Machine Learning Hardware Acceleration for
Advanced Driving Assistance Systems (ADAS)

A Graduation Project Report Submitted to the faculty of
engineering at Cairo university in Partial fulfilment of The
Requirements for the Degree of Bachelor science

In
Electronics and Electrical communications Engineering
By
Mohamed Ayman Mohamed
Mahmoud Ahmed Fouad
Mahmoud Yasser Ibrahim
Mostafa Nasser Zaki
Moataz Mohamed Gharib
Under supervision of
Dr. Hassan Mostafa
Faculty of Engineering, Cairo university
Giza, Egypt
July, 2021

Table of Contents

Chapter 1: INtrodUCtiON t0 ADAS ..ottt ettt e et e b e et e stesra e besteesaebessaensesreeneas 9
N Y NS N (=) T o1 o] o USSR 9
1.2 WhY IS ADAS IMPOMANT?ccviiiiieee ettt et st e te e e sbeeta e besbeenaesta e e e nreenes 9
RSN B Y NS T o] o] o U1 o] 1 PSS 10
1.4 HOW 0BS5S ADAS WOTK?...... ettt sttt sttt st e e ste s e sbesse e aesbeaseestesbeentesbeaneenneaneeneeneens 11
L5 The TULUIE OF ADASottt sttt te s et st e e e te e s e see et e e nbesteaneentenneeneeneeans 12
1.6 ADAS and Maching/Deep [€ArNINGcccoviiiiiieiiie et sre et sre e re e 13

Chapter 2: Image ClassifiCation MOGEIS...........c.ooiiiririee e 21
2.1 NEeUral NEtWOIKS OVEIVIBWccuiiiiiieiieieieieiee sttt sttt sttt bbb e e 21
2.2 Convolutional neural NEIWOIKS OVEIVIEWccueuiieeiiieseerieseeie e seesiesie e siesseessessaesaessessaessessens 21
2.3 General convolution neural Network arChiteCtUIeccooveveieiiiiis e 21

P N R o101V o) [V 1o g1 - PR 22
2.3.2 Relu activation FUNCLIONcoiiii e et 22
2.3.3 POONNG TAYET ...t bbb bbbt 22
2.3.4 FUILY CONNECLEA TAYENcviiireiecie ettt st et be e st e te e be s re et e sbe e e sreans 23
2.4 CNN architectures and models for image classificationcccccovvevviiiiiciiici e 24
2.4.1 SQUEBZEINEE 2016......ceeeueeeiiiieiesteeie sttt sb e et b e e b e e sr e er e e re s r e e nnenne e nrennes 24
2.4.2 RESNEEMOUEL.......oceiiie et e st e e e st et e tesreeneentesneeneeanes 25
2.4.3 ALBXINEL IMIOUEL...... et ettt e s et e st st saeaeneeneas 28
244 NV GGNEBLeeeeeie ettt sttt R e Rt R e Rt Rttt n e Rt bRt nne it e e 29
2.4.5 IMODIIENEL ..ot te e et s st et e s teeseesbeeteebesseeneenteeneeneennen 30

(O3 T o A I 111 T TS 33

K B I UL 10T PO TSSO PO TR PP UP PP 33
R0 0 1\ oo 1 I OSSR PR STSR 34
3.1.2Training of MOdel 0NE 0N GTS ..ottt s e et sreens 39
3.1.3Disadvantage in MOGEH L.........coiiiiiiieieieee bbbt 40

3.2Model 2 and QUANTIZATION..........ccviiiireieie ettt e st e se e be e e b e steeaesteesaenrenres 41
3.2.1Quantization aWare TIAININGcocorerrerieieiei st n e 41
3.2.2Second Step: Post training qUaNTIZATION...........coiiiiiirieieiese s 43
3.2.3How quantization is implemented in hardWare.............ccoviiiiiiine s 43
3.2 4MOUEI 2 LAYET ...t 44

Chapter 4: Hardware Design MethodoIOgYcccviueeiiriieeeriiceeiereeeere sttt s ae e sneens 46
4.1 FPGA Introduction and Main FESOUITESeoutrueeierteaieseeeteetesteeseestesseesseseeeeeseeaseensesseensessesneeseesses 46

4.2 FPGA 7 series internal COMPONENTS........coiiiiiiiieieeeee ettt st neesneeneeseeenes 46

4.2.1 Configure LOgiC BIOCK (CLB) ...cviiiiieie ittt sttt 46
4.2.2 Configurable /O BIOCKS.........cci it ens 47
O O [t I Y- SRS 48
O I 1 o = [ot OSSR 48
4.2.5 BIOCK RAIM ...ttt bbbt b bbbt 49
4.3 FPGA digital deSign fIOWccoiiiiiic e e 49
4.4 MobileNet aCCEIErator UESIGNocviiiireieieici e 50
4.4.1 First Design APPIrOACKccviiieiiiiiie ettt te st e e st e e re e te s e et e sta e e e nreeres 50
4.4.2 Second DesSign APPIOACH.........c.cviiiiic ittt e et te e e eres 51
4.4.3 Shared Layer @PPIOACH.........cci ittt 52
S T 1=] g = [0t 53
4.5.1 How multiplication is done in hardWareccccciiiiiiiiiiee et 53
4.5.2 Shift Register With 0ne CONrOIErccoiiiiiiiieee s 54
AN [0 T I =TT 2 (oot SR 59
4.6.1 Look ahead With Carry SAVe adUer...........ccviieiiiieii et st ns 59
L S 1oL [T I To o[- (T PR 62
4.6.3 AJUEr tre€ OVEITIOW ISSUEviivieeiiiiiie ettt sttt sra e e ste e seeenes 62
S =g To T (ol O 1Yo] 111 1T o S 63
4.8 DePthWise CONVOIULIONc.viiiiiic ettt st et r e st e e st e e ba e besbeesbesbe e e e sreans 65
4.8.1 How Depth wise fetch data from MEmOIY?ocoieiiiiiiiiiie s 66
4.8.2 How Depthwise fetch weights from Memory?..........ccooveiiiiiiiieeee s 66
4.9 POINIWISE CONVOIULIONctiiiiitiiieiie ettt sttt et besrenbesaeneeeeneas 67
4.9.1 Pointwise hardware COMPIEXITYceivveiiiiiie et st ns 68
4.9.2 POINtWISE NArdWare STFUCLUIEocviieiieiieeiesiesiee ettt e besre s e ste e e snesne e seeenen 68
4.9.3 INPUL FEICNING ..ottt e be et e s beebe e besbe et e stesaeesreats 69
4.9.4 Core Block: POINtwWise CONVOIULIONcviiiiiiieiieeeieescse s 69
4.9.5 WEIGNLS FEICNINGecveieiii bbb 70
4.9.6 PW OULPUL SEOMAGEvvevieieeteite etttk sttt b ettt bttt sb e bt st nenbe e nneeees 72
4.9.7 Batch NOrMANIZALIONceeieiii ettt e st e saeeneeneeenes 73
4.9.8 HUSTFatiVE XAMPIEottt ee e r e te e e ntesaeeneeseeenes 74
4.10 AVErage POOKING LAY ..ottt bbbttt b bbb 77
4.1 FUIY CONNECLE LAYETo ieeeeeeiie ittt ettt sttt sttt e s e e eteeneeseeene e teeneeneeseeeneeseeenes 78
Ot O O T ot o1 =Tt PR 78
Chapter 5: Controllers and Weight diStriDULIONc.ooiiiiriiieee e 80

N Y - T gl oo g (o] | [SRR 80

5.2 Standard convolution and Depthwise CONTIOIIETc.coviiieiiiice e 81
5.2.1 Controller operation sequences (Data FIOW)cccccveviiiiieieiecie s 82
5.2.2 Controller operation sequences (Weight, Bias and M parameter)cccceovvvvrivninncrenenennenn 83

5.3 POINTWISE CONMTIOTIEE ...ttt ettt et e s e teeneestesteeeeseeeneeneenneas 83

5.4 FUlly cONNECtEd CONIOIIETocvieiecieceee e bbb be e s re et e sbenre s 84

5.5 WeIght diStrIDULION ..o s et e e e e sresteebenre s 84

Chapter 6: Testing methodology and functional simulation resultccceeeeeiinieceneececeseee e 86

6.1 TeSting MENOUOIOGYc.veueeieeiiiriitiiie sttt 86

6.2 Testing Standard CONVOIULION TAYETcvoiiiiiiiiie e 87

6.3 Testing Depthwise CONVOIULION TAYET.........cc.oiiiiei et sre s 87

6.4 TeStING POINTWISE TAYENeciiiie ittt sbe et e be s ae et e be e b e sbeetaenresre s 88

6.5 Testing Pooling and Fully CONNECIEA LAYET..........ccccviiiiiieiiieieeee e 89

Chapter 7: Results, Future Work and ConCIUSION..........ccucoueiriririnirierieieeee e 91

7L RESUILS ...ttt et ettt ettt e e s e st e e st et e eRe e e Re Rt nRe R e e e eRe e Rt e ReeRe et e nReentenreenaenrenre s 91

O o\ =T oo o1 (] 14T LA o] SRRSO 93

7.3 BENCHMAIK ...ttt bbbttt b et b b ettt n e b e bt st b e e e 96

A V(U= o] o S PRSSSPS 97
7.4.1 Increase throughput by time sharing Detween photos...........cocviiiiiiiicnce e 98
7.4.2 Make design ready for ASIC FlOWoooiiiiiiicc e 98

7.4.3 EXPEIMENTAI WOTK ...ttt bbbttt 98

T o o] 3 oo ISP SSPR 98

] (=] €] 101 SRS PRSI 99

List of Figures

Figure 1:
Figure 2:
Figure 3:
Figure 4:
Figure 5:
Figure 6:
Figure 7:
Figure 8:
Figure 9:

Figure 10:
Figure 11:
Figure 12:
Figure 13:
Figure 14:
Figure 15:
Figure 16:
Figure 17:
Figure 18:
Figure 19:
Figure 20:
Figure 21:
Figure 22:
Figure 23:
Figure 24:
Figure 25:
Figure 26:
Figure 27:
Figure 28:
Figure 29:

Type of information ADAS provide tO DIiVEIcecieiiiee ittt e e e e e e sarae e 9
FANU] o) aTe] g o TN [S1Y7<] RSP 10
1N Y=Y o]] o= Y o o R 11
Main PArts OF ANY ADAS ...ttt e e et e e et e e s s be e e e s ee e e e abae e e e nbeeeeenareeas 12
vehicle to vehicle COMMUNICATION. ...uiiiiiiiieeee e e e e rrr e e e e e e 13
Performance Vs AMouNnt Of dataccccuiiiiiiiiii e e 14

(0] o [=Tot ffe 1= =T ol 4 e o KU SRR 14
Major methods of Object deteCtiON.........ciiiciiiieeee e e e e 15
N {01 M O I [ol V1 =T 11 PSSP 15

Point Pillars arChit@CIUIE....ceeieee e e see e e s rree e s e eareeas 17
1Y Tl e 1o =T ot o o WU SUSTNt 18
DEEPLANE @rCNILECLUIE . .vviiiiiiiee ettt e e e st te e e e s bt e e e e sbteeessbeeeesssstaeeesnnes 18
LY € ey AT el L =T U o <P UUUR 19
SeMaNtic SEEMENTATION ..o, 19
ADAS semantic segMeNtation iMAGEcccuuiiiiiiiiiieiiiiieeee e rrree e e e e s s e s rre e e e e e eenas 20
GENEral CNN @rCITECIUIE ... vttt e et e e et e e e et te e e s ebae e e e ebaeeeeeasraeaeeanes 21
(00T 01V o] 1V o o T I 1Y PSRNt 22
2 TV {0 Yo Vot o] o WA UUUR 22
Y= 2o Yo] 113 V-SSP 23
F N Y - =<0 o Yo Yo [T =SSR 23
U1 YA ol oY YT ot =Y I 11V PP 24
Yo VTS N] A= [ol Y o <ot AU YU 24
SquUEEze Net fire MOAUIEcoiiiiee e e e e e e e sta e e e e satree e esasaeeeeas 25
Performance VS itEratioNscoccuiii i ittt e etee e e e ette e e e be e e e e bae e e e atee e e e ataeeeeannenas 25
Short coNNECION N RESNET ...cuviiiiiiiiiiere ettt ettt et e sabe e st e sbre e sbeeesanes 26
RESNET50 MOEL....ciiiiiiiiieiee ettt ettt e sabe e sbe e e sabe e s bt e e sabeesabaeenanes 27
Performance of SOmMe RESNET VEISIONS.......c.uuiiiiiiiie ettt vee e et e e e aee e e e 28
AIEXNET ArChITECTUIE ..ciineiiiiie ettt sttt e st esa b e st e e s sabeesbaeesanes 29
VL LR NS XF: [ol o[(=T ot U YU 30

Figure 30: DepthWiSe CONVOIULION........uiiiiiiiie ettt ettt e et e e e et e e e et e e e et e e e e enbeeeeeabaeeeenbaneeennsenas 31

Figure 31:
Figure 32:
Figure 33:

Standard CONVOIUTIONcooiiiiiiiii 31
POINTWISE CONVOIUTION 1.vvvtviviiiiiiiiiiiriieritireteteiarerssessrsressrsrsrersasrerarassrererssesararasssarasssssssssssssssnsssnnes 31
1Y o] o T T= N =y A= T ol 4 11 = (0 I 32

=V Y T = {13 o o o K Gl YU SP 33

Figure 35:

1Y/ oY 1= It R I 1Y T SRR 38

Figure 36: Mobile Net trained 0N iMage NEtuiiiieiiiie et st e e bae e e areeas 39

Figure 37:
Figure 38:

Insert Fake Quant layer during trainingcccuviiiiiie i e e 41
T aTo LT g a0 =T o X3S 42

Figure 39: Models are trained 0N iMage NELcuiiii it e e e e e ba e e e e areeas 42
Figure 40: FINAl MOTE 2 LAYEISeeeeeiiieieee ettt etteee e e e e e et e e e e e s e e s anbe e e e e eeeessnnsnteaeeeaeeeeannnnrennneans 45
Figure 41: Configurable 10ZIC BIOCK.........coi i e e e e s e 47

file:///C:/Users/Muhammed%20Ayman/Desktop/Thesis-Final-Edition.docx%23_Toc77946223
file:///C:/Users/Muhammed%20Ayman/Desktop/Thesis-Final-Edition.docx%23_Toc77946224
file:///C:/Users/Muhammed%20Ayman/Desktop/Thesis-Final-Edition.docx%23_Toc77946225
file:///C:/Users/Muhammed%20Ayman/Desktop/Thesis-Final-Edition.docx%23_Toc77946227
file:///C:/Users/Muhammed%20Ayman/Desktop/Thesis-Final-Edition.docx%23_Toc77946228
file:///C:/Users/Muhammed%20Ayman/Desktop/Thesis-Final-Edition.docx%23_Toc77946229
file:///C:/Users/Muhammed%20Ayman/Desktop/Thesis-Final-Edition.docx%23_Toc77946230
file:///C:/Users/Muhammed%20Ayman/Desktop/Thesis-Final-Edition.docx%23_Toc77946231
file:///C:/Users/Muhammed%20Ayman/Desktop/Thesis-Final-Edition.docx%23_Toc77946232
file:///C:/Users/Muhammed%20Ayman/Desktop/Thesis-Final-Edition.docx%23_Toc77946233
file:///C:/Users/Muhammed%20Ayman/Desktop/Thesis-Final-Edition.docx%23_Toc77946234

Figure 42:
Figure 43:
Figure 44:
Figure 45:
Figure 46:
Figure 47:
Figure 48:
Figure 49:
Figure 50:
Figure 51:
Figure 52:
Figure 53:
Figure 54:
Figure 55:
Figure 56:
Figure 57:
Figure 58:
Figure 59:

Input output configurable BIOCKc.uviiiiiee e e 47
Input output configurable BIOCKccviiiiiiei e 48
Layer Pipeling @arChit@CLUIEcocuiiii e e et e e e aee e e e aae e s e eaneeas 50
SEIIES 7 FPGA FESOUICES. .ceeiiiiiiitittiee et ettt e e e e ettt e e e e s e e s eb et e e e s e e s s nbebteeeeeeesansreneeeeesesanan 50
Shared |ayer arChItECTUIE. .. .ci it e e e s e e e e e s sabaeesssereeeeas 51
Operation overlapping between depth and point wise modules..........ccccceeeeiveeiiiiieeiiiiieeeens 51
MobileNet accelerator BlOCK diagramcceeviieiiiriiiiiiee ettt e e s 52
Image 6*6 and filter 3*3 MUILIPIICAtION.......ccccuieiee e 53

Bram N VITEX- 7 i eeees 54
Input Image with required Paddingccoocvviiiiiiiiiiceece e 55
LV LU T I Y=Y = 1 A=Y U 55
ONE INSEANCE OFf MOAUIE....cii i ettt e e e e s et ae e e e e bae e e e enraeeeeanes 58
32 instances controlled by one counter and controller.........cceeeeeiiiceiiiieeee s 59
(07 T VY- 1V =N o] [Yo PSRt 59
generation and propagation truth table ... 59
carry lookahead block diagram..........ooicuiiiiiiiiiee e 60
pipelined carry lookahead adder tree adding 9 nUMDbErsSccccoviiieiiiiicciee e, 62
Standard convolution arChitE@CtUIEoocciiii i reae e 63

Figure 60:Standard conVOIULION @dder TrEE..........uuii it et e e e e e e nbe e e s enreeas 64

Figure 61:
Figure 62:
Figure 63:
Figure 64:
Figure 65:
Figure 66:
Figure 67:
Figure 68:
Figure 69:
Figure 70:
Figure 71:
Figure 72:
Figure 73:
Figure 74:
Figure 75:
Figure 76:
Figure 77:
Figure 78:
Figure 79:
Figure 80:
Figure 81:
Figure 82:
Figure 83:
Figure 84:
Figure 85:

Depthwise Core ParalleliSM.........uuii i e e e bee e e ree e e e aree e s e eaneeas 65
Depthwise bIOCK diagrameii e bee e e 65
MemOory WeIghts fEECNINGeeii e e e e et e e e 66
POINTWISE CONVOIULION....ciiiiiiii e e e e bee e e e e e e e e sbee e e ennreeas 67
POINTWISE FIEEIS < eetieie i e e e et e e et e e e et e e e e e sbeeeeesabaeeeennseeas 67
POINtWiSe NardWare SEFUCLUIEccecuieieieeciie ettt ciee e st s etee e ste e ste e e saeeesbeeessaeesnteeensaeesnseeenns 68
TaT o TU U i =Y SRR 69
ConVOolUtioN PArall@liSIMcei et e et e e e et te e e e e bte e e e ebae e e e enraeaeeanes 69
Pointwise seqUENCE Of OPEIatioNccueiiiciiie et e bee e et e s e tae e e e naeeas 70
WEIBNES fEECNING ceeeieieee e e e s rtae e e s abb e e e e saareeessnsaeeeeas 70
How weights are Stored in ROMuiiii ittt e et e e ree e e e ate e e e earae e s enneeas 71
POINTWISE OULPUL DUFFEI ..cciieieiie e e 72
Vo] o 11 F=T N =t e PN Y PRSP 73
Batch NOrm WEIgtS STOMING ...ccceeiie et e et e e e e are e e e e aree e s e eaneeas 74
HHUSErAtiVE EXAMIPIE.cci et e e et e e et ee e e e e e e e bae e e e sareeas 75
KErnels are @apPli@deee ittt e et e e e e e e e e e e et e e e e e abae e e eanneeas 75
(070 001 oY [aYedd a T A o =1 o SRRt 76
Storing the result in OUtPUL BUTFErScooouiiii i 76

