

SOFTWARE DEFINED RADIO (SDR)-

RF IMPLEMENTATION WITH THE

DIGITAL IMPLEMENTATION

By

Chaymaa Ossama Mohamed

Heba Magdy El-Gohary

Heba Mahmoud Yassin

Khadija Khalid Ali

Mahetab Ossama Mohamed

Yara Hossam El-Deen Mahmoud

Under the Supervision of

Associate Prof. Hassan Mostafa

Eng. Sherif Hosney

A Graduation Project Report Submitted to

The Faculty of Engineering at Cairo University

In Partial Fulfillment of the Requirements for

The Degree of Bachelor of Science in

Electronics and Communications Engineering

JULY 15, 2018

FACULTY OF ENGINEERING, CAIRO UNIVERSITY

CAIRO, EGYPT

ii

Table of Contents:

LIST OF SYMBOLS AND ABBREVIATIONS .. XII

ACKNOWLEDGEMENT ... XIX

ABSTRACT ... XX

CHAPTER 1: INTRODUCTION... 1

1.1. ORGANIZATION OF THE THESIS .. 1

1.2. SOFTWARE DEFINED RADIO (SDR).. 2

1.2.1. INTRODUCTION... 2

1.2.2. COMMUNICATION SYSTEM .. 3

1.2.3. SDR DEFINITION .. 4

1.2.4. SDR ADVANTAGES .. 5

1.2.5. SDR IMPLEMENTATION ... 6

1.3. FIELD PROGRAMMABLE GATE ARRAY (FPGA) ... 6

1.3.1. FPGA CONFIGURATION .. 7

1.3.2. TYPES OF CONFIGURATION .. 8

1.3.2.1. Full/Fixed Reconfiguration ... 8

1.3.2.2. Static partial reconfiguration... 8

1.3.2.3. Dynamic partial reconfiguration (DPR) .. 9

1.4. DYNAMIC PARTIAL RECONFIGURATION (DPR) .. 9

1.4.1. ADVANTAGES OF DPR ... 10

1.4.2. DPR MODES ... 10

1.4.2.1. External Mode ... 11

1.4.2.2. Internal Mode .. 11

1.4.3. DPR FLOW .. 14

1.5. PROGRESS OF THE PREVIOUS YEARS .. 17

1.5.1. INTERNSHIP SUMMER 2014 .. 17

1.5.2. GRADUATION PROJECT 2015 ... 18

1.5.3. GRADUATION PROJECT 2016 ... 18

1.5.4. GRADUATION PROJECT 2017 .. 19

iii

CHAPTER 2: SEPARATION .. 20

2.1. TRANSMITTER AND RECEIVER SEPARATION ... 20

2.2. OVERVIEW ... 20

2.3. DIRECT MEMORY ACCESS (DMA) ... 21

2.3.1. THE DMA FUNCTIONS ... 22

2.3.2. DMAC ... 24

2.4. INPUT INTERFACE.. 26

2.5. DATA SPLITTER .. 28

2.6. WIFI STANDARD IP BLOCK .. 29

2.6.1. WIFI TRANSMITTER ... 29

2.6.1.1. Data Scrambler ... 30

2.6.1.2. Convolutional Encoder ... 31

2.6.1.3. Puncturing ... 31

2.6.1.4. Interleaver ... 32

2.6.1.5. Modulation Mapper .. 32

2.6.1.6. IFFT Modulation .. 33

2.6.1.7. Preamble ... 35

2.6.2. WIFI RECEIVER .. 35

2.6.2.1. Packet Divider .. 36

2.6.2.2. FFT modulation .. 36

2.6.2.3. De-Mapper .. 37

2.6.2.4. De-Interleaver ... 38

2.6.2.5. De-Puncture .. 39

2.6.2.6. Viterbi decoder .. 40

2.6.2.7. De-Scrambler .. 40

2.7. FIRST IN FIRST OUT MEMORY (FIFO) ... 40

2.7.1. INTRODUCTION... 40

2.7.2. FIFO’S RULE .. 41

2.8. AXI INTERFACE ... 43

2.8.1. AXI4 TYPES.. 43

2.8.2. AXI4-LITE ... 43

iv

CHAPTER 3: INTERFACING .. 46

USRP AND GNU RADIO INTERFACE... 46

3.1. USRP .. 46

3.1.1. USRP HARDWARE ... 46

3.1.2. USRP BENEFITS ... 47

3.1.3. USRP HARDWARE DRIVER (UHD) .. 47

3.1.4. USRP USED IN OUR PROJECT.. 49

3.2. GNU RADIO ... 51

3.2.1. INTRODUCTION... 51

3.2.2. DEFINITION .. 51

3.2.3. WHAT EXACTLY DOES GNU RADIO DO? ... 52

3.2.4. GNU RADIO LIVE SDR ENVIRONMENT ... 54

3.2.5. INSTALLING GRC ... 55

3.2.6. USING GRC .. 55

3.2.6.1. GRC Architecture ... 55

3.2.6.2. Graphical signal processing development... 55

3.2.6.3. Using Python to write powerful signal processing and radio applications 58

3.2.6.4. The C++ domain: Extending GNU Radio .. 59

3.2.7. EXAMPLE USED IN OUR PROJECT .. 59

3.2.7.1. Basic block diagram .. 59

3.2.7.2. Experiment set up and plan .. 60

CHAPTER 4: ZYNQ ZC702 EVALUATION BOARD ... 61

4.1. ZYNQ 7000 FAMILY OVERVIEW .. 61

4.2. INTRODUCTION TO ZC702 .. 62

4.3. LOOK-UP TABLE (LUT) .. 63

4.4. CLB OVERVIEW .. 64

4.5. VIVADO DESIGN SUITE OVERVIEW .. 65

4.6. SDK OVERVIEW .. 65

v

CHAPTER 5: LINUX IMAGE ... 66

USRP AND ZYNQ BOARD INTERFACE USING LINUX IMAGE .. 66

5.1. XILINX ZYNQ LINUX KERNEL ... 67

5.1.1. XILINX ZYNQ LINUX SUPPORT ... 67

5.1.2. USING A PRE-BUILT IMAGE/RELEASE ... 67

5.1.3. KERNEL DETAILS ... 67

5.1.3.1. The Board Support Package (BSP) ... 67

5.1.3.2. Device Tree ... 67

5.1.3.3. Device tree basics ... 68

5.2. YOCTO PROJECT ... 68

5.2.1. INTRODUCING THE YOCTO PROJECT .. 69

5.2.2. THE OPENEMBEDDED BUILD SYSTEM WORKFLOW .. 69

5.2.3. BITBAKE .. 71

5.2.4. OPENEMBEDDED-CORE ... 72

5.2.5. POKY .. 73

5.2.6. METADATA SET .. 74

5.2.7. BOARD SUPPORT PACKAGES .. 74

5.2.8. CUSTOMIZING THE BUILD FOR SPECIFIC HARDWARE.. 75

5.2.8.1. Meta-Xilinx ... 76

5.2.8.2. Meta-Xilinx-Tools .. 76

5.2.8.3. Meta-SDR ... 77

5.2.9. HOB .. 77

5.2.10. OPEN SOURCE LICENSE COMPLIANCE .. 77

5.2.11. EGLIBC ... 77

5.2.12. APPLICATION DEVELOPMENT TOOLKIT ... 78

5.2.13. OTHER TOOLS UNDER THE YOCTO PROJECT UMBRELLA ... 78

5.3. CREATING LINUX IMAGE .. 78

5.3.1. PREPARE AND BOOT HARDWARE .. 78

5.3.1.1. FSBL Method ... 79

vi

CHAPTER 6: LINUX AND BARE-METAL ... 83

RUNNING LINUX AND BARE-METAL SYSTEM ON BOTH ZYNQ SOC PROCESSORS 83

6.1. INTRODUCTION .. 83

6.2. REFERENCE DESIGN .. 83

6.2.1. HARDWARE .. 86

6.2.2. ADDRESS MAP .. 87

6.2.3. SOFTWARE ... 87

6.2.4. FSBL .. 87

6.2.5. LINUX ... 88

6.2.6. LINUX APPLICATIONS .. 88

6.2.7. BARE-METAL APPLICATION CODE .. 89

6.2.8. CPU1 APPLICATIONS .. 90

6.2.9. DESIGN FILES ... 91

6.2.10. GENERATING HARDWARE .. 91

6.2.11. GENERATING APPLICATIONS ... 92

6.2.11.1. Configuring SDK .. 92

6.2.11.2. Creating Bare-Metal Application for CPU1 ... 93

6.2.11.3. Creating Linux Application RWMEM ... 95

6.2.11.4. Creating Linux Application Soft UART ... 95

6.2.11.5. Creating Linux Kernel .. 96

6.2.11.6. Creating Linux Device Tree ... 96

6.2.11.7. Creating U-Boot .. 96

6.2.11.8. Acquiring Root File System ... 97

6.2.11.9. Generating Boot File ... 97

6.2.12. COPYING FILES TO SD CARD ... 98

6.2.12.1. Running the Design .. 98

6.2.13. DEBUGGING THE DESIGN.. 101

6.3. WIFI TRANSMITTER AND RECEIVER SYSTEM DESIGNS ... 103

6.3.1. HARDWARE .. 104

6.3.2. SOFTWARE ... 104

6.3.3. FSBL .. 105

6.3.4. LINUX ... 105

vii

6.3.5. LINUX APPLICATIONS .. 105

6.3.6. BARE-METAL APPLICATION CODE .. 106

6.3.7. CPU1 APPLICATIONS ... 106

6.3.8. DESIGN FILES ... 108

6.3.9. GENERATING APPLICATIONS ... 108

6.3.9.1. Configuring SDK .. 108

6.3.9.2. Creating Custom FSBL Application ... 108

6.3.9.3. Creating Bare-Metal Application for CPU1 ... 109

6.3.9.4. Creating Linux Application RWMEM ... 109

6.3.9.5. Creating Linux Application Soft UART ... 109

6.3.10. CREATING LINUX KERNEL ... 109

6.3.11. CREATING LINUX DEVICE TREE .. 109

6.3.11.1. Creating U-Boot .. 109

6.3.11.2. Acquiring Root File System ... 109

6.3.11.3. Generating Boot File ... 110

6.3.12. COPYING FILES TO SD CARD ... 110

6.3.13. RUNNING THE DESIGN ... 111

CHAPTER 7: CONCLUSION & FUTURE WORK ... 113

7.1. RESULTS SUMMARY .. 113

7.2. REAL-TIME TESTING RESULTS .. 114

7.3. CONCLUSION .. 116

7.4. FUTURE WORK ... 117

7.4.1. INTERFACING USING ETHERNET .. 117

7.4.2. COMMUNICATION .. 117

7.4.2.1. Channel Estimation ... 117

7.4.2.2. Separating new systems .. 118

7.4.3. ELECTRONICS ... 118

7.4.3.1. DPR between communication standards .. 118

7.4.3.2. Synchronization between transmitter and receiver ... 118

7.4.4. RF... 118

REFERENCES .. 119

viii

APPENDIX A: USING THE FPGA INSIDE THE USRP .. 122

APPENDIX B: ALTERNATIVE USRP SERIES .. 122

APPENDIX C: PARTITIONING OF SD CARD .. 122

ix

Table of Figures:

Figure 1-1. Simple communication system .. 3

Figure 1-2 SDR approach ... 5

Figure 1-3 FPGA blocks ... 6

 Figure 1-4 FPGA layers ... 7

Figure 2-1 Illustration of AXI DMA use .. 21

Figure 2-2 DMA block diagram ... 22

Figure 2-3 AXI DMA IP block ... 23

Figure 2-4 AXI DMA signals' functions ... 23

Figure 2-5 cntd' DMA signals' functions .. 24

Figure 2-6 DMAC system viewpoint .. 25

Figure 2-7 Difference problem of the system clock from the system I/P & O/P rate 26

Figure 2-8 the cycles illustrating the example .. 27

Figure 2-9 Input Interface hardware ... 27

Figure 2-10 Input interface IP block ... 28

Figure 2-11 Data splitter IP block ... 29

Figure 2-12 WIFI transmitter functional blocks ... 29

Figure 2-13 Data scrambler block diagram .. 30

Figure 2-14 PPDU frame format... 30

Figure 2-15 Convolutional Encoder.. 31

Figure 2-16 Modulation constellations for BPSK, QPSK, 16-QAM, and 64-QAM 33

Figure 2-17 (a) Spectrum of a single subcarrier of the OFDM signal, ... 33

Figure 2-18 OFDM training structure ... 34

Figure 2-19 frequency offset index function & inputs and outputs of the IFFT........................... 34

Figure 2-20 Final 64 sub-carrier mapping .. 35

Figure 2-21 WIFI receiver full chain blocks ... 36

Figure 2-22 Decision regions in the de-mapper .. 37

Figure 2-23 De-puncture 3/4 rate procedure ... 39

Figure 2-24 De-puncture 2/3 rate procedure ... 40

Figure 2-25 Simple Architecture of using FIFO ... 41

Figure 2-26 Dummy FIFO .. 42

file:///D:/EECE/4th_year/1st_term/GP/Thesis/Thesis_V5.docx%23_Toc519097320
file:///D:/EECE/4th_year/1st_term/GP/Thesis/Thesis_V5.docx%23_Toc519097323
file:///D:/EECE/4th_year/1st_term/GP/Thesis/Thesis_V5.docx%23_Toc519097324
file:///D:/EECE/4th_year/1st_term/GP/Thesis/Thesis_V5.docx%23_Toc519097325
file:///D:/EECE/4th_year/1st_term/GP/Thesis/Thesis_V5.docx%23_Toc519097326
file:///D:/EECE/4th_year/1st_term/GP/Thesis/Thesis_V5.docx%23_Toc519097327
file:///D:/EECE/4th_year/1st_term/GP/Thesis/Thesis_V5.docx%23_Toc519097328
file:///D:/EECE/4th_year/1st_term/GP/Thesis/Thesis_V5.docx%23_Toc519097329
file:///D:/EECE/4th_year/1st_term/GP/Thesis/Thesis_V5.docx%23_Toc519097330
file:///D:/EECE/4th_year/1st_term/GP/Thesis/Thesis_V5.docx%23_Toc519097331
file:///D:/EECE/4th_year/1st_term/GP/Thesis/Thesis_V5.docx%23_Toc519097332
file:///D:/EECE/4th_year/1st_term/GP/Thesis/Thesis_V5.docx%23_Toc519097333
file:///D:/EECE/4th_year/1st_term/GP/Thesis/Thesis_V5.docx%23_Toc519097334
file:///D:/EECE/4th_year/1st_term/GP/Thesis/Thesis_V5.docx%23_Toc519097335
file:///D:/EECE/4th_year/1st_term/GP/Thesis/Thesis_V5.docx%23_Toc519097336
file:///D:/EECE/4th_year/1st_term/GP/Thesis/Thesis_V5.docx%23_Toc519097337
file:///D:/EECE/4th_year/1st_term/GP/Thesis/Thesis_V5.docx%23_Toc519097338
file:///D:/EECE/4th_year/1st_term/GP/Thesis/Thesis_V5.docx%23_Toc519097339
file:///D:/EECE/4th_year/1st_term/GP/Thesis/Thesis_V5.docx%23_Toc519097340
file:///D:/EECE/4th_year/1st_term/GP/Thesis/Thesis_V5.docx%23_Toc519097341
file:///D:/EECE/4th_year/1st_term/GP/Thesis/Thesis_V5.docx%23_Toc519097342
file:///D:/EECE/4th_year/1st_term/GP/Thesis/Thesis_V5.docx%23_Toc519097343
file:///D:/EECE/4th_year/1st_term/GP/Thesis/Thesis_V5.docx%23_Toc519097344
file:///D:/EECE/4th_year/1st_term/GP/Thesis/Thesis_V5.docx%23_Toc519097345
file:///D:/EECE/4th_year/1st_term/GP/Thesis/Thesis_V5.docx%23_Toc519097346
file:///D:/EECE/4th_year/1st_term/GP/Thesis/Thesis_V5.docx%23_Toc519097347
file:///D:/EECE/4th_year/1st_term/GP/Thesis/Thesis_V5.docx%23_Toc519097348

x

Figure 2-27 Channel Architecture of Reads .. 44

Figure 2-28 Channel Architecture of writes ... 44

Figure 2-29 Top level AXI interconnect ... 45

Figure 3-1 UHD Components ... 48

Figure 3-2 Center Frequency fine tuning .. 49

Figure 3-3 B200 USRP ... 49

Figure 3-4 The USRP block diagram.. 50

Figure 3-5 Software defined Radio Block Diagram ... 51

Figure 3-6 GNU Radio graphical user interface ... 53

Figure 3-7 GRC Architecture for Transmitter and Receiver .. 55

Figure 3-8 GNU Radio BPSK transmitter flow graph .. 56

Figure 3-9 GNU Radio BPSK receiver flow graph .. 57

Figure 3-10 Modified FM Receiver .. 58

Figure 3-11 Block diagram ... 59

Figure 3-12 GNU Radio transmitter flow graph ... 60

Figure 3-13 GNU Radio Receiver flow graph .. 60

Figure 4-1 Zynq-7000 AP SoC Block Diagram ... 62

Figure 4-2 ZC702 Board Block Diagram ... 63

Figure 4-3 Arrangement of Slices within the CLB ... 64

Figure 4-4 ZYNQ board important resources ... 64

Figure 5-1 Interfacing between PC and USRP ... 66

Figure 5-2 OpenEmbedded Build System Workflow ... 70

Figure 5-3 processing on metadata in BitBake ... 72

Figure 5-4 Yocto project’s components .. 73

Figure 5-5 Creating FSBL .. 79

Figure 5-6 ZYNQ FSBL project ... 80

Figure 6-1 PL block diagram .. 86

Figure 6-2 IREQ_GEN control register .. 87

Figure 6-3 set NO stdin or stdout .. 93

Figure 6-4 CPU1 BSP add USE_AMP ... 94

Figure 6-5 Consol Output ... 100

file:///D:/EECE/4th_year/1st_term/GP/Thesis/Thesis_V5.docx%23_Toc519097349
file:///D:/EECE/4th_year/1st_term/GP/Thesis/Thesis_V5.docx%23_Toc519097350
file:///D:/EECE/4th_year/1st_term/GP/Thesis/Thesis_V5.docx%23_Toc519097351
file:///D:/EECE/4th_year/1st_term/GP/Thesis/Thesis_V5.docx%23_Toc519097352
file:///D:/EECE/4th_year/1st_term/GP/Thesis/Thesis_V5.docx%23_Toc519097353
file:///D:/EECE/4th_year/1st_term/GP/Thesis/Thesis_V5.docx%23_Toc519097354
file:///D:/EECE/4th_year/1st_term/GP/Thesis/Thesis_V5.docx%23_Toc519097355
file:///D:/EECE/4th_year/1st_term/GP/Thesis/Thesis_V5.docx%23_Toc519097356
file:///D:/EECE/4th_year/1st_term/GP/Thesis/Thesis_V5.docx%23_Toc519097357
file:///D:/EECE/4th_year/1st_term/GP/Thesis/Thesis_V5.docx%23_Toc519097358
file:///D:/EECE/4th_year/1st_term/GP/Thesis/Thesis_V5.docx%23_Toc519097359
file:///D:/EECE/4th_year/1st_term/GP/Thesis/Thesis_V5.docx%23_Toc519097360
file:///D:/EECE/4th_year/1st_term/GP/Thesis/Thesis_V5.docx%23_Toc519097361
file:///D:/EECE/4th_year/1st_term/GP/Thesis/Thesis_V5.docx%23_Toc519097362
file:///D:/EECE/4th_year/1st_term/GP/Thesis/Thesis_V5.docx%23_Toc519097363
file:///D:/EECE/4th_year/1st_term/GP/Thesis/Thesis_V5.docx%23_Toc519097364
file:///D:/EECE/4th_year/1st_term/GP/Thesis/Thesis_V5.docx%23_Toc519097365
file:///D:/EECE/4th_year/1st_term/GP/Thesis/Thesis_V5.docx%23_Toc519097366
file:///D:/EECE/4th_year/1st_term/GP/Thesis/Thesis_V5.docx%23_Toc519097367
file:///D:/EECE/4th_year/1st_term/GP/Thesis/Thesis_V5.docx%23_Toc519097368
file:///D:/EECE/4th_year/1st_term/GP/Thesis/Thesis_V5.docx%23_Toc519097369
file:///D:/EECE/4th_year/1st_term/GP/Thesis/Thesis_V5.docx%23_Toc519097370
file:///D:/EECE/4th_year/1st_term/GP/Thesis/Thesis_V5.docx%23_Toc519097372
file:///D:/EECE/4th_year/1st_term/GP/Thesis/Thesis_V5.docx%23_Toc519097374
file:///D:/EECE/4th_year/1st_term/GP/Thesis/Thesis_V5.docx%23_Toc519097375
file:///D:/EECE/4th_year/1st_term/GP/Thesis/Thesis_V5.docx%23_Toc519097376
file:///D:/EECE/4th_year/1st_term/GP/Thesis/Thesis_V5.docx%23_Toc519097377
file:///D:/EECE/4th_year/1st_term/GP/Thesis/Thesis_V5.docx%23_Toc519097378
file:///D:/EECE/4th_year/1st_term/GP/Thesis/Thesis_V5.docx%23_Toc519097379

