-bit

Init_out

RST

CLK

LFSR

31-bit

Pilots_finish

3-bit

Add

16-bit

NRS_out

i_e

r_e

It is a combinational block used to get the

initial value of the second m-sequence

With an assumption that 𝑁𝐼𝐷
𝑐𝑒𝑙𝑙 dose not

change in the middle of the data

transmission, so there are no extra hardware

to check the variations of the 𝑁𝐼𝐷
𝑐𝑒𝑙𝑙 and

whenever 𝑁𝐼𝐷
𝑐𝑒𝑙𝑙 changes the Init_out will

changes immediately.

Also, for the number of the sub-frame as the

number cannot change in the middle of a

sub-frame so no hardware check for its

variations and whenever sub-frame number

changes the Init_out changes immediately.

Subframe_num

Depends mainly on two counters to calculate the

pilots with least area and power and use fast

clock to compensate the large delay.

The enables and address used to store the pilots

inside the register file well and the finish indicate

that the storing process finished.

As a general goal to get the pilots, I use only two

LFSR to generate NRS that may be optimal.

As for case of only one LFSR I will use a

temporarily memory that mean extra hard ware

and the latency will be very large that make me

use a very fast clock then more power.

Also, for use more than two LFSR that mean

very low latency but extra huge area and power.

Init_in

Figure 118 NRS generator Second m-sequence

Generator block diagram

Figure 119 NRS Generator LFSR Block

diagram

96

C. Register file to store the pilots during the sub frame to be used by the channel estimation and fine

Synchronization blocks:

3.6.6. Design Interface:

Three Blocks must communicate with the NRS Generator:

Provide sub-frame number from the synchronization block path by FFT block.

Support NRS output data to the Channel Estimator block for using them to estimate the channel.

Support NRS output data to the Fine Synchronization block for using in a synchronization algorism.

NRS

Register

file

CLK

RST

16-bit

Real_data

3-bit

Real_add

16-bit

Imag_data

16-bit

Imag_add

16-bit

16-bit

Real_CH_data_1

3-bit
CH_add_1

Imag_CH_data_1

16-bit

16-bit

Real_CH_data_2

3-bit
CH_add_2

Imag_CH_data_2

16-bit

16-bit

3-bit

Real_Fine_data

Imag_Fine_data

Fine_add

r_e

i_e

NRS_values

Pilot
Generator

Fine
Synchronization

FFT
𝒏𝒔

NRS_values
Channel

Estimation

Figure 121 NRS values generator interface Block diagram

Figure 120 NRS generator Register files block diagram

97

3.6.7. Simulation Results:

3.6.7.1. MATLAB Results:

3.6.7.2. RTL Results:

• Assuming inputs: 𝑁𝐼𝐷
𝑐𝑒𝑙𝑙 = 1, Sub Frame number = 0

Figure 123 NRS Values generated by created

MATLAB function for sub frame number = 6

Figure 122 NRS Values generated by built in

MATLAB function for sub frame number = 6

Figure 124 NRS Values generated by RTL block

Figure 125 NRS Values generated from the MATLAB

98

3.6.7.3. Synthesis Reports:

Figure 127 NRS Values generation block area report

Figure 126 NRS Values generation block power report

Figure 128 NRS Values generation block timing report

99

3.7. NRS Index Generation

3.7.1. Block Diagram:

3.7.2. Interface Table:

Table 21 NRS Index Generator interface table

Signal Name Direction Width Description

CLK Input 1-bit The Clock of the system.

RST Input 1-bit The reset of the system.

𝑁𝐼𝐷
𝑐𝑒𝑙𝑙 Input 9-bits 𝑁𝐼𝐷

𝑐𝑒𝑙𝑙is an input to the block.

CH_NRS_index_add Input 3-bits
The address the Channel Estimation used to get the

indices values.

Fine_NRS_index_add Input 3-bits
The address the Fine Synchronization used to get

the indices values.

CH_NRS_index Output 4-bits The indices values out to the Channel Estimation.

NRS Index

Generator

RST

CLK

Finish_store

9-bit

𝑁𝐼𝐷
𝑐𝑒𝑙𝑙

4-bit

CH_NRS_index

3-bit

CH_NRS_index_add

3-bit

4-bit

Fine_NRS_index

Fine_NRS_index_add

4-bit

NRS_index_out_1

4-bit

NRS_index_out_2

4-bit

NRS_index_out_3

4-bit

NRS_index_out_4

Figure 129 NRS Index Generator Block Diagram

100

• Rate: the clock used is 130 ns

• Latency: 8/519 clock cycle

varies according to the

input 𝑁𝐼𝐷
𝑐𝑒𝑙𝑙 .

Fine_NRS_index Output 4-bits The indices values out to the Fine Synchronization.

NRS_index_out_1 Output 4-bits The 1st index value out to the NRS Removal.

NRS_index_out_2 Output 4-bits The 2nd index value out to the NRS Removal.

NRS_index_out_3 Output 4-bits The 3rd index value out to the NRS Removal.

NRS_index_out_4 Output 4-bits The 4th index value out to the NRS Removal.

Finish_store Output 1-bit The done flag indicate that the Generation finished

3.7.3. Function of the design:

The NRS Location Generator block aim to generate the indices values of the pilot according to the

variation of the 𝑁𝐼𝐷
𝑐𝑒𝑙𝑙.

The Sequence to generate the indices values is:

1. Get the 𝑁𝐼𝐷
𝑐𝑒𝑙𝑙 as an input and calculate 𝑚𝑜𝑑𝑒(𝑁𝐼𝐷

𝑐𝑒𝑙𝑙 , 6) using counter to be synthesized operation.

2. Get the eight indices of the pilots for the current 𝑁𝐼𝐷
𝑐𝑒𝑙𝑙.

3. Store the values inside a Register File.

3.7.4. Block Specification:

3.7.5. Detailed Design Implementation:

1. Calculate modulus operation:

2.

Mode-6

RST

CLK

9-bit

𝑁𝐼𝐷
𝑐𝑒𝑙𝑙

3-bit

𝑁𝐼𝐷
𝑐𝑒𝑙𝑙𝑜𝑢𝑡

Done

It is a sequential block based on a counter technique to get the modulus of six and use flag to re-

calculate it when 𝑁𝐼𝐷
𝑐𝑒𝑙𝑙 change.

However, according to the assumption of constant 𝑁𝐼𝐷
𝑐𝑒𝑙𝑙 which mean that it does not change in

the middle of the data transmission so any change of it will make an immediate change in the

output of the modules and no extra hardware used to check for the variations of 𝑁𝐼𝐷
𝑐𝑒𝑙𝑙

 The "Done" signal of this block get out

when the 𝑚𝑜𝑑𝑒(𝑁𝐼𝐷
𝑐𝑒𝑙𝑙 , 6) finishes so an

XOR used between the value of 𝑁𝐼𝐷
𝑐𝑒𝑙𝑙 and

the counter to be one only when the

counter reach the same value as the

input 𝑁𝐼𝐷
𝑐𝑒𝑙𝑙.

Mode (%6)

MEM

NcellID

Figure 130 NRS Location generator Block

diagram

Figure 131 NRS index GEN mod-6 Block Diagram

101

1. Get each index corresponding to each pilot:

2. Register file to store the eight indices for the eight pilots of the current 𝑁𝐼𝐷
𝑐𝑒𝑙𝑙:

W_enable

Indices

Generator 3-bit

𝑁𝐼𝐷
𝑐𝑒𝑙𝑙𝑜𝑢𝑡

RST

CLK

Mode_done

4-bit

NRS_index_out

Add_out

4-bit

Finish_store

It is a sequential block to get the address

of the places of the indices using counter.

The value of these indices calculated using

the same counter as a selection for a MUX

to get the value of the indices.

