

USING EYE GAZE TRACKING AND IMITATION LEARNING TO

IMPROVE AUTONOMOUS DRIVING

A THESIS

SUBMITTED TO

THE DEPARTMENT OF ELECTRONICS AND ELECTRICAL

COMMUNICATIONS

FACULTY OF ENGINEERING, CAIRO UNVERSITY

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

FOR THE DEGREE OF

BACHELOR OF ENGINEERING

ALAA OSAMA ABD ELFATTAH

DALIA ANWAR SAYED

MUHAMMAD KHALED ABBAS

MOHAMED ABD ELKARIM SHABAN

MOHAMED ABD ELALIM

MOSTAFA MOHAMED HASSAN

UNDER SUPERVISION OF

DR. HASSAN MOSTAFA DR. SAMAH ELSHAFIEY

JULY 2020

Abstract

Imitation learning is the concept of mimicking the behavior of the expert

human driver which is successfully implemented using end-to-end systems. This

technique has been widely used because it optimizes all processing steps

simultaneously and achieves very good results. A beginner human driver learning

from an expert does not only observes his steering actions but also, he is observing

his full-body actions and behaviors. We argue that giving an end-to-end model

more information about the human driver state during driving such as human gaze

behavior, which contains a huge amount of information and is the most important

sense in the task of driving, can improve the model performance significantly.

We investigate multiple experiments and introduce a novel architecture that

incorporates front-facing camera frames and gaze information into an end-to-end

model which achieves a state of the art performance in the task of lane following.

Our architecture uses a spatial transformer network and a multitask network

to make steering angle predictions as well as predicting the gaze maps for an input

frame in real-time. The model can generalize to different driving environments

without being explicitly trained in them.

We also perform a road-test on a recorded dataset from our streets proving that the

model can perform in different environments.

Acknowledgment

This dissertation would not have been possible without the support of many

people. First and foremost, we would like to thank our advisors Dr. Hassan Mostafa, Dr.

Samah El-Shafiey, Dr. Ibrahim Sobh, and Dr. Mohamed Abdou.

We would like to thank Dr. Hassan Mostafa and Dr. Samah El-Shafiey for their

encouragement, guidance, the great supervision they offered us throughout the whole

project, and the equipment they helped us get access to.

We would like to thank Dr. Ibrahim Sobh for his perfect technical guidance

throughout the whole project, which helped us reach our desired objective, address

various complex problems, and implement several advanced techniques. We would

specially thank him for his patience and the tremendous amount of support and guidance

he provided us...

Contents
Acknowledgment .. 3

Chapter 1 ... 9

Introduction ... 9

Chapter 3 ... 23

Dataset .. 23

3.1 Main Frame ... 23

3.2 Gaze Position Information .. 26

Chapter 4 ... 27

Gaze Network ... 27

 .. 33

Chapter 5 ... 34

Preprocessing .. 34

5.1 Frames Preprocessing ... 34

5.2 Course-Steering Angle Conversion Algorithm ... 38

Chapter 6 ... 48

Main Architectures .. 48

6.1 Baseline Architecture (PilotNet) ... 48

6.1.1 Training .. 50

6.1.2 Results Analysis ... 51

6.1.3 Initial Gaze Incorporation Experiment... 52

6.2 Fusion Architectures ... 54

6.2.1 Results Analysis ... 56

6.3 Spatial Transformer Networks (STN) Architecture .. 59

6.3.1 Neural-Attention Introduction .. 59

6.3.2 Spatial Transformer Networks (STN) .. 61

6.3.3 Results analysis .. 66

6.4 Multi-task Learning (MTL) Architecture ... 68

6.4.1 Results Analysis ... 72

6.5 STN + Multi-task Learning Architecture .. 74

6.4 Results ... 80

6.5 On-Road Test .. 81

Conclusion .. 83

References ... 84

List of Tables

Table 1 Chosen videos form DR(eye)VE dataset .. 25

Table 2 cropping area's lower bound for each video .. 36

Table 3 RMSE & Improvement results.. 53

Table 4 Results summary .. Error! Bookmark not defined.

List of Figures

Figure 1 Examples taken from a random sequence of DR(eye)VE. From left to right: frames from the

eye-tracking glasses with gaze data, from the roof-mounted camera, temporal aggregated fixation maps,

and overlays between frames and fixation maps... 24

Figure 2 SMI ETG 2w Eye Tracking Glasses .. 26

Figure 3 Multi-branch deep neural network for gaze prediction .. 28

Figure 4 From the left : Main frame from roof mounted camera , Optical flow of the scene & Semantic

segmentation of the scene ... 29

Figure 5 A single FoA branch of our prediction architecture ... 30

Figure 6 From the top : Main input frame, Dilation Conv-Net & IC-Net outputs 31

Figure 7 from the left : Main frame & gaze map output of the Gaze Network overlayed on the main

frame. .. 33

Figure 8 Preprocessing steps .. 34

Figure 9 Resized mainframe and gaze map frame (448 x 448) ... 35

Figure 10 Differences between camera configuration across s frames from sample videos 36

Figure 11 Cropped main frame (448 x 448) (RGB) .. 37

Figure 12 Course angle .. 38

Figure 13 Initial idea block diagram .. 39

Figure 14 Circular path motion .. 40

Figure 15 Car's steering geometry ... 41

Figure 16 Circular motion ... 42

Figure 17 course angle sensor output ... 44

Figure 18 Smoothed Course angle .. 45

Figure 19 Smoothed steering angle ... 46

Figure 20 Course angle discontinuities .. 47

Figure 21 Final steering output ... 47

Figure 22 PilotNet Architecture ... 49

Figure 23 Saliency maps of PilotNet ... 51

Figure 24 Top left: RGB frame, Top right :1D gaze map, Bottom left: RGB masked by gaze heatmap &

Bottom right: RGB frame masked by gaze map ... 53

Figure 25 Middle fusion architecture .. 55

Figure 26 Middle fusion final architecture ... 57

Figure 27 Middle fusion saliency maps ... 58

Figure 28 human visual field ... 60

Figure 29 STN visulization ... 61

Figure 30 STN Components .. 62

Figure 31 LocalizationNet architecture .. 63

Figure 32 final structure of our STN architecture ... 65

Figure 33 output of STN Layer after training ... 66

Figure 34 MTL general schematic ... 69

Figure 35 Multi-task architecture .. 70

file:///C:/Users/Muham/Downloads/Thesis_v7.docx%23_Toc43320105
file:///C:/Users/Muham/Downloads/Thesis_v7.docx%23_Toc43320105
file:///C:/Users/Muham/Downloads/Thesis_v7.docx%23_Toc43320105
file:///C:/Users/Muham/Downloads/Thesis_v7.docx%23_Toc43320107
file:///C:/Users/Muham/Downloads/Thesis_v7.docx%23_Toc43320107
file:///C:/Users/Muham/Downloads/Thesis_v7.docx%23_Toc43320108
file:///C:/Users/Muham/Downloads/Thesis_v7.docx%23_Toc43320108
file:///C:/Users/Muham/Downloads/Thesis_v7.docx%23_Toc43320108
file:///C:/Users/Muham/Downloads/Thesis_v7.docx%23_Toc43320109
file:///C:/Users/Muham/Downloads/Thesis_v7.docx%23_Toc43320109
file:///C:/Users/Muham/Downloads/Thesis_v7.docx%23_Toc43320125
file:///C:/Users/Muham/Downloads/Thesis_v7.docx%23_Toc43320125
file:///C:/Users/Muham/Downloads/Thesis_v7.docx%23_Toc43320125

Figure 36 From top : input frame, Gazemap groundtruth, and prediction of gaze branch....................... 72

Figure 37 Multi-task + STN Final architecture (3-Transformations) ... 76

Figure 38 3 transformations STN layer output ... 78

Figure 39 output of STN layer (b/c), gaze ground truth (d) and predictions of gaze branch (e)............. 79

Figure 40 From top: reference frame, new environment frame, new environment frame after applying

histogram matching with the reference frame ... 82

file:///C:/Users/Muham/Downloads/Thesis_v7.docx%23_Toc43320137
file:///C:/Users/Muham/Downloads/Thesis_v7.docx%23_Toc43320137
file:///C:/Users/Muham/Downloads/Thesis_v7.docx%23_Toc43320138
file:///C:/Users/Muham/Downloads/Thesis_v7.docx%23_Toc43320138
file:///C:/Users/Muham/Downloads/Thesis_v7.docx%23_Toc43320139
file:///C:/Users/Muham/Downloads/Thesis_v7.docx%23_Toc43320139
file:///C:/Users/Muham/Downloads/Thesis_v7.docx%23_Toc43320140
file:///C:/Users/Muham/Downloads/Thesis_v7.docx%23_Toc43320140
file:///C:/Users/Muham/Downloads/Thesis_v7.docx%23_Toc43320141
file:///C:/Users/Muham/Downloads/Thesis_v7.docx%23_Toc43320141
file:///C:/Users/Muham/Downloads/Thesis_v7.docx%23_Toc43320141

Chapter 1

Introduction

Countries around the world have responded to the COVID-19 coronavirus with

lockdowns, restrictions, and technology solutions that use artificial intelligence to combat

the virus. As the world begins to emerge from the pandemic, China is first to emerge

from COVID-19 imposed lockdowns thanks to cutting-edge technology, with

autonomous vehicles and smart cities seeing an acceleration during this time.