xi

Figure 6-6 Connect XMD to CPU1 .. 102

Figure 6-7 CPU1 debug configuration .. 102

Figure 6-8 CPU1 remote debug configuration.. 103

Figure 7-1 Transmitter and Receiver hardware full chain .. 113

Figure 7-2 BER ratio for 45 gain and 128K sampling rate ... 114

Figure 7-3 BER ratio for 50 gain and 128K sampling rate ... 115

Figure 7-4 BER ratio for 55 gain and 128K sampling rate ... 115

Figure 7-5 The missing byte ... 116

Figure 7-6 Project's prototype ... 117

file:///D:/EECE/4th_year/1st_term/GP/Thesis/Thesis_V5.docx%23_Toc519097380
file:///D:/EECE/4th_year/1st_term/GP/Thesis/Thesis_V5.docx%23_Toc519097381
file:///D:/EECE/4th_year/1st_term/GP/Thesis/Thesis_V5.docx%23_Toc519097382
file:///D:/EECE/4th_year/1st_term/GP/Thesis/Thesis_V5.docx%23_Toc519097383
file:///D:/EECE/4th_year/1st_term/GP/Thesis/Thesis_V5.docx%23_Toc519097384
file:///D:/EECE/4th_year/1st_term/GP/Thesis/Thesis_V5.docx%23_Toc519097385
file:///D:/EECE/4th_year/1st_term/GP/Thesis/Thesis_V5.docx%23_Toc519097386
file:///D:/EECE/4th_year/1st_term/GP/Thesis/Thesis_V5.docx%23_Toc519097387
file:///D:/EECE/4th_year/1st_term/GP/Thesis/Thesis_V5.docx%23_Toc519097388

xii

List of Symbols and Abbreviations

1G first generation

2G second-generation

3GPP 3rd generation partnership project

ACP Accelerator Coherency Port

ADC

ADT

AMP

AMBA

Analog to Digital Converter

Application Development Tool

Asymmetric Multi-Processing

Advanced Microcontroller Bus Architecture

AP SoC

API

ARM

All Programmable SoC

Application Programmable Interface

Advanced RISC Machines

ASIC

AXI

Application Specific Integrated Circuit

Advanced Extensible Interface

BIF

BPSK

BSP

Boot Image Format

Binary Phase Shift Keying

Board support package

CLBs Configurable Logic Blocks

CP

CPU

cyclic prefix

Central Processing Unit

xiii

CR Cognitive Radio

CRC Cyclic Redundancy Check

DAC Digital to Analog Converter

DCM Digital Clock Management

DCP Design Check Point

DDR

Deb

DMA

DMAC

Double Data Rate

Debian

Direct Memory Access

Direct Memory Access Controller

DPC Dirty Paper Coding

DPCCH Dedicated Physical Control Channel

DPCCH2 Dedicated Physical Control Channel 2

DPDCH Dedicated Physical Data Channel

DSP

DTB

DTS

DUT

Digital Signal Processing

Device Tree Blob

Device Tree Source

Device Under Test

EDGE Enhanced Data rates for GSM Evolution

E-DPCCH E-DCH Dedicated Physical Control Channel

E-DPDCH

EGLIBC

E-DCH Dedicated Physical Data Channel

Embedded GNU C Library

xiv

eSDK Extensible Software Development Kit

ETSI European Telecommunications Standards

Institute

FBI Feed-Back Information

FCC Federal Communications Commission

FF

FFT

FIFO

Flip Flops

Fast Fourier Transform

First In First Out

FPGA Field Programmable Gate Array

FSM

FSBL

Finite state machine

First Stage Boot Loader

GCC

GP

GNU Compiler Collection

General Purpose

GPP General Purpose Processor

GPRS

GRC

General Packet Radio Services

GNU Radio Companion

GSM

GUI

Global System for Mobile

Graphical User Interface

HDF

HDL

Hardware Description File

Hardware Description Language

HF High Performance

xv

HS-DPCCH Dedicated Control Channel with HS-DSCH

transmission

HSPA High Speed Packet Access

IA Intelligent Antenna

IC

ICAP

ICD

IDE

Integrated Circuit

Internal Configuration Access Port

Interrupt Control Distributer

Integrated Development Environments

IEEE Institute of Electrical and Electronics Engineers

IFFT

IP

IPK

ISI

Inverse Fast Fourier Transform

Intellectual Property

Itsy Package

Inter Symbol Interference

JTAG Joint Test Action Group

LNA Low Noise Amplifier

LTE Long Term Evolution

LUTs Look up Tables

MAC

MFIFO

MM2S

MMU

Medium Access Control

Multi-channel First In First Out

Memory Mapped to Streaming

Memory Management Unit

xvi

MPDUs MAC Protocol Data Units

MSCS

NBPSC

OCM

OE

Multi-Standard Communication System

Number of Coded Bits Per Subcarrier

On Chip Memory

Open Embedded

OFDM Orthogonal Frequency Division Multiplexing

PA Power Amplifiers

PCAP

PCCC

Processor Configuration Access Port

Parallel Concatenated Convolutional Code

PDR Partial Dynamic Reconfiguration

PHY Physical Layer

PL Programmable Logic

PLB Programmable Logic Blocks

PLCP Physical Layer Convergence Protocol

PLL Phase Locked Loop

PMD Physical Medium Dependent

PPDU

PPI

PLCP Protocol Data Unit

Private Peripheral Interrupt

PRC Partial Reconfiguration Controller

PS Processing System

PSDU Physical layer Service Data Unit

xvii

QAM

QA

QEMU

QoS

QPSK

Quadrature Amplitude Modulation

Quality Assurance

Quick Emulator

Quality of Service

Quad Phase Shift Key

RF Radio Frequency

RP

RPM

S2MM

SCU

Reconfigurable Partition

Red Hat Package Manager

Streaming to Memory Mapped

Snoop Control Unit

SC-FDMA Single-Carrier Frequency Division Multiple

Access

SCM

S-DPCCH

SD-Card

SDK

Source Code Management

Secondary Dedicated Physical Control Channel

Secure Digital Card

Software Development Kit

SDR Software Defined Radio

SF

SMP

SPDX

SPI

Spreading Factor

Symmetric Multi-Processing

Software Package Data Exchange

Serial Peripheral Interface

xviii

SoC System on Chip

TFCI Transport-Format Combination Indicator

TPC Transmit Power Control

TrCH Transport Channel

TTI Transmission Time Interval

UART

UHD

UMTS

USB

Universal Asynchronous Receiver-Transmitter

USRP Hardware Driver

Universal Mobile Telecommunications System

Universal Serial Bus

USRP

VIO

Universal Software Radio Peripheral

Virtual Input Output

WCDMA Wide Code Division Multiple Access

WLAN

XSCT

Wireless Local Area Network

Xilinx Software Command Line Tool

xix

Acknowledgement

This year’s work wouldn’t have come to fruition if it were not for, after God, some pretty

amazing people whom we got know this year. Without their help and support we wouldn’t have

been where we are today.

First, we would like to thank Dr. Hassan Mostafa for administering our work, providing us with

the idea, the necessary guidance, the kits and a suitable working environment. We would also

like to thank him for training us throughout the year for this day and keeping up with our work

and encouraging team work and the collaboration between the teams to achieve the best results

possible.

Second, we would like to thank Eng. Sherif Hosny for his guidance and time throughout the year

and always responding to our questions regarding the last years’ work. Also, Eng. Mostafa

Gamal for meeting with us whenever possible and explaining the last year’s work to us and

putting us on the start of the road that took us where we are today.

Third, Eng. Ossama Ryad who was a great help with the USRP. Thank you for your help, your

time and your patience in teaching us.

Fourth, we would like to thank Eng. Mohammed Osama for his immense help on the last leg of

this journey and spending all his free time and vacation time with us trying to get the best results

possible. Thank you for your time, effort and patience.

Last but not least, we would like to thank the previous years teams who have worked on this

project and provided the great base on which we built our project.

xx

Abstract

This year’s part of the Software Defined Radio (SDR) graduation project discusses the

implementation of communication chains via real channel for multi-standards on a partially

reconfigurable heterogeneous platform as ZYNQ board and USRPs. It depends on the ability of

the ZYNQ board to control the USRP board to use it as its RF plate form for transmitting and

receiving.

Separating the transmitter and receiver blocks is needed in order to operate them on two different

ZYNQ boards with two separate USRPs, so that real channel communication may take place. On

each ZYNQ board, the two processors of the ZYNQ board are used independently to run two

different applications on different platforms. One processor is used to run a bare metal

application that runs on the FPGA which represents a single static standard -without DPR-. The

other processor is used to run a Linux image which is used to control the USRP, by installing the

UHD image.

During the project, experience has been gained in HDL, C/C++, GNU Radio, and Embedded-

Linux.

The future work in this project will be integrating the Dynamic Partial Reconfiguration (DPR) of

the previous year’s project into this year’s project using separate ZYNQ boards and real channel

communication.

1

Chapter 1 : Introduction

In the last few years, the number of users has increased significantly; a way was needed to

handle the communication among them. Different types of standards have been implemented to

compromise between area, power, quality and the large number of users. However, since those

standards are not used simultaneously, every standard has its own transceiver which causes a big

waste in area, power and correspondingly battery life. To solve those problems, SDR was

proposed as a solution.

SDR is a way to implement the hardware using mainly software and simple hardware resources

in order to decrease the hardware and use area in an efficient way. It is a way to define the

physical layer functions in software.

In this thesis we are going to discuss the interface between the FPGA and USRP to have a real

channel between transmitter and receiver, testing different communication standard behavior

through the wireless channel.

1.1. Organization of the thesis

This dissertation will go as follows; First, there is a brief introduction to the project, its purpose,

the concepts it follows and its progress over the years. Second, this year’s project is outlined and

an introduction to the work needed to execute it is written. Third, the hardware and software

tools and kits needed are introduced in detail, their benefits discussed and the purpose behind

them elaborated. Fourth, a brief introduction to the main tool, ZYNQ board, its uses and main

functions. Fifth, the integration between the USRP and ZYNQ board is discussed in detail and

the steps taken to interface between them are explained. Sixth comes the chapter on how to

operate two processors of the same board independently in order to operate both bare-metal

codes and OS on the same board without interfering with each other, thus achieving the purpose

of chapter five. Seventh, the conclusion of our work and the results we’ve achieved is depicted in

this chapter along with the future work this project will need, in order to reach the market as a

final working project that will save a lot of power, money and time.

2

1.2. Software Defined Radio (SDR)

1.2.1. Introduction

The communication standards are being developed and upgraded to satisfy the speed and the

time to handle connectivity among the users, whose number is increasing with time.

Consequently, different communication standards have been developed, but the radio

frequency spectrum is not utilized in an efficient way [1, 2], as the communication bands are

not being used simultaneously. The research in the radio spectrum utilization leads to two

approaches to solve this problem, the first approach is the Intelligent Antenna (IA), which is

an antenna array technology that uses spatial beam forming and signal processing

algorithms to cancel interference and reuse of the space resources [3]. IA depends on the

Dirty Paper Coding (DPC) technique. The second approach is the Cognitive Radio (CR),

which dynamically configures the user terminals, to utilize the radio spectrum that is not

used, depending on the available wireless channels detected without interfering with the

other users. In other words, CR is considered a way of managing the radio spectrum in an

efficient way and it can be developed using the SDR technique [4, 5].

Generally, in a Multi-Standard Communication System (MSCS) two major problems exist,

the utilization of the radio spectrum pointed to in the previous paragraph and utilization of

hardware. As each standard has its own transceiver this leads to high cost, large area, high

power consumption and low battery life. At the same time, the development of the central

base stations and the users’ devices change tremendously to adapt to the new technologies

and support the old ones. Developing hardware, upgrading and redistributing cost money

and effort. These two major problems, unutilized radio spectrum and waste in hardware,

initiated the research for finding new ways of reusing (reconfiguring) the same set of

hardware to operate the old and new technologies. The utilization of the radio resources and

the physical hardware resources can be done by off-loading the data transmitted between the

different communication systems, and at the same time reconfiguring the hardware

resources or reordering them to switch from one standard to another. SDR is a type of radio

system implementation using software, which is used to form different waveforms. These

waveforms allow the system to switch among different communication standards.

3

The motivation of SDR came from the existence of some physical layer blocks, which have

the same functionality in different communication systems like (GSM, UMTS, LTE, etc.…).

Note that, these standards are not used at the same time which allows their hardware

resources and radio spectrum resources to be shared among the standards and hence, be used

in a more efficient way. Also, the switching among the different waveforms should be

dynamic, more or less in real time. The Partial Dynamic Reconfiguration (PDR) is a

technique used in the (FPGA), which allows hardware real time reconfigurable computing.

By using the PDR’s capability of dynamically changing and partially configured system

files, real time SDR system can be implemented.

1.2.2. Communication System

Figure 1-1 shows the main blocks in a modern communication system. It is composed of a

Digital Signal Processing (DSP) unit, digital and analog converters (DAC, ADC), RF front

end and antenna.

High data rates can be achieved by processing the communication signals digitally using

software, which is easier to develop, distribute and upgrade, the digital transceivers

penetrate the traditional analog transceivers by pushing the digital and analog converters

towards the antenna and pulling the communication systems more to software design on a

given hardware.

Figure 1-1 Simple communication system

4

This work will concentrate on the DSP block, however a brief description for each block is

presented as follows:

• Digital Signal Processing Block: In the transmitter, this block is responsible for signal

adaptation to be sent over a channel. Signal adaptation includes encryption, error

correction coding schemes, modulation ...etc. Whereas, in the receiver this block is

responsible for extracting the original information sent by the transmitter, by

reconstructing the signal using demodulation, decoding and decryption. This block

increases the flexibility of the radio development.

• DAC/ADC Blocks: Analog and digital converters used to transfer the signal between

the analog domain and digital domain. Using ADC, the received signal is digitalized to

be processed digitally using the DSP block. The digital representation depends on the

sampling rate, which may lead to some information loss. On the other hand, the DAC

can reconstruct the signal to nearly the original one.

• RF Front End Block: It is the classical block that contains the Low Noise Amplifier

(LNA), filters and the Power Amplifier (PA). This block is the most challenging block

in the SDR development.

• Antenna: Generally, the antenna is a passive device used to capture the electromagnetic

waves from the surrounding media and converts it to an electrical signal. The antenna

design complexity varies from a single antenna to multiple antenna arrays. The smart

antenna is an antenna array that uses the signal processing algorithms to locate the

direction of signal arrival and the reconfigurable antenna is capable of changing its

frequency for adaptable systems.

1.2.3. SDR Definition

The daily usage of communication standards is increasing. Phone calls, accessing the

internet, sharing data and controlling devices are examples of modern communication

usage. The devices using these standards vary in shape, functionality and the way of usage

like cellphones, wireless routers, smart chips, smart metering ...etc. Although it is not easy

to invent a generic device that can do everything, but it is achievable by using an adaptable

communication device that can manage the communication between them all.

5

This adaptation is easier to be done through software defined modules, where these modules

can change functionality by using the software.

SDR is a way to implement the hardware using mainly software and simple hardware

resources in order to decrease hardware and use area in an efficient way. It is a way to

define the physical layer functions in software.

1.2.4. SDR Advantages

There are many benefits for using SDR that it can be used in different industries and

applications, hereby listing some of these advantages:

1. Adaptability

The waveform is adapted to handle different scenarios for Radio. For example, if the

Radio has low battery the waveform will be low powered or if it’s downloading a file

the waveform will have a high throughput and so on...

2. Interoperability

As some radios are incompatible with each other, SDR handles the communication

between them.

3. Frequency Reuse (cognitive Radio)

If there is an assigned band for a user and it is unused for a certain time, SDR can use it

(borrow it) to increase its available band.

Figure 1-2 SDR approach

6

4. Updating and Remote Upgrading

As we use the same hardware for different standards and the only change is in the

software, we can easily update those standards and need no extra or new hardware or

resources, so there is no need to go back to lab

5. Less Area and cost

The hardware is decreased. Hence, area, power and cost are decreased.

6. Ability to receive and transmit various modulation methods using a common set of

hardware

7. The ability to alter functionality by downloading and running new software at will.

8. The possibility of adaptively choosing an operating frequency and a mode best suited for

prevailing conditions.

9. Elimination of analog hardware and its cost, resulting in simplification of radio

architectures and improved performance.

1.2.5. SDR Implementation

SDR can be implemented on different hardware platforms such as General Purpose

Processor (GPP), Digital Signal Processor (DSP), and Field Programmable Gate Array

(FPGA). FPGA is suitable for high rate applications that have to be low in power and

resources. Also, the high flexibility of the FPGA achieved by Dynamic Partial

Reconfiguration (DPR) allows it to be used in hardware implementation of SDR as

explained later.

1.3. Field Programmable Gate Array (FPGA)

FPGA is a programmable device that can be configured by the user for any desired application. It

consists of the following blocks as shown in the Figure 1-3:

1. Configurable Logic Blocks (CLBs): include Look Up Tables (LUTs) and registers to

implement combinational and sequential logic.

2. Dedicated blocks: such as DSP and RAM blocks.

7

Figure 1-4 FPGA layers

3. Input and output blocks: are special logic blocks for external connectivity.

4. Routing: connects inputs and outputs to CLBs or generally any source to any destination by

connecting wires through switching matrices.

5. Clocking resources: like digital clock manger (DCM). It is used to eliminate clock skew and

to synthesize the desired clock frequency or shift phase.

1.3.1. FPGA configuration

FPGA is a volatile device, which means that its contents are erased once the power is turned

off or interrupted so we need to configure it each time we need to use it.

FPGA is considered a two-layered device as shown in the following Figure 1-4:

1. Logic layer contains the logic to be configured as the

desired application.

2. Configuration memory layer contains the configuration

file used to configure the logic layer.

Figure 1-3 FPGA blocks

8

1.3.2. Types of configuration

1.3.2.1. Full/Fixed Reconfiguration

As shown in Figure 1-5, a configuration file is downloaded to configure the whole chip.

FPGA has to stop working during downloading the new configuration file so, it takes long

time to reconfigure the chip each time.

1.3.2.2. Static partial reconfiguration

As shown in Figure 1-6, an initial full bit file with complete configuration is downloaded for

the whole chip then to reconfigure a part of the FPGA a partial bit file is downloaded while

suspending the work of the FPGA. In this type the reconfiguration overhead time is reduced

compared with the previous type.

Figure 1-6 Static partial reconfiguration

Figure 1-5 Full reconfiguration

9

1.3.2.3. Dynamic partial reconfiguration (DPR)

Like the previous type, an initial full bit file with complete configuration is downloaded at

first, as shown in Figure 1-7. The main difference is that a part of the FPGA can be

reconfigured at run time by loading a partial bit file to the configuration memory while the

FPGA continues its normal operation except for this part so this decreases the

reconfiguration time. As shown in the following figure, the FPGA is divided to static and

dynamic parts. The static part is configured from the initial full bit file and remains fixed

while the dynamic modules in the dynamic part is reconfigured at run time by partial bit

files.

In our case, we are concerned with the Dynamic Partial Reconfiguration of the FPGA.

1.4. Dynamic Partial Reconfiguration (DPR)

DPR is very helpful in implementing multi-standard SDR system on a single chip as it allows

runtime reconfiguration of a previously chosen partition on the FPGA to be reconfigured with

partial bit-stream files.

Figure 1-7 Dynamic partial reconfiguration

10

1.4.1. Advantages of DPR

1. Resource Utilization

In static reconfiguration, for different standards to work simultaneously each standard

must have its own resources but using DPR allows having only one set of resources that

serves all standards in turn.

2. Upgradeability

All standards have different versions and updates that either make the system better or

deals with a definite issue. DPR allows the download of the new update without any

change in hardware as long as the resources reserved could support the new update. An

updated partial bit-stream file can be downloaded to replace the older version.

3. Saving power

As there’s only one chain working at a time and due to the lower utilization of resources,

power is decreased considerably.

4. Saving money

Due to the decreased utilization of resources and the power saved, money is also saved.

To load one of the partial bit-stream files stored into the reconfigurable partition we

must use access ports such as JTAG, PCAP… etc. and different DPR modes.

1.4.2. DPR Modes

XILINX offers two different modes for implementing DPR in order to transfer the bitstream

file into the configuration memory, where each mode has different techniques (Only

common and familiar techniques are discussed not all of them), as shown in Figure 1-8,.

Figure 1-8 DPR Modes

11

1.4.2.1. External Mode:

Partial bit-stream are loaded through external source JTAG - Joint Test Action Group-. It

has high reconfiguration time and a lot of time overhead due to headers, checksum and the

transfer of the data from source of JTAG to the reconfigurable memory which takes about

150 msec.

The max theoretical bandwidth is approximately 66 Mbps and it transfers 1-bit at a time (i.e.

serial) which leads to an actual BW of 8.25 Mbps.

1.4.2.2. Internal Mode:

Reconfiguration takes place through an already implemented access port to the

configuration memory. The ARM processor is responsible for the control signal which

activates the MUX in PL to either be ICAP or PCAP. A quick system overview is shown in

Figure 1-9.

Figure 1-9 PS & PL Configuration

12

a. Processor Configuration Access Port (PCAP)

Located in processing system (PS), it is controlled directly by the ARM cortex 9_0

processor. It has no memory of its own so it must retrieve 32-bits by 32-bits – bus size – of

the partial bit-stream file stored in the DDR memory.

It takes a higher reconfiguration time than ICAP as it is limited by the speed and size of the

bus and requesting to take the bus in the first place as it has no memory.

Theoretically it has a BW of 3.2 Gbps or 400 MB/sec but its actual BW is around 145

MB/sec.

b. Internal Configuration Access Port (ICAP)

It is located in the programmable logic (PL) partition and it is controlled through controllers.

Those controllers have memories inside them which are small. They can hold parts of the

partial bit-stream file in order to limit the use of the bus to certain periods of time during

which the controller is the master of the bus. As the ICAP transfers the stored data in

controller to reconfigurable memory the controller retrieves another segment

simultaneously, decreasing the overall overhead on the reconfiguration time.

It has a theoretical BW of 400MB/sec or 3.2 Gbps but its actual BW depends on the type of

controller used.

