

Synthesizable RTL Physical layer

for a PCIe protocol

Submitted by:

Eslam Mahmoud Ali

Esmail Hany Badr

Jala Serag El-din

Salah Abd El Khalek Mostafa

Marwa Mohamed Abd El-Aty

Mostafa Mahmoud Abozaid

Supervised by:

Dr. Hassan Mostafa

Synthesizable RTL Physical Layer

2

Abstract
Computer in general consists of three main components, the central processing unit CPU, memory to

store data and programs, and IO devices that communicates with the outer world. These components

along with the other internal components inside the computer are connected together by the means of

interconnect bus. Peripheral component interconnect express PCIe, a serial high-speed bus, is the

main interconnect solution used in computer nowadays. Like any protocol, PCIe provides a layered

architecture of three layers, the Transaction layer, Data Link layer, and the Physical layer. Our work

throughout the year was to design a synthesizable RTL implementation for PCIe logical part of the

physical layer.

Keywords
Communication protocols, CPU, Processors, Buses, Parallel buses, serial buses, high speed buses,

Expansion slots, Transaction layers, Data link layer, Physical layer, PIPE standard, PCI, PCI-X,

AGP, PCIe, LTSSM.

Acknowledgements
We are using this opportunity to express our gratitude to everyone who supported us throughout the

graduation project. We are thankful for their aspiring guidance and friendly advice.

This project would not have been possible without the support of many people. Many thanks to our

major advisor Dr. Hassan Mostafa, for his encouragement through the whole year, his caring about

following up each stage in the project and his suggestions to solve some problems we faced during

the project work.

We want to thank SIEMENS EDA, Mentor Graphics, vLab PCIe team. Specially, Eng. Mahmoud

El-Tahawy and Eng. Adham Rageh for providing their time and experience to help us overcome

some obstacles we faced during some stages especially when dealing with SIEMENS tools and the

integration with their core.

Finally, we want to thank our families, who endured this long process with us, always offering

support and love. We are grateful to our colleagues and friends for always motivating us, without

them we wouldn't have come so far.

Synthesizable RTL Physical Layer

3

Table of Contents
Abstract .. 2

Keywords ... 2

Table of Contents ... 3

List of figures ... 6

List of Tables ... 8

1. Introduction .. 10

1.1. PCIe History .. 10

1.2. PCIe Architecture .. 12

1.3. Example for a low-cost PCIe system .. 14

1.4. Configuration space... 15

1.4.1. Bus, Devices and Functions ... 15

1.4.2. Configuration address space .. 15

1.5. Enumeration process ... 17

1.6. CXL Bus .. 18

1.6.1. CXL overview .. 18

1.6.2. Difference between CXL and PCIe ... 18

1.7. Device layers ... 20

1.7.1. Transaction layer .. 20

1.7.1.1. TLP assembly and disassembly .. 21

1.7.1.2. Flow control .. 22

1.7.2. Data link layer .. 23

1.7.3. Physical layer ... 24

2. Implementation .. 25

2.1. LTSSM .. 25

2.1.1. LTSSM overview ... 25

2.1.2. LTSSM interface with Transmitter, Receiver block and Pipe 27

2.1.2.1. PHY interface ... 28

2.1.2.2. Transmitter interface ... 29

2.1.2.3. Receiver interface ... 30

2.1.3. LTSSM hardware description .. 32

2.1.3.1. OS_Creator module .. 33

2.1.3.2. State machine module ... 35

2.1.3.3. Timer module ... 41

2.1.3.4. Decoder module .. 43

Synthesizable RTL Physical Layer

4

2.2. Tx .. 48

2.2.1. Tx Overview .. 48

2.2.2. Tx interface with PIPE & LTSSM ... 49

2.2.2.1. Interface with the data link layer .. 49

2.2.2.2. Interface with the LTSSM .. 50

2.2.2.3. Interface with the PIPE ... 50

2.2.3. Tx hardware description .. 51

2.2.3.1. Data link layer – MAC layer Interface Buffer .. 51

2.2.3.2. Data link layer – MAC layer Interface Bus .. 53

2.2.3.3. Tx Buffer .. 54

2.2.3.4. Packet Indicator Buffer ... 56

2.2.3.5. Start – End Framing .. 57

2.2.3.6. Logical Idle ... 58

2.2.3.7. Ordered set Buffer .. 58

2.2.3.8. Controller .. 59

2.2.3.9. Multiplexer ... 61

2.2.3.10. Framing Alignment .. 62

2.3. Rx .. 63

2.3.1. Rx overview ... 63

2.3.2. Rx interfaces with PIPE, LTSSM and Data Link Layer .. 64

2.3.2.1. PIPE Interface ... 64

2.3.2.2. Data Link Layer Interface ... 65

2.3.2.3. LTSSM Interface .. 65

2.3.3. Rx hardware description .. 66

2.3.3.1. General filter Block .. 67

2.3.3.2. Filter Block ... 70

2.3.3.3. Register Block .. 70

2.3.3.4. Filter controller ... 70

2.3.3.5. General Buffer Block .. 71

2.3.3.6. Buffer Controller .. 72

2.3.3.7. Buffer Interface ... 75

2.3.3.8. Buffer .. 76

2.3.3.9. Control Signal Buffer ... 77

2.3.3.10. Controller Interface .. 78

3. Testing.. 80

3.1. Block level testing ... 80

Synthesizable RTL Physical Layer

5

3.1.1. LTSSM testing ... 80

3.1.1.1. Time scaling ... 80

3.1.1.2. LTSSM states numbering ... 81

3.1.1.3. Test plan ... 81

3.1.2. Tx testing ... 87

3.1.2.1. Introduction .. 87

3.1.2.2. Test plan elements .. 88

3.1.2.3. Negative testing .. 90

3.1.3. Rx testing ... 92

3.1.3.1. Introduction .. 92

3.1.3.2. Test scenarios as expected input in normal state .. 93

3.1.3.3. Test scenarios which are not expected as an input in normal state: 95

3.2. Back-to-Back test .. 96

3.2.1. Pass/Fail Criteria .. 97

3.2.2. Test plan ... 97

3.2.2.1. Positive test cases ... 97

3.2.2.2. Negative test cases .. 98

3.3. IP Integration ... 99

3.3.1. Last year IP .. 99

3.3.1.1. Device Core .. 99

3.3.1.2. Transaction and Data Link layers ... 99

3.3.1.3. Transactor ... 99

3.3.2. Physical layer integration ... 100

4 . Integration and Testing with industrial core in MENTOR .. 102

4.1. Mentor PCIe core product ... 102

4.2. Problems between our IP and Mentor IP .. 103

5. Future work .. 107

Synthesizable RTL Physical Layer

6

List of figures
Figure 1: PCIe generations... 11

Figure 2: PCIe devices connected through Links .. 12

Figure 3: PCIe Lane ... 12

Figure 4: PCIe topology ... 13

Figure 5: Example of low cost PCIe system .. 14

Figure 6: PCIe tree ... 16

Figure 7: Description of configuration space header ... 17

Figure 8: Difference between CXL layer and PCIe layers .. 18

Figure 9: PCIe layers ... 20

Figure 10: sent TLP packet .. 21

Figure 11: received TLP packet ... 21

Figure 12: DLLP format .. 23

Figure 13: framing characters added by physical layer ... 24

Figure 14: physical layer logical part implementation .. 24

Figure 15: TS contents ... 26

Figure 16: LTSSM interfaces... 27

Figure 17: LTSSM-PHY interface ... 28

Figure 18: LTSSM-Tx interface .. 29

Figure 19: LTSSM-Rx interface .. 30

Figure 20: LTSSM implementation ... 32

Figure 21: OS_Creator implementation ... 33

Figure 22: StateMachine module ... 35

Figure 23: LTSSM states ... 36

Figure 24: detect state description ... 36

Figure 25: Polling state description ... 37

Figure 26: configuration state description ... 38

Figure 27: L0 state ... 38

Figure 28: Timer module ... 41

Figure 29: OS_Decoder implementation ... 43

Figure 30: PIPE operation module ... 45

Figure 31: Tx - Block diagram ... 48

Figure 32: Tx - Top Module - Block diagram ... 49

Figure 33: Interface Buffer module ... 51

Figure 34: Interface Bus module.. 53

Figure 35: Tx Buffer module ... 54

Figure 36: Packet indicator buffer module .. 56

Figure 37: Start End Framing module ... 57

Figure 38: Ordered set Buffer module ... 58

Figure 39: Controller module... 59

Figure 40: Multiplexer module .. 61

Figure 41: Framing Alignment module ... 62

Figure 42: Receiver block diagram .. 63

Figure 43: Receiver interfaces ... 64

Figure 44: Receiver Block implementation ... 66

Figure 45: general_filter implementation .. 67

Synthesizable RTL Physical Layer

7

Figure 46: The FSM of the Rx filter logic ... 70

Figure 47: general_buffer implementation .. 71

Figure 48: buffer controller module ... 72

Figure 49: buffer interface module .. 75

Figure 50: buffer module ... 76

Figure 51: Control Signal Buffer module .. 77

Figure 52: Controller Interface module ... 78

Figure 53: The FSM of the Controller interface logic ... 78

Figure 54: LTSSM design path .. 82

Figure 55: normal operation path ... 83

Figure 56: timeout path .. 83

Figure 57: LTSSM Back-to-Back integration.. 85

Figure 58: Tx module Test environment ... 87

Figure 59: MAC Back-to-Back integration ... 96

Figure 60: last year IP .. 99

Figure 61: full IP with physical layer .. 100

Figure 62: new interface layer between data link layer and physical layer 101

Figure 63: The initial flow control packets exchange before and after editing 104

Figure 64: Packet transfer in a wrong way before editing our interface layer 105

Figure 65: Packet transfer in a right way after editing our interface layer .. 105

Figure 66: How CRC function order the bytes of the packet before and after editing 106

Synthesizable RTL Physical Layer

8

List of Tables
Table 1: PCI and PCI-X generations ... 10

Table 2: PCIe link widths .. 13

Table 3: PCIe and CXL comparisons .. 19

Table 4: TLP components .. 22

Table 5: LTSSM-PHY interface signal.. 28

Table 6: LTSSM-Tx interface signals.. 30

Table 7: LTSSM-Rx interface signals ... 31

Table 8: OS_Creator signals .. 34

Table 9: LTSSM state exit conditions (Detect and Polling) .. 38

Table 10: Configuration state exit conditions .. 39

Table 11: L0 state exit condition ... 39

Table 12: State Machine signals .. 40

Table 13: Timer signal ... 41

Table 14: OS_Decoder signals... 44

Table 15: PIPE operation signals ... 46

Table 16: Tx-Data Link Layer interface signals .. 49

Table 17: Tx-LTSSM interface signals.. 50

Table 18: Tx-PIPE interface signals .. 50

Table 19: Interface_Buffer Signals .. 51

Table 20: Interface_Bus Signals .. 53

Table 21: Tx_Buffer Signals .. 55

Table 22: Packet_Indicator_Buffer Signals ... 56

Table 23: Start_End_Framing Signals ... 57

Table 24: Ordered_Set_Buffer Signals .. 58

Table 25: Controller Signals .. 60

Table 26: Multiplexer Signals .. 61

Table 27: Framing_Alignment Signals .. 62

Table 28: Rx-PIPE interface signals .. 64

Table 29: Rx-Data Link Layer interface signals .. 65

Table 30: general_filter signals .. 68

Table 31: Buffer_Controller signals .. 73

Table 32: Buffer_interface signals ... 75

Table 33: buffer signals ... 76

Table 34: Control_Signal_Buffer signals .. 77

Table 35: Controller_Interface signals... 79

Table 36: Timeouts and OS scaling ... 80

Table 37: States numbering ... 81

Table 38: LTSSM positive test cases ... 84

Table 39: LTSSM negative test cases .. 85

Table 40: Tx positive test cases ... 88

Table 41: Tx Real Scenario.. 90

Table 42: Tx negative test cases .. 90

Table 43: Rx positive test cases ... 93

Table 44: Rx real scenario ... 94

Table 45: Rx negative test cases .. 95

Synthesizable RTL Physical Layer

9

Table 46: Back-to-Back positive test cases ... 97

Table 47: B2B - negative testing ... 98

Synthesizable RTL Physical Layer

10

1. Introduction
1.1. PCIe History

A computer bus is used to transfer data from one location on the motherboard to the central processing

unit where all calculations take place. In our graduation project we decide to focus on one of these

buses called PCIe (Peripheral component interconnect Express) bus but first let’s talk about the old

generation of this bus. So, first let’s give an overview about PCI bus. PCI (Peripheral Component

Interconnect) bus is based on ISA (Industry Standard Architecture) Bus and VL (VESA Local) Bus

was developed in the early 1990’s by intel, it replaced several older, slower buses that had been used

early PCs. PCI quickly became the standard peripheral bus in PCs. Typical PCI cards used in PCs

include: network cards, sound cards, modems, extra ports such as Universal Serial Bus (USB)

or serial, TV tuner cards and hard disk drive host adapters. The PCI was a shared parallel bus topology

and The PCI Bus was originally 33Mhz and then changed to 66Mhz. PCI Bus became big with the

release of Windows 95 with “Plug and Play” technology. A few later, PCI-X (PCI-extended) was

developed as logical extension of the PCI architecture to improve the performance but the main goal

of PCI-X was maintaining compatibility with PCI devices, later the PCI-X 2.0 added new higher data

rate, Table 1 shows the comparisons of frequencies of different buses topologies.

Table 1: PCI and PCI-X generations

Bus type Clock Frequency Peak bandwidth

32 bit-64 bit bus

PCI 33 MHz 133-266 MB/s

PCI 66 MHz 266-533 MB/s

PCI-X 1.0 66 MHz 266-533 MB/s

PCI-X 1.0 133 MHz 533-1066 MB/s

PCI-X 2.0 (DDR) 133 MHz 1066-2132 MB/s

PCI-X 2.0 (QDR) 133 MHz 2132-4262 MB/s

In 2004, a group of Intel engineers formed the Arapaho working group and started to develop a new

standard. Eventually, other companies joined the group. The design went through several names before

settling on PCI Express (PCIe). PCI Express (Peripheral component interconnect Express), PCIe is a

high-speed serial computer expansion bus standard, designed to replace PCI, PCI-X and AGP bus

standards. PCIe represents a major shift from the parallel bus model to a serial bus model, but it remains

fully backward compatible with PCI in software. The initial standard, PCIe 1.0, had a data rate of

250MB/s per lane giving an aggregate rate of 2.5GT/s. The performance is usually measured in

transfers per second to avoid counting overhead bits as data. PCIe 1.0 used an 8b/10b encoding scheme,

The overhead bits serve two main functions. First, they ensure that there are always enough clock

transitions for the serial interface to recover the clock. Second, they ensure that there is no DC current.

Subsequently, there have been regular upgrades to the standard, with higher transfer rates. PCIe is used

in most designs requiring a high-performance peripheral bus, no matter what the underlying

architecture. PCIe 2.0, introduced in 2007, doubled the transfer rate but kept the same coding scheme.

PCIe 3.0, introduced in 2010, switched to a much more efficient 128b/130b coding scheme and added

scrambling for clock recovery and no DC bias. It also increased the transfer rate a lot. A 16-lane PCIe

3.0 interface could transfer 15.7 GB/s. Design for PCIe 5.0 have already started (standard was

approved in May 2019) with a 32GT/s performance. Figure 1 shows the PCIe generations.

https://en.wikipedia.org/wiki/Serial_port

Synthesizable RTL Physical Layer

11

Figure 1: PCIe generations

Synthesizable RTL Physical Layer

12

1.2. PCIe Architecture

PCI Express is based on point-to-point topology and is capable of sending and receiving information

at the same time, the path between the two devices is a link, Figure 2 shows PCIe devices connected

through links. Each link is composed of one or more transmit and receive pair called a lane, each is a

pair of differential wire, and it is capable of transmitting one byte at a time in both directions at once.

The number of lanes define the link width Figure 3 shows the PCIe lane, and the PCI Express standard

defines link widths of ×1, ×2, ×4, ×8, ×12, ×16 and ×32. So, more lanes will increase the bandwidth

but there is a tradeoff between bandwidth, cost, and area.

Figure 2: PCIe devices connected through Links

Figure 3: PCIe Lane

This allows the PCI Express bus to serve both cost-sensitive applications where high throughput is not

needed, and performance-critical applications such as 3D graphics, networking and enterprise storage.

The first generation of PCIe (Gen1 or PCIe spec version 1.x) is 2.5 GT/s and use 8/10 bits encoding,

a process that generate a 10 bits output bases on an 8 bits input, so one lane will be able to send 0.25

GB/s in one direction, so the link total rate will be 0.5 GB/s. The second generation of PCIe (Gen2 or

PCIe spec version 2.x) double the rate of Gen1 and also use 8/10 bits encoding, But Gen3 the rate

increased to 8 GT/s and the encoding changed to 128/130b encoding. Table 2 show us the variations

of Bandwidth with different link widths and different Generation of PCIe.

