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Abstract

Convolutional Neural Networks (CNNs) make a revolution in machine learning
applications. Also, CNNs dominate in all computer vision applications as they give the highest
accuracy and performance. However, CNN models have very complex computations, which need
powerful hardware to run. So, GPUs are commonly used over generic CPUs. But the main
drawbacks of using GPUs are their higher power consumption and generality. Accelerators are the
best solution as they can give us the most powerful computations and the best performance with
affordable power consumption.

Our project aims at designing and optimizing a hardware accelerator, which is specialized
hardware performing a specific CNN model algorithm, which is the ShuffleNet. We have two
design approaches to perform. The first is to model the algorithm in a high-level language and
synthesize it with a High-Level Synthesis (HLS) tool. The second is to make a hardware
architecture block diagram and then use a hardware description language to make the actual
hardware in a Register Transfer Logic (RTL) manner. Finally, we will compare the two approaches
in different aspects like time to develop, the performance of the accelerator, and power
consumption to determine which approach is better.

In this work, the HLS implemented accelerator classifies 24.84 frames per second, the
power consumption of the system is 3.828 Watts, the energy per image is 0.154 Joule/image, while
the design is run on the Xilinx Virtex-7 FPGA VC709 connectivity kit with an 80 MHz clock
frequency. On the other hand, the RTL implemented accelerator classifies 1216 frames per second,
the power consumption of the system is 9.156 Watts, the energy per image is 0.007529
Joule/image, while the design is run with a 100 MHz clock frequency.

Keywords: Convolutional Neural Networks (CNNs), ShuffleNet, Hardware Accelerators,
Register Transfer Level (RTL), High-Level Synthesis (HLS), Field Programmable Gate Arrays
(FPGAS), Dynamic Quantization, Real-Time, High-Speed Processing.
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1 Chapter 1: Introduction

1.1 Motivation

Deep learning has been gaining much popularity lately due to its ability to bridge the gap
between machines and human capabilities in terms of accuracy when trained with a huge amount
of data. One of the domains of deep learning is image classification, which is a very complex task
for computers. But advanced computer vision systems can do image classification. These computer
vision systems have become important in many applications in robotics, surveillance, and
autonomous vehicles. Significant progress has been made regarding the performance of these
advanced systems. The availability of powerful computing platforms and the strong market pull
have shaped a very fast-paced development. The target of this field is to enable machines to view
the world as humans do, and perceive it similarly. The advancements in deep learning have been
constructed over the concept of neural networks.

Convolutional Neural Network (CNN) is one of the brain-inspired algorithms that represent
the most promising approach to image understanding and classification with significantly higher
accuracy than traditional algorithms. The main disadvantage of CNNs is the enormous
computational complexity and to achieve accurate results, CNNs need many parameters (some
over 100M parameters) and require huge amounts of computational resources and memory, they
also offer significant potential for massive parallelization and extensive data reuse. The real-time
evaluation of a CNN may need billions or trillions of operations per second to provide image
classification on a video stream. The most recent Graphics Processing Units (GPUSs) can reach the
level of performance that provides the needed effort for image classification. But GPUs are
expensive and power-hungry accelerators. Recently, many applications such as self-driving cars
need high energy efficiency and real-time performance. So, there is a need to reduce the
computational resources to reduce the used power and speed up the calculations.

To speed up running the deep learning algorithms greater than what would be possible with
software running on general-purpose computing solutions, hardware acceleration is used as an
approach to designing chips to be more convenient to run these algorithms. This kind of
acceleration was first introduced nearly 20 years ago. The need for hardware acceleration has been
increasing since the discovery of multi-core GPUs to be an alternative to the expensive many-core
CPUs. To accurately build the required accelerators for neural networks, we should distinguish
between training and inference. Training is an unpredictable process in which the required time to
train a model is unknown. Therefore, the computation of this process is intensively high. While
inference is a predictable process as it happens after the network is already trained and its time can
be estimated. Consequently, there are specific chips dedicated to accelerating training and others
for inference. What we are concerned about regarding hardware acceleration is the acceleration of
inference time.

To achieve the inference processing constraints, the parallelism concept is introduced.
Parallelism is meant to split the required computation into small tasks so that they can be spread
among small computational blocks. This approach can be done on-chip level with multi-core
processors. There are many products from different companies are introduced to fulfill the tasks
of hardware acceleration. These products can be categorized into four different computing devices:
Graphical Processing Unit (GPU), Microprocessor, Field Programmable Gate Array (FPGA), and
Application Specific Integrated Circuit (ASIC).
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Field-Programmable Gate Arrays (FPGAS) are among the most promising platforms that
have been considered for efficient high-performance implementations of CNNs with affordable
power consumption. FPGAs consist of versatile integrated circuits that provide hundreds of
thousands of programmable logic blocks and a configurable interconnect, which enables the
implementation of custom-made accelerator architectures in hardware. These have a lot of
advantages concerning embedded devices which are providing less computational power to CNNs,
high energy efficiency, good performance, and fast development round.

The limitations of the computational resources and memory bandwidth of the FPGA
platform must be considered. So, the accelerator structure must be carefully designed to make the
computing throughput matches the memory provided by the FPGA. It means that the performance
may be degraded due to the bottleneck of the memory. As a result, it’s a must to find ways to
increase the speed with efficient memory utilization and energy consumption.

Hardware acceleration can be categorized into two main approaches. The first approach is
hardware-independent like reduction in precision using quantization, sharing weights and data
reuse. The second approach is customizing the FPGA architecture to be suitable for the algorithm
using pipelining, parallelism, and increasing memory utilization.

1.2 Problem Definition

CNN models require a huge number of computations to process a single image due to the
convolution operation on the multiple dimensional arrays which represents a computational
challenge and results in high power consumption when running on GPUs or CPUs. So, the goal is
to create powerful hardware which can be used besides GPUs and CPUs in computers and give us
the most powerful computations and the best performance with affordable power consumption.
Our project aims at designing and optimizing a hardware accelerator which is specialized hardware
performing a specific CNN model algorithm that can be used in real-time applications like
autonomous cars.

Most previous work on CNN accelerators mainly focused on computation engine
optimization without considering the memory limitation effect on the engine throughput. In this
project, we try to match the memory usage with the computation throughput to achieve the
optimum solution.

1.3 Solution Approaches

The main objective of this project is to implement CNN architecture on FPGA using two
design approaches. The first is to model the algorithm in a high-level language and synthesize it
with a High-Level Synthesis (HLS) tool which is not used too much in the literature with large
CNN architectures like ours. The second is to make a hardware architecture block diagram and
then use a hardware description language to make the actual hardware in a Register Transfer Logic
(RTL) manner. Finally, comparing the two approaches in different aspects like the time to develop
and the performance of the accelerator in terms of the speed and power consumption to determine
which approach is better.

Our performance metric is the amount of power required to complete the computations of
a single frame measured in Joule per frame. So, to improve the performance and reduce the number
of computations, several techniques of optimization and approximation can be used on FPGASs to

2
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accelerate the algorithm like Precision Reduction using fixed-point quantization instead of using
32-bit floating-point number representation as high precision is not always necessary. The energy
spent in high precision computations does not lead to more accurate classification by the algorithm.
Thus, to reduce the energy consumption of CNN’s computations, the main strategy is to quantize
its weights and the inputs to its layers. Such quantization leads to a network that is only an
approximation of the original network, but with minimal loss in accuracy and without the need to
retrain the network which leads to reduced energy consumption. The unique flexibility of the
FPGA fabric allows the logic precision to be adjusted to the minimum that a particular network
design requires. This allows the accelerator to process more frames per second.

To store all the parameters in the internal memory of the FPGA and eliminate the need for
external memory in this design, other techniques of optimization are used in the hardware to
increase the memory utilization and minimize the number of block RAMs (BRAMS) required like
pipelining to allow the streaming mode of frames and choosing the suitable parallelism in each
computation core so that the number of MACs in each layer depends on the number of output
filters and the intermediate feature map memories are used as a dual-port and partitioned to support
the parallelism used in the computation cores, also for optimization purposes, resource sharing is
used in some layers. Some parameters like biases are stored in Look-up Tables (LUTS) due to their
low number which will give a bad utilization.

1.4 Methodology

This project has 8 phases as follows and Figure 1.1 shows the flow of steps to do the project.

1. Software Modelling: Choosing a suitable CNN model with good accuracy to turn it into
hardware and getting the software model which is pre-trained on the ImageNet dataset to
run on a CPU and GPU to validate its performance and accuracy using the ImageNet
validation set. Then quantizing the model to use fixed-point representation to determine
the best data representation to use in the hardware without affecting the accuracy so much.

2. Surveying on the hardware implementation techniques for CNN: Getting familiar with
how CNN can be implemented in hardware by reading papers and old theses.

3. Writing the CNN model code in a high-level language to be used in the High-Level
Synthesis (HLS) tool and implementing the hardware.

4. Defining the hardware architecture block diagram which will implement the CNN
model algorithm.

5. Writing the Register Transfer Logic (RTL) code to implement the hardware and
checking the timing after the placement and routing.

6. Testing the implemented hardware by the HLS and RTL approaches on FPGA to verify
their functionality.

7. Optimizing the implemented accelerator in the two approaches HLS and RTL.

8. Comparing the two approaches and deciding the best approach.
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Figure 1.1 Project development methodology flow steps

1.5 Thesis Organization

A brief introduction of the contents of each chapter is explained as follows:

Chapter 2 provides background information on neural networks and especially CNN, it discusses
the main layers of CNN and their operations and provides information about different CNN
architectures used for image classification and the image classification datasets, and also it
discusses several methods to improve the efficiency of deep learning implementation. Finally, it
discusses the background of FPGAs, including a brief overview of FPGA resources, internal
components, and design flow.

Chapter 3 provides information on the chosen CNN for the project which is ShuffleNet V2 and
why we chose it among the other architectures then has an overview of the block diagram of the
architecture and its layers and parameters. Then each building block is discussed briefly.

Chapter 4 is about the software modeling phase of the project, including the pre-trained model,
the chosen fixed-point representation, and the results of the model quantization.

Chapter 5 discusses the RTL design methodology with thorough details about the computation
cores, memories, and controllers. Also discusses the verification of the design by showing the
testing strategy done to validate the functionality of the design.

Chapter 6 points out the optimizations done in the RTL of the accelerator to reach a better latency,
area, and power.

Chapter 7 discusses the HLS approach, the HLS flow, and implementation. It also sheds the light
on the limitations of HLS.

Chapter 8 presents the final results obtained after optimizations including utilization, power, and
timing, then introduces a benchmark for our design and two different designs implementing a
machine learning algorithm on FPGA. Finally comparing the results obtained from RTL with HLS.
It also shows the burning of the bit stream of both RTL and HLS on the chosen FPGA.

Chapter 9 concludes the previous work and introduces our ideas for future work.
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2.1 Neural Networks Overview

The development and advancement of neural networks is the key to training computers to
think and understand the world in the manner that the brain does. Essentially, a neural network
imitates the human brain. Brains cells which are called neurons are connected via synapses. This
is represented as a graph of nodes (neurons) with weighted edges connecting them (synapses).
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Figure 2.1 The analogy between biological neural system and computer neural network

Looking at Figure 2.1, it’s clear that an artificial neural network (ANN) mimics a biological
neuron, and that the brain’s processes can be modeled by building a neural network on a computer.
A neural network has input, hidden and output neurons, which are connected by weighted
synapses. The amount of forward propagation that passes through the neural network is determined
by these weights. They can then be adjusted while the neural network is learning via
backpropagation. This forward and backward propagation technique is repeated iteratively on each
piece of data in a training data set. The larger the data set and the more diversity in the data set,
the more the neural network will learn and the better it will be at predicting outputs.

A neural network is a connected graph with input, hidden and output neuron layers with
weighted edges. On the other hand, a Deep Neural Network (DNN) has more layers that might
reach 20 or 1,000 layers of neurons.

A neural network is just a core architecture. There are different types of neural networks.
For example, Convolutional Neural Networks (CNNSs) are very effective for Computer Vision
applications and recurrent Neural Networks (RNNs) are also very popular in applications like
machine translation and speech recognition.

The network begins with an input layer that receives the input data. Weights are the lines
that connect the hidden layers. Each neuron in the hidden layer processes the inputs, which then
sends an output to the next hidden layer, and eventually into the output layer.

2.2 CNN Overview

A Convolutional Neural Network (ConvNet/CNN) is a Deep Learning algorithm that can
take in an input image, and assign relevance (learnable weights and biases) to multiple objects in
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the image. The pre-processing required in a ConvNet is much lower compared to other
classification algorithms.

The architecture of a ConvNet is analogous to that of the connectivity pattern of Neurons
in the Human Brain. Individual neurons respond to stimuli only in a restricted region of the visual
field known as the Receptive Field. A collection of such fields overlaps to cover the entire visual
area.
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D D — BICYCLE
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INPUT CONVOLUTION + RELU POOLING CONVOLUTION + RELU POOLING \FLATTEN CONNECTED SOFTMAX
FEATURE LEARNING CLASSIFICATION

Figure 2.2 The architecture of a ConvNet

CNN is a type of deep learning model for processing data that has a grid pattern, such as
images, and is designed to automatically and adaptively learn spatial hierarchies of features, from
low- to high-level patterns.

In digital images, pixel values are stored in a two-dimensional (2D) grid, and a small grid
of parameters called the kernel, where an optimizable feature extractor is applied at each image
position, which makes CNNSs highly efficient for image processing, since a feature may occur
anywhere in the image. As one layer feeds its output into the next layer, extracted features can
hierarchically and progressively become more complex as shown in Figure 2.2. The process of
optimizing parameters such as kernels is called training, which is performed to minimize the
difference between outputs and ground truth labels through an optimization algorithm called
backpropagation and gradient descent.

2.3 General CNN Layers

CNN is a mathematical construct that is typically composed of three types of layers (or
building blocks): convolution, pooling, and fully connected layers. The first two, convolution and
pooling layers, perform feature extraction, whereas the third, a fully connected layer, maps the
extracted features into the final output, such as classification.

Usually, the input to the CNN is an RGB image which is a three-dimensional array that
explicitly stores a color value for each pixel with dimensions ny * ny, * 3 as shown in Figure 2.3.
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Figure 2.3 RGB input image

2.3.1 Convolution Layer

The Conv layer is the main block of a CNN that does most of the computations. It works
by dividing the image into small regions and convolving them with a specific filter (multiplying
weights of the filter or kernel (weights) with corresponding receptive field elements), then sliding
these filters over the input feature maps as shown in Figure 2.4. Each of these weight filters can
be thought of as a feature identifier [1].
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Figure 2.4 Convolving an image with a kernel
There are 2 parameters in convolution layers which are listed below:
1. Filters:

The Conv layer’s parameters consist of a set of learnable filters which work as feature detectors
(edges, simple colors, and curves).

2. Stride:

Stride is the number of pixels by which the filter matrix slides over the input matrix.
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2.3.2 Pooling Layer

The Pooling layer (also called sub-sampling) reduces the dimensionality of the input
feature maps but retains the most important information. The number of output feature maps is
identical to that of input feature maps, while the dimensions of each feature map scale down
according to the size of the sub-sampling window (called also kernel). For example, for a pooling
layer, there is an average or maximum. Max-pooling being the most popular, this takes a filter P
x P and a stride of length S, it then applies it to the input volume and outputs the maximum number
in every sub-region that the filter convolves around as shown in Figure 2.5. The pooling layer
could be after each convolution layer, after a group of layers, or at the end before the classification
layer.
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Figure 2.5 Applying Max-pooling to a single depth slice
2.3.3 Fully Connected Layer

The way this fully connected neural network layer (FC) works is that it looks at the output
of the previous layer (which represents the activation maps of high-level features) and determines
which features most correlate to a particular class by unrolling the input features and the weights
and multiply them and outputs an N-dimensional vector where N is the number of classes as shown
in Figure 2.6. Also, this layer is followed by SoftMax to show the most correlated class to the
input.

0.8 Cat

softmax

—> 0.2 Dog

Figure 2.6 The fully connected layer
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2.3.4 Activation Layer (ReLU)

After each convolutional layer, it is a convention to apply a nonlinear layer (or activation
layer) immediately afterward. The purpose of this layer is to introduce nonlinearity to a system
that has just been computing linear operations during the convolutional layers (just element-wise
multiplications and summations). In the past, nonlinear functions like “tanh” and “sigmoid” were
used, but researchers found out that rectified linear unit (ReLU) layers work far better because the
network can train a lot faster (because of the computational efficiency) without making a
significant difference to the accuracy [2].

It turns out that one of the problems of using sigmoid functions in machine learning is that
there are regions where the slope of the function would gradient to nearly zero and so learning
becomes slow because when you implement gradient descent and the gradient is zero the
parameters just change very slowly and so learning is very slow whereas by changing the activation
function of the neural network to use ReLU function, the gradient is equal to one for all positive
values of input and so the gradient is much less likely to gradually shrink to zero and has made the
gradient descent algorithm work much faster and this allows us to train bigger neural networks.

The RELU layer applies the function F(x)=max (0, x) to all of the values in the input
volume as shown in Figure 2.7. In basic terms, this layer just changes all the negative input values
to zero and passes the positive values as it is. Thus, increases the nonlinear properties of the model
and the overall network without affecting the receptive fields of the convolutional layer.

-3 -2 -1 0 1 2 3

Figure 2.7 The ReLU activation function

2.3.5 Batch Normalization Layer

Neural networks learn slowly if the distribution of their input changes over time. This issue
is called the internal covariance shift. Batch normalization addresses this issue by bringing the
values to zero mean and unit variance. It then multiplies the normalized results by a learnable
parameter (new variance) and adds a learnable parameter to it (new mean) and so giving the
network the ability to choose suitable distributions. It also smoothens the flow of gradient and acts
as a regulating factor, which improves the generalization of the network without relying on
dropout.
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2.4 Image Classification Dataset

Image Classification is a fundamental task that attempts to comprehend an entire image as
a whole. The goal is to classify the image by assigning it to a specific label. Typically, Image
Classification refers to images in which only one object appears and is analyzed. In contrast, object
detection involves both classification and localization tasks and is used to analyze more realistic
cases in which multiple objects may exist in an image. Figure 2.8 presents a comparison of the
datasets' popularity.
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Figure 2.8 Comparison of the popularity of different image classification datasets

2.4.1 ImageNet

The ImageNet dataset contains 14,197,122 annotated images according to the WordNet
hierarchy. Since 2010 the dataset has been used in the ImageNet Large Scale Visual Recognition
Challenge (ILSVRC), a benchmark in image classification and object detection. The publicly
released dataset contains a set of manually annotated training images. A set of test images is also
released, with the manual annotations withheld. ILSVRC annotations fall into one of two
categories: (1) image-level annotation of a binary label for the presence or absence of an object
class in the image, e.g., “there are cars in this image” but “there are no tigers,” and (2) object-level
annotation of a tight bounding box and class label around an object instance in the image, e.g.,
“there is a screwdriver centered at position (20,25) with a width of 50 pixels and height of 30
pixels”. The ImageNet project does not own the copyright of the images, therefore only thumbnails
and URLs of images are provided.

Total number of non-empty WordNet synsets: 21841

Total number of images: 14197122

Number of images with bounding box annotations: 1,034,908
Number of synsets with SIFT features: 1000

Number of images with SIFT features: 1.2 million

10
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2.4.2 CIFAR-10

The CIFAR-10 dataset (Canadian Institute for Advanced Research, 10 classes) is a subset
of the Tiny Images dataset and consists of 60000 32x32 color images. The images are labeled with
one of 10 mutually exclusive classes: airplane, automobile (but not truck or pickup truck), bird,
cat, deer, dog, frog, horse, ship, and truck (but not pickup truck). There are 6000 images per class
with 5000 training and 1000 testing images per class.

The criteria for deciding whether an image belongs to a class were as follows:

e The class name should be high on the list of likely answers to the question “What is in this
picture?”

e The image should be photo-realistic. Labelers were instructed to reject line drawings.

e The image should contain only one prominent instance of the object to which the class
refers. The object may be partially occluded or seen from an unusual viewpoint as long as
its identity is still clear to the labeler.

2.4.3 MNIST

The MNIST database (Modified National Institute of Standards and Technology database)
is a large collection of handwritten digits. It has a training set of 60,000 examples and a test set of
10,000 examples. It is a subset of a larger NIST Special Database 3 (digits written by employees
of the United States Census Bureau) and Special Database 1 (digits written by high school
students) which contain monochrome images of handwritten digits. The digits have been size-
normalized and centered in a fixed-size image. The original black and white (bi-level) images from
NIST were size normalized to fit in a 20x20 pixel box while preserving their aspect ratio. The
resulting images contain grey levels as a result of the anti-aliasing technique used by the
normalization algorithm. The images were centered in a 28x28 image by computing the center of
mass of the pixels and translating the image to position this point at the center of the 28x28 field.

2.5 CNN Architectures for image classification

In recent years, the world witnessed the birth of numerous CNNs. These networks have
gotten so deep that it has become extremely difficult to visualize the entire model. We stop keeping
track of them and treat them as black-box models. This section is a visualization of 3 small CNN
architectures and then ShuffleNet is explained in detail. These illustrations provide a more compact
view of the entire model of each architecture. Figure 2.9 shows the accuracy and number of
operations of many CNN architectures.

11
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Figure 2.9 Accuracy and number of operations of many CNN architectures

2.5.1 SqueezeNet

SqueezeNet was one of the first small models that performs well. It has ImageNet accuracy
similar to AlexNet, the convnet that started the deep learning revolution in 2012, but with 50 times

fewer parameters [3].

The idea: Create a neural network using more efficient building blocks, to significantly
reduce the number of parameters used by typical CNNs of the time. AlexNet consisted of five
convolution layers with large kernels, followed by two massive fully-connected layers.
SqueezeNet uses only small Conv layers with 1x1 and 3x3 kernels.

12
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The main building block in SqueezeNet is the Fire module shown in Figure 2.10.

weights (16x64x1x1)
bias (16)
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concat

Figure 2.10 The Fire module of SqueezeNet

It first has a squeeze layer. This is a 1x1 convolution that reduces the number of channels,
for example from 64 to 16 in the above picture. The purpose of the squeeze layer is to compress
the data so that the 3x3 convolution doesn’t need to learn so many parameters.

This is followed by an expand block that has two parallel convolution layers: one with a
1x1 kernel, the other with a 3x3 kernel. These Conv layers also increase the number of channels
again, from 16 back to 64. Their outputs are concatenated, so the output of this fire module has
128 channels in total.

SqueezeNet has eight of these Fire modules in succession, sometimes with max-pooling
layers between them. There are no fully-connected layers. At the very end is a convolution layer
that performs the classification, followed by global average pooling. (Interestingly, the
classification layer both has ReLU and SoftMax applied to it.).

To measure the accuracy of the model, we calculate two metrics; top-1 and top-5 accuracies
as shown in Table 2.1, where the top-k metric computes the number of times where the correct
label is among the top-k labels predicted (ranked by predicted scores).

ImageNet classification accuracy:

Table 2.1 Accuracy and number of parameters of SqueezeNet v1.1

parameters | top-1 | top-5
SqueezeNet v1.1 1.25M 57.5% | 80.3%

2.5.2 SqueezeNext

SqueezeNext is based on SqueezeNet but with some architectural improvements. The new
SqueezeNext block is shown in Figure 2.11.

13
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Figure 2.11 The SqueezeNext building block

There are five Conv layers in each block, all with the batch norm and ReL U [4]:

The first two layers are bottleneck layers, i.e., 1x1 convolutions that reduce the number of
channels. If c is the number of input channels, the first bottleneck layer reduces this to c/2
and the second one to c/a.

As with the original SqueezeNet, these bottlenecks are used to cut back the number of
parameters needed by the convolution layers that do the actual filtering.

Unlike the original SqueezeNet, there is no longer a 3x3 convolution. Instead, this has been
split up into two smaller convolutions: 3x1 and 1x3. These both have c/2 filters. Splitting
it into two smaller layers decreases the number of parameters needed. At the same time, it
increases the depth of the network, which generally improves the model.

The order of these two convolutions alternates. If this block has 3x1 followed by 1x3, the
next block does 1x3 first and 3x1 second, and so on.

The fifth and final layer is an expansion layer, a 1x1 convolution that brings the number of
channels back to c.

As is common with modern architectures, there is also a residual connection that is used to

allow gradients to flow through a network directly, without passing through non-linear activation
functions. Non-linear activation functions, by the nature of being non-linear, cause the gradients
to explode or vanish (depending on the weights). Adding this connection forms conceptually a
'bus’ that flows right the way through the network, and in reverse, the gradients can flow backward
along with it too. It also helps the model learn more features, which increases the model's accuracy.

Recall that the original SqueezeNet had convolutions in both branches, but that doesn’t

happen here: the residual branch has no convolution in it. However, there is a small exception to
this rule.

The blocks in SqueezeNext are organized into four sections. In each new section, the spatial

dimensions of the feature maps are halved. To achieve this, the very first bottleneck convolution
has stride 2. Now the residual branch for that block must also have a stride 2 convolution,
otherwise, the outputs of both branches cannot be summed up.

14
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Also, in this first block, the number of output channels can be different than the number of
input channels, so the branch with the residual connection must match that too.

The very first layer in SqueezeNext is a 7x7 convolution with 64 filters and stride 2. This
layer does not use zero padding. It is immediately followed by max-pooling, so the input size of
227%227 pixels is very quickly reduced to 55%55 pixels.

Because of the pooling layer, the first convolution in the very first section has a stride of 1
instead of 2. Not sure why they use a max-pooling layer there and not anywhere else.

At the end of the model is a single fully-connected layer that performs the actual
classification. Right before this layer is a bottleneck layer that reduces the number of channels,
which saves a lot of parameters in the FC layer, and a global average pooling to reduce the spatial
dimensions. (SqueezeNet used a Conv layer to do the classification, and did global pooling last.)

SqueezeNext, like MobileNet, is not just a single fixed design but a family of possible
architectures:

e A width multiplier determines the number of filters in each block. The paper examines
width multipliers of 1.0, 1.5, and 2.0.

e You can also change the number of building blocks used. The paper shows models with
23, 34, and 44 blocks. As you might expect, more blocks give better results.

e You can vary how many blocks there are in each section. For example, the “v5” variant
has relatively few blocks in the first two sections (which work on feature maps of sizes
55x55 and 28%28), many blocks in the third section (feature map size 14x14), and only
one block in the last section (size 7x7).

e Inother variants of SqueezeNext, the first bottleneck and the 1x3 and 3x1 layers use group
convolution with a group size of two, which cuts the number of parameters in half for those
layers. (This is a little bit like making them depth-wise convolutions, which is a grouped
convolution where the number of groups equals the number of channels.)

The authors of SqueezeNext did not use depth-wise separable convolutions on purpose,
because these “do not give good performance on some embedded systems due to its low arithmetic
intensity (ratio of computing to bandwidth).”

Interesting, because depth-wise separable convolutions work very well on the iPhone GPU
(see the success of MobileNet); the paper does not go into details about what sort of embedded
systems they intended SqueezeNext for.

To try out different design approaches, the authors simulated the performance of possible
architectures on a hypothetical neural network accelerator chip. This is different from MnasNet,
which tries out the architectures on actual hardware. Because of this, I’'m not sure how well
SqueezeNext’s design decisions translate to the real world — or at least to iPhone hardware.

The paper also shows results for models that use Iterative Deep Aggregation (IDA). Instead
of just having a linear sequence of blocks that only classifies at the very end, with IDA we already
predict each block, and these predictions are then combined with those of the final classification
layer. This idea improves accuracy (a little) but at the cost of more parameters. (It doesn’t appear
to be a major feature of SqueezeNext).
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ImageNet classification accuracy:

Table 2.2 Accuracy and number of parameters of SquezeNext

parameters | top-1 top-5
1.0-SgNxt-23 0.7M 59.05% | 82.60%
1.0-SqNxt-44 1.2 M 62.64% | 85.15%
1.0-SqNxt-44-IDA 1.5M 63.75% | 85.97%
2.0-SqNxt-23v5 3.2M 67.44% | 88.20%

The accuracy scores for a few different variations of the architecture are shown in Table
2.2. The 1.0-SgNxt-44 model can be compared to the old SqueezeNet. While it scores better than
the original, its accuracy is still lower than MobileNet v1, even if we compare it with a version of
MobileNet that has a similar number of parameters (0.5 depth multiplier, top-1 score 63.3%).

The SqueezeNext paper claims better top-5 accuracy than MobileNet v1 with 1.3x fewer
parameters. To get this result, they compare their 2.0-SqNext23v5 model with MobileNet-1.0-224.
However, the version of MobileNet they’re using is not as good as the official one — they trained
it using the same hyperparameters as their models, for getting a fairer comparison.

2.5.3 MobileNet V2

MobileNet V2 uses depth-wise separable convolutions, and its main building block is shown in
Figure 2.12.

1x=1 “Expansion” Layer

Batch Normalization

RelU&

!

3x3 Depthwise Convolution

Batch Normalization

RelUs

C—fD

‘ Bottleneck Residual block

Figure 2.12 The MobileNet V2 building block

This time there are three convolutional layers in the block. The last two are the ones we
already know: a depth-wise convolution that filters the inputs, followed by a 1x1 pointwise
convolution layer. However, this 1x1 layer now has a different job.

In V1 the pointwise convolution either kept the number of channels the same or doubled
them. In V2 it does the opposite: it makes the number of channels smaller. This is why this layer
is now known as the projection layer — it projects data with a high number of dimensions
(channels) into a tensor with a much lower number of dimensions [5].
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For example, the depth-wise layer may work on a tensor with 144 channels, which the
projection layer will then shrink down to only 24 channels. This kind of layer is also called a
bottleneck layer because it reduces the amount of data that flows through the network. (This is
where the “bottleneck residual block™ gets its name from the output of each block is a bottleneck.)

The first layer is the new kid in the block. This is also a 1x1 convolution. Its purpose is to
expand the number of channels in the data before it goes into the depth-wise convolution. Hence,
this expansion layer always has more output channels than input channels as shown in Figure 2.13,
and does the opposite of the projection layer.

Exactly how much the data gets expanded is given by the expansion factor. This is one of
those hyperparameters for experimenting with different architecture tradeoffs. The default
expansion factor is 6.

For example, if there is a tensor with 24 channels going into a block, the expansion layer
first converts this into a new tensor with 24 * 6 = 144 channels. Next, the depth-wise convolution
applies its filters to that 144-channel tensor. And finally, the projection layer projects the 144
filtered channels back to a smaller number, say 24 again.

56x56 . 56x56 56x56 56x56
x24 expansion x144 depthwise x144 projection x24
convolution convolution convolution
(factor = 6)

residual connection

Figure 2.13 Expanding the data before depth-wise convolution

So, the input and the output of the block are low-dimensional tensors, while the filtering
step that happens inside the block is done on a high-dimensional tensor.

The second new thing in MobileNet V2’s building block is the residual connection. This
works just like in ResNet and exists to help with the flow of gradients through the network. (The
residual connection is only used when the number of channels going into the block is the same as
the number of channels coming out of it, which is not always the case as every few blocks the
output channels are increased.)

As usual, each layer has batch normalization and the activation function is RelLU®.
However, the output of the projection layer does not have an activation function applied to it. Since
this layer produces low-dimensional data, the authors of the paper found that using a non-linearity
after this layer destroyed useful information.

The full MobileNet V2 architecture, then, consists of 17 of these building blocks in a row.
This is followed by a regular 1x1 convolution, a global average pooling layer, and a classification
layer. (Small detail: the very first block is slightly different, it uses a regular 3x3 convolution with
32 channels instead of the expansion layer.)
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The authors of MobileNet v2 call this an inverted residual because it goes between the
bottleneck layers, which have only a small number of channels. Whereas a normal residual
connection from ResNet goes between layers that have many channels.

The full MobileNet v2 architecture consists of 17 of these building blocks in a row. This is
followed by a regular 1x1 convolution, a global average pooling layer, and a classification layer.
ImageNet classification accuracy is shown in Table 2.3.

Table 2.3 Accuracy and number of parameters of MobileNet V2

parameters | top-1 | top-5
MobileNet v2 3.47TM 71.8% | 91.0%

2.6 Hardware design Methodology

2.6.1 FPGA Introduction and main resources

FPGAs (Field Programmable Gate Arrays) are programmable integrated circuits that have
been designed to be configured by a designer after manufacturing. FPGAs consist of a matrix of
configurable logic blocks (CLB) which are connected by interconnections that can be programmed
using an HDL (hardware description language), Verilog, or VHDL, to implement different
functions and applications.

The matrix of CLBs allows the FPGA to perform very complex combinational and
sequential logic or logic as simple as logic gates. This can’t be done without the reconfigurable
interconnects, in addition, FPGA logic blocks contain simple memory blocks like flip flops or
complete memory blocks. This makes FPGAs implement different logic functions with high
flexibility.

Microprocessors can be used to implement most digital applications that are related to
image processing. But microprocessors have a great hold back in that they execute functions
sequentially. But on the other hand, FPGAs are faster for some applications due to their parallelism
in operations with flexibility in design and usage of resources. So, where speed is critical, FPGA
can be much faster even with limited clock speed. This makes using FPGAs in hardware
accelerators that need parallel processing a trend in the digital market.

Graphic processing units (GPUs) have the potential of running with a throughput higher
than FPGA can ever reach. But only for algorithms that are especially suited for that. If the
algorithm is not optimal, the GPU will lose a lot of performance. FPGA on the other hand runs
slower, but you can implement problem-specific hardware that will be very efficient and get stuff
done faster. FPGAs consume less power compared to GPUs, where the main reason for GPUs
being power-hungry is that they require additional complexity around their compute resources to
facilitate software programmability. The decreased power consumption in FPGAs might have a
big impact on a lot of applications where great performance isn't the most important factor.
However, FPGAs have a higher time to market when compared to GPUs.

In computer vision and other applications, GPUs are used to implement deep learning
algorithms. But FPGAs are very flexible hardware with a variety of interfaces that allow designers
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to configure them according to their specifications and constraints in a very optimal way, which
allows them to obtain specifications like area, speed, and power consumption by managing their
limited resources. A comparison between FPGAs and GPUs is shown in Figure 2.14 and the
comparison between FPGAs, CPUs, and GPUs is summarized in the table below, which
demonstrates how FPGASs excel in resource optimization in terms of power and cost.

Therefore, FPGA is a perfect choice as a design style to implement our project
(compromises between speed, area, and power) instead of using a CPU or GPU. Table 2.4 shows
a comparison between CPU, FPGA, and GPU.

Floating-Point
Processing
Processing / € —.Timing Latency
Development ] Interfaces
. \ .
Size Processing / Watt
_GPU Flexibilit Backward
FPGA Y Compatibility

Figure 2.14 FPGA Vs GPU

Table 2.4 Comparison between CPU, FPGA, and GPU

CPU FPGA GPU

Throughput Low | Intermediate | High

Power consumption | Low | Intermediate | High

Time to market Low | Intermediate | Low
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2.6.2 FPGA Internal Components

FPGAs are popular among digital designers because they provide a flexible design
platform. They're made up of a variety of logic blocks that may be used to implement a variety of
functions and boost the system's flexibility. As shown in Figure 2.15.

Programnm
interconr

CLB CLB

Figure 2.15 FPGA components
2.6.2.1 Configurable Logic Blocks (CLBs)

FPGA logic resources are the fundamental computational components that implement and
store the target circuit's functionality. A CLB is still the most basic element of an FPGA, allowing
the user to design nearly any logical function into the chip [6]. CLB components perform complex
logic, implement memory functions, and synchronize code on the FPGA when connected by
routing resources. Each CLB is made up of several slices that are further decomposed into look-
up tables (LUTS), flip-flops (FFs), and multiplexers (MUXSs) as shown in Figure 2.16.
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set by configuration
bit-stream
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Figure 2.16 FPGA CLB
2.6.2.2 Configurable 1/0 Blocks

To get signals onto the chip and send them off again, a Configurable input/output (1/0)
Block is used, as illustrated in Figure 2.17. It has three-state and open-collector output controls, as
well as an input buffer and an output buffer. Pull-up and pull-down resistors are commonly found
on the chip's outputs and can be used to terminate signals and buses without the need for discrete
resistors external to the device.