NRS

Locations

Generator

4-bit

CH_NRS_index

3-bit

CH_NRS_index_add

RST

CLK

4-bit

Fine_NRS_index

Fine_NRS_index_add

3-bit
4-bit

NRS_index_out

4-bit

NRS_index_out_1

4-bit

NRS_index_out_2

4-bit

NRS_index_out_3

4-bit

NRS_index_out_4

Add_out

4-bit

W_enable

It stores the indices values so that

Channel estimation, fine

Synchronization and NRS Removal

blocks could take them.

It is obvious that the bus to the channel

estimation and fine synchronization is

series while the bus to the NRS

Removal is parallel.

Figure 132 NRS index GEN indices Generator

Figure 133 NRS Locations Generator

102

3.7.6. Design Interface:

Three Blocks must communicate with the NRS Location Generator:

Support NRS indices output data to the Channel Estimation used them to get the received pilots

location.

Support NRS indices output data to fine synchronization used them to get the received pilots

location.

Support NRS indices output data to the NRS Removal to be able to remove the NRS from their

right locations.

3.7.7. Simulation Results:

3.7.7.1. MATLAB Results:

Assume the input of the Matlab created function is 𝑁𝐼𝐷
𝑐𝑒𝑙𝑙 = 1 .

The expected output values of the eight pilots' indices is:

 Table 22 MATLAB results for NRS index with 𝑁𝐼𝐷
𝑐𝑒𝑙𝑙 = 1

 The pilots order The value of index

1st pilot 1

2nd pilot 4

3rd pilot 7

4th pilot 10

5th pilot 1

6th pilot 4

7th pilot 7

8th pilot 10

Figure 135 figure of the MATLAB function output for

𝑁𝐼𝐷
𝑐𝑒𝑙𝑙 = 1

Pilot
Generator

Fine Synchronization

S/P and NRS Removal

Channel Estimation

Figure 134 NRS Location generator Block diagram

NRS_LOC

NRS_LOC

NRS_LOC

103

3.7.7.2. RTL Results:

3.7.7.3. Synthesis Reports:

Figure 136 figure of the MODELSIM function

output for 𝑁𝐼𝐷
𝑐𝑒𝑙𝑙 = 5

Assume the input of the Matlab created function is 𝑁𝐼𝐷
𝑐𝑒𝑙𝑙 = 5 .

The expected output values of the eight pilots' indices is:

 Table 23 MATLAB results for NRS index with 𝑁𝐼𝐷

𝑐𝑒𝑙𝑙 = 5

 The pilots order The value of index

1st pilot 5

2nd pilot 11

3rd pilot 2

4th pilot 8

5th pilot 5

6th pilot 11

7th pilot 2

8th pilot 8

Figure 138 NRS Location Generator block area report

Figure 137 NRS Location Generator block power report

104

Figure 139 NRS Location Generator block timing report

105

3.8. Channel Equalizer
3.8.1. Block Diagram:

3.8.2. Interface Table:
Table 24: interface table of channel equalizer

Signal Name Direction Width Description

𝐈𝐧 Input 16 Symbol real part

𝐐𝐧 Input 16 Symbol imaginary part

𝐈𝐧_𝐜𝐡 Input 16 Estimated channel real part

𝐐𝐧_𝐜𝐡 Input 16 Estimated channel imaginary part

Enable Input 1 Equalizer enable

clk Input 1 Equalizer clock

Rst_n Input 1 Equalizer reset

𝑄(𝑛−1)_𝑐ℎ

 Channel

 Equalizer

Figure 140 : Channel equalizer block

diagram

𝐼(𝑛−1)_𝑐ℎ

𝐼0_𝑐ℎ

…

 Enable

𝑄0_𝑐ℎ

…
.

𝐼𝑛−1

𝐼0

…

𝑄𝑛−1

𝑄0

…
.

clk rst_n

Done

𝐼(𝑛−1)_𝑜𝑢𝑡

𝐼0_𝑜𝑢𝑡

…
…

.

𝑄(𝑛−1)_𝑜𝑢𝑡

𝑄0_𝑜𝑢𝑡

…
…

.

n_slot

Channel Equalizer

106

𝐈𝐧_𝐨𝐮𝐭 Output 16 Equalized symbol real part

𝑸𝐧_𝐨𝐮𝐭 Output 16 Equalized symbol imaginary part

Done Output 1 Signal indicate that equalizer is done

n_slot Output 4 Slot number

3.8.3. Function of the design:

• Real and imaginary parts of symbol are taken from resource de-mapper block.

• Real and imaginary parts of estimated channel taken from estimation block.

• To get the equalized real and imaginary output, we divide real and imaginary parts of symbol

by real and imaginary parts of estimated channel.

3.8.4. Block specification:

• The clock used for the block has period equal 520 ns.

• The block is combinational block.

3.8.5. Detailed block diagram

107

3.8.6. Design Interface:

• 12 value of channel estimation each of them has a real and an imaginary part consists of 16-

bits and 1-bit enable from channel estimator.

• 12 value of symbols in frequency domain each of them has a real and an imaginary part

consists of 16-bits from resource de-mapper.

• 12 value of equalized symbol each of them has a real and an imaginary part consists of 16-

bits and 1-bit done and 4-bit n_slot to P/S and NRS removal block.

3.8.7. Simulation Results:

3.8.7.1. MATLAB Results:

Figure 142: comparison between input symbols and the output after equalization

Figure 143: inputs and outputs of equalizer

108

3.8.7.2. RTL Results:

Figure 144: output of RTL of channel Equalizer

In this simulation case the inputs of RTL are the same as the inputs shown in Figure 144 and in the following

section we will calculate the average error between MATLAB and RTL simulation.

3.8.7.3. Comparison between MATLAB and RTL

Figure 145: comparison between output from MATLAB and RTL

109

Figure 146: average error between MATLAB and RTL results

3.8.7.4. Synthesis Reports:

Figure 147: area report of channel equalizer

Figure 148: timing report of channel equalizer

110

Figure 149: power report of channel equalizer

3.8.7.5. Different designs for the equalizer block

There are two different implementation for channel equalizer block the first design is that every clock

the equalizer has a new output until all resource de-mapper symbols are equalized and based on it the next

block had to operate with clock 12 times of the channel equalizer block in order to out all the parallel data

before the new data comes but after integration we found the we have enough time before the resource de-

mapper filled with new data. So, we changed the design to make the equalizer get new data to be equalized

from resource de-mapper each 12 clock to make the next block operate with same clock. It helps to reduce

the output rate of the whole chain as it is a specification for our project.

111

3.9. Fine Synchronization:
3.9.1. Block Diagram:

Figure 150 Fine Synchronization Block Diagram

3.9.2. Interface Table:
Table 25 Fine Synch interface table

Signal Name Direction Width Description

𝑖_𝑁𝑅𝑆_𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑒𝑑_𝐼 Input 16 bits NRSs signals comes from NRS generation block

𝑖_𝑁𝑅𝑆_𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑒𝑑_𝑄 Input 16 bits NRSs signals comes from NRS generation block

𝑖_𝑁𝑅𝑆_𝑟𝑒𝑐𝑖𝑒𝑣𝑒𝑑_𝐼 Input 16 bits NRSs signals comes from Resource Demapper block

𝑖_𝑁𝑅𝑆_𝑟𝑒𝑐𝑖𝑒𝑣𝑒𝑑_𝑄 Input 16 bits NRSs signals comes from Resource Demapper block

i_NRS_generated_valid Input 1 bit Enable signal from NRS generation Block

i_RM_valid Input 1 bit Enable signal from Resource Demapper Block

i_NRS_recvd_LOC Input 4 bits Location of NRS in resource demappper

o_NRS_recvd_get_LOC Output 3 bits Address to NRS location Register File to get location.

