

Machine Learning Hardware Acceleration for
Advanced Driving Assistance Systems (ADAS)

A Graduation Project Report Submitted to the faculty of

engineering at Cairo university in Partial fulfilment of The

Requirements for the Degree of Bachelor science

In

Electronics and Electrical communications Engineering

By

Mohamed Ayman Mohamed

Mahmoud Ahmed Fouad

Mahmoud Yasser Ibrahim

Mostafa Nasser Zaki

Moataz Mohamed Gharib

Under supervision of

Dr. Hassan Mostafa

Faculty of Engineering, Cairo university

Giza, Egypt

July, 2021

1

Table of Contents
Chapter 1: Introduction to ADAS ... 9

1.1 ADAS definition ... 9

1.2 Why is ADAS important? ... 9

1.3 ADAS applications ... 10

1.4 How does ADAS work? .. 11

1.5 The future of ADAS .. 12

1.6 ADAS and Machine/Deep learning .. 13

Chapter 2: Image Classification Models ... 21

2.1 Neural networks overview .. 21

2.2 Convolutional neural networks overview ... 21

2.3 General convolution neural network architecture ... 21

2.3.1 Convolution layer ... 22

2.3.2 Relu activation function ... 22

2.3.3 Pooling layer .. 22

2.3.4 Fully connected layer ... 23

2.4 CNN architectures and models for image classification ... 24

2.4.1 SqueezeNet 2016.. 24

2.4.2 ResNet model ... 25

2.4.3 AlexNet Model ... 28

2.4.4 VGGNet ... 29

2.4.5 MobileNet .. 30

Chapter 3: Training ... 33

3.1Training .. 33

3.1.1Model 1 ... 34

3.1.2Training of model one on GTS ... 39

3.1.3Disadvantage in model 1 ... 40

3.2Model 2 and Quantization .. 41

3.2.1Quantization aware Training ... 41

3.2.2Second Step: Post training quantization .. 43

3.2.3How quantization is implemented in hardware ... 43

3.2.4Model 2 Layer ... 44

Chapter 4: Hardware Design Methodology .. 46

4.1 FPGA Introduction and main resources .. 46

2

4.2 FPGA 7 series internal components .. 46

4.2.1 Configure Logic Block (CLB) ... 46

4.2.2 Configurable I/O blocks ... 47

4.2.3 Clock Driver ... 48

4.2.4 DSP Block .. 48

4.2.5 Block Ram ... 49

4.3 FPGA digital design flow ... 49

4.4 MobileNet accelerator design ... 50

4.4.1 First Design Approach ... 50

4.4.2 Second Design Approach ... 51

4.4.3 Shared Layer approach... 52

4.5 Shifter Block ... 53

4.5.1 How multiplication is done in hardware .. 53

4.5.2 Shift Register with one Controller ... 54

4.6 Adder Tree Block .. 59

4.6.1 Look ahead with carry save adder .. 59

4.6.2 Pipelined adder tree .. 62

4.6.3 Adder tree overflow issue .. 62

4.7 Standard Convolution ... 63

4.8 Depthwise Convolution .. 65

4.8.1 How Depth wise fetch data from memory? ... 66

4.8.2 How Depthwise fetch weights from memory? ... 66

4.9 Pointwise Convolution .. 67

4.9.1 Pointwise hardware complexity ... 68

4.9.2 Pointwise hardware Structure .. 68

4.9.3 Input Fetching .. 69

4.9.4 Core Block: Pointwise Convolution .. 69

4.9.5 Weights Fetching ... 70

4.9.6 PW Output Storage .. 72

4.9.7 Batch normalization ... 73

4.9.8 Illustrative example .. 74

4.10 Average Pooling Layer ... 77

4.11 Fully connected Layer ... 78

4.11.1 FC architecture ... 78

Chapter 5: Controllers and Weight distribution .. 80

3

5.1 Main controller .. 80

5.2 Standard convolution and Depthwise controller ... 81

5.2.1 Controller operation sequences (Data Flow) ... 82

5.2.2 Controller operation sequences (Weight, Bias and M parameter) ... 83

5.3 Pointwise controller .. 83

5.4 Fully connected controller .. 84

5.5 Weight distribution ... 84

Chapter 6: Testing methodology and functional simulation result ... 86

6.1 Testing methodology .. 86

6.2 Testing Standard convolution layer .. 87

6.3 Testing Depthwise convolution layer.. 87

6.4 Testing Pointwise layer ... 88

6.5 Testing Pooling and Fully connected Layer.. 89

Chapter 7: Results, Future Work and Conclusion ... 91

7.1 Results ... 91

7.2 Power optimization ... 93

7.3 Benchmark .. 96

7.4 Future Work .. 97

7.4.1 Increase throughput by time sharing between photos .. 98

7.4.2 Make design ready for ASIC flow ... 98

7.4.3 Experimental Work .. 98

7.5 Conclusion .. 98

References ... 99

4

List of Figures
Figure 1: Type of information ADAS provide to Driver ... 9

Figure 2: Autonomous levels .. 10

Figure 3: ADAS application .. 11

Figure 4: Main parts of any ADAS ... 12

Figure 5: vehicle to vehicle communication. .. 13

Figure 6: Performance Vs Amount of data ... 14

Figure 7: Object detection .. 14

Figure 8: Major methods of object detection ... 15

Figure 9: YOLO architecture .. 15

Figure 10: Point pillars architecture. ... 17

Figure 11: Lane detection ... 18

Figure 12: DeepLane architecture .. 18

Figure 13: VPGNet architecture .. 19

Figure 14: Semantic segmentation ... 19

Figure 15: ADAS semantic segmentation image ... 20

Figure 16: General CNN architecture .. 21

Figure 17: Convolution Layer .. 22

Figure 18: Relu function .. 22

Figure 19: Max Pooling ... 23

Figure 20: Average pooling ... 23

Figure 21: Fully connected layer ... 24

Figure 22: SqueezeNet architecture ... 24

Figure 23: Squeeze Net fire module ... 25

Figure 24: Performance Vs iterations ... 25

Figure 25: Short connection in ResNet ... 26

Figure 26: ResNet50 model ... 27

Figure 27: Performance of some ResNet versions .. 28

Figure 28: AlexNet architecture .. 29

Figure 29: VGG-16 architecture .. 30

Figure 30: Depthwise Convolution .. 31

Figure 31: Standard Convolution .. 31

Figure 32: Pointwise Convolution ... 31

Figure 33: MobileNet architecture ... 32

Figure 34: Signs from GTS ... 33

Figure 35: Model 1 Layers ... 38

Figure 36: Mobile Net trained on image net .. 39

Figure 37: Insert Fake Quant layer during training ... 41

Figure 38: Finding zeros .. 42

Figure 39: Models are trained on image net .. 42

Figure 40: Final mode 2 Layers ... 45

Figure 41: Configurable logic block ... 47

file:///C:/Users/Muhammed%20Ayman/Desktop/Thesis-Final-Edition.docx%23_Toc77946223
file:///C:/Users/Muhammed%20Ayman/Desktop/Thesis-Final-Edition.docx%23_Toc77946224
file:///C:/Users/Muhammed%20Ayman/Desktop/Thesis-Final-Edition.docx%23_Toc77946225
file:///C:/Users/Muhammed%20Ayman/Desktop/Thesis-Final-Edition.docx%23_Toc77946227
file:///C:/Users/Muhammed%20Ayman/Desktop/Thesis-Final-Edition.docx%23_Toc77946228
file:///C:/Users/Muhammed%20Ayman/Desktop/Thesis-Final-Edition.docx%23_Toc77946229
file:///C:/Users/Muhammed%20Ayman/Desktop/Thesis-Final-Edition.docx%23_Toc77946230
file:///C:/Users/Muhammed%20Ayman/Desktop/Thesis-Final-Edition.docx%23_Toc77946231
file:///C:/Users/Muhammed%20Ayman/Desktop/Thesis-Final-Edition.docx%23_Toc77946232
file:///C:/Users/Muhammed%20Ayman/Desktop/Thesis-Final-Edition.docx%23_Toc77946233
file:///C:/Users/Muhammed%20Ayman/Desktop/Thesis-Final-Edition.docx%23_Toc77946234

5

Figure 42: Input output configurable block .. 47

Figure 43: Input output configurable block .. 48

Figure 44: Layer pipeline architecture .. 50

Figure 45: Series 7 FPGA resources ... 50

Figure 46: Shared layer architecture... 51

Figure 47: Operation overlapping between depth and point wise modules .. 51

Figure 48: MobileNet accelerator Block diagram ... 52

Figure 49: Image 6*6 and filter 3*3 multiplication ... 53

Figure 50: Bram in virtex- 7 ... 54

Figure 51: Input Image with required Padding ... 55

Figure 52: Values in Registers ... 55

Figure 53: One instance of module ... 58

Figure 54: 32 instances controlled by one counter and controller ... 59

Figure 55: Carry save block ... 59

Figure 56: generation and propagation truth table .. 59

Figure 57: carry lookahead block diagram .. 60

Figure 58: pipelined carry lookahead adder tree adding 9 numbers ... 62

Figure 59: Standard convolution architecture .. 63

Figure 60:Standard convolution adder tree .. 64

Figure 61: Depthwise core parallelism.. 65

Figure 62: Depthwise block diagram .. 65

Figure 63: Memory weights fetching .. 66

Figure 64: Pointwise convolution.. 67

Figure 65: Pointwise filters ... 67

Figure 66: Pointwise hardware structure ... 68

Figure 67: Input buffer .. 69

Figure 68: Convolution parallelism ... 69

Figure 69: Pointwise sequence of operation .. 70

Figure 70: Weights fetching .. 70

Figure 71: How weights are stored in ROM .. 71

Figure 72: Pointwise output buffer ... 72

Figure 73: MobileNet PW layers ... 73

Figure 74: Batch norm weights storing ... 74

Figure 75: illustrative example .. 75

Figure 76: Kernels are applied .. 75

Figure 77: Combing the 2 parts ... 76

Figure 78: Storing the result in output buffers ... 76

Figure 79: Average Pooling ... 77

Figure 80: Average Pooling architecture... 77

Figure 81: Fully connected layer architecture .. 78

Figure 82: FC weights ROM ... 79

Figure 83: Main parts of digital system... 80

Figure 84: FSM of main controller .. 80

Figure 85: Layer controller entity ... 81

file:///C:/Users/Muhammed%20Ayman/Desktop/Thesis-Final-Edition.docx%23_Toc77946235
file:///C:/Users/Muhammed%20Ayman/Desktop/Thesis-Final-Edition.docx%23_Toc77946236
file:///C:/Users/Muhammed%20Ayman/Desktop/Thesis-Final-Edition.docx%23_Toc77946237
file:///C:/Users/Muhammed%20Ayman/Desktop/Thesis-Final-Edition.docx%23_Toc77946238
file:///C:/Users/Muhammed%20Ayman/Desktop/Thesis-Final-Edition.docx%23_Toc77946239
file:///C:/Users/Muhammed%20Ayman/Desktop/Thesis-Final-Edition.docx%23_Toc77946240
file:///C:/Users/Muhammed%20Ayman/Desktop/Thesis-Final-Edition.docx%23_Toc77946241
file:///C:/Users/Muhammed%20Ayman/Desktop/Thesis-Final-Edition.docx%23_Toc77946242
file:///C:/Users/Muhammed%20Ayman/Desktop/Thesis-Final-Edition.docx%23_Toc77946243
file:///C:/Users/Muhammed%20Ayman/Desktop/Thesis-Final-Edition.docx%23_Toc77946244
file:///C:/Users/Muhammed%20Ayman/Desktop/Thesis-Final-Edition.docx%23_Toc77946245
file:///C:/Users/Muhammed%20Ayman/Desktop/Thesis-Final-Edition.docx%23_Toc77946246
file:///C:/Users/Muhammed%20Ayman/Desktop/Thesis-Final-Edition.docx%23_Toc77946247
file:///C:/Users/Muhammed%20Ayman/Desktop/Thesis-Final-Edition.docx%23_Toc77946248
file:///C:/Users/Muhammed%20Ayman/Desktop/Thesis-Final-Edition.docx%23_Toc77946249
file:///C:/Users/Muhammed%20Ayman/Desktop/Thesis-Final-Edition.docx%23_Toc77946250
file:///C:/Users/Muhammed%20Ayman/Desktop/Thesis-Final-Edition.docx%23_Toc77946251
file:///C:/Users/Muhammed%20Ayman/Desktop/Thesis-Final-Edition.docx%23_Toc77946252
file:///C:/Users/Muhammed%20Ayman/Desktop/Thesis-Final-Edition.docx%23_Toc77946253
file:///C:/Users/Muhammed%20Ayman/Desktop/Thesis-Final-Edition.docx%23_Toc77946254
file:///C:/Users/Muhammed%20Ayman/Desktop/Thesis-Final-Edition.docx%23_Toc77946255
file:///C:/Users/Muhammed%20Ayman/Desktop/Thesis-Final-Edition.docx%23_Toc77946256
file:///C:/Users/Muhammed%20Ayman/Desktop/Thesis-Final-Edition.docx%23_Toc77946257
file:///C:/Users/Muhammed%20Ayman/Desktop/Thesis-Final-Edition.docx%23_Toc77946259
file:///C:/Users/Muhammed%20Ayman/Desktop/Thesis-Final-Edition.docx%23_Toc77946260
file:///C:/Users/Muhammed%20Ayman/Desktop/Thesis-Final-Edition.docx%23_Toc77946261
file:///C:/Users/Muhammed%20Ayman/Desktop/Thesis-Final-Edition.docx%23_Toc77946262
file:///C:/Users/Muhammed%20Ayman/Desktop/Thesis-Final-Edition.docx%23_Toc77946263
file:///C:/Users/Muhammed%20Ayman/Desktop/Thesis-Final-Edition.docx%23_Toc77946264
file:///C:/Users/Muhammed%20Ayman/Desktop/Thesis-Final-Edition.docx%23_Toc77946265
file:///C:/Users/Muhammed%20Ayman/Desktop/Thesis-Final-Edition.docx%23_Toc77946267
file:///C:/Users/Muhammed%20Ayman/Desktop/Thesis-Final-Edition.docx%23_Toc77946268
file:///C:/Users/Muhammed%20Ayman/Desktop/Thesis-Final-Edition.docx%23_Toc77946269
file:///C:/Users/Muhammed%20Ayman/Desktop/Thesis-Final-Edition.docx%23_Toc77946270
file:///C:/Users/Muhammed%20Ayman/Desktop/Thesis-Final-Edition.docx%23_Toc77946271
file:///C:/Users/Muhammed%20Ayman/Desktop/Thesis-Final-Edition.docx%23_Toc77946272
file:///C:/Users/Muhammed%20Ayman/Desktop/Thesis-Final-Edition.docx%23_Toc77946273
file:///C:/Users/Muhammed%20Ayman/Desktop/Thesis-Final-Edition.docx%23_Toc77946274
file:///C:/Users/Muhammed%20Ayman/Desktop/Thesis-Final-Edition.docx%23_Toc77946275
file:///C:/Users/Muhammed%20Ayman/Desktop/Thesis-Final-Edition.docx%23_Toc77946276
file:///C:/Users/Muhammed%20Ayman/Desktop/Thesis-Final-Edition.docx%23_Toc77946277
file:///C:/Users/Muhammed%20Ayman/Desktop/Thesis-Final-Edition.docx%23_Toc77946278