As complexity increases so does bandwidth.

Types of controllers:

1) AXI-HWICAP:

This is a simple IP of a simple controller composed of an asynchronous Read & Write

FIFOs, control registers and an FSM along with ICAP used for reconfiguration as shown in

Figure 1-10. It has low resource utilization and low average power but it also has low

throughput.

13

2) PRC:

More complex than AXI-HWICAP, but it has higher throughput and achieves larger BW. It

uses virtual sockets which represent reconfigurable partitions and logic blocks to isolate

reconfigurable partition from static region during reconfiguration.

Figure 1-10 AXI-HWICAP Core

Figure 1-11 AXI-HWICAP Core

14

1.4.3. DPR Flow

XILINX DPR flow will be introduced through implementing a multi-standard SDR system

(2G, 3G, 4G, Wi-Fi, and Bluetooth) on two reconfigurable partitions (TX, RX) using HW-

ICAP IP core with the help of Vivado and SDK tools.

First, we have the SDR systems at the same time as shown in Figure 1-12, but that wastes

hardware resources as previously discussed, so the system will be modified by removing

(2G, 3G, 4G, Wi-Fi, Bluetooth) blocks and putting only one block which will be

reconfigurable with the reconfigurable modules (RMs) as shown in Figure 1-13, where each

RM represents one of the five chains that would be loaded into the chosen floor-planned

reconfigurable partition on the FPGA

The Flow Steps:

The flow chart shown in Figure 1-14, shows the flow steps of the DPR flow where from step

1 to step 6 are performed using Vivado, while Step No. 7 SDK is used to run our software

“C” code on the processor.

Figure 1-12 Before DPR Figure 1-13 After DPR

15

Step 1: Generate DCP for Static and RMs

1. Read HDL codes for each RM

2. Prepare a Black Box Top Module and prepare each RM to have the same I/O ports

→ Black Box Module is a module where you only define the input and output ports of the

module without performing any logic. This module will be used in the static design

(Reconfigurable Partition shown in Figure 1-9). This Black Box Module will be modified

later in the following steps with the RMs (2G, 3G, 4G, Wi-Fi, and Bluetooth). The top

module of each RM must have the same module name and same input and output ports of

the Black Box Module.

3. Synthesize the static and Reconfigurable Modules separately.

→ In this step the static design of the DPR system is synthesized with the black box, Each

RM (Standard Chain) is synthesized in a separate project

4. Generate the DCP for each synthesized RM.

Step 2: Load Static and one RM for the RP

1. Open the static DCP to do the floor-planning of the Reconfigurable Partition with

resources which can cover the resources needed by each RM. In this case we have only one

reconfigurable partition.

2. Make sure the Static block cover all the resource required by each RM. In our case the

maximum resources required goes to the 4G RM, so if 4G RM fit into the Static block it

would be guaranteed that other RMs will fit.

Figure 1-14 DPR flow steps

16

3. Reset after reconfigure RM

→ Partial Reconfiguration solutions from Xilinx have required a manual reset action from

the user to ensure all newly reconfigured logic begins in a known state (ensure that no one

standard in one column at the memory, that is stagnant from the last reconfiguration,

overlaps with any other standard that is newly configured).

4. Snapping Mode

→ This command is to ensure that each column achieve minimum size of LUT (400)

5. Write Checkpoint for this step

Step 3: Create and implement first configuration

→ In this step we will Implement a complete design (static and one Reconfigurable Module

per Reconfigurable Partition) in context.

1. Read one of the RMs DCP generated in Step 1 in the Black Box cell. We start with 4G

just to make sure that static block covers all the resources needed by 4G RM.

2. Implement Design using the Three Tcl command “opt_design, place_design,

route_design”

3. Write Full design Checkpoint of the implemented design, as it will be used in the

generation of bitstreams in Step 6.

4. Remove Reconfigurable Modules from this design and save a static-only design

checkpoint.

5. Write the DCP as this DCP represents the fully implemented and routed static design that

would be used later in the implementation of other RMs.

Step 4: Create and implement other configurations

→ Repeat Step 3 until all Reconfigurable Modules are implemented

Step 5: Run PR_verify

→ Run a verification utility (pr_verify) on all configurations to verify that the static

implementation and interfaces between static block and RMs are compatible.

17

Step 6: Generate bit-stream

1. Read Checkpoint of each RM from DDR memory

2. Create Full bit-stream (.bit) for each RM

→ .bit using JTAG

3. Create Partial bit-stream (.bin) for each RM

→ .bin using SD Card

Step 7: Generate the Software App

1. Export Hardware

2. Launch SDK

3. Run C code

Step 8: Test the Design

Place the board in the SD boot mode. Copy the (BOOT.bin) file on the SD Card. Copy the

partial bin files generated in the bitstreams directory on the SD card, and place the SD card

in the board then test.

1.5. Progress of the previous years

1.5.1. Internship summer 2014

This was the first attempt in implementing SDR by using DPR. Most of the chain blocks of

the three different chains (3G, Wi-Fi and LTE) were eliminated to make it simpler to

implement.

The chosen blocks were only implemented using VHDL & they were as follows:

• In 3G: Convolutional Encoder, Rate Half & Rate Third.

• In Wi-Fi: Convolutional Encoder, Rate Half

• In LTE: Convolutional Encoder, Rate Third.

18

1.5.2. Graduation Project 2015

In that year, the objective was to design, simulate, and implement DPR system for SDR on

FPGAs which was met by investigating and modeling on two different steps.

The first step by implementing PDR system for convolutional encoders used in different

communication standards 3G, LTE and WIFI (completing the internship work). Where the

convolutional encoders initially not exist on the chip but stored in external memory and

loaded on demand.

This PDR design for the convolutional encoder was compared to conventional convolutional

encoder system, where all encoders existed on the same chip. They were compared with

respect to area, power, latency and memory. The results showed that PDR implementation

consumes less power and area when compared to the normal design, whereas the normal

design had less memory and latency.

The second step was to implement ideal communication chains for 3G, LTE and WIFI using

PDR technique where swapping occurs among different blocks for implemented encoders,

modulation, FFT and DFT used in these standards. This produces a reconfigurable system

that can adapt different communication standards. Using PDR shows an improvement in

area and power consumption with fewer extra memory and latency when compared to the

normal static implementation.

These designs of both steps were implemented on Xilinx FPGA kit XUPV5-LX110T.

1.5.3. Graduation Project 2016

In that year, the progress continued & the following results were achieved.

• HDL and MATLAB implementation of 3G full transmitter and some of receiver blocks.

• HDL and MATLAB implementation of WI-FI full transmitter.

• HDL and MATLAB implementation of some of LTE transmitter blocks.

• Building a test framework to Verify of HDL implementation.

• Implementation of the three chains on the FPGA (Virtex 5).

19

• Generating and proving the concept of multiple RPs by implementing it on a simple

example.

• Debugging the FPGA results using Chipscope.

• Building a system on chip (SOC) with input and output files.

• Reducing the total area and resources needed for implementation of the three standards.

• Reducing the total power of the system as they eliminated the static and sleep mode

power consumed by the idle chains.

• Reducing reconfiguration overhead by reconfigure each internal block of the chain after

finishing its function. This is a kind of pipelining as there wasn’t any need to wait until

all frame data was generated to reconfigure each internal block of the chain.

1.5.4. Graduation project 2017

That year is an experience of both hardware and software skills. The verification of results

had been done to make sure of the success of the work.

The final results of that year’s work:

• Optimization of 3G, LTE, and Wi-Fi transmitter HDL codes.

• HDL and MATLAB implementations of 3G, LTE, and Wi-Fi Receiver.

• HDL and MATLAB implementation of 2G transmitter and receiver.

• HDL and MATLAB implementation of Bluetooth transmitter and receiver.

• Building testing environment on FPGA to test all the implemented chains.

• Building DPR system using two different controllers of ICAP (HWICAP & PRC).

20

Chapter 2 : Separation

2.1. Transmitter and Receiver separation

The transmitter and receiver of all standards were originally constructed so that, the output data

of the transmitter is wired directly to the input data of the receiver with simulated attenuation and

noise added to the signal, to try to imitate real channel noise and attenuation. In order to send the

data via real channel, the transmitter and receiver of the standards had to be separated into two

different designs with different codes, block diagrams and separate kits.

2.2. Overview

One standard was separated for testing purposes into transmitter and receiver with independent

codes. The first challenge in the separation was to put that one standard into a separate code as

this project will not apply the DPR concept, yet.

In this part we will talk about the steps taken in order to separate the transmitter and receiver,

following the sequence of the data flow through the blocks.

For each transmitter/ receiver to act independently on a ZYNQ board it must have controlled

access to the AXI interface and the processor, an input interface, a DMA, FIFO, data splitter and

standard based block -which has the rate specified for the standard and the modulated data-.

The following part will be an overview of the whole system and its stages. Each stage will be

discussed in detail later on in this chapter.

For the transmitter, the first block is the AXI-DMA which can control the memory access and

the interface between memory mapped and stream type data. The input data is then entered

through the input interface to adjust its clock to suit the system clock, which then passes the data

on to the chosen test standard block. The output of said block is the modulated data, which has

two parts; imaginary and real. Both parts are entered into the FIFO block for temporary storage.

21

The imaginary and real parts are combined together to form a single stream, which will then be

stored in the SD card as a text file.

As for the receiver, the only change is an added block called data splitter. As mentioned before

the imaginary and real parts of the data are concatenated into a single stream in the FIFO block

of the transmitter, so in the receiver this procedure has to be reversed.

This is done using the data splitter block which comes after the input interface. It takes the

received data and re-splits it into imaginary and real parts which are then entered into the chosen

test standard block. Demodulation occurs in this block and then the sequence of the stages

continues as before, in the transmitter.

Each of the blocks mentioned in the previous paragraph will be discussed in detail in the

following parts of this chapter.

2.3. Direct Memory Access (DMA)

A DMA engine allows you to transfer data from one part of your system to another. The simplest

usage of a DMA would be to transfer data from one part of the memory to another, however a

DMA engine can be used to transfer data from any data producer IP block (e.g. an ADC) to a

memory, or from a memory to any data consumer IP block (e.g. a DAC).

Figure 2-1 Illustration of AXI DMA use

22

2.3.1. The DMA functions

The AXI Direct Memory Access (AXI DMA) IP core provides high-bandwidth direct

memory access between the AXI4 memory mapped and AXI4-Stream IP interfaces. All

ZYNQ ports between PS and PL are memory mapped AXI interfaces, which needs a

complicated control circuits to deal with it.

The AXI DMA can transfer high-burst data between PL and PS, by converting the data sent

via the AXI4 interfaces to be sent via the AXI-stream interfaces, which is much easier to deal

with.

As shown in Figure 2-1, the processor and DDR memory controller are contained within the

Zynq PS. The AXI DMA and IP block are implemented in the Zynq PL. The AXI-lite bus

allows the processor to communicate with the AXI DMA to setup, initiate and monitor data

transfers. The AXI_MM2S and AXI_S2MM are memory-mapped AXI4 buses and provide

the DMA access to the DDR memory. The AXIS_MM2S and AXIS_S2MM are AXI4-

streaming buses, which source and sink a continuous stream of data, without addresses.

Its optional scatter/gather capabilities also offload data movement tasks from the Central

Processing Unit (CPU) in processor-based systems. Initialization, status, and management

registers are accessed through an AXI4-Lite slave interface. Figure 2-2 illustrates the

functional composition of the core. [6,7].

Figure 2-2 DMA block diagram

23

Figure 2-3 shows the IP block of the DMA with all its input and output signals. Primary

high-speed DMA data movement between system memory and stream target is through the

AXI4 Read Master to AXI4 memory-mapped to stream (MM2S) Master, and AXI stream to

memory-mapped (S2MM) Slave to AXI4 Write Master. The Function of all the signals are

listed in the two following tables in Figure 2-4 and Figure 2-5. [6,8]

Figure 2-3 AXI DMA IP block

Figure 2-4 AXI DMA signals' functions

24

The program code for the DMA engine is written by software into a region of system

memory that is accessed by the controller using its AXI master interface. The DMA engine

instruction set includes instructions for DMA transfers and management instructions to

control the system.

2.3.2. DMAC

The DMA controller (DMAC) uses a 64-bit AXI master interface operating at the CPU_2x

clock rate to perform DMA data transfers to/from system memories and PL peripherals.

Figure 2-5 cntd' DMA signals' functions

25

The DMAC is able to move large amounts of data without processor intervention. The

source and destination memory can be anywhere in the system (PS or PL). The memory

map for the DMAC includes DDR, OCM, linear addressed Quad-SPI read memory, SMC

memory and PL peripherals or memory attached to an M_GP_AXI interface.

The transfers are controlled by the DMA instruction execution engine. The DMA engine

runs on a small instruction set that provides a flexible method of specifying DMA transfers.

This method provides greater flexibility than the capabilities of DMA controller methods.

The controller contains a multi-channel FIFO (MFIFO) to store data during the DMA

transfers. The program code running on the DMA engine processor views the MFIFO as

containing a set of variable-depth parallel FIFOs for DMA read and write transactions. The

program code must manage the MFIFO so that the total depth of all of the DMA FIFOs does

not exceed the 1,024-byte MFIFO.

The controller can be configured with up to eight DMA channels. Each channel corresponds

to a thread running on the DMA engine’s processor. When a DMA thread executes a load or

store instruction, the DMA Engine pushes the memory request to the relevant read or write

queue. See Figure 2-6 for illustration. [8]

Figure 2-6 DMAC system viewpoint

26

2.4. Input Interface

In multi-clock systems, the system may have different clock than input or output clocks such as

in our case, where the system clock is different than the input rate of the system and the output

rate of the system, as shown in Figure 2-7.

The traditional design is to set a DMA with a clock for input and another for output, and a third

clock for the DUT itself [3]. This may cause some issues:

a) The ARM is limited to generate 4 clocks only. Consider inserting another DUT to the system

with another 3 clocks, the ARM cannot generate 7 clocks.

b) As the number of clocks increases, the Vivado synthesize time increases.

c) The clock routes in the FPGA floorplan are limited. As the clocks increases, the higher the

possibility for time violation to occur.

So, the testing environment is to overcome these three issues by keeping the data (whether input

or output) fixed for some clock cycles and by using the AXI-stream signals: Tready, Tvalid,

Tlast.

The input interface controls the flow of data using the “Tready” signal. The Tready signal is an

input to the DMA to say that the DUT is ready to receive signals. For example, if we want to get

input data at a clock 8 times less than the system clock, we simply set the Tready to be LOW for

7 clock cycles and HIGH for only 1 clock cycle.

Figure 2-7 Difference problem of

the system clock from the system

I/P & O/P rate

27

Figure 2-8 the cycles illustrating the example

Figure 2-8 illustrates the waveform for testing the input interface in case of a rate of 4 and data

length of 10.

As shown in Figure 2-9, the Tready is controlled through the tready counter, while the rate itself

is controlled by the ARM processor through AXI [3].

The input interface’s other function is re-setting the DUT. The idea simply is to reset the DUT at

the beginning of transmitting input data, or in other words, when the “Tvalid” signal comes to

HIGH. An FSM for that is shown in Figure 2-9. The “reset_out” signal is active when the state is

S1. The FSM takes one clock cycle to produce the output, which is why we used the delay

elements to delay the data stream to the DUT.

Figure 2-9 Input Interface hardware

28

The input interface IP block illustrated in Figure 2-10, has seven signals divided into four input

signals and three output signals, which will be discussed in detail. First, the S00_AXI input

signal, which is a set of communication signals between the system and the input interface.

Second, the S_AXIS_Input_Data input signal, which is the data coming from DDR memory and

going to the connected system, remember that due to the different speeds of the connected

system, the system and the memory, the input interface was needed. Third, s00_axi_aclk input

signal, which is the input interface clock. Fourth, s00_axi_aresetn input signal, which is a reset

signal for the input interface block. Then comes the output signals, data_out, which is the output

data from the DDR memory to the connected system at a time specified by the system. The

valid_out output signals specifies the time for the data_out to go out.The resetn_out signal resets

the connected system.

2.5. Data splitter

The data splitter is a custom IP block constructed for the purpose of splitting the data arriving at

the receiver before entering it into the standard’s IP block.

The IP block shown in Figure 2-11, has Data_in signal, which is a 32-bit input signal from the

input interface. The valid_in signal determines when the IP block can take the data available on

the bus. When valid_in is high, this means that the data on the bus is complete and is intended

for the data splitter block. After executing its sole function of splitting the input data, the block

gives out three output signals, which are Data_out_real, Data_out_imag and valid out. The

Data_out signals both real and imaginary are 12-bit signals that represent the split data before

concatenation. Valid_out signal is the one that signifies that the output coming out of the block is

correct and can be received by the next block, which is the standard block.

Figure 2-10 Input interface IP block

29

2.6. WIFI standard IP block

The chosen standard for testing was the WIFI 802.11a. As it is standard procedure for any new

technology or application to test it on the WIFI standard, then applying it on all other standards

as the WIFI is easy to implement and works on a free band.

2.6.1. WIFI transmitter

The transmitter of the WIFI consists of several blocks as shown in Figure 2-12. These

blocks are the ones that do the modulation and produce the output data which is then

transmitted through air by using USRPs.

The previous blocks will now be discussed so as to get an overall understanding of the

blocks’ functions and uses.

Figure 2-11 Data splitter IP block

Figure 2-12 WIFI transmitter functional blocks

30

2.6.1.1. Data Scrambler

The Scrambler is used to randomize the service, PSDU, pad and data patterns to prevent

long sequences of 1s or 0s to keep synchronization. The frame synchronous scrambler uses

the generator polynomial S(x) as follows:

𝑆(𝑥) = 𝑥7 + 𝑥4 + 1

The generator polynomial S(x) can be represented as shown in Figure 2-13.

According to the initial state the scrambler will generate 127-bit sequence then it will return

to its initial state. The same scrambler is used to scramble the transmitted data and

descramble the received data. The SERVICE filed of the data packet contains 16 bits, as

shown in Figure 2-14, which are used to initialize the data scrambler. The seven LSBs of the

SERVICE field are all set to zero prior to scrambling, as the receiver uses the first seven bits

of the service field to determine the initial state of the scrambler.

Figure 2-13 Data scrambler block diagram

Figure 2-14 PPDU frame format

31

2.6.1.2. Convolutional Encoder

The DATA field, composed of SERVICE, PSDU, tail, and pad parts, shown in Figure 2-14,

shall be coded with a convolutional encoder of coding rate R = 1/2, 2/3, or 3/4,

corresponding to the desired data rate. The convolutional encoder shall use the industry-

standard generator polynomials, g0 = 1338 and g1 = 1718, of rate R = 1/2, as shown in

Figure 2-15. The bit denoted as “A” shall be output from the encoder before the bit denoted

as “B.” Higher rates are derived from it by employing “puncturing” [7].

2.6.1.3. Puncturing

If the system could only change the data rate by adjusting the constellation size, and not the

code rate, a very large number of different rates would be difficult to achieve as the number

of constellations and the number of points in the largest constellation would grow very

quickly. Another solution would be to implement several different convolutional encoders

with different rates and change both the convolutional code rate and constellation. However,

this approach has problems in the receiver that would have to implement several different

decoders for all the codes used. Puncturing is a very useful technique to generate additional

rates from a single convolutional code.

The basic idea behind puncturing is to not transmit some of the output bits from the

convolutional encoder, thus increasing the rate of the code and inserting a dummy zero

metric into the convolutional decoder on the receive side in place of the omitted bits, hence

Figure 2-15 Convolutional Encoder

32

only one encoder/decoder pair is needed to generate several different code rates. The

puncture pattern is specified by the Puncture vector parameter in the mask. The puncture

vector is a binary column vector. A 1 indicates that the bit in the corresponding position of

the input vector is sent to the output vector, while a 0 indicates that the bit is removed. There

are two types of punctures in WI-FI standard: (2/3) and (3/4) according to the data rate.

2.6.1.4. Interleaver

All encoded data bits shall be interleaved by a block Interleaver with a block size

corresponding to the number of bits in a single OFDM symbol. The Interleaver is defined by

a two-step permutation. The first permutation ensures that adjacent coded bits are mapped

onto nonadjacent subcarriers. The second ensures that adjacent coded bits are mapped

alternately onto less and more significant bits of the constellation and thereby, long runs of

low reliability (LSB) bits are avoided.

2.6.1.5. Modulation Mapper

Modulation is the process by which information (e.g. bit stream) is transformed into

sinusoidal waveform. A sinusoidal wave has three features those can be changed _phase,

frequency and amplitude_ according to the given information and to the used modulation

technique. In 802.11a Phase Shift Keying (BPSK, QPSK) and Quadrature Amplitude

Modulation (16-QAM, 64-QAM) modulation techniques are used according to the desired

data rate as described in the following equation: d = (I + j Q) * Kmod where Kmod is the

normalization factor and is used in to achieve the same average power for all mappings.

It depends on the base modulation mode where for BPSK, Kmod = 1, for QPSK, Kmod = 1/

√2 , for 16-QAM, Kmod = 1/√10, for 64-QAM, Kmod = 1/√40.

Every modulation mode has a modulation specified in the standard as shown in Figure 2-16.

33

2.6.1.6. IFFT Modulation

WIFI uses orthogonal frequency division multiplexing for modulation, An OFDM signal

consists of a number of closely spaced modulated carriers as shown in Figure 2-17 , those

carriers are orthogonal so the receiver could demodulate them, OFDM systems are very

sensitive to frequency offset and ISI because any error in the received signal affects all

carriers and all data so a guard interval is used between OFDM symbols, In this guard signal

we insert a cyclic prefix of the symbol to compensate for any synchronization problems with

in the receiver [10].

