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ABSTRACT 

 
In the modern era of CPU complexity advancements, Processor verification has always 

been an ever-increasing challenge. The gap between what a verification plan can offer 

nowadays and the current technology requirements is constantly widened. Despite of varies 

efforts on perfecting “Golden-verification-models” during the design phase, and adoption 

of object-oriented programming into the whole process; numerous industry experts still 

consider solo verification test benches as an extreme, time-consuming barricade that leads 

to a longer time-to-market and a questionable continuity of the current verification process. 

The Universal Verification Methodology (UVM), has come in action as a literal savior to 

the whole verification community, by offering a merge between SystemVerilog and 

SystemC into one environment that is completely standardized, constrained, and reusable, 

allowing a powerful verification methodology to a wide range of design sizes and types. 

The main contribution that this work introduces is implementing a generic UVM.  In other 

words, building one verification environment that can be used to accommodate many RTL 

designs (Soft Processors), having not only different Instruction Set Architectures (ISAs) -

of the same categories-, however additionally different techniques, and mechanisms 

handling the pipeline infrastructures. The proposed generic UVM (GUVM) structure 

permits the targeted user to attach any soft processor (core) having nearly the same micro-

architecture to the proposed test bench, and to monitor both: CPU internal behavior and 

the complete flow of all supported instructions. 

Keywords—UVM, SystemVerilog, Generic, Soft Processors, Cores, Verification 

Environment, Functional Verification, Simulation-based Verification, Instruction-based 
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Verification, Core-independent Verification.
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CHPATER 1: INTRODUCTION 

 
Design Verification is simply the process of checking that a given design parameter 

correctly implements the target, specifications, and the required functionality [1]. 

Traditionally, 70% of a chip development cycle is dedicated to design verification. Based 

on that, the verification to design team ratio ranges from 2:1 to 3:1; that major overhead in 

the whole process lead to a new trend in the verification arena: striving towards 

standardized, and reusable test benches. That is when newer methodologies have been 

introduced like the Open Verification Methodology (OVM) and the Verification 

Methodology Manual (VMM), both have been actually fine for a while, however the 

industry is in need of a non-proprietary approach; thus finally in 2011, major technology 

giants joined together through Accellera and created the Universal Verification 

Methodology (UVM) [2]. 

UVM has opened new horizons in the verification world, and its highly configurable 

features have made the generic proposal really possible; as the old saying goes: “You can 

never go wrong with an object-oriented-based line of code”. Normally a System on Chip 

(SOC) can be verified effectively using a simulation testbench that provides data to the 

SoC inputs and checks resulting data at the SoC outputs. The problem is that running all 

the possible testing scenarios is computationally impossible. On the other hand, a modern 

testbench-based verification environment automatically generates randomized stimulus for 

the SoC inputs under control of user-specified constraints and checks the results of each 

test automatically. UVM is the best verification approach that has been created to develop 
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constrained-random testbenches in a uniform fashion and to permit limited reuse of 

testbench components [3]. 

In this work, an attempt to extend this reusability concept furthermore, by applying the 

same UVM environment to a plethora of different Designs Under Test (DUTs) 

implementation, with completely different architectures and some limitations on the 

common functions among different DUTs. 

1.1 Problem Definition 

It becomes possible for electronic system designers to assemble complete systems-on-

chips due to the ever-increasing advances in the integrated circuit technology. At the 

same time, shrinking time-to-market leaves a small room for errors in the design 

development. Therefore, the verification process with all its stages (pre-silicon 

verification, post-silicon validation and runtime verification) has become one of the 

main tasks during the design-to-fabrication process, Thus, bugs are detected and fixed 

at early design flow stages [3]. 

Both design and verification nowadays are pushing towards reusable environments, 

and correspondingly the need of a standalone, and pre-verified verification 

infrastructure has arisen, to ensure that the verification step is not the bottleneck of the 

design flow. 

 UVM is being used as it has improved verification quality due to the constrained 

random verification. Test benches are reusable as verification components or agents get 

instantiated within a verification environment inside a project, and they may require 

some modification to suit the requirements of this verification environment. In addition 



3 

 

to that, the overall verification environment could be used and modified according to 

the requirements of a certain test [2]. 

The problem of verifying soft processors using separate modified verification 

environments or different approaches still exists, and does cost the product cycle a long 

computational time and effort to get into the market. As a result, there is a great demand 

for a reusable generic environment used to verify soft processors with as minimum 

modification as possible; in order to save effort, time and cost. 

1.2 Related Work and Contributions 

For the best knowledge of the authors, this is the first Contribution in verifying different 

soft processors (cores) using only one generic and reusable UVM (the same UVM test 

bench without any tweaking); all the related works are based on the idea of 

implementing a UVM test bench to verify only one DUT (it can be reused however 

after tweaking the main components of the test bench itself). 

In this work, the objective is to design and implement only one generic UVM that is 

used to verify the functionality of different soft processors (cores). These different 

cores are based on different instruction set architectures (ISAs), and they have different 

infrastructures and specifications such as, the number of the pipeline stages, and the 

behavior of the cache memories.  

The proposed generic UVM attempts to prove this objective are on three open-source 

cores: 

• RI5CY core, based on RISC-V ISA with four pipeline stages.  

• LEON 2.4 core, based on SPARC-V8 ISA with five pipeline stages.  
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• Amber a23 core, based on ARM-V2a ISA with three pipeline stages. 

The generic UVM proposed, can additionally be used to verify any similar soft 

processor based on one of the three previously mentioned ISAs, and has nearly the 

same specifications. 

1.3 Organization of the remaining chapters 

In Chapter 2, the history and the background about the UVM in general and the three 

proposed open-source cores are discussed. In Chapter 3, the proposed solution and 

methodology are explained. In Chapter 4, the proposed implementation is investigated 

in details, followed by an illustrative example in Chapter 5. in Chapter 6, the validation 

and the results of the proposed work are presented.  Finally, in Chapter 7, conclusion 

and future work directions are drawn. 

 

 

 

 

 

 

 

 



5 

 

CHPATER 2: HISTORY AND BACKGROUND 

 

2.1 UVM [4]-[12] 

The most common term in verification is known as functionality testing or functional 

verification which is the process of demonstrating functional correctness of a processor 

design with respect to its specifications, this process is preceded by creating a 

verification plan that defines: which properties and functionalities need to be verified, 

different methods and approaches that will be used in processor testing, the expected 

behaviour of an appropriate design, defining functional coverage models and functional 

specifications of the verification, and finally the testing strategy; such major decisions 

must be taken in the verification planning phase [4]. 

Due to complex aspects of an IC design, these processes tend to be very challenging; 

during the past decade alone, average time spent by verification engineers to verily the 

complete functionality of their designs wasted more than 60 percent of the total design 

time. Even developers of smaller chips and FPGAs designs are facing difficulties with 

former verification approaches. The wanted goal of verification is becoming more 

difficult to achieve using conventional verification techniques, and hence solving this 

issue requires a detailed review of common testing methodology. 

Directed testing was more convenient for testing single functionalities, however, it is 

hard to hit more complex scenarios using only directed testing. On the other hand, 

constrained-random verification (CRV) can be very efficient in tackling processor 

verification challenges, such as: complex instruction sets, multiple pipeline-stages, in 
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order or out of order execution strategies, instruction parallelism, and multi precision 

operations. The most important module of a CRV environment is the test-case 

generator, which plays a very significant role in most of the recent approaches towards 

developing automated processor verification environments. A test-case generator 

generates a large set of valid test cases in a pseudo-random way, controlled and guided 

by constrained randomness. The development of such test generators has started to get 

the attention of functional verification engineers, and researchers since the early 2000s. 