6

Figure 86: State diagram ... 82

Figure 87: PW controller ... 83

Figure 88: Fully connected controller ... 84

Figure 89: Weight distribution flow .. 84

Figure 90: Weight distribution files .. 85

 Figure 91: Testing methodology .. 86

Figure 92: File’s comparison of pooling layer ... 87

Figure 93 : Depth wise Results .. 87

Figure 94: File comparing and expected errors .. 88

Figure 95 : pooling results ... 89

Figure 96 : Classify input image class from fully connected layer .. 89

Figure 97 : classify another input image ... 90

Figure 98 : input image ... 90

Figure 99: Resources Utilization ... 91

Figure 100: Power Analysis ... 91

Figure 101:Timing summary results .. 92

Figure 102: Enable Bram’s 100% ... 94

Figure 103 : Power optimization for Brams .. 94

Figure 104 : Signal power if 16 bit is used .. 95

Figure 105 : Signal power if 8 bit is used .. 95

Figure 106:Time diagram of Multiple photos processing ... 97

Figure 107: FPGA board .. 98

List of tables

Table 1: comparison between YOLO and state of art detectors .. 16

Table 2: Comparison between LIDAR methods .. 17

Table 3: ResNet versions ... 27

Table 4: Tuning lambda ... 40

Table 5: Tunning alpha .. 40

Table 6:Resource per layer type ... 68

Table 7: Stages Results .. 92

Table 8: Timing Results ... 93

Table 9 : Comparison among different paper results and our results .. 96

file:///C:/Users/Muhammed%20Ayman/Desktop/Thesis-Final-Edition.docx%23_Toc77946279
file:///C:/Users/Muhammed%20Ayman/Desktop/Thesis-Final-Edition.docx%23_Toc77946280
file:///C:/Users/Muhammed%20Ayman/Desktop/Thesis-Final-Edition.docx%23_Toc77946281
file:///C:/Users/Muhammed%20Ayman/Desktop/Thesis-Final-Edition.docx%23_Toc77946282
file:///C:/Users/Muhammed%20Ayman/Desktop/Thesis-Final-Edition.docx%23_Toc77946283
file:///C:/Users/Muhammed%20Ayman/Desktop/Thesis-Final-Edition.docx%23_Toc77946285
file:///C:/Users/Muhammed%20Ayman/Desktop/Thesis-Final-Edition.docx%23_Toc77946287
file:///C:/Users/Muhammed%20Ayman/Desktop/Thesis-Final-Edition.docx%23_Toc77946288
file:///C:/Users/Muhammed%20Ayman/Desktop/Thesis-Final-Edition.docx%23_Toc77946289
file:///C:/Users/Muhammed%20Ayman/Desktop/Thesis-Final-Edition.docx%23_Toc77946292
file:///C:/Users/Muhammed%20Ayman/Desktop/Thesis-Final-Edition.docx%23_Toc77946293
file:///C:/Users/Muhammed%20Ayman/Desktop/Thesis-Final-Edition.docx%23_Toc77946294
file:///C:/Users/Muhammed%20Ayman/Desktop/Thesis-Final-Edition.docx%23_Toc77946299
file:///C:/Users/Muhammed%20Ayman/Desktop/Thesis-Final-Edition.docx%23_Toc77946300
file:///C:/Users/Muhammed%20Ayman/Desktop/Thesis-Final-Edition.docx%23_Toc77946301
file:///C:/Users/Muhammed%20Ayman/Desktop/Thesis-Final-Edition.docx%23_Toc77946302
file:///C:/Users/Muhammed%20Ayman/Desktop/Thesis-Final-Edition.docx%23_Toc77946306

7

List of Abbreviations

ADAS

ASIC

Advanced Driver Assistance System

Application-Specific Integrated Circuit

BRAM Block Random Access Memory

CLB Configurable Logic Block

CNN Convolutional Neural Network

Concat Concatenation

Conv Convolution

CV Computer Vision

DNN Deep Neural Network

DSD Dense-Sparse-Dense training

DSP Digital Signal Processing

e.g., For Example,

FC Fully Connected layer

FF Flip-Flop

FIFO First in First out

FPGA Field Programmable Gate Arrays

HDL Hardware Description Language

i.e., In Other Words,

I/O Input/Output

ILSVRC ImageNet Large Scale Visual

Recognition Challenge

LUT Look Up Table

MAC Multiply and accumulate

RAM Random Access Memory

Relu Rectified Linear Unit

ResNet Residual Neural Network

ROM Read Only Memory

SRL Shift Register LUT

STA Static Timing Analysis

TNS Total Negative Slack

VGGNet Visual Geometry Group network

VIO Virtual Input/Output

vs. Versus

WNS Worst Negative Slack

etc. And the rest

8

Abstract

The use of Machine Learning (ML) and Artificial intelligence (AI) is a pillar in ADAS

(Advanced Driver Assistance Systems) and self-learning cars. The ML and AI are used in several

applications such as images, classifications, and traffic signs detection. One of the main challenges

to the AI and ML models is the need for computation resources such as (GPUs) which usually are

power-hungry to reduce the required real-time and high accuracy performance metrics.

The target in this project is to implement a CNN hardware Accelerator on an FPGA

specified for ADAS applications, and focusing on accelerating the design and achieving high

speed. MobileNet is the chosen architecture as it is the most suitable network for ADAS

applications due to its simplicity, its high accuracy and its low number of parameters which is

much less than other CNN architectures, which makes it possible to be implemented on FPGAs.

In this work, the maxima frame is 4975 fps, the power consumption of the system is

8.118W, the energy per image is 0.0017 J/image while the design is run on the Virtex-7 -VC-709

platform with a 100 MHz work clock frequency

9

Chapter 1: Introduction to ADAS
A huge improvement is noticed in the domain of automotive safety nowadays to minimize

the number of car accidents. We can easily see in our cars an example of a system that helps us

while driving to avoid collisions like park systems, cameras to see blind spots, collision warning

systems …………etc.

In this chapter, ADAS definition is discussed with some examples, and the relation between ADAS

and machine learning is clarified.[1]

1.1 ADAS definition
Advanced Driver Assistance Systems (ADAS) are smart systems that help the car driver

with his driving activities to improve the safety level by providing the driver with accurate and

sufficient information about the surrounding area of the vehicle such as traffic sign, location of

other vehicles, pedestrians locations, Street Lines …………. etc.

As shown in figure (1), according to this information, the car has a real time automated system

that take a correct action in a correct sharp time on the vehicle to avoid accidents like braking or

steering.[1]

 Figure 1: Type of information ADAS provide to Driver

1.2 Why is ADAS important?
ADAS increases the safety on the roads by warning the drivers to prevent accidents or

traffic rules violence. So ADAS is very important systems to save lives. According to the statistics

by the National Highway Traffic Safety Administration (NHTSA). “The Nation lost 35,092 people

in crashes on U.S. roadways during 2015.” This 7.2% increase was “the largest percentage increase

in nearly 50 years.” About 94% of those accidents were caused by human error.

ADAS provides many applications such as pedestrian and vehicles detection, Lane assistance,

automatic parking, surround view, and driver drowsiness detection that assist the driver, reduce

accidents and save lives.[1]

10

1.3 ADAS applications
As shown in figure (2), The autonomous engineers classified the automation into six levels.

Starting from level zero there is no automation at all until we reach level five. In level five we have

full automation that doesn’t need any assistance from the human.

ADAS is classified as level two in these levels, it just monitors information to the driver and warns

him if there’s a dangerous situation. It may take some real time actions on the car in very dangerous

situations.

 Figure 2: Autonomous levels

Depending on the previous classification we can talk about different ADAS applications, as shown

in figure (3):

1) Blind spot monitoring:

Blind spot detection systems use sensors like cameras to provide the driver with important

information that is very difficult or impossible to obtain like the blind point that the normal mirrors

can’t get. Some systems sound an alarm when they detect an object in the driver’s blind spot,

especially when the driver wants to move into the next lane.

2) Automatic Emergency Braking:

Automatic emergency braking system uses sensors to detect whether the driver is going to hit

another object on the road. This application can measure the distance of nearby objects and alert

the driver to any danger. Some emergency braking systems can take preventive safety measures,

such as tightening seat belts, reducing speed, and adaptive steering to avoid a collision.

3) Lane departure warning system:

Lane departure warning system warns the driver if the car begins to move out of its lane unless

turn signals are on this direction. This application can use the data from camera and detect the

two lanes that the car should stay within them so if there’s a significant shift in the lane in the

image it warns the driver.

11

4) Traffic sign detection and classification:

This system uses the data of the cameras to detect and classify the different traffic signs across

the road. The system may just monitor the information to the driver to warn him if any traffic

rule is violated. We use the data coming from the camera then detect the location of the traffic

sign then classify it.

*In part 2 of this chapter, we will talk about each application and how to implement it using

machine/deep learning models.

*The application of Traffic sign detection and classification using camera is our mainly

consideration in this project and we will focus on it in the next chapters.[1]

Figure 3: ADAS application

1.4 How does ADAS work?
As shown in figure (4), ADAS in cars depend on three parts:

1) Sensors: they gather information on their immediate environment, such as pedestrians, cars,

traffic signs…...etc. they are different sensors can be used like camera that provide the system

with 2D image that it can extract different information from it like the type of traffic sign or the

existing of cars or people in the image.

We have also lidar that throws laser light at an object on the earth surface and calculate the time it

takes to return to the LiDAR source so it can calculate the object’s distance from the car. The main

advantage of lidar over the camera that it overcomes the lighting conditions problem that affects

badly the image taken by the camera.

We have also ultrasonic that send sonic waves and calculate the object’s distance from the car like

the LiDAR sensor by in shorter range so ADAS depend mostly on it in the parking system.

ADAS can use combined data from different sensors and use them as input to the processor to

increase the performance and the accuracy.

12

2) Processor: it uses a combined data from the sensors to understand it and construct a full

understanding of the surrounding area. After processing the data, it may just show the information

to the driver to inform him of different traffic signs on the road for example.

The processor also can control some actuators in the car if needed to avoid collision to improve

the safety level.

3) Actuators: they are anything that control the car movement like brakes, steering, throttle……….

etc.

Figure 4: Main parts of any ADAS

1.5 The future of ADAS
ADAS is advancing at a very fast rate. According to Speaking in 2016 chairman and CEO

of General Motors, Mary Barras wrote: “The auto industry will change more in the next 5 to 10

years than it has in the past 50.”

As Barras said, the next step-change for the advancement of ADAS technologies will be the advent

of the so-called connected car, made possible by the widespread adoption of:

• vehicle-to-vehicle (V2V).

• vehicle-to-infrastructure (V2I).