AVEIABE POOIING et e e e et e e e e e e e et a e e e e e e e e e e s nnbtaeeeeeaeeeeannrraaeeeeaeaans 77
Average Pooling arChit@CIUIE.......iii e e e e e e saare e e s eaeaeeeeas 77
Fully connected layer archit@CtUIeooieieii e e 78
O CYFd o} 3 2 {0] R 79
Main parts of digital SYSLEML.....ccociiiii e e e 80
Y1V e il 4 =T g T ele T g ¥ o 11T 80
Layer CONTIOHET @NLILY ..vveiiieiiee e e e et e e e bae e e e sare e e e e s artee e ennneeas 81

file:///C:/Users/Muhammed%20Ayman/Desktop/Thesis-Final-Edition.docx%23_Toc77946235
file:///C:/Users/Muhammed%20Ayman/Desktop/Thesis-Final-Edition.docx%23_Toc77946236
file:///C:/Users/Muhammed%20Ayman/Desktop/Thesis-Final-Edition.docx%23_Toc77946237
file:///C:/Users/Muhammed%20Ayman/Desktop/Thesis-Final-Edition.docx%23_Toc77946238
file:///C:/Users/Muhammed%20Ayman/Desktop/Thesis-Final-Edition.docx%23_Toc77946239
file:///C:/Users/Muhammed%20Ayman/Desktop/Thesis-Final-Edition.docx%23_Toc77946240
file:///C:/Users/Muhammed%20Ayman/Desktop/Thesis-Final-Edition.docx%23_Toc77946241
file:///C:/Users/Muhammed%20Ayman/Desktop/Thesis-Final-Edition.docx%23_Toc77946242
file:///C:/Users/Muhammed%20Ayman/Desktop/Thesis-Final-Edition.docx%23_Toc77946243
file:///C:/Users/Muhammed%20Ayman/Desktop/Thesis-Final-Edition.docx%23_Toc77946244
file:///C:/Users/Muhammed%20Ayman/Desktop/Thesis-Final-Edition.docx%23_Toc77946245
file:///C:/Users/Muhammed%20Ayman/Desktop/Thesis-Final-Edition.docx%23_Toc77946246
file:///C:/Users/Muhammed%20Ayman/Desktop/Thesis-Final-Edition.docx%23_Toc77946247
file:///C:/Users/Muhammed%20Ayman/Desktop/Thesis-Final-Edition.docx%23_Toc77946248
file:///C:/Users/Muhammed%20Ayman/Desktop/Thesis-Final-Edition.docx%23_Toc77946249
file:///C:/Users/Muhammed%20Ayman/Desktop/Thesis-Final-Edition.docx%23_Toc77946250
file:///C:/Users/Muhammed%20Ayman/Desktop/Thesis-Final-Edition.docx%23_Toc77946251
file:///C:/Users/Muhammed%20Ayman/Desktop/Thesis-Final-Edition.docx%23_Toc77946252
file:///C:/Users/Muhammed%20Ayman/Desktop/Thesis-Final-Edition.docx%23_Toc77946253
file:///C:/Users/Muhammed%20Ayman/Desktop/Thesis-Final-Edition.docx%23_Toc77946254
file:///C:/Users/Muhammed%20Ayman/Desktop/Thesis-Final-Edition.docx%23_Toc77946255
file:///C:/Users/Muhammed%20Ayman/Desktop/Thesis-Final-Edition.docx%23_Toc77946256
file:///C:/Users/Muhammed%20Ayman/Desktop/Thesis-Final-Edition.docx%23_Toc77946257
file:///C:/Users/Muhammed%20Ayman/Desktop/Thesis-Final-Edition.docx%23_Toc77946259
file:///C:/Users/Muhammed%20Ayman/Desktop/Thesis-Final-Edition.docx%23_Toc77946260
file:///C:/Users/Muhammed%20Ayman/Desktop/Thesis-Final-Edition.docx%23_Toc77946261
file:///C:/Users/Muhammed%20Ayman/Desktop/Thesis-Final-Edition.docx%23_Toc77946262
file:///C:/Users/Muhammed%20Ayman/Desktop/Thesis-Final-Edition.docx%23_Toc77946263
file:///C:/Users/Muhammed%20Ayman/Desktop/Thesis-Final-Edition.docx%23_Toc77946264
file:///C:/Users/Muhammed%20Ayman/Desktop/Thesis-Final-Edition.docx%23_Toc77946265
file:///C:/Users/Muhammed%20Ayman/Desktop/Thesis-Final-Edition.docx%23_Toc77946267
file:///C:/Users/Muhammed%20Ayman/Desktop/Thesis-Final-Edition.docx%23_Toc77946268
file:///C:/Users/Muhammed%20Ayman/Desktop/Thesis-Final-Edition.docx%23_Toc77946269
file:///C:/Users/Muhammed%20Ayman/Desktop/Thesis-Final-Edition.docx%23_Toc77946270
file:///C:/Users/Muhammed%20Ayman/Desktop/Thesis-Final-Edition.docx%23_Toc77946271
file:///C:/Users/Muhammed%20Ayman/Desktop/Thesis-Final-Edition.docx%23_Toc77946272
file:///C:/Users/Muhammed%20Ayman/Desktop/Thesis-Final-Edition.docx%23_Toc77946273
file:///C:/Users/Muhammed%20Ayman/Desktop/Thesis-Final-Edition.docx%23_Toc77946274
file:///C:/Users/Muhammed%20Ayman/Desktop/Thesis-Final-Edition.docx%23_Toc77946275
file:///C:/Users/Muhammed%20Ayman/Desktop/Thesis-Final-Edition.docx%23_Toc77946276
file:///C:/Users/Muhammed%20Ayman/Desktop/Thesis-Final-Edition.docx%23_Toc77946277
file:///C:/Users/Muhammed%20Ayman/Desktop/Thesis-Final-Edition.docx%23_Toc77946278

=V R = L =W e [- = [[PSP 82

FIGUIE 87: PW CONTIOIIET ottt ettt e e st e e e st e e s s bbe e e e sasbeeessabeeesssnbeeessnreeas 83
Figure 88: FUlly cONNECLEd CONTIOIETcoiieiieeecee et e e e are e e e e nbae e e e eareeas 84
Figure 89: Weight distribUtion FIOWcooiuiiiiiieecce e e e e e e e e 84
Figure 90: Weight distribution fillesueiiiiiiiiie e e 85
Figure 91: Testing MethOdOIOBYeoe i et e e e e e e e s bae e e e s bte e e e esaraeeeeanes 86
Figure 92: File’s comparison of POOIING [QYENuviiiiiiieice e 87
Figure 93 : Depth WiSE RESUILSuiiiiiiiieiciiee ettt e e e et e e e st e e e s bbe e e e s abeeesenbeeesenarenas 87
Figure 94: File comparing and EXPECLEA ITOISciiccuiieieiiieeeeciteeeeeiree e esre e e e esiree e e e eabee e s e sabeee e e nbeeeeenasenas 88
FIgUIe 95 : POOIING FESUIES....uviiiieiiie et e e e e st e e e s be e e e s bbe e e s s abeeeesnbeeessnrenas 89
Figure 96 : Classify input image class from fully connected layercoeecvveeieciiie e, 89
Figure 97 : classify another iNPUL IMage ..cc.uuiei i e et ee e e e nbe e e e e areeas 90
FISUIE 98 : INPUL IMAZE cueeiiiiiiiiei ittt ettt e e e e s s sttt e e e e s s s aabe e e e e e e e s sasssnbaaaeeeessssnssnsanaeeens 90
Figure 99: ReSoUICES UTIHZAtiONcoicuiiiee ettt e e et e e e e abe e e e eate e e e entaee e enrenas 91
FIUIe 100: POWET ANAIYSIS ..vviiiiiitiiieieiiiieeeitiee e ettt e e ettt e e e stteeeesbteeeesaseeeessbeeessssaeeeasbeeesesaseeesasnsenesennsens 91
Figure 101:Timing SUMMArY FESUILS.....uiiiiiiiieieeiitee ettt ettt e e et e e s sre e e e st e e e s abe e e e ssbeeeesabeeeesnseeessnnsenas 92
Figure 102: ENable Bram’s 100%.........ccceeeiueerueeeieeesieesresenseeessessssesesseessssesesssessssessssesssssessssesssssessssesssnses 94
Figure 103 : Power optimization fOr BramS........cuuiiieiiiieiiiiiee et esrte st e e s e e s ave e e s e e s snbe e e s snreeas 94
Figure 104 : Signal power if 16 Dit iS USEAciiccuiiiieciiie ettt et e et e e s e rate e e e e nbe e e s enreeas 95
Figure 105 : Signal power if 8 DIt iS USEAviiiiiiii e et e et e e e e 95
Figure 106:Time diagram of Multiple photos ProCeSSINGuvieviiiiiiiiiiie e 97
=V I (0 7 o = 7 1\ oo = o USSP 98

List of tables

Table 1: comparison between YOLO and state of art detectorscccceevveciieeicciiee e, 16
Table 2: Comparison between LIDAR METNOAScoooiiiiieiiiee ettt tee e et e et e e 17
TabIE 3: RESNET VEISIONS...ccictiiiiiieeieeecieeeite sttt e et e e sttt e st e e bt e e s teeebeeessteeebeeessseessseeeseeesnseeenseeenseeesnsenensees 27
Table 4: TUNING [amMBa.. ... e e st e e st e e s st e e e e s abaeeesnbeeeeenreeas 40
Table 5: TUNNINEG @IPNE ..o e e e et e e e et e e e e et e e e s e tbeeeeesbaeesasbaeesenbeeesanrenas 40
Table 6:RESOUINCE POI LAY TYPE ..uviieieiiiee ettt e e et e e e et e e e e st e e e e e abaeeeasbaeesennbeeeeenaseeas 68
TAbIE 7: STAZES RESUILS...eeiieiiiie ettt e e e et e e e e st e e e e e aate e e e eanbeeeesasbeeeeanssaeesanseeeeannsenas 92
Table 8: TIMING RESUILSuviiiiieee e e e e e s e e e e e e e e a e e e e e e e s e s annbeeeeeeeeeennnsaraneeeaas 93
Table 9 : Comparison among different paper results and our results........cccceeeeciieeecciee e, 96

file:///C:/Users/Muhammed%20Ayman/Desktop/Thesis-Final-Edition.docx%23_Toc77946279
file:///C:/Users/Muhammed%20Ayman/Desktop/Thesis-Final-Edition.docx%23_Toc77946280
file:///C:/Users/Muhammed%20Ayman/Desktop/Thesis-Final-Edition.docx%23_Toc77946281
file:///C:/Users/Muhammed%20Ayman/Desktop/Thesis-Final-Edition.docx%23_Toc77946282
file:///C:/Users/Muhammed%20Ayman/Desktop/Thesis-Final-Edition.docx%23_Toc77946283
file:///C:/Users/Muhammed%20Ayman/Desktop/Thesis-Final-Edition.docx%23_Toc77946285
file:///C:/Users/Muhammed%20Ayman/Desktop/Thesis-Final-Edition.docx%23_Toc77946287
file:///C:/Users/Muhammed%20Ayman/Desktop/Thesis-Final-Edition.docx%23_Toc77946288
file:///C:/Users/Muhammed%20Ayman/Desktop/Thesis-Final-Edition.docx%23_Toc77946289
file:///C:/Users/Muhammed%20Ayman/Desktop/Thesis-Final-Edition.docx%23_Toc77946292
file:///C:/Users/Muhammed%20Ayman/Desktop/Thesis-Final-Edition.docx%23_Toc77946293
file:///C:/Users/Muhammed%20Ayman/Desktop/Thesis-Final-Edition.docx%23_Toc77946294
file:///C:/Users/Muhammed%20Ayman/Desktop/Thesis-Final-Edition.docx%23_Toc77946299
file:///C:/Users/Muhammed%20Ayman/Desktop/Thesis-Final-Edition.docx%23_Toc77946300
file:///C:/Users/Muhammed%20Ayman/Desktop/Thesis-Final-Edition.docx%23_Toc77946301
file:///C:/Users/Muhammed%20Ayman/Desktop/Thesis-Final-Edition.docx%23_Toc77946302
file:///C:/Users/Muhammed%20Ayman/Desktop/Thesis-Final-Edition.docx%23_Toc77946306

List of Abbreviations

ADAS
ASIC
BRAM
CLB
CNN
Concat
Conv
CcVv
DNN
DSD
DSP
e.g.,
FC

FF
FIFO
FPGA
HDL
i.e.,

I/10
ILSVRC

LUT
MAC
RAM
Relu
ResNet
ROM
SRL
STA
TNS
VGGNet
VIO
VS.
WNS
etc.

Advanced Driver Assistance System
Application-Specific Integrated Circuit
Block Random Access Memory
Configurable Logic Block
Convolutional Neural Network
Concatenation

Convolution

Computer Vision

Deep Neural Network
Dense-Sparse-Dense training
Digital Signal Processing

For Example,

Fully Connected layer

Flip-Flop

First in First out

Field Programmable Gate Arrays
Hardware Description Language
In Other Words,

Input/Output

ImageNet Large Scale Visual
Recognition Challenge

Look Up Table

Multiply and accumulate
Random Access Memory
Rectified Linear Unit

Residual Neural Network

Read Only Memory

Shift Register LUT

Static Timing Analysis

Total Negative Slack

Visual Geometry Group network
Virtual Input/Output

Versus

Worst Negative Slack

And the rest

Abstract

The use of Machine Learning (ML) and Atrtificial intelligence (Al) is a pillar in ADAS
(Advanced Driver Assistance Systems) and self-learning cars. The ML and Al are used in several
applications such as images, classifications, and traffic signs detection. One of the main challenges
to the Al and ML models is the need for computation resources such as (GPUs) which usually are
power-hungry to reduce the required real-time and high accuracy performance metrics.

The target in this project is to implement a CNN hardware Accelerator on an FPGA
specified for ADAS applications, and focusing on accelerating the design and achieving high
speed. MobileNet is the chosen architecture as it is the most suitable network for ADAS
applications due to its simplicity, its high accuracy and its low number of parameters which is
much less than other CNN architectures, which makes it possible to be implemented on FPGAs.

In this work, the maxima frame is 4975 fps, the power consumption of the system is
8.118W, the energy per image is 0.0017 J/image while the design is run on the Virtex-7 -VC-709
platform with a 100 MHz work clock frequency

Chapter 1: Introduction to ADAS

A huge improvement is noticed in the domain of automotive safety nowadays to minimize
the number of car accidents. We can easily see in our cars an example of a system that helps us
while driving to avoid collisions like park systems, cameras to see blind spots, collision warning
systems etc.

In this chapter, ADAS definition is discussed with some examples, and the relation between ADAS
and machine learning is clarified.[1]

1.1 ADAS definition

Advanced Driver Assistance Systems (ADAS) are smart systems that help the car driver
with his driving activities to improve the safety level by providing the driver with accurate and
sufficient information about the surrounding area of the vehicle such as traffic sign, location of
other vehicles, pedestrians locations, Street Lines etc.

As shown in figure (1), according to this information, the car has a real time automated system
that take a correct action in a correct sharp time on the vehicle to avoid accidents like braking or
steering.[1]

Figure 1: Type of information ADAS provide to Driver

1.2 Why is ADAS important?

ADAS increases the safety on the roads by warning the drivers to prevent accidents or
traffic rules violence. So ADAS is very important systems to save lives. According to the statistics
by the National Highway Traffic Safety Administration (NHTSA). “The Nation lost 35,092 people
in crashes on U.S. roadways during 2015.” This 7.2% increase was “‘the largest percentage increase
in nearly 50 years.” About 94% of those accidents were caused by human error.

ADAS provides many applications such as pedestrian and vehicles detection, Lane assistance,
automatic parking, surround view, and driver drowsiness detection that assist the driver, reduce
accidents and save lives.[1]

1.3 ADAS applications

As shown in figure (2), The autonomous engineers classified the automation into six levels.
Starting from level zero there is no automation at all until we reach level five. In level five we have
full automation that doesn’t need any assistance from the human.

ADAS is classified as level two in these levels, it just monitors information to the driver and warns
him if there’s a dangerous situation. It may take some real time actions on the car in very dangerous
situations.

7 T s 2 (B
0 1 3 4 5
NO DRIVER PARTIAL CONDITIONAL HIGH FULL

AUTOMATION

ASSISTANCE

AUTOMATION

AUTOMATION

AUTOMATION

AUTOMATION

THE HUMAN MONITORS THE DRIVING ENVIRONMENT THE AUTOMATED SYSTEM MONITORS THE DRIVING ENVIRONMENT

Figure 2: Autonomous levels

Depending on the previous classification we can talk about different ADAS applications, as shown
in figure (3):

1) Blind spot monitoring:

Blind spot detection systems use sensors like cameras to provide the driver with important
information that is very difficult or impossible to obtain like the blind point that the normal mirrors
can’t get. Some systems sound an alarm when they detect an object in the driver’s blind spot,
especially when the driver wants to move into the next lane.

2) Automatic Emergency Braking:

Automatic emergency braking system uses sensors to detect whether the driver is going to hit
another object on the road. This application can measure the distance of nearby objects and alert
the driver to any danger. Some emergency braking systems can take preventive safety measures,
such as tightening seat belts, reducing speed, and adaptive steering to avoid a collision.

3) Lane departure warning system:

Lane departure warning system warns the driver if the car begins to move out of its lane unless
turn signals are on this direction. This application can use the data from camera and detect the
two lanes that the car should stay within them so if there’s a significant shift in the lane in the
image it warns the driver.

10

4) Traffic sign detection and classification:

This system uses the data of the cameras to detect and classify the different traffic signs across
the road. The system may just monitor the information to the driver to warn him if any traffic
rule is violated. We use the data coming from the camera then detect the location of the traffic
sign then classify it.

*In part 2 of this chapter, we will talk about each application and how to implement it using
machine/deep learning models.

*The application of Traffic sign detection and classification using camera is our mainly
consideration in this project and we will focus on it in the next chapters.[1]

Blind Surround view Traffic sign
; spot recognition
etection

. Radar/LIDAR

. Camera

Ultrasound

Park
assist Emergency braking Adaptive
Pedestrian detection cruise
. / control
Surround \ Collision avoidance
view i Park
& assist

Rear
collision 3
warning Surround view

Lane departure
warning

Figure 3: ADAS application

1.4 How does ADAS work?
As shown in figure (4), ADAS in cars depend on three parts:

1) Sensors: they gather information on their immediate environment, such as pedestrians, cars,
traffic signs......etc. they are different sensors can be used like camera that provide the system
with 2D image that it can extract different information from it like the type of traffic sign or the
existing of cars or people in the image.

We have also lidar that throws laser light at an object on the earth surface and calculate the time it
takes to return to the LIDAR source so it can calculate the object’s distance from the car. The main
advantage of lidar over the camera that it overcomes the lighting conditions problem that affects
badly the image taken by the camera.

We have also ultrasonic that send sonic waves and calculate the object’s distance from the car like
the LIDAR sensor by in shorter range so ADAS depend mostly on it in the parking system.

ADAS can use combined data from different sensors and use them as input to the processor to
increase the performance and the accuracy.

11

2) Processor: it uses a combined data from the sensors to understand it and construct a full
understanding of the surrounding area. After processing the data, it may just show the information
to the driver to inform him of different traffic signs on the road for example.

The processor also can control some actuators in the car if needed to avoid collision to improve
the safety level.

3) Actuators: they are anything that control the car movement like brakes, steering, throttle..........
etc.

—\ e F N 7= N E B
[Camera 2]—> o) {mf
Z —* Steering &
(Radar @ }’ & = .
‘q&; . " 4l)
E
[Lidar (())}* S —> Throttle [}@ﬂ
Z L :
[Ultrasonic 'lllll-l-]—> Perception |—| Plan |— Control
(. J f N
M) - S\
[IMU ﬁv J N Brake
L
8 . >y
[GPS M J > & | - N
o
- o — Gear (%
(CAN_BUS :}. }+k .3 & 57 _ > . 7 N J

Figure 4: Main parts of any ADAS

1.5 The future of ADAS

ADAS is advancing at a very fast rate. According to Speaking in 2016 chairman and CEO
of General Motors, Mary Barras wrote: “The auto industry will change more in the next 5 to 10
years than it has in the past 50.”