In China, new opportunities for the autonomous driving industry and intelligent

solutions have stood out. Restrictions on retail, dining, and everyday life during the

outbreak have increased demand for driverless deliveries and non-contact operations,

both heavily relying on autonomous driving technologies.

Autonomous driving has also proved to be essential in the fight against the

pandemic, easing the burden of COVID-19 by transporting necessary medical supplies

and food to health-care professionals and the public in infected areas and disinfecting

hospitals and public surfaces to reduce the spread of coronavirus. Simultaneously, the

vehicle can serve as a night-time security robot and create alerts about those who are

disregarding the coronavirus prevention guidelines, such as not wearing masks or

gathering in large crowds.

CHAPTER 1. INTRODUCTION

10 | P a g e

There are various benefits self-driving cars can offer on different aspects. Most

importantly, they could make roads much safer. The leading cause of most accidents in

our daily life is human error. According to the statistics provided by the World Health

Organization (WHO) [1], most of the road fatalities are caused by human error, therefore

self-driving cars can provide a reliable approach for reducing these human errors.

Moreover, there is a study made by Eno Centre for Transportation [2], this study

found out that if ten percent of all cars were self-driving, as many as 211,000 accidents

would be prevented annually. Some 1,100 lives would be preserved, and the economic

costs of automobile accidents would be reduced by more than $20 billion. An additional

benefit could be decreasing or even eliminating traffic congestion which can be achieved

by self-driving cars by following a consistent behavior during traffic jams, turning all

cars on the road into a fleet of cars moving similarly with interconnection and

intercommunication among them.

Another crucial aspect is the amount of time and effort spent during driving daily,

but with self-driving cars drivers can take over the whole driving task, letting drivers

make use of their time. Also, self-driving cars could come in handy in emergencies. For

example, if a driver lost consciousness, a vehicle equipped with self-driving technology

could take them to safety.

CHAPTER 1. INTRODUCTION

11 | P a g e

Taxonomy of Driving Automation

It describes the level of automation in a driving system, there are some things we

need to take into consideration while defining the taxonomy of self-driving cars and the

level of automation. The driver's attention needed for example, does the driver need to

keep attention on the steering wheel all the time? The driver action needed, for example,

does the driver need to steer? Does the driver need to control the speed? Or does the

driver need to change the lanes or can the car stay in the current lane without any

intervention? What exactly do we need to expect when we say that the car can drive

autonomously? All these questions lead to the autonomous driving taxonomy.

The categorization standards that we will discuss in this topic are being suggested

by the Society of Automotive Engineers (SAE), but we need to describe the driving task

before classifying the levels of automation. The driving task consists of two main tasks,

lateral control, and longitudinal control. Lateral control refers to steering and navigating

laterally on the road, keeping a constant distance from the boundaries of the road. While

longitudinal control is the task where we control the position and velocity of the car along

the roadway, via throttle and brakes.

More tasks could be considered, like object and event detection and response

(OEDR). OEDR is essentially the ability to detect objects and events that immediately

affect the driving task and to react to them appropriately. Moreover, one more task to be

considered is planning, which is primarily concerned with the long and short term plans

needed to travel to a destination or execute maneuvers such as lane changes and

intersection crossings. Some more miscellaneous tasks that people perform while driving

can be considered as well. These include actions like signaling with indicators,

interacting with other drivers, etc.

CHAPTER 1. INTRODUCTION

12 | P a g e

Levels of Automation

These levels are commonly used to describe levels of driving automation, defined

by the SAE Standard J3016 [3].

Level 0 -- No Automation: It is a full human perception, planning, and control. At this

level, there is no driving automation whatsoever, and everything is done by the driver.

Level 1 – Driving Assistance: In this level, the autonomous system assists the driver by

performing either lateral or longitudinal control tasks, either but not both. For example,

adaptive cruise control, in adaptive cruise control or ACC, the system can control the

speed of the car, but it needs the driver to perform steering. So it can perform longitudinal

control but needs the human to perform lateral control. Similarly, lane-keeping assist

systems, in lane-keeping assistance, the system can help you stay within your lane and

warn you when you are drifting towards the boundaries.

Level 2 – Partial Driving Automation: In this level, the system performs both the

control tasks, lateral and longitudinal in specific driving scenarios. Some simple

examples of level two features are GM Super Cruise and Nissan's Pro Pilot Assist. These

can control both your lateral and longitudinal motion but the driver monitoring of the

system is always required. Nowadays, many automotive manufacturers offer level two

automation products including Mercedes, Audi, Tesla, and Hyundai.

Level 3 – Conditional Driving Automation: In this level, the system can perform

Object and Event Detection in Response to a certain degree in addition to the control

tasks. However, in the case of failure, the control must be taken up by the driver. An

example of level three systems would be the Audi A Luxury Sedan, which was an

automated driving system that can navigate unmonitored in slow traffic.

CHAPTER 1. INTRODUCTION

13 | P a g e

Level 4 – High Driving Automation: In this level, we arrive at highly automated

vehicles, where the system is capable of reaching a minimum risk condition, in case the

driver doesn't intervene in time for an emergency. Level four systems can handle

emergencies on their own, but may still ask drivers to take over to avoid pulling over to

the side of the road unnecessarily. With this amount of automation, the passengers can

check their phone or watch a movie knowing that the system can handle emergencies and

is capable of keeping the passengers safe. However, level four still permits self-driving

systems with a limited operational design domain (ODD). For example, as of fall 2018,

only Waymo has deployed vehicles for public transport with this level of autonomy. The

Waymo fleet [4] can handle the driving task in a defined geographic area with a nominal

set of operating conditions, without the need for a human driver.

Level 5 – Full Driving Automation: In this level, the system is fully autonomous and its

ODD is unlimited. Meaning that it can operate under any condition necessary. Level five

is the point where our society undergoes transformational change. With driverless taxis

shuttling people in packages wherever we need them. Unfortunately, we don't have any

examples for level five yet.

CHAPTER 1. INTRODUCTION

14 | P a g e

Objective

The source of the problem for us in a lot of driving situations is not our hands or

feet but it’s our eyes. We believe making a deep neural network that can focus on driving

critical objects and ignore irrelevant elements like the background would improve the

accuracy in steering angle prediction significantly.

Incorporating gaze info in self-driving cars is mostly used in driver assistance

systems (ADAS). Only two papers published in late 2019 discussing the incorporation of

gaze information into the end-to-end self-driving model [5][6].

Our idea is to get the most benefit from eye gaze by tracking it while driving.

Adding Eye Gaze as an additional input to a deep neural network along with the scene

taken from a front-facing camera is expected to generalize the model and predict more

accurate steering commands in different driving environments without being explicitly

trained in them. This will also help in decreasing the processing power by only

processing a portion of the image.

Chapter 2

Background

Machine Learning

Machine Learning (ML) is considered a subset of artificial intelligence (AI) which

enables the system to automatically learn from experience and deal with new problems

and tasks effectively without being explicitly programmed. The existence of complex

tasks in the real world which we can’t handle with traditional rule-based programming

accelerates the research in the area of machine learning to build a reliable system that can

perform these complex tasks with high immunity to random possible variations. Machine

Learning simply builds a mathematical model based on given information known as

training data and use this model to perform predictions or decisions on relevant data that

it hasn’t been exposed to before.

History: In 1959, Arthur Samuel coined the term “Machine Learning” while at

IBM and wrote the first computer learning program which was the game for

checkers. As time passes, machine learning researches increased but considered

only an application for artificial intelligence. In 1957, Frank Rosenblatt designed

the first neural network for computers (the perceptron) simulating the process of a

human brain. In the 1990s machine learning recognized as a separate field and started to

flourish. In the 2000s with the huge computational technological advancements,

more machine learning researches were done and machine learning becomes a

trending topic in the research area.

CHAPTER 2. BACKGROUND

Types of Machine Learning: The types of machine learning differ in their

objective, inputs, outputs, and the approach to perform required tasks. We are

going to cover the most used and essential types of machine learning briefly in the

following subsections.

Supervised Learning: Supervised learning is the type of machine learning meant to map

input data to output data. We build a machine learning model and train it using labeled

data, it correlates the main features in the input data to the output labels and gains the

ability to perform future predictions on relevant new unseen inputs with high accuracy.

Supervised Learning has many types and approaches. The most well-known types are

regression and classification. Regression is used to predict continuous values of outputs

depending on the current input to the model with the help of what we call hypothesis

function. On the other hand, classification is being used to determine the category of a

specific input. Classification could be binary (categorize input into two types only), or

Multi-class Classification (categorize input into multiple options).