• vehicle-to-everything (V2X) communications.

Current ADAS functions are restricted by what the sensors can detect, which today extends to a

useful forward range of around 250 meters.

As shown in figure (5), V2V communication allows vehicles to communicate with each other

directly and exchange information, such as positions, relative speeds, directions and even control

inputs, like sudden braking, accelerations or directions changes.

As an extension of V2V, V2I provides vehicles with information from the road network’s

infrastructure, such as traffic lights and signals, variable speed limits and congestion information.

13

Such information is expected to not only improve safety but also reduce congestion by enabling

a freer flow of traffic, and it is also recognized as a key driver towards full autonomy.

V2X, meanwhile, adds data streams from beyond the immediate road network, including cloud-

stored information, meteorological updates and possibly cyclists, pedestrians and other

vulnerable road users (VRUs).[2]

Figure 5: vehicle to vehicle communication.

Moving toward fully autonomous cars—vehicles capable of sensing their environment and

operating without human involvement—adds complexity in the electronic architecture of these

vehicles.

These complex architectures require an increase in the volume of data. To manage this data, the

new integrated domain controllers require higher computing performance, lower power

consumption, and smaller packaging.

The adoption of 64-bit processors, neural networks and AI accelerators to handle the high volume

of data requires the latest semiconductor features, semiconductor process technologies, and

interconnecting technologies to support ADAS capabilities.[1]

 1.6 ADAS and Machine/Deep learning

In this part, the different functions that can be implemented using deep learning will be

discussed and we will relate them with ADAS applications.

The deep learning is a subset of machine learning that has a breakthrough nowadays. This was due

to the huge amount of data that becomes available so, we need to increase the performance of the

learning algorithm using this huge data, as shown in figure (6).

14

Figure 6: Performance Vs Amount of data

1)Detection

Object detection is a computer vision technique for locating instances of objects in images or

videos.

As shown in figure (7), The detection of objects like vehicles, pedestrians, cyclists,

animals………...etc. is crucial in advanced driver assistance systems (ADAS) to avoid collisions

and accidents.

Figure 7: Object detection

Deep Learning for object Detection:

The Data comes from Cameras, Lidars (Light Detection and Ranging) and radars.

We can categorize the deep-learning detectors into two categories: two-stage and one stage

methods. Two stages such as R-CNN, Fast R-CNN, etc. that generate the regions by CNN then

classify them. one stage like YOLO, SSD, etc. which directly get the probability and position

without generating regions stage.[3]

The major methods of object detection are shown in figure (8).

15

Figure 8: Major methods of object detection

YOLO

You Only Look Once is a state-of-the-art, real-time object detection system. It was produced in

2015.

YOLO has its own neat architecture based on CNN and anchor boxes and is proven to be an on-

the-go object detection method for many problems. YOLO has 3 versions: YOLO V1, YOLO V2,

YOLO V3

YOLO V2 is more accurate and faster than V1. YOLO V3 more accurate but not faster than V2.

[4]

YOLO network architecture is shown in figure (9):

 Figure 9: YOLO architecture

It consists of 24 convolutional layers followed by 2 fully connected layers. The model takes the

input image and divide it into a grid of 13 by 13 cells: each cell is predicting 5 bounding boxes. A

bounding box describes the rectangle that encloses an object. YOLO also obtains a confidence

score that gives us information about how certain it is that the predicted bounding box actually

encloses some object.

The following table show a comparison (Results on PASCAL VOC 2007 test set) between state

of art detectors and YOLO [4]:

16

LiDARs

LiDARs have the advantage of working in nightlight and give an accurate 3D mapping of the

environment. We can group the neural networks for LiDAR data processing into two categories:

first category is 2D methods in which the point cloud is projected onto one or more planes, which

are then processed by typical convolutional networks. the second is :3D methods – the point cloud

is processed without reducing the third dimension, the following subdivision can be made:

1.methods operating on points – these methods perform semantic segmentation or classify the

entire cloud as an object – an exemplary method is Point- Nets.

2.methods operating on cells – these methods divide the three-dimensional space into cells (fixed

size), aggregate the features of particular points into a features vector for a given cell and process

the matrix of cells with 2D or 3D convolutional networks – examples are VoxelNet and

PointPillars.

3.hybrid methods – methods partly using both of the above-described approaches – an example is

PVRCNN.

We will focus on one of these methods:

PointPillars

PointPillars takes the point cloud (which is a collection of hundreds of millions, or sometimes

billions of highly accurate 3-dimensional x,y,z points and component attributes.) as input from

LiDAR and generates oriented cuboids denoting the detected objects: Pedestrians, cars, and

Table 1: comparison between YOLO and state of art detectors

17

cyclists. A “pillar” is a three-dimensional cell, without a user-defined height. The network

architecture is shown in the following figure:

Figure 10: Point pillars architecture.

It consists of three main parts: The first part – Pillar Feature Net (PFN) –whose task is to convert

the point cloud into a sparse “pseudo-image”. The second part of the network – Backbone (2D

CNN) – processes the “pseudo-image” and extracts high-level features. The last part of the network

is the Detection Head (SSD), that detects and regresses the 3D cuboids on the objects.[5]

The following table shows comparison between different methods that takes data from LiDAR

(Results on the KITTI test 3D detection benchmark)

2) Lane Detection:

It is not easy for drivers to find the Lane lines on the road in case of heavy rain fall or there is a

snow covering the ground, ADAS helps the drivers by proving Lane detection function. lane

detection is a critical component of ADAS. If lane positions are detected, the car will know where

to go and avoid the risk of running into other lanes or getting off the road. This can prevent the

driver/car system from drifting off the driving lane.[3]

Table 2: Comparison between LIDAR methods

18

Figure 11: Lane detection

Deep Learning for Lane Detection:

Data also can come from cameras or LiDARs. Lane detection methods can be grouped into two

main categories: two-step and one-step methods. One step method gets the detection and gathering

results directly from the input image. On the other hand, two-step methods consist of two main

steps: feature extracting step and post-processing step.[3]

We will focus of two examples of the networks proposed for Lane detection:

DeepLane is a method based on the idea of classification-based Lane detection method, which

combines some prior information to determine lane position. The overall architecture is shown in

figure (13).

Figure 12: DeepLane architecture

A SoftMax layer is applied to obtain the probability distribution of lane position. The fully

connected layer consists of 317 outputs (316 for possible positions and one for the absence of lane

marker).[3]

VPGNet (Vanishing Point Guided Network) was proposed by Seokju Lee et al based on the idea

of object detection-based lane detection method. It is another method to estimate geometric

characteristics by CNN.VPG performs four tasks: grid regression, object detection, multi-label

classification, and vanishing point.[3]

The architecture is shown in the following figure:

19

Figure 13: VPGNet architecture

3) semantic segmentation

Semantic Segmentation is the process of assigning a label to every pixel in the image. This is in

stark contrast to classification, where a single label is assigned to the entire picture. Semantic

segmentation treats multiple objects of the same class as a single entity. On the other hand, instance

segmentation treats multiple objects of the same class as distinct individual objects (or instances).

Typically, instance segmentation is harder than semantic segmentation.

As shown in figure (14), our main goal is to take RGP image and output a segmentation map where

each pixel contains a class label represented as an integer.

Figure 14: Semantic segmentation

An approach towards implementing this application is by constructing a neural network

architecture for this task is to simply stack a number of convolutional layers (with same padding

to preserve dimensions) and output a final segmentation map (all this will be discussed in chapter

2).

Semantic segmentation is a very important task in ADAS applications, we can use it to classify

the regions that contain vehicles and humas all around the car without classifying the humans into

men and women or classifying the type of the vehicles, as shown in figure (15).

20

Figure 15: ADAS semantic segmentation image

4) image classification

Image classification is where a computer can analysis an image and identify the class the image

falls under (Or a probability of the image being part of a certain class) A class is a label for a

certain instance like identify if image is a car, dog, cat, ………. etc.

The image classification can be used in so many applications in ADAS, we will use it to classify

the different traffic signs

This Deep learning application can be implemented using different types of Deep learning

Models that will be discussed in chapter (2).

21

Chapter 2: Image Classification Models
In this chapter, we will focus on the back bone of deep learning (CNN “convolutional

neural network”). A general CNN architecture will be discussed, then different models of image

classification as an application of deep learning.

2.1 Neural networks overview
Artificial neural networks (ANN) are commuting system inspired by biological neural

networks that constitutes human brains.

ANN is based on a collection of connected artificial neurons that transfer data from input to output

with some calculations to behave as a human. Humans should move with some situations to learn

how to behave correctly and with similar situation human act dependent on the previous learning.

Unlike humans, deep learning approaches the machine with a large amount of data and after that

machine is able to take a decision itself.

Deep learning is subfield of machine learning which use artificial neural networks. Deep learning

is the most accurate approach in machine learning fields because no accuracy saturation occurs

with the amount of data in the learning phase.

Our approach is based on deep learning architectures specifically convolution neural networks

(CNN).

2.2 Convolutional neural networks overview
Convolutional neural network (CNN) is a spatial type of artificial deep neural networks

(DNN) which developed to work with high input futures like RGP high quality photos with good

performance and small number of parameters compared to any DNN. CNN uses shared weights to

extract the input futures (hidden layers). Each hidden layer consists of filters. Automatically in the

train phase, each filter able to extract one feature from the input features using convolution process

and after convolution layers the output encoding version of the input feed into fully connected

normal DNN to do the functionality of the network like detection or recognition. [7]

2.3 General convolution neural network architecture

Figure 16: General CNN architecture

22

2.3.1 Convolution layer
The first layer in any CNN model is convolution layer. As discussed above, convolution

layer mission is to generate a small version of input future photo convolution layer simply done

by slide down the filter on photo with a constant stride to cover all pixels and multiply the active

input features with the filter weights to generate the output as shown in figure (17). [7]

Figure 17: Convolution Layer

2.3.2 Relu activation function
Relu function introduce the nonlinear function. Relu is done after convolution layer to generalize

the output in the next layer. There are many non-linear functions can be used, but in CNN Relu is

the most used activation function [7].

Figure 18: Relu function

2.3.3 Pooling layer
After Relu stage, pooling layer comes next and it is a down sampling layer. The output

feature mapping is similar to the input futures but the size of the matrix shrinks. There are 2 main

types of pooling which are max polling and average polling [7].

23

2.3.3.1 Maximum pooling
Max pooling takes the max number between window of pixels and set it as output in the

figure (19), the pooling window consists of 4 pixels, so the max of 4 pixels is set as output of these

4 pixels.

Figure 19: Max Pooling

2.3.3.2 Average pooling
Average pooling same as max pooling, but the output is the average of the pixels as shown

in the figure (20).

Figure 20: Average pooling

2.3.4 Fully connected layer
Fully connected (FC) layer is an ordinary DNN which used in logical regression or

classification like soft max.

FC layer take the output from the convolution layers which represent the original photo features

mapping and determine the most feature correlated to a particular class after flatten the output of

convolution layers and multiply with FC weights as shown in the figure (21) [7].

24

Figure 21: Fully connected layer

2.4 CNN architectures and models for image classification
After the revolution of computer vision and advanced driving assistant systems (ADAS) a

lot of CNN models developed to achieve more accuracy and to reduce the number of parameters

to implement the network as ASIC or FPGA product not only GPU applications. CNN can

categorize into classic CNN which uses multiple of convolution layers to improve accuracy and

modern CNN which uses an efficient way of learning to improve accuracy with small number of

parameters. We will discuss the CNN architectures found in our survey.

2.4.1 SqueezeNet 2016
SqueezeNet deployed in 2016 by Stanford university, it was designed to achieve high

accuracy (equal to AlexNet) with 50 times less parameters than AlexNet in addition to having no

fully connected layers. As a result of that, SqueezeNet is very suitable to FPGA products. Figure

(22) is an overview of SqueezeNet architecture [8].

Figure 22: SqueezeNet architecture

25

Fire module

The Fire module is the foundation of SqueezNet consists of a Squeeze layer which reduces the

number of input channels using a small number of 1 × 1 convolutions and an Expand layer which

increases the number of channels of the Squeeze layer output using 1 × 1 and 3 × 3 convolutions.

This method is called a bottle-neck structure. The Expand layer of the Fire module also has 1 × 1

convolution filters to reduce the number of parameters further [8].

Figure 23: Squeeze Net fire module

2.4.2 ResNet model

 2.4.2.1 Introduction
The common trend in research that network architecture community needs is to go

deeper. Keep in mind that feedforward network to implement any function but surely overfitting

will happen, so “The deeper the better” when it comes to convolutional neural networks.

However, it has been noticed that after some depth, the performance degrades.

 2.4.2.2 Reasons for performance degrades after certain depth:
while trying to avoid overfitting and other problems by using back propagation and

increasing network layers, there are another problem will appear. When we increase the number

of layers, there is a common problem in deep learning associated with that called

Vanishing/Exploding gradient. This causes the gradient to become 0 or too large. Thus, when we

increase number of layers, the training and test error rate also increases, as shown in figure (24).