The output polarity can normally be configured for active high or active low output, and
the slew rate can usually be programmed for fast or slow rise and fall times. Flip-flops are typically
found on outputs, allowing clocked signals to be delivered straight to pins without substantial
delay, making it easier to satisfy the setup time required for external devices. Flip-flops on the
inputs, meanwhile, lessen the delay on a signal before it reaches a flip-flop, lowering the hold time
needed.

Local
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LocalBus : mET
Express Bus ———— 9/

Tri- w
State
Express Bus 47]

Entry BA L
cell EE%
AETT

L2 ] TTL/CHOS
Express Bus €——
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Figure 2.17 FPGA Configurable 1/0 block
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2.6.2.3 Programmable Interconnect

A hierarchy of interconnect resources can be shown in Figure 2.18, long lines can be mainly
used to connect critical CLBs on the chip that are physically separated from one another without
causing a significant delay. Within the chip, these long lines can also be used as buses.

Short lines are also used to link separate CLBs that are physically near to one another.
Transistors are used to turn connections between lines on and off. The FPGA also has multiple
programmable switch matrices for connecting these long and short lines in unique, flexible
combinations.

Global clock lines are unique long lines that are designed for low impedance and
consequently fast propagation times. The clock buffers and each clocked element in each CLB are
connected to them. This ensures that the clock signals arrive at different flip-flops inside the device
that has minimal skew.

2D-Mesh Interconnects
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Figure 2.18 FPGA interconnect
2.6.2.4 Clock driver

Clock drivers are special 1/0 blocks with specific high-drive clock buffers that are
distributed across the chip. These buffers connect to the clock input pads and drive the clock
signals to the above-mentioned global clock lines. Low skew times and short propagation times
are the goals of these clock lines. With FPGAs, synchronous design is required since absolute skew
and delay can only be ensured on the global clock lines.

Clock drivers are configured as a pre-implemented module in FPGA to solve questions that
occur when all designs are connected to a single clock signal. The first issue is that this port has a
significant fanout because it is connected to all flip-flop nodes; thus, a powerful driver should be
implemented to ensure that the clock propagation delay is kept to a minimum. In addition, the
buffer tree should be used to save the global skew minimum and constant across all blocks.

2.6.2.5 Block RAM

It's a specialized RAM block that stores data on the FPGA without using any extra LUTSs,
whereas distributed RAM uses LUTSs. Block RAM is slower than FF-based memory but quicker
than off-chip memory. It is also smaller in size than off-chip memory. It operates as a
relatively large memory structure.
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2.6.2.6 DSP Cores

DSPs (Digital Signal Processors), as shown in Figure 2.20, are another common type of
core available as an IP or embedded core. These are digital signal manipulators that are specialized
processors. They're typically used for video or audio signal filtering and compression. The
Multiply-Accumulate block, or MAC, is implemented as a DSP slice and is primarily used as a
building block for complex DSP applications.

[ Squaring MUX Lb Wide MUX
Wide XOR
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27)(18

o 27 Bit Pre-adder -
> j '
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Figure 2.19 DSP Core

2.6.3 FPGA Design Flow

Design declaration in HDL

Behaviour functionality

Logic synthesis

Design [111pleme11mrim1

Bit-stream generation

k.

Programming the FPGA

Figure 2.20 FPGA design flow

1) System design: This process determines all application specifications as well as a deep
understanding of the application's function.
2) Modeling: building a python code to model the accelerators' function and use it in verification.
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3) RTL: The HDL code for the model is written, and then Behavioral Simulation is performed to
ensure that the HDL accurately describes the function required and to express the functionality
of the model as hardware.

4) Synthesis: creates a netlist from the provided HDL source files. It's split into three steps:

a.
b.
C.

Syntax check.

Design association to logic cells.

Optimization: involves reducing logic and eliminating unnecessary logic to make the
design smaller and quicker.

Technology Mapping: Connecting design to logic, predicting and adding time estimates,
generating output reports, and generating a netlist file including all the design and
constraints.

Then, static timing analysis is performed to ensure that the operating frequency fulfills the
specifications.

5) Implementation: By mapping synthesized netlists to the target FPGA's structure and
connecting design resources to the FPGA's internal and 1/O logic, the physical design layout
can be determined. It is divided into three sub-processes:

a.

Translate: Takes the pin assignment & time requirements (e.g., input clock period,
maximum delay, etc.) provided by a User Constraints File and combines them with the
netlists into one large netlist.

Map: Creates a Native Circuit Description (NCD) by comparing the resources specified in
the input netlist file to the available resources of the target FPGA and dividing the netlist
circuit into sub-blocks to fit into the FPGA logic blocks.

Place & Route (PnR): The NCD sub-blocks are physically placed into FPGA logic blocks,
and signals are routed between logic blocks such that time requirements are fulfilled,
resulting in a fully routed NCD file.

6) Programming the FPGA: Converts the final NCD file into an FPGA-compatible format, then
programs the FPGA using the generated bitstream file.

NGC File

Translate

IxGD File

Mapping
INCDFile

Place and Route
"Routed NCD File

Generate Bit File

}

Bit File

Figure 2.21 FPGA implementation steps
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3 Chapter 3: ShuffleNet V2

3.1 Criteria for choosing ShuffleNet V2

Mainly, the robust and efficient model among CNN models was determined depending on
the following parameters: Top-1 and Top-5 accuracy, Number of parameters, and Number of
MACs (Multiply and Accumulate). Due to limited resources on FPGA, we put criteria to choose
among these architectures which are Minimum Top-1 accuracy equals 65% and a maximum
number of parameters equals 2.5 million. We found three architectures that achieve these criteria
which are SqueezeNext-23, MobileNet V2 0.5x, and ShuffleNet V2 1x. According to Table 3.1,
ShuffleNet V2 1x is the least in terms of the number of MACs in comparison to SqueezeNext and
MobileNet V2 so the computational complexity of ShuffleNet is small also Topl accuracy is better
than SqueezeNext and MobileNet V2 [7].

Also, by comparing ShuffleNet V2 1x with other architectures in terms of complexity, error
rate, GPU speed, and ARM speed [9]. We found that despite its lack of GPU speed, ShuffleNet v2
has the lowest top-1 error rate, which balances the other drawbacks as shown in Table 3.2.

Finally, we chose the ShuffleNet V2 1x model which gives the best accuracy in very limited
computational budgets on FPGA, focusing on common mobile platforms such as drones, robots,
and phones.

Table 3.1 ShuffleNet V2 Vs SqueezeNext and MobileNet V2

# MACs | # Parameters Top-5 accuracy Top-1 accuracy
SqueezeNext-23 749 M 24 M 88.2% 67.2%
MobileNet V2 0.5x 97 M 1.95M 86.4% 65.4%
ShuffleNet V2 1x 73M 2.3 M 88.9% 69.4%

Table 3.2 ShuffleNet Vs other Convnets

Complexity Top-1 GPU Speed ARM Speed

Model (MFLOPs) err. (%) (Batches/sec.) (Images /sec.)
ShuffieNet v2 1x (ours) 146 30.6 341 24.4
0.5 MobileNet v1 [13] 149 36.3 382 16.5
0.75 MobileNet v2 [14] (our impl.)"” 145 32.1 235 15.9
0.6 MobileNet v2 [14] (our impl.) 141 33.3 249 14.9
ShuffleNet v1 1x (g=3) [15] 140 32.6 213 21.8
DenseNet 1x [6] (our impl.) 142 45.2 279 15.8
Xeception 1x [12] (our impl.) 145 34.1 278 19.5
IGCV2-0.5 [27] 156 34.5 132 15.5
IGCV3-D (0.7) [28] 210 31.5 143 11.7
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3.2 The Network Architecture

The complete design as shown in Figure 3.1 and Table 3.3, begins with a standard
3x3 convolution followed by a max-pooling, both are stride 2. There are three stages after that,
each with four or eight ShuffleNet blocks. The first shuffle block in each stage is stride 2, and the
others are stridel. Finally, there are 1x1 convolution, global average pooling, and fully-connected
layers. Table 3.3 shows the detailed description of all ShuffleNet CNN Layers and their
Parameters. we can notice that parameters within a stage stay the same, and for the next stage, the
output channels are doubled [8].

3x3 convolut10n> Max Poolmg>

> Shufﬂe Unit > Shufﬂe Umt > Shufﬂe Urut > Shufﬂe Umt >
Shuffle Unit Shuffle Unit, Shuffle Unit, Shuffle Unit, Shuffle Unit, Shuffle Unit, Shuffle Unit, Shuffle Unit,
S=2 S=1 S=1 S=1 S=1 S=1 S=1 S=1
> Shuftle Umt> Shufﬂe Umt > Shufﬂe Umt > Shufﬂe Umt >
Fully-
1x1 Average
> convolution > Pooling > Connected >
layer

Figure 3.1 ShuffleNet architecture

Table 3.3 Detailed Description of all ShuffleNet CNN Layers and their Parameters

Output channels

Layer Output size|KSize|Stride| Repeat 05x] 1x T15x] 2x

Image 224224 3 3 3 3

Convl 112112 | 3x3 2

MaxPool 56 <56 3x3 2 1 24 24 24 24
28 %28 2 1

Stage2 98 x 28 1 3 48 116 | 176 | 244
14x14 2 1

Stage3 14% 14 1 - 96 | 232 | 352 | 488

<7 2 1

Stage4 _—r 1 3 192 | 464 | 704 | 976

Convb TXT 1x1 1 1 1024|1024 | 1024 | 2048

GlobalPool 1x1 7T

FC 1000| 1000 | 1000 | 1000

FLOPs 41M |146M |299M (591 M

# of Weights 1.4M|2.3M [3.5M | 7.4M
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3.2.1 3by3 Convolution and Max-pooling
e 3x3 Convolution

Convolutions in Neural Networks apply filters to extract features from actual data. A filter
could be related to anything, for pictures of humans, one filter could be associated with seeing
noses, another with eyes, and so on. Each feature extracted from input data will be in the form of
activation maps.

Convolution, like a typical neural network, is a linear operation that includes multiplying
a set of weights with the input. The multiplication is done between an array of input data and a
three-dimensional array of weights, called a filter or a kernel. The output from multiplying the
filter with the input array one time is a single value. As the filter is applied multiple times to the
input array, the result is a two-dimensional array of output values that represent the filtering of the
input.

In our model, we perform the convolution operation on the input image matrix of size
224x224x3 with 24 filters each of size 3x3x3 that produce an output of size 112x112x24 with
several channels equal to the number of filters applied [10].

Looking at Figure 3.2, the dot product of the filter and the first 27 elements of the image
matrix produce one single pixel of the output matrix. Then, from left to right, top to bottom, slide
the filter by one square across the image and repeat the computation. Finally, generate a two-
dimensional feature map. The number of output channels will be equal to the number of filters.
Then apply the ReLU activation function to all of the values in the input volume which takes the
max between the value and zero.

Figure 3.2 3x3 convolution operation in an input image
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e Max-pooling

It is a pooling operation that determines the maximum value for patches of a feature map
and uses it to build a down-sampled (pooled) feature map. It's commonly used after a convolutional
layer. The pooling layer works on each feature map separately to build a new set of pooled feature
maps with the same number of channels.

In our model, the input matrix to max-pooling is of size 112x112x24 using a 3x3 window
with stride 2 that produces an output matrix of size 56x56x24. Figure 3.3 shows an example of a
Max Pooling operation on a small image.

20 110 10 17 30

52 14 12 48 28

3x3 Max poo
80 | 16 | f 85 | 10 110 | 66

25 | 12 | 60 | 17 | 39 99 | 85

99 14 4G 4G 10

Figure 3.3 Max-pooling operation with window 3x3

3.2.2 Shuffle Units

The Shuffle unit is the building block of ShuffleNet v2. There are three stages in the model,
each with 4 or 8 shuffle units. The Shuffle unit can be one of the following two types: stride 2 -
shuffle unit and stride 1 - shuffle unit. The first unit in each stage is stride 2, and the others are
stride 1. The first unit with a stride of 2 is used to reduce the dimensions. Figure 3.4 shows the
block diagram of the two types of shuffle units.

In the shuffle unit with stride 2, the left branch is a little different from the shuffle unit with
stride 1. It performs a 3x3 depth-wise convolution with stride 2, followed by a 1x1 convolution to
make sure the outputs of both branches have the same spatial dimensions (or they can be
concatenated at the end). Also, there is no channel split operation in such a block, so both branches
work on the same data and concatenate effectively double the number of channels.

DW convolution followed by 1x1 convolution can be designed to have the same inputs and
output dimensions as the normal convolutional operation, but it can be done at a much lower
computational cost.
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|

Channel Split
1x1 Conv 1x1 Conv
1 BN ReLU | 3x3 DWConv l BN ReLU
(stride = 2) 353 DWO
X onv
3x3 DWConv BN (stride = 2)
BN BN
vl 1x1 Conv 1
1x1 Conv BN ReLU 1x1 Conv
\ BN ReLU BN RelLU
Concat Concat
Channel Shuffle Channel Shuffle

Figure 3.4 ShuffleNet unit with stride 1, ShuffleNet unit with stride 2

Explanation of each block in the Shuffle unit:
e Channel split and channel shuffle

A channel split operation sends half of the channels through the left branch and the other
half through the right branch, thus splitting the channels into two groups. One of which is kept as
the identity. The other branch has an equal number of input and output channels along the three
convolutions. Because each convolution filter now works on half the input channels and creates
half the output channels, you only need half the parameters.

As a result, each output is only derived from a fraction of the inputs, dividing the output
channels into the same number of groups. This is inefficient since there is no information transfer
between groups, limiting the network’s ability to learn new things. So, channel shuffle is used to
shuffle the input channels.

The ShuffleNet V2 model utilizes these two new operations, channel split and channel
shuffle, to greatly reduce computation costs while maintaining accuracy.

The feature map is shuffled along the channels dimension using the channel shuffle
procedure, as follows as shown in Figure 3.5.
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1. Splitting the input channels into 2 halves.
2. Perform Convolution on one half.
3. Shuffle the channels to eliminate the side-effect of splitting.

Y

< Channels

Input

Channel
Split

Feature

Channel
Shuffle

Figure 3.5 Channel shuffle operation for output channels

e DW convolution

Depth wise Convolution is a sort of convolution in which each input channel receives a
single convolutional filter. The filter is as deep as the input in normal 2D convolution performed
over multiple input channels to mix channels to generate each element in the output. Depth-wise
convolutions, on the other hand, maintain each channel separately. This is done by applying each
filter to the corresponding input channel as shown in Figure 3.6 [11].

To summarize the steps:

1. Divide the input into channels and apply the corresponding filter.
2. Each input channel is convolved with the appropriate filter.
3. The convolved outputs are stacked together.
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Figure 3.6 DW convolution operation

3.2.3 1x1 Convolution, Avg pooling, and Fully Connected (FC)
e 1x1 convolution

A convolutional layer with a 1x1 filter can be used at any point in a convolutional neural
network to control the number of feature maps and to mix up features. It's also known as a
projection layer, a feature map, or a channel pooling layer. It maps an input pixel with all its
channels to an output pixel and each filter will produce an output channel.

Here the input to this stage is the output of shuffle unit stages which is of size 7x7x464
with 1024 filters each of size 1x1x464 that produces an output of size 7x7x1024 with several
channels equal to the filters used [12].

Figure 3.7 shows an example of a 1x1 convolution operation on an input matrix of size
64x64x192 using one filter of size 1x1x192 to produce an output of size 64x64x1.

Figure 3.7 1x1 convolution using one filter of size 1x1x192

e Avg-pooling

It is similar to the max-pooling explained at the beginning of the model, but it calculates
the average value for a sliding window on the input feature map and creates a down-sampled
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(pooled) feature map. It extracts features more smoothly than max-pooling, whereas max-pooling
extracts more pronounced features like edges.

It takes the output of 1x1 convolution down-sampled its size to produce an output of size
1x1x1024. Figure 3.8 shows an example of Avg pooling on an input matrix using a 3x3 window.

20 110 10 17 30

52 14 12 41 28

3x3 Avg pool
80 | 16 1 85 | 10 35 | 26

25 12 60 17 35 39 35

a7 14 45 45 11

Figure 3.8 Avg pooling operation with a 3x3 window
e FC layer

The fully connected layer (FC) works with a flattened input, where all of the inputs from
one layer are connected to every activation unit of the next layer as shown in Figure 3.9. FC layers
are commonly found near the end of CNN architectures and can be utilized to optimize goals like
class scores.

It is the last layer in the model taking an input of the previous stage which is of size
1x1x1024 and it will generate the final output to classify data into ImageNet 1000 class.
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Figure 3.9 FC layer classifying data into various classes
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4 Chapter 4: Software Modeling

4.1 Pretrained Model

Our software modeling phase depends on a pertained model for ShuffleNet V2 which is
available on PyTorch Hub for researchers [13]. The software model is developed by the PyTorch
team using Python. It is open-source and free to use. This model is pre-trained on ImageNet and
ready to use. The pre-trained model is based on the original paper that proposes the architecture of
the ShuffleNet V2 [14]. We can run this model on Google Collab or we can get it for GitHub and
use it locally.

4.2 Model Validation

The first step we need to take is to validate the pre-trained model and get the accuracy on
the ImageNet validation set to be sure that there is no something wrong with our software model.
So, we edited the script which runs the ShuffleNet V2 software model. Then, we ran the model on
the 50000 photos of the ImageNet validation set and got the accuracy as shown in Figure 4.1. Our
accuracy is the same as mentioned in PyTorch Hub for researchers [13] as shown in Figure 4.2.

processing images:
progress: 1@8.88% timeToFinish:

Processing Time: 1:82:89.913881
accuracy = *
Top-1 error

Figure 4.1 Our software model accuracy

Model structure Top-1 errar

=]

= A

[§%]

shufflenet_v2

Figure 4.2 Software model accuracy from PyTorch Hub
4.3 Fixed Point Representation

4.3.1 Fixed Point vs Floating-Point Representation

One of the most important aspects of the design is how to represent the data. The most
common, important, and useful are Integer, Floating point, and Fixed-point representations. We
will focus on Floating point and Fixed-point representations as they what will be better for our
design. In Table 4.1, a full comparison between Floating point and Fixed-point representations is
done. The comparison spans many points of view to choose the best representation for our
hardware design.
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Table 4.1 Fixed point vs Floating-point representation

Fixed point representation Floating-point representation
Hardware Complexity Low High
Hardware Area Small Large
Delay Low High
Power Low High
Memory Resources Small Large
Accuracy Lower High

Our PyTorch software model uses a single-precision floating-point format which is 32 bits.
For a software model, it will be a good choice to use a 32-bit floating-point representation to get
high accuracy. Also, software models can run on powerful hardware like GPUs which will provide
the complex computation resources needed to make operations on floating-point data and memory
recourses to store this amount of data which will be larger.

In our hardware design, we will use the fixed-point representation because it will be more
suitable for the hardware design because of the following points:

Accelerator targets high speed.

Power is to be minimized.

The area is to be minimized

Hardware design will be simpler.

The memory resources in the FPGA are limited.

Accuracy will be acceptable and very close to the floating point.

So Fixed-point representation gives the best tradeoff between accuracy and hardware
complexity and this is the biggest advantage of using the Fixed-point which decreases the area of
hardware enabling us to place more hardware to make parallelism and pipelining which improves
the throughput of the accelerator with a small and acceptable loss in the accuracy.

4.3.2 Static and Dynamic Fixed-Point Representation

Fixed-point representation is quite similar to the way used in decimal numbers to represent
fractional numbers by using a point that is divided number into 2 parts. Let’s look at an example:
a = 01010111 in binary (base 2) so we can interpretitas a = 87 in decimal (base 10) however,
we can consider a binary point and interpret the final number as fractional a = 0101.0111 in
binary (base 2) so we can interpret itas a = 5.375 in decimal (base 10).

a=0%x23 +1%2%2 +0%21 +1%29 40271 +1%2724+1%234+1%x2"% =5.40625

here we use a 4 bit as integer and 4 bits as a fraction.
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By generalizing this way, we can get the Fixed-point representation which consists of two
parts, the first is the integer part and the second is the fractional part. We can add 1-bit to the most
significant bit called a sign bit which determines whether it is a positive or negative number. As
shown in Figure 4.3, there the total number of bits is called bit width which represents how many
bits are needed to store a specific fixed-point representation.

Q format notation is used to easily represent the integer and fractional parts [15], if we use
3-bits for integer and 4-bit for fraction we can simply write this as “Q3.4”. The range of numbers
that can be held with Fixed-point representation is —25it Width _, pBit Width _ pFractional Length
and 2Ffractional Length g called the step size or resolution. Resolution is the smallest fraction
number that can be represented by a specific fixed-point representation.

Integer  Fractional
Length (3) Length (4)
——

Bit Width (8)
Figure 4.3 Fixed point representation illustration

The fixed-point representation will suffer from a saturation issue if the data to be
represented is a positive number that is larger than the positive limit of the fixed point. The same
issue will exist when the data is negative and is smaller than the negative limit of the fixed point.
The solution for such an issue is to make the fixed-point representation dynamic, not static.

Static fixed-point representation is to use the fixed point with constant bit width, integer
length and fractional length are constant along with the whole design which means that all numbers
across all the design will have the same upper limit for positive values, the same bottom limit for
negative value and the same resolution. The static fixed point will suffer from the saturation
problem mentioned above.

Dynamic fixed-point representation is the solution for the saturation issue. Because CNN
has a wide dynamic range of values as any layer output is an accumulation for all the previous
layers the saturation issue will exist so a dynamic fixed point might be used to increase the
accuracy. The dynamic fixed point is based on the idea that will make each layer has its fixed-
point representation by varying the fraction length and also bit-width between layers. In dynamic
fixed point, each number is represented as follows:
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B-2
(—1)* =277y 2ty

i=()

Where B denotes the bit width, s is the sign bit, FL is the fractional length and x is the
mantissa bits [16]. This allows a better coverage for a wide dynamic range of data when the data
range is small, we can use small bit width and when the data range is large, we can use larger bit
width. This is beneficial not only for accuracy but also for memory resources as to get high
accuracy with a static fixed point we will use a large fixed point to be suitable for the biggest range
of values but it is useless for smaller ranges so with the dynamic range we use only the suitable
fixed point for each range of numbers which result in smaller data to be stored in fewer memory
resources.

i
Integer Part 1 Fractional Part
o i "

sign mantissa :
1
|

oj1j1joj1j1({0O]1 FlL=2

1{0f{0j1]1|0|1]1] FL=5

Figure 4.4 Dynamic fixed-point example

As shown in Figure 4.4, the dynamic fixed point is illustrated where two numbers have the
same bit width which is 8-bits but because each number belongs to a different layer they have
different fractional lengths.

4.3.3 Fixed-Point Addition

Addition in Fixed-point representation is like the addition of binary integer numbers. The
first step to adding two Fixed-point numbers is to align the binary point of the two numbers we
make a sign extension for the number which has a shorter integer number if needed. If the fractional
part is shorter in one of the numbers, we put zero on the right side to align the two numbers. Let’s
look at an example as shown in Figure 4.5 [15].

110.11 —1.25
+ 011.010 +3.25

1010.000 +2

Figure 4.5 Fixed point addition
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We should be careful when adding two numbers due to the overflow issue which might
happen to result that the output is not correct because adding two N-bit numbers can lead to an
(N+1)-bit as a result. In the previous example, there is no overflow so we should read the output
in the same number of bits as inputs to take the output correctly. Let’s look at another example in
which an overflow issue exists as shown in Figure 4.6 [15].

110.11 —1.25
+ 100.001 —3.875

1010.111 —5.125

Figure 4.6 Overflow in Fixed-point addition

In this example, the output must be taken in several bits larger than inputs by one bit as
mentioned before to avoid errors in the result. One solution for the overflow issue is to make a
sign extension before adding the two numbers and then take the output of the same size as inputs
so that the result will always be correct not only when an overflow happens but also when there is
no overflow. To make it clear, let’s look at an example as shown in Figure 4.7 [15]. In this example,
sign extension is done before adding the two numbers to make the range of numbers larger so that
after the output result will fit in the size as inputs and it is clear for example that if we take the
same number of bits as inputs at the output the result will be corrected so overflow issue is solved.

1110.11 —1.25
+ 1100.001 —3.875

11010.111 —5.125

Figure 4.7 Overflow solution in Fixed-point addition

In many digital signal processors (DSPs), the register at the output of an accumulator has
several bits more than the inputs by several bits which are called the guard bits [15]. Guard bits let
us avoid the overflow issue as we accumulate some numbers and put the result at the same register
so it should be large enough to hold the final result of accumulation.

4.3.4 Fixed-Point Multiplication

Multiplication in Fixed point is quite similar to binary integer numbers multiplication. The
first step is to make the two numbers in the same size of bits with a sign extension on the left and
zeros on the right if needed. Secondly, we will ignore the binary point of the two numbers which
are multiplied, and treat the numbers as two’s complements. The third step is to do the
multiplication by generating the partial products and then adding them together as explained before
in the Fixed-point addition to obtain the final result. Finally, we will determine the position of the
binary point that we ignored before. To illustrate the multiplication methodology, let’s look at an
example as shown in Figure 4.8 and Figure 4.9 [17].
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b

a = (101001), x (27°)
(100010] , % (27%),

axb= ((101{101)2 ) ( 100010),, x (2—3)1.})

axb= ((101001)2 X (100010)2) x (277

Figure 4.8 Preparing numbers for multiplication

1 0 1 o o0 1 41

x 1 o 0 0o 1 O 34
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o o O o 0O O

+ 1 O 1 O 0 1

i o 1 o0 1 1 1 0 0 1 O 1394
Figure 4.9 Unsigned multiplication fixed point

In this example, two unsigned numbers are multiplied. We can generalize the rule by which
the binary point position of the output is determined by saying it will be in the position which is
the sum of the two binary point positions of the input.

In multiplication, we also should care about the overflow issue as the output of the
multiplication is much larger than the input. If the inputs have sizes that are Na-bits and Nb-bits
the output will have a size of (Na+NDb)-bits to avoid the overflow and get the result correctly.
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i 0 1 0 0 1 -23
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Figure 4.10 Signed by unsigned multiplication

In the case of multiplying a signed number by an unsigned number, the steps are the same
as multiplying unsigned by unsigned and it is illustrated in an example that multiplies signed by
unsigned number as shown in Figure 4.10 [17]. Only one difference exists which is to sign extend
the partial products as one of the operands is a signed number. In this example, the decimal point
is ignored while doing multiplication and will be determined in the output result as stated before.

There is a little bit of difference while multiplying by a signed number. The difference is
that the last partial product will be represented in a longer size by one bit which will be determined
by sign extension then take the two’s complement. This is because the last partial product is
resulted from multiplying with the sign bit which gives it a negative sign. After that, we can add
this partial product to the rest of the partial products. Let’s look at an example to illustrate unsigned
by signed multiplication as shown in Figure 4.11 [17].

0 1 9
X 1 0 0 -14
0 0 0

0 1 0

0 0 0 O

0 0 0 0 O

+ 1 1 0 1 1 1

1 1.1 0 0 0 0 0 -126

Figure 4.11 Unsigned by sighed multiplication

In this example, the last partial product is the two’s complement of the multiplicand. In the
case of multiplying a signed number by a signed number same procedure as multiplying unsigned
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by signed will be happened but with a sign extension for the partial products, the final partial
product will be treated in the same way. This case is illustrated as shown in Figure 4.12 [17].

1 1 0 0 1 -7

0001 1 0 0 0 1 0 08
Figure 4.12 Signed by signed multiplication

4.4 Quantization

As mentioned before our software model for the ShuffleNet V2 uses a single-precision
floating-point format which is 32 bits. So, we should quantize the software model to use a fixed-
point representation and run it on the ImageNet validation set to choose the best (smallest) Fixed
point bit width and fractional length to minimize the size of data (in bits) which will be stored in
the FPGA and to minimize the loss in the accuracy. Quantization is done through two steps which
are model quantization and weights quantization.

4.4.1 Model Quantization

Model quantization is the step in which we quantize the model itself by editing the python
code that models the ShuffleNet V2. This is achieved by using a python library called Fxpmath
which is a library for fractional fixed-point (base 2) arithmetic and binary manipulation [18]. This
library can take an input of a NumPy array [19]. In our PyTorch software model data is stored in
a data holder called tensors [20]. So, we convert these tensors which hold the data into NumPy
arrays so that we can use the functions in Fxpmath library to quantize these data into Fixed-point
representation. Then we bring NumPy arrays again to PyTorch tensors so the software model can
process the data in the next stages. Fxpmath library gives us the freedom to choose the bit width
and fractional length of the Fixed-point so we can get the optimum Fixed-point representation by
try and error.

4.4.2 Weights Quantization

Weights quantization is the step in which we quantize the weights of the ShuffleNet V2 to
Fixed-point representation. The reason we gquantize the model and the weights in different steps is
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that we use a pre-trained model. So, in model quantization, we actually quantize only the forward
path of the model without backward propagation because we don’t use it and we don’t even need
it. As a result of using a pre-trained model, weights of the model are stored in a file so that the
model run can read the weights from this file. This file is in the “pth” format. So, we developed a
script in which we first read the content of the weights file. Then we quantize the weights in the
same way we quantize the model using the Fxpmath library. The last step is to write the quantized
weights in a “pth” file then replace it with the original weights file so that the model reads the
quantized weights when it is run instead of the original weights.

4.4.3 Quantization Results

After quantizing the model and its weights, we had to verify that the Fixed-point
representation still gives us a small loss in accuracy. Also, we need to get the optimum bit width
and fractional length for a Fixed-point representation to use in the hardware. We will go with the
try-and-error method. To get a starting point, we looked at the data word which BRAM of the
FPGA can hold. We found that BRAM can have words with widths of 1, 2, 4, 9, 18, 36, and 72
bits [21]. So, we chose to start with 16 bits as a bit width for the Fixed-point representation then
we will decrease the bit width and fractional length till getting the optimum size for bit width and
fractional lengths.

Firstly, we ran the model only on 100 photos of the ImageNet validation set to know where
the breaking point is. The breaking point is the bit-width with fractional length in which the
accuracy has a big loss so we shouldn’t use these widths or any smaller bit width or fractional
length. The results of this trial are shown in Table 4.2.

Table 4.2 Quantization results on 100 Photos

Floating Point 32-bit Accuracy 74.00%

Bit Width Integer length Fractional Length Accuracy

From Table 4.2, we can notice that 16-bit and 15-bit Fixed-point representations have
acceptable accuracy concerning the original accuracy of the Floating-point 32-bits. Another
important conclusion from this result is that in 14-bit fixed-point representation when the fractional
length is 7 bits and when integer length is 5 bits, the accuracy decreased significantly making it
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clear that the minimum acceptable size for fractional length and integer length is 8 bits and 6 bits
respectively. So, we can guess that a 15-bit Fixed-point representation with an 8-bit fractional
length will be the most suitable and smallest representation for our design but we will try on a
bigger number of photos to be sure and to have the final accuracy of the quantized model and
weights.

In the second try, we will run the best-fixed point representation from the first try on 1000
photos from the ImageNet validation set and the results are shown in Table 4.3.

Table 4.3 Quantization results on 1000 Photos

Floating Point 32-bit Accuracy 70.10%

Bit Width Integer length Fractional Length Accuracy

From Table 4.3, we can get the same conclusion as before which is 16-bit and 15-bit Fixed
point is the most suitable for us and 15-bit is the smallest size we can get. We try again 14-bit to
make sure that it is the breaking point. The last try will run on the whole 50000 photos of the
ImageNet validation set on the quantized model and weights to decide finally which representation
to go with and the results are shown in Table 4.4.

Table 4.4 Quantization results on 50000 photos

Floating Point 32-bit Accuracy 69.362%

Bit Width Integer length Fractional Length Accuracy
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Finally, from Table 4.4, as we go down to 14 bit fixed-point, the accuracy dropped about
8% which is not acceptable. So, the 14-bit is considered the breakpoint. We will go with a 16-bit
or 15-bit fixed-point representation. If we need to decrease the data size to fit in the memory
resources, then a 15-bit representation is better. If memory is sufficient, the 16-bit will give higher
accuracy. In the two cases, the loss in accuracy doesn’t exceed 1% which is very acceptable and
the difference between these two cases is small.
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5 Chapter 5: RTL Design Methodology and Verification

5.1 Introduction

This chapter illustrates our hardware design approach for the ShuffleNet accelerator. The
architecture we propose here is used for the RTL design flow. First, we must define our target to
be achieved by the design approach we used, which will be evident in our choices in the
architecture design. We aim to achieve high throughput (real-time) with reasonable power
consumption. Also, we designed the architecture to work on real-time images, not only one. Now,
we can talk about the details of our design approach. It is based on the following:

Controller — Datapath architecture.
Dividing the architecture into three stages (3 pipeline stages on frames).
Designing a computation core for each type of convolution, pooling.... etc.
Pipelining computation cores to reduce the critical path delay.
Parallelism in filters, kernel, and channels in the computation cores (using adder trees).
Using an enhanced type of adders in the adder trees instead of two input adders.
Using DSP cores of the FPGA to perform multiplication operations in computation cores.
Weights and biases are stored in internal memories (ROM) on the FPGA.
Using cache memories between some layers to store feature maps (single port, dual port,
ping-pong).

. Using minimum area algorithm of memory IPs in Vivado design suite to reduce the number
of BRAMs.

11. Reusing of computation cores and memories.

12. Applying the effect of batch normalization without division units or any extra units by

changing the weights of convolution layers before batch normalization.
13. Distributed controllers instead of one big controller.
14. Using fixed-point operations and quantization.

CoNoO~wWNE

=
o

Through this chapter, we will explain each one of them in more detail and how they are applied in
the complete architecture.

Our proposed architecture based on the above design approach divides the layers of the
ShuffleNet CNN into 3 Groups. This allows the architecture to process three images
simultaneously; we have chosen three stages for the frame pipeline to compromise between
throughput and the number of memories needed to store weights, biases, and feature maps and
enhance BRAMs utilization. Also, the number of operations in each group is close to the others to
avoid overhead. As shown in Figure 5.1, Group 1 contains 3*3 convolution and max-pool layers,
Group 2 contains all ShuffleNet building block layers in the CNN, and Group 3 contains 1*1
convolution, average-pool, FC layers, and a classification unit.

Also, our proposed architecture contains distributed controllers to perform hierarchal
control for the accelerator; each stage of the three stages has its controllers and the master
controller (the accelerator controller) at the top level to supervise and control all other controllers.
Group 1 and Group 2 have sub-controllers for some blocks. This approach is better than using one
centralized controller as it makes designing and debugging the control part simple, easy, and
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specialized. The only drawback of this approach is managing the interaction between these
controllers, but in our architecture, most controllers interact with one controller (almost the
accelerator controller).

Our proposed architecture can deal with multiple images, not only one as we designed a
photo memory. It is a ping-pong memory to store the next image and allow the accelerator to read
the current image simultaneously with the writing operation. Moreover, the architecture has three
pipeline stages.

Finally, the design of the three groups (Controller-Datapath architecture), intermediate
memories between groups, and the accelerator controller is illustrated throughout the other sections
of this chapter. And at the last section, we show how our proposed architecture is functionally
verified on images from the ImageNet dataset and compare its accuracy with that of the software
model.
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Figure 5.1 CNN layers are divided into 3 Groups

5.2 Performing Batch Normalization on Software

ShuffleNet CNN includes batch normalization operation after some convolution layers,
especially after Group 3 convolution layers. The formula of the batch normalization is, as shown
in Figure 5.2. Thus, it is clear that batch normalization needs fixed-point division, which is
complex in hardware implementation. We tried to find an alternative approach for batch
normalization. So, the optimization we explain in this section is not to help the design meet timing;
it is a way of simply implementing the batch normalization without any division unit or extra
hardware. Our proposed optimization for the batch normalization is as follows; we can apply the
same effect of the batch normalization by updating the weights and biases of the convolution
before it in the model with batch normalization parameters, as shown in Figure 5.3, and this
optimization is done by software. Thus, this optimization will avoid implementing complex
hardware for division or any extra hardware for batch normalization. Moreover, it will save power
and reduce the number of calculations as updating weights is only done once in software.