Figure 2-16 Modulation constellations for BPSK, QPSK, 16-QAM, and 64-QAM

Figure 2-17 (a) Spectrum of a single subcarrier of the OFDM signal,

(b) Spectrum of the OFDM signal

34

The important parameters for the OFDM modulation system are the number of subcarriers

used within the bandwidth, the cyclic prefix and where to insert pilot signals. Inverse fast

Fourier transform is used for the modulation operation, as specified by the IEEE 802.11a,

64-point IFFT is used with symbol duration of 4 us in the 20 MHz operation of the standard.

The symbol time consists of a 3.2 μs symbol and 0.8 μs for the cyclic prefix, the timing of

the OFDM frame is as shown in Figure 2-18 [10].

The single OFDM symbol contains 48 data symbols from the mapper, contains 4 pilot

symbols, 11 null symbol and null input at DC, this mapping is shown in the below function

where k is the logical subcarrier number and M(k) is the frequency offset index, the

frequency offset index mapping to the IFFT inputs is shown in Figure 2-19 [10].

Pilots are inserted at subcarriers -21, -7, 7, 21. So, the final mapping of the 64 subcarrier is

as shown in Figure 2-20 [10].

Figure 2-18 OFDM training structure

Figure 2-19 frequency offset index function & inputs and outputs of the IFFT

35

The hardware circuit implementation needs an IFFT circuit, we used the Xilinx LogiCORE

IP Fast Fourier Transform v7.1, and the IP has many options we used the pipelined

streaming I/O to ensure continuous output to comply with the standard requirements.

2.6.1.7. Preamble

In WI-FI 802.11a, The PLCP Preamble field is used for synchronization. It consists of 10

short symbols and two long symbols that are shown in Figure 2-18. The timings described in

this sub-clause and shown in Figure 2-18 are for 20 MHz channel spacing. They are doubled

for half-clocked (i.e., 10 MHz) channel spacing and are quadrupled for quarter-clocked (i.e.,

5 MHz) channel spacing.

Figure 2-18 shows the OFDM training structure (PLCP preamble), where t1 to t10 denotes

short training symbols and T1 and T2 denote long training symbols. The total training

length is 16μs. The dashed boundaries in the figure denote repetitions due to the periodicity

of the inverse Fourier transform. The PLCP preamble shall be transmitted using an OFDM

modulated fixed waveform.

2.6.2. WIFI receiver

The main target of the receiver is to retrieve the same data send before transmitter. The

receiver consists of the blocks shown in Figure2-21. The same procedure is performed in the

receiver blocks as in the transmitter blocks where in the following sub- sections, each block

of the chain is explained in more details, illustrating its basic idea, showing its interfaces,

connections, inputs & outputs & presenting its LUT utilization.

Figure 2-20 Final 64 sub-carrier mapping

36

2.6.2.1. Packet Divider

Packet divider is the first block of the receiver, which receives the real and imaginary data

of the channel which came in the form of 12 bits divided to 9 bits representing the fraction

part and 3 bits representing the real part. The main target of the block is to receive these data

symbols, store them, remove preamble from them and deliver the rest to the next block (FFT

Modulation).

2.6.2.2. FFT modulation

As specified in section 2.5.1.6., WIFI uses orthogonal frequency division multiplexing for

modulation where the hardware circuit implementation needs an FFT circuit, we used the

Xilinx LogiCORE IP Fast Fourier Transform v7.1 as in the transmitter.

The first challenge is to make the data received from the Packet Divider block ready to enter

the FFT core without the cyclic prefix, and to control the pipelining process such that the

latency reduces as much as possible, so an FFT controller is needed to control the whole

process.

The FFT controller contains the FFT core and four RAMs with size 64 x 12 where two

RAMs are used for the real part & the other two RAMs are used for the imaginary part and

concerning the RAM size, the FFT core receives 64 inputs with length of 12 bits. The RAM

purpose is to store the input data without cyclic prefix and maintain the process of

pipelining as when a RAM is getting an input, the other one delivers its data to the FFT

core. This process is a continuous one till a last symbol flag is raised from the packet divider

which is an indication that there is no more data to process on. While the reading and

Figure 2-21 WIFI receiver full chain blocks

37

writing processes of the RAMs are being on, the FFT core is producing its output to the next

block (De-Mapper).

2.6.2.3. De-Mapper

It receives the real and imaginary data from the FFT Modulation block which came in the

form of 12 bits divide to 9 bits represent the fraction part and 3 bits represent the real part.

The main target of the block is to receive these data symbols, specify the decision region

and convert these symbols to a stream of bits.

As specified in section 2.5.1.5., 802.11a Phase Shift Keying (BPSK, QPSK) and Quadrature

Amplitude Modulation (16-QAM, 64-QAM) modulation techniques are used where the

decision regions are shown in Figure 2-22. It's to be noted the .35-364-QAM modulation

technique isn’t included.

The block design is a bit different than the usual De-Mapper design where it contains three

main blocks. Thus, a controller is required to organize the signaling flow.

The first block is a stack controller which contains four stacks where two are used for real

part and the other two for imaginary part to maintain the pipelining process (De-mapping

while the FFT core is working). The reason for using stack structure not RAM is to cancel

the transmitter effect where in the Mapper, the input data was reversed (stored up-down then

read down-up).

Figure 2-22 Decision regions in the de-mapper

38

That’s why a stack is used with size 48 x 12 as the output of the FFT core is in the form of

64 data blocks and 18 sample aren’t needed in the De-Mapper which are 4 pilots and 14

nulls.

The second block is the main De-Mapper block which decode the symbols into bits through

the decision regions according to the modulation scheme used in the transmitter.

The third block is a large RAM used to store the whole data as the next block (De-

Interleaver) needs all the frame data to be ready to work properly.

Three clocks are being used in the de-mapping process to maintain the pipelining process:

1. The normal FFT clock (system clock divided by 10) for BPSK de-mapping.

2. The output clock (system clock divided by 4) to speed up the de-mapping process in

case of the modulation scheme QPSK where the De-Mapper needs more time than in the

case of BPSK to decode the symbols correctly.

3. The decoder clock which is the fastest clock in the system (system clock divided by 2) to

speed up the de-mapping process in case of 16 QAM.

2.6.2.4. De-Interleaver

The de-Interleaver, which performs the inverse relation to the Interleaver, is also defined by

two permutations. Here the index of the original received bit before the first permutation

shall be denoted by (j); (d) shall be the index after the first and before the second

permutation; and (e) shall be the index after the second permutation, just prior to delivering

the coded bits to the convolutional (Viterbi) decoder (if de-puncture isn’t used).

The first permutation is defined by the rule:

The second permutation is defined by the rule:

39

These permutations represent the inverse equations to the permutation equations in the

Interleaver of the transmitter.

The value of s is determined by the number of coded bits per subcarrier, 𝑁𝐵𝑃𝑆𝐶, according

to:

2.6.2.5. De-Puncture

De-Puncture is the reverse block of puncture. De-Puncture adds dummy bits in the position

of removed bits by puncture. The positions of removed bits are determined in the standard in

the puncture vector which is a binary column vector as explained in section 2.5.1.3. Figure

2-23 shows the procedure of puncture and de- puncture of rate 3/4. Figure 2-24 shows the

procedure of puncture and de-puncture of rate 2/3.

Figure 2-23 De-puncture 3/4 rate procedure

40

2.6.2.6. Viterbi decoder

Viterbi Decoder is the reverse block of the convolutional encoder. The block design is the

same as that described in section 2.3.5. The only difference is that the used convolutional

encoder has K=7, so that the Viterbi decoder here which decreases the number of the states

to 64 instead of 256. Also, in this design there is no tail bit removing.

2.6.2.7. De-Scrambler

The block design is the same as that described in section 2.5.1.1., where the receiver uses

the first seven bits of the service field to determine the initial state of the scrambler.

2.7. First In First Out memory (FIFO)

2.7.1. Introduction

FIFOs are essentially memory buffers used to temporarily store data until another process is

ready to read it.

Figure 2-24 De-puncture 2/3 rate procedure

41

As their name suggests, the first byte written into a FIFO will be the first one to appear in

the output. Typically, FIFOs are used in communication systems, to transfer data between

two modules, running at different clocks.

Based on the difference between the speeds, the size of FIFO has to be set properly. The

more the speed difference, the bigger the FIFO should be. The clock and the rate of the

blocks differ depending on the implemented standard. A common example is a high-speed

communications channel that writes a burst of data into a FIFO and then a slower

communications channel that read the data as need to send it at a slower rate.

The preceding Figure 2-25, shows a simple architecture as an example in the use of FIFO IP

block, where the FIFO is used by DMA to create loopback of reading and writing back into

memory what’s been read in the order of reading.

2.7.2. FIFO’s rule

After the input data is modulated, the modulated data is then required to be written on the

SD card, so that the USRP can read the data and send it. Hence, a way was needed to take

the modulated data and write into a text file, thus the FIFO was implemented.

Figure 2-25 Simple Architecture of using FIFO

42

The project’s FIFO is called dummy FIFO v4 as this is the fourth version, the working

version, of the FIFO. It has the interface signal with the AXI4-lite (s00_axi), a write enable

signal (WE) to allow writing in the FIFO, two data input signals one for the real part of the

modulated signal and one for the imaginary part (data_in_imag & data_in_real), a clock

signal which is the same clock as the implemented standard (clk_20_MHz_WIFI), which is

WIFI standard in this case, another clock signal for the interface with the AXI

(s00_axi_aclk), and a reset signal which is a signal that is connected to all IP blocks wired to

the AXI (s00_axi_aresetn).

In order to understand, we will start the flow from the beginning. The input data –which is

stored as a text file on the SD card- is transferred to the DDR memory. By using AXI4-Lite

DMA and AXI4-Lite interface the data can be accessed and used from the DDR memory.

The data is then passed through the input interface with the appropriate size and clock rate

to the IP block of the standard to modulate the data. The output data is then passed to the

FIFO which is a simple first in first out memory that stores all the data coming out of the IP

block of the standard in each cycle. After all data is modulated and stored in the FIFO, it can

be written in a file by using a simple C code that accesses the FIFO and outputs the data on

a print screen or writes it in a file on the SD card depending on the commands in the code.

Figure 2-26 Dummy FIFO

43

2.8. AXI interface

AXI Interconnect core connects one or more AXI memory-mapped master devices to one or

more memory-mapped slave devices. AXI is part of ARM AMBA, a family of micro controller

buses first introduced in 1996. [11]

2.8.1. AXI4 types

AXI4 which the 4th version of the AXI interface has three types, which are:

• AXI4—for high-performance memory-mapped requirements.

• AXI4-Lite—for simple, low-throughput memory-mapped communication (for example, to

and from control and status registers).

• AXI4-Stream—for high-speed streaming data.

Both AXI4 and AXI4-Lite interfaces consist of five different channels:

• Read Address Channel

• Write Address Channel

• Read Data Channel

• Write Data Channel

• Write Response Channel

2.8.2. AXI4-Lite

The AXI4-Lite Interface is a memory mapped interface. In memory mapped AXI (AXI3,

AXI4, and AXI4-Lite), all transactions involve the concept of a target address within a

system memory space and data to be transferred. Memory mapped systems often provide a

more homogeneous way to view the system, because the IPs operate around a defined

memory map.

44

AXI4-Lite is more advanced than AXI Stream as the data can move in both directions, read

and write, between the masters and slaves simultaneously. That’s why the channel is

considered to be full-duplex or bidirectional channel. The limit in AXI4 is a burst

transaction of up to 256 data transfers. AXI4-Lite allows only one data transfer per

transaction by using single beat read and write; which means only one memory position can

be read or written per request [11]. The Interface data widths for AXI4-Lite is 32 bits, same

as the address width.

As shown in the preceding two figures, the five different channels guarantee simultaneous

communication between master and slave [12].

Figure 2-27 Channel Architecture of Reads

Figure 2-28 Channel Architecture of Writes

45

Figure 2-29 Top level AXI interconnect

Figure 2-29 shows a top view of the system and how the AXI interconnects the slaves and

the masters in an efficient, bidirectional, simultaneous way.

46

Chapter 3 : Interfacing
USRP and GNU radio Interface

3.1. USRP

3.1.1. USRP Hardware

The universal software radio peripheral (USRP) has become a popular platform for

hardware-based research and test bed validations conducted by universities in the software

defined radio (SDR) and cognitive radio (CR) fields. With the recently released version of

National Instruments (NI) LabVIEW, the USRP now offers a scalable, simpler, and easier to

use combined platform. [13]

The USRP Software Defined Radio Device is a tunable transceiver for prototyping wireless

communication systems. It offers frequency ranges up to 6 GHz with up to 56 MHz of

instantaneous bandwidth. [14]

The USRP can simultaneously receive and transmit on two antennas in real time. All

sampling clocks and local oscillators are fully coherent, thus allowing you to create MIMO

(multiple input, multiple output) systems. [15]

The USRP is a data acquisition board containing several distinct sections. The analog

interface portion contains four analog-to-digital converters (ADC) and four digital-to-analog

convertors (DAC). The ADC’s operate at 64 million samples per second (Msps) and the

DAC’s operate at 128 Msps. Since the USB bus operates at a maximum rate of 480 million

bits per second (Mbps), the FPGA must reduce the sample rate in the receive path and

increase the sample rate in the transmit path to match the sample rates between the high-

speed data converter and the lower speeds supported by the USB connections. [16]

So, to sum up, the entire USRP design is open source, including schematics, firmware,

drivers, and even the FPGA and daughterboard designs.

47

When combined with the open source GNU Radio software, you get a completely open

software radio system enabling host-based signal processing on commodity platforms. No

software or licenses need to be purchased. It provides a complete development environment

to create your own radios. While most often used with GNU Radio software, the USRP is

flexible enough to accommodate other options. Some users have created their own SDR

environments for the USRP, while others have integrated the USRP into the LabView and

Matlab/Simulink environments. [15]

3.1.2. USRP Benefits [3]

1. Low cost, flexible platform

It provides a low-cost development platform for testing Software Defined Radio (SDR)

concepts. It provides several functions: digitization of the input signal, digital tuning

within the IF band, and sample rate reduction before sending the digitized baseband data

to the computing platform via the USB interface. It provides the opposite processing

functions for the transmit path.

2. Large community of developers

3. Close coupling with the GNU Radio software radio framework forms a flexible and

powerful platform

3.1.3. USRP Hardware Driver (UHD)

The USRP hardware driver (UHD) is the device driver provided by Ettus Research for use

with the USRP product family. [17]

The UHD is a user-space library that runs on a general-purpose processor (GPP) and

communicates with and controls all of the USRP device family. [18]

USRPs are transceivers, meaning that they can both transmit and receive RF signals. UHD

provides the necessary control used to transport user waveform samples to and from USRP

hardware, as well as control various parameters (e.g. sampling rate, center frequency, gains

...etc.) of the radio. UHD GPP driver and firmware code is written in C/C++ while the code

developed for the FPGA (Field Programmable Gate Array) is written in Verilog.

48

There is a C/C++ API that can interface to other software frameworks, as in the case of

GNU Radio, or a user can simply build custom signal processing applications directly on

top of the UHD C/C++ API.

Figure 3-1 illustrates this concept.

USRP’s RF front ends may support a certain frequency step size that does not meet all or

many of a user’s requirements. For this reason, UHD includes Digital Up-Conversion

(DUC) and Digital Down-Conversion (DDC) DSP blocks in the FPGA for fine tuning the

RF frequency.

Figure 3-1 UHD Components

49

This allows users to:

• Have a sub-Hz RF frequency step size

• Mitigate the DC problem that exists on Direct Conversion (Zero IF) hardware.

• Fast tune inside the available bandwidth [18]

3.1.4. USRP used in our project

• B200 USRP:

- It is a Universal Software Radio Peripheral, developed by Ettus Research LLC. The

USRP product family is intended to be a comparatively inexpensive hardware platform

for software radio.

Figure 3-2 Center Frequency fine tuning

Figure 3-3 B200 USRP

50

- The USRP B200 shown in Figure 3-3, provides a fully integrated, single board,

Universal Software Radio Peripheral platform with continuous frequency coverage

from 70 MHz –6 GHz.

- It enables experimentation with a wide range of signals including cellular, Wi Fi, and

more.

- It is designed for low-cost experimentation, it combines a fully integrated direct

conversion transceiver providing up to 56MHz of real-time bandwidth.

- It consists of three components shown in Figure 3-4, which contains the USRP block

diagram. The first component is an open and reprogrammable Spartan6 FPGA

contains the UHD software that allows to immediately begin developing with GNU

Radio, the UHD is connected to a fast and convenient bus powered super speed USB

3.0 connectivity.

- The second component is the Analog Device AD9364 RFIC that contains ADC/DAC

with 12-bit flexible rate. The third component is the Temperature Controlled Crystal

Oscillator (TCXO) that gives high accuracy 10 MHz frequency.

➢ Check data sheet from ref [18]

Figure 3-4 The USRP block diagram

51

3.2. GNU Radio

3.2.1. Introduction

In SDR there are certain stages in receiving and transmission chain, where signal is

digitized, and using software techniques, computation is done on digital radio signal. The

main aim of this SDR is to convert almost all hardware system problem into digital domain

problems, so that it can be easily modified and problems can be solved easily. In general,

SDR consist of Antennas, an ADC and subsystem defined in software domain.

Thus, there are certain conditions to be followed to implement software define radios which

are as follows:

1. Antennas, which are used for any specific system, should be capable of handling all

radio signal of interest, that are to be operated.

2. ADC and DAC must be designed to have sampling rate must be greater than twice the

frequency of the signal of interest.

3. The unit, which executes tasks for processing, should have enough processing power to

process the signal of interest.

3.2.2. Definition

GNU Radio is a free & open-source software development toolkit that provides signal

processing blocks to implement software radios. It can be used with readily-available low-

cost external RF hardware to create software-defined radios, or without hardware in a

Figure 3-5 Software defined Radio Block Diagram

52

simulation-like environment. It is widely used in hobbyist, academic and commercial

environments to support both wireless communications research and real-world radio

systems. [19]

GNU Radio is a framework that enables users to design, simulate, and deploy highly

capable real-world radio systems. It is a highly modular, "flow graph"-oriented framework

that comes with a comprehensive library of processing blocks that can be readily combined

to make complex signal processing applications.

GNU Radio has been used for a huge array of real-world radio applications, including audio

processing, mobile communications, tracking satellites, radar systems, GSM networks,

Digital Radio, and much more - all in computer software.

GNU Radio is licensed under the GNU General Public License (GPL) version 3 or later. All

of the code is copyright of the Free Software Foundation.

It is, by itself, not a solution to talk to any specific hardware. Nor does it provide out-of-the-

box applications for specific radio communications standards (e.g., 802.11, ZigBee, LTE,

etc.,), but it can be, and has been, used to develop implementations of basically any band-

limited communication standard.

3.2.3. What exactly does GNU Radio do?

GNU Radio performs all the signal processing. You can use it to write applications to

receive data out of digital streams or to push data into digital streams, which is then

transmitted using hardware. GNU Radio has filters, channel codes, synchronization

elements, equalizers, demodulators, vocoders, decoders, and many other elements. In the

GNU Radio jargon, we call these elements blocks, which are typically found in radio

systems. More importantly, it includes a method of connecting these blocks and then

managing how data is passed from one block to another. Extending GNU Radio is also quite

easy; if you find a specific block that is missing, you can quickly create and add it.

Since GNU Radio is software, it can only handle digital data. Usually, complex baseband

samples are the input data type for receivers and the output data type for transmitters.

53

Analog hardware is then used to shift the signal to the desired center frequency. That

requirement aside, any data type can be passed from one block to another - be it bits, bytes,

vectors, bursts or more complex data types.

GNU Radio applications are primarily written using the Python programming language,

while the supplied, performance-critical signal processing path is implemented in C++ using

processor floating point extensions, where available. Thus, the developer is able to

implement real-time, high-throughput radio systems in a simple-to-use, rapid-application-

development environment.

There are ways to use GNU Radio without being able to code. First, there's the GNU Radio

Companion (GRC), a Graphical User Interface (GUI) similar to Simulink, as shown in

Figure 3-6. It allows you to create signal processing applications by drag-and-drop. Also,

GNU Radio comes with a set of ready to-use tools and utility programs. These serve to

manage the most basic operations, such as recording RF signals and performing spectrum

analysis.

The existing blocks in GNU Radio cover various applications from simple mathematical

operations, modulators/demodulators; channel coding blocks, voice codec and others.

Special classes of blocks are the input/output blocks.

Figure 3-6 GNU Radio graphical user interface

54

The real time interface can be created by the most known UHD blocks and Audio blocks.

UHD blocks are created to use the USRP to send/get signals to/from wireless medium.

Thus, the audio blocks send/get the signal from the sound card.

If you want to extend GNU Radio (i.e., add new functionality), the a code for this

functionality must be written. For creating applications that are too complex for the GNU

Radio Companion, Python is the easiest way to go. For performance-critical code, you

should write C++ code.

3.2.4. GNU Radio Live SDR Environment

The GNU Radio Live SDR Environment is a bootable Ubuntu Linux DVD or USB drive

image, with GNU Radio as third-party software pre-installed. It is designed for quick and

easy testing and experimentation with GNU Radio without having to make any permanent

modifications to a PC or laptop. It does not, however, provide for permanent installation.

It is supplied as an ISO image to be downloaded and burned onto a recordable DVD disc or

copied to a USB flash drive using a utility such as the Ubuntu Startup Disk Creator (Ubuntu

Linux OS) or Unetbootin (Windows, MacOS, Linux). Creating a USB drive from the image

provides much faster booting and operation and allows making changes and storing files.

Finally, the ISO image may be booted within a virtual environment such as VirtualBox,

QEMU/KVM, VMware, or Parallels.

