yod dirs,

PN

ZEWALL CITY

Zewail City for Science and Technology
University of Science and Technology
Nanotechnology and Nanoelectronics Engineering
Digital Design of DDR5 Physical Layer
A Graduation Project
Submitted in Partial Fulfillment of
B.Sc. Degree Requirements in

Nanotechnology and Nanoelectronics Engineering

Prepared By

Mohamed Hosni Abdalmonem 201700450
Mohammed Waleed Hassan 201700392
Mohamed Mahmoud EI-Desouky 201701302
Yasmein Khalil Abdelmeguid 201700110

Supervised By

Dr. Hassan Mostafa Signature

Fall 2021/2022

Acknowledgments
This project was funded and sponsored by Si-vision, Egypt and ONE lab at Zewail City of Science and
Technology.
Abstract
This report aims to present the work done in the first semester for the graduation project entitled: Digital
Design of DDR5 PHY under the supervision of Dr. Hassan Mostafa and sponsored by Si-vision. The

report contains introduction and literature review on the topic, the standards used, and the project design
and execution.

Table of Contents

F Yol TN 1= Fed s 0 1= o 4T 2
FAN o A - [o! AT T PP R U OR TSP 2
L] o] (=l o)l 0] 41 1=T 0} £ T T TP URTOTSRUPROP 3
[e B = U PSPPI 6
R o) B 1] o L= TP PP U PR USSP 8
Lo INEPOTUCTION ...ttt b e h e st sttt b e bt e sbe e s ae e et e et e e beesbeesanesabesabe e beenneennees 9
1.1 General introduction aNd [ItErAtUIre FEVIBW...............ceeueeerieeeiiiesieeeee ettt ste ettt e s e siee e 9
1.2 ProbIem AefiNitioN...........ccuuueieeuieeeeeiiiee ettt e ettt e sttt e e e ettt e e e sttt e s st e e e sttt e e e et e e e et taaeeaaranaeeaas 15
1.3 PrOJECE OBJECLIVES.........ooeeeeeeeeeeee e e et ee e ettt e e et e e et e e e et e e e e stss s e e e asesaeaasseaaeasssaaeasssssaeassenaeanassnas 17
14 FUNCLIONGAI REQUIFEIMENTS ..ot eetee et e e ettt e e ettt a e e atae s e e e atseaesassseaasasssesaeassesaeasssenanas 18
1.5 REPOIE OFGANUZATION ..ottt ettt ee e e e e e e e e e e e e eeeeeeeseeeeeeas 18
2= SEANAANAS USEMeiiiiiiiiiie ettt et st e bt e e s bt e e bt e e s abe e s bt e e s bt e e bt e e e abee e bae e s bee e beeeaareesbeeesabeeeanee 19
7 R o) = 1 1) (SOOI 19
2.11 CIOCK DOMAINScutinetiteieteist ettt ettt b et b bt s bt b ettt st et b et enes 19
2.1.2 Command interface and FUNCLONALITY..........ccceiiiieiiiecece et 20
213 Read interface and fUNCLIONAIITYcc.ooviiiieiree e 20
2.14 R TeT To BT [0 11 o o - TS 20
215 LT Lo T T 0] o] [T TP 21
2.1.6 FrequenCy RaAtio CONCEPL......ccveiiitieeecie ettt ettt et e te et estesteebesteesaebeessesbesbeessesbeeseebeessensesbeensesees 22
217 L0 (OO OOV PUPPTRPRROURPRRTIO 24
2.2 JEDEC [7] oeveeeeereeeeeeeeeeeeeeeeeseeesesese e esees s s es e e se s s s et s eee s se s ees e se e eseeee et s e s ee s ees e s 24
221 T Vo TP 24
2.2.2 PINOUL DESCIIPLION ...ttt ettt et et e et e st e st et e s re e st e seese e tesseensesseessensesseensesseenseees 24
2.2.3 AUAIESSING . .c.teieteitieteeeete ettt ettt e e e te et e e te e e e teeteebesbeeabesteeraenbeebeer s e beeteeateabeeatebeereenbeeteeraebeereenrenes 25
2.2.4 COMMANUS.euiitiieiitetirtet ettt ettt b et bt h et s et ae s b e st et b et b e e eb et e bt b eb e et e bt st e bt st es e et et et e e eb e e ebennebeneas 26
B T = 0| £ A 1T 3T | o RSP 27
2.2.6 Programmable Preamble & POSt-ambIe...........ccoooiiieiiiieiececeeeseeee ettt 27
2.2.7 INEEI-AMDIE ...ttt et 28
2.2.8 YT Lol =N £ A @] 1] = 11 o] SRS 29
2.2.9 Back-to-Back Reads Different RANKSccceiiirerenieccce e 29
2.2.10 Burst Read FOHOWEd DY Pre-Charge........ccicieieriieieie ettt eteste e eeae e sseesesreessesseseeense e 30
2.2.11 Read Timing HIUSIIALIONcevviiieeiesieceieiece ettt ettt e s te e e stesre et e s te e s e stesseenseseeessensessnensenes 30
2.2.12 Read Burst Operation for Optional BL32 MOGE........cccceeoiiririerieneeere et 31

N T = - 141 €1 a1 oI (=T Vo TSP 31

2.2.14 Read WIth AU Pre-Charge ..ottt 32
2.2.15 Read and Write command INTEIVAL............coueiriiiriiinieiccc ettt 32
2.2.18 CREC ittt bt et b e h et he e a e et bt et e heeh e e bt ehe et e bt et ekt eheebesheentenbesheeneenee 33
2.2.17 Write CRC fOr X4, X8 AN0 X168 UEVICES ...eeeieeurieeieeeiieeeeeeeeeeeeeeteesesaeeeesasseeeesassseessasseeesasseeessssesessssseees 34
2.2.18 WIrite CRC QUEO-TISADIEeeeeieiieteeeee ettt st 35
2.2.19 Read CRC for X4, X8 AN0 X168 GEVICESceiveuviieiieiieieeecittie e seireee e sttt e e seatre e e ssstaeessssbaesssssbaeesssssbessssnsseeeas 36
2.2.20 CROC BUISE OFUBI......eiiiiieiirieiieieirt ettt ettt b et b ettt b e eb e ebe e 36
2.2.21 Write CRC Error NANAIINGocveeiiciecieciecteee ettt sttt et ebe et e s be e e tesreensesreesaenbeeseensenes 37
2.2.21 CRC bit mapping iN BCB MOUEc.ciiireeiietectete ettt ettt te et ettt esbesreebesteeraenbesrnensenes 38
2.2.22 CRC bit mapping iN BL32 MOTEccueiiieiiiieieriert ettt 38
2.3 SystemVerilog Language Standard [8]ccccoeieiriniririrereieee st 39
3= Market and LItErature REVIEWciicueiiiiiiiieeeiieeeciee et e s tee e rtte s ste e s be e e sateeebeeesateesbeeeseeesseeessseesnseesnseeessesensees 40
I Y00 1Y 1Y o T4 (=1 ST 40
3.1.1 DRAM MOAUIE MONUFACLUIELScooeeueeeeieiiiieeeeitte e esiee e e stee e e s aee e s s e e e e s abae e e s sbaeeessbeeeesasseeesassseeessnnsens 40
3.1.2 Hardware that supports DDR5 MONUFACLUIELSccccuueeeeiiieeeeeiieeeeeiieeeesseeesssvaeesssreeesssseeessssseeessnnsees 40
I B V- 1o (o SRR 40
3.2 History and EVOIULION Of DRAMueee et e ettt e e ettt e e et ttaaa e e st ttaeaeestsaaaessssasaessssssaesssssnaananes 41
3.2.1 Structural modifications targeting throUGRPULceoiiiieeeceeeeeeee e e 41
3.2.3 Modifications targeting thrOUGNPULcc.eooieieee ettt se s 44
3.2.3 EVOIULION OF DDRX ...cuviuiieiiieiiitiiiieiit ettt sttt b ettt b e 44
3.3 Required Tools and TechnicQl QPPIOACRHESooeoeeeeeeeieeeeeeeee et eeetee e e ttee e e s ttaeaessttaaaeessaaaeeaes 45
N (oY T=Tot 01T 3T (s TR 46
4.1 Project pUrpoSe ANA CONSEIQINTS.........cccccueueeeeieeeeeeeecteeee e e e e es et ee e e e e e sttt eaaeesessssssesasaeesesssssssneaaaesaeas 46
4.2 Project teChNiCAl SPECIFICATLIONScceecueeeeeeeiiieeeeciee et e ettt e et e e e sttt e e e ettt e e e s esteeeesssteaasssssesaesssseeassanes 46
4.3 Design alternatives and JUSTIfICATION...........cccueeeeecuueeeeesieeeeeeiiee ettt eecta e e st e e s st e e e s staeaesstseaessssseaaesanes 46
4.4 Description Of the SEIECtEA AESIGNccccueeeeeeeee e ee e ee et e e et e e ettt e e e st e e e s stssaaenssseaesaaes 46
4.5 Block diagram and functions Of the SUDSYSTEMSeeeeecueeeeeeeiieeeeeeeeeecteeeeetteeeeetteaaeestvaaessssaaesaans 48
4.5.1 ArchiteCtural dESCIIPLIONocvi ettt e st e b e s reesa e beesa e tesseenseseeeseensens 48
N 07 N 1V = oo T TSR 52
TR B T = WY =1 1 o =] USSP 56
4.5.4 Frequency RAtiO IMBNGJETcciiieiieeeieie ettt ee st st e e it et este s st e eesbeetestesatensesaeeneasesneensesneenseseeeneansens 61
N T O TSRS 64
I o o Y=ot g (=T o1 1 Lo o TR PP UPRTPPPPRN 66

5.1 Project TASKS QNG GANEE CAQIT........oooeeeeeeeeeee ettt ettt a e e e e e ettt e e e e e e s st tsesaaaeesessssssnasaaenanas 66

5.2 Description Of @0CH SUDSYSTMccocuueeieeiiee ettt ettt e e e et e e e st e e s sssteeeesssteeessssseaessasseeeenanes 66

5.3 Standard UsSAge in ProjeCt EXECULIONcc.ueeeeecueeeeecieeeeeeieeeeseieeeesttaeaeessstaeeesissesaessssssasssssssasssssnssssanes 68

5.4 Project Testing and EVAIUGLION.ceeeecueeeeecieeeeecieeeeeciee e e e ctee e e s ttaeeeeeetaeeessstaeaesissssassasssessssssneaesanes 68
6- Simulation results of the integrated d@SiSNcuviiiiiiiii i e e 70
7- Hardware IMplementation..............ooiiiiiiiiiie e e e e e e e ae e e e nrreee s 74
YA N o C T U SRR PP UPUPPPUPPUPP 74
Zo2 ASIC ettt b bbbt e h et et ekt e Rt e ek e e ea et e bt e bt e bt e b e e eheeeae e et e e beenbeenheesareeane 75
- 0o 1 Y s -] YL £ ST 82

L A U 1 T 6 X SO SRUOPPRSUPUPUPPPPPPO 82

Y Lo a1V fo oY o]]| PRSI 82

EACINYoTol (o] e lg o [ToloToToToa] ol 101] o 1o [of SUUT OSSP 82
9- Conclusion and FUTUIE WOTK............coouiiiiiiiiiieee ettt ettt st st st e beenbeesneas 83
REFEIENCES ...ttt b e s bt s he e e a e et e ke e b e e s bt e sae e s ab e e ab e e bt e b e e beesb et eat e et e et e e nbeesheesaeesareeane 84

List of Figures

Figure 1. Scratch-pad SRAMSs vs. transparent caches in a non-uniform domain.cccocceevveveiieie e, 11
Figure 2. DIMM (dual in-line memory module) [1]. ..o 11
Figure 3. A common COMPULET SELUP [1]. .ovvevieieiieie ettt sre e anes 12
Figure 4. DRAM hierarchy and organization [2].ccocooiriiimiiiiene e 13
Figure 5. Bank interleaving tiMiNg.cccooveiiiiiiecce et e e sre e anes 14
Figure 6. DIMM MOGUIES TQYOUL........cueiiiiiieieiie ittt sttt sne e te et eneenre e nnes 14
Figure 7. DRAM ChaNNEIS.c.ooiiiiice ettt ettt e e e na et e e naeene e s teeteeneenreeneennes 14
Figure 8. Memory SYSteM WIth 2 TANKS.........oiuiiiiiieeiie et enes 15
Figure 9. Memory SYSteM ArChITECIUIE.cviiiiieeie ettt e e anes 15
Figure 10. Standard Computer OrganiZatiOn.ccooeiueiiiririnieieese et 17
Figure 11. Processor MemOry INTEITACE.cc.iiiiiieie ittt sre e anes 18
Figure 12. Single read transaction where the data is returned in less than the maximum delay................... 21
Figure 13. Two Independent Read Transactions (DDR2 EXample).c.cccevveieeieiiieviccecic e 21
Figure 14. Two Independent Read Transactions (DDR2 EXample). ... 21
Figure 15. Two Independent Read Transactions (DDR3 EXample)cccccevvevieieiiieiicse e 22
Figure 16. DFI Read Data Transfer Illustrating dfi_rddata_valid Definition.cccccoceviiiniiniicicnn 22
Figure 17. Frequency ratio SyStem With 2 PRASES.c.civeiiiiiiecie e 23
Figure 18. Package 0f the DRAM.ooiiice ettt et 24
Figure 19. 2-cycle commands EXaAMPIE.couiiiiiieie et e e te e sre e anes 27
Figure 20. Preamble USAge EXAMPIE. ..ot 28
Figure 21. Interamble EXamMPIE...........oouiiiiiiee et nre e anes 28
FIQUIE 22: REAA OPEIALIONeiuieiieieeiite stttk b bbbt et bbbt bttt 29
Figure 23. Back-to-back reads from different Danks............ccoceieeiiiie i 29
Figure 24:Read followed DY Pre-Charge. ..o 30
Figure 25:DQ BUS tIMING......ciiiiiiiiicece ettt e st e e et e s teeteessesaeebeeneesreenreanes 30
Figure 26: Read Timing for fixed BL32 and BL32 in BL32 OTF MOde.........ccoiiiiiiienie e 31
Figure 27: Read Timings for BL16 in BL32 OTF MOUEccooiieiiiie et 31
Figure 28: Read to Read to Same Bank Group for BL16 in BL32 OTF........cccccoiiiinincinneeeeeeees 31
Figure 29:Read to Read to Different Bank Group for BL16 in BL32 OTF.......cccccooviviiiiiiieceee e 32
Figure 30: A read With autO Pre-Chargeoooeioe e 32
Figure 31:Timing diagram for Write t0 read...........cocoiiiiiiiii e 33
Figure 32:Timing diagram for write to read Auto Pre-charge in the same bank ... 33
Figure 33: CRC Bit mapping fOr X4 AEVICEcoviiiiiie ettt 33
Figure 34:CRC data bit mapping fOr X8 JEVICES.........ccoiiiiiiiiiiiieee e 34
Figure 35: CRC data bit mapping fOr X16 UEVICES........c.civeiieciice et 34
Figure 36:Error reporting timing QIAGTaAM..........ouiiiierereie et bbbt 37
Figure 37: Bit mapping for CRC at BL=8 IN X8 HEVICEcccueiiiiiie ittt 38
Figure 38:Bit mapping for CRC at BL=8 X4 UEVICEccceriiiriieiiieie e 38
Figure 39:Processor Memory Performance Gap.ccueecveiieeiie i esiee e siee sttt snaeenaeesnee s 40
Figure 40:First generation of Asynchronous DRAMS R PrOCESSccviverieriirieiierienie e 41
Figure 41:FPM DRAM REAU PrOCESSccuveeieeiiiieiee ittt et e sie e eesteesteesaeesseeasteesbeessaeesseeanbeesbeesseesseeanseesseens 42
Figure 42:EDO DRAM REAU PIOCESS.ueiuiitiiiieiieieiieste sttt sttt sb e bbbt 42
Figure 43:BEDO DRAM REAU PrOCESScciuiiiiiiiiieiie ettt ee st ste e sae et e e sta e saa s e anbeesbeesneesseeabeesnee s 43
Figure 44:SDRAM REAU PrOCESS.......ccuiiuiitiiiiiiieiieieie sttt sttt b bbbttt st bbbt 43
Figure 45:DDR SDRAM REAU PIOCESS.cciuiiiiiiiiieiieeitee sttt se st este st e ste e staesaeessaeanbeesbaesneesseeabeesnees 44
Figure 46:hiStory OF DRAM. ..o bbbttt bbbt bttt 44

Figure 47:Memory SyStems ATCNITECIUIE.ooiiiiiieiie ettt enes 46

Figure 48:Design interfaces as extracted from the standardccccoveveiieiicie i 47
Figure 49:Block diagram of the propoSed deSIgN.c..ooviiiiiiiiiiieee e 48
Figure 50:Standard Read operation Developed Waveforms.ccccceiveiiiieiiecc e 50
Figure 51:Read with CRC operation Developed WaveformS...........cccoeiiiiiininiieerese e 50
Figure 52:Back-to-Back Reads operation Developed Waveforms. ..o 51
Figure 53:Back-to-Back Reads with CRC operation Developed Waveforms...........cccoeevieniiininiciennenn 51
Figure 54:1:2 Frequency ratio Read operation Developed Waveforms.ccccecviveiieneiieseese e 51
Figure 55. CA Manger BIOCK DIAGIAMccuiiiiiiieieieite sttt 52
Figure 56. CA valid FSM State Iagramc.ecveiieieiieie et se et se et sre e e e enaesnaesreeneeanes 53
Figure 57. Assertion of valid signal for two cycle command.cccoiveiiiinieicie s 54
Figure 58. Assertion of valid signal for one cycle command..............ccccoveiiiiieiiieie e 54
Figure 59. Assertion of valid signal for canceled two cycle commandccocvveiieieninnieene e 54
Figure 60. MRW that changes BL (0nly bit 0ne SNOWN)ccooveiiiiiiicc e 55
Figure 61. CA manger RTL SIMUIATIONooiiiiiiieec e 55
Figure 62. Data manager BIOCK GIagram.cccuiiiiiiiiieie ettt sre e enes 56
Figure 63. Gap COUNTET FSM. ...ttt bbbttt 57
Figure 64. FIFO COUNEr aNd POINTETS.ccuoiuiiiiiieieieieest ettt bbbttt 57
Figure 65. Pattern detector DIOCK QIagram.coveiiiiieiieie st 59
Figure 66. FPGA implementation results of the initial desSign..........cccooeiiiiiiiiiii 59
Figure 67. Generic FSM State Iagram.cceeiiiieie ittt ae e be e e teeste e e sreeeeenes 59
Figure 68. FPGA implementation results of the final deSign. ... 60
Figure 69. Waveforms OF TESE CASE.cuiiiiiieie et et e e be e sreeneenes 60
Figure 70. Serializer DIOCK QIAGIAM.couiiiiiii bbb 62
Figure 71. Deserializer DIOCK QHAgram.cceiiiiieie ettt sre e anes 62
Figure 72. Serializer simulation for freqUenCy ratio L:1.cccuoiiiiiiiieiere e 62
Figure 73. Serializer simulation for frequency ratio Li4.ccovveii e 63
Figure 74. Deserializer simulation for frequenCy ratio 1:1.coooiiiiiiiiiieeee e 63
Figure 75. Deserializer simulation for frequency ratio Li4.ccoooiiieii e 64
Figure 76. CRC DIOCK GIAGIAM.oiiiiieiiiieee bbbttt 65
Figure 77. CRC simulation WaVETOIMS.c.iiiiiicie ettt et sre e ans 65
FIQUIE 78. GANNT CNAIT. ...ttt bbbt b et b e bbbttt 66
Figure 79. ASIC DeSigN FIOWCNAI.cooviiiiiicciece ettt e sra e ans 67
Figure 80. FPGA DeSIgN FIOWCNAIT.coiiiiiiiiieie e 67
Figure 81. Pre-amble of 10 and an inter-amble 0f 10 teStCASE.ccviieiieriicicceee e 70
Figure 82. Pre-amble of 00010 and an inter-amble of 0010 tESICASE.ccerirererieieiee e 70
Figure 83. Test for a pre-amble of 00001010 and an inter-amble of 01010cccoovveviiieci e 70
Figure 84. Test for a pre-amble of 000010 and an inter-amble of 01010.ccocvviiiieieneneseeeee 71
Figure 85. Test for a pre-amble of 00001010 and an inter-amble of 0001010.cccceviieviiiiiievie e, 71
Figure 86. Test for a pre-amble of 000010 and an inter-amble of 0100010.ccceverererenininieeeeene 71
Figure 87. Test for a pre-amble of 00001010 and an inter-amble of 0101010.c..ccoceviieviieiii e, 71
Figure 88. Test for a pre-amble of 000010 and an inter-amble of 010001010.ccccceverirenireninieeeene 72
Figure 89. Test for a pre-amble of 1110 and a valid CRC of 11010111........cccceciviiieiiiiiiecie e 72
Figure 90. Test for a pre-amble of 1110 and an invalid CRC of 11010111.......ccccooviiiennreniiineeeeeeens 72
Figure 91. Testcase for frequency ratio 1:2 With CRC. ..o 73
Figure 92. Testcase for frequency ratio 1:4 With CRC.cooiiiiiiiiiiee e 73
Figure 93. FPGA implementation FESUILS.ccviiiii it ae e 74
Figure 94. FPGA timing SIMUIATION.c.oiiiiiiiiiiee ettt 74

Figure 95. FPGA timing simulation data fOrwarding.ccoceveeiinniieiese e 75

Figure 96. SYNthesis FESUILS FEPOIT.iiieiieie ettt re e re e e neesreeeennes 76
Figure 97. Floor and POWET PIANNING.couiiiiiiiiieie et 76
Figure 98. POWerplanning IR ArOP.cc.ciiiiieie ettt re et e e nteeneesreenreanes 77
Figure 99. Floorplan CoNGEStION MAP.........eiiiiiiiieieiieit ettt bbb 77
Figure 100. Placed deSign TaYOUL.ccueiioiiiiececce ettt e ste e sreeeeanes 78
Figure 101. Placement CONQESTION MAP.eiiiiiieieieriest ettt sb et b et e bbb sb bt 78
Figure 102. ROULING aNd VIOIALIONS.ccviiiiiiiiicsieeie ettt e et teenbe e sreeneanes 79
FIGUIE 103, LVS CRECK. ...ttt st et n et e et e eneenre e e nnes 79
Figure 104. FINAL TQYOUL.cviiie ettt e e e et e e teene e s reebeeneesreeneeenes 80
Figure 105. QUAIILY OF FESUITS.c.eiiieieiie e et r et ne e sre e nnes 80
Figure 106. Timing analysis USING PrIMETIME.cciviiieiiiie ettt sre e anes 81
List of Tables

Table 1. DDRZ VS DDRS [4]. . iiiieiieie ittt sttt sttt sa s e s et e st et saennesraanaassenseneens 16
Table 2. Processors that SUPPOIrt DDRS [5].....cuiiiiiieiiiie it nae e ene s 17
Table 3. DF1INterface groups [6].ooeoeiiriiieieie it 19
Table 4. Read interface SIGNaAlS [6].......ccviieiieiicieiiec et re e e reesae e nneas 20
Table 5. Write Data Interface Programmable Parameters.ccooeveieieniiinisisieieee e 24
Table 6. PINOUL DESCIIPLION.cviiiiite ettt et e e st e s teesaesaeesbaeeeenneereenbeannenneas 24
Table 7. 8GB addressing IN DDRB. ..ot bbbt 25
Table 8. DDR5 command truth TaDIE.coviiiiieieeeee et nnees 26
Table 9. MRO Register and OP-Code Bit DefinitioNns...........cccooiiiiiiiiiccc e 27
Table 10. INtErambIE SCENAITOS.iiieieiieie ettt este et e sreesteaseeaseesreeseeeneesseenseanennnens 28
Table 11: COMMANT SEPAIALIONccueeiiiieiieie ettt e e s et e et e s re e s te e esaeesbaesnesnseeseenbeeneenrens 32
Table 12:Read CRC IatENCY AUUEToieiiiiiiiiiee ettt 36
Table 13: CRC error handling timing Paramiers...........cccueieeieeieieeie e see e e sre e sre e sn e s e sre e snes 37
Table 14:SDRAMS performance 8VOIULION.ccoiiiiiiiiiiei et 45
Table 15:Submodules inputs, outputs, functionality, and parameters.............cccovveveeieiiie v s 48
Table 16: SIGNAIS WITTNS ... bbbttt e e 49
Table 17. MRW & REAA CLoiiiiiiiiiceeee ettt et sttt b e en e nens 53
Table 18. Data Manager INTEITACE.oiiiiiieiee ettt bttt nns 56
TabIe 19. GAP COUNTET CASES.cuviiueetieteitieste et etteste e te e e s teesteeseesteesseasseaseesseessesseesteeseesasessaesesnsesseetesneenrens 58
Table 20. Cases of the setting/configuration generator for the pattern detector.ccocvevvviviivenniinnnnn, 60
Table 21. Frequency ratio manager funCtionality. ..o 61
Table 22. CRC FUNCHIONAIITY.oviiiieiicei et sa e bbb 64

1- Introduction

1.1 General introduction and literature review

There is a continuous need in the market for a faster, larger and lower power memories, and these
demands are the reason for modern DRAM (Dynamic Random-Access Memory) advancements. DRAMs
have evolved into SDRAM (Synchronous DRAM), DDR (Double Data Rate) SDRAM, DDR2 SDRAM,
DDR3 SDRAM, DDR4 SDRAM, DDR SDRAM. With these advancements to DRAMs, and due to the
complexity of memory controllers, a physical layer was needed to provide compatibility between MC and
the newer DRAM versions. To begin, memory systems must be discussed.