However, the development of these generators has been categorized as a software 

problem due to poor and weak features of Hardware Description Languages (HDLs) 

available back then in terms of verification and software, like Verilog and VHDL [4]. 

However, recent efforts have been spent towards the utilization of SystemVerilog 

features as a Hardware Verification Language (HVL) to improve stimulus generation 

quality; and then UVM gradually dominated the verification world, as it covers these 

needs. UVM is a powerful verification methodology that was designed to be able to 

verify a variety of different design sizes and design types that could be in Verilog, 

SystemVerilog, VHDL, and SystemC code. It is an open source SystemVerilog library 

allowing creation of flexible, reusable verification components and assembling 

powerful test environments utilizing constrained random stimulus generation and 

functional coverage models [8]. It is based upon the three C’s of random verification: 

[12] 

1- Checkers: As long as the stimulus is automated, in addition you have to write self-

checking test benches in SystemVerilog.  
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2- Coverage: The question “Are we done yet?” have to be answered, as in addition is 

known as “Functional Coverage”, it is about recording the progress during a 

verification run and identifying how thoroughly the design have been exercised.  

3- Constraints: What if holes have been covered, or if the design have not been 

exercised thoroughly enough. That is where constraints come into play, the 

constraints have to be increased on those random vectors in order to increase test 

coverage. 

A UVM test bench is composed of verification components that are encapsulated, 

reusable, ready-to-use, and configurable elements; checking an interface protocol, a 

design sub-module, or a full system. The architecture of each component is logical. It 

includes a complete set of elements enabling the stimulation, check and collection of 

coverage information related to the specific protocol or design. This test bench 

instantiates the Design under Test module and the UVM Test class, then configures all 

connections between them. Module-based components are instantiated under the UVM 

test bench as well. The UVM Test is dynamically instantiated at run-time, allowing the 

UVM test bench to be compiled once and run with many different tests. All complex 

test benches may be architected as shown in Fig. 1 with little or more modification 

depending on the design complexity. The proposed implementation will be explained 

in details during Chapter 3. 
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Fig. 1 UVM block diagram. 

The overall verification environment can be tweaked by individual separately-written 

tests. It is typically a small piece of UVM code and that test would then customize the 

behavior of the complete verification environment in order to direct it in some way to try 

to test some particular feature of the DUT (interesting case). 

2.2 Soft Processors [13]-[24] 

A soft microprocessor (or a soft core) is considered Register transfer logic (RTL) code 

that describes a specific design and capable of executing some sort of an instruction 

set. This code can then be synthesized into a net list and mapped onto a programmable 

logic such as FPGA. Unlike hard processors which are physically implemented as a 

structure in silicon. The main advantage of soft processors is the higher configurability, 

and adjustability, as all features are written in code and thus its instruction set could be 

easily extended, modified and altered; on the other hand, increasing those capabilities 

will result in much more waste of resources and FPGA area, in addition to consuming 

more power while running at lower speeds as they are limited by fabric speed. 
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Nonetheless, some soft processors RTL is open source for research and development 

purposes, and that aligns perfectly with the used DUTs’ choices as follows: 

1- RISCY Core: A 4-stage 32-bit in order processor core based on RISC-V ISA under 

Solderpad license. In addition, some extensions were added to support embedded 

processing, hardware loops and advanced ALU instructions that are not included in 

standard RISC-V. It was first introduced in 2013 by Luca Benini as a collaboration 

between the University of Bologna and Zurich; this research work involved a team 

of 50-60 members with concentration on programmable systems that need to be 

flexible, scalable and does not waste energy. This core is fully written in Verilog 

and uses GCC as a compiler, with native support for interrupt and hardware 

synthesis. The core under consideration runs at 500 MHz, can interface with all 

basic peripherals like SPI, I2C, UART & JTAG Debug interface, and interfaces 

with both AXI/APF for high speed and low speed peripherals respectively [20], 

[21], and [22]. 

2- Leon 2.4: A 5-stage 32-bit processor core based on SPARC V8 ISA under GPL 

license. This project was initiated by the European Space Agency (ESA) in 1997 to 

develop a high-performance processor for their projects and future requirements. 

Later, it was developed even more for embedded applications with some features 

like: support for multi-core systems, separate data and instruction caches, 

hardware-based multiplier and divider, a memory management unit, interrupt 

controller, and finally an on-chip AMBA bus. This core is entirely written in 

VHDL, and in addition support both FPGA and ASIC synthesis [23]. 
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3- Amber a23: A 3-stage 32-bit processor core based on ARM V2a ISA under LGPL 

license and hosted on the OpenCores website. It was developed in Verilog2001 and 

optimized for FPGA synthesis. Amber 23 is capable of 0.75 DMIPS per MHz, has 

a unified instruction and data cache, and communicates its data through wishbone 

bus interface. It can boot a Linux 2.4 kernel and its project does include a pre-made 

FPGA initialization, as well as peripheral support for UART, timer controller, 

interrupt controller, a test module and an Ethernet MAC [24]. 
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CHPATER 3: THE PROPOSED SOLUTION AND 

METHODOLOGY 

 
Building a generic environment to verify different soft processors becomes a great demand 

nowadays, however to build an efficient and professional test bench, proper verification 

steps must be done, and followed in an effective manner to get the required results. 

Therefore, the proposed solution steps are as following:  

1)  Understanding the design specifications: studying the architecture of the desired 

DUT to be verified using the available data sheets and documentations. The case study 

here is on the three different open-source cores; those are previously mentioned before 

[25]. 

2)  Creating a verification plan: based on the study done on the DUTs, a general 

verification plan is set, which consists of four main layers as shown Fig. 2: 

 

Fig. 2 The general verification plan layers 
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• The instructions layer: Where the specifying of instructions needed to be verified 

(functional verification) for each core (What to verify?). 

• The interface layer: Where the determination of the I/O ports of the core in a black-

box approach (I/O ports of the top-level module of the core). 

• The functionality testing layer: Where the instructions needed to be verified are 

divided in a table into functions, then each function is divided into a group of 

instructions with different types, followed by a description of the test applied on 

each instruction in this group with the coverage bits detailed division. An example 

of the functionality testing table for the “add” instruction is shown in TABLE I 

(How to verify?) [26], [27]. 

• The Negative testing layer: In which the core is fed with invalid input data to check 

if it is behaving as expected or not, for invalid input data; whether the test bench 

shows any error message when it is supposed to and does not show any error 

message when it is not supposed to. In other words, checking that to what extent 

the core keeps itself stable in different situations for invalid input data for which it 

is not designed. 

3) Identifying the verification methods required: In the proposed solution, the 

Simulation Based Verification is used, where constrained-random stimuli are generated 

for the design under test, then a golden reference (the scoreboard) is used to generate 

the expected output, which is then compared to the actual output determining the 

validity of the design functionality. (What should be?) 

4) Building the verification environment (this part will be covered in an abstraction 

level in the next section of this chapter, and in great details in Chapter 4).  
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5) Executing the plan: Developing and running the tests, finding bugs, and debugging to 

make sure that the bug is a flaw in the DUT, not a problem with the verification 

environment itself. 

Table 1 Functional Testing Description. 

Func. Inst. Cores 

Leon 2.4 Ri5cy Amber a23 

Arith. Add Testing that the 

output register 

x[rd] has the result 

of adding register 

x[rs2] and x[rs1]. 

Testing that the 

output register 

x[rd] has the result 

of adding the 

contents of 

register x[rs2] and 

register x[rs1]. 

Arithmetic 

overflow is 

ignored. 

Testing that the 

output register 

x[rd] has the 

result of adding 

register x[rn] and 

x[rm]. 