As Barras said, the next step-change for the advancement of ADAS technologies will be the advent
of the so-called connected car, made possible by the widespread adoption of:

e vehicle-to-vehicle (V2V).

e vehicle-to-infrastructure (V2I).

e vehicle-to-everything (V2X) communications.
Current ADAS functions are restricted by what the sensors can detect, which today extends to a
useful forward range of around 250 meters.

As shown in figure (5), V2V communication allows vehicles to communicate with each other
directly and exchange information, such as positions, relative speeds, directions and even control
inputs, like sudden braking, accelerations or directions changes.

As an extension of V2V, V2I provides vehicles with information from the road network’s
infrastructure, such as traffic lights and signals, variable speed limits and congestion information.

12

Such information is expected to not only improve safety but also reduce congestion by enabling
a freer flow of traffic, and it is also recognized as a key driver towards full autonomy.

V2X, meanwhile, adds data streams from beyond the immediate road network, including cloud-
stored information, meteorological updates and possibly cyclists, pedestrians and other
vulnerable road users (VRUSs).[2]

Figure 5: vehicle to vehicle communication.

Moving toward fully autonomous cars—vehicles capable of sensing their environment and
operating without human involvement—adds complexity in the electronic architecture of these
vehicles.

These complex architectures require an increase in the volume of data. To manage this data, the
new integrated domain controllers require higher computing performance, lower power
consumption, and smaller packaging.

The adoption of 64-bit processors, neural networks and Al accelerators to handle the high volume
of data requires the latest semiconductor features, semiconductor process technologies, and
interconnecting technologies to support ADAS capabilities.[1]

1.6 ADAS and Machine/Deep learning

In this part, the different functions that can be implemented using deep learning will be
discussed and we will relate them with ADAS applications.

The deep learning is a subset of machine learning that has a breakthrough nowadays. This was due
to the huge amount of data that becomes available so, we need to increase the performance of the
learning algorithm using this huge data, as shown in figure (6).

13

A
Industry Giants

© Deep Learning !
§ i Quality Gap in Al products
E | i Small and Medium size
g ! Older algorithms ! companies
o | :

| |

| |

| |

| |

| |

| |

| |

: |

| .

Amount of data
Figure 6: Performance Vs Amount of data
1)Detection

Object detection is a computer vision technique for locating instances of objects in images or
videos.

As shown in figure (7), The detection of objects like vehicles, pedestrians, cyclists,
animals............ etc. is crucial in advanced driver assistance systems (ADAS) to avoid collisions

Figure 7: Object detection
Deep Learning for object Detection:

The Data comes from Cameras, Lidars (Light Detection and Ranging) and radars.

We can categorize the deep-learning detectors into two categories: two-stage and one stage
methods. Two stages such as R-CNN, Fast R-CNN, etc. that generate the regions by CNN then
classify them. one stage like YOLO, SSD, etc. which directly get the probability and position
without generating regions stage.[3]

The major methods of object detection are shown in figure (8).

14

. OverFeat Ir e RN R_-FCN; DCN Cascade RCNN ET'S\S—IFPNj Detnas
(Sermanet et al.) EE;;FHGH (Dai et al.) (Dai et al.) (Caletal) . (Ghiasi et al.) (Chen et al.)
R-CNN " volo Mask R-CNN (Zhu et al.) CenterNet
(Girshick et al.) (Redmon et al.) (0103000 (He et al.) (Duan et al.)
Fast R-CNN FPN SSD (Redmon and | RetinaNet RefineDet uCornerg.Iet. ExtremeNet FCOS
i A 3 (Law ang Deng) N et al .
(Girshick et al.) |(Linetal.)| (Liuetal) Farhadl) (Linet al.) (Zhang et al.) I zhovean (Tign et al.)
\
Hourglass
VGGNet g ResNexXt DPN SENet
. (Newell et al.) Lin et al
(Simonyan and (Lin et al.) (Chen et al.) (Huet al.) EfficientNet
Zisserman) GoogleNet ResNet v2 (Tan and Le)
AlexNet (Szegedy et al.) (He et al.) MobileNet NASNet
(Krizhevsky et al.) ResNet DenseNet (Howard et al.) (Zoph et al.)
(He et al.)

(Huang et al.)

Figure 8: Major methods of object detection
YOLO

You Only Look Once is a state-of-the-art, real-time object detection system. It was produced in
2015.

YOLO has its own neat architecture based on CNN and anchor boxes and is proven to be an on-
the-go object detection method for many problems. YOLO has 3 versions: YOLO V1, YOLO V2,
YOLO V3

YOLO V2 is more accurate and faster than V1. YOLO V3 more accurate but not faster than V2.
[4]

YOLO network architecture is shown in figure (9):

mnz
a
Nk
448 3 28 35 N \
3 4], ‘ 7 7 7
g >Z| | ><
56 28 2 3 | |
[| 7 7 7
3 192 256 512 1024 1024 1024 4096 30
Conv. Layer Conv. Layer Conv. Layers Conv. Layers Conv. Layers Conv. Layers Conn. Layer Conn. Layer
Tx7xb4-5-2 3Ix3x192 I1x1x128 1x|x256}><4 I1x1x512 })(2 3x3x1024
Maxpool Layer Maxpool Layer 3x3x256 3x3x512 3x3x1024 3x3x1024
2x2-5-2 2x2-5-2 1x1x256 1x1x512 3x3x1024
3x3x512 3x3x1024 3x3x1024-5-2

Maxpool Layer Maxpool Layer
2x2-5-2 2x2-5-2

Figure 9: YOLO architecture

It consists of 24 convolutional layers followed by 2 fully connected layers. The model takes the
input image and divide it into a grid of 13 by 13 cells: each cell is predicting 5 bounding boxes. A
bounding box describes the rectangle that encloses an object. YOLO also obtains a confidence
score that gives us information about how certain it is that the predicted bounding box actually
encloses some object.

The following table show a comparison (Results on PASCAL VOC 2007 test set) between state
of art detectors and YOLO [4]:

15

Table 1: comparison between YOLO and state of art detectors

Fast R-CNN 200742012 70.0 0.5
Faster R-CNN VGG-16 2007+2012 73.2 |
Faster R-CNN ResNet 200742012 764 5
YOLO 200742012 634 45
SSD300 200742012 74.3 46
SSD500 200742012 76.8 19
YOLOV2 288 x 288 200742012 69.0 91
YOLOV2 352 x 352 200742012 73.7 81
YOLOvV2 416 x 416 200742012 76.8 67
YOLOV2 480 x 480 200742012 77.8 59
YOLOV2 544 x 544 200742012 78.6 40
LiDARs

LiDARs have the advantage of working in nightlight and give an accurate 3D mapping of the
environment. We can group the neural networks for LIDAR data processing into two categories:
first category is 2D methods in which the point cloud is projected onto one or more planes, which
are then processed by typical convolutional networks. the second is :3D methods — the point cloud
is processed without reducing the third dimension, the following subdivision can be made:

1.methods operating on points — these methods perform semantic segmentation or classify the
entire cloud as an object — an exemplary method is Point- Nets.

2.methods operating on cells — these methods divide the three-dimensional space into cells (fixed
size), aggregate the features of particular points into a features vector for a given cell and process
the matrix of cells with 2D or 3D convolutional networks — examples are VoxelNet and
PointPillars.

3.hybrid methods — methods partly using both of the above-described approaches — an example is
PVRCNN.

We will focus on one of these methods:

PointPillars

PointPillars takes the point cloud (which is a collection of hundreds of millions, or sometimes
billions of highly accurate 3-dimensional x,y,z points and component attributes.) as input from
LIDAR and generates oriented cuboids denoting the detected objects: Pedestrians, cars, and

16

cyclists. A “pillar” is a three-dimensional cell, without a user-defined height. The network
architecture is shown in the following figure:

Point cloud Predictions

Point Stacked Learned Pseudo i
cloud Pillars Features image :

__

Figure 10: Point pillars architecture.

It consists of three main parts: The first part — Pillar Feature Net (PFN) —whose task is to convert
the point cloud into a sparse “pseudo-image”. The second part of the network — Backbone (2D
CNN) —processes the “pseudo-image” and extracts high-level features. The last part of the network
is the Detection Head (SSD), that detects and regresses the 3D cuboids on the objects.[5]

The following table shows comparison between different methods that takes data from LIiDAR
(Results on the KITT]I test 3D detection benchmark)

Table 2: Comparison between LIDAR methods

Speed || mAP Car Pedestrian Cyclist

(Hz) | Mod. | Easy | Mod. | Hard || Easy | Mod. | Hard || Easy | Mod. | Hard
MV3D Lidar&Img. | 28 | NA | 7109 | 6235 | 5502 | NA | NA | NA || NA | NA | NI
Cont-Fuse Lidar & Img. | 167 | NA | 8254 | 6622 | 6404 | NA | NA | NA || NA | NA | NA
Roarnet Lidar&Img. [10 | NA | 871 7304 | 5906 | NA | NA | NA | NA | NA | NI
AVOD-FPN | Lidar&Img. | 10 [55.62 || 81.94 | 7188 | 6638 || 50.80 | 42.81 | 40.88 || 64.00 | 52.18 | 46.61
F-PointNet Lidar & Img. | 59 |/ 5735 || 81.20 | 70.39 | 6219 || S1.21 | 4489 | 40.23 || 71.96 | 56.77 | 50.39
VoxelNet Lidar 44 1 49.05 || 7747 | 65.11 | 5773 || 39.48 | 3369 | 315 | 61.22 | 48.36 | 44.37
SECOND Lidar 20 | 56.69 || 83.13 | 73.66 | 66.20 | 51.07 | 42.56 | 37.29 || 7051 | 5385 | 46.90
PointPillars Lidar 62 | 59.20 || 79.05 | 7499 | 68.30 | 5208 | 43.53 | 4149 | 7578 | 5907 | 5292

Method Modality

2) Lane Detection:

It is not easy for drivers to find the Lane lines on the road in case of heavy rain fall or there is a
snow covering the ground, ADAS helps the drivers by proving Lane detection function. lane
detection is a critical component of ADAS. If lane positions are detected, the car will know where
to go and avoid the risk of running into other lanes or getting off the road. This can prevent the
driver/car system from drifting off the driving lane.[3]

17

Figure 11: Lane detection

Deep Learning for Lane Detection:

Data also can come from cameras or LiDARs. Lane detection methods can be grouped into two
main categories: two-step and one-step methods. One step method gets the detection and gathering
results directly from the input image. On the other hand, two-step methods consist of two main
steps: feature extracting step and post-processing step.[3]

We will focus of two examples of the networks proposed for Lane detection:

DeepL ane is a method based on the idea of classification-based Lane detection method, which
combines some prior information to determine lane position. The overall architecture is shown in

figure (13).

I:D.

A SoftMax layer is applied to obtain the probability distribution of lane position. The fully
connected layer consists of 317 outputs (316 for possible positions and one for the absence of lane
marker).[3]

VPGNet (Vanishing Point Guided Network) was proposed by Seokju Lee et al based on the idea
of object detection-based lane detection method. It is another method to estimate geometric
characteristics by CNN.VPG performs four tasks: grid regression, object detection, multi-label
classification, and vanishing point.[3]

o (317 o=

[ood 1°¢
[ood 1°¢
L
_Jd 8¥0C)
3nodo.g]

Figure 12: DeeplLane architecture

The architecture is shown in the following figure:

18

AN
. _, . Grid Box
4096 56 (120x160x4)

Canv7 [1x1) Comvd (Lx1) Tiling (8x8)

. ., i __, Obect Mack
4096 123 (120x160%2)

Conv7 [1x1) Conve (Lx1) Tiling (8x8)

N . __, Multi-label
4036 1024 (60x%80x64)

Conv7 [1x1) Conve (1x1) Tiling [4x4)

VPP
_’M _'ai‘ *a0x160%5)

Comv7 (1x1) Conve [Lx1) Tiling (8x8)
L Shared layers | l Branch layers
Figure 13: VPGNet architecture

Conv1+Pool ComvZ+Fool Comi3 Convd. Convs#Pool Convé
[11x11) 155 (3x3) (3x3) (3x3) 6x6) T,

3) semantic segmentation

Semantic Segmentation is the process of assigning a label to every pixel in the image. This is in
stark contrast to classification, where a single label is assigned to the entire picture. Semantic
segmentation treats multiple objects of the same class as a single entity. On the other hand, instance
segmentation treats multiple objects of the same class as distinct individual objects (or instances).
Typically, instance segmentation is harder than semantic segmentation.

As shown in figure (14), our main goal is to take RGP image and output a segmentation map where
each pixel contains a class label represented as an integer.

3333333333353
3938333333333
3333331493333
#3331 31398
TR IR ET Y
33 33 11 33
3 11 14
3 13 14 Ta
1: Person : S T B 0 Tl
2: Purse = o il o0 M G QR Oh R o s |
338122441432
3 3:4.2 2 1 ¥4 1
Input Semantic Labels

Figure 14: Semantic segmentation

An approach towards implementing this application is by constructing a neural network
architecture for this task is to simply stack a number of convolutional layers (with same padding
to preserve dimensions) and output a final segmentation map (all this will be discussed in chapter
2).

Semantic segmentation is a very important task in ADAS applications, we can use it to classify
the regions that contain vehicles and humas all around the car without classifying the humans into
men and women or classifying the type of the vehicles, as shown in figure (15).

19

Figure 15: ADAS semantic segmentation image

4) image classification

Image classification is where a computer can analysis an image and identify the class the image
falls under (Or a probability of the image being part of a certain class) A class is a label for a
certain instance like identify if image is a car, dog, cat, etc.

The image classification can be used in so many applications in ADAS, we will use it to classify
the different traffic signs

This Deep learning application can be implemented using different types of Deep learning
Models that will be discussed in chapter (2).

20

Chapter 2: Image Classification Models

In this chapter, we will focus on the back bone of deep learning (CNN “convolutional
neural network™). A general CNN architecture will be discussed, then different models of image
classification as an application of deep learning.

2.1 Neural networks overview
Artificial neural networks (ANN) are commuting system inspired by biological neural
networks that constitutes human brains.

ANN is based on a collection of connected artificial neurons that transfer data from input to output
with some calculations to behave as a human. Humans should move with some situations to learn
how to behave correctly and with similar situation human act dependent on the previous learning.
Unlike humans, deep learning approaches the machine with a large amount of data and after that
machine is able to take a decision itself.

Deep learning is subfield of machine learning which use artificial neural networks. Deep learning
is the most accurate approach in machine learning fields because no accuracy saturation occurs
with the amount of data in the learning phase.

Our approach is based on deep learning architectures specifically convolution neural networks
(CNN).

2.2 Convolutional neural networks overview

Convolutional neural network (CNN) is a spatial type of artificial deep neural networks
(DNN) which developed to work with high input futures like RGP high quality photos with good
performance and small number of parameters compared to any DNN. CNN uses shared weights to
extract the input futures (hidden layers). Each hidden layer consists of filters. Automatically in the
train phase, each filter able to extract one feature from the input features using convolution process
and after convolution layers the output encoding version of the input feed into fully connected
normal DNN to do the functionality of the network like detection or recognition. [7]

2.3 General convolution neural network architecture

Convolution Pooling Convolution Pooling Fully Fully Qutput
+RelU +RelU Connected Connected perdictions

dog (0.01)
Cat (0.01)
==L Boat (0.94)
[% Bird (0.94)
L I .

-1 L=d

Figure 16: General CNN architecture

21

2.3.1 Convolution layer

The first layer in any CNN model is convolution layer. As discussed above, convolution
layer mission is to generate a small version of input future photo convolution layer simply done
by slide down the filter on photo with a constant stride to cover all pixels and multiply the active
input features with the filter weights to generate the output as shown in figure (17). [7]

1 o -1 (=3

1 o -1 =

1 o -1

OIN[W|d N

AR(W|0|N

MININ QW

aN[O 0w

MN(AM O
¥

7TxX1+4x1+3x1+

2x0+Sx0+3x0+

3Bx-1+3x-1+2x-1
(=3

Figure 17: Convolution Layer

2.3.2 Relu activation function

Relu function introduce the nonlinear function. Relu is done after convolution layer to generalize
the output in the next layer. There are many non-linear functions can be used, but in CNN Relu is
the most used activation function [7].

o RelU

E R =z) =maax (0, z}

5

4

2

oo ~= o = 10

Figure 18: Relu function

2.3.3 Pooling layer

After Relu stage, pooling layer comes next and it is a down sampling layer. The output
feature mapping is similar to the input futures but the size of the matrix shrinks. There are 2 main
types of pooling which are max polling and average polling [7].

22

2.3.3.1 Maximum pooling

Max pooling takes the max number between window of pixels and set it as output in the
figure (19), the pooling window consists of 4 pixels, so the max of 4 pixels is set as output of these
4 pixels.

Max Pool

D

Filter - (2 x 2)
Stride - (2, 2)

Figure 19: Max Pooling

2.3.3.2 Average pooling
Average pooling same as max pooling, but the output is the average of the pixels as shown
in the figure (20).

Average Pool

_—

Filter - (2 x 2)
Stride - (2, 2)

Figure 20: Average pooling

2.3.4 Fully connected layer

Fully connected (FC) layer is an ordinary DNN which used in logical regression or
classification like soft max.
FC layer take the output from the convolution layers which represent the original photo features
mapping and determine the most feature correlated to a particular class after flatten the output of
convolution layers and multiply with FC weights as shown in the figure (21) [7].

23

pl:lil-d
o]
o Lo Paunset
=0
[< [~
o o o
(=3 ™~Cy dog
(=3 L=
(=3 L=
o ° Post
L= 1] (=]
wveo o t
(=3
l]
fully connected layers Mx binary classification

Figure 21: Fully connected layer

2.4 CNN architectures and models for image classification

After the revolution of computer vision and advanced driving assistant systems (ADAS) a
lot of CNN models developed to achieve more accuracy and to reduce the number of parameters
to implement the network as ASIC or FPGA product not only GPU applications. CNN can
categorize into classic CNN which uses multiple of convolution layers to improve accuracy and
modern CNN which uses an efficient way of learning to improve accuracy with small number of
parameters. We will discuss the CNN architectures found in our survey.

2.4.1 SqueezeNet 2016

SqueezeNet deployed in 2016 by Stanford university, it was designed to achieve high
accuracy (equal to AlexNet) with 50 times less parameters than AlexNet in addition to having no
fully connected layers. As a result of that, SqueezeNet is very suitable to FPGA products. Figure
(22) is an overview of SqueezeNet architecture [8].

global avepool

Figure 22: SqueezeNet architecture

24

Fire module

The Fire module is the foundation of SqueezNet consists of a Squeeze layer which reduces the
number of input channels using a small number of 1 x 1 convolutions and an Expand layer which
increases the number of channels of the Squeeze layer output using 1 x 1 and 3 x 3 convolutions.
This method is called a bottle-neck structure. The Expand layer of the Fire module also has 1 x 1
convolution filters to reduce the number of parameters further [8].

Ve

1 x 1 and 3 X 3 convolution filters

Figure 23: Squeeze Net fire module

2.4.2 ResNet model

2.4.2.1 Introduction

The common trend in research that network architecture community needs is to go
deeper. Keep in mind that feedforward network to implement any function but surely overfitting
will happen, so “The deeper the better” when it comes to convolutional neural networks.
However, it has been noticed that after some depth, the performance degrades.

2.4.2.2 Reasons for performance degrades after certain depth:

while trying to avoid overfitting and other problems by using back propagation and
increasing network layers, there are another problem will appear. When we increase the number
of layers, there is a common problem in deep learning associated with that called
Vanishing/Exploding gradient. This causes the gradient to become 0 or too large. Thus, when we
increase number of layers, the training and test error rate also increases, as shown in figure (24).

[¥]
=]

20

% < 56-layer
o S—

S ‘g Al 20-layer
= 56-layer -

g= g

= 20-layer

%6 1 2 3 4 5 3 % 1 2 = r 5 3
iter. (1le4) iter. (le4)

Figure 24: Performance Vs iterations

25

Note that this is not because of overfitting cause if those 56 layers should have lower training
error and this not the case after analyzing more and more the authors were able to reach to the
main problem as we mentioned Vanishing/Exploding gradient.