1.1.1 Memory systems

Memory speed is an essential aspect for computer systems operation. The most important concept for the
modern memory system advancement is memory hierarchy. Advanced memory hierarchies gather the
performance of the fastest component, the cost per bit of the cheapest component, and the energy of the
most energy-efficient component. The concept of memory hierarchy transformed the system design into a
modular process. Consequently, enhance the development of each subsystem (disk, DRAM, cache)
independently. However, the independence in designing and optimizing the memory subsystems is no
longer efficient due to many problems that arose in the modern technologies such as: device physics,
signaling protocols choice, choice of topologies to achieve signal integrity, concurrency, and problems
related to communication such as queuing and scheduling algorithms. Currently, these problems dominate
the design process although they were insignificant a decade ago. The interconnect physics in sub-micron
technologies is the main challenge in current cache architectures, for modern DRAM designs are
controlled by circuit-level constraints, while in disks on-board caching and scheduling policies dominate
their performance. The main challenge is not in disks, DRAMSs, or caches, but in the interaction between
them and the connection methods. Consequently, the isolation concept in subsystems design is no longer a
valid method. Instead, the memory system designer has to be familiar with the problems related to all
levels of memory hierarchy whether it is disk, DRAM, or cache. An overview of memory subsystems will
be explained further in the following subsections.

1.1.2 Cache

Cache relies on the locality of reference principle, apps' proclivity for referencing a predictable limited
quantity of data within a specific time frame. Classification of storage devices is divided into access time
and cost per bit factors, with faster storage technologies having a shorter access time and a higher cost per
bit than slower storage technologies. The cache technology would typically cost more per bit, but the
cache would only need to be large enough to hold the application's set of instructions in addition to data
items.

Most application accesses will be satisfied out of the cache due to locality of reference, and so the
access characteristics will be those of the cache most of the time: significantly faster and often requiring
less energy than the bigger storage device behind the cache. A single cache could be made up of several
different entities that work together. A symmetric multiprocessor's individual last-level caches, for
example, might be thought of and managed as a dispersed yet logically unified entity. Some cache
organizations, on the other hand, are multi-level hierarchies that are described as a single cache. Thus, a
single "cache" can be labeled and studied as a collection of numerous storage units, and a monolithic
cache can be labeled and analyzed as a collection of multiple, independent entities. Caches can be

transparent; their actions are independent of the client's requests. Consequently, embedded algorithms are
included in them for deciding which data will remain in it.

Another type of cache is scratch-pads, which are handled directly by the request making process
by the client. Hybrid combinations from the two types can exist. Processor caches in general-purpose
systems, file caches in most distributed file systems, and practically all types of web caches are
transparent caches, because the "client” of a web cache is often the person using the web browser. Scratch-
pads include the widely used register file and tag-less SRAMs found in practically all microcontrollers and
digital signal processors. There are three main concepts regarding caches, cache’s organization, methods
for content management, and methods for consistency management.

e The logical arrangement of data saved within the cache's context is the cache's structure. An
operating system's buffer cache, for example, could be structured as an array of queues, with each
queue weakly indicating the last time a saved item was referenced (e.g., queuel holds items that
have just arrived, queue2 holds items that have been recently referenced, queue3 holds items that
haven't been referenced in a while, etc.); a solid-state cache could be arranged as a cluster of sets,
each of which includes a fair number of cache blocks managed in a time-ordered way.

e The determination to cache or not caches a specific item at a specific time during execution is
represented by content-management algorithms. These can be handled by the programmer and/or
compiler during the design phase, or by application software and/or the cache itself during the run
phase. The algorithms can be static, in which case the contents of the cache do not change
significantly over time, or dynamic, in which case the elements of the cache may change
dramatically from time - to - time.

e Algorithms for consistency management guarantee that the instructions and data that application
software receives are really received. Continuity, like cache contents, can be handled by a range of
aspects, including the operating system, application software, and the cache itself.

Computer programs’ behavior have been recorded to meet certain criteria regarding the memory
access patterns. The memory-access patterns are found not to be random. Locality of reference refers to
the phenomena of predictable, non-random memory access behavior. The behavior is named from the fact
that memory accesses in a program tend to be localized in spatial and temporal:

e If the program refers to a data once, it will almost certainly refer to it again in the near future.

e |f the program accesses data once, it will very certainly reference nearby data in the near future.

The first is known as temporal locality, whereas the second is known as spatial locality. Computer
scientists have recently noticed a new form of event. Another type of behavior has emerged in the last
decade as a result of the extensive usage of computer graphics algorithms and comparable algorithms in
other disciplines, such as computer modeling, circuit emulation, HDL3 code interpretation, and so on.
Because these programs often stroll down dynamic data types and access the exact data in almost the same
sequence over and over (for example, each time a new video frame is formed), their behavior is essentially
deterministic. The duration between 2 subsequent visits to a certain data, on the other hand, is long (hence,
the program displays no specific temporal locality), and the data items are usually far apart in memory
space (thus, the program shows no specific spatial locality). These programs do not demonstrate
considerable locality, according to our existing notions of locality, but they do exhibit regular, predictable,
and exploitable behavior. It's difficult to describe this type of behavior because it appeared to have
covered everything in terms of time and location. As a result, it's simple to miss the fact that this type of
conduct exists. But it certainly exists. This behavior is called algorithmic locality.

10

UNIFORM MOMN-UNIFORM

ADDRESS ADDRESS
SPACE SPACE
SRAMA
DRAM

Traditional Caches Tagless SRAMs, or scratch-pad memories

Figure 1. Scratch-pad SRAMs vs. transparent caches in a non-uniform domain.

1.1.3 DRAM

DRAM is the "computer memory" that can be acquired online or bought in a store. The universal memory
module, a small computer board (a printed circuit board, or PCB) with a handful of chips linked to it,
occurs in most systems in the manner shown in figure 2. The DRAM chips are the eight black rectangles
on the displayed module: plastic packaging that each encapsulates a DRAM die (an extremely thin, fragile
slice of silicon).

uoDp .
uonW ;
uo::n(hi’

2
N
-
0
)

Figure 2. DIMM (dual in-line memory module) [1].

DRAM's location in a typical PC is depicted in figure 3. A memory controller normally connects an
individual DRAM device to a CPU (i.e., a microprocessor) indirectly. The memory controller is part of the
north-bridge chipset, which controls several microprocessors, the graphics coprocessor, communication
with the south-bridge chipset (which controls all of the system's 1/0 functions), and the interface to the
DRAM system in PC systems.The north- and south-bridge chipsets are no longer chipsets; they are
generally performed as individual chips, and in certain devices, the functionality however are integrated
into a single die. As DRAM is typically an external entity by default, the use of it, designing, and

11

analyses should account for execution impacts which are frequently overlooked for the use, architecture,
and evaluation of on-chip memories like SRAM caches and scratch pads. The following is some of the
concerns that a design team should think about:

e Pins (capacitance and inductance).
e Signaling.

e Signal integrity.

e Packaging.

e Clocking and synchronization.

e Timing conventions

Inability to take these factors into account while developing a DRAM system will almost certainly result
in a substandard and non-functional implementation.

Graphics
Host or Co-Processor
Processor bus

DRAM bus
Cache bus : @-— AGP bus
l CPU /
Secondary Primary <:> Memory <:::> I|
Cache Cache Controller

North Bridge Memory modules
Serial ATA bus Chipset

PCI bus
.

Hard Disk Network
Drivels <:> Controller Interface

Keyboard

I[e]

Other Low-BW Controller
I/O Devices <:>
South Bridge <:> Mouse

Chipset

Figure 3. A common computer setup [1].

1.1.4 Disk

In the last few years, disk technology has evolved dramatically. It permits very complicated programs to
be built without worrying about size limitations, while also liberating individuals from having to be
concerned about what as well as how much data to store, by offering almost limitless on-line storage at
extremely minimal prices. Whereas disk storage isn't always the fundamental drive of a computer, its rapid
advancement figured prominently in propelling computer systems forward from their earlier years to
where they are today.

Considering how limited recent computers can be if they had only dozens of megabytes of
secondary storage instead of the tens of gigabytes, we now take for granted. The influence of disk-based
storing nowadays has extended across computer systems, having begun with a double storage device for
management accounting reporting. It is becoming more prevalent in our daily lives as embedded
electronics in products such as streaming video, cameras, mp3 players, automotive navigation units,
mobile phones, and so on. Although disk drives' core concepts stay the same, these applications
necessitate a different focus and performance characteristics. Regardless of the fact that hard disks have

12

become standard items, they are nevertheless a highly complicated electro-mechanical system
incorporating years of highly developed studies across a wide range of disciplines. Mathematics,
chemistry, material science, tribology, electrical & electronics engineering, mechanical engineering,
computer programming, data science, and industrial science are just a few of the subjects they cover. This
gives the foundation needed to look at some of the design difficulties and trade-offs that really can impact
the function of hard disks and hard drive storage subsystems.

1.1.5 DRAM Organization

A signal DRAM chip includes multiple bank groups and each bank group includes multiple banks. Each
bank has a standard number of DRAM arrays which are 4, 8 or 16, which is also identified as width of the
column making DRAMs classified as x4, x8 or x16 based on the column width. Another note is that the
width of the DQ data bus is the same as the column width, so we can say that the DRAMs are classified
based on the width of the DQ bus. All the arrays in the same bank are fed the same address row address so
the same word line is selected in each of the arrays, also the arrays are fed the same column address thus
the same column address is selected in each of the arrays. At the end one cell is selected from each array
but at the same position, and that’s how a byte is read from a DRAM chip. Opening and closing a row can
take up to 18 cycles that’s why burst mode was introduced to allow reading a number of words
simultaneously without needing to re-open the row again. This happens by reading multiple columns from
an already opened row successively. Different generations of DRAM have different Burst length DDR4
has 8 and DDRS5 has 16. Figure 4 shows the DRAM hierarchy and organization. However, after finishing
the burst needed and the time for the row closing comes, the DRAM would need to be closed for a period
of time before re-opening it. That is why banks were introduced to allow accessing another bank, and this
method was called “Interleaving Memory Banks” as this method achieves higher bandwidth as the data
bus uses frequency that’s higher than any one DRAM bank can support. The word banks introduce a set of
independent memory arrays inside the DRAM device. Independent accesses to different DRAM arrays
can occur in parallel, as each bank is an independent array. The array can be in different phases in row
access cycles, that’s why Multi banks can operate independently or concurrently, can be activated
independently, and precharged or refreshed in parallel Interleaving memory banks achieve high bandwidth
as the data bus uses a frequency that’s higher than any one DRAM bank can support. Figure 5 shows the
timing of bank interleaving. That’s why we use multiple independent memory banks as it allows other
banks to be in a different read/write cycle than others. When the row is closed in bank 1, bank 2 row is
ready to be read and buffered and this continues until we reach the final bank that’s when bank 1 is ready
again to be used.

Figure 4. DRAM hierarchy and organization [2].

13

| |
| —
Aecess Bank 0 4 | |

AoessBank1 & | [
hrress Bank 2 T |

hecess Bank 3 4
Arress Bank {1 (2gain)
Figure 5. Bank interleaving timing.

The RAM chips are not individually mounted on the motherboard because of less capacity, hence in
earlier times, several chips used to be soldered together and converted into “modules”(integrated circuit
boards) and these modules were mounted over motherboard using “pins”(also known as connectors).
Figure 6 shows the RAM DIMM modules layout.

7.6 mm
RAM CHIP Lof.ommjJ
T
! d DDR2 poRz ° DDR2 oore 9| [
0 SDRAM SDRAM SPD SDRAM SDRAM
FBGA FBGA FBGA FBGA
) D o package package : o package package ,ﬂ
t
C [[1 o] decoupling capacitors |_
a DDR2 ooz 9 U DDR2 oorz 9 0 [Bome]
SDRAM SDRAM SDRAM SDRAM
PINS(CONNECTORS) 0 input 0
FBGA FBGA resistors FBGA FBGA
0 lo package package o package package 0
B0 BIES i] 0 OB&3C] 0 X
| Pininterace | ‘ Pin Interface |

Figure 6. DIMM modules layout.

DRAM memory controller controls a single channel of memory as in figure 7. The typical system
controller controls a 64-bit-wide channel. The system controller like intel i875P requires a matching pair
of 64-bit wide memory modules to operate with 128-bit-wide data bus which is referred to as dual channel
configuration, both memories operate in lockstep. But it can allow the use of mismatched pairs of memory
modules in the different physical channels, however the multiples mismatched memory modules cannot be
accessed concurrently, and only one channel of memory can be accessed at any given time.

“Typical”

Q4 - One “physical channel” of 64 bit width
system controller DMC DDR phy

K
One DMC: One logical 64 bit wide channel

Intel i875P ome 123 _»| DDR Two “physical channels” of 64 bit wide busses
system controller 5‘32‘“" DOR One DMC: One logical 128 bit wide channel

X B

Figure 7. DRAM channels.

The memory system in figure 8 is populated with 2 ranks of memory systems. A rank is now used to
denote a set of DRAM devices that operate in lockstep in response to a given command. Address and
command busses are connected to every DRAM device in the system. The wide 64-bit data bus is
partitioned into equal 16 bits and connected to different DRAMS, and chip select is inserted to select the
needed Rank.

14

address and commaad

I
-
data.bus i
<+ 15 ™
I
-
i
data-bus
DMC - -
16 !
-
Lo
data-bus |
- L
16&\ !
N
-
_ databus i
16 !
chip-select 0
chip-select 1 Rank

Figure 8. Memory system with 2 ranks.

DRAM is soldered down on a board. User Logic, DDR controller and DDR PHY are all part of the ASIC
or FPGA. The interface between the user logic and the DDR controller is user-defined no need for
standard. When the user logic makes a read/write request, it issues logical address, then the controller
converts the logical address to physical address, then issues these commands are issued to the PHY. The
controller and the PHY talk to each other over DFI standard interface. The PHY then does all the lower-
level signalling and drives the DRAM. The interface between the DRAM and the PHY is specified in
JEDEC standard. Figure 9 shows the PHY location in the memory system architecture.

r N\ N\
—P —P
User DDR DDR
Logic ‘ Controller |, PHY DRAM
. J . J \. J

Figure 9. Memory system architecture.

1.2 Problem definition

The demand of faster, higher capacities and lower latencies DRAMSs has increased recently to meet the
CPU, and GPU workloads [3]. SDRAM latest generation DDR5 was released in 2020 and it has
significantly superior performance compared to its latest predecessor as shown in table 1 [4].

As memories advance newer generations of hardware (processors and motherboards) are required
to fully utilize its capabilities. Currently, only 12" generation Intel processors support DDR5 and none of
AMD’s processors support it as illustrated in table 2 [5]. To be able to support DDR5 SDRAM, a
processor must have a Memory Controller (MC) and a Physical Layer (PHY) that can handle data rates
and features illustrated in table 1. In this project we design, verify and implement the digital part of a
Silicon Intellectual Property (IP) of a specific PHY implementation in collaboration with an industrial

partner.

15

Feature/Option
Data rates

Voo/Vopo/Vep
Internal Vrer
Device densities
Prefetch

DQ receiver
equalization

Duty cycle adjustment

(DCA)

Internal DQS delay
monitoring

On-die ECC
CRC

Bank groups
(BG)/banks

Command/address
interface

oDT

Burst length

MIR (“mirror” pin)
Bus inversion

CA training, CS
training

Write leveling
training modes
Read training
patterns

Table 1. DDR4 vs DDRS5 [4].

DDR4
1600-3200 MT/s

1.2/1.2/2.5
VREFDQ
2Gb-16Ghb
8n

CTLE

None

None

None
Write
4 BG x 4 banks

(x4/x8)
2 BG x 4 banks (x16)

ODT, CKE, ACT,
RAS,

CAS, WE, A<X:0>
DQ, DQS, DM/DBI

BL8 (and BL4)

None
Data bus inversion
(DBI)
None

Yes

Possible with the
MPR

DDR5
3200-6400 MT/s

1.1/1.1/1.8

VRerpQ, VREFCA,
VRercs

8Gh-64Gh
16n

DFE

DQS and DQ

DQS interval
oscillator

128hb+8b SEC, error
check and scrub
Read/Write

8 BG x 2 banks (8Gb
X4/x8)

4 BG x 2 banks (8Gb
x16)

8 BG x 4 banks (16-
64Gb x4/x8)

4 BG x 4 banks (16-
64Gb x16)
CA<13:0>

DQ, DQS, DM, CA
bus

BL16, BL32

(and BC8 OTF, BL32
OTF)

Yes

Command/address
inversion (CAI)
CA training, CS
training

Improved

Dedicated MRs for
serial

(userdefined), clock
and LFSR
-generated training
patterns

DDR5 Advantage
Increases performance and
bandwidth
Lowers power
Improves voltage margins,
reduces BOM costs

Enables larger monolithic
devices
Keeps the internal core clock low

Improves opening of the received
DQ data

eyes inside the DRAM

Improves signaling on the
transmitted DQ/DQS pins

Increases robustness against
environmental changes

Strengthens on-chip RAS

Strengthens system RAS by
protecting read data
Improves
bandwidth/performance

Dramatically reduces the CA pin
count

Improves signal integrity,
reduces BOM costs

Allows 64B cache line fetch with
only 1 DIMM subchannel.

Improves DIMM signaling
Reduces Vppg noise on modules

Improves timing margin on CA
and CS pins

Compensates for unmatched DQ-
DQS path

Makes read timing margin more
robust

16

Mode registers 7 x 17 bits

Up to 256 x 8 hits
(LPDDR type
read/write)

Provides room to expand

PRECHARGE All bank and per bank All bank, per bank, PREsb enables precharging-
commands and same bank specific bank in each BG
REFRESH All bank All bank and same REFsb enables refreshing of
commands bank specific bank in each BG
None Yes Enables testing of the DQ and
Loopback mode DQS signaling
Table 2. Processors that support DDR5 [5].
CPU Manufacturer Application Generation Launch plan
Intel Desktop 12" Gen Q4-21
Mobile 12" Gen Q1-22
Workstation 12t Gen Q1-22
Server 4™ Gen Xeon 2H-22
AMD Desktop Zen4 2H-22
Mobile Zen3+ 1H-22
Workstation Zen3+ 2H-22
Server Zen4d 2H-22

1.3 Project Objectives

The objective of the project documented in this thesis is to design, verify and implement a DDR5 PHY
Utility Block IP in collaboration with system and design engineers at Silicon Vision. The system is shown
below in figures 10 and 11. Figure 10 shows typical computer organization where the communication
between memory and processor is highlighted in red. Figure 11 shows a breakdown of said system with
more details where the PHY mediates this communication between the Memory Controller (MC) and the
DRAM module with a different interface standard at each end. The MC and PHY interface is defined by
DFI V.5.0 standard and the PHY DRAM interface is defined by JEDEC JESD79-5A standard (both
standards are to be discussed with more details later in the thesis).

Frontside bus

Graphics
Co-Processor

Backside bus

\
[|

DRAM bus
-— AGP p2p

\

DIMMs

SC3l bus

-

Dby

P—

SCsl
Controller

/
&=

Network
Interface

Keyboard

Other Low-BW
/O Devices

o
Controller

=

South Bridge Mouse

—
=

Figure 10. Standard Computer Organization.

17

i PROCESSOR DIE : | SDRAM MODULE

Figure 11. Processor memory interface.

To attain the project objective, the following series of steps was implemented each of which will be
discussed properly in a separate section

1- Standards specification extraction
Both interface standards were first discussed with the system engineer to acquire knowledge about the
company specific PHY IP implementation and to extract functional specification of the design. The main
functionalities required for PHY IP.

2- System level architectural design and high-level modeling
After the main functional requirements were obtained, an architectural design of the system was carried
out and each block was implemented as a high-level model using MATLAB.

3- Block level digital design, verification and optimization
After the system level design and verification of intended functionality, each block RTL was designed and
tested against the high-level model and expected timing diagrams available in interface standards.

4- Physical Implementation
The system was implemented on simulated and implemented on FPGA and ASIC.

1.4 Functional Requirements

Support DDR5 SDRAM Devices with multiple widths x4, x8, and x16.

Support multiple frequency ratios.

Support CRC (Cyclic Redundancy Check) validation.

DFI and JEDEC compatible.

Support Read (RD), Read with Auto Recharge (RDA), Refresh (REF), Refresh All (REFab), Mode
Register Write (MRW), Mode Register Read (MRR), Pre-charge (PRE), and Activate (ACT).

1.5 Report organization

This thesis is organized as follows: The next part discusses certain sections of DFI V.5.0 and JEDEC
JESD79-5A that were crucial during specification extraction phase of this project. Part three discusses a
sample of the literature that relates to the memories and the current global market status. The remaining
sections discuss project design, execution and evaluation considering numerous criteria of concern. Hence,
Finally, a summary of possible future extension to our work is discussed alongside with conclusion.

18

2- Standards used

2.1 DFI [6]

DFI is a standard that defines the interface between the Memory controller (MC) and the DDRx Physical
layer PHY. DFI divides that interface to 12 interface groups where an interface group consists of signals
and parameters some of which may be programmable. The names and functionalities of each group
interface is illustrated in Table 3.

Table 3. DFI interface groups [6].

Interface Group Description
Command Required to drive the address and command signals to the DRAM devices.
Write Data
Used to send write and receive valid read data across the DFI.
Read Data
Update Provides an ability for the MC or the PHY to initiate idling the DFI bus.
Status Used for system initialization, feature support and to control the presence of valid clocks to the
DRAM interface.
PHY Master Used to allow the PHY to control the DFI bus.
Disconnect Protocol Allows an ongoing handshake to be broken.
Error Used to communicate error information from the PHY to the MC.
2N Mode Uses the 2N function (also referred to as the geardown mode) of the DRAM
Low Power Control Allows the PHY to enter power-saving modes.
MC to PHY Used to send defined messages from the MC to the PHY.
Message
WCK Control Controls the WCK on, off and synchronization timing.

