
i 

 

ACCELERATED DEEP NEURAL NETWORKS 

USING FPGA 

(ZynqNet Architecture) 

 

A Graduation Project Report Submitted to  

the Faculty of Engineering at Cairo University 

in Partial Fulfillment of the Requirements for the 

Degree of Bachelor of Science 

in 

Electronics and Electrical Communications Engineering 

By 

Amr Mohamed Gamal Eldin 

Aya Hesham Omar 

Gamal Saied Fadl 

Mennat-Allah Ayman Ahmed 

Omnia Essam Ahmed 

Sara Mostafa Mohamed 

 

Under supervision of 

Dr. Hassan Mostafa  

Faculty of Engineering, Cairo University 

Giza, Egypt 

August 2020  



ii 

 

Table of Contents 

List of Tables ................................................................................................... vii 

List of Figures ................................................................................................ viii 

List of Abbreviations ....................................................................................... xii 

Acknowledgments.......................................................................................... xiii 

Abstract ........................................................................................................... xiv 

Chapter 1: Introduction ................................................................................... 1 

1.1 Motivation ............................................................................................ 1 

1.2 Problem Statement ............................................................................... 3 

1.3 Solution Approach................................................................................ 5 

1.4 Organization ......................................................................................... 5 

Chapter 2: Background and Related work ...................................................... 7 

2.1 Convolutional Neural Networks........................................................... 7 

2.1.1 Neural Networks Overview ............................................................ 7 

2.1.2 Convolutional Neural Networks Overview .................................... 7 

2.1.3 Convolutional Neural Networks Layers ......................................... 8 

2.1.4 Convolutional Neural Networks Architectures ............................ 12 

2.2 Training Process ................................................................................. 16 

2.2.1 Forward Propagation .................................................................... 16 

2.2.2 Backward Propagation ................................................................. 16 

2.2.3 Loss Function ............................................................................... 17 

2.3 Methods to improve the efficiency of deep learning implementation 18 

2.3.1 Pruning ......................................................................................... 18 

2.3.2 Quantization ................................................................................. 20 

2.3.3 Low Rank Approximation ............................................................ 20 

2.3.4 Late down sampling ..................................................................... 21 



iii 

 

2.3.5 DSD: Dense-Sparse-Dense Training ............................................ 22 

2.3.6 Sparsing ........................................................................................ 23 

2.3.7 Parallelism .................................................................................... 23 

2.3.8 Pipelining ..................................................................................... 24 

2.4 FPGA .................................................................................................. 25 

2.4.1 Introduction .................................................................................. 25 

2.4.2 FPGA Internal Components ......................................................... 26 

2.4.3 FPGA Design Flow ...................................................................... 30 

2.5 Summary ............................................................................................ 31 

Chapter 3: ZynqNet ....................................................................................... 32 

3.1 Overview ............................................................................................ 32 

3.2 ZynqNet vs. Other ConvNets ............................................................. 32 

3.3 ZynqNet Architecture ......................................................................... 34 

3.4 Convolutional Layers ......................................................................... 36 

3.4.1 Stride ............................................................................................ 37 

3.4.2 Padding ......................................................................................... 38 

3.4.3 ReLU ............................................................................................ 39 

3.4.4 Fire Module .................................................................................. 40 

3.4.5 Pooling Layer ............................................................................... 41 

3.4.6 Dropout......................................................................................... 42 

3.4.7 Softmax ........................................................................................ 42 

3.5 ZynqNet Optimizations ...................................................................... 43 

3.5.1 Large filter input layer approximation ......................................... 43 

3.5.2 Unnecessary Padding ................................................................... 43 

3.5.3 Out-of-Sync Dimension Adjustments .......................................... 44 

3.5.4 Layer splitting .............................................................................. 44 



iv 

 

3.5.5 Equalization of Layer Capacities ................................................. 44 

3.5.6 Fine-Tuning .................................................................................. 45 

3.6 Software Accuracy ............................................................................. 45 

3.7 Preparing data for Hardware implementation .................................... 46 

3.8 Fixed Point Background ..................................................................... 46 

3.8.1 Fixed Point Multiplication ........................................................... 47 

3.8.2 Fixed Point Addition .................................................................... 48 

3.9 Summary ............................................................................................ 49 

Chapter 4: Hardware Methodology ............................................................... 50 

4.1 ZynqNet Design ................................................................................. 50 

4.2 Convolution Layer Implementation ................................................... 51 

4.2.1 MAC ............................................................................................. 52 

4.2.2 Kernel Storage .............................................................................. 52 

4.2.3 Intermediate Storage .................................................................... 58 

4.3 Average Pooling layer implementation .............................................. 61 

4.3.1 First approach of implementation ................................................ 62 

4.3.2 Second approach of implementation ............................................ 64 

4.3.3 Third approach of implementation ............................................... 65 

4.4 Output prediction implementation ..................................................... 65 

4.5 Summary ............................................................................................ 67 

Chapter 5: Optimizations and Verification ................................................... 68 

5.1 Optimizations for ZynqNet implementation ...................................... 68 

5.1.1 Area Aware Optimizations ........................................................... 68 

5.2 Timing and Pipelining optimization ................................................... 70 

5.3 Power consumption optimization ....................................................... 70 

5.3.1 Pushing pipeline registers into Big Blocks .................................. 70 



v 

 

5.3.2 Clock Gating on Enable Pins ....................................................... 71 

5.4 Placement and Routing optimizations ................................................ 71 

5.4.1 Manual replication of signals ....................................................... 71 

5.4.2 Removing Global Reset Signal .................................................... 73 

5.5 Verification of RTL functionality ...................................................... 73 

5.5.1 Testing Strategy............................................................................ 74 

5.5.2 Simulation Results........................................................................ 74 

5.6 Summary ............................................................................................ 76 

Chapter 6: Synthesis and Implementation ..................................................... 77 

6.1 Synthesis Flow ................................................................................... 77 

6.2 Constraints .......................................................................................... 78 

6.2.1 Timing Constraints ....................................................................... 78 

6.3 Physical Constraints ........................................................................... 79 

6.3.1 RTL Based Constraints ................................................................ 80 

6.3.2 Placement Based Constraints ....................................................... 80 

6.4 Implementation Flow ......................................................................... 81 

6.4.1 Initial PAR.................................................................................... 81 

6.4.2 Final PAR ..................................................................................... 82 

6.4.3 WNS fix and Bit Stream Generation ............................................ 83 

6.5 Summary ............................................................................................ 84 

Chapter 7: Results ......................................................................................... 85 

7.1 FPGA Results ..................................................................................... 85 

7.1.1 Implementation at Frequency of 100 MHz .................................. 85 

7.1.2 Implementation at Frequency of 125 MHz .................................. 87 

7.2 Hardware Testing ............................................................................... 89 

7.3 Summary ............................................................................................ 90 



vi 

 

Chapter 8: Conclusion and future work ........................................................ 91 

8.1 Conclusion .......................................................................................... 91 

8.2 Future work ........................................................................................ 91 

8.2.1 Pipelining inference of multiple images....................................... 91 

8.2.2 Using dynamic quantization ......................................................... 92 

References ........................................................................................................ 93 

 

  



vii 

 

List of Tables 

Table 2-1 Network's parameters and accuracy 1 before and after pruning ................. 19 

Table 2-2 Comparing SqueezeNet to model compression approaches ........................ 20 

Table 3-1 Detailed Description of all ZynqNet CNN Layers and their Parameters .... 35 

Table 5-1 Pros and cons of every optimization ........................................................... 76 

Table 6-1 Results from different flattening options ..................................................... 77 

Table 7-1 Final Results ................................................................................................ 90 

  



viii 

 

List of Figures 

Figure 2-1 Convolutional Neural Networks Layers....................................................... 8 

Figure 2-2 Convolution Operation ................................................................................. 9 

Figure 2-3 Padding Operation ........................................................................................ 9 

Figure 2-4 Striding Operation ...................................................................................... 10 

Figure 2-5 ReLU Function ........................................................................................... 10 

Figure 2-6 Maximum Pooling Operation ..................................................................... 11 

Figure 2-7 Fully Connected Operation ........................................................................ 11 

Figure 2-8 AlexNet Model ........................................................................................... 12 

Figure 2-9 VGGNet Model .......................................................................................... 13 

Figure 2-10 GoogleNet Model ..................................................................................... 14 

Figure 2-11 ResNet Model........................................................................................... 15 

Figure 2-12 SqueezeNet Model ................................................................................... 15 

Figure 2-13 Forward and Backward Propagation ........................................................ 16 

Figure 2-14 Loss Function ........................................................................................... 17 

Figure 2-15 Synapses and neurons before and after pruning ....................................... 18 

Figure 2-16 Pruning process ........................................................................................ 18 

Figure 2-17 Accuracy loss Vs. Parameters pruned away ............................................ 19 

Figure 2-18 Low rank approximation for conv layer................................................... 21 

Figure 2-19 Computational complexity graph for VGG-16 ........................................ 21 

Figure 2-20 Pooling layer ............................................................................................ 22 

Figure 2-21 Dense-Sparse-Dense Training Flow ........................................................ 22 

Figure 2-22 EIE Model sparsing .................................................................................. 23 

Figure 2-23 Computation of a convolutional layer and its parallelism schemes ......... 24 

Figure 2-24 Pipelining ................................................................................................. 24 

Figure 2-25 FPGA Internal Design .............................................................................. 26 



ix 

 

Figure 2-26 FPGA Configurable logic block (CLB) ................................................... 27 

Figure 2-27 FPGA Configurable I/O block ................................................................. 27 

Figure 2-28 FPGA Programmable interconnect .......................................................... 28 

Figure 2-29 DSP Core .................................................................................................. 29 

Figure 2-30 FPGA Design Flow .................................................................................. 30 

Figure 3-1 Comparison of ZynqNet to CNN architectures .......................................... 33 

Figure 3-2 Comparison graphs..................................................................................... 33 

Figure 3-3 ZynqNet Architecture................................................................................. 34 

Figure 3-4 Convolutional Layer................................................................................... 36 

Figure 3-5 Stride of 1 ................................................................................................... 37 

Figure 3-6 Stride of 2 ................................................................................................... 38 

Figure 3-7 Padding of 2 ............................................................................................... 39 

Figure 3-8 ReLU Function ........................................................................................... 40 

Figure 3-9 Fire Module ................................................................................................ 40 

Figure 3-10 Maximum and Average Pooling Layers .................................................. 41 

Figure 3-11 Dropout Layer .......................................................................................... 42 

Figure 3-12 Softmax Layer .......................................................................................... 42 

Figure 3-13 Large filter approximation in ZynqNet .................................................... 43 

Figure 3-14 Number of MACC Operations for SqueezeNet, SqueezeNet v1.1 and 

ZynqNet CNN .............................................................................................................. 43 

Figure 3-15 Conv10 layer in ZynqNet ......................................................................... 44 

Figure 3-16 Per-Layer Dimension Analysis of SqueezeNet, SqueezeNet v1.1 and 

ZynqNet CNN .............................................................................................................. 45 

Figure 3-17 Unrolling the input data from 3-D to 1-D ................................................ 46 

Figure 3-18 Fixed point data representation ................................................................ 47 

Figure 3-19 Fixed point multiplication ........................................................................ 48 



x 

 

Figure 4-1 ZynqNet block diagram.............................................................................. 50 

Figure 4-2 Convolution layer block diagram ............................................................... 51 

Figure 4-3 MAC implementation................................................................................. 52 

Figure 4-4 3D ROM Array .......................................................................................... 54 

Figure 4-5 General Steps of ROM generation ............................................................. 56 

Figure 4-6 ROM generation for 32 filters with 576 words .......................................... 57 

Figure 4-7 Used implementation for feature maps storage .......................................... 58 

Figure 4-8 Convolution operation with Padding =1, Stride=2 .................................... 60 

Figure 4-9 Average Pooling Operation ........................................................................ 62 

Figure 4-10 Implementation of Average pooling using Adder Tree ........................... 63 

Figure 4-11 First approach of average pooling using 6 stages pipeline ...................... 64 

Figure 4-12 Second approach of average pooling using full pipeline ......................... 64 

Figure 4-13 Third approach using half pipeline .......................................................... 65 

Figure 4-14 Output prediction implementation ........................................................... 66 

Figure 5-1  DSP ........................................................................................................... 71 

Figure 5-2 Wiring congestion ...................................................................................... 72 

Figure 5-3 Placement congestion ................................................................................. 72 

Figure 5-4 Testing Strategy ......................................................................................... 74 

Figure 5-5 Sample Image ............................................................................................. 75 

Figure 5-6 Python's Output .......................................................................................... 75 

Figure 5-7 Synsnet_words ........................................................................................... 75 

Figure 5-8 Output Waveform....................................................................................... 75 

Figure 6-1 Detailed MMCM block diagram ................................................................ 79 

Figure 7-1 Post Implementation Utilization Summary-100MHz ................................ 85 

Figure 7-2 Design Timing Summary -100MHz........................................................... 86 

Figure 7-3 Timing Histogram-100MHz....................................................................... 86 



xi 

 

Figure 7-4 Power Report Summary-100MHz.............................................................. 86 

Figure 7-5 Post Implementation Utilization Summary-100MHz ................................ 87 

Figure 7-6 Design Timing Summary-125MHz............................................................ 88 

Figure 7-7 Timing Histogram-125MHz....................................................................... 88 

Figure 7-8 Power Report Summary-125MHz.............................................................. 88 

Figure 7-9 Hardware probes ........................................................................................ 89 

Figure 7-10 Real Life picture for the FPGA ................................................................ 89 

  



xii 

 

List of Abbreviations 

ASIC Application-Specific Integrated Circuit 

BGR Blue Green Red 

BRAM Block Random Access Memory 

CAFFE Convolutional Architecture for Fast Feature Embedding 

CLB Configurable Logic Block 

CNN Convolutional Neural Network 

Concat Concatenation 

Conv Convolution 

CV  Computer Vision 

DNN Deep Neural Network 

DRAM Dynamic Random Access Memory 

DSD Dense-Sparse-Dense training 

DSP Digital Signal Processing 

e.g. For Example 

EIE Efficient Inference Engine 

FC Fully Connected layer 

FF Flip-Flop 

FIFO First in First out 

FPGA Field Programmable Gate Arrays 

HDL Hardware Description Language 

i.e. In Other Words 

I/O Input/Output 

ILSVRC ImageNet Large Scale Visual Recognition Challenge 

LUT Look Up Table 

MAC Multiply and Accumulate 

MMCM Mixed-Mode Clock Manager 

PAR Place and Route 

RAM Random Access Memory 

ReLU Rectified Linear Unit 

ResNet Residual Neural Network 

RGB Red-Green-Blue 

ROM Read Only Memory 

SRL Shift Register LUT 

STA Static Timing Analysis 

TNS Total Negative Slack 

VGGNet Visual Geometry Group network 

VHDL VHSIC(V.High Speed Integrated Circuit) Hardware Description 

Language 

VIO Virtual Input/Output 

v.s. Versus 

WNS Worst Negative Slack 



xiii 

 

Acknowledgments  

First and Foremost praise is to Allah, the Almighty, the greatest of all, on 

whom ultimately we depend for sustenance and guidance. We would like to thank 

Almighty Allah for giving us opportunity, determination and strength to achieve this 

work. His continuous grace and mercy was with us throughout our life and even more 

during the tenure of this work. 