2.4.2.3 Vanishing/Exploding gradient:
Certain activation functions, like the sigmoid function output belong to [0,1], so it converts
a large input space into a small input

S0 whatever §x was huge it ef fect output with small 6y, Hence the derivative becomes
small.

For shallow-few layers- network, this isn’t a big problem. However, it is a great issue if more
layers are used, it causes the gradient to be too small for training to work effectively.

If M hidden layer uses sigmoid function. A small gradient means that the back-propagation effect
which we use to get better weights by subtracting this back-propagation coefficient from initial
weights will be too small to remove errors if we can call it an “error “to use better words to describe
this “the weights and biases of the initial layers will not be updated effectively with each training
session”

Solution:

Before ResNet, there had been several ways to solve the vanishing gradient issue, but none seemed
to really tackle the problem once and for all. ResNet introduces “identity shortcut connection”
simply skip mean one or more layers as in figure 25.

weight layer
F(x) l relu

weight layer

X
identity

F(x) + x

Figure 25: Short connection in ResNet

So, identity x will add to activation(F(x)+x)) to decrease effect of have small derivatives. if any
layer hurt the performance of architecture, then it will be skipped by regularization. So, this results
in training very deep neural network without the problems caused by vanishing/exploding gradient.
The authors of the paper experimented on 100-1000 layers on CIFAR-10 dataset.

26

Example: ResNet 50 architecture:
The architecture of ResNet50 in figure (26) and deep learning model flowchart. Architecture of
ResNet50 is shown and includes convolution layers, max pooling layers, and a fully connected

layer.

Max pooling layer,

+
1 < 1 Conwvoaution

3% 3 Coovolution
£3 3=<3 Cormwaution
1< 1 Conwolution

'S = =
1< 1 CoavoRstion LS L

7 <7 Convolstion

3553 ssacgsoosng
= RS 2

-

% 5<1 Convonstion

+

3 <3 Convolution

+

1< 7 Convolution

.

1 <1 Corvolution

151 Convoiuson

33 Convonstion

13<1 Conwvolstion

Convolution layer

1 5<1 Corvoiwtion
35<3 Convoastion

11 ConwoRstion

1 <1 Corvolwtion

1 < 1 Corvotion
3 <3 Conwvolution
13 1 Convolution

1<% Convciuson
3<3 Cormolstion
+

1< Corvolstion

| E—

+

1 <1 Convoation

*

3<3 Corwolution

*

1 5<1 Corwvonrstion

-

1 <1 Coovolstion

ResNet Versions:

1 >< 1 Corwolstion
3> 3 Cornwvolutian

15< 1 Corwoution

1< 1 Corvolstion
3 >< 3 Corwolution

1< 1 Corvolstion

1 < 1 Corrwclution
+*
33 Convoluton

1< 1 Convolstion

- |

+
1 >< 1 Cornvolution

-
33 Convomstion |

-

15< 1 Convolution
-

1< 1 Convolution

1< 1 Convdution
33><3 Corolution

1 3>< 1 Corvolution

s .

1551 Corwolution
3<3 Corvoluson

11 Convoluson

+
7T=<7 Aaim
HEe——=rerr—— T
Figure 26: ResNet50 model

Table 3: ResNet versions

Fully connected layer

Mumber of Layers

Mumber of Parameters

ResNet 18 11.174M
ResNet 34 21.282M
ResNet 50 23.521M
ResNet 101 42.513M
ResNet 152 58.157M

In figure (27), we can see the performance of some ResNet versions shown in table (3) training
using image net. ResNet-152 achieves a top-5 validation error of 4.49%. A combination of 6
models with different depths achieves a top-5 validation error of 3.57%. Winning the 1st place in

ILSVRC-2015.

27

ImageNet-1k

ResNet-50
50 ResNet-101
ResNet-152
40
®
S
5 30
20
10
0 10 20 30 40 50 60 70 80 S0
epochs
Figure 27: Performance of some ResNet versions
2.4.3 AlexNet Model

2.4.3.1 Introduction

AlexNet is the name of a convolutional neural network which has a large impact on the
field of machine learning, specifically in the applications of deep learning. It was primarily
designed by Alex Krizhevsky. After competing in ImageNet Large Scale Visual Recognition
Challenge 2012, AlexNet shot to fame. It achieved a top-5 error of 15.3%. This was 10.8% lower
than that of runner up. This network showed, for the first time, that the features obtained by
learning can transcend manually-designed features, breaking the previous paradigm in computer
vision.

28

2.4.3.2 Architecture

227

Overlappin Overlappin
?‘I?:TY Max Pg’;())l_g CONV Max pg%Lg CONV
stride=4, 96 3x3, 96 5x5,pad=2 3x3, 256 3x3,pad=1
96 kernels stride=2 l 256 kernels stride=2 384 kernels
e | >
1) EE (227-11y4 +1 |8 55-3)2+1 § "21":2;37'5"" 273121 (1 'f;:"“".
oo r 0 =55 =27 27 27 13
11 55 13

Overlapping
564 CONV CONV Max POOL
3x3,pad=1 384 3x3,pad=1 256 3x3, O
384 kernels 256 kernels stride=2 -
13+2°1-3)1 13+2°1-3)1 (13-3)/2 +1 FC FC .
1 =13 +1 =13 =6 P
13 6 v
13 G
13 (164 " 9216 1000
13 Softmax
13
4096 4096

Figure 28: AlexNet architecture

As shown in figure (28), AlexNet architecture consists of 5 convolutional layers, 3 max-pooling
layers, 2 normalization layers, 2 fully connected layers, and 1 SoftMax layer. Each convolutional
layer consists of convolutional filters and a nonlinear activation function Relu. The pooling layers
are used to perform max pooling. The input size is mentioned at most of the places as 224x224x3
but due to some padding which happens it works out to be 227x227x3. AlexNet overall has 60
million parameters and needs 1.1 billion computation units in a forward pass.

AlexNet success was because of new methods used that was not adopted at that time such as:

1-Using Relu as the nonlinearly after the convolution layers instead of Sigmoid and tanh functions
that were commonly used which increased the speed greatly.

2-Using maximum pooling instead of traditionally used average pooling.

3-Using dropout method between fully connected layers in order to improve the generalization
error instead of using ordinary regularization.

4-Using Data Augmentation by Mirroring and random crop which helped in decreasing overfitting
problem [9].

2.4.4 VVGGNet

2.4.4.1 Introduction

VGG 16 is a Convolutional Neural Network architecture, It was developed by Karen
Simonyan and Andrew Zisserman in 2014. This model achieves 92.7% top-5 test accuracy on
ImageNet dataset which contains 14 million images belonging to 1000 classes.

29

2.4.4.2Architecture

VGG - 16

“19 o I 171917202 15199172012 121911 e vlole

—l—|lc NN 2] Gal Gl B= ol B bl = njnjn]c alala
sd HHEE zlzlgl 121212131 12121213 12121218] |s)ls|s| >

olol® olold ololclfl 1elelelgl 1elelels (a] [a] [a
(W (W] (] () () (W] (W) (V] (W) () (V] () —
= =
S o
a. =
< =
O

Figure 29: VGG-16 architecture
The input to the network is image of dimensions (224, 224, 3). As shown in biases figure

(29), The first two layers have 64 channels of 3*3 filter size and same padding. Then after a max
pool layer of stride (2,2), two layers which have convolution layers of 256 filter size and filter
size (3,3). This followed by a max pooling layer of stride (2,2) which is same as previous layer.
Then there are 2 convolution layers of filter size (3,3) and 256 filter. After that there are 2 sets
of 3 convolution layer and a max pool layer. Each have 512 filters of (3,3) size with same padding.
This image is then passed to the stack of two convolution layers. In these convolution and max
pooling layers, the filters we use is of the size 3*3 instead of 11*11 in AlexNet. In some of the
layers, it also uses 1*1 pixel which is used to manipulate the number of input channels. There is a
padding of 1-pixel (same padding) done after each convolution layer to prevent the spatial feature
of the image. After the stack of convolution and max-pooling layer, we got a (7, 7, 512) feature
map. We flatten this output to make it a (1, 25088) feature vector. After this there are 3
fully connected layer, the first layer takes input from the last feature vector and outputs a (1,
4096) vector, second layer also outputs a vector of size (1, 4096) but the third layer output 1000
channels, then after the output of 3rd fully connected layer is passed to SoftMax layer in order to
normalize the classification vector. After the output of classification vector top-5 categories for
evaluation. All the hidden layers use RELU as its activation function.

VGG-16 reached a 92.7% top-5 test accuracy. However, the network contains almost 140 million
parameters and one forward pass requires nearly 16 billion MAC operations [10].

2.4.5 MobileNet

2.4.5.1 Introduction

MobileNet is an efficient and portable CNN architecture which is used in real world
applications. It uses depthwise separable convolution instead of standard convolution in order to
build lighter CNN architectures with low latency, low power and reasonable hardware resources
which allows us to implement these architectures on programable logic devices such as FPGAs.
A standard MobileNet network has 4.2 million parameters which can be further reduced by

30

tuning the width multiplier («) hyperparameter appropriately. The size of the input image is 224
x 224 x 3 [11].

2.4.5.2 Depthwise separable convolution

X128
3 5
1
3
NE
3 Figure 30: Depthwise Convolution
x128
5 @
1
%3
NE
Figure 31: Standard Convolution Figure 32: Pointwise Convolution

In order to determine whether CNN architecture is light or not, weights and number of
multiplication calculations must be considered. We have an input image of size (7,7,3) and 128
filters of size (3,3,3) from this information we get an output image of size (5,5,128). Considering
figure (31), every filter is convolved with a sliding window of input feature map and then all
multiplicand numbers are summed, so number of weights of standard convolution is 3 * 3 = 3 *
128 = 3456 number, and number of multiplications to generate output feature map in one cycle
iS5x5%3%3%3x%128 = 86,400 MAC.

In depthwise separable convolution, we have a depthwise filter consists of number of channels
which treats input feature map channels separately in order to get the right output feature map
dimensions, then it is followed by a number of pointwise filters equals to required output feature
map channels with dimensions (1,1, input feature map channels).

As shown in figure (30), number of weights of depthwise convolution is 3 * 3 x 3 = 27 number,
and number of multiplications to generate output feature map in one cycleis 5* 5% 3 %3 %3 =
675 MAC.

As shown in figure (32), number of weights of pointwise convolution is 1*1*3 %128 =
384 number, and number of multiplications to generate output feature map in one cycle is 5 * 5
1x1%3%128 =9600 MAC.

So, total number of weights of depthwise separable convolution is 411 (88% reduction), and total
of multiplications is 10275 (88% reduction).

31

2.4.5.3 Architecture

\ (32, 64 64, 123 128, 128 (128, 256 256, 256

,‘.‘l .‘ “I b " 256,
pel 11 0 1,1 L1 11
Input (3;"’;“3)_._ -[DSConv1] -[DSConv2] -{ DSConv3 } >{ DSConvk] -[DSConvs] >
) ’ | B,‘

(224, 224, 3) (112,112, 32) (112, 112, 64) (56, 56, 128) {56, 56, 128) (28, 28, 256) (28, 28, 256)
"s)
(512 (1024 pse1)
(256, 512 (512, 512 x§ 1024 1m 1 s
2,1 1,1 2,1 i =0
M DSConvé 7-[DSConv? }»*[DSConva] ! -{ DSConvd] : —[GA pool]»
(14, 14, 512) (14, 14, 512) (7,7, 1024) (7,7,1024) (1,1, 1024)
(1, 1000)
Legend
DConv —
s = stride
P = padding
DsConv = PConv —
(f_3x3, f_1x1,
stride, padding) f_3x3 —
f_1x1 —

Figure 33: MobileNet architecture
As shown in figure (33), This architecture has only one standard convolution layer to extract a

large number of features from the input image and 13 layers of depthwise separable convolution.
Every depthwise separable convolution consists of depthwise convolution and pointwise
convolution, each of them followed by Relu to reject the negative numbers generated in the feature
map and batch normalization layer to ensure that the multiplication results of the architecture chain
do not exceed the maximum represented number. It also has an average pooling layer to shrink the
size of the input feature map by taking only the important feature and neglecting other secondary
features. The last layer is a fully connected layer to translate the results of the architecture into a
certain class.

This architecture has 2 fundamental hyperparameters: width multiplier(a) and Resolution
Multiplier(p). width multiplier(a) is a global hyperparameter that is used to construct smaller
and less computationally expensive models as it reduces the number of weights and by extension
the number of layers but it increases the number of channels per layer as the number of input
channels 'M' becomes a * M and the number of output channels 'N' becomes o * N. Its value lies
between 0 and 1 but it has commonly used values which are 1, 0.75, 0.5, 0.25. Resolution
Multiplier(p) is used to decrease the resolution of the input image and this subsequently reduces
the input to every layer by the same factor for a given value of p the resolution of the input image
becomes 224 * p [11].

32

Chapter 3: Training
3.1 Training

Training mobile net version one on German Traffic signs which has the following:

e The size of training set is: 34799

e The size of the validation set is: 4410

e The size of test set is: 12630

e The shape of a traffic sign image is: (32, 32 ,3)

The number of unique classes/labels in the data set is: 43

G
sPPOPESO

¢

Figure 34: Signs from GTS

We build two models which will be discussed in the following pages:

33

3.1.1 Model 1
This model has been trained on image net and its open source on internet but we will use it and
train the mode on GTS it has 13 layers as shown

Model: "mobilenet 0.50 128"

£§§EE_TE§ﬁET_________ Output Shape Param #
input 3 (Inputlayer) [(None,

W (None, 64,
EEEGI:EE_TEEEEEEEEEEIiEation (None, 64,

m (None, 64,
EEEE:EE:I_TEEiEEEIEEEbnVED} (None, &4,
EEEG:E;:I:EE_?EEEEEEEImaliza (None, 64,

m (None, 64,

conv_pw 1 (Conv2D) (None, 64,

conv_pw 1 bn (BatchNormaliza (None, 64,

conv_pw 1 relu (ReLU) (None,
conv_pad 2 (ZeroPadding2D) (None,
conv_dw 2 (DepthwiseConv2D) (None,
conv_dw 2 bn (BatchNormaliza (None,
conv_dw 2 relu (ReLU) (None,
conv_pw 2 (Conv2D) (None,
conv_pw 2 bn (BatchNormaliza (None,

conv_pw 2 relu (ReLU) (None,

conv_dw 3 (DepthwiseConv2D) (None,

34

conv_dw 3 bn (BatchNormaliza

conv dw 3 relu (ReLU)

conv_pw 3 (ConvZiD)

conv pw 3 bn (BatchNormaliza

conv_pw 3 relu (ReLU)

conv _pad 4 (ZeroPadding2D)

conv_dw 4 (DepthwiseConv2D)

conv dw 4 bn (BatchNormaliza

conv _dw 4 relu (ReLU)

conv_pw 4 (ConvZD)

conv_pw 4 bn (BatchNormaliza

conv pw 4 relu (ReLU)

conv_dw 5 (DepthwiseConv2D)

conv dw 5 bn (BatchNormaliza

conv_dw 5 relu (ReLU)

conv_pw 5 (ConvZD)

conv_pw 5 bn (BatchNormaliza

conv pw 5 relu (ReLU)

conv _pad 6 (ZeroPadding2D)

conv dw & (DepthwiseConv2D)

conv_dw_6 bn (BatchNormaliza
Wﬂ[la liza
conv_pw 6 relu (ReLU)
conv dw 7 (DepthwiseConv2D)
mﬂn& liza
conv _dw 7/ relu (ReLU)
conv_pw_7 (ConvZD)
mﬂna liza
conv_pw_7_relu (ReLU)
(DepthwiseConv2D)

conv dw 8 bn (BatchNormaliza

conv_dw 8 relu (ReLU)

conv_pw 8 (ConvZD)
conv pw 8 bn (BatchNormaliza
conv pw 8 relu (ReLU)

conv dw 9 (DepthwiseConv2D)

(None,
(None,
(None,
(None,
(None, 1024
(None,
(None, 2304
(None, 1024
(None,
(None,
(None,
(None,
(None,
(None,
(None,
(None,
(None,

(None,

(None,

36

conv_dw 9 (DepthwiseConv2D)

conv dw 9 bn (BatchNormaliza

conv_dw 9 relu (ReLU)

conv_pw 9 (ConvZD)

conv_pw 9 bn (BatchNormaliza

conv_pw 9 relu (ReLU)

conv_dw 10 (DepthwiseConv2D)

conv_dw 10 bn (BatchNormaliz

conv_dw 10 relu (ReLlU)

conv_pw 10 (ConvZD)

conv pw 10 bn (BatchNormaliz

conv pw 10 relu (ReLU)

conv_dw 11 (DepthwiseConv2D)

conv_dw 11 bn (BatchNormaliz

conv_dw 11 relu (ReLU)

conv_pw 11 (ConvZD)

conv_pw 11 bn (BatchNormaliz

conv_pw 11 relu (RelLU)

conv _pad 12 (ZeroPadding2D)

conv_dw 12 (DepthwlseConv2D)

conv pw 13 bn (BatchNormaliz

global average pooling2d 2 ((None,

Figure 35: Model 1 Layers
Two Hyperparameters are provided and discussed in the paper [14]:

e Alpha (a): affects weights directly as it affects number of filters [25%,50%,75%,100%].

e Lambda (A): resolution of photos affects multiplications number [128,160,192,224].

38

Table 6. MobileNet Width Multiplier

Width Multiplier ImageNet Million Million
Accuracy Mult-Adds Parameters
1.0 MobileNet-224 70.6% 569 4.2
0.75 MobileNet-224 68.4% 325 2.6
0.5 MobileNet-224 63.7% 149 1.3
0.25 MobileNet-224 50.6% 41 0.5

Table 7. MobileNet Resolution

Resolution ImageNet Million Million
Accuracy Mult-Adds Parameters
1.0 MobileNet-224 70.6% 569 4.2
1.0 MobileNet-192 69.1% 418 4.2
1.0 MobileNet-160 67.2% 290 4.2
1.0 MobileNet-128 64.4% 186 4.2

Figure 36: Mobile Net trained on image net

As shown in figure (36) as alpha increases, accuracy, required multiplication numbers and weights
(million parameters) increase.

As lambda increases, accuracy improves not much and doesn’t affect weights but increases the
number of multiplications required hugely and doesn’t give any advantage or higher improvement
in accuracy.

3.1.2 Training of model one on GTS

Using the following steps to training the model:

-GTS is a small training set which will not achieve high accuracy if the training only uses GTS
images to train to overcome this problem, we will use a transfer learning approach. Using pre-
trained weights of image nets in certain layers then open others layers to train its weights on GTs
achieving.

-Merge validation set and test set together and tuning hyperparameters on training set due to small
sets.

-Tuning the hyperparameters to get best results taking into consideration the hardware perspective
to implement it.

39

Table 4: Tuning lambda

97.6% 94.354% 851,595

0.5 160 99.5% 94.5% 851,595
0.5 192 98.16% 95.35% 851,595
0.5 224 98.2% 90.4% 851,595

We will choose A=128, cause as it increases no huge improvement in accuracy at the same
time required a huge number of multiplications which is an effective variable will affect speed and
power, so to achieve improvement in test accuracy with 4% will take a high percent of luts and
increase power badly, this improvement in test accuracy can achieve with alpha without this
tradeoff or mainly it isn’t a tradeoff it’s like you pay millions of monies to buy an old car to.

Table 5: Tunning alpha

96.86% 84.16% 229,595
0.5 160 99.5% 94.5% 851,595
0.75 160 97.78% 97.66% 1,866,043
1 160 97.92% 98.07% 3,272,939

Increasing alpha increases accuracy and at the same time increases weights which will require
more memories and increasing number of multiplications to get benefit from all of these we choose
alpha =0.5.

