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Abstract 
 

Imitation learning is the concept of mimicking the behavior of the expert 

human driver which is successfully implemented using end-to-end systems. This 

technique has been widely used because it optimizes all processing steps 

simultaneously and achieves very good results. A beginner human driver learning 

from an expert does not only observes his steering actions but also, he is observing 

his full-body actions and behaviors. We argue that giving an end-to-end model 

more information about the human driver state during driving such as human gaze 

behavior, which contains a huge amount of information and is the most important 

sense in the task of driving, can improve the model performance significantly. 

 

We investigate multiple experiments and introduce a novel architecture that 

incorporates front-facing camera frames and gaze information into an end-to-end 

model which achieves a state of the art performance in the task of lane following.  

 

Our architecture uses a spatial transformer network and a multitask network 

to make steering angle predictions as well as predicting the gaze maps for an input 

frame in real-time. The model can generalize to different driving environments 

without being explicitly trained in them.  

We also perform a road-test on a recorded dataset from our streets proving that the 

model can perform in different environments. 
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Chapter 1  

Introduction 
 

Countries around the world have responded to the COVID-19 coronavirus with 

lockdowns, restrictions, and technology solutions that use artificial intelligence to combat 

the virus. As the world begins to emerge from the pandemic, China is first to emerge 

from COVID-19 imposed lockdowns thanks to cutting-edge technology, with 

autonomous vehicles and smart cities seeing an acceleration during this time.  

In China, new opportunities for the autonomous driving industry and intelligent 

solutions have stood out. Restrictions on retail, dining, and everyday life during the 

outbreak have increased demand for driverless deliveries and non-contact operations, 

both heavily relying on autonomous driving technologies.  

Autonomous driving has also proved to be essential in the fight against the 

pandemic, easing the burden of COVID-19 by transporting necessary medical supplies 

and food to health-care professionals and the public in infected areas and disinfecting 

hospitals and public surfaces to reduce the spread of coronavirus. Simultaneously, the 

vehicle can serve as a night-time security robot and create alerts about those who are 

disregarding the coronavirus prevention guidelines, such as not wearing masks or 

gathering in large crowds. 
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There are various benefits self-driving cars can offer on different aspects. Most 

importantly, they could make roads much safer. The leading cause of most accidents in 

our daily life is human error. According to the statistics provided by the World Health 

Organization (WHO) [1], most of the road fatalities are caused by human error, therefore 

self-driving cars can provide a reliable approach for reducing these human errors. 

 

Moreover, there is a study made by Eno Centre for Transportation [2], this study 

found out that if ten percent of all cars were self-driving, as many as 211,000 accidents 

would be prevented annually. Some 1,100 lives would be preserved, and the economic 

costs of automobile accidents would be reduced by more than $20 billion. An additional 

benefit could be decreasing or even eliminating traffic congestion which can be achieved 

by self-driving cars by following a consistent behavior during traffic jams, turning all 

cars on the road into a fleet of cars moving similarly with interconnection and 

intercommunication among them. 

 

Another crucial aspect is the amount of time and effort spent during driving daily, 

but with self-driving cars drivers can take over the whole driving task, letting drivers 

make use of their time. Also, self-driving cars could come in handy in emergencies. For 

example, if a driver lost consciousness, a vehicle equipped with self-driving technology 

could take them to safety.  
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Taxonomy of Driving Automation 

It describes the level of automation in a driving system, there are some things we 

need to take into consideration while defining the taxonomy of self-driving cars and the 

level of automation. The driver's attention needed for example, does the driver need to 

keep attention on the steering wheel all the time? The driver action needed, for example, 

does the driver need to steer? Does the driver need to control the speed? Or does the 

driver need to change the lanes or can the car stay in the current lane without any 

intervention? What exactly do we need to expect when we say that the car can drive 

autonomously? All these questions lead to the autonomous driving taxonomy.  

The categorization standards that we will discuss in this topic are being suggested 

by the Society of Automotive Engineers (SAE), but we need to describe the driving task 

before classifying the levels of automation. The driving task consists of two main tasks, 

lateral control, and longitudinal control. Lateral control refers to steering and navigating 

laterally on the road, keeping a constant distance from the boundaries of the road. While 

longitudinal control is the task where we control the position and velocity of the car along 

the roadway, via throttle and brakes. 

More tasks could be considered, like object and event detection and response 

(OEDR). OEDR is essentially the ability to detect objects and events that immediately 

affect the driving task and to react to them appropriately. Moreover, one more task to be 

considered is planning, which is primarily concerned with the long and short term plans 

needed to travel to a destination or execute maneuvers such as lane changes and 

intersection crossings. Some more miscellaneous tasks that people perform while driving 

can be considered as well. These include actions like signaling with indicators, 

interacting with other drivers, etc. 
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Levels of Automation 

These levels are commonly used to describe levels of driving automation, defined 

by the SAE Standard J3016 [3]. 