Unsupervised Learning: Unsupervised Learning is a type of machine learning which

can learn by itself without the need for a labeled dataset. It searches for common

correlations in given data, estimates a model that can analyze new and unseen input data.

Unsupervised Learning is commonly used in clustering data into clusters that are

determined without human interference based on the given unlabeled data [7].

CHAPTER 2. BACKGROUND

17 | P a g e

Reinforcement Learning: Reinforcement learning is the type of machine learning where

the agent learns by himself without any given data as it learns from interaction with the

surrounding environment. Depending on the effects of specific actions the agent

performs, feedback signals are sent to the agent to tell him how good/bad these actions

were. Given the appropriate amount of time, the agent will be able to learn patterns and

logical triggers to his actions so that the least amount of negative feedback will be sent to

him.

Reinforcement learning, due to its generality, is studied in many other disciplines, such as

game theory, control theory, and operations research.

Deep Learning

Deep Learning [8] is a class of machine learning which uses multiple layers to

extract complex high dimensional features from raw input data. Deep learning can deal

effectively with complex problems such as analysis of images, videos, and time-series

events, taking into consideration spatial, temporal dependencies, or both. The term

“deep” in deep learning refers to the number of layers through which the data are

transformed. Deep learning methods can handle efficiently supervised learning problems,

unsupervised learning problems as well as reinforcement learning problems.

Deep Learning Approaches: Deep Learning approaches are based mostly on artificial

neural networks (ANN). Neural networks, in general, are built to simulate the behavior of

the human brain– specifically, pattern recognition and the passage of input through

various layers of simulated neural connections.

CHAPTER 2. BACKGROUND

18 | P a g e

Neural networks are based on a collection of interconnected layers of nodes called

perceptrons, responsible for processing information passing through different layers.

Neural networks have many types based on the problem they are addressing. We are

interested in the following three types;

Deep Neural Networks: A deep neural network (DNN) is a neural network with more

than two hidden layers. As we increase the depth of the neural network, the ability to

detect higher-level features increases. The main advantage of DNNs to traditional

machine learning approaches is that we don’t need to separately extract features from the

raw input as the DNN can handle the task of feature extraction efficiently correlating the

most affecting features to perform the required task. DNNs are trained using a

backpropagation algorithm which is simply calculating the derivatives of a layer to the

previous layer starting from the output layer to the input layer.

Convolutional Neural Networks: A convolutional neural network (CNN) is a class of

deep neural networks, most commonly applied to analyzing visual imagery. CNNs are

regularized versions of multilayer perceptrons. Multilayer perceptrons usually refer to

fully connected networks, that is, each neuron in one layer is connected to all neurons in

the next layer. The "fully-connectedness" of these networks makes them prone to

overfitting data.

Typical ways of regularization include adding some form of magnitude measurement of

weights to the loss function. However, CNNs take a different approach towards

regularization: they take advantage of the hierarchical pattern in data and assemble more

complex patterns using smaller and simpler patterns. Therefore, on the scale of

connectedness and complexity, CNNs are on the lower extremity.

CHAPTER 2. BACKGROUND

19 | P a g e

They are also known as shift invariant or space invariant artificial neural networks

(SIANN), based on their shared-weights architecture and translation invariance

characteristics [9][10]. Convolutional networks were inspired by biological processes

[11][12][13][14] in that the connectivity pattern between neurons resembles the

organization of the animal visual cortex.

Individual cortical neurons respond to stimuli only in a restricted region of the visual

field known as the receptive field. The receptive fields of different neurons partially

overlap such that they cover the entire visual field. CNNs use relatively little pre-

processing compared to other image classification algorithms. This means that the

network learns the filters that in traditional algorithms were hand-engineered. This

independence from prior knowledge and human effort in feature design is a major

advantage. They have applications in image and video recognition, recommender systems

[15], image classification, medical image analysis, and natural language processing [16].

Recurrent Neural Networks: Recurrent neural network (RNN) is a class of neural

networks that are used to analyze sequential data. The input to RNN is correlated with

previous inputs forming a time series input that passes through the network affecting the

final output as shown in figure 10. RNNs are suitable for problems with high temporal

dependencies such as speech analysis, recognition, language models, machine translation,

etc.

CHAPTER 2. BACKGROUND

20 | P a g e

Deep Learning in Self-Driving Cars

The self-driving car is defined as a car that is capable of sensing and

approximating its surrounding environment and navigating with little or no human

interference. Deep learning had a major contribution in developing self-driving cars.

Autonomous driving has two approaches to, either a hand-engineered modular pipelined

approach or an end-to-end deep learning-based approach.

Modular Approach: The main idea of this approach is to split the task of autonomous

driving into multiple modules performing smaller and specific tasks. Combing all these

modules together gives the vehicle the ability to make decisions on its own without

human interference. We are briefly discussing the main modules existing in this

approach.

Localization: Localization means that the vehicle can detect its position with very

high accuracy. HD maps are used for localization with the help of GPS.

Planning: Planning is meant to feed the vehicle with both the long term planning

and short term planning. The planning module is important for the vehicle as it

affects directly the behavior of the vehicle at every moment.

Perception: Perception module is the eyes for the vehicle. Several sensory data

can be combined to provide a robust representation of the surrounding

environment, like cameras, LIDAR, RADAR, and other sensors. CNNs are used in

this module heavily to perform different tasks as lane detection, object detection

and localization, and more.

CHAPTER 2. BACKGROUND

21 | P a g e

Control: Given sensor data and planned trajectories, a control module is necessary

to control the vehicle in a way that lets it follow its trajectory as well as interacting

with the surrounding environment accurately.

End-to-End Approach: End-to-End approach aims to eliminate any hand-engineered

pipelining, unleashing the abilities of deep learning to form its model of the environment,

and an approximate robust relation between the surrounding environment and the

corresponding control signals. The driving model learns from thousands of frames

associated with control signals on how to deal in different situations without the need to

program it explicitly. The resulting driving policy of this approach is a replica of the

driver’s behavior existing in the provided training dataset. End-to-End is also called

imitation learning which is mimicking the behavior of the expert which in the case

of self-driving cars is the human driver.

CHAPTER 2. BACKGROUND

22 | P a g e

A question that is always being asked: how can a human teach a car to drive? Humans

learn to drive by watching other people drive and then they try to observe, learn, replicate

their actions, and get better. This is exactly what end-to-end imitation learning is about.

The end-to-end system optimizes all processing steps simultaneously and eventually

leads to better performance and a smaller system size. It has been applied in tasks such

as road following and achieved great results by Nvidia [17], it was about using behavioral

cloning with a human driver’s with the camera frame input and observing the human

behavior from the steering angle labeling.

A beginner human driver learning from an expert one, not only observes his steering

actions but also he is observing his full-body actions, including his head and eye

movement, his location of attention in different situations, his emotional statues, besides

the verbal instructions which are given.

Among the human senses, the eye is the most one giving a huge amount of information to

the brain, so we choose human gaze behavior as it contains a huge amount of information

of the human brain complex attention mechanisms which will help to teach the model

better, and make it recognize the most important frame components to focus on, which

will help “humanizing” the self-driving cars.

Chapter 3

Dataset

3.1 Main Frame

For our project, we needed a dataset that has the driver’s gaze position

information for each frame along with the front-facing camera frame and the

steering angle. A dataset that fulfills these requirements is very rare to find.

Because eye tracking is not used much in divining applications. We had more than

one candidate but they weren’t specifically for our task and not accurate enough to

do the job. We settled on the “DR(eye)VE dataset” [18]. “DR(eye)VE” is currently

the largest publicly available dataset including gaze information and driving

behavior in automotive settings. It consists of 74 video sequences of 5 minutes

each of actual driving experience, for a total of 555,000 frames. Eight different

drivers alternate during the recording process to smooth the bias given by each

person’s peculiar way of driving. Each video sequence is five minutes, covering

different weather conditions (sunny, cloudy, and rainy), different lighting

(morning, evening, and night) and different Scenarios (countryside, highway, and

downtown). Videos were recorded with a roof-mounted camera of resolution

1920x1080 (RGB) and a frame rate of 25 fps, so each video contains 7500 frames.

CHAPTER 3. DATASET

24 | P a g e

Figure 1 Examples taken from a random sequence of DR(eye)VE. From left to right: frames from the

eye-tracking glasses with gaze data, from the roof-mounted camera, temporal aggregated fixation maps,

and overlays between frames and fixation maps.

As a first step, we focused on using the gaze position information in a simple

lane following task with constant speed. As a result, the downtown videos'

surroundings are out of the project’s scope. The chosen videos are from the

countryside and highway, as there are no people crossing roads at these videos and

no crossroads and multi-paths. 12 videos were chosen for this project, which is

about 90,000 frames (80% training, 20% testing).