Figure 24: Performance Vs iterations

26

Note that this is not because of overfitting cause if those 56 layers should have lower training

error and this not the case after analyzing more and more the authors were able to reach to the

main problem as we mentioned Vanishing/Exploding gradient.

 .2.32.4 Vanishing/Exploding gradient:
Certain activation functions, like the sigmoid function output belong to [0,1], so it converts

a large input space into a small input

So 𝑤ℎ𝑎𝑡𝑒𝑣𝑒𝑟 𝛿𝑥 𝑤𝑎𝑠 ℎ𝑢𝑔𝑒 𝑖𝑡 𝑒𝑓𝑓𝑒𝑐𝑡 𝑜𝑢𝑡𝑝𝑢𝑡 𝑤𝑖𝑡ℎ 𝑠𝑚𝑎𝑙𝑙 𝛿𝑦, Hence the derivative becomes

small.

For shallow-few layers- network, this isn’t a big problem. However, it is a great issue if more

layers are used, it causes the gradient to be too small for training to work effectively.

If M hidden layer uses sigmoid function. A small gradient means that the back-propagation effect

which we use to get better weights by subtracting this back-propagation coefficient from initial

weights will be too small to remove errors if we can call it an “error “to use better words to describe

this “the weights and biases of the initial layers will not be updated effectively with each training

session”

Solution:

Before ResNet, there had been several ways to solve the vanishing gradient issue, but none seemed

to really tackle the problem once and for all. ResNet introduces “identity shortcut connection”

simply skip mean one or more layers as in figure 25.

Figure 25: Short connection in ResNet

So, identity x will add to activation(F(x)+x)) to decrease effect of have small derivatives. if any

layer hurt the performance of architecture, then it will be skipped by regularization. So, this results

in training very deep neural network without the problems caused by vanishing/exploding gradient.

The authors of the paper experimented on 100-1000 layers on CIFAR-10 dataset.

27

Example: ResNet 50 architecture:
The architecture of ResNet50 in figure (26) and deep learning model flowchart. Architecture of

ResNet50 is shown and includes convolution layers, max pooling layers, and a fully connected

layer.

Figure 26: ResNet50 model

ResNet Versions:

Table 3: ResNet versions

In figure (27), we can see the performance of some ResNet versions shown in table (3) training

using image net. ResNet-152 achieves a top-5 validation error of 4.49%. A combination of 6

models with different depths achieves a top-5 validation error of 3.57%. Winning the 1st place in

ILSVRC-2015.

28

Figure 27: Performance of some ResNet versions

2.4.3 AlexNet Model

 2.4.3.1 Introduction
AlexNet is the name of a convolutional neural network which has a large impact on the

field of machine learning, specifically in the applications of deep learning. It was primarily

designed by Alex Krizhevsky. After competing in ImageNet Large Scale Visual Recognition

Challenge 2012, AlexNet shot to fame. It achieved a top-5 error of 15.3%. This was 10.8% lower

than that of runner up. This network showed, for the first time, that the features obtained by

learning can transcend manually-designed features, breaking the previous paradigm in computer

vision.

29

 2.4.3.2 Architecture

Figure 28: AlexNet architecture

As shown in figure (28), AlexNet architecture consists of 5 convolutional layers, 3 max-pooling

layers, 2 normalization layers, 2 fully connected layers, and 1 SoftMax layer. Each convolutional

layer consists of convolutional filters and a nonlinear activation function Relu. The pooling layers

are used to perform max pooling. The input size is mentioned at most of the places as 224x224x3

but due to some padding which happens it works out to be 227x227x3. AlexNet overall has 60

million parameters and needs 1.1 billion computation units in a forward pass.

AlexNet success was because of new methods used that was not adopted at that time such as:

1-Using Relu as the nonlinearly after the convolution layers instead of Sigmoid and tanh functions

that were commonly used which increased the speed greatly.

2-Using maximum pooling instead of traditionally used average pooling.

3-Using dropout method between fully connected layers in order to improve the generalization

error instead of using ordinary regularization.

4-Using Data Augmentation by Mirroring and random crop which helped in decreasing overfitting

problem [9].

2.4.4 VGGNet

 2.4.4.1 Introduction
VGG 16 is a Convolutional Neural Network architecture, It was developed by Karen

Simonyan and Andrew Zisserman in 2014. This model achieves 92.7% top-5 test accuracy on

ImageNet dataset which contains 14 million images belonging to 1000 classes.

30

2.4.4.2Architecture

Figure 29: VGG-16 architecture

The input to the network is image of dimensions (224, 224, 3). As shown in biases figure

(29), The first two layers have 64 channels of 3*3 filter size and same padding. Then after a max

pool layer of stride (2,2), two layers which have convolution layers of 256 filter size and filter

size (3,3). This followed by a max pooling layer of stride (2,2) which is same as previous layer.

Then there are 2 convolution layers of filter size (3,3) and 256 filter. After that there are 2 sets

of 3 convolution layer and a max pool layer. Each have 512 filters of (3,3) size with same padding.

This image is then passed to the stack of two convolution layers. In these convolution and max

pooling layers, the filters we use is of the size 3*3 instead of 11*11 in AlexNet. In some of the

layers, it also uses 1*1 pixel which is used to manipulate the number of input channels. There is a

padding of 1-pixel (same padding) done after each convolution layer to prevent the spatial feature

of the image. After the stack of convolution and max-pooling layer, we got a (7, 7, 512) feature

map. We flatten this output to make it a (1, 25088) feature vector. After this there are 3

fully connected layer, the first layer takes input from the last feature vector and outputs a (1,

4096) vector, second layer also outputs a vector of size (1, 4096) but the third layer output 1000

channels, then after the output of 3rd fully connected layer is passed to SoftMax layer in order to

normalize the classification vector. After the output of classification vector top-5 categories for

evaluation. All the hidden layers use RELU as its activation function.

VGG-16 reached a 92.7% top-5 test accuracy. However, the network contains almost 140 million

parameters and one forward pass requires nearly 16 billion MAC operations [10].

2.4.5 MobileNet

 2.4.5.1 Introduction
MobileNet is an efficient and portable CNN architecture which is used in real world

applications. It uses depthwise separable convolution instead of standard convolution in order to

build lighter CNN architectures with low latency, low power and reasonable hardware resources

which allows us to implement these architectures on programable logic devices such as FPGAs.

A standard MobileNet network has 4.2 million parameters which can be further reduced by

31

tuning the width multiplier (𝛼) hyperparameter appropriately. The size of the input image is 224

× 224 × 3 [11].

 2.4.5.2 Depthwise separable convolution

In order to determine whether CNN architecture is light or not, weights and number of

multiplication calculations must be considered. We have an input image of size (7,7,3) and 128

filters of size (3,3,3) from this information we get an output image of size (5,5,128). Considering

figure (31), every filter is convolved with a sliding window of input feature map and then all

multiplicand numbers are summed, so number of weights of standard convolution is 3 ∗ 3 ∗ 3 ∗

128 = 3456 𝑛𝑢𝑚𝑏𝑒𝑟, and number of multiplications to generate output feature map in one cycle

is 5 ∗ 5 ∗ 3 ∗ 3 ∗ 3 ∗ 128 = 86,400 𝑀𝐴𝐶.

In depthwise separable convolution, we have a depthwise filter consists of number of channels

which treats input feature map channels separately in order to get the right output feature map

dimensions, then it is followed by a number of pointwise filters equals to required output feature

map channels with dimensions (1,1, input feature map channels).

As shown in figure (30), number of weights of depthwise convolution is 3 ∗ 3 ∗ 3 = 27 𝑛𝑢𝑚𝑏𝑒𝑟,

and number of multiplications to generate output feature map in one cycle is 5 ∗ 5 ∗ 3 ∗ 3 ∗ 3 =

675 𝑀𝐴𝐶.

As shown in figure (32), number of weights of pointwise convolution is 1 ∗ 1 ∗ 3 ∗ 128 =

384 𝑛𝑢𝑚𝑏𝑒𝑟, and number of multiplications to generate output feature map in one cycle is 5 ∗ 5 ∗

1 ∗ 1 ∗ 3 ∗ 128 = 9600 𝑀𝐴𝐶.

So, total number of weights of depthwise separable convolution is 411 (88% reduction), and total

of multiplications is 10275 (88% reduction).

Figure 31: Standard Convolution

Figure 30: Depthwise Convolution

Figure 32: Pointwise Convolution

32

 2.4.5.3 Architecture

Figure 33: MobileNet architecture

As shown in figure (33), This architecture has only one standard convolution layer to extract a

large number of features from the input image and 13 layers of depthwise separable convolution.

Every depthwise separable convolution consists of depthwise convolution and pointwise

convolution, each of them followed by Relu to reject the negative numbers generated in the feature

map and batch normalization layer to ensure that the multiplication results of the architecture chain

do not exceed the maximum represented number. It also has an average pooling layer to shrink the

size of the input feature map by taking only the important feature and neglecting other secondary

features. The last layer is a fully connected layer to translate the results of the architecture into a

certain class.

This architecture has 2 fundamental hyperparameters: width multiplier(𝛼) and Resolution

Multiplier(𝜌). width multiplier(𝛼) is a global hyperparameter that is used to construct smaller

and less computationally expensive models as it reduces the number of weights and by extension

the number of layers but it increases the number of channels per layer as the number of input

channels 'M' becomes α * M and the number of output channels 'N' becomes α * N. Its value lies

between 0 and 1 but it has commonly used values which are 1, 0.75, 0.5, 0.25. Resolution

Multiplier(𝜌) is used to decrease the resolution of the input image and this subsequently reduces

the input to every layer by the same factor for a given value of ρ the resolution of the input image

becomes 224 * ρ [11].

33

Chapter 3: Training

 3.1 Training

 Training mobile net version one on German Traffic signs which has the following:

• The size of training set is: 34799

• The size of the validation set is: 4410

• The size of test set is: 12630

• The shape of a traffic sign image is: (32, 32 ,3)

The number of unique classes/labels in the data set is: 43

We build two models which will be discussed in the following pages:

Figure 34: Signs from GTS

34

 3.1.1 Model 1

This model has been trained on image net and its open source on internet but we will use it and

train the mode on GTS it has 13 layers as shown

35

36

37

38

;

Two Hyperparameters are provided and discussed in the paper [14]:

• Alpha (α): affects weights directly as it affects number of filters [25%,50%,75%,100%].

• Lambda (⅄): resolution of photos affects multiplications number [128,160,192,224].

Figure 35: Model 1 Layers

39

As shown in figure (36) as alpha increases, accuracy, required multiplication numbers and weights

(million parameters) increase.

As lambda increases, accuracy improves not much and doesn’t affect weights but increases the

number of multiplications required hugely and doesn’t give any advantage or higher improvement

in accuracy.

 3.1.2 Training of model one on GTS

Using the following steps to training the model:

-GTS is a small training set which will not achieve high accuracy if the training only uses GTS

images to train to overcome this problem, we will use a transfer learning approach. Using pre-

trained weights of image nets in certain layers then open others layers to train its weights on GTs

achieving.

-Merge validation set and test set together and tuning hyperparameters on training set due to small

sets.

-Tuning the hyperparameters to get best results taking into consideration the hardware perspective

to implement it.

Figure 36: Mobile Net trained on image net

40

 Table 4: Tuning lambda

We will choose ⅄=128, cause as it increases no huge improvement in accuracy at the same

time required a huge number of multiplications which is an effective variable will affect speed and

power, so to achieve improvement in test accuracy with 4% will take a high percent of luts and

increase power badly, this improvement in test accuracy can achieve with alpha without this

tradeoff or mainly it isn’t a tradeoff it’s like you pay millions of monies to buy an old car to.

Table 5: Tunning alpha

Increasing alpha increases accuracy and at the same time increases weights which will require

more memories and increasing number of multiplications to get benefit from all of these we choose

alpha =0.5.

 3.1.3 Disadvantage in model 1

 Gts image is 32 *32 *3 this model has restriction on input image to be minimum 128 *128*3

which will add overhead in registers mainly and in parallelism in depth wise and pointe wise

leading to bad utilization of fpga resources.

-13 Layer will be implemented on fpga by using sharing concept but this will increase delay and

decrease flexibility of design, close solutions to others problem.

