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Abstract 
 

Cognitive Radio and Spectrum sensing are becoming more demanding specially after 

5G technology has been released and the more it spreads the more important it will be to 

implement them in our systems. Our project’s main task is to detect and classify anomalies in 

the spectrum specifically Jamming. 

We created several datasets with different specifications, as there were none found online. The 

data set we generated had 8 jamming types; tone jamming, multi tone jamming, sweep 

jamming, parabolic sweep jamming, C&I jamming, ON-OFF jamming, hop jamming, barrage 

jamming, added to the signal. We also varied the jamming power in the data set to try to mimic 

real world scenarios. We then developed a Deep learning algorithm that can detect and classify 

the jamming in spectrum, we also built a model that can detect Modulation schemes of the 

signal. In our deep learning jamming detection model, we used STFT as a pre-processing 

function to obtain time-frequency information of the signal and used a three CNN layers to do 

feature extraction of these time-frequency data, and then passed them to three FC layers to do 

the classification. We were able to obtain an average accuracy of 56.89% over SNR levels [-

20dB : 18dB]  and 93.31% over SNR levels [0dB : 18dB] on the final dataset. Our next goal 

was to implement this deep learning model on FPGA, we first implemented the STFT by 

utilizing the FFT ip that Vivado provides then we went on and designed the CNN layers using 

different implementation for each layer to maximize performance and obtain high accuracy and 

fast operation. 

  



11 
 

Chapter 1: Introduction 

1.1 Cognitive Radio and Spectrum Sensing 

In today’s world, the use of wireless devices has increased significantly with the advances 

in wireless technology. In the near future, significant growth of connected devices is expected 

with the mass adoption of IoT. A huge amount of spectrum is required to support this 

increasing number of wireless devices. But the spectrum available is a scarce resource. If we 

check the current spectrum allocation chart, it’s very hard to find a free spectrum to support 

upcoming volumes of wireless devices and mobile data traffic. Cognitive Radio is a concept 

introduced to tackle the upcoming spectrum crunch issue. Cognitive radio (CR) is a form of 

wireless communication in which a transceiver can intelligently detect which communication 

channels are in use and which ones are not, it also minimizes interference to other users by 

avoiding occupied channels, increases spectrum efficiency, and improves the quality of 

service for users. 

The technology resulting from the merging of 5G and Cognitive Radio (CR) is effective to 

meet the heavy mobile data traffic of future wireless networks. The new era of communication 

will be dominated by 5G in the future. As the future mobile broadband will be largely driven 

by ultra-high definition videos and as the things around us will be always connected, 5G aims 

to provide higher capacity and a network speed of 10Gbps. 5G equipment will also be available 

at lower cost, lower battery consumption, and lower latency than 4G equipment. 5G platform 

can empower the growth of many industries ranging from entertainment, agriculture, IT, and 

manufacturing industries. The need for more capacity will demand more spectrums resulting 

in the integration of CR in 5G networks. The focus of CR is to enable much more efficient use 

of the spectrum though it adapts itself to provide the optimum communications channel. 

All radio communication signals (radio, television, mobile phones, etc.) are modulated before 

transmission. Modulation recognition/classification is fundamental for correct demodulation. 

This has many applications in military, intelligence, and civil communities In recent years 

much emphasis are put on the development of signal processing and artificial intelligence 

techniques to address the relevant issues. Modulation recognition is an essential and 

challenging topic in the development of the cognitive radio and it is an essential part of CR 

adaptive modulation and demodulation capabilities to sense and learn environments and make 

corresponding adjustments, which make modulation recognition one of the main issues in the 

project. The cognitive radio (CR) system has been adopted for efficient utilization of the radio 

frequency spectrum. The classification of signal modulation schemes is one of the main 

characteristics of the CR for the appropriate demodulation of sensed signals. However, 

conventional Modulation Classification (MC) techniques require extensive extraction of signal 

features, which is not often guaranteed. Thus, Deep Learning (DL) has been seen as a promising 

solution to this drawback in MC. DL has shown overwhelming advantages in computer vision, 

robotics, and voice recognition. Recently, DL has been proposed to apply to wireless 

communications for signal detection and classification in order to better learn the active users 

for electromagnetic spectrum sharing purposes. 

So, we apply in our project a convolutional neural network (CNN) which is a DL algorithm, to 

demonstrate the feasibility of using CNN to recognize and classify over-the-air wireless 

signals. 
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1.2 Importance of Anomaly detection 

As a result of cognitive radio capabilities, one of its major applications is detecting 

jamming. Detecting Anomalous signals like jamming attacks is important because it is the first 

step toward building a secure and dependable wireless network. Detecting radio interference 

attacks is challenging as it involves discriminating between legitimate and adversarial causes 

of poor connectivity. Specifically, we need to differentiate a jamming scenario from various 

network conditions: congestions that occur when the aggregated traffic load exceeds the 

network capacity so that the packet send ratio and delivery ratio are affected; the interrupt of 

the communication due to failures at the sender side; and other similar conditions. 

Communication in the wireless sensor networks could be disturbed by the jammer and this 

jamming attack could be identified as a distinctive type of denial of Service attack. This might 

result in the degradation of the network which could be recognized. Due to the jamming signals, 

the packet transmission might not be proper. These kinds of attacks are destructive in low 

power due to the attributes such as disruption in communication and rapid trench in the 

batteries. To detect the attack and to perform secure data transmission, the illegitimate nodes 

have to be eradicated. Machine learning and deep learning methods are used for network 

analysis of intrusion detection and security. Hence, the deep learning model is proposed to 

identify the attacks which result in secured data transmission. Deep learning is applied so it can 

adaptively learn the attacks and classify them with higher accuracy. It is efficient as it is 

adaptive in learning and has improved precision. 

1.3 Problem Statement 

As discussed in the previous section the presence of anomaly in the communication link 

disrupts the communication and might cause all sorts of failures such as data loss or false data 

reception. This anomaly can be intentional in that there is an attacker who wants to jam the 

signals in the spectrum to disrupt the communication link so called jamming, or it can be 

non-intentional due to node failures in the wireless communication link. We decided to focus 

on jamming anomaly. Therefore, our main target is to design a deep learning algorithm and 

train it, using dataset of data transmitted in the channel that has been subjected to jamming, in 

order to be able to detect these jamming signals, we are then required to deploy this algorithm 

on FPGA, in order to be able in the future to implement this DL algorithm on low power and 

battery running devices with minimum power consumption and maximum accuracy possible, 

for DL algorithms require a large computational power, so it is important that when the 

model is implemented on FPGA it does not fail.  

We decided to make not only jamming detection system but also jamming classification as 

well, because if the jamming type is known, it might be easier to remove its effect on the 

data. 

1.4 Previous Work in this area 

We searched for previous work in the area of using DL in jamming detection and found 

one that was using CNN with spectrogram images of the spectrum to classify anomaly, they 

were able to classify 8 types of anomalies both jamming and node failures. Their approach 

was to compare two images one predicted by the CNN model for the next frame based on the 

previous ones and the other is the real frame that has been received. If they were identical 

then there is no anomaly if not then there is an anomaly. The main difference between them 

and our work is we are aiming for a hardware implementation of the system. The other 
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published literature in this area were all dealing with the problem of modulation 

detection/classification. 

1.5 Main obstacle found 

As mentioned before all DL techniques require a large data set to train the model but in our 

project there was no data set available with jamming, we found a data set provided by 

deepsig online but it had no jamming. We reached out to other researchers to ask them for 

their dataset but there were no reply, so our only option was to generate the data set 

ourselves. 

1.6 Chapters Overview  

Chapter one gives a quick introduction about Cognitive radio, spectrum sensing, anomaly 

detection and discusses the problem statement if the project as well as the previous work in 

the topic along with the main obstacle we had upon starting the project. 

Chapter two illustrates the process of generating the dataset starting from the fundamentals of 

the communication system moving to the specifications required for the dataset and ending 

with the generated datasets and their main differences. 

Chapter three deals with the Deep Learning model we made starting by explaining what is 

deep learning and its fundamentals it also discusses the CNN with all its nuances, after that it 

gives a detailed illustrations of our model and ends with how we made the model more 

suitable for hardware implementations 

Chapter four then continues with this hardware implementations and discusses methods to 

implement the model and enhance its accuracy FPGA then it explains what is FPGA and its 

main capabilities and components, it then shows our implementation of the model and its 

different parts   

We then conclude our project and discuss the future work that can be done. 
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Chapter 2: Communication and dataset 

2.1 Communication Fundamental Concepts 

2.1.1 Communication System 

 Any communication system has three main components that is the transmitter, the 

channel, and the receiver as shown in figure 2-1. 

 
Figure 2- 1 Communication System 

The information may undergo several operations in the transmitter before it is transmitted such 

like encoding, modulation, up sampling… etc. and then the information is transmitted into the 

channel. There is two types of the channel wired channel, in which the transmitted data reaches 

the receiver through a guided medium like copper wires, optical fiber cables… etc. and the 

other type is wireless channel, in which the data reaches the receiver through an unguided 

medium such as air. In both cases, the channel adds some noise to the data although its effect 

on the wired and wireless communication varies a lot. Then the data reaches the receiver whose 

function is to try to cancel out the changes that happened to the signal like the noise from the 

channel and the operations the data went through in the transmitter, so it tries to cancel the 

noise, down sample the signal, demodulate it, decode it … etc. to retrieve the original 

information and deliver it to the destination. 

 

2.1.1 Modulation and demodulation 

Modulation is the process of encoding information in a transmitted signal in the 

transmitter side, while demodulation is the process of extracting information from the received 

signal at the receiver side.  Many factors influence how accurately the extracted information 

replicates the original input information. Electromagnetic interference can degrade signals and 

make the original signal impossible to extract. Demodulators typically include multiple stages 

of amplification and filtering in order to eliminate interference. 

 

2.1.2 Why do we use modulation? 

Modulation is used because it provides very important features as follows. First, it 

provides ease of transmission of the signals; because the antenna’s length is inversely 

proportional to the transmitted signal frequency hence a smaller antenna for high frequency 

signal, which is easier in manufacturing and implementation in small devices like phones. 

Second, it allows for the ability of simultaneous transmission of multiple signals or 

multiplexing like for example FDM, TDM…etc., which is helpful in transmitting multiple 
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signals at the same time in the same geographical area without interference like TV channels, 

which allows for an efficiently use of available bandwidth. 

 

2.1.3 How modulation works  

Modulating a signal is mainly multiplying the signal by another high frequency carrier 

signal after doing some encoding on the signal to raise the signal’s frequency to be the same as 

the carrier signal multiplied. Encoding means that information from the signals can be added 

to some carrier by varying its amplitude, frequency or phase. Modulation is usually applied to 

electromagnetic signals such as radio waves, lasers/optics and computer networks. Modulation 

can even be applied to a direct current, which can be treated as a degenerate carrier wave with 

a fixed amplitude and frequency of 0 Hz mainly by turning it on and off, as in Morse 

code telegraphy or a digital current loop interface. 

 

2.1.4 Types of modulation  

There are many types of modulation schemes that are used in communication systems; 

figure 2-2 represents summaries of some of them. We are mainly concerned in this literature 

with the digital signals and the modulations that can be used with it, so our concern is the 

analog carrier modulation digital data branch in figure 2-2. 