Level 0 -- No Automation: It is a full human perception, planning, and control. At this 

level, there is no driving automation whatsoever, and everything is done by the driver. 

Level 1 – Driving Assistance: In this level, the autonomous system assists the driver by 

performing either lateral or longitudinal control tasks, either but not both. For example, 

adaptive cruise control, in adaptive cruise control or ACC, the system can control the 

speed of the car, but it needs the driver to perform steering. So it can perform longitudinal 

control but needs the human to perform lateral control. Similarly, lane-keeping assist 

systems, in lane-keeping assistance, the system can help you stay within your lane and 

warn you when you are drifting towards the boundaries. 

Level 2 – Partial Driving Automation: In this level, the system performs both the 

control tasks, lateral and longitudinal in specific driving scenarios. Some simple 

examples of level two features are GM Super Cruise and Nissan's Pro Pilot Assist. These 

can control both your lateral and longitudinal motion but the driver monitoring of the 

system is always required. Nowadays, many automotive manufacturers offer level two 

automation products including Mercedes, Audi, Tesla, and Hyundai. 

Level 3 – Conditional Driving Automation: In this level, the system can perform 

Object and Event Detection in Response to a certain degree in addition to the control 

tasks. However, in the case of failure, the control must be taken up by the driver. An 

example of level three systems would be the Audi A Luxury Sedan, which was an 

automated driving system that can navigate unmonitored in slow traffic. 

 

 



CHAPTER 1. INTRODUCTION 

13 | P a g e  
 

 

Level 4 – High Driving Automation: In this level, we arrive at highly automated 

vehicles, where the system is capable of reaching a minimum risk condition, in case the 

driver doesn't intervene in time for an emergency. Level four systems can handle 

emergencies on their own, but may still ask drivers to take over to avoid pulling over to 

the side of the road unnecessarily. With this amount of automation, the passengers can 

check their phone or watch a movie knowing that the system can handle emergencies and 

is capable of keeping the passengers safe. However, level four still permits self-driving 

systems with a limited operational design domain (ODD). For example, as of fall 2018, 

only Waymo has deployed vehicles for public transport with this level of autonomy. The 

Waymo fleet [4] can handle the driving task in a defined geographic area with a nominal 

set of operating conditions, without the need for a human driver. 

Level 5 – Full Driving Automation: In this level, the system is fully autonomous and its 

ODD is unlimited. Meaning that it can operate under any condition necessary. Level five 

is the point where our society undergoes transformational change. With driverless taxis 

shuttling people in packages wherever we need them. Unfortunately, we don't have any 

examples for level five yet.  
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Objective 

  

The source of the problem for us in a lot of driving situations is not our hands or 

feet but it’s our eyes. We believe making a deep neural network that can focus on driving 

critical objects and ignore irrelevant elements like the background would improve the 

accuracy in steering angle prediction significantly. 

 
Incorporating gaze info in self-driving cars is mostly used in driver assistance 

systems (ADAS). Only two papers published in late 2019 discussing the incorporation of 

gaze information into the end-to-end self-driving model [5][6].  

 

Our idea is to get the most benefit from eye gaze by tracking it while driving. 

Adding Eye Gaze as an additional input to a deep neural network along with the scene 

taken from a front-facing camera is expected to generalize the model and predict more 

accurate steering commands in different driving environments without being explicitly 

trained in them. This will also help in decreasing the processing power by only 

processing a portion of the image. 

 

 

 

 

 

 

 

 



 

 

Chapter 2 

Background 

 

Machine Learning 

Machine Learning (ML) is considered a subset of artificial intelligence (AI) which 

enables the system to automatically learn from experience and deal with new problems 

and tasks effectively without being explicitly programmed. The existence of complex 

tasks in the real world which we can’t handle with traditional rule-based programming 

accelerates the research in the area of machine learning to build a reliable system that can 

perform these complex tasks with high immunity to random possible variations. Machine 

Learning simply builds a mathematical model based on given information known as 

training data and use this model to perform predictions or decisions on relevant data that 

it hasn’t been exposed to before. 

History: In 1959, Arthur Samuel coined the term “Machine Learning” while at  

IBM and wrote the first computer learning program which was the game for 

checkers. As time passes, machine learning researches increased but considered 

only an application for artificial intelligence. In 1957, Frank Rosenblatt designed 

the first neural network for computers (the perceptron) simulating the process of a 

human brain. In the 1990s machine learning recognized as a separate field and started to  

flourish. In the 2000s with the huge computational technological advancements, 

more machine learning researches were done and machine learning becomes a 

trending topic in the research area. 
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Types of Machine Learning: The types of machine learning differ in their 

objective, inputs, outputs, and the approach to perform required tasks. We are 

going to cover the most used and essential types of machine learning briefly in the 

following subsections. 

 

Supervised Learning: Supervised learning is the type of machine learning meant to map 

input data to output data. We build a machine learning model and train it using labeled 

data, it correlates the main features in the input data to the output labels and gains the 

ability to perform future predictions on relevant new unseen inputs with high accuracy. 