45



Chapter 5: RTL Design Methodology and Verification

Y —mean

Figure 5.2 Before BN optimization

X

wX — mean

7=yt
Warse TP

B

new weight =

_owyX mean Xy
 Var+e Var+e

wy
VvVar + €

, mean X y
new bias = ——+f

VVar + €

Figure 5.3 New weights and bias after implementing batch normalization

5.3 Group 1 Design

As shown in the introduction group 1 take care of the 3x3 Convolution and max pooling in
the start of the shuffle model. So Groupl contains of input memory (photo memory),
3x3convolution block, max pooling block, output memory (max pool memory) and the group 1
controller and this is the hierarchical of the design for group 1 as shown in Figure 5.4.

=  Memories
e Data memories
¢ Photo memory
¢ Max pooling memory
e Filter memories
¢ Weights memory
¢ Bias memory
e Computation Cores
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¢ 3x3 convolution & RELU Core
¢ Max Pooling Core
e FIFOs
¢ 3x3 convolution FIFOs
¢ Max pooling FIFOs
e Controllers
¢ FIFO controllers
¢ Group 1 controller

And is this section we will discuss each component in detail.

FIFO 1 Controller Group 1 Controller
| v[ W
15
J,—» FIFO ——
15 15
> Bng Filter Weights Memory HFIFO 2 Controller
15x9l ...... 4 . l15x9 l 3
3 15 15x9 15 15X2
h | —
15 |Ch 2 Memory 1= 15 . . Max Poolin
Input data (Ping Pang) FIFO 3x3 Convolution and | ,, FIFO 24 Max Poolin "™ Memory 9 "™
RelU ) x4 | ¢ ) Dual Port )
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l 3 > ——>
15 15x9 15 15X 2
SER . S
15 _Ich 3 Memory - -
R 15 15
(Ping Pong) [ "] FIFO |— Filter Bias Memory

Figure 5.4 Groupl Block diagram

5.3.1 Memories

In the accelerator is two types of memory, Data memories and weights memories, the data
memories are used to story the data and the input and output of each convolution block. The
weights memories are ROMs used to store the filters weights for all the convolution blocks inside
the model.

Data Memories

5.3.1.1 Photo Memory

The photo memory works as the input memory of the accelerator and the interface between
the accelerator and the system that will contain the accelerator.
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Figure 5.5 Photo memory block diagram

Since the input photo size expected by the model is 224*224*3 where 3 is humber of
channels as photos in RGB has 3 channels for the red, green and blue so we decided to partition
the memory into 3 instance one for each input channel and to achieve high speed and the pipeline
of the model we should manage to read new photo while group 1 processing the photo so we use
a ping-pong structure for the photo memory as shown in the Figure 5.5.

5.3.1.2 Max Pooling Memory

This memory takes the output of the Groupl (Max Pooling Block) to be ready to be
processed by Group2. We have full parallelism in filters in 3x3 core and max pooling core so the
max pool is generating 24 outputs at the same time, one for each output channel, (number of the
output channels from Groupl is 24) so we need to store them at the same time so we must partition
the memory to 24 instance each one has one of the channels.
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FILTER MEMORIES

5.3.1.3 Weights Memory

We need to store the filters of the 3x3 convolution into ROMs so we can read them to
process the data, max pooling has no weights, so the organization of the memory dependent on the
parallelism used in the computation core (how many weights must be read each clock cycle). and

the number of weights per filter (to get better memory utilization possible).

As Groupl parallelism is 24 filter, 3 in the window and 3 parallel channels this mean we
need 3*3*24 = 216 weight each clock cycle this mean we must partition the memory to 216
instances but if we look at the filter size is 3x3x3 this mean that each instance will have only 3
weights stored (very bad utilization) so we implement it my LUTs and its output goes to mux as

shown in Figure 5.6.
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Figure 5.6 3x3 Filter memory implementation
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5.3.1.4 Bias Memory

As known each filter has a bias weight this mean we have 24 bias that should be read in
parallel, so we also implement this memory as LUTs and get the output to the 3x3 core as shown
in Figure 5.7.

bias13 €— — bias1
bias14 €—— —> bias?
bias15 €—— —> bias3
bias16 €— —> bias4
bias17 €«—— —> biash
bias18 €— Conv 3*3 —> biash
bias19 €«—— Bias ROM — bias7
bias20 €—— —> bias8
bias21 €— — bias9
bias2?2 €— —> bias10
bias23 €«—— —> bias11
bias24 €— — bias12

Figure 5.7 3x3 Conv Bias memory

5.3.2 Computation Cores

The 3x3 convolution and the max pooling are the two computing cores for this group. We
will go through how quantization is used to have a 15-bit fixed point output from the core without
overflow in each of them, as well as the parallelism used in filters, channels, and window, the
pipelining registers used to break the long timing path.

5.3.2.1 3x3 Convolution Core
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Figure 5.8 3x3 Conv Computation core
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Parallelism

Each filter has three channels each one contains 9 parameters, and the number of filters is
24 filters, so to speed the operation we used full parallelism if filter this mean that the previous
core is repeated 24 times. And us use 3 parallel in channel and 3 parallel in window as summarized
in Table 5.1. Using this parallelism, we need to accumulate 3 times to get one pixel in the output
(each output takes 3 clock cycle to be calculated) as shown in Figure 5.8.

Table 5.1 Parallelism in the 3x3 Convolution

Parallelism in Filters Parallelism in Channels Parallelism in window
24 3 3
Inputs

The inputs to the 3x3 convolution core are as follows:

1. Data: 9 parallel inputs coming from the 3 FIFOs (1 FIFO for each channel).
2. Weights: (24*) 9 parallel inputs from filter memory.
3. Bias: (24*) 1 input from bias memory.

Output

The output of the 3x3 convolution core is 24 output every 3 clock cycles. The output goes
to 24 FIFOs the get the data ready to the Max Pooling core. We don’t store the output in
intermediate memory to use less memory and to allow both cores to work in the same time.

Methodology

The input 9-elements (3 from each input channels) from three FIFOs and the same data is
processed in the 24 core to apply to them the all 24 filter in parallel. The first step in convolution
operation is multiplying each input to the corresponding pixel in the filter by using DSPs, then
adding the nine multiplayer outputs using an adder tree, adding each three of outputs using the
Adder3 block. And takes the next 9 inputs and so one until we accumulate 3 times after which
adds the bias to the addition's outcome. After the multipliers, the pipelining registers are employed
to reduce the timing path.

To avoid overflow after each multiplier we double the number of bits and after each 3-
input adders we increase the number of bits by 2 and make sure that the accumulation register had
enough bits to avoid overflow, the number of total added bit due addition is log2(M), where M is
number of addition operation then a RELU step is done to get the output to be positive only then
we add a quantized to get the output of the core to be 15 bits and if the number is bigger than the
maximum number that should be stored in 15 bit we output the maximum number that can be
represented in 15 bits.

The accumulator register should be reset after each calculated output to reset the
accumulation process. But instead of used a reset signal we added a MUX to choose adding the
stored value or add a zero as another way of resetting the register. And this allowed us to save the
wasted clock cycle in resetting the register.
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3-Input Adder:

In our design we use 3-input adder instead of normal 2-input adder to implement out adder
trees. That have a lot of advantages.

1) The time of one 3-input adder is less than two 2-input adders.
2) The area of one 3-input adder is better than two 2-input adders.
3) Use less registers in the tree.

The 3-input adder is stage of full adders (FA) but instead of the carry input we use the third
input. This allows them to work in parallel ant the FAs generate 2 victors the SUM vector and the
CARRY vector this to vectors are added using 2-input adder.

5.3.2.2 Max Pooling Core
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Figure 5.9 Maxpooling computation core
Parallelism

Since the input is 24 channels and the average pooling window is 9 elements, we used a
full parallel in channels and window because the output of the 3x3 convolution is 24 channels in
parallel as summarized in Table 5.2 and the max pool work the output of the 3x3 conv in the same
time the output is generated.

Table 5.2 Parallelism in the Maxpooling core

Parallelism in Filters Parallelism in Channels Parallelism in window
NA 24 9

Input
The inputs to the Max Pooling core are (24*) 9 parallel input data coming from the 24 FIFOs.

52



Chapter 5: RTL Design Methodology and Verification

Output

The output of the Max Pooling core is (24*) 1 output to be written in the max pool memory.

Methodology

This core takes 3x3 window from the output of the 3x3 convolution core and outputs the
maximum of them. Using a tree of comparators. The sizes don’t change along the tree because
comparing does not increase the size. We break the critical path with registers after the second
stage of comparing as shown in Figure 5.9.

5.3.3 FIFOs

In this section will discuss the FIFOs used in the group and why we need them. As we
know that in convolution process, we take a window from the feature map and multiply it by the
filter and add all the result to get one output pixel and the window keep moving until we scan the
hole feature map. During this operation we need to read from the feature map memory from
different location with complex equation and between two different windows from the input there
are overlapping in data that mean we will have to read the data more than one which will waste
and consume time and power.

‘4 ™ 4
. J E
< W >
-
-l
-+ -
2W+3

Figure 5.10 FIFO mechanism

So how to solve or optimize this operation. We use FIFO with the size of (2W+3), where
W is feature map number of columns, the FIFO is simply a shift register and we read the data from
the feature map 1 by 1 and store it in the FIFO as shown in Figure 5.10. By the time you fill the
FIFO with data then the window will be in fixed place and each new data loaded the new window
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will be in the same place by using FIFOs that allowed us to read the content of the memory one
by one in order without repeating any read operation instead of using a complex equation and
complex logic to access the memory by the right address.

FIFOs in Groupl:

e For 3x3 convolution: we use 3 FIFOs of size (2*226+3) as the size of the input photo is 224
and we have 2 bits for the padding. And 3 FIFOs to store each input channel in a separate
FIFO so we can use full parallelism in channels.

e For the Max Pooling: we use a 24 FIFOs of size (2*114+3) the store the output of the 3x3
conv block and get each window ready for the max pooling core to process it without store to
memory and then read from it again.

FIFO

A 4

FIFO

Memory FIFO (full 24 parallel (full 24 parallel memory

3 instances channel) channel) . 24 instances

FIFO FIFO

Photo 3*3 Convolution 2'4 Max pooling 2.4 Max pooling

i

Figure 5.11 FIFOs for the 3x3 Conv and Maxpooling cores
5.3.4 Controllers

In this section will discuss the controllers implemented in Groupl and explain each one
role in the Groupl. The group has three controllers.

1) 3x3 convolution FIFOs controller
2) Max Pooling FIFOs controller
3) Groupl Controller

The 3x3 convolution FIFOs controller and the Max Pooling FIFOs controller are almost
having the same operation and functions so will discuss only one of them.

5.3.4.1 3x3 Convolution FIFOs Controller

The main purpose of this controller is to manage the storage data in the FIFO to solve the
padding problem. But why is padding a problem and how the controller solves it.
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Figure 5.12 Padding a feature map

To pad a channel of the input you need to add zeros around the feature map as shown in
Figure 5.12. A way to do that in hardware is to store zeros in certain position in the data memory
and store your data around those zeros in calculated order so when you read the data you read it in
the right order with the padded zeros. But anyone can see how much this method waste and how
much complexity it adds to the design. Because you need to store the zeros in no order and then
read them again. So, haw the FIFO controller manage to solve that padding problem.

shift_and_load reset
( * )
Data in 15 15 2(w+2)+ 3
: : 15-bit
oro 15 Shift Register

| | R

Figure 5.13 FIFO architecture

By adding a mux in the input of the FIFO to choose from load a data from the memory or
to load a zero as shown in Figure 5.13. And simply the controller job is to let the FIFO load zeros
in certain positions passed on counters in the controller to keep tracking of the data. The Controller
is implemented as a finite state machine with four states as shown in Figure 5.14.

1) Idle

2) Load row

3) Load window
4) Process
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Figure 5.14 State diagram of the FIFO controller FSM

Idle: in that state we reset the FIFOs content and all signals are set to them default values waiting
for start signal so start the reading process. Important note that in that state effectively we stored
the first row of any padded feature map is it all zeros.

Load Row: in that state we load a row of data which is zero then W data then zero (where W is
feature map size). After loading the row of data, the counter reaches its maximum and then go to
load window state.

Load Window: if you notch that after loading a row of data in order to get a valid window for
processing, we need to load 3 data before starting processing and this is the job of that state. It
loads a zero for padding thin loads 2 data from memory and then we go to the process state.

Process: in that state we give signals to the computation core that there is a valid window of data
which can be processed. And keep loading data to get the new window and so on until we process
all possible windows in that row. From this point we customize the process according to some
factors.

e |f the convolution was stride 2 so we need to skip a row, we go to the load row state to
load a row without processing it.

e |f the convolution is stride 1, we go to load window then process and so on until we reach
the last row.

e |If we at the last row, we go to the idle state and end the operation.
5.3.4.2 Groupl Controller

This controller purpose is to synchronize all the blocks operations together. To make sure
that the data is read from the memory is correct and at the correct clock cycle to be stored in the
FIFOs. And to give the starting signals to the FIFOs and the resets of the registers in the
computation cores. And the addresses for the Filter memory.

This controller is very simple that it is not even a state machine it uses only counters and
logic based on the input signals from the FIFOs controllers.
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5.4 Group 2 Design

The building block of Group 2 is the Shuffle unit which has two forms, the stride 1 block
and the stride 2 block as discussed before in chapter 3. Group 2 consists of a sequence of 16 Shuffle
unit blocks split into 3 stages as shown in Figure 5.15. Each stage starts with one stride 2 block
and then continues with stride 1 blocks. The input to Group 2 is a 56*56*24 feature map coming
from the Maxpool memory. Each stride 2 block decreases the width of the feature map to its half
and increases the number of channels till it reaches 7*7*464 at the Group 2 output which is stored

in the Extra memory.

| Photo memory |
224%*224*3

3x3 Conv (S=2)

112*112*24

Max pooling

56%56%24

Shuffle Unit (S=2)

28%28*116

Shuffle Unit (S=1)

28%28*116

Shuffle Unit (S=2)

14*14%232

v

T dnoup

sdoo| €

Shuffle Unit (S=1)

sdoo|
z dnoug

14*14%232

Accelerator
Controller

Y
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Shuffle Unit (S=1)

14*14%232

Shuffle Unit (S=2)
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Shuffle Unit (S=1)

7*7*464

7*7%1024
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1*1*1024

Fully connected
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€ dnouip

Top-1 cldss index
Figure 5.15 Group 2 consists of a sequence of 16 Shuffle unit

In stride 2 block, we have 5 convolutions to be done, but since the 1by1 convolution and
the 3by3 DW convolution are done simultaneously in an alternating way, we can use only 2
convolution cores, one for the 1by1 convolution and the other for the 3by3 DW convolution and
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reuse them. In stride 1 block, we have 3 convolutions to be done, but since the 1byl convolution
and the 3by3 DW convolution are done in an alternating way as shown in Figure 5.16, we can use
only 2 convolution cores, one for the 1by1 convolution and the other for the 3by3 DW convolution
and reuse them.

56"56*24 2828116

565624 5675624
[24 (3°341) filter] | g‘i"z‘;"”" 1x1 Conv | [58 (11724) flters] 2872858 282858
(58 (171758) filters]
28+28*24 5675658
28*28*58
58 (1+1°24) fiters] | 1x1 Conv 33 g‘i‘g"”" [58 (3°3*1) filter]
3x3 (2‘3’;():0"" (58 (3*3*1) filter]
28728758 2872858
28728758
1x1 Conv  |[58 (171758) filters]
[58 (1*1°58) filters]

2872858 28728758 28*28*58 28*28*58

Channel shuffle

Channel shuffle

28*28*116 287287116
Figure 5.16 Stride 2 and stride 1 blocks

Since the stride 1 and stride 2 blocks are mutually exclusive and never done in parallel,
then we can use the same 2 convolution blocks in the whole architecture and all the stages can
share the same 2 convolution cores.

The hierarchy of Group 2 consists of computational cores, feature map memories, filter
and bias memories, controllers and other special blocks like Shuffling Unit and FIFO Registers.
This hierarchical system can be structured like follows:

(1) 3by3 DWCconv block
a. 3by3 DWconv Computational core
b. 3by3 DWeconv filter memories
c. 3by3 DWconv bias memories
d. FIFO and FIFO Controller
e. 3by3 DWconv Controller
(2) 1byl Conv block
a. 1byl Conv Computational core
b. 1byl Conv filter memories
c. 1byl Conv bias memories
d. 1byl Conv Controller
(3) Shuffling Unit
(4) Feature Map Memories (Shuffle, X_Left, X_Right and Y memories)
(5) Group 2 Controller

Throughout this section we will explain how these blocks are designed and assembled together.
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5.4.1 Computational Cores

This group has two computational cores which are the 3by3 DW convolution and the 1by1
Convolution. In each of them we will discuss the parallelism used in filters, channels and window,
The pipelining registers used to break the long timing path and how quantization is done to have a
15-bit fixed point output from the core without overflow.

5.4.1.1 3by3 DW Convolution
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Figure 5.17 3by3 DWconv core
Parallelism

Since each filter has one channel consisting of 9 elements which is a small number, then
convolution is performed to the whole window in parallel. And to speed up the convolution
operation, 58 filters are executed in parallel for a window of parameters as summarized in Table
5.3 then in the next cycle the next 58 filters are convolved and so on till the filters of convolution
are done.

Table 5.3 Parallelism in the 3by3 DWconv core

Parallelism in Filters Parallelism in Channels Parallelism in window
58 NA 9
Inputs

The inputs to the 3by3 DW convolution core are as follows:

4. Data: 9 parallel inputs coming from the FIFO registers.
5. Weights: (58*) 9 parallel inputs from filter memory.
6. Bias: (58*) 1 input from bias memory.
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Output

The output of the 3by3 DW convolution core is (58*) 1 output to be written in a feature map
memory.

Methodology

The input 9-elements window from the FIFO enters this layer and the operation is held by
convolving it with 58 filters in parallel. The convolution operation is executed by multiplying each
parameter pixel to the corresponding pixel in the filter by using DSPs, then adding the 9 products
together using an adder tree, where the Adder3 block is used to add each 3 products. Then adding
the bias to the result of addition as shown in Figure 5.17. The pipelining registers are used after
the multipliers to break the long timing path and to make sure the inputs to the adder tree are
constant when not using them so as to save dynamic power.

The multipliers double the number of bits from 15 to 30 then the 7 LSBs are thrown away
as quantization noise, the 3-input adder increments the number of bits by 2 and the 2-input adder
increments the number of bits by 1. Thus, the output of convolution is 27-bits not 15-bits and
overflow may occur. To make sure the output is the correct 15-bits without overflow, a quantizer
is placed at the end of each computation core to compare the output of convolution to the maximum
and minimum possible values of the 15-bit fixed point output. The quantizer consists of two
multiplexers, one for maximum checking and the other for minimum checking. Firstly, we check
for the minimum value using a comparator and if the number is larger than the minimum value,
the number is passed as it is. Otherwise, the minimum value is passed (saturation case to avoid
overflow). Secondly, we check for the maximum value using a simple logic circuit instead of a
comparator and if the number is smaller than the maximum value, the number is passed as it is.
Otherwise, the maximum value is passed (saturation case to avoid overflow).

5.4.1.2 1byl Convolution
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Figure 5.18 1byl Conv core
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Parallelism

Each filter has multiple channels that can be 24, 58, 116 or 232 channels depending on the
layer and each channel has one element only. Thus, to speed up the convolution operation, 58
filters are executed in parallel for 29 channels of each filter as summarized in Table 5.4 then in the
next cycle the next 29 channels are convolved and so on till all the channels are done. That’s why
an accumulator is placed to sum up all the products of all channels.

Table 5.4 Parallelism in the 1byl Conv core

Parallelism in Filters Parallelism in Channels Parallelism in window
58 29 NA
Inputs

The inputs to the 1by1 Convolution core are as follows:

1. Data: 29 parallel inputs coming from a feature map memory.
2. Weights: (58*) 29 parallel inputs from filter memory.

3. Bias: (58*) 1 input from bias memory.

7. Control signals like the reset and add_zero signals.

Output
The output of the 1byl Convolution core is (58*) 1 output to be written in a feature map memory.

Methodology

The input 29 elements from the feature map memory enters this layer and the operation is
held by convolving it with 58 filters in parallel. The convolution operation is executed by
multiplying each parameter pixel to the corresponding pixel in the filter by using DSPs, then
adding the 29 products together using an adder tree, where the Adder3 block is used to add each 3
products. 27 products are added in a 3-level adder tree then the remaining two products are added
using an extra 3-input adder level. Then accumulating the result to the result of the next 29 channels
until all the channels are convolved. The accumulator loops a maximum of 7 times, this maximum
happens when the filter has 232 channels. In the feedback of the accumulator, we either add the
accumulated value or add zero using a MUX. This is used to add zero instead of accumulation in
the beginning of each pixel to save the clock cycle wasted to reset the accumulator register as
shown in Figure 5.18.

After the accumulation of all channels’ convolution, the bias is added to the result. After
any 1by1 convolution in this architecture there is a ReLU that rectifies the output to only positive
values and force the negative values to be zero. The ReLU checks if the number is negative using
the MSB of the convolution output instead of using comparators which leads to high power
consumption. The pipelining registers are used after the multipliers to break the long timing path
and to make sure the inputs to the adder tree are constant when not using them so as to save
dynamic power.

The multipliers double the number of bits from 15 to 30 then the 7 LSBs are thrown away
as guantization noise, the 3-input adder increments the number of bits by 2, the 2-input adder
increments the number of bits by 1 and the accumulator increments the number of bits by
[log, 7] = 3. Thus, the output of convolution is 34-bits not 15-bits and overflow may occur. To
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make sure the output is the correct 15-bits without overflow, a quantizer is placed at the end of
each computation core to compare the output of convolution after the ReLU to the maximum
possible value of the 15-bit fixed point output. The quantizer consists of a multiplexer and a simple
logic for maximum checking. We check for the maximum value using a simple logic circuit instead
of a comparator to save power and area. If the number is smaller than the maximum value, the
number is passed as it is. Otherwise, the maximum value is passed (saturation case to avoid
overflow). Checking for the minimum case is not required here as the ReL U output will never be
a negative value.

5.4.2 Filter and Bias Memories

ShuffleNet V2 holds about 2.3M parameters, which are the architecture’s weights and
biases. The relatively low parameters make it feasible to implement the architecture on FPGAs for
acceleration approach. However, this architecture deployment requires more attention to weights
and biases rather than all other building blocks, as they consume a huge number of resources and,
of course, they affect speed directly. Usually, fixed parameters are stored into Read Only
Memories (ROMs), with a controller to take over fetches, flags and more.

Some FPGAs have off-chip ROMs, which have great utility in account of high latency,
however, ShuffleNet implementation targets speed as its first priority. So, off-chip memories
would not be an option. We can put the parameters on one of two types of memories on the FPGA.

First type of memories is the block RAM. FPGAs normally have an on-chip BRAM matrix,
which could be configured as FIFO, RAM or ROM. Targeted device (Virtex-7) contains a sum of
2940 BRAM 18Kb instances. BRAMSs can have dual ports for the same instances, allowing
performance of half the latency. Second type of memories is the distributed ROM (LUT), which
can be configured to hold design parameters. Normally, distributed ROMs grant more speed than
BRAMs, which makes them a good approach to ShuffleNet implementation.

In this section, the weight and bias memories of both the 1by1 convolution and 3by3 DW
convolution will be explained including their organization, number of memory instances and
utilization of BRAMs or LUTSs used.

5.4.2.1 1byl Conv Weights Memories

As we have a single computation core for the 1by1 Convolution used by all layers in group
2, so it’s better to have one memory to hold all the 1by1 weights. This will save a lot of BRAMs.
The number of instances in the memory is indicated by the parallelism used in the 1lbyl
convolution core, which is 58 in filters and 29 in channels, so we need 29*58 weights
simultaneously. We will use 29*29 = 841 instances of dual port BRAM memories to provide the
29*58 parallel weights. Each instance is 880 weights as explained in Table 5.5 stored in 0.5
BRAM, so total BRAM s for the 1byl weights is 420.5 BRAMs.

Number of weights per memory instance

Table 5.5 Number of weights per memory instance of the 1byl Conv weights memory

18t & 2" 1by1 Conv layer 2*(2 weights)
3" to 9" 1by1 Conv layer 7*(4 weights)
10" to 26" 1by1 Conv layer 17*(16 weights)
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27" to 35" 1by1 Conv layer

9*(64 weights)

Total weights per instance

880 weights

Filter memories organization

One approach to put weights in the memory instances is to put all weights of the first
convolution filter then the second filter in the row above and so on as shown in Figure 5.19, but
this approach is not practical as it will require multiplexers to route the correct 29 weights to the
computation core which has a 29 parallelism in channels. Thus, another approach will be used to
organize the weights in a way that will not require any extra hardware with the memory.

convolution 5 Filters

convolution 4 Filters

convolution 2 Filters

............8§g.

1 2 3 840 641
Figure 5.19 First approach of the filter memories organization for the 1byl Conv

To make all the weight inputs of all cores connected to same ports of memories all the time,
each filter will have its channels as a multiple of 29, except for the first two 1byl convolution
layers that have 24 channels only will be extended with zeros to be 29 channels. As the filter is
calculated on the same core, so channels of it must come to the same inputs of the core. Hence,
each 29 channels of the filter are put above each other on the same 29 memory instances to be
routed directly to the computation core just by incrementing the filters memory address counter.
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Figure 5.20 Second approach of the filter memories organization for the 1byl Conv

Figure 5.20 shows the organization of the 1by1 filters memories. Assuming each filter has
3*29=87 channels placed above each other, each filter will be placed in 3 rows, where each row
carries 29 filters. Using the 2 ports of the memory we can output all the 58 filters, 29 channels per
filter, where the offset between the filter memory address of port 1 and port2 is obviously the
number of channels as a multiple of 29, which means that the beginning of filter (x+29) is above
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the beginning of filter (x) by the number of channels. So, accessing the filter memory is straight
forward without any means of multiplexing.

5.4.2.2 3by3 DWconv Weights Memories

As we have a single computation core for the 3by3 DW Convolution used by all layers in
group 2, so it’s better to have one memory to hold all the 3by3 weights. This will save a lot of
BRAMs. The number of instances in the memory is indicated by the parallelism used in the 3by3
convolution core, which is 58 in filters and 9 in window, so we need 9*58 weights simultaneously.
We will use 9*58 = 522 instances of LUT memories to provide the 9*58 parallel weights. We will
use LUTs instead of dual port BRAM as each instance is 43 weights only that will give a very poor
utilization of the BRAMSs as explained in Table 5.6. This 43 weights instance will be stored in 15
LUTSs, so total LUTs used for the 3by3 DWconv weights is 7830 LUTSs.

Number of weights per memory instance

Table 5.6 Number of weights per memory instance of the 3by3 DWconv weights memory

1% to 5™ 3by3 DWconv layer 5*(1 weight)
6" to 14" 3by3 DWconv layer 9*(2 weights)
15" to 19" 3by3 DWconv layer 5*(4 weights)
Total weights per instance 43 weights

Filter memories organization

One approach to put weights in the memory instances is to put all weights of the first
convolution filter then the second filter in the row above and so on as shown in Figure 5.21, but
this approach is not practical as it will require multiplexers to route the correct 9 weights to the
computation core which has a 9 parallelism in window. Thus, another approach will be used to
organize the weights in a way that will not require any extra hardware with the memory.

N OF R F O NN N

convolution 5 Filters

convolution 4 Filters

1 2 3 feiiernees °2 521 522
Figure 5.21 First approach of the filter memories organization for the 3by3 DWconv

To make all the weight inputs of all cores connected to same ports of memories all the time,
each filter will have its 9 weights put in 9 instances of memory. As the filter is calculated on the
same core, so all its weights must come to the same inputs of the core. Hence, after finishing each
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58 filters in parallel we just increment the filters memory address counter to move forward to the
next 58 filters.

1 2 Filter 117 9 1 2 Filter 118 9 | ssssmsnmnn 1 2 Filter 174 9
i 5 Q ilter60 | 9 | sssmssmnun i
Port 1 1 2 Filter 59 9 |1 2 Filter 60 9 1 2 Filter 116 | 9
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Figure 5.22 Second approach of the filter memories organization for the 3by3 DWconv

Figure 5.22 shows the organization of the 3by3 DWconv filter memories. Each filter has a
9 elements window, where each row carries 58 filters. Using only a single port of the memory we
can output all the 58 filters, 9 weights per filter, where the filter (x+58) is put above filter x on the
same 9 instances. So, accessing the filter memory is straight forward without any means of
multiplexing.

5.4.2.3 1byl Conv Bias Memories

Since we have 58 parallel filters for the 1by1 Conv core, so we need the memory to provide
58 biases simultaneously. We will not just connect the biases to VDD and GND as we have a huge
number of biases, so it’s better to store them in LUTs. We will use 58 instances of LUT memories
to provide the 58 parallel biases. We will use LUTs instead of BRAMSs as each instance is 79 biases
only that will give a very poor utilization of the BRAMs as explained in Table 5.7. This 79 biases
instance will be stored in 25 LUTS, so total LUTs used for the 1by1 Conv weights is 1450 LUTSs.

Number of biases per memory instance

Table 5.7 Number of biases per memory instance of the 1byl Conv bias memory

1% & 9" 1by1 Conv layer 9*(1 biases)
10" to 26" 1by1 Conv layer 17*(2 biases)
27" to 35" 1by1 Conv layer 9*(4 biases)
Total bias per instance 79 biases

Bias memories organization

To make all the bias inputs of all cores connected to same ports of memories all the time,
the 58 memory instances are connected to the 58 bias inputs of the 58 parallel 1by1 cores. Hence,
after finishing each 58 filters in parallel we just increment the bias memory address counter to get
the next 58 biases.

5.4.2.4 3by3 DWconv Bias Memories

Since we have 58 parallel filters for the 3by3 DWconv core, so we need the memory to
provide 58 biases simultaneously. We will not just connect the biases to VDD and GND as we
have a huge number of biases, so it’s better to store them in LUTs. We will use 58 instances of
LUT memories to provide the 58 parallel biases. We will use LUTSs instead of BRAMSs as each
instance is 43 biases only that will give a very poor utilization of the BRAMs as explained in Table
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5.8. These 43 biases instance will be stored in 15 LUTS, so total LUTSs used for the 3by3 DWconv
weights is 870 LUTSs.

Number of biases per memory instance

Table 5.8 Number of biases per memory instance of the 3by3 DWconv bias memory

1% 3by3 DWconv layer 1*(1 bias)
2" to 5" 3by3 DWconv layer 4*(1 biases)
6" to 14" 3by3 DWconv layer 9*(2 biases)
15" to 19" 3by3 DWconv layer 5*(4 biases)
Total weights per instance 43 biases

Bias memories organization

To make all the bias inputs of all cores connected to same ports of memories all the time,
the 58 memory instances are connected to the 58 bias inputs of the 58 parallel 3by3 DWconv cores.
Hence, after finishing each 58 filters in parallel we just increment the bias memory address counter
to get the next 58 biases as shown in Figure 5.23.
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Figure 5.23 Bias memory organization

5.4.3 Feature Map Memories

Each layer has output feature maps that have to be stored in order to be passed to the next
layer, storing can be done in memory or cache using different resources in FPGA. The number of
words of output feature maps of the first 1byl Conv layer is 56x56x58=181,888 words, so 181,888
flops are needed in order to store these feature maps in a cache using flip flops which is a massive
number for storing only one layer so this implementation can't be used. But if the output feature
maps of 1byl Conv layer gets stored in memories using BRAMSs, about 100 BRAMs will be
needed which is considered acceptable utilization of resources, but by calculating the total number
of feature maps that need to be stored, a very huge number of BRAMSs will be needed, in addition
to that, BRAMSs has a queuing problem as it’s needed to store multiple feature maps in the same
clock cycle while BRAMs can’t store more than 2 inputs in one clock cycle, so this implementation
can’t be used either.
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The used implementation is a modification of the previous implementation using BRAMs
to avoid the problems caused, 4 shared memories are used for all layers so that they can store and
write from the same memory, and they are 4 to avoid the conflict between storing and reading in
the same memory. Another modification to solve the queuing problem is using BRAM memories
of multiple instances, and as feature maps consist of multiple channels so elements of each channel
can be stored independently in the same clock cycle in different BRAM. So, this modification
solved the queuing problem and allowed the BRAMSs to be used as storage for feature maps
between layers.

5.4.3.1 Reading and Writing Mechanisms

To determine the FM memory organization, we must study writing and reading
mechanisms of 3*3 DW conv and 1*1 conv. Let’s assume we have a 2*2*116 FM to clarify the
writing and reading mechanisms.

3by3 DWconv reading mechanism

The 3by3 DWconv has a parallelism of 58 filters, so it will read 58 channels from the first
pixel in the FM, then the 58 channels from the second pixel in the FM and so on till the fourth
pixel. After reading from memory 58 input channels of all pixels, start reading the next 58 input
channels as shown in Figure 5.24, where each color represents a pixel.
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Figure 5.24 3by3 DWconv reading mechanism

1by1l Conv writing mechanism

The 1by1 Conv has a parallelism of 58 filters, so it will write 58 channels of the first pixel
in the FM, then the 58 channels of the second pixel in the FM and so on till the fourth pixel. After
writing in memory 58 channels of all pixels, start writing the next 58 channels as shown in Figure
5.25. This means that 1by1 writing mechanism is compatible with the 3by3 reading mechanism.
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Figure 5.25 1byl Conv writing mechanism

1by1 Conv reading mechanism

The 1by1 Conv has a parallelism of 29 channels, so it will read the first 29 channels from
the first pixel in the FM, then the next 29 channels from the same pixel in the FM and so on till
the fourth 29 channels from the same pixel. After reading from memory all channels (29 by 29) of
the same pixel, start reading the next pixel in the same way as shown in Figure 5.26, where each
color represents a pixel.
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Figure 5.26 1byl Conv reading mechanism
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3by3 DWconv writing mechanism

The 3by3 Conv has a parallelism of 58 filters, so it will write 58 channels of the first pixel
in the FM, then the 58 channels of the second pixel in the FM and so on till the fourth pixel. After
writing in memory 58 channels of all pixels, start writing the next 58 channels in the same way as
shown in Figure 5.27, where each color represents a pixel. This means that 3by3 writing
mechanism is not compatible with the 1by1 reading mechanism.
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Figure 5.27 3by3 DWconv writing mechanism

5.4.3.2 Feature Map Organization in Memories

As we saw, all writing and reading mechanisms are the same except for the 1byl Conv
reading mechanism. Also, At the beginning of each stride 2 layer, the 1byl Conv and the 3by3
DWconv will read from the same memory. Then organization in this memory must be suitable for
both types of reading mechanisms. To do this we will follow one of two possible approaches.

First approach of memory organization

We will make organization in memory compatible with most mechanisms and make the
1byl conv reading counter jumps to get the correct channels. But this approach has many
drawbacks as follows:

e Jumping is very hard as every jJump depends on feature map size and channels.

e The counter is initialized to different values after every pixel. Also, these different values
depend on feature map size and number of channels.

e Maxpool memory is organized as all channels of same pixel because Maxpooling of
group 1 is writing like this.

e Extra memory must be organized as all channels of same pixel because last 1byl Conv of
group 3 is reading like this.
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Second approach of memory organization

Since the first approach is hard to implement and has many drawbacks, we will follow this
second approach, which is making the organization in memory compatible with the 1byl Conv
reading mechanism, where all channels of each pixel are placed above each other, then the
channels of the next pixel and so on. Thus, the 3by3 DWconv reading and writing mechanisms
and the 1by1 Conv writing mechanism will be the same by making the counter jumps to get the
correct channels as shown in Figure 5.28. The counter jumps by the number of channels each time
and initialized to half the number of channels.

88 | 89 116
60 | 61 | s s e mmumuun 8

3 31| ssswmmmnnn 3)
] 2 29
88 | 89 116

60 61 o E oW N NN 87
(30 | 31 sxsxmwnnnn | 58]

| 1 2 29|
88 | 89 116
60 | 61 sssnmmnnns | 87
(30 | 31 T T 53]
| 1 2 29)
88 | 89 116

60 61 " " " EEEEE NN 87
[30 31 " e E N NN 58]

1 2 29

1 2 ISQUIOIIO?SI 29
Figure 5.28 Second approach of memory organization

5.4.3.3 Technicalities of the Feature Map Memories

The intermediate memories between the different layers of convolution are only 4
memories named X_Left, X_Right, Y and Shuffle memories connected to the cores as shown in
Figure 5.29.

| 3*3DWeonv | | 1*1Conv |
| 1"Comv | [ 33DWconv |
| 1*1cConv |
Sh1
[ Shuffle unt_]

!