 

Figure 2- 2 Modulation types 

 

2.1.5 Digital modulation 

Digital modulation is the process of encoding a digital information signal into the 

amplitude, phase, or frequency of the transmitted signal. The encoding process affects the 
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bandwidth of the transmitted signal and its robustness to channel impairments. In general, a 

modulation technique encodes several bits into one symbol, and the rate of symbol transmission 

determines the bandwidth of the transmitted signal. Since the signal bandwidth is determined 

by the symbol rate, having a large number of bits per symbol generally yields a higher data rate 

for a given signal bandwidth. However, the larger the number of bits per symbol, the greater 

the required received SNR for a given target BER.  

 

2.1.6 Signal Space  

Signal space is an important concept in digital modulation. The signal space of a 

modulation type, like shown in figure 2-3 for example, is a figure representation of all the 

symbols that can be generated from the modulation type specified where x-axis is the I-Phase 

(In-Phase component) of the data and the y-axis is the Q-Phase (Quadrature component) of the 

data. It is used to show the distance between symbols to judge the immunity of the modulation 

type used to noise and jamming. The number of symbols represented is based on modulation 

order and each symbol is an encoded number of bits which is mostly gray encoding; to decrease 

the bit error rate (BER) for the same symbol error rare (SER) and also decrease the total energy 

required to transmit the signal. 

 

Figure 2- 3  Signal Space representation of 64QAM modulation 

2.1.7 Upsampling  

 Upsampling is the process of inserting zero-valued samples between the original 

samples of the signal to increase the sampling rate. One way to accomplish upsampling by an 

integer ratio of 1:D is to interpose D-1 zero samples between each pair of the input samples of 

the signal. This causes the spectrum of the original signal to repeat at multiples of the original 

sampling rate. The process of upsampling doesn’t change the content of the input signal, it only 

introduces a scaling of the time axis by a factor D. Consequently, the operation of upsampling 

is invertible, which means that it is possible to recover the input signal from samples of the 

output exactly. 
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Figure 2- 4 Upsampling by a factor of 10 meaning we added 10 zeroes after each sample (note the time axis scale)  

2.1.8 Pulse Shaping  

 In electronics and telecommunications, pulse shaping is the process of changing the 

waveform of transmitted pulses. Its purpose is to make the transmitted signal better suited to 

its purpose or the communication channel, typically by limiting the effective bandwidth of the 

transmission. By filtering the transmitted pulses this way, the inter-symbol interference caused 

by the channel can be kept in control. In RF communication, pulse shaping is essential for 

making the signal fit in its frequency band. Typically, pulse shaping occurs after line coding 

and modulation. 

2.1.8.1 Pulse shaping filters 

Not every filter can be used as a pulse shaping filter. The filter itself must not 

introduce inter-symbol interference (ISI); it needs to satisfy certain criteria. The 

Nyquist ISI criterion is a commonly used criterion for evaluation, because it relates the 

frequency spectrum of the transmitter signal to ISI. 

Examples of pulse shaping filters that are commonly found in communication systems 

are: 

1- Raised-cosine filter 

2- Sinc shaped filter 

3- Gaussian filter 

 

Figure 2- 5 Amplitude response of raised-cosine filter with various roll-off factors 
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Sender side pulse shaping is often combined with a receiver side matched filter to achieve 

optimum tolerance for noise in the system. In this case, the pulse shaping is equally distributed 

between the sender and receiver filters. 

 

2.1.9 Fading channel models 

 There are two famous channels know and used in communication systems simulations: 

1- Rician fading is a stochastic model for radio propagation randomness caused by partial 

cancellation of a radio signal by itself the signal arrives at the receiver by several 

different paths hence exhibiting multipath interference, and at least one of the paths is 

changing. Rician fading occurs when one of the paths, typically a line of sight signal or 

some strong reflection signals, is much stronger than the others. In Rician fading, the 

amplitude gain is characterized by a Rician distribution. 

2- Rayleigh fading is sometimes considered to be a special case of Rician fading for when 

there is no line of sight signal. In such a case, the Rician distribution, which describes 

the amplitude gain in Rician fading, reduces to a Rayleigh distribution. Rician fading 

itself is a special case of two-wave with diffuse power (TWDP) fading. 

In the characterization of the channel model there are two important parameter that needs to 

be specified: 

- The ratio between the line of sight path power and the other paths power (K) as shown 

in figure 

- The total power from all paths 

 

Figure 2- 6 fading physical model 

2.1.10 Jamming definition  

As mentioned in the problem statement, our focus is jamming detection hence it is a 

necessity to be aware of the definition of jamming. Jamming in wireless networks is defined 

as the intentional disruption of existing wireless communication by decreasing the signal-to-

noise ratio at the receiver side through the transmission of wireless interfering signals. There 

are many types of these wireless interfering signals such as, tone jamming, multi-tone 

jamming, sweep  jamming, barrage jamming … etc. we will illustrate them and others in an 

upcoming section as it is more suitable they are mentioned there not here.    

  



19 
 

2.2 Dataset Specifications and Generation 

 As mentioned in the previous chapter, the previous work was mainly focused on 

modulation detection and they had a very good dataset available online, which is 

RADIOML2016.10A, the only problem in that data set is that it does not have jamming in it 

which is a pitfall for us as we need to build a deep learning algorithm for jamming detection 

hence we searched for a published data set that has jamming  but couldn’t find any. Therefor 

our only remaining option was that we generate our own data set. 

2.2.1 Dataset used in previous work  

The data set used in the previous work on the modulation recognition is the 

RADIOML2016.10A which has 11 modulation schemes and consists of 220,000 In-phase and 

quadrature (I/Q) represented data vectors divided into 20 different SNR levels limited between 

[ -20 : 18 ] dB and each frame consists of 256 sample (2 x 128). 

2.2.2 Dataset used in our work  

 We generated our own dataset using Matlab and we were only concerned with digital 

modulation techniques so we generated 5 of the digital modulation techniques used in 

RADIOML dataset and we added another 4 digital modulations and we inherited some of the 

features of the RADIOML dataset such as channel type and communication link. 

Figure 2-7 shows the nine digital modulation schemes included in our data set. 

 

Figure 2- 7 generated digital modulation techniques 
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2.2.3 Data Key features changes 

In order to hit higher accuracy then the previous work in the part of modulation detection there 

were some key components in the dataset that needed to be addressed and adjusted: 

- The dataset size should be increased to ease the building and tuning of the deep learning 

model so for each class we increased the number of examples from 20000 in 

RadioML.10A to 40000 in our generated dataset. 

- Also the frame size should be increased to allow the model to see and fetch more details 

of the data so we increased the frame size from 128 to 512 in our dataset. 

- And lastly in order for the deep learning model to achieve high classification accuracy 

for the modulation detection it needs to see number of symbols comparable to the 

maximum modulation order used in the dataset which is not the case in the RadioML 

dataset since they used oversampling rate of around 10 for a frame of 128 sample which 

is around 12 symbols only and that explains why in their work the PSI model was not 

able to achieve accuracy higher than 85% even for the higher SNR levels. 

 

2.2.4 Changes we did in the distribution of the dataset  

The data set we generated in this literature for the purpose of modulation detection 

includes 9 digital modulation schemes, and consists of 360,000 In-phase and quadrature (I/Q) 

represented data vectors divided into 20 different SNR levels limited between [-20:18] dB and 

each frame consists of 1024 sample (2 x 512), so in conclusion the data is (9 mods×20 SNR 

level×2000 frame ×2×512).   

Another important point to note is that the data is random in every dimension so that 

the data transmitted and the noise added is changed in every modulation type, SNR level and 

frame, also, the start of the frame is changed every frame to be able to mimic the real world 

situation fully without overfitting the model to certain patterns.  

2.2.5 The Communication system built  

 

 

Figure 2- 8  the communication system used to generate the dataset 

For the purpose of generation the data we built the communication system shown in 

figure 2-8 and extracted the data after the channel so that it can be used when the detection 

system have no idea about the pulse shaping and the other parameters of the transmission, 
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which is the case we are interested in, also we have generated the data after the matched filter 

which can be used only if the detection system is in the receiver or have knowledge about the 

transmission parameters, also it is interesting to see the effect of the jamming on the symbols 

in the signal space (SS), which gives an idea about the jamming effect on BER. 

It is important to note that the power of the jamming and the noise are both calculated in the 

channel not after receiving of the data. 

 

The communication system block diagram in figure 2-8 consists of the following blocks: 

1- Block one  

a. Random number generator: generates the data bit stream to be transmitted. 

2- Block two 

a. Constellation mapper: maps the data to symbols according to the gray encoding 

3- Block three 

a. Up-sampling: (also called interpolation) increases the sampling rate ,improves 

anti-aliasing filter performance and reduces noise, and here we used an 

oversampling value of 4  

b. Pulse shaping: for the pulse shaping we used a root raised cosine (RRC) with 

fixed value of a roll-off factor equal to 0.5 and system span equal to 7 

4- Block four  

a. Channel: which we modelled  to be Rician fading channel like the RadioML 

dataset also, noise is added in the channel  

The channel parameters that are fixed for the generation  

o Sampling rate = 200 MHz 

o Maximum Doppler shift of diffuse components = 40 KHz  

o Discrete delays of 5-path channel = [0 4.5 8.5 12 25] (ns) 

o Average path gains = [0 -2 -10 -13 -16] (dB) 

o K Factor = 4 (Linear ratio of specular power to diffuse power) 

o Doppler shift of specular component = 20 KHz 

5- Block five 

a. Matched filter: receives the data and convolves it with the pulse shaping filter 

again to have the response of raised cosine  

b. down-sample: transform the data back to the signal space (I/Q form) (also called 

decimation which helps reducing the sampling rate) 

6- Block six 

a. BER calculation: compare the transmitted bits with the received bits to calculate 

the bit error rate (BER) 
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Pulse Shaping used in generation  

- System span = 7  

- roll of factor = 0.5 

 

Figure 2- 9 root raise cosine shape 

 

2.2.6 Modulation types  

And the following is the signal space for each modulation normalized for average power = 1 

Table 2- 1 Modulation techniques generated 

BPSK signal space QPSK signal space 

  
4PAM signal space 8PAM signal space 
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Table 2- 2  Modulation techniques generated (continued) 

 

 

 

 

 

 

 

 

 

  

8PSK signal space 16PSK signal space 

  
16QAM signal space 64QAM signal space 

  
 256 QAM signal space  
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2.2.7 BER vs SNR for the generated dataset  

This is the BER vs SNR for the five digital modulation schemes used in the RadioML 

dataset and in our dataset 

 

 

 

2.2.8 Communication system plus jamming  

 

 

Figure 2- 11 Communication system block diagram after considering jamming effect 

Since there is no published dataset for the jamming detection problem we are facing, we 

generated our own data to represent the problem and we inherited some of the parameters of 

the communication system from the RADIOML dataset  

Figure 2- 10 BER of some of the modulation techniques generated compared to its theoretical value 
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For our dataset we are concerned only with digital modulations, we generated 9 types of 

modulations and each one is generated 9 times one for each class of the jamming (8 jamming 

types + 1 normal class) which will be discussed later in this literature. 

The block diagram in figure 2-11 represents the communication network we have built and 

used to generate the data, and shows the key parameters in the dataset.  

1- Block one  

a. Random number generator: generates the bit stream data to be transmitted 

2- Block two  

a. Constellation mapper: maps the data to symbols according to the gray encoding 

3- Block  three  

a. Up-sampling: (also called interpolation) increases the sampling rate, and 

improves anti-aliasing filter performance and reduces noise, and here we used 

oversampling value of 4  

b. Pulse shaping: for the pulse shaping we used a root raised cosine (RRC) with 

fixed value of a roll-off factor equal to 0.5 and system span equal to 7 

4- Block four  

a. Channel: which we modelled to be Rician fading channel like the RADIOML 

dataset for the data signal and slow fading and frequency non-selective for the 

jamming signal, and also, noise is added in the channel. 