𝜶 ⅄ Training

accuracy

test accuracy Weights

number

0.5 128 97.6% 94.354% 851,595

0.5 160 99.5% 94.5% 851,595

 0.5 192 98.16% 95.35% 851,595

0.5 224 98.2% 90.4% 851,595

𝜶 p Training accuracy test accuracy Weight

0.25 160 96.86% 84.16% 229,595

0.5 160 99.5% 94.5% 851,595

0.75 160 97.78% 97.66% 1,866,043

1 160 97.92% 98.07% 3,272,939

41

-this model in 32-bit float which isn’t the case in hardware is 16-bit 6 float and 10 integers so there

is a huge reduction in accuracy between software and hardware

Let’s see how second model can solve all of this

 3.2 Model 2 and Quantization

Model consist of 7 layers only which is trained in two steps:

 3.2.1 Quantization aware Training

Enable us to make model see integer representation not float by putting a fake layer (Fake

Quant nodes) as in figure (3) during training to reduce loss in accuracy between software and

hardware actually the software accuracy will be the same as hardware accuracy.[12]

This introduces two new parameter scales (s) and zeros (z), scales are used to scale back the low

precision values back to the real values (floating), zeros are low precision value that represents the

quantized value representing the real value of zero

𝑅 = 𝑆(𝑞 − 𝑧) (𝐸𝑞1)

Where: R: real value, Q: quantized value, Z: zero, S: scale

𝑆(𝑠𝑐𝑎𝑙𝑒) =
𝑓𝑙𝑜𝑡𝑎 max 𝑛𝑢𝑚𝑏𝑒𝑟(𝐹𝑀𝐴𝑋) − 𝑓𝑙𝑜𝑎𝑡 min 𝑛𝑢𝑚𝑏𝑒𝑟 (𝐹𝑀𝐼𝑁)

𝑞𝑢𝑛𝑎𝑡𝑖𝑧𝑒𝑑 max(𝑄𝑀𝐴𝑋) − 𝑞𝑢𝑛𝑎𝑡𝑖𝑧𝑒𝑚𝑖𝑛(𝑄𝑀𝐼𝑁)
 (𝐸𝑞2)

Figure 37: Insert Fake Quant layer during training

42

To get zero similarly find linear relationship with extremes in two domains:

If fmin and fmax doesn’t have real 0 this is problem so to overcome of this

Zero will be chosen to equal 𝑄𝑀𝑎𝑥 or 𝑄𝑀𝑎𝑥which is already mapped value from 𝐹𝑀𝑎𝑥 and 𝐹𝑀𝑖𝑛

Now after training the model, we will get bias, weights, zeros, scales to test the model in interference

time. Note that this approach simulates quantization effects in forward pass of training but

backpropagation still happens as usual and all weights and bias are still float to be easily nudged by

small values 𝛿.

We get a lot of benefits:

- Improvements in model compression and latency reduction

- Model size shrinks by 4x

- 1.5x-4x improvements in latency

Figure 38: Finding zeros

Figure 39: Models are trained on image net

43

 3.2.2 Second Step: Post training quantization

 After the training model, we will apply post training quantization to convert all parameters

to integers. This will not lead to huge loss in accuracy as qwt is done before this step.

Why don’t we make this step only?

this approach works sufficiently well for large models with considerable representational capacity,

but leads to significant accuracy drops

for small models which is our case.

 3.2.3 How quantization is implemented in hardware
Multiplying 2 real number:

𝑟3 = 𝑟2𝑟1

Substituting using equation 1 and rearrange terms:

in next equation 3 and equation 4: as previous q is quantized value and z and s is zeros and

scales.

𝑞3 = 𝑧3 +
𝑆1𝑆2

𝑆3
 ∑(𝑞1 − 𝑧1)(𝑞2 − 𝑧2) (𝐸𝑞3)

Define M as:

𝑀 =
𝑆1𝑆2

𝑆3
 (𝐸𝑞4)

- M we multiplied in SW and stored in memories.

- Choosing 𝑞1(𝑟1) to be weight and 𝑞2(𝑟2) to be input then in SW we can subtract weight

from its zeros avoiding further addition in HW.

- As every stage input will subtract from its zero which is zero of output in the previous

stage which it was added again then no need for it even in the final stage case it’s like an

offset for all numbers which will be compared to get max between them. For example: in

stage 2

𝑞3(𝑜𝑢𝑡𝑝𝑢𝑡 𝑠𝑡𝑎𝑔𝑒 2) = 𝑧3(𝑧𝑒𝑟𝑜 𝑜𝑓 𝑠𝑡𝑎𝑔𝑒 2) + 𝑛𝑢𝑚𝑏𝑒𝑟 (𝐸𝑞5)

In stage 3 q3 become input which will be subtract from its zero but to get output from stage 2

this zero was added:

𝑞4(𝑜𝑢𝑡𝑝𝑢𝑡 𝑠𝑡𝑎𝑔𝑒 3)

= 𝑧4(𝑧𝑒𝑟𝑜 𝑜𝑓 𝑠𝑡𝑎𝑔𝑒 3) + 𝑀∑(𝑤𝑒𝑖𝑔ℎ𝑡)

∗ (𝑜𝑢𝑡𝑝𝑢𝑡 𝑙𝑎𝑠𝑡 𝑠𝑡𝑎𝑔𝑒 − 𝑧𝑒𝑟𝑜 𝑙𝑎𝑠𝑡 𝑠𝑡𝑎𝑔𝑒) (𝐸𝑞6)

- Note that zero for input image is equal to =0 this analysis can apply.

44

 3.2.4 Model 2 Layer
It consists of 7 layers only which is approximately half reduction in model compared to

model 1. Note that padding layers and quantize layer isn’t a physical layer in hardware padding

only happens before getting input from stage as will be discussed in hardware implementation.

45

 1

2

3

2

1

Figure 40: Final mode 2 Layers

46

Chapter 4: Hardware Design Methodology

4.1 FPGA Introduction and main resources

FPGA (field programmable gate arrays) are semiconductor devices that are based around

a matrix of configurable logic blocks (CLB) connected with each other via programmable

interconnections. FPGA can be programmed to desired applications.

Logic blocks can be configured to perform complex combinational functions, or merely

simple logic gates like AND and XOR.

In most FPGAs, logic blocks also include memory elements, which may be simple flip flops or

complete blocks of memory. Many FPGAs. many FPGAs can be programmed to implement

different logic functions, allowing flexible reconfigurable computing as performed in computer

software.

FPGA vs microprocessor in a large wide of digital application related to image processing or

communication applications can implemented on a microprocessor but sometimes FPGA is a good

choice compared to microprocessor because FPGA has a parallelism in operation, but

microprocessor runs its operation sequentially. This makes FPGA in some applications faster in

overall operation but still with limited speed of clock. Due to parallelism, flexibility of design and

FPGA resources usage, acceleration of some algorithms needs to high papalism became a trend

now in the digital design market.

FPGA also has some bulids in DSPs for spatial operations on signal processing like convolutions,

and also has IPs like fast adder IPs and FFT IP to reduce usage of LUTs because FPGAs suffer

from limited resources.

 In the rest of this part the FPGA internal component used in our accelerator will be viewed.

4.2 FPGA 7 series internal components

4.2.1 Configure Logic Block (CLB)

https://en.wikipedia.org/wiki/Logic_block
https://en.wikipedia.org/wiki/Combinational_logic
https://en.wikipedia.org/wiki/Logic_gate
https://en.wikipedia.org/wiki/AND_gate
https://en.wikipedia.org/wiki/XOR_gate

47

A configurable logic block (CLB) is the basic repeating logic resource on an FPGA. When

linked together by routing resources, the components in CLBs execute complex logic functions,

implement memory functions, and synchronize code on the FPGA, configure logic blocks

containing some small components like flip flops, multiplexers and lookup tables (LUT).

 LUTs is a collection of gates hardwired on the FPGA. An LUT stores a predefined list of outputs

for every combination of inputs. LUTs provide a fast way to retrieve the output of a logic operation

because possible results are stored and then referenced rather than calculated as shown in figure

(41).

4.2.2 Configurable I/O blocks

Figure 41: Configurable logic block

Figure 42: Input output configurable block

48

A I/o configurable block is designed to be the interface between the FPGA on chip and

outer side so I/O ports is used to take signal inside and outside the FPGA this block can be

configurable to 3 states input port, output port and (In-out) port that usually uses in the memory

paths the internal structure of I/O port as shown in figure (42).

4.2.3 Clock Driver
Clock drivers is set as a pre implemented module in FPGA to solve the problems that

appears when all design is connected with one clock signal the first problem is high fanout of this

port because it is connected to all flip flops nodes so a strong driver should be implemented to

guarantee minimum propagation delay of the clock and puffer tree should also implemented to

save the global skew min and constant in all blocks.

4.2.4 DSP Block

Digital Signal Processors (DSPs), are another common type of core that is offered as an IP

core or an embedded core. These are essentially specialized processors that are used for

manipulating analog signals. They are commonly used for filtering and compression of video or

audio signals, Multiply-Accumulate block or MAC is implemented as DSP slice and MAC is

mainly used as a building block for complex DSP applications.

Figure 43: Input output configurable block

49

4.2.5 Block Ram
Block ram is a Pulk of storage space on an FPGA to save data without using internal

LUTs of FF (flip flops). block RAM is slower than the ff based memory but faster than off chip

ram but smaller than off chip in size. Block Ram has more than one options to implement your

own ram in series 7 one port or 2 ports can be used by different sizes distributions

32𝐾𝑥1, 16𝐾𝑥2, 8𝑘𝑥4 ,4𝑘𝑥9 , 2𝑘𝑥18, 1𝑘𝑥36.

4.3 FPGA digital design flow

1. Model implementation: creating a python model to model the function of the

accelerators and to use in verification.

2. System design: a system design schematic is painted with all signals and blocks we need.

3. HDL: hardware description language to specify the functionality of the model as

hardware.

4. Functional verification: writing a test bench to make sure that output of model = output

of accelerator.

5. Syntheses, implementation and STA check: running syntheses tool to make sure that

the block implemented as designed and STA to make sure that operating frequency met

the specifications.

6. Place and route: placing cells and routing the interconnection matrices between LUTs.

50

4.4 MobileNet accelerator design

4.4.1 First Design Approach

Our first approach to design a 13 layer MobileNet is to pipeline the layers with each other’s

which will lead a high throughput and frames per second but will use a high memory access

because 13 layer will access the BRAM in the same time which can make overutilization in the

BRAMs in FPGA (1740 BRAM) and from LUT utilization point of view duplication of all

modules 13 times will make over utilization in LUTs number shown in figure (45), so this

Figure 44: Layer pipeline architecture

Figure 45: Series 7 FPGA resources

51

architecture may be a good choice in ASIC design or if this design will be prototyped on an

emulator (Array of FPGAs) not one FPGA.

4.4.2 Second Design Approach

Second approach is to implement one shared layer of convolution with all unique modules

1module stander conv, one module pointwise, one module Depthwise, Relu and average pooling

this architecture will be configurable layer so weights and sizes will be changed according to the

number current layer the shared layer designed for high-speed target so high parallelism across

filters and across channels implemented in the modules. Shifters arrays with some modifications

are used to fetch the input window from the input futures correctly without any repetition in the

memory data shifters will be discussed in detail in the next parts. After 13 iterations in the

accelerator one average pooling will occur.

Figure 46: Shared layer architecture

Figure 47: Operation overlapping between depth and point wise modules

52

An overlap will occur between depthwise block and pointwise block due to point wise taking 1

channel from depthwise so when 1 channel is ready at input of pointwise it will be calculated as

shown in figure (47).

4.4.3 Shared Layer approach

 In this approach, one layer of Hardware is implemented and we loop on this layer until the 7

layers are executed. As discussed previously MobileNet has 2 types of convolutions: standard

convolution and depthwise separable convolution that includes 2 steps: depthwise convolution and

pointwise convolution. So, there are 3 main blocks which execute the two types of convolutions.

Firstly, the image entered to the standard convolution block that execute standard convolution and

store the output in RAM#1 that consist of 512 block rams but only 32 of them are used in the first

layer (standard convolution). Then after standard convolution finishes. depthwise shifter’s starts

to fetch the input from RAM#1 and stores the result in RAM#2. After Depthwise finishes, the PW

buffer starts to fetch the input from RAM#2 and stores its output in RAM#1. Then DW and PW

will loop until the 7 layers are executed. then the poling layer fetches the input from RAM#1 and

hence the fully connected layer takes the 512 outputs from the pooling layer output buffer and

executes FC operation. Finally, the FC layer provides the 43 classes.

Figure 48: MobileNet accelerator Block diagram

53

4.5 Shifter Block

4.5.1 How multiplication is done in hardware
For simplicity assume we have input 6*6 image how we will fetch values to multiply it with

weights in stride one case and stride two case.

Fetching values (1 ,2 ,3 ,7 ,8 ,9 ,13 ,14 ,15) to be multiplied with filters will be huge

issues cause all hardware depend on this multiplication and what makes it more difficult how we

will make stride one for example to get (2,3,4,8,9,10,14,15,16) and following values that will be

covered by square as shown in the figure (49) so let’s see the following solution.

For first time it’s simple solution to duplicate the values in Rams when write it from previous stage

or input image but this will duplicate needed memory with factor of 2 with some optimization can

be 1.5 but still a huge cost which will affect all the design without any benefit in speed or even

Figure 49: Image 6*6 and filter 3*3 multiplication

54

power and real example if image is 32*32*3 as our model this will require ram with more than

1024 location for one channel which mean that we use all the Brams which provided by virtex-7.

Another solution is to remain location of rams as its but change the address to get the required

values to be multiplied which is a complex circuit to implement with disadvantage to make one

multiplication with filter every 5 cycles at best cases assuming the additional circuit will not

require additional cycles.