2.1.1 Clock Domains

DFI BUS operates at the same frequency as the MC, which is different from the frequency of operation of
the DRAM itself. Some DRAMS have separate clocks for commands and data and others don’t. Thus, DFI
interface have 3 clock domains:

1. DFI Clock
2. DFI Command Clock
3. DFI Data Clock

For DRAMS that have the same clock for command and data both command and data clocks run at the
same frequency which is 1x 2x or 4x of the DFI clock which is the MC clock as illustrated earlier. In this
case the command and data clock frequency are half of the actual data rate (because DDR is operated at
both edges). For DRAMS that have different clocks for command and data, the command clock runs on
the same frequency as the MC (DFI clock) and data remains 1x 2x or 4x of that frequency. For 1x systems
it’s called Matched Frequency system (the three domains have the same frequency) else it is called
frequency ratio system. Generally, the standard uses the term DFI clk for MC clk and DFI PHY for data

19

clk. For DDRS5 the DFI Command Clock and the Data Clock run at the same frequency, while the relation
between them and the command clock is identified by the frequency ratio.

2.1.2 Command interface and Functionality

The command interface handles the transmission of signals required to drive the address and command
signals to the DRAM devices. The concept of frequency ratio was introduced earlier. Now we introduce
the concept of phase, for a frequency ratio of x there are x DFI PHY clock cycles occurring in one DFI
clock cycle, these x cycles shall be named phase 0 and so on until phase x-1. phase-specific signals are
enhanced with a suffix of “pN” that defines the signal value for each phase N of the DFI PHY clock.

2.1.3 Read interface and functionality

The read interface signals are shown in table 4.

Table 4. Read interface signals [6].

Signal From = Width Description

dfi_rddata PHY DFI Data Width = Read data bus. This bus transfers read data from the PHY to the

or MC. Read data is expected to be received at the MC within
dfi_rddata_ wN tphy_rdlat cycles after the dfi_rddata_en signal is asserted.
dfi_rddata_cs MC DFI Physical DFI read data chip select. The polarity of this signal is the same as
or Rank Width the polarity of the dfi_cs signal. This signal indicates which chip
dfi_rddata_cs_pN select is accessed or targeted for associated read data.
dfi_rddata_en MC DFI Data Read data enable. This signal indicates to the PHY that a read

or Enable Width operation to memory is underway and identifies the number of data
dfi_rddata_en pN words to be read. The dfi_rddata_en signal must be asserted

trddata_en cycles after the assertion of a read command on the DFI
command interface and remains valid for the duration of contiguous
read data expected on the dfi_rddata bus. Ideally, there is a single
dfi_rddata_en bit for each PHY data slice. The dfi_rddata_en [0]
signal corresponds to the lowest segment of dfi_rddata signals.

dfi_rddata_valid PHY DFI Read Data = Read data valid indicator. Each bit of the dfi_rddata_valid signal is

or Valid Width asserted with the corresponding dfi_rddata for the number of cycles

dfi_rddata_valid_wN that data is being sent. The timing is the same as for the dfi_rddata
bus.

The width of the dfi_rddata_valid signal is equivalent to the number
of PHY data slices. Ideally, there is a one-to-one correspondence
between a dfi_rddata_valid signal bit and each PHY data slice. The
dfi_rddata_valid[0] signal corresponds to the lowest segment of the
dfi_rddata signals.

2.1.4 Read Sequence
The read sequence is as follows:

1. The read command is issued.

2. t rddata_en cycles elapse. Then the rddata_en signal is asserted for the length of the data to be
captured later on.

3. For contiguous read commands, rddata_en signal can be asserted for the total length of the 2 or
more data streams.

4. Data is returned on the dfi_rddata bus.

20

5. The data is returned with the dfi_rddata_valid signal asserted.

6. The associated read data signal (dfi_rddata) is sent to the MC.

2.1.5 Read Examples

The following figures 12, 13, 14, 15 and 16 show different read examples from the DFI standard.

ClOCkJ-UIII|IIIlllllIll|III|IIII||IIII|III|IIIII|‘III||IIII|III|I|
XED)

DFI command
dfi rddata_en

dfi rddata_valid

dfi_ rddata

Ll
-

Ll
Urddata_en — Ox4 tph}'_rd]nt = 0x5

Figure 12. Single read transaction where the data is returned in less than the maximum delay.

ClOCkJI-UIIIIIII IllllllllIIIIIIIIIIIIIIIIIIIIIIIIIIIIl‘IIIIIIIIII
X ED

DFI command

dfi_ rddata_en ' Y 4 : \ e
dfi_ rddata_valid ' Lo Y4 ./ ' \. T
dfi_rddata Lo R (570 (570 () (5% (55) (A A A A R
< pe 'y I
rl'llll:'ll'n_ell tph}'_l'tllnt
=0x3 =0x3
< > P>
t

rddata_en t1)].1}'71'1:1]:“
=0x3 =0x3

Figure 13. Two Independent Read Transactions (DDR2 Example).

ClOCkJI_Ulllll‘I IIIIIIIIIIIIII‘||‘IIIIIIIIIIIII|III‘||IIIIIIIIIII

DFfcommand | DY, DA ' + + © 0 0 0
dfi_rddata_en | N N
dfi_rddata_valid ' Lo AR N
dfi_rddata ' Lo SR (5Y) (570 (%) (75) (N S S

<« Pt p - -

trllllnm_en tphy_l'll]nt
=0x3 =0x3
1(< Ld

rddata_en t[Jl.l_\'_rdl:lt
=0x3 =0x2

Figure 14. Two Independent Read Transactions (DDR2 Example).

DFfcommand | JEBXK | DA ¢ 0 | 00
afirddaten || 0 T T N
afiradatavalid || 0| /TN T
dirddata | | DR RREER
< b Pt >
trddata_en — 05 tohy rdlat tohy rdlat
= 0x4 = 0x4
Figure 15. Two Independent Read Transactions (DDR3 Example)
MC
DFtelock [MMM MAmnnmnnmmnrn
DFI command I RDAK ' X ' ' ' ' ' ' ' '
dfi_rddata_en|3:0] ‘:__:f__;_;_l‘y : : : : : : :
anradscavabapy) | 0 | ;T T T\ oo
dfi_rddata_valid|2) : : : 'f_‘ll_;'__:_ﬂl::—::
dfi_rddata_valid|1] : : : ! :,F_:_ I \ : : : :
dfi_rddata_valid|0) I I,'___Ik_;f_'_'_'_'
dfi_rddata[31:24] R N €1 1% I
i rdataf23:t6l || AR EOEDES 0
dfi_rddatalts:08] |0 AR LS
dfi_rddata|7:00] : : : : I A E : : : :
< bl . :
:ruuun._.-u' 1lph__.-uu;.u.\l.'.x; :
={x2 =0x3 '

Figure 16. DFI Read Data Transfer Illustrating dfi_rddata_valid Definition.
2.1.6 Frequency Ratio Concept

We have illustrated earlier that in DFI there are 3 separate clock domains namely DFI clock, DFI
command and DFI Data. However, 2 of these domains run at the same frequency, depending on DRAM
devices. If a DRAM device operates command and data at the same memory clock, then both run at the
same frequency that is half the actual data transmission rate and that is 1x 2x or 4x of the DFI clock
frequency. However, if DRAM device operates command and data at different clocks the command clock
frequency is the same as the DFI frequency and they both are commonly referred to as DFI clk and the
data clock could be 1x 2x 4x of their frequency and it is commonly referred to as DFI PHY clk. The MC
communicates frequency ratio settings to the PHY on the dfi_freq_ratio signal. This signal is only required
for devices using this frequency ratio protocol. We define phases in frequency ratio systems as the number
of the clk cycle of the higher frequency that is occurring in the phase aligned lower frequency period as
illustrated in figure 17. In DFI standard, the following statement is mentioned:

The MC and the PHY must operate at the same frequency ratio. The frequency ratio applies to the
command and DFI data clock domain (PHY frequency ratio) or to the DFI data clock domain (data
frequency ratio) only. DFI clock domain signals do not operate at a clock ratio, they are always DFI clock
based. The definition of frequency ratio for MC is absurd and needs to be clearly illustrated.

22

The DFI specification supports the ability to send a uniqgue command on each phase of the DFI PHY clock.
To communicate this information to the PHY, the DFI specification defines commands for a frequency
ratio system in a vectored format. The PHY must maintain this information to preserve the timing
relationships between commands and clock data. Therefore, for frequency ratio systems, the command
interface, the write data interface and the read data enable signal are all suffixed with a “ pN” where N is
the phase number. As an example, for a 1:2 frequency ratio system, instead of a single dfi_address signal,
there are 2 signals: dfi_address_pO and dfi_address_pl1. The operation of frequency ratio systems will be
illustrated through several timing diagrams below.

The figure below illustrates how command interfaces would be interpreted by PHY. The signal
dfi_we_n_pO0 and the signal dfi_we_n_p1 are both high at the first DFI clock cycle thus in both phases for
that particular cycle the dfi_we_n signal is high. The mapping is illustrated by blue and green arrows. Note
how the behavior changed in the third DFI clock cycle where dfi_we_n_pl is high and dfi_we _n_pO is
low; simply the associated phase0 of that cycle is zero while phase 1 is high in the DFI PHY clk domain.

Mc!

DFI clock ! ! ! ! !
b N e T e B e R e R e N
dfi_es_p0 !

dfi_cs_pl
dfi_bank_p0, dfi_bg_p0 B
dfi_bank_pl, dfi_bg_pl

dfi_address_pl

IBUBL

1
dfi_odt_p0 . :

dfi_odi_p1 X

dfi_act_n_ph T\ c
dfi_ras_n_p0 7\ |

dfi_cas_n_pl

dfi_we_n_p0

dfi_act_n_pl, dfi_ras_n_pl,
dfi_cas_n_pl, dfi_we_n_pl P

——X
| E—
s
dfi_address_p0 A | |
rd
|
| S

PHY? L : AR : : '

DFI PHY clock

PHY dfi_es
PHY dfi_bank, dfi_bg

PHY dfi_address

Bl

PHY dfi_odt

PHY dfi_act_n

PHY dfi_ras_n

A
T‘l_

PHY dfi_cas_n

|
| |] i] i ; i
PHY dfi_we_n ! . i 1 i :L"L]
O DFIPHY clock phase 0
[1 DFIPHY clock phase |

4

Figure 17. Frequency ratio system with 2 phases.

23

2.1.7 CRC

Table 5 shows the Phycrc_mode signal which indicates the CRC validation happens in PHY or MC.

Parameter
phycrc_mode

phydbi_mode

2.2 JEDEC [7]

2.2.1 Package

Table 5. Write Data Interface Programmable Parameters.

Defined By Description
PHY Sends CRC data as part of the data
burst.

* ’b0 = CRC code generation and
validation performed in the MC.
*’bl = CRC code generation and
validation performed in the PHY.
PHY Determines which device generates

DBI and inverts the data.

* ’b0 = DBI generation and data
inversion performed in the MC.

* ’b1 = DBI generation and data
inversion performed in the PHY.

AN | 1 2 3 4 567 8 9 10 1 |

AL 1 2 3 4 (5|6 7 8 9
A| | DNU LBDQ VSS VPP za VSS LBDQS DNU | [A
B VDD vbDQ DQ2 DQ3 vDDQ VDD B
c vss DQO DQS_t T | pat vss c
D vDDQ vss DQS_c TDQS_c VSS vDDQ D
E VDD pa4 DQs par pas VDD E
F vss VDDQ Vss Vss vDDQ VsS F
G CA_ODT MIR VDD CK_t vDDQ TEN G
H ALERT_n| VSS cS_n CK_c VSS VDD H
J vDDQ CA4 CA0 CA1 CA5 vDDQ J
K VDD CA6 CA2 CA3 CAT7 VDD K
L vDDQ Vss CA8 CA9 VSS vDDQ L
M CAl CA10 CA12 CA13 CA11 | RESET_n M
N| | bNU VDD Vss VDD VPP VSS VDD DNU N

NOTE 1 DQ4-DQ?7 are higher order DQ) pins and are not connected for the x4 configuration.

NOTE2 TDQS tis not valid for the x4 configuration

NOTE 3 TDQS c is not available for the x4 configuration1 - DM_n not valid for the x4 configuration

Figure 18. Package of the DRAM.
2.2.2 Pinout Description
Table 6. Pinout Description.
Symbol Type Function
CK t,CK ¢ Input Differential clock inputs.
CS n Input provides for external Rank selection on systems with multiple
Ranks.
DM_n, DMU_n DML_n Input Input data mask. Input data is masked when DM_n is sampled LOW
coincident with that input data during a Write access.
CA[13:0] Input Command/Address Inputs

24

RESET n
DQ
DQS_t, DQS_c
DQSU_t, DQSU_c
DQSL_t,DQSL_c
TDQS_t, TDQS_c
ALERT n

TEN
MIR

CAl
CA_ODT

LBDQ(Loopback)
LBDQS(Loopback)
RFU
NC
VDDQ
VDD
VSS
VPP

2Q

Input
Input/output
Input/output

Output
output

Input
Input

Inout
Input

Output
Output
Input/output

Supply
Supply
Supply
Supply
Reference

Active Low Asynchronous Reset
Data Input/Output: Bi-directional data bus
Edge-aligned with read data, centered in write data
For the x16, DQSL corresponds to the data on DQLO-DQL7; DQSU
corresponds to the data on DQUO-DQU?7.
Termination Data Strobe
If there is an error in CRC, then Alert_n goes LOW.
During Connectivity Test mode, this pin works as input.
Connectivity Test Mode Enable:
Mirrored mode vs. Standard mode.
SDRAM internally swaps even numbered CA with the next higher
odd number CA.
internally inverts the logic level present on all the CA signals
ODT for Command and Address. Apply Group A if High and apply
Group B if Low
Training of DQ is done using the newly defined Loopback pin
Training of DQS is done using the newly defined Loopback pin
Reserved for future use
No Connect
DQ Power supply 1.1V
1.1V
Ground
DRAM activating power supply 1.8V
The pin is connected to 2400hm for reference

TDQS provides termination on both the TDQS and TDQS# balls that is equal to the termination selected
on DQS and DQS# for signal integrity issues. For MIR, it is needed because of the placement of DRAM
chips on the front and the backside of the DIMM PCB, so CA pins are switched to match the
corresponding DRAM chip. For CAl, it is needed as the new DDR5 has double the rows of DRAM chips
compared with previous versions so it inverts the CA bits of the upper row relative to the lower row as
shown on the following figure resulting in reduction in power delivery noise (difference between source
and destination power).

2.2.3 Addressing

Table 7. 8GB addressing in DDR5.

Configuration 2 Gb x4 1 Gb x8 512 Mb x16
Bank address BG Address BG0~BG2 BG0~BG2 BG0~BG1
Bank Address in a BG BAO BAO BAO
BG / # Banks per BG / # 8/2/16 8/2/16 4/2/8
Banks
Row Address R0O~C15 RO~R15 R0O~C15
Column Address C0~C10 C0~C9 C0~C9
Page size 1KB 1KB 2KB
Chip IDs / Maximum Stack Height CID0~3/ 16H CID0~3/ 16H CID0~3/ 16H

Chip ID determines the ID of a specific die in a 3D stacked DRAM chip. The page size is per bank, the
number of bits loaded into the sense amplifiers when a row is activated.

25

2.2.4 Commands

TotalCapacity = #Banks *

PageSize = 2#COIBILs (

Table 8. DDR5 command truth table.

8

Width)

Z#Row Address Bits * Z#ColAddress Bits Width

CA Pins
Functi
on Abv. | CS Fe A TCA[CA[CA[CA| CA [CA [CA | CA [CA [CA | CA | CA | cA |Not
0 1 2 S 4 5 6 7 8 9 10 11 12 13
Mode MRW | L H L H L L | MRA | MRA | MRA | MRA | MRA | MRA | MRA | MRA \Y% 1,6
Register 0 1 2 3 4 5 6 7
Write
H |[OP |OP |OP |OP | OP | OP5 OP6 OP7 Vv Vv Ccw Vv \YJ Vv
0 1 2 3 4
Mode MRR L H L H L H | MRA | MRA | MRA | MRA | MRA | MRA | MRA | MRA Vv 6,7,
Register 0 1 2 3 4 5 6 7 13
Read
H L V|V |V Vv Vv Vv Vv Vv Cw Vv \YJ Vv
Mode MRR-N H L H L H Vv Vv Vv \Y \Y \Y Vv Vv Vv 7,14
Register T
Read NT L L \% \Y \Y \Y% \% \% \Y% \% \Y% \%
Write WR L H L H H L | BL*= | BAO BAl BGO BG1 BG2 | CIDO | CID1 CID2 | 357,
L 10,12
H |[C2|C3|C4|C5|C6 Cc7 C8 C9 C10 Vv H WR_P \Y CID3
=L
Write Auto | WRA L H L H H L | BL*=| BAO BAl BGO BG1 BG2 | CIDO | CID1 CID2 | 357,
Pre-charge L 10,12
H [C2|C3|C4|C5|C6 c7 C8 Cc9 C10 \Y L WR_P \Y CID3
Write NT WR- L H L H H L | BL*= Vv Vv Vv Vv Vv Vv Vv Vv 3,57,
NT L 10
L \ \Y Vv Vv Vv \Y \Y \Y Vv Vv Vv
Read RD L H L H H H | BL*= | BAO BA1l BGO BG1 BG2 | CIDO | CID1 CiD2 3,5,7,
L 12
H [C2|C3|C4|C5|C6 c7 C8 Cc9 C10 \Y H \ \Y CID3
Read Auto RDA H L H H H | BL*= | BAO BA1l BGO BG1 BG2 | CIDO | CID1 CID2 3,57,
Pre-charge L 12
H |[C2|C3|C4|C5|C6 c7 C8 Cc9 C10 Vv L \ \Y CID3
Read NT RD-NT H L H H H | BL*= Vv Vv Vv Vv Vv Vv Vv Vv 35,7
L
L vV |V V|V |V Vv Vv Vv Vv Vv Vv Vv Vv Vv

Two cycle commands have two Chip select values Low and High. CA5:BL*=L, the command places the
DRAM into the alternate Burst mode described by MRO[1:0] instead of the default Burst Length 16 mode.

26

2.2.4 Two Cycle Commands

DDR5 DRAM commands ACT, WRP, WRPA and MRW are 2-cycle commands. The DRAM will not
execute these 2-cycle commands if the CS_n is LOW on the 2nd cycle (command cancel). Figure 19
shows a 2-cycle command example.

cASO) ii““‘"“";‘////f]/ /////////////// Il ///////f@@ﬂ//f[[///]ffﬂf/ﬁ
CMD ijw;"g,\\’f?(DESDESDES\DES VALID')DESDES

ICMD_cancel

G

M ponT care 2% TIME BREAK

Figure 19. 2-cycle commands example.

2.2.5 Burst Length

The burst length is defined by bits OP [1:0] of Mode Register MRO. Table 9 shows the MRO register and
OP-code definitions. Burst length options include BC8 OTF, BL16, BL32 (optional) and BL32 OTF. On
The Fly (OTF) means that the BL can be changed dynamically. CO — C10 (Column Address Bits) are used

to specify a starting column address. The ordering of accesses within a burst is determined by the burst
length and the starting column address.

Table 9. MRO Register and OP-Code Bit Definitions.

OP7 OP6 OP5 OP4 OP3 OP2 OP1 OPO
RFU CAS Burst Length
Latency
Function Type oP Description/Data
Burst Length RW OP[1:0] 00=BL16,01=BC8 OTF, 10=BL32, 11=BL32 OTF
CAS Latency RIW OP[6:2] 00000=22, 00001=24, 00010=26, 00011=28, 00100=30, 00101=32,

00110=34,00111=36, 01000=38, 01001=40, 01010=42, 01011=44,
01100=46,01101=48, 01110=50, 01111=52, 10000=54, 10001=56,
10010=58, 10011=60, 10100=62, 10101=64, 10110=66,
10111-11111=RFU

RFU RFU OP[7] = RFU
2.2.6 Programmable Preamble & Post-amble

The strobe line may be used to signal the beginning and end of a burst of data. A read “preamble cycle"
may be used to indicate the beginning of a read burst and a "post-amble cycle” may be used to signal the

27

end of the read burst. A DDR SDRAM controller and associated memory may perform read and write
operations synchronously based on a periodic signal transmitted over a “strobe' line. But due to high
frequencies signal integrity issues between the strobe and data can occur leading to memory errors. Read
Preamble is configured as 1tCK, 2tCK (two unique modes), 3tCK and 4tCK via MR8: OP[2:0]. Read Post-
amble is configured as 0.5tCK or 1.5tCK via MR8: OP[6]. DQS shall have an option to drive early by x-
tCK to accommodate different HOST receiver designs as controlled by the Read DQS Offset in MR40:
OPJ[2:0] but this will be processed by the analog part of the PHY. Figure 20 shows a waveform of the
usage of preamble signal.

oKL 1 L 1 Lty t E iz 1 1 I s tr te
CK f B
L8
1 10K Preamble: DaS_t. I
143 Paitarn: - MRE-DPEE 0 =006 DS e
2 4CK Preamble: DOs i
3D Paties AR D2 DOS_c
2 ICK Preamble: OGS 1, (i} T
= : : :
3 ICK Preamble: DGS 1, E"I" mul" E"I" ﬂ i
390010 Padem - WRLOPROFE DOS o -
4 1CK Preamble: DS 1, T
SOOLAGIT Pafim - WREOFETR1300 NS g L. I L L
- T | | | | I —T
a1 T TVATIOMTIOM RO ORI @D B2 DS80S 82 TS . T T NI
H 4 H i — 4 4 i H

Rasd DOS Cftzat
MR DR
340K Ot Exarzin

Figure 20. Preamble usage example.
2.2.7 Inter-amble

The post-amble and pre-amble size shall not force the host to add command gaps in the command interval
just to satisfy post-amble or pre-amble settings. In Read to Read operations with tCCD(Column to column
delay)=BL(Burst Length)/2, post-amble for 1st command and preamble for 2nd command shall disappear
to create consecutive DQS latching edge for seamless burst operations. If the post-amble and pre-ambles
overlap, the toggles take precedence over static preambles. Figure 21 shows an interamble example.

Mo gap, all .“7—;’* ‘7’.**-‘7 *;.74;7‘ 77‘7—. i W,,,,,,
T EOENER EEEEEE ey

No gap

Post=0.5 Pre=1,
Post=1.5 Pre=1,

2,34 \ g
t Pre=11
23,4 chown '

Figure 21. Interamble example.

Inter-amble scenarios are based on the pre-amble, post-amble and the gap between these two given by
table 10.

Table 10. Interamble scenarios.

tCCD Preamble Postamble Interamble

min+l 1,2,3,4 0.5 10
min+2 3 0.5 0010
4 0.5 01010
1,2,3,4 15 01010

28

min+3 4 0.5 0001010
3 15 0100010
4 1.5 0101010

min+4 4 1.5 010001010

2.2.8 Read Burst Operation

During the READ or WRITE. MRO[1:0] is used to select burst operation mode. But it could be discarded
and the default value of 16 is used in a particular read, a single read operation is shown below in figure 22.