*Inst[31:30]→ 

[2'b10] 

*Inst[29:25]→ 

[5'bxxxxx] 

*Inst[24:19]→ 

[6'b’000000] 

*Inst[18:14]→ 

[5'b’xxxxx] 

*Inst[13]→ 

[1'b0] 

*Inst[12:5]→ 

[8'b00000000] 

*Inst[4:0]→ 

[5'bxxxxx] 

* Inst[31:25]→ 

[7b’0000000] 

*Inst[24:20]→  

[5’bxxxxx] 

*Inst[19:15]→ 

[5’bxxxxx] 

*Inst[14:12]→ 

[3’b000] 

*Inst[11:7]→ 

[5’bxxxxx] 

*Inst[6:0]→ 

[7’b0110011] 

* Inst[31:28]→ 

[4’bxxxx] 

*Inst[27:20]→  

[8’b00001000] 

*Inst[19:16]→ 

[4’bxxxx] 

*Inst[15:12]→ 

[4’bxxxx] 

*Inst[11:4]→ 

[8’b00000000] 

*Inst[3:0]→ 

[4’bxxxx] 

 

The main goal of the proposed methodology is to obtain a generic verification environment 

using a generic UVM test bench to verify different soft processors. Fig. 3 shows the 

hierarchy of the proposed generic UVM test bench (this hierarchy will be explained and 

covered in details in Chapter 4).  
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Fig. 3 The generic UVM test bench hierarchy. 

The flow of the hierarchy works as following: 

• The top module instantiates the test and the interface. 

• The test instantiates the environment and the sequence (which is extended from the 

parent sequence) 

• The environment instantiates the agent, the scoreboard, and the monitors. 

• The scoreboard instantiates the history. 

• The agent instantiates the sequencer and the driver.  

The proposed verification approach allows the designated user to use the proposed generic 

UVM with any soft processor of the three previously mentioned open-source cores (or any 

available core with the same instructions and with a similar mechanism) after attaching, 

and connecting a few things to the test bench: 

1.  The DUT itself (RTL implementation code). 

2.  The Core Package (and its related files): Includes all the core instructions, the format 

mapping of each one of the instructions, and some core specific defines.  
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3.  The Core Interface: Includes input and output ports for the top-level-module of the 

core, in addition to pre-defined functions that the driver uses to drive instructions or 

data to the DUT. 

4.  The Sequence: Where the determination of the sequence, and behavior of how to verify 

the instructions. This child sequence inherits a parent shared, and pre-programmed 

sequence file (in the sequencer). 

5.  Running the Test file: Every child sequence has its own test to be instantiated, and 

triggered. 

6.  Header files connected to the scoreboard contain the test cases of the instructions 

needed to be verified that are included in the core package. 
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CHPATER 4: IMPLEMENTATION 

 
In this chapter, the implementation of the proposed generic UVM (GUVM) environment 

will be discussed in details. 

Fig. 4 shows the hierarchy of the proposed implementation. 

 

Fig. 4 The generic UVM implementation. 

As the hierarchy consists of two main folders as following:  

•  DUT implementation: The RTL implementation code of the DUT needed to be 

verified (Xcore). 
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•  Verification: Where the actual code of the test bench is organized into three main sub-

folders as following: 

o common: Where the main generic components of the test bench are instantiated 

and triggered. 

o testing_X: Where the DUT specific files are instantiated and triggered. 

o run: Where running the test bench using a python scripts take place with a great 

flexibility. 

Following, the contents of each sub-folder will be discussed in details: 

4.1 common: 

It consists of a number of files and sub-sub-folders connected to each other to form the 

generic components of the proposed test bench: 

a. tests: a sub-sub-folder contains a number of files (child tests) to run with the 

proposed test bench such as, “add_test.sv”, all these child tests are extended from a 

parent test: “GUVM_test.sv”: 

1. “GUVM_test.sv”: Where the parent test (GUVM_test) is extended from the 

(uvm_test) base class, it is registered with the UVM factory, then the constructor 

of the new class is declared. The generic environment (GUVM_env), the generic 

parent sequence (GUVM_sequence), and the UVM command line processor 

class (uvm_cmdline_processor) are declared to be instantiated and created at the 

build phase as shown in Listing 1. Then the objection has been raised at the run 

phase to let (uvm_cmdline_processor) get the required arguments, and start the 

sequencer responsible for sending the transactions or the sequence items to the 

driver (GUVM_driver). More details related to the arguments of 
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(uvm_cmdline_processor) are in Section 4.1.b.1, and more details related to the 

sequencer, and the generic driver (GUVM_driver) are in Section 4.1.e, and 

Section 4.1.f. 

Listing 1 The parent test file (GUVM_test). 

 

2. “Xtest_test.sv”: Where this child test is extended from the generic parent test 

(GUVM_test), it is registered with the UVM factory, then the constructor of the 

new class is declared. The generic environment (GUVM_env), the child 

sequence (GUVM_sequence) and the UVM command line processor class 

(uvm_cmdline_processor) at the build phase are instantiated and created. Listing 

2 shows the child test (add_test) used with the child sequence (add_sequence). 

More details related to the arguments of (uvm_cmdline_processor) are in 

Section 4.1. b.1. 

 

 



19 

 

Listing 2 A child test file (add_test). 

 

3. “GUVM_tests.svh”: Where the files of all the parent and child tests are included. 

b. sequences: A sub-sub-folder contains a number of files (child sequences) that get 

instantiated by the child tests previously such as, “add_seq.sv”, all these child 

sequences are extended from a parent sequence: “GUVM_sequence.sv”: 

1. “GUVM_sequenec.sv”: Where (GUVM_sequence) is extended from the 

(uvm_sequence) base class, it is registered with the UVM factory, then the 

constructor of the new class is declared. As shown in Listing 3, it contains a 

group of functions and tasks as following that can be called in the child 

sequences: 

• clp(): After getting the argument using (uvm_cmdline_processor), this 

argument such as, “A” (for the addition instruction) will be stored in a string 

type variable to be used with the child sequences later. More details related 

to the arguments of (uvm_cmdline_processor) are in Section 4.3. 

• getNop(): Function used by the child sequences to send (i) number of no 

operation instruction (NOP) with the sequence item (nop), which is 

instantiated, and created by the child sequence item (target_seq_item). 
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More details related to the target sequence item (target_seq_item) are in 

Section 4.2.e. 

• send(): Function used by the parent sequence (called inside another 

function), or by the child sequences to send any sequence item as (target) 

sequence item which is instantiated, and created by the target sequence item 

(target_seq_item). More details related to the target sequence item 

(target_seq_item) are in Section 4.2.e. 

• copy(): Function used by the child sequences to make a copy of the sequence 

item (target) to a new sequence item (x), which is instantiated, and created 

by (target_seq_item). More details related to the target sequence item 

(target_seq_item) are in Section 4.2.e. 

• resetSeq(): Function used by the child sequences to reset the generic history 

transaction (GUVM_history_transaction). More details related to the 

generic history transaction (GUVM_history_transaction) are in Section 

4.1.k. 
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Listing 3 The parent sequence file (GUVM_sequence) 

 

2. “Xseq_seq.sv”: This child sequence is extended from the generic parent 

sequence (GUVM_sequence), the constructor of the new class is declared and, 

it is registered with the UVM factory. The sequence items are defined as 

(target_seq_item) needed for this child sequence specifically, then a task is 

instantiated with a finite number of iterations where the sequence items defined 

previously are created, and are used with the pre-defined functions inside the 

parent sequence to build the behavior, and sequence to test the instruction. 
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Inside the task, the child sequences can call other pre-defined functions, or tasks 

-other than the functions, or tasks inside the parent sequence, inside the target 

sequence item (target_seq_item), or the target package (target_pkg), for 

example: 

• ran_constrained(): Function used to randomize the non op-code fields of a 

certain instruction. More details related to this function are in Section 4.1.c. 