The channel parameters, which is fixed for the generation  

o Sampling rate = 200 MHz 

o Maximum Doppler shift of diffuse components = 40 KHz  

o Discrete delays of 5-path channel = [0 4.5 8.5 12 25] (ns) 

o Average path gains = [0 -2 -10 -13 -16] (dB) 

o K Factor = 4 (Linear ratio of specular power to diffuse power) 

o Doppler shift of specular component = 20 KHz 

5- Block five  

a. Matched filter: receives the data and convolves it with the pulse shaping again 

to have the response of raised cosine filter. 

b. down-sample: transform data back to bit-form (also called decimation which 

helps reducing the sampling rate) 

6- Block six  

a. BER calculation: compares the transmitted bits with the received bits to 

calculate the bit error rate (BER) 

Another important point to note is that the data generated is taken after the down conversion 

step, so all the frequencies are normalized to the signal BW except the frequencies in the 

channel model, it will assume that the data has a sampling rate of 200MHz and accordingly it 

will create the channel, so if all values of time and frequency is adjusted to the high sample 

rate, it will have the same channel response of the normalized frequency. So, we choose it to 

be this way to be more comparable to the range of frequencies we want the system to work 

with. 

It is important to note that the power of the jamming and the noise are both calculated in the 

channel not after receiving of the data. 
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For illustration this is an example of the data going through each block for I-phase of QPSK 

modulation with oversampling = 10 with root raised cosine pulse shape and tone jamming  

Table 2- 3 Output of each block in the communication system block diagarm 

1- After Constellation mapper 2- After Up-sampling 

  
3- After pulse shaping 4- After pulse shaping and Jamming 

  
5- After pulse shaping + Jamming 6- After matched filter 

  
7- After down-sampling 8- Back to signal space 
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It is important to note that this is a deep learning aware data generation so each parameter 

in the communication link or the jammer node must go through one of the following operations  

1- Choose a fixed value: for parameter that is either insignificant in its effect to the model 

or it is fixed for certain type of communication links such as : 

o Channel model  

o Pulse shaping  

o Oversampling ratio  

 

2- Choose a random value: this will prevent the deep learning model from overfitting to 

values that most likely to change through run time such as  

o Data being transmitted  

o The start of the data in the frame  

o Frequency and phase of the jammer  

 

3- Sweeping: this is done on the key parameters to observe its effect on the model accuracy  

o  SNR levels  

o Jamming Power which we swept firstly as a separate parameter from the SNR 

and secondly we connected it with the SNR and swept the value of SJNR where  

jamming and noise have equal power 

 

2.2.9 Jamming Signals categories  

1- Spot jamming is concentrated power directed towards one or more channels or 

frequencies.  

2- Barrage jamming is power spread over all frequencies or channels at the same 

time.  

Barrage jamming can be modeled as a White Gaussian Noise but only activated in part of the 

frame hence it will need continuous monitoring of the spectrum to be able to detect it 

correctly. 

All the spot jamming types in their core are a sinusoidal wave, which we modelled as follows 

then the frequency of this sinusoidal is manipulated to generate the jamming techniques used 

in this project   

𝑇𝑜𝑛𝑒 = cos (2𝜋 ×
𝑓𝑟𝑒𝑞𝑗𝑎𝑚𝑚𝑖𝑛𝑔

𝑜𝑣𝑒𝑟𝑠𝑎𝑚𝑝𝑙𝑖𝑛𝑔
× 𝑛) + 𝑗 sin (2𝜋 ×

𝑓𝑟𝑒𝑞𝑗𝑎𝑚𝑚𝑖𝑛𝑔

𝑜𝑣𝑒𝑟𝑠𝑎𝑚𝑝𝑙𝑖𝑛𝑔
× 𝑛 + 𝑝ℎ𝑎𝑠𝑒) 

Two hyper-parameters here are:  

- Phase difference between I-Q branches.  

- Frequency of the tone normalized to the signal BW.  

We will discuss the effect of each of them separately in the next pages. 
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Phase difference between I-Q branches. Table 2-4 shows the signal space of the QPSK 

modulation with tone jamming applied to it at different phase difference, the red points 

represent the ideal data of QPSK modulation only affected by the system span and filter 

shape and the blue points represent the resulting points when tone jamming is applied, then 

we can conclude that the effect of changing the phase difference between I and Q branches 

results in rotation of the blue points of the tone jamming. 

Table 2- 4 Effect of phase difference between I and Q phases on the signal space of QPSK modulation 

Phi = 0  Phi = 0.3π 

  
Phi = 0.5π Phi = 0.7π 

  
Phi = π Phi = 1.3π 

  
Phi = 1.5π Phi = 1.7π 
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Frequency of the tone normalized to the signal BW: as we can see in table 2-5 there are three 

things to notice: 

1- The frequency of the jamming determines the distribution of the received points 

around the ideal point  

2- As frequency increases the jamming power received decreases due to the matching 

filter and after the BW of the signal there is no effect of the jamming on the received 

data  

3- At frequency = 0 the effect of the jammer is only a DC shift which is removed in the 

receiver directly using an AC coupling filer, so we will not generate data with zero 

frequency  

Table 2- 5 Effect of tone  frequency  on the signal space of QPSK modulation 

Freq = 0  Freq = 0.1 

  
Freq = 0.2 Freq = 0.3 

  
Freq = 0.4 Freq = 0.5 
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Table 2- 6 Effect of tone  frequency  on the signal space of QPSK modulation (continued) 

Freq = 0.6 Freq = 0.7 

  
Freq = 0.8 Freq = 0.9 
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2.2.10 The jamming types available in our dataset  

Our jamming classification dataset consists of eight jamming techniques that lies under 

the two categories of jamming mentioned before; spot and barrage jamming, and it is important 

to note that all jammers are designed to give the same power if they are on all the time, so, any 

type of jamming that has a ON-OFF nature will give the frame less average jamming power 

compared to other types of jamming. 

  

1- Tone jamming  

The simplest type of jamming which consists of a single tone jamming a certain 

frequency. 

2- Multi-Tone jamming  

A type of jamming that is designed to distribute the jamming power across several 

frequencies by transmitting several tone jamming signals.  

3- Hop Jamming  

A hop jamming is another type of spot jamming like tone jamming but the jamming 

frequency changes with time randomly.  

4- Sweep Jamming 

A Sweep jamming is another type of spot jamming like tone jamming but it changes 

the jamming frequency linearly with time.  

5- Parabolic Sweep Jamming 

A Parabolic Sweep jamming is another type of spot jamming like tone jamming but 

it changes the jamming frequency non-linearly with a third order function with time  

6- ON-OFF Jamming 

A tone jamming that is powered on and off several times in the frame. 

7- Chop & Interleave Jamming 

Chop & Interleave Jamming is a combination of sweep jamming and ON-OFF 

jamming. 

8- Barrage Jamming 

A White Gaussian Noise added to a part of the frame.   

For all the shown jamming techniques we have generated two groups of data, group one is a 

straight forward generation and group two is a more randomized version of it. 
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In table 2-7, we can see the STFT output of all the jamming types generated in our dataset:  

Group one: 

 
Table 2- 7 the STFT output of the jamming types generated in the dataset in group one 

Tone Jamming Multi-Tone Jamming 

  
Hop Jamming Sweep Jamming 

  
Parabolic Sweep Jamming ON-OFF Jamming 

  
Chop & Interleave Jamming Barrage Jamming 
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In table 2-8, we can see the STFT output of all the jamming types generated in our dataset:  

Group two:   

Table 2- 8 the STFT output of the jamming types generated in the dataset in group two 

Tone Jamming Multi-Tone Jamming 

  
Hop Jamming Sweep Jamming 

  
Parabolic Sweep Jamming ON-OFF Jamming 

  
Chop & Interleave Jamming Barrage Jamming 
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2.2.10.1 Group 2 specifications  

1- Tone jamming 

 Normalized random frequency from 0.1 to 2 

 random phase random between I and Q phases from 0 to 2π 

2- Multi-Tone jamming  

 Normalized random frequency from 0.1 to 2 for each tone 

 random phase random between I and Q phases from 0 to 2π for each tone 

 random number of tones from 2 to 5 tones 

3- Hop Jamming  

 Normalized random frequency from 0.1 to 2 at each hop 

 random phase random between I and Q phases from 0 to 2π at each hop 

 Random holding period 15 to 50 points for each hop 

 random start from 0 to 50 points 

4- Sweep Jamming 

 Normalized random start frequency from 0.1 to 0.5 

 random phase random between I and Q phases from 0 to 2π 

 random start from 0 to 25 points 

 sweep window random from 10 to 25 points for each step 

 frequency sweep range from 0.5 Hz to 1Hz 

5- Parabolic Sweep Jamming 

 Normalized random start frequency from 0.1 to 0.5 

 random phase random between I and Q phases from 0 to 2π 

 random start from 0 to 25 points 

 sweep window random from 10 to 25 points for each step 

 frequency sweep range from 0.5 Hz to 1Hz 

6- ON-OFF Jamming 

 Normalized random frequency from 0.1 to 2 

 random phase random between I and Q phases from 0 to 2π 

 random holding period from15 to 50 points for each step 

 random start from 0 to 50 points 

7- Chop & Interleave Jamming 

 inherited from sweep jammer  

 random holding period from15 to 50 points for each step 
 random start from 0 to 50 points 

8- Barrage Jamming 

 stop point randomly chosen for each frame between the points from 170 to 341 
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2.3 Generated Datasets 

2.3.1 Datasets Distributions  

1- Distribution #1  

 one modulation technique  

 ('QPSK') 

 tone jamming only 

 AWGN channel 

2- Distribution #2  

 five modulation techniques: 

 ('BPSK' , 'QPSK' , '16QAM' , '64QAM', 4PAM') 

 tone jamming only 

 AWGN channel  

3- Distribution #3 

 five modulation techniques: 

 ('BPSK' , 'QPSK' , '16QAM' , '64QAM' , '4PAM') 

 Four jamming types: 

 ('Tone' , 'Sweep' , 'Barrage' , 'Hop') 

 With AWGN channel 

4- Distribution #4  

 five modulation Techniques: 

 ('BPSK' , 'QPSK' , '16QAM' , '64QAM' , '4PAM') 

 Four jamming types: 

 ('Tone' , 'Sweep' , 'Barrage' ,  'Hop') 

 With fading channel 

5- Distribution #5  

 Adding four new techniques: 

 (‘8PAM' , '8PSK' , '16PSK' , '256QAM') 

 Adding four jamming types: 

 ('Multi-Tone' , ’Parabolic-Sweep' , 'On-Off' , 'C&I') 

 with fading channel 

2.3.2 Tuning done in the dataset   

 We have generated many datasets in order to tune the system parameters such as frame 

size and oversampling ratio and the level of randomization that the deep learning can handle 

as we see in group one and two in the tables [2-7, 2-8]. 

