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Abstract 

As a typical artificial intelligence algorithm, the convolutional neural network 

(CNN) is widely used in the Internet of Things (IoT) system. In order to improve the 

computing ability of an IoT CPU, we design a reconfigurable CNN-accelerated 

coprocessor based on the RISC-V instruction set. The interconnection structure of the 

acceleration chain designed by the predecessors is optimized, and the accelerator is 

connected to the RISC-V CPU core in the form of a coprocessor. the coprocessor 

instructions are called, coprocessor acceleration library functions are established, and 

common algorithms in the IoT system are implemented on the coprocessor. 

Increased design complexity has resulted in the need for efficient verification. The 

verification process is crucial for discovering and fixing bugs prior to fabrication and 

system integration. However, as designs increase in complexity, the use of traditional 

verification techniques with VHDL and Verilog may fall short to provide a proper 

toolset. 

This thesis explores the use of the universal verification methodology (UVM) to verify 

the Processing element component like convolution, Max Pool, RELU and ADD using 

complete environment for the chain. 

To verify the operation of the custom co-processor, a RISC-V core and interface is 

needed. Several opensource options for the main CPU core are available, from which the 

CVA6 core developed by PULP platform was deemed as the most appropriate for our 

project.  

An interface is needed to integrate the core and the custom co-processor. An interface 

named Core-V X-Interface developed by PULP platform that serves as a generic 

interconnection between PULP cores and custom accelerators was used. Deep 

modifications in the core pipeline are necessary to inform the core of the existence of the 

custom co-processor. 
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Chapter 1: Introduction  
With the rapid development of artificial intelligence (AI) technology, more and 

more AI applications are beginning to be developed and deployed on internet of things 

(IoT) node devices. The intelligent internet of things (AI + IoT, AIoT), which integrates 

the advantages of AI and IoT technology, has gradually become a research hotspot in 

IoT-related fields. Traditional cloud computing is not suitable for AIoT, because of its 

high delay and poor mobility. For this reason, a new computing paradigm, edge 

computing, is proposed. In order to reduce the computing delay and network congestion, 

the computing is migrated from the cloud server to the device. Edge computing brings 

innovation to the IoT system, but also challenges the AI computing performance of the 

IoT node processor. It is necessary to improve its AI computing performance under the 

condition of meeting the power consumption and area limitation of IoT node devices. In 

order to improve the AI computing power of IoT node processors, some IoT chip 

manufacturers provide some artificial intelligence acceleration libraries for their IoT node 

processors, but only from the software level optimization and tailoring algorithm, just a 

stopgap. It is necessary to design the AI algorithm calculator suitable for the IoT node 

processor from the hardware level. 

 Among all kinds of AI algorithms, the convolutional neural network (CNN) 

algorithm is widely used in various IoT systems with image scenes due to its excellent 

performance in image recognition. Compared to traditional signal processing algorithms, 

it has a higher recognition accuracy, can avoid complex and tedious data feature 

extraction, and has stronger adaptability to different image scenes. The common 

hardware of CNN acceleration is a GPU or TPU, but this kind of hardware accelerator is 

mainly used for high-performance servers, which are not suitable for the use of IoT node 

devices. In Reference [2, 1], most of the constituent units in the CNN network are 

implemented, which need to consume more hardware resources while obtaining higher 

computing acceleration performance, and cannot meet the resource-limited needs of 

nodes in the IoT systems. In Reference [3], the matrix multiplication in the CNN 

algorithm is reduced by the FFT, but the FFT itself consumes more hardware resources. 

The sparse CNN (SCNN) accelerator proposed in Reference [4] uses the data sparsity of 

neural network pruning operation to design a special MAC computing unit, but it has a 

highly customized structure and a single application scenario. In Reference [5], an 

acceleration structure based on in-memory computing is proposed. By shortening the 

distance between computing and storage, the access to memory is reduced and the 



10 | P a g e  

 

computing efficiency is improved. However, the cost of the chip based on in-memory 

computing is high, so it is not suitable for large-scale application in the IoT systems. The 

work in Reference [6] proposes several alternative reconfiguration schemes that 

significantly reduce the complexity of sum-of-products operations but do not explicitly 

propose a CNN architecture. In Reference [7], an FPGA implementation of a CNN for 

addressing portability and power efficiency is designed, but the proposed architecture is 

not reconfigurable. In Reference [8], a CNN accelerator on the Xilinx ZYNQ 7100 

(Xilinx, San Jose, CA, USA) hardware platform that accelerates both standard 

convolution and depth wise separable convolution is implemented, but the designed 

accelerator cannot be configured for other algorithms in the IoT system. Several 

researches work [9, 10] use the RISC-V ecosystem to design an accelerator-centric SoC 

or multicore processor, but do not configure the design accelerator in the form of a 

coprocessor and design the corresponding custom coprocessor instructions to speed up 

the algorithm processing speed. 

Based on Reference [11], this document further optimizes the structure of the CNN 

accelerator. The basic operation modules in the acceleration chain designed by Reference 

[11] are interconnected through a crossbar, which makes the flow direction of input data 

more diversified, thus enriching the function of the acceleration unit and forming a 

reconfigurable CNN accelerator.  
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Chapter 2: Coprocessor 
 

2.1. Coprocessor design  
 

 

 

 

How the Coprocessor works with CPU? 

Coprocessor function is to accelerate the critical operations by HW. There are some other 

operations executed in CPU by SW in parallel. 

 

 

 

Figure 1 : coprocessor design architecture 
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➢ Component 

 

The coprocessor design as shown in Figure 1 : coprocessor design architecture mainly 

consists of three building blocks which are the processing element PE, Reconfigurable 

controller and the Memory File. 

 

• The Processing Element PE is the main block of coprocessor as it implements the 

algorithm and takes the most computing power, as shown there are four basic 

operation modules, convolution, pooling, ReLU, and matrix plus, are 

interconnected by a crossbar. 

 

• While RAM1, RAM2, RAM3, RAMB and Data Selector constitute the Memory 

File which is considered as the interface between main memory and processing 

element and used to load or store processing element by data from path interface. 

The data stored or loaded inside PEs may be Src_A which contains the image 

matrix, Src_B which contains the kernel matrix and Src_C which contain Bias 

matrix. 

 

• The Reconfigurable controller is used to send all the control signals needed by 

the PE and memory file for appropriate operation. 

 
 Table 1 Coprocessor performance summary. 

 

 

 

 

 

 

 

 

▪ Both Feature map matrix and Kernel matrix designed to be square matrices  

Parameter Description  

precision 10-bit fixed-point 

Feature map size  (1~256)* (1~256)  

Kernel size  (1~8)* (1~8) 

Pool type Max pool 

Pool size  (1~8)* (1~8) 

 

Function  

(arbitrary combination) 

2D Convolution  

Data add (matrix or bias) 

Pooling  

ReLU activation  
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2.2. The Processing Element 

2.2.1. Convolution Unit 

2.2.1.1. Convolution Procedure 

CNN algorithm basically depends on 2-D Convolution as it’s the basic block 

needed to be accelerated and optimized as according to [1], 2-D convolution consumes 

more than 90% of the total computational time. Thereby, 2-D convolution is always the 

focus of many CNN accelerators’ optimization. Furthermore, convolution operation 

contains a large amount of data loading-storage, multiplications and additions, but in fact, 

the data, which has to be stored and loaded to be processed, has a lot of repetition [2], for 

example if a matrix 6x6 is convolved with kernel 3x3 as shown in Figure 2 and Figure 3: 

 

Figure 2: Convolution of 6x6 matrix with 3x3 kernel 

 

Figure 3: Data has to be updated each transition 
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The valuable note here is that at the transition from submatrix to another one, there 

are common elements between them, and only the updated elements are 3 elements which 

is the value of kernel dimension and the rest of elements remains as it is, the idea comes 

here, as instead of loading to convolution each time the whole submatrix, it’s sufficient to 

load only the updated elements and depend on the memory of the convolution unit itself 

to reuse the previously updated elements and hence the data transfer bandwidth between 

convolution unit and serving memory is reduced and get higher performance. 

2.2.1.2. Convolution Datapath 

 

Figure 4: Convolution Datapath Block Diagram 

As shown in Figure 4, the convolution data-path contains significantly Buffers to 

remain the elements to be reused while transitions occur, and Memory feeds with the 

updated elements every time, there are two buffers, one for Input Features (IF Map 

Buffer) and another for Kernel weights (KW Map Buffer), and then each element in IF 

buffer will be multiplied and accumulate to the corresponding one in KW buffer and 

hence get the final result element of each transition. 

The controller has to determine the Memory location of the updated elements and 

also select the positions which these elements are updated in the buffers and finally 

destinates the MAC to operate on the elements processed which is the challenge in that 

procedure as will be discussed later on. 



15 | P a g e  

 

And as in Figure 5, the detailed design of the convolution data-path 

 

Figure 5: Detailed Design of the Convolution Datapath 

 That data-path is designed for worst case which occurs when kernel size = 8, and 

hence the submatrix elements are 64 one and therefore the number of registers are 64 

register in the IF map buffer and KW as well, and the updated elements between 

transitions equal to kernel size which is 8 read data buses, these buffers naturally operates 

for any other kernel size below 8, as the number of used registers are square number of 

kernel, the input multiplexers to the buffers are used to route read data buses to select 

which line is fed to which registers and dramatically load signals of these registers has to 

be synchronized to enable the input lines get to be stored in registers, at the beginning of 

operation when the registers have no data, the first submatrix has to be fed on maximum 

8 cycles, and that for all to unite the setup time for all kernel sizes, on the other hand the 

KW map buffer is fed only one time to have the kernel used for that convolution. 

 As the submatrix elements stored in IF map buffer has changeable inconstant 

positions each transition as it’s shown in the procedure, and as the kernel stored in KW 

map buffer is fed one time and not change, then the KW map buffer output multiplexers 

are needed to route the kernel elements to the corresponding correct elements in IF map 

buffer, and finally they are concatenated and fed to 64 multipliers which is chosen for 
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best performance at worst case, and then all multipliers outputs are fed to add tree which 

contains 5 levels of addition, 1st  has 32 adders works in parallel and accept 64 input to 

get 32 output which is fed to 2nd  one which has 16 adder and then to 3rd  which has 8 

adders and then 4th  which has 4 adders and then the 5th  has 2 adders and finally the 6th 

one is registered output adder to get the final result of the transition, and so on each 

transition is updated by elements and go through the convolution data-path and so on. 

The overflow occurrence possibility is managed by determining the overflow in all 

multipliers and adders used in MAC and if the overflow occurs in any module, then the 

convolution overflow is raised high. 

The convolution Datapath is pipelined as shown above into 4 stages pipelining, 1st 

one for updating new elements and 2nd for getting ready to be multiplied, 3rd to be 

multiplied and 4th for accumulation, and as the convolution consumes 8 cycles at the 

beginning for the setup, then the total setup time for the convolution to get the first 

element out is after 11 clock cycles, and consecutively it outs one element each cycle. 

Convolution throughput can be determined as follows: 

𝑆𝑒𝑡𝑢𝑝 𝑡𝑖𝑚𝑒 = 11 𝑐𝑦𝑐𝑙𝑒𝑠  

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑒𝑙𝑒𝑚𝑒𝑛𝑡𝑠 = (𝑁 − 𝐹 + 1)2 

: 𝑁 = 𝑚𝑎𝑡𝑟𝑖𝑥 𝑠𝑖𝑧𝑒, 𝐹 = 𝑘𝑒𝑟𝑛𝑒𝑙 𝑠𝑖𝑧𝑒 

∴ 𝑇𝑜𝑡𝑎𝑙 𝐶𝑙𝑜𝑐𝑘 𝑐𝑦𝑐𝑙𝑒𝑠 = (𝑁 − 𝐹 + 1)2 + 11 

𝑻𝒉𝒓𝒐𝒖𝒈𝒉𝒑𝒖𝒕 =
𝑻𝒐𝒕𝒂𝒍 𝒄𝒍𝒐𝒄𝒌 𝒄𝒚𝒄𝒍𝒆𝒔

(𝑵 − 𝑭 + 𝟏)𝟐
≈ 𝟏 𝒆𝒍𝒆𝒎𝒆𝒏𝒕/𝒄𝒚𝒄𝒍𝒆 

 And that under the assumption of (𝑁 − 𝐹 + 1)2 ≫ 11 

Which is usually valid assumption as 𝑁 = 1~256 and 𝐹 = 1~8, although the input 

matrix has small size and convolved with high size kernel which is rare scenario to occur.  

 

2.2.1.3. Convolution Controller 

It’s very important to determine the control and status signals of data-path to be evaluated 

by the controller: 
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Control Signals: 

1. IF and KW map buffers Input multiplexers selection lines which are 3-bit for each 

8x1 multiplexer and their number is 64 multiplexers for IF buffer and same for 

KW buffer. 

2. Load signals of registers in IF and KW map buffers which is 64-bit for each. 

3. KW map buffers output multiplexers selection lines which are 6-bit for each 64x1 

multiplexer and their number is 64 multiplexers as well. 

4. Multipliers enables as most of cases, the whole multipliers are not fully used when 

the kernel size is not 8 and also if one of the inputs is zero. 

5. Local Resets to all registers in the data-path as the unused registers has to be reset. 

Status Signal is only the overflow, as when it occurs, controller has to reset operation. 

Hence, the interface between the convolution controller and data-path is as in 

Figure 6: 

 

Figure 6: Convolution Interface with Reconfigurable Controller 

The reconfigurable controller feeds the convolution controller with the matrix and 

kernel sizes to be convolved with convolution operation enable raised high for one cycle 

at the start of convolution, and also local reset to reset all internal registers before the 

operation and the convolution controller has to count on until the whole input matrix is 

convolved totally with the kernel and raise the finish signal high to inform that the 

operation is done. 
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Due to the multitude of the cases that input matrix and kernel can have as N = 

1~256 and F = 1~8 then the number of possibilities is evaluated to 2048 cases minus the 

forbidden cases which happens if the kernel size is greater than the input matrix size and 

finally is evaluated to 2020 cases, and as each input matrix with each kernel have their 

specific sequence of control signals as each line in the sequence is corresponding to a 

transition occurs and when the sequence is ended up the whole transitions through the 

whole matrix is done, the LUTs or ROMs are used here, as these cases are modelled by 

MATLAB and get the sequence of control signals specially the routing multiplexers and 

load signals of IF and KW map buffers. 

The controller takes the input matrix size and kernel size and go through the 

sequence appropriate for that case and raise the finish signal high when the chosen 

sequence is ended up, that is managed by sub-circuit that is attached to the ROM and its 

final target is to get the appropriate address that has the control word suitable for the 

transition in the chosen case.  

ROMs have the codewords of the sequences in order, for example IF input 

multiplexers selection lines ROM is ordered from F = 1 and N = 1, passing F = 1 and N = 

256 through F = 8 and N = 256. 

The following Figure 7 is design of the ROM sub-circuit for example if that ROM 

holds the sequences of IF map input loads or input multiplexers control signals: 

 

Figure 7: ROM Control Circuit 
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 In the above design, the multiplexer which determines Start address of the 

sequence based on case of matrix and kernel sizes, and as convolution enables comes, it 

enable the counter to load start address and that address comes out as address to ROM to 

point on the first control word in the sequence and then counts on and go through the 

sequence with each clock cycle until it reach to end address which is also determined by 

the matrix and filter size case, and compare them, if they are equal, the comparator raises 

the finish signal high and disables the counter to point to the last address until controller 

reset it at the end of operation. 

 A valuable note here is that when the kernel size is below 8, most of the codeword 

is previously known, for example, if kernel size is 3, that means that the 9 least 

significant registers are used and the rest is zeros and that means that load enable of idle 

registers is zeros all the time and their input multiplexers selection lines are “don’t cares”, 

same for KW output multiplexers selection lines which are also don’t cares for the 

corresponding idle registers, that for KW map buffer also, and hence the number of used 

registers is square of kernel size only and that note can be used to reduce the size of 

ROMs and the it has to separate the ROMs as each one can store the sequence of the 

cases related to each kernel size as shown in Figure 8. 

 

Figure 8: IF buffer Load signals generator 
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 As the ROMs is separated to 8 ROMs, each for specific kernel size, then control 

sub-circuit is required for each one as it determines the start address based only on matrix 

input as shown in Figure 9, and then take them to be zeros concatenated and produce the 

whole code word for the IF buffer loads and select which one outs based on the kernel 

size, for multiplexer selection, it’s don’t cares concatenated. 

 

Figure 9: Control sub circuit for separated ROM design 

These ROMs sizes have to be evaluated as it’s extremely important metric to 

evaluate the area of the module, these ROM sizes can be evaluated by determining the 

number of transitions for each case, and that can be evaluated as follows: 

For IF buffer load signals, taking into consider setup time for first submatrix: 

𝑎𝑡 𝐹 = 1, # 𝑜𝑓 𝑎𝑑𝑑𝑟𝑒𝑠𝑠𝑒𝑠 =  ∑(𝑁 − 𝐹 + 1)2 − 1 + 8

256

𝑁=2

= 5,627,000 ∗ 1 𝑏𝑖𝑡 

𝑎𝑡 𝐹 = 2, # 𝑜𝑓 𝑎𝑑𝑑𝑟𝑒𝑠𝑠𝑒𝑠 =  ∑(𝑁 − 𝐹 + 1)2 − 1 + 8

256

𝑁=3

= 5,561,457 ∗ 4 𝑏𝑖𝑡𝑠 

𝑎𝑡 𝐹 = 3, # 𝑜𝑓 𝑎𝑑𝑑𝑟𝑒𝑠𝑠𝑒𝑠 =  ∑(𝑁 − 𝐹 + 1)2 − 1 + 8

256

𝑁=4

= 5,496,425 ∗ 9 𝑏𝑖𝑡𝑠 
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𝑎𝑡 𝐹 = 4, # 𝑜𝑓 𝑎𝑑𝑑𝑟𝑒𝑠𝑠𝑒𝑠 =  ∑(𝑁 − 𝐹 + 1)2 − 1 + 8

256

𝑁=5

= 5,431,902 ∗ 16 𝑏𝑖𝑡𝑠 

𝑎𝑡 𝐹 = 5, # 𝑜𝑓 𝑎𝑑𝑑𝑟𝑒𝑠𝑠𝑒𝑠 =  ∑(𝑁 − 𝐹 + 1)2 − 1 + 8

256

𝑁=6

= 5,367,886 ∗ 25 𝑏𝑖𝑡𝑠 

𝑎𝑡 𝐹 = 6, # 𝑜𝑓 𝑎𝑑𝑑𝑟𝑒𝑠𝑠𝑒𝑠 =  ∑(𝑁 − 𝐹 + 1)2 − 1 + 8

256

𝑁=7

= 5,304,375 ∗ 36 𝑏𝑖𝑡𝑠 

𝑎𝑡 𝐹 = 7, # 𝑜𝑓 𝑎𝑑𝑑𝑟𝑒𝑠𝑠𝑒𝑠 =  ∑(𝑁 − 𝐹 + 1)2 − 1 + 8

256

𝑁=8

= 5,241,367 ∗ 49 𝑏𝑖𝑡𝑠 

𝑎𝑡 𝐹 = 8, # 𝑜𝑓 𝑎𝑑𝑑𝑟𝑒𝑠𝑠𝑒𝑠 =  ∑(𝑁 − 𝐹 + 1)2 − 1 + 8

256

𝑁=9

= 5,178,860 ∗ 64 𝑏𝑖𝑡𝑠 

𝑇𝑜𝑡𝑎𝑙 𝑠𝑖𝑧𝑒|𝐼𝐹 𝑏𝑢𝑓𝑓𝑒𝑟 𝐿𝑜𝑎𝑑 = ∑ 𝑅𝑂𝑀𝑖

8

𝑖=1

= 1,077,679,758 ≈ 128 𝑀𝐵 

Same calculations for IF input selection lines but with considerations of that they 

are 64 x 3 bits not only 64 elements, then it’s evaluated as: 

𝑇𝑜𝑡𝑎𝑙 𝑆𝑖𝑧𝑒|𝐼𝐹 𝑏𝑢𝑓𝑓𝑒𝑟 𝑠𝑒𝑙𝑒𝑐𝑡𝑖𝑜𝑛 ≈ 128 ∗ 3 ≈ 384 𝑀𝐵 

Same calculations for KW output selection line with consideration that there are 64 

x 6 bits and there’s no need to customize the setup time in calculations, then it’s 

evaluated as: 

𝑇𝑜𝑡𝑎𝑙 𝑆𝑖𝑧𝑒|𝐾𝑊 𝑏𝑢𝑓𝑓𝑒𝑟 𝑠𝑒𝑙𝑒𝑐𝑡𝑖𝑜𝑛 ≈ 772.2 𝑀𝐵 

Then the total ROM size used in the convolution can be evaluated as: 

𝑇𝑜𝑡𝑎𝑙 𝑅𝑂𝑀 𝑆𝑖𝑧𝑒 = 772 + 384 + 128 ≈ 1.2 𝐺𝐵‼ 

That ROM size is extremely huge Area and also bad for performance as the more 

ROM size is big, the worst delay it has, but the problem of performance can be resolved 

by dividing ROMs into small ones until it has the required performance and each one has 

its control circuit as it’s shown above, the good news about ROMs is that it has repeated 
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sequences which can be partially encoded by a lossless compression technique and take 

the compressed value expressed certain sequence and decode it by hardware decoding 

circuit to get the original sequence, that has to be modelled and iterated by GPU to 

discover these repeated sequences and their positions in ROMs and hence storing the 

compressed data only in ROMs, that will mostly reduce the ROM size powerfully to have 

suitable one for the application. 

But the question is what’s good of using ROMs rather than using straight forward 

convolution technique? The good aspect besides that the data transfer bandwidth between 

convolution and memory is extremely small compared to straight forward one, but it also 

good that ROMs can serve lots of convolution modules with implementing multi-input 

multi-output ROMs as each one can serve on one Convolution module as shown in 

Figure 10. 