• load(): Function used to specify the input (load) register address. More 

details related to this function are in Section 4.2.d. 

• store(): Function used to specify the output (store) register address. More 

details related to this function are in Section 4.2.e. 

• setup(): Function used to set-up the instruction format fields. More details 

related to this function are in Section 4.2.e. 

• findOP(): Function used to return the instruction corresponding to a string 

input parameter  from the package. More details related to this function are 

in Section 4.2.c. 

 

 

 

 

 

 

Listing 4 A child sequence file (add_seq). 
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The child sequences can control the mode of the generic scoreboard 

(GUVM_scoreboard) with the following mechanism: The default mode is 

the history mode (SB_HISTORY_MODE), where the generic history 

transaction  (GUVM_history_transaction) is updated with the created 

sequence items and the transaction of outputs of the DUT using the generic 

command monitor (GUVM_cmd_monitor), and the generic result monitor 

(GUVM_result_monitor) after broadcasting these sequence items by the 
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generic driver (GUVM_driver) to the interface of the DUT, then the mode 

is changed to the verification mode (SB_VERIFICATION_MODE) where 

the scoreboard checks the output of the DUT with a  calculated golden 

reference. More details related to the generic scoreboard 

(GUVM_scoreboard) and the generic result transaction 

(GUVM_result_transaction) are in Section 4.1.j, and Section 4.1.i, and 

more details related to the generic command monitor 

(GUVM_cmd_monitor), the generic result monitor 

(GUVM_result_monitor), and the generic driver (GUCM_driver) are in 

Section 4.1.g, Section 4.1.h, and Section 4.1.k. 

 Note that the instruction can have its own child sequence, or the same 

sequence can be shared with more than one instruction. Listing 4 shows the 

child sequence (add_seq) that can be used as the child sequence of the 

arithmetic, shift and logic groups of instructions. 

3. “GUVM_tests”: Where the files of all the parent and child sequences are 

included. 

c. “GUVM_sequence_item.sv”: A file where the parent sequence item 

(GUVM_sequence_item) is extended from (uvm_sequence_item) base class, it is 

registered with the UVM factory, some logic variables as shown in Listing 5, and 

Listing 6 are defined, then the constructor of the new class is declared. The parent 

sequence item contains a group of functions as following, that can be called in the 

child sequences, as well as the child sequence items such as target_seq_item: 
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• ran_constrained(): Function used to randomize the non-opcode fields of a 

certain instruction. It receives the 32 bits of the instruction coming from the 

package, then it calls another function (generate_instruction()) where the non-

opcode fields are constrained-randomized, then it is assigned to the previously 

defined (inst) variable along with the randomized data assigned to (data). 

• generate_instruction(): Function used to constrained-randomize the non-

opcode fields of the instruction with the following mechanism: it checks each 

bit of the 32 bits of the instruction starting from the least significant bit (LSB), 

if it is not “1” or “0” (it is “x”), the function will convert it to “1” or “0” 

randomly, then it return the constrained-randomized instruction back to be 

assigned to the (inst) variable.    

• do_compare(): Function used if desired to compare the contents, and objects of 

the given two sequence items; if they are the same, it returns “1”.   

• do_copy(): Function used if desired to copy the contents, and objects of the 

sequence item to another sequence item. 

• convert2string(): Function used if desired to convert the 32 bits of the 

instruction of the sequence item to its name, or argument. 
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Listing 5 The parent sequence item (GUVM_sequence_item). 
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Listing 6 The parent sequence item: do_compare(), do_copy() and, 

convert2string() functions. 

    

d.  “GUVM_env.sv”: A file where (GUVM_env) is extended from (uvm_env) base 

class, it is registered with the UVM factory, then the constructor of this new class is 

declared. The generic agent (GUVM_agent) is defined, the generic result monitor 

(GUVM_result_monitor), the generic command monitor (GUVM_cmd_monitor), 

and the generic scoreboard (GUVM_scoreboard) are instantiated, and created at the 

build phase as shown in Listing 7, then (GUVM_cmd_monitor) is connected to 

(GUVM_scoreboard) through (MonA2Sb_port), and (GUVM_result_monitor) to 

(GUVM_scoreboard) through (MonB2Sb_port) at the connect phase. More details 

related to these ports are in Section 4.1.g, and Section 4.1.h. 
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Listing 7 The generic environment (GUVM_env). 

 

e.    “GUVM_agent.sv”: A file where (GUVM_agent) is extended from (uvm_agent) 

base class, it is registered with the UVM factory, then the constructor of this new 

class is declared. The generic driver (GUVM_driver), the sequencer -used to 

generate data transactions as class objects (target_seq_item) and send it to the driver 

(GUVM_driver) for excution are defined. The sequencer is exended from 

(uvm_sequencer) base class- to be instantiated, and created at the build phase as 

shown in Listing 8. Then the (seq_item_port) in the driver is connected with 

(seq_item_export) in the sequencer, so that the driver can use the TLM functions to 

get the next item from the sequencer when required. More details related to the 

generic driver (GUVM_driver) are in Section 4.1.f. 
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Listing 8 The generic agent (GUVM_agent). 

 

f.    “GUVM_driver.sv”: A file where (GUVM_driver) is extended from (uvm_driver) 

base class, it is  registered with the UVM factory, then the constructor of this new 

class is declared. The interface (GUVM_interface) is defined as a virtual  one (bfm), 

then the UVM configuration data base (uvm_config_db) is used to pass objects 

between the defined virtual interface (bfm) and (GUVM_driver) at the build phase 

as shown in Listing 9. Then the run phase is started in a forever loop to trigger the 

interface and let it accesses the DUT, passes the generated sequence items (stimuli) 

that are coming from the sequencer (from the child sequences) through the driver as 

(target_seq_item) to the DUT, receives the outputs of the DUT, and passes them to 

the monitors by calling a group of fucntions, and tasks inside this interface as 

following: 

• reset_dut() and set_Up(): Tasks used to trigger the interface to reset and setup 

the DUT with the proper signals. More details related to these tasks are in 

Section 4.2.x. 
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• send_data() and send_inst(): Tasks used to trigger the interface to send the 

coming sequence items and its contents (the instruction and the data) to the 

DUT. More details related to these tasks are in Section 4.2.x. 

• update_result_monitor(): Task used to trigger the interface to send the outputs 

from the DUT to the generic result monitor (GUVM_result_monitor). More 

details related to this task are in Section 4.1.h, and Section 4.2.x. 

• update_command_monitor(): Function used to trigger the interface to send the 

coming sequence item from the  generic driver driver (GUVM_driver) to the 

DUT, to the generic command monitor (GUVM_cmd_monitor). More details 

related to this function are in Section 4.1.g, Section 4.2.x. 

• toggle_clk(): Task used to trigger the interface to toggle the DUT clock (i) 

given times. More details related to this task are in Section 2.2.x. 

 The generic driver (GUVM_driver) is additionally used to reset the history 

of the scoreboard if the scoreboard mode set by the child sequences is the 

reset mode (SB_RESET_MODE). More details related to the generic 

scoreboard (GUVM_scoreboard) are in Section 4.1.j. 
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Listing 9 The generic driver (GUVM_driver). 