CHAPTER 3. DATASET

25 | P a g e

Table 1 Chosen videos form DR(eye)VE dataset

‘

Video Number Lightning Weather

Condition

Scenario

01 Evening Sunny Countryside

02 Morning Cloudy Highway

03 Evening Sunny Highway

14 Morning Rainy Highway

20 Evening Sunny Countryside

22 Morning Rainy Countryside

37 Morning Rainy Highway

42 Evening Cloudy Highway

44 Morning Rainy Countryside

52 Evening Sunny Highway

56 Night Rainy Countryside

59 Morning Cloudy Highway

CHAPTER 3. DATASET

26 | P a g e

3.2 Gaze Position Information

The driver’s gaze information was captured using an accurate eye tracking

device -commercial SMI ETG 2w Eye Tracking Glasses (ETG) shown in Fig 2. It

tracks users’ pupils at 60Hz and provides gaze information in terms of eye

fixations and saccade movements. For each frame in the dataset, the driver’s gaze

information was acquired and registered to the external view recorded from a roof-

mounted camera.

The dataset had a text file for each video contains the labels for each frame

including course angle -which will be discussed later- and the gaze position of the

driver. The gaze position is given as an x-y position in the mainframe. The gaze

labeling of the dataset consists of 3 categories for the driver statues: saccade,

fixation, and blink, which represent the movement of the eye gaze position and its

different state.

Figure 2 SMI ETG 2w Eye Tracking Glasses

Chapter 4

Gaze Network

Predicting the driver’s focus of attention -eye gaze- is essential for our work. What

the driver is looking at is a personal behavior while what most drivers look at is a task-

driven behavior that holds common gaze patterns shared among different drivers. This

gives an intuition that by identifying the right factors affecting human’s attention, the eye

gaze can be predicted. A study showed that the semantic of the scene, the speed, and

bottom-up features all influence the driver’s gaze[19]. A paper published in 2018

introduced a computer vision model able to replicate the human attentional behavior

during driving task[19]. They developed a deep learning model that can profitably learn

to predict where a driver would be looking at in a specific situation using DR(eye)VE

dataset and a multi-branch deep neural network.

This work argues that the act of driving combines complex attention mechanisms

guided by the driver’s past experience, short reactive times, and strong contextual

constraints. Thus, very little information is needed to drive if guided by a strong focus of

attention (FoA) on a limited set of targets and proposes a deep neural network (DNN)

model that aims at predicting these targets.

CHAPTER 4. GAZE NETWORK

28 | P a g e

Figure 3 Multi-branch deep neural network for gaze prediction

As shown in Fig.3, The DNN is based on three different branches, each of which has its

own set of parameters, and their predictions are summed to obtain the final map. The

DNN estimates attentional maps from:

1- Visual information of the scene

2- Motion cues (in terms of optical flow)

3- Semantic segmentation

CHAPTER 4. GAZE NETWORK

29 | P a g e

Each branch has been respectively fed with 16 frames clips in raw RGB color

space, 16 frames clips with optical flow maps, encoded as color images through the flow

field encoding, and 16 frames clips holding semantic segmentation from encoded as 19

scalar activation maps, one per segmentation class.

The COARSE module shown in Fig.5 is applied to both a cropped and a

resized version of the input tensor, which is a video clip of 16 consecutive frames.

The cropped input is used during training to augment the data and the variety of

ground truth fixation maps. The prediction of the resized input is stacked with the

last frame of the video clip and fed to a stack of convolutional layers (refinement

module) to refine the prediction. Training is performed end-to-end and weights

between COARSE modules are shared. At test time, only the refined predictions

are used. Note that the complete model is composed of three of these branches,

each of which predicting visual attention for different inputs (namely image,

optical flow, and semantic segmentation).

Figure 4 From the left : Main frame from roof mounted camera , Optical flow of the scene &

Semantic segmentation of the scene

CHAPTER 4. GAZE NETWORK

30 | P a g e

Figure 5 A single FoA branch of our prediction architecture

During the implementation of this network in our work, we faced several

problems. To get the gaze maps from this multi-branch DNN, we had to get the inputs of

each branch ready. We had to extract optical flow frames and sematic segmentation from

the videos. the problem was that the authors didn’t intend to make the network real-time

or even fast enough for real-time applications. To get the frames for the semantic

segmentation. The authors of the paper used “Semantic segmentation for dilated

convolution”[20] to get semantic segmentation frames. The DNN described this paper

was too large with 134 million parameters taking approximately 23 seconds on Google-

Colab GPU to predict one frame, This was too long and would take weeks for us to just

get the data ready for the gaze network and we had to search for an alternative. We used

ICNET[21] DNN after modifying its output to be as close as possible to the output of the

dilated convolution network in the same form that the main network accepts. The small

difference between their outputs won’t be significant in the final output of the Gaze

network as the semantic segmentation branch doesn’t contribute much in the summation

of the 3 branches based on an ablation study conducted by the authors of the paper.

CHAPTER 4. GAZE NETWORK

31 | P a g e

The speed of the IC-Net was much higher giving a prediction in 3 sec/frame,

which decreased the semantic segmentation branch bottleneck and increased the speed of

the whole model. The difference between the original network output and IC-Net output

is shown in Fig.6

Figure 6 From the top : Main input frame, Dilation Conv-Net & IC-Net

outputs

CHAPTER 4. GAZE NETWORK

32 | P a g e

After getting all the inputs for the gaze network ready. We started the

inference phase to get the gaze maps for our dataset. The execution time for the

gaze net was too large, as it is a multi-branch DNN with 3 different branches and

each branch takes 16 frames at once to process them. All of this resulted in an

inference time of approximately 21 seconds on Google-Colab GPU to make one

single prediction.

We thought of minimizing this time by getting the prediction of the 1st

frame and the 6th frame and getting the frames in between using pixel-wise linear

interpolation across the frames in time. This is based on the fact that the human

gaze takes time to changes from one focus point to another, and the dataset is

recorded at 25 fps which makes the consecutive frames almost the same with very

small differences. Besides, the network takes 16 frames- clip every time to predict

the FoA of each frame and shift these frames by one each time, so we have a huge

quantity of redundant data. We measured the error in the frames predicted by the

gaze net and the frames obtained using interpolation to verify our assumption. The

error was below 1%. By using this approach, we could reduce the time greatly to

about 7.8 % of the author’s original setup inference time.

CHAPTER 4. GAZE NETWORK

33 | P a g e

Then, we generated the gaze map prediction for each frame of our dataset to

be used as the gaze information for our models. Shown in Fig.7 the final gaze map

output of the Gaze Network.

Figure 7 from the left : Main frame & gaze map output of the Gaze Network

overlayed on the main frame.

Chapter 5

Preprocessing

5.1 Frames Preprocessing

Now, we have the main front camera frame and the gaze information in the

form of gaze map in a greyscale frame with sizes of 1920x1080 (RGB) for the

mainframe, and 448x448 for the gaze map. We want to resize the 2 frames to be a

size that is compatible with our baseline network which is PilotNet described by

Nvidia[17]. PilotNet input size is 200x66 (RGB). As a result, we conducted the

following preprocessing shown in Fig.8 to satisfy this requirement.

Main

frame 120 *

1080

Resized for

200 * 66

Mainframe 1920 x 1080 Resized 448 x 448

Cropped
Resized 200 x 66

Figure 8 Preprocessing steps

CHAPTER 5. PREPROCESSING

35 | P a g e

I. Resizing

As we discussed in the Gaze Network chapter, the gaze network output the

gaze map frame in the size of 448x448. The mainframe is resized to be the same

size as the gaze frame as we are going to crop the mainframe to remove the

unimportant parts. So, we want both of them to have the same region of space to

not confuse the model, so its new size will be 448x448 (RGB) as shown in Fig.9.

Figure 9 Resized mainframe and gaze map frame (448 x 448)

CHAPTER 5. PREPROCESSING

36 | P a g e

II. Cropping

We used a cropping function that takes 4-numbers (Top, Bottom, Left, and

Right) as input. These numbers are the edges for the required part from the frame

to be saved. Because all videos are not recorded using the same car, and with

different camera positions, the mainframe contains car front at various positions

across the videos as shown in Fig.10, so we had to crop each video with a different

value manually to compensate for these differences.

Figure 10 Differences between camera configuration across s frames from sample videos

We took a sample frame from each video then defined the lower bound of

the cropped area to be the car front’s upper bound, the following table shows lower

bound to apply while cropping each video from our dataset:

Video # 01 02 03 14 20 22 37 42 44 52 56 59

Lower bound 303 312 364 309 363 338 305 303 338 341 306 295

Table 2 cropping area's lower bound for each video

CHAPTER 5. PREPROCESSING

37 | P a g e

Also, we cropped part from the sky, as it contains no useful information for

the network. As a result, for all videos Top=140, Left and Right are not cropped so

Left=0 and Right=448. This cropping would be applied on both, mainframe and

gaze frame to have the same information at the same position mapped from

mainframe to gaze frame.

Figure 11 Cropped main frame (448 x 448) (RGB)

III. Final Resizing

Now we have all frames empty from non-useful data but with different sizes,

so at this stage we resized all frames -main and gaze frames- to be 200x66 which is

suitable for our network.