The GNU Radio software source code, as well as the source code to other installed software,

is installed in /home/ubuntu/src/, which may be browsed from the filesystem explorer or

from the command line.

The GNU Radio Companion application is installed as grc on the system path, and may be

run from any directory, or may be accessed directly from the desktop by clicking on the

icon.

GNU Radio example applications are installed in /home/ubuntu/examples and may be run

by navigating to one of the example directories and executing the python scripts using the

55

syntax ./foo.py, where foo.py is the name of the example program, or using GRC to load

and execute the GRC-based examples.

3.2.5. Installing GRC

Ref [20] explains all the steps to get a working installation of GNU Radio.

3.2.6. Using GRC

3.2.6.1. GRC Architecture

The block diagram shows transmission and reception of file source via GNU radio. In this

system Host Computer is any normal Laptop / CPU with GNU Radio installed over it or

running with the help of live USB environment. For interfacing of USB, system requires

USB 3.0 port with USB high speed data cable. Ettus B200 board has built-in FPGA,

ADC/DAC, RF Front end and RX and TX terminals blocks.

3.2.6.2. Graphical signal processing development

Digital signal processing (DSP) is where GNU Radio shines; this is what it was originally

made for. GRC is a Simulink-like graphical tool to design signal processing flow graphs. If

you're comfortable dealing with FIR filters, digital modulators and other DSP concepts,

using GRC should be simple and straightforward for you.

Figure 3-7 GRC Architecture for Transmitter and Receiver

56

On Linux systems, GRC is invoked by calling the GNU radio-companion command. If your

installation was fine, GRC will pop up in its own window. On the right-hand side, you can

find all the available blocks (good news: adding new blocks is not terribly difficult!), which

can be dragged into the main window and connected by clicking the edges. GRC has its own

wiki page.

Two examples to learn using GNU radio with USRP are explained below.

Example 1: Design and Implementation of BPSK Transmitter & Receiver Using SDR

The blocks used in a bit transmitter flow graph of BPSK are shown in Figure 3-8. The block

Vector Source sends a vector specified by the user. When executing this project, the vector

is composed by 0s and 1s; the block repeats the vector whenever it reaches the end. The

Vector Source output is connected to a Packet Encoder which is responsible for encoding

the data. The packet encoder operates in a way such that the receiver can find the beginning

of the transmitted data and be able to decode it - refer to section 2.5. for further explanation.

After the encoder, the encoded data is sent to PSK Mod which is responsible to modulate

the information using PSK [21]. The value of the samples in PSK Mod output is modified

(multiplied by a constant) by multiplying it with Const block, such that the power of

modulated signal can be changed. In the transmitter, the signal is sent to UHD: USRP Sink

block which is responsible for the interaction with the USRP.

Figure 3-8 GNU Radio BPSK transmitter flow graph

https://wiki.gnuradio.org/index.php/GNURadioCompanion
https://wiki.gnuradio.org/index.php/GNURadioCompanion

57

Figure 3-9 shows the blocks used in reception of wireless BPSK signals. The UHD: USRP

Source block abstracts all the hardware in reception and its outputs are the samples of the

received signal in baseband. In this block, like the UHD: USRP Sink, it is possible to define

several parameters of the hardware. The UHD: USRP Source output is connected to BPSK

Demodulator block that demodulates the BPSK signal, recovering the encoded data. After

the demodulation, the encoded data is sent to Packet Decoder block which decodes the data

and outputs the bits (the information sent by Vector Source). Once the information is

recovered, the Char to float block converts the byte into float, so that the information can be

used by other blocks [22].

Example 2: Design and Implementation of FM Receiver

As shown in Figure 3-10 we are trying to receive FM channels using USRP that is why our

input source is going to be USRP block with center frequency of 106.7MHz which can be

adjusted with the help of Text Box. Here, the sampling rate is 4MHz and the other

properties are:

• Gain Value: It is managed by RF gain slider with min=0 and max=30.

• Antenna: Connected to TX/RX in daughter board.

Now the output of the USRP block is going to the low pass filter. Then, the filter passes the

signal whose frequency is below the cutoff frequency (here it is 100 kHz) and it deducts the

signal with higher frequency.

Figure 3-9 GNU Radio BPSK receiver flow graph

58

The filtered signal is then passed on to the wide band FM block. This block demodulates the

wide band frequency signal from the data stream. So, at the output we get the original data

stream which was sent by the sender.

Output of the WBFM block is then sent to the Rational Re-sampler. There, the data stream

is decimated or interpolated according to the application and its desired rate. For example,

the Audio Sink needs lower frequency and USRP block need higher, then this block

converts the frequency by doing some interpolation or decimation as per the requirements.

Finally, Audio sink block is used to listen the sound of the received channel.

3.2.6.3. Using Python to write powerful signal processing and radio applications

Sometimes GRC cannot provide all the flexibility required for your application. Anything

that can be clicked together in GRC can also be written in Python, and while it is more of an

effort to code everything yourself, it also provides you with the entire power and

functionality of Python and its libraries, such as SciPy or NumPy for Python-centric

processing of your signals or your favorite widget library to create any GUI you wish.

Figure 3-10 Modified FM Receiver

59

3.2.6.4. The C++ domain: Extending GNU Radio

GNU Radio is extremely powerful and includes many kinds of signal processing blocks.

However, if you're developing something particular, chances are high that sooner or later

you'll be running into some component which is lacking; be it a specific channel code, a

segmentation algorithm or whatever. In this case, you will want to write your own blocks to

add them into GNU Radio. This is usually done in C++, in order to keep GNU Radio as fast

as it is.

3.2.7. Example used in our project

In our project, the modulated file, which comes from the Transmitter block of the ZYNQ

board, is processed by GNU radio and transmitted using a USRP. There is a USRP receiver

node which receives the signal and GNU radio re-produces the transmitted modulated file.

Then, the received modulated file is passed through the Receiver block of the ZYNQ board.

The demodulated file is then checked to make sure that the output demodulated file is the

same as the input file to the Transmitter block.

3.2.7.1. Basic block diagram

Two USRPs are used, one for transmitting and the other for receiving. The source file is

Gaussian Minimum Shift Keying (GMSK) modulated and transmitted using the USRP

transmitter. The modulator is implemented on GNU Radio. The transmitted signal is

received by the receiving USRP and then demodulated by GNU Radio and played back.

Figure 3-11 shows the block diagram.

Figure 3-11 Block diagram

60

3.2.7.2. Experiment set up and plan

As shown in Figure 3-12 and Figure 3-13, the receiver and transmitter side are implemented

on each USRP and again a modulated file shall be transmitted and received.

The maximum distance, within which the USRP’s can communicate, can be explored by

changing the gain and bandwidth values. The distance between the antennas of the USRPs

plays an important role as there could be distortion in the file as the distance increases due

to the loss of packets or erroneous packets. The distortion and bit error rate can be

anticipated by using channel estimation techniques. Introducing a suitable error correction

scheme can correct the data frames received.

Figure 3-13 GNU Radio Receiver flow graph

Figure 3-12 GNU Radio transmitter flow graph

61

Chapter 4 : Zynq ZC702

Evaluation Board

4.1. ZYNQ 7000 Family Overview

The Zynq®-7000 family is based on the Xilinx® All Programmable SoC (AP SoC) architecture.

These products integrate a feature-rich dual or single-core ARM® Cortex™-A9 MPCore™

based processing system (PS) and Xilinx programmable logic (PL) in a single device, built on a

state-of-the-art, high-performance, low-power (HPL), 28 nm, and high-k metal gate (HKMG)

process technology. The ARM Cortex-A9 MPCore CPUs are the heart of the PS which also

includes on-chip memory, external memory interfaces, and a rich set of I/O peripherals.

The Zynq-7000 family offers the flexibility and scalability of an FPGA, while providing

performance, power, and ease of use typically associated with ASIC and ASSPs. The range of

devices in the Zynq-7000 AP SoC family enables designers to target cost-sensitive as well as

high-performance applications from a single platform using industry-standard tools. While each

device in the Zynq-7000 family contains the same PS, the PL and I/O resources vary between the

devices. As a result, the Zynq-7000 AP SoC devices are able to serve a wide range of

applications.

Figure 4-1 illustrates the functional blocks of the Zynq-7000 AP SoC. The PS and the PL are on

separate power domains, enabling the user of these devices to power down the PL for power

management if required.

62

4.2. Introduction to ZC702

The ZC702 evaluation board for the XC7Z020 All Programmable SoC (AP SoC) provides a

hardware environment for developing and evaluating designs targeting the Zynq® XC7Z020-

1CLG484C device. The ZC702 board provides features common to many embedded processing

systems, including DDR3 component memory, a tri-mode Ethernet PHY, general purpose I/O,

and two UART interfaces. Other features can be supported using VITA-57 FPGA mezzanine

cards (FMC) attached to either of two low pin count (LPC) FMC connectors.

The ZC702 board block diagram is shown in Figure 4-2.

The PS integrates two ARM Cortex™-A9 MP Core™ application processors, AMBA

interconnect, internal memories, external memory interfaces, and peripherals including USB,

Ethernet, SPI, SD/SDIO, I2C, CAN, UART, and GPIO. The PS runs independently of the PL

and boots at power-up or reset.

Figure 4-1 Zynq-7000 AP SoC Block Diagram

63

4.3. Look-Up Table (LUT)

The function generators in 7 series FPGAs are implemented as six-input look-up tables (LUTs).

There are six independent inputs (A inputs - A1 to A6) and two independent outputs (O5 and

O6) for each of the four function generators in a slice (A, B, C, and D). The function generators

can implement:

• Any arbitrarily defined six-input Boolean function

• Two arbitrarily defined five-input Boolean functions, as long as these two functions share

common inputs

• Two arbitrarily defined Boolean functions of 3 and 2 inputs or less

A six-input function uses:

• A1-A6 inputs

• O6 output

Two five-input or less functions use:

• A1–A5 inputs

• A6 driven High

Figure 4-2 ZC702 Board Block Diagram

64

Figure 4-3 Arrangement of Slices within the CLB

• O5 and O6 outputs

4.4. CLB Overview

The 7 series configurable logic block (CLB) provides advanced, high-performance FPGA logic:

• Real 6-input look-up table (LUT) technology

• Dual LUT5 (5-input LUT) option

• Distributed Memory and Shift Register Logic

capability

• Dedicated high-speed carry logic for arithmetic

functions

• Wide multiplexers for efficient utilization

CLBs are the main logic resources for implementing sequential as well as combinatorial circuits.

Each CLB element is connected to a switch matrix for access to the general routing matrix as

shown in Figure 4-3. A CLB element contains a pair of slices.

The LUTs in 7 series FPGAs can be configured as either a 6-input LUT with one output, or as

two 5-input LUTs with separate outputs but common addresses or logic inputs. Each 5-input

LUT output can optionally be registered in a flip-flop. Four such 6-input LUTs and their eight

flip-flops as well as multiplexers and arithmetic carry logic form a slice, and two slices form a

CLB. Four flip-flops per slice (one per LUT) can optionally be configured as latches. In that

case, the remaining four flip-flops in that slice must remain unused.

The most important resources of the board are listed in Figure 4-4.

Figure 4-4 ZYNQ board important resources

65

4.5. Vivado Design Suite Overview

The Vivado® Design Suite is designed to improve productivity. This tool suite is architected to

increase the overall productivity for designing, integrating, and implementing systems using the

Xilinx® UltraScale™ and 7 series devices, Zynq® UltraScale+™ MPSoC device, and Zynq®-

7000 SoC. Xilinx devices are now much larger and come with a variety of new technology,

including stacked silicon interconnect (SSI) technology, up to 28 gigabyte (GB) high speed I/O

interfaces, hardened microprocessors and peripherals, analog mixed signal, and more. These

larger and more complex devices create multidimensional design challenges, when handled

incorrectly, that can prevent the achievement of faster time-to-market and increased productivity.

With the Vivado Design Suite, you can accelerate design implementation with place and route

tools that analytically optimize for multiple and concurrent design metrics, such as timing,

congestion, total wire length, utilization and power. The Vivado Design Suite provides you with

design analysis capabilities at each design stage. This allows for design and tool setting

modifications earlier in the design processes where they have less overall schedule impact, thus

reducing design iterations and accelerating productivity.

4.6. SDK Overview

The Xilinx® Software Development Kit (SDK) provides an environment for creating software

platforms and applications targeted for Xilinx embedded processors. SDK works with hardware

designs created with Vivado®. SDK is based on the Eclipse open source standard. SDK features

include:

• Feature-rich C/C++ code editor and compilation environment

• Project management

• Application build configuration and automatic Makefile generation

• Error navigation

• Well-integrated environment for seamless debugging and profiling of embedded targets

• Source code version control.

66

Chapter 5: Linux image

USRP and ZYNQ board interface using Linux image

In order to interface between USRP and ZYNQ board, the UHD ,explained in the chapter 3, is

needed. UHD provides the necessary control used to transport user waveform samples to and

from USRP hardware as well as control various parameters (e.g. sampling rate, center frequency,

gains, etc.) of the radio. UHD can be installed on Linux, Windows, or a Mac. The used OS in

this project is Linux. The B, N and X series of the USRPs can send and receive samples from a

host computer as illustrated in 5-1.

In this project, ZYNQ board is used instead of the host computer. Thus, Linux image is needed

on the SD card of the ZYNQ to boot from it. Also, the UHD and GNU Radio are to be installed

on this image. Linux image is created by using Yocto project with Xilinx tools as explained in

this chapter.

Figure 5-1 Interfacing between PC and USRP

67

5.1. Xilinx ZYNQ Linux kernel

Many pieces come together to boot Linux successfully on ZYNQ. The ZYNQ boot process

begins with running code inside the Boot ROM. The boot ROM manages the early boot process

by selecting the boot medium and quickly loading the First Stage Boot Loader (FSBL). The

FSBL is created by Xilinx tools using information from the hardware project.

The Xilinx ZYNQ Linux kernel is based on the Linux kernel from kernel.org together with

Xilinx additions (BSP and drivers). It is typically updated to stay close to the latest version from

kernel.org on a regular basis. In general, the Xilinx Linux kernel for ZYNQ follows normal

ARM Linux processes for building and running.

5.1.1. Xilinx ZYNQ Linux Support

Xilinx ZYNQ Linux is based on open source software (the kernel from kernel.org). Xilinx

provides support for Xilinx specific parts of the Linux kernel (drivers and BSP). Xilinx also

supports Linux through the Embedded Linux forum on [23] and mailing lists.

5.1.2. Using a Pre-Built Image/Release

Xilinx provides pre-built Linux releases which can be used in place of building the kernel

and creating a boot image. The image is provided in [24] and for the 2015.2 version [25].

5.1.3. Kernel Details

5.1.3.1. The Board Support Package (BSP)

The primary code for the platform is in arch/arm/mach-ZYNQ directory of the kernel tree.

The BSP contains some drivers and utilizes some existing drivers from arch/arm.

5.1.3.2. Device Tree

Device tree is a process by which the Linux kernel initializes itself based on the hardware

platform. Device tree allows a single kernel image to run on multiple hardware platforms. A

device tree file, named *.dts, is a text file that describes the hardware platform.

68

It is compiled into a device tree blob, *.dtb, which is loaded into memory before the Linux

kernel is started. The Linux kernel then uses that device tree blob to initialize itself at

runtime.

The process to create a device tree source (.dts) file and to compile a device tree blob (.dtb)

from the DTS is described in Build Device Tree Blob. This describes the hardware which is

readable by an operating system like Linux so that it doesn't need to hard code details of the

machine.

Linux uses the Device Tree basically for platform identification, runtime configuration like

bootargs and the device node population.

5.1.3.3. Device tree basics

Each driver or a module in the device tree is defined by the node and all its properties are

defined under that node. Based on the driver it can have child nodes or parent node. For

example, a device connected by SPI bus will have SPI bus controller as its parent node and

that device will be one of the child nodes of SPI node. Root node is the parent for all the

nodes.

Under the root node typically consists of:

1) CPUs node information

2) Memory information

3) Chosen can have configuration data like the kernel parameters string and the location of

an initial image.

4) Aliases

5) Nodes which define the buses information

5.2. Yocto Project

The Yocto Project is an open-source collaboration project whose focus is developers of

embedded Linux systems. Among other things, the Yocto Project uses a build host based on the

OpenEmbedded (OE) project, which uses the BitBake tool, to construct complete Linux images.

Two major components of the Yocto Project are maintained in conjunction with the

OpenEmbedded project: BitBake, the build engine, and OpenEmbedded-Core, the core set of

69

recipes used to run the build process. The BitBake and OE components are combined together to

form a reference build host, historically known as Poky.

The Yocto Project’s industry-standard open source tools are used to create a customized Linux

operating system for an embedded device and to boot the operating system in a virtual machine

using QEMU. The Yocto Project, a Linux Foundation-sponsored open source project funded by

major hardware companies and operating systems vendors, provides industry-class tools,

methods, and metadata for building Linux systems.

The Yocto Project through the OpenEmbedded build system provides an open source

development environment targeting the ARM, MIPS, PowerPC, and x86 architectures for a

variety of platforms including x86-64 and emulated ones. Components from the Yocto Project

can be used to design, develop, build, debug, simulate, and test the complete software stack using

Linux, the X Window System, GTK+ frameworks, and Qt frameworks.

5.2.1. Introducing the Yocto Project

As a collaboration project, sometimes called an "umbrella" project, the Yocto Project

incorporates many different disparate pieces of the development process. These pieces are

referred to as projects within the overall Yocto Project and they include build tools, build

instruction metadata called recipes, libraries, utilities, and graphical user interfaces (GUIs).

5.2.2. The OpenEmbedded Build System Workflow

The OpenEmbedded Build System is the build system used by the Yocto Project. This

project is the upstream, generic, embedded distribution from which the Yocto Project

derives its build system (Poky) and to which it contributes. At the heart of the build system

is BitBake, the task executor.

The OpenEmbedded build system uses a workflow to accomplish image and SDK

generation. Figure 5-2 overviews that workflow:

70

Following is a brief summary of the workflow:

1. Developers specify architecture, policies, patches and configuration details.

2. The build system fetches and downloads the source code from the specified location. The

build system supports standard methods such as tarballs or source code repositories

systems such as Git.

3. Once source code is downloaded, the build system extracts the sources into a local work

area where patches are applied and common steps for configuring and compiling the

software are run.

4. The build system then installs the software into a temporary staging area where the binary

package format you select (DEB, RPM, or IPK) is used to roll up the software.

5. Different QA and sanity checks run throughout entire build process.

6. After the binaries are created, the build system generates a binary package feed that is

used to create the final root file image.

7. The build system generates the file system image and a customized Extensible SDK

(eSDSK) for application development in parallel.

Figure 5-2 OpenEmbedded Build System Workflow

71

In general, the build's workflow consists of several functional areas:

• User Configuration:

metadata used to control the build process.

• Metadata Layers:

Various layers that provide software, machine, and distro metadata.

• Source Files:

Upstream releases, local projects, and SCMs.

• Build System:

Processes under the control of BitBake. This block expands on how BitBake fetches

source, applies patches, completes compilation, analyzes output for package generation,

creates and tests packages, generates images, and generates cross-development tools.

• Package Feeds:

Directories containing output packages (RPM, DEB or IPK), which are subsequently

used in the construction of an image or Software Development Kit (SDK), produced by

the build system. These feeds can also be copied and shared using a web server or other

means to facilitate extending or updating existing images on devices at runtime if

runtime package management is enabled.

• Images:

Images produced by the workflow.

• Application Development SDK:

Cross-development tools that are produced along with an image or separately with

BitBake.

5.2.3. BitBake

BitBake is a core component of the Yocto Project and is used by the OpenEmbedded

building system to build an embedded Linux system through configuration files collectively

called metadata. BitBake is co-maintained by the Yocto Project and the OpenEmbedded

project.

BitBake is used as a build tool, primarily by the OpenEmbedded and the Yocto project, to

build Linux distributions. In short, BitBake is a building engine that works through recipes

written in a specific format in order to perform sets of tasks, as shown in Figure 5-3.

BitBake reads recipes and follows them by fetching packages, building them, and

incorporating the results into bootable images. A guideline for how to create the smallest

possible project and extend it step by step and explain how BitBake works is provided here

[26].

72

Figure 5-3 processing on metadata in BitBake

5.2.4. OpenEmbedded-Core

OpenEmbedded-Core (OE-Core) is a common layer of metadata (i.e. recipes, classes, and

associated files) used by OpenEmbedded-derived systems, which includes the Yocto

Project. The Yocto Project and the OpenEmbedded Project both maintain the

OpenEmbedded-Core.

Historically, the Yocto Project integrated the OE-Core metadata throughout the Yocto

Project source repository reference system (Poky). After Yocto Project Version 1.0, the

Yocto Project and OpenEmbedded agreed to work together and share a common core set of

metadata (OE-Core), which contained much of the functionality previously found in Poky.

This collaboration achieved a long-standing OpenEmbedded objective for having a more

tightly controlled and quality-assured core. The results also fit well with the Yocto Project

objective of achieving a smaller number of fully featured tools as compared to many

different ones.

Sharing a core set of metadata results in Poky as an integration layer on top of OE-Core.

The Yocto Project combines various components such as BitBake, OE-Core, script “glue”,

and documentation for its build system.

73

5.2.5. Poky

Poky is a reference build system for the Yocto Project. It includes BitBake,

OpenEmbedded-Core, a board support package (BSP), and any other packages or layers

incorporated into the build. The name Poky also refers to the default Linux distribution

resulting from using the reference build system, which can be extremely minimal (core-

image-minimal) or a full Linux system with a GUI (core-image-sato).