Supervised Learning has many types and approaches. The most well-known types are 

regression and classification. Regression is used to predict continuous values of outputs 

depending on the current input to the model with the help of what we call hypothesis 

function. On the other hand, classification is being used to determine the category of a 

specific input. Classification could be binary (categorize input into two types only), or 

Multi-class Classification (categorize input into multiple options). 

 

Unsupervised Learning: Unsupervised Learning is a type of machine learning which 

can learn by itself without the need for a labeled dataset. It searches for common 

correlations in given data, estimates a model that can analyze new and unseen input data. 

Unsupervised Learning is commonly used in clustering data into clusters that are 

determined without human interference based on the given unlabeled data [7]. 
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Reinforcement Learning: Reinforcement learning is the type of machine learning where 

the agent learns by himself without any given data as it learns from interaction with the 

surrounding environment. Depending on the effects of specific actions the agent 

performs, feedback signals are sent to the agent to tell him how good/bad these actions 

were. Given the appropriate amount of time, the agent will be able to learn patterns and 

logical triggers to his actions so that the least amount of negative feedback will be sent to 

him. 

Reinforcement learning, due to its generality, is studied in many other disciplines, such as 

game theory, control theory, and operations research. 

 

Deep Learning 

Deep Learning [8] is a class of machine learning which uses multiple layers to 

extract complex high dimensional features from raw input data. Deep learning can deal 

effectively with complex problems such as analysis of images, videos, and time-series 

events, taking into consideration spatial, temporal dependencies, or both. The term 

“deep” in deep learning refers to the number of layers through which the data are 

transformed. Deep learning methods can handle efficiently supervised learning problems, 

unsupervised learning problems as well as reinforcement learning problems. 

Deep Learning Approaches: Deep Learning approaches are based mostly on artificial 

neural networks (ANN). Neural networks, in general, are built to simulate the behavior of 

the human brain– specifically, pattern recognition and the passage of input through 

various layers of simulated neural connections. 
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Neural networks are based on a collection of interconnected layers of nodes called 

perceptrons, responsible for processing information passing through different layers. 

Neural networks have many types based on the problem they are addressing. We are 

interested in the following three types; 

Deep Neural Networks: A deep neural network (DNN) is a neural network with more 

than two hidden layers. As we increase the depth of the neural network, the ability to 

detect higher-level features increases. The main advantage of DNNs to traditional 

machine learning approaches is that we don’t need to separately extract features from the 

raw input as the DNN can handle the task of feature extraction efficiently correlating the 

most affecting features to perform the required task. DNNs are trained using a 

backpropagation algorithm which is simply calculating the derivatives of a layer to the 

previous layer starting from the output layer to the input layer. 

Convolutional Neural Networks: A convolutional neural network (CNN) is a class of 

deep neural networks, most commonly applied to analyzing visual imagery. CNNs are 

regularized versions of multilayer perceptrons. Multilayer perceptrons usually refer to 

fully connected networks, that is, each neuron in one layer is connected to all neurons in 

the next layer. The "fully-connectedness" of these networks makes them prone to 

overfitting data.  

Typical ways of regularization include adding some form of magnitude measurement of 

weights to the loss function. However, CNNs take a different approach towards 

regularization: they take advantage of the hierarchical pattern in data and assemble more 

complex patterns using smaller and simpler patterns. Therefore, on the scale of 

connectedness and complexity, CNNs are on the lower extremity.  
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They are also known as shift invariant or space invariant artificial neural networks 

(SIANN), based on their shared-weights architecture and translation invariance 

characteristics [9][10]. Convolutional networks were inspired by biological processes 

[11][12][13][14] in that the connectivity pattern between neurons resembles the 

organization of the animal visual cortex.  

Individual cortical neurons respond to stimuli only in a restricted region of the visual 

field known as the receptive field. The receptive fields of different neurons partially 

overlap such that they cover the entire visual field. CNNs use relatively little pre-

processing compared to other image classification algorithms. This means that the 

network learns the filters that in traditional algorithms were hand-engineered. This 

independence from prior knowledge and human effort in feature design is a major 

advantage. They have applications in image and video recognition, recommender systems 

[15], image classification, medical image analysis, and natural language processing [16].  

 

Recurrent Neural Networks: Recurrent neural network (RNN) is a class of neural 

networks that are used to analyze sequential data. The input to RNN is correlated with 

previous inputs forming a time series input that passes through the network affecting the 

final output as shown in figure 10. RNNs are suitable for problems with high temporal 

dependencies such as speech analysis, recognition, language models, machine translation, 

etc. 
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Deep Learning in Self-Driving Cars 

The self-driving car is defined as a car that is capable of sensing and 

approximating its surrounding environment and navigating with little or no human 

interference. Deep learning had a major contribution in developing self-driving cars. 

Autonomous driving has two approaches to, either a hand-engineered modular pipelined 

approach or an end-to-end deep learning-based approach. 

