

BUILDING SYNTHESIZABLE MODEL AND

VERIFICATION ENVIRONMENT FOR AXI4-STREAM FIFO

By

Ahmed Mohamed Yassien

Aly Essam Aly

Arwa Abdelaziz Abdelghany

Aya Mahmoud Mahmoud

Salma Khaled Hanafy

Shadwa Mohsen Abdellatif

Under the Supervision of Associate Prof. Hassan Mostafa

A Graduation Project thesis submitted to Faculty of Engineering, Cairo

University in Partial Fulfilment of the Requirements for the Degree of

Bachelor of Science in Electronics and Electrical Communications

Engineering

FACULTY OF ENGINEERING, CAIRO UNIVERSITY

GIZA, EGYPT

JULY 2019

Abstract

ii

Abstract

Streaming is a way of sending data from one block to another. The idea on

streaming devices is to provide a steady flow of high speed data and to reduce

overhead by using point to point connections which eliminate the need of addressing.

In order to allow memory mapped access to an AXI4-Stream interface, the

LogiCORE™ IP AXI4-Stream FIFO core is needed.

The core can be used to interface to AXI Streaming IPs, Similar to the

LogiCORE IP AXI Ethernet core without the need to use a full Direct Memory

Access (DMA) solution. The principal operation of this core allows the write or read

of data packets to or from a device without any concern over the AXI Streaming

interface. The AXI Streaming interface is transparent to the user.

 In this thesis, the design, synthesis and verification using Universal

Verification Method (UVM) of the AXI4-Stream FIFO core (Vivado design suite) are

discussed.

Keywords: AXI4-Stream FIFO core, Universal Verification Methodology

Acknowledgments

iii

Acknowledgments

We are using this opportunity to express our gratitude to everyone who

supported us throughout the graduation project. We are thankful for their aspiring

guidance and friendly advice.

First, we want to thank our major advisor Dr. Hassan Mostafa for his

encouragement through the whole year, his caring about following up of each stage in

the project and his suggestions to solve some problems we faced during the project

work.

We want to thank Mentor Graphics team; Eng. Wael Mahmoud and Eng.

Haytham Shoukry, QA managers, Eng. Amr Abbas, QA team leader, Eng. Ziad

Abdelati, QA Engineer and finally Eng. Michael Hany, Research assistant at ONE lab

at Cairo University, for providing their time, experience to help us overcome some

obstacles we faced during some stages especially when dealing with new concepts

and tools.

Finally, we want to thank our families for their support, tolerance and love

during this year especially during the hard times they were always there having faith

in what we do. We are grateful to our families, colleagues and friends for always

motivating us, without them we wouldn’t have come so far.

Table of Contents

iv

Table of Contents

Abstract .. ii

Achnowledgements .. iii

Table of Contents .. iv

List of Figures ... vi

List of Tables .. viii

List of Acronyms .. ix

Chapter 1.Introduction ... 1

1.1.Motivation .. 1

1.2.Problem Statement .. 3

1.3.Solution Approach ... 4

1.4.Organization .. 5

Chapter 2.Background ... 6

2.1.AXI4 Protocol .. 6

2.2.AXI4 – Lite Protocol .. 9

2.3.AXI4 – Stream ... 9

Chapter 3.Vivado AXI4 Stream FIFO Design ... 11

3.1.Block Introduction ... 11

3.2.Design Overview .. 13

3.2.1.Transmit Path ... 14

3.2.2.Receive Path .. 15

3.3.Individual Building Blocks .. 16

3.3.1.AXI4-Lite Interface ... 16

3.3.2.AXI4 Interface .. 24

3.3.3. Register Space ... 35

3.3.4.Transmit Control .. 44

3.3.3. Transmit FIFO Unit ... 52

3.3.6.Stream Receive Interface .. 75

3.3.3. Receive FIFO .. 81

3.3.3. Receive Control .. 86

3.3.9.Calculation Unit .. 99

Table of Contents

v

3.3.10.Interrupt Interface .. 105

Chapter 4.FPGA Synthesis and Implementation ... 108

4.1.Introduction .. 108

4.2.Results .. 109

4.2.1.Synthesis Results .. 109

4.2.2.Implementation Results .. 111

Chapter 5.Verification.. 112

5.1.Introduction .. 112

5.2.Direct Testing .. 112

3.2.5. Unit Testing ... 113

5.2.2.Integration Testing ... 115

5.3.Universal Verification Methodology (UVM) .. 127

5.3.1.Introduction ... 127

5.3.2.Overview ... 129

5.3.3.UVM Sequences ... 133

Chapter 6.Simulation Results... 138

6.1.Transmit Path .. 138

6.2.Receive Path .. 143

Chapter 7.Conclusion and Future Work .. 146

7.1.Conclusion .. 146

7.2.Future Work .. 147

7.2.1.Completion of UVM testing .. 147

7.2.2.Verification using equivalence checking ... 147

7.2.3.Verification using Questa Verification IP ... 147

Chapter 8.References ... 148

List of Figures

vi

List of Figures

Figure 2-1 VALID before READY handshake ... 7

Figure 2-2 READY before VALID handshake ... 7

Figure 3-1 Schematic of Vivado AXI4-Stream FIFO ... 13

Figure 3-2 Transmit Path ... 14

Figure 3-3 Receive Path .. 15

Figure 3-4 AXI4_Lite Write Operation Flow Chart .. 19

Figure 3-5AXI4-Lite Read Operation Flow Chart .. 20

Figure 3-6 Block Diagram of AXI4-Lite ... 21

Figure 3-7 write operation FSM of AXI4-lite ... 22

Figure 3-8 Read Operation FSM of AXI4-Lite ... 23

Figure 3-9AXI4 Write tranasaction FlowChart ... 29

Figure 3-10 AXI4 Read transaction Flow Chart ... 30

Figure 3-11AXI4 block diagram ... 31

Figure 3-12Write Operation FSM of AXI4 ... 32

Figure 3-13 AXI4 Read Operation FSM ... 34

Figure 3-14 Interrupt Service Register (offset 0x00) .. 37

Figure 3-15 Interrupt Service Register (offset 0x00) .. 38

Figure 3-16Transmit Data FIFO Reset Register (offset 0x8) .. 39

Figure 3-17 Transmit Data FIFO Vacancy Register (offset 0xC) ... 39

Figure 3-18Transmit Data FIFO Data Write Port (offset 0x10) .. 39

Figure 3-19 Receive Data FIFO Reset Register (offset 0x18) .. 40

Figure 3-20 Receive Data FIFO Occupancy Register (offset 0x1C) 40

Figure 3-21 Receive Data FIFO Data Write Port (offset 0x20) .. 40

Figure 3-22 Transmit Length Register (offset 0x14) ... 41

Figure 3-23 Receive Length Register (offset 0x14) .. 41

Figure 3-24 AXI4-Sream Reset Register (offset 0x28) ... 42

Figure 3-25 Transmit Destination Register (offset 0x2C) ... 42

Figure 3-26 Receive Destination Register (offset 0x30) ... 42

Figure 3-27 Register Space block diagram.. 43

Figure 3-28 Transmit Control functionality flow chart ... 48

Figure 3-29 Transmit Control block diagram .. 49

Figure 3-30 Transmit Control FSM ... 50

Figure 3-31 Detecting Next position read/write flow chart ... 56

Figure 3-32 Check Full and Empty of FIFO flow chart .. 57

Figure 3-33Write /Read operation in Transmit FIFO flow chart .. 58

Figure 3-34 Store and forward mode flow chart ... 61

Figure 3-35 Cut-through mode flow chart ... 62

Figure 3-36 FIFO and Stream Mapper block .. 63

Figure 3-37 Transmit Data FIFO ... 64

Figure 3-38 Store and forward mode finite state machine .. 65

Figure 3-39 Cut-through mode finite state machine .. 66

Figure 3-40 Stream Mapper finite state machine .. 67

Figure 3-41 AXI4-Stream interface flow chart ... 78

file:///C:/Users/w7/Desktop/Thesis-Design-and-Verfication-of-Vivado-AXI4-Stream-FIFO_1_modified.docx%23_Toc13196901
file:///C:/Users/w7/Desktop/Thesis-Design-and-Verfication-of-Vivado-AXI4-Stream-FIFO_1_modified.docx%23_Toc13196902
file:///C:/Users/w7/Desktop/Thesis-Design-and-Verfication-of-Vivado-AXI4-Stream-FIFO_1_modified.docx%23_Toc13196903
file:///C:/Users/w7/Desktop/Thesis-Design-and-Verfication-of-Vivado-AXI4-Stream-FIFO_1_modified.docx%23_Toc13196904
file:///C:/Users/w7/Desktop/Thesis-Design-and-Verfication-of-Vivado-AXI4-Stream-FIFO_1_modified.docx%23_Toc13196905
file:///C:/Users/w7/Desktop/Thesis-Design-and-Verfication-of-Vivado-AXI4-Stream-FIFO_1_modified.docx%23_Toc13196906
file:///C:/Users/w7/Desktop/Thesis-Design-and-Verfication-of-Vivado-AXI4-Stream-FIFO_1_modified.docx%23_Toc13196907
file:///C:/Users/w7/Desktop/Thesis-Design-and-Verfication-of-Vivado-AXI4-Stream-FIFO_1_modified.docx%23_Toc13196911
file:///C:/Users/w7/Desktop/Thesis-Design-and-Verfication-of-Vivado-AXI4-Stream-FIFO_1_modified.docx%23_Toc13196912
file:///C:/Users/w7/Desktop/Thesis-Design-and-Verfication-of-Vivado-AXI4-Stream-FIFO_1_modified.docx%23_Toc13196914
file:///C:/Users/w7/Desktop/Thesis-Design-and-Verfication-of-Vivado-AXI4-Stream-FIFO_1_modified.docx%23_Toc13196941
file:///C:/Users/w7/Desktop/Thesis-Design-and-Verfication-of-Vivado-AXI4-Stream-FIFO_1_modified.docx%23_Toc13196942

List of Figures

vii

Figure 3-42Receive AXI4 Stream block ... 79

Figure 3-43 Receive AXI4 Stream FSM ... 79

Figure 3-44Receive FIFO block .. 85

Figure 3-45 Receive Control functionality flow chart ... 94

Figure 3-46 Receive Control FSM of both store and forward and cut-through modes 96

Figure 3-47 TDFV functionality flow chart .. 101

Figure 3-48 RDFO Functionality flow chart ... 102

Figure 3-49 Calculation Unit block diagram ... 103

Figure 3-50 Interrupt Interface .. 107

Figure 4-1Total utilization of board resources (Post-Synthesis) ... 109

Figure 4-2Total utilization of board resources for each module (Post-Synthesis) 110

Figure 4-3 Number of bonded IOB in design (post-synthesis)... 110

Figure 4-4Total Utilization of board resources (Post-Implementation) 111

Figure 4-5Utilization of board resources for each module (Post-Synthesis) 111

Figure 5-1UVM Architecture .. 129

Figure 6-1 Register Space and Control Unit simulation results1 .. 138

Figure 6-2 Stream Interface simulation results1.. 138

Figure 6-3 Register Space and Control Unit simulation results 2 ... 139

Figure 6-4 Stream Interface simulation results 2... 139

Figure 6-5 Register Space and Control Unit simulation results 3 ... 140

Figure 6-6 Stream Interface simulation results 3... 140

Figure 6-7 Transmit path simulation result 4 .. 141

Figure 6-8 Transmit Path simulation result 5 .. 142

Figure 6-9 Writing and reading random packets .. 143

Figure 6-10 First word written to the core ... 143

Figure 6-11 RC bit 26 goes high after TLAST .. 144

Figure 6-12 First word written to the core ... 144

Figure 6-13 First word read from the core .. 145

Figure 6-14 RC bit 26 goes high after TLAST .. 145

List of Tables

viii

List of Tables

Table 2-1 Supported Signals by AXI4 .. 8

Table 2-2 Supported signals by AXI4 - Lite ... 9

Table 2-3 Supported Signalsby AXI4-Stream ... 10

Table 3-1Parameters that can be configured in design .. 12

Table 3-2AXI4-Lite I/O Signals .. 18

Table 3-3Write Interface States Illustration .. 22

Table 3-4Read Operation States Illustration ... 23

Table 3-5AXI4 I/O signals .. 26

Table 3-6Write operation states illustration .. 32

Table 3-7AXI4 Write Interface FSM transition conditions illustration 33

Table 3-8AXI4 write operation FSM outputs.. 33

Table 3-9AXI4 Read operation states ... 34

Table 3-10Register Space I/O signals ... 36

Table 3-11Interrupt Service Register structure ... 38

Table 3-12Transmit Control I/O signals .. 45

Table 3-13Transmit Control FSM states illustration ... 50

Table 3-14Transmit Control FSM conditions ... 51

Table 3-15Trasmit Contro FSM outputs ... 51

Table 3-16Transmit FIFO Unit I/O signals ... 54

Table 3-17 Stream Mapper FSM states ... 65

Table 3-18 Receive AXI4 Stream I/O signals ... 76

Table 3-19Receive AXI4 Stream FSM states.. 79

Table 3-20Receive AXI4 Stream FSM conditions .. 80

Table 3-21 Receive AXI4 Stream FSM outputs .. 80

Table 3-22Receive FIFO I/O signals ... 82

Table 3-23Receive Control I/O signals ... 87

Table 3-24 Receive Control FSM states .. 95

Table 3-25Receive Control FSM transition conditions ... 97

Table 3-26 Receive Control FSM outputs ... 98

Table 3-27Calculation Unit I/O signals ... 100

Table 3-28 Interrupt Interface I/O signals ... 106

List of Acronyms

ix

List of Acronyms

AMBA Advanced Microcontroller Bus Architecture

ASIC Application Specific Integrated Circuit

AXI Advanced Extensible Interface

DMA Direct Memory Access

DSP Digital Signal Processing

DUT Design Under Test

eRM e Reuse Methodology

FIFO First-In First-Out

FPGA Field Programmable Gate Array

FSM Finite State Machine

IEEE Institute of Electrical and Electronics Engineers

IER Interrupt Enable Register

IP Intellectual property

ISR Interrupt Status Register

OVM Open Verification Methodology

PAR Place and Route

RC Receive Complete

RDFD Receive Data FIFO Data Register

RDFO Receive Data FIFO Occupancy Register

RDFR Receive Data FIFO Reset Register

RDR Receive Destination Register

RFPE Receive FIFO Programmable Empty

RFPF Receive FIFO Programmable Full

RLR Receive Length Register

RPORE Receive Packet Overrun Read Error

List of Acronyms

x

RPUE Receive Packet Underrun Error

RPURE Receive Packet Underrun Read Error

RRC Receive Reset Complete

RTL Register Transfer Logic

RX Receive

SoC System-on-Chip

SRR AXI4-Stream Reset Register

TC Transmit Complete

TDFD Transmit Data FIFO Data Write Port

TDFV Transmit Data FIFO Vacancy Register

TDR Transmit Destination Register

TFDR Transmit FIFO Data Register

TFPE Transmit FIFO Programmable Empty

TFPF Transmit FIFO Programmable Full

TLM Transaction-Level Modeling

TLR Transmit Length Register

TPOE Transmit Packet Overrun Error

TRC Transmit Reset Complete

TSE Transmit Size Error

TX Transmit

UUT Unit Under Test

UVM Universal Verification Methodology

Chapter 1

1

Chapter 1.
 Introduction

In this thesis, we are going to design and verify using UVM the AXI4 Stream

FIFO that deals with some of AMBA 4.0 protocols such as AXI4, AXI4-Lite and

AXI4-Stream.

1.1. Motivation

The Advanced Microcontroller Bus Architecture (AMBA) protocol is a

registered trademark of ARM Limited. It’s an open standard, on-chip interconnect

requirement for the connection and management of functional blocks in a System-On-

Chip (SoC). It facilitates easy implementation of different macro functions operating

at different frequencies (High frequency), and also facilitates right-first-time

development of multi-processor designs with large numbers of controllers and

peripherals. The AMBA protocol is technology independent, since it is implemented

for any operating frequency range [1].

The scope of AMBA has gone far beyond microcontroller devices, and is at

the present widely used on a range of ASIC and SoC parts including applications

processors used in modern portable mobile devices like Smartphones.

AMBA was introduced by ARM Ltd in 1996. The first AMBA buses were

highly developed Advanced System Bus (ASB) and Advanced Peripheral Bus (APB).

In its 2nd version in 1999, AMBA 2.0, ARM added AMBA High-performance Bus

(AHB) that is a single clock-edge procedure. In 2003, ARM introduced the 3rd

generation, AMBA 3.0, with Advanced Extensible Interface (AXI) to reach even high

performance inter-connects. In 2010, ARM introduced the 4th generation, AMBA 4.0,

these includes the second version of AXI, AXI4.

Chapter 1

2

AXI4 provides improvements and enhancements to any Intellectual Property

(IP) as it provides benefits to productivity, flexibility and availability [2]:

 Productivity: Developers need to learn only a single protocol for IP by

standardizing on the AXI interface.

 Flexibility: There are three types of AXI4 which depends on the

application:

1. AXI4 is for memory mapped interfaces and allows burst up to 256

data transfer cycles with just a single address phase.

2. AXI4-Lite is a light-weight, single transaction memory mapped

interface. It has a small logic footprint and is a simple interface to

work with both in design and usage.

3. AXI4-Stream is for high streaming data that can burst an unlimited

amount of data.

 Availability: Many IP providers support the AXI protocol.

Chapter 1

3

1.2. Problem Statement

There are a lot of differences between AXI4, AXI-Lite and AXI4-Stream as

AXI4-Stream removes the requirement for an address phase altogether and allows

unlimited data burst size. AXI4-Stream interfaces and transfers do not have

address phases and are therefore not considered to be memory-mapped, unlike AXI4

and AXI4-Lite that are used for memory mapped interfaces.

Both AXI4 and AXI4-Lite interfaces consist of five different channels: Write

Address Channel, Write Data Channel and Write Response Channel for Write

transactions. Read Address Channel and Read Data Channel for Read transactions.

Data can move in both directions between the master and the slave simultaneously,

and data transfer sizes can vary. The limit in AXI4 is a burst transaction of up to 256

data transfers but AXI4-Lite allows only one data transfer per transaction as bursting

is not supported.

The AXI4-Stream protocol defines a single channel for transmission of

streaming data. The AXI4-Stream channel is modeled after the Write Data channel of

the AXI4. Unlike AXI4, AXI4-Stream interfaces can burst an unlimited amount of

data. There are additional, optional capabilities described in AXI Stream Specification

[3]. The specification describes how AXI4-Stream-compliant interfaces can be split,

merged, interleaved, upsized, and downsized. Unlike AXI4, AXI4-Stream transfers

cannot be reordered.

The AXI4-Stream interface also supports a wide variety of different stream

types such as: Transfer which is a single transfer of data across an AXI4-Stream

interface, Packet which is a group of bytes that is similar to an AXI4 burst and Frame

which is the highest level of byte grouping in an AXI-Stream that contains an integer

number of packets unlike AXI4 that supports only bursts.

As the transactions are different between AXI4/AXI4-Lite and AXI4-Stream,

the communication between these blocks would be difficult if they are in the same

design unless there is an intermediate block to facilitate communication between

them.

Note: Further information about each protocol will be discussed in chapter2.

Chapter 1

4

1.3. Solution Approach

If the communication is required between AXI4/AXI4-Lite and AXI4-Stream,

Conversion of transactions between these interfaces (in both directions) is essential to

make communication between them possible. At this point, the need for an

intermediate block arises to make this mission, which is the role of AXI4-Stream

FIFO.

AXI4 Stream FIFO converts from AXI4/AXI4-Lite transactions to AXI4-

Stream transactions in one direction which is called the transmit path and converts

from AXI4-Stream transactions to AXI4/AXI4-Lite transactions in the other direction

which is called the receive path. These two paths are completely independent.

AXI4 Stream FIFO also allows memory mapped access to an AXI-Stream

interface. The principal operation is to allow the write or read of data packets to or

from a device without any concern over the AXI-Stream interface signaling. The

AXI-Stream interface is transparent to the user.

Chapter 1

5

1.4. Organization

The following chapters discuss Vivado AXI4-Stream architecture, the AXI4

protocols, the design blocks and its implementation, and testing of the design. The

remainder of this thesis is organized as follows:

Chapter 2 provides background information on AXI protocols such as AXI4,

AXI4-Lite and AXI4-Stream, discusses its architecture and the most important signals

used.

Chapter 3 discusses Vivado AXI4-Stream FIFO design, provides information

about the blocks and its implementation, block diagrams, flow charts and finite state

machines that explain the functionality of each block in the transmit and receive paths.

Chapter 4 provides results of the synthesis and implementation of Vivado

AXI4-Stream FIFO using Vivado suite showing the number of resources utilized on the

chosen kit which is XCVU440-FLGA2892-1-C.

Chapter 5 discusses Verification part as it includes direct testing on each block

and integration testing on the whole design then constrained random testing using

Universal Verification Methodology (UVM) with further explanation of the blocks

used in UVM and sequences that have been tested on transmit and receive paths.

Chapter 6 provides the results of the simulation of the whole design after

constrained random testing using UVM on Questa-Sim (Behavioral Simulation).

Chapter 7 provides a brief overview of the findings, draws conclusions, and

recommends directions for future work.

Chapter 2

6

Chapter 2.

Background

As the AXI4-Stream FIFO core deals with AXI4/AXI4-Lite and AXI4-Stream

interfaces, and each of them uses a different protocol then to fully understand the

functionality of the core these protocols must be illustrated first in more details before

getting into the design process.

In this chapter, the important general concerns in each protocol are illustrated

such as the handshaking procedure, important features, etc. and further information can

be found in each protocol standard mentioned in the References.

2.1. AXI4 Protocol

The AXI4 protocol is a transaction based protocol which relies on the handshake

of the VALID and READY signal to complete any data or information transfer, a

transaction is defined as the process of exchanging of the complete set of required

information between master and slave.