 

Figure 10: 4 inputs 4 outputs ROM 

 

Final control signals have to be fed by the controller is Multiply enable to the used 

multipliers and to locally reset the unused registers, the multipliers are power hungry 

computing modules so it’s better to turn them off when it’s previously known that its 

inputs are zeros and their output is zero also, so the multiply enable is considered in 



23 | P a g e  

 

multiplier circuit as shown in Figure 11, when the multiply enable is 0, the inputs are 

zeros and output register is reset to zero also 

 

Figure 11: Multiplier with Enable 

As it’s known in CMOS circuits, the gates don’t consume power as well as the inputs 

doesn’t change and for unused register, they are zeros for long time so the corresponding 

multipliers don’t consume power, so the determination of multipliers enables depends on 

the kernel size as well as the local reset of the unused registers is 1 as shown in Figure 12. 

 

Figure 12: Multiply enable and local reset generator 

An additional optimalization is to use zero detector for KW or IF buffers elements as 

zeros are often occurs in kernels, that helps in disable multiplier, the design of zero 

detector is shown in Figure 13. 
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Figure 13: Zero Detector Design 

2.2.2. Pool Unit 

2.2.2.1. Pool Procedure  

The pooling circuit in CNN is used to down sample the convolution result that 

reduces the input data size of the subsequent network and accelerates the calculation of 

the neural network. The commonly used pooling methods are average pooling and max-

pooling, in which average pooling includes accumulation and division calculation, so it is 

not suitable for hardware implementation. Therefore, we select max-pooling to act as our 

pooling method. According to the principle of max-pooling, combined with the 

characteristics of data serial input. 

 

 

 

 

 

 

 

 

 

 For example shown in Figure 14, output of first row will be ready after all 

elements of first two rows enters in pool circuit, and the second one will be ready second 

two rows enters in pool circuit. Each output row will display element by element to be 

able to enter in next computing layer depending on the algorithm used.  

Figure 14 Example of Pooling circuit of 4x4 matrix with 2x2 filter size 
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2.2.2.2. Pool Data path 
 

 

 

 

 

 

 

The designed serial pooling circuit consists of maximum comparator, pool 

controller, a previous result buffer and an Output File. The circuit structure is shown in 

Figure 15. 

Input and output of Pool:   

It consist of Control signals as: 

• CLK &RST are the global signals. 

• Start signal sent to Pool to start the operation and to be ready to receive square matrix 

input in series.  

• Np: consist of 8 bits it is the range of input square matrix [1:255]. 

• P: consist of 3 bits it is the range of filter size of Max Pool [2:8]. 

• Local_RST: it is a pulse raise before each start of new operation to ensure all 

registers have zero values. 

Figure 15: Max Pool design architecture 
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• sel_Reg: it is address select which data in Reg_File has to be compared with the input 

date. 

• OP signal, if it’s value equal ‘0’ this mean that the data serial input enter the module 

in order(rows ordered always from left to right ) as shown OP 1 in Figure 16, but if it’s 

value equal ‘1’ this mean that the data serial input enter the module not in order(rows 

ordered in even rows from left to right and in odd rows from left to right ) to match 

with Conv output as shown OP 2 in figure 16, depending on this value the controller 

out control signals (sel_Reg, RST_Reg)    

 

 

 

 

 

 

 

 

 

 

 

• RST_Reg: it is a pulse raise when data in Reg_File has the correct values of output 

row and it is ready to display, then then all data in Reg_File move to Output_file then, 

▪ Reg_File will reset all its registers and be ready to get next elements to get next 

row. 

▪ Output_file raise Str_disp signal to start display this row element by element 

when it out all row elements, it lower Str_disp signal, if it is the final output 

row of the matrix, the finish signal will raise too for only one clock cycle. 

Figure 16: input serial elements for op 1 & op 2 
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2.2.3. Add Unit 

Bias is an additional parameter in the Neural Network which is used to adjust the output 

along with the weighted sum of the inputs to the neuron. Therefore Bias is a constant 

which helps the model in a way that it can fit best for the given data. 

 

So, bias nodes are added to increase the flexibility of the model to fit the data. 

Specifically, it allows the network to fit the data when all input features are equal to 0, 

and very likely decreases the bias of the fitted values elsewhere in the data space. 

 

For that the addition layer is required to add the output of convolution layer to Src_c (bias 

matrix).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

As shown Figure 17 the “Add_Module” takes input_1 (in1) and input_2 (in2) and some 

control signals like Enable , Local_reset and the size of image (N) as inputs and gives 

back output (out) , Finish signal Overflow_Add  as outputs then start to check the signs 

of both inputs in1 and in2 to determine which case must be applied. 

First of all, if reset signal or Local_reset is activated then the output is Zero. 

 

Figure 17: Add unit design architecture 
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➢ Output 

 There are three cases may happen if Enable signal is activated: 

First case: If they both are positive or both are negative, then output will be the addition 

of them, then the output takes the sign of any one of them. 

Second case: if in1 is positive while in2 is negative, then output will be the subtraction of 

both in1 and in2 (out=in1-in2), then starts to check which one is greater, if (in1>in2) then 

out=in1-in2 and the sign of the output must be positive, while if (in2> in1) then out=in2-

in1 and the sign of the output must be negative. 

Third case: if in2 is positive while in1 is negative, then output will be the subtraction of 

both in1 and in2 (out=in2-in1), then starts to check which one is greater, if (in1>in2) then 

out=in1-in2 and the sign of the output must be negative, while if (in2> in1) then out=in2-

in1 and the sign of the output must be positive. 

➢ Overflow_Add 

 To check if there is an overflow happen we check the sign of MSB of output if ‘1’ this 

means an overflow happen and then activate this signal and send it as feedback to the 

controller to take the appropriate action. 

➢ Finish 

 To determine the Finish signal when must be activated, we need a Counter 

(Counter_out) that counts until reach to a pre-defined number (End_address) which is 

determined by N*N, If (Counter_out = End_address) then Finish signal is activated to 

‘1’. 

2.2.4. Relu Unit  

The ReLU function is another non-linear activation function that has gained popularity in 

the deep learning domain. ReLU stands for Rectified Linear Unit. The main advantage 

of using the ReLU function over other activation functions is that it does not activate all 

the neurons at the same time . 

 In Activation functions, Relu is the Simplest, faster and suitable for HW implementation . 
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Figure 18: Relu unit design archiecture 

As shown in Figure 18 the “Relu” module takes input (in) and some control signals like 

Enable, Local_reset and the size of image (N) as inputs and gives back output (out), 

Finish signal as outputs. 

➢ Output 

The main idea of Relu is to compare the input with zero, we find that we have two cases: 

First case: if input is positive number then the output will be equal the input 

Second case: if input is negative number then the output will be Zero. 

➢ Finish  

To determine the Finish signal when must be activated, we need a Counter (Counter_out) 

that counts until reach to a pre-defined number (End_address) which is determined by 

N*N, If (Counter_out = End_address) then Finish signal is activated to ‘1’. 
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2.2.4. Crossbar Unit  

The configuration of the crossbar allows data to flow to different computing components, 

which can speed up different algorithms. The entire accelerator can be parameterized and 

data accessed through an external bus.  

 

 

Figure 19: Crossbar design architecture 

➢ Main Idea 

The crossbar mainly consists of f an input buffer (FIFO), a configuration register group 

(Cfg Regs), and five multiplexers (MUX), for simplicity we didn’t use the “FIFO” and 

adjust the design to consist of five MUXES only. The five MUX select the data path to be 

opened according to the configuration information of the Cfg Regs. Thus, the data stream 

passes through different calculation modules in different orders. For example, the edge 

detection operation in image processing usually extracts the input image and then 

convolves it with the edge detection operator.  

In the convolutional neural network algorithm, it is usually necessary to perform 

convolution, ReLU, and pooling operations on the source matrix. You need to configure 

the MUX to apply this order of operation. 
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The main benefit from the crossbar module is to have flexibility to change the order of 

operation or algorithm implemented on the data of the same architecture instead of 

having only one fixed sequence of operations, Using the five MUX which select the data 

path to be opened according to the configuration information of the Reconfigurable 

controller. Thus, the data stream passes through different calculation modules in different 

orders. For example, the edge detection operation in image processing usually extracts 

the input image and then convolves it with the edge detection operator. It is necessary to 

configure the MUX as the path in the red part of Figure 19. In the convolutional neural 

network algorithm, it is usually necessary to perform convolution, ReLU, and pooling 

operations on the source matrix. You need to configure the MUX as the path in the blue 

part of Figure 19Figure 18.  

➢ Input and output port list  

Inputs of crossbar:   

It mainly consist of Control signals of MUX (sel_Res, sel_Pool, sel_Conv, sel_Add, 

sel_Relu), SrcA and modules outputs as (CONV, ADD, RELU and POOL). 

Outputs of crossbar:  

It mainly consist of modules inputs (CONV, ADD, RELU and POOL) and the Results of 

PE. 

The mechanism: 

The mechanism of crossbar is to recieve the selection signal of the mux and choose the 

right output to be passed.  

➢ For analogous, if we have the image matrix and we need to apply 2d-conv then Relu 

then Max pooling layers in that sequence then get the result, all we must do to put the 

selection first by “sel_Conv” to out src_A as an input to convolution module then we 

put selection to be “sel_Relu” to enter the output of convolution as an input to Relu as 

before we put selection by “sel_Pool” then finally we put it by ”sel_Res” to get the 

final result as Max_pool result.   

 

There are all component modules in PE, now we will talk in details about The 

Memory File 
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2.3. The Memory File 

2.3.1. Memory File 

 Processing elements have to attached to RAMs to serve their loading input data or 

storing result processed data, the PE has three inputs which are source A, and that to feed 

it with input data to any computing module and that’s routed by crossbar and source B 

which feed the convolution with kernel matrix and finally source C which is responsible 

to feed the add module with the accumulating input matrix, so the memory file as it’s 

shown in Figure 20 has four RAMs, one is called RAMB and it’s specific to feed source 

B, that RAM stores data from system and load it to convolution module, but the other 

three RAMs are specific for loading source A, C, and PE result, the multiplexers attached 

to them is for Memory Interleaving, as any RAM of them can work as source A,C, or 

even result RAM, that helps in sequence of layers, for example, if RAM1 works as result 

RAM and hence it’s required to load the result and work on in another layer, so it can 

work as source A RAM and so on, that’s better than make each RAM specific for a 

certain target and between successive layers, it has to make memory transfer, which is 

consumption of time and hence bad for performance, so the choice is always performance 

over area. 

 RAMs interface with Main RAM is also important as the data can not flow to the 

PE computing modules unless they are stored in Memory file first, as RAMs in Memory 

file are aware of the nature of computing modules inside the PE and particularly 

convolution module, as it has 8 input read data bus and they have to be fed in particular 

way as discussed above which is overhead on CPU to work on, so the RAMs here are 

processing RAMs more than storage ones.    



33 | P a g e  

 

 

Figure 20: Memory File Design 

2.3.2. RAM Design 

The RAM specifications and design as shown in Figure 21 has to be designed for 

worst case that stored matrix inside has the maximum value which is 256, and as it’s 

square matrix, then number of positions have to be available inside the RAM is 65536 

positions each is 16 bits that is implemented as 1D RAM and has 8 output data buses if it 

feeds the convolution with 8 read data enables and 8 read address buses each is 16 bits 

and only one write bus with enable and write address, but the RAM feeds the computing 

modules except convolution with only one data bus which is the least significant one. 

 

Figure 21: RAM Design 
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By specifying the Operations which the RAMs can operate on, it’s obvious that 

convolution has different nature of loading and storing compared to loading and storing 

on other computing modules like Pooling, ReLU, Add, or even another RAM or bs 

interface, that’s because convolution provides data in zigzag way, the odd rows comes in 

order and even ones comes in opposite order, same for loading which has to determine 

the addresses of the updated elements provided to convolution on each transition, and 

hence the operations can be specified as follows: 

1) Operation 1: Storing data into RAM from bus interface, another RAM, or from 

computing modules that has no convolution 

2) Operation 2: Storing data into RAM from computing modules that has 

convolution, and the aim here is to store the unordered result in order for another 

operation. 

3) Operation 3: Loading data from RAM into bus interface, another RAM, or into 

computing modules that has no convolution 

4) Operation 4: Loading data from RAM into computing modules that has 

convolution, and as the convolution is always is the first module, then the way of 

updated elements has to be declared here. 

5) Operation 5: Loading data from RAM into add module when it’s directly after 

convolution as RAM has to feed the add here with zigzag way to accumulate each 

element resulted from convolution to the corresponding element in source C 

matrix. 

These operations aims to get the correct addresses of reading or writing with 

correct enables which makes the RAM operates in a certain operation from one of the 

above and that is the functionality of Arbiter attached to the RAM to direct it in the 

right manner as shown in Figure 22. 
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Figure 22: RAM Design with Arbiter 

 The Arbiter takes matrix and kernel sizes with other operation control signals from 

the reconfigurable controller which guides the arbiter to direct RAM to work on which 

operation according to memory interleaving positions discussed before, as all RAMs can 

be interleaved has to able to operate in all above operations as it’s possible for any one of 

them to be any source or destination due to user preference, so the whole operations logic 

has to be included to all of them as it will be discussed next. 

2.3.3. Operations Logic 

 Starting with operation 1 design as shown in Figure 23, the aim here is normal 

storing input matrix in Row-wise, so the counter needed here as the 16 bits counter has to 

points from first address in RAM and count on until it reaches the address of matrix size 

square and that the functionality of below multiplexer which has inputs from 1 to 65536 

and selects which one according to input matrix size and the end address here is the 

square of input matrix size.  

 When it reaches the end address the counter is disabled and informs end of 

operation with finish signal raises high until it has local reset from the reconfigurable 

controller after it has finished the operation, the output of that counter is the write 
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address, while writing the arbiter raise write enable up and disable read enables for the 

RAM. 

The note here is that the reconfigurable controller has to have control on the count 

enable of the controller, as when RAM is storing from Pooling which takes time until it 

processes the elements and then decide what’s maximum and hence outs results, so it 

takes time to decide and then outs data as discussed before and hence the controller that is 

aware of that sequence has to guide the arbiter when to write and when to stop. 

 

Figure 23: Operation 1 Logic 

In operation 3 as shown in Figure 24, same logic happens but the output is the 

address of least significant read data bus. 
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Figure 24: Operation 3 Logic 

In operation 2 as shown in Figure 26, when the storing is from convolution module 

in zigzag is as follows, the 2D dealing with RAM here is required as the convolution outs 

the result of odd rows in order and even ones out of order as shown in Figure 23 

 

Figure 25: Convolution result matrix 

 As shown here the convolution result gets in the order of right hand side, and the 

target of operation 3 to map it to the order of left hand side, so the design depends 

counter y which count on rows and by its LSB, that determination of even or odd row can 

be easily obtained by checking if it’s LSB = 0, it’s odd row, if it’s 1, then it’s even one, 

and that attached to up/down counter x, which counts on columns, if it’s odd row, counter 

x count up from 0 to matrix size and vice versa if it’s even row, it’s disabled by sub 

circuit which informs it to stop at N if it counts up and stop at 0 if it count down 

according to LSB of counter y, that besides the count enable signal that under the control 

of reconfigurable controller as it’s discussed before. 



38 | P a g e  

 

 Counter y is enabled to count based on that if counter x has finishes the row or not 

and that’s also based on LSB of counter y, and disable the counter y when it reaches the 

matrix size. 

 Finally, the conversion from 2D to 1D is done by the equation of  

1𝐷 𝑅𝐴𝑀 𝐴𝑑𝑑𝑟𝑒𝑠𝑠 = 𝑦 ∗ (𝑁 + 1) + 𝑥 

: 𝑥 = 𝑐𝑜𝑙𝑢𝑚𝑛 𝑛𝑢𝑚𝑏𝑒𝑟, 𝑦 = 𝑟𝑜𝑤 𝑛𝑢𝑚𝑏𝑒𝑟, 𝑁 = 0~255  

 

 

Figure 26: Operation 2 logic 

 That feedback circuit is responsible for getting writing address of zigzag mode to 

be stored in RAM in normal mode, as if the result of convolution has to be fed to another 

layer, it has to be ordered in right manner to be fed correctly 

 Operation 5 is same logic but produces the read address of least significant bus 

instead of write address. 
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 Finally, operation 4 as shown in Figure 27 is the most difficult operation to be 

executed, as when the RAM feeds the convolution data it has to feed updating element 

for each transition and these elements positions are not having addresses which can be 

deduced from certain equations but these positions in RAMs depends on the input matrix 

and kernel sizes. 

 So, the ROMs or LUTs approach is considered here also as shown in Figure 26 

with the same designs for control sub-circuits and also the ROMs are divided into 8 

ROMs each one for specific kernel size, and also the control circuits have their enables 

and local resets feeding from the reconfigurable controller and the operating one 

feedback controller with finish signa; at the end of operation. 

 

Figure 27: Operation 4 Logic 

 Here’s an extra calculation can be added to the ROM sizes used in the accelerator 

data-path, which can be evaluated according to following equations: 

𝑅𝑂𝑀 𝑆𝑖𝑧𝑒 =  ∑ 𝑅𝑂𝑀 𝑆𝑖𝑧𝑒𝑖

8

𝑖=1
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𝑅𝑂𝑀 𝑆𝑖𝑧𝑒𝑖 = ∑ ((𝑁 − 𝐹 + 1)2 − 1 + 8) ∗ 𝑛𝑜 𝑜𝑓 𝑏𝑖𝑡𝑠 𝑖𝑛 𝑐𝑜𝑑𝑒𝑤𝑜𝑟𝑑

256

𝑁=𝑖+1

 

Then 𝑇𝑜𝑡𝑎𝑙 𝑅𝑂𝑀 𝑆𝑖𝑧𝑒|𝑅𝑒𝑎𝑑 𝑎𝑑𝑑𝑟𝑒𝑠𝑠 = 3,068,046,816 ≈ 360 𝑀𝐵 

 

𝑇ℎ𝑒𝑛, 𝑇𝑜𝑡𝑎𝑙 𝑅𝑂𝑀 𝑆𝑖𝑧𝑒|𝐷𝑎𝑡𝑎𝑝𝑎𝑡ℎ = 1.6 𝐺𝐵 ‼ 

That huge ROM size has to be optimized as it’s mention before. 

 As three RAMs which is used in the accelerator data-path has to be able to operate 

in operation 4 due to memory interleaving, these ROMs here for operation 4 has to be 3 

input 3 output ROMs to serve the operation 4 in the three RAMs. 

 It’s also worth to mention that the operating sub circuit control has to be enabled 

by an operation enable to make it go through the sequence of read addresses from the first 

address loaded until it reaches the end address and then feedbacks with the finish signal 

as it’s discussed before in Convolution module. 

  Finally, the Arbiter takes a 3 bits Opcode from the reconfigurable controller which 

directs it to the enable the needed operation and outs its own control signals to the RAM 

as shown in Figure 28, as the multiplexer shown selects which operation control signal 

can out to the RAM by the obtained opcode. 

 

Figure 28: Arbiter Opcode selection 
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 For RAMB which is considered as a special case of other RAMs, that has size of 

64 element each is 16 bits for worst case of storing kernel size of 8, storing with one 

write address and load to convolution module by 8 read data bus.  

It’s only storing from the main RAM through bus interface and loading the kernel 

to convolution for the first time in known order, these are the two operations has to be 

executed by RAMB 

That’s all about the Memory File and the whole Accelerator Data-path 

2.4. Custom Instructions 
 The Custom instructions are those ones which can be executed by the accelerator 

not the CPU, as when one instruction of them comes, the CPU passes them to the 

accelerator to work on them, so the reconfigurable controller decodes them and provides 

the control signals to the whole data-path to direct it where and when to go, the 

determination of custom instruction is the most important step in determination of the 

reconfigurable controller functionality. 

So, the custom instructions which is 32-bit instruction according to the RISCV 

CPU instruction-based, which uses R-type instructions and specify 7-bit for the 

determination of the operation and these are Opcode filed, the Operands related to the 

instruction can be stored in specific register 𝑅𝑠,which can hold them. 

The custom instructions can be characterized for four types: 

1) Reset Instruction: 

It’s responsible for resetting all registers inside the data-path locally to zero, and 

that for any reason, maybe because overflow occurrence or Main RAM loaded wrong 

data, and that instruction is determined by the Opcode only as shown below 

𝑶𝒑 − 𝑪𝒐𝒅𝒆 (𝟕𝒃𝒊𝒕𝒔) 

 

2) Load and Store Instructions: 

It’s responsible to inform the reconfigurable controller to Store data from Main 

RAM into specific RAM in Data-path through bus interface or to Load data from 

specific RAM to Main RAM, and that is defined by Opcode only as the destination 

or source memory can be implicitly defined inside as it will be discussed later on 
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3) Memory Transfer Instructions:  

It’s responsible to transfer data from one memory to another if not to use memory 

interleaving or for any advance coming optimization, it’s also can be determined 

by the Opcode. 

 

4) Execution Instructions:   

It’s responsible for executing the operations inside the PE, whether convolution, 

Pooling, ReLU, or even addition, but as it’s shown above the computing modules 

inside the PE processes on matrices which is sequence of elements, and no module 

of them stores it’s result and then concatenated to feed it into another computing 

modules and if RAMs in Memory file are used in transfer between one computing 

element to another, that hurts the performance much because the data transfer 

between computing modules and memory increases, and as it’s usually the 

computing modules contain layer which means it’s usually needed to execute 

combination of instructions, combinations approach is used here, which means the 

instruction can be ordered combination for example, takes the data in RAM1 and 

make convolution on it with RAMB, then ReLU on convolution data out, then 

accumulate ReLU out with RAM2 data in add module, then pooling the output of 

add, and finally store pooling result into RAM3, that makes the whole layer to be 

executed without resorting to RAMs except in loading to first module and storing 

from last one. 

 The instruction format of that is as follows: 

𝑶𝒑 𝑪𝒐𝒅𝒆 

(𝟕 𝒃𝒊𝒕𝒔) 

𝑵  

(𝟖 𝒃𝒊𝒕𝒔) 

 

𝑭 

𝟑 𝒃𝒊𝒕𝒔 

 

𝑷 

𝟑 𝒃𝒊𝒕𝒔 

 

𝑵𝒄

= 𝑵 − 𝒇

+ 𝟏 

(𝟖 𝒃𝒊𝒕𝒔)  

 

𝑵𝒑

=
𝑵 − 𝒇 + 𝟏

𝒑
  

 (𝟖 𝒃𝒊𝒕𝒔) 

 

𝑰𝒏𝒔𝒕𝒓𝒖𝒄𝒕𝒊𝒐𝒏 #  

  

 The operands needed for that type of instructions, besides the determination of 

Opcode which selects the operations and will be discussed in more details later on, is to 

determine the input matrix size which is between 1~256 and can be expressed by 8 bits 

and convolution kernel size which is between 1~8 and can be expressed by 3 bits and also 

the Pool filter size which is also 3 bits and other auxiliary operands which helps it to 

determine the output matrix size of convolution and pooling which is very important for 

the data flow determination of the matrix inside the layer or combination, and finally the 
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Instruction number which is additional operand for future works and will be explained 

later. 