Figure 5.29 The intermediate feature map memories in Group 2
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X Left Memory

e 29 instances of 784 words (0.5 BRAM).
e Write in it: 3by3 DWconv core.
e Read from it: 1byl Conv core.

X Right Memory

e 29 instances of 1568 words (1 BRAM).
e Write in it: 3by3 DWconv core.
e Read from it: 1by1 Conv core.

Y Memory

e 29 instances of 6272 words (3.5 BRAM).
e Write in it: 1by1 Conv core.
e Read from it: 3by3 DWconv core.

Shuffle Memory

e 58 instances of 1568 words (1 BRAM).
e Writein it: 1byl Conv core.
e Read from it: 1byl Conv and 3by3 DWconv cores across the Shuffling unit.

Extra Memory

e 29 instances of 784 words (0.5 BRAM).
e Write in it: 1by1 Conv core across Shuffling unit.
e Read from it: Last 1by1 Conv core in group 2.

5.4.4 Shuffling Unit

In ShuffleNet V2 architecture, a channel shuffling is done between any stride 1 or stride 2
blocks to eliminate the side-effect of channel splitting by allowing information transfer, so the
accuracy is maintained. To do the shuffling effect taking into consideration the organization of
feature map memories, let’s assume we have two memories, shuffling from Shuffle 1 memory to
Shuffle 2 memory as shown in Figure 5.30.

In stride 2, we need to read all channels, so we will read all channels from shuffle 2
memory. But the 1byl Conv of Stride 2 needs to read all channels from 58 instances and we have
only 29 parallel channels, so we need MUXs to choose between first 29 channels and second 29
channels (1 or 30, 2 or 31 and so on) as shown in Figure 5.31.

In stride 1, we need to read first half of channels only to the 1byl Conv, so we will read
half channels from shuffle 2 memory by making the address counter jump by half the number of
channels.

To avoid this complexity of having two modes of reading from the Shuffle memory, one
for stride 1 and the other for stride 2, we can organize first half of channels only in the left half of
shuffle 2 memory to avoid this case.
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Figure 5.30 Shuffling the data from Shuffle 1 to Shuffle 2 memory
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Figure 5.31 MUXSs to choose between first 29 channels and second 29 channels

When we look on the impact of shuffling unit, it shuffles channels but also it can be seen
as shuffling the instances of memory without affecting values stored in them. So, this leads us to
just shuffle the ports of memory to have the effect of shuffling the channels. Thus, instead of
reading data unshuffled then shuffling it then writing it in another memory, we can just read data
from the Shuffle memory directly shuffled by choosing the correct instances.

The Shuffle unit will be the multiplexers that shuffle instances of memory by using their
ports without moving any data. These MUXs are for the 1by1 Conv to have the 29 input channels
either from the first half or the second half of memory channels. But, the 3by3 DWconv needs all
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the 58 ports to be connected. The connections inside the Shuffling unit are shown in Figure 5.32,
where the black wires are connected to port 1 and blue wires are connected to port 2 of the Shuffle
memory.

1 44 30 16 2 45
130 2 31 2058 £ ¥ ]L F ¥ : 1
To 3by3 DWconv To 1by1 Conv

Figure 5.32 Shuffling unit block

We need to shuffle the ports of the Shuffle memory to have the same effect of channel
shuffling. Figure 5.33 and Figure 5.34 shows which of the 58 instances of the Shuffle memory are
connected to which inputs of the MUXs in the Shuffling unit. Each 29 instances are split into 15
and 14 groups, then by shuffling them and observing the colors of shuffled instances we can find

that the inputs to the first MUX are the ports of the instances x and x + 29 + [?J and the inputs

to the second MUX are the ports of the instances x + 29 and x + [22—9] and so on for all the 29

MUXs. The outputs of MUXs go to the 1by1 Conv core. This way of shuffling saves a lot of power
and delay compared to shuffling the data words from one memory to another.

29 29

15 14 14 15 Sh1_mem

DDDD S DDDDDD e DD Sh2_mem

Figure 5.33 The effect of shuffling
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Figure 5.34 MUXs to read shuffled data from the correct ports

Shuffling for stride 1 blocks, problem and solution

When shuffling data between two stride 1 blocks a problem will occur because we read the
data shuffled but the data is still in the memory unshuffled, so the empty branch in stride 1 block
will pass the data unshuffled, however, it’s supposed to pass shuffled data. Thus, we need to shuffle
that half of data that is passed without shuffling. One approach is to shuffle the data in the shuffle
memory to another memory in the empty path and read the shuffled data from this new memory,
but this adds an overhead in the used resources and if we used one of the existing FM memories
this will add extra delay to rewrite the shuffled data to the shuffle memory to begin a new stride
block. Another approach is to use two memories for shuffling, shuffle 1 and shuffle 2 memories,
but this is a waste of resources and increases latency.

Our solution to this problem is to write the shuffled data in the Shuffle memory again as
we only will write half the data, we can write it the half that we don’t need anymore. We will read
the data and write it shuffled starting from the last address in the memory. This is done by reading
one row of 58 instances using single port and writing it shuffled in 2 rows of 29 instances using
dual port in the half that’s not needed. After wring in address X, we write in address X-2, then X-
4 and so on till address 0 as we write using 2 ports in two rows. This way we will never overwrite
any needed data. The half that is needed is whole rows of 58 instances and the half that we want
to write the shuffled data in is the whole 29 instances on the left part of memory. So, there’s an
intersection between the needed part and the part that we will write in, so writing will have a
special technique. We also didn’t dedicate a controller for this action, we made the 1byl Conv
controller handle it during the operation of 3by3 DWconv. This solution saves time, power and
area.

5.4.5 Connections of Cores and Memories Block Diagram

When connecting the cores and memories we will find that the computation cores read
from different memories depending on the layer of convolution as shown in Figure 5.35. For
example, the 1byl Conv core reads from Shuffle Memory through the Shuffling unit in the first
layer of any stride 1 or stride 2 block except for the first stride 2 block it will read from Maxpool
memory, and reads from X_Left memory in the middle layer of any stride 2 block, and reads from
X_Right memory in the last layer of any stride 1 or stride 2 block.
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Figure 5.35 Connections of Cores and Memories Block Diagram

The select lines of these integration MUXs come from different controllers. For example,
the sel_maxpool line comes from Group 2 controller and other selects come from either the 1by1l
or 3by3 Controllers depending on the associated computation core. The used MUXs are cascaded
instead of using one big MUX as we found this gives a better delay and to separate the control
signals depending on the controllers’ hierarchy.

In the end of Group 2, the data is taken from Shuffle memory and shuffled to the Extra
memory to let Group 3 start its process immediately, so Group 2 can start using Shuffle memory
again and this takes 342 clock cycles to be finished.

5.4.6 FIFO Architecture

As explained before in Group 1 design, a FIFO Register is used before the 3by3 DW
convolutional layer to fetch the 9 elements window from the feature map that are going to be
convolved, then with a simple shift in the FIFO register, the window is moved by one stride. The
size of the FIFO should be (2 * W + 3) where W is the size of the feature map.

In Group 2, we have 4 possible widths of the feature maps in group, so FIFO must support
all the 4 widths (56, 28, 14, 7) or we should have four FIFOs, one for each width. Using multiple
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FIFOs is inefficient as it will require a lot of registers. So, we will use one FIFO of the largest
required size to be a one-fit-all FIFO. The size of the FIFO register will be (2 * W4, + 3) = 119
registers as shown in Figure 5.36.

15
1

15

+118 17|16 | ... [109 (108 |107| ... |102|101|{100| 99 [ 98 | |83 |87 |86 | 85|84 | _ |60 |59 ST |56 .| 2|1

o

109102 88 60 108101 29 107100 86 58 100 86

o
&

o
=

L(%;

]
PN
b

width_sel
00
- L0
ol
3

58
2 9 85

padding_se! |
AR R O S e O

) L] (] ]
blue - width = 7 9 '/W 0, 7% s
el —_ — o =
3
15 415 F 15 2 15 To 3*3

Black - width = 14
- 15 {/ 15 z 15 /i/ 15
Red : width = 56 P3v¥P8v¥P7 Pixel 6 Pixel 5 Pixel 4 Pixel 3 Pixel 2 Pixel core

o

width_sel
0o
Bl 1o
ol
|
width_
J’fﬁ
o]
ol
L

Figure 5.36 The FIFO register and the MUXs to select according to the width

The FIFO register, has input MUX to select zeros to add padding when required or input
data from the feature map memory. It has output MUXs to select between outputs of different
widths, where the first three outputs are always taken from the same registers, so we only need six
4:1 MUXs with select line coming from the FIFO controller according to the current width. The 9
outputs of the FIFO register go to the 3by3 DWconv computation core, that’s why we need 58
FIFOs to serve the parallelism used in the 3by3 DWconv.

5.4.7 Controllers

We have a hierarchy of 4 controllers for group 2, where each part of the group has its own
control unit that ensures higher accuracy, modularity, easiness of the debugging and testing of each
block as well as the whole design and to do any changes to any part of the group easily without
affecting the other parts. Every controller unit is controlled by the main controller of the group.
Thus, the highest level of control in group 2 is the Group 2 controller, then the second level has
the 1by1 Conv controller and the 3by3 DWconv controller, and finally the FIFO controller is under
the 3by3 DWconv controller. In this section we will discuss how these controllers are designed
using finite state machines (FSMs) and the other logic used to do the control operation.

5.4.7.1 FIFO Controller

The FIFO controller controls the FIFO operation from fetching the data, determining the
width_sel of the MUXs from the width, processing for stride 1 or stride 2, choosing between
shifting data or padding zeros, reset the FIFO registers and reset the registers used in the 3by3
DWconv core. This controller interfaces between the FIFO and an upper controller which is the
3by3 DWconv controller. Figure 5.37 shows the block diagram of the FIFO controller and its
inputs and outputs. The controller is implemented using a finite state machine and a simple logic
to determine the width_sel from the width.
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Block diagram of the FIFO controller
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Figure 5.37 Block diagram of the FIFO controller

Width sel logic

The width of FM in Group 2 starts from 56 and decreases gradually till 7 with possible
width values {56, 28, 14, 7}. The FIFO output depends on the width, so the width_sel signal is
generated in the FIFO controller and output to the FIFO using the logic shown in Figure 5.38.
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Figure 5.38 Width select logic

FSM state diagram of the FIFO controller

start_FIFO=0

start_FIFO =1

Figure 5.39 FSM state diagram of the FIFO controller

The FSM has 5 states as shown in Figure 5.39, it’s normally in the IDLE state till the start
signal comes from the 3by3 DWconv controller to start the FIFO operation. It starts by shifting
and loading the first row in the FM element by element. The row of padding is not loaded as the
FIFO register is already reset in the IDLE state. Then loading 3 more elements to complete loading
the window and finally processing that window and all the windows in that row till it finishes.
Then continue scanning the feature map by Load Row if it’s a stride 2 layer or by Load Window
if it’s a stride 1 layer. When the FM is all scanned except the last row of padding, if it’s stride 2,
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the last row is not taken, if it’s stride 1, this padding row is processed in special state then it goes
to IDLE. Figure 5.40 shows this flow where (1) is IDLE, (2) is Load Row, (3) is Load Window,
and (4,5,6) are Processing with stride 2.
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Figure 5.40 The flow of the FIFO FSM

Counters used in the FIFO controller

e Row counter: counts the rows of FM including padding.
e Lr counter: counts the elements in a row of FM including padding.
e Lw counter: counts the 3*3 windows.

Explanation of each state in the FIFO controller

(1) IDLE state
e Aslong as start_FIFO is low, it keeps in the in the IDLE state.
e Inside the state:

i.  All output signals are low by default.
ii. The FIFO register is reset to store zeros (first row of padding).
iii.  All counters are reset.

e When start _FIFO becomes high, it goes to Load Row state and increment the row counter.
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(2) Load Row state
e The core registers are reset to save dynamic power, as the data_valid is always 0 in this
state.
e Lr counter counts from 0 to W+1 with the control signals as shown in Figure 5.41.

_ 0 1 1 WA W W
{Load"0"}i | Load datafrommemory _}1{ Load ' |
Padding_sel: 1, 0000 ............... o, 0 , 1
next_FIFO: 1 E 1111 . 1 E 0 i 0
Lr finish: 0 E 0000 .. 0 i 0 i 1
Shift_load: 1 i 1111 i, 1 E 1 i 1

Figure 5.41 The control signals in the Load Row state

e When Lr counter reaches W+2, it goes to Load Window state, and increments the row
counter.

(3) Load Window state
e Lw counter counts from 0 to 2 with the control signals as shown in Figure 5.42.
e When Lw counter reaches 3, it goes to Process state and the next_FIFO signal is raised to
get data at beginning of process

1 1

0 | 1 | 2

e '_ ____________________ I >
l Load “0” I. 1 Load data from memory |

: H
1 1

Padding_sel: 1 ! 0 ! 0

next_FIFO: 1 1 | 0
1 1

Lw_finish: 0 : 0 : 1
1 1

Shift_load: 1 | 1 : 1
1 1

Figure 5.42 The control signals in the Load Window state

(4) Process state
e In the first window, the data_valid signal is high in both stride 1 and stride 2. Then,
data_valid keeps high in stride 1 and toggles in stride 2.
e The Lr counter is reused in process state instead of using a new counter.
e Lrcounter counts from 0 to W-2 with the control signals as shown in Figure 5.43.
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Figure 5.43 The control signals in the Process state

e When Lr counter reaches W-2, it goes to Load Row state if stride 2 or to Load Window
state if stride 1 and increments the row counter.

e Ifit’s stride 2, the row counter is checked in this state if it reached W, it goes to IDLE state
and the done_FIFO signal is raised high to indicate that the FIFO operation is done in this
feature map.

e Ifit’s stride 1, it goes to Last padding state to finish processing the last row of padding in
the feature map.

(5) Last Padding state
e This state happens in stride 1 only
The Lr counter is reused in Last Padding state instead of using a new counter.
Lr counter counts from 0 to W+1.
Padding select is high all the time to load all zeros for the padding row.
When Lr counter reaches W+2, it goes to IDLE state.
The done_FIFO signal is raised high to indicate that the FIFO operation is done in this
feature map.

5.4.7.2 3by3 DWconv Controller

The 3by3 DWconv controller controls the operation of the 3by3 DWconv core and its
connected read and write memories by determining the write enable signals and addresses of the
memories at the correct clock cycle to write the processed data either in the X_Left or X_Right
memories and read from the Maxpool memory or the Shuffle memory or the Y memory by
choosing between them using the MUX select signals. It also outputs the address of the filter and
bias memory which is the same signal. It interfaces with the FIFO controller to tell it when to start
its operation and tell it the current width and whether it’s stride 1 or stride 2.

It also interfaces with the 1by1 Conv controller to organize the stages when only one of the
1by1 Conv and 3by3 DWconv are working solely. This is demonstrated using the donel_1 and the
done3_3 signals to let the other entity know it can start.

It also interfaces with the Group 2 controller to know which layer of 3by3 DWconv is it
and to know the width, number of channels and when to reset the address filter counter and whether
this is the stage where the 3by3 DWconv reads from the Maxpool memory using the signal
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stage2_case24, and to organize the stages when both the 1byl Conv and 3by3 DWconv are
working simultaneously in parallel. This is demonstrated using the done3_3_G signals to let the
Group2 controller know when both cores are done to start the next layer.

Figure 5.44 shows the block diagram of the 3by3 DWconv controller and its inputs and
outputs. The controller is implemented using a finite state machine and a simple logic to generate
the Start_FIFO pulse.

Block diagram of the 3by3 DWconv controller
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Figure 5.44 Block diagram of the 3by3 DWconv controller

Start FIFO pulse generation logic

The Start signals are always in the form of a pulse. The Start FIFO signal is zero by default
and the Start_FF signal is reset in the IDLE state, when the FIFO starts it sends a signal that will
enable the flip flop and therefor the start signal will end. This simple circuit and the associated
waveforms are shown in Figure 5.45.

, Start_FF
' — = Start_FIFO

i B B B
Enable RST Start_FF | ; 3
Next_FIFO Start FF_reset  Start_FIFO ! , |

next_FIFO } ; |

Figure 5.45 Start_ FIFO pul‘se genération 'Iogic
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FSM state diagram of the 3by3 DWconv controller
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Figure 5.46 FSM state diagram of the 3by3 DWconv controller

The FSM has 4 states as shown in Figure 5.46, it’s normally in the IDLE state till the start
signal comes from the Group 2 controller to start the 3by3 DWconv operation. It starts by the first
layer of 3by3 DWconv which is the Left_S2 then go back to IDLE state till the simultaneous layer
of 1by1 Conv finishes, so the Group 2 controller sends a new start for the Right_S2 layer, when it
finishes it goes back to IDLE state till the simultaneous layer of 1by1 Conv finishes and the 1byl
Conv starts its operation solely twice and send the donel_1 signal to start alternating between the
1by1 and 3by3 convolutions. One of them is working and the other in IDLE state till all the layers
are done.

Counters used in the 3by3 DWconv controller

Figure 5.47 shows all the counters used in the 3by3 DWconv controller and shows that the
width is just passed to the FIFO controller without any operations on it. It has four counters. The
Channels counter counts the channels of pixel as multiples of 29 which is used in the initialization
and jumping in other counters and to know when we start or finish a pixel. The Read Address
counter is to generate the read address to read from the Maxpool memory or the Shuffle memory
or the Y memory. The X_mem Address counter is used to generate the write address to write either
in the X_Left or X_Right memories. Finally, the Filter address counter is used to generate the
address of the filter and bias memory which is the same.
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3*3 Dwconv Controller
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Figure 5.47 Counters used in the 3by3 DWconv controller

Explanation of each state in the 3by3 DWconv controller

(1) IDLE state
e Aslong as start signal is 00 or 11, it keeps in the in the IDLE state.
e Inside the state:

i. All output signals are low by default.

ii. All counters are reset, except filter address counter is reset when the Group 2 controller
sends its reset signal.

e When start signal becomes 01, it goes to Left S2 state, when it becomes 10, it goes to
Right_S2 state and when donl1_1 signal is high, it goes to Right_S1.

(2) Left_S2

e It’s astride 2 layer, so stride2 signal is high.

e Start_FIFO is sent as a pulse to the FIFO controller.

e Reading from Shuffle memory or Maxpool memory using the same read address which is
incremented when next_FIFO is high.

e Writing in X_Left memory using write address which is incremented when data_valid is
high. In case of reading from Maxpool memory, write enable is sent to port 1 only.
Otherwise, write enable is sent to port 1 & port 2.
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When the FIFO is done, Channels counter and Filter address counter are incremented, the
read and write counters are initialized to new channels, and the Start flip flop is reset to
have a new start_FIFO pulse.

When all channels are done, done3_3_G is sent to Group 2 controller, the read, write and
channels counters are reset and it goes to IDLE state.

(3) Right_S2

It’s a stride 2 layer, so stride2 signal is high.

Start_FIFO is sent as a pulse to the FIFO controller.

Reading from Y memory using the read address which is incremented when next_FIFO is
high.

Writing in X_Right memory using write address which is incremented when data_valid is
high and write enable is sent.

When the FIFO is done, Channels counter and Filter address counter are incremented, the
read and write counters are initialized to new channels, and the Start flip flop is reset to
have a new start_FIFO pulse.

When all channels are done, done3_3 G is sent to Group 2 controller, the read, write and
channels counters are reset and it goes to IDLE state.

(4) Right_S1

It’s a stride 1 layer, so stride2 signal is low.

Start_FIFO is sent as a pulse to the FIFO controller.

Reading from Y memory using the read address which is incremented when next_FIFO is
high.

Writing in X_Right memory using write address which is incremented when data_valid is
high and write enable is sent.

When the FIFO is done, Channels counter and Filter address counter are incremented, the
read and write counters are initialized to new channels, and the Start flip flop is reset to
have a new start_FIFO pulse.

When all channels are done, done3_3 is sent to the 1byl Conv controller, the read, write
and channels counters are reset and it goes to IDLE state.

5.4.7.3 1byl Conv Controller

The 1byl Conv controller controls the operation of the 1by1 Conv core and its connected

read and write memories by determining the write enable signals and addresses of the memories
at the correct clock cycle to write the processed data either in the Y memory or Shuffle memory
and read from the Maxpool memory, the Shuffle memory, the X_Left or the X_Right memories
by choosing between them using the MUX select signals. It also outputs the address of the filter
and bias memory. It also manages writing in the Extra memory when group 2 finishes its operation.
It generates the select signals for the MUXs in the Shuffling unit to pass the 29 input channels
either from the first half or the second half of memory channels.
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It also interfaces with the 3by3 DWconv controller to organize the stages when only one
of the 1byl Conv and 3by3 DWconv are working solely. This is demonstrated using the donel 1
and the done3_3 signals to let the other entity know it can start.

It also interfaces with the Group 2 controller to know which layer of 1byl Conv is it and
to know the width, number of channels and when to reset the address filter counter and whether
this is the stage where the 1byl Conv reads from the Maxpool memory using the signal
stage2_case24, and to organize the stages when both the 1byl Conv and 3by3 DWconv are
working simultaneously in parallel. This is demonstrated using the donel 1 G signals to let the
Group2 controller know when both cores are done to start the next layer.

Figure 5.48 shows the block diagram of the 1by1 Conv controller and its inputs and outputs.
The controller is implemented using a finite state machine.

Block diagram of the 1by1l Conv controller
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Figure 5.48 Block diagram of the 1byl Conv controller
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FSM state diagram of the 1byl Conv controller
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Figure 5.49 FSM state diagram of the 1by1 Conv controller

The FSM has 7 states as shown in Figure 5.49, it’s normally in the IDLE state till the start
signal comes from the Group 2 controller to start the 1byl Conv operation. It starts by the first
layer of 1by1 Conv which is the S2_Right_1st then goes back to IDLE state till the simultaneous
layer of 3by3 DWconv finishes, so the Group 2 controller sends a new start for the Left_1st layer,
when it finishes it goes back to IDLE state till the simultaneous layer of 3by3 DWconv finishes,
so Group 2 controller sends a new start to the Right 2nd layer which when finished goes
immediately to S1_Right_1st, then shuffled data is written in the Shuffle memory and when the
3by3 DWconv is done we go back to the Right _2nd layer. This sequence of S1_Right_1st,
Write_Sh_data, Right_2nd is carried out till the stage is done at loops counter equals 4 or 12, so
we go back to IDLE and start this whole stage sequence again. When all the 3 stages are done at
loops counter = 16, this means all layers of Group 2 are done and the data will be written in Extra
memory.

Counters used in the 1byl Conv controller

Figure 5.50 shows all the counters used in the 1by1 Conv controller. It has 8 counters. The
Channels counter counts the channels of pixel as multiples of 29 which is used in the initialization
and jumping in other counters and to know when we start or finish a pixel. The Filter counter is
used to count the filters of the 1by1 Conv layer as a multiple of 29 and it’s incremented by 2 as we
have 58 filters. The Read Address counter is to generate the read address to read from the Maxpool
memory, the Shuffle memory, the X_Left or the X_Right memories.

The Write Address counter is used to generate the write address to write either in the Y
memory or Shuffle memory. The Loops counter is used to count the stride 1 and stride 2 blocks,
where stages are done at loops = 4, 12 and 16. The Bias address counter is used to generate the
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address of the bias memory. Finally, we have 2 ports for the Filter memory, the address of the
second port is offset by channels compared to the first port.

1*1 Conv Controller
12
Read address counter - » Read address
Write address counter 1?’ Write address
10 .
Filter address counter -+ + Filter Port 1 address
4 .
Channels counter —> Filter Port 2 address
. Channels
Bias address counter ~- Bias address
4
Filter counter ——
4
Loops counter —

Figure 5.50 Counters used in the 1byl Conv controller

Explanation of each state in the 1by1 Conv controller

(1) IDLE state

As long as start signal is 00 or 11, it keeps in the in the IDLE state.
Inside the state:
All output signals are low by default.
All counters are reset, except filter address counter, bias address counter and loops
counter that are reset when the Group 2 controller sends its reset signal.
When start signal becomes 01, it goes to S2_Right_1st state, when it becomes 10, it goes
to Left_1st state and when it becomes 11 or done3_3 signal is high, it goes to Right_2nd
state.

(2) S2_Right_1st

It’s a stride 2 layer, so the shuffling unit MUX select signal will toggle every clock cycle
except when reading from the Maxpool memory, the MUX selects the left half of shuffle
memory.

Reading from Shuffle memory except in the very first layer it reads from Maxpool memory
using the same read address.

Channels counter is incremented except if it’s the very first S2_Right_1st layer.

The add_zero signal going to the 1byl Conv core is raised in the beginning of each pixel.
Writing in the Y memory using write address.

88



Chapter 5: RTL Design Methodology and Verification

When all channels are done, donel_1 G is sent to Group 2 controller, the read, write and
channels counters are reset and it goes to IDLE state.

(3) Left_1st

Reading from X_Left memory using the read address.

Channels counter is incremented every clock cycle.

The add_zero signal going to the 1by1 Conv core is raised in the beginning of each pixel.
Writing in the right half of Shuffle memory using write address.

When all channels are done, donel_1_ G is sent to Group 2 controller, the read, write and
channels counters are reset and it goes to IDLE state.

(4) Right_2nd

Reading from X_Right memory using the read address.

Writing in X_Right memory using write address which is incremented when data_valid is
high and write enable is sent.

When all channels are done, write and channels counters are reset, read counter is
initialized not reset as it always goes to S1_Right_1st state that skips the first half of
channels.

Loops counter is incremented as a stride block is done.

(5) S1_Right_1st

It’s a stride 1 layer, so the shuffling unit MUX select signal will toggle every clock cycle
as we are reading from shuffle memory.

Reading from Shuffle memory using the read address.

Channels counter is incremented every clock cycle.

The add_zero signal going to the 1by1 Conv core is raised in the beginning of each pixel.
Writing in the Y memory using write address.

When all channels are done, read and channels counters are reset and goes to the
Write_Sh_data state.

When a stage is done (at loops = 4 or 12), the next state will be IDLE and when all stages
are done (at loops = 16), the next state will be Write_Extra_mem.

(6) Write_Sh_data

Write enable for the shuffled data is raised and write enable for the left half of shuffle
memory will toggle.

When shuffling is done, if the simultaneous 3by3 DWconv Layer is also done, go to
Right_2nd state. Otherwise, go to IDLE state and wait for the done3_3 signal to go to
Right_2nd state.
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(7) Write_Extra_mem

e Thedatais transferred from the Shuffle memory to the Extra memory through the Shuffling
unit.
e The 1byl Conv core is not used, so add_zero is high, core registers are reset

e When all data is transferred to the Extra memory, all counters are reset and it goes to IDLE
state.

5.4.7.4 Group 2 Controller

The Group 2 controller controls the flow of group 2 layers between 1byl Conv and 3by3
DWoconv by sending them the Start signal, width, number of channels in the current layer and
whether they are reading from the Maxpool memory or not. It also interfaces with the 1byl Conv
and 3by3 DWconv controllers to organize the stages when both the 1byl Conv and 3by3 DWconv
are working simultaneously in parallel. This is demonstrated using the donel 1 Gand done3 3 G
signals to let the Group2 controller know when both cores are done to start the next layer.

It also interfaces with the Accelerator controller to know when to start Group 2 operation
after Group 1 finishes writing in the Maxpool memory and to let the Accelerator controller know
when Group 2 is done writing in the Extra memory to start Group 3. A signal is sent to the
Accelerator controller to let it know when reading from the Maxpool memory is done to allow
Group 1 start again. Figure 5.51 shows the block diagram of the Group 2 controller and its inputs
and outputs. The controller is implemented using a finite state machine.

Block diagram of the Group 2 controller
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Figure 5.51 Block diagram of the Group 2 controller
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FSM state diagram of the Group 2 controller
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Figure 5.52 FSM state diagram of the Group 2 controller

The FSM has 4 states as shown in Figure 5.52, it’s normally in the IDLE state till the start
signal comes from the Accelerator controller to start Group 2 operation. It starts by Stage 2 which
consists of a stride 2 block followed by three stride 1 blocks, then Stage 3 which consists of a stride
2 block followed by seven stride 1 blocks and finally Stage 4 which consists of a stride 2 block
followed by three stride 1 blocks. Transition between stages happens when stage done signal
becomes high, this signal is generated from the 1by1 Conv controller at the last layer of each stage.

Counters used in the Group 2 controller

Figure 5.53 shows all the only one counter used in the Group 2 controller which is the start
counter that is incremented each time done3_3_G or donel 1 G comes from the lower-level
controllers and used to send the start signal to both the 1by1 Conv controller and the 3by3 DWconv
controller.

Group 2 Controller

reset —s

enable —» Start counter

Figure 5.53 Counter used in the Group 2 controller
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Explanation of each state in the Group 2 controller

(1) IDLE state
e Aslong as start signal is low, it keeps in the in the IDLE state.
e Inside the state:
I. Reset the address filter counter as all filters of all layers are in the same memory and
the biases too.
ii. All counters are reset.
e When start signal becomes high, it goes to Stage 2 state.

(2) Any Stage states

All signals are initialized to the default values when the start_group signal comes, for
example the widths are initialized to 56 and all other signals are initialized to zero. When the start
signal become 01, both the 1byl Conv and the 3by3 DWconv start together. One of them will
finish first and send its done signal, let it be the 1by1 Conv. The Group 2 controller will wait till
the other block finishes too and send its done signal, so the start signal will become 10 and the
same operation happens again till the simultaneous blocks finish their operation. Finally, the 1by1
Conv will operate and when it finishes it sends the stage done signal indicating that the stride block
is done. Figure 5.54 shows the waveforms associated with group 2 operation.

* * * * * *

start_group done1_1_G done3_3_G donel1_1_G done3_3_G stage_done
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Figure 5.54 The waveforms associated with group 2 operation
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5.5 Group 3 Design

In this section, we discuss the design of Group 3 in the architecture. Group 3 contains the
last layers of ShuffleNet CNN; 1*1 convolution, average pool, and FC layers as well as a
classification unit.

Group 3 takes the feature map (processed image by Group 2) stored in Extra memory as
input and passes it through its units and finally outputs the estimated class of the image as shown
in Figure 5.55.

Group 3

Extra Fully-
— —l 1x1 Average e
Group 2 memory > comvolution Pooling Cog;g;led Classification
Not Ping pong

Figure 5.55 Layers in Group 3 and data transfers between Group 2 and Group 3 through Extra memory

The hierarchy of Group 3 consists of computational cores, feature map memories, filter
and bias memories, and group controller. As shown in Figure 5.56, this hierarchical system can be
structured like follows:

(1) 1by1 conv block
a. 1byl conv computational core
b. 1by1l conv filter memories
c. 1byl conv bias memories
(2) Average-pool block
a. Average-pool computational core
(3) Feature map storage (Register file)
(4) FC block
a. FC computational core
b. FC filter memories
c. FC bias memories
(5) Classification unit.
(6) Group 3 controller

Throughout this section we will explain how these blocks are designed and assembled together.
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Figure 5.56 Block diagram of Group 3
5.5.1 Computational Cores

As we have mentioned in the design approach, we designed a computation core for each
different type of layer. In Group 3, there is 3 different layers so we designed 3 computation cores,
one for the 1*1 convolution layer, one for the average-pool layer, and one for the FC layer. In each
of them we will discuss the parallelism used in filters, channels and window, The pipelining
registers used to break the long timing path and how quantization is done to have a 15-bit fixed
point output from the core without overflow.

5.5.1.1 1by1 Convolution

As mentioned in earlier chapters, 1*1 convolution convolves each pixel in a channel in the
input feature map with its counterparts in other channels through multiplying each one of them by
a weight from a certain filter, then adding the results to produce a pixel in the output feature map.
In this layer we have a 7*7*464 input feature map and 1024 filters and it produces a 7*7*1024
output feature map. Based on our design approach, we use parallelism in computation cores to
enhance the throughput. The parallelism used in this layer is as follows:
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Parallelism

Table 5.9 Parallelism in 1by1 Convolution

Parallelism in Filters Parallelism in Channels Parallelism in window
16 29 NA

This means that 16 filters are executed in parallel for 29 channels of each filter then in the
next cycle the next 29 channels are convolved and so on till all the channels are done. That’s why
an accumulator is placed to sum up all the products of all channels. Then it processes the next pixel
with the same way and so on. So, we have 16 1byl conv units in this layer, one for each filter.
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Figure 5.57 1byl Conv Unit Block Diagram

The inputs to the 1*1 convolution core are as follows:

1. Data: 29 parallel inputs coming from a feature map memory (Etxtra_memory).
2. Weights: (16*) 29 parallel inputs from filter memory.

3. Bias: (16*) 1 input from bias memory.

4. Control signals like select_zero signal.

utput

:

The output of the 1*1 convolution core is (16*) 1 pixel and it goes direct to the average-pool layer
without any intermediate storage between the two layers.

Methodology

The input 29 elements from the feature map memory (Extramemory) enters this layer and
the operation is held by convolving it with 16 filters in parallel. The convolution operation is
executed by multiplying each feature map pixel to the corresponding pixel in the filter by using
DSPs, then adding the 29 products together using an adder tree, where the Adder3 block is used to
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add each 3 products. So, 27 products are added in a 3-level adder tree then the remaining two
products are added to them using an extra 3-input adder level. Then accumulating the result to the
result of the next 29 channels until all the channels are convolved. The accumulator loops 16 times,
as feature maps and filters have 464 channels. In the feedback of the accumulator, we either add
the accumulated value or add zero using a MUX. This is used to add zero instead of accumulation
in the beginning of each pixel to save the clock cycle wasted to reset the accumulator register.
After the accumulation of all channel convolution, the bias is added to the result.

A ReLU activation function follows the 1*1 convolution in this architecture. It rectifies the
output to only positive values and force the negative values to be zero. As it is a simple operation,
we designed it as a part of each 1byl conv unit. The ReLU checks if the number is negative using
the MSB of the convolution output instead of using comparators which lead to high power
consumption and long logic delay. The pipelining registers are used after the multipliers to break
the long timing path and to make sure the inputs to the adder tree are constant when not using them
S0 as to save dynamic power.

Regarding the size of the internal signals through each 1by1 conv unit, multipliers double
the number of bits. Thus, number of fraction bits increases by 8. No need for all these fraction bits
so we drop 7 bits of them. It will not cause an error in the value; this is just a quantization noise.
The 3-input adder increments the number of bits by 2 and the 2-input adder increments the number
of bits by 1. Moreover, the accumulator increments the number of bits by log, (M), where M is
the number of accumulations. Thus, the output of each unit is not 15-bits and overflow may occur.
To make sure that the output is the correct 15-bits without overflow, a quantizer is placed at the
end of each computation core to compare the output of convolution after the ReL U to the maximum
possible value of the 15-bit fixed point output. The quantizer consists of a multiplexer and a simple
logic for maximum checking. We check for the maximum value using a simple logic circuit as in
the 1by1 conv in Group 2 instead of a comparator to save power and area. If the number is smaller
than the maximum value, the number is passed as it is. Otherwise, the maximum value is passed
(saturation case to avoid overflow). Checking for the minimum case is not required here as the
ReLU output will never be a negative value.

5.5.1.2 Average Pooling

Average pooling layer takes the output feature map which is 7*7*1024 pixels from the 1*1
convolution layer and prepares it to go through the fully-connected layer which takes a vector of
data so the average pooling layer flattens the input feature map to be a vector of data by getting

X721 Pij)

the average of each input channel , Where ‘i’ is the number of channels ranges from 1 to

1024; and ‘j’ is the number of pixels. We applied parallelism in this layer as follows:

Parallelism

Table 5.10 Parallelism in Average Pooling

Parallelism in Filters Parallelism in Channels Parallelism in window
NA 16 NA
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There are no filters in the average pooling layer, and since the average pooling layer takes
its inputs directly from the 1*1 convolution layer without an intermediate memory between the
two layers and the 1*1 convolution layer outputs 16 pixels from different channels so we must
have 16 average pooling units to process 16 channels in parallel. There is no parallelism in window
which is 7*7, as each unit cannot take multiple pixels from a channel at the same time because
each 1byl conv unit outputs a pixel at a time. And we don’t need to do that because it will make
Group 3 finishes its process faster than other groups and since Group3 must wait other groups to
finish, this will cause overhead and add extra resources in vain.