o_NRS_generated_addr Output 3 bits Address to NRS location Register File to get values.

o_NRS_recvd_add_row Output 4 bits Row address to Resource demapper

o_NRS_recvd_add_Col Output 4 bits Column address to Resource demapper

𝑖𝑒𝑛𝑎𝑏𝑙𝑒 Input 1 bit Enable signal for this block

𝑖𝑐𝑙𝑘 Input 1 bit Positive edge clock

𝑖𝑟𝑒𝑠𝑒𝑡 Input 1 bit Reset signal for the block equalizer

𝑜𝑅𝐹𝑂 Output 22 bits Residual Frequency Offset output

Fine

Synchronization

i_NRS_generated_I

o_NRS_recvd_get_LOC

o_NRS_generated_addr

i_NRS_received_I

i_clk

i_reset

i_enable

i_NRS_generated_Q

i_NRS_received_Q

o_NRS_recvd_addr_RO

W

o_NRS_recvd_addr_COLOU

MN

o_RFO

i_NRS_generated_val

id
i_RM_valid

i_NRS_recvd_LOC

112

3.9.3. Function of the design:

Figure 151 Fine Synchronization Detailed Block Diagram

The main idea of the algorithm is as follow:

1. Conjugate product of the two received NRS signals from resource mapper, and do it again in the

two comes from NRS generation.

2. Divide resource mappers product by generation product, this division can be done as complex

multiplier by multiply the conjugate of the denominator.

3. Do this 4 times for each subcarrier that includes couple of pilots. And add them together.

4. Finally calculate the phase using inverse tangent theorem.

3.9.3.1. Arctan generation

Figure 152 Arctan Block Diagram

We use this algorithm to get tan−1 𝑧 , the last stage to get both RTO and RFO as shown in equations in 2.9.

This architecture aims to avoid high power consumption and long latency [42].

From the nature of arctangent function, it is seems to be liner in the range from 𝑧 = [0: 1] which equivalent

to 𝜃 = [0: 45°] , we will calculate in this range and if the imaginary part is greater than real part we will

shift the result by 90°, after that we will map the result angle to one of four quadrant.

We will divide the range, 𝑧 = [0: 1] , from into four linear regions to make sure that every region has a

constant slope. The segments’ slope are chosen to minimize the 𝑀𝑖𝑛𝑖𝑚𝑢𝑚 𝑀𝑒𝑎𝑛 𝑆𝑞𝑢𝑎𝑟𝑒 𝐸𝑟𝑟𝑜𝑟 (𝑀𝑀𝑆𝐸)

between the ideal arctangent function and the approximated one.

𝑀𝑀𝑆𝐸 = min{∫ [tan−1 𝑥 − 𝑝(𝑧)]2𝑑𝑥
1

0

}
(79)

Where: tan−1 𝑥 → 𝑖𝑑𝑒𝑎𝑙 𝑎𝑟𝑐𝑡𝑛𝑔𝑒𝑛𝑡 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 , 𝑝(𝑧) → 𝑎𝑝𝑝𝑟𝑜𝑥𝑖𝑚𝑎𝑡𝑒 𝑎𝑟𝑐𝑡𝑎𝑛𝑔𝑒𝑛𝑡 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛

113

Figure 153 Arctan Curve

3.9.3.1.1. Steps to calculate arctan

Assume that 𝑎 = 𝑥 + 𝑗𝑦

1. We use comparator between 𝑥 and 𝑦, this comparison is used to make sure that the angle will be

between 0 𝑎𝑛𝑑 45°.

2. We use a divider to calculate 𝑧

𝑧 = {

𝑦

𝑥
, 𝑥 > 𝑦

𝑥

𝑦
, 𝑦 > 𝑥

(80)

3. Then substitute in the following equations:

tan−1 𝑧 = {

56𝑧 , 0 < 𝑧 < 0.25
50𝑧 + 1.5 , 0.25 < 𝑧 < 0.5
40𝑧 + 6.5 , 0.5 < 𝑧 < 0.75
32𝑧 + 16 , 0.75 < 𝑧 < 1

(81)

4. If 𝑦 > 𝑥:

𝜃 = 90 − tan−1 𝑧 (82)

3.9.3.1.2. Detailed Block Diagram:

• Sign check Block:

After receiving real and imaginary parts, this block checks the sign of them and send the absolute

values to the next block.

• Prediv Block:

By receiving the absolute values, this block start comparing both with each other, then it maps the

numerator and denominator based on the following:

if 𝑥1 ≥ 𝑦1 → 𝑛𝑢𝑚.= 𝑦1, 𝑑𝑒𝑛 = 𝑥1 and so on.

• Divider:

we used it to divide the two arguments.

114

• Core:

the role of this block is to implement the arctan equation, and our implementation does not use any

multiplier, so if we need to implement e.g. “56𝑧” we will use shifting to left, which is multiply by

two i.e. 56𝑧 = (𝑧 ≪ 5) + (𝑧 ≪ 4) + (𝑧 ≪ 3) and so on.

• Post Block

as described before, we work in the region[0: 45°], so we need to map the angle if it is larger

than[45°]. We must steps of mapping:

1. If 𝑥 > 𝑦 the angle will equal the result from equation, and if 𝑥 < 𝑦 the angle will equal

90° − tan−1 𝑧

2. Second step is to map to other quadrant based on the signs of numerator and denominator

𝜃 =

{

tan−1 𝑧 , 𝑛𝑢𝑚 = +𝑣𝑒 𝑎𝑛𝑑 𝑑𝑒𝑛 = +𝑣𝑒

90 + tan−1 𝑧 , 𝑛𝑢𝑚 = −𝑣𝑒 𝑎𝑛𝑑 𝑑𝑒𝑛 = +𝑣𝑒

180 + tan−1 𝑧 , 𝑛𝑢𝑚 = −𝑣𝑒 𝑎𝑛𝑑 𝑑𝑒𝑛 = −𝑣𝑒

270 + tan−1 𝑧 , 𝑛𝑢𝑚 = +𝑣𝑒 𝑎𝑛𝑑 𝑑𝑒𝑛 = −𝑣𝑒

(83)

3.9.4. Block Specification:

• The clock used for the block has period equal 130 ns.

• Block latency is 60 clock cycle

3.9.5. Design Interface:

• It takes the received pilots (NRS) and the enable signal from resource mapper.

• Also, in the same time it takes the generated pilots and enable signal from NRS generation block.

• The AND operation between the two enable signals starts the Fine block.

• After calculation, the RFO signal sends to CFO block.

3.9.6. Simulation Results:

3.9.6.1. MATLAB Results:

Figure 154 NRS in subframe

Figure 155 Values of NRS

115

Figure 156 Fine Synchronization MATLAB Output

3.9.6.2. RTL Results:

Figure 157 Fine Synchronization RTL Output

116

3.9.6.3. Synthesis Reports:

Figure 158 Fine Synchronization Area Report

Figure 159 Fine Synchronization Power Report

117

Figure 160 Fine Synchronization Timing Report

3.10. P/S and NRS removal:
3.10.1. Block Diagram:

P/S and NRS

removal n_slot

P/S and NRS removal

𝐼𝑛−1

𝐼0

…

𝑄𝑛−1

𝑄0

….

Enable

clk rst_n

𝐼𝑜𝑢𝑡

Done

 𝑄𝑜𝑢𝑡

118

3.10.2. Interface Table:
Table 26 P/S and NRS removal interface table

Signal Name Direction Width Description

𝐈𝐧 Input 16 Symbol real part

𝐐𝐧 Input 16 Symbol imaginary part

Enable Input 1 P/S and NRS removal enable

clk Input 1 P/S and NRS removal clock

Rst_n Input 1 P/S and NRS removal reset

𝐈𝐨𝐮𝐭 Output 16 Symbol real part

𝑸𝐨𝐮𝐭 Output 16 Symbol imaginary part

Done Output 1 Signal indicate that P/S and NRS removal is done

n_slot Input 4 Slot number

nrs_LOC_done Input 1 Enable from channel estimation

Pilot1 Input 4 Location of the first pilot

Pilot2 Input 4 Location of the second pilot

Pilot3 Input 4 Location of the third pilot

Pilot4 Input 4 Location of the fourth pilot

3.10.3. Function of the design:

The function of the design that it changes the parallel input in serial outputs and removing the NRS symbols.