 Therefore, by characterizing the combinations can be executed by the PE, the 

possibilities are much, but based on some practical or algorithmic aspects related to 

CNN, like that convolution always comes the first of the layer, the combinations 

(Combos) are selected like below 

Table 2 the possible Combos can express any CNN architectures. 

Combo 1 CONV POOL RELU ADD 

Combo 2 CONV POOL ADD RELU 

Combo 3 CONV RELU POOL ADD 

Combo 4 CONV RELU ADD POOL 

Combo 5 CONV ADD POOL RELU 

Combo 6 CONV ADD RELU POOL 

Combo 7 CONV POOL RELU --------- 

Combo 8 CONV POOL ADD --------- 

Combo 9 CONV RELU POOL --------- 

Combo 10 CONV RELU ADD --------- 

Combo 11 CONV ADD POOL --------- 

Combo 12 CONV ADD RELU --------- 

Combo 13 CONV POOL --------- --------- 

Combo 14 CONV RELU --------- --------- 

Combo 15 CONV ADD --------- --------- 

Combo 16 CONV --------- --------- --------- 

Combo 17 POOL ADD RELU ------- 

Combo 18 POOL RELU ADD ------- 

Combo 19 POOL ADD ------- ------- 



44 | P a g e  

 

Combo 20 POOL RELU ------- ------- 

Combo 21 RELU ADD POOL ------- 

Combo 22 RELU POOL ADD ------- 

Combo 23 RELU POOL ------- ------- 

Combo 24 RELU ADD ------- ------- 

Combo 25 ADD POOL RELU ------- 

Combo 26 ADD RELU POOL ------- 

Combo 27 ADD POOL ------- ------- 

Combo 28 ADD RELU ------- ------- 

Combo 29 POOL ------- ------- ------- 

Combo 30 RELU ------- ------- ------- 

Combo 31 ADD ------- ------- ------- 

Combo 32 NOP NOP NOP NOP 

    These Combos can express any CNN architectures, even if the Combo needed is 

not declared which not usually happen, the needed Combo can be executed by 

concatenating more than one of the above Combos. 

 As it’s shown in the table??, the number of possible Combos is 32 which can be 

expressed by 5 LSBs in the Opcode and the 2 MSBs are for Memory inter-leaving, as if 

they are 01, then RAM1 is the SrcA, RAM2 is SrcC, and RAM3 is the Result, and if they 

are 10, then RAM1 is the Result, RAM2 is SrcA, and RAM3 is SrcC, and finally if they 

are 11, then RAM1 is the SrcC, RAM2 is the Result, and RAM3 is SrcA. 

 By that, the custom instructions with Opcodes can be totally customized with the 

table??: 

Table 3 the custom instructions with Opcodes. 

Op Code Instruction 

Function 

Source and Destinations Operands needed 

“00 000 00” Reset ---------------------------------------- -------------------------------- 

“00 001 00” Store in MB 𝑆𝑜𝑢𝑟𝑐𝑒 =  𝑀𝑎𝑖𝑛 𝑅𝐴𝑀, 𝐷𝑒𝑠𝑡𝑖𝑛𝑎𝑡𝑖𝑜𝑛 =  𝑀𝐵 𝑆𝑡𝑎𝑟𝑡 𝐴𝑑𝑑𝑟𝑒𝑠𝑠, 𝑓, 𝐼𝑛𝑠𝑡# 



45 | P a g e  

 

“00 001 01” Store in M1 𝑆𝑜𝑢𝑟𝑐𝑒 =  𝑀𝑎𝑖𝑛 𝑅𝐴𝑀, 𝐷𝑒𝑠𝑡𝑖𝑛𝑎𝑡𝑖𝑜𝑛 =  𝑀1 𝑆𝑡𝑎𝑟𝑡 𝐴𝑑𝑑𝑟𝑒𝑠𝑠, 𝑁, 𝐼𝑛𝑠𝑡# 

“00 001 10” Store in M2 𝑆𝑜𝑢𝑟𝑐𝑒 =  𝑀𝑎𝑖𝑛 𝑅𝐴𝑀, 𝐷𝑒𝑠𝑡𝑖𝑛𝑎𝑡𝑖𝑜𝑛 =  𝑀2 𝑆𝑡𝑎𝑟𝑡 𝐴𝑑𝑑𝑟𝑒𝑠𝑠, 𝑁, 𝐼𝑛𝑠𝑡# 

“00 001 11” Store in M3 𝑆𝑜𝑢𝑟𝑐𝑒 =  𝑀𝑎𝑖𝑛 𝑅𝐴𝑀, 𝐷𝑒𝑠𝑡𝑖𝑛𝑎𝑡𝑖𝑜𝑛 =  𝑀3 𝑆𝑡𝑎𝑟𝑡 𝐴𝑑𝑑𝑟𝑒𝑠𝑠, 𝑁, 𝐼𝑛𝑠𝑡# 

“00 010 01” Load from M1 𝑆𝑜𝑢𝑟𝑐𝑒 =  𝑀1, 𝐷𝑒𝑠𝑡𝑖𝑛𝑎𝑡𝑖𝑜𝑛 =  𝑀𝑎𝑖𝑛 𝑅𝐴𝑀 𝑆𝑡𝑎𝑟𝑡 𝐴𝑑𝑑𝑟𝑒𝑠𝑠, 𝑁, 𝐼𝑛𝑠𝑡# 

“00 010 10” Load from M2 𝑆𝑜𝑢𝑟𝑐𝑒 =  𝑀1, 𝐷𝑒𝑠𝑡𝑖𝑛𝑎𝑡𝑖𝑜𝑛 =  𝑀𝑎𝑖𝑛 𝑅𝐴𝑀 𝑆𝑡𝑎𝑟𝑡 𝐴𝑑𝑑𝑟𝑒𝑠𝑠, 𝑁, 𝐼𝑛𝑠𝑡# 

“00 010 11” Load from M3 𝑆𝑜𝑢𝑟𝑐𝑒 =  𝑀1, 𝐷𝑒𝑠𝑡𝑖𝑛𝑎𝑡𝑖𝑜𝑛 =  𝑀𝑎𝑖𝑛 𝑅𝐴𝑀 𝑆𝑡𝑎𝑟𝑡 𝐴𝑑𝑑𝑟𝑒𝑠𝑠, 𝑁, 𝐼𝑛𝑠𝑡# 

“00 10 000” Mov M1 to M2 𝑆𝑜𝑢𝑟𝑐𝑒 =  𝑀1, 𝐷𝑒𝑠𝑡𝑖𝑛𝑎𝑡𝑖𝑜𝑛 =  𝑀2 𝑁, 𝐼𝑛𝑠𝑡 # 

“00 10 001” Mov M1 to M3 𝑆𝑜𝑢𝑟𝑐𝑒 =  𝑀1, 𝐷𝑒𝑠𝑡𝑖𝑛𝑎𝑡𝑖𝑜𝑛 =  𝑀3 𝑁, 𝐼𝑛𝑠𝑡 # 

“00 10 010” Mov M2 to M1 𝑆𝑜𝑢𝑟𝑐𝑒 =  𝑀2, 𝐷𝑒𝑠𝑡𝑖𝑛𝑎𝑡𝑖𝑜𝑛 =  𝑀1 𝑁, 𝐼𝑛𝑠𝑡 # 

“00 10 011” Mov M3 to M1 𝑆𝑜𝑢𝑟𝑐𝑒 =  𝑀3, 𝐷𝑒𝑠𝑡𝑖𝑛𝑎𝑡𝑖𝑜𝑛 =  𝑀1 𝑁, 𝐼𝑛𝑠𝑡 # 

“00 10 100” Mov M2 to M3 𝑆𝑜𝑢𝑟𝑐𝑒 =  𝑀2, 𝐷𝑒𝑠𝑡𝑖𝑛𝑎𝑡𝑖𝑜𝑛 =  𝑀3 𝑁, 𝐼𝑛𝑠𝑡 # 

“00 10 101” Mov M3 to M2 𝑆𝑜𝑢𝑟𝑐𝑒 =  𝑀3, 𝐷𝑒𝑠𝑡𝑖𝑛𝑎𝑡𝑖𝑜𝑛 =  𝑀2 𝑁, 𝐼𝑛𝑠𝑡 # 

-------------- ------------------- --------------------------------------------------

---- 
---------------------------------

-- 

“01 00000” Combo1 𝑆𝑟𝑐𝐴 =  𝑀1, 𝑆𝑟𝑐𝐶 =  𝑀2, 𝑅𝑒𝑠𝑢𝑙𝑡 =  𝑀3 𝑁, 𝑓 , 𝑝, 𝑁𝑐, 𝑁𝑝, 𝐼𝑛𝑠𝑡# 

“01 00001” Combo2 𝑆𝑟𝑐𝐴 =  𝑀1, 𝑆𝑟𝑐𝐶 =  𝑀2, 𝑅𝑒𝑠𝑢𝑙𝑡 =  𝑀3 𝑁, 𝑓 , 𝑝, 𝑁𝑐, 𝑁𝑝, 𝐼𝑛𝑠𝑡# 

“01 00010” Combo3 𝑆𝑟𝑐𝐴 =  𝑀1, 𝑆𝑟𝑐𝐶 =  𝑀2, 𝑅𝑒𝑠𝑢𝑙𝑡 =  𝑀3 𝑁, 𝑓 , 𝑝, 𝑁𝑐, 𝑁𝑝, 𝐼𝑛𝑠𝑡# 

“01 00011” Combo4 𝑆𝑟𝑐𝐴 =  𝑀1, 𝑆𝑟𝑐𝐶 =  𝑀2, 𝑅𝑒𝑠𝑢𝑙𝑡 =  𝑀3 𝑁, 𝑓 , 𝑝, 𝑁𝑐, 𝑁𝑝, 𝐼𝑛𝑠𝑡# 

“01 00100” Combo5 𝑆𝑟𝑐𝐴 =  𝑀1, 𝑆𝑟𝑐𝐶 =  𝑀2, 𝑅𝑒𝑠𝑢𝑙𝑡 =  𝑀3 𝑁, 𝑓 , 𝑝, 𝑁𝑐, 𝑁𝑝, 𝐼𝑛𝑠𝑡# 

“01 00101” Combo6 𝑆𝑟𝑐𝐴 =  𝑀1, 𝑆𝑟𝑐𝐶 =  𝑀2, 𝑅𝑒𝑠𝑢𝑙𝑡 =  𝑀3 𝑁, 𝑓 , 𝑝, 𝑁𝑐, 𝑁𝑝, 𝐼𝑛𝑠𝑡# 

“01 00110” Combo7 𝑆𝑟𝑐𝐴 =  𝑀1, 𝑆𝑟𝑐𝐶 =  𝑀2, 𝑅𝑒𝑠𝑢𝑙𝑡 =  𝑀3 𝑁, 𝑓 , 𝑝, 𝑁𝑐, 𝑁𝑝, 𝐼𝑛𝑠𝑡# 

“01 00111” Combo8 𝑆𝑟𝑐𝐴 =  𝑀1, 𝑆𝑟𝑐𝐶 =  𝑀2, 𝑅𝑒𝑠𝑢𝑙𝑡 =  𝑀3 𝑁, 𝑓 , 𝑝, 𝑁𝑐, 𝑁𝑝, 𝐼𝑛𝑠𝑡# 

“01 01000” Combo9 𝑆𝑟𝑐𝐴 =  𝑀1, 𝑆𝑟𝑐𝐶 =  𝑀2, 𝑅𝑒𝑠𝑢𝑙𝑡 =  𝑀3 𝑁, 𝑓 , 𝑝, 𝑁𝑐, 𝑁𝑝, 𝐼𝑛𝑠𝑡# 

“01 01001” Combo10 𝑆𝑟𝑐𝐴 =  𝑀1, 𝑆𝑟𝑐𝐶 =  𝑀2, 𝑅𝑒𝑠𝑢𝑙𝑡 =  𝑀3 𝑁, 𝑓 , 𝑝, 𝑁𝑐, 𝑁𝑝, 𝐼𝑛𝑠𝑡# 

“01 01010” Combo11 𝑆𝑟𝑐𝐴 =  𝑀1, 𝑆𝑟𝑐𝐶 =  𝑀2, 𝑅𝑒𝑠𝑢𝑙𝑡 =  𝑀3 𝑁, 𝑓 , 𝑝, 𝑁𝑐, 𝑁𝑝, 𝐼𝑛𝑠𝑡# 

“01 01011” Combo12 𝑆𝑟𝑐𝐴 =  𝑀1, 𝑆𝑟𝑐𝐶 =  𝑀2, 𝑅𝑒𝑠𝑢𝑙𝑡 =  𝑀3 𝑁, 𝑓 , 𝑝, 𝑁𝑐, 𝑁𝑝, 𝐼𝑛𝑠𝑡# 

“01 01100” Combo13 𝑆𝑟𝑐𝐴 =  𝑀1, 𝑆𝑟𝑐𝐶 =  𝑀2, 𝑅𝑒𝑠𝑢𝑙𝑡 =  𝑀3 𝑁, 𝑓 , 𝑝, 𝑁𝑐, 𝑁𝑝, 𝐼𝑛𝑠𝑡# 

“01 01101” Combo14 𝑆𝑟𝑐𝐴 =  𝑀1, 𝑆𝑟𝑐𝐶 =  𝑀2, 𝑅𝑒𝑠𝑢𝑙𝑡 =  𝑀3 𝑁, 𝑓 , 𝑝, 𝑁𝑐, 𝑁𝑝, 𝐼𝑛𝑠𝑡# 

“01 01110” Combo15 𝑆𝑟𝑐𝐴 =  𝑀1, 𝑆𝑟𝑐𝐶 =  𝑀2, 𝑅𝑒𝑠𝑢𝑙𝑡 =  𝑀3 𝑁, 𝑓 , 𝑝, 𝑁𝑐, 𝑁𝑝, 𝐼𝑛𝑠𝑡# 

“01 01111” Combo16 𝑆𝑟𝑐𝐴 =  𝑀1, 𝑆𝑟𝑐𝐶 =  𝑀2, 𝑅𝑒𝑠𝑢𝑙𝑡 =  𝑀3 𝑁, 𝑓 , 𝑝, 𝑁𝑐, 𝑁𝑝, 𝐼𝑛𝑠𝑡# 

“01 10000” Combo17 𝑆𝑟𝑐𝐴 =  𝑀1, 𝑆𝑟𝑐𝐶 =  𝑀2, 𝑅𝑒𝑠𝑢𝑙𝑡 =  𝑀3 𝑁, 𝑓 , 𝑝, 𝑁𝑐, 𝑁𝑝, 𝐼𝑛𝑠𝑡# 

“01 10001” Combo18 𝑆𝑟𝑐𝐴 =  𝑀1, 𝑆𝑟𝑐𝐶 =  𝑀2, 𝑅𝑒𝑠𝑢𝑙𝑡 =  𝑀3 𝑁, 𝑓 , 𝑝, 𝑁𝑐, 𝑁𝑝, 𝐼𝑛𝑠𝑡# 

“01 10010” Combo19 𝑆𝑟𝑐𝐴 =  𝑀1, 𝑆𝑟𝑐𝐶 =  𝑀2, 𝑅𝑒𝑠𝑢𝑙𝑡 =  𝑀3 𝑁, 𝑓 , 𝑝, 𝑁𝑐, 𝑁𝑝, 𝐼𝑛𝑠𝑡# 

“01 10011” Combo20 𝑆𝑟𝑐𝐴 =  𝑀1, 𝑆𝑟𝑐𝐶 =  𝑀2, 𝑅𝑒𝑠𝑢𝑙𝑡 =  𝑀3 𝑁, 𝑓 , 𝑝, 𝑁𝑐, 𝑁𝑝, 𝐼𝑛𝑠𝑡# 

“01 10100” Combo21 𝑆𝑟𝑐𝐴 =  𝑀1, 𝑆𝑟𝑐𝐶 =  𝑀2, 𝑅𝑒𝑠𝑢𝑙𝑡 =  𝑀3 𝑁, 𝑓 , 𝑝, 𝑁𝑐, 𝑁𝑝, 𝐼𝑛𝑠𝑡# 

“01 10101” Combo22 𝑆𝑟𝑐𝐴 =  𝑀1, 𝑆𝑟𝑐𝐶 =  𝑀2, 𝑅𝑒𝑠𝑢𝑙𝑡 =  𝑀3 𝑁, 𝑓 , 𝑝, 𝑁𝑐, 𝑁𝑝, 𝐼𝑛𝑠𝑡# 

“01 10110” Combo23 𝑆𝑟𝑐𝐴 =  𝑀1, 𝑆𝑟𝑐𝐶 =  𝑀2, 𝑅𝑒𝑠𝑢𝑙𝑡 =  𝑀3 𝑁, 𝑓 , 𝑝, 𝑁𝑐, 𝑁𝑝, 𝐼𝑛𝑠𝑡# 
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“01 10111” Combo24 𝑆𝑟𝑐𝐴 =  𝑀1, 𝑆𝑟𝑐𝐶 =  𝑀2, 𝑅𝑒𝑠𝑢𝑙𝑡 =  𝑀3 𝑁, 𝑓 , 𝑝, 𝑁𝑐, 𝑁𝑝, 𝐼𝑛𝑠𝑡# 

“01 11000” Combo25 𝑆𝑟𝑐𝐴 =  𝑀1, 𝑆𝑟𝑐𝐶 =  𝑀2, 𝑅𝑒𝑠𝑢𝑙𝑡 =  𝑀3 𝑁, 𝑓 , 𝑝, 𝑁𝑐, 𝑁𝑝, 𝐼𝑛𝑠𝑡# 

“01 11001” Combo26 𝑆𝑟𝑐𝐴 =  𝑀1, 𝑆𝑟𝑐𝐶 =  𝑀2, 𝑅𝑒𝑠𝑢𝑙𝑡 =  𝑀3 𝑁, 𝑓 , 𝑝, 𝑁𝑐, 𝑁𝑝, 𝐼𝑛𝑠𝑡# 

“01 11010” Combo27 𝑆𝑟𝑐𝐴 =  𝑀1, 𝑆𝑟𝑐𝐶 =  𝑀2, 𝑅𝑒𝑠𝑢𝑙𝑡 =  𝑀3 𝑁, 𝑓 , 𝑝, 𝑁𝑐, 𝑁𝑝, 𝐼𝑛𝑠𝑡# 

“01 11011” Combo28 𝑆𝑟𝑐𝐴 =  𝑀1, 𝑆𝑟𝑐𝐶 =  𝑀2, 𝑅𝑒𝑠𝑢𝑙𝑡 =  𝑀3 𝑁, 𝑓 , 𝑝, 𝑁𝑐, 𝑁𝑝, 𝐼𝑛𝑠𝑡# 

“01 11100” Combo29 𝑆𝑟𝑐𝐴 =  𝑀1, 𝑆𝑟𝑐𝐶 =  𝑀2, 𝑅𝑒𝑠𝑢𝑙𝑡 =  𝑀3 𝑁, 𝑓 , 𝑝, 𝑁𝑐, 𝑁𝑝, 𝐼𝑛𝑠𝑡# 

“01 11101” Combo30 𝑆𝑟𝑐𝐴 =  𝑀1, 𝑆𝑟𝑐𝐶 =  𝑀2, 𝑅𝑒𝑠𝑢𝑙𝑡 =  𝑀3 𝑁, 𝑓 , 𝑝, 𝑁𝑐, 𝑁𝑝, 𝐼𝑛𝑠𝑡# 

“01 11110” Combo31 𝑆𝑟𝑐𝐴 =  𝑀1, 𝑆𝑟𝑐𝐶 =  𝑀2, 𝑅𝑒𝑠𝑢𝑙𝑡 =  𝑀3 𝑁, 𝑓 , 𝑝, 𝑁𝑐, 𝑁𝑝, 𝐼𝑛𝑠𝑡# 

“01 11111” Combo32 𝑆𝑟𝑐𝐴 =  𝑀1, 𝑆𝑟𝑐𝐶 =  𝑀2, 𝑅𝑒𝑠𝑢𝑙𝑡 =  𝑀3 𝑁, 𝑓 , 𝑝, 𝑁𝑐, 𝑁𝑝, 𝐼𝑛𝑠𝑡# 

------------- ------------------ -------------------------------------------------------- ------------------------------------------- 