Second, we want to thank our families for their support, tolerance and love during this 

year especially during the hard times they were always there having faith in what we 

do. We are grateful to our families, colleagues and friends for always motivating us, 

without them we wouldn’t have come so far. 

We want to thank our major advisor Dr. Hassan Mostafa for his caring about 

following up each stage in the project and his suggestions to solve some problems we 

faced during the project work.  

Finally, we want to thank Mentor Graphics team represented in Dr. Eman Mandouh, 

Director of quality, Eng. Ziad Ibrahim, QA/test engineer at Questa static and formal 

and Eng. Sara Abd AlWahab, FPGA Prototyping QA/test Engineer, for providing 

their time, experience to help us overcome some obstacles we faced during some 

stages, and encouragement through the whole year.  

 

 

  



xiv 

 

Abstract 

The convolutional neural network (CNN) is a class of deep learning neural 

networks. CNNs represent a huge breakthrough in image recognition. CNNS are most 

commonly used to analyze visual data and are frequently working in image 

classification application. The target in this field nowadays is to be used in real time 

applications such as Face Recognition - Search Engines, Recommender Systems, and 

Social Media. 

The target in this project is to open the possibility of implementing any CNN 

architecture on FPGA, and focusing in accelerating the design and lowering power. 

ZynqNet is the chosen architecture due to its simplicity and its low number of 

parameters which is much less than other CNN architectures, which leads to the 

reduction in the number of resources needed to be implemented. 

Target FPGA to be used is Virtex-7 available in VC709 board, it was chosen due to 

its high number of available resources which is suitable for CNN architectures. 
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Chapter 1: Introduction 

1.1 Motivation 

In recent years, the utility and effectiveness of  artificial intelligence and deep 

learning have been proved in to solve many real-world computation-intensive 

problems. The motivation of these is to create an intelligent system that can 

automatically extract features and recognize a particular pattern. In addition to that it 

doesn't have to be trained on every single situation that could possibly exist, that 

makes deep-learning algorithms better suited in variable, situation-dependent 

decisions as in self-driving cars than traditional, rules-based approach. [1] 

Image understanding is a very complex task for computers. But advanced Computer 

Vision (CV) systems can do image classification, object recognition and scene 

labeling. These CV systems become important in many applications in robotics, 

surveillance, smart factories and medical diagnostics. Significant progress has been 

made regarding the performance of these advanced CV systems. The availability of 

powerful computing platforms and the strong market pull have shaped a very fast-

paced and dynamic field of research. But with development of artificial intelligence 

and deep learning, the previous approaches are replaced by machine learning 

concepts, where computers learn to understand images by looking at thousands of 

examples. These advanced learning algorithms, which are based on recent high-

performance computing platforms as well as the abundance of training data available 

today are commonly referred to as deep learning. [2] 

Convolutional Neural Network (CNN) is one of the brain-inspired algorithms that 

represent the most promising approach to image understanding and classification in 

CV systems, with significantly higher accuracy than traditional algorithms in many 

applications, such as image/video processing, face recognition, advances in medicine, 

machine language translation, autonomous driving and more. CNN consists of 

multiple layers of feature detectors and classifiers, which are adapted and optimized 

using techniques from machine learning. Neural Network (NN) is a computational 

model inspired by the operation of the brain, Artificial NNs use large amounts of 

simple elements which are organized in interconnected layers. Modern NNs have 
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multiple layers; exceeding 100 these are called deep neural networks. The latest 

generations of high performance computing hardware have allowed the evaluation 

and training of CNNs deep to reach good performance in image understanding 

applications. State-of-the-art convolutional neural networks already rival the accuracy 

of humans when it comes to the classification of images. [3] 

The main disadvantage of CNNs is the enormous computational complexity and to 

achieve accurate results, CNNs need many parameters (some over 100M parameters) 

and require huge amounts of computational resources and memory, they also offer 

significant potential for massive parallelization and extensive data reuse. The real 

time evaluation of a CNN may need billions or trillions of operations per second in 

order to provide image classification on a video stream. The most recent Graphics 

Processing Units (GPUs) can reach the level of performance that provides the needed 

effort for image segmentation and scene labeling. GPUs are expensive and power-

hungry accelerators but efficiently process these networks, recently many applications 

such as embedded systems in self-driving cars need high energy efficiency and real-

time performance. So there is a need to reduce the computational resources to reduce 

the used power and speed up the calculations. 

Field-Programmable Gate Arrays (FPGAs) are among the most promising platforms 

that have been considered for efficient high-performance implementations of CNNs. 

FPGAs consist of versatile integrated circuits that provide hundreds of thousands of 

programmable logic blocks and a configurable interconnect, which enables the 

implementation of custom-made accelerator architectures in hardware. These have a 

lot of advantages with respect to embedded devices which are providing less 

computational power to CNNs, high energy efficiency, good performance, fast 

development round, and capability of reconfiguration. 

The limitations of the computational resources and memory bandwidth of an FPGA 

platform must be considered. So, the accelerator structure must be carefully designed 

to make the computing throughput matches the memory bandwidth provided by the 

FPGA platform. It means that the performance is degraded due to the bottleneck of 

the memory bandwidth. As a result, it’s a must to find ways in order to reduce the 

number of the computations and the energy consumption. Acceleration approaches 
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can be categorized into two main parts; General approaches (hardware independent) 

as reduction in precision, shared weights and data reuse. And customize the FPGA 

architecture to be suitable for the algorithm using pipelining, parallelism and increase 

the memory bandwidth. 

1.2 Problem Statement 

Deep Neural Networks (NN) have been a hot research topic in recent years. 

The key element of DNN is to explore the real time hardware implementation. 

However, it is required to specify where the NN is going to be implemented. 

Convolutional Neural Network (CNN) is the popular architecture of NN especially for 

image classification. CNN requires a huge number of computations to process a single 

image due to the convolution operation on the multiple dimensional arrays which 

represents a computational challenge for general purpose processors and consume a 

large amount of power. This required huge memory resources and consume a large 

amount of power. However, the high energy consumption is no big concern during the 

network’s training phase - which typically takes place on a computer cluster - it poses 

a problem when the network needs to be evaluated on mobile hardware devices. 

Efficient implementation strategy of CNN is required to process more computations 

in real time. 

The using of machine learning algorithms to extract and process the information had 

become popular in the recent years. It has been a race between GPU, ASIC and FPGA 

vendors to offer a HW platform that runs computationally intensive machine learning 

algorithms fast and efficiently, as the advanced machine learning applications is 

driven by Deep Learning, so Deep Learning is considered as the main comparison 

point. 

The training of CNN models is commonly performed in floating-point representation 

on graphics processing units (GPUs) having thousands of cores and large external 

memory bandwidth. It does not require much effort to deploy existing models or train 

new ones on GPUs using various frameworks. Although GPUs performs batch 

computations which results in high performance, they are extremely power-hungry. 

This is affordable for training, which has no constraints on output latency and is 

carried out a limited number of times during the development phase. However, this is 
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not ideal when it comes to inference for applications that have limited power budget 

and tight latency constraints such as mobile embedded platforms or self-driving car. 

To achieve the best performance and energy-efficiency, many researchers have 

focused on building custom application-specific integrated circuits (ASICs) for 

accelerating CNNs inference workloads. Despite being an attractive solution, ASICs 

do not offer enough flexibility to accommodate the rapid evolution of CNN models 

and the emergence of new types of layers used in them. As well, the high non-

recurring engineering (NRE) cost and time for design, verification and fabrication of a 

large ASIC chip makes it difficult to keep pace with the rapid model improvements in 

this space. 

As a trade-off between performance, power-efficiency, and flexibility, FPGAs offer 

an interesting design point between GPUs and ASICs. FPGA-based accelerators 

provide high throughput, low power consumption, superior energy efficiency 

(Performance/Watt) compared to high-end GPUs, and configurability at a reasonable 

price, which provide low power consumption and recently have had much success in 

accelerating datacenter workloads in general and more specifically CNN inference 

tasks. 

Processing speed is critical for many visual computing tasks. Many computer vision 

algorithms have high accurate results, but it’s too slow to produce results in real time. 

On the other hand, some algorithms with reduced accuracy is processed at camera 

frame rates, a more useful combination for real-time applications.  Moreover, the 

capacity of hardware resources in the FPGA increases continuously and power 

consumption is reducing, making them more suitable for embedded applications, such 

as onboard vision and control for unmanned vehicles. CNNs offer state-of-the-art 

accuracy for many computer vision tasks.  Their capabilities are generalizable to 

many different real-world applications. Real-world applications often require real-

time responsiveness from the vision system. This Special Issue focuses on CNNs and 

their application to real-time computer vision tasks. 
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1.3 Solution Approach  

As the main objective of this project is implementing CNN architecture on 

FPGA, so all the solution approaches will be directed into this field. 

First for software approach, CNN inference needs huge amount of computations and 

memory, which limits the performance on embedded devices. In order to partially 

solve these problems, low precision fixed-point numbers are used to represent the 

CNN weights and activations. So fixed point representations were done reducing the 

number of bits from 64 bit floating into 16 bit taking into consecration that the 

accuracy wasn’t affected. 

Second for Hardware approach, implementation of convolutional layers is to use 

MAC (Multiply and Accumulate) block, and by using parallelism, it was chosen that 

number of MACs in each layer depends on the number of output filters, also for 

optimization purposes, same layers in dimensions have resource sharing in MACs 

For storage of weights and bias parameters of the architecture, weights of each layer 

are to be implemented in initialized 3D ROMs directly and it’s depth depends on the 

number of output filter and bias parameters are stored in initialized registers due to its 

low number, no need for external memory in this design and all parameters are stored 

on chip. 

The approach in designing the storage of feature maps between the layers is using 

shared cache memory, the shared cache memory operates as input and output cache at 

the same time without need of external memory and one cycle of fetching is enough 

for the layer to start computing. 

1.4 Organization  

The following is a brief look on the contents of each chapter. 

Chapter 2 provides background information on CNN, it discusses the main layers of 

the CNN with their operations, equations and functions and provides information 

about different CNN architectures, and also it discusses several methods to improve 
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the efficiency of deep learning implementation. Finally, it discusses background on 

FPGAs, including a brief overview of FPGA internal components and design flow. 

Chapter 3 provides information on the chosen CNN for the project which is ZynqNet 

and having a quick overview on its accuracy on ImageNet validation sets, the number 

of its layers and their arrangement and number of its parameters. It also shows the 

effect of changing the number of bits of the fixed point data propagating between 

layers on the accuracy and the chosen number of bits based on its effect on accuracy 

and compromising this effect with the number of resources utilized by the design.  

Chapter 4 provides a discussion on the project’s chosen design with the details of how 

the convolution layers of ZynqNet are implemented, and introducing the different 

approaches of implementing kernel storage  and intermediate storage, then the proper 

implementation of pooling layer, to end up with output prediction implementation for 

getting the index of the desired output.  

Chapter 5 provides optimization techniques including optimization for ZynqNet 

implementation, timing and pipelining, power consumption, placement and routing 

optimizations. Also discusses the verification of the design by showing the testing 

strategy done to validate the functionality of the design. 

Chapter 6 provides a discussion on the synthesis and which strategies give the best 

results; also constraints are handled including physical, timing and placement 

constraints, then implementation of the design is provided going through placing, 

routing then generating the bit stream. 

Chapter 7 provides the results of implementation including utilization, timing analysis 

and power consumption, it also shows the burning of the bit stream on the chosen 

FPGA. 

Chapter 8 concludes the previous work and introduces ideas for future work.  
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Chapter 2: Background and Related work  

2.1 Convolutional Neural Networks 

2.1.1 Neural Networks Overview 

 

Deep Learning is a subfield of machine learning concerned with algorithms 

inspired by the structure of the brain which is called artificial neural networks. 

The purpose of artificial neural networks is to achieve a very simplified model of the 

human brain. By having the artificial neural networks try to learn tasks mimicking the 

brain’s behavior. The brain consists of a large set of neurons which are specialized 

cell elements. These neurons are activated in response to the input, the activation of 

the neurons allows the network to detect and classify the patterns. Depending on 

certain input data, a neural network will try to calculate the probability that the data 

belong to a certain class (e.g., an object in a specific image). The neural network can 

be trained to recognize different classes by being provided a set of labeled training 

data which is called supervised learning. 