It is also a burst-based which means it allows the transfer of multiple words of

data in one transaction unlike the AXI4 – Lite which will be discussed later, the

supported burst types are as follows:

The AXI4 protocol defines five independent channels, two for read transactions

and three for write transactions which are as follows:

 Read Address Channel

 Read Data Channel

 Write Address Channel

 Write Data Channel

 Write Response Channel

Where Address channels are responsible for carrying all required signals and

control information to define the transaction, while the Data channels carry the data to

be exchanged between source and destination. The Write Response channel carries the

response of the destination to the write transaction whether the write was a success or

an error took place.

Chapter 2

7

The AXI4 relies on the handshake between the VALID and READY signals

between the source and destination as mentioned above, the handshake is explained as

follows:

The VALID signal is generated by the source which indicates the presence of

valid control information or data on the bus to the destination.

The READY signal is generated by the destination to indicate that it is ready to

accept information at this moment, the transfer only takes place when both the VALID

and READY signals are HIGH as shown in Figure 2-1 and 2-2.

As shown, there is no restriction on which of the two signals comes high first

except for only one constraint, that the source is not allowed to wait for the READY

signal to be high to assert its VALID signal, and for the READY signal, the destination

can either wait for the VALID signal to be high to assert the READY or have the

READY high whenever it's ready to receive information which saves one clock cycle.

Figure 2-2 READY before VALID handshake

Figure 2-1 VALID before READY handshake

Chapter 2

8

The Signals supported by the AXI4 are as follows in Table 2-1

The following signals are what define the burst properties of the transaction

AxBURST: Determines the burst type of the transaction

AxSIZE: Determines the number of transferred bytes in each data transfer in a burst

AxLEN: Determines the number of data transfers in each transaction

Note: The “x” means that it could be for read or write channel, as an example

AxBURST can be ARBURST or AWBURST.

The AXI4 protocol supports strobing on write transactions where each bit in the

WSTRB signal corresponds to one byte of the WDATA (Write Data) bus, if the bit is

pulled high it indicates the corresponding byte in the WDATA bus carries valid data to

be stored otherwise the data on the corresponding byte is invalid, such feature is useful

in unaligned memory access and in narrow bus width transfers.

Write

response

channel

Read data

channel

Write data

channel

Read address

channel

Write

address

channel

BRESP RDATA WDATA ARADDR AWADDR

BVALID RRESP WSTRB ARLEN AWLEN

BREADY RLAST WLAST ARSIZE AWSIZE

 RVALID WVALID ARBURST AWBURST

 RREADY WREADY ARVALID AWVALID

 ARREADY AWREADY

Table 2-1 Supported Signals by AXI4

Chapter 2

9

2.2. AXI4 – Lite Protocol

Unlike AXI4, The AXI4 – Lite supports transactions of burst length of one

only, thus the AxBurst, AxSIZE, AxLEN and LAST signals are not supported. The

AXI4 – Lite supports the same channels and the same handshake process as the AXI4

protocol.

The Signals supported by the AXI4 - Lite are as follows in Table 2-2

2.3. AXI4 –Stream

 The AXI4–Stream is suitable to continuous transfer of data with low

complexity, unlike the two previous protocols it only supports one channel, it also

depends on the same handshake procedure between the TVALID and TREADY

signals, where each time both the TVALID and TREADY are asserted together, an

exchange of a beat or word of the packet to be transmitted can take place, the TLAST

signal marks the packet boundary meaning that at the last beat of a packet the TREADY,

TVALID and TLAST are all high.

The following byte definitions are used in this specification:

Data byte: A byte of data that contains valid information that is transmitted

between the source and destination.

Position byte: A byte that indicates the relative positions of data bytes within

the stream. This is a placeholder that does not contain any relevant data values that are

transmitted between the source and destination.

Write

response

channel

Read data

channel

Write data

channel

Read address

channel

Write

address

channel

BRESP RDATA WDATA ARADDR AWADDR

BVALID RRESP WSTRB ARVALID AWVALID

BREADY RVALID WVALID ARREADY AWREADY

 RREADY WREADY

Table 2-2 Supported signals by AXI4 - Lite

Chapter 2

11

Null byte: A byte that does not contain any data information or any information

about the relative position of data bytes within the stream.

TSTRB signal acts as the WSTRB signal in the AXI4 protocol, where each bit of the

TSTRB corresponds to one byte of the TDATA, if the bit is pulled high it indicates the

corresponding byte in the TDATA bus is a Data byte to be stored otherwise the data on

the corresponding byte is considered position byte (control data).

However, TSTRB is in effect only when TKEEP is asserted, otherwise if the TKEEP

is low the corresponding byte is considered to be a NULL byte and must be removed

from the stream bytes by the interconnect if the slave can't handle the NULL bytes.

The Signals supported by the AXI4 -Stream in our design are shown in Table 2-3

Signal Description

TDATA

Carries the data transmitted from the source to destination

TVALID

Generated from the source to indicate the presence of valid data on

the bus

TREADY Generated from the destination to indicate that it's ready to receive

data at this point

TLAST

Generated from the source to mark the packet boundary

TKEEP A byte qualifier used to indicate whether the content of the

associated byte must be transported to the destination.

TSTRB A byte qualifier used to indicate whether the content of the

associated byte is a data byte or a position byte.

Table 2-3 Supported Signalsby AXI4-Stream

Chapter 3

11

Chapter 3.

Vivado AXI4 Stream FIFO Design

3.1. Block Introduction

The AXI4-Stream FIFO v4.1 (Vivado Design Suite) is a logic core IP owned

by Xilinx which is used to convert AXI4/AXI4-lite transactions to and from AXI4-

Stream transactions, which is useful for interfacing between processors and data flow

applications as DSP applications.

Features supported by the core

 Independent TX and RX paths

 Simultaneous operations for both Transmit and Receive paths

 Two modes of operation: Store and Forward and Cut-Through

 Configurable FIFO depth

 Two Data interfaces for the user either AXI4 or AXI4-Lite

 Interrupts to show status of the core and occurrence of errors

Modes of operation

The core supports two modes of operation

 Store and Forward Mode

In store and forward mode, the core must wait for the packet to be fully stored

and its length of the full packet is written to the core before the start of packet

transmission whether it was on TX or RX path, in this case the FIFO must be

large enough to hold the complete packet.

 Cut-Through Mode

In Cut-Through Mode transmission behavior changes depending on whether the

packet is being transmitted on the TX or RX path as follows:

In case of TX: The packet transmission starts when the Transmit FIFO is not

empty however the last beat is transmitted only after the length of the whole

packet is written to the core

In case of RX: The packet transmission starts as soon as a part of the packet is

written into the Receive FIFO, meanwhile the packet length is stored and

updated accordingly with total partial packet length, however last part of the

packet is not transmitted till the length of the full packet is updated in the core

The FIFO doesn't need to be large enough to hold the complete packet

Chapter 3

12

Interfaces

The Core offers AXI4 – Lite interface or AXI4 interface for the user to use to

write or read data from the Core.

The AXI4 – Lite interface is mandatory for register access even if AXI4-

interface option is selected to deal with FIFO access.

This means that if AXI4 – Lite is selected then it has full access to all the

registers in the register space, while if AXI4 option is selected then the AXI4 – Lite

interface has access to all the registers in the register space except for the two registers

responsible of writing and reading from the FIFOs while the AXI4 interface has access

to those two registers only. Further information about these registers will be explained

in details in section 3.3.3.

Parameters

 Parameter Name Default value

AXI4 – Lite data width C_S_AXI_DATA_WIDTH 32

RX FIFO Depth C_RX_FIFO_DEPTH 512

TX FIFO Depth C_TX_FIFO_DEPTH 512

AXI4 Data Width C_S_AXI4_DATA_WIDTH 32

AXI4 - Stream Data

Width

C_S_S_AXI4_DATA_WIDTH 32

Base Address for the

Register Space

C_BASEADDR 0

Full threshold for the

FIFOs (Amount of

locations left before the

FIFO is considered

Full)

full_threshold_data 0

Empty Threshold for

the FIFOs

empty_threshold_data 0

Mode of operation

1 for cut-through

0 for store and forward

enable_cut_through 0

Table 3-1Parameters that can be configured in design

Assumptions

The user is aware of the presence of the core and in order to interact with it the user

needs to use correct addresses specified by the AXI4-Stream FIFO (Vivado Design

Suit) to access each register via normal AXI4-Lite read or write transactions.

Chapter 3

13

3.2. Design Overview

As mentioned in the features supported, the design is meant to be bidirectional

which means that it has two independent paths. Both paths have nearly the same

building blocks which are a Transmit/Receive control blocks, Transmit/Receive FIFOs

and finally the Transmit/Receive Stream interfaces.

Clearly, the control blocks are monitoring the user’s programming sequence and

ensuring correct operation, while the FIFOs are the storing units for packets, and the

stream interface is meant to communicate with Stream sides. The implementation of

each path blocks is totally different as the Transmit and Receive logic are different.

However, there may be some similar concepts between both paths such as FIFOs.

Each of the Transmit FIFO and Receive FIFO is split into 3 different FIFOs

 Data FIFO: The largest FIFO of them all and used to store the packets

 Length FIFO: Used to store the length of the packets in bytes

 Destination FIFO: Used to store destination of packets

The remaining block is the AXI4/AXI4-Lite interface which participates in both

Receive and Transmit paths, as it has different channels for reading and writing

operations and thus supporting full duplex operation.

In order to fully understand the core’s correct operation and data flow from both

interfacing sides, we need to separately study each path, which is illustrated in the

upcoming two sections.

The schematic of the core design is shown in figure 3-1.

AXI4-

Lite

Interfac

AXI4

Interfac

e

Register

Space

Transmit Control

Receive Control

Transmit

AXI4-Stream

Interface

Receive

FIFO

Receive

AXI4-Stream

Interface

Calculation

Unit

Interrupt

Interface

AXI_STR_TxD

AXI_STR_RxD

AXI 4-Lite

AXI 4

Transmit

FIFO

Figure 3-1 Schematic of Vivado AXI4-Stream FIFO

Chapter 3

14

3.2.1. Transmit Path

Transmit path is responsible for storing AXI4 or AXI4–Lite data write

transactions in the Transmit FIFO (through passing by the Register Space first) till read

transactions are initiated on the AXI4 stream interface, this is done as follows:

1- Programming sequence is applied from the user to the AXI4-Lite interface,

passing information about the packet to the corresponding registers as

destination, length and the written data.

2- By the end of this process the packet should be fully stored in the transmit FIFO

and the Vacancy register is updated with number of vacant locations available

to be written by the upcoming packets.

3- The packet is then transmitted over the AXI4-Stream Transmit interface when

a handshake is initiated by the "application" on the other end of the interface.

The Transmit control block is responsible for coordinating the transfer of

written data by the user from the Register Space to the Transmit FIFO and is also

responsible for monitoring the programming sequence to allow a correct operation and

to detect any error in the programming sequence that requires a reset for the Transmit

Logic.

In case of Cut-Through mode of operation, the data packets that are written from

the AXI4/AXI4-Lite don’t need to be completely stored in the Transmit FIFO to start

the transmission of the data into the AXI4-Stream interface, meaning that the

transmission can start as soon as the Transmit FIFO is not empty.

Transmit path is illustrated in figure 3-2, where packet path and blocks engaged in

transmission operation are highlighted.

AXI4-

Lite

AXI4

Register

Space

Transmit Control

Receive Control

Transmit

AXI4-Stream

Interface

Receive

FIFO

Receive

AXI4-Stream

Interface

Calculation

Unit

Interrupt

Interface

AXI_STR_TxD

AXI_STR_RxD

AXI 4-Lite

AXI 4

Transmit

FIFO

Figure 3-2 Transmit Path

Chapter 3

15

3.2.2. Receive Path

The Receive path stores incoming data from the AXI4-Stream interface in the

Receive FIFO till read transactions are initiated from the user on AXI4-Lite interface,

that’s when the data is transferred from the Receive FIFO into AXI4/AXI4-Lite

interface through the Register space, this is done as follows:

1- Packet received via the AXI4-Stream Receive interface is written to the Receive

FIFO, and the length of the packet is calculated and written to the length FIFO,

same goes for the destination FIFO.

2- By the end of this process the packet should be fully stored in the Receive FIFO

and the Occupancy register is updated with number of locations occupied by the

last successfully received packet.

3- The packet is then transmitted over the AXI4/AXI4-Lite interface when a

handshake is initiated by the user on the other end of the interface, passing by

the Register Space (the data reaches the interface through the Register Space

that the user access)

The Receive control block is responsible for coordinating the transfer of written

data from the Receive FIFO to the Register Space and is also responsible for monitoring

the programming sequence to allow a correct operation and to detect any error in the

programming sequence that requires a reset for the Receive Logic.

In case of Cut-Through mode of operation, the data packets that are written from

the AXI4 Stream side don’t need to be completely stored in the Receive FIFO to start

the transmission of the data into the AXI4/AXI4-Lite interface, meaning that the

transmission can start as soon as the Receive FIFO is not empty.

Receive path is illustrated in figure 3-3 where packet path and block engaged in the

reception operation are highlighted.

AXI4-

Lite

AXI4

Register

Space

Transmit Control Transmit

AXI4-Stream

Interface

Receive

FIFO

Receive

AXI4-Stream

Interface

Calculation

Unit

Interrupt

Interface

AXI_STR_TxD

AXI_STR_RxD

AXI 4-Lite

AXI 4

Receive Control

Transmit

FIFO

Figure 3-3 Receive Path

Chapter 3

16

3.3. Individual Building Blocks

3.3.1. AXI4-Lite Interface

Description

AXI4-Lite interface is the main interface with the core, it provides independent

read and write channels where transactions mainly take place on a two stage handshake,

first defines the all the required signals and control information to define the transaction

and takes place when both the AxVALID and AxREADY signals are pulled high at

the same time, while the second passes the data from the source to destination which

takes place when both xVALID and xREADY signals are high at the same time.

The AXI4-Lite protocol supports only transactions of burst length 1, meaning

that each transaction whether it was read or write is responsible for delivering one word

only from the source to the destination. The supported data bus width in the core is 32

bits.

All data accesses use the full bus width, however only bytes containing valid

data is stored in write transactions. Valid data is indicated by the strobe signal where

each bit corresponds to one byte of the data bus.

The AXI4-Lite interface mainly deals with the Register Space within the core

where all read/write operations are passed to the Register Space via the interface except

when the AXI4 interface is chosen for data access to the core, then the AXI4-Lite

doesn't have access to the Receive Data FIFO Data Read Port (RDFD) nor the Transmit

Data FIFO Data Write Port (TDFD) in the Register Space.

Chapter 3

17

Interfacing

The AXI4-lite block contains I/O signals listed in Table 3-2.

 Description Connection Port
mode

Port name

Global interface clock User Input Clk

Resets entire core User Input AXI4_lite_ARESET

Address of a write transaction User Input AXI4_lite_AWADDR

Not used User Input AXI4_lite_AWPROT

A valid write address is

available

User Input AXI4_lite_AWVALID

Data of a write transaction User Input AXI4_lite_WDATA

Indicates which byte lanes have

valid data

User Input AXI4_lite_WSTRB

A valid write data is available User Input AXI4_lite_WVALID

 Master can accept response

information

User Input AXI4_lite_BREADY

Address of a read transaction User Input AXI4_lite_ARADDR

Not used User Input AXI4_lite_ARPROT

A valid read address is available User Input AXI4_lite_ARVALID

Master can accept read data User Input AXI4_lite_RREADY

Slave can accept read

information

User Output AXI4_lite_AWREADY

Slave is ready to receive read

data

User Output AXI4_lite_WREADY

Status of a write transaction User Output AXI4_lite_BRESP

A valid write response is

available

User Output AXI4_lite_BVALID

Slave can accept read address User Output AXI4_lite_ARREADY

Data of a read transaction User Output AXI4_lite_RDATA

Status of a read transaction User Output AXI4_lite_RRESP

A valid read data is available User Output AXI4_lite_RVALID

Read enable signal Register

space

Output read_enable

Write enable signal Register

space

Output write_enable

Address of a write operation Register

space

Output write_address

Chapter 3

18

Address of a read operation Register

space

Output Memory_address

Data of a write operation Register

space

Output data_in

Data of a read operation Register

space

Input data_out

Indicates which byte lanes has

valid data

Transmit

control

Output STROBE_OUT

Table 3-2AXI4-Lite I/O Signals

Functionality

The AXI4-Lite interface is responsible for read/write operations from/into

Register Space; this is done through five channels:

 Write Address Channel: carries all required signals and control information to

define a write transaction

 Write Data Channel: carries data written by master (source) into slave

(destination)

 Write Response Channel: carries write response which gives information about

write transaction statue.

 Read Address Channel: carries all required signals and control information to

define a read transaction

 Read Data Channel: carries data to be read from slave (source) by master

(destination)

The Write operation is done as follows

 The Address of the intended register to be written is carried out on the Write

Address Channel, when the handshake between the AWVALID and

AWREADY takes place, the core has read the address of the register to be

written successfully

 Then the actual data is written on the Write Data Channel, when the handshake

between the WVALID and WREADY takes place, this indicates that the core

has read the data successfully

 The core then replies with a Response signal to feedback the write transaction

statues and similarly BREADY and BVALID perform the handshake

Chapter 3

19

The Read operation is done as follows

 The Address of the intended register to be read is written on the Read Address

Channel, and the handshake between the ARVALID and ARREADY takes

place, which indicates that the core has read the address of the register to be

read successfully

 Then the data to be read is written from the core on the Read Data Channel, and

the handshake between the RVALID and RREADY takes place, which

indicates that the user has read the written data by the core successfully

 The RRESP signal is signaled from core to feedback the read transaction statues

Write operation in AXI4-lite is illustrated by the flow chart in figure 3-4

RESET = 0

AWVALID = 1

AWREADY = 1

No

Yes

Start

No

Yes

WVALID = 1
No

Yes

Store AWADDR

 WREADY = 1

Signal BRESP, write_address,, data_in

BVALID=1 ,write_enable=1

 Signal all output

signals their default

values

X

End

Store WDATA

BREADY = 1

Yes

No

Figure 3-4 AXI4_Lite Write Operation Flow Chart

Chapter 3

21

Note: Resetting AXI4-lite at any point will result in going to start point (marked X at

flow chart)

Read operation in AXI4-lite is illustrated by the flow chart in figure 3-5

RESET = 0

ARVALID = 1

ARREADY = 1

No

Yes

Start

No

Yes

RREADY = 1

No

Yes

Store data_out

 RVALID = 1

Signal RDATA, RRESP

X

End

 Signal all output

signals their default

values

Signal read_address

Read_enable=1

Store ARADDR

Figure 3-5AXI4-Lite Read Operation Flow Chart

Chapter 3

21

Note: Resetting AXI4-lite at any point will result in going to start point (marked X at

flowchart)

Implementation

AXI4-lite unit is divided into two main blocks as illustrated in the figure 3-6;

Write interface is responsible of write transactions and Read interface is responsible

of read transactions, both of blocks are implemented by a Mealy FSM.

Figure 3-6 Block Diagram of AXI4-Lite

Chapter 3

22

Write Interface

The finite state machine states of write interface are illustrated in the table 3-3 and in

figure 3-7

Description State State

Number

Idle state when AXI4-lite is not active IDLE 1

Wait for AWVALID signal to be high ADDR

WAIT

2

Wait for WVALID signal to be high DATA

WAIT

3

Handshaking is done and data is written in the

given address

DATA 4

Response of slave to indicate correct and

incorrect write operation

RESP 5

Table 3-3Write Interface States Illustration

Figure 3-7 write operation FSM of AXI4-lite

Chapter 3

23

Read Interface

The finite state machine states of read interface are illustrated in the table 3.4 and

figure 3-8

Description State State

Number

Idle state when AXI4-lite is not active IDLE 1

Wait for ARVALID signal to be high ADDR

WAIT

2

Handshaking is done and data is read from the

given address

DATA 3

Table 3-4Read Operation States Illustration

Figure 3-8 Read Operation FSM of AXI4-Lite

Chapter 3

24

3.3.2. AXI4 Interface

Description

AXI4 interface is the secondary interface with the core, this interface has access

only to two data registers in the Register Space; Transmit Data FIFO Data Write Port

(TDFD) and Receive Data FIFO Data read Port (RDFD), it provides independent read

and write channels where transactions take place on a two stage handshake which is

very similar to AXI4-Lite interface.

The AXI4 protocol is very similar to AXI4-Lite interface except it supports

more features; the AXI4 protocol supports three types of burst transactions specified by

the signal AxBURST and a configurable burst length up to 256 transfers in incremental

bursts and 16 transfers in fixed and wrapping bursts which is chosen by user and

signaled by AxLEN.

The supported data bus width in the core is configurable and can be 32 bits or 64 bits.

The protocol supports full bus width or narrow transfers where the number of

bytes used in data transfer are specified by the signal AxSIZE; however only bytes

containing valid data is stored in write transactions. Valid data is indicated by the

strobe signal where each bit corresponds to one byte of the data bus.

The AXI4 interface mainly deals with the data registers within the core where

all read/write operations are passed to the Register Space via the interface and

subsequently to data FIFOs if used has performed correct programming sequence, other

information about data like packet destination and packet length must be written into

core using AXI4-Lite interface.

Chapter 3

25

Interfacing

The AXI4 block contains I/O signals listed in Table 3-5.