“10 00000” Combo1 𝑆𝑟𝑐𝐴 =  𝑀2, 𝑆𝑟𝑐𝐶 =  𝑀3, 𝑅𝑒𝑠𝑢𝑙𝑡 =  𝑀1 𝑁, 𝑓 , 𝑝, 𝑁𝑐, 𝑁𝑝, 𝐼𝑛𝑠𝑡# 

“10 00001” Combo2 𝑆𝑟𝑐𝐴 =  𝑀2, 𝑆𝑟𝑐𝐶 =  𝑀3, 𝑅𝑒𝑠𝑢𝑙𝑡 =  𝑀1 𝑁, 𝑓 , 𝑝, 𝑁𝑐, 𝑁𝑝, 𝐼𝑛𝑠𝑡# 

“10 00010” Combo3 𝑆𝑟𝑐𝐴 =  𝑀2, 𝑆𝑟𝑐𝐶 =  𝑀3, 𝑅𝑒𝑠𝑢𝑙𝑡 =  𝑀1 𝑁, 𝑓 , 𝑝, 𝑁𝑐, 𝑁𝑝, 𝐼𝑛𝑠𝑡# 

“10 00011” Combo4 𝑆𝑟𝑐𝐴 =  𝑀2, 𝑆𝑟𝑐𝐶 =  𝑀3, 𝑅𝑒𝑠𝑢𝑙𝑡 =  𝑀1 𝑁, 𝑓 , 𝑝, 𝑁𝑐, 𝑁𝑝, 𝐼𝑛𝑠𝑡# 

“10 00100” Combo5 𝑆𝑟𝑐𝐴 =  𝑀2, 𝑆𝑟𝑐𝐶 =  𝑀3, 𝑅𝑒𝑠𝑢𝑙𝑡 =  𝑀1 𝑁, 𝑓 , 𝑝, 𝑁𝑐, 𝑁𝑝, 𝐼𝑛𝑠𝑡# 

“10 00101” Combo6 𝑆𝑟𝑐𝐴 =  𝑀2, 𝑆𝑟𝑐𝐶 =  𝑀3, 𝑅𝑒𝑠𝑢𝑙𝑡 =  𝑀1 𝑁, 𝑓 , 𝑝, 𝑁𝑐, 𝑁𝑝, 𝐼𝑛𝑠𝑡# 

“10 00110” Combo7 𝑆𝑟𝑐𝐴 =  𝑀2, 𝑆𝑟𝑐𝐶 =  𝑀3, 𝑅𝑒𝑠𝑢𝑙𝑡 =  𝑀1 𝑁, 𝑓 , 𝑝, 𝑁𝑐, 𝑁𝑝, 𝐼𝑛𝑠𝑡# 

“10 00111” Combo8 𝑆𝑟𝑐𝐴 =  𝑀2, 𝑆𝑟𝑐𝐶 =  𝑀3, 𝑅𝑒𝑠𝑢𝑙𝑡 =  𝑀1 𝑁, 𝑓 , 𝑝, 𝑁𝑐, 𝑁𝑝, 𝐼𝑛𝑠𝑡# 

“10 01000” Combo9 𝑆𝑟𝑐𝐴 =  𝑀2, 𝑆𝑟𝑐𝐶 =  𝑀3, 𝑅𝑒𝑠𝑢𝑙𝑡 =  𝑀1 𝑁, 𝑓 , 𝑝, 𝑁𝑐, 𝑁𝑝, 𝐼𝑛𝑠𝑡# 

“10 01001” Combo10 𝑆𝑟𝑐𝐴 =  𝑀2, 𝑆𝑟𝑐𝐶 =  𝑀3, 𝑅𝑒𝑠𝑢𝑙𝑡 =  𝑀1 𝑁, 𝑓 , 𝑝, 𝑁𝑐, 𝑁𝑝, 𝐼𝑛𝑠𝑡# 

“10 01010” Combo11 𝑆𝑟𝑐𝐴 =  𝑀2, 𝑆𝑟𝑐𝐶 =  𝑀3, 𝑅𝑒𝑠𝑢𝑙𝑡 =  𝑀1 𝑁, 𝑓 , 𝑝, 𝑁𝑐, 𝑁𝑝, 𝐼𝑛𝑠𝑡# 

“10 01011” Combo12 𝑆𝑟𝑐𝐴 =  𝑀2, 𝑆𝑟𝑐𝐶 =  𝑀3, 𝑅𝑒𝑠𝑢𝑙𝑡 =  𝑀1 𝑁, 𝑓 , 𝑝, 𝑁𝑐, 𝑁𝑝, 𝐼𝑛𝑠𝑡# 

“10 01100” Combo13 𝑆𝑟𝑐𝐴 =  𝑀2, 𝑆𝑟𝑐𝐶 =  𝑀3, 𝑅𝑒𝑠𝑢𝑙𝑡 =  𝑀1 𝑁, 𝑓 , 𝑝, 𝑁𝑐, 𝑁𝑝, 𝐼𝑛𝑠𝑡# 

“10 01101” Combo14 𝑆𝑟𝑐𝐴 =  𝑀2, 𝑆𝑟𝑐𝐶 =  𝑀3, 𝑅𝑒𝑠𝑢𝑙𝑡 =  𝑀1 𝑁, 𝑓 , 𝑝, 𝑁𝑐, 𝑁𝑝, 𝐼𝑛𝑠𝑡# 

“10 01110” Combo15 𝑆𝑟𝑐𝐴 =  𝑀2, 𝑆𝑟𝑐𝐶 =  𝑀3, 𝑅𝑒𝑠𝑢𝑙𝑡 =  𝑀1 𝑁, 𝑓 , 𝑝, 𝑁𝑐, 𝑁𝑝, 𝐼𝑛𝑠𝑡# 

“10 01111” Combo16 𝑆𝑟𝑐𝐴 =  𝑀2, 𝑆𝑟𝑐𝐶 =  𝑀3, 𝑅𝑒𝑠𝑢𝑙𝑡 =  𝑀1 𝑁, 𝑓 , 𝑝, 𝑁𝑐, 𝑁𝑝, 𝐼𝑛𝑠𝑡# 

“10 10000” Combo17 𝑆𝑟𝑐𝐴 =  𝑀2, 𝑆𝑟𝑐𝐶 =  𝑀3, 𝑅𝑒𝑠𝑢𝑙𝑡 =  𝑀1 𝑁, 𝑓 , 𝑝, 𝑁𝑐, 𝑁𝑝, 𝐼𝑛𝑠𝑡# 

“10 10001” Combo18 𝑆𝑟𝑐𝐴 =  𝑀2, 𝑆𝑟𝑐𝐶 =  𝑀3, 𝑅𝑒𝑠𝑢𝑙𝑡 =  𝑀1 𝑁, 𝑓 , 𝑝, 𝑁𝑐, 𝑁𝑝, 𝐼𝑛𝑠𝑡# 

“10 10010” Combo19 𝑆𝑟𝑐𝐴 =  𝑀2, 𝑆𝑟𝑐𝐶 =  𝑀3, 𝑅𝑒𝑠𝑢𝑙𝑡 =  𝑀1 𝑁, 𝑓 , 𝑝, 𝑁𝑐, 𝑁𝑝, 𝐼𝑛𝑠𝑡# 

“10 10011” Combo20 𝑆𝑟𝑐𝐴 =  𝑀2, 𝑆𝑟𝑐𝐶 =  𝑀3, 𝑅𝑒𝑠𝑢𝑙𝑡 =  𝑀1 𝑁, 𝑓 , 𝑝, 𝑁𝑐, 𝑁𝑝, 𝐼𝑛𝑠𝑡# 

“10 10100” Combo21 𝑆𝑟𝑐𝐴 =  𝑀2, 𝑆𝑟𝑐𝐶 =  𝑀3, 𝑅𝑒𝑠𝑢𝑙𝑡 =  𝑀1 𝑁, 𝑓 , 𝑝, 𝑁𝑐, 𝑁𝑝, 𝐼𝑛𝑠𝑡# 

“10 10101” Combo22 𝑆𝑟𝑐𝐴 =  𝑀2, 𝑆𝑟𝑐𝐶 =  𝑀3, 𝑅𝑒𝑠𝑢𝑙𝑡 =  𝑀1 𝑁, 𝑓 , 𝑝, 𝑁𝑐, 𝑁𝑝, 𝐼𝑛𝑠𝑡# 

“10 10110” Combo23 𝑆𝑟𝑐𝐴 =  𝑀2, 𝑆𝑟𝑐𝐶 =  𝑀3, 𝑅𝑒𝑠𝑢𝑙𝑡 =  𝑀1 𝑁, 𝑓 , 𝑝, 𝑁𝑐, 𝑁𝑝, 𝐼𝑛𝑠𝑡# 

“10 10111” Combo24 𝑆𝑟𝑐𝐴 =  𝑀2, 𝑆𝑟𝑐𝐶 =  𝑀3, 𝑅𝑒𝑠𝑢𝑙𝑡 =  𝑀1 𝑁, 𝑓 , 𝑝, 𝑁𝑐, 𝑁𝑝, 𝐼𝑛𝑠𝑡# 

“10 11000” Combo25 𝑆𝑟𝑐𝐴 =  𝑀2, 𝑆𝑟𝑐𝐶 =  𝑀3, 𝑅𝑒𝑠𝑢𝑙𝑡 =  𝑀1 𝑁, 𝑓 , 𝑝, 𝑁𝑐, 𝑁𝑝, 𝐼𝑛𝑠𝑡# 
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“10 11001” Combo26 𝑆𝑟𝑐𝐴 =  𝑀2, 𝑆𝑟𝑐𝐶 =  𝑀3, 𝑅𝑒𝑠𝑢𝑙𝑡 =  𝑀1 𝑁, 𝑓 , 𝑝, 𝑁𝑐, 𝑁𝑝, 𝐼𝑛𝑠𝑡# 

“10 11010” Combo27 𝑆𝑟𝑐𝐴 =  𝑀2, 𝑆𝑟𝑐𝐶 =  𝑀3, 𝑅𝑒𝑠𝑢𝑙𝑡 =  𝑀1 𝑁, 𝑓 , 𝑝, 𝑁𝑐, 𝑁𝑝, 𝐼𝑛𝑠𝑡# 

“10 11011” Combo28 𝑆𝑟𝑐𝐴 =  𝑀2, 𝑆𝑟𝑐𝐶 =  𝑀3, 𝑅𝑒𝑠𝑢𝑙𝑡 =  𝑀1 𝑁, 𝑓 , 𝑝, 𝑁𝑐, 𝑁𝑝, 𝐼𝑛𝑠𝑡# 

“10 11100” Combo29 𝑆𝑟𝑐𝐴 =  𝑀2, 𝑆𝑟𝑐𝐶 =  𝑀3, 𝑅𝑒𝑠𝑢𝑙𝑡 =  𝑀1 𝑁, 𝑓 , 𝑝, 𝑁𝑐, 𝑁𝑝, 𝐼𝑛𝑠𝑡# 

“10 11101” Combo30 𝑆𝑟𝑐𝐴 =  𝑀2, 𝑆𝑟𝑐𝐶 =  𝑀3, 𝑅𝑒𝑠𝑢𝑙𝑡 =  𝑀1 𝑁, 𝑓 , 𝑝, 𝑁𝑐, 𝑁𝑝, 𝐼𝑛𝑠𝑡# 

“10 11110” Combo31 𝑆𝑟𝑐𝐴 =  𝑀2, 𝑆𝑟𝑐𝐶 =  𝑀3, 𝑅𝑒𝑠𝑢𝑙𝑡 =  𝑀1 𝑁, 𝑓 , 𝑝, 𝑁𝑐, 𝑁𝑝, 𝐼𝑛𝑠𝑡# 

“10 11111” Combo32 𝑆𝑟𝑐𝐴 =  𝑀2, 𝑆𝑟𝑐𝐶 =  𝑀3, 𝑅𝑒𝑠𝑢𝑙𝑡 =  𝑀1 𝑁, 𝑓 , 𝑝, 𝑁𝑐, 𝑁𝑝, 𝐼𝑛𝑠𝑡# 

-------------- ------------------- -------------------------------------------------------- 𝑁, 𝑓 , 𝑝, 𝑁𝑐, 𝑁𝑝, 𝐼𝑛𝑠𝑡# 

“11 00000” Combo1 𝑆𝑟𝑐𝐴 =  𝑀3, 𝑆𝑟𝑐𝐶 =  𝑀1, 𝑅𝑒𝑠𝑢𝑙𝑡 =  𝑀2 𝑁, 𝑓 , 𝑝, 𝑁𝑐, 𝑁𝑝, 𝐼𝑛𝑠𝑡# 

“11 00001” Combo2 𝑆𝑟𝑐𝐴 =  𝑀3, 𝑆𝑟𝑐𝐶 =  𝑀1, 𝑅𝑒𝑠𝑢𝑙𝑡 =  𝑀2 𝑁, 𝑓 , 𝑝, 𝑁𝑐, 𝑁𝑝, 𝐼𝑛𝑠𝑡# 

“11 00010” Combo3 𝑆𝑟𝑐𝐴 =  𝑀3, 𝑆𝑟𝑐𝐶 =  𝑀1, 𝑅𝑒𝑠𝑢𝑙𝑡 =  𝑀2 𝑁, 𝑓 , 𝑝, 𝑁𝑐, 𝑁𝑝, 𝐼𝑛𝑠𝑡# 

“11 00011” Combo4 𝑆𝑟𝑐𝐴 =  𝑀3, 𝑆𝑟𝑐𝐶 =  𝑀1, 𝑅𝑒𝑠𝑢𝑙𝑡 =  𝑀2 𝑁, 𝑓 , 𝑝, 𝑁𝑐, 𝑁𝑝, 𝐼𝑛𝑠𝑡# 

“11 00100” Combo5 𝑆𝑟𝑐𝐴 =  𝑀3, 𝑆𝑟𝑐𝐶 =  𝑀1, 𝑅𝑒𝑠𝑢𝑙𝑡 =  𝑀2 𝑁, 𝑓 , 𝑝, 𝑁𝑐, 𝑁𝑝, 𝐼𝑛𝑠𝑡# 

“11 00101” Combo6 𝑆𝑟𝑐𝐴 =  𝑀3, 𝑆𝑟𝑐𝐶 =  𝑀1, 𝑅𝑒𝑠𝑢𝑙𝑡 =  𝑀2 𝑁, 𝑓 , 𝑝, 𝑁𝑐, 𝑁𝑝, 𝐼𝑛𝑠𝑡# 

“11 00110” Combo7 𝑆𝑟𝑐𝐴 =  𝑀3, 𝑆𝑟𝑐𝐶 =  𝑀1, 𝑅𝑒𝑠𝑢𝑙𝑡 =  𝑀2 𝑁, 𝑓 , 𝑝, 𝑁𝑐, 𝑁𝑝, 𝐼𝑛𝑠𝑡# 

“11 00111” Combo8 𝑆𝑟𝑐𝐴 =  𝑀3, 𝑆𝑟𝑐𝐶 =  𝑀1, 𝑅𝑒𝑠𝑢𝑙𝑡 =  𝑀2 𝑁, 𝑓 , 𝑝, 𝑁𝑐, 𝑁𝑝, 𝐼𝑛𝑠𝑡# 

“11 01000” Combo9 𝑆𝑟𝑐𝐴 =  𝑀3, 𝑆𝑟𝑐𝐶 =  𝑀1, 𝑅𝑒𝑠𝑢𝑙𝑡 =  𝑀2 𝑁, 𝑓 , 𝑝, 𝑁𝑐, 𝑁𝑝, 𝐼𝑛𝑠𝑡# 

“11 01001” Combo10 𝑆𝑟𝑐𝐴 =  𝑀3, 𝑆𝑟𝑐𝐶 =  𝑀1, 𝑅𝑒𝑠𝑢𝑙𝑡 =  𝑀2 𝑁, 𝑓 , 𝑝, 𝑁𝑐, 𝑁𝑝, 𝐼𝑛𝑠𝑡# 

“11 01010” Combo11 𝑆𝑟𝑐𝐴 =  𝑀3, 𝑆𝑟𝑐𝐶 =  𝑀1, 𝑅𝑒𝑠𝑢𝑙𝑡 =  𝑀2 𝑁, 𝑓 , 𝑝, 𝑁𝑐, 𝑁𝑝, 𝐼𝑛𝑠𝑡# 

“11 01011” Combo12 𝑆𝑟𝑐𝐴 =  𝑀3, 𝑆𝑟𝑐𝐶 =  𝑀1, 𝑅𝑒𝑠𝑢𝑙𝑡 =  𝑀2 𝑁, 𝑓 , 𝑝, 𝑁𝑐, 𝑁𝑝, 𝐼𝑛𝑠𝑡# 

“11 01100” Combo13 𝑆𝑟𝑐𝐴 =  𝑀3, 𝑆𝑟𝑐𝐶 =  𝑀1, 𝑅𝑒𝑠𝑢𝑙𝑡 =  𝑀2 𝑁, 𝑓 , 𝑝, 𝑁𝑐, 𝑁𝑝, 𝐼𝑛𝑠𝑡# 

“11 01101” Combo14 𝑆𝑟𝑐𝐴 =  𝑀3, 𝑆𝑟𝑐𝐶 =  𝑀1, 𝑅𝑒𝑠𝑢𝑙𝑡 =  𝑀2 𝑁, 𝑓 , 𝑝, 𝑁𝑐, 𝑁𝑝, 𝐼𝑛𝑠𝑡# 

“11 01110” Combo15 𝑆𝑟𝑐𝐴 =  𝑀3, 𝑆𝑟𝑐𝐶 =  𝑀1, 𝑅𝑒𝑠𝑢𝑙𝑡 =  𝑀2 𝑁, 𝑓 , 𝑝, 𝑁𝑐, 𝑁𝑝, 𝐼𝑛𝑠𝑡# 

“11 01111” Combo16 𝑆𝑟𝑐𝐴 =  𝑀3, 𝑆𝑟𝑐𝐶 =  𝑀1, 𝑅𝑒𝑠𝑢𝑙𝑡 =  𝑀2 𝑁, 𝑓 , 𝑝, 𝑁𝑐, 𝑁𝑝, 𝐼𝑛𝑠𝑡# 

“11 10000” Combo17 𝑆𝑟𝑐𝐴 =  𝑀3, 𝑆𝑟𝑐𝐶 =  𝑀1, 𝑅𝑒𝑠𝑢𝑙𝑡 =  𝑀2 𝑁, 𝑓 , 𝑝, 𝑁𝑐, 𝑁𝑝, 𝐼𝑛𝑠𝑡# 

“11 10001” Combo18 𝑆𝑟𝑐𝐴 =  𝑀3, 𝑆𝑟𝑐𝐶 =  𝑀1, 𝑅𝑒𝑠𝑢𝑙𝑡 =  𝑀2 𝑁, 𝑓 , 𝑝, 𝑁𝑐, 𝑁𝑝, 𝐼𝑛𝑠𝑡# 

“11 10010” Combo19 𝑆𝑟𝑐𝐴 =  𝑀3, 𝑆𝑟𝑐𝐶 =  𝑀1, 𝑅𝑒𝑠𝑢𝑙𝑡 =  𝑀2 𝑁, 𝑓 , 𝑝, 𝑁𝑐, 𝑁𝑝, 𝐼𝑛𝑠𝑡# 

“11 10011” Combo20 𝑆𝑟𝑐𝐴 =  𝑀3, 𝑆𝑟𝑐𝐶 =  𝑀1, 𝑅𝑒𝑠𝑢𝑙𝑡 =  𝑀2 𝑁, 𝑓 , 𝑝, 𝑁𝑐, 𝑁𝑝, 𝐼𝑛𝑠𝑡# 

“11 10100” Combo21 𝑆𝑟𝑐𝐴 =  𝑀3, 𝑆𝑟𝑐𝐶 =  𝑀1, 𝑅𝑒𝑠𝑢𝑙𝑡 =  𝑀2 𝑁, 𝑓 , 𝑝, 𝑁𝑐, 𝑁𝑝, 𝐼𝑛𝑠𝑡# 

“11 10101” Combo22 𝑆𝑟𝑐𝐴 =  𝑀3, 𝑆𝑟𝑐𝐶 =  𝑀1, 𝑅𝑒𝑠𝑢𝑙𝑡 =  𝑀2 𝑁, 𝑓 , 𝑝, 𝑁𝑐, 𝑁𝑝, 𝐼𝑛𝑠𝑡# 

“11 10110” Combo23 𝑆𝑟𝑐𝐴 =  𝑀3, 𝑆𝑟𝑐𝐶 =  𝑀1, 𝑅𝑒𝑠𝑢𝑙𝑡 =  𝑀2 𝑁, 𝑓 , 𝑝, 𝑁𝑐, 𝑁𝑝, 𝐼𝑛𝑠𝑡# 

“11 10111” Combo24 𝑆𝑟𝑐𝐴 =  𝑀3, 𝑆𝑟𝑐𝐶 =  𝑀1, 𝑅𝑒𝑠𝑢𝑙𝑡 =  𝑀2 𝑁, 𝑓 , 𝑝, 𝑁𝑐, 𝑁𝑝, 𝐼𝑛𝑠𝑡# 

“11 11000” Combo25 𝑆𝑟𝑐𝐴 =  𝑀3, 𝑆𝑟𝑐𝐶 =  𝑀1, 𝑅𝑒𝑠𝑢𝑙𝑡 =  𝑀2 𝑁, 𝑓 , 𝑝, 𝑁𝑐, 𝑁𝑝, 𝐼𝑛𝑠𝑡# 

“11 11001” Combo26 𝑆𝑟𝑐𝐴 =  𝑀3, 𝑆𝑟𝑐𝐶 =  𝑀1, 𝑅𝑒𝑠𝑢𝑙𝑡 =  𝑀2 𝑁, 𝑓 , 𝑝, 𝑁𝑐, 𝑁𝑝, 𝐼𝑛𝑠𝑡# 

“11 11010” Combo27 𝑆𝑟𝑐𝐴 =  𝑀3, 𝑆𝑟𝑐𝐶 =  𝑀1, 𝑅𝑒𝑠𝑢𝑙𝑡 =  𝑀2 𝑁, 𝑓 , 𝑝, 𝑁𝑐, 𝑁𝑝, 𝐼𝑛𝑠𝑡# 
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“11 11011” Combo28 𝑆𝑟𝑐𝐴 =  𝑀3, 𝑆𝑟𝑐𝐶 =  𝑀1, 𝑅𝑒𝑠𝑢𝑙𝑡 =  𝑀2 𝑁, 𝑓 , 𝑝, 𝑁𝑐, 𝑁𝑝, 𝐼𝑛𝑠𝑡# 

“11 11100” Combo29 𝑆𝑟𝑐𝐴 =  𝑀3, 𝑆𝑟𝑐𝐶 =  𝑀1, 𝑅𝑒𝑠𝑢𝑙𝑡 =  𝑀2 𝑁, 𝑓 , 𝑝, 𝑁𝑐, 𝑁𝑝, 𝐼𝑛𝑠𝑡# 

“11 11101” Combo30 𝑆𝑟𝑐𝐴 =  𝑀3, 𝑆𝑟𝑐𝐶 =  𝑀1, 𝑅𝑒𝑠𝑢𝑙𝑡 =  𝑀2 𝑁, 𝑓 , 𝑝, 𝑁𝑐, 𝑁𝑝, 𝐼𝑛𝑠𝑡# 

“11 11110” Combo31 𝑆𝑟𝑐𝐴 =  𝑀3, 𝑆𝑟𝑐𝐶 =  𝑀1, 𝑅𝑒𝑠𝑢𝑙𝑡 =  𝑀2 𝑁, 𝑓 , 𝑝, 𝑁𝑐, 𝑁𝑝, 𝐼𝑛𝑠𝑡# 

“11 11111” Combo32 𝑆𝑟𝑐𝐴 =  𝑀3, 𝑆𝑟𝑐𝐶 =  𝑀1, 𝑅𝑒𝑠𝑢𝑙𝑡 =  𝑀2 𝑁, 𝑓 , 𝑝, 𝑁𝑐, 𝑁𝑝, 𝐼𝑛𝑠𝑡# 

 The above Opcodes are chosen for minimum hardware obtained in the controller 

shown with their sources and destinations and required operands for each instruction. 