2.1.2 Convolutional Neural Networks Overview 

 

   Convolutional Neural Networks (CNNs) are a special type of Neural 

Networks which are commonly used with visual data, which have shown state-of-the-

art performance on various competitive benchmarks. The powerful learning ability of 

deep CNN is largely due to the use of multiple feature extraction stages (hidden 

layers) that can automatically learn representations from the data. The topology of 

CNN is divided into multiple learning stages composed of a combination of the 

convolutional layer, non-linear processing (ReLU) units, and subsampling (Pooling) 

layers. Each layer performs multiple transformations using a bank of convolutional 

kernels (filters). Convolution operation extracts locally correlated features by dividing 

the image into small slices (similar to the retina of the human eye), making it capable 

of learning suitable features. Output of the convolutional kernels is assigned to non-

linear processing (ReLU) units, which not only helps in learning abstraction but also 

embeds non-linearity in the feature space. This non-linearity generates different 
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patterns of activations for different responses and thus facilitates in learning of 

semantic differences in images. Output of the non-linear function (ReLU) is usually 

followed by subsampling (Pooling), which helps in summarizing the results and also 

makes the input invariant to geometrical distortions. [4] 

  

2.1.3 Convolutional Neural Networks Layers 

 

Figure 2-1 Convolutional Neural Networks Layers 

 

 Convolutional Layer 

As in Figure 2-1, the first layer in a CNN is a Convolutional Layer which 

consists of set of trainable filters. The convolutional layer takes in square patches of 

pixels and passes them through a filter; the filter (or kernel) is used to detect patterns 

in the pixels. The convolutional layer receives N feature maps as input; each input 

feature map is convolved by a shifting window with k x k kernel (filter) to generate 

one element in one output feature map. If the input RGB image has dimensions nH x 

nW x 3 and the filter has dimensions k x k x 3, then the convoluted output is of 

dimensions (nH-k+1) x (nW-k+1). The stride of the shifting window is 𝑆, which is 

normally smaller than 𝐾. A total of 𝑀 output feature maps will form the set of input 

feature maps for the next convolutional layer as shown in Figure 2-2, convolutional 

layer detect low-level features of images i.e.: edges and colors, and by stacking a 

number of convolutional layers, the network hierarchically learns high-level features 

of the image. [5] 
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Figure 2-2 Convolution Operation 

 Padding 

Padding is usually used to preserve the information that exists near the edge of 

the image; also it’s used to preserve the original input size. No padding is called Valid 

Padding, and using padding to preserve the original input size is called Same Padding. 

The convoluted output is now of dimensions (nH-k+2p+1) x (nW-k+2p+1) as in Figure 

2-3. 

 

Figure 2-3 Padding Operation 

 Stride 

Stride is the size of the step in which the filter moves with across the image 

until it reaches the upper right-hand corner .Stride is used mainly to decrease the 

output size so processing will be easier. The convoluted output is now of 

dimensions (⌊
𝑛𝐻−𝑘+2𝑝

𝑠
⌋ + 1) 𝑥 (⌊

𝑛𝑤−𝑘+2𝑝

𝑠
⌋ + 1) as the example for striding by 2 is 

presented in Figure 2-4. 
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Figure 2-4 Striding Operation 

 ReLU 

The ReLU layer shown in Figure 2-5 introduces a non-linear operation. The 

ReLU performs after every Convolutional layer. Its output is given by; max (0, input), 

the purpose of ReLU is to introduce nonlinearity in the CNN after linear operation of 

convolution, since most of the real-world data the network required to learn is 

nonlinear to generalize or adapt with variety of data. 

 

Figure 2-5 ReLU Function 

 Pooling Layer  

As in Figure 2-6, the Pooling layer (also called sub-sampling) reduce the 

dimensionality of each feature map of its input feature maps, but retain the most 

important information. The number of output feature maps is identical to that of input 

feature maps, while the dimensions of each feature map scale down according to the 

size of the sub-sampling window (called also kernel). For example, for a pooling layer 
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there is average or maximum. Max-pooling being the most popular, this basically 

takes a filter 𝑃 𝑥 𝑃 and a stride of length 𝑆, it then applies it to the input volume and 

outputs the maximum number in every sub-region that the filter convolves around. [6] 

 

Figure 2-6 Maximum Pooling Operation 

 Fully Connected Layer (FC) 

The way this fully connected neural network layer (FC) works is that it looks 

at the output of the previous layer (which represent the activation maps of high level 

features) and determines which features most correlate to a particular class by 

unrolling the input features and the weights and multiply them and outputs an N 

dimensional vector where N is the number of classes .Also this layer is followed by 

soft max to show the most correlated class to the input as shown in Figure 2-7 which 

is an example for image classification. [6] 

 

Figure 2-7 Fully Connected Operation 
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2.1.4 Convolutional Neural Networks Architectures 

Various architectures were designed to efficiently use the layers of CNN in 

order to achieve successful implementation of specific application such as image 

classification, CNN models can be categorized to Classical architectures which were 

comprised simply of stacked layers, and Modern architectures which concentrated on 

innovative ways for efficient learning. 

 Classic network architectures: 

2.1.4.1.1 LeNet-5: 

LeNet-5 by LeCun et al. in 1998 is considered a pioneering CNN with 7 layers 

and was used by several banks to classify hand-written digits written on cheques, 

input is 32 x 32 greyscale images and to use higher resolution images, it will require 

more convolutional layers which aren’t available in LeNet. [7] 

2.1.4.1.2 AlexNet: 

 

Figure 2-8 AlexNet Model 

AlexNet by Alex Krizhevsky et al. is considered the reason why CNN is used 

in computer vision applications as it proved its capability to perform efficiently in that 

domain, AlexNet won the 2012 ILSVRC competition by a large margin (19.73% VS 

26.2% (second place) top-5 error rates). [8] 

As in Figure  2-8, It starts with 227 x 227 x 3 images and the next convolution layer 

applies 96 of 11 x 11 filter with stride of 4, Next layer is a pooling layer which applies 

max pool by 3 x 3 filter along with stride 2. It goes on and finally reaches FC layer 

with 9216 parameter and the next two FC layers with 4096 node each. At the end, it 

uses Softmax function with 1000 output classes. It has 60 million parameters so it has 

considerably large number of parameters. 
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AlexNet success was because of new methods used that was not adopted at that time 

such as: 

1-Using ReLU as the nonlinearly after the convolution layers instead of Sigmoid 

and tanh functions that were commonly used which increased the speed greatly. 

2-Using maximum pooling instead of traditionally used average pooling. 

3-Using dropout method between fully connected layers in order to improve the 

generalization error instead of using ordinary regularization. 

2.1.4.1.3 VGGNet: 

VGGNet which stands for Visual Geometry Group was developed by 

Simonyan and Zisserman and achieved second place in 2014 ILSVRC competition, 

considered a simpler form of a deep CNN because of its uniform architecture and 

simplicity, most popular VGGNet architectures are VGG-16 as in Figure 2-9 and 

VGG-19. [7] 

 

Figure 2-9 VGGNet Model 

VGGNet has three simple rules of thumbs to be followed: 

1-Each convolutional layer has the same parameters which are; kernel size of 3 x 

3, stride of 1 and same padding to preserve the input size, number of filters is the 

difference between convolutional layers. 

2-Convolutional layers are stacked with increasing number of filters, i.e., if layer-

1 has 16 filters, then layer-2 must have 16 or more filters. 
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3-Each maximum pooling layer has the same parameters which are; window size 

of 3 x 3 and stride of 2, so the image size is halved after each pooling layer. 

VGG-16 reached a top-5 error of 11.32%. However, the network contains almost 140 

million parameters and one forward pass requires nearly 16 billion MACC operations 

 Modern network architectures: 

2.1.4.2.1 GoogleNet: 

GoogleNet shown in Figure 2-10 was developed by Christian Szegedy et al. 

from Google and was winner of the 2014 ILSVRC competition using Inception 

modules with smaller convolutions to decrease computations and number of 

parameters to 4 million only, it achieved top-5 error rate of 6.67%. [9] 

 

Figure 2-10 GoogleNet Model 

2.1.4.2.2 ResNet: 

Residual Neural Network (ResNet) in Figure 2-11 was introduced by by 

Kaiming He et al from Microsoft Research, skip connections were used in which 

helped in making CNN much deeper, there are multiple versions of ResNet 

architectures but most commonly used is ResNet152 which won 2015 ILSVRC 

competition and consists of 152 layers, it achieves top-5 error rate of 3.57% and 

contains only 60 million parameter which is considered small number its huge number 

of layers. [9] 
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Figure 2-11 ResNet Model 

2.1.4.2.3 SqueezeNet: 

SqueezeNet by Forrest Iandola et al. concentrated mainly on reduction of the 

number of parameters used instead of concentrating in increasing accuracy so it 

reached accuracy similar to AlexNet but with 50x less parameters, SqueezeNet 

doesn’t contain fully connected layers so it begins with a standalone convolution layer 

(conv1), followed by 8 Fire modules (fire2–9) which will be explained briefly in 

chapter 3, ending with a final conv layer (conv10), global average pooling and 

Softmax output unit which achieved top-5 error rate of 17.3% with only 1.24 million 

parameters, as in Figure 2-12, SqueezeNet have other versions with skip connections 

and complex skip connections that were used to decrease error rate more. [10] 

 

Figure 2-12 SqueezeNet Model 
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2.2 Training Process  

The basic learning that has to be done in neural networks is training neurons 

when to get activated. Each neuron should activate only for particular type of inputs 

and not all inputs. Therefore, by propagating forward, it is noticed how well the 

neural network is behaving and find the error. After finding out that the network has 

error, backpropagation is applied and a form of gradient descent is used to update new 

values of weights. Then, forward propagation is applied again to see how well those 

weights are performing and then the weights are updated using backpropagation. This 

will go on until reaching some minima for error value. 

 

Figure 2-13 Forward and Backward Propagation 

 

2.2.1 Forward Propagation 

In forward Propagation as in Figure 2-13, in 1st row, input X is provided to 

each neuron and two functions are calculated, one is linear multiplication i.e.  

𝑍 = 𝑊 × 𝑋 + 𝑏 and the other is activation function a = ReLU(z), different activation 

functions can be used, then it will forward through every layer and predicted output is 

obtained. 

2.2.2 Backward Propagation 

Back propagation is a technique to reduce the loss i.e. (Actual o/p-predicted 

o/p) by updating the parameters weight, bias by using an algorithm called Gradient 

descent. For example in Figure 2-13 in 2nd row last column, Loss(L) is partially 

differentiated w.r.t a[2] but a[2] depends on z[2], again z[2] depends on weight w[1], 

activation a[1], and bias b[1], so gradients of a[1], w[1] and b[1] is calculated w.r.t 
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Loss(L). Then by using Gradient Descent algorithm, weight and bias in that layer are 

updated but again a[1] depends on calculation of z[1]. Above procedure will be 

repeated till first layer. Finally, it will propagate backside to reduce the loss by 

calculating all parameters gradients w.r.t Loss(L), and update them by using Gradient 

Descent algorithm. 

2.2.3 Loss Function  

A loss function can be defined in many different ways but a common one is 

MSE (Mean Squared Error), which are half times (actual - predicted) squared.  

𝐸𝑡𝑜𝑡𝑎𝑙 =Σ 
1

2
(𝑡𝑎𝑟𝑔𝑒𝑡 − 𝑜𝑢𝑡𝑝𝑢𝑡)2 

The predicted label (output of the CNN) must be the same as the training label (This 

means that the network got its prediction right). In order to achieve this, it’s a must to 

minimize the amount of loss (error). It just an optimization problem in calculus to find 

out which inputs (weights) most directly contributed to the loss (or error) of the 

network as shown in Figure 2-14. 

 

Figure 2-14 Loss Function 
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2.3 Methods to improve the efficiency of deep learning 

implementation 

2.3.1 Pruning 

Pruning is defined as discarding less important neuron without changing the 

original network structure as shown in Figure 2-15, to make the network size smaller 

and to alleviate over-fitting, without affecting the accuracy of original network. 

 

Figure 2-15 Synapses and neurons before and after pruning 

Pruning method has three steps as shown in Figure 2-16; the first step is learning the 

connectivity via normal network training to learn which connections are important. 

Unlike conventional training that used to learn the final values of the weights. The 

second step is to prune all connections with weights below a threshold are removed 

from the. The final step is retraining the network to learn the final weights for the 

remaining sparse connections. The final step important is preserving the accuracy as 

shown in Figure 2-17. [11] 

 

Figure 2-16 Pruning process 
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Figure 2-17 Accuracy loss Vs. Parameters pruned away 

 

The difference between dropout and pruning is that in dropout, each parameter is 

probabilistically dropped during training, but will come back during inference. In 

pruning, parameters are dropped forever after pruning and have no chance to come 

back during both training and inference.  

After pruning, the storage requirements of AlexNet and VGGNet are small enough 

that all weights can be stored on chip, instead of off-chip DRAM which takes orders 

of magnitude more energy to access as shown in Table 2-1. [12] 

Table 2-1 Network's parameters and accuracy 1 before and after pruning 
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2.3.2 Quantization 

Network quantization and weight sharing compresses the pruned network by 

reducing the number of bits required to represent each weight. In the context of deep 

learning, the predominant numerical format used for research and for deployment has 

so far been 32-bit floating point. However, the desire for reduced bandwidth of deep 

learning models has driven research into using lower-precision numerical formats. It 

has been extensively demonstrated that weights and activations can be represented 

using 8-bits without getting significant loss in accuracy. [12] 

Applying deep compression with 8-bits quantization on SqueezeNet yields a 0.66MB 

model with equivalent accuracy to AlexNet. And applying deep compression with 8-

bits quantization and 33% sparsity on SqueezeNet yields a 0.47MB model with 

equivalent accuracy as shown in Table 2-2. [10] 

Table 2-2 Comparing SqueezeNet to model compression approaches 

 

2.3.3 Low Rank Approximation 

Low rank approximation for convolution layer means that a convolution layer 

with d filters with filter size (k x k x c) is decomposed to two layers one with d’ filters 

with filter size (k x k x c) and another with d filters with filter size (1 x 1 x d’) as 

shown in Figure 2-18. So that it’s like breaking a complicated problem into two 

separate small problems. 
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Figure 2-18 Low rank approximation for conv layer 

 

There is also low rank approximation for fully connected layer but its use is less than 

that used for convolution because the convolution is more complex as shown in 

Figure 2-19. 