PCIe
Device

A

PCIe
Device

BLink (1 to 32 lanes wide)

Packet

Packet

Tx Rx

TxRx

One lane

Synthesizable RTL Physical Layer

13

Table 2: PCIe link widths

Link width x1 x2 x4 x8 x12 x16 x32

Gen1 bandwidth

(GB/s)

0.5 1 2 4 6 8 16

Gen2 bandwidth

(GB/s)

1 2 4 8 12 16 32

Gen3 bandwidth

(GB/s)

2 4 8 16 24 32 64

PCIe topology and components

Figure 4 shows the PCIe topology, The CPU is considered at the top of the PCIe hierarchy, the interface

between the CPU and PCIe may contains several components like processor and DRAM interfaces.

Root complex can be defined as the interface between the CPU and the rest of the system. Switches

allow more PCIe devices to connected to the topology. Bridges allow the interfaces with other buses

like PCI and PCI-X to achieve the compatibility. Endpoints are devices in the PCIe topology not

switches or bridges, they are peripheral devices such as Ethernet, USB or graphics devices. Endpoints

initiate transactions as a requester or respond to transactions as a completer, there are 2 types of

endpoints PCIe endpoints and Legacy endpoints to achieve the compatibility. A Port is the interface

between a PCIe component and the Link, the port can be Upstream or downstream port. Upstream

port is a port that points in the direction of the root complex so switch can be upstream or downstream

but root complex always a downstream port. A Downstream Port is a port that points away from the

root complex, so according to this definition an endpoint always an upstream port. A Requester is a

device that originates a transaction in the PCIe, A Completer is a device addressed or targeted by a

requester, The Root complex and endpoints are examples of requester and completer devices.

Figure 4: PCIe topology

CPU

Root Complex

Switch

PCIe
EndPoint

PCIe
EndPoint

Legacy
EndPoint

PCIe
EndPoint

PCIe
Bridge

to PCI or
PCI-X

Memory

Downstream port

Upstream port

Synthesizable RTL Physical Layer

14

1.3. Example for a low-cost PCIe system

Figure 5 shows us a block of low-cost PCIe system, we can note that all PCIe links are connected to

the processor through the root complex. Also, we can note that the Hub link connects the root complex

to ICH4 chip, which internally contains multiple switches and PCIe buses.

Root complex

Existing IO controller HUB
ICH4

Processor

IEEE
1394

Boot Rom
Audio
codec

Modem
codec

S
IO

HDDCD

Ethernet

PCI-33 MHz

LPC

USB 2.0

IDE

DDR

SDRAM

Hub Link

FSB

PCI Express

GFX

PCI Express

Links

AC

Link

slots

Figure 5: Example of low cost PCIe system

Synthesizable RTL Physical Layer

15

1.4. Configuration space

1.4.1. Bus, Devices and Functions

Before talking about configuration space, we need to discuss some PCIe basic concepts as Bus, Device

and Function concept. This concept states that PCIe device consists of one or more function -up to

eight functions- and each function is uniquely identified by the device it resides and the bus to which

the device connects. This unique identifier is referred to as a BDF. Configuration software is

responsible for detecting every Bus, Device and Function within a given topology.

A PCIe tree as shown in Figure 6 could contain up to 256 Bus, Bus 0 is typically assigned by hardware

to Root Complex. Each bus could have up to 32 devices attached to it, and each device could have up

to 8 functions.

1.4.2. Configuration address space

PCIe inherited the concept of implementing standardized configuration registers that permit operating

systems to manage virtually all system resources.

Each function has its 4KB configuration address space, this is divided into a 256 bytes PCI-compatible

space, that is compliant with legacy PCI software, the first 64 bytes of it is called the

Synthesizable RTL Physical Layer

16

Figure 6: PCIe tree

configuration header. Two types of headers exist, Type 0 for every function that is not a bridge function

which implements Type 1 header. The rest of the 4KB goes to Extended configuration space that

implements more features needed in PCIe. Figure 7 shows the description for the configuration space

header types and contents.

Configuration space is accessed through configuration requests, which are the non-posted

configuration reads and configuration writes TLPs mentioned in the Device layers section. Only the

Root Complex could initiate these types of TLPs, and the completer, which in this case is an Endpoint

or a switch, should respond with the proper completion.

These configuration requests and completions are routed using ID routing, which is the routing based

on the BDF concept.

Synthesizable RTL Physical Layer

17

Figure 7: Description of configuration space header

1.5. Enumeration process

After system reset or power up, configuration software has to scan the PCIe fabric to discover the

existing devices, defines that it is an endpoint or a bridge, and give each function its BDF number.

This process is called the enumeration process.

Synthesizable RTL Physical Layer

18

1.6. CXL Bus

1.6.1. CXL overview

Compute Express Link is a cache-coherent interconnect for processors, memory expansion, and

accelerators that maintains a unified coherent memory space between the CPU and any memory on

the attached CXL device. The Compute Express Link (CXL) is an open industry-standard

interconnect offering coherency and memory semantics using high-bandwidth and low-latency

connectivity between host processor and devices such as accelerators, memory buffers, and smart I/O

devices. CXL is based on the PCI Express (PCIe) 5.0 physical-layer infrastructure with plug-and-

play interoperability between PCIe and CXL devices on a PCIe slot. The next figure show that the

CXL physical layer is a PCIe based.

1.6.2. Difference between CXL and PCIe

Figure 8 shows us the difference between PCIe layers and CXL layers.

 CXL Layers PCIe layers

Figure 8: Difference between CXL layer and PCIe layers

PCIe/CXL logical Sub-block

PCIe Electrical Sub-block

CXL.cache+ CXL.mem
Link layer

CXL Link layer

CXL.IO Link
layer

enhancements

PCIe Data Link
layer

CXL ARB/MUX

CXL Physical layer

RX TX

CXL.cache+ CXL.mem
Transaction layer

CXL Transaction layer

CXL.IO
Transaction

layer
enhancements

PCIe
Transaction Link

layer

PCIe/CXL logical Sub-block

PCIe Electrical Sub-block

PCIe Data Link layer

Physical layer

RX TX

PCIe Transaction Link layer

Synthesizable RTL Physical Layer

19

Table 3 shows us some point of comparisons between PCIe and CXL.

Table 3: PCIe and CXL comparisons

Point of comparisons PCIe CXL

Bandwidth Smaller than CXL High Bandwidth compared to

PCIe

Protocol’s support IO protocol • CXL.mem

• CXL.Cache

• CXl.IO

Large number of

devices

PCIe fails

(Perfect for client segment device).

CXL Prevails

(Perfect for data center)

Design complexity PCIe is simpler CXL is more complex

Synthesizable RTL Physical Layer

20

1.7. Device layers

The PCIe architecture is defined as a layered architecture as shown in Figure 9. Each layer can be

spilt into two logical parts. The first one is the transmitter part which sends the outbound packets

while the second one is the receiver part that receive the inbound packets. Above the main three

layers, there is another layer called the device core or the software layer. This implements the core of

the device that determine its functionality. If the device is an end point, it may consist of up to 8

functions. Each function has its own configuration space. If the device is a switch, it contains the

packet routing logic. If the device is a root complex, root core implements a virtual PCI bus 0.

Transaction layer

Data link layer

Physical layer

 Device Core

Transaction layer

Data link layer

Physical layer

 Device Core

RXTX TXRX

Figure 9: PCIe layers

1.7.1. Transaction layer

The transaction layer is responsible for TLP (Transaction layer packets) assembly and disassembly

creation and decoding. The TLPs handled the transaction, and the transaction is defined as a

combination of request. The requests can be posted or non-posted. The posted request means that the

device targeted does not return a completion to the requester, but the non-posted request means that

the device targeted return a completion to the requester. The transaction layer is also responsible for

flow control functionality and transaction ordering functionality. The flow control functionality is

that each device sends the amount of free space in its received buffer to the other device. This

prevents the sender device from sending a packet with size larger than the free space in the received

device.

Synthesizable RTL Physical Layer

21

1.7.1.1. TLP assembly and disassembly

There are 4 categories of requests, The first three already handled by PCI and PCI-X but messages

are new type for PCIe.

1. Memory requests: memory transactions include 2 classes, read requests with their

completions and write requests. these types of transactions are routed through memory

addresses.

2. IO requests: IO transactions used for legacy devices.

3. Configuration requests: configuration requests used to access the configuration space to

access the device, include 2 types, type 0 everything in the topologies of PCIe, except the

switches and the bridges.

4. Messages requests: Message request is a new type defined in PCIe, include Power

management, Error signaling etc….

5. Completions: completions are expected in response for non-posted requests

Each request must include

1. Target address or ID

2. Requester ID

3. Transaction type, for example memory write

4. Data payload size

5. Traffic class (used for packet priority)

TLP assembly

The device core sends the data required to assemble it in the TLP, each TLP will have a header to

indicate some information like the requester address and the target address, also each TLP will have

an optional ECRC to check the bits error. Figure 10 shows the sent TLP packet.

DATAHEADER ECRC
SEQUENCE
NUMBER

LCRC ENDSTART

Created by transaction layer

Information sends
from core device

Figure 10: sent TLP packet

TLP disassembly

When the receiver receives the TLP in transactions layer, the TLP is decoded and the information is

passed to the core logic. As shown in Figure 11.

DATAHEADER ECRC
SEQUENCE
NUMBER

LCRC ENDSTART

Created by transaction layer

Information sends to
core device

Figure 11: received TLP packet

Synthesizable RTL Physical Layer

22

TLP components

Table 4: TLP components

TLP component Protocol layer Component use

Header Transaction layer 3 or 4 double word (12 or 16 bytes), the header defines

the parameters:

• Transaction type

• Target address and ID

• Transfer size

• Attributes

• Traffic class

Data Transaction layer
Optional 1-1024 double word payload

ECRC Transaction layer Optional 1 double word

1.7.1.2. Flow control

The flow control is a mechanism uses a credit-based mechanism that allow the transmitting port to be

aware of buffer space available at the receiving port, to sends the TLPs with no losses. The credits

are updates using the flow control DLLPs, also we need to notes that the flow control is a shared

responsibility between the data link layer and the transaction layer, The data link layer sends and the

receive the information about the buffer space but the transaction layer contains the counter that

counts the available space, so we can summaries the process of the flow control into 3 parts

• Devices report available buffer space

• Receivers register credits

• Transmitters check credits

Synthesizable RTL Physical Layer

23

1.7.2. Data link layer

On the transmit side, Data link layer receives the TLPs from the transaction layer, adds a sequence

number to it and calculate a CRC and append it to the upcoming TLP, then passes it to the physical

layer. On the receive size, it removes the sequence number and check the CRC for errors, then passes

it to the transaction layer to decompose it.

Data link layer also form its own packets (DLLPs). DLLPs have a simple packet format and are of a

fixed size, 8 bytes total (Figure 12) including the framing bytes added in the physical layer. They are

local traffic which means that they are not routed but communicated between the nearest-neighbor

device.

(Fields vary with DLLP type)DLLP Type

16 bit CRC

Figure 12: DLLP format

DLLPs are used for Ack/Nak protocol, power management, and flow control. Ack/Nak protocol is

used to insure the TLPs successful transmission. When a TLP is sent, the data link layer adds a

sequence number to it and saves a copy of this TLP in a buffer called the reply buffer. To ensure that

this TLP is delivered successfully to its intended destination, data link layer of the sender awaits an

Ack or a Nak from the target with the same sequence number sent with the TLP. If an Ack is

received, the TLP copy in the reply buffer is discarded and the TLP is considered successfully

reached its destination, if a Nak is received, retransmission of the TLP take place. DLLPs are also

used to negotiate the flow control credits of the TLPs as mentioned in the Transaction layer section.

Synthesizable RTL Physical Layer

24

1.7.3. Physical layer

Physical layer of PCIe consists of two parts, the logical part, and the electrical part. The interface

between the two parts occurs through the PIPE standard. The electrical part is responsible for

signaling, the electrical levels, data integrity and other things which are not our concern in this

context. The logical part, is responsible for link training and initialization, receiving the data from the

data link layer, encodes it using 8b/10b encoding (Gen1), add framing character, called start and end

characters, according to the type of the received data from Data link layer, whether it is a TLP or a

DLLP, as shown in Figure 13. The physical layer originates its own packets but they are called

Ordered-Sets, these ordered sets has several types as the Training sequences TS1 and TS2 which are

used in link training process. The Electrical idle and Electrical idle exit ordered sets, which are used

to enter and leaving the low power states to save power. The skip SKP ordered sets, which are used

in the receiver clock compensation.

DATAHEADER ECRC
SEQUENCE
NUMBER

LCRC ENDSTART

Information sends
from core device

Created by physical layer

Figure 13: framing characters added by physical layer

Our work is to implement the logical part of the physical layer as a synthesizable RTL. This layer is

divided into three parts, the Tx block, Rx block and LTSSM controller block as shown in Figure 14.

LTSSM

PHY

Rx Tx
Data

Control Signals

Data

Control Signals

Data Link layer

PIPE

Figure 14: physical layer logical part implementation

Synthesizable RTL Physical Layer

25

2. Implementation
2.1. LTSSM

2.1.1. LTSSM overview

Link training and status state machine (LTSSM) is the hardware block which is responsible of the

full training and initialization process of the PCIe link, this process should take place to insure nor-

mal packet traffic on the link. This process is automatically initiated by hardware after device reset.

For Gen1, two main things are configured during link initialization and training process which are:

Bit Lock: at the beginning of training process, the receiver’s clock is not yet synchronized with the

transmit clock of the incoming signal. Using the incoming bits stream, clock and data recovery

(CDR) of the receiver recreates the transmit clock. Once this operation is done, Bit Lock is said to be

acquired.

Symbol Lock: after acquiring Bit Lock, the receiver can detect the incoming bits correctly but not

the beginning of each symbol. Symbol Lock can be achieved searching for a unique pattern called

COM symbol, which is send at the beginning of each training sequence ordered set (TS1s or TS2s).

once the COM symbol is recognized, Symbol Lock is said to be acquired.

There are other configurations that happen during link training and initialization process, but they are

not important in the Gen1 x1 implementation.

Ordered-Sets

Link training and initialization process could not take place without the presence of the Training

sequence Ordered-Sets (TS1s and TS2s). the Gen1 TS1s and TS2s consist of 16 symbols as shown in

Figure 15, they are exchanged in the Polling, Configuration and Recovery states (LTSSM states).

Details of TS symbols is as follows:

Symbol 0: COM character, the first symbol of any ordered set. Receivers use this character to

acquire symbol lock. It could be used in lane de-skewing as it appears on all lanes.

Symbol 1: Indicates the “Link”, takes the value of PAD character in Polling state, and set to the link

number in other states.

Symbol 2: Indicates the “Lane”, takes the value of PAD character in Polling state, and set to the lane

number in other states.

Symbol 3: Indicates the number of fast training sequences “N_FTS” required by the receiver to exit

L0s state and reach L0 state.

Synthesizable RTL Physical Layer

26

TS Identifier

COM

Link

Lane

N_FTS

Rate ID

Train Control

0

1

2

3

4

5

6

15

Figure 15: TS contents

Symbol 4: Indicates the “Rate ID”, devices report the data rates supported by them, along with a

little more information used for hardware-initiated bandwidth changes. The Gen1 speed “2.5 GT/s”

must be always supported and link will always train to that speed to insure backward compatibility of

new devices with older ones.

Symbol 5: Indicated the “Train Control” symbol, which communicate special conditions such as Hot

Reset, Enable Loopback mode, Disable Link, and Disable Scrambling. These conditions are not

supported in the implementation discussed in this book, and Symbol is set to all 0’s.

Symbol 6-15: Indicates the TS1 or TS2 identifiers, for TS1 it takes the value of 4Ah and for TS2 it

takes the value of 45h.

Synthesizable RTL Physical Layer

27

2.1.2. LTSSM interface with Transmitter, Receiver block and Pipe

LTSSM

PHY interface

Rx Tx
Data

Control Signals

Data

Control Signals

Data Link layer

PHY (Electrical part of physical layer)

Figure 16: LTSSM interfaces

The LTSSM has three interfaces as shown in Figure 16, one with the PCIe Tx, another with PCIe Rx

and the last with electrical part of physical layer (PHY). The interface with the PHY is done

according to PHY Interface for the PCI Express (PIPE) standard. In this subsection, a detailed

description of these interfaces is presented.