 

Modular Approach: The main idea of this approach is to split the task of autonomous 

driving into multiple modules performing smaller and specific tasks. Combing all these 

modules together gives the vehicle the ability to make decisions on its own without 

human interference. We are briefly discussing the main modules existing in this 

approach. 

Localization: Localization means that the vehicle can detect its position with very 

high accuracy. HD maps are used for localization with the help of GPS. 

Planning: Planning is meant to feed the vehicle with both the long term planning 

and short term planning. The planning module is important for the vehicle as it 

affects directly the behavior of the vehicle at every moment. 

Perception: Perception module is the eyes for the vehicle. Several sensory data 

can be combined to provide a robust representation of the surrounding 

environment, like cameras, LIDAR, RADAR, and other sensors. CNNs are used in 

this module heavily to perform different tasks as lane detection, object detection 

and localization, and more. 
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Control: Given sensor data and planned trajectories, a control module is necessary 

to control the vehicle in a way that lets it follow its trajectory as well as interacting 

with the surrounding environment accurately. 

 

End-to-End Approach: End-to-End approach aims to eliminate any hand-engineered 

pipelining, unleashing the abilities of deep learning to form its model of the environment, 

and an approximate robust relation between the surrounding environment and the 

corresponding control signals. The driving model learns from thousands of frames 

associated with control signals on how to deal in different situations without the need to 

program it explicitly. The resulting driving policy of this approach is a replica of the 

driver’s behavior existing in the provided training dataset. End-to-End is also called 

imitation learning which is mimicking the behavior of the expert which in the case 

of self-driving cars is the human driver.  

 

 

 

 

 

 

 

 

 



CHAPTER 2. BACKGROUND 

22 | P a g e  
 

 

A question that is always being asked: how can a human teach a car to drive? Humans 

learn to drive by watching other people drive and then they try to observe, learn, replicate 

their actions, and get better. This is exactly what end-to-end imitation learning is about. 

The end-to-end system optimizes all processing steps simultaneously and eventually 

leads to better performance and a smaller system size.  It has been applied in tasks such 

as road following and achieved great results by Nvidia [17], it was about using behavioral 

cloning with a human driver’s with the camera frame input and observing the human 

behavior from the steering angle labeling.  

A beginner human driver learning from an expert one, not only observes his steering 

actions but also he is observing his full-body actions, including his head and eye 

movement, his location of attention in different situations, his emotional statues, besides 

the verbal instructions which are given. 

Among the human senses, the eye is the most one giving a huge amount of information to 

the brain, so we choose human gaze behavior as it contains a huge amount of information 

of the human brain complex attention mechanisms which will help to teach the model 

better, and make it recognize the most important frame components to focus on, which 

will help “humanizing” the self-driving cars. 

 

 

 

 

 

 

 



 

 

Chapter 3 

Dataset 
 

3.1 Main Frame 
 

For our project, we needed a dataset that has the driver’s gaze position 

information for each frame along with the front-facing camera frame and the 

steering angle. A dataset that fulfills these requirements is very rare to find. 

Because eye tracking is not used much in divining applications. We had more than 

one candidate but they weren’t specifically for our task and not accurate enough to 

do the job. We settled on the “DR(eye)VE dataset” [18]. “DR(eye)VE” is currently 

the largest publicly available dataset including gaze information and driving 

behavior in automotive settings. It consists of 74 video sequences of 5 minutes 

each of actual driving experience, for a total of 555,000 frames. Eight different 

drivers alternate during the recording process to smooth the bias given by each 

person’s peculiar way of driving. Each video sequence is five minutes, covering 

different weather conditions (sunny, cloudy, and rainy), different lighting 

(morning, evening, and night) and different Scenarios (countryside, highway, and 

downtown). Videos were recorded with a roof-mounted camera of resolution 

1920x1080 (RGB) and a frame rate of 25 fps, so each video contains 7500 frames. 

 

 

 

 

 

 

 

 

 

 

 

 



CHAPTER 3. DATASET 

24 | P a g e  
 

 
 

Figure 1   Examples taken from a random sequence of DR(eye)VE. From left to right: frames from the 

eye-tracking glasses with gaze data, from the roof-mounted camera, temporal aggregated fixation maps, 

and overlays between frames and fixation maps. 

 

 

As a first step, we focused on using the gaze position information in a simple 

lane following task with constant speed. As a result, the downtown videos' 

surroundings are out of the project’s scope. The chosen videos are from the 

countryside and highway, as there are no people crossing roads at these videos and 

no crossroads and multi-paths. 12 videos were chosen for this project, which is 

about 90,000 frames (80% training, 20% testing). 
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Table 1  Chosen videos form DR(eye)VE dataset 
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Video Number Lightning Weather 

Condition 

Scenario 

01 Evening Sunny Countryside 

02 Morning Cloudy Highway 

03 Evening Sunny Highway 

14 Morning Rainy Highway 

20 Evening Sunny Countryside 

22 Morning Rainy Countryside 

37 Morning Rainy Highway 

42 Evening Cloudy Highway 

44 Morning Rainy Countryside 

52 Evening Sunny Highway 

56 Night Rainy Countryside 

59 Morning Cloudy Highway 
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3.2 Gaze Position Information 
 

 

The driver’s gaze information was captured using an accurate eye tracking 

device -commercial SMI ETG 2w Eye Tracking Glasses (ETG) shown in Fig 2. It 

tracks users’ pupils at 60Hz and provides gaze information in terms of eye 

fixations and saccade movements. For each frame in the dataset, the driver’s gaze 

information was acquired and registered to the external view recorded from a roof-

mounted camera.  