So we found that the best value for the frame size is 128 symbol and we chose the oversampling 

ratio to be 4 in order to not increase the data size significantly so the total number of samples 

in the frame is 128×4 = 512 sample. We also found that the model can still handle the maximum 

randomization we generated in group two with only around 3% ~ 5% accuracy degrading.  
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2.3.3 Final Datasets  

We have chosen some of the datasets we generated to be published and they are as follows:  

1- A modulation classification dataset that belongs to Distribution #5 (before matched filter) 

2- A Jamming classification dataset with jamming power = 0dB that belongs to Distribution 

#5  (before matched filter) 

3- A Jamming classification dataset with SJNR from -20dB to 18dB with jamming power 

equal to the noise power that belongs to Distribution #5 (Before matched filter) 

4- A Jamming classification dataset on empty channel (without data) with JNR from                    

-20dB to 18dB that belongs to Distribution #5 (Before matched filter) 

2.4 Communication and dataset generation conclusion  

As we discussed through this literature there were so many distributions of the data for 

both the problem of modulation and jamming classification and many versions, some of them 

was generated for illustration or testing, and some of them generated for tuning some 

parameters of the communication system to achieve the highest accuracy with the most difficult 

parameters; as our goal is not just to implement the system but we needed to test the deep 

learning algorithm limits in the two problems.  
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Chapter 3: Deep Learning Part 

3.1 Fundamental Concepts 

3.1.1 Neural Networks Overview 

 

Deep learning is a subfield of machine learning which enables the machine to perform 

human-like tasks without human involvement as it is concerned with algorithms inspired by 

the structure of the brain so called neural networks hence the name artificial neural networks. 

Deep learning is implemented through neural networks architecture so it is also called a deep 

neural network. 

The purpose of artificial neural networks (ANN) is to achieve a very simplified model of the 

human brain. By having the artificial neural networks try to learn tasks by mimicking the 

brain’s behaviour. Like the brain, ANN also consists of a large set of neurons, which are a 

specialized cell elements. These neurons are activated in response to the input, the activation 

of the neurons allows the network to detect and classify the patterns. Depending on certain 

input data, a neural network will try to calculate the probability that the data belong to a certain 

class (e.g., an object in a specific image). The neural network can be trained to recognize 

different classes by providing it with a set of labelled training data, which is called supervised 

learning, it can also use unlabelled data in training which is called unsupervised learning. There 

are other types of learning it can use like semi-supervised learning and reinforcement learning, 

etc. 

It is also the primary technology behind self-driving cars, speech recognition, image 

recognition, automatic machine translation, etc. 

3.1.2 Convolutional Neural Networks Overview: 

 

 Convolutional Neural Networks (CNNs) 

are a special type of Neural Networks that provide 

an additional spatial property to ANN, they are 

commonly used with visual data, and have shown 

an outstanding performance on various 

benchmarks. CNN provide a powerful learning 

ability due to using multiple feature extraction 

stages (filters), each layer has filters that extract 

some information then pass them to the next layer, 

this information can be as simple as edge detection 

in the first layers and become more complex 

through the layers that can automatically learn 

representations from the data and can reach to 

detect faces, cars, etc. in the end see figure 3-1. 

This automatic feature extraction and learning 

without human involvement is what make the 

CNN in particular and Deep Learning in general a very widely-known powerful technique.  

 

 

Figure 3- 1 Face detection enhances as undergoes 
several convolutional operations. 
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The CNN is divided into multiple learning stages through a set of convolutional layers, non-

linear processing units (like ReLU), and subsampling layers (pooling). Each layer performs 

multiple transformations using a bank of convolutional kernels (filters). Convolution operation 

extracts locally correlated features by dividing the image into small slices, making it capable 

of learning features. Output of the convolutional kernels is assigned to non-linear processing 

(ReLU) units, which not only helps in learning abstraction but also adds non-linearity in the 

feature space which reduces the linear dependency that can occur due to many consecutive 

layers if the non-linear units is not present, Output of the non-linear function (ReLU) is usually 

followed by subsampling (Pooling), which helps in reducing the output size, and also makes 

the input invariant to geometrical distortions. 

3.1.3 Convolutional Neural Networks Layers: 

 

Figure 3- 2 Convolutional Neural Networks Layers 

3.1.3.1 Convolutional Layer: 

 

As in Figure 3-2, the first layer in a CNN is a Convolutional Layer which consists of 

set of trainable filters. The convolutional layer takes in patches of pixels and passes them 

through a filter, the filter (or kernel) is used to detect patterns in the pixels. The convolutional 

layer receives N feature maps as input; each input feature map is convolved by a shifting 

window with (kH x kW x nD) filter where nD is the depth of the image, and this will generate 

one element in one output feature map. If the input RGB image has dimensions (nH x nW x 3) 

and the filter has dimension of k x k x 3, then the convoluted output is of dimensions will be 

(nH-kH +1) x (nW-kW +1) where S is the stride of the shifting window, which is normally smaller 

than 𝐾. A total of 𝑀 output feature maps, for M filters used, will form the set of input feature 

maps for the next convolutional layer  as shown in Figure 3-3, convolutional layer detects low-

level features of images i.e.: edges and colors, and by stacking a number of convolutional 

layers, the network hierarchically learns high-level features of the image. 
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Figure 3- 3 Convolution Operation 

3.1.3.2 Padding: 

 

Padding is usually used to preserve the information that exists near the edge of the 

image, it is also used when concatenating the output of multiple Convolutional layers with 

different sizes as in insertion  module; also it’s used to preserve the original input size. No 

padding is called Valid Padding, and using padding to preserve the original input size is called 

Same Padding. The convoluted output is now of dimensions (nH-k+2p+1) x (nW-k+2p+1) as in 

Figure 3-4.  

 

Figure 3- 4 Padding Operation 

3.1.3.3 Stride: 

 

Stride is the size of the step in which the filter moves with across the image until it 

reaches the upper right-hand corner. Stride is used mainly to decrease the output size so 

processing will be easier. The convoluted output is now of dimensions ((𝑛𝐻−𝑘+2𝑝)/S +1) 

((𝑛𝑤−𝑘+2𝑝)/S+1) as the example for striding by 2 is presented in Figure 3-5. 
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Figure 3- 5 Stride Operation 

3.1.3.4 Pooling:  

 

As in Figure 3-6, the Pooling layer (also called sub-sampling) reduce the dimensionality 

of each feature map of its input feature maps, the number of output feature maps is identical to 

that of input feature maps, while the dimensions of each feature map scale down according to 

the size of the sub-sampling window (called also kernel). There are three types of pooling, min 

pooling and it is very rare to use, and average pooling, and the most popular method the max 

pooling. The Max-pooling basically takes a filter 𝑃 𝑥 𝑃 and a stride of length 𝑆, it then applies 

it to the input volume, and it returns the maximum number in every sub-region that the filter 

convolves around, and the average pooling do the same operation, but it returns the average of 

each sub-region not the maximum number, the average pooling acts like a smoothing filter to 

the image, but the max pooling selects the brighter pixels from the image, and it is better to 

identify the sharp features, as the average pooling may destroy them.    

 

 

Figure 3- 6 Max and Average pooling operatoins 

  



41 
 

 

3.1.3.5 Fully Connected Layer (FC):   ####### COPIED AS IT 

 

The way this fully connected neural network layer (FC) works is that it looks at the output of 

the previous layer (which represent the activation maps of high level features) and determines which 

features most correlate to a particular class by unrolling the input features and the weights and 

multiply them and outputs an N dimensional vector where N is the number of classes .Also this layer 

is followed by soft max to show the most correlated class to the input as shown in Figure 2-7 which is 

an example for image classification.  

 

 

Figure 3- 7 Fully Connected Layer 

3.1.3.6 Flatten: 

 

The flatten operation converts the data into a 1-dimensional array in order to input it 

to the next layer. We flatten the output of the convolutional layers to create a single long 1-D 

vector; this vector contains all the features extracted by the convolution layers, the flattened 

vector is then passed to the final classification model that is the fully connected network. The 

flatten operation is described in Figure 3-8 
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Figure 3- 8 Flatten operation 

3.1.3.7: ReLU: 

 

There are many activation functions to use such as sigmoid, Tanh, ReLU … etc. The 

activation function is a function that is applied after each layer; its purpose is to introduce a 

non-linearity to the layer output. If we don’t add this non-linearity in NN, we can prove easily 

that all the NN layers can be reduced to one layer, so the activation functions are essential. The 

most widely used activation function is ReLU, the reason for its popularity is because it is 

relatively easy in implementation and provide a fast learning process compared to other 

functions. Its output is given by: 𝑚𝑎𝑥 (0, 𝑖𝑛𝑝𝑢𝑡), this gives us a linear relation in the positive 

half quarter of the 2-D grid, and zero in the negative half as shown in Figure 3-9. 

 

Figure 3- 9: The ReLU functoin 
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3.1.3.8: SoftMax: 

 

SoftMax is also an activation function, it is used in the last 

layer in classification problems, its formula is as follows  

𝑆𝑜𝑓𝑡𝑚𝑎𝑥(𝑧)𝑖 =  
𝑒𝑧𝑖

∑ 𝑒
𝑧𝑗𝑁

𝑗=1

 . The function of this layer is to make 

the output in the form of a probability; meaning a number between 

(0 and 1) or a percentage from (0% to 100%). In the equation, we 

add the summation of all output nodes in the denominator, and 

each output node on the numerator to calculate the output. The 

output represents the probability of this class to be the correct one. 

The ideal case is one in the correct class and zero in other classes, 

and this is why we use the exponential function, as its nature as 

shown in Figure 3-10 makes the small numbers even smaller and 

the large numbers even larger; as it has a slow increasing rate at 

first for small numbers, but suddenly goes high for large numbers. 

3.1.3.9 Dropout: 

The term “dropout” refers to dropping out units (both hidden and visible) in a neural 

network, as dropout refers to ignoring units (i.e. neurons) during the training phase of certain 

set of neurons, which is chosen at random. Calculations done by these units are no longer 

considered during a particular forward or backward path, and this is shown in the Figure 3-11. 

We use the dropout to prevent over-fitting, and make the NN more immune to noise, as if some 

neurons are off, this makes the responsibility on the other neurons that are ON, and if we can 

use only these neurons while others are OFF to make the decision, this makes the model more 

immune to noise.  

This dropout is used only while training, and after finishing training, all the neurons are on 

during inference, so we don’t have to implement this in the digital part. 

 

Figure 3- 11 Dropout process 

  

Figure 3- 10: Exponential function 
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3.1.3.10: Batch Normalization:   

 

We use Batch normalization layer to make the mean of the output of this layer 

approaches zero and the variance approaches one, and we do this to solve the problem of 

vanishing gradients, that may occur in convolutional neural networks during training. It makes 

the convoluted value fall into the centre of the effective value region of the nonlinear function, 

so that vanishing gradient is avoided. The mean μ and variance 𝜎2 are as follows:  

μ =  
1

𝑛
 ∑ 𝑥𝑖 −  μ𝑛

𝑖=1 , 𝑎𝑛𝑑 σ2 =  
1

𝑛
 ∑ (𝑥𝑖 −  μ)2𝑛

𝑖=1 , and the formula of the batch normalization 

is 𝑌 =  
𝛾(𝑥𝑖− μ)

√σ2+ 𝜖
+  β, where the parameters of this layer are the scaling factor 𝛾 , the translation 

factor 𝛽 , the mean μ, the variance 𝜎2, and the added ϵ in the denominator is used to prevent 

the denominator from being 0, and the value of ϵ is 0.001 during training. 
 

3.1.4 Pre-processing Techniques: 

 As mentioned in the problem statement our main concern here is anomaly detection 

by means of spectrum sensing, so the model needs to see the data in frequency domain. 

Therefore, in the upcoming subs-sections we will discuss some techniques used to transform 

the time series signals into frequency domain. 

3.1.4.1 Fast Fourier Transform (FFT): 

  FFT provides frequency information about the signal; it represents the signal by its 

magnitude and frequency. The formula used to compute FFT is: 𝐹(𝜔) = ∫ 𝑓(𝑡) ∗ 𝑒−𝑖𝜔𝑡𝑑𝑡
∞

−∞
. 