Synthesizable RTL Physical Layer

28

2.1.2.1. PHY interface

LTSSM

PHY

o
_

R
xP

o
la

ri
ty

o
_

P
o

w
e

rD
o

w
n

o
_

R
at

e

i_
P

h
yS

ta
tu

s
i_

R
xE

le
cI

d
le

i_
R

X
st

at
u

s

o
_

Tx
C

o
m

p
lie

n
ce

o
_

Tx
El

ec
Id

le

o
_

Tx
D

e
te

ct
R

x_
Lo

o
p

b
a

ck

PIPE

Figure 17: LTSSM-PHY interface

Table 5: LTSSM-PHY interface signal

Signal Direction Description

i_PhyStatus Input Inputs from PHY

Used to communicate completion of several PHY functions

including stable PCLK after Reset_n deassertion, power

management state transitions, rate change, and receiver

detection.

i_RxElecIdle Input Inputs from PHY

Indicates receiver detection of an electrical idle.

i_RxStatus[2:0]

Input Inputs from PHY

Encodes receiver status and error codes for the received data

stream when receiving data.

• RxStatus[2:0]=000, Received data OK.

• RxStatus[2:0]=001, 1 SKP added.

• RxStatus[2:0]=010, A SKP removed.

• RxStatus[2:0]=011, Receiver detected.

• RxStatus[2:0]=100, Both 8B/10B decode error and

receive disparity error.

• RxStatus[2:0]=101, Elastic buffer overflow.

• RxStatus[2:0]=110, Elastic buffer underflow.

• RxStatus[2:0]=111, Receive disparity error.

o_TxDetectRx_loopback Output Output to PHY

Used to tell the PHY to begin a receiver detection operation or

to begin loopback

o_TxElecIdle Output Output to PHY

Tells PHY that the transmitter is electrically idle

Synthesizable RTL Physical Layer

29

The LTSSM interfaces with the PHY layer according to the PIPE (PHY Interface for the PCI

Express) standard. This standard has a lot of versions, the PIPE 3.0 version is used in this

implementation, which supports up to PCIe Gen 2 speed. The interface is shown in Figure 17.The

PHY is responsible for a lot of things, one of these important things is the detect sequence. At the

detect state, following some electrical operations, when the i_PhyStatus signal becomes high, we

check the value of i_RxStatus. If i_RxStatus = 000b, then there is no device detected at the other end

of the link, else if i_RxStatus=011b, this indicates the detection of a device on the other end of the

link.

2.1.2.2. Transmitter interface

LTSSM Tx
o_Oscreator_Data

o_OScreator_valid

i_Tx_OSbufferFull

Figure 18: LTSSM-Tx interface

Figure 18 shows the interface between LTSSM and Tx. The interface between LTSSM and TX

designed to achieve a reliable transmission of ordered sets through link. To achieve this reliable

transmission, we designed 2 signals which are

• i_Tx_OSbufferFull: signal indicates if the transmitter buffer is full or not. If full the LTSSM

needs to stop the transmission of order sets data.

• o_OScreator_valid: signal indicates if the data transmitted from LTSSM is a valid data or not.

The Table 6: LTSSM-Tx interface signals shows the values required for these signals to achieve a

reliable negotiation of order sets.

o_TxCompliance Output Output to PHY

Sets the running disparity to negative. Used when transmitting

the PCI Express compliance pattern.

o_RxPolarity Output Output to PHY

Tells PHY to do a polarity inversion on the received data.

o_PowerDown[1:0] Output Output to PHY

Power up or down the transceiver

• PowerDown[1:0]=00, L0, normal operation.

• PowerDown[1:0]=01, L0s, low recovery power saving

state.

• PowerDown[1:0]=10, L1, long recovery power saving

state

• PowerDown[1:0]=11, L2, lowest power state.

o_Rate Output Output to PHY

Control the link signaling rate.

Synthesizable RTL Physical Layer

30

Table 6: LTSSM-Tx interface signals

Signal Direction Description

i_Tx_OSbufferFull Input Input from Transmitter block

• i_Tx_OSbufferFull =1, when Tx buffer is full

• i_Tx_OSbufferFull =0, when Tx buffer not full

o_OScreator_Data[15:0] Output Output to Transmitter block

Out the Data of the order set to transmitter block

o_OScreator_valid Output Output to Transmitter block

Output signal to tell Tx that the data transmitted is valid

ordered sets

• o_OScreator_valid =1, valid order sets

• o_OScreator_valid =0, not valid data

2.1.2.3. Receiver interface

LTSSMRx
i_Rx_Data

i_Rx_valid

i_Rx_DataK

i_Rx_COM_Indicator

Figure 19: LTSSM-Rx interface

The interface between LTSSM and Rx designed to achieve a reliable negotiation of order sets. so, we

designed 3 signals which are

• i_Rx_DataK: Data and control character indicator.

• i_Rx_valid: Valid signal coming from receiver.

• i_Rx_COM_Indicator: Indicator signal to indicate the beginning of order set

The next table shows the values required for these signals to achieve a reliable negotiation of order

sets.

Synthesizable RTL Physical Layer

31

Table 7: LTSSM-Rx interface signals

Name Direction Description

i_Rx_Data[15:0] Input Input from receiver

Data coming from receiver

i_Rx_DataK[1:0] Input Input from receiver

Data and control character indicator

• i_Rx_DataK=00, The 2 bytes are control

character.

• i_Rx_DataK=01, The least byte is data and the

most byte is control character.

• i_Rx_DataK=10, The least byte is control

character and the most byte is data.

• i_Rx_DataK=11, The 2 bytes are data.

i_Rx_valid[1:0] Input Input from receiver

Valid signal coming from receiver

• i_Rx_valid =00, the 2 bytes are not valid.

• i_Rx_valid =01, the least byte is valid and the most

is not valid.

• i_Rx_valid =10, the least byte is not valid and the

most is valid.

• i_Rx_valid =11, the 2 bytes are valid

i_Rx_COM_Indicator[1:0] Input Input from receiver

Indicator signal to indicate the beginning of order set

• i_Rx_COM_Indicator =00, there is no COM

character.

• i_Rx_COM_Indicator =01, The least byte is COM

and the most byte is not a COM.

• i_Rx_COM_Indicator =10, The least byte is not a

COM and the most byte is a COM.

• i_Rx_COM_Indicator =11, invalid case.

Synthesizable RTL Physical Layer

32

2.1.3. LTSSM hardware description

State MachineOS_Decoder

Timer

PIPE Operation Block

OS_Creator

O_L0_Up

i_Tx_OSbufferFull

o_Oscreator_Data

o_OScreator_valid

i_Rx_valid

i_Rx_Data

i_Rx_DataK

i_Rx_COM_Indicator

o
_

R
xP

o
la

ri
ty

o
_

P
o

w
e

rD
o

w
n

o
_

R
at

e

i_
P

h
yS

ta
tu

s

i_
R

xE
le

cI
d

le

i_
R

X
st

at
u

s

o
_

Tx
C

o
m

p
lie

n
ce

o
_

Tx
El

ec
Id

le

o
_

Tx
D

e
te

ct
R

x_
Lo

o
p

b
a

ck

Figure 20: LTSSM implementation

Figure 20 shows the proposed design of LTSSM. LTSSM consists of 5 modules; the OS_Decoder

that receive the data from the Rx, decodes it, the OS_Creator which forms the Ordered-Sets and

moves it to the Tx to put it on the link. Both of these modules communicate with the LTSSM.

StateMachine module which determine the link state whether it is a link training state or the full

operation state L0. The timer module helps the StateMachine to set timeout values needed for

different state (more details on this in the StateMachine module description). The PIPE Operation

Block handles the interface between the LTSSM and the PHY according to the PIPE standard.

Detailed description of each module is presented in this subsection. Note that CLK and RST signal

are not explicitly drawn for sequential modules, and all the input and output signal are explicitly

mentioned in each module abstracted diagram, but not all of them mentioned in the detailed diagram

for simplicity.

Synthesizable RTL Physical Layer

33

State

machine

interface
Tx

interface

2.1.3.1. OS_Creator module

OS_Creator

OS_Symbols [15:0] [7:0]

Enable

OS_type

reqNum[10:0]

Creator_Ack

O_DATA[15:0]

O_Valid

i_Tx_OSbufferFull

Creator module

TS
creator

Other
oredered

sets
creator

Demux

IDLE
creator

Os_enableEnable signal

TS_enable

Idle_enable

Symbols[15:0][7:0]

Sy
m

b
ol

s[
3:

0
][

7:
0

]

Tx interface

OS_type

Figure 21: OS_Creator implementation

Synthesizable RTL Physical Layer

34

OS_Creator module main functionality

This module is responsible for the creation of the required Ordered-Sets to complete the training

process. This module represents the LTSSM interface with the Tx block. As shown in

Figure 21, The creator module composed of 3 sub-modules, one for the creation of Training

Sequence TS ordered sets, the second one for the creation of the other ordered sets (SKP, EIEOS,

and IDLE) and the last one for the creation of the logical idle (00h) symbols.

Theory of Operation

According to its current state, the LTSSM StateMachine asserts the enable signal of the creator, sets

the type of Ordered-Sets to be formed using OS_type signal, and sends the required symbols of the

Ordered-Sets to be formed along with the required number of these Ordered-Sets to be transmitted

through reqNum. upon finishing the OS transmission, OS_Creator issues an acknowledgment signal

through creator_Ack signal back to the LTSSM StateMachine.

Inputs and outputs

Table 8: OS_Creator signals

Signal Direction Description

i_Tx_OSbufferFull Input

As described in interface with transmitter section
o_OScreator_Data[15:0] Output

o_OScreator_valid Output

OS_Symbols [15:0][7:0] Input Input from StateMachine

Data of Order sets coming from State machine

Enable Input Input from StateMachine

Enable signal to the module.

OS_type [1:0] Input Input from StateMachine

Choose between TS creator or other order set creator

• OS_type=00, Other order set creator

• OS_type=01, Choose TS creator

• OS_type=10, Choose logical idle creator

reqNum [10:0] Input Input from StateMachine

Number of repetitions of the OS.

Counter_Ack Output Output to StateMachine

• States that the number of the transmitted OS is equal to

or more than the reqNum.

Synthesizable RTL Physical Layer

35

2.1.3.2. State machine module

State Machine

PIPE_Uplink

PIPE_LaneDetected

PIPE_RxElecIdle

OS_type

Creato_En

OS_Symbols[7:0]

Count_Ack

Tx_L0_up

OS_reqNumDecoder_Link[7:0]

LTSSM_State[4:0]

State_Change

Decoder_Lane[7:0]

Timeout

Start_timer

TimeoutValue[22:0]

Decoder_Ack[1:0]
State_Change

LTSSM_State[4:0]

Figure 22: StateMachine module

State machine module main functionality

• Take the required signals from PIPE and Decoder for controlling the transitions between the

states in the State machine module.

• Out the number of TS need to be sent to Order set creator block.

• Out the LTSSM states to PIPE interface, and get back the signals required for controlling the

transitions between the states in the LTSSM block.

• After finishing the LTSSM training, L0_up signal indicates the normal operation.

The State diagrams

Figure 23 shows us the states of the link training and status state machine (LTSSM), each state

consists of substates, the LTSSM consists mainly of 11 top-level states: Detect, Polling,

Configuration, Recovery, L0, L0s, L1, L2, hot reset, Loopback and Disable. but in our design, we

decide to implement only 5 states: Detect, Polling, Configuration, Recovery and L0. The normal

flow of link training is Detect → Polling → Configuration → L0.

Synthesizable RTL Physical Layer

36

Detect state Polling Configuration L0

Time out

Time out

Recovery

Figure 23: LTSSM states

Detect state description

The detect state is the first state after the reset, in this state a device is electrically detects a receiver.

Also, we can enter this state from the polling and configuration state. The detect state composed of

two substates shown in Figure 24: detect quiet and detect active.

• Detect quiet is the initial substate, in this substate the transmitter in electrical idle, the intendent

data rate 2.5 GT/s (Gen1 speed) and the Linkup=0 which mean the link is not operational.

• Detect active, this substate entered from the detect quiet, in this substate the transmitter tests if

the receiver is connected or no. the next substate after the detect active, when receiver detected is

the polling active substate.

✓ Note: the required condition for the transition between substate to another shown in Table 9

Detect
Quiet

Detect
Active

Time Out

Time Out

Exit to
polling
state

Receiver detected

Entry from
reset

Figure 24: detect state description

Polling state description

The polling state enters from the detect active after the receiver detection, in this state the transmitter

starts to send TS1 and TS2.The goal of this state is to achieve the bit lock, symbol lock and learn the

available lane data rate. This state composed of three substates but we implement only the first two:

polling active and polling configuration.

• Polling active: in this substate, transmitter sends a minimum number of TS1s with pad lane and

link number on all detected lanes.

• Polling configuration: in this substate, transmitter will stop sending TS1s and start sending

TS2s with lane and link number (the purpose of sending TS2s is to advertise the link partner that

this device is ready to proceed to the next state).

Synthesizable RTL Physical Layer

37

✓ Note: the required condition for the transition between substate to another shown in Table 9Table 9

Polling
active

Polling
config.

Entry from
Detect

Exit to
config.
state

Exit from
detect

Time out

Time out

Exchange
TS1 or TS2

Exchange a
specific number

of TS2

Figure 25: Polling state description

Configuration state description

The configuration state enters from polling configuration, or from the recovery state in this state the

upstream and the downstream continues exchange TS1s and TS2s. the goal of this state is to

determine the link width and to assign the lane numbers. This state composed of 6 substates:

configuration linkwidth start, configuration linkwidth accept, configuration lanenum wait,

configuration lanenum accept, configuration complete and configuration idle. In this state the

downstream device differs from upstream device.

• Configuration linkwidth start:

Downstream device: The downstream now is the leader device, will initiate a link number and

starts to sends TS1s with a non-PAD link number while the lane number remains PAD.

Upstream device: The upstream now is the follower and goes back to sending TS1s with link

and lane PAD.

• Configuration linkwidth accept:

Downstream device: The downstream now, will initiate a lane number and starts to sends TS1s

with a non-PAD link number and non-Pad Lane number.

Upstream device: The upstream now sent back TS1s with one of the link number selected and

PAD lane number.

• Configuration lanenum wait:

Downstream device: The downstream will continue to sends TS1s with a non-PAD link number

and non-Pad Lane number.

Upstream device: The upstream will sends TS1s with a non-PAD link number and non-Pad

Lane number.

• Configuration lanenum Accept:

Downstream device: The downstream will continue to sends TS1s with a non-PAD link number

and non-Pad Lane number.

Upstream device: The upstream will sends TS1s with a non-PAD link number and non-Pad

Lane number

• Configuration complete:

Downstream device: The downstream starts to sends TS2s with a non-PAD link number and

non-Pad Lane number.

Upstream device: The upstream will sends TS2s with a non-PAD link number and non-Pad

Lane number.

Synthesizable RTL Physical Layer

38

• Configuration idle: during this substate the devices sends idle data and wait for minimum

number of idle data after receiving it the link can transition to L0, where the LinkUp=1.

✓ Note: the required condition for the transition between from substate to another shown in Table 10

Config.
Linkwidth

start

Config.
Linkwidth

Accept

Config.
Lanenum

wait

Config.
Lanenum

Accept

Config.
complete

Config.
idle

Exit to L0

Entry from
Polling or
Recovery

Figure 26: configuration state description

L0 state description

L0 state is the normal full-operational link state, during which Logical idle, TLPs and DLLPs are

exchange between links. The physical layer notifies the upper layers that the link is ready for

operation by setting LinkUp=1.

Note: the required condition for the transition between substate to another shown in Table 11

L0

Entry from
configuration

Exit to
recovery

Receiving a TS order sets

Figure 27: L0 state

Recovery state description

We design a small recovery state, to keep operating with Mentor (Siemens EDA) IP when Mentor IP

enters the recovery state for any reasons, we can complete our link training.

LTSSM states exit conditions

According to the PCI-e standard, the exit condition for each state is as follows

Table 9: LTSSM state exit conditions (Detect and Polling)

States Substates Condition

Detect Detect.Quiet to Detect.Active 12 ms timeout or lane exit electrical

idle

Detect.Acive to Detect.Quiet 12 ms timeout, no lane detected

Detect.Acive to Polling Lane detected

Synthesizable RTL Physical Layer

39

Polling Polling.Active to Detect.Quiet 24 ms timeout

Polling.Active to Polling.Config 1024 TS1 sent with training control

=0, 8 received Or 1024 TS1 sent with

training control =4, 8 received

Or 1024 TS2 sent, 8 received

Polling.Config to Detect.Quiet 48 ms timeout

Polling.Config to Configration 16 TS1 sent, 8 received

Starting from configuration state the exit condition will differ from downstream device Or Upstream

device.