Figure6. Resized main and gaze map frames (200 x 66)

CHAPTER 5. PREPROCESSING

38 | P a g e

5.2 Course-Steering Angle Conversion Algorithm

After choosing our dataset, there was only one drawback, that this dataset

wasn’t labeled with steering angles. But instead, it had a course angle. The course

angle is the angle between the head of the car and the North (Angle to the north). It

can be seen as the angle made by a compass as the car is moving as shown in

Fig.12

Figure 12 Course angle

CHAPTER 5. PREPROCESSING

39 | P a g e

As seen in Fig.12, you can guess that there is a relation between this angle

and the steering angle, but we didn’t find a direct simple relation without going

deep into the mechanics of the car online. We managed to find this relation, as the

dataset has no value to us without the steering angle labels with the frames and

gaze maps. The initial idea to get the steering angle from this course angle was to

use a derivative, as we can see that the relation between steering and course angle

is accumulative. To get an intuition, if you were going straight heading to the

north, so the steering and the course angle will be zero. Now suppose that the street

is turning 90 degrees to the right, and you want to follow it. You will make the

steering angle 90 degrees and as time passes, the course angle will be accumulated

and continuously increasing as the head of the car is turning right until it reaches

90 degrees. You will get the steering wheel back making the steering angle zero,

but the course angle will stay 90, so it’s a relation of integration from the course

angle point of view or differentiation from the steering angle point of view.

Figure 13 Initial idea block diagram

CHAPTER 5. PREPROCESSING

40 | P a g e

As shown in Fig.13, a discrete differentiator is applied to the course angle by

subtracting every two consecutive angles. We apply an exponential Moving

average to smooth the output and apply an averaging filter after that for more

smoothing and better output. The initial idea produced good results and validated

the idea, but wasn’t good enough. As a result, we had to get the relation proved

from the geometrical basis of and the motion equations to get a more accurate

model.

To start from the beginning, we know that a car with a certain constant

steering angle will move on a circular path as shown in Fig.14. Each one of the

front wheels will move on a circle with a different radius and each wheel will have

a slightly different angle to get a smooth motion on the circular path.

Figure 14 Circular path motion

CHAPTER 5. PREPROCESSING

41 | P a g e

Now let’s have a look at the geometry of the steering angle of the car as

shown in Fig.15.

Figure 15 Car's steering geometry

We know that each one of the front wheels moves on a circle with a different

angle. For simplicity of the model and without losing generality, we are going to

use only the circle with the small radius “the one drawn by the wheel nearer to the

center of the turning circle”. The point “O” is the intersection of two lines drawn

perpendicular to the front and the back wheels. It’s the center of the motion circle.

Its position will change with each steering angle changing the center and the radius

of the circle. AD side length is l which is the “wheelbase length”. It’s the distance

between the from and the back wheels and it differs from one car to another. From

the trigonometry of the right-angle-triangle ODA with the “left wheel steering

angle” = 𝛿𝑖 = SA,

 𝑆𝐴 = 𝑡𝑎𝑛−1 𝐿

𝑅
 (1)

CHAPTER 5. PREPROCESSING

42 | P a g e

We viewed the problem in a time instance “static form”, now we move to the

dynamic form as the car is moving.

Figure 16 Circular motion

In Fig.16, we assume the car was at point A at a time to and the course angle,

in this case, will be 𝜃𝑐
1 = Zero. After time t with a constant steering angle SA the

car will move on the arc AB and reach point B and the course angle will be 𝜃𝑐
2.

From the circular motion equations:

 𝑣 =
2𝜋𝑅

𝑡
 (2)

North

𝜃𝑐
2

R

A

B

CHAPTER 5. PREPROCESSING

43 | P a g e

From the geometry, we can conclude that θ = θc, so:

 𝜃𝑐
1 − 𝜃𝑐

2

=
𝑡∗𝑣

𝑅
 (3)

From (1) & (3) we conclude the final relation between steering and course angles:

 𝜃𝑆 = 𝑆𝑅 ∗ 𝑇𝑎𝑛−1(
(𝜃𝑐

1−𝜃𝑐
2)∗𝐿

𝑣∗𝑡
) (4)

𝜃𝑆 : steering wheel angle

t: frame rate = 1/25

v: velocity at each frame

L: wheelbase length ≈ 2.6

SR: steering ratio ≈17

𝜃𝑐: Course angle

SR indicates the steering ratio, and it’s the ratio of the steering wheel angle

to the ratio of the car wheels steering angle. Since we don’t know the type of car

used in the dataset collection, we will use the average number for all the constants

of the car type in the previous equation for steering ratio and the wheelbase length.

For time t, it will be the time between two frames of the video (frame rate 25).

Velocity at each frame is given in the dataset, so we now have strong

mathematical proof to our conversion algorithm which considers velocity and car

constants. The results of the previous model were very good and way better than

the initial idea results. We can see know with mathematical proof the source of the

differentiation from Equation (3).

Before applying the conversion equation to the course angle, we need to analyze it

and apply some preprocessing to correct some problems that would appear after

conversion.

CHAPTER 5. PREPROCESSING

44 | P a g e

Figure 17 course angle sensor output

In Fig.17, we can see that the course sensor they are using is a discrete

sensor, i.e. it changes with a step of one degree. This step is very small tending to

zero with respect to the constant time before any sudden change, and this will

cause the steering angle to go to infinity (very high value) when applying the

equation as it contains derivatives. To solve this problem, the input data had to be

smoothed, using an averaging filter which will cause a time delay and it’s very

sensitive to cause a delay in the steering angle, so we used a First Order Hold

(FOH) to smooth the sharp edges and make the change happen on a larger number

of frames as shown in Fig.18

C
o

u
se

 a
n

gl
e

(d
eg

.)

CHAPTER 5. PREPROCESSING

45 | P a g e

Figure 18 Smoothed Course angle

After applying equation (4), the steering angle was generated but with high

oscillations, as the changing time of the course angle is relatively small and has

discrete values at each time instant. We used the exponential moving average

(EMA) to smooth out the curve without much time delay, giving the new steering

angles a higher weight compared to the old one. The final output is shown in

Fig.19.

Time (frame)

C
o

u
se

 a
n

gl
e

(d
eg

.)

CHAPTER 5. PREPROCESSING

46 | P a g e

Figure 19 Smoothed steering angle

The last problem faced us in the dataset course angle conversion, is that

some frames have the course angle changing from 0 to 360 or from 360 to 0 at a

moment. As the car is changing its heading around the north direction, which

makes the conversion fails as shown in Fig. 20

Time (frame)

Couse angle

Couse angle (deg.)

Couse angle (deg.)

Steering angle

Couse angle (deg.)

Couse angle (deg.)

Steering EMA

Couse angle (deg.)

Couse angle (deg.)

A
n

gl
e

(d
eg

.)

CHAPTER 5. PREPROCESSING

47 | P a g e

Figure 20 Course angle discontinuities

To solve this problem, a threshold was put and the angles that surpass this

threshold will be subtracted from 360. This will make the continuity of the curve

restored as shown in Fig 21.

Figure 21 Final steering output

Time (frame)

Time (frame)

A
n

gl
e

(d
eg

.)

Chapter 6

Main Architectures

6.1 Baseline Architecture (PilotNet)

Driving in every country is different. There are different rules on the road,

sometimes it’s very dramatic; such as driving on the other side. Sometimes, it is a

little bit more subtle; such as rules about right turns on red lights. But the reality is

self-driving cars that are driving in different cities have to have different kinds of

brains behind them. They have to have different rules governing their behavior. So,

the question is how can we develop a technology that we can scale and adapt to

different cities around the world?

One of the methods to do that is using End-to-End learning. End-to-end

models learn all the features that can occur between the original inputs (x) and the

final outputs (y). This enables the computer to form a model by observing how

humans drive in practice. Recently, Nvidia described PilotNet which is CNN that

goes beyond pattern recognition[17]. PilotNet architecture is shown in Fig.22. It

learns the entire processing pipeline needed to steer an automobile. Taking images

from a front-facing camera as input and predicting the steering commands as its

final output.

CHAPTER 6. MAIN ARCHITECTURES

49 | P a g e

Figure 22 PilotNet Architecture

In our work, as there is no similar work to ours using the same dataset to

compare the results, we used PilotNet as a baseline for our introduced models to

investigate the improvement of incorporating eye gaze into the training process.

We benchmark the root mean squared error (RMSE) values achieved by different

architectures against PilotNet RMSE to measure the improvement percentage

achieved.

CHAPTER 6. MAIN ARCHITECTURES

50 | P a g e

6.1.1 Training

We trained PilotNet on our dataset using only RGB images as an input

without any gaze information. The following hyperparameters were used to

achieve the minimum RMSE value for our test set:

Optimizer: ADAM Optimizer

Learning rate: 0.0001

L2 Regularization constant: 0.00005

Drop out ratio: 0.2

Epochs: 40

After running 40 epochs, learning rate was decreased to 0.0001x0.5 for 15 more

epochs to give RMSE = 0.0096080. Then decreased again to 0.0001x0.25 for more

35 epochs giving RMSE = 0.00716854.