That’s all about Custom Instructions to be executed.  

2.5. Reconfigurable Control Unit 

2.5.1. Control Unit Design 

 As shown before, the data-path control signals are declared and also the 

instructions can be executed by it, so the functionality of control unit is to direct the data-

path to execute the operation according to input instruction, and then sends end of 

operation as well as the operation is done. 

 The interface between the controller and the CPU, is based on start signal that is 

raised high by the CPU parallel to the needed instruction to be executed, and when it’s 

done, the controller raised finish signal to inform the CPU that accelerator is free to 

accept another instruction. 

 The procedure followed to design controller is the Hardwired Finite State Machine, 

and that’s very appropriate to the nature of data flow inside the data-path, in another 

words, the data is not processed in one cycle but multiple ones, so the transition between 

states defines that flow. 

 The chosen states for the FSM are as follows: 

1) Wait State: 

It’s used to wait until the Start signals come to inform that there’s an instruction 

needed to be executed. 

 

2) Reset State: 

It’s used to locally reset the whole accelerator block even if computing modules or 

RAMs, also it’s used to reset the destination RAM before storing any data inside if 
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the instruction is Move or Store instructions, as it’s required to flash the data to 

make the RAM store it in a right manner. 

 

3) Load/Store State: 

It’s used to control the RAMs interface between it and between the main RAM, if 

there’s a store or load from or to internal RAM, it has to be enabled for the 

required operation. 

Notice that the RAM operation enables have to be raised up for one clock cycle, so 

this state and also the following states are two clock cycle states, one cycle is to 

enable the module to work and another to low it down again with enabling the 

operation to count on with the count enable. 

That state will not come back to the wait state until the whole matrix to be loaded 

or stored is completely done, and that’s known by the finish signals comes from 

the RAMs, that’s also followed procedure in move and store result states.  

 

4) Move State: 

It’s used for move instruction, also for enabling the destination RAM to store and 

source RAM to load according to the given Opcode. 

 

5) Conv State: 

It’s also a two clock cycle states, which enables the convolution and then lower it 

back with maintenance of count enable high, and as the convolution is always first 

of the Combo if it exists, so the enabling of loading RAM is required two, to be 

synchronically works well.   

 

6) Pool State: 

It’s used to go through Pool states which enables it for working on a matrix and 

also concerns about if Pool state comes first in some combos, so these combos 

have to be included to enable the loading matrix in that case. 

 

7) ReLU State: 

It’s used to enable ReLU module, but as it’s shown before the ReLU module works 

as well as its enable is high, but it has to include the cases of that the ReLU module 

is first of the combos to also enable the loading RAM.  
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8) Add State: 

It’s used to enable Add module, and it’s as ReLU module, but the difference is that 

it’s required to enable the SrcC RAM whatever it’s due to Opcode. 

  

9) Store Result State: 

It’s used to store the results of the Combos and its functionality is to enable the 

result matrix for the appropriate store operation due to the opcode and it will not 

back to the wait state until the storing is done. 

 The transition of these States as shown in Figure 29, is totally according to the 

Opcode of the instruction needed. 

 

Figure 29: Controller Finite State Machine 

 It’s required to consider that there’re some modules have enables that can’t be 

reset, for example if it’s Pool state, it’s not allowed to disable the ReLU module, as it 

may come before it, so before the determination of its enable, it has to check the Opcode. 

 Notice that states are two clock cycles which means that the modules don’t stop its 

operation even if its state is over, in another words, the states are only enable the modules 

not also wait until there functionality is done and that’s appropriate for the data flow 

occurrence. 
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 Let’s take examples of some instructions to see how the transition is done, for 

example, if Combo1 with Opcode = 0100000 is needed to be executed, the transition 

between states as shown in Figure 30, is that it in wait state till the start signal comes and 

then it goes to convolution state which enables the operation 4 in RAM1 and enables the 

convolution module itself and then lower enable down with maintenance of count enable, 

and hence go to the pool state to count it up after the setup time of the convolution to 

enable it to work on the first result element of the convolution and hence go to ReLU and 

then Add with RAM2 to work in Operation 3 to enable them when the Pool starts to 

display its output and disable if it stops, and finally enable the RAM3 which is the result 

matrix and all modules are still enabled until the finish signal of last stage comes to go to 

the wait state and locally reset the computing modules, that happens with setting the path 

between RAMs and PE through data selectors of Memory file and setting path between 

computing modules through the selectors of crossbar. 

 

Figure 30: Execution of Combo1 
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Another example is in store instruction for example with Opcode = 0000101, is to 

store in RAM1, the transition between states is as shown in Figure 30 after moving from 

wait state, it goes to reset state, to reset the destination RAM, before storing in it, and 

hence, goes to Load/Store State to enable normal store operation for RAM1 and after 

RAM1 finished by informing the state, it go back to wait state again, and wait state 

informs CPU with end of operation signal to inform that accelerator is back to free state. 

 

 

 

 

 

 

 

 

 

Figure 31: Executing Store 

instruction 

 And so on until the whole transition between states totally specified according to 

Opcode, one other thing is worth to be mentioned, for future work if there’s another 

module needed to be hardware implemented such as sigmoid or other thing needed to 

CNN architecture and totally needed, it can be designed by same design procedure and 

add it to the states. 
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2.6. Generalization of Idea 
 Backing to the design, the most of area can be customized to used ROMs or LUTs 

area, regardless the Area optimization needed in ROM size reduction as mentioned 

above, but the good thing with ROMs is that it may be multi-input multi-output ROM 

which means it can serve for lots of PE modules, which encourages to use lots of data-

paths served by same ROM. 

 As the ROM can be considered as Overhead in Area must tolerated and then the 

performance will increase as well as the number of data-paths increases as shown in 

Figure 32 

 

 

 

 

 

 

 

 

 

 

Figure 32: Area vs performance 

 And that is the importance of the field of instruction number, as each data-path is 

responsible to execute one instruction and can’t be make another one although it ends the 

operation, the controller can be used for more than one but to handle more than signal in 

same time. 
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Chapter 3: Software path 
In this chapter we will talk about: 

• Different between machine learning and Deep learning. 

• Different types of Neural Networks in Deep Learning. 

• Most popular Convolutional Neural Network architectures (CNN). 

• General layers of Convolutional Neural Network architectures. 

• Software Algorithm to prepare matrix before send it to coprocessor. 

3.1. Machine Learning vs. Deep Learning:  
Feature engineering is a key step in the model building process. It is a two-step     

process: 

1. Feature extraction → Extract all the features required to report our problem 

2. Feature selection → select the important features that improve the performance of 

our machine learning or deep learning model. In image classification problem. The 

manual extraction of features of an image requires strong subject and domain 

https://courses.analyticsvidhya.com/courses/computer-vision-using-deep-learning-version2?utm_source=blog&utm_medium=cnn-vs-rnn-vs-mlp-analyzing-3-types-of-neural-networks-in-deep-learning
https://www.analyticsvidhya.com/blog/2019/01/build-image-classification-model-10-minutes/?utm_source=blog&utm_medium=cnn-vs-rnn-vs-mlp-analyzing-3-types-of-neural-networks-in-deep-learning
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knowledge.  

 

Figure 33: Comparison between Machine Learning & Deep Learning 

It is an extremely time-consuming process. With Deep Learning, the process of Feature 

Engineering can be automated.Figure 33 [15]. 

3.2. Different types of Neural Networks in Deep Learning 
Three important types of neural networks that form the basis for most pre-trained 

models in deep learning: 

• Artificial Neural Networks (ANN) 

• Convolution Neural Networks (CNN) 

• Recurrent Neural Networks (RNN) 

3.2.1. Artificial Neural Network (ANN): 

 ANN, is a group of multiple neurons at each layer. ANN is also known as a Feed-

Forward Neural network because inputs are processed only in the forward direction: 

As shown in Figure 34 [14], ANN consists of 3 

layers →  Input, Hidden and Output.  

• The input layer accepts the inputs. 

•  The hidden layer processes the inputs.  

•  The output layer produces the result.  

ANN can be used to solve problems related to: 

• Tabular data 

• Image data 

• Text data 

Challenges with Artificial Neural Network 

(ANN): 

• While solving an image classification problem using ANN, the first step is to 

convert a 2-dimensional image into a 1-dimensional vector prior to training the 

model. Figure 35 [14]. There are two disadvantages: 

Figure 34: ANN 

https://cdn.analyticsvidhya.com/wp-content/uploads/2020/02/DlPjv2iXcAAUi6X.jpg-large.jpeg
https://cdn.analyticsvidhya.com/wp-content/uploads/2020/02/DlPjv2iXcAAUi6X.jpg-large.jpeg
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1. The number of trainable parameters increases drastically with an increase in the 

size of the image 

Ex: if the size of the image is 224*224, then the number of trainable parameters at 

the first hidden layer with just 4 neurons is 602,112. That’s huge! 

2.  ANN loses the spatial features of an image. Spatial features refer to the 

arrangement of the pixels in an image.  

• One common problem in all these neural networks is the Vanishing and 

Exploding Gradient. This problem is associated with 

Figure 36: Backward Propagation 

Figure 35: ANN Image classification 
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the backpropagation algorithm Figure 36.The weights of a neural network are 

updated through this backpropagation algorithm by finding the gradients: 

  

 

 

 

 

 

 

 

So, in the case of a very deep neural network (network with a large number of hidden 

layers), the gradient vanishes or explodes as it propagates backward which leads to 

vanishing and exploding gradient. 

• ANN cannot capture sequential information in the input data which is required for 

dealing with sequence data 

 

Why not use regular ANNs for image tasks?  

For small images, it might work, but for large images the number of pixels are so many 

leading to millions of connections between neurons, leading to intractable solutions. 

3.2.2. Recurrent Neural Network (RNN): 

 Difference between an RNN and an ANN: 
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As shown in Figure 37[12], RNN has a recurrent connection on the hidden state. This 

looping constraint ensures that sequential information is captured in the input data.  

 

 

 

 

 

 

 

 

 

 

The applications of RNNs include:  

• Speech recognition 

• Time series prediction 

• Music composition 

• Machine translation 

 Advantages of Recurrent Neural Network (RNN) 

• Sequence recognition: produce particular output pattern when a specific input 

sequence is seen→Application handwriting recognition. 

• Temporal association: produce particular output sequence in response of a specific 

input sequence is seen → Application machine translation. 

Figure 37: Difference between an RNN and an ANN 
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• RNNs share the parameters across different time steps. This is popularly known 

as Parameter Sharing. This results in fewer parameters to train and decreases 

the computational cost and make it more generalized 

Disadvantage: 

• Gradient vanishing and exploding 

problems. 

• Training an RNN is a very 

difficult task. 

• It cannot process very long 

sequences if using tanh or relu as 

an activation function. 

3.2.3. Convolution Neural Network (CNN): 

 A Convolutional Neural Network (CNN) is a type of neural network that specializes 

in image recognition and computer vision tasks 

Features of CNN 

• Convolution layers is the base of CNN. 

• The convolution operation is one of the fundamental building blocks of a 

convolutional neural network 

o It used to detect patterns (edges, corners, objects….) Figure 39. 

 

 

 

 

 

 

 

 

 

Figure 38: Many2Many Seq2Seq model 

Figure 39: Detect patterns edges, corners, objects…. 
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• We need to know how many filters and from any types we will Use in convolution 

layers.   

• Due to this convolutional operation the network can be much deeper but with much 

fewer parameters. 

• Due to this ability, convolutional neural networks show very effective results in 

image and video recognition, natural language processing, and recommender 

systems. 

• Each neuron in the hidden layer is connected to a small region of the input neurons. 

Figure 40. 

 

 

 

 

 

 

 

3.3. Most popular Convolutional Neural Network architectures 

(CNN): 

• LeNet-5 (1998) 

• AlexNet (2012)  

• ZFNet (2013) 

• GoogLeNet (2014)  

• VGGNet (2014)  

• ResNet (2015) 

We choose LeNet-5 for:  

▪ Simplicity  

▪ The available open source codes. 

▪ It was the lighter in the architecture among rest CNN arch. 

Figure 40: CNN 
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3.3.1. LeNet-5 [17] 

 

 

 

 

 

 

▪ The dimensions of the image decreases as the number of channels increases. 

▪ The LeNet-5 architecture: consists of two sets of convolutional and average 

pooling layers, followed by a flattening convolutional layer, then two fully-

connected layers and finally a softmax classifier aas shown in Figure 41. 

▪ First Layer: 

The input for LeNet-5 is a 32×32 grayscale image which passes through the first 

convolutional layer (C1) Figure 42 with 6 feature maps or filters having size 5×5 and a 

stride of one. The image dimensions changes from 32x32x1 to 28x28x6 (32-

5+1=28 and no. 

of filter = 6).Here, total no. 

of parameters are (6x 

(5x5+1)) = 156 parameters, 

where +1 indicates that a 

kernel has a bias. In this 

convolutional layer C1, there 

are 

total (156x28x28) = 122304 no. of connections. 

 

 

Figure 41: LeNet-5 

Figure 42: first layer convolution layer(C1) 
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▪ Second Layer: 

Then the LeNet-5 applies average pooling layer or sub-sampling layer (S2) (but now 

using Max pooling) Figure 43 with a filter size 2×2 and a stride of two.  

 

 

 

 

 

 

 

 

 

 

The resulting image dimensions will be reduced to 14x14x6 (28/2=14). There are 

total (1+1)x6 = 12 training parameters and (5x14x14x6 ) = 5880 connections. 

 

▪ Third Layer: 

In the third convolutional layer (C3) Figure 44, there are 16 filters having size 5x5 and 

stride is 1. Here image size will be 10x10x16 [(((14-5)/1)+1=10)]. So, here total no. of 

parameters are (5x5x6x10+16) =1516. The image size is 10 x10, so there are 151600 

connections 

Figure 43: second layer pooling layer (S2)  
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. 

 

 

 

 

 

 

 

 

▪ Fourth Layer: 

In the fourth layer (S4) Figure 45 after applying avg. pooling (Now Max. pooling) we get 

the image size of 5x5x16 where filter and stride no. is 2. Here, we have 16 filters and 25 

layers. Here no. of nodes will be 400 (5x5x16=400).This layer has a total of (2x16) 32 

training parameters of, (5x5x5x16) = 2000 connections. 

 

 

 

 

 

 

 

 

 

 

 

Figure 44: third layer convolution layer (C3) 

Figure 45: fourth layer pooling 
layer (S4) 
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▪ Fifth Layer: 

In the fifth convolutional layer (F5) Figure 46 we are flattening the image with 120 

feature maps. Each of the 120 units is connected to all the 400 nodes (5x5x16) of the 

previous layer .The size of the image formed after convolution is 1x1. So, here total no. 

of connections are (5x5x16 + 1) x120 = 48120. 

 

 

 

 

 

 

 

 

 

 

 

 

 

▪ Sixth Layer: 

The sixth layer is a fully connected layer (F6) Figure 47 with 84 units. Input: 120-

dimensional vector. Calculate the dot product between the input vector and the weight 

vector, plus an offset, and the result is output through the sigmoid function. The training 

parameters and number of connections for this layer are (120 + 1) x84 = 10164. 

Figure 46: fully connected layer (F5) 
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The output layer (F6) is also a fully connected layer, with a total of 10 nodes, 

which respectively represent the numbers 0 to 9, and if the value of node i is 0, the 

result of network recognition is the number i. A radial basis function (RBF) 

network connection is used.  This layer has 84x10 = 840 parameters and 

connections as shown in Figure 48. 

Figure 47: fully connected layer (F6) 
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▪ Summary of LeNet-5 Architecture 

 

 

 

 

 

 

 

 

 

 

 

Figure 48: output layer 

Figure 49: LeNet-5 table 
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3.4. General layers of Convolutional Neural Network 

architectures: 

 

In this section will talk about all layers that in CNN and show how we can 

implement all these layers in C++ to be suitable with coprocessor.[20] 

3.4.1. Convolution 

The first layer in a CNN is a Convolutional Layer. The convolutional layer receives N 

feature maps as  input. Each input feature map is convolved by a shifting window with K 

x K kernel (filter)  to generate one element in one output feature map. The stride of the 

shifting window is S,  which is normally smaller than K. A total of M output feature maps 

will form the set of input feature maps for the next convolutional layer. By stacking a 

number of convolutional layers, the network hierarchically learns high-level features of 

the image as Convolution is very strong and effective to extract features from images. 

▪ Figure 50, shows a 2D example where Yellow Square is filter weights and the green 

one is input [18]. 

 

  

 

 

 

 

Figure 50: 2D convolution example 

https://www.sciencedirect.com/topics/mathematics/convolution
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▪ Represent convolution layer using C++: 

         

 

 

 

      

3.4.2. Max pooling 

▪ Max Pooling is a pooling operation that calculates the maximum value for patches of 

a feature map, and uses it to create a downsampled (pooled) feature map. It is usually 

used after a convolutional layer. It adds a small amount of translation invariance - 

meaning translating the image by a small amount does not significantly affect the 

values of most pooled outputs. 

▪ EX: Let's say we have a 4x4 matrix representing our initial input. Let's say, as well, 

that we have a 2x2 filter that we'll run over our input. We'll have a stride of 2 

(meaning the (dx, dy) for stepping over our input will be (2, 2)) and won't overlap 

regions. 

For each of the regions represented by the filter, we will take the max of that 

region and create a new, output matrix where each element is the max of a 

region in the original input as shown in Figure 51.[19] 

 

 

 

 

 

 

 

 

 

Figure 51: Max pool sample2 
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▪ Real life example: as shown in Figure 52 

 

 

 

 

 

 

 

▪ Represent Max pooling layer using C++: 

 

 

 

 

 

 

 

 

 

3.4.3. Average pooling 

▪ Average Pooling is a pooling operation that calculates the average value for patches 

of a feature map, and uses it to create a downsampled (pooled) feature map. It is 

usually used after a convolutional layer. It adds a small amount of translation 

invariance - meaning translating the image by a small amount does not significantly 

affect the values of most pooled outputs. It extracts features more smoothly than Max 

Pooling, whereas max pooling extracts more pronounced features like edges. 

Figure 52: Max pool real life example 

https://paperswithcode.com/method/max-pooling
https://paperswithcode.com/method/max-pooling
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▪ Ex: Figure 53 shows an example of average pooling with a 2x2 pixel filter size from 

4x4 pixel input. The value taken is the average value of the filter size. 

 

 

 

 

 

 

 

 

 

▪ Represent Average pooling layer using C++: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3.4.4. Activation functions: 

After each convolutional layer, it is convention to apply a nonlinear layer (or 

activation layer) immediately afterward. The purpose of this layer is to introduce 

nonlinearity to a system that basically has just been computing linear operations 

during the convolutional layers (just element wise multiplications and 

summations).  

Figure 53: average pooling example 
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    2.4.4.1 Rectified Linear Unit (ReLU) 

▪ ReLu has a linear relationship with the dependent variable. it avoids and rectifies 

vanishing gradient problem. Almost all deep learning Models use ReLu nowadays. 

Because the network is able to train a lot faster (because of the computational 

efficiency) without making a significant difference to the accuracy. But its limitation 

is that it should only be used within Hidden layers of a Neural Network Model. 

▪ RELU layer applies the function R(z)  =  max (0, z) to all of the values in the input 

volume as shown in Figure 55. In basic terms, this layer just changes all the negative 

activations to zero. This layer increases the nonlinear properties of the model and the 

overall network without affecting the receptive fields of the convolutional layer.[22] 

▪ Example: for the RELU function is shown in Figure 54 below 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 54: RelU in process 

                                   Figure 55: ReLU Activation function 
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▪ Represent ReLU function using C++: 

 

 

 

 

 

 

 

 

 

 

 

2.4.4.2 Sigmoid function 

▪ Sigmoid function is normally used to refer specifically to the logistic function, also 

called the logistic sigmoid function.[11] 

▪ All sigmoid functions have the property that they map the entire number line into a 

small range such as between 0 and 1, or -1 and 1, so one use of a sigmoid function is 

to convert a real value into one that can be interpreted as a probability. 

▪ One of the most widely used sigmoid functions is the logistic function, which maps 

any real value to the range (0, 1). 

▪ It applies the function R(z) =
1

1+𝑒−𝑧 as shown in Figure 56. 

https://deepai.org/machine-learning-glossary-and-terms/probability
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▪ Represent sigmoid function using C++: 

 

           

 

 

 

 2.4.4.3 Softmax function 

▪ The softmax function is a function that turns a vector of K real values into a 

vector of K real values that sum to 1.  

▪ The input values can be positive, negative, zero, or greater than one, but the 

softmax transforms them into values between 0 and 1, so that they can be 

interpreted as probabilities. If one of the inputs is small or negative, the softmax 

turns it into a small probability, and if an input is large, then it turns it into a 

large probability, but it will always remain between 0 and 1 as shown in Figure 

57.[22] 

 

            

 

 

 

 

Figure 56: sigmoid function 

Figure 57: Softmax function 

https://deepai.org/machine-learning-glossary-and-terms/vector
https://deepai.org/machine-learning-glossary-and-terms/probability
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▪ Represent softmax function using C++: 

 

 

 

 

2.4.4.4 Tanh function 

▪ Tanh is like logistic sigmoid but better. The range of the tanh function is from (-

1 to 1). Tanh is also sigmoidal (s - shaped). 

▪ The advantage is that the negative inputs will be mapped strongly negative and 

the zero inputs will be mapped near zero in the tanh graph as shown in Figure 

58.[22] 

▪ It applies the function tanh (𝑥) =
𝑒𝑥−𝑒−𝑥

𝑒𝑥+𝑒−𝑥
=

𝑒2𝑥−1

𝑒2𝑥+1
 

 

 

 

 

 

 

 

▪ Represent tanh function using C++: 

 

 

 

 

 

 

Figure 58: Tanh vs. sigmoid function 
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3.5 Software Algorithm 
After implement general layer of convolution neural network we use it to 

implement LeNet-5.Than testing a simple Lenet-5 on RISCV simulators: To know 

which layer take larger time and need to be implemented using hardware. From 

simulation we find out that the convolution layer is the most layer that takes time 

so it need to be implemented hardware. We need to prepare matrix before send it to 

coprocessor because coprocessor is fixed size can’t deal with different sizes from 

matrices. 