 

g. “GUVM_cmd_monitor.sv”: A file where the generic command monitor 

(GUVM_cmd_monitor) is extended from (uvm_component) base class, then it is 

registered with the UVM factory. (MonA2Sb_port) is defined as an extension from 

(uvm_analysis_port) that can deal with the parent sequence item and its extended 

child sequence items, then the constructor of this new class is declared. Then the 

interface (GUVM_interface) is defined as a virtual interface (bfm), then the UVM 

configuration data base (uvm_config_db) is used to pass objects between the defined 

virtual interface (bfm) and (GUVM_cmd_monitor) at the build phase as shown in 

Listing 10. Additionally, (MonA2Sb_port) is created between 

(GUVM_cmd_monitor) and (GUVM_scoreboard) at the build phase after it is 

already defined. Then (GUVM_cmd_monitor) is connected with the virtual 
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interface (bfm) at the connect phase, then a void function (write_to_cmd_monitor()) 

is created to receive the sequence items as (target_seq_item) that are coming from 

the generic driver (GUVM_driver) to the DUT, pass them to the generic scoreboard 

(GUVM_scoreboard) through (write()) function of (MonA2Sb_port), then the 

generic history transaction (GUVM_history_transaction) is updated with the new 

command sequence item. The generic command monitor (GUVM_cmd_monitor) 

can update this sequence item with a new content (current_pc) by calling a pre-

defined function (get_cpc()) in the DUT interface (GUVM_interface), only if the 

mode of the generic scoreboard (GUVM_scoreboard) is the history mode 

(SB_HISTOTY_MODE). More details related to (get_cpc()) and 

(write_to_cmd_monitor()) functions are in Section 4.2.x, and more details related to 

the generic scoreboard (GUVM_scoreboard), and the generic history transaction 

(GUVM_history_transaction) are in Section 4.1.j , and Section 4.1.k. 

Listing 10 The generic command monitor (GUVM_cmd_monitor). 
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h. “GUVM_result_monitor.sv”: A file where the generic result monitor 

(GUVM_result_monitor) is extended from (uvm_component) base class, it is 

registered with the UVM factory. (MonB2Sb_port) is defined as an extension from 

(uvm_analysis_port) that can deal with the generic result transaction 

(GUVM_result_transaction) responsible of moving the outputs, and results from the 

DUT to the generic scoreboard (GUVM_scoreboard) through 

(GUVM_result_monitor), then the constructor of this new class is declared. Then 

the interface (GUVM_interface) is defined as a virtual interface (bfm), then the 

UVM configuration data base (uvm_config_db) is used to pass objects between the 

defined virtual interface (bfm) and (GUVM_cmd_monitor) at the build phase, 

additionally, (MonB2Sb_port) is created between (GUVM_cmd_monitor) and 

(GUVM_scoreboard) at the build phase as shown in Listing 11. Then 

(GUVM_cmd_monitor) is connected with the virtual interface (bfm) at the connect 

phase, then a a void function (write_to_result_monitor()) is created, that receives 

the desired outputs from the DUT such that, output data, output address, and output 

data write enable signal, and assigns them to a new defined and created transaction, 

then passing it to the generic scoreboard (GUVM_scoreboard) through (write()) 

function of (MonB2Sb_port), then the generic history transaction 

(GUVM_history_transaction) is updated with the transaction. More details related 

to (write_to_cmd_monitor()) fucntion are in Section 4.1.x, more details related to 

(GUVM_result_transaction) are in Section 4.1.i, and more details related to the 

generic scoreboard (GUVM_scoreboard), and the generic history transaction 

(GUVM_history_transaction) are  in Section 4.1.j , and Section 4.1.k. 
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Listing 11 The generic result monitor (GUVM_result_monitor). 

 

i. “GUVM_rersult_transaction.sv”: A file where the generic result transaction 

(GUVM_result_transaction) is extended from (uvm_transaction) base class, then the 

constructor of this new class is declared. The items needed to be transported by 

(GUVM_result_transaction) from the interface DUT (GUVM_interface) to the 

generic result monitor (GUVM_result_monitor) all the way the generic scoreboard 

(GUVM_scoreboard) are defined as shown in Listing 12. More details related to the 

generic scoreboard (GUVM_scoreboard) are in Section 4.1.j, and more details 

related to the generic result monitor (GUVM_result_monitor) are in Section 4.1.h.  

Additionally, a group of functions are created as following those can be used if 

desired: 

• do_compare(): Function used if desired to compare the contents, and objects of 

the given two transactions; if they are the same, it returns “1”.   
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• do_copy(): Function used if desired to copy the contents, and objects of the 

transaction to another transaction. 

• convert2string(): Function used if desired to convert the 32 bits of the 

instruction of the sequence item to its name, or argument. 

Listing 12 The generic result monitor (GUVM_result_monitor). 

 

j. “GUVM_scoreboard.sv”: A file where the generic scoreboard 

(GUVM_scoreboard) is extended from (uvm_scoreboard) base class, the analysis 

implementation ports are defined with names after defining them with macros, then 

the TLM FIFOs is defined, which is used to store the received sequence items from 

the generic command monitor (monA_fifo), and the transactions from the generic 

result monitor (monB_fifo), then the constructor of this new class is declared. The 

defined ports and FIFOs are instantiated, and created at the build phase as shown in 
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Listing 13, then two new void functions are created: (write_monA_trans) function, 

which is called when the generic command monitor (GUVM_cmd_monitor) 

broadcasts a new sequence item to the scoreboard and add it to (monA_fifo), and 

(write_monB_trans) function, which is called when the generic result transaction 

(GUVM_result_transaction) broadcasts the DUT results in a new transaction to the 

scoreboard and add it to (monB_fifo). Then (cmd_trans) is defined as ( 

GUVM_sequence_item) to be able to deal with the stored sequence items inside 

(monA_fifo), and (result_trans) to be able to deal with the stored transactions inside 

the (monB_fifo) at the run phase as shown in Listing 14, additionally, (verified_inst) 

is defined, which is used to store the instruction of the new derived sequence item, 

and create after defining a new history transaction (history_tans) to store the 

received sequence item and the received transaction with the following mechanism: 

A new iteration inside the forever loop occurs, then the FIFOs release the sequence 

item and the transaction related to the (verified_inst), then these  are stored inside 

the history transaction using (addItem()) function, this function is pre-defined inside 

the generic history transaction (GUVM_histoty_transaction), if the mode of the 

scoreboard set by the child sequence is the reset mode (SB_RESET_MODE), the 

generic history transaction will be reset, however, if the mood is different, The 

verification is continued and checking if (verified_inst)  exists or not inside the 

instruction array filled by the core package (si_a[]) using (xist1()) function, if it 

does not exist, an error message is displayed, if it exists, a case condition checks the 

name of the instruction such as, “A”, “M”, and “Load” to choose the proper test case 

to execute -from a group of header files included to the scoreboard by the included 
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file “GUVM_tb.sv”- by calling the pre-defined function of the chosen header file, 

for example, “verify_add()”, this function takes -as input arguments- the generic 

command monitor sequence item, the result generic monitor transaction and the 

generic history transaction. These header files use the history to check if the outputs 

of the DUT equal to the calculated results or not. At the end, if the mode of the 

scoreboard is changed to the verification mode (SB_VERIFICATION_MODE), it 

prints out all the contents of the history along with the calculated result defining if 

the instruction successfully passes the functionality test or not. More details related 

to the generic history transaction (GUVM_history_transaction) are in Section 4.1.k, 

and more details related to the header files of the test cases are in Section 4.1.l. 
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Listing 13 The generic scoreboard (GUVM_scoreboard). 
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Listing 14 The run phase of the generic scoreboard (GUVM_scoreboard). 