3.1.3 Disadvantage in model 1

Gts image is 32 *32 *3 this model has restriction on input image to be minimum 128 *128*3
which will add overhead in registers mainly and in parallelism in depth wise and pointe wise
leading to bad utilization of fpga resources.

-13 Layer will be implemented on fpga by using sharing concept but this will increase delay and
decrease flexibility of design, close solutions to others problem.

40

-this model in 32-bit float which isn’t the case in hardware is 16-bit 6 float and 10 integers so there
is a huge reduction in accuracy between software and hardware

Let’s see how second model can solve all of this

3.2 Model 2 and Quantization

Model consist of 7 layers only which is trained in two steps:

3.2.1 Quantization aware Training

Enable us to make model see integer representation not float by putting a fake layer (Fake
Quant nodes) as in figure (3) during training to reduce loss in accuracy between software and
hardware actually the software accuracy will be the same as hardware accuracy.[12]

act quant)—> output

biases

e

T

input

Figure 37: Insert Fake Quant layer during training

This introduces two new parameter scales (s) and zeros (z), scales are used to scale back the low
precision values back to the real values (floating), zeros are low precision value that represents the
quantized value representing the real value of zero

R=S(q-2z) (EqD)

Where: R: real value, Q: quantized value, Z: zero, S: scale

flota max number(Fyax) — float min number (Fy;y)

S(scale) = (Eq2)

qunatized max(Quax) — qunatizemin(Qu;y)

41

To get zero similarly find linear relationship with extremes in two domains:

fmi f
mn:r —eo—o—e :max

gmin 7 gmax

Figure 38: Finding zeros

If fmin and fmax doesn’t have real 0 this is problem so to overcome of this
Zero will be chosen to equal Qpqx OF QaaxWhich is already mapped value from Fy,,, and Fyin

Now after training the model, we will get bias, weights, zeros, scales to test the model in interference
time. Note that this approach simulates quantization effects in forward pass of training but
backpropagation still happens as usual and all weights and bias are still float to be easily nudged by
small values §.

We get a lot of benefits:

- Improvements in model compression and latency reduction
- Model size shrinks by 4x
- 1.5x-4x improvements in latency

Model Non-quantized Top-1 Accuracy 8-bit Quantized Accuracy
MobilenetV1 224 71.03% 71.06%

Resnet v1 50 76.3% 76.1%

MobilenetV2 224 70.77% 70.01%

Figure 39: Models are trained on image net

42

3.2.2 Second Step: Post training quantization
After the training model, we will apply post training quantization to convert all parameters
to integers. This will not lead to huge loss in accuracy as qwt is done before this step.

Why don’t we make this step only?

this approach works sufficiently well for large models with considerable representational capacity,
but leads to significant accuracy drops
for small models which is our case.

3.2.3 How quantization is implemented in hardware
Multiplying 2 real number:

3 =1n

Substituting using equation 1 and rearrange terms:
in next equation 3 and equation 4: as previous q is quantized value and z and s is zeros and
scales.

$15;
qz = Z3 + 5_3 (g1 —2z1)(q2 —z) (Eg3)

Define M as:

_ 515

M
S3

(Eq4)

- M we multiplied in SW and stored in memories.

- Choosing q, (1) to be weight and g, () to be input then in SW we can subtract weight
from its zeros avoiding further addition in HW.

- As every stage input will subtract from its zero which is zero of output in the previous
stage which it was added again then no need for it even in the final stage case it’s like an
offset for all numbers which will be compared to get max between them. For example: in
stage 2

qs(output stage 2) = z3(zero of stage 2) + number (Eq5)

In stage 3 g3 become input which will be subtract from its zero but to get output from stage 2
this zero was added:

q+(output stage 3)
= z,(zero of stage 3) + MY.(weight)
* (output last stage — zero last stage) (Eq6)

- Note that zero for input image is equal to =0 this analysis can apply.

43

3.2.4 Model 2 Layer

It consists of 7 layers only which is approximately half reduction in model compared to
model 1. Note that padding layers and quantize layer isn’t a physical layer in hardware padding
only happens before getting input from stage as will be discussed in hardware implementation.

44

1=3dx3d =G4

1x8=8x512
DepthwiseConvZD

weeights {1x3=3=840
bias {54

DepthwiseConvZD

weights {1=3=3=5127

1165 16564 bias {512}

filter {128 1=1=0647
bias {122}

1ulmdxE12

1=168x168=128

DepthwiseConmv2D

filter (512112512}
bias {512}

weights 1331227
bias {122

Corvah 116162128 128282512

fillter Gd=1:=1=32)
bizs {547

filter {255=1:=1:=1283
bias {2567

1=168x16=256

paddings {427

1=18=18=256

weights {43512

CrepthwiseConv2D bias {Hr
Conv2D weights {1=x=3=3=208}

bias {255
bias {E4) 1x43

1xBx3= 256
Softmax

filter {512x1=1:=258%

bias (312} 1=43
paddings

173073464 1x8=8x512 Identity 49

DepthwiseComnvZD DepthwiseCom2D

weights {1x=3=3=5127%
bias {5127

T=x8=Fx512

Figure 40: Final mode 2 Layers

45

Chapter 4. Hardware Design Methodology

4.1 FPGA Introduction and main resources

FPGA (field programmable gate arrays) are semiconductor devices that are based around
a matrix of configurable logic blocks (CLB) connected with each other via programmable

interconnections. FPGA can be programmed to desired applications.

Logic blocks can be configured to perform complex combinational functions, or merely
simple logic gates like AND and XOR.

In most FPGAs, logic blocks also include memory elements, which may be simple flip flops or
complete blocks of memory. Many FPGAs. many FPGAs can be programmed to implement
different logic functions, allowing flexible reconfigurable computing as performed in computer

software.

FPGA vs microprocessor in a large wide of digital application related to image processing or
communication applications can implemented on a microprocessor but sometimes FPGA is a good
choice compared to microprocessor because FPGA has a parallelism in operation, but
microprocessor runs its operation sequentially. This makes FPGA in some applications faster in
overall operation but still with limited speed of clock. Due to parallelism, flexibility of design and
FPGA resources usage, acceleration of some algorithms needs to high papalism became a trend

now in the digital design market.

FPGA also has some bulids in DSPs for spatial operations on signal processing like convolutions,
and also has IPs like fast adder IPs and FFT IP to reduce usage of LUTs because FPGAs suffer

from limited resources.

In the rest of this part the FPGA internal component used in our accelerator will be viewed.

4.2 FPGA 7 series internal components
4.2.1 Configure Logic Block (CLB)

46

https://en.wikipedia.org/wiki/Logic_block
https://en.wikipedia.org/wiki/Combinational_logic
https://en.wikipedia.org/wiki/Logic_gate
https://en.wikipedia.org/wiki/AND_gate
https://en.wikipedia.org/wiki/XOR_gate

INPUTS |

Logic

Block

4-LUT

N\

‘\\44nputWookuptame”
Figure 41: Configurable logic block

set by configuration
Iatchl 4" pit-stream
|
L1
| » » OUTPUT
40

A configurable logic block (CLB) is the basic repeating logic resource on an FPGA. When

linked together by routing resources, the components in CLBs execute complex logic functions,

implement memory functions, and synchronize code on the FPGA, configure logic blocks

containing some small components like flip flops, multiplexers and lookup tables (LUT).

LUTs is a collection of gates hardwired on the FPGA. An LUT stores a predefined list of outputs

for every combination of inputs. LUTSs provide a fast way to retrieve the output of a logic operation

because possible results are stored and then referenced rather than calculated as shown in figure

(41).

4.2.2 Configurable 1/0 blocks

Express Bus

LocalBus
Express Bus

Express BUS -

Express Bus -

Figure 42: Input output configurable block

47

Local
Bus Open S e
Collector Rate
Wieo
Ex<it
Cell A I:ll— Pull-up
B -
.1 A 1
- I~ @ —
1= Tri- 3
State TH
ce11 T E
AE
L= TTLACMOS
Local

A 1/o configurable block is designed to be the interface between the FPGA on chip and
outer side so I/0O ports is used to take signal inside and outside the FPGA this block can be
configurable to 3 states input port, output port and (In-out) port that usually uses in the memory
paths the internal structure of I/O port as shown in figure (42).

4.2.3 Clock Driver
Clock drivers is set as a pre implemented module in FPGA to solve the problems that

appears when all design is connected with one clock signal the first problem is high fanout of this
port because it is connected to all flip flops nodes so a strong driver should be implemented to
guarantee minimum propagation delay of the clock and puffer tree should also implemented to
save the global skew min and constant in all blocks.

4.2.4 DSP Block

CARRYCASCOUT"
S TN TNE SN ! S Y e e W e T
: S kst i o~ MULTSIGNOUT f PCOUT* |
I 18 30 I
| ALUMODE —J |
- s] A48 I
p | I
: Dual B Register I
I 18 mi K
| ’ P P |
A 30, b | cARRYOUT [
! o 30 I
- — — |
: Dual A, D, 48 |
| 30 and Pre-adder il e PVI
(D 25 A ol :
I PATTERNDETECT !
50 =m P =
I 7 , b~ | 17-Bitshin . L paTTE RNBDETECT—:
|
| INmODE 5 D— 17-Bit Shift ; CREG/C Bypass/Mask :
ICARRYIN - L~ MULTSIGNIN* :
i .
QPMODE ? =D CARRYCASCIN' |
| CARRYINSEL I
| |
| —| 48/ |
|
.. W ey I A 1 JPoN _

Figure 43: Input output configurable block

Digital Signal Processors (DSPs), are another common type of core that is offered as an IP
core or an embedded core. These are essentially specialized processors that are used for
manipulating analog signals. They are commonly used for filtering and compression of video or
audio signals, Multiply-Accumulate block or MAC is implemented as DSP slice and MAC is
mainly used as a building block for complex DSP applications.

48

4.2.5 Block Ram

Block ram is a Pulk of storage space on an FPGA to save data without using internal

LUTSs of FF (flip flops). block RAM is slower than the ff based memory but faster than off chip

ram but smaller than off chip in size. Block Ram has more than one options to implement your

own ram in series 7 one port or 2 ports can be used by different sizes distributions
32Kx1,16Kx2, 8kx4 ,4kx9 ,2kx18, 1kx36.

4.3 FPGA digital design flow

1.

Model implementation: creating a python model to model the function of the
accelerators and to use in verification.
System design: a system design schematic is painted with all signals and blocks we need.

HDL.: hardware description language to specify the functionality of the model as
hardware.

Functional verification: writing a test bench to make sure that output of model = output
of accelerator.

Syntheses, implementation and STA check: running syntheses tool to make sure that
the block implemented as designed and STA to make sure that operating frequency met
the specifications.

Place and route: placing cells and routing the interconnection matrices between LUTS.

49

4.4 MobileNet accelerator design

4.4.1 First Design Approach

FIFOs —rl RELV |—b Conv1*] pointwrse RELU BRAM.

Figure 44: Layer pipeline architecture

Eg Il | #M‘

control uni

Our first approach to design a 13 layer MobileNet is to pipeline the layers with each other’s
which will lead a high throughput and frames per second but will use a high memory access
because 13 layer will access the BRAM in the same time which can make overutilization in the
BRAMs in FPGA (1740 BRAM) and from LUT utilization point of view duplication of all

modules 13 times will make over utilization in LUTs number shown in figure (45), so this

Part /0 Pin Count Available I0Bs LUT Elements FlipFlops BlockRAWs UlraRAMs DSPs GbTransceivers GTPEZ2 Transceivers
ACIVADIUUIY 19£0-4 19£0 Y 433400 004Uy 141y U JouU 04 v
xcTwB90tfg1926-2L 1926 720 433200 866400 1470 0 3600 64 0
KcTviB90tg1926-1 1926 120 433200 866400 1470 0 J600 64 0
xchwG90tfg1927-3 1927 600 433200 866400 1470 0 3600 80 0
chwB9otfg1927-2 1927 £00 433200 866400 1470 0 3600 80 0
xcTwB90tfg1927-2L 1927 600 433200 866400 1470 0 3600 80 0
KcTwB90tMg19271 1927 600 433200 866400 1470 0 3600 80 0
¥cTwB90tfg1930-3 1930 1000 433200 866400 1470 0 3600 A 0
xcTwB90tfg1930-2 1930 1000 433200 866400 1470 0 3600 A4 0

Figure 45: Series 7 FPGA resources

50

architecture may be a good choice in ASIC design or if this design will be prototyped on an
emulator (Array of FPGAS) not one FPGA.

4.4.2 Second Design Approach

BRAM

FIFOs

BRAM
L FIFOs —»| relu relu
—>

AVG Pooling f————

Figure 46: Shared layer architecture

Second approach is to implement one shared layer of convolution with all unique modules
1module stander conv, one module pointwise, one module Depthwise, Relu and average pooling
this architecture will be configurable layer so weights and sizes will be changed according to the
number current layer the shared layer designed for high-speed target so high parallelism across
filters and across channels implemented in the modules. Shifters arrays with some modifications
are used to fetch the input window from the input futures correctly without any repetition in the
memory data shifters will be discussed in detail in the next parts. After 13 iterations in the

accelerator one average pooling will occur.

depthwise
convl

Stride

Depthwise
conve?2

Stride

Pointwise
1

Pointwise
1

51

Pointwise
2

Pointwise
2

Figure 47: Operation overlapping between depth and point wise modules

An overlap will occur between depthwise block and pointwise block due to point wise taking 1
channel from depthwise so when 1 channel is ready at input of pointwise it will be calculated as

shown in figure (47).

4.4.3 Shared Layer approach

Fully_conn

Standard RAM . RAM PointWise Pooling
o m—p " | Dcpthwise M by —) ccted

Figure 48: MobileNet accelerator Block diagram

In this approach, one layer of Hardware is implemented and we loop on this layer until the 7
layers are executed. As discussed previously MobileNet has 2 types of convolutions: standard
convolution and depthwise separable convolution that includes 2 steps: depthwise convolution and
pointwise convolution. So, there are 3 main blocks which execute the two types of convolutions.
Firstly, the image entered to the standard convolution block that execute standard convolution and
store the output in RAM#1 that consist of 512 block rams but only 32 of them are used in the first
layer (standard convolution). Then after standard convolution finishes. depthwise shifter’s starts
to fetch the input from RAM#1 and stores the result in RAM#2. After Depthwise finishes, the PW
buffer starts to fetch the input from RAM#2 and stores its output in RAM#1. Then DW and PW
will loop until the 7 layers are executed. then the poling layer fetches the input from RAM#1 and
hence the fully connected layer takes the 512 outputs from the pooling layer output buffer and
executes FC operation. Finally, the FC layer provides the 43 classes.

52

4.5 Shifter Block

4.5.1 How multiplication is done in hardware

For simplicity assume we have input 6*6 image how we will fetch values to multiply it with
weights in stride one case and stride two case.

10 11 12
16 17 18
22 23 24
28 29 30
34 35 36
W
6*6 Image

Figure 49: Image 6*6 and filter 3*3 multiplication

4 5 6
7 8 g
3*3 filter

Fetching values (1,2 ,3,7,8,9,13 ,14 ,15) to be multiplied with filters will be huge
issues cause all hardware depend on this multiplication and what makes it more difficult how we
will make stride one for example to get (2,3,4,8,9,10,14,15,16) and following values that will be
covered by square as shown in the figure (49) so let’s see the following solution.

For first time it’s simple solution to duplicate the values in Rams when write it from previous stage
or input image but this will duplicate needed memory with factor of 2 with some optimization can
be 1.5 but still a huge cost which will affect all the design without any benefit in speed or even

53

power and real example if image is 32*32*3 as our model this will require ram with more than
1024 location for one channel which mean that we use all the Brams which provided by virtex-7.

BRAM TODF MACRO: True Dual FPorrc HAl
VIDLER—
- Ty T amrriammes Te=m = T =, -]
AL L TITE Lty LANgQUags pLeaE, TV FI1 i =
0ara wrorg aA-sB BRAM SITSE RAM Dept ANORASE Width EASE Widr

Figure 50: Bram in virtex- 7

Another solution is to remain location of rams as its but change the address to get the required
values to be multiplied which is a complex circuit to implement with disadvantage to make one
multiplication with filter every 5 cycles at best cases assuming the additional circuit will not
require additional cycles.

One common problem in two solutions discussed how padding will happen in memories which
will take an overhead location in memories.

4.5.2 Shift Register with one Controller
This idea will put a number of registers with the following equation

#Regs = 2 x Wyiaen of image T 3 (Eq7)

e Taking an example of 6*6 image will be 8 *8 cause of padding:

54

2 3 4 5 6 0O

) 1

O Vi 8 9 10 11 12 O
O 13 14 15 16 17 18 O
) 1 20 21 22 23 24 O
O 25 26 27 28 29 30 O
O 31 32 33 34 35 36 0
) o) o)) o o o o

Figure 51: Input Image with required Padding

The multiplication is done as following:

- Global Reset will arise to all the design including the register this will help in padding
first row of padding and first zero in second row 9 zeros will get in registers so need to
wait 9 cycles as was done in memories to fetch these values cause all registers here have
an output which will be chosen.

OOOOIOOOOHNwhmnOO~4|

Figure 52: Values in Registers

55

Then Values will get from Bram and will be shifted until 8 will get in first register the
situation now as in figure (52) the red numbers will be multiplied with filters connected to
multipliers this registers always have the right values to be multiplied with filters weight.
Register’s index which multiplied values will be in can be calculated from next equations:

First 3 Reg : Reg[0],Reg[1],Reg[2] (EQ8)

Second 3 Reg : Reg[W + 2],Reg[W + 3],Reg[W + 4] (Eq9)

Third 3 Reg : Reg[2 * (W + 2)],Reg[2 * (W 4+ 2) + 1],Reg[2 * (W +2) + 2] (Eql0)

Counter padding is needed to determine location of zero padding between values and the
condition on it is easy when counter reach to image width padding will happen so the first
register has to mux select between values and zero. Note that counter width is
log, imagewidth so the counter will reset after reaching the end of row and start count in
the new row. Padding is a signal received from the module controller to free memory
address. to avoid skip values padding must come one cycle advance so freeze the address
then the controller takes a signal called padding advance.

Stride one required get one value each cycle but in stride two we can get 2 values in one
cycle and make shifts with two in registers not one so stride is a signal coming from the
controller depending on the layer.

Ready signal will get out from the module to tell the main controller that the right values
are in registers so multiplication can be done. Logic of it is depend on counter padding and
require width counter count to

3 * (Wwidth of image + Zpadding ineach row) (qul)

Which is needed to a lot of reasons:

1- like to differentiate between when the ready signal is up in stride one and strid two.
2- Module takes input signal called End size which means that memory address has reached to

its end so the last zero row must get in. the width counter will count this row in stride one.
No need for it in stride two.

Padding counter and width counter in stride one will be incremented with one while in stride
2 will be incremented with two.

Padding counter and width counter in stride one has Following Reset condition

56

//Stride one Rst condition

If (counter_padding == widthselctioncounter+1)
counter_padding<=0;

else

counter_padding<=counter_padding+1'b1;

If (counter_width3 == 3*(widthselctioncounter+2))
counter_width3<=(widthselctioncounter+4) +widthselctioncounter;
else

counter_width3<=counter_width3+1;

//Stride two Rst condition

If (counter_padding == widthselctioncounter)
counter_padding<=0;

else

counter_padding<=counter_padding+2'b10;

if (counter_width3 == 3*(widthselctioncounter+2))
counter_width3<=widthselctioncounter+4;

else

counter_width3<=counter_width3+2'b10;

57

-Note when global Reset come padding counter will start from zero and width counter will start
from Wipqge + 2 as the first row of zero gets registered.

- Difference in Reset condition comes from in strid two last zeros column and row will not be
added to image but due to generality of the module it will be added in register to don’t shift the
places where we get output from registers to eliminate this effect, we will modify counter start
conditions and Ready conditions in stride two as discussed before.