CK 1, to ti t2 otz ta ta tarr ez taed tass taes tass taer tavs taro tesio th ther teer fhes foed toes thes teer toee toen foern toert toesz
CK e

i T] T m T N 7] ||M 7 R T T
CA[13 0] & BEA“. II‘II‘I|III\IIJIIIII\IIJI|"II\I||‘|I\II|‘I"I‘II‘II‘I i I|‘Il‘""|II‘|II|I|‘I|||IIIII I‘|II|I|I|‘II|II‘IIIIII‘|II‘IIIII‘II"I\I|‘| \I‘Il‘ll I\II‘III"\|‘I||‘|I\II|‘I|‘IIIII‘I|‘I\Ill‘ll‘|||||I|‘|I|II‘I|‘I|I‘II¥|III||I|I|‘I|I‘IIII|‘I||’|I|I\Il‘"lll\lll‘l‘llll‘ll|II‘|I‘III‘|II‘I‘II‘IIII‘I‘III"\I Ill‘"‘lll‘lll‘lll‘:‘ |I|‘IIII\III|‘I|I‘|II‘I|I|I‘|I‘II‘I|I‘|I|II|‘II‘"| ‘II‘"IIJI‘I‘lll\ll|‘|I‘|II‘II"II|I‘I‘IIII|II|I‘I|I‘|I{|I\I||I|I\I|‘II|II\|I|‘I'Illxlllll‘lll\lllll‘llll\ll‘l |II‘II‘II‘ |‘"'w |‘IIII‘I|‘II|II|‘ ‘|IIII|‘I‘|‘II‘|I|I‘| ‘I|‘|I||III‘IIlll\l||‘||I||\|I||‘|Illl\lll‘lll‘II‘I|I|II‘IIIIII|I‘II

o (o oSt @ﬁ@ﬁ@-@ﬁ
csn LJ i %) i | ! %:

ng—g T, |‘|I\I.‘III."I"‘I‘|I‘III‘|I.‘I“‘II‘II‘II‘I“‘I'I T ‘|I|”|||"I\"I\ ﬂ_i RS y B r‘l‘__EJhlll!"II‘”hlf"l\ "H.‘H‘."'\"lu,h.l 'H.'u: T |.,||,‘,l||'ll.“|."I|I'H'"u"ll"ll"‘l‘n'l‘lnH.'H.H‘
- |]] i]] F+tRpaE trpar]] |
DQ[15:0] w'.','gw'.','ﬁ'w'.‘,'l'\',"1'\'|‘,"|'\',"‘|",m"l.',"u.,u"lu‘,'lu'.‘, IHIAHI \"l\.,h. T T e T Nes e Y2t T T '|\|I|\"I|""||‘\||'|\|‘|"\||I\|‘|I|"|\| il l.,"l.,lu.,u.'ll"ln,lh l.f,"u.‘fh.“.,‘lu,h. il

RL=CL

Figure 22: Read operation

In this example, read DQS offset timing is set to 0 clocks, BL is 16, Preamble = 2tCK - 0010 Pattern
Preamble, 1.5tCK Postamble. Also note that DES commands are shown for ease of illustration; other
commands may be valid at these times.

2.2.9 Back-to-Back Reads Different Ranks

CK ¢ to t otz ta te o ta faur tas tas Bewa Bass tase th teer tesz tees te tes ez B te tuu Moz taia te tet Besz B ters tess

o ﬂnﬂﬂﬂﬂ'ﬂnﬂ WAVAURWEWAVANRNREA YR mﬂﬂnﬂﬂr

CMD)
0 0 Clock |
DQs i - ; S
Doy n w,rﬁ;WWIMLL_““_
Rank 0 DQS _-.,- RTT_PARK - DQS_RTTY OFF — i DOs RTT PARK —
Rank 1 DQS FGs_RTT PARK " Das_ ﬁ_OFF;—JI[_'_'J
|I|||I|||I||.||I||||I'|||I'||||||I ||||;.| ,nl||||,nl‘|.||I|.|Il',.||',|||',.||'..: |"I||':I||”II|'I ||,.I|l,.|ll,.l.ll,..|l,. B e Bl B ‘.n,.ul,.nl,..ll:.. ||I'.|||||\| ,.nI,nll,nl,.nI, ,.|ll,.|ll,..;l,..|l..;I.n |||I||||I|||lll|||I||I|I|
Rank 0 DQ TT_PARK —trTT_deF——}_ RTT_JFARK {1 RTT_|NOM_RD [RTT_PARK]
Rank 100 II:”||“|:”|||”|||”|I'”|‘||”||I”|‘||' ||||.|I,.|II|.|||.||II||||||||||||||||||I||||||“,|I|“,||,,.lI ||,|I||,|||,|I|I|||II| |||||||||;||I |I|I:||I|||I:||I|||||”||”|I|” ||||I|||||||||||,||“,||Iu ml i 3 I||||“|||“,||“,|I|I,.||,.I|I,
TT_PARK i [RTT_NpM_RD)| rTT_|pARK J——RTT_|DFF
i Unmatched - Read DQS O fset|Timing getto 1 Clock
H H H H H arly H H ! H

2
([RTT_PARK]

Figure 23. Back-to-back reads from different banks.

29

The figure illustrates two different examples, the top with the default setting for Read DQS Offset = 0
Clock, the lower with a 1 Clock setting. In the lower case, the DQS is started 1 clock earlier than normal
with respect to RL (CL). Note that Read Latency was not violated and data of both reads were driven at the
same time in both examples.

2.2.10 Burst Read Followed by Pre-charge
To illustrate this section, the following timing parameters first has to be defined:
e tRTP (Read to Precharge) - minimum internal Read to PRE timing

e tRAS - minimum ACT to PRE timing. (Time taken from ACTIVATE command for the DRAM
to move data from row to sense amplifiers and restore the data again).

e tRP > minimum time after precharge. (Time needed for the DRAM to be precharged for another
rOW access)

e tRC (Row Cycle) > tRAS + tRP (Read Cycle) between 2 Row accesses.

Note that new bank active command may be issued to the same bank when tRPmin and tRCmin are
satisfied simultaneously. A read followed by pre-charge operation is shown in figure 24

tq ta

t2 1 ta

ta+t

tarz a3 ts tbse1 tbs2 thes thea thes tose toe7 tbes toso thetn thet1 fber2 tbers

Figure 24:Read followed by pre-charge

Figure shows that pre-charge can happen before data gets out on the data bus as the row data already
moved from sense amp to I/O gating which has a read data latch (tRTP).

2.2.11 Read Timing Hlustration

Figure 25:DQ bus timing

30

Note that data Strobe is synchronized with the clock but it has some deviation from the clock edge by a
variance window. Also, previously tested that when the clock edge comes the strobe will change its signal
either within max, center or min variance window. Moreover, the DQ is shown like that to show that there
are parallel bits coming from different bank groups.

2.2.12 Read Burst Operation for Optional BL32 Mode
BL32 in BL32 OTF Mode is shown below in figure 26

CK_t fo b tp ta b s b ot ts to tw e ten tws tws M tees tes ber faes tes taesn beis e letd tes feis tes ter tess

cKe AL
CA[13:0] @ i &

Ak

s N AT

B Closks |

cstn L J Pl Py

Figure 26: Read Timing for fixed BL32 and BL32 in BL32 OTF mode

Note that a dummy CAS command is required for the second half of the transfer of BL32 with a delay of 8
clocks (16 bits).

BL16 in BL32 OTF Mode is shown below in figure 27

o b ta Mt ts te b te ta tw f et tes tes ted tes tes ter tes fes fen bets teis Tens e teis tes ter tes

CH_L,
CK_c

CA[13:0] ncleag I|IIII|I|I|II'I|I|I|IIII|I|I|IIII

Figure 27: Read Timings for BL16 in BL32 OTF mode

The figure shows BL16 read operation when MRO is programmed to use BL32 OTF mode. In this case, no
dummy RD command is required as transfer size is BL16.DDR5 DRAM supports an optional fixed BL.32
mode and optional BL32 OTF (On the fly) mode for x4 devices only.

2.2.13 Bank Group Read.

The minimum allowed timing between reads is dependent on where do the consecutive reads fall. Figures
28 and 29 illustrate that difference

CK_t, o b
CK ¢

te ts 14 b5 ts ta far lars e lae lass tass fe7 tass fass lasio laent laen2 a3 tasua tarts larg lasa7 tass

CA[13:0]

CMD

cson L) LJ

Figure 28: Read to Read to Same Bank Group for BL16 in BL32 OTF

31

CK_t,
CK_c

CA[13:0]

CMD

Figure 29:Read to Read to Different Bank Group for BL16 in BL32 OTF-.

Note that bank accesses to different banks' groups require less time delay between accesses than bank
accesses to within the same bank's group. Bank accesses to different bank groups require tCCD_S (or
short) delay between commands while bank accesses within the same bank group require tCCD_L (or
long) delay between commands.where tCCD_s is limited by burst length as both BGs can work in parallel.
And tCCD_I=>limited by back access because they share the same resources.

2.2.14 Read with Auto Pre-charge
A read with auto pre-charge for fixed BL32 and BL32 in BL32 OTF Mode is shown in figure 30

st ta

CK_t,
CK c

T
CA[13:0] W

CMD

Figure 30: A read with auto pre-charge

Note that auto pre-charge is in the second read not the first. If it was in the first the row would get closed
and no further reads can happen. Also, CA bits other than C10 and AP in the dummy CAS command are
the same as the first CAS command.

2.2.15 Read and Write command interval

Table below illustrates the minimum command separation in case of consecutive read and write. This

process is also illustrated in figures 31 and 32 below.
Table 11: Command Separation

Bank Group Timing Parameter Value
Same Minimum read to write CL-CWL + RBL/2ﬁ+ 2)tCK - (Read DQS
offset
+ (tRPST - 0.5tCK) + tWPRE
Minimum write to read CWL + WBL/2 + tWTR_L
Write to read AP same bank CWL + WBL/2 + tWTRA
Different Minimum read to write CL-CwWL + RBL/2ﬁ+ %)tCK - (Read DQS
orse
+ (tRPST - 0.5tCK) + tWPRE
Minimum write to read CWL + WBL/2 + tWTR_S

32

Note that write to read time is long when accessing the same bank group. But write to read time is short
when accessing different bank group.

CKt —fo bt bt tad tez tes bt bes tes far e les feo ten bt fe tes bt te bt for tes fos les tes fer bes fes leo ler b bet ler tes b te

cKe) RERURER JEREREREATESRE RS AN AYEEREEE RS RN R AR R REREREATRERERE R

TRNISID

]
H H H H H H H H H H H H H " H H q H

CMD WRITE <ﬁ\.-&. DESIDE ‘E«.- 'ﬁ'"“ DEZ%E READ JDESIDES{DES/DESIDE m-uﬁ--uﬁ@m |ﬁ-- -uw-E-*-r-ﬂ @m-&a- bES)
I 4 |] g - i [[

Cs0_n S bl 1 IS T T)] T
i cw i 8 Clieks ! P R =

Figure 31:Timing diagram for write to read

CKiI b bt tata te 0 eyt Tt fr fed B o fe fer fed fa la fez led s tes les fer fes fes ferotenn b let e fes bes
G R RERES VAl REANRUAEATASANREASRERER O § RUAW
— e T T T : .— :: : I T 1 -
casol (G W S NS A WWWW%%BWWW
cmp (warre Jpedfe ; pedfpespedpe S E T E‘E Aot Jpesbes
| [H |
cson LS ¥ —% 5 w
i o [Pracharad e T
i j seae i

Figure 32:Timing diagram for write to read Auto Pre-charge in the same bank

2.2.16 CRC

DDRS5 supports CRC for write and read operations. Read and Write CRC can be enabled by separate mode
register bits. The CRC polynomial is the ATM-8 HEC, X3+X?+X+1, same used on DDRA4. Refer to
appendices for CRC pseudocode as provided by the standard.

This bit mapping is common between write and read CRC operations and it differs based on DRAM width
as shown below in figures 33,34,35.

Transfer
g2 IS 5 6 B IO 1 1213 1A 516 7
DQO do d4 d8 d12 di6é d20 d24 d28 d32 d36 d40 d44 d48 d52 d56 d60 |CRCO|CRC4
DQ1 dl d5 d9 di3 d17 d21 d25 d29 d33 d37 d4l1 d45 d49 d53 d57 d61 |CRC1|CRCS
DQ2 d2 dé di10 di4 di8 d22 d26 d30 d34 d38 d42 d46 d5S0 d54 d58 d62 |CRC2|CRC6
DQ3 d3 d7 dl1 di5 d19 d23 d27 d31 d35 d39 d43 d47 d51 d55 d59 d63 |CRC3|CRC7

Figure 33: CRC Bit mapping for x4 device

This bit mapping is common between write and read CRC operations. x8 devices have two DQ nibbles and
each DQ nibble has its own eight CRC bits to protect 64 data bits. Therefore, a x8 device will have two

33

identical CRC trees implemented.

Transfer
0 1 2 3 4 5 6 iZ 8 9 A0 3% 128 13- 14 15 16 17
DQO d0 d4 d8 di12 di6 d20 d24 d28 d32 d36 d40 d44 d48 d52 dS6 d60 |CRCO|CRC4
DQ1 d1 ds d9 di3 d17 d21 d25 d29 d33 d37 d41 d45 d49 dS53 d57 d61 |CRC1{CRCS
DQ2 d2 dé dl0 dil4 di8 d22 d26 d30 d34 d38 d42 d46 d50 d54 d58 d62 |CRC2|CRC6
DQ3 d3 d7 dil1 di5 d19 d23 d27 d31 d35 d39 d43 d47 d51 d55 d59 d63 |CRC3|CRC7
DQ4 do d4 d8 dl2 di16 d20 d24 d28 d32 d36 d40 d44 d48 d52 d56 d60 |CRCO|CRC4
DQ5S dl ds d9 di3 di17 d21 d25 d29 d33 d37 d41 d45 d49 dS3 d57 d6l |CRC1|CRCS
DQ6 d2 dé dl0 di4 di18 d22 d26 d30 d34 d38 d42 d46 dS0 d54 d58 d62 |CRC2|CRC6
DQ7 d3 d7 dil1 di5 d19 d23 d27 d31 d35 d39 d43 d47 d51 d55 d59 d63 |CRC3|CRC7

Figure 34:CRC data hit mapping for x8 devices

Transfer
0 1 2 3 4 5 6 7 8 9 0 11 12 13 14 15 16 17
DQo d0 d4 d8 dl12 die d20 d24 d28 d32 d36 d40 d44 d48 d52 d56 de60 |[CRCO|CRC4
DQ1 dl d5 d9 di13 di7 d21 d25 d29 d33 d37 d41 d45 d49 d53 d57 dbl |CRC1|CRCS
DQ2 d2 de di0 dl4 di8 d22 d26 d30 d34 d38 d42 d4e d50 d54 d58 de2 |[CRC2|CRCe
DQ3 d3 d7 di11 di5 di19 d23 d27 d31 d35 d39 d43 d47 d51 d55 d59 d63 |CRC3|CRC7
DQ4 d0 d4 d8 di12 die d20 d24 d28 d32 d36 d40 d44 d48 d52 d56 d60 [CRCO|CRC4
DQs dli d5 d9 di13 di7 d21 d25 d29 d33 d37 d41 da5 d49 ds53 d57 del |CRC1|CRCS
D6 d2 d6 di0 di4 di8 d22 d26 d30 d34 d38 d42 d46 d50 d54 dS58 d62 |[CRC2|CRCe
DpQa7 d3 d7 di1 di5 di19 d23 d27 d31 d35 d39 dd43 d47 d51 d55 d59 d63 |CRC3|CRC7
DQ8 d0 d4 d8 di12 die d20 d24 d28 d32 d36 d40 d44 d48 ds52 d56 de0d |CRCO|CRC4
DQ9 dl d5 d9 di13 di7 d21 d25 d29 d33 d37 d41 d45 d49 d53 d57 dbl |CRC1|CRCS
DQ10 d2 dé di0 di4 di8 d22 d26 d30 d34 d38 d42 d46 d50 d54 d58 d62 [CRC2|CRCe
DQ11 d3 d7 dll1 dl15 di19 d23 d27 d31 d35 d39 d43 d47 d51 d55 d59 de3 |CRC3|CRC7
DQ12 d0 d4 d8 dl2 die d20 d24 d28 d32 d36 d40 d44 dd8 d52 d56 d60 |[CRCO|CRC4
DQ13 dl d5 d9 di3 di7 d21 d25 d29 d33 d37 d41 d45 d49 d53 d57 dbl |CRC1|CRCS
DQ14 d2 d6 di0 dl4 di8 d22 d26 d30 d34 d38 d42 d4e6 d50 d54 dS58 d62 |[CRC2|CRCe
DQ15 d3 d7 dil1 di5 di19 d23 d27 d31 d35 d39 d43 d47 d51 d55 d59 d63 |CRC3|CRC7

Figure 35: CRC data bit mapping for x16 devices

This bit mapping is common between write and read CRC operations. x16 devices have four DQ nibbles
and each DQ nibble has its own eight CRC bits to protect 64 data bits. Therefore, a x16 device will have
four identical CRC trees implemented.

2.2.17 Write CRC for x4, x8 and x16 devices

The following notes represent design constrains thus they are to be listed separately for highlighting
purposes

Write function can be enabled or disabled per each nibble independently in x8 devices, with
separate enable MR bits.

When at least one of two enable bits is set to ‘1’ in x8, the timings of write CRC enable mode is
applied to the entire device (both nibbles).

When only one write CRC is enabled, the DRAM does not check CRC errors on the disabled
nibble, and hence the ALERT _n signal and any internal status bit related to CRC error is not

34

impacted by the disabled nibble.

For x4 or x16, only one of two write CRC enable bit is used as defined in the MR table (Figure
TBD). The unused write CRC enable bit is don’t care in x4 and x16, i.e., MR50 OP [2] is set to low
for x4 and x16 devices.

The DRAM checks for an error in received code words per each write CRC enabled nibble by
comparing the received checksum against the computed checksum and reports errors using the
ALERT n signal if there is a mismatch in any of nibbles.

DRAM can write data to the DRAM core without waiting for CRC check for full writes. If bad
data is written to the DRAM core, then the controller will retry the transaction and overwrite the
bad data. Controller is responsible for data coherency.

No write latency adder when write CRC is enabled.

2.2.18 Write CRC auto-disable

The following notes represent design constrains thus they are to be listed separately for highlighting
purposes

Write CRC auto-disable mode is enabled by programming the Write CRC auto-disable mode to
enable bit MR50:0P[4] to “1°.

When this mode is enabled, the DDR5 SDRAM counts the number of Write CRC error occurrences
per device, regardless of configuration (x4, x8 or x16). When the number of Write CRC errors
exceeds the Write CRC Auto-Disable Threshold (between 0 and 127) as programmed in
MR51:0P[6:0], the DDR5 SDRAM disables Write CRC error checking of all nibbles and sets the
Write CRC auto-disable status bit MR50:OP[5] to “1°.

To exceed the Write CRC Auto-Disable Threshold, the number of Write CRC errors must occur
within the Write CRC Auto-Disable Window described below.

Unless the Write CRC auto-disable status bit is set, the Write CRC error counter is reset after the
predetermined number of writes between 0 and 127, where 0 means an infinite window, as
programmed in MR52:0P[6:0], so that the Write CRC error count will accumulate during each
Write CRC Auto-Disable Window.

Once the Write CRC auto-disable status bit is set, the write CRC error checking is not re-enabled
at the end of the Write CRC Auto-Disable Window, even though the Write CRC error counter is
reset below the threshold value.

Write CRC error checking can be re-enabled by resetting the Write CRC auto-disable status bit
MR50:0P[5] to ‘0’. This will reset the Write CRC error counter and restart the Write CRC Auto-
Disable Window.

Prior to changing the Write CRC Auto-Disable Threshold as programmed in MR51:0P[6:0] or the
Write CRC Auto-Disable Window as programmed in MR52:0P[6:0], the host shall disable the
Write CRC Auto-Disable mode, MR50:0P[4]=0.

Once the updated values have been programmed in MR51 and/or MR52, Write CRC Auto-Disable

35

mode can be (re)enabled, MR50:0P[4]=1.

Disabling the Write CRC Auto-Disable mode, if enabled, will reset the DRAM’s Write CRC error
counter and restart the Write CRC Auto-Disable Window. However, if the Write CRC auto-disable
status bit had previously been set to ‘1’, MR50:0P[5]=1, the host is required to set MR50:0P[5]=0
to resume error counting.

Changes to the Write CRC auto-disable threshold (MR51) and window (MR52) settings are only
allowed when the CRC Write auto-disable mode is disabled (MR50[4]=0).

If the CRC auto-disable threshold is reached and the DDR5 SDRAM was already driving
ALERT_n to low due to the current or a previous Write CRC error, then ALERT_n may be
released upon satisfying CRC_ALERT_PW_min.

When Write CRC auto-disable mode is disabled, MR50:OP[4] = 0, Write CRC error counters may

remain at reset values even if Write CRC errors occur.

2.2.19 Read CRC for x4, x8 and x16 devices

The following notes represent design constrains thus they are to be listed separately for highlighting
purposes

e The controller can check for an error in received code words per nibble by comparing the received
checksum against the computed checksum and if there is a mismatch in any of nibbles then

controller may retry the transaction.

e Read latency adder when read CRC is enabled depends on data rate as shown in Table below.

Table 12:Read CRC latency adder

Data Rate MT/s Read CRC Latency Adder (nCK)
1980 MT/s < Data Rate <2100 MT/s 0
2933 MT/s < Data Rate < 6000 MT/s 0
6000 MT/s < Data Rate < 6400 MT/s 2
6800 MT/s < Data Rate < 8400 MT/s 4

2.2.20 CRC Burst Order

The following notes represent design constrains thus they are to be listed separately for highlighting
purposes

e When Write CRC is enabled, the CRC bits are calculated based on the sequential burst address

order of the write data for the Write command. This sequential order

'0,1,2,3,45,6,789,ABCDEF in BL16 and '0,1,23456,7TTTTTTTT

is
or

36

'8,9,A,B,C,D.EFTTTTTTT,T in BC8OTF.

e \When Read CRC is enabled, the DDR5 SDRAM's CRC generator overrides the CA burst order bits
C3 and C2 to '00', and CRC bits are calculated based on the sequential burst address order of the
read data for the Read command. This sequential order is '0,1,2,3,4,5,6,7,8,9,A,B,C,D,E,F in
BL16,and'0,1,2,3,4,5,6,7,T,T,7,7,7,7,T,T or T,T,T,T,T,T,T,T,8,9,AB,C,D,E,F in BC8 OTF.

e The override values do not modify the actual data burst ordering, and are only used for the CRC
calculations. Actual data burst follows the burst order as indicated by C3 and C2 in the Read
command.