 

Figure 2-19 Computational complexity graph for VGG-16 

2.3.4 Late down sampling 

Each convolution layer in a convolutional network produces an output 

activation map with a spatial resolution that is at least 1x1 and often much larger than 

1x1. The height and width of these activation maps are controlled by: (1) the input 

data size (2) down sample layers in the architecture. Down sampling is often 

engineered into CNN architectures by pooling layers as shown in Figure 2-20 or by 

setting the (stride > 1) in some of the convolution. [10] 
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If most layers in the network have a stride of 1, and the strides greater than 1 are 

moved towards the end of the network, then large activation maps will be in many 

layers in the network. That will cause higher classification accuracy. [10]  

 

Figure 2-20 Pooling layer 

 

2.3.5 DSD: Dense-Sparse-Dense Training 

DSD produces same model architecture but can find better optimization 

performance by regularizing deep neural networks. The first step “Dense” is training a 

dense network to learn important weights. The second step “Sparse” is pruning the 

network and retraining the network  to learn the final weights for the remaining sparse 

connections. The final step “re-Dense” is increasing the model capacity by re-

initializing the pruned parameters from zero and retrain the whole dense network as 

shown in Figure 2-21. [13] 

 

Figure 2-21 Dense-Sparse-Dense Training Flow 
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DSD and Dropout both are used to prevent over-fitting and regularize the network. 

But the difference is that DSD training learns with a deterministic data driven sparsity 

pattern but Dropout uses a random sparsity pattern at each SGD iteration. 

2.3.6 Sparsing 

The result of multiplying any number by zero is zero so computing it isn’t 

necessary and can be discarded. That will save memory by reducing computations. 

This method is used in EIE model (the First DNN Accelerator for Sparse, Compressed 

Model), the reduction of computations and memory as a result of sparsing weights 

and activations is shown in Figure 2-22. [14] 

 

Figure 2-22 EIE Model sparsing 

                                                                                           

2.3.7 Parallelism 

       Parallelism means many calculations or the execution of processes are 

carried out simultaneously, that will decrease the time of execution of CNN 

architectures. For example, two-dimensional convolution is computed between sliding 

windows of input feature maps and kernels, and consumes most computation time of 

CNN as shown in Figure 2-23. Parallelism included inside an output feature map of 

each layer, known as intra-output parallelism. [15] 
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Figure 2-23 Computation of a convolutional layer and its parallelism schemes 

2.3.8 Pipelining 

The approach is to rearrange the algorithm into a pipeline, where each stage can operate 

simultaneously with the other stages as shown in Figure 2-24. Pipelining tends to be faster and it 

can even be more resource efficient. 

 

Figure 2-24 Pipelining 
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2.4 FPGA 

2.4.1 Introduction  

An FPGA (Field Programmable Gate Array) is an IC consisting of 

programmable logic gates and interconnections that can be programmed using an 

HDL (hardware descriptive language) to do a specific function. It is an integrated 

circuit designed to be configured by a customer or a designer after manufacturing – 

hence "field-programmable". The FPGA configuration is generally specified using a 

hardware description language (HDL), for example VHDL or SystemVerilog. 

FPGAs contain an array of programmable logic blocks, and a hierarchy of 

reconfigurable interconnects that allow the blocks to be "wired together", like many 

logic gates that can be inter-wired in different configurations. Logic blocks can be 

configured to perform complex combinational functions, or merely simple logic gates 

like AND and XOR gates. Also, FPGAs contain memory elements, which may be 

simple flip-flops or more complete blocks of memory. An FPGA can be used to solve 

any problem which is computable. This is trivially proven by the fact that an FPGA 

can be used to implement a soft microprocessor. 

Most of the digital applications can be implemented with powerful specialized 

processors, but FPGAs are are sometimes significantly faster for some applications 

because of their parallel nature and optimality in terms of the number of gates used 

for a certain process. In all microprocessor-based systems, the functions are executed 

sequentially, one line of code after another. On the other hand, FPGAs execute their 

operations in parallel, so FPGAs can be much faster in many applications where speed 

is crucial. FPGAs also offer great flexibility; the same FPGA IC can be used as a 

missile guiding system or just a network processing device. As their size, capabilities, 

and speed increased, they took over additional functions to the point where some are 

now marketed as full systems on chips (SoC). Particularly with the introduction of 

dedicated multipliers into FPGA, applications which had traditionally been the sole 

reserve of DSPs (Digital Signal Processors, a specialized type of processors for signal 

processing) began to use FPGAs instead. Another trend in the use of FPGAs is 

hardware acceleration, where one can use the FPGA to accelerate certain parts of an 
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algorithm that need parallel processing and share part of the computation between the 

FPGA and a generic processor.  

2.4.2 FPGA Internal Components 

Obviously as shown in Figure 2-25, FPGAs do not only consist of logic gates 

or look-up tables only. They are made up of many types of logic blocks for 

implementing many functions and to increase its flexibility.  

 

Figure 2-25 FPGA Internal Design 

 Configurable Logic Blocks (CLBs) 

These blocks contain the logic for the FPGA. In the dense architecture used by 

all FPGA vendors today, these CLBs contain enough logic to create a small state 

machine. The block contains ROMs for creating arbitrary combinatorial logic 

functions, also known as lookup tables (LUTs). It also contains flip-flops for clocked 

storage elements, along with multiplexers in order to route the logic within the block 

and to and from external resources. The multiplexers also allow polarity selection and 

reset and clear input selection as shown in Figure 2-26. 
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Figure 2-26 FPGA Configurable logic block (CLB) 

 Configurable I/O Blocks 

A Configurable input/output (I/O) Block, is used to bring signals onto the chip 

and send them back off again. It consists of an input buffer and an output buffer with 

three-state and open collector output controls as shown in Figure 2-27. Typically, 

there are pull up resistors on the outputs and sometimes pull down resistors that can 

be used to terminate signals and buses without requiring discrete resistors external to 

the chip. The polarity of the output can usually be programmed for active high or 

active low output.  

 

 

Figure 2-27 FPGA Configurable I/O block 
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 Programmable Interconnect 

They are the long lines that can be used to connect CLBs to each other on the 

chip. These lines can also be used as buses within the chip as shown in Figure 2-28. 

Transistors are used to turn on or off connections between different lines. There are 

also several programmable switch matrices in the FPGA to connect the long and short 

lines together in specific, flexible combinations. Special long lines, called global 

clock lines, are specially designed for low impedance and thus fast propagation times. 

These are connected to the clock buffers and to each clocked element in each CLB. 

This is how the clocks are distributed throughout the FPGA, ensuring minimal skew 

between clock signals arriving at different flip-flops within the chip. In an ASIC, the 

majority of the delay comes from the logic in the design, because logic is connected 

with metal lines that exhibit little delay. In an FGPA, however, most of the delay in 

the chip comes from the interconnect, because the interconnect – like the logic – is 

fixed on the chip. In order to connect one CLB to another CLB in a different part of 

the chip often requires a connection through many transistors and switch matrices, 

each of which introduces extra delay. 

 

Figure 2-28 FPGA Programmable interconnect 

  Clock Circuitry  

Special I/O blocks with special high drive clock buffers, known as clock 

drivers, are distributed around the chip. These buffers connect to clock input pads and 

drive the clock signals onto the global clock lines described above. These clock lines 

are designed for low skew times and fast propagation times. Note that synchronous 
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design is a must with FPGAs, since absolute skew and delay cannot be guaranteed 

anywhere but on the global clock lines. 

 Block RAM 

 It is a dedicated RAM block that stores data on the FPGA without consuming 

any additional LUTs in the design whereas distributed Ram is built up with LUTs. In 

terms of speed the distributed RAM is faster than Block Rams. It serves as a relatively 

large memory structure (i.e. larger than distributed RAMs or a bunch of D-Flip-flops 

grouped together, but much smaller than off chip memory resources). 

  DSP Cores 

Digital Signal Processors (DSPs), as shown in Figure 2-29, are another 

common type of core that is offered as an IP core or an embedded core. These are 

essentially specialized processors that are used for manipulating analog signals. They 

are commonly used for filtering and compression of video or audio signals, Multiply-

Accumulate block or MAC is implemented as DSP slice and MAC is mainly used as a 

building block for complex DSP applications. 

 

Figure 2-29 DSP Core 

 Embedded Cores 

The embedded core will be optimized for the vendor's process to give good 

timing and power consumption numbers. The core will be placed as a single cell on 

the silicon die and so the performance of the core will not depend on the rest of the 

design since it won’t need to be placed and routed. 
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 Special I/O Drivers 

Special I/O drivers are also being embedded into programmable devices. The 

newer buses inside personal computers need to have very tightly controlled timing 

and must be driven by special high-drive, impedance-matched circuits. The I/O 

buffers need to have inputs with very specific voltage threshold values. 

2.4.3 FPGA Design Flow 

Figure 2-30 shows the steps of the design flow. 

 

Figure 2-30 FPGA Design Flow 

1-Functional Specifications: in this step, all specifications for the application are 

determined along with good understanding of function of this application. 

2-HDL: the HDL code that describes that function is written, and then Behavioral 

Simulation is done to make sure that the HDL describes the function needed correctly. 

3-Synthesis: HDL is converted into logic gates and other cells present in the FPGA 

itself, Static timing analysis is done to approximately calculate the maximum clock 

delay of the application and calculate the maximum clock speed achieved for the 

application.  

4-Place & Route: The logic blocks and cells in the FPGA are connected together, and 

Static Timing Analysis is done again to calculate the exact delay model of the 

application. 

5-Download & Verify in circuit: The HDL code is burned on the FPGA 
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2.5 Summary 

        This chapter provides background information on Convolution Neural 

Networks (CNN), discusses the main layers of the CNN (Convolutional Layer, Max 

Pooling Layer, etc.) with their operations, equations and functions and provides 

information about different CNN architectures like classic network architectures ( 

LeNet-5 , AlexNet ,VGGNet ) or modern network architectures (GoogleNet , ResNet , 

SqueezeNet), also it discusses several methods to improve the efficiency of deep 

learning implementation, then it describes the training process with both forward and 

backward propagation and indicates how it minimizes the loss and improve the 

accuracy. Finally, it discusses background on FPGAs, including a brief overview of 

FPGA internal components and design flow.  

https://www.jeremyjordan.me/convnet-architectures/#lenet5
https://www.jeremyjordan.me/convnet-architectures/#alexnet
https://www.jeremyjordan.me/convnet-architectures/#vgg16
https://www.jeremyjordan.me/convnet-architectures/#inception
https://www.jeremyjordan.me/convnet-architectures/#resnet
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Chapter 3: ZynqNet 

The chosen CNN architecture for implementation on FPGA is ZynqNet, due to 

having low computational complexity and low number of parameters that needs to be 

stored; in this chapter ZynqNet will be overviewed and discussed from the software 

point of view. 

3.1 Overview 

ZynqNet CNN is a stripped-down version of SqueezeNet and consists 

exclusively of convolutional layers, ReLU nonlinearities and a global average 

pooling, it had top-1 and top-5 error rate of 41.52% and 15.4% respectively on the test 

data of image-Net dataset which was better than SqueezeNet error rates, also number 

of MACC operations and total number of activations reduced by 38% and 40% 

respectively with regard to the original SqueezeNet. 

The neural network developed by David Gschwend in August 2016, ETH Zurich 

which has 2.5 million parameters, consists of 27 convolutional layers and only one 

average pooling layer 

3.2 ZynqNet vs. Other ConvNets 

• The computational complexity of ZynqNet has been lowered by 38% in 

comparison to the original SqueezeNet and by more than 50% compared to 

AlexNet as shown in Figures 3-1 and 3-2. [2] 

• The number of parameters is roughly twice as SqueezeNet parameters, but it’s 

still roughly an order of magnitude less than most. [2] 

• Top-5 error is better than AlexNet and SqueezeNet.  

• It is one of the least architectures in terms of number of MACCs. 
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Figure 3-1 Comparison of ZynqNet to CNN architectures 

 

 

Figure 3-2 Comparison graphs 
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3.3 ZynqNet Architecture 

ZynqNet CNN consists of 27 layers and 2.5 million parameters; it consists of 

convolutional layers, ReLU nonlinearities and a global average pooling as shown in 

Figure 3-3, detailed description of layers and parameters are given in Table 3-1. 

The computational complexity in ZynqNet comes almost entirely from the 1×1 and 

3×3 convolutions, which add up to 530 million MACC operations. The ReLU 

nonlinearities amount to 3 million comparisons. The average pooling requires 66,000 

additions and one division.  ZynqNet was trained on ImageNet classification training 

set which contained 1.28 million high-resolution images to classify 1000 different 

classes  

 

Figure 3-3 ZynqNet Architecture 
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Table 3-1 Detailed Description of all ZynqNet CNN Layers and their Parameters 