3.10.4. Design specification:

• The clock that the block used has period equal 520 ns.

• Latency of the block is 1 clock cycle.

3.10.5. Design Interface:

• 12 value of equalized symbol each of them has a real and an imaginary part consists of 16-bits and

1-bit enable and 4-bit n_slot from channel equalizer block.

• Real and imaginary part of the symbol each consists of 16-bit and 1-bit done signal to De-

modulation block.

• 1-bit nrs_LOC_done and 4-bit pilot1, pilot2, pilot3 and pilot4 from channel estimation block.

3.10.6. Simulation Results:

3.10.6.1. RTL Results:

Figure 161: output of P/S and NRS removal block

The previous figure shows the output of the block at slot number equal 1 that doesn’t contain NRS symbol.

119

Figure 162: output of P/S and NRS removal

The previous figure shows the output of the block at slot number equal 5 which has 2 NRS symbols so the

output will be 10 serial symbols only as shown.

3.10.6.2. Synthesis Reports:

Figure 163: area report of P/S and NRS removal block

Figure 164: timing report of P/S and NRS removal block

120

Figure 165: power report of P/S and NRS removal block

121

3.11. De-Modulation:
3.11.1. Block Diagram:

3.11.2. Interface Table:
Table 27 De-modulator interface table

Signal Name Direction Width Description

𝑖𝐼 Input 1 bit 𝐼, serial input comes from P/S & NRS removal block

𝑖𝑄 Input 1 bit 𝑄, serial input comes from P/S & NRS removal block

𝑖𝑒𝑛𝑎𝑏𝑙𝑒 Input 1 bit Enable signal comes from P/S & NRS removal block.

𝑖𝑐𝑙𝑘 Input 1 bit Positive edge clock

𝑖𝑟𝑒𝑠𝑒𝑠𝑡 Input 1 bit Asynchronous reset

𝑜𝑑𝑎𝑡𝑎 Output 1 bit Serial output de-mapped data

𝑜𝑣𝑎𝑙𝑖𝑑 Output 1 bit Validation signal for the next block

𝑖𝑟𝑒𝑠𝑒𝑡

De-modulator

𝑖𝐼⬚

𝑖𝑄⬚

𝑖𝑒𝑛𝑎𝑏𝑙𝑒

𝑖𝑐𝑙𝑘

𝑜𝑑𝑎𝑡𝑎

𝑜𝑣𝑎𝑙𝑖𝑑

Figure 166 Demapper Block Diagram

122

3.11.3. Function of the design

• The symbol de-mapper block takes the most significant bit (MSB) of each bus 𝐼, 𝑄 comes from P/S &

NRS removal block then the symbol will be de-mapped based on its sign.

• The inputs of this block are two buses each of them sends 12 serial bits.

• The de-mapper output is serial bits, so it works with double rate of P/S & NRS removal block. As

shown in figure 148.

3.11.4. Design Interface

• As P/S & NRS removal block starts to send it will rise a done signal and it will enable de-mapper block.

• If the de-mapper is enabled, it will enable de-scrambler block.

3.11.5. Simulation Results:

As shown in figure 146, the inputs to de-modulation block and in figure 147 is the output from de-

modulation block. And in figure 148 is the same inputs from MATLAB but in fixed point format and in

figure 148 is the results from RTL for the same inputs.

3.11.5.1. MATLAB Results:

Figure 167 Input to demapper from p/s & NRS removal

Figure 168 MATLAB Output from Demapper

123

3.11.5.2. RTL Results

Figure 169 RTL Output from Demapper

3.11.5.3. Synthesis Results

Figure 170 Demapper Area Report

124

Figure 171 Demapper Power Report

Figure 172 Demapper Timing Report

125

3.12. Descrambling:
3.12.1. Block Diagram:

3.12.2. Interface Table:
Table 28 Descrambler Interface table

Signal Name Direction Width Description

𝑖𝑑𝑎𝑡𝑎(𝐼,𝑄) Input 1 bit 𝐼, 𝑄 as a serial input comes from de-mapper

𝑖𝑖𝑛𝑖𝑡 Input 1 bit Init signal of LFSRs initialization

𝑖𝑛𝑅𝑁𝑇𝐼 Input 16 bits Radio Network Temporary Identifier signal

𝑖𝑛𝑠 Input 1 bit Value first slot of transmission

𝑖𝑛𝑓 Input 1 bit Value first frame of transmission

𝑖𝑁𝐼𝐷
𝐶𝑒𝑙𝑙 Input 9 bits Cell identifier

𝑖𝑐𝑙𝑘 Input 1 bit Positive edge clock

𝑖𝑒𝑛𝑎𝑏𝑙𝑒 Input 1 bit Enable signal comes valid out signal from de-mapping

𝑜𝑑𝑎𝑡𝑎 Output 1 bit Serial output de-scrambled data

𝑜𝑟𝑒𝑎𝑑𝑦_𝑡𝑜_𝑟𝑒𝑐𝑖𝑒𝑣𝑒 Output 1 bit Signal to equalizer block to indicate it to start working

𝑜𝑣𝑎𝑙𝑖𝑑 Output 1 bit Validation signal for the next block

𝑜𝑣𝑎𝑙𝑖𝑑

𝑖𝑑𝑎𝑡𝑎(𝐼,𝑄)

De-Scrambler

𝑖𝑐𝑙𝑘

𝑖𝑟𝑒𝑠𝑒𝑡

𝑜𝑑𝑎𝑡𝑎

𝑖𝑖𝑛𝑖𝑡

𝑖𝑛𝑅𝑁𝑇𝐼

𝑖𝑛𝑠

𝑖𝑁𝐼𝐷𝐶𝑒𝑙𝑙

𝑖𝑒𝑛𝑎𝑏𝑙𝑒

𝑖𝑛𝑓
𝑜𝑟𝑒𝑎𝑑𝑦_ 𝑡𝑜_𝑟𝑒𝑐𝑖𝑒𝑣𝑒

Figure 173 Descrambling Block Diagram

126

3.12.3. Function of the design:

• It takes the initial parameters from upper layer then start to initiate the gold sequence,

initialization takes almost 1600 clock cycle. To solve the issue in timing due to 1600 clock

cycle. We decided to start the initialization of the gold sequence as resource de-mapper

finishes.

• The gold sequence gets generated -after initialization- with code word length Mpn.

• The input data get XORed with gold sequence.

• The gold sequence after finishing the Mpn, the gold sequence reinitiates again to its point.

3.12.4. Design Interface:

• The resource de-mapper gives frame and sub-frame numbers then when the resource de-

mapper finished and rises its done signal the De-scrambling starts to work.

• After initialization, the descrambling sends a ready signal to channel equalizer to control

its work within the time of resource de-mapper existing.

• The interface of de-scrambler with the previous block –de-modulation-, the output of de-

modulation is 24 serial bit which is the code word Mpn and the rate of the de-scrambler is

equal to the rate of the de-modulation.

• There are two cases of stopping descrambling both of them are related to the enable of the

demodulating but the descrambling sense the length of the time slot in the resource de-

mapper, if it is 10 symbols, it stops descrambling and save the remains code to the next slot

as the NRS signals doesn’t descrambled.