*All the experiments were conducted on Google-Colab GPU

CHAPTER 6. MAIN ARCHITECTURES

51 | P a g e

6.1.2 Results Analysis

PilotNet was able to score an RMSE value of 0.0105.

To have some insights on how the model takes its decision to predict a

steering angle command to make sure that the model is well trained and understand

our dataset well, we implemented saliency maps using a method described in [22]

to see what regions in the image are the most important for the network during

steering angle decision making. As shown in Fig.23, It is obvious that lanes and

both sides of the road are the most important features in the input image for the

model, while the sides of the road and the background less contribute to the

decision.

Figure 23 Saliency maps of PilotNet

\

CHAPTER 6. MAIN ARCHITECTURES

52 | P a g e

6.1.3 Initial Gaze Incorporation Experiment

To get a sense of whether incorporating eye-gaze information in the training

process will help in predicting a more accurate steering angle or not, we tried

different combinations of stacking the gaze information with the RBG frame as an

input to PilotNet and monitored the change in the RMSE scores.

We tried the following stacking approaches (shown in Table 3):

• RGB frame alongside with gaze map (4D input: 3D frame + 1D gaze map)

• RGB frame alongside with frame masked by gaze map (6D input: 3D frame

+ 3D frame masked by gaze map)

• RGB frame masked by the gaze map (3D input; as masking does not

increase the dimensions of the RGB frame)

• RGB frame alongside with RBG frame masked by gaze heat map (6D input:

3D frame + 3D frame masked by heatmap)

• RBG frame masked by gaze heat map (3D input: 3D frame masked by

heatmap)

The results achieved are summarized in table 1. We notice that all architectures

achieve lower RMSE values than our baseline -which is PilotNet trained without

gaze information-. This supports our idea that eye gaze improves steering angle

prediction accuracy significantly. However, the best RMSE score is achieved by

incorporating RGB frames masked by a gaze heat map, we think that this method

has the advantage of eliminating repeated information in the input which may

confuse the network.

CHAPTER 6. MAIN ARCHITECTURES

53 | P a g e

Table 3 RMSE & Improvement results

Input RMSE Improvement (%)

Baseline 0.0105 -

RGB + RGB masked by

gaze map (6D)

0.0098 6.6%

RGB + Gaze map (4D) 0.007793 25%

RGB masked by gaze map

(3D)

0.00968 7.8%

RGB + Gaze heatmap (6D) 0.00898 14.5%

RGB masked by heatmap

(3D)

0.00839 20%

Figure 24 Top left: RGB frame, Top right :1D gaze map, Bottom left: RGB masked by gaze

heatmap & Bottom right: RGB frame masked by gaze map

CHAPTER 6. MAIN ARCHITECTURES

54 | P a g e

6.2 Fusion Architectures

Fusion techniques include middle and late fusion. In fusion networks, we

have multiple inputs. We try to extract features from each input then fuse these

extracted features to make a prediction. The point at which fusion takes place

defines the type of fusion. If the fusion occurs directly after extracting features

then it is a middle fusion and if fusion between features occurs after passing the

extracted features through more than one fully connected layer, it is called late

fusion.

We tried middle fusion to give the network a chance to extract features from

the input. Since we have two inputs; the RGB frame and the gaze map, our

network consisted of two branches as shown in Fig. 25. We started by using the

convolution layers (5 layers) in PilotNet as feature extractors from both the RGB

frame and the gaze map. Afterward, we fuse the extracted features to one feature

vector and go through a series of fully-connected layers ending with our final

prediction.

CHAPTER 6. MAIN ARCHITECTURES

55 | P a g e

Figure 25 Middle fusion architecture

CHAPTER 6. MAIN ARCHITECTURES

56 | P a g e

6.2.1 Results Analysis

The architecture in Fig. 25 had an RMSE value of 0.00963 and achieved an

improvement percentage of 8.28 %. This architecture has 5180579 parameters.

However, using the same number of convolutional layers as a feature extractor for

both the gaze and the RGB frame is not fair. Because the gaze map is 1D and has

much fewer features than the RGB frame which is 3D. Decreasing the number of

layers in the gaze branch will decrease the number of parameters of the network

and reduce its inference time.

As a result, we started trying out different experiments involved decreasing

the number of convolutional layers in the gaze branch and changing the number of

filters in each layer. Keeping in mind that the length of the fully-connected layers

is the most contributing factor in the network’s number of parameters. So, our

main goal was to decrease the number of features entering the first fully-connected

layer without hurting the network’s performance. The final architecture is shown in

Fig.26 which achieved an RMSE value of 0.00730 and an improvement percentage

of 30.5%. The number of parameters in this architecture is 926,665.

CHAPTER 6. MAIN ARCHITECTURES

57 | P a g e

Figure 26 Middle fusion final architecture

As part of verifying the idea that incorporating the gaze information does

improve the performance of the network, we tried to feed the network with an

RGB frame in both of the branches. Technically, this does not make sense,

however, we wanted to make sure that the improvement in the performance is due

to the presence of the gaze maps not due to the increase in the size of the network.

We followed the same hyperparameters as described above and the network

achieve an RMSE value of 0.0082609.

CHAPTER 6. MAIN ARCHITECTURES

58 | P a g e

We implemented saliency maps using a method described in [22] to see

what regions in the image are the most important for the network during steering

angle decision making. We calculated saliency maps with respect to both branches.

In other words, we calculated saliency maps from the output back to the RGB

frame input and back to the gaze map input.

Figure 27 Middle fusion saliency maps

CHAPTER 6. MAIN ARCHITECTURES

59 | P a g e

6.3 Spatial Transformer Networks (STN) Architecture

6.3.1 Neural-Attention Introduction

Informally, a neural attention mechanism equips a neural network with the

ability to focus on a subset of its inputs or features. It expands capabilities of

neural networks: they allow approximating more complicated functions, or in more

intuitive terms, they enable focusing on specific parts of the input. The attention

mechanism is newly introduced to the world of the neural network with more focus

on topics like natural language processing and generating image captions [23][24].

Neural attention is very famous in fields like natural language processing as the

attention concept was introduced first in that field, and it achieved very impressive

success, after that, it was introduced to other fields of deep neural networks and

also a big success is being achieved right now.

We thought of bringing that concept to our problem as its very related

conceptually. The driver’s gaze position and information are directly correlated to

the human brain's attention mechanisms to focus his gaze on a specific part of the

image during driving. We wanted to simulate that optimized human behavior

giving the SDC a strong ability to see the frames more efficiently.

CHAPTER 6. MAIN ARCHITECTURES

60 | P a g e

Figure 28 human visual field

As we can see in Fig.28, the human visual field from the top view is nearly

124 degrees. Not all that area have the same resolution or the same density of

information that is feed to the brain. The human visual mechanism is very simple

and very efficient, as most of the field collects information about the space but

only about 8.3% of it has the highest information intensity with a high-resolution

receptive field of about 20 degrees from a total of 124 degrees. That is why the

human has to keep moving his eyes and adjust his gaze position in the area the

brain decided is the most important at each time instant. Using this idea, a lot of

attention mechanisms for computer vision were introduced like: soft attention, hard

attention, and many more ideas and techniques. We will focus on the one used in

this project which is “Spatial Transformer Networks”.

CHAPTER 6. MAIN ARCHITECTURES

61 | P a g e

6.3.2 Spatial Transformer Networks (STN)

STN was introduced by Google Deep Mind in 2016 [25], it was Mainly

directed to image classification problems. The idea was that Convolutional Neural

Networks define an exceptionally powerful class of models, but are still limited by

the lack of ability to be spatially invariant to the input data in a computationally

and parameter efficient manner. The main idea of the paper was to allow for much

more general transformation that just differentiable image-cropping.

Figure 29 STN visulization

As we can see in Fig.28, the STN layer transforms the input frame so it’s

better recognized by the classifier. It can be added to any network without

changing it and can be trained using backpropagation techniques as it is

differentiable and this is its main strength.

CHAPTER 6. MAIN ARCHITECTURES

62 | P a g e

STN consists of 3 main parts: Localization net, Grid generator, and sampler,

as shown in Fig.30

Figure 30 STN Components

The Localization net can be a CNN followed by a fully-connected (FC) or

can be only FC as described by the paper. It takes the input feature map with width

W, height H, and C channels and outputs the parameters of the transformation T to

be applied to the feature map.

The 6 elements of localization net output are used by the transformer to do this

transformation: cropping, translation, rotation, scale, and skew. All the

transformation equations can be found in the paper. For the nature of our problem,

we will only use only 3 transformations of the above 5: cropping, translation,

and isotropic scaling. Any other transformation will confuse our steering angle

generator network. So our theta matrix will be reduced to only 3 elements:

CHAPTER 6. MAIN ARCHITECTURES

63 | P a g e

S parameter is for scaling, tx, and ty for shifting in x and y directions. Our

architecture design of the Localization Network is shown in Fig.31. It consists of

alternating convolutional and max-pooling layers to focus and locate the important

features only, followed by 2 FC layers and a final FC layer with tanh activation

function to get the theta 3 transformation parameters.