Description Connection Port
mode

Port name

 Global interface clock User Input ACLK

Resets entire core User Input ARESET

Address of write transaction User Input AWADDR

Number of transfers in a write

transaction

User Input AWLEN

Number of bytes used in each

transfer in a write transaction

User Input AWSIZE

Write transaction burst type User Input AWBURST

Valid write address is available User Input AWVALID

Master ready to accept response User Input BREADY

Address of a read transaction User Input ARADDR

Number of transfers in a read

transaction

User Input ARLEN

Number of bytes used in each

transfer in a read transaction

User Input ARSIZE

Read transaction burst type User Input ARBURST

Valid read address is available User Input ARVALID

Master can accept read data User Input RREADY

Data of a write transaction User Input WDATA

Indicates bytes lanes which contain

valid data in a write transaction

User Input WSTRB

Valid write data is available User Input WVALID

Indicates last transfer in a write

transaction

User Output WLAST

Slave can accept write data User Output WREADY

Data of a read transaction User Output RDATA

Status of a read transaction User Output RRESP

Indicates last transfer in a read

transaction

User Output RLAST

Valid data is available User Output RVALID

Slave can accept read address User Output ARREADY

Chapter 3

26

Statues of a write transaction User Output BRESP

Valid response is available in a write

transaction

User Output BVALID

Slave can accept write address User Output AWREADY

Read enable signal Register

space

Output read_enable

Write enable signal Register

space

Output write_enable

Address of a write operation Register

space

Output write_address

Address of a read operation Register

space

Output Memory_address

Data of a write operation Register

space

Output data_in

Data of a read operation Register

space

Input data_out

Indicates which byte lanes contains

valid data in a write operation

Transmit

control

Output STROBE_OUT

Not used User Input WUSER

Not used User Input AWQOS

Not used User Input AWPROT

Not used User Input AWLOCK

Not used User Input AWUSER

Not used User Input ARQOS

Not used User Input ARPROT

Not used User Input ARLOCK

Not used User Input ARUSER

Not used User Output BUSER

Not used User Output BID

Not used User Input WUSER

Not used User Output RID

Table 3-5AXI4 I/O signals

Chapter 3

27

Functionality

The AXI4 interface is responsible for read/write operations from/into two

register in the Register Space (TDFD and RDFD); this is done through five channels

similar to AXI4-Lite interface.

This AXI4 protocol has 3 modes of operation (burst types) for write and read

transactions

1. Fixed Burst

2. Incrementing Burst

3. Wrapping Burst

Although AXI4- interface can support the three mode of operation; only fixed

bursts are used since user will have access to only one register in each path (transmit

path and receive path). Write and read transaction are performed by the same concept

illustrated in AXI4-Lite interface; however, since AXI4 supports more advanced

features; the write/read transactions are slightly different.

The Write operation is done as follows

 The Address of the intended register to be written in and burst information are

carried out on the Write Address Channel, when the handshake between the

AWVALID and AWREADY takes place, the core has read the address of the

register to be written in successfully and information about the transaction like

transaction size, length and burst type are stored.

 The actual data is written on the Write Data Channel, when the handshake

between the WVALID and WREADY takes place, this indicates that the core

has read the data successfully, this step is performed as many times as

transaction length.

 The core then replies with a Response signal to feedback the write transaction

statues and similarly BREADY and BVALID perform the handshake.

The Read operation is done as follows

 The Address of the intended register to be read from and burst information are

written on the Read Address Channel, and the handshake between the

ARVALID and ARREADY takes place, which indicates that the core has read

the control signals successfully.

 Data to be read is written from the core on the Read Data Channel, and the

handshake between the RVALID and RREADY takes place, which indicates

that the user has read the written data by the core successfully. This step is

performed as many times as transaction length.

Chapter 3

28

 The RRESP signal is signaled from core to feedback the read transaction

statues.

Write transaction over AXI4 channel is illustrated by the flow chart in figure 3-9

RESET = 0

AWVALID = 1

AWREADY = 1

No

Yes

Start

No

Yes

WVALID = 1
No

Ye

s

Store AWADDR, AWLEN, AWSIZE,

 WREADY = 1

Signal write_address, data_in

 ,write_enable=1

 Signal all output

signals their default

values

X

Store WDATA

Number of

transfers =

AWLEN

Yes

No

A

Chapter 3

29

Note: Resetting AXI4 at any point will result in going to start point (marked X at flow

chart)

A

Signal BRESP

BVALID=1

BREADY=1

END

Yes

No

Figure 3-9AXI4 Write tranasaction FlowChart

Chapter 3

31

Read transaction over AXI4 channel is illustrated by the flow chart in figure 3.10

Note: Resetting AXI4 at any point will result in going to start point (marked X at flow

chart

RESET = 0

ARVALID = 1

ARREADY = 1

No

Yes

Start

No

Yes

Number of

transfers=

ARLEN

No

Yes

Store data_out

 RVALID = 1

Signal RDATA, RRESP

X

End

 Signal all output

with their default

values

Signal read_address

Read_enable=1

Store ARADDR, ARLEN, ARSIZE, ARBURST

Figure 3-10 AXI4 Read transaction Flow Chart

Chapter 3

31

Implementation

AXI4 unit is divided into two main blocks as illustrated in the figure 3.11;

Write interface is responsible for write transactions and Read interface is

responsible for read transactions, AXI4 Interface is implemented by two finite state

machines.

Figure 3-11AXI4 block diagram

Chapter 3

32

Write Interface

The finite state machine of write operation states is illustrated in the table3-6 and

figure3-12

Description State State

Number

Idle state when write interface is not active IDLE 1

Valid address is stored Address wait 2

Waiting state for data to be available Wait for WVALID 3

Valid data is written Data wait 4

Waiting state for master to accept write

response

Response wait 5

Error state to feedback a slave error to master Slave error 6
Table 3-6Write operation states illustration

Data

wait

Idle

Resp flag = 1

Address

wait

Wait

for

WValid

Response

wait

Slave

error

A
R

E
S

E
T

=
0

ARESET=0

 or AWVALID=0

WVALID = 0

Figure 3-12Write Operation FSM of AXI4

Chapter 3

33

The finite state machine transition conditions are illustrated in the table 3-7

Condition Description Transition

condition

ARREST=0 Reset AXI4 interface and entire core Reset

AWVALID=1 Valid address and control signals are available Valid address

WVALID=1 Valid data is available Valid data

WLAST=1 Last transfer in a write transaction Last

BREADY=1 Master can accept write response Response ready

Error=1 Slave wishes to return an error condition to the

master

Slave error

Wflag=1 Master has exceeded a parameterized maximum

number of clock cycles without a data transfer

Time out write

error

Respflag =1 Master has exceeded a parameterized maximum

number of clock cycles without responding to

valid data

Time out

response error

Table 3-7AXI4 Write Interface FSM transition conditions illustration

The finite state machine outputs corresponding to each state are illustrated in the table

3-8

State number Outputs

6 5 4 3 2 1

1 1 0 0 1 0 AWREADY

0 0 1 0 0 0 WREADY

10 00 00 00 00 00 BRESP

1 1 0 0 0 0 BVALID
Table 3-8AXI4 write operation FSM outputs

Chapter 3

34

Read Interface

The finite state machine of read operation states are illustrated in the table.3.9 and

figure3.13

Description State State

Number

Idle state when AXI4-lite is not active IDLE 1

Wait for AVALID signal to be high R_ADR_WAIT 2

Wait for READY signal to be high R_DATA_WAIT 3

Move to this state if RBURST = “00” which

indicates fixed mode

R_DATA_FIX 4

Move to this state if RBURST = “01” which

indicates incrementing mode

R_DATA_INCR 5

Move to this state if RBURST = “10” which

indicates wrapping mode

R_DATA_WRAP 6

Move to this state after ending read transaction R_DATA_END 7

Responsible for informing correct or incorrect

read operation

R_RES 8

Table 3-9AXI4 Read operation states

Figure 3-13 AXI4 Read Operation FSM

Chapter 3

35

3.3.3. Register Space

Description

The Register Space contains all the registers that the user needs to interact with

the core whether through write or read operations to operate the block, it contains

thirteen registers where the AXI4-lite interface have access to the thirteen registers in

case of using AXI4-lite as data interface, while in case of using AXI4 as data interface

the AXI4-lite has access to eleven of the thirteen registers while the AXI4 has access

to the data interface registers Transmit Data FIFO Write port (TDFD) and the Receive

Data FIFO Read port (RDFD).

Interfacing

The I/O signal description is illustrated in Table 3-10

Port Name Port

mode

Connection Description

user_read_data

rg_read_address

user_read_enable

Output

Input

Input

AXI4-lite interface Outputs the stored value

in system registers to the

user

user_read_data_axi4

rg_read_address_axi4

user_read_enable_axi4

Output

Input

Input

AXI4 interface Outputs the value stored

in the RDFD register

ONLY to the user

user_write_data

rg_write_address

user_write_enable

Input

Input

Input

AXI4-lite interface Responsible of storing

the data written by the

user through the to the

register of the

corresponding address

user_write_data_axi4

rg_write_address_axi4

user_write_enable_axi4

Input

Input

Input

AXI4 interface Responsible of storing

the data written by the

user to the TDFD

register ONLY

Calc_TDFV

Calc_RDFO

Input

Input

Calculation unit The values of the

vacancy and occupancy

to be stored in the

corresponding registers

recieve_fifo_RDFD

recieve_fifo_RLR

recieve_fifo_RDR

Input

Input

Input

receive FIFO The values of the data,

length and destination to

be stored in the

corresponding registers

RDFD_en

RLR_en

RDR_en

Input

Input

Input

Input

Receive Control and

Transmit Control

The enable signals to

save the incoming data

to the corresponding

register

Chapter 3

36

TDFV_en

RDFO_en

Input

input_reset Input AXI4-lite interface The reset to the whole

core

Interrupt_service Input Interrupt Interface The interrupt status of

the system to be stored

in the ISR

RLR_read_trial Output Interrupt Interface Used to trigger receive

underrun read interrupt

Read_op Output Interrupt Interface Used to trigger receive

underrun interrupt

Reset Output All other modules The general reset to the

whole core which can be

triggered due to external

reset or writing 0xA5 to

SRR

Receive_reset Output Receive Control

Receive FIFO

Reset to the receive

blocks only which is

triggered due to writing

0xA5 to the RDFR

Transmit_reset Output Transmit Control

Transmit FIFO

Reset to the transmit

blocks only which is

triggered due to writing

0xA5 to the TDFR

ISR Output Interrupt Interface To generate the interrupt

bit

IER Output Interrupt Interface To generate the interrupt

bit

TLR Output Transmit Length

FIFO

Outputs the length

written by the user

TDR Output Transmit

Destination FIFO

Outputs the destination

written by the user
TDFD Output Transmit Data FIFO Outputs the data written by

the user
Table 3-10Register Space I/O signals

Chapter 3

37

Functionality

Register Space has thirteen registers that the user needs to operate the core, in the

following section a brief description of each register.

The description of each register is as follows:

Interrupt Service Register (ISR)

The System supports 13 different interrupts each is represented by one bit from

bit 19 to bit 31, The ISR structure is shown in Figure 3.14. The supported interrupts and

their corresponding bits in the ISR register are shown as follows in Table 3-11

Figure 3-14 Interrupt Service Register (offset 0x00)

Core Access: Read/Clear on Write

Reset Value: 0x01D00000

Description: returns the interrupts generated by the system

Bits Name Core Access Reset

Value

Description

0-

18

Reserve Read 0x0 Reserved for future definition

19 RFPE Read/

Clear on

write of 1

0 Receive FIFO Programmable Empty:
triggered when the difference between read and write pointer of

receive FIFO equals the Empty threshold

20 RFPF Read/

Clear on

write of 1

1 Receive FIFO Programmable Full: triggered when the

difference between read and write pointer of receive FIFO equals

the Full threshold

21 TFPE Read/

Clear on

write of 1

0 Transmit FIFO Programmable Empty: triggered when

the difference between read and write pointer of transmit FIFO

equals the Empty threshold

22 TFPF Read/

Clear on

write of 1

1 Transmit FIFO Programmable Full: triggered when the

difference between read and write pointer of transmit FIFO equals

the Full threshold

23 RRC Read/

Clear on

write of 1

1 Receive Reset Complete: the reset of receive logic has

completed

24 TRC Read/

Clear on

write of 1

1 Transmit Reset Complete: the reset of transmit logic has

completed

Chapter 3

38

25 TSE Read/

Clear on

write of 1

0 Transmit Size Error: triggered due to the mismatch of the

written length by the user and the actual length of the written data

in terms of number of words

26 RC Read/

Clear on

write of 1

0 Receive Complete: indicates the successful receive of one or

more packets

27 TC Read/

Clear on

write of 1

0 Transmit Complete: indicates that at least one transmit has

completed

28 TPOE Read/

Clear on

write of 1

0 Transmit Packet Overrun Error: triggered when an

attempt to write to the transmit FIFO while it's full, reset of

transmit logic is required to recover

29 RPUE Read/

Clear on

write of 1

0 Receive Packet Underrun Error: triggered when an

attempt is made to read receive FIFO while it's empty, reset of

receive logic is required to recover

30 RPORE Read/

Clear on

write of 1

0 Receive Packet Overrun Read Error: triggered when

the read of the current packet from the FIFO exceeds the packet

length, reset of receive logic is required to recover

31 RPURE Read/

Clear on

write of 1

0 Receive Packet Underrun Read Error: triggered when

an attempt to read the RLR when it's empty, reset of receive logic

is required to recover

Table 3-11Interrupt Service Register structure

Interrupt Enable Register (IER)

The Interrupt Enable Register acts as a mask for the ISR meaning only the

interrupts which have their corresponding bit set in the IER will be able to trigger the

interrupt bit

Figure 3-15 Interrupt Service Register (offset 0x00)

 Core Access: Write

Reset Value: 0x00000000

Description: Masks the interrupts generated by the system from affecting the interrupt bit

Chapter 3

39

Transmit FIFO Data register (TDFR)

TDFR is a write only register which when written with value 0xA5 generates a

reset to all the transmit blocks in the core, the reset cannot interrupt an ongoing

transmission of a packet and only takes place when the ongoing transmission is over.

Figure 3-16Transmit Data FIFO Reset Register (offset 0x8)

Core Access: Write

Reset Value: 0x00000000

Description: generates a reset upon writing 0xA5, other values have no effect

Transmit Data FIFO Vacancy Register (TDFV)

The Transmit Data FIFO Vacancy Register shown in Figure 3.17 is a read-only

register that gives the vacancy status of the Transmit Data FIFO. It stores the number

of locations free for data storage in the Transmit Data FIFO. The value stored (N) in

this register tells you that you can perform N writes to Transmit FIFO. The Register

Value increments by one but decrements by two for every two write locations.

Figure 3-17 Transmit Data FIFO Vacancy Register (offset 0xC)

Core Access: Read

Reset Value: Transmit FIFO Depth - 4

Description: gives the vacancy status of the Transmit Data FIFO

Transmit Data FIFO Data Write Port (TDFD)

The Transmit Data FIFO Data Write Port shown in Figure 3.18 is an N-bit

register for writing the data from the user into the Transmit Data FIFO. N is equal to

AXI 4 Data width which is by default 32.

Figure 3-18Transmit Data FIFO Data Write Port (offset 0x10)

Core Access: Write

Reset Value: 0x00000000

Description: stores the data written by the user to be stored in the Transmit FIFO

Chapter 3

41

Receive Data FIFO Reset Register (RDFR)

 RDFR is a write only register which when written with value 0xA5 generates

a reset to all the receive blocks in the core, the reset cannot interrupt an ongoing

reception of a packet and only takes place when the ongoing reception is over.

Figure 3-19 Receive Data FIFO Reset Register (offset 0x18)

Core Access: Write

Reset Value: 0x00000000

Description: generates a reset upon writing 0xA5, other values have no effect

Receive Data FIFO Occupancy Register (RDFO)

The Receive Data FIFO Occupancy Register shown in Figure 3.20 is a read-

only register that gives the number of locations occupied in the receive FIFO, the

value of RDFO is not updated except after full packet reception, returning 0 indicates

that the FIFO is empty while other values indicate the number of locations used by the

last successfully received packet.

Figure 3-20 Receive Data FIFO Occupancy Register (offset 0x1C)

Core Access: Read

Reset Value: 0x00000000

Description: reflects number of locations occupied by the latest received packet, returns 0 if no packets received

Receive Data FIFO Data Register (RDFD)

The Receive Data FIFO Data Read Port shown in Figure 3.21 is an N-bit

register for reading data from Receive Data FIFO. N equals AXI-4 Data width.

Figure 3-21 Receive Data FIFO Data Write Port (offset 0x20)

Core Access: Read

Reset Value: 0x00000000

Description: stores the data to be read by the user written in the Receive FIFO

Chapter 3

41

Transmit Length Register (TLR)

The Transmit Length Register shown in Figure 3.22 stores the length of the

packet to be transmitted in bytes, in case of store-and-forward mode the TLR is written

with length of the to be transmitted before the actual transmission of the packet, while

in cut-through mode the packet transmission begins as soon as the FIFO is not empty

while the TLR is only written before the transmission of the last beat of the packet.

Figure 3-22 Transmit Length Register (offset 0x14)

Core Access: Read

Reset Value: 0x00000000

Description: stores the length of the packet written by the user in the Transmit FIFO

Receive Length Register (RLR)

The Receive Length Register shown in Figure 3.23 stores length of the received

packet in bytes; value stored in RLR in store-and-forward mode represents packet

length and is updated when the packet is completely received, while in cut-through

mode the RLR stores the length of partial packets. Bit 31 is used to determine whether

the value stored is the length of a partial packet or a complete packet, if bit 31 equals

one then the stored value is that of a partial packet, while if bit 31 equals zero then

stored value is that of a complete packet.

Figure 3-23 Receive Length Register (offset 0x14)

Core Access: Read

Reset Value: 0x00000000

Description: stores the length of the packet to be read by the user written in the Receive FIFO

Chapter 3

42

AXI4-Stream Reset Register (SRR)

The AXI4-Stream Register shown in Figure 3.24 is a write-only address, which

when written with a specific value, generates an immediate reset for the entire core as

well as driving a reset on the external outputs, s2mm_prmry_reset_out_n,

mm2s_prmry_reset_out_n, and mm2s_cntrl_reset_out_n, which can be used to reset

the core on the other end of the AXI4-Stream.

Figure 3-24 AXI4-Sream Reset Register (offset 0x28)

Core Access: Write

Reset Value: 0x00000000

Description: generates a reset upon writing 0xA5 to the whole core

Transmit Destination Register (TDR)

The Transmit Destination Register shown in Figure 3.25 stores the destination address

corresponding to the packet to be transmitted.

Figure 3-25 Transmit Destination Register (offset 0x2C)

Core Access: Write

Reset Value: 0x00000000

Description: contains the destination written by the user

Receive Destination Register (RDR)

The Receive Destination Register shown in Figure 3.26 retrieves the destination

address corresponding to the valid packet received.

Figure 3-26 Receive Destination Register (offset 0x30)

Core Access: Read

Reset Value: 0x00000000

Description: contains the destination of the packet written from the AXI4-Stream Interface

Chapter 3

43

Implementation

In the Register Space, Registers written by the user and Registers written by

the system are mutually exclusive, same goes for Registers read by the user and

Registers read by the system, this is the with the exception of the ISR.

The user accesses registers using Address, Data and Enable signals, while the system

can access the registers directly by enable signals.

Not all Registers are fully accessible by the user; some Registers are read only while

others are write only as follows

Read Only Registers to the user: TDFV, RDFO, RDFD, RLR, RDR

Write Only Registers to the user: TDFR, TDFD, TLR, RDFR, SRR, TDR

Read – Write Registers to the User: ISR, IER

 Any illegal attempt to write to read only registers has no effect on the registers

value

 Any illegal attempt to read to write only registers returns output of zeros to the

user on the data bus

The block design of the Register Space is illustrated as follows in Figure 3.27

Figure 3-27 Register Space block diagram

Chapter 3

44

3.3.4. Transmit Control

Description

Transmit Control is a block in the Control Unit and is the intermediate block

between Transmit FIFO and Register Space. Block main responsibility is to allow data

written by user to transfer from Register Space into Transmit FIFO and subsequently

be transmitted over AXI-4 Stream interface; under the condition that user has

performed a correct programming sequence to transmit a packet.

The block also calculates TSE bit (transmit size error) in the ISR register by

calculating number of data bytes written in TDFD register and comparing this value to

the value written by user in TLR register, if there's mismatch in number of words the

block issues an error signal to Interrupt Interface.

Transmit Control block communicates with the following blocks; Transmit

FIFO, Interrupt Interface, AXI4/AXI-Lite Interface and Register Space.

 Transmit FIFO block contains three FIFOs; destination FIFO to store data

written in TDR register, Length FIFO to store packet length calculated

internally in Transmit Control and data FIFO to store actual data written in

TDFD register, wherefore Transmit Control block has three enable signals

connected to the three FIFOs. The block also calculates number of data bytes in

each data transfer and signals the value along with data enable signal; this value

is used by data FIFO to update its pointers and latch in only valid data in TDFD

register.

 (Since smallest packet can be 1 byte and TDFD register width equals data bus

width which can take only two values; 32 bits and 64 bits).

 Interrupt Interface is signaled TSE signal from Transmit Control.

 AXI4/AXI-Lite Interface has two signals used by Transmit Control to monitor

Register Space; write enable signal and write address signal, those two signals

are used to detect write operations in the Register Space performed by user

and therefore detect a correct programming sequence.

 Transmit Control is connected to some registers and bits in Register Space;

TLR register to calculate TSE bit, TPOE bit in the ISR register which can

push the block into lock state until user resets either the transmit circuitry or

the entire core. Register Space is responsible for resetting Transmit Control

when a user writes specific values in either SRR register or TDFR register.

Chapter 3

45

Interfacing

The Transmit Control block contains I/O signals listed in Table 3.12

Description Connection Port
mode

Port name

Global interface clock Interface Input Clk

Resets entire core Register Space Input reset_all

Resets transmit circuitry Register Space Input reset_tx

Enable write into register

space

Interface Input rg_write_enable

Write address to register

space

Interface Input rg_write_address

Transmit packet overrun

error

Register space Input Error

Data in the TLR register Register space Input rs_rdata_TLR

AXI4 Strobe signal AXI4 Interface Input Strobe

Transmit size error Interrupt

controller

Output TSE_Error

Enable for transmit data

FIFO

Transmit FIFO Output FIFO_wdata_enable

Enable for transmit data

length FIFO

Transmit FIFO Output FIFO_wlength_enable

Enable for destination

FIFO

Transmit FIFO Output FIFO_wdestination_enable

Number of data bytes in

one transfer

Transmit FIFO Output FIFO_len_data_Tx_fifo

Indicates when transmit

block logic is active

Register space Output Active

Calculated packet length Transmit FIFO Output packet_length_seq
Table 3-12 Transmit Control I/O signals

Chapter 3

46

Functionality

The block is responsible of performing the following two functions

1. Allow data flow from Register Space into Transmit FIFO when user performs

correct transmit programming sequence

2. Handle transmit size error (TSE) bit in the ISR register

The first function is performed by monitoring write operations done in three

registers in the Register Space; TDR register for packet destination, TDFD register for

data and TLR register for packet length.