Inputs
0
16
Select zero

"y Loop
Multiplier 49
<2 3 17

15
Input » + N LN Quantize =

Figure 5.58 Average-pooling Block Diagram

The inputs to the average-pool core are as follows:

1. Data: 16 parallel inputs coming from the 1*1 convolution layer.
2. Control signals like accumulate_en and select_zero signals.

Output

The output of the average-pool core is (16*) 1 pixel (channel) and it goes to the register file
between the average-pooling and FC layers.

Methodology

In average-pooling operation, there is a division by constant (49) operation, we can replace
it by a multiplication operation (Sum*(1/49)).

We have two approaches to do the operation of the average-pooling. The first approach is
accumulating all the 49 inputs (channel pixels) entering each unit one by one, then do the
multiplication operation. The second approach is multiplying each input entering each unit by 1/49,
then accumulating the result. The second approach is better than the first approach in terms of data
widths as the output width of a multiplier is in order of 2*N, where N is the number of input bits,
and the accumulator increments number of the bits by log,(M), where M is the number of
accumulations. So, applying the multiplication operation first on the input data is better and we
used it in our design.

As the multiplier is constant (1/49) which is 000000000000101 in a 15-bit fixed point
representation with 8 bits fraction, no need for using a real multiplier, we can do this multiplication
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by a shift left and addition operations as shown in Figure 5.58. The reason for that can be shown
in the example in Figure 5.59. Let’s take an example, 9-bit signed number, the fraction bits are 4
and the integer bits are 4.

000001011
000000101%

000001011
000000000 *
000001011 *
000000000

00000000 O

It can be done using two input adder and shift
left operator.

Figure 5.59 Multiplication by constant and how it is done using 1 shift left and a 2-input adder

Then accumulating the current result from the multiplier to the previous results of the input
pixels from the same channel until all the pixels in a channel are accumulated. The accumulator
loops 49 times to average all pixels in a channel. In the feedback of the accumulator, we either add
the accumulated value or add zero using a MUX. This is used to add zero instead of accumulation
in the beginning of each pixel to save the clock cycle wasted to reset the accumulator register.
Since the average-pool layer takes its inputs directly from the 1*1 convolution layer and each 1by1l
conv unit outputs a correct pixel each 16 clock cycles, the results of the average-pool accumulator
must be sampled by the accumulator register each 16 clock cycles. This is done by activating the
accumulate_en signal each 16 clock cycles as it is connected to the enable of the accumulator
register.

Regarding the size of the internal signals through each average-pooling unit, the multiplier
by the constant (1/49) increments the number of bits by 2. After the multiplication operation,
number of fraction bits increases by 8. No need for all these fraction bits so we drop 7 bits of them.
It will not cause an error in the value; this is just a quantization noise. The accumulator increments
the number of bits by log, (M), where M is the number of accumulations. Thus, the output of each
unit is not 15-bits and overflow may occur. To make sure the output is the correct 15-bits without
overflow, a quantizer is placed at the end of each computation core to compare the output of
convolution to the maximum and minimum possible values of the 15-bit fixed point output. The
quantizer consists of two multiplexers, one for maximum checking and the other for minimum
checking. Firstly, we check for the minimum value using a comparator and if the number is larger
than the minimum value, the number is passed as it is. Otherwise, the minimum value is passed
(saturation case to avoid overflow). Secondly, we check for the maximum value using a simple
logic circuit instead of a comparator and if the number is smaller than the maximum value, the
number is passed as it is. Otherwise, the maximum value is passed (saturation case to avoid
overflow).
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5.5.1.3 Fully-Connected

Fully-connected layer takes the flattened output of the average pooling layer (1024 pixels)
stored in the register file between the two layers and passes them through a layer of 1000 neurons,
each neuron takes the 1024 input pixels and calculates the probability of each class that it is the
class of the input image. We can consider that the input data is a feature map has 1024 channels
and each channel has one pixel. Also, the FC layer is like a 1*1 convolution has 1000 filters. The
applied parallelism in this layer is as follows:

Parallelism
Table 5.11 Parallelism in Fully Connected
Parallelism in Filters Parallelism in Channels Parallelism in window
NA 32 NA

No parallelism in filters, we designed only one computation core for the FC layer, so it
calculates the probability of classes one by one. In addition to no parallelism in window as each
channel has one pixel. Therefore, the parallelism applied in the FC layer is in channels, it takes 32
channels in parallel from the 1024 channels in the register file. then in the next cycle the next 32
channels are processed and so on till all the channels are done. That’s why an accumulator is placed
as shown in Figure 5.60 to sum up all the products of all channels.

Inputs
in1
w1
in2
w2
in3
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Figure 5.60 FC Block Diagram
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The inputs to the FC core are as follows:

1. Data: 32 parallel inputs coming from a register file.
2. Weights: 32 parallel inputs from filter memory.

3. Bias: one input from bias memory.

4. Control signals like select_zero signal.

OQutput

The output of the FC core is one output represents the probability of each class and it goes directly
to the classification unit.

Methodology

As shown in Figure 5.60, the 32 input pixels (channels) from the register file enter this
computation core and the operation is held like a 1*1 convolution as it is executed by multiplying
each pixel to the corresponding weight in the filter using DSPs, then adding the 32 products
together using an adder tree, where the Adder3 block is used to add each 3 products. So, 30
products are added in a level of 3-Adder 3 blocks producing 10 results, 9 of them are added in a
2-level adder tree then the remaining two products and the last result of the first level of Adder 3
(the 10th result) are added together to them using an extra Adder 3 level. Then accumulating the
current result to the previous results of the input pixels (channels) until all the results of the 1024
channels are accumulated. The accumulator loops 32 times. In the feedback of the accumulator,
we either add the accumulated value or add zero using a MUX. This is used to add zero instead of
accumulation in the beginning of each pixel to save the clock cycle wasted to reset the accumulator
register. After the accumulation of all channel results, the bias is added to the stored value in the
accumulator.

The pipelining registers are used after the multipliers to break the long timing path and to
make sure the inputs to the adder tree are constant when not using them so as to save dynamic
power.

Regarding the size of the internal signals through the FC core, multipliers double the
number of bits. Thus, number of fraction bits increases by 8. No need for all these fraction bits so
we drop 7 bits of them. It will not cause an error in the value; this is just a quantization noise. The
3-input adder increments the number of bits by 2 and the 2-input adder increments the number of
bits by 1. Moreover, the accumulator increments the number of bits by log, (M), where M is the
number of accumulations. Thus, the output of each unit is not 15-bits and overflow may occur. To
make sure that the output is the correct 15-bits without overflow, a quantizer is placed at the end
of the computation core to compare the output to the maximum possible value of the 15-bit fixed
point output. The quantizer consists of two multiplexers, one for maximum checking and the other
for minimum checking. Firstly, we check for the minimum value using a comparator and if the
number is larger than the minimum value, the number is passed as it is. Otherwise, the minimum
value is passed (saturation case to avoid overflow). Secondly, we check for the maximum value
using a simple logic circuit instead of a comparator and if the number is smaller than the maximum
value, the number is passed as it is. Otherwise, the maximum value is passed (saturation case to
avoid overflow).
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5.5.1.4 Classification Core

The last computation core in Group 3 and the whole accelerator. This computation core
performs a different function from the function of convolution and pooling; it takes the outputs of
the FC layer which are 1000 probabilities, one for each class, and compares them to get the top 1
probability and outputs the corresponding class which is the estimated class for the input image
and the main output of the accelerator. There is no parallelism in this core, as the FC has one
computation core and outputs one probability from the 1000 probabilities at a time.

Class
Counter
FC output — v
" N g Output Class
ax . Index
Reg Comp- ” REG |

Figure 5.61 Classification Core Block Diagram

Inputs
The inputs to the FC core are as follows:

1. Data: one probability from the fully-connected layer at a time and the class counter value.
2. Control signals like max_reg_en signal.

Output

The output of the classification core is the estimated class for the input image and it is the final
and main output of the whole accelerator.

Methodology

At the beginning of Group 3 operation, the Max Reg is set to the minimum value it can
hold as well as the Index Reg is reset to 0. Then as shown in Figure 5.61, the output of the FC
layer is compared with the stored value in the Max Reg using a comparator. The output of the
comparator determines the maximum one of them and it is connected to the enable of the Index
Reg. It is also ANDed with the max_reg_en, then the result is connected to the enable of the Max
Reg. We defined the signal max_reg_en because the FC core outputs a correct class probability
each 32 clock cycles so when the correct output from FC is ready (each 32 clock cycles), the signal
max_reg_en is activated. If the input to this core is the maximum one, it will be stored in the Max
Reg and the Index Reg will capture the value of the class counter. Otherwise, the Max Reg and the
Index Reg keep their values. This operation is repeated till the probabilities of the 1000 classes are
compared. Finally, the output class is the last stored value in the Index Reg.
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5.5.2 Filter and Bias Memories

All constant parameters of the layers of Group 3 like filter weights and biases are stored in
on-chip memories instead of off-chip memories to avoid their higher latency as our first priority is
speed. Since, these parameters are constants, their memories will be ROMs (Read Only
Memories). We used the BRAMs and LUTs of the FPGA to store the parameters. Weights and
biases of Group 3 are in the 1*1 convolution layer and FC layer only. Average pooling layer
doesn’t have weights or biases.

In this section, the weight and bias memories of both the 1by1 convolution and FC will be
explained including their organization, address size, number of ports, and number of memory
instances.

5.5.2.1 Convolution 1*1 Weight Memories

In the 1*1 convolution layer, we have 1024 filters, each one has 464 channels, and each
channel has a window of 1*1. So totally, we have 475,136 weights in this layer to be stored. The
number of memory instances is indicated by the parallelism used in the 1byl convolution core,
which is 16 in filters and 29 in channels, so we need 29*16 weights simultaneously. We will use
29*8 = 232 memory instances of dual port BRAM memories to provide the 29*16 parallel weights.
Each instance contains 2048 weights and each weight is represented in a 15-bit fixed point number.
Therefore, each instance is stored in one BRAM (36kb), and the total BRAMs occupied for the
1*1 convolution weights is 232 BRAMs. The size of the address of the 1*1 filter memories is 11
bits (log,(2048)).

Filter memories organization
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Figure 5.62 1*1 Convolution Filter Memories Organization
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As shown in Figure 5.62, the weights of each filter (464 weights) are distributed on the 29
memory instances as the operation of 1*1 convolution needs 29 channels from the same filter in
parallel. And it takes 16 rows (words) from each instance. The first eight filters (filters from 1 to
8) are stored in the first 16 rows of the memory instances (8*29), then the second eight filters
(filters from 9 to 16) are stored in the next 16 rows and so on. Hence, after fetching each 29*16
weights from any 16 filters in parallel we just increment the filter memory address counter to get
the next 29*16 weights from the same 16 filters till all channels of these filters are fetched, then
start fetching the next 16 filters.

5.5.2.2 Convolution 1*1 Bias Memories

Each filter in a convolution has one bias, so totally the 1*1 convolution layer has 1024
biases. And since we have 16 parallel filters for the 1*1 Convolution core, we need the memory to
provide 16 biases simultaneously. We will not just connect the biases to VDD and GND as we
have a large number of biases, instead we will use 16 instances of distributed ROM memories to
provide the 16 parallel biases. We will use LUTs instead of BRAMSs as each instance is 64 biases
only that will give a very poor utilization of the BRAMs. Thus, it’s better to store them in LUTs.
The size of the address of the 1*1 Bias memories is 6 bits (log,(64)).

Bias memories organization
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Bias Memory
Figure 5.63 1*1 Convolution Bias Memories Organization

As shown in Figure 5.63, the biases of 1*1 convolution layer filters (1024 biases) are
distributed on 16 memory instances as the operation of the 1*1 convolution need to take 16 biases
in parallel for the 16 current applied filters in the computation units. Each instance has 64 rows
(words). The first sixteen filter biases (filters from 1 to 16) are stored in the first row of the memory
instances, then the second sixteen filter biases (filters from 17 to 32) are stored in the next row and
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so on. Hence, after finishing each 16 filters in parallel we just increment the bias memory address
counter to get the next 16 biases.

5.5.2.3 Fully-Connected Weight Memories

In the fully-connected layer, we have 1000 filters, each one 1024 channels, and each
channel has a window of 1*1, It’s like a 1*1 convolution. So totally, we have 1,024,000 (~ 1
million) weights in this layer to be stored. It has almost half the parameters of the ShuffleNet CNN
(~ 2.3 million parameters). The number of memory instances is indicated by the parallelism used
in the FC core, which is 32 in channels, so we need 32 weights from the same filter simultaneously.
Hence, 32 memory instances of single port BRAMs are used to provide the 32 parallel weights.
Each instance contains 32,000 weights and each weight is represented in a 15-bit fixed point
number. We used single port BRAMs instead of dual port BRAMSs as number of BRAMs in both
cases is the same. Moreover, we used the memory IP of Vivado design suit with its minimum area
algorithm to generate the memory instances because it reduces number of BRAMS needed in case
of the FC layer. Thus, each instance is stored in 14 BRAMs (36kb), and the total BRAMSs occupied
for the FC weights is 448 BRAMSs. The size of the address of the FC filter memories is 15 bits
(ceil(log,(32,000))).

Filter memories organization
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Figure 5.64 FC Filter Memories Organization

As shown in Figure 5.64, the weights of each filter (1024 weights) are distributed on the
32 memory instances as the operation of FC needs 32 channels from the same filter in parallel.
And it takes 32 rows (words) from each instance. The first filter is stored in the first 32 rows of
the memory instances, then the second filter is stored in the next 32 rows and so on. Hence, after
fetching each 32 weights from a filter in parallel we just increment the filter memory address
counter to get the next 32 weights from the same filter till all channels of the filter are fetched,
then start fetching the next filter.
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5.5.2.4 Fully-Connected Bias Memories

Each filter in the FC layer has one bias, so totally the FC layer has 1000 biases. And since
the FC core operates on one filter at a time, we need the memory also to provide one bias at a time.
Thus, one memory instance is used to store all these biases. Actually, no need for implementing
the bias memory using LUTs or BRAMs as this layer has few biases and they are constants.
Simply, these biases will be just connected to VDD and GND and bits of the memory address. The
size of the address of the FC Bias memory is 10 bits (ceil(log,(1000))).

Bias memory organization

Bias Memory

Memory Address
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Figure 5.65 FC Bias Memory Organization

As shown in Figure 5.65, the biases of FC layer filters (1000 biases) are stored in one
memory instance as the operation of the FC layer needs to take one bias at a time for the current
applied filter in the computation unit. Thus, the memory instance has 1000 rows (words). After
finishing each filter in the computation core, we just increment the bias memory address counter
to get the next filter bias and so on.

5.5.3 Feature Map storage

In Group 3, no intermediate storage between the 1*1 convolution layer and average pooling
layer while there is an intermediate storage between the average pooling layer and fully-connected
layer to store all the 1*1*1024 feature map first before passing them to the FC layer. This
intermediate storage is a register file has 1024 registers and each one is a 15-bit width register, we
used register file instead of memories because the average pooling layer writes in this storage more
than two words at a time and the FC layer reads more than two words at a time and BRAMSs has
only two ports at maximum. If we used multiple memory instances, it would exhibit very poor
BRAM utilization. So, it is better to use registers. The register file is a special type of register files
as it is designed to perform a specific writing and reading methodology based on the parallelism
in average pooling and FC layers; it has inputs and outputs as follows:

Inputs
The inputs to the register file are as follows:

1. Data: 16 parallel pixels (words) coming from the average pooling layer.
2. Control signals like shift and sel_channels signals.
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Output
The outputs of the register file are 32 parallel pixels (words) going to the fully-connected layer.

Writing Methodology
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Figure 5.66 Register File Writing structure

Average pooling layer writes 16 parallel words at a time in the register file. So, in writing
we consider the 1024 registers are divided into 64 register banks and each bank contains 16
registers. First sixteen words are stored in the first register bank and the second sixteen words are
stored in the second register bank and so on. As shown in Figure 5.66, the sixteen parallel words
are connected to inputs of all banks. The required register bank to store words are selected by
activating the enable signals of its registers while other banks are deactivated. Enable signals are
generated from a shift register of 64-bit width where enable signals of the first bank are connected
to the first bit (LSB) in the shift register and those of the second bank are connected to the second
bit and so on. This shift register has only one bit activated (high) at a time, and the other bits are
low. After the correct words are written in the register file (as the average pool generates correct
words each 49*16 = 784 clock cycles), Group 3 controller activates the shift signal to shift the
active bit of the shift register to the next bit. Hence, the next register bank is ready to capture the
next correct words from the average pooling layer.
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Reading Methodology
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Figure 5.67 Register File Reading Structure

Fully-connected layer reads 32 parallel words at a time from the register file. So, in reading
we consider the 1024 registers are divided into 32 register banks and each bank contains 32
registers. First thirty-two words are read from the first register bank and the second thirty-two
words are read from the second register bank and so on. As shown in Figure 5.67, outputs of the
register banks are passed through 32:1 MUXs to select the required bank to read from. After the
FC reads each thirty-two words from the register file, Group 3 controller increments the
sel_channels signal to select the words of the next register bank.

5.5.4 Group 3 Controller

We use the Controller—Datapath architecture in our design approach. In the previous
subsections, we explained the Datapath of Group 3 and in this subsection, we will explain the
control part of Group 3. As mentioned in the beginning of this chapter, we have distributed
controllers so Group 3 has its own controller. It manages the sequence of operations, data flow in
Group 3, however it works under the supervision of the accelerator controller. Group 3 controller
manages 5 big operations; 1*1 convolution, average-pooling, register file, FC and classification
unit. And it has inputs and outputs as shown in Figure 5.68:

Inputs
The inputs to Group 3 controller are as follows:

Control signals from accelerator controller: group3_start, reset.
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Output
The outputs of the Group 3 controller are as follows:

1. Control Signals for Extra memory:
o extramem_read_address
2. Control Signals for 1*1 Convolution:
convlbyl filter_addressl
convlbyl filter_address2
convlbyl bias_address
convlbyl sel zero
3. Control Signals for Average Pooling:
o avgpool_acc_en
o avgpool_sel _zero
4. Control Signals for Register File:
o shift
o sel_channels
5. Control Signals for Fully-Connected:
o fc_filter_address
o fc_bias_address
o fc_sel _zero
6. Control Signals for Classification Unit:
o reset
o class_count
o max_reg_enable
7. Status signal for the Accelerator Controller:
o group_done

Accelerator
Controller

DoneT l Reset l Start

FC_filter_address conviby1_filter_address1
conviby1_filter_address2
Fully-  FC_bias_address y1_Tiieer_; . 1%1
Connected conviby1_bias_address |Conyvolution
FC sel zero -
= conviby1_sel_zero N
Group 3 Controller -
shift avgpool_acc_en
) ) | Average
Register File averagepool_sel_zero ag
_ sel_channels » pooling

max_reg_enable Reset [Class_count | extramem_read_address

¥

Classification

Unit EXtramemory

Figure 5.68 Shows the input and output signals of Group 3 and its interaction with other blocks
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The function of each control signal of them are illustrated in the computation cores and
memories subsections unless the control signals go outside Group 3, they will be illustrated here
in the methodology.

Methodology

All the operations in Group 3 can be managed using counters and simple logic so no need
for design FSM. This can be seen from the sequence of the operations in Group 3 that must be
handled by the controller, it is as follows:

Group 3 waits a start signal from the accelerator controller to start processing the feature
map stored in the Extra memory so it then sends a read address to the Extra memory to fetch words
from it each clock cycle. These words are processed by the computation core of the 1*1
convolution layer as illustrated before. Weights from filter memories are fetched each clock cycle.
Moreover, the convlbyl sel zero signal must be activated after a clock cycle from the first
parallel words in any filter in the 1*1 convolution enter the computation core. This 1 clock cycle
delay because of the pipeline in the computation core Each 784 (16*49) clock cycles, the
convlbyl bias_address is incremented to fetch new filter bias. Due to the pipeline in the core, bias
must be delayed by 2 clock cycles from the data.

While the 1*1 convolution works, the computation core of the average pooling works on
the output of the 1*1 convolution simultaneously. Thus, each 16 clock cycles, avgpool_acc_en
signal is activated to allow the accumulator register in the average pooling core capture the correct
data. Due to the pipeline in the 1*1 conv core as well as the outputs of 1*1 convolution go directly
to the average pooling, this enable signal must be delayed by 2 clock cycles from the corresponding
data enters the 1*1 convolution. Moreover, the avgpool_sel_zero signal is activated each 784
(16*49) clock cycles and it must be delayed 2 clock cycles from the corresponding data enters the
computation core of the 1*1 convolution. Average pooling writes its outputs in the register file so
each 784 (16*49) clock cycles, the shift signal is activated. For the same reason; the pipeline in
1*1 convolution and average pooling as shown in Figure 5.57 and Figure 5.58 respectively, it must
be delayed 3 clock cycles from the corresponding data enters the computation core of the 1*1
convolution too.

After the 1*1 convolution and average pooling computation cores finish their work and the
1024 words (pixels) are stored in the register file, their operations are hold by stopping their control
signals to save dynamic power and make sure that the data in the register file will not change. Also,
fully-connected layer start working on the data in the register file, thus, the sel_channels signal is
activated and increments each clock cycle to fetch new words from the register file. Moreover, the
fc_filter_address increments each clock cycle to fetch new weights from the FC weights memories.
The fc_bias_address is also activated and increments each 32 clock cycles to fetch new filter bias.
Due to the pipeline in the FC computation core as shown in Figure 5.60, the fc_bias_address must
be delayed by 2 clock cycles from the data enters the FC computation core. Like the previous two
computation cores, there is a fc_sel_zero signal. It is activated first time after one clock cycles
from the beginning of the FC operation and it is then activated each 32 clock cycles. There is a
one clock cycle delay at the beginning due to the pipeline in the FC computation core.
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While the FC core works, the classification unit works on the outputs of the FC layer
simultaneously. Hence, the max_reg_enable is activated first time after 34 clock cycles from the
beginning of the FC operation and it is then activated each 32 clock cycles. There is a two clock
cycles delay at the beginning due to the pipeline in the FC computation core as well as data goes
directly from the FC to the classification unit. Also, classification unit uses the class_count value
to store the index of the class of maximum probability. After the value of the class_count reaches
1000 classes, and the FC and classification unit finish their work, the operations of the FC and the
classification unit are hold by stopping their control signals to save dynamic power and to make
sure that the class index will not change until the next operation. The group_done signal is
activated as well to inform the accelerator controller that Group 3 finish its operation and it’s free
to start new operation.

Table 5.12 Signals of Group 2

Signals Activation/Increment Delay
extramem read address Each clock cycle NA
convlbyl filter addressl Each clock cycle NA
convlbyl filter address2 Each clock cycle NA

convlbyl bias_address

Each 784 clock cycles

2 clock cycles

convlbyl sel zero

Each 16 clock cycles

1 clock cycles

avgpool acc en

Each 16 clock cycles

2 clock cycles

avgpool sel zero

Each 784 clock cycles

2 clock cycles

shift Each 784 clock cycles 3 clock cycles
sel_channels Each clock cycle NA
fc filter address Each clock cycle NA

fc_bias_address

Each 32 clock cycles

2 clock cycles

fc sel zero Each 32 clock cycles 1 clock cycles
class_count Each clock cycle 2 clock cycles
max_reg_enable Each 32 clock cycles 2 clock cycles
group _done After class count = 1000 1 clock cycles

In Group 3 controller, there is a start flag to capture the start signal and hold it high while
the group works because the coming start signal from the accelerator controller is a pulse signal.
Its architecture based on 10 counters used to manage the sequence of operations in Group 3 and to
generate the above control signals. They are:

1) extramem_read_count: Counts number of words read from each instance in the Extra memory
which means it represents the Extra memory read address. So, it is used to generate the
extramem_read_address. Its initial value is 0 and it counts up to 783.

« extramem_read_address = extramem_read_count.

2) filterl offset: Its value represents the address of the beginning of the filter weights read from
the first port of the 1*1 convolution weight memories. So, it is used to generate the
convlbyl filter_addressl. Its initial value is 0 and it increments by 32. Also, It Increments each
16 clock cycles.
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3) filter2_offset: Its value represents the address of the beginning of the filter weights read from
the second port of the 1*1 convolution weight memories. So, it is used to generate the
convlbyl filter_address2. Its initial value is 16 and it increments by 32. Also, It Increments
each 16 clock cycles.

4) filter_elem_count: Each filter in the 1*1 convolution weight memory takes 16 rows from the
memory instances. The value of this counter represents the applied filter current row number to
be read either from the first port or the second port of the 1*1 convolution weight memory. So,
it is used to generate the convlbyl filter_addressl and the convlbyl filter_address2 as well
as convlbyl sel zero. It can be considered as the number of accumulations occurs from the 16
accumulations required to produce a correct output from the 1*1 convolution computation core.
Its initial value is 0 and it counts up to 15.

s convlbyl sel zero = (filter_elem_count == 15).

¢+ avgpool_acc_en = (filter_elem_count == 15).

From 3 & 4:

s convlbyl filter_addressl = filterl offset + filter_elem_count
s convlbyl filter_address2 = filter2_offset + filter_elem_count

5) window count: It counts number of pixels processed from a window of the input feature map
either by the 1*1convolution or the average pooling as they are working simultaneously and
they have the same window size 7*7. So, it is used to generate the avgpool_sel _zero signal. Its
initial value is 0 and it counts up to 48. Also, It Increments each 16 clock cycles.

From4 & 5:
<+ avgpool_sel _zero = (window count == 48) & (filter_elem_count == 15).

6) biaslbyl add count: Its counts number of biases read from each 1*1 convolution bias
memory instance which means it represents the address of the bias memory. Hence, it is used
to generate the convlbyl bias_address signal. Its initial value is 0 and it counts up to 63. Also,
It Increments each 16 clock cycles.
¢ convlbyl bias address = biaslbyl add count

7) accumulate_count: It counts number of accumulations occurs from the 32 accumulations
required for each filter in the FC computation core. So, it is used to generate the fc_sel_zero
signal and the max_reg_enable signal. Its initial value is 0 and it counts up to 31.

s fc_sel_zero = (accumulate_count ==31)
¢ max_reg_enable = (accumulate_count ==31)

8) sel_channels_count: Its value represents the required register bank to be read by the FC core
from the register file which means the selection of the output mux in the register file. So, it is
used to generate the sel_channels signal. Its initial value is 0 and it counts up to 31.
¢ sel_channels = sel_channels_count

9) fc_add_count: Its value represents the number of weights read from each FC weight memory
instance which means the address of the FC weight memories. It is used to generate the
fc_filter_address. Its initial value is 0 and it counts up to 31,999.

10) class_counter: Its value represents the number of the current applied filter in the FC core which
means the current class number. So, it is used to generate the class _count and the
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fc_bias_address. Its initial value is 1 and it counts up to 1000. Also, It Increments each 32 clock
cycles.
¢+ class_count = Class_counter
« fc_bias_address = Class_counter — 1
From 7 & 10:
¢+ group_done = (Class_counter == 1000) & (accumulate_count == 31)

When the start signal becomes high, all these counters are reset to their initial values. The
enables and reset of these counters are controlled through a simple logic on their values. In addition
to using delay units to achieve the required delay for the controller signals as in the above table.

5.6 Accelerator Controller Design

After we have illustrated the architecture of the three groups including their internal
controllers, and the intermediate memories between them in the previous sections, it is time to
illustrate the design of the top-level controller which is called the accelerator controller. It
supervises the operation of the sub-controllers and it decides which groups will work and which
will not, depending on the number of images in the pipeline and the existence of new incoming
image. Also, it handles the communication with the outside world (source of images such as a
processor). The accelerator needs to know that the source of images has written an image in the
photo memory and it is ready to be processed. On the other hand, the source of images needs to
know when it is allowed to write a new image in the photo memory as the photo memory can store
only two images at most. Also, it needs to know when the image class is ready.

As our architecture has 3 pipeline stages; there are many scenarios that must be handled by
the accelerator. They are as follows:

o Scenario no.1l: new incoming image to the accelerator and the pipeline is free; no previous
images. (Group 1 only must work)

o Scenario no. 2: no new incoming image to the accelerator after Group 1 has finished its work
and other groups didn’t work last time. (Group 2 only must work)

o Scenario no. 3: new incoming image to the accelerator while Group 2 is working only. (Group
1 and Group 2 only must work)

o Scenario no. 4: no new incoming image to the accelerator after Group 2 has finished its work
and other groups didn’t work last time (Group 3 only must work)

o Scenario no. 5: new incoming image to the accelerator after Group 2 has finished its work and
other groups didn’t work last time (Group 1 and Group 3 only must work)

o Scenario no. 6: no new incoming image to the accelerator after Group 1 and Group 2 have
finished their work. (Group 2 and Group 3 only must work)

o Scenario no. 7: new incoming image to the accelerator after Group 1 and Group 2 have finished
their work. (Group 1 and Group 2 and Group 3 must work)

o Scenario no. 8: new incoming image to the accelerator while Group 2 and Group 3 are working
only. (Group 1 and Group 2 and Group 3 must work)

o Scenario no. 9: no new incoming image to the accelerator after Group 2 and Group 3 have
finished their work and Group 3 didn’t work last time. (Group 3 only must work)
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o Scenario no. 10: new incoming image to the accelerator after Group 1 and Group 3 have
finished their work and Group 2 didn’t work last time. (Group 1 and Group 2 only must work)

o Scenario no. 11: no new incoming image to the accelerator after Group 1 and Group 3 have
finished their work and Group 2 didn’t work last time. (Group 2 only must work)

o Scenario no. 12: no new incoming image to the accelerator after Group 3 has finished its work
and other groups didn’t work last time. (All groups will not work until the next incoming image)

Now and before talking about the design of the accelerator controller and how it handles
the above scenarios, we must define the inputs and outputs of the accelerator controller. Inputs and
outputs of the accelerator controller as shown in Figure 5.69 are as follows.

Inputs

The inputs to the accelerator controller are as follows:

Control signals: reset (Global asynchronous reset)

Status signals: groupl_done, group2_done, group3_done and maxpool_mem_done (from Group 2).
Handshaking signal: photo_ready (from the source of images).

Output

Control signals: groupl_strart, group2_start, group3_start, and ping_pong_sel.

Handshaking signal: busy (to the source of images).

Source of Images

busy Photo_ready
Y

groupd start group1_start

el

Group 3 Group 1

group3 done group1_done

Y

Y

Accelerator Controller

group2_start

MFhOtO ping_pong_sel group? done Group 2
emory

F Y

maxpool_done

b

reset

Qutside World

Figure 5.69 The input and output signals of the accelerator controller

The function of each signal of them will be illustrated below in the methodology.
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Methodology

When the source of images finishes writing an image in the photo memory and the image
is ready to be processed, it must send a pulse on the photo_ready signal. So, the accelerator
controller knows that there is a new incoming image. It can write only one image between two
successive photo_ready pulses.

As explained in the section of the photo memory, it is a ping pong memory and it has a
signal called ping_pong_sel which is used to choose which memory instance will store the next
image and the other one will be for reading the current image by default. Thus, when the source of
images sends a pulse on the photo_ready signal, the ping_pong_sel signal must be toggle to use
the other memory instance to write a new image and allow the accelerator to read the current
image. To make the ping_pong_sel signal toggles each time the source of images sends a
photo_ready signal, we designed a flag to generate and store the state of the ping_pong_sel signal.

The source of the image cannot send photo_ready signal while the busy signal is high.
When it is low, it is allowed to send the photo_ready pulse. The busy signal is high while Group 1
is working or when Group 2 is working and the maxpool_mem_done signal is low because Group
will not be able to process the new image in the photo memory 1 in the both cases.

From the scenarios explained above, it is obvious that the best approach to design the
controller is the FSM approach. Hence, we designed a finite state machine with 5 states to cover
all the scenarios. The state diagram of the FSM is as shown in Figure 5.70.
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& Busy= Busy_Flag Busy= Busy_Flag
o e |
Photo_Ready=0 “é}, _____‘Starﬂ— (busy) & photo_ready Stari1=~({busy) & photo_ready
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_ Efc-::ref&[}oneE& ~(busy)
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Group_reset=1 @‘5‘@; \3}%‘9}? {g,’ %%ip
Stam_ 2.3=0 %J,\\fq, b, o “
Busy=0 7 Ot th}_
v O
A I‘.\\-..,_ - i -
%, Stan2,30 Q

Busy= Busy_Flag

Busy= Busy Flag
Start1=~(busy) & photo_ready
If(done,2,3 & busy)

start? 3=1

Figure 5.70 The Accelerator Controller State Diagram

The choice of the states is based on the all-possible combinations from the groups as in the
scenarios so we have IDLE, G1, G1_2, G1 2 3, and G1_3 states. We can see that Group 1 are in
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the all states unless the IDLE state because Group 1 depends on the photo_ready signal. So, to
avoid redundancy, when other Groups work, we will handle both cases; the case of a new incoming
image (Group 1 works) and the case of no new incoming image (Group one doesn’t work). And
we can use the state of the busy signal to know whether the Group 1 worked or not and hence
choose the next state as shown in the state diagram in Figure 5.70.

groupl_start = photo_ready

To transit from a state to another, all done signals of the current working groups must be
asserted but as we designed them to be pulses and they are asserted at different times, the controller
needs to keep the state of each one of them (when they become high) until the condition becomes
valid. As well, the busy signal depends on the value of the maxpool_mem_done signal in the most
of states because Group 2 works but the maxpool_mem_done signal is designed to be a pulse and
we need when maxpool_mem_done signal becomes high, the busy signal becomes low and keep
its state until Group 1 works again. To do that we designed a flag for each one of them to store
their states as shown in figure 5.71.

1 —-p o2 4 _.p qDone 1 D | Done3
— E —E —E
Group1_done Group2_done Group3_done
R R R
Start_Group1 or Groups_Reset  Start_Group2 or Groups_Reset Start_Group or Groups_Reset
Busy Flag _ Na—lD Q i,
0—=D = Ping_Pong_Sel

Maxpoal_mem Photo_ready

done R R

Start_Group1 or Groups_Reset Groups_Reset

Figure 5.71 Flags of the Accelerator Controller

The start signals of the groups are designed to be pulses as well. For Group 1, it comes
from the photo_ready signal which is also a pulse signal. Thus, no need to handle this case. But
For Group 2 and Group 3, their start signals are activated depending on the state so we must handle
this case here. Thus, we made the activation of these start signals occurs only on transitions to be
performed only once and then return low again within any state.

5.7 Summary of RTL Design

This chapter provides a thorough discussion on the chosen design with the details of how
the convolution layers of ShuffleNet are implemented, and introducing the different approaches of
implementing filter memories and feature map intermediate memories, then the proper
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implementation of pooling layers, to end up with output classification implementation for getting
the index of the maximum probability class. Figure 5.72 summarizes the hierarchy of all blocks
used to build the ShuffleNet accelerator.

Ping Pong Photo memory

Group 1 blocks |

FIFO (x 24)
[ FIFO¢24) |

Maxpool FIFO

Group 1

Group 2 blocks |

X_left Shuffle
memory | | memory

X _right Y Shuffling
memory | | memory i

| Filter ROM I 1*1 ConV
Bias ROM C 8

Group 3 blocks |

Extra memory

| Filter ROM I
Bias ROM

Classifier

JE[[CIAUGY) JONRIE[EDNT

Filter ROM || Avgpool

1024 Core

Reg Bias ROM

1*1 conv

Core Group 3

Figure 5.72 Hierarchy of all blocks used to build the ShuffleNet accelerator

Since we target the highest speed with affordable power, one of the main techniques used
to improve the accelerator speed was the parallelism in computation cores. Table 5.13 summarizes
all the used parallelism factors. We should mark out that the number of channels in all layers of
the shuffle group is divisible by 29 which is a non-familiar prime number not divisible by any
other factor. But we could exploit this demerit for our favor by making the parallelism in channels
be of a factor 29 and parallelism in filters be of a factor 58, so any number of channels or filters
will be divisible by the used parallelism. This leads to a complete fitting and better utilization of

memories.
Table 5.13 Summary of all used parallelism factors in the ShuffleNet Accelerator
Block Parallelism Used
3*3 Conv 24 parallel in filters | 3 parallel in channels | 3 parallel in window
Maxpooling 24 parallel in channels
1*1 Conv 58 parallel in filters 29 parallel in channels
Shuffie group 3*3 DWconv 58 parallel in filters 9 parallel in window
1*1 Conv 16 parallel in filters 29 parallel in channels
Avg pooling 16 parallel in channels
FC layer 32 parallel in channels
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5.8 Verification of RTL Functionality

The validation step is one of the most important steps in the design to make sure that the design
is behaving correctly comparing to the software model of the architecture. And also, the behavior
is still correct after any optimization done to the model.