FFT can represent the signal in the frequency domain by telling us what are the frequency 

components that compose the signal, or in other words, what frequencies are present in the 

signal, but it has a limitation, that is, it can’t tell us when in time those frequencies exist. In 

other words, the Fourier Transform is ideal for the stationary signals. The stationary signals 

are the signals that do not change with time, for example, a sine wave will always be a sine 

wave with the same frequency no matter the time, and this is not our case, as it is known that 

the signals in spectrum can change with time, so we had to find another technique that could 

tell us both the frequency component and when in time it exists. 

3.1.4.2 Short time Fourier Transform (STFT): 

The STFT was developed to overcome the poor time resolution of the Fourier 

Transform, it gives us a Time-Frequency representation of the signal. The methodology of this 

transform is to take window of the signal for a certain time period, then apply the Fourier 

Transform to it, as we can assume that a portion (the taken window) of the non-stationary signal 

is stationary, then shift that window, and apply Fourier Transform on the new portion and so 

on. This technique can tell us that the signal has some certain frequencies in this time window 

(or time frame), it is an enhancement of the FFT, as the FFT works on the whole signal at once. 

There are various types of windows such as a rectangular pulse window, a hanning window, a 

hamming window…, etc. We can have an overlap between the windows too, the Figure 3-11 

describes the STFT operation. The window in the figure is a hanning window, and the overlap 

is because the hanning window approaches zero at its ends hence that part of the signal will be 

lost due to multiplication by zero, so to overcome this we allow overlapping between the 

windows as shown in the figure. The hanning window is commonly used because it provides 

good frequency resolution and leakage protection with fair amplitude accuracy. 
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Figure 3- 12 STFT Operation 

The limitation of STFT is that the window size is finite, which in turn reduces the frequency 

resolution, also, the window size is fixed which leads to a fixed frequency and time resolution. 

The relation between time resolution and frequency resolution is inverse proportionality, as 

when we use a wide window, it will give us a suitable time resolution, and will capture the low 

frequency changes as it happens in that wide time window, but it will give us a low frequency 

resolution, as it can’t capture the high frequency changes, and vice versa.  

The formula used to compute STFT is  𝐹(𝜏, 𝜔) = ∫ 𝑓(𝑡) ∗ 𝑤(𝑡 − 𝜏) ∗ 𝑒−𝑖𝜔𝑡𝑑𝑡
∞

−∞
 . When 

compared to the FFT formula in the previous section, the only difference between them is the 

added window function 𝑤(𝑡 − 𝜏), where τ is the time localization variable. 

 

3.1.4.3 The wavelet Transform: 

This is another technique to transform the signal into the frequency domain, it is based 

on STFT yet it overcomes its drawbacks. We use a single shifting window in STFT but in 

wavelet transform we use a shifting window of multiple windows as in figure 3-12, each 

window has a function called basis function. This multi-window overcome the drawbacks in 

the STFT as some of these basis functions capture low frequency components, and others 

capture high frequency components, which  gives us a better resolution in both time and 

frequency. 

 The formula used to compute it is 𝐹(𝑠, 𝜏) =
1

√|𝑠|
∫ 𝑓(𝑡) ∗ 𝜑(

𝑡−𝜏

𝑠
)𝑑𝑡

∞

−∞
. In comparison to the 

STFT formula, the window function here became basis functions φ, τ is the wavelet location, 

and s is a frequency scaling parameter. 
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Figure 3- 13: example of the basis function of the wallet Transform 

The limitation here is that the wavelet transform is relatively hard to implement, and because 

we are aiming for a real world application, and will deploy the model on FPGA, we decided 

not to use the wavelet transform. Instead, we are going to use STFT with a resendable value of 

window size. 

3.2 Related work: 

 

Under the umbrella of the spectrum sensing for anomaly detection, we searched for any 

related work, and we found the modulation detection problem that was described in the Deep 

Learning Modulation Recognition for RF Spectrum Monitoring  paper, they used the PSI (Ψ) 

model that was developed by M. Kulin, the model architecture is described in Figure 3-13, the 

idea behind this is to see the data in different representations, as they transform the IQ data into 

frequency domain using FFT, and also use Amplitude and phase representation. Each 

representation goes through a separate convolutional neural network in its branch, they then 

pad the output of each branch and concatenate them, after doing a feature extraction in each 

branch, the output goes through a convolutional network. This was a brilliant idea, as each 

representation containing some information, and the CNN try to extract this information, and 

concatenate them to decide the final output.  
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Figure 3-14 PSI (Ψ) model 

  

We tried to replicated this model, and got the same result that was described in the 

paper, we used the same dataset, RADIOML 2016.10A,  that is provided by DEEPSIG the 

dataset includes 11 modulation schemes 8 Digital and 3 analog modulation, They are : BPSK, 

QPSK, 8PSK, 16QAM, 64QAM, BFSK, CPFSK, PAM4 for digital modulations and WB-FM, 

AM-SSB, AM-DSB for analog modulation, the dataset consists of 220,000 In-phase and 

quadrature (I/Q) represented data vectors divided into 20 different SNRs limited between [ -20 

: 18 ] dB and each frame consists of 256 sample (2 x 128), and they use 70% of data is used 

for training and 30% of data is used for test. 

The model containing 36,888 parameters, and they can achieve average accuracy up to 54.38%, 

82% for medium SNR levels, and 84% average accuracy for high SNR levels. 

The results of their work is as follows: 



48 
 

 
Figure 3- 15: Accuracy Vs. SNR 

 

Figure 3- 16: Confusion Matrix at SNR=6 

After learning more about the data, we made some changes to it as discussed in chapter two, 

the dataset was 128 pairs of  IQ data, and with oversampling equal to 8, this mean it only 

containing 16 sample, and this is a very low number to detect the modulation scheme from, so 

we regenerated a dataset with the same channel parameters, and we made some changes, as we 

set the oversampling parameter to 4 and generated 512 pair of  IQ signal with 128 samples, 

also, we would like to mention that we used only nine digital modulation schemes, as follows; 

BPSK, QPSK, 8-PSK, 16-PSK, 16-QAM, 64-QAM, 256-QAM, 4-PAM, 8-PAM. 

We were able to obtain an average accuracy equal to 63.15%, and average accuracy equal to 

96.08% above zero dB, this is a great improvement in the Mid and high SNR levels, and the 

accuracy Vs SNR is as follows: 
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Figure 3- 17 Accuracy VS. SNR in our model using the new dataset 

 

Figure 3- 18 Confusion matrix for all SNR values using the new dataset 

And as we can see in figure 3-17, we reach almost 100% accuracy for high SNR levels, and we 

can obtain more than 90% at SNR level equal to zero dB. 

3.3 Model Architectures 

3.3.1 Overview of the work: 

Our project statement is about jamming detection for wireless signals, but we choose 

to classify the jamming not just detect it, this is due to two main reasons, the first reason is  that 

we we know the type of jamming, this will help us make an anti-jamming system, or we stop 

sending or receiving the data on that channel, and the other reason is that we have a plan, which 

is we want to make a full research on this case study, as we want to see if a certain parameter 

changed in the generation how would this affect the detection of a certain jamming type, and 

this was very obvious in the concussion matrix. Our aim is it to make the model work with the 

smallest number of parameters because it makes the model more immune to noise and data 

changes. 
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We built our models using TensorFlow platform, and we use numpy library in the pre-

processing stage, we parse the data from the pickle file, and then split the data into a train set, 

a validation set, and a test set. Here, we use 85% of data as train, and 10% for validation, and 

5% for test, we used Google Colab as an online platform to deploy our model, Colab provides 

us with a NVIDIA Tesla K80 GPU for free, and 16 GB of RAM, and we add our dataset on 

google drive, and connect both together. 

3.3.2 Model 1:  

 

Figure 3- 19: First model Architecture 

This model was developed on a data set from distribution #3 that we referred to in section 2.3.1, 

and the highlight specs in this data set were, it has an AWGN channel that was collected after 

a matched filter, and it has five modulation schemes: 'BPSK' , 'QPSK' , '16QAM' , '64QAM' , 

'4PAM'. It was developed to classify five classes; the Normal data, Barrage jamming, Hop 

jamming, Tone jamming, and finally Sweep jamming. The dataset consists of 100,000 pair of 

In-phase and quadrature (I/Q) represented data vectors, divided into 5 classes with 20,000 pair 

in each, and divided into 20 different SNR levels from -20dB to 18dB with 1000 pair in each 

level. 

We decided to use FFT as a feature extraction function, this was inspired from the modulation 

detection model of the previous work. After we tried each data representation, we found that 

the frequency representation provides the highest accuracy, and IQ has the lowest accuracy, 

and we obtained these results, we achieved an average accuracy over all SNR levels equal to 

77.40% and an average accuracy equal to 90.61% for SNR levels above 0dB. The model had a 

total number of parameters equal to 69,369. 

 

Figure 3- 20 Accuracy vs SNR for the jamming detection model using FFT 
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Figure 3- 21 Confusion matrix of Model 1 (FFT) 

Due to the limitation we discussed in 3.1.4, we decided to use STFT from now on, and we use 

the same dataset, and using the same model architecture, we set the parameter of the STFT to 

be, the window size is 32, with a step of 16 point, and a 64 point FFT, when we used a window 

size smaller than the size of FFT, this will pad the window with zeroes to reach the size of  

FFT, after some investigation, we found  that this way gives us more resolution for the output 

signal. STFT in Tensor-flow takes real numbers and returns complex numbers, so we separate 

the I-branch from the Q-branch, and apply STFT on both, then each of them becomes complex, 

we separate the real and imaginary, the final input shape was 31*33 and 4 channels, the total 

number of parameters was 13,637, and the final result for this model was an average accuracy 

equal to 76.56% for all SNR levels, and for signals above zero dB we can obtain average 

accuracy equal to 91.24%  
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Figure 3- 22 Accuracy vs SNR for the jamming detection model using STFT 

 

Figure 3- 23 Confusion matrix of Model 1 using STFT 
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3.3.3 Model 2:  

 

Figure 3- 24: Model 2 Architecture 

And as our aim is to make jamming detection, and we don’t know any information about the 

input signals, so we made a dataset before the matched filter, and this dataset was based on 

distribution#4 referred to in section 2.3.1, and from a quick look on the data’s specs, it has a 

fading channel, and the same jamming types, and modulation techniques, the average model 

accuracy of all SNR levels is 62.17%, and average accuracy above 0db is 95.07%, and this 

drop in the accuracy is due to changing our point of view from after the matched filter to before 

the matched filter, it is more difficult to the model to detect the jamming. Figures 3-25, 3-26 

shows the result of the model. 

 

 

Figure 3- 25 Accuracy vs SNR for the modulation detection model 
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Figure 3- 26  Confusion matrix of Model 2 using STFT and distribution#4 

 

3.3.4 Model 3: 

 

Figure 3- 27 Model 3 block diagram 

In this model we change the input shape, as in previous models we separated the I 

branch and the Q branch, and processed them separately because STFT takes only a single real 

input, so in this model we took the magnitude of the I and Q branches of signal by adding their 

square values and then taking the square root of their addition, then input became 1*512, and 

the output was real part in a channel, and the imaginary part in the other channel, and we added 

the magnitude of them to the last channel, this made a jump in accuracy and improved the 

average accuracy by around 6%.  