ID Layer Name Layer Type  Kernel Stride Pad CH in W x H in CH out W x H out 

1 Conv1 Convolution  3x3    2    1     3 256x256    64 128x128 
2 Fire2/Squeeze3x3 Convolution  3x3    2    1    64 128x128    16   64x64 
3 Fire2/Expand1x1 Convolution  1x1    1    0    16   64x64    64   64x64 
4 Fire2/Expand3x3 Convolution  3x3    1    1    16   64x64    64   64x64 
5 Fire2/Concat Concat       128   64x64   128   64x64 
6 Fire3/Squeeze1x1 Convolution  1x1    1    0    128   64x64    16   64x64 
7 Fire3/Expand1x1 Convolution  1x1    1    0    16   64x64    64   64x64 
8 Fire3/Expand3x3 Convolution  3x3    1    1    16   64x64    64   64x64 
9 Fire3/Concat Concat       128   64x64   128   64x64 
10 Fire4/Squeeze3x3 Convolution  3x3    2    1    128   64x64    32   32x32 
11 Fire4/Expand1x1 Convolution  1x1    1    0    32   32x32    128   32x32 
12 Fire4/Expand3x3 Convolution  3x3    1    1    32   32x32    128   32x32 
13 Fire4/Concat Concat       256   32x32   256   32x32 
14 Fire5/Squeeze1x1 Convolution  1x1    1    0    256   32x32    32   32x32 
15 Fire5/Expand1x1 Convolution  1x1    1    0    32   32x32    128   32x32 
16 Fire5/Expand3x3 Convolution  3x3    1    1    32   32x32    128   32x32 
17 Fire5/Concat Concat       256   32x32   256   32x32 
18 Fire6/Squeeze3x3 Convolution  3x3    2    1   256   32x32    64   16x16 
19 Fire6/Expand1x1 Convolution  1x1    1    0    64   16x16    256   16x16 
20 Fire6/Expand3x3 Convolution  3x3    1    1    64   16x16    256   16x16 
21 Fire6/Concat Concat       512   16x16    512   16x16 
22 Fire7/Squeeze1x1 Convolution  1x1    1    0    512   16x16    64   16x16 
23 Fire7/Expand1x1 Convolution  1x1    1    0    64   16x16    192   16x16 
24 Fire7/Expand3x3 Convolution  3x3    1    1    64   16x16    192   16x16 
25 Fire7/Concat Concat       384   16x16    384   16x16 
26 Fire8/Squeeze3x3 Convolution  3x3    2    1    384   16x16    112     8x8 
27 Fire8/Expand1x1 Convolution  1x1    1    0    112     8x8    256     8x8 
28 Fire8/Expand3x3 Convolution  3x3    1    1    112     8x8    256     8x8 
29 Fire8/Concat Concat       512     8x8    512     8x8 
30 Fire9/Squeeze1x1 Convolution  1x1    1    0    512     8x8    112     8x8 
31 Fire9/Expand1x1 Convolution  1x1    1    0    112     8x8    368     8x8 
32 Fire9/Expand3x3 Convolution  3x3    1    1    112     8x8    368     8x8 
33 Fire9/Concat Concat       736     8x8    736     8x8 
34 Conv10/Split1 Convolution  1x1    1    0    736     8x8    512     8x8 
35 Conv10/Split2 Convolution  1x1    1    0    736     8x8    512     8x8 
36 Conv10 Concat      1024     8x8    1024     8x8 
37 Pool10 Pooling  8x8     1024     8x8    1024     1x1 
38 Loss Softmax       1024     1x1    1024     1x1 
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3.4 Convolutional Layers  

In ZynqNet the convolutional layers are (Conv1, Firen/Squeeze, Firen/

Expand1x1, Firen/Expand3x3, Conv10/Split1 , Conv10/Split2 ) where n could be a 

number from 2 to 9 as shown in Table 3-1.  The convolutional operation is done by 

applying (𝑐ℎ𝑖𝑛𝑥 𝑐ℎ𝑜𝑢𝑡) filters of size (k x k) to generate the output feature maps. As 

the filter is sliding, or convolving, around the input image, it is multiplying the values 

in the filter with the original pixel values of the image (i.e.. computing element wise 

multiplications). These multiplications are all summed up to produce a single output. 

The process is repeated for every location on the input volume as shown in Figure 3-

4.  For filters larger than 1x1, border effects reduce the output dimensions. To avoid 

this effect, the input image is padded with p = 
𝑘

2
 zeros on each side. This effect can be 

applied with stride of s, which reduces the output dimensions to 𝑤𝑜𝑢𝑡 =
𝑤𝑖𝑛

𝑠
 , ℎ𝑜𝑢𝑡 =

ℎ𝑖𝑛

𝑠
 . [2] 

 

Figure 3-4 Convolutional Layer 

The Conv layer’s parameters consist of a set of learnable filters. Every filter is small 

spatially (along width and height) but extends through the full depth of the input 

volume. Each of these filters can be thought of as feature identifiers (edges, simple 

colors, and curves). First layer filters detect low level features such as edges and 

curves. In order to predict whether an image is a type of object, the network must be 

able to recognize higher level features. To extract high level features the output of the 
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first layer is applied to a set of filters (pass it through the 2nd Conv layer). As the 

network get deeper and go through more Conv layers, activation maps can represent 

more complex features.  

In practice, a CNN learns the values of these filters on its own during the training 

process. However, other parameters are still need to be specified such as number of 

filters, filter size, architecture of the network before the training process.  

3.4.1 Stride 

Stride and padding are two main parameters that can be changed to modify the 

behavior of each layer. Stride controls how the filter convolves around the input 

volume. As shown in Figure 3-5, the filter convolves around the input volume by 

shifting one unit at a time. The amount by which the filter shifts is the stride. In that 

case, the stride was implicitly set at 1. Stride is normally set in a way so that the 

output volume is an integer and not a fraction. It is assumed to have a 7 x 7 input 

volume, a 3 x 3 filter and a stride of 1. The output will be as shown in Figure 3-5. [16] 

 

Figure 3-5 Stride of 1 

For the same example but with a stride of 2, the output will be as shown in Figure 3-6. 
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Figure 3-6 Stride of 2 

So, as noticed, the receptive field is shifting by 2 units now and the output volume 

shrinks as well. Notice that if stride is set to 3, then there will be issues with spacing 

and making sure the receptive fields fit on the input volume. Normally, programmers 

will increase the stride if they want receptive fields to overlap less and if they want 

smaller spatial dimensions. 

3.4.2 Padding 

It is assumed to have a three 5 x 5 x 3 filters to a 32 x 32 x 3 input volume, 

then by convolution, the output volume would be 28 x 28 x 3, it is noticed that the 

spatial dimensions decrease. As  Conv layers are applied, the size of the volume will 

decrease faster than needed. In the early layers of the network, it's good to preserve as 

much information about the original input volume so that low-level features can be 

extracted. It is assumed that the same Conv layer is applied but the output volume has 

to remain 32 x 32 x 3. To do this, a zero padding of size 2 can be applied to that layer. 

Zero padding pads the input volume with zeros around the border. If padding of 2 is 

used, then this would result in a 36 x 36 x 3 input volume as shown in Figure 3-7. [16] 
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Figure 3-7 Padding of 2 

If a stride of 1 is used and if the size of zero padding is set to 
𝐾−1

2
  where K is the filter 

size, then the input and output volume will always have the same spatial dimensions. 

The formula for calculating the output size for any given conv layer is 𝑂 =

(𝑊−𝐾+2𝑃)

𝑆
+ 1  Where O is the output height/length, W is the input height/length, K is 

the filter size, P is the padding, and S is the stride. 

3.4.3 ReLU 

After each conv layer, it is convention to apply a nonlinear layer (or activation 

layer) immediately afterward. The purpose of this layer is to introduce nonlinearity to 

a system that basically has just been computing linear operations during the conv 

layers (just element wise multiplications and summations).In the past, nonlinear 

functions like tanh and sigmoid were used, but researchers found out that ReLU 

layers work far better because the network is able to train a lot faster (because of the 

computational efficiency) without making a significant difference to the accuracy. It 

also helps to alleviate the vanishing gradient problem, which is the issue where the 

lower layers of the network train very slowly because the gradient decreases 

exponentially through the layers. The ReLU layer applies the function f(x) = max(0, 

x) to all of the values in the input volume as shown in Figure 3-8. In basic terms, this 

layer just changes all the negative activations to 0. This layer increases the nonlinear 

properties of the model and the overall network without affecting the receptive fields 

of the conv layer. [16] 
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Figure 3-8 ReLU Function 

3.4.4 Fire Module  

Fire module is the basic building block of ZynqNet as it contains 8 stacked fire 

modules, each fire module contains: a squeeze convolution layer feeding into an 

expand layer that has a mix of 1×1 and 3×3 convolution filters as in Figure 3-9, the 

output channels of expand layer are concatenated to form a single feature map. 

 

Figure 3-9 Fire Module 
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Squeeze layer decreases the number of input channels to 3x3 filters to decrease 

number of computations made and decrease the number of parameters, then expand 

layer increase the number of channels again and generate feature maps. 

Maximum pooling used in SqueezeNet is removed and instead in ZynqNet stride of 2 

can be used subsequent convolutional layer but as these layers are 1x1 squeeze layers, 

some important information may be lost so the kernel size in these squeeze layers was 

changed to 3x3 with stride of 2, this modification results in 12% more parameters and 

18% more MACC operations but also results in 1.5% increase in accuracy. 

3.4.5 Pooling Layer 

Pooling layers provide an approach to down sampling feature maps by 

summarizing the presence of features in patches of the feature map. Two common 

pooling methods are average pooling and max pooling which summarize the average 

presence of a feature and the most activated presence of a feature respectively as 

shown in Figure 3-10. 

 

Figure 3-10 Maximum and Average Pooling Layers 

Global average pooling is used in ZynqNet after last convolutional layer; it reduces 

the spatial dimensions from 8×8 pixels to 1×1 pixel by computing the mean. 
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3.4.6 Dropout  

Dropout exists only during training of the model, so it’s not an implemented 

layer during inference. Dropout are a popular method to combat over fitting in large 

CNNs. They are used to randomly drop a selectable percentage of their connections 

during training, which prevents the network from learning very precise mappings, and 

forces some abstraction and redundancy to be built into the learned weights as shown 

in Figure 3-11. [2] 

 

Figure 3-11 Dropout Layer 

3.4.7 Softmax 

Softmax layers are the most common classifiers. A classifier layer is added 

behind the last convolutional or fully-connected layer in each image classification 

CNN, and squashes the raw class scores 𝒛𝒊 into class probabilities 𝒑𝒊 according to 𝒑𝒊 

= 
𝒆𝒛𝒊

∑ 𝒆𝒛𝒌𝑲
𝒌=𝟏

, which results in a vector P that sums up to 1 as shown in Figure 3-12. [2] 

 

Figure 3-12 Softmax Layer 
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3.5 ZynqNet Optimizations 

3.5.1 Large filter input layer approximation   

Usually the convolutional input layer has large kernel size and a large stride. 

The advantage of that is to make a large reception of the network. But on the other 

hand, it costs a very expensive hardware. As in SqueezeNet a 7×7 filter requires 5.4× 

more MACC operations than a 3×3 filter. As long as the learned filters are well-

behaved, a 7×7 kernel can be approximated by three stacked 3×3 filters as shown in 

Figure 3-13, that need only 27/49 of the computations as shown in Figure 3-14 and 

have the same receptive field. This optimization causes less than 1% drop in the 

accuracy. [2]  

 

Figure 3-13 Large filter approximation in ZynqNet 

 

Figure 3-14 Number of MACC Operations for SqueezeNet, SqueezeNet v1.1 and ZynqNet 

CNN 

3.5.2 Unnecessary Padding 

Padding makes no sense for 1×1 filters, and setting pad=0 will save some of 

the MACC cycles. The original SqueezeNet used pad=1 in the 1×1 conv layer 

Conv10, which is removed in ZynqNet. [2] 
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3.5.3 Out-of-Sync Dimension Adjustments  

The spatial output dimensions in are periodically stepped down (using stride 2 

in layers Conv1, Fire2, Fire4, Fire8, and using global pooling in Pool10). The number 

of output channels is periodically increased. But in SqueezeNet the spatial shrinking 

and the channel-wise expansion are not ideally synchronized (and fire4 as well as 

fire8 increase the number of output channels before decreasing the pixel count) 

leading to a surge in computational complexity. ZynqNet solve this problem. The 

modification saves up to 40 % in activation memory and reduces the computational 

complexity in fire4 and fire8 by a factor of 3.7 and 3.9 respectively. [2] 

3.5.4 Layer splitting 

To make the large layers fit onto the FPGA, they have been splitted into two 

parallel convolutional layers then concatenated along the channel dimension. As 

shown in Figure 3-15 in ZynqNet, the fully connected layer Conv10 layer has input 

channels (chin) = 736 and output channels chout = 1024 and would therefore require 

n = chin * chout = 753664 kernels of size 1×1. it has been split into two parallel 

convolutional layers Conv10/split1 and Conv10/split2 with chout = 512. [2] 

 

Figure 3-15 Conv10 layer in ZynqNet 

3.5.5 Equalization of Layer Capacities 

The mean concept of CNN is to transform a large amount of pixels with low 

individual information density into very few outputs of high abstraction level. The 

layer capacity wout × hout × chout can be seen as a measure for this concentration of 

information. The layer capacities of SqueezeNet, SqueezeNet v1.1 and ZynqNet all 

converge from more than one million data points to just 1000 class probabilities as 

shown in Figure 3-16. Further, both SqueezeNet versions have a strong peak in 

Conv10. ZynqNet CNN follows a much smoother and more regular capacity 

reduction, which saves resources, but also increases accuracy by almost 2.3%. [2] 
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Figure 3-16 Per-Layer Dimension Analysis of SqueezeNet, SqueezeNet v1.1 and ZynqNet CNN 

3.5.6 Fine-Tuning 

Using fine tuning in final experiments means re-training the finalized network 

for a few epochs with a very low learning rate, sometimes a slightly better optimum 

can be reached. However, the result is 0.2% accuracy gain. [2] 

3.6 Software Accuracy 

ZynqNet CNN was tested on ImageNet validation set using python code; the 

trained model weights were extracted from the Caffe model made for ZynqNet, the 

python code converts the input picture from (RGB) representation to Caffe 

representation (BGR) and provides the preprocessing required for the input image and 

the implementation of each layer in the network.  

The accuracy was measured on ImageNet validation set [17] for two different number 

of bits representation of the data. 

• For the ideal representation of the data using 64 double data type the accuracy 

was 58.48%.  

• For 16-bit fixed point with: 

o 1-bit for integer,1-bit for sign bit and 14-bits for fraction part for weights 

o 14-bit integar,1-bit sign and 1-bit fraction for convolutional output  

 

The accuracy reached 57.49%.  
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3.7 Preparing data for Hardware implementation 

To prepare the input data for the hardware simulation, the data was required to 

fit into ROM, therefore the input data is unrolled from 3-D (BGR) representation to 

the 1-D representation to fit into the input ROM as shown in Figure 3-17. 

 

Figure 3-17 Unrolling the input data from 3-D to 1-D 

3.8 Fixed Point Background  

Deep convolutional neural network (CNN) inference requires significant 

amount of memory and computation, which limits its deployment on embedded 

devices. To alleviate these problems to some extent, prior research utilize low 

precision fixed-point numbers to represent the CNN weights and activations. 

However, the minimum required data precision of fixed-point weights varies across 

different networks and also across different layers of the same network. 