2.2.21 Write CRC error handling

The following notes represent design constrains thus they are to be listed separately for highlighting
purposes

e When DRAM detects CRC error on received code words in any of nibbles, then it drives
ALERT n signal to ‘0’ for TBD clocks.

e DRAM will set Write CRC Error Status bit in A[3] of MR50 to '1' upon detecting a CRC error. The
Write CRC Error Status bit remains Group At '1" until the host clears it explicitly using an MRW
command.

e The controller upon seeing an error as a pulse width will retry the write transactions. The
controller understands the worst-case delay for ALERT n (during init) and can back up the
transactions accordingly or the controller can be made more intelligent and try to correlate the write
CRC error to a specific rank or a transaction. The controller is also responsible for opening any
pages and ensuring that retrying of writes is done in a coherent fashion.

e The latency to ALERT_n signal is defined as tCRC_ALERT

CK t. Lo laer la2 Lo laes laes ley thae tes les ooy loaa toeg loeno

K e uf\\u\41_;‘_1“'\;)_;\4_4_;\4 41_,1)_4\\4 _f\fx‘_flﬂ\ﬁl_f_fx‘tf_f\{

ote IDEEE »T D2 25 I)

Alert_n ‘ 1 S H“ ‘ 7 ':;\,
(BL16) \ il)

CK t bt te b th th ti Ui t ti e ftis tas l(l1 ti 5 tdes l, Ly tame lds tabs lapy labs tds l [O

NG RE B\ BEBE B \4x;u\ug);\4 ;;4\\4‘uj\ou\“p\ugafu&ugx}\f

(BDL‘;z) IJJ_U_XI}VUM) I A, LJJ‘)‘] '”T?i \.
Aetn_ 1 |+ |+ | | S |1 e
(BL32) |¢ O) -
Figure 36:Error reporting timing diagram
Table 13: CRC error handling timing paramters
Symbol Description Min Max Unit
tCRC_ALERT CRC Alert Delay 3 13 Ns
CRC_ALERT_PW CRC Alert Pulse 12 20 nCK

37

2.2.21 CRC bit mapping in BC8 mode

The following notes represent design constrains thus they are to be listed separately for highlighting
purposes

e CRC bits are always transferred on 17th and 18th Ul, in BC8 mode.

e When read CRC is enabled during BC8 read, DQ bits are driven high and DQS is toggled by
DRAM during the chopped data bursts.

e When write CRC is enabled during BC8 write, DQ bits must be driven high and DQS must be
toggled by controller during the chopped data bursts.

e In BC8 mode, read CRC and write CRC bits are calculated with the inputs to the CRC engine for
the chopped data bursts replaced by all '1's as shown in figures below.

Transfer
0 1 2 3 4 5 6 7 8 g 10 11 12 13 14 15 16 17
Dao d0 d4 d& di2 dile d20 d24 d28 1 1 1 1 1 1 1 1 |CRCO|CRC4
Da1 dli d5 d9 di3 di7 d21 d25 d29 1 1 1 1 1 1 1 1 |CRC1|CRC5
DQz2 d2 dé dl10 di4 di18 d22 d2e d30 1 1 1 1 1 1 1 1 |CRC2|CRCB
DQ3 d3 d7 dil1 di5 di19 d23 d27 d31 1 1 1 1 1 1 1 1 |CRC3|CRC?
DQ4 d0 d4 d& diz die d20 d24 d28 1 1 1 1 1 1 1 1 |CRCO|CRC4
DQas dl d5 d9 di3 di7 d21 d25 d29 1 1 1 1 1 1 1 1 |CRC1|CRC5
DQ6 d2 dé dl0 di4 di8 d22 d2e d30 1 1 1 1 1 1 1 1 |CRC2|CRCo
DQ7 d3 d7 di11 di5 di19 d23 d27 d31 1 1 1 1 1 1 1 1 |CRC3|CRCV

Figure 37: Bit mapping for CRC at BL=8 in x8 device

Transfer
0 1 2 3 4 5 [7 8 g 10 11 12 13 14 15 16 17

DQo d0 d4 d8 dl2 die d20 d24 d28 1 1 1 1 1 1 1 1 |CRCO|CRC4
DQ1 dl d5 d9 di13 d17 d21 d25 d29 1 1 1 1 1 1 1 1 |CRC1|CRC5
DQ2 d2 dé di0 di4 d18 d22 d26 d30 1 1 1 1 1 1 1 1 |CRC2|CRCE
DQ3 d3 d7 di11 di5 di19 d23 d27 d31 1 1 1 1 1 1 1 1 |CRC3|CRC?

Figure 38:Bit mapping for CRC at BL=8 x4 device

2.2.22 CRC bit mapping in BL32 mode

The following notes represent design constrains thus they are to be listed separately for highlighting
purposes

e In BL32 mode, CRC bits are separately calculated for the first half and the second half of the data.

e CRC hits for the first half of the data are transferred on 17th and 18th Ul, and CRC bits for the
second half of the data are transferred on 35th and 36th UI.

38

2.3 SystemVerilog Language Standard [8]
Formally known as IEEE 1800-2017. It is utilized in hardware description and verification. We used SV

for design for its numerous enhancements over classical Verilog. It is less user error prone due to removing
previous Verilog ambiguities. It is also utilized in verification due to its powerful UML capabilities.

39

3- Market and Literature Review

Memory systems poses a real performance bottleneck for computing systems. Since 1980s and the
memory-processor gap is on the rise as illustrated in figure below [9] which fuels the continuous effort to
make a faster and denser memories.

B0 e S e e s e o S e = CPU
Q
g T SUNSNESIPSRSSURTSDNMPNEUEIESR-- SN -Processor-Memory
£ Performance Gap:
2 (grows 50% / year)
I [o
o
i—= DRAM
1 AAAAAAA 4
§8388888838888::z2¢E¢:8

Time
Figure 39:Processor Memory Performance Gap.

3.1 SDRAM Market
The SDRAM market can be segmented into three categories

3.1.1 DRAM Module Manufacturers

The global DDR market size in 2020 is 1.08 billion USD and it is expected to grow by 3x by 2027 with a
CAGR of 18.3%. Currently, this market is segmented to DDR1, DDR2, DDR3, DDR4, DDR5until now
DDR4 dominates the market with a share of 74% but DDRS5 share is expected to rise significantly in the
following years [10]. The key DDR5 SDRAM modules providers include:

e Micron Technology, Inc

e Hynix

3.1.2 Hardware that supports DDR5 Manufacturers

As illustrated in table 2 the main two key manufacturers of processors that support DDR5 are Intel and
AMD. Currently AMD hasn’t released any processors that support DDRS and only 12" generation Intel
processors support DDR5

3.1.3 IP Vendors

The discussed market above does not account for other IPs essential for implementing a functional system.
In general, the processor memory interface is shown before requires a physical layer (PHY) that interfaces
as wellas a Memory Controller (MC). Both MC & PHY have numerous IPs that are compatible with
DDR5 SDRAM modules. The key MC& PHY providers include:

e Cadence
e [Faraday
e Synopsys
e Rambus

40

3.2 History and Evolution of DRAM

As illustrated previously, since 1970s the performance gap between the memory and processors kept
rising and that called for architectural changes in the DRAM, the internal structure of DRAM (Arrays
of rows and columns of 1 T cell with a capacitor) remained essentially unchanged, however the
interface of the DRAM changed gradually. The changes were either targeting lower latency or higher
throughput.

3.2.1 Structural modifications targeting throughput

Before interfaces standardization (until mid-70s) most DRAMs were clocked. Basically, DRAM
commands and addresses were directly driven by periodic clock signal. After mid-70s the DRAM
interface was standardized to be asynchronous. The timing diagram shown in figure below shows a
typical read process in an asynchronous DRAM. A read command invokes the row activation via the
de-assertion of RAW Address Strobe (RAS) -the bar over the name to affirm that it is an active low
signal- during that time RAS signal is de-asserted first the raw address is driven on the address bus
hence Column Address Strobe (CAS) is de-asserted and the column address is driven on the address
bus hence both RAS and CAS are asserted and valid data is driven on DQ bus [1,10].1t is worth noting
that each read command reads only 1 bit at a time so if it is desired to read 2 adjacent bits (same raw
two adjacent columns), 2 separate read commands must be issued.

Row Activation
| l [Column Read
| [\ [Data Transfer
Address
Row Column \ / Row Column \
Address Address / \Address Address /

DQ Valid Valid
Dataout Dataout

Figure 40:First generation of Asynchronous DRAMS Read process

3

O
>
w

Generally, in computing it is often the case that when you need to access data from a certain location in
memory you would probably need to access data that is stored in a physically close location from the
previous location which is known as spatial locality [1,9]. Because generally the number of rows is
around 3 orders of magnitude higher than number of columns, raw accessing is actually the bottle neck
of memory accessing in terms of time. Thus, the introduction of Fast Page Mode (FPM DRAM) is
extremely intuitive, that is holding the raw open and accessing multiple columns of the same raw. The
timing diagram of FPM DRAM is shown in figure below. As shown RAS signal is held low while
CAS signal got de asserted and re asserted three times and after each de assertion the accompanying
address is driven on the address bus hence in this case for the same raw access three bits are accessed
(assuming here we are dealing with one array bank). After FPM is was desired to reduce time between
column reads which was implemented in Extended Data Out (EDO DRAM) by adding memory

41

elements (latches) between sense amplifiers and output pins. The timing diagram of EDO DRAM is
shown in figure below.

Row Activation

/7 Column Read

)8

CAS . Transfer Overlap
\ /7 Data Transfer
Address
Row Column Column Column
Address Address Address Address
DQ Valid Valid Valid
Dataout Dataout Dataout
Figure 41:FPM DRAM Read process
RAS Row Activation
\ Column Read
CAS . Transfer Overlap
Data Transfer
Address

Column
Address

Column
Address

Valid
Dataout

Row Column
Address Address

DQ

Valid
Dataout

Valid
Dataout

Figure 42:EDO DRAM Read Process

The addition of memory element increased the overlap time between column addressing and data
driving hence enabling CAS signal to get de asserted again faster. After these structural modifications
the concept of spatial locality in memory read requests induced the revolutionary concept of bursting
that is if a desired location is to be read the addresses next to it (same raw adjacent columns) are to be
read and stored in a buffer for the same read operation. This concept was implemented in Burst Mode
Extended Data Out (BEDO DRAM) where a counter was added before the column muxing action such
that for a given “open” row the initial column address is accepted and hence an increment in the
column number is achieved and the results are stored in a buffer. The timing diagram of BEDO DRAM
is shown in figure below. First RAS signal is de-asserted and raw address is driven on address bus then
CAS signal is de-asserted and the column address is driven on the address bus hence it is re-asserted
and de-asserted three times with no column addresses driven on the address bus and hence four valid
data packets are driven of DQ bus. At each de-assertion and re-assertion of CAS signal the said counter
increments the address of the column by 1 hence no new column address is needed [1,11].

42

RAS Row Activation

/ Column Read

CAS . Transfer Overlap

I I / I | I [Data Transfer
Address

Row Column \
Address Address /

ba [vaiid | valid | valid | Valid
\Data Data Data | Data

Figure 43:BEDO DRAM Read Process

This revolutionary interface reduced the minimum read time with 30% for practically almost no extra
hardware (a counter per array). Then in 1990 in International Solid State Circuits Conference, IBM
proposed toggle mode DRAM as an option for future DRAMs where Toggle mode DRAMSs drives
data to and from a DRAM on both edges of a high-speed data strobe rather than transferring data on a
single edge of the strobe hence doubling data rate at the same bus frequency and the name “toggling”
comes from the fact that interface stays the same however the DRAM toggles between two time
interleaved output buffers each of which runs with half the rate. IBM toggling mode DRAM inspired
changes and for lower latencies the DRAM interface is reverted back to synchronous to regularize
requests arrival. The timing diagram of the synchronous DRAM is shown in figure below First RAS
signal is de-asserted and raw address is driven on address bus then CAS signal is de-asserted and the
column address is driven on the address bus hence four valid data packets are driven of DQ bus at
positive edge of the clock signal.

m— Row Activation
I I| I I I I_I] I_I (] Il_ Column Read
RAS . Transfer Overlap
I ‘ I ‘ | | | ‘ ‘ Data Transfer
CA§ | | I | I |
[I | I I
Achress ‘ | | ‘ | ‘
Col l | | | |
Addr Addr | | | | |
D_Q‘ ‘ | | i V;Iid K V;Iid IV;IId { V;Iid >,
\ Data Data | Data | Data
|

Figure 44:SDRAM Read Process

IBM toggling principle inspired DDR SDRAM where data is driven on both edges of the clock the
read process of DDR SDRAM is shown in figure below+5. First RAS signal is de-asserted and raw

43

address is driven on address bus then CAS signal is de-asserted and the column address is driven on the
address bus hence four valid data packets are driven of DQ bus at each edge of the clock signal. DQS
signal was introduced for synchronization between MC and DRAM.

Row Activation

Clock

| | | | Column Read

. Transfer Overlap

Data Transfer

&
&

|
| |J_I |J_I L

Figure 45:DDR SDRAM Read Process.

Figure below summarizes modifications targeting throughput of DRAM

Ol = = | =20

— —— I (I I |

L — L — L — | — e S N

Clocked Asynchronous — = =
DRAM DRAM FPM EDO BEDO SDRAM

Figure 46:history of DRAM.

3.2.3 Modifications targeting throughput

There has been attempts to build a DRAM with lower latencies either by having faster hardware or via
caching (adding SRAM to DRAM) from these trials we mention the following example to demonstrate
the general idea. Enhanced SDRAM (ESDRAM) is similar to EDO DRAM discussed above, Enhanced
SDRAM adds an SRAM latch (6T cell) to the DRAM core, but whereas EDO adds the latch after the
column mux, ESDRAM adds it before the column mux. Therefore, the latch is as wide as a DRAM
page instead of the desired word length as in EDO which adds expensive overhead in area (6T per
column) However this allows earlier overlap of activity that is shown above in figure 42.

3.2.3 Evolution of DDRx

The state of the Art DDR SDRAM (DDR5) can achieve up to 6400MT/s with a density of up to 64Gb
which is a huge enhancement in speed and capacity in comparison with its predecessor DDR4 as
mentioned above. Table below summarizes SDRAMS performance evolution.

44

Table 14:SDRAMS performance evolution.

Data rate (MT/s) Transfer rate (GB/s) Voltage

DDR1 266-400 2.1-3.2 2.5
DDR2 533-800 4.2-6.4 1.8
DDR3 1066-1600 8.5-14.9 1.35
DDR4 2133-3200 17-23.2 1.2
DDR5 3200-6400 23.2-51.2 1.1

3.3 Required Tools and Technical approaches

In this project we aim to build the Digital circuitry of DDR5 PHY IP hence we require the
following tools to build a state-of-the-art system in partnership with Si-Vision. RTL simulations
tool such as Synopsys VCS alongside with open-source editor such as Visual Studio Code,
FPGA tool forprototyping and finally lint checking tool such as Synopsys Spyglass Lint. The
Techniques we will use include:

In Architecture Optimization
Parallelism

Pipelining

Block level optimization techniques
RTL modeling (Not HLS)

One hot encoding for FSMs

Deep pipelining when applicable

The technical approach we intend to use in the design of the project include:

Enhancing our background in digital design via Silicon Vision proposed training material
Reading DFI & JEDEC standards independently for specification extraction

and architectural description

Reviewing the specifications and with the responsible system engineer at Silicon Vision.
Developing and verifying RTL for Components of the design

System integration

System verification

Hardware emulation

45

4- Project Design

4.1 Project purpose and constraints

The main goal of this project is designing a fully functional, optimized, and synthesizable physical
layer (PHY) IP for DDR5 with behavioral simulations on the top level and individual modules level
for testing followed by hardware testing using FPGA prototype. The IP is constrained with the
communicating standards (JEDEC & DFI) specifications and requirements.

4.2 Project technical specifications

The specifications required for DDR5 PHY to operate under the standard conditions are:
DFI compliant

JEDEC JESD79-5A compliant

Supports data rates up to 6400 Mbps

Support multiple frequency ratios (1:1, 1:2, 1:4)

4.3 Design alternatives and justification

Alternatives are hard and soft IPs from IP companies such as Synopsys, Cadence, Micron, and
Faraday. Those IPs have hundreds of engineers working on their design, verification, and
implementation; hence, their prices are very high and are dependent of the customer interests.

4.4 Description of the selected design

The design proposed is the implementing only the digital part in the DDRS5 physical layer. The
hierarchy of the physical layer is shown in figure below.

Figure 47:Memory Systems Architecture.

A detailed interface of the digital part of our design is shown in figure below.

46

CK c/CK 1

dfi_cs_pMN > cS n >

dfi_adress_pN [13.Q) CAT13:0] »

dfi_reset n_pM » RESET n »
{fi_rdata_valid_wi |

LLOS DRSS ¢ o

dfi_rddata_en pM.y, - =

.qjﬁLiﬂﬂEﬂi_ﬂﬂﬂ__}. < Do >

MC PHY DDR5

_dfi_alert_n_aN

dfi_freq_ratio

dfi_frequency

dii_init_complete
dfi_init_start

Y ¥y ¥y v

Figure 48:Design interfaces as extracted from the standard

The digital part submodules will contain:
Data manager module

Read manager module

Timing Register File

Frequency Ratio manager
Command Address (CA) manager
Mode registers

CRC validation block

4.5 Block diagram and functions of the subsystems

4.5.1 Architectural description

The block diagram is shown in figure below. The functionality of the submodules is shown in table
15.

SR
\ { \
. dﬁ_:(:itess o CA_Valid_DA "
dfi_address_pl A5
e 1 PHY q A CA_n_DA >
> dfi_cs
dfi_rddata_en_pN
Fre(:nuaennac;' eF:atio CRC Validation Mode Registers
PHY Analog Part
PHY dfi_rddata_en
dfi_rddata { \ DQ_AD
dfi_rddata_wN < < <
dfi_alert_n_aN < Data Manager
dfi_rddata_valid DQS_AD
dfi_rddata_Valid_wN< <€
k4
N/
— /J
PHY Digital Part
Figure 49:Block diagram of the proposed design.
Table 15:Submodules inputs, outputs, functionality, and parameters.
Block Inputs Outputs Functionality Parameters
Name
Frequency dfi_address_pN dfi_alert_n_aN 1- Serializes inputs coming dfi_freq_ratio[2:0
Ratio dfi_cs_pN dfi_rddata_valid_w from MC to PHY based on]
Manager dfi_rddata_en_ N the dfi_freq_ratio parameter
pN dfi_rddata_wN and on the DFI PHY clock.
dfi_alert_n PHY dfi_rddata_en 2- Deserializes inputs
dfi_rddata_vali ~ PHY dfi_address coming from PHY to MC
d PHY dfi_cs based on the dfi_freq_ratio
dfi_rddata parameter and on the DFI
clock.
CA PHY CA _Valid_DA 1- Distinguish between a Tctrl_delay
Manager dfi_address CA_ DA [13:0] 1Cycle and a 2Cycle
PHY dfi_cs CS_n_DA command.

2- Assert a valid signal
(CA_Valid_DA) that

48

Read PHY
Manager dfi_rddata_en
DQ
DQS
CRC DQ
validation pre_rddata_vali
d

pre_rddata_valid
pre_rddata

dfi_alert_n

follows the validity of
CA_DA.

3- During MRW operation,
it saves values such as BL,
read crc enable, and
preamble settings.
4-adds delays when needed
5-discard BL of MRO when
needed
1- Detect the preamble.
2- Detect the end of data
based on the BL.

3- Sample the data based on
DQS.
4-Assert a valid signal
(dfi_rddata_valid) along
with the dfi_rddata.

1- Starts the operation when
pre_rddata_valid is
asserted.

2- Validates DQ
3- Activates dfi_alert _n
when an error occurs
4- Assert a valid signal
(pre_rddata_valid) along
with the pre_rddata.

The associated signals characteristics are shown in table 16 below.

SIGNAL
dfi_freq_ratio
dfi_frequency

dfi_rddata
dfi_rddata_valid
dfi_rddata_en
dfi_alert n
dfi_reset n_pn
dfi_address_pN
dfi_cs_pN
dfi_init_complete
dfi_init_start
PHY dfi_cs
PHY dfi_rddata_en
PHY dfi_address
ReadFlag
DQ_AD
DQS_AD
pre_rddata

Table 16: Signals widths

WIDTH
3 bits
5 bits
2* DRAM Width
1
1
1
1
14
(physical rank no.)
1
1
(physical rank no.)
1
14
1
DRAM Width
1
2*DRAM Width

Read CRC enable
phycrc_mode
BL
Preamble settings

Mode Registers:
PHY_CRC_mod
e
read_CRC_enabl
e

49

pre_rddata_valid 1

CA Valid_DA 1
CS n DA (physical rank no.)
CA DA 14
dfi_rddata_valid wN 1
dfi_alert n_aN 1
dfi_rddata_wN DRAM Width

To illustrate the operation of the proposed block diagram. Figures below developed with the block
diagram to show the waveforms for Read, Read with CRC, Back-to-Back Reads, back-to-back reads
with CRC, and 1:2 frequency ratio operations respectively.

oFtcock [| L L L L L L L L L L L e e e e
dfi_adress_p0[13:0] 777777 CTONCTN 7)1 RONORDIN 7 i 0 777 777
dfi_cs_p0 / Ji
dfi_rddata_en_p0 / \
dfi_rddata_valid_w0 / [
dfi_rddata w0 7777777/ i 00 X D1 X D2 X D3 | D4 X D5 X777

DFI PHY clock h‘ ﬁ'
PHY af_adress W@@ L

PHY dfi_cs \ /
PHY dfi_rddata_en / e \
iat

Py a_rocata 77777777) s 00 Y 1 Y 02 X 03)\ 04 X 05 Y7

PHY dfi_rddata_valid \ \ / L
DFI PHY clock i i]
cA_Da13:0) 277777 R ACTORCT I L e RORDING
CS_n_DA /)7 _/ \
CA Valid_DA

DQ_AD - DO (D1 X D2 | D3 \ D4) D5 Y7777/
DQS AD \ m

Figure 50:Standard Read operation Developed Waveforms.

oFteeck [| [[L[LILIJ i I Y A O A O B
di_adress_p [13:0) 2T TN RO RO
ai cs 50 \/ 7 _J
dfi_rddata_en_p0 / \
dfi_rddata_valid_w0 / \
dii_rddata w0 77777 74 D0) 01 { D2 {03 X D4 ¥ D5 X 06 { D7 K777

DFI PHY clock H H
P o atess 77777777 ST B YT

PHY dfi_cs J e
PHY dfi_rddata_en fTe— \

PHv o raata. 7777000

D0 { D1} D2 {03 {04 X D5 ¥ D6 X7 Y7777

PHY dfi_rddata_valid '\ \ / U
DFI PHY clock WWWWMW_
dfi_alert_n ‘ ‘ \ /

pre_rddata 2 R v 00 X o ol ¥ 1 Y1 X1 BROOERC¥ZZZZ777777
pre_rddata_valid / ;j’ | S S S S S
CA_DA[13:0] W’%@c@@cw% ZZZZ2R010RD 1)
CS_n_DA L Ji / \
CA Valid DA [e
ReadFiag /| .
DQ_AD 2z bo X o1 X o2ff Y 1 X 1 X 1 ¥RCKERCY 77777
DQS_AD A A S S/ S G D

Figure 51:Read with CRC operation Developed Waveforms

50

DFl clock

pEpSpEpEpEyApEpEpEnE RNy
dfi_adress_o0 [13:0) 2 TR RO RO Y RO

dfi_cs_p0
dfi_rddata_en_p®
dfi_rddata_valid_w0
dfi_rddata w0 7777777 77K 00 X Dt { D2 X D3 X D4) Ds X777777777777774 D0 X D1 X D2 § D3 X D4 X D5 }77Z
DFIPHY clock i Z
PHY dfi_adress m@@%@@ ,5’///// /QEQEW//
PHY dfi_cs
PHY dfi_rddata_en \n

|

o gy vy

DFI PHY clock i/

dfi_alert_n

PHY dfi_rddata

<00 X 01 {02 Y03 (D4 |05 7777777777777 D0 ¥ D1 D2 | 03) D4 \ D5 }77

PHY dfi_rddata_valid

pre_rddata
pre_rddata_valid

CS n DA
CA Valid DA

ReadFlag [\
b0 T G CR N) e T N CA T Y 3 G
bas_0 m_mm

Figure 52:Back-to-Back Reads operation Developed Waveforms.