The dataset here was based on distribution#5 missioned in section 2.3.1, the dataset has the 

five modulation techniques as previous models, but we added more four jamming types; C&I 

jamming, Multi-Hop jamming, On-Off jamming, and Parabolic-Sweep jamming, by adding 
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more jamming types we expect the accuracy to drop, and this happened in the low SNR levels 

as the model guessed randomly which class it was, but for the middle and high SNR levels, we 

hit almost 100%.  

We also changed the number of filters in the model, this change and the input shape change 

enabled us to reach 65.53% average accuracy over all SNR levels, and 99.38% for SNR higher 

than zero dB. Figures 3-28, 3-29, 3-30 shows the result of the model. 

 

 

Figure 3- 28 Accuracy vs SNR for the jamming detection model 3 using distribution#5 
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Figure 3- 29  Confusion matrix of Model3 using STFT and distribution #5 for all SNR levels 

 

Figure 3- 30  Confusion matrix of Model3 using STFT and distribution #5 for  SNR levels above 0 dB 
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3.3.5 Model 4: 

 

Figure 3- 31 Model 4 block diagram 

We developed this model based on a dataset with only a QPSK modulation scheme, that was 

based on distribution#5 mentioned in section 2.3.1, and a quick view on this data we set the 

jamming power to 0 dB, and this is a relatively high value compared to the old datasets. The  

accuracy didn’t increase, because we added more randomization across SNR levels, as now 

each frame has  unique values of noise and jamming added to the signal, the average accuracy 

for this model was 64.35% over all SNR levels, and 97.52% for signals above zero dB, the total 

number of parameters for this model was 60,561. Figures 3-32, 3-33, 3-34 shows the result of 

the model. 

 

 

Figure 3- 32 Accuracy vs SNR for model 4 using only QPSK and jamming power 0 dB 
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Figure 3- 33  Confusion matrix of Model4 using only QPSK distribution#5 for all SNR levels 

 

Figure 3- 34  Confusion matrix of Model4 using QPSK  and distribution #5 for all SNR of 0 dB 
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3.3.6 Model 5: 

 

Figure 3- 35 Model 5 Block diagram 

This is the final model on the GPU, this was developed with a dataset with QPSK modulation 

scheme only, and we set the jamming power from -4dB to 0dB, and we separate the jamming 

channel from the data channel, this separation makes it very hard for the model to detect the 

jamming, and the jamming power is less than the last dataset. After running the model on the 

dataset with the previous specifications, we obtained an average accuracy of 56.89% over all 

SNR level and 93.31% for SNR levels above zero dB, and the total number of parameters for 

this model was 36,537.  Figures 3-36, 3-37, 3-38 shows the result of the model. 

 

Figure 3- 36 Accuracy vs SNR for the final model 
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Figure 3- 37  Confusion matrix of Model5 for all SNR levels 

 

Figure 3- 38 Confusion matrix of Model5 for SNR level of 0 dB 
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 We applied this model on a dataset that contains only jamming, because we thought 

this case might happen when we sense the spectrum to start our communication link, the results 

of this dataset was that the average accuracy is 58.83% over all JNR levels, and for jamming 

power above zero dB, we obtained an average accuracy of 96.08%. Figures 3-39, 3-40 shows 

the result of the model. 

 

Figure 3- 39 Accuracy vs SNR for jamming only case using model5 

 

Figure 3- 40 Confusion matrix of jamming only dataset using Model 5 

We used this model on a dataset that contains jamming with power equal to 0 dB, and the 

model was able to reach an average accuracy of 70.95% over all SNR levels, and an average 

accuracy of 96.54% for SNR levels above 0 dB. Figures 3-32, 3-33, 3-34 shows the result of 

the model. 
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Figure 3- 41 Accuracy VS SNR for Model 5 and jamming power of 0 dB 

 

Figure 3- 42 Confusion matrix of Model 5 using jamming power of 0 dB. 

 

Due to the variation of accuracy when changing the jamming power we wanted to test 

the range in which the model will behave correctly for changing the jamming power, so we 

used this model with another dataset, this dataset has 11 steps of different jamming power 

levels varying from -10 dB to 10 dB with a step of 2 dB. In each level of jamming power, we 

have 20 levels of SNR, form -20 dB to 18 dB that has a step of  2dB. We generated this data 

set to know the range of jamming that the model can still detect the jamming. The dataset 

consisted of 110,000 frame, all of them were modulated by QPSK only, and for each level of 

the 11 levels of jamming power we had 10,000 frame distributed between 20 SNR levels, as 

we have 500 frames for each SNR level, and this is relatively a small number, but we have 

limited resources, and this was the maximum number of data frames that the memory can 
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handle them. In this dataset, we used 10% of the data as a test data, or in other words, 50 frames 

for each SNR level and a certain jamming power, and 10% for validation, and 80% for training, 

and as we said, the dataset was small, this leads somehow to a zigzag shape in the accuracy Vs. 

SNR graph, and we obtained the 3-D graph in figure 3-43: 

 

Figure 3- 43 Accuracy Vs SNR Vs Jamming Power 

The average accuracy for each jamming power is as follows: 

Table 3- 1 Model Average accuracy VS changing jamming power 

Jamming Power 
Average Accuracy 

% 

 
Jamming Power Average Accuracy % 

-10 dB 39.96 2 dB 53.46 

-8 dB 40.00 4 dB 58.66 

-6 dB 39.49 6 dB 62.43 

-4 dB 41.34 8 dB 66.47 

-2 dB 44.96 10 dB 70.27 

0 dB 48.36  
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As shown in table 3-1 as expected, increasing the jamming power makes it easier for the model to 

detect the jamming type. 

These two graphs are for accuracy vs. snr at -10dB and 10db to show the two extreme cases: 

 

Figure 3- 44 Accuracy Vs SNR with jamming power = -10 dB 

 

 

Figure 3- 45 Accuracy Vs SNR with jamming power = 10 dB 
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3.4 Model development for Digital implementation 

3.4.1 GPU model modifications:  

 

Figure 3- 46 Modified Model block diagram 

In order to make it simple in the digital design and implementation part we used  model5 

and made some simplification on it. This simplification was made in two parts. First, the second 

convolutional layer’s filter shape became 4x4 instead of 3x4 in the original model, this shape 

is like the first filter shape, which makes it easier in digital implementation. Also in order to 

reduce the number of parameters and the number of neurons in the flatten layer, we reduced 

the number of filters in the first convolutional layer from 64 filters to 50 filters, which is the 

second part of simplification, this makes the flatten layer contain only 64 neuron instead of 96 

neuron. The total number of parameters for this model are 35,467 parameters. The output of 

the STFT is a complex number, so we take the real part in the first channel, then the imaginary 

part in the second channel, and the squared magnitude in the third channel to avoid designing 

the square root in digital design, because it is relatively a hard problem in the digital part. 

The obtained result from this model we could reach an average accuracy of 68.99% 

over all SNR levels instead of to 70.95% in the original model,  

 

Figure 3- 47 Simplified model Accuracy Vs. SNR 
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Figure 3- 48 Confusion matrix of the simplified model for all SNR levels 

 

Figure 3- 49  Confusion matrix of the simplified model for SNR of 0 dB 
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3.4.2 Model simplification:  

Due to the nature of the STFT that has a high peak to average ratio, using the square of 

the magnitude will be even larger, and the largest number observed in the model is 

8467.486328125 which requires 14 bits for decimal part and 9 bits for the fraction part, and 1 

bit for the sign to be implemented in digital design, this leads to a word size of 24 bits. After 

the first convolution layer, the maximum number observed was 21.57641792, which will need 

only 5 bits for the decimal part, so we decided to normalize the input of the STFT, which makes 

it easy to take a smaller number for the decimal part, but using normalization made the 

simplified model fail on the GPU. Therefore, we tried to use another approach, which rely on 

discarding the large numbers obtained from the STFT. This approach due to the following 

reasons: 

1- When we investigate the output of the STFT we notice the following 

a. The histogram of the output shows that large output numbers occur much 

less frequent than the smaller output numbers as shown in figure 3-50 

b. Most of the output numbers are in range from 0 to 30, hence they can be 

represented in 5 bits only for the integer part, which gives an accuracy up to 

32 

2- CNN has high immunity to data changes 

3- DSP slices on FPGA can handle up to 22 bits multiplication 

For the above reasons we can deduce the following: 

1- We can assume all numbers above 32 as outliers and discard them. 

2- The word size can be 22 bits; 1 for the sign, 6 bit for integer part, even though 5 bits is 

enough which allows for some safety factor, and 15 for the fraction part.  

 

 

Figure 3- 50 Histogram of the STFT output values 

 

Another way used to simplify the model to be easier in digital implementation was 

merging the batch normalization layer with the previous convolutional layer, to make this, we 
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didn’t set the activation function in the convolutional layer, instead we apply the ReLU 

activation function after the batch Normalization layer, the mathematics behind this is as 

follows: 

𝑦1 = 𝑤𝑥 + 𝑏 → (1) 

Eq. no.(1) is general equation of fully connected layer, but we can apply the same logic in 

convolution layer.  

𝑦2 =
𝛾(𝑥𝑖−𝜇)

√𝜎2+∈
+ 𝛽 → (2) 

Eq. no.(2) is the equation of batch normalization, it was mentioned before in section 

3.1.3.10, and since we don’t have activation function between the two layers, we can substitute 

the input to the batch normalization layer from the output of the first layer that in Eq. no.(1) in 

Eq. no(2), and this will lead to Eq. no.(3) 

𝑦2 =
𝛾(𝑤𝑥+𝑏−𝜇)

√𝜎2+∈
+ 𝛽 → (3) 

In equation (4), we reached the last form of the equation that will be used in replacing the 

weights of the convolutional layer.  

𝑦2 =
𝛾𝑤

√𝜎2+∈
𝑥 +

𝛾(𝑏−𝜇)

√𝜎2+∈
+ 𝛽 → (4) 

As we will replace the old weights (w) with 
𝛾𝑤

√𝜎2+∈
, and the free term ‘bias (b)’ with 

𝛾(𝑏−𝜇)

√𝜎2+∈
+ 𝛽. 

Figure 3-51 shows the weights of the model in the normal operation 

 

Figure 3- 51 Weights and biases of the Convolution layers before removing batch normalization 
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After applying the previous transformations, the weights of the model becomes: 

 

Figure 3- 52 Weights and biases of the Convolution layers after removing batch normalization 

 

Figure 3- 53  Weights and biases of the fully connected layers after removing batch normalization 
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Chapter 4: Digital Design Part 

4.1 Methods to improve the efficiency of deep learning implementation 

 

 In this section, we are going to talk about some methods to improve the efficiency of 

deep learning implementation. 

4.1.1 Pruning  

Pruning is defined as discarding less important neuron without changing the original 

network structure as shown in Figure 4-1, to make the network size smaller and to alleviate 

over-fitting, without affecting the accuracy of original network. 

 

Figure 4- 1 effect of pruning in neural networks 

Pruning method has three steps; the first step is learning the connectivity via normal network 

training to learn which connections are important. Unlike conventional training that used to 

learn the final values of the weights. The second step is to prune all connections with weights 

below a threshold are removed from the network. The final step is retraining the network to 

learn the final weights for the remaining sparse connections. 