Table 10: Configuration state exit conditions

UP/Down Exit condition

Downstream Config.Linkwidth.start to Config.Linkwidth.Accept Received 2 TS1 with non

pad link number

Config.Linkwidth.Accept to Config.Lanenum.wait Received 2 TS1 with the

link saved and Pad lane

Config.Lanenum.wait to Config.Lanenum.Accept Received 2 TS1 with the

link saved and non pad

lane

Config.Lanenum.Accept to Config.Complete Received 2 TS1 with the

link saved and lane saved

Upstream Config.Linkwidth.start to Config.Linkwidth.Accept Received 2 TS1 with non

pad link number

Config.Linkwidth.Accept to Config.Lanenum.wait Received 2 TS1 with the

link saved and non Pad

lane

Config.Lanenum.wait to Config.Lanenum.Accept Received 2 TS2 with the

link saved and Lane

saved

Config.Lanenum.Accept to Config.Complete Received 2 TS2 with the

link saved and Lane

saved

Starting from L0 state

Table 11: L0 state exit condition

States Substates Condition

L0 L0 to recovery Received a TS order sets

Synthesizable RTL Physical Layer

40

Inputs and outputs

Table 12: State Machine signals

Name Direction Description

OS_Symbols [15:0][7:0] Output Output to creator

The order set data

OS_type Output Output to creator

Choose between TS creator or other order set creator

• Types=1, Choose TS creator

• Types=0, Other order set creator

OS_reqNum Output Output to creator

Number of repetitions of the order set

Creator_En Output Output to creator

To enable the creator to send the order set

Counter_Ack Input Input from creator

To tell the State Machine the required number of ordered

sets had been transmitted

• Counter_Ack = 1, Transmitted OS ≥

OS_reqNum

• Counter_Ack = 0, otherwise.

LTSSM_UpLink Input Input from PIPE interface

Indicates bit and symbol lock, ready to L0 state

LTSSM_RxElecidle Input Input from PIPE interface

Mirror the i_RxElecIdle coming from PHY to LTSSM

LTSSM_LaneDetected Input Input from PIPE interface

Indicate successful detection of a receiver to LTSSM

LTSSM_state[4:0] Output Output to PIPE interface & decoder

To update the current state

Decoder_Ack[1:0] Input Input from decoder

Acknowledgement signal on the number of TS order sets

received to Control the transition between the states.

Decoder_Lane[7:0] Input Input from decoder

The lane number decoded from TS1 and TS2

Decoder_Link[7:0] Input Input from decoder

The link number decoded from TS1 and TS2

State_change Output Output to decoder

to update the decoder by the change in the state

Timeout value[22:0] Output Output to timer

Time needed by timer to timeout

Synthesizable RTL Physical Layer

41

Start Output Output to timer

To start count the time

• Start=1, Start count

• Start=0, Stop count and restart all the time data

(when we start again, we will start from 0)

Timeout Input Input from timer

• Time Out =1, time ≥ Timeout value

• Time Out=0, otherwise.

L0_UP Output Output to Transmitter block

To give the transmitter block the permission of working

in normal operation.

• L0_UP=1, indicate the L0 state

2.1.3.3. Timer module

Timer

Time_out

Time_outValue[22:0]

Start

Figure 28: Timer module

Timer module main functionality

The main function of timer is to provide the time out signal to the StateMachine according to the

given timeout value.

Inputs and outputs

Table 13: Timer signal

Name Direction Description

Time out value [22:0] Input Input from State machine

Time, we need to reach

Start Input Input from State machine

To start count the time

• Start=1, Start count

• Start=0, Stop count and restart all the time data (when

we start again, we will start from 0)

Synthesizable RTL Physical Layer

42

Time Out Output Output to State machine

• Time Out =1, when we reach the time needed

• Time Out=0, when we still count the time needed

Synthesizable RTL Physical Layer

43

2.1.3.4. Decoder module

OS_Decoder
O

S
Fi

lt
er

TS Detector

Other OS Detector

Decoder
Ena

Enb

i_Rx_Data

TS_detect

OS_detect

StateMachine Interface

i_Rx_Data[15:0]

i_Rx_valid[1:0]

i_Rx_Datak[1:0]

i_Rx_COM_Indecator[1:0]

LTSSM_state[4:0]

LTSSM_StateChange

LTSSM_UpDown

OSdecoder_Ack[1:0]

Osdecoder_Link[7:0]

Osdecoder_Lane[7:0]

Figure 29: OS_Decoder implementation

Synthesizable RTL Physical Layer

44

Decoder main functionality

The Decoder block receives, counts, and decodes the data coming from the PCIe Rx along with some

additional signals. It consists of four modules, the OS_Filter, the TS_Detector, the

OtherOS_Detector, and the Decoder_MainBlock as shown in Figure 29.

Theory of operation

The filter, check if the received OS is a TS or an OtherOS, it passes it to the TS_Detector or

OtherOS_Detector to checks the sanity of the OS, then the detector issues a detect signal to the

Decoder_MainBlock, which checks the components of the OS and compare it with the expected

value from the protocol according to each state, if they match it adds it to some counter waiting it to

reach the required value of OS in this state. When the counter reaches this value, it rises an

acknowledgment signal to the StateMachine.

Inputs and outputs

Table 14: OS_Decoder signals

Name Direction Description

i_Rx_Data[15:0] Input Data coming from receiver

i_Rx_DataK[1:0] Input Data and control character indicator

• i_Rx_DataK=00, The 2 bytes are control

character.

• i_Rx_DataK =01, The least byte is data and the

most byte is control character.

• i_Rx_DataK =10, The least byte is control

character and the most byte is data.

• i_Rx_DataK =11, The 2 bytes are data.

i_Rx_valid[1:0] Input Valid signal coming from receiver

• i_Rx_valid =00, the 2 bytes are not valid.

• i_Rx_valid =01, the least byte is valid and the

most is not valid.

• i_Rx_valid =10, the least byte is not valid and

the most is valid.

• i_Rx_valid =11, the 2 bytes are valid

i_Rx_COM_Indicator[1:0] Input Indicator signal to indicate the beginning of ordered set

• i_Rx_COM_Indicator =00, there is no COM

character.

• i_Rx_COM_Indicator =01, The least byte is

COM and the most byte is not a COM.

• i_Rx_COM_Indicator =10, The least byte is not

a COM and the most byte is a COM.

• i_Rx_COM_Indicator =11, invalid case.

OSdecoder_Ack[1:0] Output Acknowledgement signal on the number of TS receiver

to Control the transition between the states.

OSdecoder_Lane[7:0] Output The lane number decoded from TS1 and TS2

OSdecoder_Link[7:0] Output The link number decoded from TS1 and TS2

Synthesizable RTL Physical Layer

45

2.1.3.5. Pipe interface module

PIPE Operation Block

o
_

Tx
D

e
te

ct
_

Lo
o

p
b

a
ck

o
_

Tx
El

ec
Id

le

o
_

Tx
C

o
m

p
lia

n
ce

o
_

R
xP

o
la

ri
ty

O
_P

o
w

e
rD

o
w

n
[1

:0
]

o
_

R
at

e

i_
R

xS
ta

tu
s[

1
:0

]

i_
R

xE
le

cI
d

le

i_
P

h
yS

ta
tu

s

LT
SS

M
_S

ta
te

[4
:0

]

P
IP

E
_L

an
e

D
e

te
ct

e
d

P
IP

E
_U

p
Li

n
k

P
IP

E
_R

xE
le

cI
d

le

Figure 30: PIPE operation module

Pipe interface module main functionality

• The main interface between the LTSSM and the PHY layer according to the PIPE standard.

• It is used in performing the detect sequence of a receiver connected to the device’s

transmitter.

Theory of operation

It takes the state of LTSSM i_LTSSM_State as an input and determine the value of the input signals

to PHY, indicating a specific operation-like detect sequence and decode the PHY output signals to

indicate a certain result, upon it the LTSSM takes a certain action.

Synthesizable RTL Physical Layer

46

Inputs and outputs

Note: (*) means that this signal coming from PIPE standard.

Table 15: PIPE operation signals

Signal Direction Description

LTSSM_State [4:0]

Input Inputs from State machine

Indicate the current state

i_PhyStatus* Input Inputs from PHY

Used to communicate completion of several PHY functions

including stable PCLK after Reset_n deassertion, power

management state transitions, rate change, and receiver

detection.

i_RxElecIdle* Input Inputs from PHY

Indicates receiver detection of an electrical idle.

i_RxStatus* [2:0]

Input Inputs from PHY

Encodes receiver status and error codes for

the received data stream when receiving data.

Value Description

000 Received data OK

001 1 SKP added

010 A SKP removed

011 Receiver detected

100 Both 8B/10B decode error and receive

disparity error

101 Elastic buffer overflow

110 Elastic buffer under flow

111 Receive disparity error

o_TxDetectRx_loopback* Output Output to PHY

Used to tell the PHY to begin a receiver detection operation or

to begin loopback

o_TxElecIdle* Output Output to PHY

Tells PHY that the transmitter is electrically idle

o_TxCompliance* Output Output to PHY

Sets the running disparity to negative. Used when transmitting

the PCI Express compliance pattern

o_RxPolarity* Output Output to PHY

Tells PHY to do a polarity inversion on the

received data.

o_PowerDown* [1:0] Output Output to PHY

Power up or down the transceiver

Value Description

00 L0, normal operation

01 L0s, low recovery power saving state

10 L1, long recovery power saving state

11 L2, lowest power state

o_Rate* Output Output to PHY

Control the link signaling rate.

PIPE_UpLink Output Output to LTSSM

Indicates bit and symbol lock, ready to L0 state

Synthesizable RTL Physical Layer

47

PIPE_RxElecidle Output Output to LTSSM

Mirror the i_RxElecIdle coming from PHY to LTSSM

PIPE_LaneDetected Output Output to LTSSM

Indicate successful detection of a receiver to LTSSM

Synthesizable RTL Physical Layer

48

2.2. Tx

2.2.1. Tx Overview

The functions of the Tx block can be summarized in the following points:

1. Receive the packets from the data link layer either it is TLP or DLLP.

2. Capsulate the TLP and DLLP.

3. Receive the ordered set packets from the LTSSM.

4. Handle the priority between the packets coming from the data link layer and the packets from

LTSSM.

5. If there is no data from the data link layer and LTSSM, it should send logical idle on the lane.

Figure 31 shows the block diagram of the Tx block.

Ordered Set
Buffer

Logical Idle
Start End
Framing

Tx Buffer

Controller

Mux

Interface Bus

Interface Buffer

Status Signals
From all blocks

Control Signals
to all blocks

Data link layer

LTSSM

PIPE

Packet
Indicator

Buffer

Framing Alignment

DataD/K

Figure 31: Tx - Block diagram

Synthesizable RTL Physical Layer

49

2.2.2. Tx interface with PIPE & LTSSM

The block diagram of the Tx top module is shown in Figure 32

Figure 32: Tx - Top Module - Block diagram

2.2.2.1. Interface with the data link layer

Table 16 illustrates the signals of the interface between the Tx and the data link layer.

Table 16: Tx-Data Link Layer interface signals

Name Direction Size Description

i_DataLink Input 256 bits Input from the data link layer

The data which comes from the data link layer. If the packet

is more than 32 Bytes, each 32 bytes of it comes in a single

clock cycle.

i_SOP Input 32 bits Input from the data link layer

The start of packet indicator. Each bit refers to the

corresponding byte. The bit which equals 1 indicates to the

start byte of the packet.

i_EOP Input 32 bits Input from the data link layer

The end of packet indicator. Each bit refers to the

corresponding byte. The bit which equals 1 indicates to the

end byte of the packet.

i_DataValid Input 32 bits Input from the data link layer

The valid indicator. Each bit refers to the corresponding

byte. All bytes between the start byte and the end byte must

be 1.

i_WrEn Input 1 bit Input from the data link layer

Write enable of the buffer. When it is 1, the data link layer

inserts the packet in the buffer.

Synthesizable RTL Physical Layer

50

i_PktType Input 1 bit Input from the data link layer
It determines whether the packet is TLP or DLLP.

0 for TLP and 1 for DLLP.

o_ACK Output 1 bit Output to the data link layer

When the interface buffer receives the end of packet, it

raises this signal to prevent the data link layer from sending

any other packet. When this signal is high, the interface bus

can read the data from this buffer. On the other hand, when

this signal is low, the data link layer can send packets to the

buffer and the interface bus can’t read the data from the

buffer.

2.2.2.2. Interface with the LTSSM

Table 17 illustrates the signals of the interface between the Tx and the LTSSM.

Table 17: Tx-LTSSM interface signals

Name Direction Size Description

i_OsData Input 16 bits Input from the LTSSM
Two bytes of the ordered set packet.

i_OsValid Input 1 bit Input from the LTSSM
It acts as the write enable of the buffer. When it is 1, the

LTSSM inserts two bytes in the buffer.

i_L0 Input 1 bit Input from the LTSSM

If it equals 1, the normal operation mode is activated.

If it equals 0, LTSSM is still in link training or

initialization mode.

o_OsBuffer_Full Output 1 bit Output to the LTSSM

Full flag to indicate that the buffer is full. So, the

LTSSM can’t send any new packet.

2.2.2.3. Interface with the PIPE

Table 18 illustrates the signals of the interface between the Tx and the PIPE.

Table 18: Tx-PIPE interface signals

Name Direction Size Description

o_PHY_packet Output 16 bits Output to the PIPE

o_DK Output 2 bits Output to the PIPE

Synthesizable RTL Physical Layer

51

2.2.3. Tx hardware description

2.2.3.1. Data link layer – MAC layer Interface Buffer

Figure 33: Interface Buffer module

Block main functionality:

This module is the interface between the data link layer and MAC layer. It is used to receive a

complete single packet at a time from the data link layer then send it raw by raw to the “Data link

layer – MAC layer Interface Bus”. As long as this module doesn’t send the full packet to the

interface bus, it can’t receive any other packet from the data link layer. ACK signal which is an

output signal from this module controls this process. This signal goes to the data link layer and the

interface bus.

The maximum allowable size of TLP is 544 Bytes. So, this module is designed as a FIFO with 17

rows depth and 32 Bytes width. It takes status signals for each row to indicate the length of each

packet. These signals are start of packet, end of packet and valid. Each bit of these signals refers to

each byte the corresponding row. There are some restrictions on these signals. For instance, the start

of the packet should be the first byte in the row, and the valid discontinuity is not allowed which

means that all bytes between the start of packet byte and the end of packet byte must be valid.

The block diagram of the interface buffer is shown in Figure 33. Table 19 illustrates the signals of

the interface buffer.

Table 19: Interface_Buffer Signals

Name Direction Size Description

i_clk Input 1 bit Clock signal for positive edge registers

Synthesizable RTL Physical Layer

52

i_reset_n Input 1 bit Global asynchronous reset.

i_DM_RdEn Input 1 bit Input from the interface bus

Read enable of the buffer. When it is 1, the buffer outs a

row from its data to the interface bus.

i_DM_WrEn Input 1 bit Input from the data link layer

Write enable of the buffer. When it is 1, the data link layer

inserts the packet in the buffer.

i_DM_Type Input 1 bit Input from the data link layer

It determines whether the packet is TLP or DLLP.

0 for TLP and 1 for DLLP.

i_DM_SOP Input 32 bits Input from the data link layer

The start of packet indicator. Each bit refers to the

corresponding byte. The bit which equals 1 indicates to the

start byte of the packet.

i_DM_EOP Input 32 bits Input from the data link layer

The end of packet indicator. Each bit refers to the

corresponding byte. The bit which equals 1 indicates to the

end byte of the packet.

i_DM_Valid Input 32 bits Input from the data link layer

The valid indicator. Each bit refers to the corresponding

byte. All bytes between the start byte and the end byte must

be 1.

i_DM_Data Input 256 bits Input from the data link layer

The data which comes from the data link layer. If the

packet is more than 32 Bytes, each 32 bytes of it comes in

a single clock cycle.

o_DM_Type Output 1 bit Output to the interface bus

It determines whether the packet is TLP or DLLP.

0 for TLP and 1 for DLLP.

o_DM_SOP Output 32 bits Output to the interface bus

The start of packet indicator. Each bit refers to the

corresponding byte. The bit which equals 1 indicates to the

start byte of the packet.

o_DM_Data Output 256 bits Output to the interface bus

The data which is sent to the interface bus.

o_DM_Valid Output 32 bits Output to the interface bus

The valid indicator. Each bit refers to the corresponding

byte.

o_DM_ACK Output 1 bit Output to the interface bus and the data link layer

When the interface buffer receives the end of packet, it

raises this signal to prevent the data link layer from sending

any other packet. When this signal is high, the interface bus

can read the data from this buffer. On the other hand, when

this signal is low, the data link layer can send packets to the

buffer and the interface bus can’t read the data from the

buffer.