Figure 31 LocalizationNet architecture

CHAPTER 6. MAIN ARCHITECTURES

64 | P a g e

Now we modify the connections the structure of the STN to fit our model,

instead of feeding the mainframe to the localization network, we feed the

mainframe overlaid with the gaze map as RGB heat map, so the localization

network will learn to pick the region of interest from taking into consideration

the information in the mainframe plus the information in the gaze map. Now we

construct the final architecture as shown in Fig.32. The input frame and the

gaze map will be the inputs for the STN layer, the output will be the mainframe

with the STN transformation applied on it which will be fed to Nvidia PilotNet.

The whole architecture will be trained end to end.

CHAPTER 6. MAIN ARCHITECTURES

65 | P a g e

Figure 32 final structure of our STN architecture

Region of interest Main frame

Frame overlaid

with gaze map
[θ]

Steering output

CHAPTER 6. MAIN ARCHITECTURES

66 | P a g e

6.3.3 Results analysis

Figure 33 output of STN Layer after training

As shown in Fig.33, the STN Layer learned to focus on the street, and

specifically on the lanes. It also tends to shift right a little bit to get the right lane as

its more important than the left one and nearer in most cases as the cars always

take the right path in 2-ways streets. We can observe that the localization Net of

the STN Layer after training outputs nearly the same transformation with small

changes from one frame to another, which makes the place and the size of the red

box shown in Fig.32 the nearly the same for different input frames. This behavior

is because of the position dependence nature of our problem, as a shifted input

frame to the right or the left indicated different car positions in the street which

leads to different steering angle output.

a1

a2

b1

b2

c1

c2

d1

d2

CHAPTER 6. MAIN ARCHITECTURES

67 | P a g e

This architecture scored an RMSE value of 0.008312 which is an

improvement of 20.83%, and to our knowledge, it’s the first architecture to use the

STN in self-driving cars regression problem, and also the first to use the gaze

information.

Its only drawback is its inference time which has a huge bottleneck delay as

it gets the gaze map frame from the Gaze Network (discussed in Gaze Network

chapter) which is not a real-time network. Its inference time after our modification

is approximately 30 sec./frame (Google-Colab GPU). So it will be impossible to be

used on embedded systems in real-life SDC’s.

CHAPTER 6. MAIN ARCHITECTURES

68 | P a g e

6.4 Multi-task Learning (MTL) Architecture

We wanted to make use of the available dataset broadly and let our model

generalize better on our original task which is predicting steering angles. We went

to the Multi-Task Learning (MTL) approach, which is a successful approach in the

field of Natural Language Processing (NLP), drug discovery, speech

recognition[0], but most importantly computer vision which is our main use of

interest. We can effectively optimize more than one loss function for various tasks,

as long as these tasks are somehow correlated, the chance of getting an auxiliary

task will help improving the optimization process and hence, our main task

performance[26].

In our case we worked on only two tasks: predicting steering angles and

predicting the eye-gaze location, and of course, we could add more auxiliary tasks,

but this would affect our runtime in training and testing.

In MTL, we followed the Hard parameter sharing [27], which means we extract

some features by shared layers between all tasks, imagine it as the backbone of the

network, then input the extracted features to the heads of the network which

represent task-specific layers, Fig.34, this kind of sharing, reduces the risk of

overfitting[28].

CHAPTER 6. MAIN ARCHITECTURES

69 | P a g e

Figure 34 MTL general schematic

Concerning our multitask architecture, we needed two heads one for

predicting the steering angle which is the (main task) and the other is for predicting

the gaze map (secondary task), and it's supposed that adding the secondary task

will improve the primary target task as discussed above.

CHAPTER 6. MAIN ARCHITECTURES

70 | P a g e

Figure 35 Multi-task architecture

Steering output

Gaze map output

Main frame

CHAPTER 6. MAIN ARCHITECTURES

71 | P a g e

Our Multi-task architecture idea is to use the PilotNet as the main block, as

our primary task is the steering angle prediction. We use the first 3 convolutional

layers of the PilotNet as the shared layers. Afterward, it is branched into 2

branches, one is the rest of the PilotNet and the other one is a decoder like network

consisting of 3 deconvolutional layers inverting the effect of the 3 shared layers to

get the same size of the input image for gaze map. these 3 deconvolutional layers

have 3 convolutional layers between them to increase the number of image

constructing parameters and improve the accuracy of the constructed image as

shown in Fig.35.

While each task has its own defined loss function: the steering branch loss

function is the root mean squared error between the original and predicted steering

angle, while the gaze map branch is pixel-wise RMSE between the ground truth

gaze map and the predicted one. We had to define a loss function for the two tasks

together, so at first, we combined the different losses simply by summing them into

one loss function, but this ended up with bad results as one task dominates the

overall sum, because of different loss scales. So we replaced the sum of losses to a

weighted sum of losses with steering branch having full weight, and the gaze

branch multiplied by 0.1 as our main task is the steering one so giving it higher

loss value makes the system focus on this task more than the other, and the results

were better.

CHAPTER 6. MAIN ARCHITECTURES

72 | P a g e

6.4.1 Results Analysis

In Fig. 36, (a) is the input frame, (b) is the ground truth of gaze map, and (c)

is the prediction of the gaze branch. We can see that the network makes very good

predictions, and it learned to detect the far end of the street which helped in the

prediction of the steering angle better and improved the accuracy.

a

b

Figure 36 From top : input frame, Gazemap groundtruth, and prediction of gaze

branch

c

CHAPTER 6. MAIN ARCHITECTURES

73 | P a g e

This architecture scored an RMSE value of 0.008312 which makes an

improvement of 21.42% over the baseline. The main advantage of this MTL

architecture is the inference time. The previous architectures have the Gaze

network put in serial before the model, which takes the input frame and generates

the gaze map which will be used by the network as an input. The inference time of

the Gaze network is very large as discussed before, it's equal approximately 24

sec/frame. This MTL architecture replaces the Gaze network completely, and its

inference time is 0.0028 sec./frame, which gives us a very high frame rate to be

used in real-time embedded system devices.

CHAPTER 6. MAIN ARCHITECTURES

74 | P a g e

6.5 STN + Multi-task Learning Architecture

Although our STN attention model is very powerful as it seeks only the

important part of the input image and made a very good improvement, it has 2

problems. The input gaze map is not very effective to the network as the network

can’t make large changes in the transformations as discussed before, and it didn’t

make the optimal use of the gaze information. The second problem is that the

network gets the gaze information as an input which makes the delay time of the

network very high because of the gaze network which predicts the gaze map for

the input frame. As a solution to these problems and to increase accuracy, we

thought of merging the 2 architectures: STN and Multi-task.

In this architecture Fig.37, we combine the strengths of the 2 architectures by

letting the network with its 2 branches decide the best regions for the given tasks.

We tried three forms, we let the STN layer make 1, 2 and 3 transformations on the

input frame to give it more degrees of freedom, then we stacked the output images

into a single frame and resize it to be of size 200x60 image to be the same input

size to the multi-task network. In the 1-transformation trial, it was hard for the

network to focus on only one region in the input frame, as each one of the 2 tasks

wants the STN layer to focus on a different part of the frame. The steering branch

pushes the STN layer to focus on the right lane as discussed in the attention

section, but the gaze branch pushes it to focus on the far end of the road to get the

gaze position as it's mostly at the far end of the road. So 1 transformation was not

enough. We added 2 transformations which gave the network one more degree of

freedom. And a slight improvement was achieved by increasing the

transformations from 2 to 3 transformations.

CHAPTER 6. MAIN ARCHITECTURES

75 | P a g e

The initial value for the STN layer transformation is better to be such that

the whole frame stays the same and not to be changed, and let the network learn

the best transformation as recommended by the authors of [25], but here we made a

random small change between the 2 or 3 transformations to prevent getting the

same transformation and to get better results.

CHAPTER 6. MAIN ARCHITECTURES

76 | P a g e

Steering output

[θ]

Main frame

Gaze map output

3-Transformation

output

Stacked frame

Figure 37 Multi-task + STN Final architecture (3-Transformations)

CHAPTER 6. MAIN ARCHITECTURES

77 | P a g e

6.3.1 Results Analysis

In Fig.39, the results of the 2-transformation version are shown, we can

notice that each one of the 2 tasks forces one of the 2 transformations to focus on

its preferred region of interest, so the network learned to focus on the right lane

and the street’s far end for the 2 transformations. We can see that it’s not always a

good region to crop for situations like the one shown in Fig. 20-b-1, but the

network learned the best place to focus on from the whole training set, and this can

be explained as the human driver from his experience in driving, expects to have

the right lane for example at specific place relative to the car’s position and he tries

to vary the steering angle until he gets the right lane in the place he decides and

keep changing the steering angle to have the lane position relative to the car

constant as the street curvature changes.