 

The dataset had a text file for each video contains the labels for each frame 

including course angle -which will be discussed later- and the gaze position of the 

driver. The gaze position is given as an x-y position in the mainframe. The gaze 

labeling of the dataset consists of 3 categories for the driver statues: saccade, 

fixation, and blink, which represent the movement of the eye gaze position and its 

different state. 

 

 
Figure 2  SMI ETG 2w Eye Tracking Glasses 

 
 

 

 

 



 

 

Chapter 4 

Gaze Network 
 

 

Predicting the driver’s focus of attention -eye gaze- is essential for our work. What 

the driver is looking at is a personal behavior while what most drivers look at is a task-

driven behavior that holds common gaze patterns shared among different drivers. This 

gives an intuition that by identifying the right factors affecting human’s attention, the eye 

gaze can be predicted. A study showed that the semantic of the scene, the speed, and 

bottom-up features all influence the driver’s gaze[19]. A paper published in 2018 

introduced a computer vision model able to replicate the human attentional behavior 

during driving task[19]. They developed a deep learning model that can profitably learn 

to predict where a driver would be looking at in a specific situation using DR(eye)VE 

dataset and a multi-branch deep neural network.  

This work argues that the act of driving combines complex attention mechanisms 

guided by the driver’s past experience, short reactive times, and strong contextual 

constraints. Thus, very little information is needed to drive if guided by a strong focus of 

attention (FoA) on a limited set of targets and proposes a deep neural network (DNN) 

model that aims at predicting these targets. 
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Figure 3   Multi-branch deep neural network for gaze prediction 

 

 

 

As shown in Fig.3, The DNN is based on three different branches, each of which has its 

own set of parameters, and their predictions are summed to obtain the final map. The 

DNN estimates attentional maps from:  

1- Visual information of the scene  

2- Motion cues (in terms of optical flow)  

3- Semantic segmentation 
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Each branch has been respectively fed with 16 frames clips in raw RGB color 

space, 16 frames clips with optical flow maps, encoded as color images through the flow 

field encoding, and 16 frames clips holding semantic segmentation from encoded as 19 

scalar activation maps, one per segmentation class. 

 

The COARSE module shown in Fig.5 is applied to both a cropped and a 

resized version of the input tensor, which is a video clip of 16 consecutive frames. 

The cropped input is used during training to augment the data and the variety of 

ground truth fixation maps. The prediction of the resized input is stacked with the 

last frame of the video clip and fed to a stack of convolutional layers (refinement 

module) to refine the prediction. Training is performed end-to-end and weights 

between COARSE modules are shared. At test time, only the refined predictions 

are used. Note that the complete model is composed of three of these branches, 

each of which predicting visual attention for different inputs (namely image, 

optical flow, and semantic segmentation).  

 

Figure 4  From the left : Main frame from roof mounted camera , Optical flow of the scene & 

Semantic segmentation of the scene 
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Figure 5   A single FoA branch of our prediction architecture 

 

 

During the implementation of this network in our work, we faced several 

problems. To get the gaze maps from this multi-branch DNN, we had to get the inputs of 

each branch ready. We had to extract optical flow frames and sematic segmentation from 

the videos. the problem was that the authors didn’t intend to make the network real-time 

or even fast enough for real-time applications. To get the frames for the semantic 

segmentation. The authors of the paper used “Semantic segmentation for dilated 

convolution”[20] to get semantic segmentation frames. The DNN described this paper 

was too large with 134 million parameters taking approximately 23 seconds on Google-

Colab GPU to predict one frame, This was too long and would take weeks for us to just 

get the data ready for the gaze network and we had to search for an alternative. We used 

ICNET[21] DNN after modifying its output to be as close as possible to the output of the 

dilated convolution network in the same form that the main network accepts. The small 

difference between their outputs won’t be significant in the final output of the Gaze 

network as the semantic segmentation branch doesn’t contribute much in the summation 

of the 3 branches based on an ablation study conducted by the authors of the paper.  
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The speed of the IC-Net was much higher giving a prediction in 3 sec/frame, 

which decreased the semantic segmentation branch bottleneck and increased the speed of 

the whole model. The difference between the original network output and IC-Net output 

is shown in Fig.6 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6  From the top : Main input frame, Dilation Conv-Net & IC-Net  

outputs 
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After getting all the inputs for the gaze network ready. We started the 

inference phase to get the gaze maps for our dataset. The execution time for the 

gaze net was too large, as it is a multi-branch DNN with 3 different branches and 

each branch takes 16 frames at once to process them. All of this resulted in an 

inference time of approximately 21 seconds on Google-Colab GPU to make one 

single prediction.  