DFl clock][1
% 72 7

dfi_adress_p0 [13.0) 7777, CTOACTA dRD117 7 Ro0R0; 7
dfi_cs_p0 _/ // _/ _/f
df_rddata_en_pd A e N \
an_radata_wo A D 02) {05 X o6 07 W77 00 Y o1) D2ff 06 \ 07 Y
dfi_rddata_valid_w0 R e e N S S
S L2 I A) A e SN 0
PHY dii_adress 77 @@Z%ﬁ - CR0NROWE RN 7
PHY dfi_cs voze -
PHY di_rdda \ e\

PHY dii_r

Gy s
//////////4////4///,4%/// 7 %;Z Z 7 D0 (1 07)f 07 X777 00 X 01 __02]| ¥ 05 Y 06 Y 07 X777
\ \
1
|

PHY dfi_rddata_vali / \ f \
m‘\u. iy
ortesy cook L1 L LU LML MU UL L L L L P T L ML U T LML L L
dfi_alert_n \ \
pre_rddata 7777777 7 (Do (o1 ¥ o2l ("1 {1 K1 ERCHERCHK X Do) o1) o2l Y4 1 RCOCRCKZZ7777

pre_rddata_valid \
GA_DA[13:] 7 - 020R02Y7 T
CS_n_DA \ _f
CA_Valid_DA \ Jf /—\ w0 1\
ReadFiag [/gy [\
D0_AD TR 7 777500 D2l {1 {1 {1 eroiRe¥ 77 ez
DGS_AD OOty A e ——

Figure 53:Back-to-Back Reads with CRC operation Developed Waveforms

oRcock [| [| [L[[
diadress O3] 2 ACT0) K READ X i,
dfi_adress_p1 [13:0] 7772 ACT_ Y RENDY K

dfi_cs_p0 \ / i
dfi_cs_p1 ﬂ
dfi_rddata_en_p0 jgf /—\\
dfi_rddata_en_pi I / \
fi_rddata_valid_w0 i / L
dfi_rddata_valid_w1 ;5{ L
dfi_rddata w0 oo X D2 ¥ D4 Y77
dfi_rddata_w1 D1 X o3 Y D5 Y77

DFI PHY clock # ﬂ

prov an_aaress 77777/ CTORCT ZE) 5 2 RO R
PHY dfi_cs)\ f \ \ /

PHY dfi_rddaia_en f \va*—__i__ \
PHY on_ridata 1) % oo X 1 02 (03 X 02 {05 Y7
PHY dfi_rddata_valid o gty e sy f _

CK t
CK ¢
CA[13:0] PR AcTRCTI A v 2 RO ROT G T,

cS.n J J W/ "
DQ s oo 01 X 02 {03 X 04 X 05 X777
Figure 54:1:2 Frequency ratio Read operation Developed Waveforms.

452 CA Manger

Now we will discuss each block separately to furtherly discuss its specific implementation.
Command address manger is the block that handles command bus, in DDR5 no classical RAS and
CAS signals as in all previous generation but instead a 14-bit command address bus is directly
mapped to DRAM command bus from MC. In this PHY specific implementation the following
functionalities are required from the block that handles command address bus

1- Distinguishing between a 1Cycle and a 2Cycle command.

2- Asserting a valid signal (CA_Valid_DA\) that follows the validity of CA_DA.

3- During MRW operation, it saves values such as BL, read crc enable, postamble and preamble

settings.

4- Discard BL of MRO when needed

A block diagram of CA manger is shown in figure 55.

CA MANGER
/ -\ dfi_cs / -\\ dfi_cs_o
dfi_cs_i
- CA [13:0] CA_0 [130]
>
CAI[13:0] —> Valid FSM CA_VALID_DA Compensator
DFIPHY CLK CA_VALID_DA_o
—DFIPHY CLK | e
o 4 N S/

FI PHY CLK— |
DFIPHY CLK

- ™

—BL_16_o——»
BL_
|—Read CRC EN_o—

MRW & Read CL

Preamble——»
—— [——"Postamble—3

Figure 55. CA Manger Block Diagram

The valid FSM serves functionality 1 and 2 while MRW & Read CL serves functionality 3 and 4.
Figure 56 shows the state diagram of CA valid FSM.

52

dfi_cs

CA Valid FSM CA_valld_DA

CA1

Figure 56. CA valid FSM state diagram

SO is the state where the CA is idle. S1 is the state when the first cycle of a two-cycle command is in
progress. S2 is the state when the second cycle of a two-cycle command is in progress S3 is the state
when the first cycle of a one cycle command is in progress. The outputs are driven accordingly. The
CL of MRW and Read is summarized in the table below

Table 17. MRW & Read CL

dfi_address_0 dfi_address_1

CAJ0:4] CA[5:112] cs CA0O CAl1 CA2 CA3 CA4 CA5 CA6 CAT

1 0100 0011_0010 1 CRC
0000_0000 1 BL
0000 0100 1 Preamble Post
0010_1000 1 DQS offset

X XXXX | XXXX_XXXX 0 Don’t overwrite

Where dfi_address_0 is command address during the first cycle of a two-cycle command and
dfi_address_1 is command address during the second cycle of a two-cycle command. A high-level
model for the block was implemented using MATLAB and it can be found in appendices figures 57
58 59 60 shows the desired functionality in MATLAB.

53

DFI PHY GLK |

5 T T T T T T T
B e — f—| /—| {—‘ 1
T L L [L 1
o
0s | I | | I | |
0 5 10 15 20 25 30 35 40
time inns
. cAo 2, AEORaH
T T T T T T
! | f1o f10 I Iy\u f10 |10
05—
N | | \ |
s | I | | I | |
0 5 10 15 20 25 30 35 40
time inns
ITIFIcSD
= T T T
N | |‘ i
o \ |]
s | I | | I | |
0 5 10 15 20 25 30 35 40
timein ns
Vaild
s T T T T
e |
05— r i —
| |
0
os | I | | I | |
0 5 10 15 20 25 30 a5 40
timeinns
Figure 57. Assertion of valid signal for two cycle command.
DFIPHY CLK i
LS T T T T T T T
—_— — — B
osf- ‘ | | { ‘ .
oL
s | | I | | I |
o 5 10 15 P 2) 3 s
time in ns
CAo
e T T T T T T
! 11 X‘H 11‘\ m 11 IW‘\
05— ‘ ‘
N | |
s I I 1 I I 1 I
o 5 10 15 20 25 30 35 40
time inns
DFIcSn
LS T T T T
0;* I “ —
or \ -
o8 | | I | | I |
[\] 5 10 15 20 25 30 35 40
timeinns
Vaild
e T T T T
L B
05— (-
o l L
s I I 1 I I 1 I
o 5 10 15 20 25 30 35 40
time inns
Figure 58. Assertion of valid signal for one cycle command.
DFI PHY CLK i
= T T T T T T T
, |
oo — I — [
o
05 I I | | I I |
0 5 10 15 20 25 30 a5 40
time in ns
CAo
= T T T T T T T
o; D0000000000000 100000000000000 [10100000000000 |10 o fo o o
: | l |
05 I I | | I I |
5 10 15 20 25 30 a5 40
time in ns
DFICSu
B T T T T T
1
05— ‘ ‘r —
o |
0s I I | | I I |
0 5 10 15 20 25 30 35 40
time in ns
Vaild
5 T T T T T
. |
05— ‘r |]
[1]
o5 I I | | I I |
0 5 10 15 20 25 30 35 40
timein ns

Figure 59. Assertion of valid signal for canceled two cycle command

54

DFI PHY CLK i

LS T T T T T
1 .
| ‘ ‘ | [| ‘ ‘ |
| | | | ‘ ! | | | 1
= I L I L
o5 I I I I I
o 10 20 30 40 50 60
time in n
\e cAo £ AEOQaR
T T T T T
U !) T T T)) T T
0
5 | | | | |
0 10 20 30 40 50 80
time in
DFI S
L T T T
! \
05— | | —
o | .
5 | | | | |
o 10 20 30 40 50 60
time in n
BL,
L T T
1= ‘ 1
05— ‘ j
q i
5 | | | | |

Figure 60. MRW that changes BL (only bit one shown)

After ensuring that the design was valid it was implemented as an RTL using System Verilog the
code was hence synthesized using Synopsys Design Compiler with target PDK nangate 45nm and it
was also synthesized on Quartus the following simulation highlights the main functionality of the
block.

Figure 61. CA manger RTL simulation

As shown a series of MRW commands was sent targeting value changes at registers of interest some
of them were canceled and hence did not result in a value change and some was valid and hence
resulted in a value change observe read_crc_en at 0.8ns for instance or bl_o at 1.4 ns. Finally, a read
operation was driven on CA bus and the BL was set to default of 16 hence the signal bl_16 o was

55

asserted at 1.8 ns. Note how ca valid_da o signal is asserted differently for 1 and 2 cycle
commands.

4.5.3 Data Manger

The functional requirements of the data manger include: detecting the preamble patterns, detecting
the end of data based on the BL, sampling the data based on DQS, and asserting a valid signal
(dfi_rddata_valid) along with the dfi_rddata. The block generates a valid signal along with the data,
and this valid signal is sent directly to the MC through the frequency ratio manager. Also, the block
saves the sends the settings of the CRC validation to the CRC validation block with each read data.
The block’s interface is shown in table 18. The block diagram of the data manager is shown in figure
62.

Table 18. Data manager interface.

Inputs Output
Signal Size (bits) Signal Size (bits)
Preamble Settings 3 Data valid signal
Burst Length 2 Data
Post amble settings 1 2*device width
Read data enable 1
Data Strobe 1
Data 2*device width
Clock 1
Reset 1
Enable 1
Read CRC Enable 1
Phy crc mode 1
/" DataManager ra _ read_crc_en_|
P ~—phy crc_mode i
Decision sl Erlgzambleisettingsii
Unit ——postamble_settings i
—— ke LEOGEEE—? Gap
v — «—gy—| Counter ‘«——rddata_en
pattern <seamless— FSM

detector
cﬂu,,,,"__l_ FSM M _
gs_ad_i

pre rddata valid<«——Valid«—ValidCounter
Count <——
{read_crc_enable,
phy_crc_mode,

Data BI}
Length
Calc
{ |
pre_rddata . - Dlﬂ?t)‘r dg_ad i
Y] __2*device_width

Figure 62. Data manager block diagram.

The Gap Counter contains both an FSM and a counter. The FSM is used to control the signals such
as the gap counter reset signal, a gap valid signal and the FIFO write signal. The Counter calculates
the gap. The operation is depicted in the figure 64.

56

/ GapCounter \

InputfQutput
rddata_enf{GCReset, valid, fifowrite}

GCReset — GapCounter — Count

. /

The Gap Counter calculates the gap between the read commands by calculating the gap between the
positive edges of the read data enable signal. Also, it generates a FIFO write command with each
posedge of the read data enable meaning that the settings are written into the FIFO with each read
command. An OV signal is used to indicate an over flow of the counter. When the gap counter FSM
detects a (0 1) pattern in the rddata_en signal it de-asserts the reset signal so the counter starts
counting the gap until a (0 1) pattern is detected again so the count becomes valid and it resets the
counter. Also, the FSM generates a valid signal along with the gap. The FIFO counter and
corresponding pointers are shown in figure 64.

Figure 63. Gap counter FSM.

/" FIFO

Settings 8
Settings &
Settings 4
Settings 3
Settings 2
Settings 1
E} {E —* Settings 0 < E} f.{ﬂ

Counter Counter Counter
0 a8 0

Figure 64. FIFO counter and pointers.

A fifo is needed in the design so as to reserve the settings of different reads. The read Command
Latency (CL) of a DDR5 SDRAM has a min of 22 cycles and a max of 66 cycles so multiple read
commands can be issued with different settings before any data is present. Tccd_min = 8 cycles,
TCL_max = 66 cycles. This means that 9 read commands with different settings can come before
the first read data is out. The read signal is issued once the previous pattern is detected and also an
FSM is needed so that it can be issued with the first read operation. The CountCalc block generates

57

the number of cycles that the valid needs to be asserted based on the BL, and CRC settings. The
specific table for the block is described below. Also, the block gives a valid signal for two read data
if a seamless condition is applied. Table 19 show the different cases for the gap counter.

Table 19. Gap counter cases.

readCRCen phyCRCmode Seamless BL Count

0 0 0 8 4
0 1 0 8 4
1 1 0 8 4
1 0 0 8 9
X X 1 16 16
0 0 0 16 8
0 1 X 16 8
1 1 X 16 8
1 0 X 16 9

The ValidCounter block counts the number of cycles up to the CountCalc issued value to generate
the valid signal once the pattern is detected. This module is composed of an intermediate register
that takes the value of the gap when the valid is high. A mux that selects either the incoming data is
a pre or interamble then forwards this information to the pattern detector block for the detection
phase.

The pattern detector block is respobsible for detecting multiple different patterns according to
the configuration of the PHY. The block should assert the signal pattern_detected for 1 clock cycle
after detecting a pattern. The block diagram of the pattern detector is shown in figure 65. The
signals are clk_i which is the input clock signal, reset_n_i which is the input reset signal that is
active low, en_i which is an enable signal for the internal FSM. When low, the module state is not
changing. The DQS _i signal is the input serial data that will contain the pattern or not. The signals
pre_amble_sett i, post amble_sett i, gap_i, pre_or_inter are configuration signals that determine
which pattern the module is going to detect as illustrated in table 20. The pattern_detected signal is
an output signal that gets asserted when the configured pattern is detected. The block is diveded into
2 main blocks, setting generator and generic fsm, the setting generator should take the the
configuration from the PHY, specifically from the CA manager, then provide the FSM with the
required information about the pattern that will be detected. Then, the generic fsm accordingly
detects that pattern and asserts the “pattern detected” signal. The brute force approach to implement
the generic fsm is to have multiple FSMs, one for each pattern in the standard, and the generic fsm
choses which one to be active. This approach’s FPGA results are shown in figure 66. Alternatively,
the generic FSM was implemented as one FSM which is reconfigurable for each pattern. This FSM
will need a signal that provide the pattern itself, another signal that provide the last state of the
pattern, and lastly an array that determine which state the FSM will return to when a wrong bit is
detected. The generic fsm diagram is shown in figure 67 and the setting/configuration generator is
cases are shown in table 20. Also, the results of the FPGA implementation after using this approach
is shown in figure 68. As shown in the results, the generic design use much less flipflops and hence
is better in terms of area and power. Lastly a simulation of one case is shown in figure 69. The
output state is 7 instead of 5 as 7 is the gray code number for 5.

58

Ik

reset n en

_amble_sett.

P

t_amble_sett.

gap

Setting Generator

|———output_state— g}

——FSM_return_pointS—s|

pattern_detector

Generic FSM

ttern_detected
P n_f

&, <<Filter>>

Figure 65. Pattern detector block diagram.

Flow Status

Quartus Prime Version
Revision Name
Top-level Entity Name
Family

Device

Timing Models

Total logic elements

Successful - Tue May 31 20:40:45 2022
18.1.0 Build 625 09/12/2018 SJ Lite Edition
pattern_detector

laTop
Cyclone IV E

EP4CE22F17C6
Final
69 /22320(<1%)

Total registers 46
Total pins 14 f154 (9 %)
Total virtual pins o
Total memory bits 0/608,.256(0 %)
Embedded Multiplier 9-bitelements 0/132(0%)
Total PLLs 0/4(0%)
Figure 66. FPGA implementation results of the initial design.
pattern [5] ~pattern [4]
/ B
[
pattern [6] | S4
S3 —pattern [3]
\
; \ | / .
pattern (7] J ..t pattben 2]
/ / \
\ -pattern [S] —partern [4] / / \
S1 att G IJ' / attern [3]
pattern | y, pattern 3] B (o
a \ / ~patteri [2]
P ~pattern [7] / -
pattern [8] AN \ | ‘.’ y,)) v pattern [1]
\.‘ |),' 4." \
\ \ ‘ / / p e }
N - 1 4 - pattern [1]
- B -
| S0 | ~pattern [8] gl
| P S8
_ M~ |
7 4 Sx_ coo SX_8 - —
| \ \ ——-pattern [0] — \
\ . pattern (0]
~resel_n
\ \, FSM_return_points [3:0] [8:1] &
N\ N
AN P s9

Figure 67. Generic FSM state diagram.

59

Table 20. Cases of the setting/configuration generator for the pattern detector.

INPUTS OUTPUTS
. pre_amble_sett_i . gap_i pattern_o output_state_o . . .
pre_or_inter (2:0] post_amble_sett_i (4:0] (8:0] (3:0] FSM_return_points_o [3:0] [8:1]
pre amble
000 10_0000000 S2 S0, S1, SO, SO, SO, SO, SO, SO, SO
001 0010_00000 S4 S0, SO, S2, SO, SO, SO, SO, SO, SO
1 010 X XXXX 1110_00000 S4 S0, SO, SO, S3, SO, SO, SO, SO, SO
011 000010_000 S6 S0, SO, SO, SO, S4, SO, SO, SO, SO
100 00001010_0 S8 S0, SO, SO, SO, S4, SO, S2, SO, SO
inter amble
XXX 0 1001 10_0000000 S2 S0, S1, S0, SO, S0, SO, S0, S0, SO
011 0 1010 0010_00000 S4 S0, SO, S2, S0, S0, SO, S0, S0, SO
100 0 1010 01010_0000 S5 S0, S1, S1, SO, SO, SO, SO, SO, SO
XXX 1 1010 01010_0000 S5 S0, S1, S0, SO, S0, SO, S0, SO, SO
0
011 1 1011 0100010_00 S7 S0, S1, S0, S2, S2, S1, SO, SO, SO
100 0 1011 0001010_00 S7 S0, SO, S0, S3, S0, S2, S0, SO, SO
100 1 1011 0101010_00 S7 S0, S1, S0, S1, SO, S1, SO, SO, SO
100 1 1100 010001010_ S9 S0, S1, S0, S2, S2, 81, SO, S1, SO

&, <<Filter>>

Flow Status

Quartus Prime Version
Revision Name
Top-level Entity Name

Successful - Tue May 31 20:44:22 2022
18.1.0 Build 625 09/12/2018 SJ Lite Edition
pattern_detector

pattern_detector

Family Cyclone IV E
Device EPACE22F17C6
Timing Models Final
Total logic elements 91/22320(<1%)
Total registers 4
Total pins 14 /154 (9 %)
Total virtual pins 0
Total memory bits 0 /608,256 (0%)
Embedded Multiplier 9-bit elements 0/132 (0 %)
Total PLLs 0/4(0%)
Figure 68. FPGA implementation results of the final design.
ftestbenchyfdk
Stestbench/reset_n
Jtestbench/en I
[testbench/pre_or_inter |
[testbenchjpre_amble_sett {011
[testbench/post_amble_sett |
Jtestbenchjgap {01010
[testbench{DQS |
Jtestbench/pattern_detected —
ftestbench/dutfFSM_seti_inst/pattern_o [D].O].DDODO
{
Jtesthench/dut/FSM_sett_instfoutput_state_o { 7 |
1
ftestbench/dut/FSM_sett_inst/FSM_return_points_o { 0100000000

Figure 69. Waveforms of test case.

60

4.5.4 Frequency Ratio Manger

This block is divided into two subblocks, serializer and deserializer. The serializer function is to
serialize the input data according to the frequency_ratio value whether it is 1:1 (transferred as it is),
1:2 (serialized with double the frequency), or 1:4 (serialized with four times the frequency). Each
clock cycle of dfi_clk input data enters the serializer and the data is serialized according to the
dfi_phy_clk ratio to the dfi_clk. The block relies on a case statement deciding the maximum value of
the counter, which is the 2-level multiplexer selector which selects what data to be transferred on the
output serial channel. The two clocks are edge-aligned, produced from the same PLL so there is no
need for CDC (FIFO or bit synchronizer). The block works only at positive edge clock of both
dfi_clk and dfi_phy_clk as to avoid working on data received on negative edge of dfi_clk which
corresponds to positive edge of dfi_phy clk in case of frequency ratio 1:2 or 1:4. The deserializer
function is to deserialize the output data to be out in parallel each dfi_clk cycle positive edge on each
of the output data channels according to the frequency_ratio value. The output data is received on the
deserializer and on the next positive edge clock cycle of dfi_clk is transferred to the output channels.
The data should follow the concept of data rotation mentioned in JEDEC standard. Which requires
data to rotate on the output channels. For example, if frequency ratio is 1:2 and the data is output on
first two channels then the following data will be output on the last two channels. A finite state
machine determines which channels to select for the output according to the last output and the
frequency ratio value. The data is shifted in internal shist registers and is output according to
frequency ratio and last state. Table 21 explaines the functionality of the block. Table 21 simmarizes
the functionality of the block. Figure 70 shows the block diagram of the serializer while figure 71
shows the block diagram of the deserializer. The block was then verified and figure 72 show that the
serializer is working for a frequency ratio of 1:1. Figure 73 then show the results for the serializer
with a frequency ratio of 1:4. Finally, figures 74 and 75 show the results of the deserializer using a
frequency ratio of 1:1 and 1:4 respectively.

Table 21. Frequency ratio manager functionality.

Inputs Outputs Functionality Parameters
dfi_address_pN [14 bits] | dfi_alert_n_aN [1 bit] 1- Serializes inputs dfi_freg_ratio [1:0]
dfi_cs_pN [1 bit] dfi_rddata_valid_wN [1 coming from MC to PHY
dfi_rddata_en_pN [1 bit] | bit] based on the
dfi_alert_n [1 bit] dfi_rddata_wN [8 bits] dfi_freq_ratio parameter
dfi_rddata_valid [1 bit] PHY dfi_rddata_en [1 and on the DFI PHY
dfi_rddata [8 bits] bit] clock.

PHY dfi_address [14 2- Deserializes inputs

bits] coming from PHY to MC

PHY dfi_cs [1 bit] based on the
dfi_freq_ratio parameter
and on the DFI clock.

61

dfi_frequency_ratio

= .f
.

phy_dfi_clk
reset_n N
enable_i :
dfi_phy_clk

p

dfi_address_pN

Y

dfi_cs_pN

dfi_rddata_en_pN

v
=
>

" 2 bit Counter

~

A

phy_dfi_address

v

phy_dfi_cs

MUX

phy_dfi_rddata_en

> >
default values -
—_— >
=
Figure 70. Serializer block diagram.
dfi_clk fi_frequency_ratio phy_dii_clk
(Curent &
) BN »| Next state
selector
dfi_alert_n_aN ot
A
_dfi_rddata_valid_wN v AP resetn
Register file ~ enable_i
output
dii_rddata_wN data & Shift Registers dfi_alert n
B channels [
selector dfi_rddata_valid
\ v e | dfi_rddata
' A =
Figure 71. Deserializer block diagram.
Jdrphy_sertalees [0_address, o, -tmlm‘ I:ﬂl
jdephy_seriskeer of_address_p1_| (o= J0o38 _ Jons
Jddrphy_sertabzesjan_address, p2 | (oo T 306 2363
Jdbpby_sertaboes o_adcress. p3 i (B (0|) oo
/ddrpiy_senaizeddfl_dk l
Jddrpiy_sedaltzerfan_cs_po | ©
[ddrphy_seraizerjdfi_cs_pi | 1
Jadrpty_serazerfaf_cs p2 1 [
Jddrpty. s p3 |
Jdrphy. freq_ratio_| (0
Jddrpty_sexisizes/af_phy_ck 1
Jddrpiry_sexallzes/df_rddata_en_po_| ©
Jodrphy_seralizes /A _rddata en pl ||
Iodrptey_seretzer(on_soosta eap2 T || [
[ddrpiy_serialtzer/df_rddata_en_p3 | I
fadepty_serakzerenable || [
jadrphy_serstzerfreset |||
Jddrphy_sertslresfdf_address_o (0000 3er | 3esr
fddpty_sersler/of cso |
/adrpty_sertalzer/on roostaeno| |
RLLULRIR AN RN LR AN RN bbb ek o breenennboeeenee borpeebee oo b
100 ps 200 ps. 300 ps. 400 ps. 500 i 600 ps. 700 ps.