Synthesizable RTL Physical Layer

53

2.2.3.2. Data link layer – MAC layer Interface Bus

Block main functionality:

This module is a single row of the interface bus with 32 Bytes width. Its function is to receive a

packet row by row from the interface buffer and receive the status signals of the corresponding row

to send the packet two bytes by two bytes to the Tx buffer and to send the packet indicators signals to

the packet indicator buffer.

The block diagram of the interface bus is shown in Figure 34.

Figure 34: Interface Bus module

Table 20 illustrates the signals of the interface bus.

Table 20: Interface_Bus Signals

Name Direction Size Description

i_clk Input 1 bit Clock signal for positive edge registers

i_reset_n Input 1 bit Global asynchronous reset.

i_Interface_RdEn

Input 1 bit Input from the Tx Buffer

Indicating whether the Tx buffer is full or

not. When it is 1, the bus outs two bytes

from its data to the Tx buffer.

i_Data_Valid Input 32 bits Input from the interface buffer

The valid indicator. Each bit refers to the

corresponding byte.

i_Interface_Data Input 256 bits Input from the interface buffer

The data which is sent from the interface

bus.

i_PktType Input 1 bit Input from the interface buffer

Synthesizable RTL Physical Layer

54

It determines whether the packet is TLP or

DLLP.

0 for TLP and 1 for DLLP.

o_InterfaceBus_TxData Output 16 bits Output to the Tx buffer

The data which is sent to the Tx buffer.

o_InterfaceBus_Pi Output 2 bits Output to the Packet indicator buffer

Packet indictor signals. To mark the start of

TLP and DLLP.

o_Receive_ACK Output 1 bit Output to the interface Buffer

1 bit indicating that the row is received from

the interface buffer and fully processed and

sent to the Tx buffer.

If it’s equal 1, Tx Buffer can send another

row.

o_Data_valid Output 1 bit Output to the Tx buffer

1 bit for the two bytes.

2.2.3.3. Tx Buffer

Figure 35: Tx Buffer module

Block main functionality:

The module is a FIFO with 2047 rows depth and two bytes width. It takes the packet two bytes by

two bytes from the interface bus and send it to the MUX when it takes the permission from the

controller.

The block diagram of the Tx buffer is shown in Figure 35. Table 21 illustrates the signals of the Tx

buffer.

Synthesizable RTL Physical Layer

55

Table 21: Tx_Buffer Signals

Name Direction Size Description

i_clk Input 1 bit Clock signal for positive edge registers

i_reset_n Input 1 bit Global asynchronous reset.

i_TxBuffer_RdEn Input 1 bit Input from the controller

Read enable of the buffer. When it is 1, the buffer outs

two bytes to the MUX.

i_TxBuffer_WrEn Input 1 bit Input from the interface bus

Write enable of the buffer. When it is 1, the interface

bus inserts two bytes in the buffer.

i_TxBuffer_Data Input 16 bits Input from the interface bus

Two bytes of the packet.

o_TxBuffer_Data Output 16 bits Output to the MUX

Two bytes of the packet.

o_TxBuffer_full Output 1 bit Output to the interface bus

Full flag to indicate that the buffer is full.

o_TxBuffer_empty Output 1 bit Output to the controller

Empty flag to indicate that the buffer is empty.

Synthesizable RTL Physical Layer

56

2.2.3.4. Packet Indicator Buffer

Figure 36: Packet indicator buffer module

Block main functionality:

This module takes the packet indicator signals which indicate the start of packet either it is TLP or

DLLP to help Start – End Framing module to capsulate each packet correctly. These packet indicator

signals are in parallel with the data in the Tx buffer. Each bit refers to the corresponding byte in the

Tx buffer. The block diagram of the packet indicator buffer is shown in Figure 36. Table 22

illustrates the signals of the packet indicator buffer.

Table 22: Packet_Indicator_Buffer Signals

Name Direction Size Description

i_clk Input 1 bit Clock signal for positive edge registers

i_reset_n Input 1 bit Global asynchronous reset.

i_PiBuffer_RdEn Input 1 bit Input from the controller

Read enable of the buffer. When it is 1, the

controller reads the data in the buffer.

i_PiBuffer_WrEn Input 1 bit Input from the interface bus

Write enable of the buffer. When it is 1, the

interface bus inserts two bits in the buffer to

indicate the start of packet and its type.

i_PiBuffer_Data Input 2 bits Input from the interface bus

Two bits to indicate the start of packet and its type.

00 -> Not valid

01 -> Start of TLP

10 -> Start of DLLP

11 -> Valid data, but not start of packet

o_PiBuffer_Next_Data Output 2 bits Output to the controller

Two bits to indicate the start of packet and its type.

Synthesizable RTL Physical Layer

57

2.2.3.5. Start – End Framing

Figure 37: Start End Framing module

Block main functionality:

It is a MUX that select one of 4 different choices that are described in Table 23.

The block diagram of the start – end framing is shown in Figure 37.

Table 23: Start_End_Framing Signals

Name direction Size Description

{STP, 8'h00} Input 16 bits Start of TLP

{SDP, 8'h00} Input 16 bits Start of DLLP

{8'h00, END} Input 16 bits End of the correct TLP or DLLP

{8'h00, EDB} Input 16 bits End of the TLP or DLLP with an error. This choice is not

used in the design.

SE_sele Input 2 bits Input from the controller

The selection line of this multiplexer.

00 -> STP

01 -> SDP

10 -> END

11 -> EDB

DataFrame Output 16 bits Output to the multiplexer

Start and end characters are 8 bits but the bus width is 16 bits. So, 8-bit zeros are concatenated with

each character. These concatenated bits are overhead and they are not a part of the actual packet.

Hence, they will be removed by the framing alignment module.

Synthesizable RTL Physical Layer

58

2.2.3.6. Logical Idle

It the Tx buffer and the Ordered set buffer are empty; the controller should choose to get the data

from this module. This module is a fixed 16-bit of zeros with D/K signal equals 0.

2.2.3.7. Ordered set Buffer

Figure 38: Ordered set Buffer module

Block main functionality:

This is the interface between LTSSM and the Tx block. The LTSSM inserts the ordered set packets

like TS1, TS2 and SKP in this buffer whenever it wants.The block diagram of the ordered set buffer

is shown in Figure 38. Table 24 illustrates the signals of the ordered set buffer.

Table 24: Ordered_Set_Buffer Signals

Name Direction Size Description

i_clk Input 1 bit Clock signal for positive edge registers

i_reset_n Input 1 bit Global asynchronous reset.

i_OsBuffer_RdEn Input 1 bit Input from the controller

Read enable of the buffer. When it is 1, the

buffer outs two bytes to the MUX.

i_OsBuffer_WrEn Input 1 bit Input from the LTSSM

Write enable of the buffer. When it is 1, the

LTSSM inserts two bytes in the buffer.

i_OsBuffer_Data Input 16 bits Input from the LTSSM

Two bytes of the ordered set packet.

o_OsBuffer_Data Output 16 bits Output to the MUX

Two bytes of the ordered set packet.

o_OsBuffer_full Output 1 bit Output to the LTSSM

Full flag to indicate that the buffer is full.

Synthesizable RTL Physical Layer

59

o_OsBuffer_empty Output 1 bit Output to the controller

Empty flag to indicate that the buffer is empty.

2.2.3.8. Controller

Figure 39: Controller module

Block main functionality:

It is the brain of the Tx block as it controls the all operations of the Tx block. It receives status

signals from the Tx buffer, Packet Indicator buffer, Ordered set buffer and LTSSM. It sends control

signals to the MUX, Tx buffer, Packet Indicator buffer, Ordered Set buffer and the Start – End

framing.

The function of the controller can be described in the following points:

• If L0 equals zero, the MUX can’t take data from Tx buffer.

• If there is a data on the ordered set buffer, the MUX should take this data until the ordered set

buffer gets empty.

• If the ordered set buffer is empty and the Tx buffer is empty, the MUX should select the

logical idle.

• If the ordered set buffer is empty and the Tx buffer is not empty, the MUX should select the

Start – End framing with the correct choice then take the data from the Tx buffer.

• If a new data comes to the ordered set buffer while the MUX selects the Tx buffer, the MUX

should still select the Tx buffer till the current packet is finished with END then select the

ordered set buffer.

The block diagram of the controller is shown in Figure 39.

Table 25 illustrates the signals of the controller.

Synthesizable RTL Physical Layer

60

Table 25: Controller Signals

Name Direction Size Description

i_clk Input 1 bit Clock signal for positive edge registers

i_reset_n Input 1 bit Global asynchronous reset.

L0 Input 1 bit Input from the LTSSM

If it equals 1, the normal operation mode is activated.

If it equals 0, LTSSM is still in link training or

initialization mode.

OS_Empty Input 1 bit Input from the Ordered set buffer

If it equals 1, the ordered set buffer is empty.

If it equals 0, the ordered set buffer is not empty.

TxBuffer_Empty Input 1 bit Input from the Tx buffer

If it equals 1, the Tx buffer is empty.

If it equals 0, the Tx buffer is not empty.

Pi_Buffer Input 2 bits Input from the packet indicator buffer

The two bits data of the packet indicator.

Mux_Sel Output 2 bits Output to the Multiplexer

The selection line of the multiplexer.

SE_Sel Output 2 bits Output to the Start – End Framing

The selection line of the multiplexer of the start – End

Framing.

OS_rd_en Output 1 bit Output to the Ordered set buffer

If it equals 1, the ordered set buffer outs two bytes of its

data.

TxBuffer_rd_en Output 1 bit Output to the Tx buffer

If it equals 1, the Tx buffer outs two bytes of its data.

BiBuffer_rd_en Output 1 bit Output to the Packet indicator buffer

If it equals 1, the Packet indicator buffer outs two bytes

of its data.

Synthesizable RTL Physical Layer

61

2.2.3.9. Multiplexer

Figure 40: Multiplexer module

Block main functionality:

This multiplexer should choose to take the two bytes data from four different modules. These

modules are the Tx buffer, the start – end framing, the logical idle and the ordered set buffer. There

are two outputs of this module. The first one is two bytes data while the second one is two bits

representing the type of each output bytes whether it is data or control character.

The block diagram of the multiplexer is shown in Figure 40. Table 26 illustrates the signals of the

multiplexer.

Table 26: Multiplexer Signals

Name Direction Size Description

i_Tx_Buffer_Data Input 16 bits Input from the Tx buffer

The two bytes data of the packet.

i_SE_Data Input 16 bits Input from the Start – End Framing

The two bytes of the Start – End characters.

i_Logical_Idle Input 16 bits Input from the logical idle

The two bytes of the logical Idle characters.

i_OrderdSet Input 16 bits Input from the ordered set buffer

The two bytes of the ordered set packets.

i_Sele Input 2 bits Input from the controller

The selection line of the multiplexer.

o_Data Output 16 bits Output to the Framing Alignment

Two Bytes data.

D_K Output 2 bits Output to the Framing Alignment

One bit for each byte.

If (1): it means the corresponding byte is control.

If (0): it means the corresponding byte is data.

Synthesizable RTL Physical Layer

62

2.2.3.10. Framing Alignment

Figure 41: Framing Alignment module

Block main functionality:

The function of this module is to remove the overhead zeros that are added in start – end framing

module. The block diagram of the multiplexer is shown in Figure 41.

Table 27 illustrates the signals of the framing alignment.

Table 27: Framing_Alignment Signals

Name Direction Size Description

i_clk Input 1 bit Clock signal for positive edge registers

i_reset_n Input 1 bit Global asynchronous reset.

i_Data Input 16 bits Input from the multiplexer

Two Bytes data.

i_DK Input 2 bits Input from the multiplexer

One bit for each byte.

If the bit equals 0, it means the corresponding byte is data.

If the bit equals 1, it means the corresponding byte is control.

o_Data Output 16 bits Output to the PIPE

Two Bytes data.

o_DK Output 2 bits Output to the PIPE

One bit for each byte.

If the bit equals 0, it means the corresponding byte is data.

If the bit equals 1, it means the corresponding byte is control.

Synthesizable RTL Physical Layer

63

2.3. Rx

2.3.1. Rx overview

The main objective for the receiver (RX) block in the physical layer is to reconstruct the incoming

bytes from the pipe interface to one complete packet and pass it to the upper layers. If any order set

is received, it should not propagate to the upper layers and only sent to LTSSM to handle it as shown

in Figure 42: Receiver block. Also, the Rx block logical part is responsible for handling different

data types besides ignoring any garbage or wrong data packets incoming from the electrical part

through the pipe interface.

Figure 42: Receiver block diagram

Synthesizable RTL Physical Layer

64

2.3.2. Rx interfaces with PIPE, LTSSM and Data Link Layer

Figure 43: Receiver interfaces

The top module is connecting all input and output signals of all blocks together to integrate their

functions and behave as one block, it also interfaces with the LTSSM block, the data link layer, and

the phi layer. Figure 43 shows the interface signals with the three main blocks.

2.3.2.1. PIPE Interface

Every clock cycle two bytes of decoded data is received from the PHY layer electrical part by the

pipe interface with two i_Rx_K_D signals. Full details for each input and output signal is described

in Table 28.

Table 28: Rx-PIPE interface signals

Name Direction Size Description

i_clk Input 1bit Input from PIPE Interface.

Clock signal for positive edge registers.

i_reset_n Input 1 bit Input from PIPE Interface.

Global asynchronous reset.

i_Rx_K_D Input 2 bits Input from PIPE Interface.

K_D signal indicates whether the input character from PHY

layer is data or control character; the least significant bit is an

indicator for the first byte of data and the second bit is an

indicator for the second byte of data. For each bit:

If (1): the input character is data character.

If (0): input character is control character

i_Rx_data Input 16 bits Input from PIPE Interface.

16 bits (2 bytes) Input data from PHY layer

Synthesizable RTL Physical Layer

65

2.3.2.2. Data Link Layer Interface

When a start of TLP or DLLP is filtered, the next data character is stored temporarily in a buffer until

an end of the packet is filtered. After receiving a complete packet, it is sent to the data link layer in

multiple frames on consecutive clock cycles. Each frame consists of 32 bytes in size, and it is sent to

a data link with start, end, valid and type indicators. Each consists of 32 bits; each bit describes the

state of the corresponding byte. Full details for each input and output signal is described in Table 29.

Table 29: Rx-Data Link Layer interface signals

Name Direction Size Description

i_Rx_ACK Input 1 bit Input from Data Link Layer Interface.

If (1): the data link layer has received the packet and it can

receive the next packet.

If (0): the data link layer can’t receive another packet

o_Rx_data Output 256 bits Output to Data Link Layer Interface.

32-byte output data.

o_Rx_start Output 32 bits Output to Data Link Layer Interface.

32 mapping bits, if any bit = (1), that indicates the start of a

packet.

If o_Rx_start [31] = 1: Indicates that a start of the packet at

byte 31 of the packet.

o_Rx_end Output 32 bits Output to Data Link Layer Interface.

32 mapping bits, if one bit of its bits is equal to 1, this indicates

the end of the packet at the corresponding byte position in the

32 bytes of the output data.

o_Rx_valid Output 32 bits Output to Data Link Layer Interface.

32 mapping bits, if any bit of its bits is equal to 1, this indicates

that the corresponding byte position in the 32 bytes of the

output data is a valid byte and is a part of the packet.

o_Rx_type Output 1 bit Output to Data Link Layer Interface.

1-bit indicates the type of the received packet.

• If (0): this a TLP packet.

• If (1): this a DLLP packet.

2.3.2.3. LTSSM Interface

When a com character is filtered an o_Rx_COM_indicator signal is activated and sent to the LTSSM

block that indicates a start of an ordered set. All the next characters are sent to the LTSSM block

with an o_Rx_valid_LTSSM_Indicator to indicates it is a valid byte that goes to the LTSSM until a

start of TLP or DLLP is filtered, then the o_Rx_valid_LTSSM_Indicator is deactivated and the

sending process is stopped. Each byte is sent to LTSSM has a valid signal

(o_Rx_valid_LTSSM_Indicator), COM indicator (o_Rx_COM_indicator) and a K/D signal

(o_Rx_K_D), to make it easier to decode those characters in LTSSM. Full details for each input and

output signal is described previously in LTSSM interface with Transmitter, Receiver block and Pipe

chapter and in Table 7: LTSSM-Rx interface signals.

Synthesizable RTL Physical Layer

66

2.3.3. Rx hardware description

The Rx block consists mainly of the Rx filter, the Rx buffer as shown in Figure 44. This design is

done to achieve the main functionality of the Rx Block in the PHY layer logical part:

1. Filter all control characters to not reach to the upper layers.

2. Forwarding the incoming ordersets to LTSSM.

3. Perform reliable packet transfer at the interface with physical layer and data link layer by

defining ACK signal comes from data link layer.