• The interface with the next block –rate de-matcher-, once the descrambler starts its

operation, it sends a valid signal to rate de-matcher.

3.12.5. Simulation Results:

As shown in figure 153, the inputs to de-scrambling block and in figures 154, 155, 156, 157 are the output

from de-scrambling for different cases. And in figures 158, 159, 160, 161 is the same inputs from MATLAB

and in figure 158, 159, 160, 161 are the results from RTL for the same inputs.

3.12.5.1. MATLAB Results:

Figure 174 Input to Descrambling from De-mapper

127

Figure 175 MATLAB Output from Descrambling for NcellID = 0, Ns = 2, Nf = 100

Figure 176 MATLAB Output from Descrambling for NcellID = 0, Ns = 3, Nf = 100

Figure 177 MATLAB Output from Descrambling for NcellID = 0, Ns = 3, Nf = 101

128

Figure 178 MATLAB Output from Descrambling for NcellID = 14, Ns = 3, Nf = 101

3.12.5.2. RTL Results:

Figure 179 RTL Output from Descrambling for NcellID = 0, Ns = 2, Nf = 100

Figure 180 RTL Output from Descrambling for NcellID = 0, Ns = 3, Nf = 100

Figure 181 RTL Output from Descrambling for NcellID = 0, Ns = 3, Nf = 101

Figure 182 RTL Output from Descrambling for NcellID = 14, Ns = 3, Nf = 101

129

3.12.5.3. Synthesis Reports:

Figure 183 Descrambling Area Report

Figure 184 Descrambling Power Report

130

Figure 185 Descrambling Timing Report

3.13. Rate De-Matcher
3.13.1. Block Diagram

Clk

Rst

Memory write address

Memory read address

In memory

Out memory

Rate

De-Matcher

Datain

TBS

E

Enable

Dataout1

Dataout2

Dataout2

Ack

16

12

24

16

13

13

Figure 186: Rate De-Matcher Block Diagram

131

3.13.1.1. Detailed Block Diagram

3.13.1.1.1. Bit collection block

3.13.1.1.2. De-interleaver block

Bit

Collection

Memory

Datain

TBS

E

CLK

Enable

RST

Out

memory

Bit stream interleaver

Memory write address

Memory read address

In memory

Ack interleaver

12

24

13

13

16

16

Figure 187: Bit Collection Block Diagram

12

De-

Mux

Address

Control

Unit

Ram2

Ram1

TBS

CLK

RST Ack

Dataout1

Dataout2

Dataout3

Bit stream

interleaver

Enabl

e

Ack

interleaver

Ram3

Ram4

Figure 188 De-interleaver Block Diagram

132

3.13.2. Interface Table

Table 29 De-Rate Matcher Interface Table

Signal Name Direction Width Description

Datain Input 1-bit The input data from Scrambler to the block

TBS

(Transport Block

Size)

Input 12-bits The input size of the transport block from the upper layer.

E Input 24-bits The size of the data input to the block.

Enable Input 1-bit
When enable is 1 that means that the input to the block is valid

data.

Clk Input 1-bit Clock signal.

Rst Input 1-bit Reset signal.

Out memory Input 16-bits The output data from the shared memory to the block.

Memory write

address
Output 13-bits The write address in the shared memory

Memory read

address
Output 13-bits The read address in the shared memory

In memory

output 16-bits The input data to the shared memory from the block

Dataout Output 3-bits The three bits output to the decoder.

Ack Output 1-bit
When Ack is 1 that means that the output to the decoder is valid

data.

3.13.3. Function of the design [49] [50] [51]

1. Bit collection block:

1- Calculating the virtual circular buffer length by using TBS input

2- Comparing the length of virtual circular buffer with the input data length “E”.

3- If “E” is greater than the VCB, the address pointer will reach the end of VCB then repeat from the

beginning and add the data to it.

4- If “E” is equal to the VCB, the address pointer will reach the end of the VCB and will not back to the

beginning.

5- If “E” is less than the VCB, the address will reach “E” then continues with zeros till reach the VCB

length.

6- After filling this memory, the data will be averaged to the number of repetition (which is calculated from

the division of E and the length of the VCB).

7- If this average was smaller than”0.5” the data will be “0”, otherwise it will be “1”.

8- Then the data will be passed to the de-interleaver block.

2. De-interleaver block:

1- Calculating the number of dummy bits as shown in the rate matcher.

2- Calculating the number of rows as shown in the rate matcher.

133

3- Saving the data in memories column by column according to the permutation table as in the transmitter

by taking in consideration the location of dummy bits.

4- After filling the first memory the input data will be saved in the third memory and the data from the first

memory will be passed to the second memory at the same time.

5- Then the remained data will be saved in the fourth memory.

6- After finishing filling the memories, the output will be read from them row by row to the decoder by

skipping the dummy bits location in each ram.

3.13.4. Design Interface

There are three blocks is communicating with this block:

1- De-scrambler block: This is before this block in NPDSCH.

2- Viterbi Decoder: This is after this block in NPDSCH.

3- Shared memory: The bit collection memory is in this part.

3.13.5. Simulation Results

3.13.5.1. MATLAB Results

There are three cases of MATLAB simulations:

1- TBS = 16 and the input data length E = 60

Figure 189Rate De-matcher Output data from MATLAB block for E = 60

134

Figure 190:Rate De-matcher Output data from MATLAB function for E = 60

2- TBS = 16 and the input data length E = 120

Figure 191:Rate De-matcher Output data from MATLAB block for E = 120

135

Figure 192 Rate De-matcher Output data from MATLAB function for E = 120

3- TBS = 16 and the input data length E = 240

Figure 193 Rate De-matcher Output data from MATLAB block for E = 240

Figure 194 Rate De-matcher Output data from MATLAB function for E = 240

136

3.13.5.2. RTL Results

RTL result is as same as MATLAB result as shown in the following figures:

the first figure is RTL simulation for TBS = 16 and data output length E = 120, Dataout is the three bits

output of the block to the decoder. The three figures from MATLAB are determining the three bits output

from the block to compare both RTL and MATLAB outputs.

Figure 195 Rate De-matcher RTL output for E = 120

Figure 196 Rate De-matcher MATLAB dataout1

Figure 197 Rate De-matcher MATLAB dataout2

137

Figure 198 Rate De-matcher MATLAB dataout3

3.13.6. Synthesis Reports

These reports are for the block without the bit collection memory; because it will be a

separate memory will be added.

Figure 199 Rate De-matcher Synthesis area report

Figure 200 Rate De-matcher Synthesis power report

Figure 201 Rate De-matcher Synthesis Timing report

138

3.14. Viterbi Decoder
3.14.1 Block Diagram:

3.14.2 Interface Table:
Table 30: Viterbi Decoder

Signal Name Direction Width Description

Mssg Input 3 Data stream for code rate of 1/3

TBS Input 12 Transport Block size (Upper Layer Parameter)

Indicating the size of the input bit stream.

CLK Input 1 System clk

Reset Input 1 Asynchronous reset

Decoded_Symbol Output 1 Output bit stream

Ack Output 1 Acknowledge signal indicating the validity of the

output bit stream.

Viterbi Decoder

Valid

CLK

Viterbi Decoder

Mssg

 TBS

Decoded_Symbol

ACK

Reset

139

3.14.3 Function of the design:

▪ It calculates a measure of similarity between the received signal and all the trellis paths entering

each state at time.

▪ Remove all the candidates that are not possible based on the maximum likelihood choice.

▪ This path is called the surviving path. This selection of surviving paths is done for all the states

and makes decisions to eliminate some of the least likely paths in early calculation stages to

reduce the decoding complexity.

▪ The data bit (0 or 1) most likely to have caused entry to each state is stored in a table.