To perform a correct, transmit programming sequence user must access the

three registers mentioned earlier in a specific order; first TDR, then TDFD which can

be accessed many times in order to write the packet by many transfers, then TLR

register. This functionality is performed by a Moore finite state machine.

When user performs correct programming sequence Transmit Control will

signal write enable signals to Transmit FIFO to permit the FIFOs to latch the data in

from Register Space.

The second function is performed by using strobe signal from AXI4/AXI4-Lite

data interface to calculate number of valid data bytes in each transfer, and hence

calculate packet length. If there’s mismatch in number of words between calculated

value and packet length written by user in TLR register taking into consideration partial

words; the block will issue a transmit size error signal to Interrupt Interface.

Since the standard doesn’t specify a certain action in case of a transmit size error

case, packet length stored in the Transmit FIFO is the calculated value not the value

entered by the user, this solution will prevent improper operation of interconnect for

the upcoming packets if the user doesn’t take any action in case of a transmit size error.

 Transmit programming sequence and hence Transmit Control operation is the

same in both modes of operation (store and forward mode and cut through

mode) and both data interfaces (AXI4 and AXI4-Lite).

 Writing correct programming sequence is the responsibility of the user. Wrong

programming sequence will push interconnect into stuck state and user will

need to reset transmit circuitry or entire core to retrieve proper operation of

interconnect.

Chapter 3

47

 Transmit Control doesn't require from the user to perform programming

sequence in minimum clock cycles.

Transmit Control block functionality is illustrated by the flow chart in figure 3.28

Chapter 3

48

Figure 3-28 Transmit Control functionality flow chart

- Resetting transmit circuitry or entire core at any point will result in going to

start point (marked X at flow chart)

- Wrong programming sequence will result in going to stuck point (marked Y at

flow chart)

Chapter 3

49

Implementation

Transmit Control unit is divided into two main blocks as illustrated in the figure

3.29; length_calc block is responsible for calculating packet length as number of bytes,

and Transmit_control block is responsible for performing a Moore finite state

machine to perform the two functions mentioned earlier with the help of length_calc

unit to calculate packet length and subsequently calculate TSE bit.

Figure 3-29 Transmit Control block diagram

length_calc Block

The block calculates number of valid data bytes in each transfer using strobe

signal from data interface chosen by user (AXI4/AXI4-Lite). The block is

parameterized by data bus width and calculates number of bytes by adding strobe signal

bits.

The block transmits two versions of the calculated value; FIFO_len_data is

connected to Transmit_control and represents actual number of data bytes and used to

calculate packet length, FIFO_len_data_Tx_fifo represents number of data bytes -1

and is connected to Transmit FIFO and used to indicate number of valid data bytes in

TDFD register and also write pointer of data FIFO is updated according to this value.

Chapter 3

51

Transmit_Control Block

The Moore finite state machine states are illustrated in the table 3.13 and figure 3.30

Description State State

Number

Idle state when transmit control is not active Idle 1

Signal destination write enable to Transmit FIFO State0 2

Wait for write operation in TDFD register State1 3

Signal data write enable to Transmit FIFO State2 4

Wait for write operation in either TDFD or TLR

registers

State3 5

Signal length write enable to Transmit FIFO State4 6

Signal TSE error to Interrupt Interface tranmsit_error 7

Stuck state when TPOE is high Stuck 8
Table 3-13Transmit Control FSM states illustration

Figure 3-30 Transmit Control FSM

Chapter 3

51

The finite state machine transition conditions are illustrated in the table 3.14

Condition Description Transition

condition

reset_all or reset_tx == 1 reset for transmit circuitry Reset

rg_write_enable &&

rg_write_address == 0x2C

write operation in TDR

register

TDR

for AXI4-Lite interface
rg_write_enable &&

rg_write_address == 0x10

for AXI4 interface

rg_write_enable &&

rg_write_address == 0x00

write operation in TDFD

register

TDFD

rg_write_enable &&

rg_write_address == 0x14

write operation in TLR

register

TLR

(packet_length << 𝐿𝑜𝑔2(word size))

+ partial_word_TC !=

 (rs_rdata_TLR<< 𝐿𝑜𝑔2(word size))

+ partial_word_TLR

- Note: word size can take only two

values; 32 bits and 64 bits

mismatch between TLR

value and packet size

calculates internally in

words

Transmit

size error

TPOE == 1 Transmit packet overrun

error

Error

Table 3-14Transmit Control FSM conditions

The finite state machine outputs corresponding to each state are illustrated in the table

3.15

State number Outputs

8 7 6 5 4 3 2 1

0 1 1 1 1 1 1 0 Active

0 1 0 0 0 0 0 0 TSE_Error

0 0 0 0 1 0 0 0 FIFO_wdata_enable

0 0 1 0 0 0 0 0 FIFO_wlength_enable

0 0 0 0 0 0 1 0 FIFO_wdestination_enable
Table 3-15Transmit Control FSM outputs

- Note: Whenever a user writes data into TDFD register during correct programming

sequence packet_length_seq will be updated to represent a current snapshot of the

packet length, but this value is latched in to Transmit FIFO only when

FIFO_wlength_enable is high to represent the actual packet length.

Chapter 3

52

3.3.5. Transmit FIFO Unit

Description

Transmit FIFO Unit is the intermediate unit between Transmit Control and

AXI4-Stream Transmit Data Channel. Unit main responsibility is to allow data written

by user to be stored when Transmit Control raises its enable signals and to allow data

stored to be read and subsequently be transmitted over AXI4-Stream Transmit Data

Channel.

Transmit FIFO Unit is divided into two Main blocks:

1. Transmit FIFO

This block contains three circular FIFOs as follows,

- Transmit Data FIFO (to store actual data written in TDFD register).

- Transmit Length FIFO (to store packet length calculated internally in

Transmit Control block).

- Transmit Destination FIFO (to store data written in TDR register).

2. Stream Mapper

- Responsible for transmitting packets over AXI4-Stream channel in the two

modes of operation (Store-and-Forward mode and Cut-Through mode).

Chapter 3

53

Interfacing

Transmit FIFO Unit contains I/O signals listed in Table 3.16

Description Connection Port
mode

Port name

Global interface clock Interface Input Tclk

Resets entire core Register

Space

Input Reset_All

Resets transmit logic Register

Space

Input RESET

Indicates that the slave can accept a

transfer in the current cycle

AXI4-Stream

Transmit Data

Channel

Input TREADY

Enable reading data from register

space (TDFD) & Write in Transmit

Data

Transmit

Control

Input WE_DATA

Enable reading Length from

Transmit Control & Write in

Transmit Data

Transmit

Control

Input WE_L

Enable reading Destination from

register space (TDR) & Write in

Transmit Data

Transmit

Control

Input WE_D

Number of valid data bytes read

from register space(TDFD) and

stored into Transmit FIFO

Transmit

Control

Input W_byte

Data in the TDFD register

Width [63:0]

Register space

(TDFD)

Input data_in_F

Packet length

Width [31:0]

Register space

(TLR)

Input data_in_L

Packet destination

Width [3:0]

Register space

(TDR)

Input data_in_D

indicates if Data FIFO is

empty =1 or not =0

Interrupt

controller

Output fifo_empty

indicates if Data FIFO is

full =1 or not =0

Interrupt

controller

Output fifo_full

Represents number of empty bytes

in Transmit Data FIFO

calc_unit Output fifo_occpancy

Indicates that the master is driving

a valid transfer. A transfer takes

place when both TVALID and

TREADY are asserted

AXI4-Stream

Transmit Data

Channel

Output TVALD

Destination AXI Stream Identifier

and Provides routing information

for the data stream

AXI4-Stream

Transmit Data

Channel

Output TDES

Chapter 3

54

The primary payload that is used to

provide the data that is passing

across the interface. The width of

the data payload is an integer

number of bytes 32-bytes.

AXI4-Stream

Transmit Data

Channel

Output TDATA

The byte qualifier that indicates

whether the content of the

associated byte of TDATA is valid.

For a 32-bit DATA, bit 0

corresponds to the least significant

byte on DATA, and bit 3

corresponds to the most significant

byte

AXI4-Stream

Transmit Data

Channel

Output TKEEP

TUSER: User-defined sideband

information that can be transmitted

with the data stream

(not used)

AXI4-Stream

Transmit Data

Channel

Output TUSER

The data stream identifier that

indicates different streams of data

(not used)

AXI4-Stream

Transmit Data

Channel

Output TID

The byte qualifier that indicates

whether the content of the

associated byte of TDATA is

processed as a data byte or a

position byte

(not used)

AXI4-Stream

Transmit Data

Channel

Output TSRB

TLAST: Indicates the boundary of

a packet

AXI4-Stream

Transmit Data

Channel

Output TLAST

Reset for the AXI4-Stream

Transmit data interface

AXI4-Stream

Transmit Data

Channel

Output TRESET

Indicate that the reset operation has

done

Interrupt

Interface /

Transmit

FIFO

Output RESET_COMPLETE

Table 3-16Transmit FIFO Unit I/O signals

Chapter 3

55

Functionality

 Transmit FIFO Block

Transmit FIFO block contains three circular FIFOs, the block is responsible for

performing the following functions,

1. Allow data written in the Register Space (TDFD, TLR and TDR register) to be

stored into Transmit FIFO when Transmit Control raises write enable signals

2. Allow data stored into Transmit FIFO to be read, and transmitted over AXI4

Stream Interface.

The first function is performed in three steps

1. By monitoring WE_DATA and W_byte raised by Transmit Control, when

WE_DATA is high and there is enough space in Transmit data FIFO to perform

a write operation; data is stored and Next_Position_W is updated to determine

the location of the next write operation using W_byte which is used to

determine number of data bytes stored into data FIFO and accordingly update

write pointer.

2. Data written in TDR register is stored into destination FIFO when WE_D is

high

3. Packet length calculated internally in Transmit Control is stored into length

FIFO when WE_L is high

The second function is performed as follows,

By monitoring R_en and number_byte_R rised by AXI-4 Stream Mapper,

when R_en is high and there is enough data in Transmit FIFO to be read. Then

Next_Position_R is used to determine the location of the next read operation.

Data stored into destination and length FIFOs is read similarly, but it’s a lot simpler

since data stored in those FIFOs have fixed size.

Chapter 3

56

Transmit FIFO block consist of:

1. Memory block

2. Next_Position_W block: Main Functionality is to calculate the location of the

next write operation.

3. Next_Position_R block: Same as Next_Position_W block but calculates

location of the next read operation by Stream Mapper.

4. Check Full_empty block which has the following functions,

- Detect if Transmit data FIFO is Full or not.

- Detect if Transmit data FIFO is Empty or not.

Next position Calculation for read/write operation from/into FIFO is illustrated by

the flow chart in figure 3.31

Figure 3-31 Detecting Next position read/write flow chart

Chapter 3

57

Notes:

- # Bytes  number of bytes to be read/written from/into transmit FIFO.

- # Bytes at the end of FIFO  number of Bytes that can be read/written from/into the

FIFO if it was non-circular FIFO, i.e. before read/write pointers are set to zero and

write/read operations start from first location again.

- In the Transmit Length FIFO and Transmit Destination FIFO write and read

operations have fixed size. Length FIFO read/write operation size is 32 bits and as

for Destination FIFO, read/write operations are of size 4-bits. So #Bytes not used.

- In the Transmit Length FIFO and Transmit Destination FIFO when read enable

signal is high data is read in the same clock cycle, while in transmit Data FIFO

data is read in the next cycle.

Check Full and Empty block functionality is illustrated by the flow chart in

figure 3.32

Figure 3-32 Check Full and Empty of FIFO flow chart

Note:

- Each cycle if read/write operations occurred; Capacity and Occupancy are updated

and check Full and Empty operation is performed again.

Chapter 3

58

Write /Read operations in Transmit FIFO is illustrated by the flow chart in figure 3.33

Figure 3-33Write /Read operation in Transmit FIFO flow chart

Chapter 3

59

Notes

- If RESET_COMPLETE is high resetting operation is allowed to be performed,

this can happen if the user resets entire core or if the user have issued a reset

signal but a packet was being transmitted over stream interface at this time so

when the packet is fully transmitted this signal is high to indicate that resetting

operation is allowed to be performed

- Checking number of bytes required to be written is less than vacancy of transmit

data FIFO is to make sure that there is enough space in data FIFO to store one

transfer, while in case of writing data into transmit length/destination FIFO there’s

no need to check for this condition, as one transfer is fixed and equals one

location; so it's sufficient to check that transmit length/destination FIFO is not full.

- In case of performing a read operation there’s no need to check that number of

bytes required to be read is less than occupancy of data FIFO; this is because

packet length is first read from length FIFO and then data read from data FIFO

corresponds to the packet length

Chapter 3

61

Stream Mapper

The block is responsible for performing the following functions:

1- Read Destination, Data and Length from Transmit FIFO block

2- Enable data to be transmit over AXI4-Stream Transmit Data Channel in two

modes:

- Store-and-forward mode, packet transmission begins on the AXI4-Stream

interface in the following circumstances:

 When the complete packet is written to the FIFO,

 Length of packet is written to TX Length Register (TLR).

In this mode, the size of the FIFO must be large enough to hold the complete

packet. In this mode The main function of the block is to monitor the

empty_L signal until it's low (this condition means a complete packet is

stored in transmit data FIFO and the corresponding packet length is stored

into length FIFO), when this happen Stream Mapper issues TVALD and

wait until TREADY become high than Data can be Transmitted over AXI4-

Stream Transmit Data Channel.

- Cut-through mode, packet transmission begins on the AXI4-Stream

interface when there is enough data in the transmit data FIFO.

In this mode, the FIFO does not need to hold the complete packet before

transmission starts over stream interface. However, the block must ensure

that the last beat of data is transmitted when the packet length is written by

user into TLR register.

The main function of the block in this mode is performed by monitoring

empty_Data signal until it's low (this condition means there is data stored

into Transmit Data FIFO), but transmission operation will not start until the

data in the Transmit Data FIFO is enough (this condition is satisfied if

capacity of Data FIFO is larger than width of TDATA or capacity of Data

FIFO is smaller than or equal width of TDATA but empty_L is low and

also data_out_L equals capacity), Then Stream Mapper raise TVALD and

waits until TREADY become high to start data transmission over AXI4-

Stream Transmit Data Channel. The last transfer can't be transmitted over

AXI4-Stream Transmit Data Channel until the length of packet is written in

Transmit Length FIFO.

If Reset signal is low and a packet is being transmitted over AXI4-Stream

Transmit Data Channel, the resetting operation can’t be performed until the packet

is fully transmitted, after this condition is satisfied RESET_COMPLETE signal

Chapter 3

61

is raised high to indicate that the resetting operation is performed, while if

Reset_All signal becomes low the reset operation is performed immediately even

if a packet was being transmitted over stream interface.

Packet transmission over AXI4-Stream Transmit Data Channel in Store and Forward

mode illustrated by the flow chart in figure 3.34

Figure 3-34 Store and forward mode flow chart

Acknowledged transmission over AXI4-Stream Transmit Data Channel in Cut-

through mode illustrated by the flow chart in figure 3.35

Chapter 3

62

Figure 3-35 Cut-through mode flow chart

Chapter 3

63

Implementation

Transmit FIFO Unit is divided into four main blocks as illustrated in the figure 3.36

Figure 3-36 FIFO and Stream Mapper block

Chapter 3

64

Transmit FIFO Block

Transmit Data FIFO block is divided into four main blocks as illustrated in the figure 3.37

1- Memory

2- Next_Position_W

3- Next_Position_R

4- Check full_empty

Figure 3-37 Transmit Data FIFO

Chapter 3

65

Stream Mapper Block

Stream Mapper is implemented by a mealy finite state machine, the finite state

machine supports two modes of operation (Store-and-Forward mode and Cut-Through

mode). Figure 3.38 shows part of the finite state machine to illustrate block

performance in store and forward mode.

Figure 3-38 Store and forward mode finite state machine

Figure 3.39 shows part of the finite state machine to illustrate block performance in

cut through mode.

Chapter 3

66

Figure 3.40 shows Stream Mapper finite state machine in the two modes of operation

Fi
gu

re
 3

-3
9

 C
u

t-
th

ro
u

gh
 m

o
d

e
fi

n
it

e
st

at
e

m
ac

h
in

e

Chapter 3

67

Fi
gu

re
 3

-4
0

 S
tr

ea
m

 M
ap

p
er

 f
in

it
e

st
at

e

m
ac

h
in

e

Chapter 3

68

Table 3.17 illustrates the states of the Stream Mapper FSM

State 0

IDLE_All

Description:

Initial state of the system, in this state mode of operation is detected; at any state if

Reset_All is low system will return to this state.

Condition Description Next

state

Output

Reset_All=0 Reset core IDLE_All TVALD=0

TLAST=0

Reset_All=1

enable_cut_through=0

Store and forward

mode

IDLE

TVALD=0

TLAST=0

Reset_All=1

enable_cut_through=1

Cut through mode IDLE_C

TVALD=0

TLAST=0

State 1

IDLE

Description

This is the initial state for a Store-and-Forward mode of operation, When the

transmit length FIFO is not empty this indicates that at least one complete packet is

received and stored in the transmit data FIFO. In this state packet length is read bur

transmission over AXI4-Stream Transmit Data Channel starts when TREADY is

high.

Condition Description Next

state

Output

Reset_All=0 Reset core IDLE_All TVALD=0

TLAST=0

RESET=0 Transmit reset

IDLE TVALD=0

TLAST=0

RESET_COMPLETE=1

RESET=1

empty_L=1

No complete packet

IDLE TVALD=0

TLAST=0

RESET_COMPLETE=0

RESET=1

empty_L=0

Axi4 stream not

ready to transmit

READY

TVALD=0

TLAST=0

State 2

READY

Description

This is a waiting state until TREADY is high. When this condition is satisfied

TVALD is raised, packet destination and first transfer of the packet is transmitted

along with TKEEP signal.

Condition Description Next

state

Output

Reset_All=0

Reset core IDLE_All TVALD=0

TLAST=0

Chapter 3

69

RESET=0

Reg_TREADY=0

Transmit reset

IDLE

TVALD=0

TLAST=0

Len  1:4

Reg_TREADY=1

Next transfer is the

last

IDLE TVALD=1

TLAST=1

Out TDES

Out TDATA

RESET=1

Reg_TREADY=0

Axi4 stream not

ready to transmit

READY

TVALD=0

TLAST=0

Len>8

Reg_TREADY=1

reset of packet is

larger than stream

width

WRITE

TVALD=1

TLAST=0

Out TDES

Out TDATA

Len1>=0

Len1<=4

Reg_TREADY=1

Reset of packet is

less than or equal

stream width

LAST TVALD=1

TLAST=0

Out TDES

Out TDATA

State 3

WRITE

Description

Rest of the packet is transmitted in this state except for the last beat of data, using

packet length to decide number of bytes read from data FIFO.

Condition Description Next state Output

Reset_All=0 Reset core IDLE_All TVALD=0

TLAST=0

Len1>4

TREADY=1

Reset of packet is

larger than stream

width

WRITE

TVALD=1

Out TDATA

TLAST=0

TREADY=0 Axi4 stream not

ready to transmit

WRITE TVALD=1

TLAST=0

Len1=1:4

TREADY=1

Next transfer is the

last

LAST TVALD=1

Out TDATA

TLAST=0

State 4

LAST

Description

Last beat of data in transmitted in this state along with TLAST signal, if reset

signal was low RESET_COMPLETE signal is raised and Transmit Unit is reset.

IF transmit length FIFO is not empty this means that a new packet is received and

ready to be transmitted and next_state is READY if TREADY signal is high, if

length FIFO is empty block will go back to IDLE state.

Condition Description Next state Output

Reset_All=0 Reset core IDLE_All TVALD=0

TLAST=0

Chapter 3

71

RESET=1

empty_L=1

Reg_TREADY=0

No complete packet

transmit reset

IDLE Out TDATA

TVALD=1

TLAST=1

TREADY=0 Axi4 stream not

ready to transmit

LAST

RESET=1

empty_L=1

Reg_TREADY=1

Complete packet

exact

READY

State 5

IDLE_C

Description

This is the initial state in Cut-Through mode of operation. If transmit data FIFO is

not empty this indicates that a partial packet is stored in the transmit data FIFO, if

the occupancy of transmit data FIFO is less than or equal TDATA Width,

transmission over AXI4-Stream Transmit Data Channel will not start until

occupancy of transmit data FIFO is higher than TDATA Width, or transmit length

FIFO is not empty to ensure that the last beat of data in only transmitted when

packet length is entered by user.

Condition Description Next state Output

Reset_All=0 Resest core IDLE_All TVALD=0

TLAST=0

RESET=0

Transmit reset

IDLE_C TVALD=0

TLAST=0

RESET_COMPLETE=

1

RESET=1

empty_Data=1

No data IDLE_C TVALD=0

TLAST=0

RESET_COMPLETE=

0

empty_Data=0

empty_D=0

TREADY=0

Axi4 stream not

ready to transmit

READY_C

TVALD=1

TLAST=0

RESET=1

TREADY=1

empty_D=0

empty_Data=0

empty_L=1

capacity<= 4

No enough data to

start transmit

Wait

TVALD=0

TLAST=0

RESET=1

TREADY=1

empty_D=0

empty_Data=0

capacity> 4

Enough data to

start transmit

Write_C TVALD=0

TLAST=0

RESET=1

TREADY=1

empty_D=0

empty_Data=0

empty_L=0

Packet with length

<= TDATA width

Last_C

TVALD=1

TLAST=0

Chapter 3

71

capacity<= 4

State 6

READY_C:

Description

This is a waiting state until TREADY signal becomes high.