 

 

We thought of minimizing this time by getting the prediction of the 1st 

frame and the 6th frame and getting the frames in between using pixel-wise linear 

interpolation across the frames in time. This is based on the fact that the human 

gaze takes time to changes from one focus point to another, and the dataset is 

recorded at 25 fps which makes the consecutive frames almost the same with very 

small differences. Besides, the network takes 16 frames- clip every time to predict 

the FoA of each frame and shift these frames by one each time, so we have a huge 

quantity of redundant data. We measured the error in the frames predicted by the 

gaze net and the frames obtained using interpolation to verify our assumption. The 

error was below 1%. By using this approach, we could reduce the time greatly to 

about 7.8 % of the author’s original setup inference time. 
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Then, we generated the gaze map prediction for each frame of our dataset to 

be used as the gaze information for our models. Shown in Fig.7 the final gaze map 

output of the Gaze Network. 

 

 

 

 

 

 

 

Figure 7  from the left : Main frame & gaze map output of the Gaze Network 

overlayed on the main frame. 



 

 

Chapter 5 

Preprocessing 

 

5.1 Frames Preprocessing 
 

Now, we have the main front camera frame and the gaze information in the 

form of gaze map in a greyscale frame with sizes of 1920x1080 (RGB) for the 

mainframe, and 448x448 for the gaze map. We want to resize the 2 frames to be a 

size that is compatible with our baseline network which is PilotNet described by 

Nvidia[17]. PilotNet input size is 200x66 (RGB). As a result, we conducted the 

following preprocessing  shown in Fig.8 to satisfy this requirement. 

 

 

 

 

Main 

frame 120 * 

1080 

 

Resized for 

200 * 66 

 

 

 

 

 

 

 

 

 

 

Mainframe 1920 x 1080 Resized 448 x 448 

Cropped   
Resized 200 x 66 

Figure 8  Preprocessing steps 
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I. Resizing 

 

As we discussed in the Gaze Network chapter, the gaze network output the 

gaze map frame in the size of 448x448. The mainframe is resized to be the same 

size as the gaze frame as we are going to crop the mainframe to remove the 

unimportant parts. So, we want both of them to have the same region of space to 

not confuse the model, so its new size will be 448x448 (RGB) as shown in Fig.9. 

 

 

                                                                                  

Figure 9  Resized mainframe and gaze map frame (448 x 448) 
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II. Cropping 

 

We used a cropping function that takes 4-numbers (Top, Bottom, Left, and 

Right) as input. These numbers are the edges for the required part from the frame 

to be saved. Because all videos are not recorded using the same car, and with 

different camera positions, the mainframe contains car front at various positions 

across the videos as shown in Fig.10, so we had to crop each video with a different 

value manually to compensate for these differences.  

 

 

 
Figure 10  Differences  between camera configuration across s frames from  sample videos 

 

We took a sample frame from each video then defined the lower bound of 

the cropped area to be the car front’s upper bound, the following table shows lower 

bound  to apply while cropping each video from our dataset: 

 

 

Video  # 01 02 03 14 20 22 37 42 44 52 56 59 

Lower bound 303 312 364 309 363 338 305 303 338 341 306 295 
 

Table 2  cropping area's lower bound  for each video 
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Also, we cropped part from the sky, as it contains no useful information for 

the network. As a result, for all videos Top=140, Left and Right are not cropped so 

Left=0 and Right=448. This cropping would be applied on both, mainframe and 

gaze frame to have the same information at the same position mapped from 

mainframe to gaze frame. 

 

 
 

Figure 11   Cropped main frame (448 x 448) (RGB) 

 

 

III. Final Resizing 

 

Now we have all frames empty from non-useful data but with different sizes, 

so at this stage we resized all frames -main and gaze frames- to be 200x66 which is 

suitable for our network. 

 

 

 

 
Figure6.   Resized main and gaze map frames (200 x 66) 
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5.2 Course-Steering Angle Conversion Algorithm 
 

 

After choosing our dataset, there was only one drawback, that this dataset 

wasn’t labeled with steering angles. But instead, it had a course angle. The course 

angle is the angle between the head of the car and the North (Angle to the north). It 

can be seen as the angle made by a compass as the car is moving as shown in 

Fig.12  

 
 

 
Figure 12  Course angle 
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As seen in Fig.12, you can guess that there is a relation between this angle 

and the steering angle, but we didn’t find a direct simple relation without going 

deep into the mechanics of the car online. We managed to find this relation, as the 

dataset has no value to us without the steering angle labels with the frames and 

gaze maps. The initial idea to get the steering angle from this course angle was to 

use a derivative, as we can see that the relation between steering and course angle 

is accumulative. To get an intuition, if you were going straight heading to the 

north, so the steering and the course angle will be zero. Now suppose that the street 

is turning 90 degrees to the right, and you want to follow it. You will make the 

steering angle 90 degrees and as time passes, the course angle will be accumulated 

and continuously increasing as the head of the car is turning right until it reaches 

90 degrees. You will get the steering wheel back making the steering angle zero, 

but the course angle will stay 90, so it’s a relation of integration from the course 

angle point of view or differentiation from the steering angle point of view. 