-width selection counter is a signal coming from the main controller to make the module work on
different widths like 32 ,16,8. our image 32*32*3 so modules will be added in standard
convolution. module be in depth wise also work on different width 32 ,16 ,8 according to layers
we operate in determined by controller signal control select.

counter width RST.
CLK

T [Stride

~counter padding

OutputRegs[0:8—>TC Mac

ounter width

Finish Stride
—widthselctioncounte!

Padding Advanci

Readyj

Select

END_OF_Size

Strid

widthselctioncounter

Figure 53: One instance of module

4.5.2.1 Shift Registers Advantages

- One controller can control all the modules of the shift register because all modules will get
data synchronized then the 2 counters will be connected to all instances of this shift registers
which isn’t a huge logic.

- Speed, especially in stride two and in padding time

58

- Operation Flexibility from layer to layer.

Figure 54: 32 instances controlled by one counter and controller

4.6 Adder Tree Block
4.6.1 Look ahead with carry save adder

Truth table of carry look ahead adder AOBO €O Al BI

Cl A2 B2 C2 A3 B3 Cc3

1}l|;{{L1 Lokt Camysave
' :? b :? b z'a b a b Stages

A 5 a eiel Condition ci . co ci . co ci . co ci . co :

R [[[. ro o e R

0 0 1 0 No carry generate i [a »® a b a b s b !

0 1 0 0 0’ >—-—— ci co ci co ci co ci co .

0 1 1 1 Mo el e |_J s_}l

2% 0 0 0 Nocarrypropagate o Y RS) R e] Loy F et =

- - | a b a b a b a b

1 0 1 1 0>—ci cot—ci co —ci co —ci co t+= Co

& b 1 0 1 s s s s

1 1 1 1 oy enente so %‘liz _________ &g_ __________ 34

Figure 56: generation and propagation truth table Ripple—Carry Adder

Figure 55: Carry save block

59

A[3:0] BI[3:0] A [7:4] B [7:4] A11:8] B[11:8] A[15:12] B [15:12]
Cin

c3

Lookahead block Lookahead block Lookahead block Lookahead block

P[11:8] g [15:12i ip [15:12]

Cout

4bit ripple carry 4bit ripple carry 4bit ripple carry

| | |

Figure 57: carry lookahead block diagram

4bit ripple carry

The main part in CNN design how to sum wights outs from multiplier, the DSPs modules in FPGA
has one adder to accumulate the coming input and add it to data registered in the DSP but if
parallelism techniques is applied for enhance the block speed, more than one DSP will use in the
same time so the adder in the DSP block will be useless so, fast adder tree is needed to design to

guarantee the applied parallelism.

Adder tree is a tree of fast adders cascaded with each other to sum more than 2 numbers. In our

design we need to add 9,27,32 numbers with each other at the same time.

Tree is consisting of fast adders and pipeline hierarchy; the pipeline is chosen to make the critical
path meet the design constraints. In the next section the fast carry lookahead adder basic unit will

be explained.

ook ahead Adder: is based on the propagation and generation techniques to predict the carry
output value without waiting for the cascaded chain the propagation (p) and generation (g) truth

table shown in figure (55).
the equation of P and G from truth table are

60

So, the full adder can be modified to calculate same and carry from G and P parameters and the

equation of sum and carry will be
SUM = C;_1XOR P; (3)
Ci = Gi + Pi AND Ci—l (4)

This truth table need a prediction logic unite to predict “g” & “P” for each adder but the critical
path will not be improved if a prediction block added to each full adder this design will be ended
by ripple carry adder so the N bits adder is divided to sub adders cascaded and the prediction logic
block is added to each group this will improve the critical path and improve speed the block
diagram of 16 bits lookahead adder is shown in figure () .G and P carry out equation for 4 bits will
be as shown in (5).

C4_=G3+P3Gz+P3P261+P3P2P160+P3P2P1P()Co (5)

Carry save adder: carry save adder is important block in adder tree because we need to add more
than 2 numbers with each other’s so we need to map 4 number of N bits to tow numbers of N bits
to go through look ahead adder so we need carry save adder simply carry save adder is array of
full adders with carry save to the next stage without carry probations between full adders like ripple
carry adder carry save adder based on using the input carry of full adders as a third input so it can
add 3 items in the same time the output of carry save will be 2 numbers of N+1 bits needs to
lookahead block to add this numbers and calculate the N+2 bits the correct length of adding 3
numbers of N In the proposed design carry save adder adds 4 inputs at the same time using 2 levels

of carry save and carry lookahead adder.

61

4.6.2 Pipelined adder tree

X [8:5] first 4 numbers

Y is 2 numbers of N+2

Pipeline

v

Pipeline

A X [4:1] second 4 numbers
X is 9 numbers of N bits -

X [0] last number

(registers alignment)

Figure 58: pipelined carry lookahead adder tree adding 9 numbers

Adder tree as shown in figure (58), for example adding 9 numbers in 3 clock cycles using
3 adder blocks explained in the previous section pipeline techniques is applied because the data

will change each cycle and to reduce the critical path

4.6.3 Adder tree overflow issue
Due to 8 bits integer representation the proposed based on output of layers must be 16

bits but the adder bit extend equation is N + log, adder_num so if 8 bits are clipped from
adder tree output, the output will suffer from overflow error. Overflow error is that the output
should be negative but output is positive and so on the solution of overflow issue is to
represent data in bits greater than its maximum if numbers can represent in 8 bits if it added
using adder of 9 bits adder no overflow will occurs and the most significant bit will be the
correct sign bits and sign extension must be added to match the next adding stage in the adder
tree this will make overhead in the hardware adder tree but no output error will occurs that

means no flow frailer

62

register |

4.7 Standard Convolution

It is the first layer and only of its type in this architecture, it is used to capture a large
number of features of the input image. The input of this layer is (32,32,3) and the output is
(32,32,32) with stride 1 and a padding layer.

Weights Registers

. 0‘ (32 Sets)

L] L] L] . @ & @ L]

2W+3 .
. 27 Register per set
9
32
-
- o
9 .
L) . -+
27
O

Figure 59: Standard convolution architecture

As shown in figure (59), we need to generate 32 output channels for every pixel, so we will use 32
sets of macs to generate all of these channels in a single clock cycle in order to reduce latency of
accessing memory of the input image. We used 27 macs per set to perform the whole input image
multiplications in a single cycle to increase layer speed, so we have 864 macs in this layer
performing as a multiplier. We have shifters to perform the required stride and zero padding layer,
these shifters operate synchronously as every shifter makes a stride every clock cycle after a first
ready signal is set to high. Weights are separated into 32 sets; every set contains 27 registers. The
width of multiplier output is 16-bits because weights and input feature map are integer numbers
represented in 8-bits. We have 3 input rams to access all channels simultaneously to decrease
accessing of a single ram and to provide suitable utilization.

63

Macs output

Shared Memory 1
(512 Channels)

Figure 60:Standard convolution adder tree

As shown in figure (60), the output of mac array is passed to 27 pixels adder tree to be added
together then the result is sign extended to be added to 32-bits bias then multiplied by a fraction
M represented in 16-bits then stored in shared memory 1. The width of the multiplier is 32-bits
and the result should be clipped to be represented in 8-bits, so we will take the integer value bits
which are from bit 15 to bit 21 in addition to the sign bit which is bit 31. Relu is used to eliminate
negative numbers.

64

4.8 Depthwise Convolution

Start_From_Main_Controller END_ACK_Main_Controller
Depthwise

controller

Shared memory

Shared memory Dipthwise core

Weights

memory

Figure 62: Depthwise block diagram
Mac9 —_—
ws®)— () — ®)

Input
square
3*3

i

b s
®_

MAC32
MAC1 MAC2

Y
Number of flers
(output channels)

Figure 61: Depthwise core parallelism

65

9*16 9*16 a*16

Figure 63: Memory weights fetching

Depthwise convolution the first block in separable convolution, Depthwise conv is 3*3
conv on the input channel only so the output channel from the depth conv layer is equal to the
input channel, block parallelism is 9 across filter and 32 across channel as shown in figure (62),
this parallelism will lead high throughput, but it can be faster if parallelism across channels in

increased but FPGA resources will limit this enhance.

4.8.1 How Depth wise fetch data from memory?
CNN input features map fetching is big challenge in CNN accelerators due to difference in

pixels positions during stride so the first solution approach is to make a complex arithmetic block
to calculate the next step address which is very complex and will delay the design the second
practical approach is a shift registers (FIFOs) to get all pixels which the DW core will use and by
shifting pixels each clock means stride this solution will eliminate the complexity but will add
some cycles overhead at each down stride operation until the window pixel fetched in the shift

register , shift register implementation and control will explained in next section .

4.8.2 How Depthwise fetch weights from memory?
Depthwise conv is 9 parallelism across filter and 32 across channel, this rough parallelism

need 9*32 Block Ram to be implemented to get 9*32 weights at the same edge clock so this is
very bad utilization in memory ,so in the proposed design the input data shift registers overhead
which is 10 cycles at best case weights need only 9 cycles to be fetched if 32 block ram only is
implemented ,so the proposed design has 32 block ram for weights each ram has window of 9

66

weights in 9 address for first 32 channel and 9 for the second channel and so on this will make the

utilization better than 32*9 block ram without any overhead added.

each ram input one weight per clock to shift reregister and after 9 clocks the 9 weights will be

loaded into the shift register so 32 shift register is needed as shown in figure (63)

4.9 Pointwise Convolution

PW convolution is the combination stage of the DW separable convolution and is used to
create a linear combination of the output of the depthwise layer.[13]

T ~—

Pointwise convolution

Figure 64: Pointwise convolution
As shown in the figure (64), pointwise takes the depthwise output and applies a linear combination

on it. this happens by multiplying each channel by the corresponding filter weight and adding them
together.[13]

M

| ~— N —

Figure 65: Pointwise filters

67

Figure (65) shows the pw filters architecture, Where N is the number of filters and also the number
of output channels and M is the number of input channels.

4.9.1 Pointwise hardware complexity
Unlike the 3*3 convolution method, the pointwise convolution uses a large number
of 1*1 operations So, a large number of multiplication and addition operations are involved in the

design.

Y = AOWO +AIW1 +

+AM-1WM-1 +AMWM +YN-1.[14]

Table 6:Resource per layer type

Resource Per Layer Type

Type

Mult-Adds

Parameters

Conv 1 x1

94.86%

74.59%

Conv DW 3 x

3 | 3.06%

1.06%

Conv 3 x 3

1.19%

0.02%

Fully Connected | 0.18%

24.33%

Table (5) shows that pointwise is the most complex by far from other layers. [13]

4.9.2 Pointwise hardware Structure

Inpuut
Buffer

Point wise Convolution

Output
Buffer

Weights ROM

Figure 66: Pointwise hardware structure

The pointwise hardware structure shown in figure (66) consists of 4 main blocks: input buffer
which contains depthwise output feature map and is fed as input to pointwise, weights rom that

68

provides kernels weights which are multiplied by the input channels, pointwise convolution this is
the core block that perform the convolution operation through set of MACs (multiply and
accumulate block exists in FPGASs) and the output buffer block which stores the output of the
pointwise stage. Details of each block are discussed in the next sections.

4.9.3 Input Fetching

32

Figure 67: Input buffer

32 pixels are fetched from the RAM and stored in the shown buffer that feeds the stored values to
each 64 sets in parallel to execute convolution.

4.9.4 Core Block: Pointwise Convolution

ADDER [_ { ADDER |_
1 1
- 2 2
5
=3
=8
SE > >
zs BUFFER | »| 32 BUFFER | »| 2
5
E
8 8

Number of filters
(output channels)

Figure 68: Convolution parallelism

69

Choosing the parallelism of filters is one of the challenges in MobileNet accelerators, as
the MobileNet has an increasing number of filters as we go through the layers. so, if speed is
targeted, a large number of MACs are required to achieve the required speed which is not always
available specially in FPGA based projects.

In our design ,64 filters operate in parallel with 32 channel depth and the layers with more than 64
filters or more than 32 channel depths, time sharing is applied between each 64 filters and each
32-input channel. These layers (with more than 64 filters or more than 32 channel depths) take
more than 1 cycle depending on the number of excesses of the applied resources. In the case of
multiple cycles layers the result of the current set is saved in the BUFFERS to be added to the next
set, an illustrative example below shows how this operation is done.

WE — 1 RD1
Bias+
batch M 0]
Add
tre:r Buffer i l —| Out Buffer
RD2 ca (RAM)
——{ adder
_bias
8 _ M_out[15]
— o
[e]4] +1]
o)) (]
[’ o
o o

Figure 69: Pointwise sequence of operation

Figure (69) shows the detailed sequence of operation of the pointwise layer. The MACs outputs
are added using the 32-adder tree then if accumulation is required -this determined by the point
wise controller according to the layer number and the iteration inside the layer- the accumulation
adder adds the adder tree output to the stored value in the buffer. Then after iterations are finished
the bias adder adds the bias to the stored values in the buffer and finally the float MAC multiplies
the result by the M parameter. Then the final values are stored in the RAM.

4.9.5 Weights Fetching

sel 1 Sel_64

[0111 REG_1

RN TN EIE

Block_16 Block 1

Block_ 1 |--=------ Block_ 1 | - ------- Block_16

64 Sets

Figure 70: Weights fetching

70

Weight ROM is divided into 64 sets each containing 16 BRAMs (16 BRAMSs? as we read
by 2 ports, we can read 32 locations in parallel). Number of weights = 440,320 weights, Each
BRAM contains 430 weights. Layers with more than 64 filters or more than 32 channel depths,
weights are fetched from ROM in one cycle (due to 16*64 dividing).

L1 L1 L1
Ch1l /f1 Ch3 /f1 Ch31 /f1
Ch2/f1 Cch4/f1 Ch32/f1

L2 L2 L2

Set 1

Block 1 Block 2 Block 16

Figure 71: How weights are stored in ROM

Figure (71) shows how weights are stored in ROM.as we have 64 sets (filters in parallel),the first
32 filter’s channels stored in 16 block for filter 1 to filter 64,then if a layer has number of input
channels more than 32 say 64 we store the filter channels from 64 to 128 in the second 2 rows as
shown for layer 3.if a layer has number of input channels more than 32 and number of output
channels more than 64 (exceeds the papalism) as occurs in layer 4, firstly the first 32 channels
stored in first 2 rows of 16 block for first 64 filters(from 1 to 64) ,then the first 32 channels stored
in second 2 rows of 16 block for second 64 filters (from 65 to 128),then the next 32 channels (from
33 to 65) of the first 64 filters (from 1 to 64),are stored in the next 2 rows , and at last the next 32

71

channels (from 33 to 65) of the next 64 filters(from 65 to 128) are stored in the next 2 rows. And
so on till the last layer.

4.9.6 PW Output Storage

To meet the set of FIFO’s design discussed previously, we need to store each channel result
in a single block. As the maximum dimensions are 512 for channel depth and 32 * 32 locations,
we need a 512 block each one contains 32*32 locations as shown in the figure (72) below.

F 3

32*32
Buffer 512 locations

e

Figure 72: Pointwise output buffer

72

Layer O/P size No of weights
PW_L1: (32, 32, 64) 2048
PW_L2: (32, 32, 64) 4096
PW_L3: (16, 16,128) 8192

PW_ L4: (16, 16, 256) 32768
PW_L5: (8, 8,9512) 131072
PW_L6: (8,8, 512) 262144
Total 440320

Figure 73: MobileNet PW layers

By analyzing the sizes of layers and output feature map in MobileNet architecture shown in figure
(73), we find that not all the layers have 32*32 feature map this number decreases as we go through
the layers also, the number of channels increases as we go through the layers. So, in the first layer
and the second layer only 32 BRAMS are used for output storing, and as we go through the layers
the number of used BRAMS increases but the utilization of BRAMS decreases as the feature map
size decreases.

4.9.7 Batch normalization

Batch normalization is used to solve the problem of vanishing gradients that may occur in
convolutional neural networks during training. The values of each feature on all samples are
normalized into data with mean value of 0 and variance of 1. It makes the convoluted value fall
into the center of the effective value region of the nonlinear function, so that vanishing gradient is
avoided. The mean p and variance o2 are
as follows: [14]

1 on

=2 i=1Xi — B,

21

o= =1 (= w)?

The functions of batch normalization layer are as follows:

_vCa— w)
VoZ +¢

The parameters of this layer are the scaling factor y , the translation factor S , the mean y, the
variances?, and the denominator plus an " is used to prevent the denominator from being 0, and
the value of " is 0.001 during training. Arrange them in a form suitable for hardware
implementation. [14]

Y +

73

as follows:
)4

0% +¢

_ Y
PP Tore

a

The value is constant for both parameter a and b, so this layer is transformed into the following
formula when the FPGA is implemented: [14]

Y=ax+b

Sethi Set 2 Set_64

BRAM_64

Figure 74: Batch norm weights storing

As a and b are constants, the multiplication of the weight a is done in software and the only the
subtracting b is done in the hardware.to reduce the hardware of adding a subtractor, Weights are
stored in 2’s comp to use the adder “bias adder in figure (74)” in subtracting the bias b.

4.9.8 Illustrative example

The following figures describe how PW works starting from taking depthwise output that
is stored in the memory till storing PW output in the memory. The example assumes a 64-
channel input to pointwise and 128 kernels is applied.

74

64

Kernels
3
® & & &
1 1 1
1 1 1
e 128 /————
Input to PW
Kernels Kernels
A ™ ™
) o v 5 Ry 0
Dy s
X B I B I
1 1 1 1 1
1 1
Input 1 Input 1 1 1

< 1:64 & .
- & 1:64
X 7 P X
v 2y >
> > o 5 S 4’5‘9
; K g—
1 1 1 1
[step 2] © 1

" 65:128 « 65:128

Figure 75: illustrative example

As shown in figure (75), step 1 only 32 channels of input are multiplied by the first 32 channels
of the first 64 filters. In step 2 the same 32 channel inputs are multiplied by the first 32 channels
of the second 64 filters (from 65 to 128). In step 3, Now we move to the second 32 channels of
input and apply the same way that applied in step 1 and step 2 but relative to the second 32
channels (32 to 64).

Kernels Kernels
v <& ™ >
1 1 1 1 1 1
1 1
Input 1 1 1 1

Input

1:64 — 1:64 ————>
' 4 (4
X ‘P X

‘PP f’ P . 5
1 1 1 17 1

—— 65:128 ——— G 65:128 ——
. - - -
— 164 = — 1:64 ==
G 65:128 ————= = 65:128 /———

Figure 76: Kernels are applied

75

Figure (76) shows the result of multiplication after adding by the adder tree each operation
results in one pixel, now to complete the operation we need to add blue pixels to dark blue pixels
and to add red pixels to yellow pixels this is done using the accumulation adder as shown in

figure (77).

|

Set_1

Buffer_1 J Buffer_1

Set_2

:

'

—"> 1:64 _
Buffer_2 || Buffer_2 Buffer_2
Set_1 Set_2 Set_64

S 65:128 /——=

Figure (77) shows the accumulation operation and storing the result in the buffers one and two.

Here only two buffers are used as we have 128 filters in this illustrative example.

Buffer_1 || Buffer_1 Buffer_1
Set_l== || Set_2== Set_64=
f1 f2 =f64 /
Buffer_2 || Buffer_2 Buffer_2
Set_1== Set_2== Set_64=
f65 f66 =f128

f—————| 1:64 E=———»
65:128
Figure 77: Combing the 2 parts
Buffer_1 || Buffer_1 Buffer_1 Buffer_2 |[Buffer_2 Buffer_2
Set_1== || Set_2== Set_64= Set_1== || Set_2== Set_64=
f1 f2 =f64 f65 f66 =f128
Buffer_2
et_64=
=f128
-
et 2]
ef_l T
vl O/p
Buffer/ch128
O/p
o/p fer/ch64
o/p uffer/ch2
Buffer/ch1

Figure 78: Storing the result in output buffers

76

As shown in figure (78), Now we have two buffers that have values in each set in the 64 sets , in

other words we have the 128 required output pixels needed to be stored in the RAM 1 to be

fetched by the depthwise.
4.10 Average Pooling Layer

In CNN architectures average polling is used widely in order to reduce feature map by
neglecting secondary features and keeping only important features as shown in figure (79), in
mobile net there is only one average pooling layer with input feature map of size (8,8,512) and

output size (1,1,512).