▪ After a number of clock cycles, defined by the trace back length, the decoder traces back

through the trellis, outputting the data bits for the most likely survivor path. This operation is

referred to as trace back. Then these bits are passed through a last in, first out (LIFO) structure,

so they are output in the order originally received.

140

3.14.4 Design Interface:

▪ Input stream is saved in a data memory for multiple iterations before the start of the decoding

process.

▪ Decoded sequence is stored in a LIFO (Last in First out) memory in order for data to be passed in

order after the tail biting condition is checked correctly.

3.14.5 Simulation Results:

3.14.5.1 MATLAB Results:

Figure 202: Trellis Structure

141

Figure 203: Next states in Trellis Diagram for (Rate=1/3, K=7)

142

Figure 204: Trellis Diagram

Expected Outputs

143

Figure 205: Path metric Results

Figure 206: Trace back start point

3.14.5.2 . RTL Results:

3.14.1.1. 3.14.5.2.1 BMU Results

Figure 207: Hamming Distances

144

3.14.1.2. 3.14.5.2.2 ACS Results

Figure 208: Adder, Compare and select unit results.

3.14.1.3. 3.14.5.2.3 Trace Back Results

Figure 209: Decoded sequence

145

3.14.5.3 Synthesis Reports:

Figure 210: Power Report

Figure 211: Area Report

Figure 212: Timing Report

146

3.15. Cyclic Redundancy Check
3.15.1. Block Diagram

3.15.1.1. Detailed Block Diagram

Datain

Clk

Rst

Enable

TBS

Cyclic

Redundancy

Check

12

Dataout

Enable second

Ack

Figure 213 CRC Block Diagram

Figure 214: CRC Detailed Block Diagram

147

3.15.2. Interface Table:
Table 31: CRC Interface Table

Signal Name Direction Width Description

Datain Input 1-bit Input data to the block.

TBS Input 12-bits Transport Block Size.

Enable Input 1-bit
When enable is 1 that means that the input to the

block is valid data.
Rst Input 1-bit Reset signal

Clk Input 1-bit Clock signal

Dataout Output 1-bit Output data from the block.

Enable second Output 1-bit
When Enable second is 1 that means that the output

to the decoder is valid data.

Ack Output 1-bit
When Ack is 1 that means that the data is correct,

otherwise the data is wrong.

3.15.3. Function of the design:

1- The input enters this block serial into the 25-shift register.

2- When it reaches the most significant bit, it checks if it is 1 or not.

3- If it was 0, it shifts the input bits to find the first 1 in the data.

4- If it was 1, XOR operation will start with the polynomial.

5- It continues this XOR operation until the data ends.

6- Then checks the last 24 bits if they are 0, that means the data is correct, otherwise the

data is wrong.

3.15.4. Design Interface:

This block is communicating with:

1- The Viterbi decoder.

2- The upper layer.

3.15.5. Simulation Results:

3.15.5.1. MATLAB Results:

This case when TBS = 32, Input data length = 56.

Figure 215: output CRC block

148

Figure 216: output CRC function

3.15.5.2. RTL Results:

This case when TBS = 32, Input data length = 56.

Figure 217: output CRC RTL

Figure 218: output CRC function MATLAB

149

3.15.5.3. Synthesis Reports:

Figure 219: CRC Synthesis power report

Figure 220: CRC Synthesis timing report

Figure 221: CRC Synthesis area report

150

3.16. RAM Sharing
3.16.1. Block Diagram:

Shared RAM

Synchronization Inputs

Rate De-Matcher Inputs

LOCKED

Rate De-Matcher clk

Synchronization clk

Rate De-Matcher outputs

Synchronization outputs

Figure 222 Shared RAM Block Diagram

151

3.16.2. Interface Table:
Table 32 Shared RAM Interface Table

Direction Signal Name Width Description

Synchronization Inputs

Ram0 Enable 1 Ram0 write enable level-sensitive signal

Real Ram1 Enable 1 Real ram1 write enable level-sensitive signal

Imaginary Ram1

Enable
1

Imaginary ram1 write enable level-sensitive

signal

Real Ram2 Enable 1 Real ram2 write enable level-sensitive signal

Imaginary Ram2

Enable
1

Imaginary ram2 write enable level-sensitive

signal

Real Ram3 Enable 1 Real ram3 write enable level-sensitive signal

Imaginary Ram3

Enable
1

Imaginary ram3 write enable level-sensitive

signal

Ram4 Enable 1
Real&Imaginary ram4 write enable level-

sensitive signal

Ram5 Enable 1
Real&Imaginary ram5 write enable level-

sensitive signal

Real Ram6 Enable 1 Real ram6 enable level-sensitive signal

Imaginary Ram6

Enable
1

Imaginary ram6 write enable level-sensitive

signal

Ram7 Enable 1
Real&Imaginary ram7 write enable level-

sensitive signal

Ram0 Address 8 Ram0 read&write address

Ram1 Address 9 Real&Imaginary ram1 read&write address

Ram2 Address 9 Real&Imaginary ram2 read&write address

Ram3 Address 8 Real&Imaginary ram3 read&write address

Ram4 Address 8 Real&Imaginary ram4 read&write address

Ram5 Address 8 Real&Imaginary ram5 read&write address

Ram6 Address 9 Real&Imaginary ram6 read&write address

Write Ram7 Address 11 Real&Imaginary ram7 write address

Read Ram7 Address 11 Real&Imaginary ram7 read address

Ram0 Write Data 16 Ram0 input data

Real Ram1 Write Data 16 Real ram1 input data

Imaginary Ram1 Write

Data
16 Imaginary ram1 input data

Real Ram2 Write Data 16 Real ram2 input data

Imaginary Ram2 Write

Data
16 Imaginary ram2 input data

Real Ram3 Write Data 16 Real ram3 input data

Imaginary Ram3 Write

Data
16 Imaginary ram3 input data

Real Ram4 Write Data 16 Real ram4 input data

Imaginary Ram4 Write

Data
16 Imaginary ram4 input data

Real Ram5 Write Data 16 Real ram5 input data

Imaginary Ram5 Write

Data
16 Imaginary ram5 input data

Real Ram6 Write Data 16 Real ram6 input data

152

Imaginary Ram6 Write

Data
16 Imaginary ram6 input data

Real Ram7 Write Data 16 Real ram7 input data

Imaginary Ram7 Write

Data
16 Imaginary ram7 input data

Synchronization

outputs

Ram0 Read Data 16 Ram0 output data

Real Ram1 Read Data 16 Real ram1 output data

Imaginary Ram1 Read

Data
16 Imaginary ram1 output data

Real Ram2 Read Data 16 Real ram2 output data

Imaginary Ram2 Read

Data
16 Imaginary ram2 output data

Real Ram3 Read Data 16 Real ram3 output data

Imaginary Ram3 Read

Data
16 Imaginary ram3 output data

Real Ram4 Read Data 16 Real ram4 output data

Imaginary Ram4 Read

Data
16 Imaginary ram4 output data

Real Ram5 Read Data 16 Real ram5 output data

Imaginary Ram5 Read

Data
16 Imaginary ram5 output data

Real Ram6 Read Data 16 Real ram6 output data

Imaginary Ram6 Read

Data
16 Imaginary ram6 output data

Real Ram7 Read Data 16 Real ram7 output data

Imaginary Ram7 Read

Data
16 Imaginary ram7 output data

Rate De-Matcher

Output
Out memory 16

The output data from the shared memory to

the block.