Pruning is an effective way of reducing the area used in the FPGA in a trade of with small 

part of the model accuracy but since we have a relatively small architecture of the model and 

we are more interested in having the best possible accuracy we did not use this method in our 

model 

The difference between dropout and pruning is that in dropout, each parameter is 

probabilistically dropped during training, but will come back during inference. In pruning, 

parameters are dropped forever after pruning and have no chance to come back during both 

training and inference 

 

4.1.2 Quantization 

Network quantization and weight sharing compresses the pruned network by reducing 

the number of bits required to represent each weight. In the context of deep learning, the 

predominant numerical format used for research and for deployment has so far been 32-bit 

floating point. However, the desire for reduced bandwidth of deep learning models has driven 

research into using lower-precision numerical formats. It has been extensively demonstrated 

that weights and activations can be represented using 8-bits without getting significant loss in 
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accuracy for deep learning models that work with images but since our model take it’s input 

after STFT pre-processing which have the problem of high peak to average ratio, the 

quantization with only 8 bits in our model will degrade the accuracy of the model 

significantly so for our model we used a higher number of 22 bits. 

4.1.3 Late down sampling 

 Each convolution layer in a convolutional network produces an output activation map 

with a spatial resolution that is at least 1x1 and often much larger than 1x1. The height and 

width of these activation maps are controlled by: the input data size and the down sample 

layers in the architecture. Down sampling is often engineered into CNN architectures by 

pooling layers by setting the (stride > 1) in some of the convolution. 

 If most layers in the network have a stride of 1, and the strides greater than 1 are moved 

towards the end of the network, then large activation maps will be in many layers in the 

network.  

This method is not applied in our case since the data distribution in our dataset is coming 

from STFT and we are usually detecting patterns in those peaks and since the using of 

smaller filters gives more local information and using large filters will give more global 

information so we decided to use stride higher than 1 and filter size relatively large in the 

beginning of the network which gives higher detection accuracy to our model.  

4.1.4 DSD: Dense-Sparse-Dense Training 

DSD produces same model architecture but can find better optimization performance 

by regularizing deep neural networks. The first step “Dense” is training a dense network to 

learn important weights. The second step “Sparse” is pruning the network and retraining the 

network to learn the final weights for the remaining sparse connections. The final step “re-

Dense” is increasing the model capacity by reinitializing the pruned parameters from zero 

and retrain the whole dense network as shown in Figure 4-2. 

 

 

Figure 4- 2 DSD steps 

DSD and Dropout both are used to prevent over-fitting and regularize the network. But the 

difference is that DSD training learns with a deterministic data driven sparsity pattern but 

Dropout uses a random sparsity pattern at each SGD iteration. 
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4.1.5 Parallelism 

 Parallelism means many calculations or the execution of processes are carried out 

simultaneously, that will decrease the time of execution of CNN architectures. For example, 

two-dimensional convolution is computed between sliding windows of input feature maps and 

kernels, and consumes most computation time of CNN as shown in Figure 4-3. Parallelism 

included inside an output feature map of each layer, known as intra-output parallelism. 

 

 

Figure 4- 3 parallelism in CNN network 

4.1.6 Pipelining  

The approach is to rearrange the algorithm into a pipeline, where each stage can operate 

simultaneously with the other stages as shown in Figure 4-4 Pipelining tends to be faster and it 

can even be more resource efficient 

 

 

 

4.2 FPGA  

4.2.1 Introduction 
An FPGA (Field Programmable Gate Array) is an IC consisting of programmable 

logic gates and interconnections that can be programmed using an HDL (hardware 

descriptive language) to do a specific function. It is an integrated circuit designed to be 

configured by a customer or a designer after manufacturing – hence "field-programmable". 

The FPGA configuration is generally specified using a hardware description language (HDL), 

for example VHDL or Verilog.  

Figure 4- 4 Pipelining 
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FPGAs contain an array of programmable logic blocks, and a hierarchy of 

reconfigurable interconnects that allow the blocks to be "wired together", like many logic 

gates that can be inter-wired in different configurations. Logic blocks can be configured to 

perform complex combinational functions, or merely simple logic gates like AND and XOR 

gates. Also, FPGAs contain memory elements, which may be simple flip-flops or more 

complete blocks of memory. An FPGA can be used to solve any problem which is 

computable. This is trivially proven by the fact that an FPGA can be used to implement a soft 

microprocessor.  

Most of the digital applications can be implemented with powerful specialized 

processors, but FPGAs are sometimes significantly faster for some applications because of 

their parallel nature and optimality in terms of the number of gates used for a certain process. 

In all microprocessor-based systems, the functions are executed sequentially, one line of code 

after another. On the other hand, FPGAs execute their operations in parallel, so FPGAs can 

be much faster in many applications where speed is crucial. FPGAs also offer great 

flexibility; the same FPGA IC can be used as a missile guiding system or just a network 

processing device. As their size, capabilities, and speed increased, they took over additional 

functions to the point where some are now marketed as full systems on chips (SoC). 

Particularly with the introduction of dedicated multipliers into FPGA, applications which had 

traditionally been the sole reserve of DSPs (Digital Signal Processors, a specialized type of 

processors for signal processing) began to use FPGAs instead.  

Another trend in the use of FPGAs is hardware acceleration, where one can use the 

FPGA to accelerate certain parts of an algorithm that need parallel processing and share part 

of the computation between the FPGA and a generic processor. 

4.2.2 FPGA Internal Components 

 Obviously as shown in Figure 4-5, FPGAs do not only consist of logic gates or look-

up tables only. They are made up of many types of logic blocks for implementing many 

functions and to increase its flexibility.  

 

Figure 4- 5 FPGA internal Structure 
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4.2.3 Configurable Logic Blocks (CLBs) 
These blocks contain the logic for the FPGA. In the dense architecture used by all 

FPGA vendors today, these CLBs contain enough logic to create a small state machine. The 

block contains ROMs for creating arbitrary combinatorial logic functions, also known as 

lookup tables (LUTs). It also contains flip-flops for clocked storage elements, along with 

multiplexers in order to route the logic within the block and to and from external resources. 

The multiplexers also allow polarity selection and reset and clear input selection as shown in 

Figure 4-6. 

 

Figure 4- 6 Configuration logic block internal block diagram 

4.2.4 Configurable I/O Blocks 

A Configurable input/output (I/O) Block, is used to bring signals onto the chip and 

send them back off again. It consists of an input buffer and an output buffer with three-state 

and open collector output controls as shown in Figure 4-7. Typically, there are pull up 

resistors on the outputs and sometimes pull down resistors that can be used to terminate 

signals and buses without requiring discrete resistors external to the chip. The polarity of the 

output can usually be programmed for active high or active low output. 

 

 

Figure 4- 7 Configuration input output internal  block diagram 
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4.2.5 Programmable Interconnect 

They are the long lines that can be used to connect CLBs to each other on the chip. 

These lines can also be used as buses within the chip as shown in Figure 4-8. Transistors are 

used to turn on or off connections between different lines. There are also several 

programmable switch matrices in the FPGA to connect the long and short lines together in 

specific, flexible combinations. Special long lines, called global clock lines, are specially 

designed for low impedance and thus fast propagation times. These are connected to the 

clock buffers and to each clocked element in each CLB. This is how the clocks are distributed 

throughout the FPGA, ensuring minimal skew between clock signals arriving at different flip-

flops within the chip. In an ASIC, the majority of the delay comes from the logic in the 

design, because logic is connected with metal lines that exhibit little delay. In an FGPA, 

however, most of the delay in the chip comes from the interconnection, because the 

interconnection – like the logic – is fixed on the chip. In order to connect one CLB to another 

CLB in a different part of the chip often requires a connection through many transistors and 

switch matrices, each of which introduces extra delay. 

 

Figure 4- 8 Interconnection 

4.2.6 Clock Circuitry 
Special I/O blocks with special high drive clock buffers, known as clock drivers, are 

distributed around the chip. These buffers connect to clock input pads and drive the clock 

signals into the global clock lines described above. These clock lines are designed for low 

skew times and fast propagation times. Note that synchronous design is a must with FPGAs, 

since absolute skew and delay cannot be guaranteed anywhere but on the global clock lines. 

4.2.7 Block RAM 
It is a dedicated RAM block that stores data on the FPGA without consuming any 

additional LUTs in the design whereas distributed Ram is built up with LUTs. In terms of 

speed the distributed RAM is faster than Block Rams. It serves as a relatively large memory 

structure (i.e. larger than distributed RAMs or a bunch of D-Flip-flops grouped together, but 

much smaller than off chip memory resources). 
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4.2.8 DSP Cores 

Digital Signal Processors (DSPs), as shown in Figure 4-9 , are another common type of core 

that is offered as an IP core or an embedded core. These are essentially specialized processors 

that are used for manipulating analog signals. They are commonly used for filtering and 

compression of video or audio signals, Multiply Accumulate block or MAC is implemented 

as DSP slice and MAC is mainly used as a building block for complex DSP applications. 

 

Figure 4- 9 DSP block diagram 

4.2.9 Embedded Cores  

The embedded core will be optimized for the vendor's process to give good timing 

and power consumption numbers. The core will be placed as a single cell on the silicon die 

and so the performance of the core will not depend on the rest of the design since it won’t 

need to be placed and routed. 

4.2.10 Special I/O Drivers  

Special I/O drivers are also being embedded into programmable devices. The newer 

buses inside personal computers need to have very tightly controlled timing and must be 

driven by special high-drive, impedance-matched circuits. The I/O buffers need to have 

inputs with very specific voltage threshold values. 

4.2.11 FPGA Design Flow  

Figure 4-10 shows the steps of the design flow.  

 

Figure 4- 10 FPGA Design flow 

1-Functional Specifications: in this step, all specifications for the application are determined 

along with good understanding of function of this application.  
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2-HDL: the HDL code that describes that function is written, and then Behavioral Simulation 

is done to make sure that the HDL describes the function needed correctly.  

3-Synthesis: HDL is converted into logic gates and other cells present in the FPGA itself, 

Static timing analysis is done to approximately calculate the maximum clock delay of the 

application and calculate the maximum clock speed achieved for the application.  

4-Place & Route: The logic blocks and cells in the FPGA are connected together, and Static 

Timing Analysis is done again to calculate the exact delay model of the application.  

5-Download & Verify in circuit: The HDL code is burned on the FPGA 

4.2.12 Fixed Point Background  

Deep convolutional neural network (CNN) inference requires significant amount of 

memory and computation, which limits its deployment on embedded devices. To alleviate 

these problems to some extent, prior research utilize low precision fixed-point numbers to 

represent the CNN weights and activations. However, the minimum required data precision 

of fixed-point weights varies across different networks and also across different layers of the 

same network. A fixed-point representation of a number consists of integer and fractional 

components and sign bit as shown in Figure 4-11, where WL represents word length, S 

represents the sign bit, I represent the integer bits and F represents the fractional bits. With 

this representation the range of numbers is [2−𝐼 , 2𝐼 ], and a step size (resolution) of (2𝐹). 

 

Figure 4- 11 Word line 

4.2.13 Number representation  

 There are two representations for numbers in bits form and we used the 2’s 

complement for our design  

1- Signed magnitude:  

 Has 2 representations for zero (± 0)  

2- 2’s Complement: 

 Addition and subtraction still 2’s complement  

 Multiplication needs sign extension to have the same representation after 

multiplication   

4.2.14 Fixed point multiplication  

Fixed-point multiplication is the same as 2's compliment multiplication but requires 

the position of the "point" to be determined after the multiplication to interpret the correct 

result. The determination of the "point's" position is a design task. The actual implementation 

does not know (or care) where the "point" is located. This is true because the fixed-point 

multiplication is exactly the same as a 2's complemented multiplication, no special hardware 

is required. 
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4.2.15 Kernel Storage 
4.2.15.1 FPGAs Read Only Memory  

 Some FPGAs have off-chip ROMs, which have great utility in account of high latency; 

however, our model implementation targets speed as its first priority, so, off chip memories 

would not be an option. FPGAs hold two types of memories, any of which could fit for the 

model parameters. 