4. Eliminate the error packets that doesn’t start with STP or SDP control characters or

doesn’t end with END or EBD control characters.

5. Response under the LTSSM control if the link is not in normal operation yet, or the

device enter a recovery state.

Figure 44: Receiver Block implementation

Synthesizable RTL Physical Layer

67

2.3.3.1. General filter Block

It is the block which decides whether the incoming characters from the PHY layer have to be sent to

the LTSSM or data link layer. The incoming serial byte stream coming from the electrical part of the

physical layer contains TLPs, DLLPs, Logical Ideal sequences and control characters such as STP,

SDP, END, PADs as well as the ordered sets. Of these, the Logical Ideal sequence, the control

characters and the ordered sets are detected and sent to the LTSSM and not allowed to be sent to the

DLL. The TLPs and the DLLPs are filtered and sent to the upper layer. The previous functionality is

done by the RX Filter as shown in Figure 45.

Figure 45: general_filter implementation

Table 30 shows the input output signals of the general filter block.

Synthesizable RTL Physical Layer

68

Table 30: general_filter signals

Name Direction Size Description

i_clk Input 1 bit Input from PIPE Interface.

Clock signal for positive edge registers.

i_reset_n Input 1 bit Input from PIPE Interface.

Global asynchronous reset.

i_generalFilter_

K_D1

Input 1 bit Input from PIPE Interface.

K_D signal indicates whether the first input character from

the PHY layer is data or control character.

If (1): the input character is data character.

If (0): input character is control character

i_generalFilter_d

ata1

Input 8 bits Input from PIPE Interface.

8 bits (1 bytes) The least input byte coming from PHY

layer

i_generalFilter_

K_D2

Input 1 bit Input from PIPE Interface.

K_D signal indicates whether the second input character

from the PHY layer is data or control character.

If (1): the input character is data character.

If (0): input character is control character

i_generalFilter_d

ata2

Input 8 bits Input from PIPE Interface.

8 bits (1 bytes) The most input byte coming from PHY

layer

o_generalFilter_

Data_Enable1

Output 1 bit Input from general_filter block.

Enable signal indicates if the first byte has to be forwarded

to LTSSM or to Data Link Layer.

● If (0): this symbol is forwarded to LTSSM, so it

will not be handled by the buffer modules.

● If (1): this symbol is forwarded to DLL.

o_generalFilter_

Data_Enable2

Output 1 bit Input from general_filter block.

Enable signal indicates if the second byte has to be

forwarded to LTSSM or to Data Link Layer.

● If (0): this symbol is forwarded to LTSSM, so it

will not be handled by the buffer modules.

● If (1): this symbol is forwarded to DLL.

o_generalFilter_

data_Rx_buffer1

Output 8 bits Input from general_filter block.

The first byte coming from general_filter.

o_generalFilter_

data_Rx_buffer2

Output 8 bits Input from general_filter block.

The second byte coming from general_filter.

o_generalFilter_

controlsSignals1

Output 3 bits Input from general_filter block.

The control signal that defines the state of the symbol 1.

We classify each symbol to one of the following states:

Value Indicates to

000 Error Byte (ERR)

001 Start of TLP (STP)

010 Start of DLLP (SDP)

011 END character (END)

100 END bad character (EBD)

101 Valid Byte (VLD)

111 Default state or not valid (DFT)

Synthesizable RTL Physical Layer

69

o_generalFilter_

controlsSignals2

Output 3 bits Input from general_filter block.

The control signal that defines the state of the symbol 2.

We classify each symbol to one of the following states:

Value Indicates to Indicates to

000 Error Byte (ERR) Error Byte

001 Start of TLP (STP) Start of TLP

010 Start of DLLP (SDP) Start of DLLP

011 END character (END) END character

100 END bad character (EBD) END bad character

101 Valid Byte (VLD) Valid Byte

111 Default state or not valid (DFT) Default state or not valid

o_genertalFilter_

data_LTSSM1

Output 8 bits Output to LTSSM

The least byte of data.

o_genertalFilter_

data_LTSSM2

Output 8 bits Output to LTSSM

The most byte of data.

o_genertalFilter_

valid_LTSSM_I

ndicator1

Output 1 bit Output to LTSSM

it is a valid signal for the least byte of data.

● if 0 : the least byte is not valid.

● if 1 : the least byte is valid.

o_genertalFilter_

valid_LTSSM_I

ndicator2

Output 1 bit Output to LTSSM

it is a valid signal for the most byte of data.

● if 0 : the most byte is not valid.

● if 1 : the most byte is valid.

o_genertalFilter_

COM_indicator1

Output 1 bit Output to LTSSM

Indicator signal to indicate if the first byte is the beginning

of order set.

● if 0 : it is not a COM character.

● if 1 : it is a COM character.

o_genertalFilter_

COM_indicator2

Output 1 bit Output to LTSSM

Indicator signal to indicate if the first byte is the beginning

of order set.

● if 0 : it is not a COM character.

● if 1 : it is a COM character.

o_genertalFilter_

K_D1

Output 1 bit Output to LTSSM

K_D signal indicates whether the first byte goes to LTSSM

is data or control character.

● if 0 : the first byte is a control character.

● if 1 : the first byte is a data character.

o_genertalFilter_

K_D2

Output 1 bit Output to LTSSM

K_D signal indicates whether the first byte goes to LTSSM

is data or control character.

● if 0 : the first byte is a control character.

● if 1 : the first byte is a data character.

Synthesizable RTL Physical Layer

70

2.3.3.2. Filter Block

The Rx filter operates as a finite state machine (FSM) to filter the incoming byte as shown in Figure

46, it goes from one state to another until it completes the full functionality of the Rx filter.

Due to that Gen1 link handles 2 incoming bytes each clock cycle so, two blocks of the filter block is

used to handle them by handling one byte by each block, a feedback signal contains the next state of

filter2 is feeded to the current state of filter1 and it is initially equivalent to state0.

Figure 46: The FSM of the Rx filter logic

2.3.3.3. Register Block

Two registers are used to keep the synchronization between the two filters and handle the 2 bytes

each clock cycle.

2.3.3.4. Filter controller

The filter controller rule is to take the last stage decision in the block and decide whether the 2 bytes

will be branched to the LTSSM or go up the Rx Buffer, and this is done using the output controlling

signals from Filter1 and Filter2.

Synthesizable RTL Physical Layer

71

2.3.3.5. General Buffer Block

Figure 47: general_buffer implementation

Synthesizable RTL Physical Layer

72

2.3.3.6. Buffer Controller

Figure 48: buffer controller module

Block main functionality:

As shown in Figure 48, the buffer controller takes 2 bytes from the filter block and their control

signal:

• Data_Enable signal: that indicates if the corresponding byte is valid to propagate to the upper

layers or not.

• ControlSignals signal: that indicates the state of the corresponding byte, we had 7 states that

described in the filter section. (ERR, STP, SDP, END, EBD, VLD, DFT)

The buffer controller module is responsible to check on Data_Enable first, if ‘1’ so this byte had to

be handled and somehow must propagate to Data link layer. It checks second on the state of this byte

and update the internal registers that store these states.

The controller also counts the number of the received valid bytes, when it receives 32 bytes or

receive END symbol, whatever what is coming first, it sends the start, end, valid, type states to be

stored in the control signal buffer. The 32 bytes of data is stored in the buffer_interface module.

When END symbol is received, the controller enables the output o_buffer_controller_END that tells

the controller_interface module a complete packet is received.

Input and outputs:

Table 31 shows inputs and outputs for the buffer controller module.

Synthesizable RTL Physical Layer

73

Table 31: Buffer_Controller signals

Name Direction Size Description

i_clk Input 1bit Clock signal for positive edge registers.

i_reset_n Input 1 bit Global asynchronous reset.

i_buffer_controller_

L0

Input 1 bit Input from LTSSM block.

L0 signal indicates if the LTSSM reach successfully

to L0 state or not yet.

• If (1): the link in the normal operation state L0

• If (0): the link in link training states, no packet is

received.

i_buffer_controller_

Data_Enable1

Input 1 bit Input from general_filter block.

Enable signal indicates if the first byte has to be

forwarded to LTSSM or to Data Link Layer.

• If (0): this symbol is forwarded to LTSSM, so it

will not be handled by the buffer modules.

• If (1): this symbol is forwarded to DLL.

i_buffer_controller_

Data_Enable2

Input 1 bit Input from general_filter block.

Enable signal indicates if the first byte has to be

forwarded to LTSSM or to Data Link Layer.

• If (0): this symbol is forwarded to LTSSM, so it

will not be handled by the buffer modules.

• If (1): this symbol is forwarded to DLL.

i_buffer_controller_

data_Rx_buffer1

Input 7 bits Input from general_filter block.

The first byte coming from general_filter.

i_buffer_controller_

data_Rx_buffer2

Input 7 bits Input from general_filter block.

The second byte coming from general_filter.

i_buffer_controller_

controlsSignals1

Input 2 bits Input from general_filter block.

The control signal that defines the state of the symbol

1.

i_buffer_controller_

controlsSignals2

Input 2 bits Input from general_filter block.

The control signal that defines the state of the symbol

2.

o_buffer_controller_

data

Output 16 bits Output to buffer_interface module.

2-bytes of data which passes to buffer.

o_buffer_controller_

start

Output 32 bits Output to control_signal_buffer module.

32 mapping bits, if any bit = (1), that indicates the

start of a packet.

o_buffer_controller_

end

Output 32 bits Output to control_signal_buffer module.

32 mapping bits, if any = (1), that indicates End of

packet.

o_buffer_controller_

valid

Output 32 bits Output to control_signal_buffer module.

32 mapping bits, for all bits that = (1) are indicate

those are valid bytes, normally these valid bytes must

be between start bit and end bit.

o_buffer_controller_

type

Output 1 bit Output to control_signal_buffer module.

1-bit indicates the type of the received packet.

• If (0): this a TLP packet.

• If (1): this a DLLP packet.

o_buffer_controller_

END

Output 1 bit Output to controller_interface module.

Synthesizable RTL Physical Layer

74

It indicates that the controller received END symbol,

so the controller_interface knows there is a complete

packet is received.

o_buffer_controller_

resetPtr

Output 1 bit Output to buffer_interface module.

If the controller received END symbol, it resets the

pointer in the buffer interface.

o_buffer_controller_

wr_en

Output 1 bit Output to buffer_interface module.

It enables the next module to write in the fifo or not.

o_buffer_controller_

rd_en

Output 1 bit Output to buffer_interface and buffer modules.

It enables the stored data in the buffer interface to be

read and storing in the next buffer. Normally it

becomes ‘1’ when 32 bytes are received, or END

symbol is received.

Synthesizable RTL Physical Layer

75

2.3.3.7. Buffer Interface

Figure 49: buffer interface module

Block main functionality:

The size of the buffer interface is 32 bytes. Each clock cycle, it takes 2 bytes from the buffer

controller and wr_en signal, which is ‘1’ when controller knows these are two valid bytes, and store

them till this buffer full. When receiving 32 bytes the rd_en signal high to forward all these 32 bytes

to the next buffer. To reset the pointer position when END symbol is received in buffer_controller, a

resetPtr signal is exist.

Input and outputs:

Table 32 shows inputs and outputs for the buffer interface module.

Table 32: Buffer_interface signals

Name Direction Size Description

i_clk Input 1bit Clock signal for positive edge registers.

i_reset_n Input 1 bit Global asynchronous reset.

i_bufferi_rd_en Input 1 bit Input from buffer_controller module.

It is control signal from the controller that enables the

interface buffer to read from it.

i_bufferi_wr_en Input 1 bit Input from buffer_controller module.

Write enable signal that makes the buffer to store the

data.

i_bufferi_din Input 16 bits Input from buffer_controller module.

The input data that should be stored in the buffer.

i_bufferi_resetPtr Input 1 bit Input from general_filter block.

It is a control signal that reset the fifo position, mainly

if the controller received END byte.

o_bufferi_rdata Output 256 bits Output to buffer module.

32 bytes are passed to the buffer to be stored.

Synthesizable RTL Physical Layer

76

2.3.3.8. Buffer

Figure 50: buffer module

Block main functionality.

It is the main buffer that receive 32 bytes until the complete packet is received, then there is another

controller that enable the buffer to out its stored data in sequence of 32 bytes also to the data link

layer.

The buffer is 32 bytes width and 19-line depth. These parameters as the maximum supported packet

is 544 bytes.

Input and outputs.

Table 33 shows inputs and outputs for the buffer module.

Table 33: buffer signals

Name Direction Size Description

i_clk Input 1bit Clock signal for positive edge registers.

i_reset_n Input 1 bit Global asynchronous reset.

i_buffer_rd_en Input 1 bit Input from controller_interface module.

It is control signal from the controller interface that

enables the buffer to read from it.

i_buffer_wr_en Input 1 bit Input from buffer_controller module.

Write enable signal that makes the buffer to store the

data in its input port.

i_buffer_din Input 256 bits Input from buffer_interface module.

The input data that should be stored in the buffer.

o_buffer_rdata Output 256 bits Output to Data Link Layer.

32 bytes are passed to the DLL.

Synthesizable RTL Physical Layer

77

2.3.3.9. Control Signal Buffer

Figure 51: Control Signal Buffer module

Block main functionality:

It is the buffer that stores the state of the transfer bytes which goes to data link layer. This module is

very similar to the buffer module, its width is 97 bits as (32-bits start, 32-bits end, 32-bits valid, 1-bit

type) and its depth 19 also. The read and write pointer is moving as read and write pointers in the

buffer module.

Input and outputs:

Table 34 shows inputs and outputs for the control signal buffer module.

Table 34: Control_Signal_Buffer signals

Name Direction Size Description

i_clk Input 1bit Clock signal for positive edge registers.

i_reset_n Input 1 bit Global asynchronous reset.

i_controlSignalsBuffer_

rd_en

Input 1 bit Input from controller_interface module.

It is control signal from the controller interface that

enables the buffer to read from it.

i_controlSignalsBuffer_

wr_en

Input 1 bit Input from buffer_controller module.

Write enable signal that makes the buffer to store

the data in its input port.

i_controlSignalsBuffer_

controlin

Input 97 bits Input from buffer_controller module.

The input data that should be stored in the buffer.

o_controlSignalsBuffer_

controlout

Output 97 bits Output to Data Link Layer.

97 indicators bits are passed to the DLL.

Synthesizable RTL Physical Layer

78

2.3.3.10. Controller Interface

Figure 52: Controller Interface module

Block main functionality:

This module is responsible to control data transfer between buffers and Data Link Layer. It runs

under a state finite machine that shown in the next figure.

Figure 53: The FSM of the Controller interface logic

• There are two internal counters. Countre1: is increased if there is new complete packet is

received, in another word, if i_controller_interface_end =’1’ the counter is increased.

Counter2: is increased if the transfer of the packet is completed.

• State0 IDLE state: as well as the counter1 = counter2, so the number of the received packets

is equal to the number of the transferred packets, so the controller still exists in this state until

counter1 is increased and become counter1 not equal to counter2.

• If counter1 ≠ counter2 → the controller goes to state1 or state2 according to the number of

clock cycle that transfer needs.

• If the packet size ≤ 32 bytes, so it could transfer in one clock cycle. The next state is state2.

If the packet size > 32 bytes, so it needs more than one clock cycle. The next state is state1.

• In state1: the controller exists in this state enabling the rd_en in the buffer and control signal

buffer modules until the transfer of the packet is completed.

Synthesizable RTL Physical Layer

79

• In state2: this state performs as a HOLD state, the controller is holds there at least one clock

cycle to check on the ACK signal coming from data link layer interface, if ACK =’1’ the

controller back to state0. If Ack = ‘0’ the controller waits in this state until receiving ACK.

Input and outputs:

Table 35 shows inputs and outputs for the controller interface module.

Table 35: Controller_Interface signals

Name Direction Size Description

i_clk Input 1bit Clock signal for positive edge registers.

i_reset_n Input 1 bit Global asynchronous reset.

i_controller_interface_

ACK

Input 1 bit Input from Data Link Layer.

It indicates if the data link layer can receive other

packets or not.

i_controller_interface_

end

Input 1 bit Input from buffer_controller module.

It indicates that the buffer stored a complete packet.

i_controller_interface_

end_indicators

Input 32 bits Input from controlSignalBuffer module.

32 bits that indicates if there a END of packet in

these 32 bytes or not.

o_controller_interface_

rd_en

Output 1 bit output to buffer and controlSignalBuffer

module.

Read enable signal that control the buffer and

controllersignalbuffer modules to out their stored

data on the bus.