The Poky build system is considered a reference system for the entire project-a working

example of the process in action. When the Yocto Project is downloaded, an instance of

those tools, utilities, libraries, tool chain, and metadata are actually downloaded, which can

be used to build the default system, as described here. That reference system and the

reference distribution it creates are both named Poky. This can be used as a starting point to

create a distribution, which of course can be named anything.

One item that all build systems requires is a tool chain: a compiler, assembler, linker, and

other binary utilities necessary for creating binary executable files for a given architecture.

Poky uses the GNU Compiler Collection (GCC), but other tool chains can be specified as

well. Poky uses a technique known as cross-compilation: using a tool chain on one

architecture to build binary executable files for a different architecture (for example,

building an ARM distribution on an x86-based system). Developers often use cross-

compilation in embedded systems development to take advantage of the host system's higher

performance. Figure 5-4 illustrates what generally comprises Poky:

Figure 5-4 Yocto project’s components

74

• BitBake is a task executor and scheduler that is the heart of the OpenEmbedded build

system.

• meta-poky, which is Poky-specific metadata.

• meta-yocto-bsp, which are Yocto Project-specific Board Support Packages (BSPs).

• OpenEmbedded-Core (OE-Core) metadata, which includes shared configurations, global

variable definitions, shared classes, packaging, and recipes. Classes define the

encapsulation and inheritance of build logic. Recipes are the logical units of software

and images to be built.

• Documentation, which contains the Yocto Project source files used to make the set of

user manuals.

5.2.6. Metadata set

The metadata set is arranged in layers, such that each layer can provide separate

functionality to the layers beneath it. The base layer is OpenEmbedded-Core, or oe-core,

which provides recipes, classes, and associated functions that are common and necessary for

all builds. Then builds can be customized by adding new layers on top of oe-core.

OpenEmbedded-Core is co-maintained by the Yocto Project and the OpenEmbedded

project. One layer that separates the Yocto Project from OpenEmbedded is the meta-yocto

layer, which provides the Poky distribution configuration and a core set of reference BSPs.

The OpenEmbedded project itself is a separate open source project with (largely)

interchangeable recipes and similar goals to the Yocto Project, but different governance and

scope.

5.2.7. Board support packages

A BSP contains the essential packages and drivers necessary for building Linux for a

specific board or architecture. These are often maintained by the hardware manufacturers

who make the boards. BSPs are the interface between the Linux operating system and the

hardware that runs it. It is also possible to create BSPs for virtual machines.

75

5.2.8. Customizing the Build for Specific Hardware

Customizing the build for specific hardware is done by adding hardware layers into the

Yocto Project development environment.

In general, layers are repositories that contain related sets of instructions and configurations

that tell the Yocto Project what to do. Isolating related metadata into functionally specific

layers facilitates modular development and makes it easier to reuse the layer metadata. By

convention, layer names start with the string "meta-".

There are hundreds of meta-layers from the Yocto Project, OpenEmbedded, communities,

and companies that should be manually cloned inside the project source directory to be

used. These layers are provided at [27] and [28].

In general, three types of layer input exist:

• Metadata (.bb + Patches):

Software layers containing user-supplied recipe files, patches, and append files. A good

example of a software layer might be the meta-qt5 layer from the OpenEmbedded Layer

Index. This layer is for version 5.0 of the popular Qt cross-platform application

development framework for desktop, embedded and mobile. For example the meta-sdr

layer which contains Software Defined Radio (SDR) related recipes.

• Machine BSP Configuration:

Board Support Package (BSP) layers providing machine-specific configurations. This

type of information is specific to particular target architecture. A good example of a BSP

layer from the Poky Reference Distribution is the meta-yocto-bsp layer. Another

example is meta-Xilinx layer which contains Xilinx hardware support.

• Policy Configuration Distribution:

providing top-level or general policies for the images or SDKs being built for a

particular distribution. For example, in the Poky Reference Distribution the distro layer

is the meta-poky layer. Within the distro layer is a conf/distro directory that contains

distro configuration files (e.g. poky.conf that contain many policy configurations for the

Poky distribution).

76

The following are examples of layers used for supporting ZYNQ and USRP.

5.2.8.1. Meta-Xilinx

Support for Xilinx architectures (Zynq, ZynqMP and MicroBlaze) is available in Yocto/OE

provided by either the OpenEmbedded Core or for additional and more complete support the

meta-Xilinx layer. The meta-Xilinx layer also provides a number of BSPs for common

boards which use Xilinx devices such as ZYNQ board used in this project.

Xilinx provides device and board information for the ZYNQ SoC for Yocto through the

repository meta-Xilinx. This includes board information for the ZC702 Evaluation Kit.

Meta-Xilinx provides Official support for Xilinx MicroBlaze and ZYNQ architectures as

well as evaluation boards.

Boards Supported by this layer are:

• Xilinx ZC702 (ZYNQ)

• Xilinx KC705 Embedded TRD (MicroBlaze)

• Avnet/Digilent ZedBoard (ZYNQ)

5.2.8.2. Meta-Xilinx-Tools

Meta-Xilinx-Tools layer is a new layer available from the v2016.3 release. Meta-Xilinx-

tools layer is a layer to support all bare metal components from Xilinx. This layer provides

support for using Xilinx tools on supported architectures MicroBlaze, Zynq and ZynqMP.

This layer depends on Xilinx SDK to be installed. This layer depends on XSCT being

installed in the path. XSCT path has to be defined in local.conf

Meta-Xilinx-tools recipes depends on HDF to be provided. HDF_BASE can be set to git: or

file:. HDF_PATH will be git repository or the path containing HDF.

This layer can be used via dependencies while creating the required Boot.bin. Basically the

goal to build FSBL or PMU, etc. will depend on the use-case and Boot.bin will indicate

these dependencies. Boot.bin is created using bootgen tool from Xilinx. Executing bootgen -

bif_help will provide some detailed help on BIF attributes.

77

BIF file is required for generating Boot.bin, BIF is partitioned into Common BIF attributes

and Partition BIF attributes. Attributes of BIF need to be specified in local.conf while using

xilinx-bootbin.bbclass for generating Boot.bin.

5.2.8.3. Meta-SDR

It is a layer for software for Software Defined Radio (SDR) and related technologies. It is

currently in development so that it will collect up various recipes for applications as well as

GNURadio, UHD and some starter image recipes [29].

5.2.9. Hob

In an effort to make embedded Linux development easier, the Yocto Project provides a few

different methods for working graphically. A relatively new addition to the project is called

Hob, which provides a graphical front end to BitBake and the build process. Both are under

continual development, complete with community user studies.

5.2.10. Open source license compliance

Complying with open source licenses is an extremely important part of any Linux

development effort. One goal of the Yocto Project is to make compliance as easy as

possible. It is quite easy to use the Yocto Project tools to create manifests and even to build

entire source repositories, as well as filtering the build process to exclude packages that use

specific licenses. The project is working with the Linux Foundation on its Open Compliance

Program in relation to the Software Package Data Exchange® (SPDX™) specification.

5.2.11. EGLIBC

Embedded GLIBC (EGLIBC) is a variant of the GNU C Library (GLIBC) that is designed

to work well on embedded systems. EGLIBC's goals include reduced footprint, configurable

components, and better support for cross-compilation and cross-testing. EGLIBC is under

the Yocto Project umbrella but is maintained within its own governance structure.

78

5.2.12. Application Development Toolkit

The Application Development Toolkit (ADT) enables systems developers to provide

software development kits (SDKs) for the distributions they create using the Yocto Project

tools, providing applications developers a way to develop against the software stacks

provided by those systems developers.

The ADT includes a cross-compiling toolchain, debugging and profiling tools, and QEMU

emulation and support scripts. The ADT also includes an Eclipse plug-in for those who like

to work with integrated development environments (IDEs).

5.2.13. Other tools under the Yocto Project umbrella

Several other tools under the Yocto Project banner are:

• Autobuilder:

Creates continuous automated builds of the Yocto Project tools, enabling automated

Quality Assurance (QA) activities.

• Cross-Prelink:

Provides prelinking for cross-compilation development environments, improving

performance.

• Pseudo:

Emulates root access, an essential part of building a bootable final image.

• Swabber:

Detects when a cross-compilation build has been contaminated by host components.

• Build Appliance:

Is a virtual machine that runs Hob, enabling those who use non-Linux build hosts to see

the Yocto Project process firsthand. (Note: The Yocto Project build tools are currently

supported on Linux only.)

5.3. Creating Linux image

5.3.1. Prepare and Boot Hardware:

There are two main ways to boot the board using an SD Card. The way used here is via

Xilinx SDK bootgen and FSBL (First Stage Boot Loader). Another possibility is to use SPL

(Secondary Program Loader) which has a similar, different set of files necessary.

79

5.3.1.1. FSBL Method

The general steps are highlighted below:

1. Generate the device tree (if not using the evaluation board) from Vivado as in [30].

2. Build the kernel image (also provides a uImage and u-boot binary) using bitbake

3. Wrap the file system image in u-boot headers [if necessary!]

4. Use Vivado to create a boot image from the ZYNQ fsbl

5. Copy all necessary files to SD card (FAT32, single partition)

Files Required:

• u-boot.elf from bitbake (recommended!) [31] or manually compiling the u-boot source

code (not recommended!) [32] .

• top.bit from the synthesized hardware project.

Creating FSBL:

FSBL is created by opening up the Xilinx SDK with the HDF (hardware description file)

and BIT (bitstream file) loaded. From here, an application project is created for the Zynq

FSBL from File > New > Application Project, as shown in Figure 5-5 Creating FSBLFigure

5-5.

Figure 5-5 Creating FSBL

80

And then the ZYNQ FSBL project is selected as in Figure 5-6.

And then the SDK will automatically build the necessary files, including the fsbl.elf file and

copy over the bitstream file. The fsbl.elf file and the bitstream file will most likely be found

in the Debug/ folder under that project. This completes the first step.

Creating the Boot Image:

Now, the boot image BOOT.BIN is needed to be created with the necessary files loaded in

the correct order. From the Xilinx SDK, Xilinx Tools > Create Boot Image, which brings up

a dialog as in Figure 5-7.

Figure 5-6 ZYNQ FSBL project

81

 Figure 5-8 shows the files needed to be loaded in exactly this order and type.

And then Create Image button is pressed. This will be created in the FSBL project under

the bootimage/ folder. Files needed in creating boot image

Figure 5-7 Create boot image dialogue

Figure 5-8 Files needed in creating boot image

82

Preparing the SD Card:

The SD Card should have the following files in Figure 5-9.

Figure 5-9 Files needed in the SD Card to boot Linux from

83

Chapter 6: Linux and Bare-

Metal

Running Linux and Bare-Metal System on Both Zynq SoC

Processors

6.1. Introduction

The Zynq-7000 AP SoC provides two Cortex-A9 processors that share common memory and

peripherals. Asymmetric multiprocessing (AMP) is a mechanism that allows both processors to

run their own operating systems or bare-metal applications with the possibility of loosely

coupling those applications via shared resources. The Zynq-7000 All Programmable SoC

contains two ARM Cortex-A9 processors that can be configured to concurrently run independent

software stacks or executables. This chapter describes a method of starting up both processors,

each running its own operating system and application, and allowing each processor to

communicate with the other through shared memory. The reference design found in [49] includes

the hardware and software necessary to build a reference design that runs both Cortex-A9

processors in an AMP configuration. CPU0 runs Linux and CPU1 run a bare-metal application.

Care has been taken to prevent the CPUs from conflicting on shared hardware resources. This

chapter also describes how to create a bootable solution and how to debug both CPUs.

6.2. Reference design

In the reference design [49], each of the two Cortex-A9 processors is configured to run its own

software. CPU0 is configured to run Linux and CPU1 is configured to run a bare-metal

application. This design has a version that was implemented using Xilinx Vivado 2014.4 on

ZC702 board. The design was modified to be able to run on Xilinx Vivado 2015.2 which is the

same version used in our project.

84

In this AMP example, the Linux operating system running on CPU0 is the master of the system

and is responsible for:

• System initialization

• Controlling CPU1’s startup

• Communicating with CPU1

• Interacting with the user

The bare-metal application running on CPU1 is responsible for:

• Managing a “heart beat” that can be monitored by Linux on CPU0

• Communicating with Linux on CPU0

• Servicing interrupts from a core in the programmable logic (PL)

• Communicating interrupt events to Linux running on CPU0

The Zynq SoC processing system (PS) includes resources that are both private to each CPU and

shared by both CPUs. In running the design in an AMP configuration, care must be taken to

prevent both CPUs from contending for these shared resources. Refer to Zynq-7000 All

Programmable SoC Technical Reference Manual [8] for further information on shared and

private resources.

Examples of some of the private resources are:

• L1 cache

• Private peripheral interrupts (PPIs)

• Memory management unit (MMU)

• Private timers

Examples of some of the shared resources are:

• Interrupt control distributor (ICD)

• DDR memory

• On-chip memory (OCM)

• Global timer

• Snoop control unit (SCU) and L2 cache

85

In this example, CPU0 is treated as the master and controls the shared resources. If CPU1 were

to require control of a shared resource, it would have to communicate the request to CPU0 and

let CPU0 control the resource. To keep the complexity of this reference design to a minimum,

the bare-metal application running on CPU1 has been modified to limit access to the shared

resources.

OCM is used by both processors to communicate to each other. When compared to DDR

memory, OCM provides very high performance and low latency access from both processors.

Deterministic access is further assured by disabling cache access to the OCM from both

processors.

Actions taken by this design to prevent problems with the shared resources include:

1. DDR memory: Linux has only been made aware of memory at 0x00000000 to 0x2FFFFFFF.

CPU1 uses memory from 0x30000000 to 0x3FFFFFFF for its bare-metal application.

2. L2 Cache: CPU1 does not use L2 cache.

3. ICD: Interrupts from the core in PL are routed to the PPI controller for CPU1. By using the

PPI, CPU1 has the freedom to service interrupts without requiring access to the ICD.

4. Timer: CPU1 uses the private timer for the heartbeat.

5. OCM: Accesses to OCM are handled very carefully by each CPU to prevent contention. In

the case of the heartbeat, only CPU1 writes the location and CPU0 reads the location. When

data is sent from CPU1 to CPU0, only CPU1 writes the data value, then CPU1 sends a flag

by setting a different address location in OCM. CPU0 in turn detects the flag, reads the data,

and then clears the flag. Only CPU1 can set the flag, and only CPU0 can clear the flag.

For demonstration purposes only, a custom embedded core included with this example design is

used to provide a simple interrupt source. An output from the ChipScope analyzer Virtual

Input/Output (VIO) core is connected to this core, enabling the user to generate interrupts

towards the PS at their leisure. Using the Chipscope VIO core provides more control over when

an interrupt occurs and therefore makes it easier to measure the latency of interrupts. In a real-

world design, however, this core would not exist and instead, the interrupt would be sourced by a

truly functional piece of logic in the PL such as a direct memory access (DMA) engine.

86

6.2.1. Hardware

The PL contains a custom, embedded core connected to a synchronous output of a

ChipScope analyzer VIO core as shown in Figure 6-1. The VIO core provides a mechanism

for a user to interact with hardware from ChipScope analyzer.

In this design, when the VIO generates a pulse, the custom core forwards an interrupt to the

PS Core1_nIRQ pin. The core is also connected to the PS master general purpose port

(M_AXI_GP0) through an AXI Interconnect, allowing both CPU0 and CPU1 access to the

control register within the core. CPU1 accesses the control register to clear the interrupt

request (IRQ) during the interrupt service routine. CPU0 can optionally use the control

register to create an interrupt towards CPU1. The Core1_nIRQ pin connects directly to

CPU1’s PPI block so there is no need to modify the configuration of the shared ICD. A

ChipScope analyzer AXI monitor core is also included and allows the user to measure the

latency of the IRQ being serviced.

Figure 6-1 PL block diagram

87

6.2.2. Address map

In the PL, there is a single irq_gen embedded core that contains a single control register.

The register is located at BASE + 0 (0x78600000). The table in Figure 6-2 contains a

description of the IRQ_GEN control register.

6.2.3. Software

The software can be broken down into three sections:

• First stage boot loader (FSBL)

• Linux operating system and applications for CPU0

• Bare-metal operating system and application for CPU1

6.2.4. FSBL

The FSBL always runs on CPU0. It is the first software application that is run after power-

on reset of the PS. The FSBL is responsible for programming the PL and both application

executable and linkable format (ELF) files to DDR memory. After loading the applications

to DDR memory, the FSBL starts executing the first application that was loaded.

The FSBL first looks for a bit file. If a bit file is found, the FSBL writes it to the PL. Next,

whether or not a bit file is found, the FSBL loads one application ELF into memory and

executes it. This operating sequence does not support such an AMP configuration, so the

FSBL must be modified. Within this AMP example’s project files, the FSBL has been

modified to continue searching for files and loading them into memory until it detects a file

that has a load address of 0xFFFFFFF0. Upon detection, the FSBL downloads this last file

Figure 6-2 IREQ_GEN control register

88

and jumps to the executable address of the first non-bit or non-boot file found (which is the

application for CPU0). For details regarding how CPU1 starts up, refer to Zynq-7000 All

Programmable SoC Technical Reference Manual [8].

6.2.5. Linux

The easiest way to use Linux in an AMP configuration is to configure Linux as symmetric

multiprocessing (SMP) but restrict the number of available CPUs to 1. Such an approach

ensures that Linux configures the ICD and SCU correctly for a multiple CPU environment.

To create the Linux kernel, U-Boot, device tree, and the root file system ramdisk, refer to

chapter 4. All generated files are available as part of the project files.

To instruct Linux to use only one CPU for SMP, the bootargs in the device tree is modified

to add maxcpus=1. By default, the Linux .config is already setup to use SMP on the ZC702

demonstration board.

The device tree is also modified to reduce the amount of memory available to Linux to

provide untouched memory space for CPU1’s application.

6.2.6. Linux Applications

Two Linux applications that run on CPU0 are provided to interact with CPU1 that is

running the bare-metal application. The first application, rwmem, provides a simple memory

read and write access from Linux to OCM. This rwmem application is used to peek (read)

and poke (write) addresses in OCM. As specific address locations are changed, CPU1

detects the changes and interacts in a specific way. The second application, softUart,

provides a UART-style communication between Linux running on CPU0 and bare-metal

running on CPU1 through predefined memory locations in OCM.

After the PS powers up and the internal boot ROM completes execution, CPU1 will have

been redirected to a small piece of code in OCM at 0xFFFFFE00. This piece of code is a

continuous loop that waits for an event, checks address location 0xFFFFFFF0 for a non-zero

value and then continues the loop. If 0xFFFFFFF0 contains a non-zero value, CPU1 will

jump to the fetched address.

89

CPU0 (running Linux) starts CPU1 (running bare-metal) by writing the value of

0x30000000 to address 0xFFFFFFF0 using the included rwmem application. Normally,

CPU0 would need to run a set event (SEV) command to wake up CPU1. Because Linux,

running on CPU0, is constantly servicing interrupts (another source of events), an SEV

command is not necessary. When CPU1 wakes up, it reads the value 0x30000000 from

address 0xFFFFFFF0 (written using the rwmem command) and then jumps to address

0x30000000. Note that the FSBL placed CPU1’s ELF at 0x30000000.

The softUart application, which is also included in the design files, is run as a background

task in Linux. When running, softUart continuously monitors shared OCM memory at

locations 0xFFFF9000 (COMM_TX_FLAG_OFFSET) and 0xFFFF9004

(COMM_TX_DATA_OFFSET). Whenever a 1 is present at COMM_TX_FLAG_OFFSET,

softUart reads the value found at COMM_TX_DATA_OFFSET and temporarily stores the

value in a string array. When a value of 0x0A (\n) is received, the string array is displayed

on STDOUT. Every time softUart reads a value from COMM_TX_DATA_OFFSET, it

clears the COMM_TX_FLAG_OFFSET content. This clear signals to CPU1 that another

character can be sent towards the softUart application running on Linux.

6.2.7. Bare-metal application code

The reference design has CPU1 running bare-metal application code. Linux, running on

CPU0, is responsible for initializing shared resources and starting up CPU1.

The bare-metal board support package (BSP) named standalone_v5_1 that is part of the

SDK 15.2 install includes support for the preprocessor define constant USE_AMP. This

constant prevents the BSP from re-initializing the PS SCU that has previously been

initialized by CPU0. One caveat of using the USE_AMP constant is that the MMU mapping

is adjusted to create an alias of memory where the physical memory located at address

0x20000000 is virtually mapped to 0x00000000. This remapping is done in the BSP file

boot.s. The re-mapping is not necessary for this design. A modified version of the BSP is

included in the reference design to remove the re-mapping when USE_AMP is set.

90

Within this AMP reference design, no Zynq UARTs are used by the bare-metal application.

Instead, the application running on CPU1 contains its own outbyte() function that is used to

communicate via OCM to a software UART running in a Linux application on CPU0. By

adding the outbyte() function, all stdout functionality of the standalone BSP is intact,

allowing functions such as xil_printf() to be used.

To prevent shared resource conflicts, the bare-metal application running on CPU1 must be

careful not to access resources such as the SCU. Linux disables cache access to the OCM.

However, the default standalone BSP would attempt to enable cache for OCM and therefore

conflict with Linux. When used in an AMP configuration, the function

XIL_SetTlbAttributes() is used in the CPU1’s main() application function to disable cache

on OCM. The XIL_SetTlbAttributes() function has been modified in the included source

code such that it only flushes L1 cache and leaves L2 cache untouched to prevent access to

the SCU where L2 cache is controlled.

If the bare-metal code running on CPU1 requires control of L2 cache, a communications

channel must be created allowing the bare-metal code to request Linux to make the

necessary changes to the SCU. This action is beyond the scope or requirement for this

example design so care has been taken to prevent SCU access directly from the bare-metal

code.