One common problem in two solutions discussed how padding will happen in memories which

will take an overhead location in memories.

4.5.2 Shift Register with one Controller
This idea will put a number of registers with the following equation

#𝑅𝑒𝑔𝑠 = 2 ∗ 𝑊𝑤𝑖𝑑𝑡ℎ 𝑜𝑓 𝑖𝑚𝑎𝑔𝑒 + 3 (Eq7)

• Taking an example of 6*6 image will be 8 *8 cause of padding:

Figure 50: Bram in virtex- 7

55

The multiplication is done as following:

- Global Reset will arise to all the design including the register this will help in padding

first row of padding and first zero in second row 9 zeros will get in registers so need to

wait 9 cycles as was done in memories to fetch these values cause all registers here have

an output which will be chosen.

Figure 51: Input Image with required Padding

Figure 52: Values in Registers

56

- Then Values will get from Bram and will be shifted until 8 will get in first register the

situation now as in figure (52) the red numbers will be multiplied with filters connected to

multipliers this registers always have the right values to be multiplied with filters weight.

- Register’s index which multiplied values will be in can be calculated from next equations:

𝐹𝑖𝑟𝑠𝑡 3 𝑅𝑒𝑔 ∶ 𝑅𝑒𝑔[0], 𝑅𝑒𝑔[1], 𝑅𝑒𝑔[2] (Eq8)

𝑆𝑒𝑐𝑜𝑛𝑑 3 𝑅𝑒𝑔 ∶ 𝑅𝑒𝑔[𝑊 + 2], 𝑅𝑒𝑔[𝑊 + 3], 𝑅𝑒𝑔[𝑊 + 4] (Eq9)

𝑇ℎ𝑖𝑟𝑑 3 𝑅𝑒𝑔 ∶ 𝑅𝑒𝑔[2 ∗ (𝑊 + 2)], 𝑅𝑒𝑔[2 ∗ (𝑊 + 2) + 1], 𝑅𝑒𝑔[2 ∗ (𝑊 + 2) + 2] (Eq10)

- Counter padding is needed to determine location of zero padding between values and the

condition on it is easy when counter reach to image width padding will happen so the first

register has to mux select between values and zero. Note that counter width is

log2 𝑖𝑚𝑎𝑔𝑒𝑤𝑖𝑑𝑡ℎ so the counter will reset after reaching the end of row and start count in

the new row. Padding is a signal received from the module controller to free memory

address. to avoid skip values padding must come one cycle advance so freeze the address

then the controller takes a signal called padding advance.

- Stride one required get one value each cycle but in stride two we can get 2 values in one

cycle and make shifts with two in registers not one so stride is a signal coming from the

controller depending on the layer.

- Ready signal will get out from the module to tell the main controller that the right values

are in registers so multiplication can be done. Logic of it is depend on counter padding and

require width counter count to

 3 ∗ (𝑊𝑤𝑖𝑑𝑡ℎ 𝑜𝑓 𝑖𝑚𝑎𝑔𝑒 + 2𝑝𝑎𝑑𝑑𝑖𝑛𝑔 𝑖𝑛 𝑒𝑎𝑐ℎ 𝑟𝑜𝑤) (Eq11)

Which is needed to a lot of reasons:

1- like to differentiate between when the ready signal is up in stride one and strid two.

2- Module takes input signal called End size which means that memory address has reached to

its end so the last zero row must get in. the width counter will count this row in stride one.

No need for it in stride two.

- Padding counter and width counter in stride one will be incremented with one while in stride

2 will be incremented with two.

- Padding counter and width counter in stride one has Following Reset condition

57

 //Stride one Rst condition

if (counter_padding == widthselctioncounter+1)

counter_padding<=0;

else

counter_padding<=counter_padding+1'b1;

if (counter_width3 == 3*(widthselctioncounter+2))

counter_width3<=(widthselctioncounter+4) +widthselctioncounter;

else

 counter_width3<=counter_width3+1;

//Stride two Rst condition

if (counter_padding == widthselctioncounter)

counter_padding<=0;

else

 counter_padding<=counter_padding+2'b10;

if (counter_width3 == 3*(widthselctioncounter+2) (

counter_width3<=widthselctioncounter+4;

else

 counter_width3<=counter_width3+2'b10;

58

-Note when global Reset come padding counter will start from zero and width counter will start

from 𝑊𝑖𝑚𝑎𝑔𝑒 + 2 as the first row of zero gets registered.

- Difference in Reset condition comes from in strid two last zeros column and row will not be

added to image but due to generality of the module it will be added in register to don’t shift the

places where we get output from registers to eliminate this effect, we will modify counter start

conditions and Ready conditions in stride two as discussed before.

-width selection counter is a signal coming from the main controller to make the module work on

different widths like 32 ,16,8. our image 32*32*3 so modules will be added in standard

convolution. module be in depth wise also work on different width 32 ,16 ,8 according to layers

we operate in determined by controller signal control select.

4.5.2.1 Shift Registers Advantages

- One controller can control all the modules of the shift register because all modules will get

data synchronized then the 2 counters will be connected to all instances of this shift registers

which isn’t a huge logic.
- Speed, especially in stride two and in padding time

Figure 53: One instance of module

59

- Operation Flexibility from layer to layer.

4.6 Adder Tree Block

4.6.1 Look ahead with carry save adder

Figure 54: 32 instances controlled by one counter and controller

Figure 56: generation and propagation truth table

Figure 55: Carry save block

60

The main part in CNN design how to sum wights outs from multiplier, the DSPs modules in FPGA

has one adder to accumulate the coming input and add it to data registered in the DSP but if

parallelism techniques is applied for enhance the block speed, more than one DSP will use in the

same time so the adder in the DSP block will be useless so, fast adder tree is needed to design to

guarantee the applied parallelism.

Adder tree is a tree of fast adders cascaded with each other to sum more than 2 numbers. In our

design we need to add 9,27,32 numbers with each other at the same time.

Tree is consisting of fast adders and pipeline hierarchy; the pipeline is chosen to make the critical

path meet the design constraints. In the next section the fast carry lookahead adder basic unit will

be explained.

Look ahead Adder: is based on the propagation and generation techniques to predict the carry

output value without waiting for the cascaded chain the propagation (p) and generation (g) truth

table shown in figure (55).

the equation of P and G from truth table are

𝑃𝑖 = 𝐴𝑖 𝑋𝑂𝑅 𝐵𝑖 (1)

𝐺𝑖 = 𝐴𝑖 𝐴𝑁𝐷 𝐵𝑖 (2)

Figure 57: carry lookahead block diagram

61

So, the full adder can be modified to calculate same and carry from G and P parameters and the

equation of sum and carry will be

𝑆𝑈𝑀 = 𝐶𝑖−1𝑋𝑂𝑅 𝑃𝑖 (3)

𝐶𝑖 = 𝐺𝑖 + 𝑃𝑖 𝐴𝑁𝐷 𝐶𝑖−1 (4)

 This truth table need a prediction logic unite to predict “g” & “P” for each adder but the critical

path will not be improved if a prediction block added to each full adder this design will be ended

by ripple carry adder so the N bits adder is divided to sub adders cascaded and the prediction logic

block is added to each group this will improve the critical path and improve speed the block

diagram of 16 bits lookahead adder is shown in figure () .G and P carry out equation for 4 bits will

be as shown in (5).

𝐶4 = 𝐺3 + 𝑃3𝐺2 + 𝑃3𝑃2𝐺1 + 𝑃3𝑃2𝑃1𝐺0 + 𝑃3𝑃2𝑃1𝑃0𝐶0 (5).

Carry save adder: carry save adder is important block in adder tree because we need to add more

than 2 numbers with each other’s so we need to map 4 number of N bits to tow numbers of N bits

to go through look ahead adder so we need carry save adder simply carry save adder is array of

full adders with carry save to the next stage without carry probations between full adders like ripple

carry adder carry save adder based on using the input carry of full adders as a third input so it can

add 3 items in the same time the output of carry save will be 2 numbers of N+1 bits needs to

lookahead block to add this numbers and calculate the N+2 bits the correct length of adding 3

numbers of N In the proposed design carry save adder adds 4 inputs at the same time using 2 levels

of carry save and carry lookahead adder.

62

4.6.2 Pipelined adder tree

Adder tree as shown in figure (58), for example adding 9 numbers in 3 clock cycles using

3 adder blocks explained in the previous section pipeline techniques is applied because the data

will change each cycle and to reduce the critical path

 4.6.3 Adder tree overflow issue
Due to 8 bits integer representation the proposed based on output of layers must be 16

bits but the adder bit extend equation is 𝑁 + log2 𝑎𝑑𝑑𝑒𝑟_𝑛𝑢𝑚 so if 8 bits are clipped from

adder tree output, the output will suffer from overflow error. Overflow error is that the output

should be negative but output is positive and so on the solution of overflow issue is to

represent data in bits greater than its maximum if numbers can represent in 8 bits if it added

using adder of 9 bits adder no overflow will occurs and the most significant bit will be the

correct sign bits and sign extension must be added to match the next adding stage in the adder

tree this will make overhead in the hardware adder tree but no output error will occurs that

means no flow frailer

Figure 58: pipelined carry lookahead adder tree adding 9 numbers

63

4.7 Standard Convolution
It is the first layer and only of its type in this architecture, it is used to capture a large

number of features of the input image. The input of this layer is (32,32,3) and the output is

(32,32,32) with stride 1 and a padding layer.

As shown in figure (59), we need to generate 32 output channels for every pixel, so we will use 32

sets of macs to generate all of these channels in a single clock cycle in order to reduce latency of

accessing memory of the input image. We used 27 macs per set to perform the whole input image

multiplications in a single cycle to increase layer speed, so we have 864 macs in this layer

performing as a multiplier. We have shifters to perform the required stride and zero padding layer,

these shifters operate synchronously as every shifter makes a stride every clock cycle after a first

ready signal is set to high. Weights are separated into 32 sets; every set contains 27 registers. The

width of multiplier output is 16-bits because weights and input feature map are integer numbers

represented in 8-bits. We have 3 input rams to access all channels simultaneously to decrease

accessing of a single ram and to provide suitable utilization.

Figure 59: Standard convolution architecture

64

As shown in figure (60), the output of mac array is passed to 27 pixels adder tree to be added

together then the result is sign extended to be added to 32-bits bias then multiplied by a fraction

M represented in 16-bits then stored in shared memory 1. The width of the multiplier is 32-bits

and the result should be clipped to be represented in 8-bits, so we will take the integer value bits

which are from bit 15 to bit 21 in addition to the sign bit which is bit 31. Relu is used to eliminate

negative numbers.

Figure 60:Standard convolution adder tree

65

4.8 Depthwise Convolution

Figure 62: Depthwise block diagram

Figure 61: Depthwise core parallelism

66

Depthwise convolution the first block in separable convolution, Depthwise conv is 3*3

conv on the input channel only so the output channel from the depth conv layer is equal to the

input channel, block parallelism is 9 across filter and 32 across channel as shown in figure (62),

this parallelism will lead high throughput, but it can be faster if parallelism across channels in

increased but FPGA resources will limit this enhance.

4.8.1 How Depth wise fetch data from memory?
CNN input features map fetching is big challenge in CNN accelerators due to difference in

pixels positions during stride so the first solution approach is to make a complex arithmetic block

to calculate the next step address which is very complex and will delay the design the second

practical approach is a shift registers (FIFOs) to get all pixels which the DW core will use and by

shifting pixels each clock means stride this solution will eliminate the complexity but will add

some cycles overhead at each down stride operation until the window pixel fetched in the shift

register , shift register implementation and control will explained in next section .

4.8.2 How Depthwise fetch weights from memory?
Depthwise conv is 9 parallelism across filter and 32 across channel, this rough parallelism

need 9*32 Block Ram to be implemented to get 9*32 weights at the same edge clock so this is

very bad utilization in memory ,so in the proposed design the input data shift registers overhead

which is 10 cycles at best case weights need only 9 cycles to be fetched if 32 block ram only is

implemented ,so the proposed design has 32 block ram for weights each ram has window of 9

Figure 63: Memory weights fetching

67

weights in 9 address for first 32 channel and 9 for the second channel and so on this will make the

utilization better than 32*9 block ram without any overhead added.

each ram input one weight per clock to shift reregister and after 9 clocks the 9 weights will be

loaded into the shift register so 32 shift register is needed as shown in figure (63)

4.9 Pointwise Convolution
PW convolution is the combination stage of the DW separable convolution and is used to

create a linear combination of the output of the depthwise layer.[13]

As shown in the figure (64), pointwise takes the depthwise output and applies a linear combination

on it. this happens by multiplying each channel by the corresponding filter weight and adding them

together.[13]

Figure 65: Pointwise filters

Figure 64: Pointwise convolution

68

Figure (65) shows the pw filters architecture, Where N is the number of filters and also the number

of output channels and M is the number of input channels.

4.9.1 Pointwise hardware complexity
 Unlike the 3*3 convolution method, the pointwise convolution uses a large number

of 1*1 operations So, a large number of multiplication and addition operations are involved in the

design.