Condition Description Next state Output

Reset_All=0 Reset core IDLE_All TVALD=0

TLAST=0

Error=1 Error IDEL_C TVALD=0

TREADY=0 Axi4 stream not

ready to transmit

READY_C TVALD=0

TLAST=0

capacity<= 4

empty_L=1

No enough data to

transmit

Wait

TVALD=0

TLAST=0

capacity> 4

empty_L=0

data_out_L>4

Or

capacity> 4

empty_L=1

Enough data to

start transmit

Write_C

TVALD=0

TLAST=0

capacity> 4

empty_L=0

data_out_L<=4

or

capacity<=4

empty_L=0

Next transfer is the

last

Last_C

TVALD=0

TLAST=0

State 7

Wait

Description

This is a waiting state until occupancy of transmit data FIFO is more than TDATA

width or transmit length FIFO becomes not empty

Condition Descriptio

n

Next state Output

Reset_All=0 Reset core IDLE_All TVALD=0

TLAST=0

TREADY=0

or

RESET=1

TREADY=1

empty_L=1

capacity<=4

Axi4

stream not

ready to

transmit or

No enough

data to

transmit

Wait

TVALD=0

TLAST=0

 Error=1 Error IDEL_c TVALD=0

TLAST=0

RESET=1

TREADY=1

Enough

data to

Write_C

TVALD=0

TLAST=0

Chapter 3

72

capacity> 4 continue

transmit

RESET=1

TREADY=1

capacity> 4

(packet_len=data_out_L-4)||

(packet_len> data_out_L- 4)

&packet_len< data_out_L

Or

RESET=1

TREADY=1

capacity<= 4

empty_L=0

Next

transfer is

the last

Last_C

TVALD=0

TLAST=0

State 8

Write_c

Description

In this state TVALD is raised, destination and of data are transmitted along with

TKEEP signal until occupancy of data FIFO is less than or equal TDATA width or

transmit length FIFO becomes not empty, when this condition is satisfied block

moves to LAST_c state under the condition that packet length is received.

Condition Description Next state Output

Reset_All=0 Reset core IDLE_All TVALD=0

TLAST=0

Error=1 Error IDEL_C TVALD=0

TREADY=0 Axi4 stream not

ready to transmit

Write_c

TREADY=1

capacity> 4

empty_L=1

length_c=0

Or

TREADY=1

capacity> 4

empty_L=0

length_c=0

packet_len=4

packet_len<length_c-4

Or

TREADY=1

capacity> 4

length_c>0

packet_len<length_c-4

Enough data to

continue

transmit

Write_c TVALD=1

Out TDES

Out TDATA

TREADY=1

capacity<= 4

empty_L=1

length_c=0

No enough data

to continue

transmit

Wait

TVALD=0

TLAST=0

Chapter 3

73

TREADY=1

capacity<= 4

empty_L=1

length_c>0

Or

TREADY=1

capacity> 4

length_c>0

packet_len<length_c- 4

Or

TREADY=1

capacity<= 4

empty_L=0

Next transfer is

the last

Last_C

TVALD=1

TLAST=0

State 9

Last_c

Description:

In this state last beat of data is transmitted along with TLAST signal, if reset signal

is low RESET_COMPLETE is raised and Transmit FIFO Unit is reset.

If transmit data FIFO is not empty, a partial packet is stored in the transmit Data

FIFO. If the capacity of transmit data FIFO is less than or equal TDATA width,

transmission over AXI4-Stream Transmit Data Channel will not start until capacity

of transmit data FIFO is higher than TDATA width, or transmit length FIFO not

empty.

Condition Description Next state Output

Reset_All=0 Reset core IDLE_All TVALD=0

TLAST=0

TREADY=1

RESET=0

Or

TREADY=1

RESET=1

empty_Data=1

No data

or transmit

reset

IDEL_C TVALD=1

TLAST=1

Out TDES

Out TDATA

Error=1 error

IDEL_C TVALD=0

TLAST=0

RESET=1

TREADY=1

empty_D=0

empty_Data=0

Data

located in

FIFO but

stream not

ready

READY_C

TVALD=1

TLAST=1

Out TDES

Out TDATA

RESET=1

TREADY=1

capacity<= 4

empty_D=0

empty_Data=0

empty_L=1

Or

RESET=1

TREADY=1

capacity<= 4

No enough

data to start

transmit

Wait

TVALD=1

TLAST=1

Out TDES

Out TDATA

Chapter 3

74

empty_D=1

empty_Data=0

empty_L=1

RESET=1

TREADY=1

capacity> 4

empty_L=0

empty_D=0

empty_Data=0

data_out_L>4

length_c=0

or

RESET=1

TREADY=1

capacity> 4

empty_L=1

empty_D=0

empty_Data=0

Enough

data to start

transmit

Write_C TVALD=1

TLAST=1

Out TDES

Out TDATA

RESET=1

TREADY=1

capacity> 4

empty_L=0

empty_D=0

empty_Data=0

length_c=0

data_out_L<=4

Or

RESET=1

TREADY=1

capacity<= 4

empty_L=0

empty_D=0

empty_Data=0

Next

transfer is

the last

Axi4

Last_C TVALD=1

TLAST=1

Out TDES

Out TDATA

TREADY=0 stream not

ready to

transmit

Last_C

Table 3-17 Stream Mapper FSM states

Chapter 3

75

3.3.6. Stream Receive Interface

Description

Stream Receive Interface is the first block in the received data flow of the

receive path of AXI4-Stream FIFO. It’s the intermediate block between the external

Stream interface and the Receive FIFO. The main responsibility of the Stream Receive

Interface is to receive data in form of packets and their destination from the external

Stream interface, calculate the received packet length and write data, destination and

packet length into Receive FIFO.

Receive Stream Interface block communicates with external Stream interface

and the Receive FIFO.

Receive Stream Interface has one enable signal connected to the Receive FIFO

block. The block also calculates number of data bytes in each data transfer and signals

this value along with the enable signal to the Receive FIFO (the calculation will be

multiple of the data width in bytes as the data width of Receive FIFO and Receive AXI

Stream is considered to be the same).

Chapter 3

76

Interfacing

The I/O signals of Receive AXI Stream is listed in Table 3.1

Description Connection Port mode Port name

Global interface clock Interface Input TCLK

Resets entire core Register Space Input TReset

Resets receive logic Register Space Input TReset_rx

Enables handshaking with

Receive AXI Stream

External stream

Interface

Input TVALID

Receives data during

handshaking

External stream

Interface

Input TData_in

Receives destination during

handshaking

External stream

Interface

Input TDest

AXI4 Keep signal External stream

Interface

Input TKeep

Determines the end if the

transaction

External stream

Interface

Input TLast

Enables handshaking with

External stream Interface

External stream

Interface

Output TReady

Indication that data FIFO

is full to stop handshaking

Receive FIFO Input Data_fifo_full

Length written in length FIFO Receive FIFO Output Packet_length

Data written in data FIFO Receive FIFO Output TData

Enable for destination, data

and length FIFOs

Receive FIFO Output Pass_length

Resets calculation of the

packet length

Receive FIFO Output Length_reset

Table 3-18 Receive AXI4 Stream I/O signals

Chapter 3

77

Functionality

The block is responsible for performing the following functions

1. Receive data, destination and length from external stream interface

2. Calculate the packet length

3. Enable writing in Receive FIFO

4. Determining whether the packet is partial packet or complete packet in cut

through mode.

External Stream interface as any AXI4 Stream will contain some essential signals:

 TValid: signal that will enable or start handshaking with Stream Receive

Interface.

 TReady: signal that indicates that Stream Receive Interface is ready to send

data and destination to it.

 TKeep: signal that determines the position and data bytes.

 TLast: signal that determines the end of the transaction.

So the first function is performed by handshaking with the external interface by

TValid and TReady, so the data and destination will be transferred to Stream Receive

Interface. The handshaking is stopped if data FIFO is full.

The second function is performed by checking the pass_length signal that will

be equal to 1 during handshaking then packet length will be calculated as follows:

Packet length (in bytes) = no of data transactions received * data width in bytes

The calculation will stop if length_reset signal is equal to 1 at the end of the

transaction, means the packet has ended.

The third function is also performed by checking pass_length signal that will be

equal to 1 during handshaking then it data, destination and length will be written in the

Receive FIFO, then the writing will stop if length_reset signal is equal to 1 at the end

of the transaction.

The fourth function is performed by assigning the 31st bit of packet length to 1

if the packet is not completed then assign the bit to 0 if the packet is completed which

will happen at the end of the transaction (end of packet when TLast=1)

Chapter 3

78

The functionality of Receive AXI Stream block is illustrated in the flow chart in

figure 3..5

Figure 3-41 AXI4-Stream interface flow chart

Chapter 3

79

Implementation

Receive AXI Stream block shown in figure 3.42 is using a Moore finite state machine to

perform the functions mentioned earlier.

Figure 3-42Receive AXI4 Stream block

Receive AXI Stream Finite State Machine

The Moore finite state machine states are illustrated in the table 3.19 and figure 3.43

Description State

Idle state when Receive Stream is not active Idle

Waiting for Data after TValid is asserted from

external interface to start transaction

Data wait

Wait for TValid during transaction Data wait for Tvalid

Table 3-19Receive AXI4 Stream FSM states

Figure 3-43 Receive AXI4 Stream FSM

Chapter 3

81

The finite state machine transition conditions are illustrated in the table 3.20

Condition Description Transition

condition

reset or reset_rx == 1 reset for receive circuitry Reset

TValid and !data_fifo_full Write in data FIFO Write
Table 3-20Receive AXI4 Stream FSM conditions

The finite state machine outputs corresponding to each state are illustrated in table

3.21.

Table 1.14: Receive AXI Stream FSM outputs

State number Outputs

Data wait

For TValid

Data

wait

Idle

0 1 0 TReady

0 0 1 Length_reset

0 1 0 Pass_length
Table 3-21 Receive AXI4 Stream FSM outputs

Chapter 3

81

3.3.7. Receive FIFO

Description

Receive FIFO is the second block in the data flow of the receive path of AXI4-

Stream FIFO and is the intermediate block between the Stream Receive Interface and

other blocks in the receive flow. Block main responsibility is to store data, destination

and length for each packet from Stream Receive interface, and it allows the Receive

control block to read from FIFOs.

Receive FIFO block contains three FIFOs:

 Destination FIFO to store destination from Stream Receive Interface

 Length FIFO to store packet length calculated internally in Stream Receive

Interface

 Data FIFO to store data from Stream Receive Interface.

Receive FIFO block communicates with three blocks which are:

 Receive control: Receive FIFOs enable Receive Control to read destination,

data and length from them.

 Interrupt Interface: Interrupt Interface sets the Receive FIFO Programmable

Empty (RFPE - bit 19 in ISR) to 1 if data FIFO is empty and sets Receive FIFO

Programmable Full (RFPF – bit 20 in ISR) to 1 if data FIFO is full according

to the Receive FIFO information.

 Register Space: Data from Receive data FIFO is passed to RDFD register,

while destination is passed to RDR and length to RLR.

Chapter 3

82

Interfacing

The I/O signals of Receive AXI Stream is listed in Table 3.22

Functionality

Description Connection Port Port name
Global interface clock Interface Input CLK

Resets entire core Register space Input Reset

Resets receive logic Register space Input Reset_rx

Input data from Stream

Receive Interface

Stream Receive

Interface

Input Data_in

Input length from Stream

Receive Interface

Stream Receive

Interface

Input Length_in

Input destination from

Stream Receive Interface

Stream Receive

Interface

Input Dest_in

Enable to write in FIFOs Stream Receive

Interface

Input Pass

Indication of the end of the

transaction in Stream

Receive Interface

Stream Receive

Interface

Input Length_reset

Enable to read data from

data FIFO

Receive Control Input Data_rd_enable

Enable to read length from

length FIFO

Receive Control Input Length_rd_enable

Enable to read destination

from destination FIFO

Receive Control Input Dest_rd_enable

Output data from data

FIFO

Register space Output Data_out

Output length from length

FIFO

Register space

Receive Control

Output Length_Out

Output destination from

destination FIFO

Register space Output Dest_Out

Indication that data FIFO

Is full

Interrupt Interface Output Data_fifo_full

Indication that data FIFO

Is empty

Interrupt Interface Output Data_fifo_empty

Indication that length FIFO

is empty

Receive Control Output Length_fifo_empty

Reset of the receive logic is

completed

Interrupt Interface Output Reset_rx_complete

Length of last completed

packet

Calculation Unit Output Prev_location

Table 3-22Receive FIFO I/O signals

Chapter 3

83

The block is responsible for performing the following functions

1. Enable Stream Receive Interface to write in FIFOs

2. Enable Receive Control to read from FIFOs

3. Determining that FIFOs are full or empty

4. Determining the Receive data FIFO occupancy (RDFO)

As mentioned earlier. Receive FIFO contains three FIFOs; data, length and

destination. Each FIFO has read and write pointers so locations can be read from and

written into.

So the first function is performed by the pass signal from Stream Receive

Interface that is an enable to write in the FIFOs. Writing in each FIFO will be explained

in the following paragraphs.

 Writing in data FIFO is very simple as if it is not Full, the data is written to the

location determined by data write pointer and data write pointer is increased by

one.

 Writing in destination FIFO is similar to data FIFO as if it is not Full, the

destination is written to the location determined by destination write pointer and

destination write pointer is increased by one only at the end of the transaction

determined by length_reset signal.

 Writing in length FIFO is different from data and destination FIFO as AXI4-

Stream FIFO has two mode as follows:

1. Store and forward: writing only happens at the end of the transaction

determined by length_reset signal and length write pointer is increased by

one if FIFO is not full.

2. Cut through: writing in same location the length received from Stream

Receive Interface during transaction then length write pointer is increased

by one at the end of the transaction determined by length_reset signal if

FIFO is not full.

Chapter 3

84

The second function is performed by three enable signals; one signal for each

FIFO from Receive Control. Reading from each FIFO will is explained as follows:

 Reading from data FIFO is as simple as writing as if data_rd_en signal is

asserted from Receive Control, the data is read from location determined by

data read pointer and data read pointer is increased by one only if data FIFO is

not empty.

 Reading in length FIFO is also different from data FIFO as if length_rd_en

signal is asserted from Receive Control, the length is read from location

determined by length read pointer then determining that the packet is completed

or not by 31st bit in length.

1. If this bit is equal to 0 which means the packet is completed, length read

pointer is increased by one only if length FIFO is not empty.

2. If this bit is equal to 1 which means the packet is not completed yet, length

read pointer is in the same location.

 Reading from destination FIFO is similar to length FIFO as If dest_rd_en signal

is asserted from Receive Control, the destination is read from location

determined by destination read pointer then determining that the packet is

completed or not by 31st bit in length using the same technique mentioned

above.

The Third function is performed by calculating the difference between write

and read pointers. The full signal is asserted if the difference is equal or more than the

full threshold and the Empty signal is asserted if the difference is equal or less than

empty threshold.

The fourth function is performed by viewing the last complete packet written

in length FIFO so that it will be an indication of the occupancy in data FIFO.

Chapter 3

85

Implementation

 The implementation of Receive FIFO is illustrated by the block diagram in figure 3.44

Figure 3-44Receive FIFO block

Chapter 3

86

3.3.8. Receive Control

Description

Receive Control is the second block in the Control Unit and it is the block that

handles communication between Receive FIFO and the registers related to the receive

path in the Register Space. Block main responsibility is to allow data written by Stream

interface to be transferred from Receive FIFO into Register Space and subsequently be

passed to AXI4/AXI4-Lite interface; under the condition that user has performed a

correct programming sequence to receive each packet correctly.

Basic idea of the receive control unit is to always be one step ahead the user.

The user sequence is done by using the correct handshake of the AXI4-Lite interface

and to access the register space using a write/read enable and register address. Every

read or write in the register space through the interface is a step in the programming

sequence and each performed step in the receive logic triggers the next one’s data to

be ready so that the user’s data is ready before asking for it to enable faster operation.

Receive Control block communicates with the following blocks:

 AXI4/AXI-Lite interface: Communication with AXI4/AXI4-Lite interface is a

one-way communication; means that the receive control block only use values

from AXI4/AXI4-Lite interface to check for proper input programming

sequence and to activate the receive logic sequence.

 Receive FIFO and Register Space: Communication with Receive FIFO, and

Register Space is necessary to enable data transfer from the receive FIFO into

the main receive registers in the register space; RDFD, RLR, RDR in the correct

sequence. According to this, data types can be classified into three types; packet

data (actual data), destination and length (exactly as receive FIFO classification

specified earlier). Register space is responsible for resetting Receive Control

when a user writes specific values in either SRR register or RDFR register,

 Interrupt Controller: Receive control calculates two interrupts for the Interrupt

Interface to be added in the ISR; the first is RC (Receive Complete) that

indicates that at least one successful receive has completed (from stream

interface) and that the receive packet data and packet data length is available in

the receive FIFO, the second is RPORE (Receive Packet Overrun Read Error)

that indicates that more words are read from the receive data FIFO than are in

the packet being processed.

Chapter 3

87

Interfacing

The I/O signals of Receive Control is listed in Table 3.23

Description Connection Port
mode

Port name

Global interface clock Interface Input Clk

Resets entire core Register Space Input Reset

Resets receive logic Register Space Input recieve_reset

Enables reading from

register space

AXI4 Lite

Interface

Input rg_read_enable

Read address for register

space

AXI4 Lite

Interface

Input rg_read_address

Enable for writing in

RDFD

Register space Output rg_RDFD_enable

Enable for writing in RLR Register space Output rg_RLR_enable

Enable for writing in RDR Register space Output rg_RDR_enable

Indicates when receive

sequence is active

Interrupt interface Output on_off

Indicates whether the

length FIFO is empty

Receive FIFO Input rf_length_empty

[22:0]: Number of bytes in

the packet that is being

processed

bit 31: indicates a partial

or a complete packet

The rest of bits are

reserved

Receive FIFO Input recieve_fifo_RLR

Enable reading from

receive length FIFO

Receive FIFO Output rf_length_enable

Enable reading from

receive destination FIFO

Receive FIFO Output rf_dest_enable

Enable reading from

receive data FIFO

Receive FIFO Output rf_data_enable

Indicates that at least one

successful receive has

completed and that the

receive packet data and

length are available.

Interrupt interface Output ic_RC_26

Indicates that more words

are read from the receive

data FIFO than are in the

packet being processed.

Interrupt interface Output ic_RPORE_30

 Indicates that the length

or data is being written to

register space from receive

FIFO

Interrupt interface Output ic_process_indication

Table 3-23Receive Control I/O signals

Chapter 3

88

Functionality

The block is responsible of performing the following two functions

1. Allow data flow from Receive FIFO (written by stream interface) into Register

space when user performs correct receive programming sequence, and then

data can be transferred to the AXI4/AXI4-Lite interface with the proper

handshaking

2. Handle Receive Packet Overrun Read Error (RPORE) bit in the ISR register

The first function is performed by monitoring read operations done in four

registers in the Register Space:

 ISR: register that is responsible for interrupts, it’s important to Receive Control

block as reading operation to ISR triggers the programming sequence (either in

the power up or receive packet sequences)

 RLR: register for received packet length

 RDR: register for received packet destination

 RDFD: register for received packet data

Generally, the receive logic can deal with more registers than that mentioned

above which are:

 Receive ID Register: Not currently supported in the standard

 Receive USER Register: Not currently supported in the standard

 SSR and RDFR: The Register space deals with these registers and sends a reset

signal to the Receive Control when specific values are written to any of these

two registers.

 RDFO: Occupancy value is important for the user but it doesn’t strongly affect

the sequence so the Receive control won’t focus on it, yet it’s important for the

user to read it in the right specified order to correctly read its value. RDFO value

is calculated and updated separately from Receive control in the calculation unit

as will be illustrated later.

A measure of success of the operation is that the data reach the other side which

is the AXI4/AXI4-Lite and that can only be accomplished when user performs the

programming sequence correctly, at this point the Receive Control will signal the

appropriate enable signals (according to the sequence) to the Receive FIFO and the

Register space to permit data flow from FIFO to the required registers.

The Receive control block doesn’t transfer data itself from the receive FIFO to

the Register space, instead it just allows (or enables) the data transfer between them to

enable a faster operation.

Chapter 3

89

Modes of operation

The cut-through mode can be considered a generalized mode as it contains the

store and forward operation inside, this can be proven after illustrating the concept of

a complete and partial packets:

 Complete Packet: a packet that is fully written in the receive data FIFO and thus

the length corresponding to it in the receive length FIFO is the final length of

the packet, and when it exists it sets the value of receive complete bit in the ISR

(RC) into 1 indicating that at least one successful receive has completed.

 Partial Packet: a packet that is not yet fully written in the receive data FIFO and

thus its corresponding length is continuously being updated in the receive length

FIFO.

In Cut-Through mode, the user can start reading packet as soon as the stream

interface starts writing it into the core, producing a partial packet scenario, or wait until

the packet is fully written into the core producing a complete packet scenario which is

the only option in the store and forward mode, and thus the Cut-through is the general

mode as mentioned earlier.

Also in the Cut-through mode, a partial packet can be read from the receive data

FIFO part by part and the last part means that end of packet is present and thus the value

of RC bit must be set to 1 in this case representing a completion of a successful receive

just as the case of complete packet in the store and forward mode.

Store and forward mode (complete packets only)

To perform a correct receive programming sequence user must access the four

registers mentioned earlier in a specific order; first one is the ISR from which the user

will read the RC bit which will tell him when a complete packet is ready which means

that its length is also available which leads us to the second register, the RLR that will

contain the length of packet available (in bytes), the third register is the RDR that

contains packet’s destination, and the final register is the RDFD which has to be

accessed number of times related to the length specified in the RLR and the width of

RDFD (RLR data/width of RDFD in bytes) in order to read all the data in the packet in

process.