▪ Two cases to prepare matrix before send it to coprocessors: 

i) If Source matrix size multiple form Coprocessors matrix size. 

ii) If Source matrix size not multiple form Coprocessors matrix size. 

 

➢ Depend on three things: 

1. Source matrix size  

2. Coprocessors matrix size 

3. Filter matrix size 

i) Source matrix size multiple form Coprocessors matrix size: 

In this case we can divide source matrix into matrices that have size equal to 

Coprocessor’s matrix size and send them to coprocessor but still have matrices 

in between should be sent so we also take matrix in between as shown in Figure 

59. 

 

 

 

 

 

 

 

 

 

 

 

 

  

Figure 59: Divide source matrix when its size is multiple from co-size 
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ii) If Source matrix size not multiple form Coprocessors matrix size. 

In this case we will divide src matrix just exact as first case but we have parts 

from src matrix not sending so we divide this parts and send them as shown in 

Figure 60  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 60: Divide src matrix when its size not multiple from co-size 
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Chapter 4: Verification 
 

What is the advantage of UVM based testbench over System Verilog based 

testbench? 

A simple analogy: 

System Verilog based TB: You are asked to build a house from scratch, not much of tools 

are provided to you to build the house. You will build the tools first and then start 

building the house. You probably would have put in lot of effort to make the whole thing 

work. But you have the flexibility to use those tools to build other houses or develop new 

tools depending on your need. You will struggle to build larger houses though, not that it 

is impossible. 

UVM based TB: You are again asked to build a similar house from scratch, and you are 

provided with not just the basic tools but some are quite sophisticated too.. You 

effortlessly build the house. You can build larger and more sophisticated houses but they 

shall lack the “human touch” that SV based TBs could offer. 

Note that both the houses could be equally good in terms of quality and strength but the 

effort you put in for the latter house is very minimal. This, however, is subjective and 

many might still prefer SV based TB since they have more controllability over it and that 

they have the flexibility to develop necessary verification infrastructure/ libraries based 

on their taste and requirement. UVM based TB may make life easier but at the cost of not 

providing developers independence to implement their own solutions in some aspects. 

This is, however, debatable since UVM is open-source and developers are free to play 

with base class library. 

 In the following section, there is a comparison between both Verilog, Systemverilog and 

UVM as testbench languages [23]. 
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Here are Some of the benefits of using UVM are 

1- Modularity and Reusability – The methodology is designed as modular 

components (Driver, Sequencer, Agents , env etc) which enables reusing 

components across unit level to multi-unit or chip level verification as well as 

across projects. 

 

2- Separating Tests from Testbenches – Tests in terms of stimulus/sequencers are 

kept separate from the actual testbench hierarchy and hence there can be reuse of 

stimulus across different units or across projects. 

 

3- Simulator independent – The base class library and the methodology is supported 

by all simulators and hence there is no dependence on any specific simulator. 

 

4- Sequence methodology gives good control on stimulus generation. There are 

several ways in which sequences can be developed which includes randomization, 

layered sequences, virtual sequences etc which provides a good control and rich 

stimulus generation capability. 

 

5- Config mechanisms simplify configuration of objects with deep hierarchy. The 

configuration mechanism helps in easily configuring different testbench 

Figure 61: comparison between verilog and systemverilog as test bench language 
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components based on which verification environment uses it and without worrying 

about how deep any component is in testbench hierarchy. 

 

6- Factory mechanisms simplifies modification of components easily. Creating each 

components using factory enables them to be overridden in different tests or 

environments without changing underlying code base. 

For all this reasons we choose to build our testbench using UVM methodology, before 

understanding UVM, we need to understand verification. 

Right now, we have a DUT and we will have to interact with it in order to test its 

functionality, so we need to stimulate it. To achieve this, we will need a block that 

generates sequences of bits to be transmitted to the DUT, this block is going to be 

named sequencer. 

Usually sequencers are unaware of the communication bus, they are responsible for 

generating generic sequences of data and they pass that data to another block that takes 

care of the communication with the DUT. This block will be the driver. 

While the driver maintains activity with the DUT by feeding it data generated from the 

sequencers, it doesn’t do any validation of the responses to the stimuli. We need another 

block that listens to the communication between the driver and the DUT and evaluates 

the responses from the DUT. This block is the monitor. 

Monitors sample the inputs and the outputs of the DUT, they try to make a prediction of 

the expected result and send the prediction and result of the DUT to another block, 

the scoreboard, in order to be compared and evaluated. 

All these blocks constitute a typical system used for verification and it’s the same 

structure used for UVM testbenches. 

You can find a representation of a similar environment in Figure 61. 
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Usually, sequencers, drivers and monitors compose an agent. An agent and a scoreboard 

compose an environment. All these blocks are controlled by a greater block denominated 

of test. The test block controls all the blocks and sub blocks of the testbench. This means 

that just by changing a few lines of code, we could add, remove and override blocks in 

our testbench and build different environments without rewriting the whole test. 

To illustrate the advantage of this feature, let’s imagine a situation where we are testing 

another DUT that uses SPI for communication. If, by any chance, we want to test a 

similar DUT but with I2C instead, we would just need to add a monitor and a driver for 

I2C and override the existing SPI blocks, the sequencer and the scoreboard could reused 

just fine. 

UVM overview 
 

4.1    What is UVM?  

UVM is a methodology for functional verification using SystemVerilog, complete with a 

supporting library of SystemVerilog code. The letters UVM stand for the Universal 

Verification Methodology. UVM was created by Accellera based on the OVM (Open 

Verification Methodology) version 2.1.1. The roots of these methodologies lie in the 

application of the languages IEEE 1800™ SystemVerilog, IEEE 1666™ SystemC, and 

IEEE 1647™ e. 

Figure 62:  Typical UVM testbench 

http://colorlesscube.com/wp-content/uploads/ch3-uvm_tb_typical.png
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UVM is a methodology for the functional verification of digital hardware, primarily 

using simulation. The hardware or system to be verified would typically be described 

using Verilog, SystemVerilog, VHDL or SystemC at any appropriate abstraction level. 

This could be behavioral, register transfer level, or gate level. UVM is explicitly 

simulation-oriented, but UVM can also be used alongside assertion-based verification, 

hardware acceleration or emulation. 

If you currently run RTL simulations in Verilog or VHDL, you can think of UVM as 

replacing whatever framework and coding style you use for your testbenches. But UVM 

testbenches are more than traditional HDL testbenches, which might wiggle a few pins on 

the design-under-test (DUT) and rely on the designer to inspect a waveform diagram to 

verify correct operation. UVM testbenches are complete verification environments 

composed of reusable verification components, and used as part of an overarching 

methodology of constrained random, coverage-driven, verification. 

 

4.1.1   System Verilog in UVM [40] 

UVM is built with SystemVerilog’s Object Oriented Programming constructs based on 

aggregation or composition and inheritance concepts. Aggregation or composition means 

that a class has a reference to another class, in other words an object container 

relationship and inheritance concept describes the relationship between base classes and 

extended ones you can say it shows the UVM hierarchy . 

 

4.2 UVM Methodology  

The verification methodology has many goals, First goal is reusability as UVM facilitates 

the construction of verification environments and tests, both by providing reusable 

machinery in the form of a library of SystemVerilog classes, and also by providing a set 

of guidelines for best practice when using SystemVerilog for verification. 

Verification productivity can be enhanced by reusing verification components, and this is 

an important objective of UVM. Verification reuse is enabled by having a modular 

verification environment where each component has clearly defined responsibilities, by 

allowing flexibility in the way in which components are configured and used, by having a 

mechanism to allow imported components to be customized to the application at hand, 

and by having well-defined coding guidelines to ensure consistency. 
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The architecture of UVM has been designed to encourage modular and layered 

verification environments, where verification components at all layers can be reused in 

different environments. Low-level driver and monitor components can be reused across 

multiple designs-under-test. The whole verification environment can be reused by 

multiple tests and configured top-down by those tests. Finally, test scenarios can be 

reused from application to application. This degree of reuse is enabled by having UVM 

verification components able to be configured in a very flexible way without 

modification to their source code. This flexibility is built into the UVM class library.[37] 

The second goal is interoperability needed for tools from multiple vendors and with 

multiple types of tools as well. For example an engineer develops a testbench with one 

simulator and wants to make sure that your code behaves correctly in other simulators as 

the system Verilog is very large and most of time many vendors contributes to implement 

the features. UVM allows each vendor to focus on a common subset of systemverilog 

feature so that a design simulates consistently, UVM also allows verification intellectual 

property (VIP) models in your testbench that’s why In-house verification code of 

components that make up the design and commercial verification code for of the shelf 

components can be used.  There is no need to write the code from scratch, moreover the 

UVM separates stimulus generation from delivering it to the DUT, In UVM, classes that 

describe the transaction are different from the classes that describe how components are 

connected together that allows several engineers to generate stimulus and develop the 

testbench in parallel, UVM code also is written in a maintainable manner so that it is easy 

to read or modify according to your needs in the project.    

4.3 UVM Topology 

 Using UVM we are trying to build a verification environment that can be used over and 

over for many test, the main idea is to separate the stimulus from the test bench ,So that 

the stimulus will be responsible for defining what exactly will happen for this particular 

simulation run , while the testbench will be responsible for defining all components that 

are needed to interact with DUT. The test class is to build and configure the environment 

and to generate stimulus we can also determine how many times are we going to run a 

particular stimulus and what type of transactions are we going to generate. The 

environment class instantiate the components for driving transactions into the DUT, 

Monitoring values read for the DUT and checking the result as well. The DUT 

communicates with the testbench through a systemverilog interface that has different 

methods which you can call to drive transactions to the design and read them out of it , 

So this structure rarely changes. All of these of these components are constructed under a 
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base class called UVM root which constructs your testbench and start the simulation 

phases. 

The DUT communicates with the test environment through a systemverilog interfacre , 

So every interface inside your design needs an agent that encapsulates everything needed 

for counicating with this interface , first drive transactions into DUT so the driver send 

transactions to the interface which then wiggles to DUT pins. A sequencer components 

connected to the driver sends the transactions to the driver then the driver sends the 

transactions to the DUT through the interface, To verify the result the monitor watches 

the pin wiggles through the interface coverts those pin wiggles into transactions and 

sends them to the scoreboard or coverage collector for checking the values and verify 

results, This is done an analysis port which is like a sysytemverilog mailbox. A 

configuration object is a class with configuration values like the virtual interface. See 63 

 

 

 

 

 

 

 

 

 

 

4.3.1 UVM factory  

Previously, creating a dynamically different type of objects required modifying source 

code which contradicts the reusability concept of UVM. UVM factory is a mechanism 

introduced by the UVM to improve the flexibility and scalability of the testbench by 

allowing the user to substitute an existing class object by any of its inherited child class 

objects. Factory is a critical aspect which is introduced in the UVM that builds everything 

in the UVM environment like dynamically adaptable testbenches, which are tests created 

and compiled at run time . Therefore, factory requires that all the classes to be registered 

with the factory with macros like ‘uvm component utils and ‘uvm object utils macros. 

Figure 63: UVM classes , connections between testbench and DUT 
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4.4 Class Hierarchy 

 The UVM package contains a class library that provides a set of base classes which can 

be extended by users as required , UVM object is the base class for all UVM data and 

hierarchical classes . Its role is to define a set of methods for common operation such as 

(create , copy , compare, print). there are two group class that are inherited from uvm 

object the first one is uvm component that is used to build the testbench topology also 

there classes are dynamically created they exist for the entire simulation , the classes has 

additional characteristics like being in fixed location inside uvm topology and having 

methods that are called in a fixed order to build and connect the testbench run the test and 

report the results , The second droup is transaction classes the stimulus is described into 

the design by extending uvm base classes a single transaction is a sequence item and 

multiple items form a sequence . Transactions are transient object they are created and 

destroyed during the simulation run and has no fixed location in the topology and created 

in the test ,flow into the driver or are created in the monitor and are sent into the 

scoreboard The complete diagram expansion in figure 64  may show other predefined 

component types that are driver from uvm component class , The class should be used as 

the base class for any user definend components so to create my agent class you should 

etend uvm agent base class and te same for driver, monitor . . . etc. The uvm class library 

provides all the building blocks you need to develop and easily constructed. 

4.4.1 UVM TLM communication  

The communication between components has 2 connections called a TLM that stands for 

transaction level modeling , The TLM connections has 2 pins the initiator that has an 

object called port and the target contains an object called export, As in the driver when it 

pulls transactions from sequencer , A port is a one to one connection to an export a less 

common type is when producer pushes transactions to a consumer. Another kind of 

Figure 64: Transaction level modeling VS Analysis port export 
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connections called Analysis port export that is used to connect monitor to both 

scoreboard and coverage collectors so it’s a one to many connection.see 64   

4.4.2 DUT connections to testbench 

 The DUT’s ports can not be connected directly to the testbench class objects so a 

different SystemVerilog means of communication, which is virtual interfaces is used.see 

65 The DUT’s ports are connected to an instance of an interface. The Testbench 

communicates with the DUT through the interface instance. Using a virtual interface as a 

reference or handle to the interface instance, the testbench can access the tasks, functions, 

ports, and internal variables of the SystemVerilog interface. As the interface instance is 

connected to the DUT pins, the testbench can monitor and control the DUT pins 

indirectly through the interface elements.  

 

 

 

 

 

 

 

 

4.4.3 How are UVM classes related? 

The UVM library defines a set of base classes and utilities that facilitate the design of 

modular, scalable, reusable verification environments. All UVM classes are derived from 

uvm object and an individual transaction is a sequence item contains a transactions 

properties and methods, A series of generated sequence items are known as sequence to 

obtain a real stimulus. The transactions are sent to the sequencer that routes between 

multiple sequences, Sequencer and drivers are components which are permanent objects 

created at the start of simulation and remain for the entire simulation. UVM sequence 

class is derives from uvm sequence base class that contains a task body to generate one or 

more sequences, There are 4 steps should be done to generate transactions first one is to 

create a sequence item object, then wait for a driver to request a transaction through 

sequencer, The third step is to assign the transaction values where you have to check your 

Figure 65: DUT connected to test-bench through irtual interface 
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randomization and Lastly send the transaction to driver and wait for completion. 

Sequences can have randomized properties by allocating them as random variables then 

the sequences can behave differently each time when it is started, Complex sequences 

may get a feedback for the dut to choose between branches to complete the sequence. 

 

4.5 UVM  Phases 

 

4.5.1 Why does UVM need phases?  

Because UVM uses system Verilog OOP which enables reusing and editing classes and 

objects which can be created at different times, so it is possible to create a new object in 

the middle of the simulation , which could end by calling a component while it hasn’t 

been initialized yet leading to wrong testbench outputs.  

4.5.2 Why Verilog testbenches don’t need phases?  

Because it consists of static modules which have a set of ports to communicate with other 

test bench components Static modules means have their instances created at the 

beginning of the simulation, so there are no worries about any component being called 

without it being created 

4.5.3 Hierarchy of UVM Phases: 

UVM -phases can be grouped into three categories see [38]: 

1. Build time phases: 

 Phases executed in the start of simulation in which the testbench components are 

constructed, configured and connected in zero time simulation since this phase methods 

are functions executed in zero time simulation. 

 Build phase Is done from the top to the bottom, They consist of:  

• Build phase: function used to build test bench components and create their 

instance.  

•  Connect phase: function used to connect between different testbench 

components via TLM ports.  

• End of elaboration phase: function used to display UVM topology and other 

functions required to be done after connection  

• Start of simulation phase: function used to set initial run-time configuration 

and display topology.  
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2. Run time phases: 

 Actual simulation that consumes time happens in this UVM phase and runs parallel to 

other UVM run-time phases. Consists of: 

• Pre-reset : the pre reset phase starts at the same time as the run phase. Its purpose is 

to take care of any activity that should occur before the reset, such as waiting for a 

power-good signal to go active. 

  

• Reset: responsible for DUT reset.  

• Post reset: responsible for any required actions after reset.  

 

• Pre configure: This phase is intended for anything that is required to prepare for 

the DUT configuration process after the DUT is out of reset.  

• Configure: configure phase is used to put the DUT into a known state before the 

stimulus could be applied to the DUT. 

 

•  Post configure: This phase is intended to wait for the effect of the configuration to 

propagate through the DUT.  

 

 

• Pre main: pre main is used to ensure that all the components needed to generate the 

stimulus are ready to do so.  

 

• Main: main phase is where the stimulus specified by the Test case is generated and 

applied to the DUT.   

 

• Post main: Used for any final act after the main phase.  

• Pre shutdown: This phase is acts like a buffer to apply any stimulus before the 

shutdown phase starts.  

 

• Shutdown: The shutdown phase is to ensure that the effects of stimulus generated 

during the main phase has propagated through the DUT and that the resultant data 

has drained away.  

• Post shutdown: post shutdown is intended for any final activity before exiting the 

run phase. After it UVM Testbench starts the cleanup phase. 
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3. Clean-Up phases: 

 It is the phase where the results of the testcase are collected and reported. Consists of:  

• Extract : Used to retrieve and process information from scoreboards and 

functional coverage monitors.  

•  Check: Used to check that the DUT behaved correctly and to identify any 

errors that may have occurred during the execution of the test bench.  

• Report: Used to display the results of the simulation or to write the results to 

file.  

• Final: Used to complete any other outstanding actions that the test bench has 

not already completed. 

To summarize the UVM phases, here in the next figure 66. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 66: UVM phases 
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4.6 UVM environment approaches 

4.6.1 UVM Transactions approach [39] 

We’ve modularized our work by providing methods in each class that do the work of that 

class and by being careful to avoid situations where one class needs to know the internal 

workings of another . To maintain adaptability and reusability for passing data between 

classes (tester , driver and scoreboard) we exploit the advantages of classes , methods and 

OOP as the class and the objects we instantiate from that class have two useful points : 

classes have methods that interact with the data and hide details from users. We work 

with objects through handles, and we can pass these handles around our test- bench. 

Therefore several object scan easily share a piece of data. This is implemented these 

advantages using UVM class library transactions. Encapsulating all this data in the 

transaction makes the rest of the test-bench much simpler. For example, tester won’t need 

to figure out legal values to drive the test-bench. It will simply let the transaction 

randomize itself. transactions classes definition We define transactions by extending the 

uvm transaction base class and writing the methods (convert2string , do copy , do 

compare) .Transactions encapsulate both data and all the operations we can do to that 

data. Data fields can be randomized using System Verilog’s built-in randomize method. 

The uvm transaction class extends uvm object, not uvm component, there is a result 

transaction class to hold results and another transaction class that extends command 

transaction to generate different stimulus without changing the tester object this class will 

use same way as the command transaction but under dedicated constrains. The result 

transaction class is just like the command transaction class , The scoreboard will use the 

do compare() method to compare predicted results to actual results. Transaction-level 

simulation makes it easier to compare predicted and actual results Both the result monitor 

and the predictor create result transaction objects. The result monitor passes us an actual 

result Then we get the corresponding command from the command monitor and use the 

predict result() method to create a predicted result transaction. We use compare() to see if 

we got the right result. The scoreboard is now much simpler. We override the command 

transaction with the class that generates stimulus, The override causes the tester to create 

a constrained transaction from the class mentioned rather than a command transaction, 

without modifying the tester. This transaction approach focuses on data. Classes and 

objects are created to easily create, compare, and transport data. Although in this 

approach the data classes are separated from the structure classes, the data stimulus is not 

separated from structure. Good test benches separate the order of the transactions (the test 

stimulus) from the test bench structure. See 67 
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Figure 67: UVM Tansactions approach envirnoment connectionss 
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In the following sections there are detailed explanations on the design and mechanism of 

TOP module of convolution testbench. 

The design of UVM test bench can be described in the following figure 68  

  

 

 

 

 

 

 

 

 

 

 

 

In the following sections there are more details about each part of the testbench of 

convolution function:  

1- Command /input Transaction Class 

Which mainly define the randomized input variables of the module F, N, image matrix 

and filter matrix also put constraints to control relations between the size of both image 

and filter matrix like in figure 69. 

 

 

 

 

 

 
Figure 69: Snippets from class of command transaction 

Figure 68: Design of test bench module 
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Also this class contains functions like copy, clone, compare and convert to string. 

1- “do_copy” function which create a new transaction and copy all elements of 

transactionas well as structure as shown in figure 70.  

   

 

 

 

 

 

2- “clone_me” function which create a new transaction but don’t copy the data just 

copy structure only as shown in figure 71. 

 

 

 

 

 

3- “do_compare” function which define a bit “same” then compare the type of both 

transactions and then compare each element in the transaction if the two 

transaction are the same then [same=’1’] if else then [same=’0’] as shown in the 

figure 72.  

Figure 70: do_copy function 

Figure 71: cone_me function 
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4- “Convert2string” function to print string S which contains the size of image and 

filter matrix and the corresponding randomized two matrices as shown in figure 73. 

 

2- Result/output transaction Class 

This class is same like command transaction class but specified for output of DUT only, 

we have three functions which can be applied on the output of convolution, copy, 

compare and convert to string as explained before. 

 

 

 

 

 

Figure 72: do_compare function 

Figure 73: conv2string sunction 
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3-  Driver Class 

In this class we define an instant from the interface “conv_bfm” class and then build the 

connection between driver class and interface class as shown in figure 74 

 

 

 

 

 

 

 

 

The main function of driver is that it get a new command/input transaction when I need to 

test a new case then pass it to interface which in turn the interface send it to both DUT 

unit and scoreboard to calculate both actual and predicted output. 

Also in this class we have run task which send data from driver through interface to 

command monitor (through task “send_op”) this done by defining the operation we will 

apply if store in ram0 (src matrix) or store in ramb (kernel matrix) this done through 

variable “op_set” then send data element by element from the two matrices then start in 

storing data to convolution unit as shown in the figure 75 

Figure 74: Snippet from driver class 
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4- Command monitor Class     

Monitor class function is to monitor the DUT until the result become ready, In this class 

we define an instant from the interface “conv_bfm” class and then build the connection 

with monitor like in figure 76. 