A fixed-point representation of a number consists of integer and fractional 

components and sign bit as shown in Figure 3-18, where WL represents word length, 
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S represents the sign bit, I represent the integer bits and F represents the fractional 

bits. With this representation the range of numbers is [2−𝐼 , 2𝐼], and a step size 

(resolution) of 2−𝐹 .  [4] 

 

Figure 3-18 Fixed point data representation 

3.8.1 Fixed Point Multiplication 

Fixed-point multiplication is the same as 2's compliment multiplication but 

requires the position of the "point" to be determined after the multiplication to 

interpret the correct result. The determination of the "point's" position is a design task. 

The actual implementation does not know (or care) where the "point" is located. This 

is true because the fixed-point multiplication is exactly the same as a 2's 

complemented multiplication, no special hardware is required. Consider the following 

illustrative example assuming a has WL = 5, I=1, F=3 and S=1, and b has WL = 5, 

I=1, F=3 and S=1,  

a = 11.0012 = −0.875|decimal = 11001|fixed point representation   

b = 10.0102 = −1.75|decimal = 10010|fixed point representation   

 

The output product will be as shown in Figure 3-19. 
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Figure 3-19 Fixed point multiplication 

The output = 0001100010|𝐟𝐢𝐱𝐞𝐝 𝐩𝐨𝐢𝐧𝐭 𝐫𝐞𝐩𝐫𝐞𝐬𝐞𝐧𝐭𝐚𝐭𝐢𝐨𝐧 = 0001.100010𝟐= 1.53125|𝐝𝐞𝐜𝐢𝐦𝐚𝐥 

The number of bits required for the product (result) is a's WL + b's WL. Note that the 

fractional bits in the product are equal to a’s F + b’s F. 

3.8.2 Fixed Point Addition 

Performing the addition using the same numbers from the multiplication 

problem, 

11.001
10.010

 

101.011 = −2.625|𝐝𝐞𝐜𝐢𝐦𝐚𝐥 

When adding (subtracting) two numbers an additional bit is required for the result. 

When adding more than two numbers all of the same WL width, the number of bits 

required for the result is 𝑊𝐿=𝑊𝐿+𝑙𝑜𝑔2 (𝑁 𝑥 𝑊𝐿) + 𝑙𝑜𝑔2 (𝑁), where N is the number 

of elements being summed. 
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3.9 Summary 

This chapter provides information on the chosen CNN which is ZynqNet, 

having a quick overview on its accuracy for the top-5 and top-1 results on ImageNet 

validation sets, the number of its layers and their arrangement, and the number of 

parameters needed by ZynqNet. It also shows the effect of changing the number of 

bits of the fixed point data propagating between layers on the accuracy and the chosen 

number of bits based on its effect on accuracy and compromising this effect with the 

number of resources utilized by the design.  
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Chapter 4: Hardware Methodology 

4.1 ZynqNet Design 

 

 

Figure 4-1 ZynqNet block diagram 

 

The proposed approach as in Figure 4-1 is mainly based on designing each 

convolution layer separately with their separate weights storage and Multiply 

Accumulation (MAC) units needed for performing the convolution operation. Two 

shared memories are used to store the intermediate storage between layers which are 

Conv1 and all Fire layers, Conv10 is interleaved with one global average pooling 

layer to reduce the dimension of features retaining the most dominant information. 

Finally Output Prediction block is implemented to get the index of the prediction of 

the model. 
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4.2 Convolution Layer Implementation 

 

Figure 4-2 Convolution layer block diagram 

 

In ZynqNet implementation, each layer contains specific number of MACs 

and it’s chosen to work with full duty (number of MACs = number of output filters). 

Also, each layer has its own enable signal as well as end flag. Separate weights 

storage is generated for each layer. The convolution operation is performed using 

Multiply and Accumulation units, and then it gets through the ReLU function and 

quantization operation. A clear counter is used to clear the accumulation register in 

MAC after a window is convolved and determine the weights storage offset. It also 

determines when the output is ready to be sampled as shown in Figure 4-2.  
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Clear 

4.2.1 MAC 

 

Figure 4-3 MAC implementation 

Figure 4-3 shows internal design of one MAC (which corresponds to one 

DSP) that consists of 16x16 multiplier, 32-bit accumulation register, 32-bit adder and 

clear signal used to clear register after each output, i.e. after (Kernel x Kernel x CHin) 

cycles. 

The number of MACs or DSPs per layer depends on the number of output filters, 

DSPs dedication for all filters results in 4448 DSP, which is unfeasible by Virtex-7 

Series DSPs that is equal to 3600. A solution for this problem is to make identical 

layers shared in DSPs, like fire2/expand3x3 and fire3/expand3x3 layers, the same 64 

DSPs can be used for the two layers. 

4.2.2 Kernel Storage 

 Weights and Bias Implementation 

ZynqNet holds around 2.5 M parameters, of which are network weights and 

bias. The relatively low parameters make it feasible to implement the architecture on 

FPGAs for acceleration approach. However, this architecture deployment requires 

more attention to weights and bias rather than all other building blocks, for they 

consume a huge number of resources and, of course, they affect speed 

directly. Usually, fixed parameters are stored into Read Only Memories (ROMs), with 

a controller to take over fetches, flags and more.  
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 FPGAs Read Only Memory 

Some FPGAs have off-chip ROMs, which have great utility in account of high 

latency, however, ZynqNet implementation targets speed as its first priority, so, off-

chip memories would not be an option. FPGAs hold two types of memories, any of 

which could fit for ZynqNet parameters. 

4.2.2.2.1  BRAMs 

FPGAs normally have on-chip BRAM matrix, which could be configured as 

FIFO, RAM or ROM. Targeted device (Virtex-7 x690t) contains a sum of 2940 

BRAM 18Kb instances, each can be configured to 4Kb x 4, 8Kb x 2 or 16Kb x 1. 

BRAMs can have dual ports for the same instances, allowing performance of half the 

latency.  

4.2.2.2.2 Distributed ROM 

Xilinx FPGAs offer another type of memory, which is LUT, distributed ROM, 

which can be configured to hold design parameters. Each LUT can be configured as 6 

input 1-bit ROM (64x1). Normally, distributed ROMs grant more speed than BRAMs, 

which makes them a good approach to ZynqNet implementation. 

  Initializing ROM 

ROMs are usually initialized with Verilog system task $readmemb/ 

$readmemh inside initial procedural block, which loads memory contents from a file, 

specifying start and end addresses. 

 ROM Design 

For the layer implementation mentioned, each MAC block is responsible for a 

one filter fetching, this eliminates the option of fitting all design parameters into a 

huge ROM block, for this will cause high latency. For example, a 10K memory 

mapped to 64 MACs would require 64 cycles to fetch a new word to convolve, 

resulting in a low speed convolution process. 
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4.2.2.4.1 Introducing 3D ROM Array approach 

As a result of the previous issue, the approached implementation is to design a 

separate ROM for each filter in the design. Each ROM is connected to one MAC 

block, which grants low latency and consistency. 

  

Figure 4-4 3D ROM Array 

  

This implementation yields in N more entries of ROM, where N is the number of 

ROM subsets, equal to those MACs in a single layer. However, this implementation is 

beyond BRAM capability, since ZynqNet architecture has 4448 filters, and targeted 

device can utilize only a lot less than 2940 BRAMs, whilst LUTs are consumed in a 

huge workload, so a hybrid implementation of ROM is considered as shown in Figure 

4-4. Xilinx Vivado offer support for 3D BRAM implementation, whilst 3D ROM is 

not supported. This leads to a point in which a software approach is required to 

generate the required ROMs. 

4.2.2.4.2 3D Kernels ROM Implementation 

The approach here is to generate as many ROMs as number of filters per layer, 

so a bash script is used for this operation, due to its power in files and I/O handling. 

It’s responsible for the following: 

• Divide the layer memory into a number of files that are mapped to each filter 

• Generate a ready-for-synthesis SystemVerilog module that contains the array 

of 2D ROMs  
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Using this approach, every MAC can have a new input every clock edge, since a 

separate ROM is responsible for fetching a single word out of each filter, resulting in 

a latency of 1 cycle per fetch. The previous implementation works perfectly when the 

filter volume is a power of 2, because other than that, there will be some overheads 

which can be calculated with the following equation 

  Overhead = 2*Ceil(log2(Depth))-Depth 

Which results in 0 overhead in case of a power of 2 depth. For example, to implement 

1x1x576x32 Layer kernels, that would be 32 blocks of 1024 depth each; since 576 

needs to be addressed with 10-bit vector. 

To get rid of these overheads, the solution is to invoke a second bash script, 

which is responsible for the following: 

• Divide each memory subset into another two subsets, one of them is a power 

of 2 

• If the other part is a power of 2 then script ends 

• If the other part is still not a power of 2, it is guided into the second script 

again 

Output is the ready-for-synthesis System Verilog 3D ROM module 
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Figure 4-5 General Steps of ROM generation 

  

This approach shown in Figure 4-5 results in 0 overhead in case of power of 2 depth. 

For example, to implement 1x1x576x32 Layer kernels, that would be 32 blocks of 

1024 depth each; since 576 needs to be addressed with 10-bit vector. 

Figure 4-6 shows an example of the ROM generation for 32 filters, with 576 words:  
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Figure 4-6 ROM generation for 32 filters with 576 words 

 

 

 Bias ROM Implementation 

Bias parameters are 32-bit fixed parameters that are added to the feature maps 

before moving to ReLU. They can easily fit inside a System Verilog initialized 

registers, however, they are generated using a specific script as well to save time, 

effort and avoid errors.  
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4.2.3 Intermediate Storage 

 Shared Memory Using 3D BRAMs 

 

 

Figure 4-7 Used implementation for feature maps storage 

 

Each layer has output feature maps that have to be stored in order to be passed 

to the next layer, storing can be done in memory or cache using different resources in 

FPGA. The number of words of output feature maps of Conv1 layer is 

128x128x64=1048576 words, so 16,777,216 flops are needed in order to store these 

feature maps in a cache using flip flops which is a massive number for storing only 

one layer so this implementation can't be used. But if the output feature maps of 
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Conv1 layer get stored in memories using BRAMs, 1024 BRAMs will be needed 

which is considered acceptable utilization of resources, but by calculating the total 

number of feature maps that need to be stored, a very huge number of BRAMs will be 

needed, in addition to that, BRAMs has a queuing problem as it’s needed to store 

multiple feature maps in the same clock cycle while BRAMs can’t store more than 2 

inputs in one clock cycle, so this implementation can’t be used either. 

Used implementation shown in Figure 4-7 is a modification of the previous 

implementation using BRAMs to avoid the problems caused, a shared memory is used 

for all layers so that they can store and write from the same memory, but to avoid 

conflict between storing and reading in the same memory, two shared memories are 

used and each layer will be either reading from it or storing in it, and the next layer 

will be the opposite from what the previous layer done e.g. if Squeeze2 layer read 

from shared memory #1 and stored its feature maps in shared memory #2, then 

Expand2 layer will read from shared memory #2 and will store in shared memory #1. 

Another modification to solve the queuing problem is using 3D BRAMs (array of 

BRAMs), and as feature maps consists of multiple channels so elements of each 

channel can be stored independently in the same clock cycle in different BRAM. So, 

this modification solved the queuing problem and allowed the BRAMs to be used as 

storage for feature maps between layers. 

 Storing Intermediate Storage 

 The size of the shared memory will depend on the maximum number of 

output feature maps from any layer which is Conv1 layer for shared memory #1that 

needs 1024 BRAMs, and Squeeze8 layer for shared memory #2 which needs 112 

BRAMs. Each BRAM in the array will contain elements of one channel only, but the 

elements of that channel can be stored in multiple BRAMs as one BRAM only may 

not be enough to store all the elements of the channel. 

Another modification is needed as some layers requires padding to the feature maps 

of the previous layer to output specific dimension so this problem can be solved by 

storing the padded zeros while storing the feature maps of the previous layer e.g., 

Squeeze2 has padding of 1 so the feature maps of Conv1 should be padded then while 
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storing these feature maps, zeros will be added in their supposed locations and 

Squeeze2 will read the padded feature maps instantly. 

This modification requires increasing the number of BRAMs needed so shared 

memory #1 will need 1088 BRAMs while shared memory #2 needs to be duplicated 

because this shared memory will always be read by 2 parallel layers in the same time 

(Expand Layers) and one of them needs padding while the other doesn’t need it then 

output feature maps of the previous layers will be stored in 2 memories at the same 

time but one of them will be handled to pad the output feature maps, the final number 

of BRAMs needed by shared memory #2 is 224 BRAMs. 

 Reading from Intermediate Storage 

Regarding reading the feature maps from BRAMs in order to pass them to the 

next layer, an algorithm is needed to get the windows in order, taking into 

consideration the stride of each layer as shown in Figure 4-8. If the filter size is 3*3, 

taking the element of each window in the right order means it is needed to take three 

elements of each row of three consecutive rows using two parameters {row, col}, row 

changes from 0 to 2 and col changes from 0 to 2 for each row. Then if there is a stride 

the window will be shifted with the value of stride. 

 

Figure 4-8 Convolution operation with Padding =1, Stride=2 

As mentioned before, feature maps of each channel can be divided into multiple 

BRAMs so for example the first 1024 outputs of the first channel are stored in the first 

BRAM in the first instance then the second 1024 outputs are stored in the first BRAM 

in the second instance and so on, so the address of the element that will be read from 

the BRAMs needs to be zero when it reaches 1024 or multiples of 1024. That can be 

done by subtracting the needed address by multiples of 1024 in order to read from the 
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right instance, for example if it’s needed to read an element from instance 8 then 

address = the actual address -8*1024.   

 Controlling Operation of Layers 

In order to control the operation of the layers in the desired sequence, the 

shared memories control the sequence as follow; first, the start signal is sent from the 

top module to the first layer Conv1 to run it and at the same time it is sent to shared 

memory #1 module in order to prepare the storing signals and parameters. When 

Conv1 finishes operation, it sends the end signal to shared memory #1 module to 

prepare the reading algorithm and parameters of the second layer Squeeze2.  

When shared memory #1 module gets ready, it sends the start signal to 

Squeeze2 and at the same time it is sent to shared memory #2 module in order to 

prepare the storing signals and parameters and so on until the last layer Conv10 as 

shown in Figure 4-9.  