6.2.8. CPU1 applications

CPU1’s application is located in memory starting at address 0x30000000. The linker script

is used to set the starting address.

CPU1’s application does the following:

1. Configures the MMU to disable cache for OCM accesses in the address range of

0xFFFF0000 to 0xFFFFFFFF. The address mapping of the OCM is untouched so OCM

exists at addresses 0x00000000–0x0002FFFF and addresses 0xFFFF0000–

0xFFFFFFFF. Only the high 64 KB of OCM is used by the design so cache is disabled

on addresses 0xFFFF0000–0xFFFFFFFF.

2. Initializes the PPI interrupt controller and interrupt subsystem.

91

3. Increments an OCM location (COMM_VAL). This OCM location is referred to as the

Heartbeat.

4. Sleeps for one second.

5. CPU1’s main() function repeats step 3 and step 4 continuously.

6. As interrupts are detected, an interrupt service routine in the background clears the

interrupt status of the embedded core and prints a string. The output from the print

statement is redirected to use the OCM COMM_TX_FLAG_OFFSET and

COMM_TX_DATA_OFFSET locations. In turn, Linux consumes the OCM data and

prints the string to the Linux console.

6.2.9. Design Files

The modified reference design contains these files:

• Vivado project

• SDK source files for Linux and CPU1 applications

• Generated files including:

• Bit file

• All files for the SD card

• Application ELF files for Linux and CPU1

• BOOT.BIN build scripts

• Modified bare-metal BSP

• Modified FSBL

• Modified devicetree.dts and devicetree.dtb

6.2.10. Generating Hardware

This section describes the creation of the hardware design. To implement the design and

export it to SDK:

a. Create a new directory called 'design/work'

b. Open Vivado 2015.2, In the Tcl command window, write 'cd design/work'

92

c. Create, build, and export the hardware design to SDK by running the included script

using tcl:

 run the tcl command 'source ../src/scripts/create_proj_702.tcl'.

This script does the following:

• Create a new project

• Set the properties of the project such as part used and board used

• Set Vivado to use the included IP repository in src/pcores. This repository includes the

custom IP that can create interrupts towards the PS using either a register or chipscope

VIO

• Create the IP design using the tcl script “src/scripts/create_bd_702.tcl”. This script was

originally created after creating the IP design manually, and then issuing the command

'write_bd_tcl ../src/scripts/create_bd_702.tcl'.

• Validate and save the IPI design

• Create the top level HDL wrapper and add it to the project. (Same as navigating to

'Project Manager', right clicking on design_1.bd, and selecting 'Create HDL Wrapper')

• Create bitstream. This command will recognize that the design hasn't been implemented

yet and will run 'generate files' on design_1.bd, synthesis, implementation, and

bitstream generation.

• Exports the hdf file to SDK and launch SDK. The hdf file contains system information,

PS startup information, and bitfile information

When the script finishes running it will open SDK. In the SDK workspace a hardware

platform project is created automatically.

6.2.11. Generating Applications

6.2.11.1. Configuring SDK

The modified standalone BSP files (used by the bare-metal application) are included in

design/work/project_1/project_1.sdk/app_cpu1_bsp and the modified FSBL file is included

in design/work/bootgen.

93

6.2.11.2. Creating Bare-Metal Application for CPU1

The instructions in this section create the application ELF that runs on CPU1 after the FSBL

loads the applications to DDR memory. This step is slightly different than creating the

application for CPU0 because CPU1 uses the customized BSP (like app_cpu1_bsp). This

design prevents CPU1 from accessing shared resources such as the ICD or SCU. The

application has already been compiled and is available at

design\generated_files\SDK_apps\app_cpu1.elf.

1. Within SDK, create the BSP using the customized standalone BSP from the repository

that was included with the design.

a. Select File > New > board_support_package.

b. Change the project name to app_cpu1_bsp.

c. Change the CPU to ps7_cortexa9_1.

d. Select the board support package OS standalone

e. Click Finish.

f. In the board support package settings, select overview > standalone and change both

stdin and stdout to none (Figure 6-3).

Figure 6-3 set NO stdin or stdout

94

g. Select Overview > drivers > ps7_cortexa9_1 and change the extra_compiler_flags

value to contain '-g -DUSE_AMP=1 -DSTDOUT_REDIR=1' (Figure 6-4).

h. Select OK.

2. Create the bare-metal application that will be running on CPU1 and import the included

software:

a. Select File > new > application_project.

b. Enter the project name app_cpu1.

c. Change processor to ps7_cortexa9_1.

d. Change board support package to Use existing and select app_cpu1_bsp.

e. Click Next

f. Choose the Empty Application template.

g. Click Finish.

h. In SDK’s Project Explorer tab, expand app_cpu1 and right click on the src folder.

i. Select Import.

j. Select General > File_System.

k. Click Next.

l. Browse to and select the included directory design/src/apps/app_cpu1.

m. In the left window pane, select the app_cpu1 folder but do not add a checkmark. In

the right window pane, select all files.

n. Click Finish and select yes to overwrite lscript.ld.

3. After SDK completes compiling the new application, the ELF is available at

design/work/project_1/project_1.sdk/app_cpu1/Debug/app_cpu1.elf.

Figure 6-4 CPU1 BSP add USE_AMP

95

6.2.11.3. Creating Linux Application RWMEM

This utility provides simple read and write accesses to memory locations from the Linux

console much like the mrd and mwr commands within Xilinx Microprocessor Debug

(XMD).

This application has already been compiled and is available at

design\generated_files\SDK_apps\rwmem.elf.

1. Create a blank Linux application:

a. Select File > new > Application_Project.

b. Set the Project Name to rwmem.

c. Change the OS Platform to Linux.

d. Click Next

e. Select the Linux Empty Application template

f. Click Finish.

2. Import the included rwmem source.

a. In SDK’s Project Explorer tab, expand rwmem and right click on the src folder.

b. Select Import.

c. Select General > File_System

d. Browse to and select the included directory design\src\apps\rwmem.

e. Click OK.

3. In the right window pane, select rwmem.c. Do not select anything in the left window

pane. Click Finish.

4. After SDK completes compiling the new application, the ELF file is available at

design/work/project_1/project_1.sdk/rwmem/Debug/rwmem.elf.

6.2.11.4. Creating Linux Application Soft UART

The Soft UART application runs on Linux and continuously monitors OCM to receive data

from CPU1. The data is echoed to the Linux terminal. This application has already been

compiled and is available at design\generated_files\SDK_apps\softUart.elf.

96

1. Follow the same steps as Creating Linux Application RWMEM, but name the project

softUart and import the source from the included design\src\apps\softUart.

2. After SDK completes compiling the new application, the ELF file is available at

design/work/project_1/project_1.sdk/softUart/Debug/softUart.elf.

6.2.11.5. Creating Linux Kernel

Refer to chapter 5 for instructions on how to compile the kernel. A copy of a pre-compiled

kernel is included at AMP_exampe_image_yocto/uImage.

6.2.11.6. Creating Linux Device Tree

Refer to chapter 5 for instructions on how to compile the device tree. The device tree needs

to be changed to instruct Linux SMP to only use one CPU and to decrease the amount of

memory available to Linux. A copy of the modified and compiled devicetree.dtb is included

at AMP_exampe_image_yocto/devicetree.dtb .

The commands used to modify the device tree are listed here:

1. Go to: <yocto_dir>/poky-jethro/meta-xilinx/conf/machine/boards/zc702/zc702-zynq7-

board.dtsi

2. Modify the device tree to reduce the memory. The memory entry should be:

memory {

device_type = "memory";

reg = <0x00000000 0x30000000>;

};

3. Set the maximum number of CPUs to 1 by adding maxcpus=1 to the bootargs

assignment: bootargs = "console=ttyPS0,115200 maxcpus=1 mem=768M root=/dev/ram

rw earlyprintk";

6.2.11.7. Creating U-Boot

Refer to chapter 5 for instructions on how to compile U-Boot. A copy of U-Boot has already

been compiled and is included at AMP_exampe_image_yocto/u-boot.elf.

97

6.2.11.8. Acquiring Root File System

Refer to chapter 5 for instructions on how to make the root file system. A copy of the

ramdisk is included at final_rootfs\uramdisk.image.gz.

6.2.11.9. Generating Boot File

The boot file BOOT.BIN normally contains the FSBL, FPGA bit file, and the ELF for the

application that runs on CPU0 (U-Boot). The design files contain a batch file, and a

BootGen configuration file.

The configuration file contains the names of the files that are copied to DDR memory. The

order of these files is important. For this design, the order is:

1. FSBL ELF.

2. CPU0 application.

3. CPU1 application.

A precompiled version of BOOT.BIN is available at design/work/bootgen/BOOT.BIN.

The boot file must be named BOOT.BIN.

1. Copy the included directory design\src\bootgen to design\work\bootgen. This directory

includes the BootGen batch file (createBoot.bat), a BIF file (bootimage.bif), and a

binary file (cpu1_bootvec.bin) that only contains the hexadecimal value 0xFFFFFF00

(swapped for little endian is 0x00, 0xFF, 0xFF, 0xFF). The FSBL recognizes this file’s

load address of 0xFFFFFFF0 as configured in bootimage.bif. It triggers the FSBL to

stop loading ELF or bin files and start running the first ELF that was downloaded.

2. Copy the compiled FSBL ELF to design/work/bootgen/zynq_fsbl.elf

3. Copy the bit file download.bit into design\work\bootgen.

4. Copy u-boot.elf that was created from the information in chapter 4 into

design\work\bootgen.

5. Copy the generated bare-metal application for CPU1 into design\work\bootgen.

6. Within SDK, select Xilinx_tools->launch_shell. A new command shell is started with

an environment pointing to the SDK and Vivado tools.

98

7. In the command prompt, change the directory to design\work\bootgen.

8. Run the createBoot.bat file. This batch file runs bootgen and uses bootimage.bif for

input. The bif is used to package the fsbl, u-boot, cpu1 app, and fpga bit file into

boot.bin. This creates the boot file BOOT.BIN is created in the current directory.

6.2.12. Copying Files to SD Card

The Zynq AP SoC requires these files to be present on the SD card in order to boot Linux:

1. BOOT.BIN (contains the FSBL, BIT file, U-Boot, and application for CPU1)

2. uramdisk.image.gz (ramdisk file system extracted to memory by U-Boot)

3. devicetree.dtb (used by U-Boot and Linux for device information)

4. uImage (Linux kernel loaded and executed by U-Boot)

5. u-boot.img (bootloader)

To copy the files to the SD card:

1. devicetree.dtb: This can be the user’s devicetree.dtb created from the instructions in

chapter 4 or copied from the AMP_exampe_image_yocto/devicetree.dtb included in the

reference design.

2. uramdisk.image.gz: This can be the user’s own file created from the instructions in

chapter 4 or copied from the final_rootfs/uramdisk.image.gz included in the reference

design.

3. uImage: This can be the user’s own file created from the instructions in chapter 4 or

copied from the included AMP_exampe_image_yocto/uImage included in the reference

design.

4. BOOT.BIN: This is the user’s design\work\bootgen\BOOT.BIN created from the above

steps.

6.2.12.1. Running the Design

To setup the hardware, follow the board setup instructions in the “TRD Demonstration

Procedure” section of Zynq-7000 All Programmable SoC: ZC702 Evaluation Kit. The

hardware setup configures the ZC702 demonstration board to boot from the SD card.

99

The terminal program should be configured to listen to the correct COM port with a baud

rate of 115200. When the design is powered up, the board boots. CPU0 then starts running

U-Boot and boots Linux. When booting from the SD card, the system can take up to 18

seconds before an output appears on the UART. This UART is dependent upon a third-party

driver.

During boot, the PS bootloader detects that the mode pins have been configured to boot

from the SD card. In turn, the PS bootloader opens the BOOT.BIN file and searches for the

block of data that has been flagged with bootloader. As seen in the bootimage.bif file,

amp_fsbl.elf has this flag. The bootloader loads this file into DDR memory and starts

running it. In turn, the FSBL loads the BIT file, U-Boot ELF, CPU1’s ELF, and then the

dummy file cpu1_bootvec.bin. At this point, the FSBL running on CPU0 jumps to the

execution address of the first application that was loaded after the FSBL.

The soft UART application is started in linux with the command softUart.elf &. This

command runs softUart in the background. SoftUart continues to monitor shared OCM

memory at locations 0xFFFF9000(COMM_TX_FLAG_OFFSET) and 0xFFFF9004

(COMM_TX_DATA_OFFSET). Whenever a 1 is present at COMM_TX_FLAG_OFFSET,

softUart reads the value found at COMM_TX_DATA_OFFSET and temporarily stores the

value in a string array. When a value of 0x0A (\n) is received, the string array is displayed

on STDOUT. Every time softUart reads a value from COMM_TX_DATA_OFFSET, it

clears the COMM_TX_FLAG_OFFSET content, which signals to CPU1 that another

character can be sent towards the softUart application running on Linux.

The second CPU is started with the command rwmem.elf 0xfffffff0 0x30000000. Location

0xFFFF8000 should start incrementing every second and can be viewed by using the

command rwmem.elf 0xffff8000. At this point, the bare-metal app running on CPU1 only

prints to the softUart when an interrupt is received from the PL. The PL contains a custom

core that generates an interrupt from an input signal to the core or from a register within the

core.

100

A ChipScope analyzer VIO core is connected to the input of the custom core. Thus, either

software or the ChipScope analyzer VIO core can create an interrupt to CPU1. A ChipScope

Integrated Logic Analyzer (ILA) core is also located in the design to monitor the IRQ

signal. To force an interrupt to CPU1, the Linux command rwmem.elf 0x78600000 1 is

entered as shown in Figure 6-5. Refer to the Address Map to see the register bit that was just

set. By setting this bit, an interrupt was sent to CPU1 and CPU1’s interrupt service routine

printed “CPU1: IRQ clr 0” to the soft UART application via the OCM memory.

Figure 6-5 Consol Output

101

The bare-metal application that services the interrupt is located in DDR memory. When the

first interrupt occurs, CPU1 is instructed to jump to the service routine. This jump causes

the instructions located in DDR memory to be read into cache and executed. During

execution, the service routine finishes by clearing the interrupt signal being generated by the

embedded core. After the first IRQ occurs, the service routine is located in cache so fetches

of the instructions for the routine are sourced by the cache instead of the slower, less

deterministic DDR memory. The time difference between the first and later interrupt

services could be reduced by moving the service routine into non-cached OCM.

6.2.13. Debugging the design

SDK can be used to connect and debug the application running on CPU1. XMD provides a

command shell and GNU debugger (GDB) server that connects to the CPU via the JTAG

cable. Normally, SDK automatically starts XMD in the background when starting to debug

an application. For this example design, XMD is manually started to connect to CPU1. SDK

is then instructed to connect to the XMD GDB server during debug.

Because FSBL was used to boot the design, there is no need to re-initialize the PS registers.

Care must be taken not to reset the full PS to not upset Linux running on CPU0.

1. Connect the platform cable to the ZC702 board. Ensure the jumper options are

configured for the correct debug cable.

2. From SDK, start XMD and connect to CPU1 (Figure 6-6):

a. In SDK, open a Xilinx command shell by selecting Xilinx_Tools > Launch_shell.

b. In the new command shell, enter xmd.

c. At the XMD prompt, enter the command connect arm hw -debugdevice cpunr 2.

d. XMD should respond with the TCP port number 1234.

A GDB server is now running and listening to TCP port 1234. When XMD connects, CPU1

is halted.

102

3. Start debugging CPU1 in SDK:

a. In the SDK project explorer window, right click app_cpu1 and select debug_as

>debug_configurations.

b. Highlight Xilinx C/C++ ELF and select the New launch configuration icon at the top

left.

c. The configuration name is automatically set to app_cpu1 Debug (Figure 6-7).

Figure 6-7 CPU1 debug configuration

Figure 6-6 Connect XMD to CPU1

103

d. Select the Device Initialization tab and delete the contents of the Path to

initialization TCL file field. Initialization has already been done by Linux and FSBL.

e. Select the Remote Debug tab.

f. Instruct SDK to connect to the externally created GDB server by checking the box

next to Connect to gdbserver on a different machine. The IP address should default

to localhost and the port should be 1234 (Figure 6-8).

g. Click Apply.

h. Click Debug. Click Yes to confirm the perspective switch.

i. The application is downloaded and then executed (the ELF download could have

been disabled in the Device Initialization Tab). The application stops at a breakpoint

at the first executable line in main().

j. Press resume, single step, and other buttons to continue running the application on

CPU1.

6.3. WIFI transmitter and receiver system designs

In the Transmitter and Receiver Systems design, each of the two Cortex-A9 processors is also

configured to run its own software as in the reference design [49]. CPU0 is configured to run

Linux and CPU1 is configured to run a bare-metal application.

In those AMP designs, the Linux operating system running on CPU0 is the master of the system

and is responsible for:

Figure 6-8 CPU1 remote debug configuration

104

• System initialization

• Controlling CPU1’s startup

• Communicating with CPU1

• Running the USRP applications

• Interacting with the user

The bare-metal application running on CPU1 is responsible for:

• Controlling the Transmitter and Receiver Systems in the programmable logic (PL)

• Managing a “heart beat” that can be monitored by Linux on CPU0

• Communicating with Linux on CPU0

In running the designs in AMP configuration, care has been taken to prevent both CPUs from

contending for shared resources. The bare-metal application running on CPU1 has been modified

to limit access to the shared resources. Actions taken by this design to prevent problems with the

shared resources include:

1. DDR memory: Linux has only been made aware of memory at 0x00000000 to 0x2FFFFFFF.

CPU1 uses memory from 0x30000000 to 0x3FFFFFFF for its bare-metal application.

2. L2 Cache: CPU1 application was modified so that it does not use L2 cache.

3. Global Timer: CPU1 was modified so that it does not use the global timer and instead uses

the private timer for the heartbeat.

6.3.1. Hardware

The PL was not modified by any blocks. The block diagrams of the Transmitter and

Receiver systems are the same as described in chapter 2.

6.3.2. Software

The software is also broken down into three sections:

• First stage boot loader (FSBL)

• Linux operating system and applications for CPU0

• Bare-metal operating system and application for CPU1

105

6.3.3. FSBL

Within this AMP design project files, the FSBL has been also modified by Xilinx to

continue searching for files and loading them into memory until it detects a file that has a

load address of 0xFFFFFFF0.

6.3.4. Linux

The Linux in this AMP configuration is configured as symmetric multiprocessing (SMP) but

restrict the number of available CPUs to 1. The Linux kernel, U-Boot, device tree, and the

root file system ramdisk, was created by the same instructions in chapter 4. All generated

files are available as part of the project files.

The bootargs in the device tree is modified to add maxcpus=1. The device tree is also

modified to reduce the amount of memory available to Linux to provide untouched memory

space for CPU1’s application.

6.3.5. Linux Applications

The two Linux applications that run on CPU0 in the reference design [49] are also used to

interact with CPU1 that is running the bare-metal application. The first application, rwmem,

which provides a simple memory read and write access from Linux to OCM. This rwmem

application is used to peek (read) and poke (write) addresses in OCM. The second

application, softUart, which provides a UART-style communication between Linux running

on CPU0 and bare-metal running on CPU1 through predefined memory locations in OCM.

The two USRP applications were also added to run on CPU0. These two applications use

the UHD and GNURadio installed on the file system to transmit and receive the Wi-Fi time

domain using the USRP devices connected to the ZYNQ FPGA through USB. The USRP

transmitter application reads the output file of the Wi-Fi transmitter application of CPU1

and then sends it through the RF platform. The USRP receiver application receives the Wi-

Fi time domain and write it in a file. This file is read by the Wi-Fi receiver application of

CPU1 and the receiver produces the output Wi-Fi data bits.

106

CPU0 (running Linux) starts CPU1 (running bare-metal) by also writing the value of

0x30000000 to address 0xFFFFFFF0 using the included rwmem application. When CPU1

wakes up, it reads the value 0x30000000 from address 0xFFFFFFF0 (written using the

rwmem command) and then jumps to address 0x30000000. Note that the FSBL placed

CPU1’s ELF at 0x30000000.

6.3.6. Bare-Metal Application Code

Linux, running on CPU0, is responsible for initializing shared resources and starting up

CPU1. The bare-metal board support package (BSP) named standalone_v5_1 that is part of

the SDK 15.2 install includes support for the preprocessor define constant USE_AMP. The

BSP was also modified as the version included in the reference design to remove the re-

mapping when USE_AMP is set.

Within those AMP designs, no Zynq UARTs are used by the bare-metal application.

Instead, the application running on CPU1 contains its own outbyte() function that is used to

communicate via OCM to a software UART running in a Linux application on CPU0.

Linux disables cache access to the OCM. However, the default standalone BSP would

attempt to enable cache for OCM and therefore conflict with Linux. In this AMP

configuration, the function XIL_SetTlbAttributes() is used in the CPU1’s main() application

function to disable cache on OCM. The XIL_SetTlbAttributes() function has been modified

in the included source code such that it only flushes L1 cache and leaves L2 cache

untouched to prevent access to the SCU where L2 cache is controlled.

6.3.7. CPU1 Applications

CPU1’s application is located in memory starting at address 0x30000000. The linker script

is used to set the starting address.

CPU1’s transmitter application does the following:

107

1. Configures the MMU to disable cache for OCM accesses in the address range of

0xFFFF0000 to 0xFFFFFFFF. The address mapping of the OCM is untouched so OCM

exists at addresses 0x00000000–0x0002FFFF and addresses 0xFFFF0000–

0xFFFFFFFF. Only the high 64 KB of OCM is used by the design so cache is disabled

on addresses 0xFFFF0000–0xFFFFFFFF.

2. Controls the Transmitter System in the programmable logic (PL).

3. Reads the input data to the Wi-Fi transmitter from a file and deliver it to the DMA block

through the AXI bus.