 

k. “GUVM_history_transaction.sv”: A file where the generic history transaction 

(GUVM_history_transaction) is extended from (uvm_transaction) base class, then 

the constructor of this new class is declared. Then two new structures are declared: 

one used to store the sequence items and the transaction coming from the monitors 

(item), and another one used to store any data of a certain address (reg_history) as 
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shown in Listing 15, then the structure (reg_file[]) -a virtual register file- as 

(reg_history) and the structure (item_history[]) as (item) are created. The generic 

history transaction (GUVM_history_transaction) contains a group of functions that 

can be called by the generic scoreboard (GUVM_scoreboard), or the header files of 

the test cases as following: 

• reset(): Function used by the generic scoreboard (GUVM_scoreboard) to clear 

the contents of the  structures explained above. 

• addItem():  Function used by the generic scoreboard (GUVM_scoreboard) to 

add the received transactions and sequence items from the monitors to the 

(item_history[]) structure.  

• printItems(): Function used by the generic scoreboard (GUVM_scoreboard) to 

print contents of the (item_history[]) structure. 

• Loadreg(): Function used by the test cases header files to load, and save given 

data of a specific given address -as inputs to the functions- inside the virtual 

register file (reg_history[]) to be used when desired. 

• get_reg_data(): Function used by the test cases header files to get, and summon 

the stored data inside the virtual register file (reg_history[]) related to an address 

given as an input. 
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Listing 15 The generic history transaction (GUVM_history_transaction). 

 

l. inst_h: A sub-sub-folder contains the header files of all the test cases of the 

instructions of the desired core to be functionally tested, and verified. All these 

header files are connected to the generic scoreboard (GUVM_scoreboard) and the 

generic history transaction (GUVM_hsitory_transaction) to check the outputs of the 

DUT, and compare them with the calculated results, for example, “add.svh”. 

• “Xinst.svh”: A file where the created function that is called at the run phase in 

the generic scoreboard (GUVM_scoreboard) to handle the test case of the 

desired instruction, where this function receives the command monitor sequence 

item (cmd_trans), the result monitor transaction (result_trans) and the history 

transaction (history_trans). Listing 16 shows the testing function of the add 
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instruction, first (i1) and (i2) are defined as the first and the second operands of 

the add instruction, then they are assigned with the actual randomized data by 

using a pre-defined function inside the generic history transaction 

(get_reg_data()), this function takes the addresses of the source registers of the 

addition instruction, then it returns the register stored data related to each address 

from a virtual register file, these data are previously stored inside the virtual 

register file  of the generic history transaction by the (load) sequence items sent 

by the child sequence (add_seq) before the addition sequence item. Next the 

mode of the generic scoreboard is checked, if it is the default history mode 

(SB_HISTORY_MODE), A defined golden reference (h1) is set by calculating 

the summation of the two operands, then the virtual register file is updated with 

calculated golden reference (h1) using the destination register address -to be 

used later when desired such as, for comparison- using the pre-defined 

(loadreg()) function of the generic history transaction. Noting that this 

(loadreg()) function is used by any sequence item to store its contained data in 

the virtual register file, only if the mode of the scoreboard is the default history 

mode). However, if the mode is the verification mode 

(SB_VERIFICATION_MODE), the comparison between the golden reference 

(h1) and the stored output of the DUT (inside the result transaction) begins with 

the following mechanism: the items of the history transaction are searched for 

the DUT data result of the addition instruction included, and contained by the 

stored result transaction and assign it to a new defined variable (hc), then the 

calculated golden reference is obtained back from the virtual register file (h1), 
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then checking if  (h1) and (hc) are equal or not, if they are equal, the addition 

instruction successes and passes the functionality testing, if not, an error 

message printed out referring to the failure of this instruction in the core. More 

details related to the generic history transaction (GUVM_history_transaction) 

are in Section 4.1.k, and more details related to the generic scoreboard 

(GUVM_scoreboard) are in Section 4.1.j. 

Listing 16 The header file of the addition instruction. 

 

m. “GUVM_tb.sv”: where the header files of all the test cases of the instructions of the 

core for functionality testing ware included. 

n.  “GUVM.sv”: where the modes of the generic scoreboard (GUVM_scoreboard) are 

defined, additionally includes all the files and sub-sub-folders of the common sub-

folder of the test bench to be included with the (testing_Xcore) sub-folder as shown 

in Listing 17. 
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Listing 17 Contents of “GUVM.sv” file. 

 

4.2 testing_Xcore:  

It consists of a number of files connected to each other and to the common folder to 

form the complete generic UVM environment. 

a. “top.sv”: A file where the top module of the test bench is declared, where 

(uvm_pkg), (uvm_macros) and the target package (target_pkg) of the core 

containing the core specific instructions needed to be verified are imported and 

included. Addionally, the DUT is instantiated by port mapping the ports of the top 

module (the inputs and the outputs of the DUT) and they are instantiated inside the 

interface (GUVM_interface) that is defined as a virtual interface (bfm), then the 

UVM configuration data base (uvm_config_db) is used to pass objects between the 

virtual interface (bfm) and the top module at the build phase as shown in Listing 18. 

(fill_si_array()) function defined in the target package (target_pkg) is called, this 

function fills an array with the instructions of the core to be used later by the generic 

(GUVM_scoreboard). In addition to that, the top module used to trigger, and run the 

test that is defined as an input argument in (run.py), additionally, the top module is 
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used to instantiate the clock signal sent by the interface to the DUT. More details 

related to the target package (target_pkg) are in Section 4.2.c, and more details 

related to the generic scoreboard (GUVM_scoreboard) are in Section 4.1.j. 

Listing 18 The top module of the test bench. 

 

b. “Xcore_defines.sv”: A file where some core specific parameters that can be used 

through the test bench are defined. 

c. “target_pkg.sv” (≡ “Xcore_pkg.sv”): A file where (uvm_pkg), (uvm_macros), 

(Xcore_defines) and (GUVM) -that includes the main components of the test bench- 

are included as shown in Listing 19. Then a user-defined enumeration logic data 

type (opcode) is defined that contains the 32 bits of all the core specific instructions 

needed to be verified, Then a new array (si_a[]) with the user-defined data type 

(opcode) used to store these opcodes is defined, to be used later with the generic 

scoreboard (GUVM_scoreboard), this array is filled by the void new function 

(fill_si_array()) that is called by the top module of the test bench (top), where the 

pre-defined function (first()) is used to get the first opcode (instruction), then the 
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pre-defined function (second()) is used with the number of the supported 

instructions (supported_instructions) in a for loop to fill the array with the supported 

opcodes as shown in Listing 20. In addition to that, a new void function (xis1()) is 

created, that is called by the generic scoreboard (GUVM_scoreboard) to check if the 

previously explained (verified_inst) -of the coming sequence item- already exists 

and supported inside the enumeration data type (opcode) or not by comparing the 

fixed bits (that the constrained randomization don’t affect, or change) of 

(verified_inst) with the bits of all the elements (instructions) of the array (si_a[]), 

and return “1” if they are the same. Then another function (findOP()) is created with 

the (opcode) user-defined data type used by the child sequences to return the opcode 

of an instruction after getting its name, or argument. More details related to the 

generic scoreboard (GUVM_scoreboard) are in Section 4.1.j, and more details 

related to the top module of the test bench are in Section 4.2.a. 
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Listing 19 The Xcore/target package (target_pkg). 