Figure 79: Average Pooling

Accumulation Buffer
(512 Registers)

Register

Register

Register

Register

Shared Memory 2
(512 Channels)

Register

Register

Figure 80: Average Pooling architecture

77

Register

.
8

Register

Register

.
8

Register

As shown in figure (80), we take feature map stored in shared memory 2 after each (1*1*512)
pixels are generated from the last layer of pointwise convolution then these data are accumulated
by 512 adders: one for every channel of the feature map. The output numbers of the last pointwise
convolution layer are positive as we have the Relu block which cancels the negative numbers and
the maximum represented number is 127 due to the saturation casting block, so the size of the
accumulator is only 16 bits. We have 64 macs in order to multiply the values of the accumulation
buffer by M value which is taken from the software model then divided by 64. We used 64 macs
to have intermediate value of latency compared with 1 mac and to save hardware resources
compared with 512 macs. Due to our previous talk, we need an 8:1 multiplexer to choose one
register every cycle and a demultiplexer to store mac output in its corresponding register. We made
a module of 8:1 multiplexer, 1:8 demultiplexer, mac and 8 registers then 64 instances to cover the
whole values of the accumulation buffer.

This operation takes non sequential 64 clock cycles for accumulation and 9 clock cycles for ;”—4

multiplication. Pooling layer works while pointwise convolution is still working and finishes after
pointwise convolution terminates by 11 clock cycles. This procedure improves latency as it has
only 11 clock cycles delay.

4.11 Fully connected Layer

As discussed in chapter 2, fully connected layer (FC) is required to do classification of the
extracted features that are done by the convolution layers.in this layers all the inputs from one
layer are connected to every activation unit of the next layer.

4.11.1 FC architecture

The pooling layer provides 512 outputs and we have 43 classes, according to the FC layer
algorithm we have 43 neurons each one takes all 512 pooling layer outputs as input and multiply
them by different weights then adds the product. There are also 43 biases needed to be added in

===

Mux__out |

S

|
/

BRAMN #11

Pooling__
layer

Mux 512 to 1

MNMux__out

PEE R

'\

BRAMNM #4323

512

Figure 81: Fully connected layer architecture

each neuron output. Our hardware architecture for this layer utilizes 43 MACs that are initialized
by 43 biases then takes one by one input till the full 512 inputs and multiply them by the weights
which are provided by 43 BRAMs each BRAM contains 512 weights of each neuron. According

78

to this architecture the FC layer takes 512 cycles to generate the 43 classes. The following figure
(81) and figure (82) shows the FC architecture.

Bram#1 R T T - | Bram#43

Figure 82: FC weights ROM

79

Chapter 5: Controllers and Weight distribution

Qutput
class
. . FC
Pooling » controller
and FC Start, rst,
S Halt....... signals
Inter Give access signals
Memory
—— PW]
Pointwise controller
Inter Start
signal
Memory Main
- DW] p| controller
Depthwise controller End Photo End
signals and Wait
Inter Si
ignals
Memory
STD conv STD .
*» controller
In Memory
Datapath Control

Input Img

Figure 83: Main parts of digital system

As shown in figure (83), Any digital design system can be divided into two parts the
Datapath and the control unit. The control unit in the design is consists of two levels: the main
controller and controller to each layer in Datapath.

5.1 Main controller

RST

EMD_ PWW & 8B

COoOuanter ==

End_ DWW

Figure 84: FSM of main controller

80

As shown in figure (84), the main control unit is Moore finite state machine, it consists of
six states as following:

1) Reset state: it represents the state where global reset signal is High and this means that all the
system is stopped.

2) Wait start: it represents the state where the outer processor writes the photo in three input
memories and waits for the start signal that indicates that the photo is uploaded successfully in
memory.

3) Wait STD: it represents the state where the standard convolution layer is processing the input
photo and when it finishes the processing it goes to the first depthwise layer.

4) Wait DW: it represents the state where the depthwise convolution layer is processing the input
photo and when it finishes the processing it goes to the next pointwise layer.

5) Wait PW: it represents the state where the pointwise convolution layer is processing the input
photo and when it finishes the processing it may go to the next depthwise layer or the last layer
(Fully connected). This depends on the value of counter that counts the number of finished
layers.

The main controller takes start and reset signals from the outer processor and the end signals
from inner layer controllers. It gets out the photo end signal to the outer processor and start
signals to inner layer controllers and also it gets out the access signals to the memories. The
access signals give permission for each layer to master the inter memories so it solves the
conflict on memory access.

5.2 Standard convolution and Depthwise controller

DATA_READ_ADDRESS (10bits)

v

DATA_WRITE_ADDRESS (10bits)

v

BIAS_READ_ADDRESS (10bits)

v

STRAID Layer controller

MPARA_READ_ADDRESS (10bits)

k4

v

END

v

WRITE_ENABLE

Figure 85: Layer controller entity

81

End layer Lastelement

Fetch
data and
weights

Start_cond / from
TN y

Halt for
padding

: N
\ \ Delay 4
Data_valed siEnaIzl‘\ Delay & | cycles

write in
mem

Figure 86: State diagram

Layer controller: design consists of 3 blocks 3*3*3 conv layer, Depthwise and point wise
layer each layer has a controller which when a start condition adjusts from the main control unit
the layer controller fire some sequence of operations to manage padding operation as shown in
figre(86), end of channel, last channel in the layer and how to fitch the input feature map, weights
and bias from memory. Also, the layer controller handles the operation of writing the output in
memory and design halting conditions during padding operation. the firing sequences is dependent
on the layer number and stride of the layer.

5.2.1 Controller operation sequences (Data Flow)
After start request from main controller reset state will start the next state fetching input

and weights from memory to shifter, if padding request adjusted from shifter controller will go
halt for padding state which halt the address of read and write from memory tell the padding state

is end after 2 cycles design complete the data fetching,

As the proposed design is 32 channel parallel after fetching all the current channel elements, the
machine is to switch channel state to reset all shifters elements and counters and switch the

multiplexer to the next 32 channels to start the next 32 channels from the same layer.

Write state is a state that detects the adjustment of a ready data signal and delay It until the data
goes through the pipeline.

82

5.2.2 Controller operation sequences (Weight, Bias and M parameter)
According to the 32-channel parallelism a 32-block ram is implemented to fetch the layer

parameter and according to the filter parallelism 9 macs per filter the memory overhead will be 9
cycles to load in the shift registers but this overhead is less than FIFO overhead in the best-case
scenario 8*8 stride 1 which has 10 cycles overhead so 32 the fetch weights state takes 9 cycles in

the state fetch data and weights state.

Bias and weights also have a memory address like weights. DW controller manages weights
loading at the start of the layer, as shown in section (4.5.2) design parallelism is 32 channels so 9
weights should be loaded from 32 weights Block RAMs so controller handle the address of weights
and after 9 clocks cycles should halt and start to count again after the current channels in done the

same sequence is fires for bias and M parameters.

5.3 Pointwise controller

Wi hhts
FHacarrm
Pl e e m oy pvu F=J Tl eV
Elock Eloaock
P W
O T ™

Read add, wwerite | add .
W laht addd, Pelacs T

| i WL W
Comrmtrol

FPww =start, Law=r_ FmLuarr., r—stT T T l = — 1=

Figure 87: PW controller

As shown in figure (87), the pointwise controller block controls the flow of data through
PW convolution between the two memory blocks. The PW controller starts its operation on a
certain layer number depending on the signal Layer_num when it detects a pulse on the signal PW
starts. The PW controller outputs the addresses and write enable signals required for three memory
blocks but it doesn’t have the access to memories all the time. The PW controller gets the access
to memories from the main control unit. When the PW finches the required layer, it sends an end
signal to the main control unit to release the memory resources for other blocks.

83

5.4 Fully connected controller

FC_CONTROLLER

Mux selection
& memory
10-bits address

-
>

counter

Load bias

-

Figure 88: Fully connected controller

Fully connected controller is simple and consist of:

A) 10-bit counter that is used to drive the input multiplexer selection and the weights ROMs
addresses that are fed to the MACs to be multiplied.

B) 6-bits counter that connected to 6*64 decoder which drives the load bias signals that
enables the MACSs registers to store the bias values.

5.5 Weight distribution

Software

Model \ o
SN, N R initilzaton il mem
s (T o =

. iﬁ . i -h
SCI"Ipt i Weight and bias Scrlpt i Rom || SV
e e ' files I e e mmmmmmmmeme o] ' instantiation

files
Figure 89: Weight distribution flow

84

As discussed before, the design contains a huge number of ROMs that save the weights of
mobile net models. So, the distribution of weights and making it automated is a critical task.

As shown in figure (89), the weight distribution is done using two python scripts. The first script
gets out the software model weights into .txt files each filter in a single file. The second script
reads the .txt files then distributes the weights into .mem files in certain order. These files should
be used to initialize the ROMs of the design. The second script also writes a .sv file that contains
all required instantiation of ROMs using the parameter INIT_FILE to pass the initialization file.

The figure (90) shows an example of all discussed files. The main advantage of this flow is that
the weight distribution is automated and doesn’t depend on a certain platform to do this task and
this makes the file exchange very easy.

3 o memar oces i -Need
Fle Edit 1 Fle Ed Fle Edit Fomat View Hep
:‘;EI g?g? Nelghtshon. #(InitialPathE:fcomunication yearsGradationdrofect eighsog/bas/.oen’)) Biashon 0 |
P0e 0060 .ﬁﬂﬂﬂﬁ[:‘ddl"b: f
b9 | ppgp 0R8 (addrbe1 01
0077 o8 st(rst), N
ggl; 992.]11 k(clK), outpnt [31:0] biask [c3:0], //[3L
c 805 fhs outpat [15:0] MK (30]
DO {Bdasi (0))
0cf |gac -)
BBes 001¢ .mﬁ{hiﬂih_'n'ﬂ[ﬁ]] vize [L5: :,:asii_'.'h| H ::'
p639 P21 :|J vire [15:0) biask wd [c3:0);
qenerate
8011 00ae Weightshon # .InitialPath("E: comunication years /GraduationPruject fweights/mifbias/1.nen”)) Baston 1 [T guuar 5
ee93 gact .ﬂﬂﬂﬁi[uddrb} for(is);i¢id;init)) assign biasK[i) = (biask (i) binsh v2[i]}:
B8b2 pads 10RB lH;llkl endpenerate
Beg3 005f ’ f l“‘ Ml D]r ingtaniarion of ki
8895 8879 Jstirst), -
00f7 o626 clk{clk), § :
ggig 6ers .mﬂ{hiésh_'n’[l];l‘ instanciazion of ¥ pig
< pac8 (i ackd | {nelade 7
006e o0t JD0B{biash w2[1])
00e7 pad7 :'i endasdule

Figure 90: Weight distribution files

85

Chapter 6: Testing methodology and functional simulation result

With the increasing complexity and small time to market of digital systems, it’s becoming
more difficult to design correct circuits for these systems with respect to function and performance.
Through the design process it’s necessary to check the function and the performance of each basic
unit and then verify the bigger unit and so on.

The functionality of CNN architecture is to predict the class of input image. if there’s an error it’s
very difficult to locate the error in Hardware design, so it’s very useful to run each layer alone in
HW and compare its output with golden reference coming from software model.

In this section, the testing methodology and functional simulation output of mobile net architecture
in each layer will be discussed.

6.1 Testing methodology

Model
Testbench

H i : Input
. Scri pt | Input files : ,'/ Memories
Bl Sl ' Weight and bias E PFOCESS ! U UT

file | e !

QOutput golden
reference files |I _________________ Output
i i
1

Memories

i i Output files

| 1

: ________________]
l Errors (if Exists)

As shown in figure (91), to test any standalone layer, a testbench is written to accept files of
input and weights and upload them in memory in unit under test then the design runs and puts its
output in files. Putting output in files makes it easier to compare the output with a golden reference
that is generated by a software model.

Figure 91: Testing methodology

86

6.2 Testing Standard convolution layer

Untitied 1*

QNaaa-e.

|‘ ’l L

Figure 92: File’s comparison of pooling layer

-76.14729239884764
-73.28873341143318
-29.832811379387754
-4.89935667400714
66.5061648413539
-30.2554121464490°2
-26.091810467187315
-119.8315961908@834
28.717909727594815
-84.64105866331103
64.32624849188142
11.45561968558011
-7.222160391983986
-10.109232904622331
-17.899911637068726
-22.611062087434847
-15.999518113676459
12.626121159701142
-21.125832468271255
-53.45708703598939
30.76191029045731
66.96683098515496

-23.24261144385673

63.016477473196574
-17.143752617994323
107.12817634921521
22.55339313391596
-36.08537137275562
64.49136544112116
-15.133144656312652

33.52729438835581 |

50.8630542/912157

In figure (92) we see that output from software model is exactly like in hardware error may
happen in approximation to integer so may be error equal one decimal between two results.

6.3 Testing Depthwise layer

" for

=

=
0

L

@

S
[N

[R R RN R R DD W

o ®m® e ®

wWeooe®

0 e @

8]

I

WO OLOEOWNEDWN

[m

File
18
13
a

W

i in range(1¢
. s _

Edit

Format View

Help

Figure 93 : Depth wise Results

87

6.4 Testing Pointwise layer

cES EE D EHwE =i & e >

| B 1_GoLDENg EH 1.mem E3 I
3 1 =1 1 =])
E = as = as che file l.mem has error at address 856 golden = 95 ouc= =1
I o [y = == the file l.mem has error at address 858 golden = 38 outc= a7
= =3 - =1 the file l.mem has error at address 276 golden = &3 oucs= &7
] . the file l.mem has error at address 877 goldem = 20 out= TE
= =% — == tche rile l.mem has error at address S84 golden = 63 ouc= 6=
i L= 31 — 31 the file l.mem has error at address %05 golden = &0 outc= 59
| s = 7 3= the file l.mem has =rror at address $11 golden = S8 ouc= &7
= 30 = 30 the file l.mem has error at address S15 golden = 106 ouc= 105
L = =a = Z28 che file l.mem has error at address %43 golden = 43 ocuc= 4z
| 1O =28 Ao 28 the file l.mem has error at address %46 golden = 56 ouc= 55
13 =7 11 37 the file l.mem has error at address %47 golden = 54 ouc= 53
E | iz 35 1= 35 the file l.mem has 41 errors
1= =2 I =3 e
14 320 14 30
1= =1 15 31 e
1 & =4 1 & = S.mem has £rror at address 456 golden = 232 ouT= Z1
17 == b B 3= 2.mem has error at address 551 golden = &0 out= -3
| 1= EE 18 =1 g.mem has error at address 715 golden = 73 ouc= T2
T 1S =5 T e 3= 2.mem has 3 errors
il =0 = Z0 =4
i =3 =3 =23 =3
4 2= =a == Sa
| Z23 ==+ 23 &
2 3 =4 38
[zs =5 25 a5
Za 35 26 25
1 =27 =27 277 37
€ =28 4= 28 az
1l =5 =5-] =5 329
30 36 30 S
+ =1 O = 1 3D
32 2 == ==
» T TS = =
=< = 34 =
35 aA e 35 1O

Figure 94: File comparing and expected errors

As shown in figure (94), by comparing the output files from functional simulation and the
golden reference files the maximum error in one digit equals 1 decimal and this is due to
quantization error in M as discussed before. These errors take place 41 times (4% of pixels) as
maximum number in one file while testing the first layer of PW. These errors will not affect the
decision at fully connected layers.

88

6.5 Testing Pooling and Fully connected Layer

print (zero_points)
t(output_tensor[@,:]+108)

16 2 e 52 1 8 |
4 &) >) B 7
- T 18 8I 19 11
17 6 12 84] 23
24) e 4 23 3 13
e 14 17 8 3 7 4
3 20 2€ 10 a4) 7
26 2 7 [} a 12 e
57 1@ e e 22 1 1
] 8] 3 5 a 6
17 e 32 57 e 10 e
e 16 e 12 1 39 18
18 11] 4 15 [)
4 17 13 22 9@ 58 2
) 2 59 22 s 1 5
16 48 21 a4 6 ° e
) e 20 9 e 21 19
17 8 7 6 14 24 11
80 52] 4 57 27
21 15 e 25 49 2
0 12 7 1 7
24 3 12 79)
7 e a4 e 1
31 51 e 23 1
77 8 53 e a7
20 32 5 2 16 28 26
25 3 1 a 22 2 17
9 24 13 1e 5 e 24 a
74 8 15 4@ 10 e 22 a o 1
2 19 e 4 8 e 69 12 45
a 57 19 3e e 1 3 1
e 65 2 7 ° e o
25 11 16 29 14 : 17
e e 30 e 2 e 32
76 5 13 8 -G 19 57
59 25 1 45 11 3
6 20 B 43 1]

#ouput

output=tensor_details[48]
i=output['index']

output_tensor = interpreter.tensor(i)()
print(output_tensor.shape)

output

#pr

scales_output =output['quantization_parameters'][
print(scales_output)

zero_points =output['quantizati
print (zero_points)
max=output_tensor[@

ge(32):

for i in

if (output_tensor[@,i] >max):
max=output_tensor([@,1i]
k=i;

Figure 96 : Classify input image class from fully connected layer

89

b_all_behav.wclg*
#ouput
Q MW Q@ Q 3 o MM e 0»

output=tensor_details[43]
i=output['index']
output_tensor = interpreter.tensor(i)()
print(output_tensor.shape)
#print(list(output))
scales_output =output['quantization_parameters']['scales']
print(scales_output)
zero_points =output['quantization_parameters']['zero_points']
print (zero_points)
max=output_tensor[e,@]
for 1 in range(32):
if (output_tensor[@,i] >max):

maxsoutput_tensor[@,1]

k=i:
print("max", max ,"index",k)

(1, 83)
[0.32722148]
[66]

max 82 1ndex 23
{function printy

Figure 98 : input image

In figure (95) output from pooling layers gets as input in a fully connected layer to determine the
image. In figure (98) the two-input image is classified with a model.

90

Chapter 7: Results, Future Work and Conclusion
7.1 Results

Figure (99), shows the utilization of the resources after the implementation on Virtex-7

FPGA

Resource Utilization Available Utilization %%

LUT 122992 4332200 28.329
LUTRAM o9 174200 0.06
FF 101289 866400 11.69
BRAM 1124 .50 1470 76.50
DsSP 34325 2600 95 42
1C 750 S50 S8.24
BUFG 3 32 9.38

Figure 99: Resources Utilization

The following Figure (100) shows the power consumption of the design on the Virtex 7 FPGA,
total power on chip equals to 13.920 watts. For first second, it seems that it is high power
consumption but considering to the high speed achieved by the design it looks that it is normal
considering the application requirement for ADAS systems that exist in cars which can afford
this high-power requirement.

Summary

Power analysis from Implemented netlist. Activity On-Chip Power

derived from constraints files, simulation files or

vectorless analysis. | Dynamic: 13.263 W (95%)
Total On-Chip Power: 13.92 W Bl Clocks: 0.466 W (4
Design Power Budget: Not Specified =9 | Signals: 3785W (28
Power Budget Margin: N/A 95% 13% 7 Logic: 1779 W (13%
Junction Temperature: 40.8°C B BRAM: 4008W (20%
Thermal Margin: 44 2°C (36.6 W) | DSP- 2604W (209
Effective SJA: 1.1°Cw 20% VO: 0.623W (4
Power supplied to off-chip devices: 0W

Confidence level: Low 5% Device Static: 0.658 W (5%)

Launch Power Constraint Advisor to find and fix

invalid switching activity

Figure 100: Power Analysis

91

Figure (101) shows the extracted Timing report which shows that the timing constraints are met
at clock frequency of 100 MHz and have positive slack equals to 0.036 ns.