Enttv:ddrohy serializer Architectire: Date: Mon Mav 23 09:34:40 CAT 2022 Row: 1 Pace: 1

Figure 72. Serializer simulation for frequency ratio 1:1.

Jddrphy_seriskoerof_address_p0_| { 3M I!ﬂt‘ [%
Jddrphy_serializer/dfi_address_p1 | (0000 [m [un?
Jddrphy_seralizes/of_address p2 | (3003 Imr Im{:
Jddrphy_serialkees /N address p3 | (Offc | Joc

fadrphy_serializer/af_ok |

[ddrptvy_seralizes jdf_cs_p0 | |
[ddrpiry_sertaiizes jaf_cs _p1 | | | |
[ddrpiry_sertalizesjaf_cs p2 | |

[ddrphry. e pd i)
Jodeptey frex_ratio | (2
fopy szt oty ™ T L L L L L L L L L L L L L

[ddrphy_serializerdf_rodata_en p0 | | 1 |

[ddrpivy_sestallzes [N _rodata_en_p1 | | |

[ddrphvy_serializes j0R_rddata_en_p2 |

[ddrpivy_serialioer/dfi_rddata_en_p3 i |

jadrphry_seriakzerjenable | | |

[ddrphy I |
fddrphy_seriatzesdf_address_o (0000 300
lddmhy_serlalzer/of_cs o0

3063 orac 3o 0330 3763 0 p e 0330 3763 0cSc

|§

[odipbey_sevialees/Ofi_rddata en o |

wilin i
Ops 100 ps

v b pen b v oo v s b v boonmnboes oo
300 ps 400 ps 500 ps 600 ps 700 ps 800 ps

Sl s Matss MAn Maw 71 NG TING CAT 2177 Bree 1 Daeas 1

Figure 73. Serializer simulation for frequency ratio 1:4.

fdty deserafeerin gty ™ | I I L L[LI L[LI L] L[L_|
fodmhy deserateeion ™ [L L[L[L[Lo LI L [L I 1|
Jddrhy_deseraliresiresat 1|
[ddrphy_deseriakresfenatile i |
fodrpiy_deserializer|df_freq_ratia i (00

| [
Fddrpity_deserializerofi_rddata_valid |
fdephy_deserializesdfl_rodata |§m1mn11 Joowoi10 Jooziemoo Jooioi000 00000000 IIICOD].OH']. 00110011 | 00100110

Jedidephy_decerializeafi_slert_n_ad o

Jodiphy_deseializedhi_alkst_a_i

1
1

Jddephy_deserializedfi_slert_n_al o

Joiirpily_deseralizesfon_sert_n_a2 o "

oy _deseriaineof_aiert n a3 o

Jeldrpiny._deserializen Of_rdcate_vald_wil o |

Jeldrpiny._deserializen Of_rdcate_vald_wl o |

feddrpivy_ceserializen dfi_rddate_vald_w? o |

Jeldrpiy_deserializen o _rddate_vald_w3_a |
Jddrphy_dessalizesaf_rddata_w0_o (00000000 00110011 00000000
Jadephy_desedalizesaf_rddata_wi_o (00000000 00101110 00001001
Jadephy_desedalizesaf_rddata_w2_o (0000000 00110100 00110011
Jdurphy_deserializeaf_radata_w3_o (00000000 00101000 00100110

Jdrpiy_geserialiven SR_df_alert_n (1111 1110 1100 1001 [EE 0iiL 1111 1110 1100

Jidrphy_deserializes/SR_dfi_rddata_valid {0000 0001 o010 0100 1001 0010 0200 1001 0010 0100

Jidrphy_deseralizes /SR _ridata_w | =——===— e —_—

iy _deseriaizefirst_operation

[eleirphy_deseriakzer/state (S0 51 52 53 S0 51 52 53 S0

[eleirpty, nestsezte (50 1 52 =3 S0 St =) =3 0 St

wichoooc booebeco becobeec]dben beeo boeodborodbeve becoc bieoc bocccbenn becoc beeec boeec b b by
Dps 50 ps 100 ps 150 p= 200 ps 350 ps. 300 ps 350 p 00 pa 450 ps. 500 ps

bbb ol bbb Pobns Tl e A S AN B SET WA P 8 P §

Figure 74. Deserializer simulation for frequency ratio 1:1.

jadphy desershean by ek T 1 [T L [T L[L L L LI L[L | L L L L L] L]

Jodrphy_deseralizesdn_ck "

Jddphy_deseralinesjreet || I

fedrphy_desseriakeerjenable | 7

fidrpiy_deserializen'af_freq_ratio i 10
Jodmhy_deseralizeran skt n T | [] I [
Jddrpity_deserializer/a_rddata vaid 1T | I] 1 1 11
Jeeirphy_desertalizesfaf_radata i (= | Semmion | e | oomoeoo | corinees) comeeas | mvmscons] nescone: | Jeooscen [soo:] 00100100
Jddrphy_dessralizean_alert n_ab o

Jocrphy_gessalizean_siert n a1 o

ity _desedalinmon_siert_n_ a2 ol

Jdcirpihy_deserializeran_siert n_al o

Jeldrpiy_deserializen'df_rddate_valid_wi_o |

Jddrpiy_deserializen'df_rddate_vald_wl_a)

Jddrpiy_deserializen'df_rddata_valid_w2 o |

fekdrphy_deserializer/df_rddsts_valkd_w3_a |
jdcphy_ desedaliz)on_ridata_ wo_o [00000000 ocnncu: 00000000

Jddrphy_desedalizne/di_rddata_wi o tmﬁmﬂm 00101010 DODE

Jocrphy._ dessdalized O _rodata w2 o @C-ODDE: ocnuo::: non:ac::

Jdiply_desedalizs]on_ridata w3 _o [0000O000 00100001 0100100
fodrpiy_deserializer/SR_df_alert_n (1111 1110 1100 1001 0041 0dii 1111 1110 1100 1000 0000
Jdirphy_deserializes/SR_oN_rddlata_valid (0000 0001 0010 0100 1001 0010 0100 1001 0010 0100 1000 0000

Jddrphy_desedalizer/SR_dfi_rddata w h:lm:lmwxmxl. pO000 pooo00o0 | — — [— j— —_— p— p— p— p— N r— Fre—

Jodipby_deseraizenfirs_operation

Jebdrpty,_deseriafoesstate (S0

Jddrphy_deseriakzer/neststate (50

wrchrn e rddeconbooc b oo biecn o oo oo becoommdbwmenoodvooeodvoe e boocn b o oo
P 100 ps 200 300 400 500 600 ps 700 P

Entitv:ddmhy deserialirer Architecture: Dabe: Thu Jun 02 12:45:01 CAT 2022 Row: 1 Pace: 1

Figure 75. Deserializer simulation for frequency ratio 1:4.

455 CRC

CRC validation block function is to receive nine packets each of one byte; the first eight bytes
represent the data and the last byte represents its CRC. In case of burst length of eight, then the first
four packets are data and the following four packets are ones, followed by the ninth CRC byte. The
CRC Validation block works on nine packets of data whether the burst length is eight or sixteen. The
block is expected to receive continuous data, and for each nine packets of data, outputs a dfi_alert_n
signal for one clock cycle. The data is transferred to sixty four bits D reg to start generating CRC bits
and then compare it with the received ninth packet and outputs the dfi_alert_n signal for one clock
cycle. The dfi_alert_n signal is high by default, when a mismatch between received CRC byte (ninth
packet) and generated CRC bits from the first eight packets, then error is been detected in the
received data which consequently drive the dfi_alert n signal low for one clock cycle. In this
simulation, two consecutive 9 packets were received in the CRC Validation block. The first ta
received is sent with correct CRC byte hence, dfi_alert_n remains high as default. However, the
second data packets received are sent with wrong CRC byte which consequently drives the dfi-
alert_n signal low for one clock cycle. Table 22 summarizes the functionality of the CRC block. The
block diagram is then shown in figure 76. Finally, a simulation is shown in figure 77.

Table 22. CRC functionality.

Inputs Outputs Functionality Parameters
pre_rddata [8 bits] dfi_alert_n [1 bit] 1- Starts the operation phycrc_mode [1 bit]
[8 bytes of data when pre_rddata_valid is Read CRC enable [1 bit]
followed by a byte asserted.
of CRC] 2- Validates DQ
pre_rddata_valid [1 3- Activates dfi_alert _n
bit] when an error occurs

64

CRC

reset

dfi_alert_n

<
<

dfi_phy_clk
Create LN
CRC D[0:63]
Y count
Compare <

data_in [0:7]

phy_crc_mode

cre_en

A

pre_rddata_valid

Figure 76. CRC block diagram.

fddepiy_cre._vald/reset i

Jadrphry_crc_vabdjore_en_) T

[ddrphy_ere_valeydata | (3¢

Jedmity_cre_validfphy_cre_mode | T
fddrphry_ore_walld/pre_rddata_valid I|_f_|

Inputs.
LSRR L N I I Y U e O Y Y O Yy O 6y O
Jos_ Jod | I EE
11 1
Outputs.
| I—

Jadrphey_cre_validyon_stest_n_o |

L A T
0.00 ns

EntRy:ddmiy_cre_valid Architecture: Date: Mon May 23 09:13:45 CAT 2022 Row: 1 Page: 1
Figure 77. CRC simulation waveforms.

I
05 ns

1

ins

65

5- Project Execution

5.1 Project Tasks and Gantt chart

Tasks:

Si-Vision VLSI training for basics and needed knowledge.

Literature review on DRAMs and DDR (1,2,3,4).

FCS block design (RTL).

Standards (JEDEC & DFI) reading, analyzing, and summarizing.

PHY architecture extraction and deduction from standards requirements.
PHY modules design (RTLs).

PHY block behavioral simulations (top level and separate modules level).
Hardware testing (FPGA implementation).

Thesis documentation.

The Gantt Chart is shown in figure 78.

10/25/2021 12/14/2021 2/2/2022 3/24/2022

Si-Vision VLS| training for basics and needed knowledge. [l

Literature review on DRAMs and DDR (1,2,3,4).]

FCS block design (RTL). B

Standards (JEDEC & DFI) reading, analyzing, and

summarizing. -

PHY architecture extraction and deduction from standards

requirements. _
PHY modules design (RTLs).]

PHY block behavioral simulations (top level and separate

modaules level). -

Hardware testing (FPGA implementation).

Thesis documentation.

Figure 78. Gannt Chart.

5.2 Description of each subsystem

5/13/2022

The project manufacturing can be done as an Application Specific Integrated Circuit (ASIC) and first
a porotype on FPGA can be done. A simplified ASIC flow flowchart is shown in figure 79.
However, it is very costly to have a state-of-the-art ASIC chip manufactured. The masks used in the
fabrication process costs are high. A chip on 35 nm technology node may cost 1 million dollars.
Consequently, we will go with the FPGA prototyping. A FPGA flow flowchart is shown in figure 80.
FPGA protype will not cost us any money as the FPGAs are provided by UST at Zewail City.

66

Collect requirements

v

Product Requirement/Specification

v

Architecture Specification

Design!RTL Pre-Silicon

Verification

v

Logic Synthesis/Netlist

v

Equivalence Check

v

Placement & Routing

v

Post-Silicon Validation

Back Annotation
(if needed)

Figure 79. ASIC Design Flowchart.

Design source files

Design Synthesis

A

Design
|mplementation

—

‘-
3

Bit-stream File
Generation

¥

Upload on FPGA
Board

Figure 80. FPGA Design Flowchart.

Behavioral
Simulation

Functional
Verification

Static Timing
Analysis

—— In-circuit Verification

67

5.3 Standard Usage in Project Execution

The project is a direct implementation of the DFI V.5.0 and JESD standards as the memory
controller (MC) and PHY interface is defined by DFI V.5.0 standard while the PHY DRAM
interface is defined by JEDEC JESD79-5A standard. Hence, the 2 standards were used in the project
execution in 4 phases: First, in the identification of the features of the system in which the standards
were the main reference. Second, in the design process of the architectures and the individual blocks
as a reference for the specifications. Third, in the verification of the outputs of the whole integrated
system to verify it is compatible with the standards of the DDR5 physical layer. Fourth, the
SystemVerilog standard was used when describing the hardware as SystemVerilog is Hardware
Description Language (HDL) that was used in this project.

5.4 Project Testing and Evaluation

The project verification is done using dynamic methods. A simulation of the standard waveforms has
been done and verified. Also, the project was implemented as FPGA and as ASIC and then tested.
Simulation and hardware testing passed the specifications illustrated before.

68

69

6- Simulation results of the integrated design

The full design was integrated and simulated using the cases in the standards. As seen in the
following simulations, the test begins with the assertion of 2 two-cycle commands. The first one for
setting the burst length and the second for setting the preamble and postamble settings. Then the data
returns with the valid aligned to it. Figure 81 shows a test case for a pre-amble of 10 and an inter-
amble of 10. Figure 82 shows a test case for a pre-amble of 00010 and an inter-amble of 0010.
Figure 83 shows a test for a pre-amble of 00001010 and an inter-amble of 01010. Figure 84 shows a
test for a pre-amble of 000010 and an inter-amble of 01010. Figure 85 tests for a pre-amble of
00001010 and an inter-amble of 0001010. Figure 86 tests for a pre-amble of 000010 and an inter-
amble of 0100010. Figure 87 tests for a pre-amble of 00001010 and an inter-amble of 0101010.
Figure 88 tests for a pre-amble of 000010 and an inter-amble of 010001010. Figure 89 tests for a pre-
amble of 1110 and a valid CRC of 11010111. Figure 90 tests for a pre-amble of 1110 and an invalid
CRC of 11010111. Lastly, figures 91 and 92 test the system with frequency ratios of 1:2 and 1:4
respectively with CRC enabled, burst length of 8, the crc sent wrong in the first one then correct in
the second one.

/DDRS5_PHYTB/CS_DA_0 | I L

/DDR5_PHYTB/dfi_address_p0 [_J_J 0001 | Y0000
soors_pryeyafi_ci i LTI LU LU UL U UL UL ooy U oo i ooy Uiy o e o ey
/DDRS_PHYTB/dfi_cs po " | | L]
/DDR5_PHYTB/dfi_freq_ratio_| (0
/ooRs_prvTBdfi_phy_ck i "L T UL U LU Uy Ly Uy UL U Uy

/DDRS_PHYTB/dfi_rddata_en_p0 | \ \ [

/DDRS_PHYTB/dfi_rddata_valid_w | I [J |

/DDRS_PHYTB/dfi_rddata_wo [00 1 foo Tt o0
JDDRS_PHYTB/DQ_AD_i [00 i oo [fff f oo
/DDR5_PHYTB/DQS_AD._i | I Il

JDDRS_PHYTB/Test [0

Figure 81. Pre-amble of 10 and an inter-amble of 10 testcase.

/DDRS_PHYTB/CS DA 0 | I [

/DDRS5_PHYTB/dfi_address_p0 [| J 0001 | 0003
7oors_pryTe/ai_cik i TLTLTLTLTU U U U U Uiy i ooy ooy i ooy wrr oy
/DDRS_PHYTB/dfi_cs po | | | |]
JDDRS_PHYTB/dfi_freq_ratio_i (0

/DDRS_PHYTB/dfi_phy_cik_i " [1 1111 [l UUrruyrrdryrrrryuurry iy

/DDR5_PHYTB/dfi_rddata_en_p0 |] [
/DDR5_PHYTB/dfi_rddata_valid_w0 |]]
/DDR5_PHYTB/dfi_rddata_w0 (00 i 00 [oo
/DDRS_PHYTB/DQ_AD_i (00 [ILo0 [[00
/DDR5_PHYTB/DQS_AD_i | 1 M

/DDRS_PHYTB/Test (1

Figure 82. Pre-amble of 00010 and an inter-amble of 0010 testcase.

/DDRS_PHYTB/CS_DA 0 | I [

/DDRS_PHYTB/dfi_address_p0 [_J_J o001 | Y o004
poors_prvreyan_ak LT LU LU AU LA ALUL U UL UUUULL UL A ULUL ULULU
JDDRS_PHYTB/dfi cs po [| [L

/DDR5_PHYTBYdfi_freq_ratio_i (0

/DDRS_PHYTBYdfi_phy_ctk_i "1 [T T [l R R nnE R nnnns

/DDR5_PHYTB/dfi_rddata_en_p0 | 1 [
/DDRS_PHYTB/dfi_rddata_valid_wo | | \ [
/DDRS_PHYTB/dfi_rddata_w0 (00 [f oo [oo
/DDRS_PHYTB/DQ_AD_i (00 [[oo i Joo
/DDR5_PHYTB/DQS_AD_j | 101 1T

/DDRS_PHYTBfTest (2

Figure 83. Test for a pre-amble of 00001010 and an inter-amble of 01010
70

/DDR5_PHYTB/CS_DA_o Ll

/DDRS5_PHYTB/dfi_address_p0 (| _J o001 | Joos3

/DDRS_PHYTB/dfi_ckk i NN

/DDR5_PHYTB/dfi_cs_p0 L

/DDR5_PHYTB/dfi_freq_ratia_i (0

/DDRS_PHYTBydfi_phy_ck i " [1[1[1[]] g
]

/DDRS5_PHYTB/dfi_rddata_en_p0 |

/DDR5_PHYTB/dfi_rddata_valid_w0 |

J/DDRS_PHYTB/dfi_rddata_w0 [00

I

oo

/DDR5_PHYTE/DQ_AD_i (00

1t

I oo

|

|

/DDRS_PHYTB/DQS_AD_| |

/DDRS_PHYTB/Test [3

Figure 84.

Test for

a pre-amble of 00

0010 and an inter-amble of 01010.

JDDRS_PHYTB/CS_DA 0 || L]

/DDRS_PHYTB/dfi_address_po (_J_J 0001 | Yooo4

/DDRS5_PHYTB/dfi_clk_i

UL Uy

/DDR5_PHYTB/dfi_cs_p0 |

/DDR5_PHYTB/dfi_freq_ratio_i (0

/DDR5_PHYTB/dfi_phy_clk_i

/DDR5_PHYTB/dfi_rddata_en_p0 |

uuUyUuuyuuUy

/DDR5_PHYTB/dfi_rddata_valid_w0 |

JDDRS_PHYTB/dfi_rddata_w0 (00

oo

/DDRS_PHYTB/DQ_AD_i (00

oo

)i

/DDRS_PHYTB/DQS_AD_i |

rm

JDDRS_PHYTB/Test (4

Figure 85. Test for a pre-amble of 0000

1010 and an inter-amble of 0001010.

/DDRS_PHYTB/CS_DAo || L

/DDRS_PHYTB/dfi_address_po [| Jooo1 | Yoos3

/DDR5_PHYTB/dfi_clk_i

/DDR5_PHYTBY/dfi_cs_p0 N

/DDR5_PHYTB/dfi_freq_ratio_i [0

/DDR5_PHYTB/dfi_phy_ck_i

/DDR5_PHYTB/dfi_rddata_en_pQ |

/DDR5_PHYTB/dfi_rddata_valid_w0 |

JDDRS_PHYTB/dfi_rddata_wo {00

/DDRS_PHYTB/DQ_AD_i [00

/DDRS_PHYTB/DQS_AD_| |

JDDRS_PHYTB/Test |5

/DDR5_PHYTB/CS_DA_o

/DDRS_PHYTB/dfi_address_p0 [_J_J 0001

/DDR5_PHYTB/dfi_clk_i

/DDRS5_PHYTB/dfi_cs_p0 |

/DDR5_PHYTB/dfi_freq_ratio_i f 0

/DDR5_PHYTB/dfi_phy_clk_i

/DDR5_PHYTB/dfi_rddata_en_p0 |

/DDRS5_PHYTB/dfi_rddata_valid_w0 |

/DDRS_PHYTB/dfi_rddata_wo (00

/DDR5_PHYTB/DQ_AD_i (00

UL UL U AP AP LU A LAy
1 [
] [1
1 00 G [o0
[t [o0 [ff J oo
[l [1 [1
Figure 86. Test for a pre-amble of 000010 and an inter-amble of 0100010.
Y 0084
L N A R R AR AR AR AR R R AR AR AR TR AR TR
UL AU LA LA UL A AU LU LA UL
1 [
] 1 [
G T oo [ii | oo
[oo | T o0
LI [T L

/DDRS_PHYTB/DQS_AD_i |

JDDRS_PHYTB/Test | 6

Figure 87. Test for a pre-amble of 00001010 and an inter-amble of 0101010.

71

/DDRS_PHYTB/CS_DA_o [

/DDRS_PHYTBY/dfi_address_p0 { | J 0001 | Joos4

/DDR5_PHYTB/dfi_clk_i

J/DDRS_PHYTB/dfi_cs_p0O L]

/DDRS_PHYTBYdfi_freq_ratio_i (0

JDDRS_PHYTB/dfi_phy_clk_i

/DDR5_PHYTB/dfi_rddata_en_p0 |

/DDRS_PHYTB/dfi_rddata_valid_w0 |

/DDRS_PHYTB/dfi_rddata_w0 [00

/DDRS_PHYTB/DQ_AD_i (00

J/DDRS_PHYTB/DQS_AD_i |

Ty LU U U U U UL U oy
il U UL U Uy
T 1
[T 1 [1
[{oo G
[Joo I it
[1 [TLIT

/DDRS_PHYTB/Test 7

Figure 88. Test for a pre-amble of 000010 and an inter-amble of 010001010.

/DDR5_PHYTB/CS_DA_o

/DDRS_PHYTB/dfi_address_p0 [J_} 0001

/DDRS_PHYTB/dfi_clk_i

/DDR5_PHYTB/dfi_cs_p0

/DDRS_PHYTB/dfi_freq_ratio_i [0

/DDRS_PHYTB/dfi_phy_clk_i

/DDRS5_PHYTB/dfi_rddata_en_p0 |

/DDRS_PHYTB/dfi_rddata_valid_wD |

/DDRS_PHYTB/dfi_rddata_w0 (00

/DDRS5_PHYTB/DQ_AD_| [00

/DDRS_PHYTB/DQS_AD_i |

/DDRS_PHYTBTest (9

/DDRS_PHYTB/PHY _inst/dfi_alert_n_a0

/DDRS_PHYTB/CS_DA_o

/DDRS_PHYTB/dfi_address_po {_[| 0001

/DDR5_PHYTBY/dfi_clk_i

JDDRS_PHYTB/dfi_cs_p0

/DDRS_PHYTBYdfi_freq_ratio_i {0

/DDRS_PHYTB/dfi_phy_clk_i

/DDR5_PHYTB/dfi_rddata_en_p0 |

/DDR5_PHYTB/dfi_rddata_valid_w0 |

/DDRS_PHYTB/dfi_rddata_wo [00

J/DDRS_PHYTB/DQ_AD_i [00

/DDRS_PHYTB/DQS_AD_i |

JDDR5_PHYTB/Test [a

] |
{ooo1 | |oosz
U yuuuuy [UUuuyuurrdUrrrgUruryuuuyUrugd
L]
(U UuuUL UUuyuurrdrrrryrruryrrryuruuy
N
RN
| ff T oo
[t J- Yoo
1
Figure 89. Test for a pre-amble of 1110 and a valid CRC of 11010111.
L
To001 | !noaz

SRR AR ARR R RN RRRR R EAN U Uy U i oy w iy
I

M’ﬂﬂﬂﬂm UL U UL U LU ey

11
I
G o0
f f J 00
1
LI

/DDRS_PHYTB/PHY_inst/dfi_alert_n_a0

Figure 90. Test for a pre-amble of 1110 and an invalid CRC of 11010111.