Rate De-Matcher

Inputs

Memory write address 13 The write address in the shared memory

Memory read address 13 The read address in the shared memory

In memory

16
The input data to the shared memory from

the block

Sharing RAM Clocks

Rate De-Matcher clk 1 Rate De-Matcher clock 3.846 MHz

Synchronization clk 1 Coarse Synchronization Clock 1.92 MHz

Multiplexing Signal LOCKED 1

A level sensitive signal that indicates the

success and end of the synchronization

procedure

153

Chapter 4

System Integration and Results

4.1. MATLAB integration:
After finishing MATLAB model for block level, a NPDSCH transmitter is designed using MATLAB

built-in functions based on 3GPP standard Release 14. Then we added the channel model ETA with

maximum Doppler shift of 5 Hz, 9 taps, and maximum excess tap delay of 5 us. Then, we added a noise

model using AWGN with minimum required SNR −12.6 𝑑𝐵 for the design. Finally, we added frequency

and time offset, the range of frequency offset is [−35: 35] 𝐾𝐻𝑧 and time offset range [0: 192000] samples.

After transmitter and channel modeling, the receiver chain is added in a generic format to satisfy all TBS

and repetition ranges.

The system is tested for repetitions [1, 32 ,64 ,128, 256, 512, 1024] under SNR ranges [−14: 20]𝑑𝐵 and

the result of the testing is as shown in Figure 223 indicates to Bit Error Rate and Figure 224 indicates to

Block Error Rate.

The results shown are compared with MATLAB model results as in Figure 225. The deference between

our model and the MATLAB model that cause this deference in the graphs are:

• MATLAB model uses a perfect synchronization.

• MATLAB model uses a perfect frequency correction by using exponential as we use cordic in our

chain.

• MATLAB model uses a perfect channel estimation.

• MATLAB model uses a soft symbol de-mapper

• MATLAB model uses a soft decoding.

Figure 223 MATLAB BER Vs SNR

154

Figure 224 MATLAB BLER Vs SNR

Figure 225 BLER Vs SNR for MATLAB and RTL designed model compared with ideal model

155

4.2. RTL integration:
In rates and specification phase we settle on the signal interface for each block and the out rate from

each block that help us in chain integration.

 Integration of the chain is done in 3 parallel levels:

• coarse synchronization, CFO, FFT, and resource de-mapper together.

• Fine Synchronization, Channel Estimation, Channel Equalization, symbol de-mapper, and

descrambler together.

• rate de-matcher, decoding, and CRC together.

By using MATLAB to generate a text file and we make the test bench read it symbol per clock cycle. After

making sure that each group works correctly, we integrated the 3 parts together.

The RTL System is tested with the same way that used in MATLAB, a python script is used to run

MATLAB to generate the files, then run ModelSIM to simulate the design, finally the running MATLAB

again to calculate BER and BLER and the results of the them are as shown in figures 208, 209 respectively.

Figure 226 RTL BER Vs SNR

Figure 227 RTL BLER Vs SNR

156

4.3. Synthesis:
The whole design is synthesized using two tools Synopsys Design Compiler 45 nm and Xilinix

VIVADO 28 nm.

4.3.1. DC results:

Area, power, and latency comparison between all blocks of our final integrated chain is shown in the

following graphs

Figure 228: Area report for each block

Figure 229: Power report for each block

157

Figure 230: Latency for each block

As shown in Figure 231, Figure 232, and Figure 233 the results from DC taking into

consideration that all RAMs assigned as a black box

Figure 231 Whole Chain DC Area Report

158

Figure 232 Whole Chain DC Power Report

Figure 233 Whole Chain DC Timing Report

159

4.3.2. VIVADO results:

Figure 234 VIVADO Utilization for Vertex 7 for Whole Chain

Figure 235 VIVADO power summary for Vertex 7 for Whole Chain

160

4.4. FPGA implementation:
The generated files from MATLAB are stored into a ROM and make the interface of the chain to the

ROM. By using the debugging tools in VIVADO, Virtual Input Output (VIO) and Integrated Logic

Analyzer (ILA), the output should be observed from the chain to make sure that the results are correct.

Also, we used the MCMM in FPGA to generate deferent clock domains to make sure that the phases

between them does not change as time passes.

As shown in Figure 237, the outputs from ILA FPGA: nrsRemoval indicates to the output from P/S & NRS

removal block, demod_concat which indicated to the output from demodulation block, desc_concat which

indicates to the output from descrambler block and out_concat which indicates to the final output from the

chain which all of them are in unsigned radix and they are equal to the results from behavioral simulation

in Figure 236.

Also, the VIO in FPGA we have two push buttons, one for reset button and one for enable button for the

system. If the enable button is 1 and reset button is 1 –negative edge reset- the output from the FPGA is as

same as in simulation, we take a sample from each block to make sure that the blocks work correctly, and

the Final Ack signal indicates that the data is correct as shown in Figure 238.

If the reset signal is 0 and the enable signal 0 or 1 there is no output from the FPGA as shown in Figure

239. Also, if the enable signal is 0 and reset signal is 1 there is no output from the chain as shown in Figure

240.

Figure 236 VIVADO Behavioral Simulation

161

Figure 237 ILA FPGA Output

Figure 238 VIO FPGA Output

162

Figure 239 FPGA Output if reset is 0

Figure 240 FPGA Output if enable 0

163

Chapter 5

Conclusion and Future Work
In this thesis NPDSCH chain implementation have presented. Walked through algorithm design,

hardware implementation, MATLAB and RTL simulations and synthesis for each block in the chain, then

after chain integration, MATLAB and RTL chain simulations, chain synthesis and testing on FPGA

Vertex7. This chain has a maximum rate of 98.666Kbps and a latency of 1.45ms. The chain meets all 3GPP

standard specifications. Our future work is sharing more memory resources across the chain, implementing

soft de-modulation and soft decoding to enhance performance, and optimizing on block level to reduce area

and power.

164

References
[1] Narrow Band LTE- NB-IoT – Codeplayon, Codeplayon.

[2] NB-IoT Applications in Smart Grid: Survey and Research Challenges

[3] Evolution of NB-IoT and its implementation, simnovus.

[4] Enhancements of Narrowband IoT in 3GPP Rel-14 and Rel-15 Rapeepat Ratasuk, Nitin

Mangalvedhe, Zhilan Xiong, Michel Robert, David Bhatoolaul Mobile Radio Research Lab, Nokia

Bell Labs.

[5] 3GPP TS_136211 V14.11.0 (2019-06).

[6] Y. E. Wang et al., “A Primer on 3GPP Narrowband Internet of Things (NB- IoT),” CoRR, vol.

abs/1606.04171, 2016.

[7] Qualcomm Incorporated, “NB-PSS and NB-SSS Design,” 3GPP TSG RAN WG1 Ad-Hoc Meeting,

Tech. Rep. R1-161981, March 2016.

[8] 3rd Generation Partnership Project; Technical Specification Group Radio Access Network; Evolved

Universal Terrestrial Radio Access (E-UTRA); Base Station (BS) radio transmission and reception

(Release 14) Ver. 14.9.0, document TS 36.104, Mar. 2019.

[9] 3rd Generation Partnership Project Technical Specification Group Radio Access Network Evolved

Universal Terrestrial Radio Access (E-UTRA) Physical channels and modulation (Release 14) Ver.

14.9.0, document TS 36.211, Mar. 2019.

[10] W. Yang et al., "Enhanced System Acquisition for NB-IoT," in IEEE Access, vol. 5, pp. 13179-

13191, 2017, doi: 10.1109/ACCESS.2017.2724601.

[11] Ali and W. Hamouda, “On the Cell Search and Initial Synchronization for NB-IoT LTE Systems,”

IEEE Comm. Lett., vol. 21, pp. 1843-1846, May 2017.

[12] H. Kroll, M. Korb, B. Weber, S. Willi, and Q. Huang, “Maximum likelihood detection for energy-

efficient timing acquisition in NB-IoT,” in Proc. IEEE Wireless Commun. Netw. Conf. Workshops

(WCNCW), Mar. 2017, pp. 15.

[13] Praween Kumar Nishad, P.Singh, “Carrier Frequency Offset Estimation in OFDM Systems”,

IEEE,2013.