Chapter 3

91

Cut-through mode (complete and partial packets)

The most important factor in this mode is whether the packet being processed

is a partial packet or a complete packet and that is determined by the most significant

bit (bit number 31) in the corresponding length of this packet in the receive length FIFO

or in the RLR. The Receive stream interface and receive FIFO is responsible for

determining and updating this value. If this bit is 1, it indicates that a partial packet is

available in the receive data FIFO, and the sequence of order is different of the one that

is mentioned above.

The sequence is started by first reading the ISR values, and as it’s a partial

packet so the RC bit value will be zero informing the user that there is no successful

receive is completed yet, second the user reads the RLR register finding the bit 31 to be

1 indicating a partial packet and that the length existing in the RLR is not the final

packet length, the third register will be the RDFD which has to be accessed a specific

number of times as explained before. And the user starts to read the ISR again to check

for the RC value and repeats this sequence until RC is found to be 1 which means that

this is the final part of the packet, so it’s now a complete packet and the remaining

sequence will be just as the one in store and forward mode mentioned above.

Note: in the store and forward mode, we are not interested in the bit 31 in receive length

FIFO or in the RLR as it’ll always be zero as this mode doesn’t allow partial packet

operation.

The second function of Receive control is to handle Receive Packet Overrun

Read Error (RPORE) bit in the ISR register. The RPORE indicates that more words are

read from the receive data FIFO (user read it through RDFD) than that specified in the

packet being processed (in the RLR).

Since the Receive control block monitors the sequence by checking for user

reading certain registers at certain order, it’s aware of the registers that user accesses

and more important and unique to the receive control block, it’s aware of the order of

this access. So simply, the receive control counts the number that the user tries to read

the RDFD and compares it with specified length in RLR, once the counter reaches the

limit and user tries to read RDFD again, Receive control set the value of RPORE bit to

1 and stays in a stuck state without enabling any other data flow to prevent corrupting

Chapter 3

91

of any packet in the receive data FIFO, to recover from this stuck state, a reset signal

must be sent to the Receive control block to allow further normal operation.

Notes:

 Writing correct programming sequence is the responsibility of the user. Wrong

programming sequence will result in undesirable performance and user will

need to reset receive circuitry to retrieve proper operation of interconnect.

 Receive Control doesn't require from the user to perform programming

sequence in a specific number of clock cycles.

Chapter 3

92

Receive Control block functionality is illustrated by the flow chart in figure 3.45

Is
C/P stored is

0?

Check Read

operation of

ISR

RC bit is set to 1

Enable length to flow

from length FIFO to RLR

in register space

Yes (Complete Packet)

No

Length Counter = 0

No (Partial Packet)

Yes

Start

X

Check if

length FIFO

is empty

No

C/P bit is stored

A

Yes

Y

Chapter 3

93

Check Read

operation of

RLR

No

Enable Dest to flow

from dest FIFO to

RDR in register space

A

Check Read

operation of

RDR

No

B

Enable data to flow

from data FIFO to

RDFD in register space

Increase Counter

Check Read

operation of

RDFD

No

Is
Length counter

<RLR length

Yes

No

Yes

Yes

Yes

Chapter 3

94

Figure 3-45 Receive Control functionality flow chart

- Resetting receive circuitry or entire core at any point will result in going to start

point (marked X at flow chart)

- Wrong programming sequence will result in going to stuck point and ROPRE

will make the Receive control stuck too (marked Z at flow chart)

- End of flow chart represents the end of an entire packet, after which the

sequence must go back at the start point again to check for existence of more

packets (marked X at flow chart

Chapter 3

95

Implementation

Receive control block is constructed mainly from a Moore finite state machine

(FSM) that is responsible for monitoring and supporting the programming sequence as

mentioned earlier.

The two modes of operation (store and forward/cut-through) have the same

states but with different order of sequence according to the packet type; complete packet

or partial packet.

The Moore finite state machine states are illustrated in the table 3.24

Description State Number

Idle state when receive control is not active Idle 0

Receive Complete (RC) state indicates that at least one

successful receive has completed and packet data and its

length are available

RC 1

Length State that enables the length of packet (or part of it)

to flow from receive length FIFO to the RLR in register

space

Length 2

Destination State that enables the destination of a packet to

flow from receive destination FIFO to the RDR in register

space

Destination 3

Data State that enables the data in a packet to flow from

receive data FIFO to the RDFD in register space

Data 4

Waite state is almost the intermediate state between all

states, as the receive logic moves to it whenever there’s a

delay in the programming sequence, providing the user

freedom to choose the reading rate, the only constrain in

this case is the depth of receive FIFO that can be totally full

if the user waits tool long to perform the receive

programming sequence (reading operation)

Wait 5

RPORE state at which RPORE bit in the ISR is set to 1

indicating an error occurred in reading the packet (more

words are read from the receive data FIFO than that

specified in the packet being processed)

RPORE 6

Stuck state at which the receive logic moves to when an

RPORE occur, and stays in it until a reset signal is sent to

it to get it back to Idle state

Stuck 7

Table 3-24 Receive Control FSM states

Color Coding for the FSM (as illustrated in the following figure 3.46):

Represent the path of a complete packet (store and forward mode and the last beat of

the cut-through mode partial packet that is considered to be a complete packet).

Represents the path of a partial packet that only exists in the cut-through mode.

Represents the scenarios that result in a RPORE

Represents resetting the receive logic

Chapter 3

96

Figure 3-46 Receive Control FSM of both store and forward and cut-through modes

Note: At any state, if Reset conditions are satisfied, the next state will be the idle state, it’s

drawn in lite grey in the above FSM graph just for clarity of other states and conditions.

RC

Destination

Length

Wait

Stuck

RPORE

Idle

Data

No PKT

C2

C3 & Beat Processed

N
o

t
(R

es
e

t)

C4 &
 Beat Boundary

Chapter 3

97

The finite state machine transition conditions are illustrated in the table 3.25

Condition Description Transition

condition
reset=0 or recieve_reset=0 It resets receive logic

by forcing FSM to go

to Idle state

Reset

rf_length_empty=0 C1 &
recieve_fifo_RLR[31]=1

Indicates a partial

packet exists in the

receive data FIFO

Partial PKT

rf_length_empty=0 C1 &
recieve_fifo_RLR[31]=0

Indicates a complete

packet exists in the

receive data FIFO

Complete

PKT

rf_length_empty=1 Store and forward:

Indicates that there’s no

complete packet in the

receive data FIFO

Cut-through: Indicates

that there’s no data at

all in the receive data

FIFO

No PKT

rg_read_enable=1 &
rg_read_address=rg_ISR_addr

Read operation in ISR

register

C1

rg_read_enable=1 &

rg_read_address=rg_RLR_addr
Read operation in RLR

register

C2

rg_read_enable=1 &
rg_read_address=rg_RDFD_addr

Read operation in

RDFD register

C3

previous_state==Data_state &

rg_read_enable

&&rg_read_address=rg_RDFD_addr

Read operation in

RDFD register while

the previous step in the

sequence was a read

operation in RDFD too

C4

length_counter<(length_limit-1) Beat is being processed

and data is still being

read from RDFD

Beat

Processed

length_counter=(length_limit-1) Last part of beat data is

being read from RDFD

Beat
Boundary

length_counter=length_limit &
previous_state=Data_state

The beat is finished Beat Finished

Length_counter= length_limit The beat is exceeded

and user tries to read a

part from other packet

Beat
Exceeded

Table 3-25Receive Control FSM transition conditions

Note: Beat is a name for the packet parts, and in case of store and forward mode the

packet contains only one beat.

Chapter 3

98

The finite state machine outputs corresponding to each state are illustrated in table

3.26

State number Outputs

7 6 5 4 3 2 1 0

0 1 1 1 1 1 1 0 On_off

0 1 0 0 0 0 0 0 ic_RPORE_30

0 0 0 0 0 0 1 0 ic_RC_26=0

0 0 0 0 0 1 0 0 rg_RLR_enable

0 0 0 0 0 1 0 0 rf_length_enable

0 0 0 0 1 0 0 0 rg_RDR_enable

0 0 0 0 1 0 0 0 rf_dest_enable

0 0 0 1 0 0 0 0 rg_RDFD_enable

0 0 0 1 0 0 0 0 rf_data_enable

0 0 As

previous
1 As

previous
1 0 0 ic_process_indication

Table 3-26 Receive Control FSM outputs

Chapter 3

99

3.3.9. Calculation Unit

Description

Calculation unit is part of the Control Unit and doesn’t provide any service for

the internal blocks, so its outputs can only be accessed by user through AXI4-Lite

interface. Unit is responsible for calculating vacancy of the transmit data FIFO and

occupancy of the receive data FIFO and subsequently updating the registers; transmit

data FIFO vacancy (TDFV) and receive data FIFO occupancy (RDFO) in the Register

Space.

The unit interacts with the following blocks to perform its functionality;

Transmit FIFO block and Receive FIFO block.

 Transmit FIFO calculates vacancy as number of bytes and this value is used

by Calculation Unit to calculate vacancy as number of locations taking into

consideration partial locations and updating TDFV register.

 Receive FIFO calculates packet length of each transaction through AXI4-

Stream interface as number of locations; this value is used to update RDFO.

Chapter 3

111

gInterfacin

The Calculation Unit contains I/O signals listed in Table 3.27

Description Connection Port
mode

Port name

Global interface clock Interface Input Clk

Resets entire core Interrupt Interface Input reset_all

Resets transmit circuitry Interrupt Interface Input reset_tx

Resets receive circuitry Interrupt Interface Input reset_rx

Vacancy as number of bytes Transmit FIFO Input TX_fifo_vacancy

Transmit data FIFO vacancy Register Space Output rg_fifo_vacancy

TDFV register enable Register space Output rg_TDFV_enable

Latest packet received length Receive FIFO Input RX_fifo_occupancy

Receive data FIFO occupancy Register Space Output rg_fifo_occupancy

RDFO register enable Register Space Output rg_RDFO_enable
Table 3-27Calculation Unit I/O signals

Functionality

Calculation unit is responsible for the following functions;

1. Update transmit data FIFO vacancy register (TDFV)

2. Update Receive data FIFO occupancy (RDFO)

First function is performed by comparing value of TDFV register with actual

vacancy of transmit data FIFO; the value in TDFV register is incremented by one but

decremented by two for each two write locations. Value in TDFV register doesn’t give

the exact number of bytes available for data storage in transmit data FIFO because the

value in the register is the empty locations available so a vacant partial location is not

considered.

TDFV register is updated as illustrated in the flow chart in figure 3.47

Chapter 3

111

Figure 3-47 TDFV functionality flow chart

- Note: Resetting transmit circuitry or entire core will result in going to start

point (marked X at flow chart)

The second function is performed by updating RDFO with the number of

locations occupied by the latest received packet by AXI4-Stream interface. The value

in the RDFO represents number of locations occupied by the last full packet stored at

receive FIFO; hence if the receive FIFO is empty the value stored in RDFO register is

zero. The register is only updated after a full packet is received.

RDFO is updated as illustrated in the flow chart in figure 3.48

Chapter 3

112

Figure 3-48 RDFO Functionality flow chart

- Note: Resetting receive circuitry or entire core at any time will result in going

to start point (marked Y at flow chart)

Chapter 3

113

 Implementation

The Unit is divided into two main blocks to implement the two functions

mentioned earlier. The block diagram of the Calculation Unit is shown in figure 3.49

Figure 3-49 Calculation Unit block diagram

Transmit FIFO Vacancy

TX_fifo_vacancy is the vacancy of transmit data FIFO as number of bytes

calculated by Transmit FIFO block; this value is used to calculate number of locations

available for data storage in transmit FIFO and hence TDFV register is updated using

this value by a couple of multiplexers to perform the following;

1. If Vacancy is increasing TDFV will represent current available locations in the

transmit data FIFO is updated and

- rg_fifo_vacancy = TX_fifo_vacancy >> 𝑙𝑜𝑔2 (𝑤𝑜𝑟𝑑 𝑠𝑖𝑧𝑒)

(word size can only take two values; 32 bits or 64 bits)

2. If vacancy is decreasing TDFV register is not updated with the actual vacancy

value until vacancy decreases by two locations; TDFV will keep its value if

the following condition is satisfied,

- TX_fifo_vacancy_temp>>𝑙𝑜𝑔2 (𝑤𝑜𝑟𝑑 𝑠𝑖𝑧𝑒) -

TX_fifo_vacancy>>𝑙𝑜𝑔2 (𝑤𝑜𝑟𝑑 𝑠𝑖𝑧𝑒) < 2

Where TX_fifo_vacancy_temp is the last value of number of bytes used in

updating TDFV register.

Chapter 3

114

Receive FIFO Occupancy

Number of locations occupied is calculated for each packet stored in the receive data

FIFO by the Receive FIFO block and stored in the receive length FIFO; hence number

of locations occupied by the latest received packet can be retrieved by Receive FIFO

block. RX_fifo_occupancy represents this value and is used to update RFDO register.

Chapter 3

115

3.3.10. Interrupt Interface

Description

The interrupt Interface is responsible of generating the system interrupts to be

stored in the ISR in the register space, the interrupts are either passed directly from

other blocks or is generated from the block itself with the aid of external signals from

the other blocks, the block is also responsible of the external interrupt bit to the user

which is triggered when an interrupt is pulled high and the corresponding bit is set in

the Interrupt Enable Register

Interfacing

The Interrupt Interface contains I/O signals listed in Table 3.28

Port Name Port

Mode

Connection Description

ISR Input Register Space The current status of the

system interrupts, used

to trigger the interrupt

bit

IER Input Register Space The mask of the enabled

interrupts, used to

trigger the interrupt bit

RLR_read_trial Input Register Space Used to trigger receive

underrun read interrupt

Receive_overrun Input Receive Control Interrupt triggered from

external block

Receive_empty Input Receive FIFO Interrupt triggered from

external block

Receive_full Input Receive FIFO Interrupt triggered from

external block

Transmit_empty Input Transmit FIFO Interrupt triggered from

external block

Transmit_full Input Transmit FIFO

Interrupt triggered from

external block

Receive_reset_complete Input Receive FIFO

and Stream

Interface

Interrupt triggered from

external block

Transmit_reset_complete Input Transmit Stream

Interface

Interrupt triggered from

external block

Receive_complete_signal Input Receive Control Interrupt triggered from

external block

Transmit_complete_Signal Input Transmit Stream

Interface

Interrupt triggered from

external block

Chapter 3

116

Transmit_size_Error Input Transmit Control Interrupt triggered from

external block

Transmit_wr_en Input AXI4/AXi4-lite

write interface

Used to trigger transmit

overrun interrupt

Read_op Input Register Space Used to trigger receive

underrun interrupt

RLR_written Input Register Space Used to trigger receive

underrun read interrupt

Reset Input Register Space To trigger Transmit and

Receive Reset complete

interrupts

Transmit_reset Input Register Space To trigger Transmit

Reset complete interrupt

Receive_reset Input Register Space To trigger Receive Reset

Complete interrupt

Interrupt_service Output Register Space The status of the system

interrupts to be stored in

the ISR

Interrupt_bit Output External Signal Alerts the user of the

occurrence of an

maskable Interrupt
Table 3-28 Interrupt Interface I/O signals

Chapter 3

117

Functionality

Most of the interrupts triggered by other blocks in the form of a pulse for one

clock cycle, the Interrupt interface, pulls the corresponding interrupt signal high till the

user resets the interrupt, as

 Receive FIFO Empty

 Receive FIFO Full

 Transmit Empty

 Transmit Full

 Receive Reset Complete

 Transmit Reset Complete

 Receive Complete Signal

 Transmit Complete Signal

 Transmit Size Error

While the rest of the interrupts are calculated within the Interrupt Interface

using external signals as

 Transmit Packet Overrun Error

 Receive Packet Underrun Error

 Receive Packet Overrun Read Error

 Receive Packet Underrun Read Error

Implementation

The Block Design of the Interrupt Interface is shown in Figure 3.50

Figure 3-50 Interrupt Interface

Chapter 4

118

Chapter 4.

FPGA Synthesis and Implementation

4.1. Introduction

Synthesis Overview

After design and behavioral simulation, It is not sufficient that the design can

be implemented on ASIC or FPGA; design must be coded in such a way that it directs

the synthesis tool to generate good hardware. A synthesis tool converts HDL

(VHDL/Verilog) code into a gate-level net list, Synthesis report contains many useful

information.

One should also pay attention to synthesis warnings since they can indicate

hidden problems such as unintentional latches or unused signals, and after a successful

synthesis. A gate-level schematic of the design can be produced by synthesis tool.

Overview Implementation

Implementation stage is intended to translate net list into the placed and routed

FPGA design. For example, Xilinx design flow has three implementation

stages: translate, map and place and route. (Implementation stages may be different

for other tools)

 Translate: Combines all net lists and constraints into one large netlist

 Map: Compares the resources specified in the input netlist against the available

resources of the target FPGA (insufficient or incorrectly specified resources

generate errors). Divides net list circuit into sub-blocks to fit into the FPGA

logic blocks.

 Place & Route (PAR): Iterative process, very time intensive. Places physically

the sub-blocks into FPGA logic blocks. Routes signals between logic blocks

such that timing constraints are met.

Chapter 4

119

4.2. Results

The tools that have been used for the synthesis of the design are QLint tool

which is tool supported by Mentor Graphics and Vivado design suite which is tool

supported by Xilinx

4.2.1. Synthesis Results

After synthesizing the design on the board “XCVU440-FLGA2892-1-C” using the

VIVADO synthesis tool, the utilization results of the resources are obtained as shown

in the following figure 4-1.

Figure 4-1Total utilization of board resources (Post-Synthesis)

Chapter 4

111

For more details, the following figure shows how each individual module is

synthesized and the number of its resources.

Figure 4-2Total utilization of board resources for each module (Post-Synthesis)

Analyzing the previous results of the main modules as shown in Figure 4-3:

Figure 4-3 Number of bonded IOB in design (post-synthesis)

 Module 1: (calc_unit)  33 Registers are used

 Module 2: (interrupt_controller)  5 Registers are used

 Module 3: (top_lite)  209 Registers are used

 Module 4: (register_file)  619 Registers are used

 Module 5: (transmit_control_top)  276 Registers are used

 Module 6: (Receive_control)  64 Registers are used

 Module 7: (fifo_and_stream)  17719 Registers are used

 Module 8: (stream_interface)  23186 Registers are used

Chapter 4

111

4.2.2. Implementation Results

After implementing the design on the board “XCVU440-FLGA2892-1-C”

using the VIVADO implementation tool, the utilization results of the resources are

obtained as shown in the following figure 4-4.

Figure 4-4Total Utilization of board resources (Post-Implementation)

For more details, the following figure shows how each individual module is

synthesized and the number of its resources.

Figure 4-5Utilization of board resources for each module (Post-Synthesis)

From both previous sections (4.2.1 and 4.2.2), we can see that the

implementation utilization of resources report is almost the same as the synthesis

utilization of resources report of but less resources specially LUTs due to optimization

option.

Chapter 5

112

Chapter 5.

Verification

5.1. Introduction

After finishing the design, the next step is to verify that the RTL code is doing

what it’s supposed to do. There are several types of testing such as [6], [7]:

1. Directed: It instantiates the DUT (design under test), then applies the inputs.

Blocking assignments and delays are used to apply the inputs in the appropriate

order, the user must view the results of the simulation and verify by inspection

that the correct outputs are produced.

2. Random: Machine-generated random inputs, random inputs find cases that

designers didn’t consider. It’s easy to write but may wastes simulation time on

undesired cases.

3. Constrained Random: Randomized, but targeted, can quickly generate many

interesting cases.

In this chapter, we will talk about each method and how we used it in our verification.

5.2. Direct Testing

Direct testing can be done through test benches. Test benches are pieces of

code that are used during FPGA or ASIC simulation. Simulation allows you the

ability to look at your FPGA or ASIC design and ensure that it does what you expect

it to. A test bench provides the stimulus that drives the simulation.

A simple test bench will instantiate the Unit Under Test (UUT) and drive the

inputs. One should attempt to create all possible input conditions to check every

corner case of the project. A good test bench should be self-checking. A self-checking

test bench is one that can generate inputs and automatically compare actual outputs to

expected outputs.

Chapter 5

113

5.2.1. Unit Testing

AXI4-Lite Interface

 Normal operation in write transactions

 Normal operation in read transactions

AXI4 Interface

The following test cases are carried out in the three modes of operation (burst types)

 Normal operation in write and read transactions

 Different cases for strobe signal

 Different cases for transaction size

 Different cases for transaction length

 Aligned and unaligned transfers

 Timeout condition error in the slave

 Unsupported transfer size attempt

Register Space

 Check read operations of read access registers upon applying the address of

the register and read enable

 Check write operations of write access registers upon applying the address of

the register and read enable and input data to be stored.

 Check for response of the register space due to illegal write access: read

access registers are not affected by illegal attempt to overwrite on their stored

value

 Check for response of the register space due to illegal read access: returns

zeros upon illegal attempt to read write only registers

 Check for triggering reset upon writing 0xA5 to the SRR register

 Check for triggering Transmit reset upon writing 0xA5 to the TDFR register

 Check for triggering Receive reset upon writing 0xA5 to the RDFR register

Transmit Control

 Normal operation of block

 Wrong programming sequence

 Packet length calculations for different strobe values

 Transmit size error bit calculations in three scenarios:

1. No mismatch between calculated packet value and value entered by

user

2. Mismatch in number of words

3. Mismatch in number of bytes

 TPOE bit is forced high in the middle of normal operation

 Resetting transmit circuitry in the middle of normal operation

Chapter 5

114

Transmit FIFO

 Write operation into FIFO (data FIFO, length FIFO or destination FIFO)

 Read operation from FIFO (data FIFO, length FIFO or destination FIFO)

 Circular operation of FIFO

 Write and read operations at the same time

 Triggering Empty and FULL signals

 Vacancy calculations

Transmit Stream Interface

 Handshake in normal operation

 Throttling data flow by controlling TREADY signal

 Varying TREADY signal in the middle of packet transmission

 Reset transmit circuitry or reset entire core

Receive Stream Interface

 Handshaking: Ensure a proper communication with the Stream side

 Receiving data and destination

 Calculating packet length using the TLAST of the Stream side

Receive FIFO

 Writing in FIFO in both modes (Store and Forward, Cut-Through)

 Reading from FIFO in both modes (Store and Forward, Cut-Through)

 Reading during and at the end of the packet (Partial and Complete Packets)

 Checking empty and full signals (for data FIFO and length FIFO)

Receive Control

 Testing both modes of operation

 Checking the effect of bit 31 in the Receive length FIFO and how it affects

type of packet (partial or complete)

 Tracing how the length counter changes in both modes (in complete packet the

length counter is initialized with zero while in partial packet initialization with

zero takes place only in the first beat of packet and when a processing of new

packet starts)

 Testing of wrong programming sequence entry and a reset logic for recovery

 Testing different reading rates (the user can start the reading operation

whenever he wants and perform the sequence with no constraints on the

number of cycles used)

 Testing scenario for the Receive Packet Overrun Read Error (RPORE)

Chapter 5

115

Calculation Unit

 Increasing vacancy/decreasing vacancy

 Randomly varying vacancy

Interrupt Interface

 Main approach is to randomize the inputs to the interrupt interface to test

different scenarios and make sure the correct interrupts are fired depending on

the scenario.