72

/DDRS_PHYTB2/Test (a
foos_pravreian_ e T ML LM LU U L U LU Y
soors_pravrszzar oty (UL VULV AR AU AU AU AT
JDDRS_PHYTB2/dfi_cs_p0 | L L LT 1 1 1
JDDRS_PHYTB2/dfi freq_ratio_| {1
/DDRS_PHYTB2/dfi_rddata_en_p0 | [
/DDRS_PHYTB2/df_rddata_en_p1 | [
/DDRS_PHYTB2/dfi_address_p0 {0000 =1
JDDRS_PHYTB2/dfi_address_p1 (0000 |
/DDR5_PHYTB2/CA_DA_o { 00000000000000

]

]
3
[]
3
5

- | oooo
-) oooa
100000000000000 [[weeomsia | Y | 00000000000000

B
2
5|
2

/DDRS_PHYTB2/CA_VALID_DA 0 | I
/DDRS_PHYTB2/CS DA o | L]
/DDRS_PHYTB2/DQ_AD_i {00 i T T 1 oo

/DDRS_PHYTB2/DQS_AD_i | [A L
/DDR5_PHYTB2/CS_DA o | LU L L i]]

/DDR5_PHYTB2/dfi_rddata_valid_w0 |

5]
-
]

/DDRS_PHYTB2/dfi_rddata_w0 {00 00
{ |

/DDRS_PHYTB2/dfi_rddata_valid_w1 |

A1

/DDRS_PHYTB2/dfi_rddata_w1 {00
/DDRS_PHYTB2/dfi_alert_n_a0 ' | | | L
/DDRS_PHYTB2/dfi_alert_n_a1 |

T A R e R R R O T e T
Ops 100 ps 200 ps 00 ps 500 ps 600 ps 700 ps 800 ps. 900 ps

Entity:DDR5_PHYTB2 Architecture: Date: Sat May 21 19:45:02 CAT 2022 Row: 1 Page: 1

Figure 91. Testcase for frequency ratio 1:2 with CRC.

yoors_pravressen_phy_ctk_i UL A S A A A A A A AU AL
/DDRS_PHYTB3/dfi_cs_p0 ' L L -
/DDRS_PHYTB3/dfi_cs_p1 '

/DDRS_PHYTB3/dfi_freq_ratio_i [10

/DORS_PHYTB3/dfi_rddata_en_p0 | 1
/DDRS_PHYTB3/dfi_rddata_en_p1 (1
/DORS_PHYTB3/dfi_rddats_en_p2 | 1
/DDRS_PHYTB3/dfi_rddata_en_p3 | [
/DDRS_PHYTB3/dfi_address_p0 (0000000000000 | }|00000000000000 || {— Y oa000000800600
/DDR5_PHYTB3/dfi_address_p1 ooauonocuo:mu]‘oououonuouc}»ouu =T I Imumo&umuona
/DDRS_PHYTB3/DQ_AD_| (00000000 I 11111111 | 00000000
/DDRS5_PHYTB3/DQS_AD_| | | 1
JDDRS_PHYTB3/CS_DA_o ' U] 1 T
/DDRS_PHYTB3/CA_DA_o { 00000000000000 {11 0000000000000 i 11 G0000030000008
/DDRS5_PHYTB3/CA_VALID_DA_o | I [I |
/DDRS_PHYTB3/dfi_rddata_valid_w0 | | 1
/DDRS_PHYTB3/dfi_rddata_w0 00000000 I [11111111 | 00000000
/DDRS_PHYTB3/dfi_rddata_valid_w1 | | 1
JDDRS_PHYTB3/df_rddata_w1 (00000060 I [iriiiii] 00000000
JDDRS_PHYTB3/dfi_rddata_valid_w2 | | 1]
/DDRS5_PHYTB3/dfi_rddata_w2 (00000000 [[11111111) 0ooooooo
/DDRS_PHYTB3/dfi_rddata_valid_w3 | | 1
/DDRS_PHYTB3/dfi_rddata_w3 { 00000000 T 11111111 | 00000000
JDDRS_PHYTB3/dfi_alert_n_a0 ' T
JDDRS_PHYTB3/dfi_alert_n_a1 '
/DDRS_PHYTB3/dfi_alert_n_a2 |
JDDRS_PHYTB3/dfi_alert_n_a3 | T [
(BN] [RRRN [NRR N frrrrerrrlbrrrrrrreelen e [RRRN [RERRRRERE rrrrerrer [(NRR N frrrrrrrnlrrrerrernben NN [RRE N [RRRRN (NN}
Ops 200 ps 400 ps 600 ps 800 ps 1000 ps 1200 ps

Entity:DDRS_PHYTB3 Architecture: Date: Sat May 21 19:54:33 CAT 2022 Row: 1 Page: 1

Figure 92. Testcase for frequency ratio 1:4 with CRC.

7- Hardware Implementation
7.1 FPGA

FPGA implementation was done using Intel Quartus tool and on the EP4ACE22F17C6 Intel FPGA.
Implementation results are shown in figure 93. After the implementation, a timing simulation was
done. Timing simulation include the parasitic delays estimated of the physical circuit to the
simulation using Standard Delay Format (SDF) files. The results of the timing simulation on FPGA
are shown in figure 94. It is shown that the output signals are delayed after the clock positive edge
due to the physical delays. It also shows that the block is functioning correctly after physical
implementation. Figure 95 is a zoomed image of figure 94 in the region with the data coming from
the DRAM to the PHY. The figure shows that the data is from 1 to 8 and it is correctly sent to the
memory controller on different busses with valid signals correctly asserted as the frequency ratio
here is 1:4.

Compilation Hierarchy Node Combinational ALUTS Dedicated Logic Registers
1 ~ |DDR5_PHY 444 (0) 390 (0)
1 |CRC_valid:CRC_Vvalid_inst]| 134 (134) 83 (83)
2 v |DataManager:DM_inst| 236 (21) 157 (17)
1 |ControlUnit:CU_inst| 9 (9) 1(1)
2 |CountCalc:CC_inst| 3(3) 0 (0)
3 |EdgeDetectorFSM:EdgeDetectorFSM_inst] 3 (3) 3(3)
4 |FIFO:FIFO_inst| 85 (85) 117 (117)
5 |GapCounter:GC_inst| 15(15) a9 (9)
6 |validCounter’vVC_inst| 11(11) 6 (6)
7 ~ |pattern_detector:PD_inst| 89 (0) 4 (0)
1 |FSM_setting:FSM_sett_inst| 39 (39) 0 (0)
2 |generic_FSM:generic_FSM_inst| 50 (50) 4 (4)
3 |Deserializer_V1:Deser_inst| 231(23) 80 (80)
4 ~ |toptop_inst| 51 (0) 70 (0)
1 |CA_Manager:CA_inst| 17 (17) 52 (32)
2 |Serializer_V1:Ser| 34 (34) 18(18)

Figure 93. FPGA implementation results.

mors_provreyari e LT LU LU L L L L L L UL
/DDRS_PHYTB3/reset_n_i | T I I
rooes_prvreayani_ohy._ck i "L LA U A I UU U UU U U Uy
/DDRS_PHYTB3/df_cs_po | LI [1] T I | I I I |

/DDRS_PHYTB3/dfi_cs_p1 "

DDRS_PHYTB3/dfi_freq_ratio_i (2

/DDRS_PHYTB3/dfi_rddata_en_pD |

/DDRS_PHYTB3/dfi_rddata_en_p1 |

/DDRS_PHYTB3/dfi_rddata_en_p2 |

/DDRS_PHYTB3/dfi_rddata_en_p3 | [| | | | 1
JDDRS_PHYTB3/dfi_address_p0 (0000) ooos | 0000 I Yo Y0000 Jewes Y0000 |
JDORS_PHYTE/cf_address_p1 (0000 o1 || 0000 I Yo o000

/DDRS_PHYTB3/dfi_address_p2 | 0000

JDORS_PHYTB3/dfi_address_p3 [0000

/DDRS_PHYTB3/DQ_AD_i {00 TR

JDDRS_PHYTB3/DQS_AD i | | | | | | | | n
/DDRS_PHYTB3/CS_DA o U T]|] [
roors_prvreyafi_ohy_ck i "I IR A AR AR AR UL

/DORS_PHYTB3/dfi_rddata_valid_w0 |

/DDRS_PHYTB3/dfi_rddata_w0 {00 | | I | | | | | I T02 oo Yo7 I|
JDDRS_PHYTB3/dfl_rddata_valid_w1 | | | | | | | | | | L

/DDRS_PHYTB3/dfi_rddata_w1 (00

/DDRS_PHYTB3/dfi_rddata_valid_w2 (

/DDRS_PHYTB3/dfi_rddata_w2 [00 | | | | | | | | | o+ [[05 Joo

/DDRS_PHYTB3/dfi_rddata_valid_w3

/DDRS_PHYTB3/dfi_rddata_w3 | 00 [o1 Joo [fos oo

' | |
Ons 100 ns. 200 ns 300 ns 400 ns 500 ns 600 ns 700 ns 800 ns 900 ns 1000 ns 1100 ns

Entity:DDRS_PHYTB3 Architecture: Date: Sat May 28 18:39:58 CAT 2022 Row: 1 Page: 1

Figure 94. FPGA timing simulation.

74

/DDRS_PHYTB3/dfi_clk_i | ‘

/DDRS_PHYTB3/reset_n_i

gooRs:pravtasyan pvy-ak 1 (1| L L[L L L L L L L

/DDR5_PHYTB3/dfi_cs_p0

/DDR5_PHYTB3/dfi_cs_p1

/DDR5_PHYTB3/dfi_freq_ratio_i _2

/DDR5_PHYTB3/dfi_rddata_en_p0

J/DDRS_PHYTB3/dfi_rddata_en_p1

/DDRS5_PHYTB3/dfi_rddata_en_p2

/DDR5_PHYTB3/dfi_rddata_en_p3

/DDR5_PHYTB3/dfi_address_p0 _0000

/DDR5_PHYTB3/dfi_address_p1 _0000

/DDR5_PHYTB3/dfi_address_p2 _0000

/DDRS_PHYTB3/dfi_address_p3 _0000

/DDR5_PHYTB3/DQ_AD_i _00 Jo1 Joz Yo3 Jo4a Joo (05 o6 Joz Jos Joo
/DDRS_PHYTB3/DQS_AD_i [T
/DDR5_PHYTB3/CS_DA o0

LSRRV e e e I 6 I B B

/DDRS_PHYTB3/di_rddata_valid_wo . I [
/DDRS_PHYTB3/dfi_rddata w0 _00 oz oo o7 oo
/DDRS_PHYTB3/dfi_rddata_valid_w1 | | l—liJ |
/DDRS_PHYTB3/dfi_rddata_w1l 00 [[103 [i J 00 { | 08 [00 i

/DDRS5_PHYTB3/dfi_rddata_valid_w2 J [[[|

/DDRS_PHYTB3/dfi_rddata_w2 _00 |04 J o5 [00
/DDRS5_PHYTB3/dfi_rddata_valid_w3 [1
/DDRS_PHYTB3/dfi_rddata_w3 00 o1 J 00 i3 [0
I] | |]] I | I I I I | I I I I | I I | I | I] I I
900 ns 950 ns 1000 ns 1050 ns 1100 ns

Entity:DDR5_PHYTB3 Architecture: Date: Sat May 28 18:50:13 CAT 2022 Row: 1 Page: 1

Figure 95. FPGA timing simulation data forwarding.

7.2 ASIC

The ASIC implementation include synthesis, floorplaning, powerplaning, placement, clock tree
synthesis, routing, finishing and physical verification. Synthesis is the process of transforming the
HDL design into a gate-level netlist, given all the specified constraints and optimization settings.
Logic synthesis is the process of translating and mapping RTL code written in HDL which we wrote
using the SystemVerilog language into technology specific gate level representation. The mapping
allows the place and route tools afterwards to be able to get the required connection between the
circuits, the recommended placement for each circuit to ease the routing process, and the added
parasitics due to the routing process. As a result, the tool iterates to determine the best solution that
makes the chip able to satisfy the constraints specified during the synthesis and PnR processes. The
constraints set during the synthesis is critical as it is the guide the tool uses to respect all the timing
and area specifications needed in the design. Also, the technology used is a key player in the
synthesis process, as the synthesis is the first step to know how your design will react with the real
technology that will be used in manufacturing. Consequently, the technology node and the standard
cells library used during the synthesis critically affects the synthesis process. In this project, we used
the nangate 45nm open-source technlogy library. Synopsys Design Compiler (DC) was used for
synthesis, IC-Compiler (ICC) was used for placement and routing, Formality for formal verification,
and PrimeTime was used for timing verification.

75

The synthesis output results are shown in figure 96. After the successful synthesis process,
the placement and routing processes are done. Firstly, floorplanning is done to choose the most
suitable place for each sub block to reduce the side effects of placement and routing, such as, clock

skew, added capacitance and resistance, and having unrouteable cells.

Floorplaning and

powerplaning are shown in fiugre 97. The design dimensions are 144 um * 144 um with a core
utilization of 25%. The IR drop of the powerplan after optmization is shown in figure 98. The IR
drop less than 18.46 mV which is less than 2% of the power supply that is 1.2 V. The congestion
map of the floorplan is shown in figure 99 which is acceptable to begin the placement process.

: area
: DDRS_PHY

Vi -2021.06-5P1

Da un May 22 20:31:34 2022

Information: Updating design information... (UID-B5)

Library(s) Used:

NangateOpenCellLibrary ff1p25vec (File: /hom

136
2008
1694
1251

388

<]

143

48

1556.366007
83.524000
2104.592061
6.000000

3660958068
undef ined

undefined (wire loa

e/nano/Desktop/GP/standard cell libraries/NangateOpenCelllibrary PDKv1 3 w2010 12/1ib/Front End/Liberty/NLDM/NangateOpenCelllLibrary fflp25vec.db)

Figure 96. Synthesis results report.

Figure 97. Floor and power planning.

76

;%
__ |[B& PNA voltage Drop |

b Af Reload £

Bins: lm
From: To:

I Text

[~ Current design only

N metall (11)
@ [vial (12)

A metal2 (13)
© B via2 (14)
metal3 (15)
® B via3 (16)
M [metal4 (
® B viad (18)
2 metals (19)
B3

Power switchesf

Real pads|Jij
Synthesized

o Virtual pads[§

Bl B EEREEE KK

I

Figure 98. Powerplanning IR drop.

[® Global Route Congestion

y Reload

Congestion calculation:
& sum of overflow for each layer
¢ Total demand minus total supply

From: |0 To: [11

Edges: [~ Horizontal & Veriical

LK1

F Text
I Current design only

& & metall (11)
2 metal2 (13)
. metal3(15)
metal4 (17)
2 &2 metals (19)

" R T O T T R L TR S T T R O

Figure 99. Floorplan congestion map.

The placement effort specified in this project is to target having less congestion and to
optimize the timing of the cells, in order to be aware of placing the cells in locations that eventually
allows the design to meet the required timing constraints. The placed design is shown in figure 100.
The congestion map of the placed design is shown in figure 101 which is better than the floorplan
congestion. Then, the routing step is performed by routing the power nets firstly, followed by the
detailed routing, choosing to optimize the congestion and to reach timing closure. The routed design
is shown in figure 102 and showning that there are no violations in DRCs or timing. The timing will
be checked again later using PrimeTime. Layout vs Schematic (LVS) check is shown in figure 103.
This check is nessacary to ensure that the physical implementation is equivelant to the netlist
provided from the synthesis tool. This step checks if there a short between two signals or if there is

77

an open signal or anyting that is functionaly different than the netlist. Finally, filler cells are added
the design was finalized. Figure 104 shows the final layout of the design. The quality of results are
then shown in figure 105 showing that there are no violating paths. Finally, timing closure was tested
using PrimeTime and succeeded as shown in figure 106.

144.666

Figure 100. Placed design layout.

8 Global Route Congestion

Reload

Congestion calculation
& Sum of overflow for each layer
 Total demand minus total supply

Bins: 9 =

From: |0 To: |6

Edges: I° Horizontal ¥ Vertical

&l

F Text

I Current design only

78

nano@Syn-Cad21:~/Desktop/GP/pnr

File Edit View Search Terminal Help

Error Browser

File Errors Select Highlight Options Help

DRC | Editor DRC

ErrorSet / Visible| Fixed Ignored| NULL Netl
0 0 0

=+ DDR5_PHY.CEL;1
DDR5_PHY _lvs.err;1 0 0 0

Id I a(l = Color Type

B 2| 2| X|| clear uist] |

Show: [all ~| Follow: [zoom =] [1.0 =T Dim

Figure 103. LVS check.

79

Figure 104. Final layout.

EEEE S E S EEEEEEEEEEEEE L EEEEEE TS
Report : qor

Design : DDR5_PHY

Version: 0-20818.86-5P5-5

Date : Sun May 22 21:38:49 2022

EEE S S S EEEEEEEEEEE LSS EEEEEEEEEEE S

Timing Path Group 'dfi phy clk'

Levels of Logic: 13.00
Critical Path Length: 0.42
Critical Path Slack: 0.05
Critical Path Clk Period: 0.50
Total Negative Slack: 0.00
No. of Violating Paths: 0.00
Worst Hold Violation: 0.00
Total Hold Violation: 0.00
No. of Hold Violations: 0.00

Levels of Logic:

Critical Path Length:
Critical Path Slack:
Critical Path Clk Period:
Total Negative Slack:

No. of Violating Paths:
Worst Hold Violation:
Total Hold Violation:

No. of Hold Violations:

Figure 105. Quality of results.

80

st st oo ot o St ko o o ok ot ek ok ok ko
Report : timing
-path_type full
-delay type max
-max_paths 1
-sort by slack
Design : DDR5 PHY
Version: P-2019.83-SP4
Date : 5at May 28 19:52:06 2022
sfe e e s s o e e e s o o e e s s o o e e s s o e e s e o o e ofe e e ok oo e e ok ok
Startpoint: DM inst FIFO inst data o reg 6 (rising edge-triggered flip-flop clocked by clk fast)
Endpoint: DM_inst FIFO_inst _data_o reg 2 (rising edge-triggered flip-flop clocked by clk_fast)
Path Group: clk fast
Path Type: max

clock clk fast (rise edge)

clock network delay (ideal)

DM inst FIFO inst data o reg 6 /CK (DFFR_X1)
DM inst FIFO inst data o reg 6 /Q (DFFR_X1)
U2206/ZN (OR2_X1)

u2047/ZN (OR2_X1)

U2223/ZN (NAND4 X1)

U1988/ZN (0AI21 X1)

U35/ZN (INV X1)

U2566/2ZN (ADI21 X1)

U2224/ZN (XNOR2 X1)

U2295/ZN (NAND2 X1)

u2e42/ZN (OR2_X1)

U2309/ZN (NAND2_ X1)

U2143/ZN (AND2_ X1)

U36/ZN (INV_X1)

U2846/ZN (A0DI22_X1)

DM_inst FIFO_inst_data_o_reg 2 /D (DFFR_X2)

[clclclcoNoNololcicoolcolclololololol
(=]
w
W
w

(=]

)

w

[=]
PR

)

FN

~

w
e T e e T R e T e T e T e T

data arrival time 4224
clock clk fast (rise edge) 0.5000 0.5000
clock network delay (ideal) 0.0000 0.5000
clock reconvergence pessimism 0.0000 0.5000
DM inst FIFO inst data o reg 2 /CK (DFFR_X2) 0.5000 r
library setup time -0.0258 0.4742
data required time 0.4742
data required time 0.4742
data arrival time -0.4224
slack (MET) 0.0518

Figure 106. Timing analysis using PrimeTime.

8- Cost Analysis

8.1 The Cost

The cost of JEDEC JESD79 is 369%, the cost of Zynq UltraScale+ MPSoC ZCU106 is 100$. The
standard is provided by Si-Vision Co. and the board is provided by Zewail City.

8.2 Manufacturability

Our design can be manufactured as an ASIC (Application Specific Integrated Circuit) by mapping it
to a specific technology and requesting a tape-out. However, what we will do is to download it into
an FPGA fabric and test it on silicon as FPGASs provide smaller time to market and lower cost.

8.3 Social and Economic Impact

Memories have been the bottle neck in almost every application that needs high speed comuations
and the requirement for faster, lower in power, and larger memories have been increasing rapidly.
With the introduction of the newest generation DDR5, every device will need the physical layer
compatible with DDR5 such as mobile phones, PCs, Smart cars and smart TVs. All these
applications will be faster leading to a more comfortable life.

82

9- Conclusion and Future Work

In conclusion we started the project by reviewing the latest development in DDR SDRAMSs from
generation to another, and we made a documentation about this literature review. Then, we
summarized both the JEDEC JESD79-5A and DFI v5 standards and identified the key features to be
included in out DDR5 PHY that will assure the compatibility between the MC and the DD5
SDRAM. We finished a timing diagram of the system that includes an activate along with a read
command with a number of options that identified important blocks that we included in out block
diagram. In our future work we will write RTLs to describe our PHY then we will start our
behavioral simulation of a PHY to debug our system, after which we will be ready to implement the
system on FPGA for testing and emulation.

83

References

[1]
[2]

[3]

[4]
[5]

[6]
[7]
[8]

[9]
[10]

[11]

Jacob, B., Wang, D., & Ng, S. “Memory systems: cache, DRAM, disk,” 2010.

“Micron enables pervasive, data-driven experiences,” Micron. [Online]. Available:
https://www.micron.com/. [Accessed: 18-Jun-2022]

Kim, Y.-H., Kim, H.-J., Choi, J., Ahn, M.-S., Lee, D., Cho, S.-H., Lee, J.-B. “A 16Gb Sub-
1V 7.14Gb/s/pin LPDDR5 SDRAM Applying a Mosaic Architecture with a Short-Feedback
1-Tap DFE, an FSS Bus with Low-Level Swing and an Adaptively Controlled Body Biasing
in a 3rd-Generation 10nm DRAM,” 2021 IEEE International Solid- State Circuits
Conference (ISSCC), 2021, doi:10.1109/isscc42613.2021.9366050

“DDRS5 SDRAM,” Micron. [Online]. Available:
https://www.micron.com/products/dram/ddr5-sdram. [Accessed: 19-Jun-2022]

A. T. Inc, “APACER industrial - the most reliable storage and memory for industries,” What
Sets DDR5 Memory Modules Apart - 7 Key Specification Differences of Industrial DDR5
RDIMM - News & Events - Apacer for Industrial — Leader in industrial SSD and DRAM
module, 14-Apr-2022. [Online]. Available: https://industrial.apacer.com/en-
ww/NEWS/What-Sets-DDR5-Memory-Modules-Apart--7-Key-Specification-Differences-of-
Industrial-DDR5-RDIMM. [Accessed: 19-Jun-2022]

“DDR PHY Interface (DFI),” DFI 5.0 Specification, Cadence Design Systems, Inc, APRIL
27, 2018.

“JEDEC STANDARD, JESD79-5A (Revision of JESD79-5, JULY 2020),” JEDEC SOLID
STATE TECHNOLOGY ASSOCIATION, October 2021.

“IEEE Standard for SystemVerilog--Unified Hardware Design, Specification, and
Verification Language,” in IEEE Std 1800-2017 (Revision of IEEE Std 1800-2012), vol., no.,
pp.1-1315, 22 Feb. 2018, doi: 10.1109/IEEESTD.2018.8299595.

J. L. Hennessy and D. A. Patterson, Computer Architecture: A quantitative approach, Sixth
edition. Beijing Shi: Ji xie gong ye chu ban she, 20109.

“DDR SDRAM Market: Global Industry Analysis and Forecast (2021-2027) Trends,
Statistics, Dynamics, Segmentation by Memory Type, Processor, Verticals, and Region,”

P. Jacob, Synchronous DRAM Architectures, Organizations, and Alternative Technologies.
2022.

84