[14] N. Prasad, Ayas Swain, Kamalakanta Mahapatra, “FPGA Implementation of Low Latency Scaled

CORDIC Based Discrete Fourier Transform Core”, ICEEE,2012.

[15] K.Vinoth Babu and 2 Dr. G. Ramachandra Reddy 3 Sunit Gupta, 4Utpal Sharma, 5 Patel Pratik

“STUDY AND ANALYSIS OF VARIOUS FREQUENCY OFFSET CORRECTION SCHEMES

IN ORTHOGONAL FREQUENCY DIVISION MULTIPLEXING (OFDM) BASED LONG

TERM EVALUATION (LTE) SYSTEMS”

[16] A COMPARATIVE ANALYSIS OF FFT ALGORITHMS

[17] Fast Fourier Transform Architectures: A Survey and State of the Art, Anwar Bhasha Pattan, Dr.

M. Madhavi Latha, Research Scholar, Dept. of ECE, JNTUH, Hyderabad, India, Professor, Dept.

of ECE, JNTUH, Hyderabad, India

[18] Implementation of Fast Fourier Transform (FFT) on FPGA using Verilog HDL

[19] FPGA implementation of Radix-22 Pipelined FFT Processor AHMED SAEED1, M. ELBABLY2,

G. ABDELFADEEL2 and M. I. ELADAWY2 1Electrical Engineering, 2Electronics &

Communication Engineering 1Future University in Egypt, 2Helwan University Helwan City, Cairo

EGYPT

[20] Pipelined Radix-2 Feedforward FFT Architectures Mario Garrido, Member, IEEE, J. Grajal, M.

A. Sánchez, and Osear Gustafsson, SéniorMember, IEEE.

[21] An area-efficient and low-power 64-point pipeline Fast Fourier Transform for OFDM

applications.

165

[22] A New Approach to Pipeline FFT Processor Shousheng He and Mats Torkelson Department of

Applied Electronics, Lund University, S-22100 Lund, SWEDEN.

[23] Parallel Extensions to Single-Path Delay-Feedback FFT Architectures Brett W. Dickson, and

Albert A. Conti.

[24] Design of Combined Radix-2, Radix- 4 and Radix-8 based Single Path Delay Feedback (SDF)

FFT.

[25] Design of 16-point Radix-4 Fast Fourier Transform in 0.18μm CMOS Technology 1Siva Kumar

Palaniappan and 2Tun Zainal Azni Zulkifli 1RFIC Design Group, Faculty of Electrical and

Electronics Engineering, Universiti Sains Malaysia 2Engineering Campus, 14300 Nibong Tebal,

Seberang Perai Selatan, Penang, Malaysia.

[26] Implementing the Radix-4 Decimation in Frequency (DIF) Fast Fourier Transform (FFT)

Algorithm Using a TMS320C80 DSP.

[27] 64 Point Radix-4 FFT Butterfly Realization using FPGA Amaresh Kumar, U.N. Tripathi, Roopak

Kumar Verma, Manish Mishra Department of Electronics, D.D.U. Gorakhpur University,

Gorakhpur Department of Computer Science, D.D.U. Gorakhpur University, Gorakhpur.

[28] Split-Radix Fast Fourier Transform Using Streaming SIMD Extensions Version 2.1

[29] Split-Radix FFT Algorithms Based on Ternary Tree Ming Zhang School of Computer Science

and Technology, University of Science and Technology of China, Hefei 230027, China.

[30] Low-Power Split-Radix FFT Processors Using Radix-2 Butterfly Units Zhuo Qian and Martin

Margala.

[31] An Area Efficient 1024-point Low Power Radix-22 FFT Processor with Feed-forward Multiple

Delay Commutators Ngoc Le Ba, Student Member, IEEE, and Tony Tae-Hyoung Kim, Senior

Member, IEEE.

[32] DESIGN AND IMPLEMENTATION OF TRANSMITTER CHAIN FOR MACHINE TYPE

COMMUNICATION ON LTE NETWORKS Submitted by - Hemanth Bollamreddi Department

of Electrical Engineering Indian Institute of Technology, Kanpur Email: blmhemu@iitk.ac.in

Supervised by - Dr. Rohit Budhiraja Department of Electrical Engineering Indian Institute of

Technology, Kanpur Email: rohitbr@iitk.ac.in

[33] 3GPP TS 36.211: "Evolved Universal Terrestrial Radio Access (E-UTRA); Physical Channels and

Modulation".

[34] 3GPP TS 36.104: "Evolved Universal Terrestrial Radio Access (E-UTRA); Base Station (BS)

radio transmission and reception".

[35] Douglas Torha and Piotr Krasowski, Wireless system design NB-IoT downlink simulator, 2017.

[36] Asad Mahmood and Waqas Aslam Cheema, Channel Estimation for LTE downlink, 2009.

[37] Hala M. Abd Elkader, Gamal Mabrouk, Adly Tag El-Dien and Reham S. Saad, Performance of

LTE Channel Estimation Algorithms for Different Interpolation Methods and Modulation

Schemes, 2014.

[38] Yong Soo Cho, Jaekwon Kim, Won Young Yang and Chung G. Kang, MIMO-OFDM Wireless

Communications with MATLAB, 2010.

[39] Magani, S., Kuchi, K. Cell-search and tracking of residual time and frequency offsets in low power

NB-IoT devices. CSIT 7, 27–34 (2019).

[40] A Low-Power Implementation of arctangent function for Communication Applications using

FPGA M. saber, Yutaka Jitsumatsu and T. Kohda.

[41] Analysis of Circular Buffer Rate Matching for LTE Turbo Code Jung-Fu (Thomas) Cheng*, Ajit

Nimbalker+, Yufei Blankenship+, Brian Classon+, and T. Keith Blankenship+* Ericsson Research,

RTP, NC, USA.

mailto:rohitbr@iitk.ac.in

166

[42] An Improved Rate Matching Algorithm for 3GPP LTE Turbo Code Long Yu1, Xu Wang1, Jian

Liu2,1.

[43] Reduced Complexity Rate-matching/De-matching Architecture for the LTE Turbo Code Angelos

Spanos*, Fotios Gioulekas†, Michael Birbas‡, Athanasios Vgenis‡ *The University of Edinburgh,

Scotland, UK.

[44] Automated performance‐based design technique for an efficient LTE PDSCH implementation

using.

[45] SDSoC tool Mohamed Eladawy1 | Mahmoud Mostafa1 | M. Sameh Said1 | Hassan Mostafa1,2.

[46] Research of Communication Rate Matching Algorithm for LTE Physical Layer 1Nina Dai 1Signal

and Information Processing Key Lab, Chongqing Three Gorges University, Chongqing 404000,

China.

[47] Optimized Rate Matching Architecture for a LTEAdvanced FPGA-based PHY Karlo G. Lenzi,

Jose A. Bianco F., Felipe A. de Figueiredo, Fabricio L. Figueiredo.

[48] Analisi di protocolli HARQ per il sistema cellulare LTE.

[49] 3rd Generation Partnership Project; Technical Specification Group Radio Access Network;

Evolved Universal Terrestrial Radio Access (E-UTRA); Multiplexing and channel coding (Release

14) Ver. 14.9.0, document TS 36.212, Mar. 2019.

[50] 3rd Generation Partnership Project; Technical Specification Group Radio Access Network;

Evolved Universal Terrestrial Radio Access (E-UTRA); Physical Layer Procedures (Release 14)

Ver. 14.9.0, document TS 36.213, Mar. 2019.

[51] Lee, Jungwon, et al. "Effect of carrier frequency offset on OFDM systems for multipath fading

channels." IEEE Global Telecommunications Conference, 2004. GLOBECOM'04.. Vol. 6. IEEE,

2004.