Synthesizable RTL Physical Layer

80

3. Testing
3.1. Block level testing

3.1.1. LTSSM testing

In this section, the testing procedure used to test the LTSSM functionality is discussed.

3.1.1.1. Time scaling

As discussed in the implementation of the stateMachine module part, there are different numbers of

OS required to be sent and received to fulfill the exit condition from a state to another state, along

with different timeout values. These OS required numbers and timeout values are stated in the PCIe

spec.

For the simulation process to be realistic, these values need to be scaled down to ensure that

simulation does not take the whole day to finish. This procedure does not affect the functionality test

but it is done to make the testing and debugging easier.

Table 36: Timeouts and OS scaling shows the scaled timeout values, the required number of the OS

to be sent or received in each substate along with the values from the spec.

Table 36: Timeouts and OS scaling

State Timeout Sent Ordered

sets

Received

Ordered sets

Spec

(ms)

Scaled (clk

cycles)

Spec scaled Spec Scaled

Detect.Quiet 12 12 -- -- -- --

Detect.Active 12 12 -- -- -- --

Polling.Active 24 260 1024 24 8 8

Polling.Config 48 160 16 16

Config.Linkwidth.start 24 24 -- 2 2

Config.Linkwidth.Accept 24 24 -- 2 2

Config.Lanenum.wait 2 20 -- 2 2

Config.Lanenum.Accept 2 20 -- 2 2

Config.Complete 2 160 16 16 8 8

Config.Idle 2 160 16 (Idle) 16 8 (Idle) 8

Note that in Config.Idle substate, the values in the sent and received OS table represent the number

of sent and received logical idle symbols, not OS.

Synthesizable RTL Physical Layer

81

3.1.1.2. LTSSM states numbering

Table 37 shows the numbers assigned to each substate. This helps to recognize the states in the when

they appear in the waveform.

Table 37: States numbering

States Number (hex)

Detect.Quiet 0

Detect.Active 1

Polling.Active 2

Polling.Config 3

Config.Linkwidth.start 4

Config.Linkwidth.Accept 5

Config.Lanenum.wait 6

Config.Lanenum.Accept 7

Config.Complete 8

Config.Idle 9

L0 A

3.1.1.3. Test plan

After completing the design of each module contained in the LTSSM design (OS_Creator, Timer,

OS_Decoder, …), a test have been carried out on each module to test its functionality which is fully

described in the implementation section. After that, Integration of the tested block took place to give

us the LTSSM block.

Verification was done on two steps to test the functionality of the full integrated LTSSM block:

1- Forced testing, which means the injection of Training sequences TS1s and TS2s in different

patterns to check the transitions of the states and compare it to the PCIe spec transitions.

2- Back-to-Back testing, which means connecting two LTSSM blocks together in a way that

they negotiate the Training sequences automatically to reach the full operation state L0.

Figure 54 shows a simple diagram that represents the way to have a full functional LTSSM block

after passing the integration and the testing processes.

Synthesizable RTL Physical Layer

82

State Machine

OS_Deco
der

Timer

OS_Creat
or

PIPE Operation Block

State Machine
OS_Decod

er

Timer

PIPE Operation Block

OS_Creat
or

LTSSM

i_Rx_Data

i_Rx_valid

i_Rx_DataK

i_Rx_COM_Indicator

o_Oscreator_Data

o_OScreator_valid

i_Tx_OSbufferFull

o
_

R
xP

o
la

ri
ty

o
_

P
o

w
e

rD
o

w
n

o
_

R
at

e

i_
P

h
yS

ta
tu

s
i_

R
xE

le
cI

d
le

i_
R

X
st

at
u

s

o
_

Tx
C

o
m

p
lie

n
ce

o
_

Tx
El

ec
Id

le

o
_

Tx
D

e
te

ct
R

x_
Lo

o
p

b
a

ck
Testing each

module

Integrating

1st circle: Designed modules

2nd circle: integrated modules

3rd circle: full functional LTSSM

Forced testing
&

B2B testing

Figure 54: LTSSM design path

Synthesizable RTL Physical Layer

83

1- Forced testing

In this part, we perform positive and negative testing. For positive testing, we have three expected

behaviors from the LTSSM, which are:

• Normal operation case: the transition from state to another to reach the full operation state

L0.

Detect state Polling Configuration L0

Figure 55: normal operation path

• Timeout case: when time out occurs in any state, we need to reach the detect state and start

again the normal operation from detect state.

Detect state Polling Configuration L0

Figure 56: timeout path

• Buffer of Tx is full case: In any state if i_Tx_OSbufferFull=1, so we stop transmitting the

order sets until the TX buffer is not full. When the i_Tx_OSbufferFull =0, we start to

complete the order set from the point we stopped at.

Note: according to our design, in training sequence the Transmitter must be fully dedicated to link

training, so the buffer can’t be full.

Table 38 shows the positive testcases performed to test the LTSSM functionality. Where Table

39 shows the negative testcases.

The negative testcases show cases that would never happen in the normal operation of the block,

but it is done to ensure that the block would not be stuck if any error happed during its operation.

Synthesizable RTL Physical Layer

84

Table 38: LTSSM positive test cases

Test feature Test scenario Expected

output

Output

Normal operation • Detect state: lane detected

• Polling active: receive 8 TS1 with

train control 0 & send >=1024 TS1

• From Polling configuration to

configuration idle: normal TS

negotiation

Normal

operation

Case (1)

Pass

Normal operation • Detect state: lane detected

• Polling active: receive 8 TS1 with

train control 4 & send >=1024 TS1

• From Polling configuration to

configuration idle: normal TS

negotiation

Normal

operation

Case (1)

Pass

Normal operation • Detect state: lane detected

• Polling active: receive 8 TS2 & send

>=1024 TS1

• From Polling configuration to

configuration idle: normal TS

negotiation

Normal

operation

Case (1)

Pass

Full Tx buffer • Detect state: lane detected

• FULL Tx=1

• FULL Tx=0

Full Tx case

Case (3)

Pass

Time out case • Link not detected Time out case

Case (2)

Pass

Time out case • Detect state: lane detected

• Polling active: time out without

satisfying the exit condition.

Time out case

Case (2)

Pass

Time out case • From detect to configuration idle:

normal detection and TS negotiation.

• Configuration idle: time out without

satisfying the exit condition

Time out case

Case (2)

Pass

Synthesizable RTL Physical Layer

85

Table 39: LTSSM negative test cases

Test feature Test scenario Output

Change link number

negotiated during the

train sequence from

state to another

• Detect state: lane detected

• From polling active to configuration linkwidth

start: normal negotiation

• Configuration linkwidth accept: here we change

the link number negotiated before

Pass

Change link number

negotiated during the

train sequence in the

same state.

• Detect state: lane detected

• From polling active to polling configuration:

normal negotiation

• Configuration link width start: we receive 2 TS1

with different link width number.

Pass

Back-to-Back testing

In this part, two blocks are connected together, one as an upstream component and one as a

downstream, as shown in Figure 57.

LTSSM
(Upstream)

LTSSM
(Downstream)

Reset Reset

Phy signals Phy signals

Figure 57: LTSSM Back-to-Back integration

The state transition in this test is fully automatic, except for the transition from Detect state to Polling

state. This is done by emulating the PIPE signal to both of the LTSSM blocks, starting form Polling

state, we can start observing the state transitions.

Back-to-Back testing criteria

• We start by reset the 2 LTSSM

• Emulating the PIPE detect sequence.

• Start observing the state transitions.

State transitions observation

1. first the condition required for lane detection satisfy (Phystatus=1, Rxstatus=3), so lane

detected.

2. In polling states, TS1 negotiation starts.

Synthesizable RTL Physical Layer

86

3. In configuration states, the downstream starts to negotiate link and lane width number and

wait for the upstream response.

4. In L0 state, we start to send SKIP order sets each 1180 symbols time.

Note:The exit condition of Upstream from Config.Lanenum.wait to Config.Lanenum.Accept is to Re-

ceived 2 TS2 with the link saved and Lane saved. So upstream will be delayed by 2 states to maintain

this condition as the downstream will send TS2 with link and lane save at Conifg.complete.

Synthesizable RTL Physical Layer

87

3.1.2. Tx testing

3.1.2.1. Introduction

Testing Tx block is based on loading a memory with an input file data which contains test vectors for

the features that is being tested, then writing the outputs to an output file and comparing it with some

golden output as shown in Figure 58. The main features of Tx module have been tested in L0 state

and also during link training and initialization step to ensure that the module behavior is consistent

with the standard.

Figure 58: Tx module Test environment

List of features to be tested as expected input in both link training and normal state (positive

test)

1. Handling sequence of TLPs and DLLPs of different sizes.

2. Handling reset in different scenarios.

3. Sending logical idle if no data from LTSSM nor the Data link layer.

4. Handling OS packets priority on the TLPs/DLLPs.

5. Handling the transition between link training and L0 state (normal state).

List of features to be tested as not expected (negative test)
1. Data link layer sends TLPs or DLLPs while link training (L0=0).

2. Data link layer sends a packet with valid discontinuity.

3. Data link layer sends a packet with 2 consecutive starts of packet.

4. Data link layer sends a packet without EOP.

5. Data link layer sends a packet without SOP.

Table 40 shows the positive testcases performed to test the Tx functionality and Table 41 show a real

scenario to be run, while Table 42 shows the negative testcases.

Synthesizable RTL Physical Layer

88

3.1.2.2. Test plan elements

Table 40: Tx positive test cases

 Test

Feature

Test Scenario Expected Output Pass/Fail Notes

1 Reset Pushing reset at any

time

Output symbols are 0000 and DK=11. PASSED

2 L0=1,

Sending

TLP

Min. sized TLP

after reset (OS

empty)

TLP is sent with ‘FB’ and ‘FD’ as

framing (STP,END)characters. All

DK=11, except the symbol contains

STP=’FB’ DK=10 and the symbol

contains END=’FD’ DK=01.

PASSED

3 L0=1,

Sending

TLP

Arbitrary sized TLP

after reset (OS

empty)

Same as feature 2 PASSED

4 L0=1,

Sending

TLP

Max. sized TLP

after reset (OS

empty)

Same as feature 2 PASSED

5 L0=1,

Sending

DLLP

Sending DLLP after

reset (OS empty)

DLLP is sent with ‘5C’ and ‘FD’ as

framing (SDP,END)characters. All

DK=11, except the symbol contains

SDP=’5C’ DK=10 and the symbol

contains END=’FD’ DK=01.

PASSED.

6 L0=1, OS

priority

Sending TLP/DLLP

and OS in the same

time

ALL OS packets will be sent first and

then TLP/DLLP are sent

PASSED.

7 L0=1, OS

priority

LTSSM sends data

while sending

TLP/DLLP

MAC will finish the current

TLP/DLLP only then transform to send

OS packets

PASSED.

8 L0=1, OS

priority

Data link layer sends

TLPs and

DLLPs to MAC

while sending

OS packets

MAC will continue to send OS packets

to PHY until they are finished then

MAC will start to send TLPs and

DLLPs if exists.

PASSED.

9 L0=1,

sending

logical idle

No data coming from

the data link layer nor

the LTSSM

Logical idle will be sent until any data

comes to MAC

PASSED.

10 L0=1,

logical idle

to data

LTSSM/Data link

layer send data while

sending logical idle

MAC will send LTSSM/Data link

layer Data instead of logical idle

PASSED.

11 L0=0,

sending

logical idle

No data from the

LTSSM

Logical idle will be sent PASSED.

Synthesizable RTL Physical Layer

89

12 L0=0,

Sending

OS

LTSSM sends data to

MAC

OS packets will be sent PASSED.

13 L0=0,

logical idle

to OS

LTSSM sends data to

MAC while sending

logical idle

Same as feature 11 PASSED.

14 L0=0, to

L0=1

Link training

finished while

sending OS packets

Same as feature 8 PASSED.

15 L0=0 to

L0=1

Link training

finished while

sending logical idle

and there are no

DLLPs/TLPs

MAC will continue to send logical

idle

PASSED.

16 L0=0 to

L0=1

Link training

finished while

sending Logical idle

and there are

DLLPs/TLPs

MAC will start to send TLPs/DLLPs PASSED.

17 L0=1 to

L0=0

L0 became 0 while

sending OS packets

MAC will continue to send OS

packets

PASSED.

18 L0=1 to

L0=0

L0 became 0 while

sending

logical idle

MAC will continue to send Logical

idle until LTSSM sends data

PASSED.

19 L0=1 to

L0=0

L0 became 0 while

sending TLP/DLLP

MAC will continue to send the current

TLP/DLLP ONLY and then starts to

send OS packets if exist and if not,

logical idle will be sent

PASSED

20 Sending

data after

reset

Reset followed by

OS or DLLPs/TLPs

OS or DLLPs/TLPs will be sent PASSED.

21 Packet

handling

Sending consecutive

TLPs and DLPs

TLPs and DLLPs are sent in order as

input with STP/SDP and END framing

characters

PASSED.

Synthesizable RTL Physical Layer

90

Table 41: Tx Real Scenario

Test scenario PASS/FAIL

Reset

ALL PASSED

L0=1, ts1

TLP

DLLP

TLP &Ts2

DLLP

TLP

TLP

Reset

L0=0, TLP (negative testing)

DLLP (negative testing)

Ts1

Ts2

L0=1

TLP

DLLP

DLLP

Ts1

L0=0(empty clock cycle)

L0=1(empty clock cycle)

3.1.2.3. Negative testing

Table 42: Tx negative test cases

Test Case Output behaviour Notes

Data coming from the

Data link layer during link

training and initialization.

Data will be stored until the

training is finished and then

will be sent on the lane

Data link layer sends Max

sized Packet (544

Bytes) without EOP

The buffer will be flushed,

packet will be ignored and

Data link layer will not

receive ACK on the packet

Data link layer sends

Packet without SOP in the

first row

Packet will be ignored and

Data link layer will not

receive ACK on the packet

Synthesizable RTL Physical Layer

91

Data link layer sends

packet with valid

discontinuity

Packet will be transmitted

until the byte that have

valid=0.

Data link layer sends

packet with

SOP=32’h C000_0000

instead SOP=32’h

8000_0000

Packet will be transmitted

correctly.

Data link layer sends

packet with

SOP=32’h E000_0000

instead SOP=32’h

8000_0000

Packet will be transmitted

from the last start sent and so

on.

Data link layer sends

arbitrary sized packet

without EOP.

Packet will not be sent until it

receives a row that have EOP

only without SOP.

This test case affects the next packet

from the data link layer which means

the next packet after the described

one will not be transmitted

correctly.

Synthesizable RTL Physical Layer

92

3.1.3. Rx testing

3.1.3.1. Introduction

 In this test plan, the main features and functionality have been tested. The main functionality

of the Rx module in the normal operation state (L0 state) is receiving sequences of TLPs and DLLPs

with different sizes, filtering and removing the framing symbols then forwarding them to the data link

layer. In addition, handling the ordered sets which are coming to LTSSM in Link training and

initialization Mode. Most of the expected scenarios has been tested to make sure that the Rx block will

operate in real scenarios correctly.

List of features to be tested as an expected input in normal state (positive testing):

1. Handling a sequence of minimum sized packets.

2. Handling a sequence of very large packets.

3. Handling TLPs with all available sizes.

4. Handling a sequence of DLLPs after TLPs with maximum size.

5. Handling Packets that come without resetting the module.

6. Reset the module in different scenarios.

7. Handling all different order sets.

8. Handling packets while activating and deactivating the ACK from the DLL.

9. Handling receiving from PHY layer different types of packets and order sets while disabling

L0 signal.

List of features to be tested which are not expected as an input in normal state (negative

testing):

1. Handling uncompleted packets (packets without end).

2. Handling packets without start.

3. Handling packets with size of odd number of bytes.

4. Handling packets with STP/SDP and END/EBD, but started from second byte.

5. Handling incoming OS in different fault scenarios.

6. Handling packets that start with two STP/SDP characters, or ends with two END/EDB

characters.

Synthesizable RTL Physical Layer

93

3.1.3.2. Test scenarios as expected input in normal state

Table 43 shows the positive testcases performed to test the Rx functionality and Table 44 show a real

scenario to be run.
Table 43: Rx positive test cases

 Feature to be tested Test

case/environment

Expected behavior Pass/

Fail

1 Handling a sequence

of packets with

minimum available

size (During L0 state)

Consecutive 30

DLLPs

The received packets should be

forwarded all to data link layer

without any dropping in the data.