4. Extracts the output data from the FIFO block through the AXI bus and write it in a file.

5. Increments an OCM location (COMM_VAL). This OCM location is referred to as the

Heartbeat.

6. Sleeps for one second.

7. CPU1’s main() function repeats step 5 and step 6 continuously.

8. The output from the print statement is redirected to use the OCM

COMM_TX_FLAG_OFFSET and COMM_TX_DATA_OFFSET locations. In turn,

Linux consumes the OCM data and prints the string to the Linux console.

CPU1’s receiver application does the following:

1. Configures the MMU to disable cache for OCM accesses in the address range of

0xFFFF0000 to 0xFFFFFFFF. The address mapping of the OCM is untouched so OCM

exists at addresses 0x00000000–0x0002FFFF and addresses 0xFFFF0000–

0xFFFFFFFF. Only the high 64 KB of OCM is used by the design so cache is disabled

on addresses 0xFFFF0000–0xFFFFFFFF.

2. Controls the Receiver System in the programmable logic (PL)

3. Reads the input data to the Wi-Fi receiver from a file and deliver it to the DMA block

through the AXI bus.

4. Extracts the output data from the FIFO block through the AXI bus and write it in a file.

5. Increments an OCM location (COMM_VAL). This OCM location is referred to as the

Heartbeat.

6. Sleeps for one second.

108

7. CPU1’s main() function repeats step 5 and step 6 continuously.

8. The output from the print statement is redirected to use the OCM

COMM_TX_FLAG_OFFSET and COMM_TX_DATA_OFFSET locations. In turn,

Linux consumes the OCM data and prints the string to the Linux console.

6.3.8. Design Files

Each of the Wi-Fi Transmitter and Receiver Systems design contains these files:

• Vivado project

• SDK source files for Linux and CPU1 applications

• Generated files including:

• Bit file

• All files for the SD card

• Application ELF files for Linux and CPU1

• BOOT.BIN build scripts

• Modified bare-metal BSP

• Modified Xilinx FSBL

• Modified devicetree.dts and devicetree.dtb

6.3.9. Generating Applications

6.3.9.1.Configuring SDK

The standalone BSP files (used by the bare-metal application) and modified FSBL files are

the same files that have been included in the reference design files.

6.3.9.2.Creating Custom FSBL Application

The same instructions in 1.2.11.2 are used in generating the fsbl.elf.

A pre-compiled version is also available at:

Work_Tx_wifi\project_1_wifi_edited\project_1.sdk\bootgen\zynq_fsbl.elf.

109

6.3.9.3.Creating Bare-Metal Application for CPU1

The same instructions in 6.2.11.3 are used in generating tx_wifi.elf and rx_wifi.elf.

The applications have already been compiled and are available at

Work_Tx_wifi\project_1_wifi_edited\project_1.sdk\ tx_wifi\Debug\ tx_wifi.elf.

Work_Rx_wifi\Project_1_wifi\project_1.sdk\rx_wifi\Debug\rx_wifi.elf.

6.3.9.4.Creating Linux Application RWMEM

The same instructions in 6.2.11.4 are used in generating rwmem.elf.

6.3.9.5.Creating Linux Application Soft UART

The same instructions in 1.2.11.5 are used in generating softUart.elf.

6.3.10. Creating Linux Kernel

Refer to chapter 5 for instructions on how to compile the kernel. A copy of a pre-compiled

kernel is included at AMP_wifiRx_GNUradio_image/uImage.

6.3.11. Creating Linux Device Tree

The same instructions in 1.2.12.1 are used in generating devicetree.dtb. A copy of a pre-

compiled device tree is included at AMP_wifiRx_GNUradio_image/devicetree.dtb.

6.3.11.1. Creating U-Boot

Refer to chapter 5 for instructions on how to compile U-Boot. A copy of U-Boot has already

been compiled and is included at

Work_Tx_wifi\project_1_wifi_edited\project_1.sdk\bootgen\u-boot.elf.

6.3.11.2. Acquiring Root File System

Refer to chapter 5 for instructions on how to make the root file system. A copy of the

ramdisk is included at final_rootfs\uramdisk.image.gz.

110

6.3.11.3. Generating Boot File

The boot file BOOT.BIN contains the FSBL, FPGA bit file, and the ELF for the application

that runs on CPU0 (U-Boot). The design files contain a batch file, a BootGen configuration

file.

The configuration file contains the names of the files that are copied to DDR memory. The

order of these files is important. For this design, the order is:

1. FSBL ELF.

2. CPU0 application.

3. CPU1 application.

4. Dummy cpu1_bootvec.bin file.

A precompiled version of BOOT.BIN is available at

AMP_wifiTx_GNUradio_image\BOOT.BIN for the transmitter and

AMP_wifiRx_GNUradio_image\BOOT.BIN for the receiver.

The same instructions in 1.2.11.9 are used in generating BOOT.BIN file.

6.3.12. Copying Files to SD Card

The Zynq AP SoC requires these files to be present on the SD card in order to boot Linux:

1. BOOT.BIN (contains the FSBL, BIT file, U-Boot, and application for CPU1)

2. uramdisk.image.gz (ramdisk file system extracted to memory by U-Boot)

3. devicetree.dtb (used by U-Boot and Linux for device information)

4. uImage (Linux kernel loaded and executed by U-Boot)

5. u-boot.img (bootloader)

The Wi-Fi Transmitter bare metal code require the input file “wifidata.txt” to be present on

the SD card in order to run, and the USRP applications should also be present on the SD

card.

111

6.3.13. Running the Design

Setup the hardware by following the board setup instructions in the “TRD Demonstration

Procedure” section of Zynq-7000 All Programmable SoC: ZC702 Evaluation Kit. The

hardware setup configures the ZC702 demonstration board to boot from the SD card. The

terminal program should be configured to listen to the correct COM port with a baud rate of

115200. CPU0 then starts running U-Boot and boots Linux.

The soft UART application is started in linux with the command softUart.elf &.This

command runs softUart in the background. SoftUart continues to monitor shared OCM

memory at locations 0xFFFF9000 (COMM_TX_FLAG_OFFSET) and 0xFFFF9004

(COMM_TX_DATA_OFFSET).

The second CPU running the Wi-Fi Transmitter bare metal code is started with the

command rwmem.elf 0xfffffff0 0x30000000. Location 0xFFFF8000 should start

incrementing every second and can be viewed by using the command rwmem.elf

0xffff8000. Also, the output file of the transmitter “OUTPUT.txt” will be written to the SD

card.

In order to run the USRP transmitter application, the output file of the transmitter and the

USRP transmitter application need to be copied from the SD card to the Linux file system.

The following commands are used for mounting the SD card on Linux and copying these

files:

▪ mount /dev/mmcblk0p1 /mnt/

▪ cp /mnt/OUTPUT.TXT ~

▪ cp /mnt/top_txblock.py ~

After copying these files, the USRP transmitter application can be executed using the

command “python top_txblock.py".

For the USRP receiver application to run, the application need to be copied first from the

SD card to the Linux file system then executed using the commands:

112

▪ mount /dev/mmcblk0p1 /mnt/

▪ cp /mnt/top_rxblock.py ~

▪ python top_rxblock.py

In order to run the Wi-Fi Receiver bare metal application, the output file of the USRP

receiver application needs to be copied to the SD card so that the Wi-Fi Receiver bare metal

code can read it. The file can be copied using the command cp ~ /mnt/OUTPUT.TXT

The second CPU running the Wi-Fi Receiver bare metal code is started with the command

rwmem.elf 0xfffffff0 0x30000000. Location 0xFFFF8000 should start incrementing every

second and can be viewed by using the command rwmem.elf 0xffff8000. Also the output

file of the receiver “OUTRX.txt” will be written to the SD card.

113

Chapter 7: Conclusion & Future

work

7.1. Results Summary

Our project is an experience of both hardware and software working environment. A summary of

this year’s work, building it on all the previous years’ hard work, are as follows:

• Separation of 2G Transmitter and receiver HDL codes.

• Separation of WIFI Transmitter and receiver HDL codes.

• Modifying block design and adding new blocks.

• Controlling two USRPs using GNU radio’s GUI.

• Interfacing between USRP and FPGA using Asymmetric multi-processors.

• Making a complete semi-automatic system to send and receive with WIFI standard by using

two ZYNQ boards and two USRPs acting as transmitter and receiver. See Figure 7-1.

Figure 7-1 Transmitter and Receiver hardware full chain

114

7.2. Real-time testing results

As mentioned in chapter 3, the distance between the transmitter and receiver antennas affect

greatly the correctness of the reception, especially if there is no channel estimation -which is our

case-, where the location of interference and amount of gain needed for correct transmission and

reception, can’t be estimated. So, it’s going to be a trial and error process to achieve the best

results possible with the available tools.

Upon operating and testing the full chain using the WIFI standard, the BER has been calculated

and the following figures will illustrate those bit error rates Vs. the distance between the

antennas for different gain values.

Figure 7-2 BER ratio for 45 gain and 128K sampling rate

115

As shown in the previous figures, as the gain increase the packets arrive at the transmitter with

zero BER for small distances. By increasing the distance, the BER increases almost

proportionally until it nearly reaches 50% at 50 cm which is expected to decrease after adding

the channel estimation RTL codes. These results can be improved by using channel estimation

and a suitable error correction scheme can correct the data frames received.

Figure 7-4 BER ratio for 55 gain and 128K sampling rate

Figure 7-3 BER ratio for 50 gain and 128K sampling rate

116

Please note that the sudden 50% BER is due to ONE missing byte of the whole packet, as shown

in Figure 7-5. This missing byte disturbs the sequence and causes the whole packet to be marked

as corrupt, as the system identifies this packet to be missing half of its information.

In figure 7-5, the missing byte is highlighted in the left-hand side and has an empty space in its

place in the right-hand side of the image.

7.3. Conclusion

Our project was an integration to the previous years’ work. As mentioned before, our mission

was to separate the transmitter & the receiver, in order to transfer a data file through two separate

ZYNQ board + USRP kits. The ZYNQ board’s FPGA, which has the transmitter codes,

modulates the data and then passes it on to the USRP, which is the transmitter’s antenna, through

air to be received by the other USRP. The other USRP acts as the receiving antenna which

finally forwards the data file received on to the receiver blocks configured on the other ZYNQ

board’s FPGA to be demodulated. Controlling the transmitter and receiver FPGAs and USRP

with Asymmetric multi-processors by running transmitter/receiver bare-metal codes on CPU1

(running codes on FPGA) and running the LINUX image which has the UHD and GNU Radio

on CPU0 (control USRP). The final hardware prototype is shown below in Figure 7-6.

Unfortunately, a bug in Xilinx Linux image causes the bitstream to be corrupted on running bare

Figure 7-5 The missing byte

117

metal codes on a processor and a Linux image with USB driver on another, which is necessary to

connect and control the USRP. Hence, oursystem is semi-automatic not completely standalone.

7.4. Future work

7.4.1. Interfacing Using Ethernet

Due to the existence of the bug in the USB driver in the Xilinx linux (2015.2) ,our version, a

proposed solution is to use another series of USRPs (N-series), which has an ethernet

connection. The ethernet connection would avoid this bug and increase the data rate.

7.4.2. Communication

7.4.2.1. Channel Estimation

In the previous years’ work, the channel was modeled only using Matlab so the channel

estimation techniques were done using Matlab codes only. Now, due to the real channel, it is

needed to implement the channel estimation with RTL codes in order to decrease the BER

which exceeds 50% in the WIFI standard.

Figure 7-6 Project's prototype

118

7.4.2.2. Separating new systems

As the main target is to build Multi-standards communication system, the separation for

transmitter and receiver codes and block design of the different communication standards

(as 3G, LTE, Bluetooth) will be needed.

7.4.3. Electronics

7.4.3.1. DPR between communication standards

Applying DPR concept to the afore mentioned communication standards, so that we have an

SDR system using DPR concept which will realize all DPR advantages discussed before.

7.4.3.2. Synchronization between transmitter and receiver

Synchronize between the separated transmitter and receiver systems and enhancing

switching rates.

7.4.4. RF

Check that the whole system is working correctly with DPR technique in the RF band.

119

References

[1] I. F. Akyildiz, W.-Y. Lee, M. C. Vuran, and S. Mohanty, “NeXt generation/ dynamic

spectrum access /cognitive radio wireless networks: a survey,” Computer Networks, vol. 50, pp.

2127–2159, 2006

[2] T. Yücek and H. Arslan, “A survey of spectrum sensing algorithms for cognitive radio

applications,” Communications Surveys & Tutorials, IEEE, vol. 11,pp. 116–130, 2009.

[3] A. A. Bletsas, Intelligent antenna sharing in cooperative diversity wireless networks. PhD

thesis, Citeseer, 2005

[4] J. Mitola III and G. Q. Maguire Jr, “Cognitive radio: making software radios more personal,”

Personal Communications, IEEE, vol. 6, pp. 13–18, 1999.

[5] J. Mitola, “Cognitive Radio—An Integrated Agent Architecture for Software Defined

Radio,” 2000

[6] Xilinx Inc. “AXI DMA PG021”, March 7, 2011.

[7] 3GPP, Multiplexing and channel coding (FDD) (Release 12), 2014.

[8] Xilinx Inc. “Zynq 7000 TRM UG585”, September 2015.

[9] A Testing Environment for Multi-Clock Systems on Xilinx ZynQ SoC Dummy FIFO

[10] Asmaa Rayan, Alaa Othman, Maha Abd El-Maqsoud, OFDM over optical fiber channel,

Cairo: Cairo University, Faculty of Engineering, 2015.

[11] Xilinx Inc. “AXI Reference Guide UG761”, March 7, 2011.

[12] Xilinx Inc. “AXI interconnect DS768”, December 18, 2012.

[13] https://ieeexplore.ieee.org/document/6288496/

[14] http://www.ni.com/en-lb/shop/select/usrp-software-defined-radio-device

[15] https://www.upc.edu/sct/en/documents_equipament/d_174_id-459.pdf

[16] https://www.faculty.ece.vt.edu/swe/chamrad/crdocs/CRTM09_060727_USRP.pdf

[17] https://en.wikipedia.org/wiki/Universal_Software_Radio_Peripheral

[18] https://kb.ettus.com/UHD

[19] https://wiki.gnuradio.org/index.php/Main_Page

[20] https://wiki.gnuradio.org/index.php/InstallingGR

[21] Sami H.O.Salih, Mamoun M.A.Suliman, “Implementation of BPSK Modulation using

SDR”, International Journal Of Scientific And Engineering Research, vol.2, Issue 5, May-2011.

Pp.1-4.

http://www.ni.com/en-lb/shop/select/usrp-software-defined-radio-device
https://www.upc.edu/sct/en/documents_equipament/d_174_id-459.pdf
https://www.faculty.ece.vt.edu/swe/chamrad/crdocs/CRTM09_060727_USRP.pdf
https://en.wikipedia.org/wiki/Universal_Software_Radio_Peripheral
https://kb.ettus.com/UHD
https://wiki.gnuradio.org/index.php/Main_Page
https://wiki.gnuradio.org/index.php/InstallingGR

120

[22] J.Markstember, “BPSK Modulation/Demodulation Techniques” provides lowest probability

of error, microwave systems, News, pp.150-176, June 1984.

[23] http://forums.xilinx.com

[24] http://www.wiki.xilinx.com/Zynq%20Releases

[25] http://www.wiki.xilinx.com/Zynq%202015.2%20Release

[26] https://a4z.bitbucket.io/docs/BitBake/guide.html

[27] http://git.yoctoproject.org/

[28] http://layers.openembedded.org.

[29] https://layers.openembedded.org/layerindex/branch/master/layer/meta-sdr/

[30] http://www.wiki.xilinx.com/Build+Device+Tree+Blob

[31] https://github.com/kratsg/meta-l1calo/wiki/Building-and-Deploying-an-OS

[32] http://www.wiki.xilinx.com/Build+U-Boot

[33] https://github.com/jpendlum/meta-xilinx

[34] http://www.wiki.xilinx.com/Zynq%20Linux

[35] https://github.com/kratsg/meta-l1calo/wiki/Zynq-7:-Prepare-and-Boot-Hardware#fsbl-

method

[36] https://www.ibm.com/developerworks/library/l-yocto-linux/index.html

[37] https://www.yoctoproject.org/docs/2.5/overview-manual/overview-manual.html#yocto-

project-components

[38] https://www.yoctoproject.org/docs/2.5/brief-yoctoprojectqs/brief-yoctoprojectqs.html

[39] https://www.safaribooksonline.com/library/view/embedded-linux-

development/9781783282333/ch10s03.html

[40] https://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#understanding-and-

creating-layers

[41] https://www.yoctoproject.org/docs/2.0/yocto-project-qs/yocto-project-qs.html

[42] https://www.yoctoproject.org/docs/2.5/overview-manual/overview-manual.html#yocto-

project-components

[43] https://wiki.gnuradio.org/index.php/OpenEmbedded

[44] http://www.wiki.xilinx.com/Using%20meta-xilinx-tools%20layer

[45] https://github.com/Xilinx/meta-xilinx-tools

[46] http://www.wiki.xilinx.com/Yocto

http://forums.xilinx.com/
http://www.wiki.xilinx.com/Zynq%20Releases
http://www.wiki.xilinx.com/Zynq%202015.2%20Release
https://a4z.bitbucket.io/docs/BitBake/guide.html
http://git.yoctoproject.org/
http://layers.openembedded.org/
https://layers.openembedded.org/layerindex/branch/master/layer/meta-sdr/
http://www.wiki.xilinx.com/Build+Device+Tree+Blob
https://github.com/kratsg/meta-l1calo/wiki/Building-and-Deploying-an-OS
http://www.wiki.xilinx.com/Build+U-Boot
https://github.com/jpendlum/meta-xilinx
http://www.wiki.xilinx.com/Zynq%20Linux
https://github.com/kratsg/meta-l1calo/wiki/Zynq-7:-Prepare-and-Boot-Hardware#fsbl-method
https://github.com/kratsg/meta-l1calo/wiki/Zynq-7:-Prepare-and-Boot-Hardware#fsbl-method
https://www.ibm.com/developerworks/library/l-yocto-linux/index.html
https://www.yoctoproject.org/docs/2.5/overview-manual/overview-manual.html#yocto-project-components
https://www.yoctoproject.org/docs/2.5/overview-manual/overview-manual.html#yocto-project-components
https://www.yoctoproject.org/docs/2.5/brief-yoctoprojectqs/brief-yoctoprojectqs.html
https://www.safaribooksonline.com/library/view/embedded-linux-development/9781783282333/ch10s03.html
https://www.safaribooksonline.com/library/view/embedded-linux-development/9781783282333/ch10s03.html
https://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#understanding-and-creating-layers
https://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#understanding-and-creating-layers
https://www.yoctoproject.org/docs/2.0/yocto-project-qs/yocto-project-qs.html
https://www.yoctoproject.org/docs/2.5/overview-manual/overview-manual.html#yocto-project-components
https://www.yoctoproject.org/docs/2.5/overview-manual/overview-manual.html#yocto-project-components
https://wiki.gnuradio.org/index.php/OpenEmbedded
http://www.wiki.xilinx.com/Using%20meta-xilinx-tools%20layer
https://github.com/Xilinx/meta-xilinx-tools
http://www.wiki.xilinx.com/Yocto

121

[47] https://www.yoctoproject.org/docs/2.5/overview-manual/overview-manual.html#yocto-

project-components

[48] McDougall J. Simple AMP Running Linux and Bare-Metal System on Both Zynq SoC

Processors. 2013.

[49] Xilinix inc. “Vivado Design Suite User Guide Partial Reconfiguration”, UG909 (v2015.2)

June 24, 2015

[50] Xilinix inc. “Spartan-6 FPGA Configuration User Guide”, UG380 (v2.10) March 31, 2017

[51] Xilinix inc. “Spartan-6 Family Overview”, DS160 (v2.0) October 25, 2011

https://www.yoctoproject.org/docs/2.5/overview-manual/overview-manual.html#yocto-project-components
https://www.yoctoproject.org/docs/2.5/overview-manual/overview-manual.html#yocto-project-components

122

Appendix A: Using the FPGA inside the USRP

The Vivado Design Suite Release used is 2015.2. This release supports the following products:

• 7 Series devices: This release supports Partial Reconfiguration for all Virtex®-7,

• Kintex®-7, Artix®-7, and Zynq®-7000 All Programmable SoC devices.

• UltraScale™ devices: This release includes UltraScale device support for the following:

KU035, KU040, KU060, KU115, VU095, VU125, VU160, and VU190 [50].

Inside the USRP B200 there is Spartan 6 XC6SLX75 FPGA but it cannot be used in our project

as Spartan 6 does not support DPR in all Vivado releases [51],[52].

Appendix B: Alternative USRP series

a. No standalone USRP

As discussed in chapter 4, UHD is needed in order to interface between USRP and ZYNQ board,

but UHD needs OS to be installed on such as Linux. So, in all USRP series there is always a

need for OS which lead to the problem and its solution discussed in chapter 5.

b. The optimum USRP version for this application

As mentioned in our conclusion, that due to a Xilinx image bug we can’t use USB driver with

our bare-metal codes. so, the suggested solution is to use the Ethernet cable instead of the USB

cable to interface between the USRP and FPGA. The Ethernet connection is available in N-series

USRPs.

Appendix C: Partitioning of SD card

Partitioning the SD card was a suggested solution to be able to run LINUX OS on one part of the

drive and running the bare metal codes from the other part. The LINUX OS is needed to drive

the USRP and access the data files. Unfortunately, this solution doesn’t work as the LINUX

image part can’t access the other part of SD card, so the other solution, which is discussed in

asymmetric multi-processing chapter 6, was executed.