It also very important to verify the functionality not only to the hole system but also the
sub-blocks before assembling the accelerator. This makes it easier to locate problems. To test
and validate the design we need a testing strategy to automatically insert inputs and check the
outputs.

5.8.1 Testing Strategy

python

| !
[ Input file ] [ Qutput file ]

f Self-checking
RTL l Qutput RTL ]—[ Testbench ]

Figure 5.73 Testing strategy

We use the software implementation using python of the accelerator as the reference for
the RTL design. Figure 5.73 illustrates the testing strategy we used. First, we use the python
model to generate files containing the input of the model written in the correct format and
quantization that the RTL model expect. And generation files containing the correct outputs to
compare it with the outputs of the RTL model. Then we create a self-checking testbench to read
the input files and pass them to the design then write the output of the RTL to files and compare
them with the files generated from the python model.

This procedure is performed for each group separately functional, post-synthesis and
post-implementation. Then for the entire accelerator. If any miss-match between the two files
appears, we debug the source of the problem to solve it.
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5.8.2 Validation Results
5.8.2.1 Validation of the Design Functionality

To validate the functionality of the model we used a photo from the validation set to use
it as an input to the design and then check the output class generated from the RTL model. We
used the photo and the correct class is 259 as shown in Figure 5.74. Which is equals to the class
generated from the RTL model as shown in Figure 5.75.

This operation is not enough to validate the accuracy of the model.

n02110806 baseniji
n02110958 pug, pug-dog
n02111129 Leonberg
n02111277 Newfoundland, Newfoundland dog
n02111500 Great Pyrenees

‘ n02111889 Samoyed, Samoyede «———
n02112018 Pomeranian

Figure 5.74 ImageNet Sample and predicted class

Figure 5.75 Simulation output class

5.8.2.2 Validation of the accuracy

To validate the accuracy, we and to use a large number of test photos to get a reasonable
measure of the accuracy. The accuracy of this validation step is increasing by increasing the test
photos used.

We used 100 photos in this step to get an acceptable measure of the accuracy with
acceptable run time because the simulation of one photo requires large run time.

The accuracy of the RTL model for the 100 photo is 71% which is the same as the accuracy
of the software model for the same 100 photos. This accuracy is predicted to be lower for the
50000 photos to be equals to the software model (68.14%).
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6 Chapter 6: Optimizations

After the architecture blocks had been integrated into one top-level block and functionally
verified, as explained in chapter 5, we proceeded with the rest of the FPGA flow (synthesis and
implementation). Our target FPGA is the Virtex-7 FPGA. When we tried implementing, the
process ended with a netlist that fits in the FPGA resources, but it has congestion of level 6. So,
the tool couldn’t complete routing and finish implementation. To solve this problem, we used the
implementation directives of Vivado to force it to make much effort in the implementation steps.
Also, we tried to reduce the fanout through the architecture. The implementation directives and
handling the high fanout nets are used to solve the congestion are explained later in this chapter.
When we implemented the design on 50 MHz, it was successful without any violations and worked
on the FPGA with 608 frames per second, this result will be discussed later in chapter 9. When we
tried implementing on 100 MHz, we ended with a netlist that is placed and routed on the FPGA
successfully, but the critical path has a slack of -8.731 ns, as shown in Figure 6.1, because of
routing. So, from this point, we started performing other optimizations on the architecture to help
it meet timing, reduce area and reduce power.

Throughout the chapter, we will explain the software optimizations that will then lead to
RTL level optimizations that we applied to the architecture to reduce its size and hence reduce
routing delay. These optimizations enable us not just to meet timing but also help reduce the used
resources and hence reduce power too.

Status WNS TNS WHS THS TPWS Total Power Failed Routes LUT FF BRAMs URAM DSP
synth_design Complete! 171724 134.. 1453.00 0 2917
phys_opt_design (Post-Route) Complete! -8.731 -1083561.375 0.050 0.000 0.000 14.662 0 172559 136... 1453.00 0 2917

Figure 6.1 Timing before optimization
6.1 Software Modeling Optimizations
6.1.1 Verified Software model

After we finished our hardware model and we were sure that it was working correctly
(output class is correct), we compared the output probabilities of the hardware model with the
output probabilities of the software model and we found that there is about 10% difference between
them which is an unexplained and unpredicted difference.

We found that we have done some edits on the hardware model to avoid divisions, so we
returned back to the software model and did all the edits, that have been done on the hardware
model, on software model to make it identical to the hardware model to predict the validation
accuracy with zero error and zero difference between probabilities.

Edits are removing batch normalization layers from the software model, editing
weights of the model to have the same effect of batch normalization, multiplying in avg pooling
layer by 5/256, not 1/49 due to quantization, and separating the branches of the software model
which are consists of three or two convolutions together without quantization between them, so
we separate each convolution to quantize the feature map after each convolution like the hardware
model.
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After we made these edits, we retested the model on the whole 50000 photos of the
ImageNet validation with different quantization to check the accuracy again and the results are
shown in Table 6.1.

Table 6.1 Quantization results on 50000 photos

Floating Point 32-bit Accuracy 69.362%

Bit Width Integer length Fractional Length Accuracy
17 6 10 69.244%

16 7 8 66.578%

68.068%

66.576%

38.744%

38.476%

14 6 7 55.950%
13 4 8 38.246%
13 5 7 55.054%

From Table 6.1, we can see that the edits decrease the accuracy of any quantization as the
model has a lower number of weights and quantization after every layer of the model, not branches
as before.

Also, we can see that the accuracy of our hardware model is not as expected before, it's
actually 66.57%, not 68.3%. Also, we can conclude that if we use 15-bit quantization it's better to
make a 9-bit fraction than an 8-bit fraction.

From these results and observations, we see that the fraction affects the model greater than
the integer. The minimum acceptable bits of the integer are 5 bits but the minimum acceptable bits
of the fraction are 8 bits. We want to increase the accuracy versus the number of quantization bits,
to have better quantization.
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6.1.2 Increasing accuracy

We started by studying the effect of feature map quantization and weights quantization and
quantizing them independently. We observed that quantization of weights has a greater effect on
the accuracy than feature map quantization. This can lead us to have a 15-bit quantization of the
feature map and have an accuracy of 68.5% which is very close to 16-bit quantization.

Then we make a weights file that can save an accuracy of 68.5%. We will use the file with
any feature map quantization. We called these weights optimum weights to talk about them easily.
Optimum weights are mentioned in detail as shown in Table 6.2.

Table 6.2 Optimum weights quantization

Weights width (bits) | fraction (bits)
3by3 conv. weights 12 9
Shuffle group 1by1 conv.
. 11 9
weights
Shuffle group 3by3 conv.
. 15 8
weights
Shuffle group biases 13 9
1by1 conv. weights 9 8
fully connected weights 15 8
fully connected biases 11 8

6.1.3 Editing the original shuffle model

From optimum weights, we see that fully connected weights have a 6-bit integer due to its
maximum weight value of 40.5. This quantization of fully connected make it consume a large
number of BRAMs as it has 1 million parameters. If we decrease this width, we will save a lot of
BRAMs.

We can remove dividing on 49 from avg pooling layer and divide the fully connected
weights by 49 as shown in Figure 6.2, this will make the maximum weight in it equal to 0.82 which
doesn't need integer bits, so we can quantize fully connected weights with 9-bit width 8-bit fraction
this will reduces BRAMSs utilization.
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FC output = = ) AVG pool output X WEC + bpg

FC output = $3 =/ Conviby1 out x Wgc + bge
43

FCoutput= | = ) (=) Conviby1 out x WEg + bFg

49
Figure 6.2 Divide FC weights by 49 instead of avg pooling

Also, we will get rid of multiplying by 1/49 on the hardware model which is quantized to
5/256, causes decreasing in output probabilities and decreasing the accuracy. So now, avg pooling
doesn’t have division we can call it sum pooling and we update fully connected weights.

The breakpoint of accuracy is the 14-bit quantization of the feature map. Are all layers
preventing us from decreasing quantization bits to 14 bits or individual layers? When we
investigated all layers, we find that the fully connected layer is the single layer that prevents us
from decreasing quantization bits to 14 bits as its output needs at least 5 bits for integer. but all
layers of the model need only 3 bits for integer.

We can deal with this problem by quantizing fully connected with different quantization,
but we have a better way to deal with this problem which is dividing the fully connected equation
by a fixed number. This way is slightly strange, but we can explain it simply. We determine the
top-1 class depending on the maximum fully connected output, so if we divide all fully connected
outputs by a fixed number, this doesn’t affect the maximum (the top-1 class).

So, we will divide the fully connected outputs by 4 as shown in Figure 6.3 to make them
need 3 bits for integer like all layers, not 5 bits. Also, number 4 has a powerful advantage, as we
don’t need to divide, it simply can be a shift operation which is very easy on hardware design.

FC output = 5 (3 Conviby1 out x Wgg + brc
45

Conviby1 out X Wge + bre
4 439 4
Figure 6.3 Divide FC equation by 4

FC output = >
4

There are several benefits of this edit. First, we can divide the output of average pooling
by 4 as shown in Figure 6.3 which makes the output of average pooling decrease again, as we
removed dividing by 49. Second, fully connected output need only 3 integer bits so we can quantize
all model on 12-bit width and 8-bit. Third, fully connected bias can be quantized 9-bit width and
8-bit fraction as the maximum value of it was 3, so when we divide it by 4 it doesn’t need any
integer bits.
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These edits have never happened before on the CNN architectures in general. After these
edits on the original shuffle model, we can quantize the model on 12-bit width and 8-bit fraction
with an accuracy of 68.38%.

6.1.4 Photo Quantization

We can quantize the photo with 11-bit width and 8-bit fraction, as the transformations
performed on the photo before sending it to the model make the maximum integer of it 2 only
which needs 2 bits integer only. We apply this quantization to the whole 50000 photos of the
ImageNet validation and it doesn't affect the accuracy at all, as the integer bits which more than 2
bits don’t carry any information.

We can quantize the photo with 8-bit width and 5-bit fraction, this affects accuracy only
by 0.12% which is a very small effect but saves a lot of BRAMSs due to the size of the photo. We
apply this quantization to the whole 50000 photos of the ImageNet validation and the accuracy
before it is 68.38% and the accuracy after it is 68.26%.

6.1.5 Dynamic Quantization

To get a better result, we decided to do dynamic quantization. After several trials of
quantization for each layer of the model, we reach this dynamic quantization described in detail in
Table 6.3.

Table 6.3 Dynamic quantization of layers

Layer name width (bits) | fraction (bits)
photo 8 5
3by3 conv. output 10 6
Max-pooling output 10 6
Shuffle group output 12 8
1by1 conv and avg pooling 9 5
fully connected 9 5

This dynamic quantization has an accuracy of 68.184% on the whole 50000 photos of the
ImageNet validation which is decreased by about 1.17% with respect to floating point accuracy. If
we decrease any bit of this dynamic quantization, accuracy will decrease at the minimum by 0.22%
which is comparable to the total decrease.
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6.2 RTL Optimizations

6.2.1 Powerful Implementation Directives

The Vivado Design Suite implementation process transforms a logical netlist and

constraints into a placed and routed design, ready for bitstream generation. The implementation
process walks through the following sub-processes:

1)
2)
3)
4)

5)

6)
7)

8)

Opt Design: Optimizes the logical design to make it easier to fit onto the target FPGA.
Power Opt Design (optional): Optimizes design to reduce the power demands of the FPGA.
Place Design: Places the design onto the target FPGA.

Post-Place Power Opt Design (optional): Additional optimization to reduce power after
placement.

Post-Place Phys Opt Design (optional): Optimizes logic and placement using estimated
timing based on placement.

Route Design: Routes the design onto the target FPGA.

Post-Route Phys Opt Design (optional): Optimizes logic, placement, and routing using
actual routed delays.

Write Bitstream: Generates a bitstream for the FPGA configuration.

With each of these sub-processes we can choose powerful directives to reach a better

implementation that’s optimized for timing, power or something else. The directives that we used
are listed below with explanation of each of them.

opt_design -ExploreWithRemap: Runs multiple passes of optimization with remapping and
combining multiple LUTs into a single LUT to reduce the depth of the logic.

place_design -ExtraNetDelay high: Increases estimated delay of high fanout and long-
distance nets. This directive can improve timing of critical paths that meet timing after
place_design but fail timing in route_design due to overly optimistic estimated delays. Two
levels of pessimism are supported: high and low. ExtraNetDelay _high applies the highest level
of pessimism.

post-place phys_opt_design -AggressiveExplore: Runs different algorithms in multiple passes
of optimizations with more aggressive goals.

route_design -NoTimingRelaxation: Prevents the router from relaxing timing to complete
routing. If the router has difficulty meeting timing, it runs longer to try to meet the original
timing constraints.

post-route phys_opt_design -AggressiveExplore: Directs the router to further expand its
exploration of critical path routes while maintaining original timing budgets. The router
runtime might be significantly higher compared to the Explore directive because the router
uses more aggressive optimization thresholds to attempt to meet timing constraints.
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6.2.2 Handling High Fanout signals

One of the causes of design congestion on FPGA is the presence of many high fanout
signals. So, by reducing this high fanout or reducing it, the routing will be easier and any
congestion will be resolved. Our Design had a congestion of level 6 when first implemented, so
we reported all the high fanout nets using this command report_high_fanout_nets and found that
the congestion originates from some signals related to Group 2 as listed below:

e Shift_load for FIFO

e Reset FIFO

e Reset Core Registers in 3by3
e Reset Core Registers in 1byl
e Address of Maxpool memory

First, we tried to reduce the fanout of these control signals using the control sets in Virtex-
7, where all registers in a slice share common control signals (CLK, reset/set, enable), and thus,
the control sets can be packed into the same slice. We Used opt_design -control_set_merge and
opt_design merge_equivalent_drivers commands to merge equivalent control sets after synthesis.
But this wasn’t enough, so we used some implementation directives like post-place
phys_opt_design -explore and post-route phys_opt_design -explore which solved the congestion
on account of routing delay. To help reduce the congestion so as to reach a better timing, we
eliminated the high fanout control nets reported above and reduced the fanout of the Maxpool
memory address by implementing it using BRAM s instead of LUTS.

Removing shift load signal

The shift_load signal of the FIFOs in Group2 is always high except the last clock cycle
after last window process, where data_valid is high. We will eliminate this clock cycle to make
the shift_load signal always high and raise data_valid in the beginning of the next state after
process as shown in Figure 6.4.

1 1
| State after process | State after process

Shift_load

1

1

1

1
I
I
]
1
1
1
1

Last window
process

1 1
Last window, Extra cycle |
—————|—

! process :fordatavalid1

data_valid

- -

Figure 6.4 Removing shift_load signal

Removing all reset signal

We used to reset the FIFO in IDLE state to have the first zero padding row already when
using the FIFO. To remove the FIFO reset, we added a state after IDLE to load the 1st row of
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padding in FIFO. In IDLE, we put padding_sel = 1, to fill the FIFO with zeros when not using it,
this gives the same effect of reset.

The zeros in FIFO propagates to the Multiplier registers of 3by3 DWconv core after 1 clock
cycle, so no need to reset the Multiplier registers in the 3by3 DWconv core. The Multiplier
registers of 1byl core doesn’t require a reset too, as the 1by1 is operating most of the time.

Finally, after these optimizations, we were able to implement the design on 50 MHz
without any violations and reached 608 frames per second. The upcoming optimizations aims at
improving the timing, power and area and to increase the maximum operating frequency of the
design.

6.2.3 Optimizing the Division in the Average Pooling Layer and the FC Weights

In the average pooling, the output is divided by 49, we designed it as a constant multiplier
by 1/49 as shown in Figure 6.5, but if we put this number in a fixed-point representation, we will
discover that it is only 101 at the least bits of the 15-bit representation and all the remaining bits
are zeros. Actually, it is not a 1/49 exactly, it is 5/256 because of quantization noise. Hence, it will
affect and reduce the accuracy. To overcome this issue, we can remove this multiplier from the
average pooling and divide the FC weights by 49, as shown in Figure 6.6, because the outputs of
the average pooling will be multiplied then by the FC weights so it will give the same effect. The
FC weights will be divided by 49 and then quantized by software. Thus, we ensured that the
accuracy is the same as the software model as well as the data width in the average pooling and
the FC weights are minimized. Hence the required number of BRAMSs and resources are reduced.
And as a result, it will have a positive effect on timing.

000000000000001
- X
1/49———— 000000000000101

number—> 000000000000001
000000000000000 +
number << 2— 000000000000001 +

000000000000101
Figure 6.5 Average pool multiplier

6.2.4 Reduction for the Output Size of FC

As explained in chapter 5, the probabilities of the 1000 classes are passed from the FC
layer to the classification unit, and it just compares them. So, we can divide them by four first and
then compare them. This optimization will allow us to reduce the width of the signals and hence
reduce the used resources and routing delays while it will not affect the accuracy as we are
interested in the max probability, not the absolute value. Also, we ensured by the software model
that there is no impact on the accuracy. We can apply the same effect of dividing the FC outputs
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by 4 through dividing the average pooling output and the bias of the FC by 4. It is a shift right by
2 in the case of the average pooling output and the bias parameters are updated by software. This
optimization above as well as the optimization stated above for the division by 49 in the average
pooling are, as shown in the FC output equation in Figure 6.6. So, we can gain the most benefits
from this optimization as it results in reducing the size of the FC output data, average pool output,
and the number of BRAMSs used for weights and biases of the FC, also the worst negative slack is
reduced.

FC output= [ = ) AVG pool output x WEg + brg

FCoutput=| = ) '~ Conviby1 out x Wgc + b
= m

FC output=| = | (= )Conviby1 out x Wgc + b

43

Conviby1 out X Wge + bEg
4 43 4
Figure 6.6 FC output size reduction

FC output = Z:::::ﬁ
—F—4 -

6.2.5 Applying Optimum Weights and Bias Sizes for All Layers

Applying optimum weights and bias width through reducing their widths in each layer
while guaranteeing that the software model's accuracy is unaffected. So, the width of the weights
and biases of 3x3 convolution will be 12 bits (9 bits for the fraction). And the biases of group 2
will be of size 13 bits (9 bits for the fraction) and the weights of 3x3 DW convolution will be 15
bits (8 fractions) and the weights for 1x1 convolution in group 2 will be 11 bits (9 fractions) and
the weights and bias for group 3 will be 9 bits (8 fractions) as shown in Figure 6.9. As shown in
Figure 6.8, this reduces the number of BRAMS consumed to 1155.5 BRAMs and lowers the WNS
to -0.053ns.

SB|SB|SB|SB|SB|SB|SB(SB|f8 |7 |16 |5 |3 |2 [f1

SB|f8 |f7 |f6 |f5 |3 |f2 |1

Figure 6.7 Reduction in the width of the Group 3 convlbyl weights

Nzme Constraints  Status WNS TS WHS THS  TPWS TotalPower Falled Routes LUT FF BRAMs  URAM DSP

v o gynth 1 constrs 1 synth design Complete! 115789 133734 1135530 0 2817
mpl_1 constrs L Mot started

o impl 2(2tve] constrs 1 phys _opt design (Post-Route) Complete! 0,053 «1.520 0.031 0.000 0.000 12.282 0 117832 135138 115550 0 27

Figure 6.8 Timing after optimum weights and bias sizing
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6.2.6 Reducing the width of the input Photo

Photos are formed from pixels, and each pixel value are represented in 8-bit integer number
which means it can take values from 0 to 255 only. In the ShuffleNet CNN, input images must be
preprocessed first by a certain transformation. This transformation changes the range of the pixel
value and makes its value has integer and fraction parts. And as we use a 15-bit fixed point (8-bit
fraction) representation in this architecture, the input photo pixels are represented in the same way
too. But value of the photo pixel after the transformation is from -2 to 2 so no need for all the 15-
bits, it only needs 2 bits for the integer part and 8 bits for fraction part. Hence, the total bits needed
are 11 bits including the sign bit. This optimization will reduce the data width in the photo memory
and in the computation cores in Group 1 and hence decrease number of BRAMSs, LUTs and
registers. It also will decrease routing wires used and help the design meet timing.

Actually, we reduced the width of the input photo to be 8-bits (5-bit fraction) because the
accuracy will be a little bit affected (reduced by 0.01%) while it will reduce the number of BRAMSs
used. We validated the accuracy by the software model after applying this optimization to it.

6.2.7 Removing the quantizer after Group3 1*1 convolution

In the architecture, we put a quantizer at the end of each computation core. But we found
out through the software model that when we put a qauntizer at the end of the computation core of
the 1*1 convolution in Group 3, the accuracy degraded very much. So, we removed this quantizer
from the RTL. It may increase the width of the data in the average pooling a little bit but it will
save the accuracy. Also, average pooling is now just a summation unit and it has a quantizer at the
end.

6.2.8 Applying Dynamic Quantization for All Model Layers

Using a dynamic quantization for all model layers based on the software model to
determine the appropriate data width for each layer will not compromise accuracy. Beginning with
the data from the photo memory, the data width will be 8 (5 bits for the fraction) due to some
processing reducing the values of the pixels for the image, and moving to the output of group 1,
the data width will be 10 bits (6 bits for the fraction), the output from group 2, the data width will
be 12 bits (8 bits for the fraction), and the output of group 3 will have data width of 9 bits (5 bits
for the fraction) as shown in Figure 6.9. This results in meeting timing with a positive slack of
0.014 ns and a positive hold slack of 0.046 ns targeting 100MHz clock frequency as shown in
figure 6.10.
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Figure 6.9 Optimum weights, bias size, and dynamic quantization

Design Timing Summary

Setup Hold
Worst Megative Slack (WHNS): 0.014 ns Worst Hold Slack (WHS): 0.048 ns
Total Negative Slack (TMNS):  0.000 ns Total Hold Slack (THS): 0.000 ns
Mumber of Failing Endpoints: 0 Mumber of Failing Endpoints: 0
Total Number of Endpoints: 318755 Total Number of Endpoints: 318738

All user specified timina constraints are met.
Figure 6.10 Timing after applying all optimizations
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7 Chapter 7: High Level Synthesis (HLS)

7.1 Introduction
7.1.1 HLS Design Flow

High Level Synthesis (HLS) is a tool which takes a software model written in a high-level
language like C, C++ or SystemC as input and generates RTL files as output which describes the
model in terms of hardware components which is done in process. RTL files are written in Verilog
or VHDL and are synthesizable so that we can use it with a synthesizer to implement the RTL files
into real hardware whether the target hardware is ASIC or FPGA. In our case, we target FPGA so
we will use Vivado HLS tool. We chose to use C++ as high-level language in software modelling.

1
1

C, C++, SystemC C, C++, SystemC, Constraints/
Test Bench OpenCL API C Directives
[(——— "= —— = — - = — — — — — _—— —
| C Simulation J { C Synthesis |

'

| |
| |
| |
RTL e VHDL |

| |
| ] !
|

l

[ RTL Simulation ] ‘ Packaged IP
| _____________ l N : f - _l_ :
Vivado Xilinx
Design GsefetfaTo .| Piatform
Suite Studio

Figure 7.1 HLS design flow

As shown in Figure 7.1 [22], HLS tool give us the power of verification the behavior of
the generated RTL files (RTL simulation and is referred to by Vivado HLS as C/RTL co-
simulation) by writing simply high level testbench with high level language also which make it
faster to develop then the tool will generate the RTL testbench also in Verilog or VHDL. Also, we
can run the software model on the HLS tool to verify its functionality before making high level
synthesis (C simulation) using the same high level testbench.
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HLS tool also can take some Constraints and directives which help the designer to specify
how the generated hardware will look like to make parallelism, pipelining and resource sharing to
meet the specification of the hardware system and desired performance in terms of throughput,
latency, speed, area and power. There are also some constraints which can guide the tool to do
more effort to generate the desired hardware. HLS tool gives some reports about the estimated
latency, maximum clock and the resources of each hardware block generated. In the Vivado HLS
GUI, the Analysis Perspective allows you to interactively analyze the results in detail.

After generating the desired hardware and verify its functional behavior using RTL
simulation, tool can export the RTL files as an Intellectual Property (IP). We can use the IP inside
any other design, or make it the top design if we want, to implement the design into real hardware
on FPGA and this can be done by using the IP inside Vivado design suite.

We can summarize the HLS design steps as following:

1) Develop algorithm at the high level (like C++).

2) Verify the algorithm at the high level. (C simulation)

3) Synthesize the C algorithm into an RTL (Optimize using directives and constraints).
4) Generate reports and analyze the design (Analysis Perspective).

5) Verify the generated RTL (RTL simulation).

6) Export the design as an IP.

7.1.2 HLS Benefits
High Level Synthesis bridges hardware and software domains aiming to [23]:

e Improved productivity for hardware designers: Hardware designers can work at a higher
level of abstraction while creating high-performance hardware.

e Improved system performance for software designers: Software developers can accelerate
the computationally intensive parts of their algorithms on a new compilation target, the
FPGA.

e Develop algorithms at the C-level: Work at a level that is abstract from the implementation
details, which consume development time.

o Verify at the C-level: Validate the functional correctness of the design more quickly than
with traditional hardware description languages.

e Control the C synthesis process through optimization directives: Create specific high-
performance hardware implementations.

e Create multiple implementations from the C source code using optimization directives:
Explore the design space, which increases the likelihood of finding an optimal
implementation.

o Create readable and portable C source code: Retarget the C source into different devices as
well as incorporate the C source into new projects.
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7.1.3 HLS Phases

High-level synthesis includes the following phases:

Scheduling
Determines which operations occur during each clock cycle based on:

o Length of the clock cycle or clock frequency.

o Time it takes for the operation to complete, as defined by the target device.

o User-specified optimization directives.
Binding
Determines which hardware resource implements each scheduled operation. To implement
the optimal solution, high-level synthesis uses information about the target device.
Control logic extraction
Extracts the control logic to create a finite state machine (FSM) that sequences the
operations in the RTL design.

7.1.4 HLS Code Structure

High-level synthesis synthesizes the C code as follows:

Top-level function arguments synthesize into RTL 1/O ports.

C functions synthesize into blocks in the RTL hierarchy: If the C code includes a hierarchy
of sub-functions, the final RTL design includes a hierarchy of modules or entities that have
a one-to-one correspondence with the original C function hierarchy. All instances of a
function use the same RTL implementation or block.

Loops in the C functions are kept rolled by default: When loops are rolled, synthesis creates
the logic for one iteration of the loop, and the RTL design executes this logic for each
iteration of the loop in sequence. Using optimization directives, you can unroll loops,
which allows all iterations to occur in parallel. Loops can also be pipelined, either with a
finite-state machine fine-grain implementation (loop pipelining) or with a more coarse-
grain handshake-based implementation (dataflow).

Arrays in the C code synthesize into block RAM or UltraRAM in the final FPGA design:
If the array is on the top-level function interface, high-level synthesis implements the array
as ports to access a block RAM outside the design.

7.1.5 Important Directives
1) ALLOCATION

Specify a limit for the number of operations, cores or functions used. This can force the
sharing or hardware resources and may increase latency.

2) ARRAY_PARTITION

Partitions large arrays into multiple smaller arrays or into individual registers, to improve
access to data and remove block RAM bottlenecks. Vivado HLS provides three types of
arrays partitioning as shown in Figure 7.2:
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1. Block: The original array is split into equally sized blocks of consecutive elements

of the original array.
2. Cyclic: The original array is split into equally sized blocks interleaving the elements

of the original array.
3. Complete: The default operation is to split the array into its individual elements.
This corresponds to resolving a memory into registers.

[ e——
[ N2 | o [ N2 | w1
’1—>| 0 | 2 I . IN'El
0 1 2 N3 | N2 | N1 |4 | eyl
IS D T e B T T T
Lo 1 —
= =
B
-

Figure 7.2 Array Partition Styles

3) DATAFLOW
Enables task level pipelining, allowing functions and loops to execute concurrently
(Parallelism). Used to optimize throughout and/or latency as shown in Figure 7.3.

void top (a.b.e.d) {

fune_A(a.bal); func_A
fune_B(e.il.i2):
fune_C(i2.d)

return d;

(5 I I O I

- > -~
8 eyeles 3 cyeles
func_A func_A func_A

8 cycles 5 cycles

(A) Without Dataflow Pipelining (B) With Dataflow Pipelining

Figure 7.3 Dataflow Optimization

4) DEPENDENCE
Used to provide additional information that can overcome loop-carried dependencies and
allow loops to be pipelined (or pipelined with lower intervals).

5) INLINE
Inline a function, removing function hierarchy at this level. Used to enable logic
optimization across function boundaries and improve latency/interval by reducing function
call overhead.
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6) RESOURCE
Specify that a specific library resource (core) is used to implement a variable (array,
arithmetic operation or function argument) in the RTL.

7) LOOP_FLATTEN
Allows nested loops to be collapsed into a single loop with improved latency.

8) LOOP_TRIPCOUNT
Used for loops which have variables bounds. Provides an estimate for the loop iteration
count. This has no impact on synthesis, only on reporting.

9) UNROLL
Unroll for-loops to create multiple instances of the loop body and its instructions that can
then be scheduled independently as shown in Figure 7.4.

void tep(.) { ...
for_mmalt:for (=310} {

afa] =bla] * <fi];
3

;-

Iterations -
Rolled Loop Partially Unrolled Loop Unrolled Loop
. Read b[3] Read b[2] Read b[1] Read b[0] Read b[3] Read b{1] Read b[3]
= Read b[2] Read bf0] Read bf2]
& -1 - ] - | - === Read of2]
[ Wiealsl | Wriedzl | Witeali] | Wreabol | Read b1
- | -
I Read bi0]
| Writea[3] | Writea1] | Read cf0]
| Wwiitea[2] | writcajol QS
I
I
= 1
| Wrieal3] |
| writeal?] |
| Writeal1] |
\ | write alo] |
Figure 7.4 Loop Unrolling Details
10) PIPELINE

Reduces the initiation interval by allowing the overlapped execution of operations within
a loop or function. Pipelining allows operations to happen concurrently, each execution
step does not have to complete all operations before it begins the next operation. Pipelining
is applied to functions and loops. The throughput improvements in function and loop
pipelining are shown in Figure 7.5 and 7.6 respectively.
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void fune(...) {

op_Read; RD
op_Compute;
op_Write: WR

BN S [

- > -
3 eycles 1 cycle
RD RD RD
PE— RD
2 cycles -
2 cycles
(A) Without Function Pipelining (B) With Function Pipelining

Figure 7.5 Function Pipelining

void fune(m.n.o) {
for (1=2:1>=0:1--) {
op_Read:
op_Compute: [
op_Write: [
}
}
- -
3 cycles 1 cyele
o CIEE S EIEN s COEE e R
< > = ETHE
¢ cycls o I I
- >
4 cyeles
(A) Without Loop Pipelining (B) With Loop Pipelining

Figure 7.6 Loop Pipelining
7.2 Software Model Architecture
7.2.1 First Model

Firstly, we think in a simple way to build our high-level software model by making each
convolution or building block of our CNN architecture (ShuffleNet) as a function which
implements the computations needed. Each function can take its input data (input feature map)
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inside a C++ array and provide the output data inside another C++ array and so on as shown in
Figure 7.7.

The advantage of this software architecture is easy to code but it has a disadvantage which
make it impossible to implement. The disadvantage is that each array written in C++ will
correspond to a memory in the generated RTL files or hardware so that we will have many memory
instances each has big size of data which will not fit inside the FPGA as the BRAMSs needed are
larger than provided inside the FPGA so we have to find another software architecture.

) ) )
Memory Memory Memory
array array array
N— — —

Figure 7.7 First Model

7.2.2 Second Model

The second and final model is based on shared memories (shared C++ arrays) which can
be accessed by all functions in the design. These memories are implemented in a way to use
suitable number of BRAMSs making the generated hardware able to be fit and implemented on the
FPGA. The class of the input photo which is the output of our CNN model will be provided by the
FC layer (function) which is the last layer by comparing the 1000 output probabilities and selecting
the index of the maximum probability as the output class.

As shown in Figure 7.8, we have 4 shared memories (C++ arrays) and each convolution,
pooling layer and shuffling unit is implemented as a function. 1By1Conv and 3By3DWConv are
grouped with shuffling unit to build a function called “Shuffle Group”. Last 1By1Conv and AVG
Pooling are grouped together into one function also. All of the functions and memories (C++
arrays) are grouped into a top-level function called “Shuffle Model”. This top-level function is
given to the Vivado high level synthesis tool synthesizer to generate the RTL files for the generated
hardware after verify the software model functionality using C simulation.
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Figure 7.8 Final Model
7.2.3 Basic Elements Coding Style

7.2.3.1 Convolution and Pooling Layers

Convolution is coded using nested for loops. The outer nested loop is looping on the filters.
The outer for loop has inside it 2 for loop to mainly fetch the window from the input feature map,
one loop fetches horizontally and another fetch vertically. Inside these for loop, there is number of
for loop equal to the dimensions of the convolution filter each loop is looping on one dimension.
For example, if we have a 3By3 convolution with 3D filters we will have 3 for loops as shown in
Figure 7.9, if it is depth wise convolution (2D) we will have 2 for loop and if it is 1by1 convolution
we will have one for loop. Pooling layers has the same structure with different operation.

for (u=start; u < Fliters number; u++) //output channels
{
for (n=start; n < Rows_number; n++) //output FM rows
{
for (m=start; m < Columns number; m++) //cutput FM columns

{

for (v=start; v < Channels number; v++) //input channels
! for (i=start; i<Window; i++) //kernel rows
{ for (j=start; j<Window; j++) //kernel columns
! // Reading window from input feature map (reading from input memory)
// Rpplying Filter (MAC operations)

}
}

// Writing element in the output memory

Figure 7.9 3By3 Convolution Code Structure
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7.2.3.2 Padding and RELU

Padding is needed only before some convolutions only. But for the sake of simplicity, we
will make the padding all the time meaning that input feature map for any convolution will be
padded and the convolution will use the padding if needed. Padding is coded to be done on the
output of the function so that when it became an input for the next function, the padding is ready.
This code is written before the nested loops of the convolution or pooling computation.

RELU will not be a standalone function. It will be merged with any convolution have
RELU after it. It will be only an if condition checks if the output element which has been calculated
IS zero or a positive number and will store zero or the output based on this condition. This will
save the time of storing the output in a memory then reading all the data again to check if it greater
than zero or not then store it again in memory as this operation will take a big time as reading from
memory will be a bottleneck resulting in increasing latency.

In 3by3 convolution, we will make padding and RELU so the code structure shown in
Figure 7.9 will be updated as shown in Figure 7.10.

// Padding the output

for (u=start; u < Fliters_ number; u++) //output channels
{ for (n=start; n < Rows_number; n++) //output FM rows
¢ for (m=start; m < Columns_number; m++) //output FM columns
; for (v=start; v < Channels_number; v++) //input channels
; for (i=start; i<window; i++) //kernel rows
{

for (j=start; j<wWindow; j++) //kernel columns
{

// Reading window from input feature map (reading from input memory)
// Bpplying Filter (MAC operations)

Figure 7.10 3By3 Convolution Structure with Padding and RELU

7.2.3.3 Shuffling Unit

It is coded using nested for loops which send data from memory (C++ array) with old index
(location) to another memory (C++ array) with new index (location) so that we can shuffle data as
explained before.