 

 
Figure 13  Initial idea block diagram 
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As shown in Fig.13, a discrete differentiator is applied to the course angle by 

subtracting every two consecutive angles. We apply an exponential Moving 

average to smooth the output and apply an averaging filter after that for more 

smoothing and better output.  The initial idea produced good results and validated 

the idea, but wasn’t good enough. As a result, we had to get the relation proved 

from the geometrical basis of and the motion equations to get a more accurate 

model. 

 

To start from the beginning, we know that a car with a certain constant 

steering angle will move on a circular path as shown in Fig.14. Each one of the 

front wheels will move on a circle with a different radius and each wheel will have 

a slightly different angle to get a smooth motion on the circular path. 

 

 
Figure 14  Circular path motion 
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Now let’s have a look at the geometry of the steering angle of the car as 

shown in Fig.15. 

 
Figure 15  Car's steering geometry 

 

We know that each one of the front wheels moves on a circle with a different 

angle. For simplicity of the model and without losing generality, we are going to 

use only the circle with the small radius “the one drawn by the wheel nearer to the 

center of the turning circle”. The point “O” is the intersection of two lines drawn 

perpendicular to the front and the back wheels. It’s the center of the motion circle. 

Its position will change with each steering angle changing the center and the radius 

of the circle. AD side length is l which is the “wheelbase length”. It’s the distance 

between the from and the back wheels and it differs from one car to another. From 

the trigonometry of the right-angle-triangle ODA with the “left wheel steering 

angle” =  𝛿𝑖 = SA,  

 

                                  𝑆𝐴 = 𝑡𝑎𝑛−1 𝐿

𝑅
                                         (1) 
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We viewed the problem in a time instance “static form”, now we move to the 

dynamic form as the car is moving. 

 

 

 

 

 

 

 
Figure 16   Circular motion 

 

 

 

In Fig.16, we assume the car was at point A at a time to and the course angle, 

in this case, will be 𝜃𝑐
1 = Zero. After time t with a constant steering angle SA the 

car will move on the arc AB and reach point B and the course angle will be 𝜃𝑐
2. 

From the circular motion equations: 

                                     𝑣 =
2𝜋𝑅

𝑡
                                           (2) 

 

 

North 

𝜃𝑐
2

 

R 

A 

B 
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From the geometry, we can conclude that θ = θc, so: 

                                𝜃𝑐
1 − 𝜃𝑐

2
 

=
𝑡∗𝑣

𝑅
                                     (3) 

From (1) & (3) we conclude the final relation between steering and course angles: 

                              𝜃𝑆 = 𝑆𝑅 ∗ 𝑇𝑎𝑛−1(
(𝜃𝑐

1−𝜃𝑐
2)∗𝐿

𝑣∗𝑡
)                          (4) 

 

𝜃𝑆 : steering wheel angle               

t: frame rate = 1/25 

v: velocity at each frame 

L: wheelbase length ≈ 2.6 

SR: steering ratio ≈17 

𝜃𝑐: Course angle 

 
SR indicates the steering ratio, and it’s the ratio of the steering wheel angle 

to the ratio of the car wheels steering angle. Since we don’t know the type of car 

used in the dataset collection, we will use the average number for all the constants 

of the car type in the previous equation for steering ratio and the wheelbase length. 

For time t, it will be the time between two frames of the video (frame rate 25).  

 

Velocity at each frame is given in the dataset, so we now have strong 

mathematical proof to our conversion algorithm which considers velocity and car 

constants. The results of the previous model were very good and way better than 

the initial idea results. We can see know with mathematical proof the source of the 

differentiation from Equation (3). 

Before applying the conversion equation to the course angle, we need to analyze it 

and apply some preprocessing to correct some problems that would appear after 

conversion. 
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Figure 17  course angle sensor output 

 

 

In Fig.17, we can see that the course sensor they are using is a discrete 

sensor, i.e. it changes with a step of one degree. This step is very small tending to 

zero with respect to the constant time before any sudden change, and this will 

cause the steering angle to go to infinity (very high value) when applying the 

equation as it contains derivatives. To solve this problem, the input data had to be 

smoothed, using an averaging filter which will cause a time delay and it’s very 

sensitive to cause a delay in the steering angle, so we used a First Order Hold 

(FOH) to smooth the sharp edges and make the change happen on a larger number 

of frames as shown in Fig.18 
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Figure 18   Smoothed Course angle 

 

After applying equation (4), the steering angle was generated but with high 

oscillations, as the changing time of the course angle is relatively small and has 

discrete values at each time instant. We used the exponential moving average 

(EMA) to smooth out the curve without much time delay, giving the new steering 

angles a higher weight compared to the old one. The final output is shown in 

Fig.19. 
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Figure 19   Smoothed steering angle 

 

 

The last problem faced us in the dataset course angle conversion, is that 

some frames have the course angle changing from 0 to 360 or from 360 to 0 at a 

moment. As the car is changing its heading around the north direction, which 

makes the conversion fails as shown in Fig. 20  
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Figure 20  Course angle discontinuities 

 

To solve this problem, a threshold was put and the angles that surpass this 

threshold will be subtracted from 360. This will make the continuity of the curve 

restored as shown in Fig 21.  