 

Listing 20 The functions of the target package (target_pkg). 
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d. “GUVM_interface.sv” (≡ “Xcore_interface.sv”): A file where a new interface is 

created to deal directly with the DUT. Firstly, the target package (target_pkg) is 

imported, then the ports of the DUT instantiated by the top module (top) are defined, 

then the generic command monitor (GUVM_cmd_monitor) and the generic result 

monitor (GUVM_result_monitor) are defined to be used with the contained 

functions and tasks. A clocking mechanism is created, which is used to stop the 

clock of the core after the pipeline is completed to reduce the simulation time by 

creating a pseudu clock (clk_pseudo) that is instantiated in the top module (top) as 

the clock of the DUT, this (clk_pseudo) follows and copies the top module generated 

input clock (clk); if toggling the clock is needed, (allow_pseudo_clk) is set to “1”, 

then (clk_pseudo) is toggled for a given number of cycles, then (allow_pseudo_clk) 

is set back to “0”. More details related to the target package (target_pkg) are in 

Section 4.2.c, and more details related to the generic scoreboard 

(GUVM_scoreboard) are in Section 4.1.j. 

The interface of the DUT (GUVM_interface) as shown in Listing 21, contains a 

group of functions, and tasks used by the generic driver (GUVM_driver) to control 

the input and the outputs of the DUT as following: 

 

 

 

 

 

 



49 

 

Listing 21 The core (DUT) interface (GUVM_interface). 

 

• toggle_clk(): Task used to toggle the DUT clock for (i) given times with the 

(clk_pseudo) clocking mechanism.  

• reset_dut(): Task used to reset the DUT (the pipeline of the core). 

• set_Up(): Task used to setup the DUT with the proper inputs and signals, these 

signals control the modes of operation of the DUT, the interrupt status, etc.  

• send_data(): Task used to send the data contents of the incoming sequence 

items to the DUT through the proper port. 
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• send_inst(): Task used to send the instruction content (inst) of the coming 

sequence items to the DUT through the proper port. 

• update_result_monitor(): Task used to send the outputs from the DUT to the 

generic result monitor (GUVM_result_monitor).  

• update_command_monitor(): Function used to send the incoming sequence 

item -from the  generic driver (GUVM_driver) to the DUT- to the generic 

command monitor (GUVM_cmd_monitor). 

e. “target_sequence_item.sv” (≡ “Xcore_sequ_item”): A file where the target 

sequence item (target_seq_item) is extended from the parent sequence item 

(GUVM_sequence_item), it is registered with the UVM factory as shown in Listing 

22, then the constructor of this new class is declared. Then the fields of instructions 

of the core (the formats of the instructions) are defined, as each core has a different 

way of dividing the fields of the 32-bit instructions.  
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Listing 22 The target sequence item (target_seq_item). 

 

The target sequence item (target_seq_item) contains a group of functions that 

can be called by the child sequences as following: 

• setup(): Function used by the child sequences to get the formats of the 

instructions needed to be verified by calling (get_format()) function.  

• get_format(): Function used to specify the bits of every defined field from 

the 32 bits of the instruction. 

• store(): Function used to randomize the store instruction (store) using 

(rand_constrained()) function of the parent sequence item 

(GUVM_sequence_item) and specify the address of the destination register. 

• load(): Function used to randomize the load instruction (load) using 

(rand_constrained()) function of the parent sequence item 
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(GUVM_sequence_item) and specify the address of the source and load 

register.    

• do_copy(): Function used if desired to copy the contents of the sequence 

item (the fields of the formats of the instructions in this case). 

4.3 run:  

This sub-folder contains a python script file (run) connected to a number of TCL files 

to run the test bench and verify the desired DUT (from the proposed three open-source 

cores), these TCL files used to compile the DUT and the test bench files. 

• “run.py”: A python script file used with a great flexibility to control the test bench, 

it uses the TCL files to compile the DUT and the test bench as desired: it provides 

compiling only the DUT, compiling only the test bench, or compiling both of them. 

After compiling, the simulation is started by choosing the suitable test to simulate 

the top module of the test bench as shown in Fig. 5. 

 

Fig. 5 The flow of the python script (run file). 
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For example, add_test, this test triggers the related child sequence such as add_seq, 

then the needed instruction to be verified is chosen, by choosing the argument related 

to this instruction, like “A” for the addition instruction, then the simulation is started. 
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CHPATER 5: AN ILLUSTRATIVE EXAMPLE 

 
In this chapter an illustrative example is shown in steps how the functionality of the 

addition instruction (add) is tested, starting from the python script all the way to the 

outputs, and results transcript as following: 

1.  The DUT is compiled and the test bench too. 

2.  The top module of the test bench is simulated, where the DUT and the interface of the 

DUT (Xcore_interface) are instantiated, and then choosing the test to run. 

3.  The child test -extended from the parent test (GUVM_test)- of the addition instruction 

(add_test) is chosen from the python script (run) file that will trigger the child sequence 

(add_seq) related to this instruction, or choosing the instruction first, to simulate it, if 

the chosen sequence is used for more than one instruction. This child test additionally 

triggers the generic environment (GUVM_env). 

4.  The generic environment (GUVM_env) triggers the generic scoreboard 

(GUVM_scoreboard), the monitors with their ports, and the generic agent 

(GUVM_agent). 

5.  The generic agent (GUVM_agent) triggers the sequencer and the generic driver 

(GUVM_driver). 

6.   For the sequencer, the parent sequence item (GUVM_sequence_item), and the child 

(target) sequence item (target_seq_item) are used to generate the constrained-

randomized stimuli with respect to the child sequence of the addition instruction. 

7.  The driver receives the sequence items generated with respect to the behavior of the 

sequence, and send them to the interface of the DUT as shown in Fig 6. 
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8.  The interface sends the received sequence item to the DUT for processing, and to the 

generic command monitor (GUVM_cmd_monitor) where they are delivered to the 

generic history transaction (GUVM_history_transaction) and saved to be used later 

with the scoreboard. 

9.  The DUT sends the results to the interface, then the interface delivers them to the 

generic result transaction (GUVM) where they will be received by the generic history 

transaction (GUVM_history_transaction) and saved to be used later with the 

scoreboard.  

10.  The generic scoreboard (GUVM_scoreboard) calls the header file related to the 

addition instruction where it generates golden references from the saved sequence items 

and compares them with the actual outputs of the DUT defining if the instruction 

successfully passes the functionality test or not. 

 

Fig. 6 Generic UVM for Soft Processors Test Bench Architecture. 
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CHPATER 6: VALIDATION AND RESULTS 

 
This chapter discusses the test bench experimental results including the UVM Report 

Summary. Moreover, the studied and the implemented cases including the testing scenarios 

like the verification of ALU instructions, load and store instructions, and jump instructions. 

In addition to that, the performance evaluation, comparison with related work, and 

limitations.  

6.1 Hardware Experimental Results 

After running the required test through python as discussed before, results of the test 

are logged in transcript text file in folder “trans” in the running file directory.  

First, there is a summary at the end of the results the UVM report that illustrates types 

and number of UVM reporting statements that are triggered in simulation and the 

number of passed and failed test cases as shown in Listing 23.  

Listing 23 UVM report summary for add test 

 

Secondly, there is a detailed report for each sequence iteration. UVM report consists of 

three parts: first part is displayed by the scoreboard after comparing expected results 
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calculated by the scoreboard with actual results that come from the DUT by explaining 

these results containing  the main result of the test case whether it is pass or fail as 

shown in Listing 24, second part is the dynamic register file which is displayed by the 

history transaction that contains the final values that should be saved in the core’s 

register file as shown in Listing 25, the last part is a table which is furthermore 

displayed by the history transaction that contains the values of the most important ports 

saved after sending each sequence item to the core as shown in Listing 26 and Listing 

27, those illustrate add test case instruction.  

Listing 24 First part of the detailed report for store half word test. 

 

Listing 25 The dynamic register file saved. 