Passed

Consecutive 30 TLPs

with minimum size

(28 bytes)

Passed

2 Handling a sequence

of packets with

maximum available

size

Consecutive 30 TLPs

with maximum size

(544 bytes)

Passed

3 Handling TLPs with

all available sizes

Consecutive TLPs

with all available

sizes

Passed

Consecutive TLPs

with all available

sizes with DLLPs in

between

Passed

4 Handling a sequence

of DLLPs after a TLP

with maximum size

TLP with maximum

size followed by a

sequence of DLLPs

Passed

5 Packets coming

without resetting the

module

Receiving Bytes from

PHY without reset the

module

Without reset, the module should

haven’t start to operate yet, so all

data (OS or Packets) must be

dropped.

passed

6 Reset the module in

different scenarios

Between two packets Resetting the module in different

scenarios makes the stored packets

or OS flushed, and after the reset

signal becomes HIGH again, the

Rx should operate again normally.

Passed

After receiving one

packet and in the

middle of the second

Passed

With receiving OS Passed

7 Handling all different

ordered sets

Sequence of TS1s and

TS2s

Any incoming order set should be

forwarded to the LTSSM.

Passed

Sequence of TS1s and

TS2s and Logical idle

in between

Passed

SKP order sets

between two different

packets

Passed

8 Activate and

deactivate the ACK

signal

Deactivate the ACK

signal

When the ACK signal is

deactivated, the running packet

transfer to the data link layer

should be finished first.

Then the Rx must not start any

packet transfer to the data link

layer before the ACK signal is

activated again.

Passed

Synthesizable RTL Physical Layer

94

9 Disable L0 signal and

receive from the PHY

layer different types

of packets and order

sets

Receiving an order set

while L0 signal is

disabled

When the LTSSM is not in the L0

state yet, so if the received

sequence of data represents an OS,

it should to be forwarded to the

LTSSM.

If the received sequence of data

represents a packet (TLP or

DLLP), it should not to be

forwarded neither to the LTSSM

nor to the Data link layer.

Passed

Receiving a packet

while L0 signal is

disabled

Passed

Table 44: Rx real scenario

TLP 200 Byte

ALL Passed

DLLP 8 Byte

TLP 32 Byte

TLP 544 Byte

Logical Idle

Logical Idle

TLP 544 Byte

DLLP

SKP

SKP

SKP

Logical Idle

Logical Idle

SKP

TLP 200

DLLP

Synthesizable RTL Physical Layer

95

3.1.3.3. Test scenarios which are not expected as an input in normal

state:

Pass/fail criteria:

As in PCIe gen1 standard, it is optional to support error handling. In our design the behavior is that

some of the errors in the incoming packet sequence are passed to data link layer as it is, and some

others are not passed to data link layer and hence all the packet with its error is dropped.As there is

no guarantee to solve all the packet errors in the MAC layer, so if our hardware stuck and doesn’t

operate correctly any more, it will need a hardware reset to start its operation again correctly, and

this is considered a fail criteria; if it just do something with this error packet (even wrong or not the

best solution) but it operates normally with all next incoming packets, so this is considered a pass

criteria.

Pass criteria: the hardware doesn’t stuck in the negative test scenario.

Fail criteria: the hardware fails to continue its functionality without reset.

Table 45 shows the negative testcases.

Table 45: Rx negative test cases

Num Feature to be

tested

Test case/

environment

Pass/

Fail

Behavior notes

10 Handling

uncompleted

packets (packets

without end)

Sequence of DLLPs,

one of them is

received without an

END character

Passed The error packet and the second

following pkt to it are stored in the

buffer and sent to DLL with errors.

The first following packet is flushed

and not sent to the Data link layer.

In another word, the two following

packets also will have issues, then the

Rx will return to its right operation.

11 Handling packets

without start

Sequence of DLLPs,

one of them doesn’t

start with SDP

character

Passed Any packet that doesn’t start with

STP or SDP character will not be

forwarded to the data link layer.

12 Handling packets

with odd number of

bytes

Packet with odd

number of bytes

Passed These un expected packets are

forwarded to the data link layer but

without its indicator (start, end, valid

are equal to 0), which makes the data

link layer drops it.
13 Handling packets

with STP/SDP and

END/EBD, but

started from second

byte

Receiving a packet

with its start in the

most significant byte,

and its end in the

least significant byte

Passed

14 Handling incoming

OS in different fault

scenarios

Sequence of wrong

OS but starts with

COM character

Passed The received OS is forwarded to the

LTSSM, as the Rx block doesn’t

handle errors in OS format.

15 Handling a packet

with 2 start

characters

Sequence of TLPs,

one of them starts

with 2 STP characters

Passed This packet is dropped and the

following packet is forwarded to the

LTSSM with wrong indicators.

16 Handling a packet

with 2 end

characters

Sequence of TLPs,

one of them ends

Passed This second END have no impact on

the filter decision. All the packets are

Synthesizable RTL Physical Layer

96

with 2 END

characters

forwarded to the data link layer

without errors.

3.2. Back-to-Back test

The back-to-back integration is to connect two different MAC layers of two different devices to

communicate with each other. As shown in Figure 59, each MAC layer in each device consists of 3

blocks; Tx, Rx, and LTSSM with two different interfaces with the data link layer. The test is done by

inserting the input from Data link layer – MAC interface of device [1] then observe the output to the

data link layer of device [2] as a primary observation point and the output from the Tx of device [1]

as a secondary observation point.

Secondary observation point

RX LTSSM TX

RXLTSSMTX

Data Link MAC interface-RX

Data Link MAC interface-TX

Data Link MAC interface-TX

Data Link MAC interface-RX

Input point

Primary observation point

Figure 59: MAC Back-to-Back integration

The objective of this integration is to test the functionality of the MAC layer to make sure that:

1. LTSSM can initialize and re-train the link from detect state to L0 state.

2. Tx can capsulate the incoming packets either TLPs or DLLPs.

3. Tx gives the Ordered set data a priority over TLP and DLLP during L0 state.

4. Tx sends logical Idle if it doesn’t receive packets from the data link layer nor ordered sets

from LTSSM.

5. Tx shouldn’t send any packet during link training and initialization states.

6. Rx can filter the received data and send ordered sets to LTSSM while sending complete

packets to the data link layer.

7. Rx should send only one complete packet at a time to the data link layer.

Synthesizable RTL Physical Layer

97

8. Rx shouldn’t send any packets to the Data link layer nor ordered sets to the LTSSM if there is

no new data is being received from the PHY layer (Logical Idle), and default values only is

put on the buses.

9. Rx shouldn’t send any packet to the Data link layer if the ACK is not enabled.

3.2.1. Pass/Fail Criteria

If the actual behavior meets the standard, then this case is pass. Else, it fails.

3.2.2. Test plan

3.2.2.1. Positive test cases

Table 46 shows the positive testcases performed to test the MAC layer functionality.

Table 46: Back-to-Back positive test cases

Feature to be tested Actual Behavior Pass/Fail

1 PHY sends the required

signals to the LTSSMs of

both devices

After the lane is detected, the training sequence

starts. So, the negotiation of the TS order set starts.

Hence, the transition from the state to another

occurs to achieve the L0 state.

Pass

2 Data link layer of device [1]

doesn’t send packets while

LTSSM is still in link training

and initialization, not L0

state.

The output on the lane should be OS data coming

from LTSSM.

Pass

3 Rx of device [2] receives OS

data while LTSSM is still in

link training and

initialization, not L0 state.

The incoming OS data received from PHY

interface is filtered and then forwarded to LTSSM

until the link training has been finished.

Pass

4 Data link layer of device [1]

sends packets with different

sizes during L0 state.

Data link – MAC interface buffer receives one

complete packet, then sends it to Tx buffer. After

the whole packet is sent to the Tx buffer, Data link

– MAC interface buffer can accept a new packet

from the data link layer.

The controller acts as the arbiter between Ordered

sets data and packets.

If the new OS data is received from LTSSM while

a packet is being sent on the lane, the packet

should be sent till its end, then the OS data is sent

through the lane.

Else, OS data should be sent first due to its

priority.

Pass

5 Rx of device [2] receives OS

data and packets with

different sizes during L0

state.

If the incoming data starts with COM symbol, in

another word if Rx receives OS, all the next bytes

are forwarded to LTSSM.

Otherwise, the sequence of data which starts with

STP or SDP symbols and ends with END symbol,

which forms a complete packet, is filtered and the

framing symbols are removed then forwarded to

Pass

Synthesizable RTL Physical Layer

98

Data link layer when the packet is completely

received.

3.2.2.2. Negative test cases

Table 47 shows the negative testcases.

Table 47: B2B - negative testing

Feature to be

tested

Expected

Behavior

Actual Behavior Pass/Fail Note

Data link layer of

device [1] sends

packets with

different sizes

while LTSSM is

still in link training

and initialization,

not L0 state.

Data link layer

shouldn’t send a

packet during

link training and

initialization.

Data link – MAC

interface buffer

receives one

complete packet,

then sends it to the

Tx buffer. After the

whole packet is sent

to Tx buffer, Data

link – MAC

interface buffer can

accept a new packet

from

the data link layer.

The output data on

the lane should be

the ordered sets

only.

Fail This case shouldn’t

happen in further

phases. Data Link

Layer should have L0

enable signal to

indicate the link is up.

Hence, it can send its

packets to MAC

layer. Otherwise, it

shouldn’t send any

packets.

Synthesizable RTL Physical Layer

99

3.3. IP Integration

3.3.1. Last year IP

Figure 60: last year IP

The last year project they implement only the transaction layer and data link layer in C++ and

replace the physical layer with a pipe that connect two pcie IPs together in verilog. The integration

between Verilog and C++ codes was done using DPI in a system Verilog,

The hierarchy of layer in the last year stand-alone IP was as described next:

3.3.1.1. Device Core

As our PCIe has no application layer, they implement the application layer in system Verilog as a

test bench. In this test bench, different functions of the transaction layer have been called to generate

a traffic of packets.

3.3.1.2. Transaction and Data Link layers

Transaction and data link layers had implemented in C++ and with a system C file to make it is able

to call the transaction layer functions from system Verilog test bench. And to run the C++ codes,

they used a thread to run the C++ code. The tread runs the codes each 200 clock cycles.

3.3.1.3. Transactor

The transactor was a memory that the transmitter part can write its packet in it. It allows two IPs

connect to perform a back-to-back test.

Synthesizable RTL Physical Layer

100

3.3.2. Physical layer integration

Figure 61: full IP with physical layer

The previous Verilog codes, which described as transactor, is replaced with the logical part of the

physical layer-MAC and we define a new interface with system Verilog between Data link layer that

implemented in C++ and MAC that implemented in Verilog.

The main objective of the interface layer with the physical layer transmitter part is mapping the

incoming packet that stored in array of integers in C++ to a stream of 256 bits each clock cycle with

their indicators that illustrated previously in Tx interface with PIPE & LTSSM chapter. And the

same thing with the physical layer receiving part, it collects the incoming sequence of bits and store

them in array of integer in C++ language, also from the received indicators that illustrated previously

in Rx interfaces with PIPE, LTSSM and Data Link Layer chapter it takes decisions about the packet

and finally call the Physical_To_DataLink function.

Synthesizable RTL Physical Layer

101

 Figure 62: new interface layer between data link layer and physical layer

Synthesizable RTL Physical Layer

102

4. Integration and Testing with

industrial core in MENTOR
For more testing, we integrate our IP core that we briefly described in IP Integration chapter with

industrial IP mentor core. Integration with Mentor PCIe core, the problems we faced and the final

results is discussed in this chapter.

4.1. Mentor PCIe core product

Mentor, A Siemens Business offers a virtual PCIe to test and debug any endpoint like graphics cards,

network cards, ...etc.

Virtual PCIe behaves as root complex, Downstream device and need to run a certain application with

the help of the target endpoint device. The testing is running on three phases.

• PCIe Link Training.

Virtual PCIe runs link training based on configurations. Link training is continued till the two

devices reach to the desire link speed.

• PCIe Enumeration.

After link training, the root complex requests configuration reads and configuration writes requests

from the endpoint device. Implicitly there are flow control packets that are sent by the two devices to

negotiate on the available buffer spaces, also ACK/NACK packets and completion packets are sent

from them also.

When this process has finished, the root complex is completely recognized the endpoint device and

the application that runs over the processor can now runs using the operating system that layered also

over the VPCIe.

• Application Verification.

This process aims to test the endpoint application layer and it depends only on what this endpoint is

designed to do, unlike the previous two phases that runs almost in the same way for all PCIe

endpoint devices (depends only on the PCIe-GEN of this targeted endpoint).

In our project we proceed only in the first two phases as we have no application layer to serve.

Synthesizable RTL Physical Layer

103

4.2. Problems between our IP and Mentor IP

Integrating our developed core with an industrial one in MENTOR was challenging because it

reveals flaws and error that may not cause a problem when integrating two instances from the

developed pcie_1 IP core together. The integration was done by connecting the developed core

pcie_1 IP as an endpoint and Mentor’s virtual PCIe core as a root complex.

The objective of the integration was to finish link initialization and training step, finish flow control

initialization step and finally enumeration step which includes sending and receiving configuration

packets. Next, we show the encountered problems and bugs of the developed pcie_1 IP after being

successfully complied and linked to mentor’s virtual PCIe root complex.

Problem [1]: Stuck in detect state.

The developed IP was designed following version 3.0 of the PIPE standard, which was different

from that of the Root Complex

Solution: This was overcome by fixing the sizes of some signal to match that of the RC (o_Rate ->

o_Rate [1:0]), and setting others with constant values (o_Tx/RxValid, synchHeader).

Problem [2]: Timeouts at different states

Solution: The timeout values for each state needed to be increased.

Problem [3]: Root Complex (RC) and End point (EP) exchange initialization flow control DLLPs.

No one of them send TLP. The code of the last year doesn’t contain initialization flow control 2

(InitFC2).

Solution: After revision MindShare, we create (InitFC2) packets and edit Data_Link_Update

function in Data_link.cpp file.

Figure 63 shows the difference between how Root Complex (RC) and EndPoint (EP) exchange

initialize flow control before and after editing the data link layer functions.

Synthesizable RTL Physical Layer

104

InitFC1-P
InitFC1-NP
InitFC1-CP1

InitFC1-P

InitFC1-NP
InitFC1-CP1

InitFC1-P
InitFC1-NP
InitFC1-CP1

InitFC1-P
InitFC1-NP
InitFC1-CP1

InitFC2-P

InitFC2-NP
InitFC2-CP1

CfgRD0

InitFC1-P
InitFC1-NP
InitFC1-CP1

InitFC2-P

InitFC2-NP
InitFC2-CP1

Figure 63: The initial flow control packets exchange before and after editing

End point Root complex

Synthesizable RTL Physical Layer

105

Problem [4]: RC sends first TLP. It is Read Configuration (CfgRd0) packet, but our EP doesn’t

reply with Completion packet (CplD).

In flow control initialization stage, RC sends InitFC-Cpl with HeaderFC = 0 and DataFC = 0 which

means it has infinite credits. The Data link layer doesn’t handle this case. So, after the creation of

CplD in the transaction layer, the data link layer doesn’t send it to Physical layer.

Solution: The Flow_Control_Gating_Logic function in Transaction_Layer.cpp file was edited to

handle this case.

Problem [5]: EP sends a TLP packet which RC can’t identify. Tx of our Physical layer receives the

TLP from the data link layer in a wrong way.

Solution: The Transactor.sv file was edited to solve this problem.

Before

Figure 64: Packet transfer in a wrong way before editing our interface layer

After

Figure 65: Packet transfer in a right way after editing our interface layer

Synthesizable RTL Physical Layer

106

Problem [6]: RC identifies the received packet as CplD, but it replays with NAK.

The CRC of TLP is implemented in a wrong way. It needs to reverse the order of the incoming data.

Solution: The waveform of example pipe_43 is used to identify the correct value of CRC for specific

Header and Data. With try and error approach, the bug was caught. Then, generate_LCRC_32

function in the Data_Link.cpp was edited.

Figure 66: How CRC function order the bytes of the packet before and after editing

Problem [7]: Stuck at recovery state.

During the trails to solve the ACK/NAK problem, one of the conditions to enter recovery state for

the RC occurs. As no implementation for recovery state existed in the developing IP.

Solution:A simple recovery state was implemented, which does not take into consideration the link

width or speed change options.

Synthesizable RTL Physical Layer

107

5. Future work
In the future, this IP can be modified in some ways. Regarding the physical layer, it can be

implemented to support GEN 2 and GEN 3. In addition, the number of lanes can be increased to be

2, 4, 8 or 16. Regarding the transaction layer and the data link layer, they can be implemented as

RTL using VHDL or Verilog instead of the modeling with C++. Thus, the full IP can be burned on

FPGA to measure the utilization and power. Finally, an application layer which is the device core

can be implemented and added to the IP.

6. References
1. MindShare PCI Express System Architecture

2. PHY Interface For the PCI Express and USB 3.0 Architectures Version 3.0

3. PCI Express Base Specification Revision 2.0