 

Figure 4-9 Control through memory modules 

 

4.3 Average Pooling layer implementation  

Usually in CNN algorithm, convolutional layers are interleaved with pooling 

layers to reduce the dimensions of its input feature maps retaining the most dominant 

information. These layers may be average or maximum pooling layers. In ZynqNet, 
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Global average pooling is used to reduce the input feature map from 8*8 with 1024 

input channel to 1*1 with 1024 input channel as shown in Figure 4-9. 

 

Figure 4-9 Average Pooling Operation 

 

 

4.3.1 First approach of implementation 

To implement average pooling, it is required to get the sum of all elements in 

each channel divided by number of elements. As a first approach to implement this 

layer is pipelining the output feature maps Conv10 stored in registers with the usage 

of adder tree for each channel to get the final output as shown in Figure 4-10. 
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Figure 4-10 Implementation of Average pooling using Adder Tree 

In ZynqNet, Conv10 contains 1024 output channels with 8×8 elements each so the 

total number of needed registers is 65,536. The total number of stages is dedicated by 

log2𝑘 where k is the number of input feature maps which equal 64 and the number of 

adders in one channel is dedicated by  ∑ 2𝑛n=(log2𝑘) −1
𝑛=0  so average pooling can be 

implemented with 6 stages pipelined and 63 adders in one channel. The total number 

of adders in all channels is determined by multiplying the number of adders in one 

channel by the number of instances used, a shift unit to be used as an approximation 

of division for averaging because the number of pixels is power of 2 as shown in 

Figure 4-11. This implementation requires 1024 cycles to finish if only 1 instance is 

used. To improve timing and throughput 8 instants of average pool is used in parallel 

to reduce the time to 128 cycles. Hardware implementation of this approach uses 8k 

LUTs and 8k FFs. 
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Figure 4-11 First approach of average pooling using 6 stages pipeline 

4.3.2 Second approach of implementation 

As the number of needed registers to store the output feature maps of Conv10 

is very huge, a second approach is introduced which is mainly based on not storing 

the output feature maps of conv10 but using pipeline and inputting them directly into 

an array of accumulators as shown Figure 4-12.  

 

Figure 4-12 Second approach of average pooling using full pipeline 

After 64 cycles of accumulating, the sum of all elements in each channel will be ready 

in the registers. Then they will be divided by 64 using the shift unit (shift right by 6). 

The number of needed accumulators is equal to the total output channels from 

Conv10 which is 1024 so it consumes around 33,000 LUTs and around 33,000 FFs.  
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4.3.3 Third approach of implementation 

In order to reduce the previous utilization, the design approach is turned to the 

third and final approach which is mainly based on that the two splitted parts of 

conv10 that don’t run simultaneously in this design so a good designer can use only 

half of this numbers of accumulators for two consecutive times once for 

Conv10/split1 and another for Conv10/split2 as shown in Figure 4-13. In this 

approach a multiplexer is needed at the input of the accumulators array to select 

between the output of Conv10/split1 and the output of Conv10/split2. This approach 

consumes around 10,000 LUTs and around 18,000 FFs.  

 

Figure 4-13 Third approach using half pipeline 

4.4 Output prediction implementation 

It is required to compare the 1024 outputs from average pooling to get the 

maximum number which is an index that refers to the output prediction. One 

comparator and two registers are needed as shown in Figure 4-14. First output is 

compared with the value of the register which is initially equal to zero. Then the value 

of greater element is saved in the value register and the index of the greater one is 

saved in the index register. Second output compared with the value register and the 

value and the index of the greater element is saved and so on until the 1024 outputs 

are compared. At this time, the index register contains to the index of the output 

prediction.  
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Figure 4-14 Output prediction implementation 
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4.5 Summary 

This chapter provides a discussion on the project’s chosen design with the 

details of how the convolution layers of ZynqNet are implemented, and introducing 

the different approaches of implementing kernel storage  and input feature map 

storage, then the proper implementation of pooling layer, to end up with output 

prediction implementation for getting the index of the desired output.  
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Chapter 5: Optimizations and Verification 

5.1 Optimizations for ZynqNet implementation 

RTL design, especially large designs, is vulnerable to waste of resources, 

inefficient modeling techniques and unaware-of-power structures that a designer 

should keep in mind when achieving an optimal design. The very first stage of the 

proposed design is to meet functionality at any price, then paving the way into 

different optimization techniques, of which some trade-offs are sacrificed and maybe 

eradicating totally unused blocks or components. A good designer should compromise 

what he is trading off in his optimizations; hence, the following aspects were 

categorized to make the most out of the required optimizations: 

• Area aware optimizations 

• Timing and Pipelining 

• Power consumption reduction 

• Placement Optimizations 

• Routing enhancements 

5.1.1 Area Aware Optimizations 

ZynqNet CNN architecture is quite large, compared to its predecessor 

SqueezeNet, so optimizations in terms of area are urgently needed to reduce power 

consumption, PAR issues and improve circuit clocking. Following are the most 

effective area optimizations achieved: 

  Control Sets Reduction 

A control set is the grouping of control signals (set/reset, clock enable and 

clock) that drives any given SRL, LUTRAM, or register. For any unique combination 

of control signals, a unique control set is formed. The reason this is an important 

concept is that registers within a 7 series slice all share common control signals and 

thus only registers with a common control set may be packed into the same slice. 

Designs with several unique control sets may have many wasted resources as well as 

fewer options for placement, resulting in higher power and lower performance. 

Designs with fewer control sets have more options and flexibility in terms of 
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placement, generally resulting in improved results. Optimization in control sets is 

done on two phases: 

• Removing enables/resets/presets on registers that may not be affected by 

initial states 

• Using control_set_merge switch in opt_design post synthesis  

This type of optimization allows the placer to freely place cells all over the 

fabric, without wasting slices on some unique cells. However, this optimization frees 

Area in account of power, as the switching activity on clocked cells increases, 

therefore consuming more dynamic power. 

 Re-quantization of the fully connected layer 

Fully connected layer (Conv10) holds the greatest number of parameters in 

ZynqNet CNN, using most of the memory resources allocated to the device. Hence, 

re-quantization of this layer from 16 to 15 bits should make a slight difference in area, 

without harming accuracy; based on simulation results. Re-quantization of Conv10 to 

10 bits is a must in order for the design to operate freely at higher frequencies. 

 Packing of expand parameters 

Fire modules in ZynqNet consist of a Squeeze and 2 Expand layers. Usually, 

the Expand layers are working simultaneously, so instead of allocating separate 

memory for each, packing both Expand parameters in one memory reduces the area 

needed for fetching. This however harms the comfort ability of the placer to freely 

place memory cells adjacent to DSPs, but the tradeoff for area is so much better. 

 Registering high fan-out nets 

Xilinx Vivado recommends fan-out of no more than 10000 for nets to operate 

correctly, however, in the presence of tight timing constraints and high area usage, 

nets should not fan-out to any more than 500 cells, which means almost 20x the area. 

Proposed design has all high fan-out nets registered, so that replicated cells consume 

flops and not the precious fabric LUTs. Xilinx Virtex-7 allows 8 flops and 4 LUTs per 

slice, so replicating registers would not be an issue. This, however, contradicts with 
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the reduced control sets, so the replicated nets were chosen carefully whether they 

have unique control sets or not. 

5.2 Timing and Pipelining optimization 

Initial design for ZynqNet has hardly met 100 MHz constraints on routed 

design in OOC mode, so pipelining had nearly been a must for the design to operate 

freely at 100 MHz, The pipelining phase was all about breaking critical paths, which 

by design nature is applicable to many nets, given the high fan-out of the design nets. 

Paths broken by pipeline: 

• Paths with logic levels more than 5 

• Paths that have DSPs input pins as end points 

• Paths that have BRAMs output pins as start points 

• Paths suggested by Vivado pipeline analysis 

5.3 Power consumption optimization 

5.3.1 Pushing pipeline registers into Big Blocks 

DSPs as in Figure 5-1 and BRAMs have optional Input/output pipelining 

registers, which are meant for timing and power optimization. Pushing the pipeline 

flops or even non-pipeline flops into Big Blocks improve timing paths, however, this 

is a compromise between area, timing and power versus placement comfort ability, as 

pushed registers could have been better-placed prior placement with physical 

optimization provided by Vivado, given that proposed design is high area consuming. 
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Figure 5-1  DSP 

 

5.3.2 Clock Gating on Enable Pins 

Proposed design is FPGA based, hence, use of clock gating is limited to 

BUFCE clock buffers, but the same results can be approached by moving the clock 

gating cells to CE pins of flops. Clock Enable pins offer the same power reduction as 

clock gating techniques, with the same level of safety assured. This however requires 

more unique control sets, contradicting the rule of thumb provided by Xilinx (Not to 

consume more than 7.5% of control sets); hence, the choice of clock enabled flops 

was based upon the number of flops per unique enable signal, vulnerability to 

replication and average expected switching activity. 

5.4 Placement and Routing optimizations 

5.4.1 Manual replication of signals 

Initial design implementation could not start routing cells due to high 

congestion of cells in given directions, with more than 140% congestion in South and 

126% congestion in East. Routing congestion normally occurs due to high area usage, 

tight timing constraints and high fan-out nets. Proposed design has been synthesized 

with KEEP hierarchy options on sub-modules, which blinds the synthesizer from 

max_fanout attribute on synthesis. Hence, high fan-out nets were replicated manually, 

surely on account of increased area. Manual replication of high fan-out nets allows the 
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placer to freely replace critical cells and rearrange block placement according to new 

replicas sites.  

Result from such process can be seen clearly in the wiring and placement congestion 

in Figures 5-2 and 5-3. 

 

Figure 5-2 Wiring congestion 

 

 

Figure 5-3 Placement congestion 
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5.4.2  Removing Global Reset Signal 

By default, reset signals are the second highest fan-out signals, with clock 

signals being in the first place, so in bulky designs, resets should be handled carefully. 

Unlike clocks, reset signals have no dedicated buffers and global routing, such as 

BUFG or BUFR, meaning the mostly depend on local routing resources. 

Many FPGA designers ignore the fact that FPGA fabric comes with a global initial 

state parameter that may help them in their design, in fact, FPGAs have embedded 

global reset that reprograms the chip into the initial state or factory reset. Dependence 

on such utility, routing has been totally improved whilst keeping the same function. 

5.5 Verification of RTL functionality 

Continuing in the FPGA design flow, the point of behavioral simulation is 

reached to make sure the functionality of the design is met with the required 

specifications. Taking into consideration that every optimization step taken (as 

explained above) would lead to re-verifying the code again to make sure that the 

optimization didn’t affect the functionality. 

The functionality of this CNN architecture is to predict the class of the input image, so 

multiple images from ImageNet were tested and compared to the results predicted 

from Python. 
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5.5.1 Testing Strategy  

 

Figure 5-4 Testing Strategy 

As ZynqNet architecture was first implemented on Python, so it will be the 

reference for the hardware implementation to check the sanity of it. Each layer was 

tested on its own to guarantee it functions right. 

As in Figure 5-4, the input for each layer was extracted from Python in files with the 

correct order it’s designed to enter the layer with, these files were fed to the test bench 

created for each layer. 

After passing through the flow of the layer, the output of each layer is written in files 

then by using diff command on Linux, the two files; one from Verilog and the other 

from Python are compared to see if the output is the same as expected or not. If the 

output is not the same, the code would be modified and retest it again. 

5.5.2 Simulation Results 

Figure 5-5 is a sample from ImageNet validation set which is a “schooner “ 
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Figure 5-5 Sample Image 

Figure 5-6 and 5-7 shows the Python results predicted correctly with index predicted 

781 (starting from index 1). 

 

 

Figure 5-6 Python's Output 

 

 

Figure 5-7 Sysnet_words 

 

Figure 5-8 shows the RTL behavioral simulation results which is similar to Python 

results with the output predicted correctly, index 780 (starting from index 0) after 80 

ms. 

 

Figure 5-8 Output Waveform 
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5.6 Summary  

This chapter includes different optimization techniques and the effect of them 

in different fields; it also discusses the verification process done to ensure that the 

functionality of the design is as specified.  

Previous optimization techniques have great tradeoffs, but a good designer should 

pick up the best strategy and compensate for the sacrificed performance or speed. 

This, however, is an addition to the great optimization that Xilinx Vivado is capable 

of, in either of the previous fields. Noting that design accuracy has not change, Table 

5-1 shows the optimizations made, pros and cons and tradeoffs: 

 

Table 5-1 Pros and cons of every optimization 
 

Area Power Consumed Timing PAR 

Re-quantization better better - - 

Control sets reduction better worse - - 

ROM re-arrangement better Slightly worse - worse 

Registering High Fanout better Slightly worse better - 

Pipelining Slightly worse better better - 

Big Block I/O Registers - better better worse 

Clock Gating Slightly worse better - - 

Manual Replication worse worse better better 

Removing Reset - Slightly better - better 

Vivado opt_design Slightly better Slightly better - - 

 

Iterative tests were made after every optimization technique to make sure that the 

functionality is still valid. 
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Chapter 6: Synthesis and Implementation 

6.1 Synthesis Flow 

FPGA synthesis is a vital phase in the deployment of ZynqNet CNN 

architecture, as it is the anchor of all phases to come, including optimization and 

PAR. Xilinx Vivado offers a variety of options and switches for synthesis, and even 

ready-to-use strategies that help designers employ Vivado Synthesizer to achieve a 

target for their RTL, such as area, timing and so on. However, the proposed design 

has not been a fan of these strategies, since they are not fully customizable, so, the 

synthesis approach was to manually consider the design limitations, goals, Vivado 

abilities and use trial-and-error strategy on best expected approaches. 

The very first stage of synthesis flow is to determine how the tool would handle 

hierarchies, either full flat hierarchy, none flat or rebuilt flattening. Full flat hierarchy 

synthesis allows the synthesizer to break the hierarchy, perform logical optimization 

across the whole design, but with high runtime, while none-flattening prevents the 

synthesizer from performing across-hierarchy optimizations, provided that runtime is 

much less than rebuilt or full flattening. 