4 Design Timing Summary

»
Setup Hold Pulse Width
Worst Negative Slack (WNS): 0.036 ns Worst Hold Slack (WHS): 0.043ns Worst Pulse Width Slack (WPWS): 4358 ns
Total Negative Slack (TNS). 0.000 ns Total Hold Slack (THS): 0.000 ns Total Pulse Width Negative Slack (TPWS). 0.000 ns
Number of Failing Endpoints: 0 Number of Failing Endpoints: 0 Number of Failing Endpoints: 0
Total Number of Endpoints: 378534 Total Number of Endpoints: 378534 Total Number of Endpoints: 109322

All user specified timing constraints are met.

21.34K

21.873K

51.948K

12K

108.7K (24.9%)

Figure 101:Timing summary results

Table 7: Stages Results

21.465K

27.604K

18.625K

12K

80.4K (9.%)

92

320

2112

107

3435 (95.41%)

40

560

11

1124.5 (76%)

Table 8: Timing Results

0.733 0.089 0.01128 us

0.734 0.098 0.0836 us

- 0.691 0.064 205.1us

0.896 0.137 5.23 us

0.036 0.043 0.210 ms

7.2 Power optimization

We do on several steps:

-As we seen in design, we don’t fetch from memories all time so it isn’t smart to make memories
enable connect to one all times like in figure (102). if connect enable with logic where we fetch or
wright the power will be reduce to 4 Watt in figure (105).

93

A Figure 103 :;Jowe

r optimization for Brams

Settings lame A Clock A(MHz) Enable Rate A(%) FRead Width A Write Width A Write Mode A Write Rate A (%)
Summary (12.325 W, Margin: N/A) IF_BUFG 100000 | 100.000 18 18 NO_CHANGE
Power Supply IF_BUFG 100000~ 100.000 18 18 NO_CHANGE
~ Utilization Details IF_BUFG 100.000 _ 18 18 MNO_CHANGE
Hierarchical (11747 W) IF_BUFG 100000 100.000 18 18 NO_CHANGE
Clocks (0.514 W) IF_BUFG 100000 ~ 100.000 18 18 NO_CHANGE
> Signals (2 006 W) IF_BUFG 100000 ~ 100.000 18 18 NO_CHANGE
Logic (1395 W) IF_BUFG 100.000 100.000 18 18 NO_CHANGE
BRAN (4.556 W) IF_BUFG 100000 100.000 18 18 NO_CHANGE
DSP (2651 W) IF_BUFG 100000~ 100.000 18 18 NO_CHANGE

IO (0.624 W
() IF_BUFG 100.000 18 18 NO_CHANGE
IF_BUFG 100000~ 100.000 18 18 NO_CHANGE
IF BUFG 100.000 _ 18 18 NO CHANGE
<
. i ’
Figure 102: Enable Bram’s 100%

Utilization Name Mode Signal Rate Clock Name A Clock A (MHz) Enable Rate A(%) ReadWidthA Write Width A Write Mode A Write Rate A (2
1<0.001 W (<1% oftotal) [genblkS_0.bram18_tdp_bl.bram18_tdp_bl (RAMB18E1) RAMB18 | 11899 clk_IBUF_BUFG 100000 | @211 18 18 NO_CHANGE | 13
1<0.001W (<1% oftotal) [genblks_0.bram18_tdp_bl.bram18_tdp_bl (RAMB18E1) RAMB18 | 11852 clk_IBUF_BUFG 100000 | @211 18 18 NO_CHANGE | 13
1<0.001W (<1% oftotal) [genblkS_0.bram18_tdp_bl.bram18_tdp_bl (RAMB18E1) RAMB18 | 12040 clk_IBUF_BUFG 100000 | 8211 18 18 NO_CHANGE | 13
1<0.001W (<1% oftotal) [genblkS_0.bram18_tdp_bl.bram18_tdp_bl (RAMB18E1) RAMB18 | 12087 clk_IBUF_BUFG 100000 | @211 18 18 NO_CHANGE | 13
1<0.001W (<1% oftotal) [genblk5_0.bram18_tdp_bl.bram18_tdp_bl (RAME1SE1) RAMB18 _ clk_IBUF_BUFG 100.000 18 18 NO_CHANGE
1<0.001W (=1% oftotal) [genblk5_0.bram18_tdp_bl.bram18_tdp_bl (RAMB13E1) RAMB18 — clk_IBUF_BUFG 100.000 18 18 NO_CHANGE
1<0.001W (=1% oftotal) [genblk5_0.bram18_tdp_bl.oram18_tdp_bl (RAME1SE1) RAMB18 | 6198 clk_IBUF_BUFG 100000 |~ @198 18 18 NO_CHANGE 00
1<0.001W (<1% oftotal) [genblkS_0.bram18_tdp_bl.boram18_tdp_bl (RAVE1SE1) RAMB18 | 6198 clk_IBUF_BUFG 100000 9198 18 18 NO_CHANGE | 00
1<0.001W (<1% oftotal) [l genblkS_0.bram18_tdp_bl.bram18_tdp_bl (RAME12E1) RAMB18 | 6198 clk_IBUF_BUFG 100000 9198 18 18 NO_CHANGE | 00
1<0.001W (<1% oftotal) [genblkS_0.bram18_tdp_bl.bram18_tdp_bl (RAVE1SE1) RAMB18 | 6198 clk_IBUF_BUFG 100000 | 9198 18 18 NO_CHANGE | 00
1<0.001 W (<1%oftotal) [genblks_0.bram18_tap_bl.bram18_tdp_bl (RAMB1BE1) RAMB18 6198 clk_IBUF_BUFG 100.000 9198 18 18 NO_CHANGE 00l
1<0.001W (1% oftotal) [genblkS_0.bram18_tdp_bl.bram18_tdp_bl (RAME1SE1) RAMB18 || 6198 clk_IBUF_BUFG 100000 | eqes 18 18 NOo_CHANGE | 00l
1<0.001W (<1% oftotal) [genblkS_0.bram18_tdp_bl.bram18_tdp_bl (RAMB18E1) RAMB18 | 6411 clk_IBUF_BUFG 100000 | 9198 18 18 NO_CHANGE | 00
1<0.001W (<1% oftotal) [genblkS_0.bram18_tdp_bl.bram18_tdp_bl (RAME1SE1) RAMB18 | 6198 clk_IBUF_BUFG 100000 | 9198 18 18 NO_CHANGE | 00
1<0.001W (<1% oftotal) [genblks_0.bram18_tdp_bl.bram18_tdp_bl (RAMB18E1) RAMB18 | 6456 clk_IBUF_BUFG 100000 | @198 18 18 NO_CHANGE | 00
1<0.001W (<1% oftotal) [genblks_0.bram18_tdp_bl.bram18_tdp_bl (RAMB18E1) RAMB18 | 6184 clk_IBUF_BUFG 100000 9198 18 18 NO_CHANGE | 00
1<0.001W (<1% oftotal) [genblkS_0.bram18_tdp_bl.bram18_tdp_bl (RAMB18E1) RAMB18 | 6482 clk_IBUF_BUFG 100000 | 9198 18 18 NO_CHANGE | 00
1<0.001W (=1% oftotal) [genblk5_0.bram18_tdp_bl.bram18_tdp_bl (RAVE1SE1) RAMB18 | 6181 clk_IBUF_BUFG 100000 | o198 18 18 NO_CHANGE 00
1<0.001W (<1% oftotal) [genblk5_0.bram18_tdp_bl.bram18_tdp_bl (RAME1SE1) RAMB18 | 6438 clk_IBUF_BUFG 100000 9198 18 18 NO_CHANGE 00
1<0.001W (1% oftotal) [genblkS_0.bram18_tdp_bl.bram18_tdp_bl (RAME1SE1) RAMB18 | 6470 clk_IBUF_BUFG 100000 R 18 18 NO_CHANGE | 00
1<0.001W (<1% oftotal) [genblkS_0.bram18_tdp_bl.oram18_tdp_bl (RAVE12E1) RAMB18 | 6470 clk_IBUF_BUFG 100000 9198 18 18 NO_CHANGE | 00
1<0.001W (<1% oftotal) [genblkS_0.bram18_tdp_bl.oram18_tdp_bl (RAMB1SE1) RAMB18 | 6412 clk_IBUF_BUFG 100000 9198 18 18 NO_CHANGE |00
1<0.001W (=1% oftotal) [genblkS_0.bram18_tdp_bl.oram18_tdp_bl (RAME1SE1) RAMB18 | 6430 clk_IBUF_BUFG 100000 | @198 18 18 NO_CHANGE | 00
1<0.001W (<1% oftotal) [genblkS_0.bram18_tdp_bl.bram18_tdp_bl (RAME1SE1) RAMB18 | 6050 clk_IBUF_BUFG 100000 | 9198 18 18 NO_CHANGE | 00
1<0.001 W (<1% oftotal) [genblkS_0.bram18_tdp_bl.bram18_tdp_bl (RAMB18E1) RAMB18 | 5819 clk_IBUF_BUFG 100000 | 9198 18 18 NO_CHANGE | 00
1<0.001 W (<1% oftotal) [genblkS_0.bram18_tdp_bl.bram18_tdp_bl (RAMB18E1) RAMB18 | 6050 clk_IBUF_BUFG 100000 | o198 18 18 NO_CHANGE | 00
1<0.001W (<1% oftotal) [genblkS_0.bram18_tdp_bl.bram18_tdp_bl (RAMB18ET) RAMB18 | 6017 clk_IBUF_BUFG 100000 o198 18 18 NO_CHANGE | 00
1<0.001W (<1% oftotal) [genblkS_0.bram18_tdp_bl.bram18_tdp_bl (RAMB18E1) RAMB18 | 6050 clk_IBUF_BUFG 100.000 [18 18 no_ctance (D
1<0.001W (<1% oftotal) [genblkS_0.bram18_tdp_bl.bram18_tdp_bl (RAMB1E1) RAMB18 | 5852 clk_IBUF_BUFG 100000 | 9198 18 18 NO_CHANGE | 00
1<0.001W (<1% oftotal) [genblkS_0.bram18_tdp_bl.bram18_tdp_bl (RAMB18E1) RAMB18 | 6050 clk_IBUF_BUFG 100000 | 9198 18 18 NO_CHANGE 00
1<0.001W (<1% oftotal) [genblk5_0.bram18_tdp_bl.oram18_tdp_bl (RAME1SE1) RAMB18 | 5852 clk_IBUF_BUFG 100000 |~ @198 18 18 NO_CHANGE 00
1<0.001W (<1% oftotal) [genblkS_0.bram18_tdp_bl.boram18_tdp_bl (RAME1SE1) RAMB18 | 6050 clk_IBUF_BUFG 100000 9198 oo
e e a3 — PR s S e S i i | i L S R e T

- clock gating as each stage work exclusively we can disable other stages to save activities
which will happen
- Advantage of model that 8 bit so signal power will be reduced.

94

Setings Power analysis from Implemented netlist. Activty On-Chip Power A
i derived from constraints files, simulation files or —
SR R vectorless analysis. ["] oynamic; 15620 (95%)
Power Supply
v Utilization Details Total On-Chip Power. 12136 W T | Wcods: 0412W (%)
Hierarchical (11.562 /) Design Power Budget: Not Specified 2% [signals: 3308W (20%)
(0479 W) o e
:.Wﬁkls\ﬂi‘ﬂ?o-m Power Budget Margin: NA o | | 198 Wioge 17w o)
v Signals (3.308 W) i 3
9 Junction Temperature: 308°C . Weru: 275w
(2904 W\
Da{s 2l Themalargi 162C(85W) “ o ———
Clock Enable (0.011W) Efecive 814 Lrow 0% =h o
SetReset (0.003 W)) " (o 3
Pawer supplied to off-chip devices: 0W S——
Logic(1.72 " T
onfidence level: Low I Device Stati
BRAN (2745 1) L% | [lDevice Static: ~ 0.574W (5%
DSP (2689 W) Launch Power Constraint Advisor to find and fix
i invalid switching activity
110 (0.625 W) B
Figure 104 : Signal power if 16 bit is used
r
Settings) -
. - Pawer analysis from Implemented netlist Activty On-Chip Power
Summary (8,18 W, Margin: NA) derived fom constraints files, simulation files or S
Power Supply vectorless analysis ['] ynamic THIOW (94%
v Utilization Details) 7% |
Total On-Chip Power: s1ew —)
Hierarchical (7519 1) e P Bt — - Hooss: saw 7%
sign Power Budget: o . -
Clocks (049911 9 9_ pec [signals: 2057W (27%)
v Signals (2.057) Pover Budget Margin: HA 94% 18% | [Logic 1403W (18%)
Data (20401) Juncton Temperature: ure B mera: o ()
Clock Enabl (007 1) Thermal Haigin RECHAN) o | WO 208 27%)
SetReset (00011 Effectie &4 AC == Mo 06W (%)
8% :
Logic (1.403 W) Power supplied to off-chip devices: 0W —
BRAM (0955 W, Confidence level Low 8% | [IDeiceStac 0400W (3%

DeP (2084w Launch Power Constraint Advisorto find and fix
10 (0.541W] invalid switching activity

impl_2 (saved)

Figure 105 : Signal power if 8 bit is used

95

7.3 Benchmark

Table 9 : Comparison among different paper results and our results

Virtex Zynq Zynq7z045 Virtex 7- Virtex 7-
7-VC- UltraScal VC-709 VC-709
709 e+

ZU104

Mobil MobiIeN MobileNet zyngNet squeeze-
eNet Net

-. ------------------ b

472K 34K e 2.5M 1.2M
7 13 e ([0 D —
43 5 T —— 10
100 100 100 100 100

168K 16K (3.88%) 184K 159K
(36.57) (21.23%) (18.44%)

161K 9K (4.21%) 345K 96K
(69.97%) (79.639 (22.39%)
%)

3435 1104 109 (12.11%) 3552 2658
(95.4 (63.89%) (98.67%) (73.8%)
%)

96

11245 1595 110.5 (20.28%) 2130 992
(7649. (51.12%) (72.448 (64.48%)
%) %)

0.69119 722.68 80 4.02

1250 1.38 12.5 248.7

8.118 4.075 2.15 10.97 8.9
0.002816 1.554 0.88 0.0357

7.4 Future Work

Future work is more technigues and enhancements that can be applied in the design but are

left for the future. Some of these techniques the design is ready for them and need little
modification to make them true. These new methods can achieve reduction in utilization of FPGA
resources which leads to consuming less power and having higher throughput.

In
Memory Memory Memory 1
block block L
b STD - DW ol PW FC
CONV CONV CONV _‘ &POOLING

.
2
t3 Photo 1
g ————— P hotcl Ph0m2 ...
e S B
t5 Photo 2

Photo 3

Figure 106:Time diagram of Multiple photos processing

97

7.4.1 Increase throughput by time sharing between photos

As shown in figure (106), the design is ready to process two images together under the
condition that each block memory has one port for reading and one port for writing and to avoid
overwriting of required data the write process will not start unless the DW block initializes all its
FIFOs.

This modification will require changing only in the main control unit that is responsible of data
flow between blocks and the memory access permissions.

7.4.2 Make design ready for ASIC flow

As discussed before, the design is targeting Virtex7 FPGA so it uses an Ips inside FPGA
like DSP and BRAM. This is a point of weakness in the design and it can be modified by using
more generic syntax to make the design go through ASIC flow. Using BRAMs as a standard
memory makes the utilization of memories low due to its minimum size is 16 kbits and can’t be
smaller. This affects the power consumed by the BRAMSs and the area they will consume if the
design goes through ASIC flow.

7.4.3 Experimental Work

Figure 107: FPGA board

Our design is ready to be tested in real time system, by burning bit stream on virtex-7
FPGA shown in figure (107).

7.5 Conclusion

MobileNet introduces new type of convolution which decreases the parameters and increases
performance. MobileNet model achieved 80% accuracy on German Traffic Sign Dataset. Model
accuracy can be increased using Transfer learning to 95%. MobileNet Model Consists of 7 layers.
Our design consists of 4 Hardware main blocks (STD, DW, PW, Pooling an FC). Our design
achieved 0.21ms latency, 4975 fps and the power are 8 watt (0.001705 Joule/Image). The design
is ready to make pipeline between Images which will increase the throughput through design.

98

References
[1] What is ADAS (Advanced Driver Assistance Systems)? — Overview of ADAS Applications.
(n.d.). Retrieved from https://www.synopsys.com/automotive/what-is-adas.html .

[2] What's the future of ADAS? (Advanced Driver Assistance Systems). (2020, November 26).
Retrieved from https://www.oxts.com/future-of-adas .

[3] Jigang Tang, Songbin Li, Peng Liu ,” A Review of Lane Detection Methods based on Deep
Learning, Pattern Recognition” ,2020.

[4] Joseph Redmon, Santosh Divvala, Ross Girshick, Ali Farhadi “You Only Look Once:
Unified, Real-Time Object Detection”,2016.

[5] Joanna Stanisz, Konrad Lis, Tomasz Kryjak, Marek Gorgon “Optimisation of the PointPillars
network for 3D object detection in point clouds”,2020.

[6] Jie Peng, Shuai Kang, Zhengyuan,Hangxia Deng4 , Jingxia, Yikai Xu6 , Jing Zhang, Wei
Zhao,
Xinling Li, Wuxing Gong, Jinhua Huang, Li Liul,” Residual convolutional neural network for

predicting response of transarterial chemoembolization in hepatocellular carcinoma from CT
imaging”, 2019
[7] Rikiya Yamashita, Mizuho Nishio, Richard Kinh Gian Do2, Kaori Togashil” Convolutional

neural networks: an overview and application in radiology”.

[8] Forrest N. landolal, Song Han, Matthew W. Moskewicz, Khalid Ashraf, William J. Dally,
Kurt Keutzer” SQUEEZENET: ALEXNET-LEVEL ACCURACY WITH50X FEWER
PARAMETERS AND <0.5MB MODEL SIZE”.

[9] AlexNet: The first CNN to win image net. Retrieved from
https://www.mygreatlearning.com/blog/alexnet-the-first-cnn-to-win-image-net/ .

[10] VGG-16 | CNN Model. Retrieved from https://www.geeksforgeeks.org/vgg-16-cnn-model/.

[11] MobileNet architecture. Retrieved from mailto:https://iq.opengenus.org/mobilenet-v1-
architecture/

[12] Benoit Jacob,Skirmantas Kligys, Bo Chen,Menglong Zhu, Matthew Tang, Andrew Howard,
Hartwig Adam, Dmitry Kalenichenko ,"Quantization and Training of Neural Networks for
Efficient Integer-Arithmetic-Only Inference”, 2017.

[13] Andrew G. Howard, Menglong Zhu, Bo Chen,Dmitry Kalenichenko, Weijun Wang, Tobias
Weyan, Marco Andreetto, Hartwig Adam*“MobileNets: Efficient Convolutional Neural Networks
for Mobile Vision Applications”,2017.

[14] Jiawen Liao, Liangwei Cai, Yuan Xu, Minya He “Design of Accelerator for MobileNet
Convolutional Neural Network Based on FPGA”,2019.

99

https://www.synopsys.com/automotive/what-is-adas.html
https://www.oxts.com/future-of-adas
https://www.mygreatlearning.com/blog/alexnet-the-first-cnn-to-win-image-net/
https://www.geeksforgeeks.org/vgg-16-cnn-model/
mailto:https://iq.opengenus.org/mobilenet-v1-architecture/
mailto:https://iq.opengenus.org/mobilenet-v1-architecture/

[15] Amr Mohamed Gamal Eldin, Aya Hesham Omar, Gamal Saied Fadl, Mennat-Allah Ayman
Ahmed, Omnia Essam Ahmed, Sara Mostafa Mohamed” ACCELERATED DEEP NEURAL
NETWORKS USING FPGA (ZyngNet Architecture)”,2020.

[16] YULAN SHEN, “Accelerating CNN on FPGA (An Implementation of MobileNet on
FPGA)”,2019.

[17] Ahmed Tarek, Abdallah Mohamed, Amr Eid, Fatma Khaled, Farida Khaled “Accelerating
Aware Machine Learning for Squeeze-Net Algorithm Design”,2020.

100