 

 

 

 

 

 

 

 

 Figure 76: snippet from command monitor 

Figure 75: Snippet from driver class "run_phase" 
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Also this class contains function called “write_to_monitor” which enable us to send data 

(F, N, Src matrix, filter matrix) from DUT through interface to command monitor as 

shown in the figure 77, we send data of two matrices element by element and then from 

variable “iop” which define the operation applied at the present which may be one of 

(store data in the convolution unit or load data from convolution unit) 

 

 

 

 

 

 

 

5- Result monitor Class 

In this class we write the result of convolution unit in the monitor through interface as 

shown in the figure 78. 

 

 

 

 

 

 

 

 

 

Figure 77: snippet from command monitor class 

Figure 78: result_monitor class 
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6- Scoreboard Class 

 

 

 

 

 

 

 

 

 

 

The scoreboard function is to compare the result output from the DUT unit with the 

reference model output to check the functionality of the DUT module, as shown from 

figure 79, first we connect the monitor class with scoreboard class through 

“uvm_tlm_analysis_fifo” after this compute the expected/predicted result from 

reference model this done by calling “conv” which is CPP function included in the 

scoreboard using DPI method which is referred to SystemVerilog “Direct Programming 

Interface” which will be explained very well in the next section, for “conv” function it 

has four arguments which are N, F, src_mat, filter_mat as shown in fugure 79. 

Figure 79: Snippet from scoreboard class 
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After getting output from CPP function it started to compare the two results and print if 

they are matched or there is an error then print string containing both actual and predicted 

outputs as shown in the figure 80.  

 

 

 

 

 

 

 

 

 

 

 

7- Top module 

In top module we have instant from interface and DUT unit which has arguments of 

comprehensive convolution module (convolution unit with memory file) passed through 

interface, then it run test as shown in the figure 81 

Figure 80: Snippet from scoreboard class "write" function 

Figure 81: Top module code 
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8- Env class  

Env class function is to connect all the component in top module together, here env 

connect both tester with scoreboard, driver, command monitor, result monitor as shown 

in figure 82. 

 

 

   

 

 

 

 

 

 

 

 

 

 

 

9- Interface class 

“conv_bfm” is the interface between both monitor and DUT unit as shown in the figure 

83 it defines all the inputs and outputs which passed as arguments to DUT unit. 

Figure 82: env class code 
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Also it contains reset function which reset conv unit whenever we need as shown in the 

figure 84 this done by setting the value of Local_reset by ‘1’ for one clock cycle then 

make it ‘0’ again. 

 

 

 

 

 

 

Then we have “send_op” task which used by interface class to send data to command 

monitor as explained before, it has input arguments (F_size, N_size, Data_in, iop and 

convolution_product) in this task we handle the order of implementing the four 

operations we explained in the Memory file section which are: 

1- Store without convolution in ram0 (image matrix) → (op =3’b001) 

2- Store in ramb (kernel matrix) → (op =3’b010) 

3- Store both kernel and image matrices from ramb and ram0 to convolution unit → 

(op =3’b011) 

Figure 83: snippet from interface class 

Figure 84: snippet from interface class 

"reset_conv" function 
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4- Load the result matrix from convolution unit in ram1 → (op =3’b100) 

This done by case statement as shown in the figure **, then pass each of N, F, Data_in to 

bus_interface and set the “start” signal to ‘1’. 

Then waiting until convolution ends its operation and “Finish_Convolution” became ‘1’  

after that it pass the convolution output and reset start signal to ‘0’. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 85: Snippet from interface class 
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Finally, we can summarize the behavior of the whole module from figure 86, at each new 

test driver access the command transaction for a new randomized input transaction then 

pass it to interface which in turn resend the input transaction to the DUT unit to get the 

actual output and resend both the input transaction to command monitor and actual output 

to result monitor then they both send to scoreboard which try to compare them and report 

the result of analysis. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 86: behavior of test bench module 
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Chapter 5: RISCV  
 

RISC-V (pronounced "risk-five") is an open standard instruction set architecture (ISA) 

based on established reduced instruction set computer (RISC) principles. Unlike most 

other ISA designs, the RISC-V ISA is provided under open source licenses that do not 

require fees to use. A number of companies are offering or have announced RISC-V 

hardware, open source operating systems with RISC-V support are available and the 

instruction set is supported in several popular software toolchains. 

 

Notable features of the RISC-V ISA include a load–store architecture, bit patterns to 

simplify the multiplexers in a CPU, floating-point, a design that is architecturally neutral, 

and placing most-significant bits at a fixed location to speed sign extension. The 

instruction set is designed for a wide range of uses. The base instruction set has a fixed 

length of 32-bit naturally aligned instructions, and the ISA supports variable length 

extensions where each instruction could be an any number of 16-bit parcels in length. 

Subsets support small embedded systems, personal computers, supercomputers with 

vector processors, and warehouse-scale 19 inch rack-mounted parallel computers. 

 

The instruction set specification defines 32-bit and 64-bit address space variants. The 

specification includes a description of 128-bit flat address space variant, as an 

extrapolation of 32 and 64 bit variants, but the 128-bit ISA remains "not frozen" 

intentionally, because there is yet so little practical experience with such large memory 

systems. 

The project began in 2010 at the University of California, Berkeley, but now many 

current contributors are volunteers not affiliated with the university. Unlike other 

academic designs which are typically optimized only for simplicity of exposition, the 

designers intended that the RISC-V instruction set be useable for practical computers. 

 

RISC-V is unusual not only because it is a recent ISA—born this decade when most 

alter- natives date from the 1970s or 1980s—but also because it is an open ISA. Unlike 

practically all prior architectures, its future is free from the fate or the whims of any 

single corporation, which has doomed many ISAs in the past. It belongs instead to an 

open, non-profit foundation. The goal of the RISC-V Foundation is to maintain the 



104 | P a g e  

 

stability of RISC-V, evolve it slowly and carefully, solely for technical reasons, and try to 

make it as popular for hardware as Linux is for operating systems. Extensions for 

example like: 

 

RISC-V has a modular design, consisting of alternative base parts, with added optional 

extensions. The ISA base and its extensions are developed in a collective effort between 

industry, the research community and educational institutions. The base specifies 

instructions (and their encoding), control flow, registers (and their sizes), memory and 

addressing, logic (i.e., integer) manipulation, and ancillaries. The base alone can 

implement a simplified general-purpose computer, with full software support, including a 

general-purpose compiler. The standard extensions are specified to work with all of the 

standard bases, and with each other without conflict. Many RISC-V computers might 

implement the compact extension to reduce power consumption, code size, and memory 

use. Together with a supervisor instruction set extension, S, an RVGC defines all 

instructions needed to conveniently support a general-purpose operating system. 

There are many companies lead the revolution of RISCV in electronics industry can’t 

forget sifive of course…
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risc vs risc --> riscv5 vs arm so you can find many people care about to compare between 

them to work with the best…. 

Instruction Set Architecture (ISA) is basically the portion of the machine that is visible to 

the assembly level programmer or the compiler writer. ISA is where software meets 

hardware. ISA defines the commands/ instructions that can natively be understood by a 

machine and its micro-architecture, and it also defines how the instructions are to be 

stored, accessed, and implemented. We give instructions to the hardware of the computer 

using a language that a computer can understand. The computer language is made up of 

the words called instructions and the vocabulary is called an instruction set. Instruction 

sets tell us about the function of each instruction and how the instruction is represented in 

memory (encoding). 

The term architecture describes the functional specification of a processor. It describes 

what functionality the software can rely on the hardware to provide. Architecture does 

not tell you how a processor is built. It tells you what a processor can do. Micro-

architecture on the other hand describes how a processor is built and designed. Micro-

architecture defines, the number and size of caches, cycle counts of instructions, pipeline 

length, and more.  

 

 

And we chose to work with pulp cores as they are low power and low area relatively, 

specifically we chose Ariane core (CVA6)   
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5.1. CVA6 (Ariane): 
CVA6 is an open source RISC V core that implements the 64 bit RISC V base instruction 

set. In addition to base instructions, CVA6 fully implements the multiplication (M), 

atomic (A), floating (F), double (D) as well as the compressed (C) extensions as specified 

by volume I: User-Level ISA V 2.3 as well as the draft privilege extension 1.10. It 

implements a machine, supervisor, and user privilege levels as well as a tightly integrated 

data and instruction caches to support Unix like operating system (1). 

 

The primary goal of CVA6 was to design an application class core with reasonable speed 

to support applications based on open source operating systems like Linux. CVA6 

achieves 1.7 GHz speed in 22nm FDSOI technology (2). Moreover, CVA6 has a 

configurable size option allowing it to operate as a 32 bit core for light weight operation. 

 

CVA6 open source repository includes FPGA SoC prototype with DRAM and IO 

peripherals. Initially developed to work on Digilent Genesys II board, the SoC prototype 

allows the user to test the core and run a Linux terminal with simple applications on it. 

Other FPGA ports for the SoC like Virtex 707 and Kintex 705  are currently under 

development. 

 

Initially labeled as project Ariane, CVA6 was developed by PULP platform, also 

responsible for developing other more lightweight RISC V cores including CV32E40P 

and Ibex. CVA6 is currently maintained by Open Hardware group, who provide active 

support for the project. 

 
Architecture: 

 

CVA6 consists of 6 stage single issue pipeline with out-of-order execution and in-order 

commit. The six pipeline stages include: 

 

1- PC generation 

2- Instruction fetch 

3- Instruction decode 

4- Instruction issuing 

5- Instruction execution 

6- Instruction commit 
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CVA6 implements dynamic branch prediction using branch history table and branch 

target buffer to reduce the frequency of control hazards inside the CPU pipeline. A 

scoreboard was implemented in the form of a FIFO to allow for the parallel execution in 

multiple functional units and in-order commit of multiple issues. 

 

Block diagram of CVA6. The Cost of Application-Class Processing: Energy 

and Performance Analysis of a Linux-ready 1.7GHz 

64bit RISC-V Core in 22nm FDSOI Technology  

 

PC Gen stage: 

 
PC generation is responsible for generating the next program counter. The next PC can 

originate from the following sources: 

 

1- Default assignment: Fetch PC + 4. Each cycle, 32 bit words are fetched. Compressed 

instructions are processed later in the pipeline 
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2- Branch predict: A branch history table (BHT) identifies the current instruction as a 

branch and decides whether the branch is to be taken or not. A Branch target buffer stores 

the target address of the branch. PC generation stage informs the instruction fetch stage 

that it performed a prediction on the PC using a user defined data structure 

branchpredict_sbe_t found in the Ariane package. The validity of the prediction is 

verified in the execution stage and a controller is used to flush the pipeline in case of 

mispredictions 

 

3- Control flow change request: To correct mispredictions 

 

4- Return from environment call: PC gen stage features a return address stack (RAS) 

that performs corrective action of the PC upon returning from environment calls 

 

5- Exceptions/Interrupt: 

 

Exception is used to refer to an unusual condition occurring at run time associated with 

an instruction in the current RISCV hardware thread. 

 

Interrupt is used to refer to an external asynchronous event that may cause a RISCV hart 

to experience an unexpected transfer of control. Trap to refer to the transfer of control to 

a trap handler caused by either an exception or an interrupt (3). 

 

Upon encountering an exception, PC Gen will generate the next PC as part of the trap 

vector base address. 

 

6- Pipeline Flush: CSR side effects 

 

7- Debug: Debug has the highest order of precedence as it can interrupt any control flow 

requests. 

 

 

Instruction Fetch stage: 

 
Instruction fetch stage receives the current PC from PC Gen stage and asks the MMU to 

do address translation on the requested PC and control the instruction memory interface. 

 

PC Gen and instruction fetch stage are collectively known as the front end of the CVA6. 

The instruction queue separates between the front end and the back end of the pipeline 
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The instruction re-aligner was placed in the instruction fetch stage as of release 4.2.0. 

Since the program counter fetches on word boundaries(32 bits), compressed instructions 

(16 bits) can cause the instructions to start at half word boundaries, instruction re-aligner 

keeps track of whether the previous instructions were unaligned or compressed correctly 
 

 

CVA6 Instruction realigned 

Instruction decode stage: 

As of release 4.2.0, the instruction decode stage consists of 2 main blocks. The 

compressed instruction decoder and the instruction decoder. Compressed instructions 

come out of the front end as 32 bits with the compressed instruction occupying the least 

significant 16 bits. By checking the first 2 bits, the compressed decoder recognizes 

whether the the instruction is compressed or not. If the instruction is compressed, then it 

outputs a 32 bit equivalent of the 16 bit instruction and hands it the the decoder. If the 

instruction is not compressed then the compressed decoder passes the instruction without 

modification 

 

The instruction decoder receives the 32 bit instruction and determines whether the 

instruction is valid or illegal. If the instruction was illegal then the instruction decoder 

raises an exception, thus an additional code is added to the instruction decoder to validate 

the acceptance of the co-processor specific instructions. This includes defining the co-

processor as a valid functional unit in the fu_t structure in the Ariane package. 
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Additionally, the output of the instruction decode stage takes the form of a data structure 

named scoreboard_entry_t and is defined in the Ariane package. It contains information 

about the instruction that is useful in later stages. The different fields of the structure 

includes: 

PC: Program counter of the instruction 

TRANS ID: Used to index the scoreboard entry in later stages 

FU: Functional unit used for the instruction 

OP: Operation used 

RS1: Address of source register 1 

RS2: Address of source register 2 

Rd: Address of destination register 

RESULT: Used to store the immediate for unfinished instructions 

VALID: Is the result valid and ready for commit. If there’s an exception then the field is 

asserted 

USE-IMM: Use the immediate as operand b 

USE-ZIMM: Use zimm as operand a 

USE_PC: Use PC as operand a 

EX: Data structure that determines whether an exception has occurred and the cause of 

the exception. 

BP: Data structures that determines the type of control flow and the target address of the 

prediction 

IS_COMPRESSED: Signals a compressed instruction 

The EX field also carries the Instruction word in a subfield named tval as it is usually 

needed in later stages in the pipeline or when dispatching the instruction to the co-

processor for full decoding. 
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Instruction issue: 

Instruction issue stage is concerned with dispatching instructions and their operands to 

their respective functional units. 

By using a scoreboard implemented as a FIFO with 8 entries, the CPU core keeps track 

of multiple issued instruction. If the scoreboard is full, we can’t issue a new instruction. 

We can’t issue two predicted branch instructions simultaneously without resolving the 

first branch predict. 

The scoreboard of CVA6 has 4 write-back ports connected to the execute stage of the 

CPU and 2 commit ports connected to the commit stage to allow up to 2 instructions to 

be committed simultaneously, this is possible through the register file of the CVA6 that 

has 2 write ports. The scoreboard also outputs the specific registers being currently used 

as destination registers by issued instructions in rd_clobber_gpr_o. 

Instruction issue stage is also concerned with sending the correct operands to their 

respective functional unit. Reading the correct operands using the address obtained from 

the instruction decode stage can take place by accessing the register file for these 

operands. 

However, in-case one of the operands is currently being used as a destination register by 

an already issued instruction, data hazard occurs. We can use forwarding logic to solve 

this problem by obtaining  the operands directly from the result field in the scoreboard. In 

order for this to work properly, the result must be valid and ready to be committed. 

 

Instruction execute stage: 

Instruction execute stage holds the different functional units used for executing the 

instruction. This includes: 

1- ALU: To perform simple arithmetic operations 

2- Branch predict unit: To resolve decoded branch predictions and detect 

mispredictions. 

3- Multiplier/Divider 

4- CSR buffer: Stores the address of the register the instruction is going to read/write 

5- Load Store Unit: Regulates the process of data loading and storing from and into the 

data cache. 
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Through its write back ports, instruction execute stage stores the result of the executed 

operations in an out-of-order manner. 

The execute stage is where the custom co-processor instructions are dispatched to the co-

processor 

Instruction commit stage: 

The rule of thumb of the commit stage is that no instruction should be able to modify the 

architectural state of the CPU including the register file and the control and status 

registers before committing the instruction. Instruction commit stage is responsible for 

committing instructions that were executed and written back out-of-order in an in-order 

manner. 

Instruction commit stage is also responsible for committing possible exceptions and 

interrupts to the controller of the pipeline 

Controller: 

Pipeline controller is mainly responsible for flushing the pipeline in case of exceptions 

and mispredictions. 

Get ready to work with CVA6: 

To deal with CVA6 and test it on FPGA you have to get some files ready before you can 

burn the core on that FPGA as in the repository of openhwgroup they developed the 

CVA6 and made it support many of FPGA by making these FPGAs' files ... 

 

CVA6 as we talked about before... it supports some FPGA boards like GENESIS-II and 

vc707 and Kc705...every board differ from the other in its fabric and how can you use it 

to test your code in our case in CVA6 we want to make debugging on chip with openocd 

after we burn the bitstream we generated on tool like vivado then we can do that 

debugging. 

 

RISCV in general work with Linux foundation so you can find most of RISCV cores and 

codes are worked on linux OS so you have to get linux OS and we recommend 

UBUNTU-20 and set up vivado on it... if you will work with CVA6 you will need to get 

VIVADO 2018.2 version...that's really important to know the version of vivado that the 

codes of the core you will work with developed on which version cause of the IPs they 
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used and everything regarding to that version will differ from version to another so 

working with the same version is very important to take into consideration before you 

start. 

 

before you go to work on FPGA and codes of the core you picked you have to setup some 

tools of RISCV on your linux to be able use them in build and compile any code of 

RISCV and other tools will help in debug and simulation. 

 

we will stat with ariane-SDK it will be convenient to CVA6 you can get clone it with 

linux terminal but we recommend to clone every repository in the ariane-SDK alone first 

then add them into the ariane-SDK then do the steps in the repository of ariane-SDK step 

by step .most important thing in this repository is the makefile which we can use to setup 

every tool we want to set on our os like RISCV-GNU and PK and Spike(riscv-isa-

sim)...you can use this makefile to setup every tool alone or use (make all) command to 

set up all of them before we go to another topic we had here problems with the makefile 

to set up all of them at once you will find a lot of errors on the terminal during the setting 

process so our recommendation to set up every tool alone independent on other tools (that 

will happen by cloning each tool's repository and set it step by step) or you can do 

something else if you want to use th makefile of ariane-SDK you can clone all files of 

ariane-SDK repository without repositories of tools in it like[riscv-fesvr,riscv-gnu-

toolchain,riscv-isa-sim,riscv-pk] then clone every repository of tools alone into the folder 

of ariane-SDK then use make all it will work properly...small hint here that there are 

some very important tools not in this make file like riscv-openocd and riscv-debug-spec 

so in general we recommend to set every single tool all alone on your linux OS. 

what is makefile? this is a file has a specific way or language to be written with and help 

you to work smart on linux terminal (and you can find it in everything on linux or OS 

using terminal) you can write on it many things which can help you in work with a 

program or anything want to do on linux demands many steps and don't want to repeat 

these steps every time you do that work like the makefile you can find in every repository 

want to set it up on your OS. 

we will talk about some important tools which helped us in our work or we used it 

heavily: 

1) riscv-gnu-toolchain: This is the RISC-V C and C++ cross-compiler. It supports two 

build modes: a generic ELF/Newlib toolchain and a more sophisticated Linux-ELF/glibc 
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toolchain. The GNU toolchain is a collection of programming tools...it includes the 

RISCV extensions and the compilers or RISCV we can use to compile codes in C and 

C++ by using compilers of riscv32-unknown-elf-gcc for C codes and riscv32-unknown-

elf-g++ for C++ codes that compilers we can use them as commands on terminal to 

compiles files written in these languages in RISCV-ISA...it also include riscv32-

unknown-elf-gdb which is very important in debugging codes on RISCV-ISA and other 

programs which can be useful in many applications with RISCV. 

2) riscv-isa-sim(the RISC-V ISA Simulator): implements a functional model of one or 

more RISC-V harts. It is named after the golden spike used to celebrate the completion of 

the US transcontinental railway.it contain [Spike] it's a RISCV simulator and supports 

many RISCV ISA features like A,F,Q,D,V and so on... it's used for Compiling and 

Running codes in C or C++... 

 

3)riscv-debug-spec(RISC-V Debug Specification):this is very important in our work and 

everyone wants to work with RISCV on FPGA and want to debug or to do the debugging 

process with RISCV in general so we will talk about the system overview then talk about 

this repository...      system overview:  

 

 

 

 

 

 

 

 

 

 

 

The user interacts with the Debug Host (e.g. laptop), which is running a debugger (e.g. 

gdb). The debugger communicates with a Debug Translator (e.g. OpenOCD, which may 
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include a hardware driver) to communicate with Debug Transport Hardware (e.g. Olimex 

USB-JTAG adapter). The Debug Transport Hardware connects the Debug Host to the 

hardware platform’s Debug Transport Module (DTM). The DTM provides access to one 

or more Debug Modules (DMs) using the Debug Module Interface (DMI). Each hart in 

the hardware platform is controlled by exactly one DM. Harts may be heterogeneous. 

There is no further limit on the hart-DM mapping, but usually all harts in a single core are 

controlled by the same DM. In most hardware platforms there will only be one DM that 

controls all the harts in the hardware platform. DMs provide run control of their harts in 

the hardware platform. Abstract commands provide access to GPRs. Additional registers 

are accessible through abstract commands or by writing programs to the optional 

Program Buffer. The Program Buffer allows the debugger to execute arbitrary 

instructions on a hart. This mechanism can also be used to access memory. An optional 

system bus access block allows memory accesses without using a RISC-V hart to 

perform the access. Each RISC-V hart may implement a Trigger Module. When trigger 

conditions are met, harts will halt and inform the debug module that they have halted. 

hint...hardware platform: A single system consisting of one or more components, 

 hart: a hardware thread in a RISC-V core. 

 

The Debug Module implements a translation interface between abstract debug operations 

and their specific implementation. Debug Modules are slaves to a bus called the Debug 

Module Interface (DMI). The master of the bus is the Debug Transport Module(s). The 

Debug Module Interface can be a trivial bus with one master and one slave The DMI uses 

between 7 and 32 address bits. It supports read and write operations. The bottom of the 

address space is used for the first (and usually only) DM. Extra space can be used for 

custom debug devices, other cores, additional DMs, etc.  

 

4)riscv-openocd:in the previous figure OpenOCD can be used as a translator between 

GDB and a RISC-V platform, as can be seen in the RISC-V 

external debug specification...OpenOCD can connect to GDB in two ways: with a 

TCP/IP socket or with pipes (stdin/stdout),it supports many cores like ARM and RISCV 

to make the on-chip debugging... 
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What is OpenOCD? 