Table 6-1 shows the results from different flattening options, keeping the other 

synthesis switches as is 

 

Table 6-1 Results from different flattening options 
 

Full rebuilt none 

LUTs used 96% 85-88% 77-81% 

Slice utilization > 100% > 100% 96% 

Placement-status over-utilized(fails) over-utilized(fails) Ready for placement 

 

Clearly the none-flattening switch was the best choice, even if it had some issues with 

the high fan-out optimizations, but these issues could be compensated later in the 

implementation stage.  

Finding the best approach was the challenge here, so different combinations of 

synthesis switches have been used, to conclude in the best custom strategy that would 
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fit the proposed design, however, it was clear that main issues were area and 

congestion, due to high utilization. Following are the best synthesis directives and 

options that led to the best results: 

• Directive AreaOptimized_high 

• None flattening 

• Resource sharing on 

• Retiming 

• Incremental synthesis 

6.2 Constraints 

Constraints are the user guideline to synthesis tools, giving the user the ability 

to control almost every aspect in design. Proposed design has been augmented with 

timing and physical constraints, some of which are meant for synthesis and others are 

critical in PAR. 

6.2.1 Timing Constraints 

Proposed design has timing specifications that made constraints much easier; 

registering every sub-module inputs and outputs, not having multiple clocks and 

neither false path. Timing analysis for FPGA-based designs have been much easier 

than ASIC-based designs, because Xilinx Vivado timing engine is so powerful and 

has great timing models for each cell in targeted device Virtex-7. 

 Clocking  

Clocking network in this design is fed by the differential system clock (200 

MHz) already soldered into Virtex-7 FPGA board VC709 as in Figure 6-1, connected 

to a Mixed-Mode Clock Manager cell, that controls the design clock as required, 

usually determined by STA. 
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Figure 6-1 Detailed MMCM block diagram 

 

MMCMs (Mixed-Mode Clock Manager) are FPGA primitives that are used for 

clocking and skew management, they can feed up to 6-7 output clocks, with different 

frequencies, phases, jitter and feedback control. ZynqNet CNN architecture has been 

supplied with only 1 MMCM primitive, with a total of 4 BUFG primitives for clock 

distribution across the fabric and skew modulation. 

 Constraints  

The only needed timing constraint in the proposed design was to 

create_generated_clock from the MMCM output port, however easy it is, Vivado 

made it easier for designers by only using create_clock for the input positive system 

clock, which gives Vivado the ability to optimize clock network, choose best site for 

BUFG and replicate BUFG accordingly. 

6.3 Physical Constraints 

Every design has its unique status and goals, especially in physical conditions 

such as driving strengths, placement directives, hierarchy control and more. Physical 

constraints play the role of not giving the permission to synthesis/implementation tool 

to fully automate the design flow, giving the designer much more power in controlling 

what is actually going on down there in optimizations and synthesis. Xilinx Vivado 
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offers a variety of physical constraints that almost can cover any user requirements, 

however, the proposed design invoked a few of these, to control what it was seen to 

be best not left for Vivado. 

6.3.1 RTL Based Constraints 

• DONT_TOUCH: On signals and registers that should not be vulnerable to 

Vivado optimizer efforts, due to restricted physical requirements such as 

manual replication 

• KEEP_HIERARCHY 

o YES: Usually used on instances that lead to less utility when hierarchy-

broken 

o NO: In most cases, breaking the hierarchies of big blocks lead to better 

optimizations 

• ROM_STYLE: Choosing whether implemented as Distributed ROM or 

BRAM inferred 

• RAM_STYLE: Mostly used to prevent Vivado from packing registers inside 

BRAMs  

• MAX_FANOUT: Set on nets that have high fan-out if and only if these nets 

fan-out to pins in the same hierarchy, due to using none flattening option. 

 

6.3.2 Placement Based Constraints 

Using Pblocks for floorplanning wouldn’t have been the best option for the 

implementation of the proposed design; hence, floorplanning has been left to Vivado 

Placer to determine the best placement plan for the netlist. Nevertheless, I/O planning 

and clock constraining is critical while placement, as they are anchors for the rest of 

the netlist to be placed. 

Placement constraints define the I/O sites, types of I/O buffers used and driving 

strengths. Target board VC709 has ready-to-use LEDs and push buttons that may be 

used directly through pin planning. Types of buffers used for module ports are: 

• 2 IBUF: for standard input enable signals 

• 8 OBUF: for LEDs indicating the classification result 

• 1 IBUFDS: Differential to single ended buffer that is used for user clock input 

buffering 
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6.4 Implementation Flow 

Xilinx Vivado is quite a powerful tool when it comes to timing-aware 

implementation; however, with the very high utilization of the device, it becomes very 

hard for the tool to find the optimal solution for netlist implementation and sign-off. 

High utilization of big blocks (DSPs to around 99% and BRAMs to 97%) made the 

implementation almost an impossible task; however, with the right procedure and 

critical selection of processes, Vivado was capable of reaching the final 

implementation. 

6.4.1 Initial PAR 

The very first stage of implementation is to optimize design, by clearing the 

netlist that has just been generated by synthesis. Optimizations chosen are: 

• Remap 

• Control set opt 

• Constant Propagation 

• BUFG Insertion 

Despite not being so helpful, opt_design is a recommended stage by Vivado for early-

detection of non-optimized cells. Due to high utilization, Vivado priorities the correct 

placement of cells in account of timing driven placement, however, Vivado tries to 

compromise the effect of utilization when possible. Placement process also includes 

sorts of optimization such as pin replacement, fan-out optimization and others. 

Directives chosen in this stage were as follows: 

• Quick: for a draft of correct placement without timing or routing 

consideration, aiming for better runtime. 

• Alt_SpreadLogic_high/medium: Those directives help Vivado Router to 

correctly route the placed netlist 

However, the best placement option acknowledged afterwards was the 

Alt_SpreadLogic_high, due to issues found in later stages. At this point, the netlist 

was totally un-routable due to high routing congestion, so the following stages were 

needed. 
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Next step is Phys_opt; Physical Optimizations by Vivado are set of processes, in 

which Vivado tries to fix worst negative slack (WNS) and total negative slack (TNS) 

by doing the following: 

• Remap pins according to driving strengths and timing constraints 

• Critical cell optimizations such as replication and replacement 

• High fan-out and Very High fan-out optimizations on nets 

• Pushing register in/out of Big Blocks as to meet timing constraints 

• Replacement of clocking resources if possible 

This stage is recommended by Vivado if the slack is equal or better than -0.5 ns, and 

unless WNS is present, this stage would not be performed. Physical Optimizations 

helps in the overall timing sign-off and fixes routing conflicts, however, the netlist has 

got better slightly and still was not ready for routing, so the next step is to unplace 

netlist and replace for a few iterations, using the same directives in the first trial. 

6.4.2 Final PAR 

The failed implementation process encouraged some area and physical 

optimizations, resulting in RTL changes that needed to be added to the design 

checkpoint. This process is called by incremental synthesis, where Vivado synthesizer 

anchors a design checkpoint, resynthesizes accordingly and produces the new netlist, 

with better results and reduced run time, up to 90%.  

By default, Vivado Placer and Router have iterative property, so the iterations of 

place_design and route_design have been very useful to correctly implement the 

design. After a few iterations, Vivado Router could eventually route the design 

without congestion efforts, with all nets in design. However, post routing timing 

analysis report was not optimistic at all and resulted in -43 WNS, with routing delay 

up to 99% of failed paths.  
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6.4.3 WNS fix and Bit Stream Generation 

Routing results were catastrophic timing wise, as the WNS is too high as well 

as the dramatic TNS. Mainly, the reason behind these results was the nearly-full 

utilization of device. The solution to such an issue was to iterate on routing sessions, 

with different efforts and directives to remove negative slacks. The effective 

procedure was to iterate over the following: 

• Route design 

o NoTimingRelaxation 

o MoreGlobalIterations 

o TNS cleanup 

• Physical Optimization and high fan-out optimizations 

This procedure could eventually fix the timing issues and finally obtain a working 

floorplan at 100 MHz frequency, ready for bit stream generation and downloading on 

target board VC709. 
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6.5 Summary 

This chapter provides a discussion on the synthesis and which strategies give 

the best results, also constraints are handled including physical and timing constraints, 

then implementation of the design is provided going through placing, routing and 

fixing WNS then generating the bit stream. 
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Chapter 7: Results 

7.1 FPGA Results 

The design was first implemented at frequency of 100 MHz then more 

optimizations were applied until it reached a frequency of 125 MHz, the following 

will discuss the utilization of the design on the chosen FPGA along with the timing 

analysis and power consumed at each frequency. 

7.1.1 Implementation at Frequency of 100 MHz 

 Utilization 

After implementing the design on Virtex 7 VC709 FPGA using the Vivado 

implementation tool, Figure 7-1 shows the utilization of the resources. 

 

Figure 7-1 Post Implementation Utilization Summary-100MHz 

 Timing Analysis 

Figure 7-2 shows the setup and hold time slack, which are equal or bigger than 

zero which means that the timing constraints are met at clock frequency of 100 MHz 
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Figure 7-2 Design Timing Summary -100MHz 

 

Figure 7-3 is a timing histogram at frequency of 100 MHz shows the utilization of the 

clock frequency used, indicating how good the design is. 

 

Figure 7-3 Timing Histogram-100MHz 

 

 Power Analysis 

The following Figure 7-4 shows the power consumption of the design on the 

Virtex 7 FPGA, total power on chip equals to 10.97 watts. 

 

Figure 7-4 Power Report Summary-100MHz 
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7.1.2 Implementation at Frequency of 125 MHz 

 Utilization 

In order for the design to be placed at frequency of 125 MHz, some 

optimizations had to be made to reduce the used resources and congestion, so fully 

connected layer weights’ were quantized to 10 bits instead of 15 bits taking into 

consideration that this reduction didn’t affect the accuracy. 

Figure 7-5 shows the utilization of the resources post implementation. 

 

Figure 7-5 Post Implementation Utilization Summary-100MHz 

 

 Timing Analysis 

Figure 7-6 shows the setup and hold time slack, which are equal to zero which 

means the timing constraints are met at clock frequency of 125 MHz 
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Figure 7-6 Design Timing Summary-125MHz 

 

Figure 7-7 is a timing histogram at frequency of 125 MHz shows the utilization of the 

clock frequency used, indicating how good the design is. 

 

Figure 7-7 Timing Histogram-125MHz 

 

 Power Analysis 

The following Figure 7-8 shows the power consumption of the design on the 

Virtex 7 FPGA, total power on chip equals to 11.503 watts. 

 

Figure 7-8 Power Report Summary-125MHz 
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7.2 Hardware Testing 

The Design was brought up on the targeted FPGA by downloading the bit 

stream on the VC709 Development kit, the output of the sample image which is the 

index of the tested image is brought on the LEDs of the kit.  

Figure 7-9 shows the input and output probes using VIO, after initiating the enable 

signals, the output is “780” which indicates the correct index of the predication as 

discussed above. 

 

Figure 7-9 Hardware probes 

Figure 7-10 shows a real life picture of the FPGA after downloading the bit stream; 

the output in binary is as follows 780 => 11_0000_1100  

The first 8 bits are shown in the picture as there are only 8 available LEDs for the 

output in VC709 Development board. 

 

Figure 7-10 Real Life picture for the FPGA 
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7.3 Summary  

Table 7-1 shows the final results from implementing the design with at 

frequency of 100 MHz and 125 MHz comparing it with the paper in [2]. 

Table 7-1 Final Results 

  

  

ZynqNet 

paper 

Proposed version 1  Proposed version 2 

LUTs 154K 339K 283K 

DSPs 739 3552 3552 

BRAMs(18) 1090 2130 2130 

Memory used On and off-

chip 

On-chip  On-chip  

Fully connected layer 

quantization 

16 bits 15 bits 10 bits 

Operating frequency 100 MHz 100 MHz 125 MHz 

Power (W) 7.8 10.97 11.5 

Inference time (sec) 2 0.08  0.064  

Energy/image(J) 15.6 0.88 0.736 
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Chapter 8: Conclusion and future work 

8.1 Conclusion 

In this thesis, the implementation and acceleration of CNN on FPGA was 

discussed by using ZynqNet model which is an optimized CNN in number of 

parameters and computations. Hardware methodology of implementing the model on 

FPGA were showed by implementing each layer of ZynqNet separately and using 

resources of FPGA to store weights of the model on-chip without the need to use 

external memory, also various techniques and optimizations in the design were 

demonstrated in order to achieve better results in terms of speed, area and power. 

Accelerated ZynqNet was implemented on VC709 Development board and the results 

proved that using FPGA instead of GPU guarantees higher speed and lower power but 

also needs much more effort and design time. 

 

8.2 Future work 

Future work are more techniques and enhancements that can be applied in the 

design but are left for the future. These new methods can achieve reduction in 

utilization of FPGA resources which leads to consuming less power and having higher 

throughput. 

8.2.1 Pipelining inference of multiple images 

Currently to make a prediction of the class of a specific image, the image is 

loaded on the FPGA in the bit stream and the contents of the image is stored on-chip 

along ZynqNet’s kernels, but the current design doesn’t support inferring multiple 

images one by one into the model and having this privilege requires external 

processor that connects to the FPGA and transfers the images continuously, also 

pipelining in inferring the images will improve the total throughput, this can be done 

by adding some control signals which ensures that each layer receives and starts 

processing next image’s data as soon as it finishes processing the previous image’s 

data until output prediction is displayed at the end of inferring of each image. 
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8.2.2 Using dynamic quantization 

ZynqNet’s kernels and feature maps in the implemented design are quantized 

into 16-bits fixed point representation in order to decrease the used memory resources 

with a slight increase in the error of the model, but quantizing all layer’s weights into 

16-bits may be a waste of memory resources because some layers can be quantized 

into less than 16-bits without causing any harm and these wasted bits are considered 

overhead in the design, so more efficient way of utilizing memory resources is to use 

dynamic quantization and number of bits will be determined for each layer in 

ZynqNet to be represented with using fixed point representation, that will also reduce 

the slight difference between accuracy of the software model and the implemented 

design on FPGA. Dynamic quantization was used in the fully connected layer 

(Conv10) by re-quantizing its kernels into 10 bits and generalizing this method on all 

layers will have a great impact in the design. 
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