Y = A0W0 +A1W1 + …………. +AM-1WM-1 +AMWM +YN-1.[14]

Table (5) shows that pointwise is the most complex by far from other layers. [13]

4.9.2 Pointwise hardware Structure

The pointwise hardware structure shown in figure (66) consists of 4 main blocks: input buffer

which contains depthwise output feature map and is fed as input to pointwise, weights rom that

Figure 66: Pointwise hardware structure

Table 6:Resource per layer type

69

provides kernels weights which are multiplied by the input channels, pointwise convolution this is

the core block that perform the convolution operation through set of MACs (multiply and

accumulate block exists in FPGAs) and the output buffer block which stores the output of the

pointwise stage. Details of each block are discussed in the next sections.

4.9.3 Input Fetching

32 pixels are fetched from the RAM and stored in the shown buffer that feeds the stored values to

each 64 sets in parallel to execute convolution.

4.9.4 Core Block: Pointwise Convolution

Figure 67: Input buffer

Figure 68: Convolution parallelism

70

Choosing the parallelism of filters is one of the challenges in MobileNet accelerators, as

the MobileNet has an increasing number of filters as we go through the layers. so, if speed is

targeted, a large number of MACs are required to achieve the required speed which is not always

available specially in FPGA based projects.

In our design ,64 filters operate in parallel with 32 channel depth and the layers with more than 64

filters or more than 32 channel depths, time sharing is applied between each 64 filters and each

32-input channel. These layers (with more than 64 filters or more than 32 channel depths) take

more than 1 cycle depending on the number of excesses of the applied resources. In the case of

multiple cycles layers the result of the current set is saved in the BUFFERS to be added to the next

set, an illustrative example below shows how this operation is done.

Figure (69) shows the detailed sequence of operation of the pointwise layer. The MACs outputs

are added using the 32-adder tree then if accumulation is required -this determined by the point

wise controller according to the layer number and the iteration inside the layer- the accumulation

adder adds the adder tree output to the stored value in the buffer. Then after iterations are finished

the bias adder adds the bias to the stored values in the buffer and finally the float MAC multiplies

the result by the M parameter. Then the final values are stored in the RAM.

4.9.5 Weights Fetching

Figure 69: Pointwise sequence of operation

Figure 70: Weights fetching

71

Weight ROM is divided into 64 sets each containing 16 BRAMs (16 BRAMs? as we read

by 2 ports, we can read 32 locations in parallel). Number of weights = 440,320 weights, Each

BRAM contains 430 weights. Layers with more than 64 filters or more than 32 channel depths,

weights are fetched from ROM in one cycle (due to 16*64 dividing).

Figure (71) shows how weights are stored in ROM.as we have 64 sets (filters in parallel),the first

32 filter’s channels stored in 16 block for filter 1 to filter 64,then if a layer has number of input

channels more than 32 say 64 we store the filter channels from 64 to 128 in the second 2 rows as

shown for layer 3.if a layer has number of input channels more than 32 and number of output

channels more than 64 (exceeds the papalism) as occurs in layer 4, firstly the first 32 channels

stored in first 2 rows of 16 block for first 64 filters(from 1 to 64) ,then the first 32 channels stored

in second 2 rows of 16 block for second 64 filters (from 65 to 128),then the next 32 channels (from

33 to 65) of the first 64 filters (from 1 to 64),are stored in the next 2 rows , and at last the next 32

Figure 71: How weights are stored in ROM

72

channels (from 33 to 65) of the next 64 filters(from 65 to 128) are stored in the next 2 rows. And

so on till the last layer.

4.9.6 PW Output Storage
To meet the set of FIFO’s design discussed previously, we need to store each channel result

in a single block. As the maximum dimensions are 512 for channel depth and 32 * 32 locations,

we need a 512 block each one contains 32*32 locations as shown in the figure (72) below.

Figure 72: Pointwise output buffer

73

Figure 73: MobileNet PW layers

By analyzing the sizes of layers and output feature map in MobileNet architecture shown in figure

(73), we find that not all the layers have 32*32 feature map this number decreases as we go through

the layers also, the number of channels increases as we go through the layers. So, in the first layer

and the second layer only 32 BRAMS are used for output storing, and as we go through the layers

the number of used BRAMS increases but the utilization of BRAMS decreases as the feature map

size decreases.

4.9.7 Batch normalization
Batch normalization is used to solve the problem of vanishing gradients that may occur in

convolutional neural networks during training. The values of each feature on all samples are

normalized into data with mean value of 0 and variance of 1. It makes the convoluted value fall

into the center of the effective value region of the nonlinear function, so that vanishing gradient is

avoided. The mean µ and variance 𝜎2 are

as follows: [14]

 µ =
1

𝑛
 ∑ 𝑥𝑖 𝑛

𝑖=1 − µ ,

𝜎2=
1

𝑛
 ∑ 𝑛

𝑖=1 (𝑥𝑖 − µ)2

The functions of batch normalization layer are as follows:

𝑌 =
𝛾(𝑥𝑖 − µ)

√𝜎2 + 휀
+ 𝛽

The parameters of this layer are the scaling factor 𝛾 , the translation factor 𝛽 , the mean µ, the

variance𝜎2, and the denominator plus an " is used to prevent the denominator from being 0, and

the value of " is 0.001 during training. Arrange them in a form suitable for hardware

implementation. [14]

74

as follows:

𝑎 =
𝛾

√𝜎2 + 휀

𝑏 = 𝛽 −
𝛾

√𝜎2 + 휀

The value is constant for both parameter a and b, so this layer is transformed into the following

formula when the FPGA is implemented: [14]

𝑌 = 𝑎𝑥 + 𝑏

As a and b are constants, the multiplication of the weight a is done in software and the only the

subtracting b is done in the hardware.to reduce the hardware of adding a subtractor, Weights are

stored in 2’s comp to use the adder “bias adder in figure (74)” in subtracting the bias b.

4.9.8 Illustrative example
The following figures describe how PW works starting from taking depthwise output that

is stored in the memory till storing PW output in the memory. The example assumes a 64-

channel input to pointwise and 128 kernels is applied.

Figure 74: Batch norm weights storing

75

As shown in figure (75), step 1 only 32 channels of input are multiplied by the first 32 channels

of the first 64 filters. In step 2 the same 32 channel inputs are multiplied by the first 32 channels

of the second 64 filters (from 65 to 128). In step 3, Now we move to the second 32 channels of

input and apply the same way that applied in step 1 and step 2 but relative to the second 32

channels (32 to 64).

Figure 75: illustrative example

Figure 76: Kernels are applied

76

Figure (76) shows the result of multiplication after adding by the adder tree each operation

results in one pixel, now to complete the operation we need to add blue pixels to dark blue pixels

and to add red pixels to yellow pixels this is done using the accumulation adder as shown in

figure (77).

Figure (77) shows the accumulation operation and storing the result in the buffers one and two.

Here only two buffers are used as we have 128 filters in this illustrative example.

Figure 77: Combing the 2 parts

Figure 78: Storing the result in output buffers

77

As shown in figure (78), Now we have two buffers that have values in each set in the 64 sets , in

other words we have the 128 required output pixels needed to be stored in the RAM 1 to be

fetched by the depthwise.

4.10 Average Pooling Layer
In CNN architectures average polling is used widely in order to reduce feature map by

neglecting secondary features and keeping only important features as shown in figure (79), in

mobile net there is only one average pooling layer with input feature map of size (8,8,512) and

output size (1,1,512).

Figure 79: Average Pooling

Figure 80: Average Pooling architecture

78

As shown in figure (80), we take feature map stored in shared memory 2 after each (1*1*512)

pixels are generated from the last layer of pointwise convolution then these data are accumulated

by 512 adders: one for every channel of the feature map. The output numbers of the last pointwise

convolution layer are positive as we have the Relu block which cancels the negative numbers and

the maximum represented number is 127 due to the saturation casting block, so the size of the

accumulator is only 16 bits. We have 64 macs in order to multiply the values of the accumulation

buffer by M value which is taken from the software model then divided by 64. We used 64 macs

to have intermediate value of latency compared with 1 mac and to save hardware resources

compared with 512 macs. Due to our previous talk, we need an 8:1 multiplexer to choose one

register every cycle and a demultiplexer to store mac output in its corresponding register. We made

a module of 8:1 multiplexer, 1:8 demultiplexer, mac and 8 registers then 64 instances to cover the

whole values of the accumulation buffer.

This operation takes non sequential 64 clock cycles for accumulation and 9 clock cycles for
𝑀

64

multiplication. Pooling layer works while pointwise convolution is still working and finishes after

pointwise convolution terminates by 11 clock cycles. This procedure improves latency as it has

only 11 clock cycles delay.

4.11 Fully connected Layer
As discussed in chapter 2, fully connected layer (FC) is required to do classification of the

extracted features that are done by the convolution layers.in this layers all the inputs from one

layer are connected to every activation unit of the next layer.

4.11.1 FC architecture
The pooling layer provides 512 outputs and we have 43 classes, according to the FC layer

algorithm we have 43 neurons each one takes all 512 pooling layer outputs as input and multiply

them by different weights then adds the product. There are also 43 biases needed to be added in

each neuron output. Our hardware architecture for this layer utilizes 43 MACs that are initialized

by 43 biases then takes one by one input till the full 512 inputs and multiply them by the weights

which are provided by 43 BRAMs each BRAM contains 512 weights of each neuron. According

Figure 81: Fully connected layer architecture

79

to this architecture the FC layer takes 512 cycles to generate the 43 classes. The following figure

(81) and figure (82) shows the FC architecture.

Figure 82: FC weights ROM

80

Chapter 5: Controllers and Weight distribution

As shown in figure (83), Any digital design system can be divided into two parts the

Datapath and the control unit. The control unit in the design is consists of two levels: the main

controller and controller to each layer in Datapath.

5.1 Main controller

Figure 83: Main parts of digital system

Figure 84: FSM of main controller

81

As shown in figure (84), the main control unit is Moore finite state machine, it consists of

six states as following:

1) Reset state: it represents the state where global reset signal is High and this means that all the

system is stopped.

2) Wait start: it represents the state where the outer processor writes the photo in three input

memories and waits for the start signal that indicates that the photo is uploaded successfully in

memory.

3) Wait STD: it represents the state where the standard convolution layer is processing the input

photo and when it finishes the processing it goes to the first depthwise layer.

4) Wait DW: it represents the state where the depthwise convolution layer is processing the input

photo and when it finishes the processing it goes to the next pointwise layer.

5) Wait PW: it represents the state where the pointwise convolution layer is processing the input

photo and when it finishes the processing it may go to the next depthwise layer or the last layer

(Fully connected). This depends on the value of counter that counts the number of finished

layers.

The main controller takes start and reset signals from the outer processor and the end signals

from inner layer controllers. It gets out the photo end signal to the outer processor and start

signals to inner layer controllers and also it gets out the access signals to the memories. The

access signals give permission for each layer to master the inter memories so it solves the

conflict on memory access.

5.2 Standard convolution and Depthwise controller

 Figure 85: Layer controller entity

82

Layer controller: design consists of 3 blocks 3*3*3 conv layer, Depthwise and point wise

layer each layer has a controller which when a start condition adjusts from the main control unit

the layer controller fire some sequence of operations to manage padding operation as shown in

figre(86), end of channel, last channel in the layer and how to fitch the input feature map, weights

and bias from memory. Also, the layer controller handles the operation of writing the output in

memory and design halting conditions during padding operation. the firing sequences is dependent

on the layer number and stride of the layer.

5.2.1 Controller operation sequences (Data Flow)
After start request from main controller reset state will start the next state fetching input

and weights from memory to shifter, if padding request adjusted from shifter controller will go

halt for padding state which halt the address of read and write from memory tell the padding state

is end after 2 cycles design complete the data fetching,

As the proposed design is 32 channel parallel after fetching all the current channel elements, the

machine is to switch channel state to reset all shifters elements and counters and switch the

multiplexer to the next 32 channels to start the next 32 channels from the same layer.

Write state is a state that detects the adjustment of a ready data signal and delay It until the data

goes through the pipeline.

Figure 86: State diagram

83

5.2.2 Controller operation sequences (Weight, Bias and M parameter)
According to the 32-channel parallelism a 32-block ram is implemented to fetch the layer

parameter and according to the filter parallelism 9 macs per filter the memory overhead will be 9

cycles to load in the shift registers but this overhead is less than FIFO overhead in the best-case

scenario 8*8 stride 1 which has 10 cycles overhead so 32 the fetch weights state takes 9 cycles in

the state fetch data and weights state.

Bias and weights also have a memory address like weights. DW controller manages weights

loading at the start of the layer, as shown in section (4.5.2) design parallelism is 32 channels so 9

weights should be loaded from 32 weights Block RAMs so controller handle the address of weights

and after 9 clocks cycles should halt and start to count again after the current channels in done the

same sequence is fires for bias and M parameters.