4.2.15.2 BRAMs  

 FPGAs normally have on-chip BRAM matrix, which could be configured as FIFO, 

RAM or ROM. Targeted device (Virtex-7 x690t) contains a sum of 2940 BRAM 18Kb 

instances, each can be configured to 4Kb x 4, 8Kb x 2 or 16Kb x 1. BRAMs can have dual 

ports for the same instances, allowing performance of half the latency. 

4.2.15.3 Distributed ROM  

 Xilinx FPGAs offer another type of memory, which is LUT, distributed ROM, which 

can be configured to hold design parameters. Each LUT can be configured as 6 input 1-bit 

ROM (64x1). Normally, distributed ROMs grant more speed than BRAMs, which makes them 

a good approach to the model implementation. 

4.2.15.4 Initializing ROM  

 ROMs are usually initialized with Verilog system task $readmemb/ $readmemh inside 

initial procedural block, which loads memory contents from a file, specifying start and end 

addresses. 

4.2.15.5 ROM Design  

For the weights memory implementation, the approached implementation is to design 

separate 2D ROM arrays (discarding the bits dimension) accessed as a 3D memory for each 

filter in the design  
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4.3 Hardware Methodology 

Because our model uses a pre-processing function that is STFT, it has become a necessity to 

design a digital model to implement the STFT operation 

4.3.1 STFT Digital implementation 

In the STFT hardware implementation, we need to first pad the frame of the input signal 

to be 64 points instead of 32 points to fit the size of the input of STFT that we used in our 

model. According to our assumptions that the input signal will be stored in internal memory at 

FPGA as well as the values of the Hanning window, and we will loop on them with a counter 

with 6 bits. So, we put a condition if the counter of the Hanning window exceeds 32 points stop 

the input signal and put zero instead of it until the counter resets itself by counting to zero. 

Then starts the new loop with the rest of the signal with the same condition. But when we try 

to benefit from these cycles with zeros, we found that the speed of the multiplier will increase 

more than the speed of the FFT. Because the FFT gets each input point for each clock cycle. 

 

Figure 4- 12 Schematic of Hanning Multiplier 

After Padding the input frame, we multiply the frame with the Hanning window (as we know 

the output of the multiplier bits increases double of input bits 2N, so we crop the output to be  

 

Figure 4- 13 Example of output of multiplier with numbers 
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N bits to decrease the complexity) and then enter it to the FFT 64 points. The FFT that we 

used is IP core provides four different architectures that offer a trade-off between core size 

and transform time. So, we choose the best throughput because we care about performance 

rather than resources. 

 

Figure 4- 14 Resources VS Throughput for architecture options 

 

 

Figure 4- 15 FFT IP block in vivado 
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The FFT IP core is generic, it can be IFFT or FFT. This is determined by configuration 

signals that are input to the block. The input data frame enters point by point but at the end of 

each frame of 64 points, we should send a pulse to inform the core that this point is the last 

point of the frame. So, to handle this pulse, we put a flag that rises when the counter is equal 

to 63 and drops when the counter is equal to 0. And there is an output signal that informs the 

user that the FFT is ready to accept new input. The main signals are rising-edge clock (aclk), 

reset (areset) and active-high clock enable (aclken). And the output port exits the result of the 

FFT point by point with its index and signal valid to receive the output. There are two ports 

optional to use, so we take one of them which is called event with 6 signals to report 

information about the core status. 

 

 

Figure 4- 16 Example of output of FFT with numbers 
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4.3.2 Model overview  

Figure 4-12 below shows the model we designed to be implement on FPGA and it 

shows the number of parameters, number of operations, number of DSP’s needed for each 

layer and how much clocks each layer will take to compute its output feature map. 

 

Our design aim is speed and accuracy in a trade off with area and power since the need of 

continuous monitoring of the spectrum  requires a very fast model implementation with high 

throughput and low latency so according to these specifications we modeled all the CNN 

layers with multiplication addition tree (MAT) implantation since it is way more faster than 

using MAC’s and for fully connected (FC) layers we have chosen the multiplication and 

accumulation (MAC) implementation since implementing FC layers with MAT in our model 

is not efficient and will not increase the throughput of the implementation since the 

bottleneck is already at the first CNN layer. 

  

Figure 4- 17 Block diagram for the implemented Model 
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4.3.3 Summarization table for the model  

Noting that the number of DSP’s and Clocks here is calculated based on the design and we 

will discuss each layer separately later in this literature. 

Table 4- 1 Digital Model parameters 

Layer name  Parameters Multiply Operation  DSP’s Clocks 

Conv 1 2,450 470,400 800 588 

Average pooling 0 0 0 49 

Conv 2  25,632 409,600 1024 400 

Conv 3 4,624 18,432 288 64 

FC 1  2,080 2048 32 64 

FC 2  528 512 16 32 

FC 3 153 144 9 16 

Total  35,467 901,136 2,169 1213 

 

 

4.3.4 MAC: Multiplication and Accumulation  

 

 

Figure 4-18 shows internal design of one MAC (which corresponds to one DSP) that 

consists of a multiplier, accumulation register, adder and reset signal used to reset the register 

with the bias value after each output. The number of MACs or DSPs per FC layer depends on 

the number of neurons in the layer. 

  

Figure 4- 18 MAC block diagram 
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4.3.5 MAT: Multiplication Addition Tree 

 

Figure 4- 19 MAT block diagram 

Figure 4-19 shows internal design of one MAT which correspond to number of DSP’s 

equal to the number of inputs as an example MAT16 will have 16 input data and 16 input 

weights so the number of DSP’s for it will be 16 DSP and the number of registers in the data 

path will equal to ceiling(𝑙𝑜𝑔216) = 4 registers, and an accumulator will be placed after it 

since the MAT will have only one or two channels as an input at each clock so it will need to 

accumulate the values until all the channel enter the MAT and it also have reset signal to reset 

the accumulator with the bias value. 

4.3.6 Average Pooling layer implementation  

Usually in CNN algorithm, convolutional layers are interleaved with pooling layers to 

reduce the dimensions of its input feature maps retaining the most dominant information. These 

layers may be average or maximum pooling layers, for our model there were only one average 

pooling layer.  

Figure 4-20 shows the implementation of the average pooling in out model, we benefited from 

the size of the pooling layer and replaced the division by 4 with only 2-bits shift at the input  
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Figure 4- 20 Average pool block diagram 

4.3.7 Output prediction implementation (soft max) 
 For the soft max block we have 9 classes and need to output the address of the class 

that correspond to the maximum value, we implemented it using 2 stages of comparing, first 

one compare each 3 inputs together and gives the maximum on of each 3 inputs and there 

addresses then the second layer compare the 3 maximums again and output the address of the 

maximum number.  

 

 

Figure 4- 21 Softmax implementation block diagram 
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4.3.8 Layer 1 & 2 (conv1 and average pooling) 

 

 

Figure 4- 22 Convolution layer digital implementation block diagram and avgpool 

Figure 4-22 shows the implementation of layer 1 and 2 which consists of data memory 

to hold the values of the STFT output and weight memory to hold the weights values for layer 

1 then  we used a MAT block with 16 input from the data memory and 16 input from the weight 

memory which corresponds to a one channel of the filter then to calculate the 4×4×3 filter 

output we parse through the channels and accumulate the value and apply the Relu activation 

function by a simple multiplexer with selection line based on the sign bit and when we reach 

the last channel the value accumulated will be written in the next layer memory and the 

accumulator will get reset with the bias value so it will take three clocks to calculate each point 

in the output feature map since there are three channels in the data memory taking in care that 

accumulating will start after the MAT pipeline is filled so the number of clocks needed for this 

layer is (3 channels×14×14) = 588 clocks  

Then after L2_memory is filled layer 2 start to read 2×2 values each clock and calculate the 

average value and gives it to the next layer memory.  

This is generated for each filter in layer 1, which is 50 filters so the L3_memory will hold 

7×7×50 values. 

4.3.9 Layer 3 (conv2) 

Figure 4-23 shows The same approach used in layer 1 is used in layer 3 but with changes 

depending on the sizes of layer 3 and to be as close as possible to real time implementation. 

The input shape of this layer is 7×7×50 and the output feature map is 4×4×32 so if the same 

implementation is done here this layer will take 4×4×50 = 800 clocks 
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Figure 4- 23 Block diagram of the digital implementation of the second convolution layer 

It will take 16×32 = 512 DSP’s which will create a bottleneck to the architecture in this layer 

so the approach here is instead of calculating 1 channel every clock we calculate 2 channel 

every clock which will reduce the number of clocks need to the half and multiply number of 

DSP’s need by 2 so with this approach the number of clocks needed will be 4×4×50/2 = 400 

clock with 32×32 = 1024 DSP slices for only this layer.  

 

4.3.10 Layer 4 (conv3) 

Figure 4-24 shows the same approach used in layer 3 is used in layer 4 but with changes 

depending on the sizes of layer 4  

In this layer the input feature map is 4×4×32 and the output is 2×2×16  

Since the number of DSP slices in the intended Virtex-7 FPGA is large and we still have more 

DSP’s than the total needed until now plus the relative small size of this layer, for all those 

reasons we decided to use the same approach used in layer 3 of calculating 2 channels every 

clock so the number of clocks needed will be 2×2×32/2 = 64 clock with 18×16 = 288 DSP 

slices 
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Figure 4- 24 Block diagram of the digital implementation of the third convolution layer 

  

4.3.11 Fully Connected Implementation  

 

 

Figure 4- 25 Fully Connected layer digital implementation block diagram 
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Figure 4-25 shows the implementation of the fully connected layer which is consider to be 

more straight forward compared to the Convolutional layers. 

In this architecture, we used MAC blocks to calculate the neurons output all at the same time 

so the output memory will be accessed and filled only one time in the evaluation process. 

At each clock cycle after the enable is activated the MAC will get the value of the data and 

weight and accumulate it until all the data are given to it then the MAC is reseted to the value 

of the bias and hold until the next enable is activated. 

This implementation is applied to all the FC layers with a controller take a fire signal and output 

all the enables and reset signals to all the FC layers. 

Then at the last FC layer have soft max activation function that gives the final output class of 

the model. 

4.3.12 Behavioural simulation example  

 

 

Figure 4- 26 an example behavioral simulation results 

Figure 4-26 shows the memories of the model being filled in a behavioural simulation of our 

design with all weights is initialized to 1 and all biases initialized to 0, with zero bits for 

fraction part and no limitation on number of bits needed just for testing purposes  

So for verification of this part we can calculate the values manually and compare it with the 

results shown in figure 4-26  

Conv 1 output = 4×4×3 = 48  

Average Pool output = Conv 1 output (since all the values are equal) 

Conv 2 output = Conv 1 output ×4×4×50 = 38400 

Conv 3 output = Conv 2 output ×3×3×32 = 11059200  

FC1 output = Conv 3 output ×64 = 7077888000 

FC2 output = FC1 output ×32 = 22649241600 

FC3 output = FC2 output ×16 = 362387865600 

Which are the same values showed in the behavioural simulation, also here we can see that 

the default value for the out class is class 0 which corresponds to the normal class.  
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Future work 
Communication Part: 

 Collect real data instead of data generated using simulation 

Deep Learning Part: 

 Use wavelet transform instead of STFT 

 Test the model on collected data instead of simulation 

 Train the model on OFDM dataset we generated 

Digital Part: 

 Implement the model on FPGA 

 Verify the implementation we designed on FP 
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