7.2.3.4 Passing Unit

It passes data from memory to another in the same locations. The advantage of this function
is to simplify the model by fixing the input memory for the shuffle block with stride 2.
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7.3 Data Representation

As stated before, we will use fixed point representation in our hardware design and this is
the case also in HLS as Vivado HLS tool give us the freedom to do any arbitrary precision data
type so that we can specify any number of bits we needed in the design and not to be restricted
with C++ data types. The smaller bit-widths result in hardware operators which are in turn smaller
and faster. This is in turn allows more logic to be place in the FPGA and for the logic to execute
at higher clock frequencies.

But we have a big problem. The problem is that ROM synthesis can be slow when using
fixed point data type. In our case, we have large arrays which contain the filter weights of our
CNN which will be synthesized as ROMs using BRAMSs and as stated before we have around 2.3
million parameter and this turns into very long runtime of high-level synthesis.

As stated in Vivado HLS user guide, if we use integer data type instead of fixed point it
will be much faster in synthesis. So, we will convert our code to use integer data type so that we
can synthesis the model in a shorter time. It turns in giving us the freedom to make more trials
with different directives and optimization techniques to get an optimized hardware which is like
to be impossible with fixed point data type.

After reaching the desired results in terms of speed and area on FPGA, we will convert our
model back to fixed point representation and do high level synthesis. In this case it will not be a
problem to take large time as we do it once.

7.3.1 Integer Representation

In order to use integer data type, we extract all our CNN parameters and the input photo
again in integer format. Then we use “short int” data type because it is 16-bit so that the resources
and latency estimated for our design are very close to the results when using fixed point data type.

Unfortunately, integer data type cannot replace fixed point because of the difference in
overflow handling after multiplication as fraction size doubles so that if we need to use smaller
number of bits after multiplier, we will take bits on the middle but in integer it will take the least
significant bits. As a result of that integer cannot replace fixed point, we will record the output
class resulting from the model using integer data type as a reference. Then after any edit in the
code we will compare the output class with this reference to be sure that the software models still
behave functionally correct (C simulation).

After that we will synthesis the model and do RTL simulation (C/RTL co-simulation) and
compare the results again with the integer output class reference to ensure that tool has done the
synthesis correctly. If RTL simulation passed in integer model so it has a very big chance to pass
in fixed point model but not vice versa. So, we need to convert back the model to fixed point
datatype, synthesis it and do RTL simulation to ensure that the synthesis step performed correctly.
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7.3.2 Fixed Point Representation

Vivado HLS tool has a header file called “ap fixed.h” which we can use do define variables

with a fixed-point format as following:

1) Include “ap fixed.h” header file.
2) Declare a new variable which has a type of fixed point.

To declare a variable we should use the keyword “ap_[u]fixed<W,I,Q,0,N>" and the options
inside the greater than and less than are used as following:

W& I

“W?” is the total number of bits used in fixed point representation. “I”” is the number of bits
which is on the left side of the binary point which is the number of integer bits plus one bit
sign as shown in Figure 7.11.

MSB LSB

I-1 1 0 -1 -B

Binary point
W=I+B

Figure 7.11 Fixed Point "W" and "I"" options

Q
This dictates the behavior when greater precision is generated than can be defined by smallest

fractional bit in the variable used to store the result. The default of this option is truncation and
this is suitable in our case.

@]

This dictates the behavior when the result of an operation exceeds the maximum (or minimum
in the case of negative numbers) possible value that can be stored in the variable used to store
the result. The default of this option is wrapping. In our case we will use the wrapping as
default as it gives the same accuracy as saturation and this is tested by the software model on
python on the 50000 photos of the validation set of ImageNet.
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7.3.2.1 Data Format

To synthesis ROMs to hold our CNN parameters we define C++ arrays contain this data.
We found that if we write this data in hexadecimal of binary format it will synthesis faster although
we use fixed point data type (still slower than integer). But when we use these formats, the data
are read wrong. Data are read as they are the maximum positive number can be hold by the fixed-
point data type however the real data are much smaller and can be just a fraction making the output
IS not correct.

So, the only format to write data inside the arrays with is the decimal format like any
fraction number to get the correct output result.

7.3.2.2 Multiplication and Addition Output Size

We must take care about the size of the variables when doing multiplication and addition
operation as the output of theses operation is larger than the input to get the correct result from the
software model.

In addition, we accumulate number of times equals to the size of filter of the convolution
so we can define a new fixed-point variable which have a size larger than the input by “log2 M”
where “M” is the number of additions. The new variable will put normally on the left-hand side of
the addition statement and the tool will manage the difference in the sizes. Also, we can add 2
fixed point numbers with different sizes and the tool will manage the addition.

In Multiplication, we can multiply 2 numbers with different sizes also and the tool will
manage the multiplication. But we must take care of that if we multiply 2 numbers one of Qnl.m1
and another Qn2.m2 the result must be stored in Qnl1+n2.m1+ml.

7.4 Optimizations

After we finished writing the software model without any directives and simulate it using
C simulation and validate the output. We synthesis the model with fixed point data type with 15-
bit width and 8-bit fraction to analyze the generated reports from Vivado HLS tool and determine
the speed and resources of the generated hardware so do optimizations if needed.

This model which we called “Original Model” after synthesis gets the following (detailed
results mentioned in “Results” section):

e Latency: 690,776,599 clk cycles.
e Resources: 99% of BRAMS, 1% of DSPs, 2% of LUTs and, 0.005% of FFs on Virtex-7 VC709
Evaluation Platform.

It is very clear that we need to do strong optimizations to get acceptable speed in terms of
frames/second.

7.4.1 Simplifying Expressions and Pipeline Optimization (Pipeline Model)

First optimization is done through 2 steps as following:
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Simplifying Expressions

While writing the code we coded some expressions which can ease the access of the arrays to
fetch the window from input feature map, get the filter parameters, write output in the memory
and shuffle the data. These expressions include multiplications and addition will be performed
as hardware to generate address of the memory inside the hardware so if we simplify this
expression latency will decrease and resources also can be decreased.

Pipeline

We will use the “PIPELINE” directive inside the inner loop of each convolution, pooling,
shuffling and passing unit so that the operations which take more 1 clk cycle can be pipelined
and finished in clk cycles. For example, if we added this directive for 3by3 convolution
function the code in Figure 7.10 will be updated as shown in Figure 7.12.

These 2 optimizations result in the following (detailed results mentioned in “Results” section):

Latency: 237,717,509 clk cycles.
Resources: 99% of BRAMs, 0.008% of DSPs, 2% of LUTs and, 0.006% of FFs on Virtex-7
VC709 Evaluation Platform.

These optimizations speed up the hardware by a factor of 2.9x. But we still need to do more
optimizations.

for (u=start; u < Fliters_number; u++) //output channels
{
for (n=start; n < Rows_number; n++) //output FM rows
{
for (m=start; m < Columns number; m++) //output FM columns
{
for (v=start; v < Channels_number; v++) //input channels
{
for (i=start; i<Window; i++) //kernel rows
{
for (j=start; j<Window; j++) //kernel columns

Figure 7.12 "PIPELINE" directive inside inner loop of 3by3 Convolution

7.4.2 Parallelism Based Optimization (Parallelism Model)

Parallelism is a common way used in hardware design to speed up the design and increase

its performance. Unfortunately, the first technique doesn’t get synthesized correctly as RTL
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simulation doesn’t match the C simulation so we went with another technique. These 2 techniques
are explained below in details.

7.4.2.1 Parallelism on Filters

This is the first technique which is based on compute more than one filter of convolution
in parallel or compute more than one window in pooling layer. As we take the same window from
input feature map and compute the output of filters in parallel at the same time.

To implement this optimization, we will use some directives of Vivado HLS tool which
will guide the tool to synthesis a parallel hardware without doing changes in the software model.
The directives used are as following:

e PIPELINE: inside the inner loop to do all operation in 1 clk cycles.

e DATAFLOW: in order to make hardware in parallel so that we can compute the output of
different filters simultaneously.

e DEPENDENCE: to remove the dependency on a specific variable which we accumulate the
filter multiplications inside it so that all filters can be processed in parallel as we want to infer
different hardware for every filter and parallel them using “DATAFLOW”.

For example, if we have a 3by3 convolution so the code in Figure 7.12 will be updated as shown
in Figure 7.13.

for (n=start; n < Rows_number; n++) //output FM rows

| {

for (m=start; m < Columns_number; m++) //output FM columns
[ {

for (v=start; v < Channels_number; v++) //input channels
| {
for (i=start; i<Window; i++) //kernel rows
I {
for (j=start; j<Window; j++) //kernel columns

Figure 7.13 Parallel filter Code Structure.

The advantages of this optimization technique as following:
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e We don’t need to partition the input memory as the same input will be read by each filter. It is
very suitable for us because the input memory is shared for all design so each block will need
different partition.

e Filter ROM is easy to be partitioned if needed except for 1byl Convolution and 3by3 DW
Convolution as they hold weights for different stages with different sizes.

The disadvantages of this optimization technique as following:
e Output memory need to be partitioned to write all filters results at the same time.
There is some notes and modifications for this optimization technique as following

e We try to use UNROLL directive to unroll the for loop which loops on the filters the use
DATAFLOW to make then in parallel but it doesn’t work.

e When using these directives without partition the output memory, it works and latency
divided by 24 (number of filters as desired) in 3by3 Convolution.

e We put the computation core (nested loops which perform the convolution) inside another
function called core function.

e 1byl Convolution and 3by3 DW Convolution nested for loops on max size (as they are
repeated with different sizes as our CNN architecture need) to be suitable for directives.

e After integrating the whole model, directives didn’t work inside all functions except 3by3
conv. So, we put internal memory inside every function takes the input first from the shared
memory then do the rest of the function and it fix this problem without increasing memories.
We think that tool optimized the internal memories as they don’t add new logic for the code.

e Filter memories with these directives is doubled in size automatically by tool so that they can
fetch the bias and weights in same cycle as we stored them in same memory (C++ array) so
we split the them by storing weights in memory and bias in another memory and this solved
the problem.

The most important step after any optimization is to do C/RTL co-simulation (RTL
simulation) to ensure that high level synthesis step is done correctly as directives only affect the
synthesis not the software model behavior.

Unfortunately, RTL simulation on 3by3 Convolution only and on the whole model
after synthesis mismatches the C simulation resulting in false synthesis for this optimization.
This can happen for many reasons, one of them is the misuse of the directives. So, we traced the
model and found some things which may cause synthesis fails and tried to fix it as following:

e Removing internal memories as it may not correctly synthesized.

e Removing core function so that parallelism can be made without internal memories.

e Convert the accumulator variable into an array with number of filters so that every filter has
its variable to store the result so after removing dependence it will synthesize correctly.

e Partitioning the output memory so that there will be no conflict while writing the filter outputs.

Unfortunately, after all these tries RTL simulation still gives wrong results so we need
another technique with using directives to make synthesis done correctly.
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7.4.2.2 Parallelism Inside Filters

The idea in this technique is to compute al the filter multiplication in the same cycle and
then adding them together. If we pipeline the multiplication and addition, this will result in
almost compute all the filter in on cycle but with some overhead.

One concept which make it suitable is that in convolution we take same window from input
feature map and apply it on a filter then take another window and apply it on the same filter as so
on. After we read all the input feature map and apply the first filter, we again read a window from
input feature and apply another filter until we read all the input feature the read the input feature
to the next filter and so on for each filter. So, we can read the input feature map window once and
apply all filters sequentially as each filter after parallelism take only cycle.

In this way, we only read the window once instead of reading same data multiple time
and that can give us the chance to read the window from input feature may simultaneously with
applying the filter on the window read last time. In other words, we can parallel reading window
from input feature map with applying the filter on another window.

The advantages of this optimization technique as following:

e We can reduce the latency by order of magnitude of the number of weights in the filter so as
filter sized increase, speed will also increase.

e This is the common way to making parallelism in HLS as we read some papers which used
this technique in their design. So, RTL have a big chance to be synthesized correctly (and
that what will end up with).

The disadvantages of this optimization technique as following:

e Asfilter size increase, number of DSPs needed to parallel the multiplications increase so area
and power increase but we will take care of them to be suitable.

e The reduction in latency will be small if filters size is small, which is the case in 3by3 DW
Convolution and Max pooling layers.

To implement this optimization, we will use some directives of Vivado HLS tool which
will guide the tool to synthesis a pipelined and parallel hardware. The directives used are as
following:

e UNROLL.: to unroll the inner nested loops which apply the filter on the window taken from
the input feature map to be able to pipeline these operations.

e PIPELINE: to pipeline the operation unrolled which is multiplication and addition.

e DATAFLOW: to parallel between fetching a window from input feature map and applying
the filter on another window.

Now, we will show the code structure after some modifications and the effect of
optimization on every function as there is some differences and to know the amount of speed we
get as following:

e 3By3 Convolution
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This function has been divided into 3 functions:

1) Read Input Function: to read an input window from the input feature using 3 nested for
loop as filter is 3D dimensions. Then these for loop are unrolled so that we can parallel
the reading operation by using 2 ports of the BRAM inside the FPGA so we can read 2
inputs simultaneously. The window is then stored in an array which is passed to the “Core
Function”. Code structure for this function is shown in Figure 7.14.

2) Core Function: to apply filters on the window passed inside an array for “Read Input
Function”. We need an outer loop to loop on number of filters inside it we have nested for
loops to apply the 3D filter three for multiplication and one for accumulation and adding
bias which are unrolled to be pipelined by the directive “PIPELINE” inside the outer
loop as shown in Figure 7.15.

3) 3By3Conv Function: to do padding then call the last 2 function inside 2 nested for loop
which is looping on the input feature map to fetch all data and apply the parallelism on the
last 2 functions using “DATAFLOW?” as shown in Figure 7.16.

Filter and bias memories are split and forced to be implemented as LUTSs as they are small.

As a result, 3by3 Convolution is speed up by a factor of 26x as the filter size is 27 and
we have some overheads resulting from “PIPELINE”, for loops and “DATAFLOW?” directives.

for (v=start; v < Channels number; v++) //input channels
{
I #pragma HLS UNROLL |§
for (1=start; i1<Window; i++) //kernel rows
{
I #pragma HLS UNROLL |
for (j=start; j<Window; j++) //kernel columns
{
| $#pragma HLS UNROLL |
// Reading window from input feature map (reading from input memory)
// and store inside an array

Figure 7.14 3By3 Convolution Read Input Function
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for (u=start; u < Fliters number; u++) //output channels
q{
I #pragma HLS PIPELINE |
for (n=start; n < Rows number; n++) //output FM rows
\ {
| #pragma HLS UNROLL ‘!’
for (i1=start; 1<Window; i++) //kernel rows
\ {
I #pragma HLS UNROLL '!;
for (j=start; jJ<Window; j++) //kernel columns
{
Il #pragma HLS UNROLL
// Applying Filter Multiplications

}
}
}

for (f=start; f < Filter size; f++)
[ {

I #pragma HLS UNROLL |
// Applying Filter Accumlation and Adding Bias

}
// RELU
// Writing element in the output memory

Figure 7.15 3By3 Convolution Core Function

// Padding the output

for (n=start; n < Rows number; n++) //output FM rows
{
for (m=start; m < Columns number; m++) //output FM columns
{
| #pragma HLS DATAFLOW |
// Calling Read Input Function
// Calling Core Function

Figure 7.16 3By3 Convolution Function

Max Pooling & 3By3 DW Convolution

These two functions are 2D so they will have same structure but with different operation. The
structure of these functions will be similar to 3By3 convolution except we will add a directive
“INLINE” at the start of the “Read Input Function” and “Core Function” and remove
“DATAFLOW? directive as it gives better results in terms of speed. Also, the “Core Function”
will not include the loop which loops on the filter as the window will only be applied on one
filter as filter works on one channel so it will be the 2 loops which loop on the window to fetch
it and these two functions will be called inside them.

3By3 DW convolution is repeated many times with different sizes so the header of the for
loops will have variable upper bound depends on the calling which determine the size inside
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the “Shuffle Group” function as long as variable bounds don’t affect directives badly some
directives restricted the for loop must have fixed upper bound. Also, because the window is
always 9 elements so we don’t need different functions as the case in 1by1 convolution inside
the shuffle units.

3By3 DW Convolution filter weights and biases are split in different memories. Filter
memories also are partitioned using “ARRAY_PARTITION, cyclic” with factor 9 to be able
to fetch all weights in same clock cycle. Filter and bias memories are forced to be implemented
as BRAMs using “RESOURCE?” directive.

As a result, Max Pooling is speed up by a factor of 2.3x and 3By3 DW Convolution is

speed up by a factor of 1.32x. This factor is small as the filter size is small only 9 elements and
this is the drawback of this optimization technique.

1By1 Convolution (inside the shuffle units)

This function is repeated with different number of filter size so that we will split it into 3
functions depending on the number of filters. So, we will get 3 functions operate on 58, 116
and 232 number of filters. As the input feature map size varies, we don’t need to split
functions on it as we can make the for loop bounds variable like 3by3 DW convolution.
Splitting on the number of filters is mandatory to avoid large overhead and large area as we
will design for the biggest size of for loops and largest number of DSPs needed.

Every function will be similar to 3By3 convolution except that we can’t use “DATAFLOW”
directive as we read from all the shared memories and that will violate the principal of one
producer one consumer of the “DATAFLOW?” directive. As a result of this we don’t need to
make “Read Input Function” and “Core Function” and then call them inside a “1By1Conv
Function” instead we will take their content and write the directly inside the “1Byl1Conv
Function” in the same place of calling these functions.

1By1 Convolution filter weights and biases are split in different memories. Also filter weights
and biases are split for each number filters so we have 6 memories, 2 memories per function
size to make it possible to fetch weights in parallel as partitioning will vary.

In first stage of 1by1 convolution we have input with 24 channels but 58 filter so the filter has
a depth of 24. The rest of filters whose number are 58 have a depth of 58. So, we extend the
filter with depth 24 with zeros to have a depth of 58 and then control the number of elements
which applied for a filter by if condition to ensure the functionality. This extension is
mandatory for array partitioning as we need to partition all filters in the same memory with
same factor and all 58-channel filter will be in the same memory to achieve best resources on
FPGA.

So, filter weights memories will be portioned using “ARRAY_PARTITION, cyclic” with
factor 58 for the first function size, 116 for the second and 232 for the third. All filter and
bias memories are forced to be implemented as BRAMs using “RESOURCE” directive.
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As a result, 1Byl convolution is speed up by a factor of 27.7x on average as we take the

average latency of the 3 new functions and compared it with the old function.

Last 1Byl Convolution (after the shuffle units) and AVG Pooling

As stated, before these functions are merged as AVG Pooling can take the output of the 1byl
convolution after if condition which is doing the effect of RELU and multiply it by 1/49 as a
hard coded value to avoid division in hardware then accumulate inside the memory with the
new output.

So, the 1by1 convolution will be exactly the same structure as 3by3 convolution except here
the filter is 1D so we need only one loop for multiplication and here we can use the same for
loop to accumulate and adding the bias as the problem which make us divide them into 2 for
loops are that there is pipeline dependency but here in this 1by1 convolution only there is no
pipeline dependency as the case in 3by3 DW Convolution there is no pipeline dependency.

Filter weights and biases are split in different memories. Filter memories also are partitioned
using “ARRAY_PARTITION, cyclic” with factor 464 to be able to fetch all weights in same
clock cycle. Filter and bias memories are forced to be implemented as BRAMSs using
“RESOURCE?” directive.

As a result, Last 1Byl convolution and AVG Pooling function is speed up by a factor

of 365x as the filter size is 464 and we have some overheads resulting from “PIPELINE”, for loops
and “DATAFLOW?” directives.

Fully Connected

It is a little bit different as it is only 3 for loops one for neurons (outer loop) and one for weights
multiplication and one loop for accumulation (2 inner loops at the same level). The inner loop
which is for multiplication of weights is unrolled with factor of 256. And the accumulation
loop is fully unrolled. Then the outer loop is pipelined with “PIPELINE” directive.

Multiplication for loop is unrolled with only 256 because we don’t need it fully as it will take
1024 DSPs so we use 256 with slightly increase in latency which can be ignored nut we
decrease the number of DSPs significantly. Accumulation for loop is unrolled fully to
decrease the overhead on parallelism and to do all addition in almost one cycle after filling the
pipeline.

There as a 1024-word array to store the input of fully connected from 1byl convolution and
average pooling. This array is partitioned completely with “ARRAY_PARTITION?” directive
to be suitable for pipelining.

Neurons weights and biases are split in different memories. Neurons memories also are
partitioned using “ARRAY_PARTITION, cyclic” with factor 256 to be able to fetch all
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needed weights in the same clock cycle. Neurons weights and bias memories are forced to be
implemented as BRAMs using “RESOURCE” directive.

As a result, Fully Connected is speed up by a factor of 114.2x as we unrolled by a factor
of 256 and we have some overheads resulting from “PIPELINE” and for loops.

Parallelism based optimizations results in the following (detailed results mentioned in
“Results” section):

e Latency: 21,126,394 clk cycles in estimation and 9M in real RTL simulation.
e Resources: 91% of BRAMSs, 44% of DSPs, 61% of LUTSs and, 21% of FFs on Virtex-7 VC709
Evaluation Platform.

It is clear that parallelism is very efficient optimization as it speeds up the hardware by a
speed up factor 26x. But we still can get better results.

7.4.3 Speed Optimization

This optimization consists of two main parts, the first is removing any logic which another
technique can replace, and the second is solving the drawbacks of parallelism on filter technique.

7.4.3.1 remove time-consuming logic

The passing unit is added to simplify the model by fixing the input memory, but now we
need to increase the model speed, so we can remove the passing unit but increase the complexity
of the model a little bit by adding extra modes depending on the input memory. This will save a
lot of time as we call the passing unit 12 times.

The shuffling unit shuffles channels of the feature map. As all channels are padded, so we
don’t need to shuffle channels with padding, we can only shuffle channels without padding. this
will save some time. For example, size of a padded channel is 16*16=256, and size of the
unpadded channel is 14*14=196, we have 232 channels of this size and we shuffle them 8 times
across stage 3 of the model. which will save 8*232*(256-196) = 111360 operations in this stage
only.

The padding is added to the output of the current function, so if the next function doesn’t
need padding, we will not add this extra padding. This will save some time.

We add padding with respect to function output, but we are using shared memories so we
can put padding in memories only 1 time until the size changes. this will save the time of padding
the same-size channels many times.

These 4 optimizations result in the following:

e Latency: 17,930,226 clock cycles in estimation and 7.5M in real RTL simulation.
e Resources: 91% of BRAMs, 44% of DSPs, 65% of LUTs, and 21% of FFs on Virtex-7 VC709
Evaluation Platform.
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7.4.3.2 speed up the Max pooling and 3by3 DW convolution

As we clarify before that the speed-up factor of the max pooling and 3by3 DW convolution
is small due to filter size, so we need to speed up them with other techniques in addition to
parallelism on filter technique.

First, we apply the pipeline directive with the inline directive on these two functions which
make pipelining between the input reading, processing, and output writing. This technique speeds
up the max pooling and 3by3 DW convolution by a speed-up factor of 1.4x. This technique has a
huge effect on the model as we call the 3by3 DW convolution function 19 times. we also apply
this technique to 3by3 convolution to make it faster.

This technique results in the following (detailed results mentioned in “Results” section):

o Latency: 12,982,523 clock cycles in estimation and 5.6M in real RTL simulation.
e Resources: 91% of BRAMs, 61% of DSPs, 71% of LUTs, and 28% of FFs on Virtex-7 VC709
Evaluation Platform.

This technique has upset limitations, it increases the DSPs of 3by3 convolution from 30
DSPs to 650 DSPs for unknown reasons as it’s applied to 3by3 DW convolution and doesn’t
increase the number of DSPs anymore. The reason may be related to the depth of the channels of
3by3 convolution which is not in 3by3 DW convolution. As a result of this limitation, we remove
pipeline and inline directives from the 3by3 convolution function and return back to the dataflow
directive. Also, this increase of DSPs happens when we applied this technigque to 1by1 convolution
which strengthens the idea of relation to the depth of the channels.

Another limitation is the interval of this pipelining technique, we read 9 elements of input
in 5 clock cycles with dual ports, then process these inputs parallelly in 1 clock cycle, then write
the output in 1 clock cycle. Now it’s clear that the interval is 5 clock cycles which are for reading
input and can’t reduce due to limitations of BRAM ports. Despite we can reduce them by
partitioning the memories, this is very difficult as memories are shared memories.

As a solution for interval limitation, we can take two windows in the same iteration. the
two windows are shared six elements of inputs (if stride = 1) and 3 elements of inputs (if stride =
2). Let’s consider the case of stride = 1 as shown in Figure 7.17, we need to read 12 elements of
input in 6 clock cycles with dual ports, then process these inputs parallelly in 1 clock cycle, then
write the output in 2 clock cycles. this solution will make the interval 6 clock cycles for 2 outputs
instead of 5 clock cycles for each 1 output. This solution speed up the max pooling and 3by3 DW
convolution by an extra speed-up factor of 1.66x. This solution also has a huge effect on the model
as we call the 3by3 DW convolution function 19 times. we call this solution the dual window
technique.
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7 % 7 Input Volume 5 x5 Output Volume

Figure 7.17 Convolution with stride=1

We can apply the dual window technique to any function to reduce the latency of any
function by calculating 2 outputs by 2 outputs especially the functions that have shared elements
of the input. We applied the dual window technique to 3by3 convolution, max pooling, 3by3 DW
convolution, and 1by1 convolutions of shuffle group.

We can also apply the multiple windows technique (take more than dual windows) in the
max pooling and 3by3 DW convolution to speed up them more, as pipelining is applied to them
which makes the interval of iteration is the interval of reading input only, and each window
consumes low DSPs (9 DSPs for 3by3 DW convolution and no DSPs for max pooling). So, we
took four windows in each iteration of the max pooling and 3by3 DW convolution.

These techniques result in the following:

o Latency: 10,814,741 clock cycles in estimation and 3.7M in real RTL simulation.
e Resources: 88% of BRAMS, 49% of DSPs, 70% of LUTSs, and 21% of FFs on Virtex-7 VC709
Evaluation Platform.

To reach higher frames per second, we took four*two windows in each iteration of the max
pooling and 3by3 DW convolution. four windows in the horizontal direction and two windows in
the vertical direction.

The order of the loops affects the latency of the model a little bit. It’s better to have the
outer loop with the minimum iterations and the inner loop with the maximum iterations if the order
of the loops doesn’t affect the functionality of this code. this effect happens due to overheads of
transitions between loops.

For example, if we have 2 loops, first with 5 iterations and second with 10 iterations,
assume the overhead of transition is 2 clock cycles and the core takes 7 clock cycles. if the outer
loop with 10 iterations, then total clocks = [ (7+2) *5 + 2] * 10 = 470 clock cycles. But if the outer
loop with 5 iterations, then total clocks = [ (7+2) *10 + 2] * 5 = 460 clock cycles. this is a small
difference, but with bigger iterations and calling the function many times, this makes a noticed
difference.

We lower the fully connected parallelism factor from 256 to 32 to save DSPs and only
increase latency from 11K to 39K clock cycles which is a small increase.

152



Chapter 7: High Level Synthesis (HLS)

These edits result in the following:

e Latency: 10,902,810 clock cycles in estimation and 3.2M in real RTL simulation.
o Resources: 88% of BRAMS, 42% of DSPs, 72% of LUTS, and 21% of FFs on Virtex-7 VC709
Evaluation Platform.

7.4.4 Resources and Area Optimization

After we have finished software modeling optimization (Dynamic Quantization for each
layer), we applied its results in the HLS model. We multiply avg pooling by 1/4 instead of 1/49,
We divide fully connected weights on 49 and fully connected bias on 4. Table 7.1 below concludes
the quantization of each layer:

Table 7.1 Dynamic quantization of layers

Layer name width (bits) | fraction (bits)
photo 8 5
3by3 conv. output 10 6
Max-pooling output 10 6
Shuffle group output 12 8
1by1 conv and avg pooling 9 5
fully connected 9 5

Also, we quantized weights of the HLS model dynamically as a result of software modeling
optimization. Table 7.2 below concludes the quantization of each layer's weights:

Table 7.2 Dynamic quantization of weights

Weights width (bits) | fraction (bits)
3by3 conv. weights 12 9
Shuffle group 1by1 conv. weights 11 9
Shuffle group 3by3 conv. weights 15 8
Shuffle group biases 13 9
1by1 conv. weights 9 8
fully connected weights 9 8
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This dynamic quantization led to reducing the number of used BRAMSs, LUTSs, and FF as detailed
in “Results” section as named “Final Model”.

7.5 Verification

Our verification process has 3 steps.

7.5.1 HLS C Simulation

This is a pre-synthesis simulation which targets verifying the functionality of the software
model itself before any consideration of the hardware which will be generated. It like running any
other C program on an IDE. It is done by writing a testbench in high level C++ language where
we can call the top function of the model and give inputs and take outputs and check if the outputs
are correct or not and print messages which show the status of the testbench pass or fail.

In our case we validate that the software model gives the same class output for the input
photo as our pretrained python model. This was done on more than one photo and the resulting
accuracy is almost the same as python model. So, our software model function validation step
passes.

Also, we use this simulation when we edit the model for any optimization as we edit some
functions in the code so that we need to ensure that the functionality of the software model still
correct.

We did this step firstly on the model written with floating point data type to be easy to
debug and compare results with python then we can change the data type to fixed point or integer.
This is simply done using “typedef” keyword in C++ high level language.

In integer model, as stated before, it can’t replace the fixed point so after checked the
functionality of the model using floating point datatype, we change it to integer and rerun C
simulation to get an output which will be our golden reference after that in integer to ensure after
any edit the software functionality is still correct.

In order to run the C simulation inside Vivado HLS, you will only press on the icon shown
in the Figure 7.18. Also, we can use the debugging option to analyze the flow of the data through
whole the software model to get the point where it fails by choosing the debugging option in the
window opened after pressing the icon as shown Figure 7.19 which will take you to the debugging
perspective.

file Edt Project Solution Window Help

RoREEHG = — % Debug ;| Syntheis 6 Anaysis

CHG!
0

(3 Explorer £3 W © 0 B¢ Outine 2\ (1 Dirctve

Figure 7.18 HLS C simulation Icon
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¢ C Simulation Dialog X

C Simulation

Y1

Options
I Launch Debugger

[JBuild Only
[J Clean Build

Optimizing Compile

Input Arguments ‘

[[] Do not show this dialog box again.

Figure 7.19 Debugging Option in C simulation
7.5.2 HLS C/RTL co-simulation

This is a post-synthesis simulation which targets verifying the functionality of the
synthesized RTL with the original C-based testbench.

We use this kind of simulation after any edit in software model or directives so that we
ensure that the tool still can synthesis correctly the model after editing. It is very important step to
validate the generated RTL functionality.

We use it mainly with integer version of the model as we make many edits and trials with
integer model, as it is fast in synthesis step, and to ensure the directives works as desired and check
the real latency of the generated RTL as the latency in HLS reports is just an estimation as we
use “LOOP_TRIPCOUNT” directive to specify average number of iterations for the for loops
with variable upper bound and we overestimate this average to make a stronger optimization to
get better results.

In order to run the C/RTL co-simulation inside Vivado HLS, you will only press on the
icon shown in the Figure 7.20. We can choose which simulator to go with also if we need to save
a waveform or show it while simulation running from options in the window opened after pressing
on the icon as showing in Figure 7.21.
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File Edit Project Solution Window Help
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Figure 7.20 C/RTL co-simulation lcon

¢ Co-simulation Dialog X

C/RTL Co-simulation

Verilog/VHDL Simulator Selection
Vivado Simulator v

RTL Selection
(®) Verilog O VHDL

Options
[[] Setup Only

Dump Trace all v

[[] Optimizing Compile

[[J Reduce Diskspace

Wave Debug

[[] Disable Deadlock Detection

Compiled Library Location \ Browse...

Input Arguments ‘

Figure 7.21 C/RTL co-simulation simulator and waveform options

There is a problem with this type of simulation which is when we run C/RTL co-simulation,
tool starts C simulation automatically before C/RTL co-simulation and if print an output in a text
file C simulation print it firstly then when running C/RTL co-simulation it can’t overwrite this text
file so we could think that the output is identical to C simulation but it doesn’t. We can solve it by
printing data in console window. But this solution is limited as the output of some layers is very
large to print in console. So, we will synthesis the whole model and print the output class in the
console and check if it matches the C simulation or not.

7.5.3 Vivado Behavioral Simulation

In C/RTL co-simulation, fixed point data type gives an error so we solve this by exporting
our generated hardware RTL files (exporting will be explained in synthesis and implementation
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section) then go to Vivado design suite and perform functional simulation using a Verilog
testbench to validate the functionality of the generated hardware and determine the real latency of
the design.

Also, we use this simulation to make sure the generated RTL file which will be synthesized
by Vivado synthesizer behaves as intended before synthesis.

In testbench we instantiate the design under test with the IP exported from Vivado HLS
then we generate a clock and reset the design then we start it by making the start signal high and
wait for the output class to be printed in the waveform.

We put a real photo inside our design of the software model and synthesis with it so that
the hardware can work on this photo and output its class which is 66 (sea snake) as this is the first
photo inside the ImageNet validation set. The class of the first photo is shown in Figure 7.22.
Behavioral simulation result is shown in the Figure 7.23.

It

n0175174q : n01744401 rock python,
n09193705 4 n01748264 Indian cobr:
n02105855 n01749939 green mamba
n04263257 n0175174q sea snake
n03125729 n01753488 horned vipe:
n01735189 n01755581 diamondback,
n02346627 : n01756291 sidewinder,

Figure 7.22 Testing Photo with its ID and Class Number

« ck
& rst
4 start
e valid
@ done
e idle

& ready

# class[31:0]

Figure 7.23 Functional Simulation Result

7.6 Synthesis and Implementation

Before we can start synthesis and implementation. We need to export our design from
Vivado HLS. We will export the design as an IP as following:

1) Pressing on “Export RTL” icon as shown in Figure 7.24.
2) Choosing IP Catalog with RTL written in Verilog as shown in Figure 7.25.

File Edit Project Solution Window Help
RO R EGB BRI P Y
L5 Explorer &3 W = 8
Figure 7.24 Export RTL icon

&
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¢ Export RTL X

Export RTL as IP

Format Selection

IP Catalog v | Configuration...

Evaluate Generated RTL

Verilog v

ﬁ Vivado synthesis
[] Vivado synthesis, place and route

Figure 7.25 Export RTL Options

Once the IP has been exported, we need to add it inside Vivado design suite project to work
with it so we will add the IP as following:

1) Open project settings.
2) Choose repository from IP.
3) Add the exported IP from the solution inside the HLS project.

After the steps above, we can use the IP as normal as any other IP exists in IP catalog. We
will click on the IP and generate one and we will choose “Global” option so that we can synthesis
the IP by ourselves and determine our constraints like the operating clock.

One important step in Vivado HLS is choosing the clock and constraints which will has a
big effect in the combinational delay of the generated hardware. As we target a high clock
frequency as the design can meet so we can put a period of the clock inside Vivado HLS with 10ns.
But Vivado HLS in most of cases couldn’t meet the desired clock so we tight it and make it 7ns.
We choose this value because the latency increased as we decreased the clock period as the loop
take more clock cycles to perform same operations. At 7ns the estimated clock will be around
7.5ns which is smaller than 10ns at the same time the increasing in latency will be small and
acceptable. Clock uncertainty is kept as default 12.5%.

7.6.1 Synthesis

In this step, the exported IP which is a generated RTL files will be synthesized into gate
level netlist. In our case we will use the default settings of Vivado design suite to synthesis our
design.
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We will just create a constraints file which has constraints on the clock which we target
and the jitter to make synthesis more robust and efficient.

7.6.2 Implementation

In this step, the gate level synthesis which is resulted from the synthesis step will be
implemented using the cells inside the FPGA then the tool will place the design and route between
them. This is vital step as it has large effect for the design to meet timing constraints and operate
on the desired clock frequency without and setup or hold timing violations.

So, we develop our strategy in Vivado project implementation settings to make
implementation more aggressive and to do more effort to meet timing. The directives with options
used are as following:

e opt_design -directive ExploreWithRemap

e place_design -directive ExtraNetDelay High

e phys_opt_design -directive Aggressive Explore (post-place)
e route_design -directive NoTimingRelaxation

e phys_opt_design -directive AggressiveExplore (post-route)

7.7 Results
7.7.1 HLS Results

In this section, we will discuss the results of HLS reports which is only an estimation for
the final results after synthesis and implementing the design on Vivado design suite.