 

A brief description of these ports is as follows: 

• seq_item#: Is the number of the sent sequence item. 

• pc: Contains the address of the instruction currently being executed by the Integer 

Unit. 

• inst: Is the port that instruction cache supposed to use for sending instruction to the 

core (in case of common instruction and data cache this port is common too as in 
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amber23 core when data is sent through this port to the core its saved and displayed 

at inst). 

Listing 26 History table contents for add test. 

 

• result: Is the port that core uses for sending data to data cache. 

• mem_add: Is the port that the core uses for sending address to data cache. 

• data_byte_e: Is the port that the core uses for sending data byte enable to data cache 

which is important for verifying the type of instructions that makes transaction to 

one or two bytes of data. 

Listing 27 The rest of history table content. 

 

6.2 Case Studies 

The methodology that is used for the verification of the three soft processors (RI5CY, 

LEON 2.4, and Amber a23) focuses on proving the concept of a generic UVM 

architecture that is able to verify various soft cores with the minimum effort of 

modifications and adjusting in the code of this UVM test bench. Therefore, the 

highest priority is given to the cases of instructions that are common in the three cores 
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which are used to prove that concept. There are different types of instructions that are 

common in these three cores and it is covered most of them such that: 

 ALU Instructions:  

Most of them are common in the test case that is used in their verification, they 

only differ in the used operators (e.g., +, -, *, /, XOR, OR). Checking the result 

of the arithmetic operation is enough to verify this type of functionality. In 

addition to that, there are arithmetic instructions which use flags and modify 

them such as (add with carry, sub and modify flags) which are verified by 

checking the result of the arithmetic operation considering carry flag before 

operation and arithmetic operation effect on the core flags. Listing 28 shows the 

test bench results for add with carry and modify flags instruction in LEON 2.4 

core. 
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Listing 28 Output of add with carry test 
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 Jump Instructions: 

Verified by checking pc value to be changed to the required address. In addition 

to that, there is Jump and Link instruction, which needs to check pc value and 

value in the register which saves ‘current pc’ and in another case the register 

saves ‘current pc + 1’. After studying jump cases in three cores it is noticed that 

cores behave differently when instruction cache address misalignment happens 

where LEON core crashes when misalignment happens and Amber core floors 

the address to the nearest multiple of four. Listing 29 shows the test bench 

results for Jump and Link instruction in LEON 2.4 core. 

Listing 29 Test bench results for jump and link instruction. 
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 Transaction and Memory Interaction Instructions:  

They are instructions (load, store, and swap) which make transactions of data 

between cache memory and core. After studying transaction cases in three cores 

it has been noticed that the cores behave differently when data cache address 

misalignment happens (e.g., RISCY core has misalignment feature and 

redistributes the word depending on least significant two bits in the address and 

LEON core crashes when misalignment happens). Although, RI5CY core and 

Amber core have misalignment feature, however, they redistributed the word 

differently which required different verifying cases to verify each case of those. 

Listing 30 shows the test bench results for Load Unsigned Byte instruction in 

RI5CY core. 

Listing 30 Test bench results for load unsigned byte instruction. 
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 Branch Instructions:  

This type of instructions needs to check condition to execute the branch 

operation, flag or result of operation, then check if the branch is taken or not 

and then check the address that core has to jump to. At this point, the difference 

of the cores' behavior to address misalignment is clear, in addition to the 

difference in the flags or operations that are used for the condition. Listing 31 

shows the test bench results for Branch if equal instruction in RI5CY core. 

Listing 31 Test bench results for branch if equal 
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6.3 Performance Evaluation 

This section will discuss the performance metrics of the GUVM test bench and what 

are its strength points. 

• Reusability: The test bench is written in a way that has been achieved and discussed 

throughout the chapters such that it can be reused on different processors. 

• Test plan coverage: It is to verify instructions that are common in the three ISAs 

and some of the uniquely owned for each ISA to prove the flexibility of the test 

bench.  

• Flexibility: Since each processor has its own way to handle the data and its interface 

with the memory, the way of implementing the register file and its dealing with the 

flags and their storage. Therefore, it has been a must to implement one method to 

deal with the differences and get the needed data without changing the core of the 

test bench.  

• Bug detection: no bug was found in the instructions that has been tested yet. They 

all act according to their respective ISA except the failed test cases that are expected 

and are considered as a part of the negative testing layer that has been discussed in 

the verification plan. 

6.4 Comparison with Related Work 

Some features in the conventional test bench had to be edited and modified in order to 

support different ISAs, they will be discussed in this section. 

• Randomization: Each ISA has its own instructions and instruction format with 

different fields in the instructions to be randomized, to overcome this problem a 

package was made for each processor in this package exists an enumerator (enum 
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data type) table that tells the test bench what are the instructions supported by this 

ISA and what are the fields that need to be randomized. 

• Core dependent code: The test bench was split in two categories; common code and 

core dependent code. The code dependent code was kept to a minimum and for the 

things that can vary vastly across the different implementations of the same ISA. 

This core dependent code contains the interface, package of instructions and 

instruction format.  

• Communication protocols: In this test bench all communication protocols are being 

handled by the interface itself since each processor has its own signals and 

protocols. The driver communicated with the interface in a form of methods that all 

interfaces has in common, however applying the method itself varies vastly even in 

processors with same ISA.  

• Scoreboard: Scoreboard has an adaptive history in the form of a dynamic array that 

can adapt to different register files with different sizes.   

6.5 Limitations 

Thus far, a limitation to this implementation is whether the instruction is already 

supported by this test bench or not. The instructions that are supported by the previously 

mentioned ISAs or any similar instructions based on similar ISA of the same category 

should be easily implemented with minimum effort. While the instructions that are 

completely different and are based on different ISAs (different categories) might face 

challenges with the proposed implementation, however it is believed that they can be 

tested with the same method. In addition to that, the other limitation is that Load, and 

Store instructions have to be executed correctly without errors. 



66 

 

CHPATER 7: CONCLUSION AND FUTURE WORK 

 

7.1 Conclusion  

The huge increase in the complexity of processors’ microarchitectures and the wide 

variety of extended algorithms that are executed by different ISA’s leads to creating a 

gap between verification requirements and the implementation of a generic/reusable 

test bench for testing different soft processors. This paper has presented a general end 

to end verification environment using UVM for verifying soft processors. This work 

has explored the capabilities of UVM to be used efficiently in processor functional 

verification and a new verification methodology has been proposed such that it can be 

easily utilized for different instruction set architectures or micro-architectures. The 

proposed work has involved a practical example of three different soft processors based 

on three different instruction set architectures (RI5CY, LEON 2.4, and Amber 23), each 

one has its own specifications, behavior. The main goal is to try to solve the problem 

of microprocessors' verification which cycles a long computational effort and time as 

discussed before. Therefore, the solution is purely based on open source methodology 

UVM and standard System Verilog to build a generic and reusable environment for 

verifying different soft cores. In addition to that, a well-structured bottom-up stimuli 

generation solution have been implemented to make a good use of the object-oriented 

capabilities available in UVM base classes. These stimuli are used to test the 

functionality of the mentioned cores during memory access and handling instructions. 

Clearly this process needs some accurate steps to be followed to achieve the best 

results, this is what is called a verification plan as discussed in the previous sections. 
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7.2 Future Work 

After the concept of making a unified, generic and reusable test bench verification 

environment has been proven, the future work includes development of this concept to 

verify a complete System-on-Chip (SoC). Moreover, Code and functionality coverage 

can be furthermore considered to make sure that no corner cases or verification holes 

are left unchecked. Finally, it's planned to use machine learning algorithms to generate 

the required stimulus and test the design entirely. 
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