5.3 Pointwise controller

As shown in figure (87), the pointwise controller block controls the flow of data through

PW convolution between the two memory blocks. The PW controller starts its operation on a

certain layer number depending on the signal Layer_num when it detects a pulse on the signal PW

starts. The PW controller outputs the addresses and write enable signals required for three memory

blocks but it doesn’t have the access to memories all the time. The PW controller gets the access

to memories from the main control unit. When the PW finches the required layer, it sends an end

signal to the main control unit to release the memory resources for other blocks.

Figure 87: PW controller

84

5.4 Fully connected controller

Fully connected controller is simple and consist of:

A) 10-bit counter that is used to drive the input multiplexer selection and the weights ROMs

addresses that are fed to the MACs to be multiplied.

B) 6-bits counter that connected to 6*64 decoder which drives the load bias signals that

enables the MACs registers to store the bias values.

5.5 Weight distribution

Figure 88: Fully connected controller

Figure 89: Weight distribution flow

85

 As discussed before, the design contains a huge number of ROMs that save the weights of

mobile net models. So, the distribution of weights and making it automated is a critical task.

As shown in figure (89), the weight distribution is done using two python scripts. The first script

gets out the software model weights into .txt files each filter in a single file. The second script

reads the .txt files then distributes the weights into .mem files in certain order. These files should

be used to initialize the ROMs of the design. The second script also writes a .sv file that contains

all required instantiation of ROMs using the parameter INIT_FILE to pass the initialization file.

The figure (90) shows an example of all discussed files. The main advantage of this flow is that

the weight distribution is automated and doesn’t depend on a certain platform to do this task and

this makes the file exchange very easy.

Figure 90: Weight distribution files

86

Chapter 6: Testing methodology and functional simulation result
With the increasing complexity and small time to market of digital systems, it’s becoming

more difficult to design correct circuits for these systems with respect to function and performance.

Through the design process it’s necessary to check the function and the performance of each basic

unit and then verify the bigger unit and so on.

The functionality of CNN architecture is to predict the class of input image. if there’s an error it’s

very difficult to locate the error in Hardware design, so it’s very useful to run each layer alone in

HW and compare its output with golden reference coming from software model.

In this section, the testing methodology and functional simulation output of mobile net architecture

in each layer will be discussed.

6.1 Testing methodology

 Figure 91: Testing methodology

As shown in figure (91), to test any standalone layer, a testbench is written to accept files of

input and weights and upload them in memory in unit under test then the design runs and puts its

output in files. Putting output in files makes it easier to compare the output with a golden reference

that is generated by a software model.

87

6.2 Testing Standard convolution layer

In figure (92) we see that output from software model is exactly like in hardware error may

happen in approximation to integer so may be error equal one decimal between two results.

6.3 Testing Depthwise layer

Figure 93 : Depth wise Results

Figure 92: File’s comparison of pooling layer

88

6.4 Testing Pointwise layer

As shown in figure (94), by comparing the output files from functional simulation and the

golden reference files the maximum error in one digit equals 1 decimal and this is due to

quantization error in M as discussed before. These errors take place 41 times (4% of pixels) as

maximum number in one file while testing the first layer of PW. These errors will not affect the

decision at fully connected layers.

Figure 94: File comparing and expected errors

89

6.5 Testing Pooling and Fully connected Layer

Figure 95 : pooling results

Figure 96 : Classify input image class from fully connected layer

90

Figure 97 : classify another input image

Figure 98 : input image

In figure (95) output from pooling layers gets as input in a fully connected layer to determine the

image. In figure (98) the two-input image is classified with a model.

91

Chapter 7: Results, Future Work and Conclusion

7.1 Results

Figure (99), shows the utilization of the resources after the implementation on Virtex-7

FPGA

The following Figure (100) shows the power consumption of the design on the Virtex 7 FPGA,

total power on chip equals to 13.920 watts. For first second, it seems that it is high power

consumption but considering to the high speed achieved by the design it looks that it is normal

considering the application requirement for ADAS systems that exist in cars which can afford

this high-power requirement.

Figure 99: Resources Utilization

Figure 100: Power Analysis

92

Figure (101) shows the extracted Timing report which shows that the timing constraints are met

at clock frequency of 100 MHz and have positive slack equals to 0.036 ns.

Table 7: Stages Results

Layer/parameter LUTS Flip flops DSPs BRAMs

Standard conv 21.34K 21.465K 896 0

Depth Wise 21.873K 27.604K 320 40

Point Wise 51.948K 18.625K 2112 560

Pooling and fully

connected

12K 12K 107 11

Total(Layers +Top)

(utilization)

108.7K (24.9%) 80.4K (9.%) 3435 (95.41%) 1124.5 (76%)

Figure 101:Timing summary results

93

Table 8: Timing Results

Layer /

Parameter

Worst Negative

Slack WNS

(ns)

Worst Hold

Slack WHS

(ns)

Latency

Standard conv

(ns)

0.733 0.089 0.01128 us

Depth Wise (ns) 0.734 0.098 0.0836 us

Point Wise (ns) 0.691 0.064 205.1us

Pooling and fully

connected (ns)

0.896 0.137 5.23 us

TOP (ns) 0.036 0.043 0.210 ms

7.2 Power optimization

We do on several steps:

-As we seen in design, we don’t fetch from memories all time so it isn’t smart to make memories

enable connect to one all times like in figure (102). if connect enable with logic where we fetch or

wright the power will be reduce to 4 Watt in figure (105).

94

Figure 102: Enable Bram’s 100%

Figure 103 : Power optimization for Brams

- clock gating as each stage work exclusively we can disable other stages to save activities

which will happen

- Advantage of model that 8 bit so signal power will be reduced.

95

Figure 104 : Signal power if 16 bit is used

Figure 105 : Signal power if 8 bit is used

96

7.3 Benchmark
Table 9 : Comparison among different paper results and our results

Parameter\

Design

Our

Work

Referenc

e[16]

Reference[14](al

pha=0.5)

Referenc

e[15]

Referenc

e[17]

Target

Board

Virtex

7-VC-

709

Zynq

UltraScal

e+

ZU104

Zynq7z045 Virtex 7-

VC-709

Virtex 7-

VC-709

CNN Mobil

eNet

MobileN

et

MobileNet zynqNet squeeze-

Net

Accuracy

(%)

80 43 --------- --------- 69.6

No of

weights

472K 34K --------- 2.5M 1.2M

No of layers 7 13 --------- 10 ---------

No of classes 43 6

--------- 10

Frequency(

MHz)

100 100 100 100 100

LUTs

(Utilization)

109K

(25%)

161K

(69.97%)

9K (4.21%) 345K

(79.639

%)

96K

(22.39%)

FF(Utilizati

on %)

80.4K

(9.3%)

168K

(36.57)

16K (3.88%) 184K

(21.23%)

159K

(18.44%)

DSPs(Utiliza

tion %)

3435

(95.4

%)

1104

(63.89%)

109 (12.11%) 3552

(98.67%)

2658

(73.8%)

97

BRAMs(Util

ization %)

1124.5

(76 .49

%)

159.5

(51.12%)

110.5 (20.28%) 2130

(72.448

%)

992

(64.48%)

Latency

(ms)

0.210 0.69119 722.68 80 4.02

Frame rate

(fps)

4761 1250 1.38 12.5 248.7

Power(Watt

)

8.118 4.075 2.15 10.97 8.9

Energy/ima

ge(J)

0.0017 0.002816 1.554 0.88 0.0357

7.4 Future Work
Future work is more techniques and enhancements that can be applied in the design but are

left for the future. Some of these techniques the design is ready for them and need little

modification to make them true. These new methods can achieve reduction in utilization of FPGA

resources which leads to consuming less power and having higher throughput.

Figure 106:Time diagram of Multiple photos processing

98

7.4.1 Increase throughput by time sharing between photos

As shown in figure (106), the design is ready to process two images together under the

condition that each block memory has one port for reading and one port for writing and to avoid

overwriting of required data the write process will not start unless the DW block initializes all its

FIFOs.

This modification will require changing only in the main control unit that is responsible of data

flow between blocks and the memory access permissions.

7.4.2 Make design ready for ASIC flow
As discussed before, the design is targeting Virtex7 FPGA so it uses an Ips inside FPGA

like DSP and BRAM. This is a point of weakness in the design and it can be modified by using

more generic syntax to make the design go through ASIC flow. Using BRAMs as a standard

memory makes the utilization of memories low due to its minimum size is 16 kbits and can’t be

smaller. This affects the power consumed by the BRAMs and the area they will consume if the

design goes through ASIC flow.

7.4.3 Experimental Work

 Our design is ready to be tested in real time system, by burning bit stream on virtex-7

FPGA shown in figure (107).

7.5 Conclusion
MobileNet introduces new type of convolution which decreases the parameters and increases

performance. MobileNet model achieved 80% accuracy on German Traffic Sign Dataset. Model

accuracy can be increased using Transfer learning to 95%. MobileNet Model Consists of 7 layers.

Our design consists of 4 Hardware main blocks (STD, DW, PW, Pooling an FC). Our design

achieved 0.21ms latency, 4975 fps and the power are 8 watt (0.001705 Joule/Image). The design

is ready to make pipeline between Images which will increase the throughput through design.

Figure 107: FPGA board

99

References
[1] What is ADAS (Advanced Driver Assistance Systems)? – Overview of ADAS Applications.

. adas.html-is-https://www.synopsys.com/automotive/what(n.d.). Retrieved from

[2] What's the future of ADAS? (Advanced Driver Assistance Systems). (2020, November 26).

. adas-of-https://www.oxts.com/futureRetrieved from

[3] Jigang Tang, Songbin Li , Peng Liu ,” A Review of Lane Detection Methods based on Deep

Learning, Pattern Recognition” ,2020.

[4] Joseph Redmon, Santosh Divvala, Ross Girshick, Ali Farhadi “You Only Look Once:

Unified, Real-Time Object Detection”,2016.

[5] Joanna Stanisz, Konrad Lis, Tomasz Kryjak, Marek Gorgon “Optimisation of the PointPillars

network for 3D object detection in point clouds”,2020.

[6] Jie Peng, Shuai Kang, Zhengyuan,Hangxia Deng4 , Jingxia, Yikai Xu6 , Jing Zhang, Wei

Zhao,

Xinling Li, Wuxing Gong, Jinhua Huang, Li Liu1,” Residual convolutional neural network for

predicting response of transarterial chemoembolization in hepatocellular carcinoma from CT

imaging”, 2019

[7] Rikiya Yamashita, Mizuho Nishio, Richard Kinh Gian Do2, Kaori Togashi1” Convolutional

neural networks: an overview and application in radiology”.

[8] Forrest N. Iandola1, Song Han, Matthew W. Moskewicz, Khalid Ashraf, William J. Dally,

Kurt Keutzer” SQUEEZENET: ALEXNET-LEVEL ACCURACY WITH50X FEWER

PARAMETERS AND <0.5MB MODEL SIZE”.

[9] AlexNet: The first CNN to win image net. Retrieved from

https://www.mygreatlearning.com/blog/alexnet-the-first-cnn-to-win-image-net/ .

[10] VGG-16 | CNN Model. Retrieved from https://www.geeksforgeeks.org/vgg-16-cnn-model/.

[11] MobileNet architecture. Retrieved from mailto:https://iq.opengenus.org/mobilenet-v1-

architecture/

[12] Benoit Jacob,Skirmantas Kligys, Bo Chen,Menglong Zhu, Matthew Tang, Andrew Howard,

Hartwig Adam, Dmitry Kalenichenko ,"Quantization and Training of Neural Networks for

Efficient Integer-Arithmetic-Only Inference", 2017.

[13] Andrew G. Howard, Menglong Zhu, Bo Chen,Dmitry Kalenichenko, Weijun Wang, Tobias

Weyan, Marco Andreetto, Hartwig Adam“MobileNets: Efficient Convolutional Neural Networks

for Mobile Vision Applications”,2017.

[14] Jiawen Liao, Liangwei Cai, Yuan Xu, Minya He “Design of Accelerator for MobileNet

Convolutional Neural Network Based on FPGA”,2019.

https://www.synopsys.com/automotive/what-is-adas.html
https://www.oxts.com/future-of-adas
https://www.mygreatlearning.com/blog/alexnet-the-first-cnn-to-win-image-net/
https://www.geeksforgeeks.org/vgg-16-cnn-model/
mailto:https://iq.opengenus.org/mobilenet-v1-architecture/
mailto:https://iq.opengenus.org/mobilenet-v1-architecture/

100

[15] Amr Mohamed Gamal Eldin, Aya Hesham Omar, Gamal Saied Fadl, Mennat-Allah Ayman

Ahmed, Omnia Essam Ahmed, Sara Mostafa Mohamed” ACCELERATED DEEP NEURAL

NETWORKS USING FPGA (ZynqNet Architecture)”,2020.

[16] YULAN SHEN, “Accelerating CNN on FPGA (An Implementation of MobileNet on

FPGA)”,2019.

[17] Ahmed Tarek, Abdallah Mohamed, Amr Eid, Fatma Khaled, Farida Khaled “Accelerating

Aware Machine Learning for Squeeze-Net Algorithm Design”,2020.