5.2.2. Integration Testing

The main goals of the direct testing of the core are to

 Validate the correctness of operation of the core using common scenarios

 Investigate the behavior of core during wrong inputs/sequences

 Probing the design by forcing uncommon scenarios and corner cases

The features supported are to be tested using different test cases and scenarios,

the upcoming test cases can be applied on any of the supported features to ensure a full

correct functionality:

 Changing data interface: The writing or reading of data from the core can be

done using AXI4 or AXI4-Lite

 The width of RDFD is changed in test cases, it can be 32 bits or 64 bits’ wide

 Transmit/Receive FIFO depths are changed and tested

 Transmit/Receive Programmable Full and Empty Thresholds are also changed

and tested

The following test cases cover the major scenarios in Transmit and Receive

paths and are the main ideas for testing the core, and thus each of these general cases

can have many other specific cases beyond them.

Chapter 5

116

Transmit Path

The following test cases are carried out for both modes of operation.

Test Case 0

 Title: Normal operation of the core

 Description: The basic operation of the core. The test can be done by writing

packets with different lengths over AXI4-Lite/AXI4 interface and allowing

data to be transmitted over AXI4-Stream interface by forcing TREADY signal

to be high the entire time of the test. Same test in conducted in two modes of

operation (store-and-forward mode and cut-through mode).

Correct handshake over AXI4-Lite/AXI4 interface and AXI4-Stream interface

and correct programming sequence are guaranteed.

 Type of test case: Positive test case

 What to be tested: The correct behavior of the core under normal operation in

two modes of operation

 Expected correct output: Data transmitted over AXI4 Stream interface is

identical to data written in TDFD register by user, packet length is identical to

packet length written by user in TLR register and packet destination is

identical to data written by user in TDR register.

In Store-And-Forward mode, packet is only transmitted over AXI4 Stream

interface when packet length is written by user in TLR register.

In Cut-Through mode, packet is only transmitted over AXI4 Stream interface

when there are at least two transfers in the transmit data FIFO to guarantee

that the last beat is transmitted only when length of the packet is written by

user in TLR register.

Chapter 5

117

Test Case 1

 Title: Transmit Size Error (TSE) bit in ISR register

 Description: This test can be conducted by writing a packet length value in

TLR register which doesn’t correspond to the actual length of data written in

TDFD register. TSE bit is tested in three scenarios,

1. No mismatch in actual packet length and value written in TLR register

2. Mismatch in number of bytes

3. Mismatch in number of words

Correct handshake over AXI4-Lite/AXI4 interface and AXI4-Stream interface

and correct programming sequence are guaranteed.

 Type of test case: Negative test case

 What to be tested: TSE bit value in three scenarios

 Expected correct output: TSE bit is expected to be high only in the third

scenario. As for data transmitted over AXI4-Stream interface, in the three

scenarios data will be identical to data entered by user in TDFD register and

packet length is the actual packet length not the value stored in TLR register.

Test Case 2

 Title: Transmit packet overrun error (TPOE) bit in ISR register

 Description: This test can be done by decreasing depth of transmit data FIFO

and write packets into core that exceeds capacity of the transmit FIFO while

forcing TREADY signal to be low to guarantee that no data is transmitted over

AXI4-Stream interface. Correct handshake over AXI4-Lite/AXI4 interface

and AXI4-Stream interface and correct programming sequence are guaranteed.

 Type of test case: Negative test case

 What to be tested: TPOE bit in ISR register

 Expected correct output: TPOE is expected to be high only when the user

attempts to write data in a full FIFO. The transmit circuitry will be in a lock

state until the user resets either transmit circuitry or entire core

Chapter 5

118

Test Case 3

 Title: Rate of data entered into core is more than rate of output data stream

 Description: This test can be done by throttling output data stream by forcing

TREADY signal to be low at the beginning of the test to allow packets to

accumulate into transmit FIFO and then forcing TREADY signal to be high to

allow accumulated packets to be transmitted over AXI4-Stream interface.

Correct handshake over AXI4-Lite/AXI4 interface and AXI4-Stream interface

and correct programming sequence are guaranteed.

 Type of test case: Positive test case

 What to be tested: The correct behavior of the core.

 Expected correct output: Data transmitted over AXI4 Stream interface is

identical to data written in TDFD register by user and packet length is

identical to packet length written by user in TLR register.

Test Case 4

 Title: Obstruct flow of data over AXI4-Stream interface

 Description: This test is carried out by forcing TREADY signal to be low in

the middle of a packet being transmitted over AXI4-Stream interface

Correct handshake over AXI4-Lite/AXI4 interface and AXI4-Stream interface

and correct programming sequence are guaranteed.

 Type of test case: Negative test case

 What to be tested: Data flow from AXI4-Stream interface

 Expected correct output: Stream interface will stop transmitting data when

TREADY is low and will continue to transmit rest of the packet when

TREADY is high again.

Chapter 5

119

Test Case 5

 Title: Reset transmit circuitry

 Description: Resetting transmit circuitry can be done in two scenarios

1. Reset transmit circuitry only by writing specific value in TDFR register

2. Reset entire core by writing specific value in SRR register

We are interested in the scenario when resetting occurs in the middle of a

packet being transmitted over AXI4-Stream interface because the two

scenarios mentioned earlier will give different results.

Correct handshake over AXI4-Lite/AXI4 interface and AXI4-Stream interface

and correct programming sequence are guaranteed.

 Type of test case: Positive test case.

 What to be tested: The correct behavior of the core.

 Expected correct output: Resetting transmit circuitry only is not carried out

until full packet is transmitted over AXI4-Stream interface, while resetting

entire core will be executed immediately and this will result in a partial packet

being transmitted over AXI4-Stream interface.

Test Case 6

 Title: Different cases for strobe signal.

 Description: This test can be done by varying strobe signal of data interface

(AXI4-Lite/AXI4).

Correct handshake over AXI4-Lite/AXI4 interface and AXI4-Stream interface

and correct programming sequence are guaranteed.

 Type of test case: Positive test case.

 What to be tested: Data flow from AXI4-Stream interface.

 Expected correct output: Transmit FIFO stores only valid data indicated by

strobe signal and thus data flow from AXI4-Stream interface is not identical to

value written in TDFD register but will be identical to only byte lanes which

contains valid data.

Chapter 5

121

Test Case 7

 Title: Packet size is not multiple of Stream interface data bus width

 Description: This test is done by controlling strobe signal to make the packet

length not a multiple of data bus width of stream interface such that the last

beat of data transmitted over stream interface will not occupy the full data bus

width.

Correct handshake over AXI4-Lite/AXI4 interface and AXI4-Stream interface

and correct programming sequence are guaranteed.

 Type of test case: Positive test case

 What to be tested: TKEEP signal of AXI4-Stream interface.

 Expected correct output: TKEEP signal should be all ones in all transfers

except for the last one; only byte lanes containing valid data will have the

corresponding bits in TKEEP signal high.

Test Case 8

 Title: Vacancy of transmit FIFO

 Description: This test is conducted under the following conditions,

- Packets written into core have different lengths

- Strobe signal change from packet to another

- TREADY signal is not always high so packets will accumulate at part of the

test

Correct handshake over AXI4-Lite/AXI4 interface and AXI4-Stream interface

and correct programming sequence are guaranteed.

 Type of test case: Positive test case

 What to be tested: Transmit data FIFO vacancy (TDFV) register

 Expected correct output: TDFV increments by one whenever a beat of data

is transmitted over AXI4-Stream interface but decrements by two for each two

write locations into transmit FIFO.

Chapter 5

121

Test Case 9

 Title: Wrong programming sequence

 Description: This test is done by accessing registers TDR, TDFD and TLR in

any sequence except for the correct programming sequence. For example,

writing data in TDFD register before writing packet destination in TDR

register.

 Type of test case: Negative test case

 What to be tested: Operation of entire core.

 Expected correct output: Transmit Circuitry will be in lock state until user

resets entire core or transmit circuitry, but if previous packets with correct

programming sequence are still stored in transmit FIFO those packets will be

allowed to be transmitted over AXI4-Stream interface.

Test Case 10

 Title: Circular operation of transmit FIFO

 Description: This test is done by decreasing depth of transmit FIFO while

entering packets that exceeds capacity of data memory and allowing data to be

transmitted over AXI4-Stream interface.

 Type of test case: Positive test case

 What to be tested: Data flow from AXI4-Stream interface and TPOE bit

 Expected correct output: Data transmitted over AXI4-Stream interface is

identical to data entered by used in TDFD register. TPOE bit is low the entire

test.

Chapter 5

122

Receive Path

__

Store and Forward Mode

Test Case 0

 Title: Normal Operation

 Description: This is a basic test case for testing whether the Receive path is

doing well under normal conditions, the test can be done by allowing the AXI

Stream interface to write some packets with different lengths in the Receive

FIFO, and Reading them from the other side of the FIFO block which is the

AXI4-Lite. Reading is started as soon as a complete packet appears in the

Receive FIFO.

The handshake in both sides are done in a correct way, also the programming

sequence written by the user is correct.

 Test case classification: Positive test case

 What to be tested: The correct behavior of the Receive logic of the core under

normal conditions; i.e. no extremes.

 Expected behavior: The written packets from the Stream interface will be

transferred successfully into the AXI4-Lite side appearing on the port

AXI4_lite_RDATA, also the same port will carry the packet information such

as the packet length and packet destination in the same order as the order of the

programming sequence

Test Case 1

 Title: Wrong sequence that affects the operation

 Description: This test can be done by writing wrong major steps in the

programming sequence from the AXI4-Lite side which affects the core

operation of the Receive logic, such as trying to read the data in RDFD register

before reading its length in RLR.

The handshake is correct in both sides, but the order of input data through the

read address port (AXI4_lite_ARADDR) is not correct.

 Test case classification: Negative test case

 What to be tested: The effect of a strongly wrong programming sequence on

the Receive path operation and how to recover from it.

 Expected behavior: The starting of sequence of receiving a packet will trigger

the Receive control block to be active, and the data out on the Read data port

AXI4_lite_RDATA will be correct until the wrong step in the sequence, then

it’s expected that the Receive logic will be at stuck state, and will need a reset

signal to recover from this state and be ready again to transfer packets.

Chapter 5

123

Test Case 2

 Title: Full Receive FIFO

 Description: This test can be done by performing a continuous write into the

Receive FIFO from the Stream interface side, and not reading from the AXI4-

Lite side, and thus the packets will continue to be written in the data FIFO until

it becomes full, this is an extreme case at which the user may be busy doing

something else and thus not available to read from the Receive FIFO.

The handshake in both sides are done in a correct way, the programming

sequence here is not the point of interest but if it’s written, it shall be correct

sequence.

 Test case classification: Destructive/Capacity test case

 What to be tested: The behavior of the core in one of its abnormal conditions

which is fully utilizing the Receive FIFO, also the behavior of the Stream

interface inside the core at this case to prevent any packet corruption.

 Expected behavior: The FIFO is filled with Packets, location by location, and

when it reaches the Receive FIFO Programmable Full Threshold (indicating that

data FIFO is full) the Receive FIFO should stop receiving packets from the

Stream side by stopping the handshake (TREADY=0), also the Receive FIFO

Programmable Full (RFPF) which is bit 20 in the ISR must be set to 1 to inform

the user that the Receive FIFO is now full and that they can’t receive any other

packets from Stream side until a Reading operation is performed.

Test Case 3

 Title: Circular operation of Receive FIFO

 Description: This test can be done by performing a continuous write into the

Receive FIFO from the Stream interface side, but with also a continuous reading

from the AXI4-Lite side, reading rate doesn’t need to be as writing rate but it

should be continuous so that when the end of Receive data FIFO is reached, it

won’t be full as reading operation has been performed and thus circular

movement for write and read pointers can be tested, providing more space for

user to utilize in the Receive data FIFO. The handshake in both sides are done

in a correct way, the programming sequence is written in a correct way.

 Test case classification: Positive test case

 What to be tested: The operation of the Receive FIFO, and how it handles large

number of packets or data, while also watching the RFPF behavior.

 Expected behavior: The written packets from the Stream interface will be

transferred successfully into the AXI4-Lite side appearing on the port

AXI4_lite_RDATA, also the same signal will carry the packet information such

as the packet length and packet destination in the same order as the order of the

programming sequence, and this will continue to happen even though the end

of Receive data FIFO is reached, also the RFPF shall not be set to 1 as the

Receive FIFO is not considered to be Full.

Chapter 5

124

Test Case 4

 Title: Receive Packet Overrun Read Error (RPORE)

 Description: This test can be performed by writing some packets in the Receive

FIFO coming through the Stream interface and start reading them using a

partially correct programming sequence, to be able to reach the RPORE

scenario.

The programming sequence will be correct at the first three steps: reading and

writing in the ISR, Reading RLR, Reading RDR, then finally in the fourth step

reading RDFD will take place but with a number of times that is larger than the

number specified in the RLR.

 Test case classification: Negative test case

 What to be tested: The ability of the core of updating the ISR with the

interrupts that indicate that an error has occurred, in our case it’s the RPORE.

Also how the Receive logic will recover from these errors.

 Expected behavior: As this is also considered to be a wrong sequence, it’s

expected that the receive control will be stuck until a reset signal is sent to it.

But our point of interest here is watching the ISR, as it’s expected to find the

RPORE (bit 30) is set to 1, indicating that this error scenario has occurred.

Test Case 5

 Title: Writing only one packet in the Receive FIFO

 Description: This is case is just as the normal operation specified in case 1 but

with only one packet to be written in the Receive FIFO. This case is considered

to be a corner case as when performing a correct programming sequence,

reading the RLR will cause the Receive length FIFO to be empty, and if not

handled well, this may indicate an empty FIFO although there’re still data bytes

in the Receive data FIFO.

 Test case classification: Positive test case

 What to be tested: The internal signals that travel from individual blocks into

the ISR in the interrupt interface which is the Receive FIFO Programmable

Empty (RFPE).

 Expected behavior: Exactly as normal operation case, the written packets from

the Stream interface will be transferred successfully into the AXI4-Lite side

appearing on the port AXI4_lite_RDATA, also the same port will carry the

packet information such as the packet length and packet destination in the same

order as the order of the programming sequence.

Also the expected correct behavior for the RFPE is to be set to zero during

reading the packet data then is set to 1 when the entire data in packet is read (or

until reaching the Receive FIFO Programmable Empty).

Chapter 5

125

Cut-Through Mode

Test Case 6

 Title: Normal Operation – Writing and Reading in parallel

 Description: This is a basic test case for testing whether the Receive path is

doing well under normal conditions in the Cut-Through mode. The test can be

done by allowing the AXI Stream interface to write some packets with different

lengths in the Receive FIFO, and Reading them from the other side of the FIFO

block which is the AXI4-Lite. Reading must start as soon as writing of first

packet in the Receive FIFO starts, to allow reading of a partial packet not a

complete one.

The handshakes in both sides are done in a correct way, also the programming

sequence written by the user is correct.

 Test case classification: Positive test case

 What to be tested: The correct behavior of the Receive logic of the core under

normal conditions in the cut-through mode, and how to deal with Partial

Packets.

 Expected behavior: The written packets from the Stream interface will be

transferred successfully into the AXI4-Lite side appearing on the port

AXI4_lite_RDATA as soon as reading operation start without waiting for a

packet to be totally received in the Receive data FIFO, also the same signal will

carry the packet information such as the packet length in the same order as the

order of the programming sequence, and this will continue until the last beat of

the packet where it becomes a complete packet and sequence is changed

according to this.

Test Case 7

 Title: Normal Operation – Writing then Reading

 Description: This is an another basic test of the Cut-through mode, this is a test

of generality of this mode, as illustrated before in Chapter 3 the cut-through

mode is more general than the store and forward mode, as if the reading

operation is delayed until a complete packet is written, then the cut through

mode will behave exactly as same as the store and forward mode. In this test the

Stream interface is allowed to write into the Receive FIFO but the Reading

operation is delayed to allow a complete packet formation.

 Test case classification: Positive test case

 What to be tested: Operation of the Cut-through mode under conditions similar

to the store and forward mode.

 Expected behavior: It should be exactly behaving like the store and forward

mode.

Chapter 5

126

Test Case 8

 Title: Wrong Programming Sequence

 Description: This case is similar to case 7 with same operation that needs

writing in the Receive FIFO and reading from it at the same time to allow a

partial packet operation, the only difference is that the input programming

sequence is wrong. Reading sequence of a partial packet is different from

reading a complete one.

 Test case classification: Negative test case

 What to be tested: The behavior of the Receive logic of the core when the input

programming sequence is wrong in the cut-through mode, and how to deal with

Partial Packets.

 Expected behavior: The starting of sequence of receiving a packet will trigger

the Receive control block to be active, and the data out on the Read data port

AXI4_lite_RDATA will be correct until the wrong step in the sequence, then

it’s expected that the Receive logic will be at stuck state, and will need a reset

signal to recover from this state and be ready again to transfer packets.

Test Case 9

 Title: Writing a very long packet

 Description: This test can be performed by writing a packet with length of the

Receive data FIFO, and reading it while writing to check for the Cut-through

mode correct operation.

 Test case classification: Destructive/Capacity test case

 What to be tested: The performance and capacity of system under large inputs

and extreme conditions.

 Expected behavior: The written beats from the Stream interface will be

transferred successfully into the AXI4-Lite side as soon as reading operation

start appearing on the port AXI4_lite_RDATA, also the same port will carry

each beat information such as the beat length and packet Destination in the same

order as the order of the programming sequence, and this will continue until the

last beat of the packet where it becomes a complete packet and sequence is

changed according to this performing reading of a complete packet.

Chapter 5

127

5.3. Universal Verification Methodology (UVM)

5.3.1. Introduction

When we deal with small designs or small blocks of larger designs, we can

create a direct test bench that will produce correct simulations results, exercise all

behaviors of the design, but in case of large design with complex functionality, most

designer may miss some design behaviors while creating a direct test bench as discussed

in [5], [8], [9] and [10].

So, for a proper functionality testing, we want to

1. Test all important design behaviors

2. Be sure that design behaves as intended

3. And direct test bench is not enough to do that as we need better coverage support

and to check that whatever is planned and whatever is designed are the same.

And that’s why we go to a more effective verification method which is the

Universal Verification Methodology (UVM).

UVM is a methodology for functional verification using SystemVerilog,

complete with a supporting library of SystemVerilog code. UVM was created by

Accellera based on the OVM (Open Verification Methodology) version 2.1.1. The roots

of these methodologies lie in the application of the languages IEEE 1800™

SystemVerilog, IEEE 1666™ SystemC, and IEEE 1647™ e.

UVM is a methodology for writing test benches, but it’s used in constrained random

verification.

We can summarize the objective of UVM in three word:

 Check: if you've got random vectors, you can automate checking, by write self-

checking test benches in systemVerilog to answer the question "Does design

work?" automatically.

 Coverage: functional coverage, record what goes on during a verification

environment, identify how thoroughly we've exercised the design. If you have

coverage holes, then you haven't exercised the design thoroughly enough.

 Constraints: specific constraints on the values of the inputs to increase test

coverage.

Chapter 5

128

UVM has several advantages and characteristics, some of them are as follows:

1. Support constrained random verification: the idea is to randomize at least some

elements of the test vectors which is useful for finding unexpected bugs, and this way

we push the design into state which we may have never thought of.

2. Automating stimulus generation: you can run long simulation without manually

writing all the test vectors yourself, as they can be generated automatically.

3. Base class library: UVM has built in methods like compare, copy, print, also

we have reporting mechanism; macros. Macros are not function calls, they are

textual replacements.

4. Configuration class: config class is a database where we configure all the

parameters needed throughout the hierarchy using set and get.

5. Modularity and Reusability: The methodology is designed as modular

components (Driver, Sequencer, Agents, Environment, etc.) which enable reusing

components across unit level to multi-unit or chip level verification as well as

across projects.

6. Phasing: since all the components are derived from uvm_component , phasing

helps in synchronization of each and every component before proceeding to next

phase.

7. Simulator independent: The base class library and the methodology are

supported by all simulators and hence there is no dependency on any specific

simulator.

8. Sequence methodology: It gives good control on stimulus generation. There

are several ways in which sequences can be developed which includes

randomization, layered sequences, virtual sequences, etc. which provides a good

control and rich stimulus generation capability.

9. Factory: factory is the class that manufactures components and objects which

gives the ability to modify and number of objects that makes test bench hierarchy

in more predictable manner. Overriding of components or objects becomes much

more easy using factory concept using create() method instead of new() method.

10. Virtual sequencer and sequences: For keeping the independency between

test bench writer and test case writer as test case writer doesn't have to worry about

the path in order to start a sequence.

Chapter 5

129

5.3.2. Overview

The Universal Verification Methodology (UVM) is a standardized

methodology for verifying integrated circuit designs as mentioned before.