7.7.1.1 Latency

We will compare between “Original Model” and all Optimizations (as their names as in
optimization section) to know how the optimizations affected the design and how much the design
speed up. Latency is measured in terms of “clk cycle”.

Eunction\Desian Original Pipeline | Parallelism Final S -:;géab
9 Model Model Model Model P P
Factor
3By3 . 32,223,939 9,639,291 408,363 204,033 157.9x
Convolution
Max Pooling 2,037,674 1,056,506 532,394 217,758 9.36x
1Byl . 16,231,186 5,490,514 207,603 141,818 114.45x
Convolution
3By3 DW 1,370,846 293,729 191,400 133,710 10.25x
Convolution
Shuffling unit 640,785 146,625 146,626 29,776 21.52x
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Passing unit 215,993 154,049 154,050 | - | mmmemmeee
1byl
Convolution with | 46,682,113 | 23,436,289 62,440 62,392 748.2x
AVG Pooling
FC 2,051,001 1,028,001 20,001 47,001 43.64x
Total Estimated
690,776,599 | 237,717,509 | 21,126,394 | 10,862,591
Latency 63.6X
SULagsEs 156,160,401 | 9,066,784 | 3,244,576 | --oeeem-
Latency

Note: We will calculate the average latency for functions which are divided in any optimizations
to be able to compare and determine the speed up factor.

7.7.1.2 Resources
All resources here with respect to XC7VX690T-2FFG1761C FPGA chip.

. . Original Pipeline Parallelism Final
Resource Function\Design Model Model Model Model
3By3
. 1 1
Convolution 0 0
Max Pooling 0 0 0 0
1By1 . 960 960 646 755
Convolution
3By3 DW 30 30 39 40
Convolution
BRAM ) )
18K Shuffling unit 0 0 0 0
Passing unit 0 0 [ —
1byl
Convolution
With AVG 480 480 465 465
Pooling
FC 960 960 1025 577
DSP B 1 1 29 56
Convolution
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Max Pooling 1 0 0 0
1Byl 5 4 822 994
Convolution
3By3 DW 21 20 37 214
Convolution
Shuffling unit 4 1 1 0
Passing unit 1 1 1
1byl
Convolution
with AVG 2 2 464 464
Pooling
FC 1 1 256 32
. . Original Pipeline Parallelism Final
Resource Function\Design Model Model Model Model
S . 43 521 3815 5196
Convolution
Max Pooling 286 322 340 708
—k . 587 843 52383 57681
Convolution
3By3 DW 1965 1949 2723 6619
Convolution
FF Shuffling unit 261 303 307 710
Passing unit 115 176 192 | e
1byl
Convolution
. 2 1 2941
with AVG 09 93 3294 36978
Pooling
FC 107 109 51745 25010
LUTs S 1589 1916 4748 20855
Convolution
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Max Pooling 1026 1275 1546 8290
1Byl 1255 1659 75011 87313

Convolution
3By3 DW 3408 3615 3961 8826

Convolution
Shuffling unit 515 565 635 2076
Passing unit 214 286 341 | -

1byl

Convolution

with AVG 506 552 56261 50269
Pooling

FC 194 249 102922 81985

Note: We will calculate the sum of any resource for functions which are divided in any
optimizations to be able to compare.

The total utilization can be summarized as following:

Resource\Design ?\;iELZTI PI:::::;E Pa;::)l::::m Final Model
BlR;\liVI 2912 (99%) 2912 (99%) 2695 (91%) 2305 (78%)
DSP 36 (1%) 30 (0.008%) 1610 (44%) 1760 (48%)

FF 4706 (0.005%) | 5240(0.006%) | 184969 (21%) 164011 (18%)

LUTs 11279 (2%) 12657 (2%) 267272 (61%) 264394 (61%)

7.7.2 Vivado Implementation Results

7.7.2.1 Implementation of Parallelism Model on 100 MHz

Firstly, we implement the parallelism model on 100 MHz which will result in a speed of

11 frame/sec.
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Utilization

The resources of our design on Xilinx Virtex-7 FPGA VC709 Connectivity Kit with
XC7VX690T-2FFG1761C chip after implementation is shown in figure 26.

Resource Utilization Available Utilization %
LuT 180703 433200 41.71
LUTRAM 276 174200 0.16
FF 132823 866400 15.33
BRAM 1348.50 1470 91.73
DSP 1973 3600 54.81
10 3 850 0.35
BUFG 4 32 12.50
MMCM 1 20 5.00
LUT 1 2
LUTRAM 4 17°
FF 15
BRAM - 92
DSP 4 55
104 1
BUFG 13
MMCM 5
0 2'5 5'0 7,5 1 60

Utilization (%)

Figure 7.26 Utilization after Implementation on 100 MHz

Timing Analysis

As shown in figure 27 and 28, our design meets the timing constraints on 80 MHz
without any negative slack in setup or hold time.

Setup Hold Pulse Width
Waorst Megative Slack (WNS). 0050 ns Worst Hold Slack (WHS): 0.042 ns Waorst Pulse Width Slack (WPWS3): 1.100 ns
Total Negative Slack (THNS): 0.000 ns Total Hold Slack (TH3): 0.000 ns Total Pulse Width Megative Slack (TPW3). 0.000 ns
Mumber of Failing Endpoints: 0 Mumber of Failing Endpoints: 0 Mumber of Failing Endpoints: 0
Total Mumber of Endpoints: 75281 Total Mumber of Endpoints: A75265 Total Mumber of Endpoints: 136285

All user specified timing constraints are met.

Figure 7.27 Timing Summary on 100 MHz
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Endpoint Max Slacks (ns)

15

160000

125000

100000

750004
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50000
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Figure 7.28 Timing Histogram on 100 MHz

Power Analysis

As shown in figure 29, the power consumption is suitable for our design speed as the
energy per frame equals to 0.342 J/frame.

Summary

Power analysis from Implemented netlist. Activity On-Chip Power
derived from constraints files, simulation files ar
vectorless analysis. Dynamic: 3301W  (88%
Total On-Chip Power: 3758 W 10% Ctocks- 0319W
Design Power Budget: Not Specified 285 Signals:  1258W  (38%
Power Budget Margin: NIA R 4 an

. L1173 Logic: 0.461W 450
Junction Temperature: 29.3°C 14% BRAM- 0510W  (15%

_— - '
Thermal Margin: 55.7°C (46.6 W) 150 DSpP: 0642 W
Effective JJA: 1ATCIW - |
_ . . 19% B Mch: 0.107 W
Power supplied to off-chip devices: 0W 1o 0.004 W
Confidence level: Medium E
12%

Launch Power Constraint Advisor to find and fix Device Static; 0457 W 2

invalid switching activity
Figure 7.29 Power Consumption on 100 MHz
7.7.2.2 Implementation of Final Model on 80 MHz

After the first implementation we made many optimizations in speed as stated before. But,
when we implemented the model, it didn’t meet the timing neither on 100MHz or 80MHz. Thanks
to dynamic quantization we would be able to implement our design on 80 MHz and it will give
more frame rates the first implementation. This implementation would get 31 frame/sec if
implemented on 100 MHz so if we implement on 80 MHz it will give us 24.8 frame/sec which is
higher than 11 frame/sec and also will give better energy per frame. So, we will implement the
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“Final Model” on Vivado to burn it on the FPGA at the end as it is the best in speed which is our
main target to achieve real time operation.

Utilization

The resources of our design on Xilinx Virtex-7 FPGA VC709 Connectivity Kit with
XC7VX690T-2FFG1761C chip after implementation is shown in Figure 7.26.

Resource Utilization Available Utilization %
LUT 199427 433200 46.04
LUTRAM 284 174200 0.18
FF 98246 866400 11.34
BRAM 1182 1470 30.41
DsP 1940 3600 £3.89
10 3 850 0.35
BUFG 4 32 12.50
MMCM 1 20 5.00
LUTH 6%
LUTRAM 4 1%
FF A 1%
BRAM #0%
DSP A 54%
109 1%
BUFG 13%
MM 5%
0 2|5 5I[J ?I5 1L'IJU I

| Milization (%)
Figure 7.30 Post-implementation Utilization on 80 MHz

Timing Analysis

As shown in Figure 7.27 and 7.28, our design meets the timing constraints on 80 MHz
without any negative slack in setup or hold time.

Design Timing Summary

Setup Hold Pulse Width
Worst Negative Slack (WNS). 0.007 ns Worst Hold Slack (WH23): 0.042 ns Worst Pulse Width Slack (WPWS) 1.100 ns
Total Megative Slack (THNS): 0.000 ns Total Hold Slack (THS): 0.000 ns Total Pulse Width Negative Slack (TPWS): 0.000 ns
Mumber of Failing Endpoints: 0 Mumber of Failing Endpoints: 0 Mumber of Failing Endpoints: V]
Total Mumber of Endpoints: 314187 Total Number of Endpaints: 314171 Total Number of Endpoints: 102014

All user specified timing constraints are met.

Figure 7.31 Timing Summary on 80 MHz
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Endpoint Max Slacks (ns)

10

Figure 7.32 Timing Histogram on 80 MHz

As shown in Figure 7.29, the power consumption is suitable for our design speed as the
energy per frame equals to 0.154 J/frame.

Summary

Power analysis from Implemented netlist. Activity
derived from constraints files, simulation files or

vectorless analysis.

Total On-Chip Power:
Design Power Budget:
Power Budget Margin:
Junction Temperature:
Thermal Margin:
Effective 3JA:

3.828 W

Not Specified
N/A

29.3°C

55.7°C (46.6 W)
1.1°Cw

Power supplied to off-chip devices: 0W

Confidence level:

Medium

Launch Power Constraint Advisor to find and fix

invalid switching activity

On-Chip Power
Diynamic: 3.382W  (BB%)
8%
Clocks: 0.256'W (8%)
309 Signals:  1.331W  (39%)
38% Logic: 0.358W (11%)
1% | W sram: D202W  (5%)
- DSP: 1107W  (33%)
33% B nc: 0123w (4%%)
E 110 0.004 W (0%%)
12%
Device Static: 0446 W  (12%)

Figure 7.33. Power Consumption on 80 MHz
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To be able to judge on our design, we should compare it with the literature. So, we searched
about published papers using HLS in their designs and the results are shown in Table 7.3.

Table 7.3 Benchmark

ResNet 50
Our Work ZyngNet [24] ZyngNet [25]  (Software +
Hardware) [26]
Virtex-7 i Kintex XC- Zynq UltraScale+
Target Board vC709 | ZYNAXC-72045 kU060 MPSoC ZCU104
No. Classes 1000 1000 32 1000
No. Parameters 23 M 25M 1.8 M 25.5M
LUT 199,427 154,000 113,000 125,926
FF 98,246 137,000 35,000 136,586
DSP 1940 739 700 1591
Oﬁ_Chlp No Yes No Yes
Memory
BRAM (18k) 2364 996 1492 376 + 78 URAM
Frequency 80 MHz 100 MHz 100 MHz 150 MHz
Inference time 40.25 1955 222 239.8
(ms)
Frame rate 24.84 0.5 45 4.1
Power (W) 3.828 78 | e 8
Energé’;: rame 0.154 156 | e 05
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7.8 Conclusion
7.8.1 HLS Limitations

High Level Synthesis (HLS) is a powerful tool but the road has still many obstacles and
you shouldn’t think it will be smooth and comfortable especially with larger designs. HLS still has
some limitation which need to be developed and some of these are listing below:

e Array partitioning have some limitations in indexing the array which is partitioned to be able
to fetch data in parallel without overhead in latency or hardware.
In cyclic portioning, if we have a photo inside a memory where pixels are stored sequential by
row. If we partition with factor of “3*number of data in a row” so we can think about it as we
have “3*number of data in a row” instances of memory which hold data.
We should read data in integer multiple or factor of the number of instances so that tool can
parallel the reading of data from all instances at the same time as shown in Figure 7.30, if not
as shown in Figure 7.31, as next time you will read row3 and row4, the tool will infer a large
mux and read data from more than one instance then choose one of the data.
Same limitation exists also with block partition.

Row 1 Row 2 Row 3
Row 4 Row 5 Row 6
Row 7 Row 8 Row 9
Row 10 Row 11 Row 12
Row 13 Row 14 Row 15
Figure 7.34 Right Technique in Reading Data
Row 4 Row 5 Row 6
Row 7 Row 8 Row 9
Row 10 Row 11 Row 12
Row 13 Row 14 Row 15

Figure 7.35 Wrong Technique in Reading Data

e Pattern Detection Limitations
In the previous example, if we read “row1” and “row2” we will read “row3” and “row4” then
“row 5 and “row6” and so on. HLS tool, as stated before, will infer mux and read from all
instances. So, HLS tool can’t detect this pattern and make a controller unit for it however in
RTL we can make controller, it will not be easy but we can do it.
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e Loops with variable bounds
Some directives can’t work if this the case of this type of for loop like “PIPELINE” and
“UNROLL”. In our CNN have the function with many sized so variable bounds is very suitable
for us.

e Csimulation for large arrays
In this case simulation can run out of memory as in our case in fixed point model. The solution
IS to use the dynamic allocation as stated in HLS user guide but it is not synthesizable.

7.8.2 Pros and Cons
Form our experience we can summarize the pros of HLS as following:

e Ease of use.

e Ease of code editing.

e Reusability.

e Fast verification testbench development.

e Very good to implement arithmetic hardware.
e Small time to market with respect to RTL.

e Small number of project files.

We can summarize the cons as following:

e Hard to debug the hardware.

e Hard to read the output generated RTL like signals names.

e Testbench is sequential as it is high level, we need it to be some sort of parallelism.
e Flow control synthesized hardware is not optimum.

e Less controllability.

e Has many limitations as stated before.

e Very long run time to compile the whole model every time we edit.

e Need time to be familiar with HLS flow and directives.

e Results can be sometimes unexpected.
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8 Chapter 8: Hardware Testing on FPGA

After exporting the hardware design in HLS and Writing the RTL code, verifying their
functionality, synthesis and implementation both, this is the time to burn the design on the FPGA
and test it on a real hardware as it is one of our targets which is to develop an accelerator which
can be used in real life not just on software simulation tools. This is done by generating a bitstream
file which will be uploaded on the FPAGA and will configure it. We will use Xilinx Virtex-7
FPGA VC709 Connectivity Kit with XC7VX690T-2FFG1761C chip.

In order to test on FPGA, we should think about how the clock will be generated and
connected to our design and how we can drive the inputs and monitor the output of the hardware.

8.1 Clock Generation

The source of our clock will be the FPGA board System Clock which is an LVDS 200
MHz oscillator [27]. It will provide us with 200MHz differential clock which will be fed into a
buffer IBUFGDS which will convert the clock to single ended with same 200MHz frequency.

The 200MHz single ended clock will be fed into an IP called Mixed-Mode Clock
Manager (MMCM) as input. MMCM can generate output clock as desired up to 7 outputs clock.
So, we will generate one output clock with the desired frequency to be the operating frequency for
our hardware and it will be fed to our “Shuffle Model” IP which is exported from Vivado HLS or
to the RTL design we developed.

Clock Lock Detact
Lock
‘Fate”f.ra' —| switch —=] Lock Monitor
outing Circuit
l 8-Phase Taps + 1 Variable Phase Tap
CLKINT —= D g e
CLKIN2 — PFD |- cP || LF || vcol—_| og [ CLkouTo
b—= CLKOUTOB (MMCM only)
CLKFB | —= CLKOUTA
O1 b CLKOUT1B (MMCM only)
|~ CLKOUT2

02 L+ CLKOUT2B (MMCM only)

ks chaeks e

= CLKOUT3
] 03 b+ CLKOUT3B (MMCM only)
o4 [ CLKOUT4
- o5 [ CLKOUTS
- o [ CLKOUTS (MMCM oniy)
L M CLKFBOUT

CLKFEOUTB (MMCM only)

Figure 8.1 MMCM Block Diagram
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8.2  Driving Input and Monitoring Output

We will drive the inputs and monitor outputs using Xilinx hardware I1Ps which can interact
with Vivado design suite software in real time while our hardware operating on FPGA. Also we
will drive the LEDs on FPGA with signal which is indicating that the output is ready and available
at the output port so when the led flashes once in the RTL the output value on the software should
be the desired output. In HLS, we drive the led with signal which tell us that the design can accept
a new photo to process so if it OFF the output value should be the desired output like it is an active
low signal.

We use 2 IPs to do this and the usage is explained as following:

e Virtual Input/Output (VIO)

The IP is a customizable core that can both monitor and drive internal FPGA signals in real
time. The number and width of the input and output ports are customizable in size to interface with
the FPGA design. This is generated and configured with IP catalog inside Vivado Project.

We connected it with same clock as our design. The inputs of our hardware are outputs for
VIO to be able to drive them and the outputs of our hardware design are the inputs for VIO to be
able to observe them.

e Integrated Logic Analyzer (ILA)

It is a customizable core which is a logic analyzer that can be used to monitor the internal
signals of a design. The number of probes monitored and their widths are customizable in size to
interface with the FPGA design. The number of samples taken by the IP can be chosen from some
values provided with the IP. This is generated and configured with IP catalog inside Vivado
Project.

We connected it with same clock as our design. We only monitor the output class and a
signal which is become high when the output is available so that we can trigger the ILA to capture
samples data at the rising edge of this signal to capture the real output value.

By monitoring the output by two IPs not only one we can be sure that the results are correct
and the hardware testing step on FPGA succeed.

8.3  Testing Procedure and Results

We open the hardware manger and connect to the FPGA then then burn the bitstream file.
After that the window of VIO and ILA are opened so that we can interact with FPGA in real time.
We use the photo with class 66 (sea snake) which is the 1st photo in the ImageNet validation set.

8.3.1 RTL

We use VIO to reset the hardware then we make “process _photo” signal “HIGH” so that
the hardware will start the operation and the output value will be observed as shown in Figure 8.2.
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We use ILA to capture real output data on the rising edge of the “class_index ready” signal as
shown in Figure 8.3. From ILA we can verify that the real time hardware output is correct.

Waveform - hw_ila_1
Q + =

ILA Status: Idle

(L 2

Dashboard Options

Capture status - Window 10f 1

Window sample 0 of 1024

» BB @ a

wl

< hw_vios hw_vios
hw_vio_1 hw_vio_1
gla=|e - gla = 2 -
S | Name Value Acti Directi... VIO & | Name Value Acti... Directi.. VIO
B B
S busy_OBUF [B10 Input hw_vio_1 s busy_OBUF [B10 Input hw_vio_1
=
S class_index_ready [B]0 Input hw_vio_1 % class_index_ready [B]0 Input hw_vio_1
o o
= out_class[9:0] o Input hw_vio_1 |O | > 7, out_class[9:.0] 1o Input hw_vio_1
photo_memory_we[3:1] HIO Output  hw_vio_1 photo_memory_we[3:1] [H] 0 v Output  hw_vio_1
process_photo [Blo Output  hw_vio_1 process_photo Bl1 v I Output  hw_vio_1
VIO/probe_out4[10:8] [H] 0 Output  hw_vio_1 VIO/probe_out4[10:8] HI0 - Output  hw_vio_1
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Figure 8.3 RTL ILA Interface

We use VIO to reset the hardware then we make “start” signal “HIGH” so that the hardware

will start the operation and the output value will be observed as shown in Figure 8.4. We use ILA
to capture real output data on the rising edge of the “ready” signal to as shown in Figure 8.5. From
VIO and ILA we can verify that the real time hardware output is correct.
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In this chapter we will mark out our effort throughout the project and introduce the results
obtained from the RTL design and the HLS design after implementation on the FPGA. The results
include utilization, power, and timing for both implementations before and after optimizations.
Also, we will introduce a benchmark for our RTL design with two other different designs
implementing a machine learning algorithm on FPGA. Finally, we will end the chapter with a
comparison between the RTL design flow and the HLS design flow.

9.1 RTL Design Results
9.1.1 Results Before Optimizations

9.1.1.1 Utilization

Before reporting the RTL design utilization on the FPGA, we must first define the target
FPGA used to implemented the design on. Our target FPGA is Xilinx Virtex-7 FPGA VC709 Kit
and Table 9.1 below describes its features. One important note from the table below is that it has
1470 BRAM of 36Kbit and double this number of 18Kbit. Hence, it’s the best choice for us as our
design requires large number of BRAM s to store the large number of parameters in the ShuffleNet
CNN.

Table 9.1 Virtex-7 FPGA kit

DSPs 3600
Slice LUTs 433,200
Slice Regs 866,400
BRAMs 1470 (36Kbit each, can be used as 2 18Kbit BRAMS)

Figure 9.1 displays the detailed utilization for the design, and it is clear that while the
utilization of BRAMs and DSPs is nearly high, that of LUTs and FFs is very low. Most utilization
comes from group?2 as it has all shuffle units in our design. The utilization we obtained by the
design is good regarding large number of layers and parameters in the ShuffleNet CNN.
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Summary
Resource Utilization Available Utilization %
LUT 126471 433200 29.19
LUTRAM 3275 174200 1.88
FF 134921 866400 15.57
BRAM 1346.50 1470 91.60
DSP 2917 3600 81.03
10 3 850 0.35
MMCM 1 20 5.00
LUT A 29%
LUTRAM 41 2%
FF 16%
BRAM 7 92%
DSP 1 81%
101 1%
MMCM A 5%
0' o '2IS' o 'SIO' o '7I5' 'l(IJO' :

Utilization (%)
Figure 9.1 Design Utilization before optimizations

9.1.1.2 Timing

We implement the RTL design on the FPGA operation on 50MHz. Figure 9.2 illustrates
how the design meets timing with a positive slack of 0.531ns and a positive hold slack of 0.029ns
after design implementation.

Design Timing Summary

Setup Hold Pulse Width
Worst Negative Slack (WNS): 0.531 ns Worst Hold Slack (WHS): 0.029 ns Worst Pulse Width Slack (WPWS): 1.100 ns
Total Negative Slack (TNS): ~ 0.000 ns Total Hold Slack (THS): 0.000 ns Total Pulse Width Negative Slack (TPWS): 0.000 ns
Number of Failing Endpoints: 0 Number of Failing Endpoints: 0 Number of Failing Endpoints: 0
Total Number of Endpoints: 371927 Total Number of Endpoints: 371911 Total Number of Endpoints: 145086

All user specified timing constraints are met.

Figure 9.2 Timing constraints before optimizations

Table 9.2 shows the max time to get the output from each group (Group latency) so we
find out that the max group delay equals 1644 us in Group3 and as the operating clock frequency
equals 50Mhz, our RTL design can achieve up to 608 frames/sec.
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Table 9.2 Groups latency before optimizations

Groupl Group2 Group3

Time 1266 us 1596 us 1644 us

9.1.1.3 Power

Power is an important factor in designing accelerators and choosing a platform to
implement it on, as we can implement the accelerator on a GPU and achieve very high speed in
short time but the cost is in power. It consumes very high power. FPGA is the best choice for
achieving high speed as seen in the last section with reasonable power consumption as we will see
in this section.

We first performed power analysis based on the default power estimation of Vivado.
According to Figure 9.3, the total on-chip power equals 6.085 watt, consisting of 5.583 watt for
dynamic power, which accounts for 92% of the total power, and 0.502 watt for static power, which
accounts for 8% of the total power. From this power results and the latency of the design, we can
calculate the power delay product which is equal to 0.01 joule/frame.

Power analysis from Implemented netlist. Activity On-Chip Power
derived from constraints files, simulation files or = =
vectorless analysis. [ [ Dynamic: 5.583W (92%)
Total On-Chip Power: 6.085 W 5% CiGakRl BT
Design Power Budget: Not Specified 29% Signals: 1.618 W 604 )
Power Budget Margin: N/A e e S

¥ 9 9 92% 13% Logic: 0.717 W
Junction Temperature: 31.9°C ; " | W BRAM: 1.488 W 726
Thermal Margin: 53.1°C (44.3 W) DSP: 1.302 W =0y
Effective §JA: l.1°C/w B MMeM: 0.107 W
Power supplied to off-chip devices: 0W 1O: 0.004 W
Confidence level: Medium \

1

Launch Power Constraint Advisor to find and fix l 8% | Device Static: 0.502 W

invalid switching activity

Figure 9.3 Power consumption based on default settings before optimizations
9.1.2 Results After Optimizations
9.1.2.1 Utilization

Figure 9.4 displays the detailed utilization for the design, and it is clear that while the
utilization of BRAMSs and DSPs is nearly high but less than before optimizations, and that of LUTs
and FFs is very low and also less than before optimizations. The utilization we obtained by the
design is much good regarding large number of layers and parameters in the ShuffleNet CNN.
This good results in the utilization of BRAMSs occurs after applying the optimizations explained
in chapter 6. Utilization of BRAMs is reduced significantly from 97% to 74.64%.
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Resource Utilization Lorailable Utilization %
LUT 108638 433200 25.08
LUTRAM 2189 174200 1.26
FF 1086738 2865400 12.32
BRAM 1098 1470 74,69
DSk 2885 2500 20.14
10 2 850 0.35
[ [ [ | 1 20 S.00
LUT 25%
LUTRAM 4 12
FF 12%
BFR.AM 75%
DSP 30%%
104 19
PAMC I 5%
0 25 50 75 100 '

Utilization (26)

Figure 9.4 Design Utilization after optimizations

9.1.2.2 Timing

After Applying all the optimizations in chapter 6, we managed to implement the RTL
design on the FPGA operation on 100MHz. Figure 9.5 illustrates how the design meets timing
with a positive slack of 0.014ns and a positive hold slack of 0.046ns after design implementation.

Setup Hold Pulse Width
Worst Negative Slack (WNS):  0.014 ns Worst Hold Slack (WHS): 0.046 ns Worst Pulse Width Slack (WPWS): 1.100ns
Total Negative Slack (TNS):  0.000 ns Total Hold Slack (THS): 0.000 ns Total Pulse Width Negative Slack (TPWS):  0.000 ns
Number of Failing Endpoints: 0 Number of Failing Endpoints: 0 Number of Failing Endpoints: 0
Total Number of Endpoints: 318755 Total Number of Endpoints: 318739 Total Number of Endpoints: 115286

All user specified timing constraints are met.

Figure 9.5 Timing constraints after optimizations

From Table 9.3, the max time to get the output from each group (Group latency) so we find
out that the max group delay equals 822 us in Group3 and as the operating clock frequency equals
100Mhz, our RTL design can achieve up to 1216 frames/sec. Figure 9.6 is a timing histogram at a
frequency of 100MHz shows the utilization of the clock frequency used, indicating how good the
design is.
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Groupl

Group2

Group3

Time

633 us

798 us

822 us

125000

100000

75000

50000

25000

9.1.2.3 Power

We first performed power analysis based on the default power estimation of Vivado.
According to Figure 9.7, the total on-chip power equals 10.881 w, consisting of 10.310 w for
dynamic power, which accounts for 95% of the total power, and 0.571 w for static power, which
accounts for 5% of the total power.

Summary

Power analysis from Implemented netlist. Activity
derived from constraints files, simulation files or

vectorless analysis.

Total On-Chip Power:
Design Power Budget:
Power Budget Margin:

Junction Temperature:

Thermal Margin:
Effective 9)A:

Power supplied to off-chip devices:

Confidence level:

10.881 W

Mot Specified
N/A

37.3°C

47.7°C (39.6 W)
L.1°C/wW

ow

Medium

Launch Power Constraint Advisor to find and fix

invalid switching activity

Endpoint Max Slacks (ns)
5

Oon-Chip Power

95%

5%

Figure 9.6 Timing histogram after optimizations

[ ] Dynamic: 10,310 W
4%

[ Clocks: 0,397 W
32% | ] signals: 3.298 W
115 | [ Logic: 1.148W
W BrRAM: 2,698 W
- [ DsP: 2,658 W
— W 0,107 W
[ wo: 0,004 W

|| Device Static: 0.571 W

(95%)

(4%)
(32%)
(11%)
(26%)
(26%)

(1%)

(0%)

(5%)

Figure 9.7 Power consumption based on default settings after optimizations

10

Then, we used the saif file which is a file contains the switching activity of the design
signals during simulation. It was extracted from the post-implementation simulation. Applying
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signals. As shown in Figure 9.8, the total on-chip power is reduced to 9.156 w, consisting of 8.618
w for dynamic power, which accounts for 94% of the total power, and 0.583 w for static power,
which accounts for 6% of the total power. Also, from this power results and the latency of the

design, we can calculate the power delay product which is equal to 0.007526 joule/frame.

Settings
Summary (9.156 W, Ma

Power estimation from Synthesized netlist. Activity
derived from constraints files, simulation files or

on-Chip Power

Power Supply vectorless analysis. Note: these early estimates can Dynamic: 8.618W (94%)
- ; change after implementation.
~ Utilization Details 7%
Hierarchica Total On-Chip Power: 9.156 W 15% Clocks: ~ 0.579W  (7%)
Clocks (0.5 Design Power Budget: Not Specified 11% Signals: 1,201 W (15%
~ Signals (1.2 Power Budget Margin: N/A — Logic: 0.964W (11%)
Data (1 Junction Temperature: 35.4°C HE BRAM: 3.074 W  (36%)
Thermal Margin: 49.6°C (41,3 W) DSF: 2599w (30%)
Effective 8JA: L1eCw 205 | M MMcM: 0107W (1%
Power supplied to off-chip devices: 0 W — 0: 0.004w  (0%)
Confidence level: Medium
355 Device Static: ~ 0.538W  (5%)

Launch Power Constraint Advisor to find and fix
invalid switching activity

Clock Manager (0.1
/O (0,004 W)

Figure 9.8 Power consumption using Saif file after optimizations

9.1.3 Benchmark

In this section, we compare our design with two other implementations of the image
classification machine learning algorithm on FPGA but with different CNN architectures as
benchmarks to evaluate how good our design and results. From Table 9.4, we can see that our
design has a large number of weights (2.3M parameter), a large number of layers (50 layers), and
working on ImageNet validation set so it has 1000 class but our design has fewer resources in the
number of FFs used and manage to achieve the highest frame rate (equals 1216 fps) which, when
compared to the two other designs, is almost extremely high and as the power is roughly the same
for all three designs hence it achieves the smallest energy per image which equals 0.007526 joule.

Table 9.4 Benchmark

Parameter\Design This Work Reference [28] Reference [29]
Target Board Virtex 7-VC-709 | Virtex 7-VC-709 Virtex 7-VC-709
CNN Shuffle Net V2 ZyngNet Squeeze-Net
Accuracy (%) 69.4% 57.5% 69.6%
No of weights 2.3M 2.5M 1.2M
No of layers 50 10 18
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No of classes 1000 1000 10
Frequency (MHz) 100 100 100
LUTs 109K 339K 84K
FFs 107K 184K 133K
DSPs 2885 3552 2656
BRAMs 1098 1413 908
Frame rate (fps) 1216 12.5 139
Power(watt) 9.156 10.97 8.9
Energy/image(j) 0.007526 0.88 0.0357

9.2 Comparison between RTL and HLS Results

From our experience throughout the project, we can compare between the RTL and HLS

flows from different aspects as the following:

>

>

>

It is clear that HLS is simpler to use, takes less time to market, and makes verification
development easier, whereas RTL is more controllable, simpler to debug, and offers better
performance than HLS.

Also, utilization in RTL is less than HLS as RTL uses 25.08% LUTs and 74.69% BRAMSs
whereas HLS uses 46.04% LUTs and 80.41% BRAMSs but HLS uses fewer DSPs and
approximately number of FFs is the same in RTL and HLS.

The cost of using HLS is more in terms of run time as there is a need to recompile codes in
case of editing or modifying any of them.

One more point is that number of files or sources needed in RTL is more than in HLS as there
are more files for weights and biases in RTL whereas HLS has a CPP file and a number of
header files and will generate weights and biases automatically.

In HLS, RTL Testbench will be generated automatically from a C++ testbench which is easier
to write, but writing and developing test benches in RTL will require more effort.

One important point to note is that the result guarantee after each modification is more reliable
from RTL than HLS.

Finally, RTL code generated from HLS is difficult to read and understand.

This comparison also can be summarized as in Table 9.5.
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Table 9.5 RTL and HLS comparison

RTL HLS
Utilization Less Larger
Easy to use and edit Harder Easier
Controllability Better Harder
Time to market Larger Less
Verification Development Harder Easier
Debugging Easier Harder
Testbench effort More Less
Sources or files used More Less
Result guarantee More reliable Less reliable
Run time Less Larger
Performance Better Worse
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10.1 Conclusion

We have illustrated the importance of the CNN networks in computer vision applications
and how they require high-speed computation resources and consume so much power. And to
make the most benefit from them, they must run on a hardware accelerator. Thus, our project was
to implement and optimize a hardware accelerator for a CNN on FPGA. Throughout the thesis, we
discussed and illustrated in detail all the steps we followed in the project, from choosing the CNN
network to hardware implementation on the FPGA. Problems and results also are included.

The CNN network we have chosen is the ShuffleNet CNN, and to our knowledge, there is
no previous hardware implementation for it in the literature, so the project is the first hardware
implementation for it. The golden reference for the network was a software model written in
PyTorch and is pretrained on the ImageNet data set. We designed the ShuffleNet accelerator
through two design flows; they are the RTL design flow and the HLS design flow, and our target
in both flows was high throughput (real-time) with affordable power consumption. Fixed-point
was used as data representation instead of float. Moreover, we applied many optimizations like
dynamic quantization. The accelerator works on 224*224*3 RGB images and classifies them
among 1000 classes. It can also process three images simultaneously. The tools that we used in
both design approaches are the Vivado design suite and Vivado HLS from Xilinx.

The best figure of merit to evaluate a hardware design and compare different design
approaches is the power delay product (the energy per frame in our case) to compromise between
throughput and power. Hence, we used the energy per frame as well as the accuracy to evaluate
our design. The accuracy of the hardware generated from both design flows, is 68.184%, and it
matches that of the golden reference after quantization while the accuracy of the golden reference
before quantization is 69.362%, so the error is small and acceptable. The RTL design has a
throughput of 608 frame/second with a power of 6.085 watts (0.01 joule/frame) on 50 MHz and
1216 frame/second with a power of 9.156 watts (0.007529 joule/frame) on 100 MHz, while the
HLS design has a throughput of 24.84 frame/second with a power of 3.828 watts (0.154
joule/frame) on 80 MHz.

From the above summary of results, it is clear that the hardware generated either from the
RTL design approach or the HLS design approach satisfies the required specs and proves that
using FPGA instead of GPU guarantees higher speed and lower power, however, it needs much
more effort and design time.

Finally, we compared the two design approaches, and we found out that the RTL design
flow is better than the HLS design flow in many aspects and the above results show that. However,
the HLS design approach is better than the RTL design approach in some aspects like time to
market and verification development. Hence, the RTL approach is the most efficient design
approach for digital electronics at that time, but HLS is a good design approach for small designs.
In the future, The HLS can be an efficient design approach by paying more effort to the HLS tool
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development and optimization, in addition to allowing more controllability and observability for
designers.

10.2 Future Work of RTL

This chapter summarizes points to be done as a future work to increase the performance of
our design. This work will be summarized concisely in bullets.

e using double data rate memory to increase the speed of loading the photo memory with
an image to make it faster by 2 and we can do this by three different ways.

o We can interface with the DDR using 16-bit width data bus, so we can fetch 2 pixels
by 2 pixels from the DDR memory to the Photo memory as the photo pixel width
is 8-bits.

o Using the rising and falling edge of the clock in DDR to capture different data so
that to get a data word on each edge.

o Use dual-port photo memory, each port has a separate clock write in the photo
memory from the DDR using 200MHz and read from the photo memory to the
model using 100MHz.

e make training for a certain application which reduces the number of classes needed and
increases the accuracy of the model.

e ASIC implementation for our model to increase performance as there will be more
control on our design.

10.3 Future Work of HLS

Future work are more techniques to speed up the hardware and to interface it with real
designs to work in the industry as following:

e We can add more memories and break the whole model into groups so that the whole
latency can be divided on the same number of groups.

e We can change the interface if the design so that we can interface it with DDR interface
which can feed photos to the design in real time operation.
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