We can see the gaze branch learned to detect all the paths the car can take in

Fig. 39-e-1, the ground truth has only one spot tending to the right path as the gaze

network has much information more than ours like optical flow and semantic

segmentation besides a sequence of 16 frames, but learning the paths is important

and sufficient to improve the steering angle accuracy.

The three transformations are shown in Fig. 38, the network learned to focus on the

right lane and the street far end like the 2 transformations–Network, in addition to

the third one is focused on the left lane which is less important than the right one.

CHAPTER 6. MAIN ARCHITECTURES

78 | P a g e

This Novel architecture combining STN and MTL scored an RMSE value of

0.008312 which makes an improvement of 32.37% over the baseline for the 2-

transformations and scored an RMSE value of 0.006701 which makes an

improvement of 36.18% over the baseline for the 3-Transformations which is the

best result achieved in all the architectures. It also has an inference time of 0.015

which makes a frame rate of 66 frames/second. The delay time is directly

proportional to the number of the transformations used, so there is a tradeoff

between inference time and getting less RMSE value. Increasing the number of

transformations also decreases the quality of each frame in the final stacked frame.

For visualization for our model please refer to our video demo at

https://goo.gl/13551M

Figure 38 3 transformations STN layer output

CHAPTER 6. MAIN ARCHITECTURES

79 | P a g e

a

c

e

Figure 39 output of STN layer (b/c), gaze ground truth (d) and predictions of gaze branch (e)

1 2

d

b

CHAPTER 6. MAIN ARCHITECTURES

80 | P a g e

6.4 Results

The results of the discussed architecture are summarized in the following table:

Table 4 Results summary

Architecture RMSE Improvement (%) Inference time (sec.)

Baseline 0.0105 - 0.0028

Middle-fusion 0.0071132 30.45% 27 + 0.00858

STN layer 0.008312 20.83% 27 + 0.005

Multi-task 0.008250 21.42% 0.0028

STN+MTL 2-

Trans

0.007101 32.37% 0.01

STN+MTL 3-

Trans.

0.006701 36.18% 0.015

CHAPTER 6. MAIN ARCHITECTURES

81 | P a g e

6.5 On-Road Test

To insure the ability of the model to generalize well in different distribution

unseen environment we did a real time road-test in our city in Egypt, all the

preprocessing needed were: right & left shifting of new frames to compensate for

the different road and lane sizes between the country of the dataset and our country

besides a “histogram matching ” to match the color distribution between our

frames with a reference frame from the dataset of training, the STN made it

possible that the model can really drive in this very different unseen environment

quit well without fine-tuning of, as the frame cropping and zooming enables us to

shift the image without adding black boxes in the side to compensate this shift to

preserve the frame size , and it made the histogram matching possible, because the

zoomed area is always focused on the road and the lanes , so there is nearly only 2

main colors and no more objects with different colors besides the road appear in

the frame which can vastly change the color components of each frame and make it

very hard to predict and compensate for this differences. histogram matching

example is shown in the below figure.

CHAPTER 6. MAIN ARCHITECTURES

82 | P a g e

Figure 40 From top: reference frame, new environment frame, new

environment frame after applying histogram matching with the reference

frame

Chapter 7

Conclusion

We have verified that incorporating eye gaze information into the training process does

help the model to predict accurate steering commands, generalize to unseen

environments, and operate in different environments without being explicitly trained in

them.

We introduced an attention mechanism that enables the model to focus on the important

features in the road such as the lanes and eliminate unnecessary elements. We also used

multitask learning (MTL) and implement a multitask network which can make steering

predictions and generate gaze maps.

We introduced a state of the art architecture that combines attention mechanism and

multitask learning to predict steering commands and gaze maps, achieving an

improvement percentage of 36% over the Nvidia PilotNet.

Due to the nature of our problem, being able to operate in real-time is a must. We have

optimized the inference time to reach 0.015 seconds/frame.

We test our model on a recorded dataset from Egypt and the model was able to predict

accurate steering commands without any fine-tuning which is proof of its ability to

generalize to unseen environments.

References

[1] Road traffic injuries from WHO, https://www.who.int/news-room/fact- sheets/detail/road-traffic-

injuries

[2] Preparing a Nation for Autonomous Vehicles: Opportunities, Barriers, and Policy Recommendations,

2010.

[3] J3016-201401 Standard for Terms Related to On-Road Motor Vehicle Automated Driving Systems.

[4] Mayank Bansal, Alex Krizhevsky, and Abhijit Ogale. ChauffeurNet: Learning to Drive by Imitating

the Best and Synthesizing the Worst. At Google Brain & Waymo, 2018.

[5] Liu, C., Chen, Y., Tai, L., Ye, H., Liu, M., & Shi, B. E. (2019). A gaze model improves autonomous

driving. Proceedings of the 11th ACM Symposium on Eye Tracking Research & Applications - ETRA ’19.

[6] Chen, Y., Liu, C., Tai, L., Liu, M., & Shi, B. E. (2019). Gaze Training by Modulated Dropout

Improves Imitation Learning. 2019 IEEE/RSJ International Conference on Intelligent Robots and Systems

(IROS).

[7] Unsupervised Learning: Foundations of Neural Computation.

[8] Schmidhuber, J. (2015). "Deep Learning in Neural Networks: An Overview.

[9] Hubel, DH; Wiesel, TN (October 1959). "Receptive fields of single neurons in the cat's striate cortex".

J. Physiol.

[10] LeCun, Yann; Bengio, Yoshua; Hinton, Geoffrey (2015). "Deep learning". Nature.

[11] Weng, J; Ahuja, N; Huang, TS (1993). "Learning recognition and segmentation of 3-D objects from

2-D images". Proc. 4th International Conf. Computer Vision: 121–128.

[12] Schmidhuber, Jürgen (2015). "Deep Learning". Scholarpedia.

[13] Homma, Toshiteru; Les Atlas; Robert Marks II (1988). "An Artificial Neural Network for Spatio

Temporal Bipolar Patterns: Application to Phoneme Classification". Advances in Neural Information

Processing Systems.

[14] Waibel, Alex (December 1987). Phoneme Recognition Using Time-Delay Neural Networks. Meeting

of the Institute of Electrical, Information and Communication Engineers (IEICE). Tokyo, Japan.

[15] Alexander Waibel et al., Phoneme Recognition Using Time-Delay Neural Networks IEEE

Transactions on Acoustics, Speech, and Signal Processing, Volume 37, No. 3, pp. 328. - 339 March 1989.

[16] LeCun, Yann; Bengio, Yoshua (1995). "Convolutional networks for images, speech, and time series".

In Arbib, Michael A. (ed.). The handbook of brain theory and neural networks (Second ed.). The MIT

Press. pp. 276–278.

[17] Bojarski, Mariusz, et al. "End to end learning for self-driving cars." (2016) arXiv preprint

arXiv:1604.07316 .

[18] Palazzi, A., Abati, D., Calderara, S., Solera, F., & Cucchiara, R. (2018). Predicting the Driver’s

Focus of Attention: the DR(eye)VE Project. IEEE Transactions on Pattern Analysis and Machine

Intelligence, 1–1.

[19] Alletto, S., Palazzi, A., Solera, F., Calderara, S., & Cucchiara, R. (2016). DR(eye)VE: A Dataset for

Attention-Based Tasks with Applications to Autonomous and Assisted Driving. 2016 IEEE Conference on

Computer Vision and Pattern Recognition Workshops (CVPRW).

[20] Yu, Fisher and Vladlen Koltun. (2016) .“Multi-Scale Context Aggregation by Dilated

Convolutions.” CoRR

[21] Ferrari, V., Hebert, M., Sminchisescu, C., & Weiss, Y. (Eds.). (2018). “ICNet for Real-Time

Semantic Segmentation on High-Resolution Images”Computer Vision – ECCV 2018.

[22] Bojarski, Mariusz, et al. "Explaining how a deep neural network trained with end-to-end learning

steers a car."(2017) arXiv preprint arXiv:1704.07911.

[23] Vaswani, Ashish, et al. "Attention is all you need."(2017) Advances in neural information

processing systems.

[24] Xu, Kelvin, et al. "Show, attend and tell: Neural image caption generation with visual attention."(

2015) International conference on machine learning.

[25] Jaderberg, Max, Karen Simonyan, and Andrew Zisserman. "Spatial transformer networks." (2015)

Advances in neural information processing systems.

[26] Caruana, Rich. "Multitask learning." (1997) Machine learning 28.1: 41-75.

[27]Caruana, R. "Multitask learning: A knowledge-based source of inductive bias." (1993) Proceedings

of the Tenth International Conference on Machine Learning.

[28] Baxter, Jonathan. "A Bayesian/information theoretic model of learning to learn via multiple task

sampling." (1997)Machine learning 28.1 :7-39.