The Open On-Chip Debugger (OpenOCD) aims 

to provide debugging, in-system programming 

and boundary-scan testing for embedded target 

devices.It does so with the assistance of a debug 

adapter, which is a small hardware module which 

helps provide the right kind of electrical signaling 

to the target being debugged. These are required 

since the debug host (on which OpenOCD runs) 

won’t usually have native support for such 

signaling, or the connector needed to hook up to 

the target. Such debug adapters support one or 

more transport protocols, each of which involves 

different electrical signaling (and uses different 

messaging protocols on top of that signaling). 

There are many types of debug adapter, and little 

uniformity in what they are called. (There are 

also product naming differences.) These adapters 

are sometimes packaged as discrete dongles, 

which may generically be called hardware interface dongles. Some development boards 

also integrate them directly, which may let the development board connect directly to the 

debug host over USB (and sometimes also to power it over USB). For example, a JTAG 

Adapter supports JTAG signaling, and is used to communicate with JTAG compliant 

TAPs on your target board. A TAP is a “Test Access Port”, a module which processes 

special instructions and data. TAPs are daisy-chained within and between chips and 

boards. JTAG supports debugging and boundary scan operations. There are also SWD 

Adapters that support Serial Wire Debug (SWD) signaling to communicate with some 

newer ARM cores, as well as debug adapters which support both JTAG and SWD 

transports. SWD supports only debugging, whereas JTAG also supports boundary scan 

operations. 

to work with openocd you can install it on base of your linux OS like [etc] in linux 

UBUNTU or install it in seperate folder in any place on your hard-disc...the difference 

between the two ways is when you use it on terminal the command will differ you will 

need to call the whole build directory in the folder you installed it on the hard-disc or you 

can use [openocd] command if you installed it on linux base[etc]...  
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to use openocd you have to make the configuration file which will be used by 

openocd...A config file contains commands that OpenOCD will execute using its Jim-Tcl 

interpreter. it contain many things configs the openocd with them:1)The interface: 

configuration tells OpenOCD how to use the transport hardware.2) TAP declaration: A 

device with a JTAG interface means the device has a Test Access Port (TAP). You need 

to set up the active TAPs of the device by declaring them inside a configuration 

file.3)CPU configuration: This step gives information about the debug target.4)Starting 

the debug session:[init] end the configuration stages and enters the run stage,[halt] sends 

a halt request to the target. After these commands, the target is halted and OpenOCD is 

waiting for a GDB connection.5)some useful commands: Set up a maximum speed for 

the JTAG interface:[adapter_khz 1000],Enable error reports from GDB: 

[gdb_report_data_abort enable 

gdb_report_register_access_error enable]. 

 

6)RISCV-commands: there are riscv commands need to be added to the config file you 

can find them in the link (http://openocd.org/doc/html/Architecture-and-Core-

Commands.html#RISC_002dV-Architecture)... 

 

Simulating using RISCV simulators: 

 

RISCV provides easy access 64 bit control and status registers to measure the program 

performance. One of these registers stores the clock cycle count. The cycle count 

registers are accessed through the RISCV instruction csrrs 

csrrs rd, cycle, x0 

Alternatively, we can use the pseudo instruction rdcycle to read the cycle count and store 

it in the destination register  rdcycle rd 

To measure the total number of cycles needed to execute a certain block in a C/C++ code 

we can use inline assembly to count the number of cycles using function read_cycles: 
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By inserting it before and after a program block, we can read the register content before 

and after the execution and compare the content: 

 

 

Accurately monitoring the performance of a code block requires an FPGA or ASIC 

implementation of the core. Alternatively, the codes is run on a software simulator that 

emulates the behavior of a RISCV hardware. Some of these hardware emulators include: 

 

1- QEMU 

2- Spike 

3- Verilator 

 

 

Cycle count estimation. C++ function read_cycles 

  Cycle count estimation C++ sample test 
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1-QEMU: 

By running a program on QEMU, the compiled binary of the guest architecture (RISCV) 

is translated to match that of the host machine (X86 for PC). By doing this, QEMU can 

generally produce functionally accurate results but not cycle accurate behavior. 

 

The main advantage of QEMU is the emulation speed. QEMU can be used to boot Linux 

and test user space applications. 

 

2-Spike: 

Spike is the golden reference for RISCV ISA simulators. Spike produces instruction by 

instruction trace and models the system register for a general RISCV architecture. 

 

The main disadvantage of Spike is that it does not emulate a specific RISCV 

implementation like CVA6. Spike assumes that every instruction executes in one clock 

cycle whether it is an addition or a multiplication. This produces fast simulation results 

although generally, non-accurate cycle by cycle behavior. 

 

3-Verilator: 

Verilator works by converting the RTL of a specific RISCV implementation like CVA6 

to a C++ model and produces a cyclic simulation of the core. By constructing the model, 

cycle accurate behavior can be achieved. CVA6 open-source repository contain a 

Verilator model. The main disadvantage of the verilator model is its very slow speed. 

 

 

 

Spike is recommended for fast estimation of clock cycle count for a program block 
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As we want to burn it on FPGA we picked to work on ZYBO-7020  

 

 

 

 

 

 

 

 

 

 

 

 

First, we will talk some little about ZYBO 7020 board to be able to understand what we 

did to make CVA6 applicable to it... this board's architecture is based on Zynq APSoC 

Architecture... The Zynq APSoC is divided into two distinct subsystems: The Processing 

System (PS) and the Programmable Logic (PL). The figure below shows an overview of 

the Zynq APSoC architecture, with the PS colored light green and the PL in yellow. Note 

that the PCIe Gen2 controller and multi-gigabit transceivers are not available on the 

Zynq-7020 …. 

 

The PL is nearly identical to a Xilinx 7-series Artix FPGA, except that it contains several 

dedicated ports and buses that tightly couple it to the PS. The PL also does not contain 

the same configuration hardware as a typical 7-series FPGA, and it must be configured 

either directly by the processor or via the JTAG port. The PS consists of many 

components, including the Application Processing Unit (APU, which includes 2 Cortex-

A9 processors), Advanced Microcontroller Bus Architecture (AMBA) Interconnect,  
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DDR3 Memory controller, and various peripheral controllers with their inputs and 

outputs multiplexed to 54 dedicated pins (called Multiplexed I/O, or MIO pins). 

Peripheral controllers that do not have their inputs and outputs connected to MIO pins 

can instead route their I/O through the PL, via the Extended-MIO (EMIO) interface. The 

peripheral controllers are connected to the processors as slaves via the AMBA 

interconnect, and contain readable/writable control registers that are addressable in the 

processors’ memory space. The programmable logic is also connected to the interconnect 

as a slave, and designs can implement multiple cores in the FPGA fabric that each also 

contain addressable control registers. Furthermore, cores implemented in the PL can 

trigger interrupts to the processors and perform DMA accesses to DDR3 memory. 

there are three paths we can take one "out of context" (ooc)mode, that means that the 

CVA6 architecture is synthetized in the FPGA fabric without consideration of the 

external IOs constraints, the other two paths do consider external IOs constraints. 
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so, we have two paths we can take to build CVA6 in ZYBO-7020 which are through 

Processing System (PS) or Programmable Logic (PL). that will happen if we choose to 

work with BRAM in PL and don't enter PS... 

on the other hand, we can use DDR in the PS that path will save a lot of logic resources 

in th FPGA fabric actually the difference is about 400 LUTs if your work is small 

compared with CVA6 and the FPGA LUTs you can use BRAM and work in the PL only. 

the files we worked on to make synthesis and generate the bit stream of course we have 

to set constrains of CVA6 on zybo-7020 and the zybo-7020 constrains like buttons and 

clocks ... 

and the TCL files which we used on linux which lead the work on VIVado which we can 

work with on batch mode or with vivado GUI: 

 1) (Makefile): defined in it the platform we work on and the IPs we are using, and of 

course determine the mode we work on from three paths we talk about if ooc or the other 

two paths. that will lead us to second file → 

2) (run_cva6_fpga): that is a TCL file which we can run it in the TCL console on VIVado 

GUI or in batch mode by make file that describes the process of making project and 

choosing the board and then call the Ips we work on from Xilinx and of course the src 

files of CVA6 and constrain files then determine which path you want to take from three 

paths ooc , PS or PL then make the synthesis and generate the utilization reports and 

other reports which we get from synthesis process and this file also generate the bitstream 

of the path you determined with makefile and make everything ready to run and program 

on FPGA. 

  

 

To program the bitstream on the FPGA we can run with the makefile option of 

program after we pick our path in generating bitstream. 
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5.2. Interface: 
CORE-V X-Interface is a RISC-V extension interface that provides a generalized 

framework suitable to implement custom co-processors and ISA extensions for existing 

RISC-V CPU cores(4). The lightweight interface was developed to connect different 

PULP cores with external co-processors and provide a generalized infrastructure suitable 

to implement custom co-processors 

The module comprises the following: 

1-co-processor adapter: to communicate between core and co-processor units 

2-co-processor predecoder: that provides limited decoding of instruction specific 

metadata necessary for correct operation   

3-co-processor interconnect: in case we want to connect more than one CPU core with 

more than one co-processor 

 

 

 

Interface infrastructure 

 

 

The offloading core communicates with the co-processor adapter through the X-Intf and 

Xmem-Intf channels. The adapter module communicates with the co-processor through 
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the C-Interface and Cmem-Intf channels. Each of the 4 aforementioned channels 

comprises separate request and response subchannels 

 

 

X-Intf Request Core → Adapter Instruction 

offloading 

Response Adapter → Core Result write-back 

C-Intf Request Adapter → co-

processor 

Forwarding pre-

decoded instructions 

to co-processor 

Response co-processor → 

Adapter 

Response of co-

processor 

XMem-Intf Request Adapter → Core Forwarding memory 

request to the core 

Response Core → Adapter Memory response 

CMem-Intf Request co-processor → 

Adapter 

Request memory 

operation 

Response Adapter → co-

processor 

Memory response 

write-back 

 

The Interconnect module is necessary in the cases where multiple cores and co-

processors are communicating with each other. In our case, there’s a single hardware 

thread communicating with our co-processor, we get rid of the interconnect module, and 

get rid of unnecessary signals like hartId necessary to route back responses in multi-core 

environments are discarded. 
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Interface between core and co-processor 

 Adapter: 

Provides communication infrastructure between the offloading core and the target co-

processor. On the core side, communication between the core and the adapter takes place 

through the X-Intf and XMem-Intf channels. On the co-processor side, communication 

takes place through the C-Intf and Cmem-Intf channels. 

 

Pre-decoder: 

The co-processor specific pre-decoder module connected to the adapter of the interface 

receives the off loadable instruction as input and performs simple decoding on it to 

extract useful metadata necessary for the offloading process. The pre-decoder module 

notifies the adapter on whether: 

1- The instruction is valid and off loadable 

2- The Instruction includes a write back to the destination register in core 

3- The instruction uses source operands that needs to be sent to the co-processor 

4- The instruction includes memory operations 

A System Verilog struct offload_instr_t is defined and is used to carry the predefined 

pre-decoder response. The struct is then declared as a parameter in an independent file 

and is used to construct the pre-decoder 
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Predecoder predefined response 

X-Intf: 

Communication between the core and the adapter is regulated using a simple valid/ready 

handshake protocol. 

Once an offloadable instruction is encountered within the core, the valid signal is asserted 

and the instruction data is examined by the pre-decoder. The pre-decoder verifies that the 

instruction is acceptable by the target co-processor. The pre-decoder asserts that it is 

ready to accept the instruction once the offloading core verifies a valid register content on 

operand channels, and that there is no writebacks that targets the destination register of 

the operation or currently pending memory operations in the core pipeline. 

The X-Intf response channel carries the instruction response data alongside the 

destination register address back to the core. Additionally it informs the co-processor 

whether an error has occurred. 

C-Intf: 

The C-Intf request channel forwards the instruction data and the operands to the co-

processor. Similarly, the response channel forwards the response data form the co-

processor and back to the adapter. 
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Cmem-Intf: 

Once an instruction has been decoded inside the co-processor and identified as a 

load/store operation, a request is sent to the adapter and the core to access the memory 

through the load store unit local to the core. The Cmem-Intf request channel forwards the 

target address, the write data, the request type (read/write). 

The response channel forwards the response of the read operations and the whether a 

transaction can be considered as a success 

Xmem-Intf: 

The Xmem-Intf channel forwards the memory requests and responses between the core 

and the co-processor on the core side 

 

 

Operating Principle: 

The offloading core initiates the offloading process by signaling the validity of a co-

processor custom instruction to the interface adapter. The instruction predecoder provides 

limited decoding capabilities and notifies the adapter and the offloading core on whether: 

a) Instruction requires source operands 

b) Instruction involves writeback to offloading core  

c) Instruction involves a memory operation 

 

The Core awaits until the source registers rs1 and rs2, addressed by instr_data[19:15] and 

instr_data[24:20]  of the custom instruction are valid and no other preceding instruction 

can modify them.    

If the offloaded instruction involves a write-back operation to a destination register 

addressed by instr_data[19:15], then we make sure there’s no outstanding writeback 

operation to this register in the core pipeline to avoid write after write hazard. This done 

by asserting the signal x.q_rd_clean by the offloading core. When the source operands 

are valid and the destination register is clean, the adapter asserts its ready signal initiating 

the transaction. No register writes back in our defined instruction set.  
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If the instruction process involves a memory operation, the offloading core is not allowed 

to commit any new instruction until the status signal adapter_mem_pending is deasserted. 

Furthermore, no instruction offloading is further allowed while there’s a pending memory 

operation. It is required to make sure that there’s no preceding instruction in the core 

pipeline that can raise an exception that might require the flushing of the core pipeline. 

This is due to the fact that there’s way to retract an offloaded instruction and roll back an 

architectural state local to the co-processor. 

The interface defines two modes of memory operation, internal and external mode. 

  

1- Internal mode: Control of the core load store unit is handled to the adapter to send 

requests and receive responses  

 

2-External mode: Memory operations are performed through separately implemented co-

processor private memory ports 

 

Furthermore, there are two modes of memory accessing that vary according to the 

behavior upon encountering access faults: 

1- Synchronous operations: Memory operations are performed in lockstep with the rest of 

the instrction stream. Access faults raise an exception and are trapped by the core.  

2- Speculative synchronous operations: Memory operations are performed in lockstep 

with the rest of the instrction stream. CPU pipeline does not raise an exception upon 

encountering access fault 

 

Speculative signaling is done through the co-processor by asserting the signal 

cmem.q_spec.  

Our memory transactions will involve synchronous internal mode operations 
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Memory Transactions: 

Once the offloaded instruction is marked as a memory operation by the instruction pre-

decoder, the adapter_mem_pending status signal is asserted. No instructions are allowed 

to be committed in the core pipeline, no new offload requests are allowed 

 

The custom co-processor receives the instruction and decodes it into a read/write 

operation and initiates a memory request through the Cmem-intf. Many requests 

transactions take place between the co-processor and the adapter, the last of which has its 

cmem.q_endoftransaction is asserted. Consequently, the adapter_mem_pending signal is 

deasserted and the core pipeline is unblocked allowing for new commits and custom 

instrction offloading 

 

The control of the load/store unit of the core pipeline is handled to the interface adapter 

and memory requests are initiated through the Xmem-intf between the adapter and the 

load/store unit. If an access fault was encountered, it raises an exception in the core 

pipeline and the co-processor is notified through the memory response channel to roll-

back the local architectural state of the co-processor.  
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APPENDIX 
 

we worked on linux OS: (64b) UBUNTU 20.04 and VIVADO version  2018.2                       

Hint:you can istall linux specially UBUNTU alongside with windows as windows is the 

main OS of the LABTOP. 

 

first, there are some packages should be installed on UBUNTU before start dealing with 

RISCV you can install them by this command 

[sudo apt-get install docker.io gcc g++ gperf bison flex texinfo help2man make 

libncurses5-dev python3-dev autoconf automake libtool-bin gawk wget bzip2 xz-utils 

unzip patch libstdc++6 libtool patchutils bc zlib1g-dev device-tree-compiler pkg-config 

libexpat1-dev build-essential libusb-1.0-0-dev libgmp-dev libmpfr-dev libmpc-dev curl 

autotools-dev nedit apt-file qt5-default libhdf5-dev p7zip-full g autoconf automake 

autotools-dev curl libmpc-dev libmpfr-dev libgmp-dev libusb-1.0-0-dev gawk build-

essential bison flex texinfo gperf libtool patchutils bc zlib1g-dev device-tree-compiler 

pkg-config libexpat1-dev ] of course without the []    
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we installed all tools we talked about in the two ways by ariane-SDK and evry tool as 

standalone so as said about using ariane-SDK will clone it  with this command       

(hint:clonning means that you download the whole repository by command on linux 

named [git clone])... [sudo git clone https://github.com/pulp-platform/ariane-sdk.git]                  

 

after finishing the cloning you can enter into the folder of repository of ariane-SDK and 

open the terminal into its folder which usually the cloning put it in [Downloads]foder of 

the UBUNTU... now to gurantee every thing is updated into the repository use this 

command 

 

now we want to determine a specific place for the build of RISCV-tools to be the default 

on your linux environment you can use this command[export 

RISCV=RISCV=/home/samir/Downloads/ariane-sdk/install] (pic 3 export RISCV and 

give example) and then run the command 

[make all] to begin the installation...if worked properly that's will install tools of [riscv-

fesvr,riscv-gnu-toolchain,riscv-isa-sim,riscv-pk] which are exist in the makefile as we 

said... but if there is any error during the installing process that is because a problem in 

the cloning process so there are two solutions we tell them all and will recommend one ...  

first solution that you can remove the [riscv-fesvr,riscv-gnu-toolchain,riscv-isa-sim,riscv-

pk] folders from the ariane-SDK repository that you cloned before on your computer and 

clone every one at alone…while the terminal is opened from inside the ariane-SDK 

folder after cloning all of them again into the ariane-SDK after that you can rerun the first 

command. 

the other solution is to install [riscv-fesvr,riscv-gnu-toolchain,riscv-isa-sim,riscv-pk] one 

by one with the same steps cloning and make. 
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we did the two sollution after many of tries to solve the errors and I deeply recommend 

the first solution. 

After solve the problem if existed you can rerun the commands we said before after the 

clonning...  

After all of that complested and get installed correctly without any errors...  

At the end of this precess you should edit a file named (.bashrc or .zshrc) to Add 

$RISCV/bin to your path in order to later make use of the installed tools and permanently 

export $RISCV. that will be happened go to folder [Home] in your linux and press 

(ctrl+h) in you keyboard that will show you the hidden files in you environment now you 

can find these files we want (.bashrc or .zshrc) then open it and go to the end of the file 

and write the 

then save and close...this like set this path of setup of RISCV as default for every 

terminal will be opened in any place in the computer(hint: that happened when set up of 

vivado too to be able to open it from amy where)... 

now we go to install openocd tool...you shold clone it too as it's a complete repository 

with configuration files and makefile wanted to be installed first to be able use its 

command as said before so: 

first of all you should clone it by that

[sudo git clone https://github.com/riscv/riscv-openocd.git] 

then open the folder of the repository after clonned on your computer and launch a 

terminal from it then run:command[./bootstrap] 

this will access the file named bootstrap in the repository you can open it and read its 

content. 
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then run this command[./configure]

this too will access the file named configure in the repository you can open it and read its 

content. 

then run command [make]

then [sudo make install)] 

 

about the repository of riscv-debug-spec which is important in debugging if external or 

not... 

clone it as usual [sudo git clone https://github.com/riscv/riscv-debug-spec.git ] 

and open the terminal from inside its folder. 

then install these packages [sudo apt-get install git make python3 python3-sympy 

graphviz texlive-full]
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then [make]   

 

There are two other interesting make targets: 

[make debug_defines.h] creates a C header file containing constants for addresses and 

fields of all the registers and abstract commands. 

[make chisel] creates scala files for DM registers and abstract commands with the same 

information. 

that was the main tools which were installed before working on RISCV. if you faced any 

error I don't mention it you shold google it to know how to solve it or revise any 

something was done wrong... 

 

About the results of synthesis and implementation of the CVA6 on ZYBO-7020...  

These are the results of synthesis and implementation in the path of PS (DDR): 
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These are the results of synthesis and implementation in the path of PL (BRAM): 
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Conclusion 
We have designed fully reconfigurable co-processor containing critical operations 

of CNN algorithms as computing module as convolution, pool, add and ReLU modules, 

They Implement the Algorithm And take the most Computing power. 

Function verification is a very essential phase to verify any RTL to test its function 

correctly, is still one the most challenging activities in digital system development, the 

purpose of a testbench is to determine the correctness of the design under test (DUT). 

Generating stimulus are most important step where this step generate the inputs which 

expresses a certain feature test, Random stimulus is crucial for exercising complex 

designs. A directed test finds the bugs you expect to be in the design, while a random test 

can find bugs you never anticipated. 

Zybo 7020 was used for CVA6 core implementation. 

Core V X-Interface was used connected to simple custom co-processor Modifications in 

core pipeline are necessary for the interface. 
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Future Work 
 Regarding the Co-processor, Backing to the design, the most of area can be 

customized to used ROMs or LUTs area, regardless the Area optimization needed in 

ROM size reduction as mentioned above, but the good thing with ROMs is that it may be 

multi-input multi-output ROM which means it can serve for lots of PE modules, which 

encourages to use lots of data-paths served by same ROM. 

As the ROM can be considered as Overhead in Area must tolerated and then the 

performance will increase as well as the number of data-paths increases as shown in 

Figure 87 

 

 

 

 

 

 

 

 

 

 

  

 

 

And that is the importance of the field of instruction number, as each data-path is 

responsible to execute one instruction and can’t be make another one although it ends the 

operation, the controller can be used for more than one but to handle more than signal in 

same time. 

 

Figure 87 Area vs performance 
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Regarding the Verification Path Until now all the components of the UVM testbench 

environment are coded except they need to be tested and get the expected results this will 

be our future work. 

Regarding the RISC-V, Modifications in the core pipeline in ID, issue, and EX 

stages Connect the core with simple co-processor(done) for testing Modify the compiler 

to accept the new instructions and test simple programs Interface with the CNN 

accelerator… 
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