UVM General Architecture

Figure 5-1UVM Architecture

1. UVM Test bench

The UVM Test bench typically instantiates the Design under Test (DUT)

module and the UVM Test class, and configures the connections between them. If the

verification includes module-based components, they are instantiated under the UVM

Test bench as well. The UVM Test is dynamically instantiated at run-time, allowing

the UVM Test bench to be compiled once and run with many different tests.

2. UVM Test

The UVM Test is the top-level UVM Component in the UVM Test bench. The

UVM Test typically performs three main functions: Instantiates the top-level

environment, configures the environment, and applies stimulus by invoking UVM

Sequences through the environment to the DUT.

Chapter 5

131

3. UVM Environment

The UVM Environment is a hierarchical component that groups together other

verification components that are interrelated. Typical components that are usually

instantiated inside the UVM Environment are UVM Agents, UVM Scoreboards, or

even other UVM Environments. The top-level UVM Environment encapsulates all the

verification components targeting the DUT.

4. UVM Scoreboard / Subscriber

The main function is to check the behavior of a certain DUT. Usually receives

transactions carrying inputs and outputs of the DUT through UVM Agent analysis

ports. Run the input transactions through some kind of a reference model to produce

expected output, and then compares the expected output versus the actual output.

5. UVM Agent

The UVM Agent is a hierarchical component that groups together other

verification components that are dealing with a specific DUT interface. A typical UVM

Agent includes a UVM Sequencer to manage stimulus flow, a UVM Driver to apply

stimulus on the DUT interface, and a UVM Monitor to monitor the DUT interface.

UVM Agents might include other components, like coverage collectors, protocol

checkers, a Transaction-Level Modeling (TLM) model, etc.

The UVM Agent needs to operate both in an active mode (where it is capable

of generating stimulus) and a passive mode (where it only monitors the interface

without controlling it).

6. UVM Sequencer

The UVM Sequencer controls the flow of UVM Sequence Items transactions

generated by one or more UVM Sequences.

Chapter 5

131

7. UVM Sequence

A UVM Sequence is an object that contains a behavior for generating stimulus.

UVM Sequences are not part of the component hierarchy; each UVM Sequence is

eventually bound to a UVM Sequencer. Multiple UVM Sequence instances can be

bound to the same UVM Sequencer.

8. UVM Driver

UVM Driver receives individual UVM Sequence Item transactions from the

UVM Sequencer and applies (drives) it on the DUT Interface. Thus, a UVM Driver

spans abstraction levels by converting transaction-level stimulus into pin-level

stimulus. It also has a TLM port to receive transactions from the Sequencer and access

to the DUT interface in order to drive the signals.

9. UVM Monitor

Monitoring pin level activity, assemble transaction object from DUT and pass

them to the verification environment for further analysis, it spans abstraction levels by

converting pin-level activity to transactions. In order to achieve that, the UVM Monitor

typically has access to the DUT interface and also has a TLM analysis port to broadcast

the created transactions through.

Chapter 5

132

UVM Functionality

The main Functionality of UVM is to generate constrained random verification

 Constrained verification to simulate the needs of the input variables of the DUT

(design under test)

 Random to test (DUT) in a large critical and different test cases to discover

unexpected bugs.

Now if we have a Design and want to test it using UVM, the following steps

are needed:

1. Set up the UVM components properly, including the Test, Environment,

Subscriber, Agent, Monitor, Driver and the Sequencer.

2. Connect both the Monitor and the Driver to the interface connecting the DUT

to the UVM Test.

3. We need to write a sequence, sequences mainly describe a testing operation with

random value, each sequence need sequencer to control the flow of UVM

Sequence Items transactions, each UVM Sequence is eventually bound to a

UVM Sequencer. Multiple UVM Sequence instances can be bound to the same

UVM Sequencer.

4. Driver is driving stimulus to the DUT through an interface “Driver and

sequencer shapes the downstream path to the DUT”

Now a constrained random sequence is the input to the DUT (design under test)

and also input to the Scoreboard/Subscriber, Scoreboard/Subscriber are responsible for

simulate the main Functionality needed to be tested. To use it in applying Automating

check, the simplest way to do this is to compare the output from DUT and the out from

Scoreboard / Subscriber.

Difference between Scoreboard and Subscriber is that Scoreboard a real model

which can be a Matlab code, C++ code, etc. but Subscriber is a systemVerilog design

that simulates the behavior of the DUT. To apply compare and check between output

from DUT and output from Scoreboard/Subscriber we need monitor. The monitor

recognizes pin level activity and assemble transaction object from DUT and pass them

to the verification environment for further analysis. Using analysis port, sending

transaction up to Subscriber can take place (Subscriber has analysis export) and monitor

can perform internally some processing on the transactions produced such as coverage

collection, checking, recording, etc.

Chapter 5

133

5.3.3. UVM Sequences

Transmit Path

Sequence 1

 Title: Normal operation in Store-And-Forward Mode and Cut-Through mode

 Description: The basic operation of the core. The Sequence writes random

number of packets with random length for each packet to the Transmit FIFO

through the AXI4-Lite interface, and then after all the packets are written to

the core, the written packets/they are read from the core through AXI4-Stream

interface.

Correct handshake over AXI4-Lite/AXI4 interface and AXI4-Stream interface

and correct programming sequence are guaranteed.

 Type of sequence: Positive sequence

 Constraints:
- Length of packets is constrained to be from 1 to 20 words

- Number of packets is constrained to be from 1 to 20 packets

- TREADY is always high

- Full bus width contains valid data (Strobe signal constrained to the

decimal value 15)

 What to be tested: The correct behavior of the core under normal operation

the Store-And-Forward mode of operation

 Expected correct output: Data transmitted over AXI4 Stream interface is

identical to data written by the user over the AXI4-Lite interface, packet

length read from the core is identical to the packet length written by the user

over the AXI4-Lite interface.

Sequence 2

 Title: Throttling packet transmission path over AXI4-Stream interface in the

two modes of operation (Store-and-Forward and Cut-Through mode)

 Description: The Sequence writes random number of packets with random

length for each packet to the Transmit FIFO through the AXI4-Lite interface,

and then after all the packets are written to the core, the written packets/they

are read from the core through AXI4-Stream interface but with TREADY

signal randomized each data transfer which means Stream interface is not

always permitted to transmit data.

Correct handshake over AXI4-Lite/AXI4 interface and AXI4-Stream interface

and correct programming sequence are guaranteed.

 Type of sequence: Positive sequence

 Constraints:
- Length of packets is constrained to be from 1 to 20 words

- Number of packets is constrained to be from 1 to 20 packets

- Full bus width contains valid data (Strobe signal constrained to the

decimal value 15)

Chapter 5

134

 What to be tested: Data flow from AXI4-Stream interface

 Expected correct output: Data transmitted over AXI4 Stream interface is

identical to data written by the user over the AXI4-Lite interface, however

stream of data is not continuous due to the randomization of TREADY, it’s

expected that when TREADY is low flow of data will strop and when

TREADY is high again packet transmission will continue. Packet length read

from the core is identical to the packet length written by the user over the

AXI4-Lite interface.

Sequence 3

 Title: Resting transmit circuitry at random instants

 Description: Packets are written into core over AXI.-Lite interface while

keeping tready signal random. Transmit circuitry is reset at random instants

while keeping normal operation of the core.

Correct handshake over AXI4-Lite/AXI4 interface and AXI4-Stream interface

and correct programming sequence are guaranteed.

 Type of sequence: Positive sequence

 Constraints:
- Length of packets is constrained to be from 1 to 20 words

- Number of packets is constrained to be from 1 to 20 packets

- Full bus width contains valid data (Strobe signal constrained to the

decimal value 15)

 What to be tested: Data flow from AXI4-Stream interface and reset operation

 Expected correct output: When user requires to reset transmit circuitry while

a packet is being transmitted over AXI4 stream interface; reset operation is not

performed until packet is fully transmitted over interface, even if tready signal

becomes low; the reset operation will be performed after the last beat over

AXI4-Stream interface. If reset operation is requested at any other scenario the

reset operation is performed immediately.

Chapter 5

135

Sequence 4

 Title: Allow packets to accumulate in the transmit data FIFO

 Description: A random number of packets is written into core while keeping

tready signal low to let packets accumulates in transmit data FIFO, then

tready signal is forced high while keeping normal operation of core by

continuously writing packets into transmit data FIFO.

Correct handshake over AXI4-Lite/AXI4 interface and AXI4-Stream interface

and correct programming sequence are guaranteed.

 Type of sequence: Positive sequence

 Constraints:
- Length of packets is constrained to be from 1 to 20 words

- Number of packets is constrained to be from 1 to 20 packets

- Full bus width contains valid data (Strobe signal constrained to the

decimal value 15)

 What to be tested: Data flow from AXI4-Stream interface

 Expected correct output: Continuous stream of data transmitted over AXI4-

Stream interface is identical to data entered by user into TDFD register.

Receive Path

Sequence 1

 Title: Store-And-Forward Mode normal operation

 Description: The basic operation of the core. The Sequence writes random

number of packets with random length for each packet to the Receive FIFO

through the AXI4-Stream interface, and then after all the packets are written to

the core, the written packets/they are read from the core through AXI4-Lite

interface.

Correct handshake over AXI4-Lite interface and AXI4-Stream interface and

correct programming sequence are guaranteed.

 Type of sequence: Positive sequence

 Constraints: Length of packets is constrained to be from 1 to 20 words

 Number of packets is constrained to be from 1 to 20 packets

 What to be tested: The correct behavior of the core under normal operation

the Store-And-Forward mode of operation

 Expected correct output: Data transmitted over AXI4 Stream interface is

identical to data read by the user over the AXI4-Lite interface, packet length

read from the core is identical to the length of the packet written through the

AXI4-Stream interface

Chapter 5

136

Sequence 2

 Title: Store-And-Forward Mode normal operation - 2

 Description: The basic operation of the core. The Sequence writes random

number of packets with random length for each packet to the Receive FIFO

through the AXI4-Stream interface, after the first packet is written to the core

each subsequent write of a new packet to the core through the AXI4-Stream

interface is accompanied by a read to the previous packet written in the core at

the same time

Correct handshake over AXI4-Lite interface and AXI4-Stream interface and

correct programming sequence are guaranteed.

 Type of sequence: Positive sequence

 Constraints: Length of packets is constrained to be from 1 to 20 words

 Number of packets is constrained to be from 1 to 20 packets

 What to be tested: The correct behavior of the core under normal operation

the Store-And-Forward mode of operation

 Expected correct output: Data transmitted over AXI4 Stream interface is

identical to data read by the user over the AXI4-Lite interface, packet length

read from the core is identical to the length of the packet written through the

AXI4-Stream interface

Sequence 3

 Title: Cut-Through Mode Normal operation – One Packet

 Description: The basic operation of the core. The Sequence writes one packet

through the entire sequence over the AXI4-Stream interface, however the first

half of the packet is written and then the second half of the packet is written

while the first half is read at the same time over the AXI4 – Lite interface, and

then the second half is read time over the AXI4 – Lite interface.

Correct handshake over AXI4-Lite interface and AXI4-Stream interface and

correct programming sequence are guaranteed.

 Type of sequence: Positive sequence

 Constraints: Length of packet is constrained to be 20 words

 What to be tested: The correct behavior of the core under normal operation

the Store-And-Forward mode of operation

 Expected correct output: Data transmitted over AXI4 Stream interface is

identical to data read by the user over the AXI4-Lite interface, packet length

read from the core is identical to the length of the packet written through the

AXI4-Stream interface

Chapter 5

137

Sequence 4

 Title: Cut-Through Mode Normal operation – Random Number Of Packets

 Description: The same sequence as sequence 3, however instead of writing one

packet only the sequence writes a random number of packets

Correct handshake over AXI4-Lite interface and AXI4-Stream interface and

correct programming sequence are guaranteed.

 Type of sequence: Positive sequence

 Constraints: Length of packet is constrained to be 20 words

 Number of packets is constrained to be from 1 to 20 packets

 What to be tested: The correct behavior of the core under normal operation

the Store-And-Forward mode of operation

 Expected correct output: Data transmitted over AXI4 Stream interface is

identical to data read by the user over the AXI4-Lite interface, packet length

read from the core is identical to the length of the packet written through the

AXI4-Stream interface

Sequence 5

 Title: Cut-Through Mode Normal operation – Random Number Of Packet

 Description: The sequence goes as follows

1) The first half of the first is packet is written over the

AXI4 – Stream interface

2) The first half of the packet is read over the AXI4 - Lite

while the second half is being written at the same time

3) The second half of the packet is read while the first half

of the next packet is being written at the same time

Steps 2 and 3 are repeated for a random number of packets

Correct handshake over AXI4-Lite interface and AXI4-Stream interface and

correct programming sequence are guaranteed.

 Type of sequence: Positive sequence

 Constraints: Length of packet is constrained to be 20 words

 Number of packets is constrained to be from 1 to 20 packets

 What to be tested: The correct behavior of the core under normal operation

the Store-And-Forward mode of operation

 Expected correct output: Data transmitted over AXI4 Stream interface is

identical to data read by the user over the AXI4-Lite interface, packet length

read from the core is identical to the length of the packet written through the

AXI4-Stream interface

Chapter 6

138

Chapter 6.

Simulation Results

6.1. Transmit Path

Simulation Result 1:

Description: Correct programming sequence is performed in Store-and-

Forward mode to transmit a packet of length 10 bytes as illustrated in figure 6-1, in the

first two transfers full data bus width contains valid data, while the third transfer only

the first two bytes contain valid data.

When packet length is written data is transmitted over AXI4-Stream interface

as illustrated in figure 6-2, the first two transfer tkeep signal indicates that all data bus

width contain valid data while the third transfer tkeep signal indicates that only the first

two bytes contain valid data.

Figure 6-1 Register Space and Control Unit simulation results1

Figure 6-2 Stream Interface simulation results1

Chapter 6

139

Simulation Result 2:

Description: Correct programming sequence is performed in Store-and-

Forward mode to transmit a packet of length 10 bytes as illustrated in figure 6-3.

When packet length is written data is transmitted over AXI4-Stream interface

as shown in figure 6-4, while the packet is being transmitted the reset signal is low to

indicate that the user required to reset entire core, the core immediately performs the

reset operation which means that the core on the other side of the stream interface will

receive a partial packet.

Figure 6-3 Register Space and Control Unit simulation results 2

Figure 6-4 Stream Interface simulation results 2

Chapter 6

141

Simulation Result 3:

Description: This case is very similar to previous one; the only difference is

that transmit_reset signal is low to indicate that the user required to reset transmit

circuitry, the core doesn’t perform the reset operation until the packet is fully

transmitted to prevent the core on the other side of the stream interface from receiving

a partial packet. Waveform at figures 6-5 and 6-6 illustrated this scenario.

Figure 6-5 Register Space and Control Unit simulation results 3

Figure 6-6 Stream Interface simulation results 3

Chapter 6

141

Simulation Result 4:

Description: Correct programming sequence is performed in Cut-Through

mode to transmit a packet of length 18 bytes as illustrated in the figure 6-7, When there

is more than 4 bytes (width of stream data bus) stored in the data FIDO; data is

transmitted over AXI4-Stream interface.

While the packet is being transmitted tready becomes low and stream interface

pause transmission until tready is high.

The reset signal is low to indicate that the user required to reset entire core, the

core immediately performs the reset operation which means that the core on the other

side of the stream interface will receive a partial packet.

Figure 6-7 Transmit path simulation result 4

Chapter 6

142

Simulation Result 5:

Description: This case is very similar to previous test case; the only difference

is that user required to reset transmit circuitry; at this scenario reset operation is not

performed until the packet is fully transmitted over AXI4-Stream interface. Waveform

in figure 6-8 illustrates this scenario.

Figure 6-8 Transmit Path simulation result 5

Chapter 6

143

6.2. Receive Path

Simulation Results 1:

 Description: Store-And-Forward normal operation where random

number of packets are written to the core via the AXI4-Stream interface and then the

same number of packets is read from the core through the AXI4 – Lite interface, as

shown in Figure 6-9 the first word of the packet written through the AXI4-Stream

interface is 0x12249216 which is the same word read from the AXI4 – Lite interface

when reading from the RDFD register of address 0x20 as shown in Figure 6-10, in

Figure 6-11 the blue signal is bit 26 in the ISR is the receive complete interrupt which

goes high after the end of writing of the first packet which is marked by the TLast

signal with golden color.

Figure 6-9 Writing and reading random packets

Figure 6-10 First word written to the core

Chapter 6

144

Figure 6-11 RC bit 26 goes high after TLAST

Simulation Result 2:

 Description: Cut-Through mode operation where half of the first

packet is written to the core via the AXI4-Stream and then the second half is written

while the first half is being read via the AXI4 – Lite at the same time, as shown in

Figure 1 the first word of the packet written through the AXI4-Stream interface is

0x8e33dc49 which is the same word read from the AXI4 – Lite interface when

reading from the RDFD register of address 0x20 as shown in Figure 2,in Figure 3 the

blue signal is bit 26 in the ISR is the receive complete interrupt which goes high after

the end of writing of the first packet which is marked by the TLast signal with golden

color

Figure 6-12 First word written to the core

Chapter 6

145

Figure 6-13 First word read from the core

Figure 6-14 RC bit 26 goes high after TLAST

Chapter 7

146

Chapter 7.

 Conclusion and Future Work

7.1. Conclusion

In this thesis we demonstrate the design and verification of VIVADO AXI4

Stream FIFO core, introducing the design and verification techniques that can be used,

The proposed architecture was discussed in details. The designed VIVADO

AXI4 stream FIFO core has two independent Transmit and Receive paths with two

independent FIFOs with configurable width and depth. The core also has two data

interfaces: AXI4 and AXI4-Lite. It supports two modes of operation that can be used

in transmission or reception: Store-And-Forward and Cut-Through. And also has

thirteen mask able interrupts to show the status of core and fault conditions.

Regarding the verification, The Direct testing was divided into two types of

testing: Unit testing for each individual block in the design to test its different features

and functionalities, and Integration Testing which led to more than twenty different test

cases to explore the main features of the core using positive and negative scenarios to

test the response of the core to resulting faults and check interrupts proper operation.

The Constrained Random Testing using Universal Verification Methodology

(UVM) is also used to test the core using various sequences to explore different

scenarios of normal mode of operation in the Cut-Through and Store-And-Forward

modes and the AXI4 and AXI4 – Lite data interfaces.

In closing, The VIVADO AXI4-Stream FIFO core can be used to allow memory

mapped access to AXI4-Stream Interface such as AXI Ethernet core without having to

use a full Direct Memory Access (DMA) solution which is more complicated.

Chapter 7

147

7.2. Future Work

Future work concerns deeper analysis of particular mechanisms, new proposals

to try different methods, or simply curiosity. This thesis has been mainly focused on

design and verification of VIVADO AXI4-Stream FIFO as we should give enough

attention to (1) Completion of UVM testing, (2) Verification using equivalence

checking, and (3) Verification using Questa Verification IP.

7.2.1. Completion of UVM testing

As The Constrained Random Testing using Universal Verification

Methodology (UVM) is used to test the core, more sequences should be added to

explore different scenarios to test for bugs and issues in design.

7.2.2. Verification using equivalence checking

 Formal equivalence checking process is a part of electronic design automation

(EDA) to formally prove that two representations of a circuit design exhibit exactly the

same behavior, as it turns functional verification is more efficient, in terms of time

(verification speed) and comprehensiveness (state space coverage). Simulation-based

techniques are implemented with relatively low effort, and are good at quickly finding

easy-to-spot bugs.

In future work, it is supposed to verify our design using equivalence checking

versus Xilinx generated FIFO stream simulation module.

7.2.3. Verification using Questa Verification IP

In our thesis, The Verification has been tested using Questa Sim which has

limited capabilities but Questa Verification IP integrates seamlessly into all advanced

verification environments on all industry-standard simulators. With a consistent and

easy-to-use UVM architecture across all protocols, Questa Verification IP ensures

maximum productivity and flexibility for the verification of block level, subsystem, and

SoC designs. Questa Verification IP includes AMBA® Questa Verification IP (VIP)

family enables fast and accurate verification for designs that use any AMBA 3, AMBA

4 or AMBA 5 protocols.

https://en.wikipedia.org/wiki/Electronic_design_automation
https://en.wikipedia.org/wiki/Circuit_design

Chapter 8

148

Chapter 8.

References

[1]. K. Swetha & G. Ramakrishna. (2014). AMBA protocols for ALU.

[2]. AXI Reference guide. (2011).

[3]. AMBA AXI-Stream protocol specifications version 1.0. (2010).

[4]. MIT Course for Complex Digital Systems spring 2005 lecture slides [Online]

Available: https://ocw.mit.edu/courses/electrical-engineering-and-computer-

science/6-884-complex-digital-systems-spring-2005/lecture-notes/l15_testing.pdf

[5]. J. Aynsley. (June 2010). UVM Verification Primer

[6]. Testbench – an overview | ScienceDirect Topics [Online] Available:

https://www.sciencedirect.com/topics/computer-science/testbench

[7]. Tutorial - What is a Testbench [Online] Available:

https://www.nandland.com/articles/what-is-a-testbench-fpga.html

[8]. What is the advantage of UVM over systemverilog? [Online] Available:

https://www.quora.com/What-is-the-advantage-of-UVM-over-systemverilog

[Accessed 3 - Jun – 2019]

[9]. Verification Methodologies Made Easy — Aldec - Youtube [Online] Available:

https://www.youtube.com/watch?v=ZlDTA9E5gEU

[10]. Introduction to Verification Methodology – Youtube [Online] Available:

https://www.youtube.com/watch?v=-yO2ID-3dTk&t=183s

[11]. Introduction to UVM - The Universal Verification Methodology for

SystemVerilog – YouTube [Online] Available:

https://www.youtube.com/watch?v=imH4CFmVGWE&t=23s

[12]. Basic UVM | Universal Verification Methodology | Verification Academy

[Online] Available: https://verificationacademy.com/courses/basic-uvm

[13]. https://verificationacademy.com

[14]. UVM Users guide 1.2 by Accellera