 
Figure 21 Final steering output 
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Chapter 6 

Main Architectures 
 

6.1 Baseline Architecture (PilotNet) 
 

 

Driving in every country is different. There are different rules on the road, 

sometimes it’s very dramatic; such as driving on the other side. Sometimes, it is a 

little bit more subtle; such as rules about right turns on red lights. But the reality is 

self-driving cars that are driving in different cities have to have different kinds of 

brains behind them. They have to have different rules governing their behavior. So, 

the question is how can we develop a technology that we can scale and adapt to 

different cities around the world?  

 

 

One of the methods to do that is using End-to-End learning. End-to-end 

models learn all the features that can occur between the original inputs (x) and the 

final outputs (y). This enables the computer to form a model by observing how 

humans drive in practice. Recently, Nvidia described PilotNet which is CNN that 

goes beyond pattern recognition[17]. PilotNet architecture is shown in Fig.22. It 

learns the entire processing pipeline needed to steer an automobile. Taking images 

from a front-facing camera as input and predicting the steering commands as its 

final output.  
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Figure 22  PilotNet Architecture 
 

 

In our work, as there is no similar work to ours using the same dataset to 

compare the results, we used PilotNet as a baseline for our introduced models to 

investigate the improvement of incorporating eye gaze into the training process. 

We benchmark the root mean squared error (RMSE) values achieved by different 

architectures against PilotNet RMSE to measure the improvement percentage 

achieved. 
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6.1.1 Training 

 
We trained PilotNet on our dataset using only RGB images as an input 

without any gaze information. The following hyperparameters were used to 

achieve the minimum RMSE value for our test set:  

 

Optimizer: ADAM Optimizer 

Learning rate: 0.0001 

L2 Regularization constant: 0.00005 

Drop out ratio: 0.2 

Epochs: 40 

 

After running 40 epochs, learning rate was decreased to 0.0001x0.5 for 15 more 

epochs to give RMSE = 0.0096080. Then decreased again to 0.0001x0.25 for more 

35 epochs giving RMSE = 0.00716854. 

 

 

*All the experiments were conducted on Google-Colab GPU 
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6.1.2 Results Analysis  

 

 

PilotNet was able to score an RMSE value of 0.0105. 

 

To have some insights on how the model takes its decision to predict a 

steering angle command to make sure that the model is well trained and understand 

our dataset well, we implemented saliency maps using a method described in [22] 

to see what regions in the image are the most important for the network during 

steering angle decision making. As shown in Fig.23, It is obvious that lanes and 

both sides of the road are the most important features in the input image for the 

model, while the sides of the road and the background less contribute to the 

decision. 

 

 
Figure 23  Saliency maps of PilotNet 
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6.1.3 Initial Gaze Incorporation Experiment   
 

To get a sense of whether incorporating eye-gaze information in the training 

process will help in predicting a more accurate steering angle or not, we tried 

different combinations of stacking the gaze information with the RBG frame as an 

input to PilotNet and monitored the change in the RMSE scores. 

We tried the following stacking approaches (shown in Table 3): 

 

• RGB frame alongside with gaze map (4D input: 3D frame + 1D gaze map) 

• RGB frame alongside with frame masked by gaze map (6D input: 3D frame 

+ 3D frame masked by gaze map) 

• RGB frame masked by the gaze map (3D input; as masking does not 

increase the dimensions of the RGB frame) 

• RGB frame alongside with RBG frame masked by gaze heat map (6D input: 

3D frame + 3D frame masked by heatmap) 

• RBG frame masked by gaze heat map (3D input: 3D frame masked by 

heatmap) 

The results achieved are summarized in table 1. We notice that all architectures 

achieve lower RMSE values than our baseline -which is PilotNet trained without 

gaze information-. This supports our idea that eye gaze improves steering angle 

prediction accuracy significantly. However, the best RMSE score is achieved by 

incorporating RGB frames masked by a gaze heat map, we think that this method 

has the advantage of eliminating repeated information in the input which may 

confuse the network. 
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Table 3  RMSE & Improvement results 

 

 

 

 

 

 

Input RMSE Improvement (%) 

Baseline 0.0105 - 

RGB + RGB masked by 

gaze map (6D) 

0.0098 6.6% 

RGB + Gaze map (4D) 0.007793 25% 

RGB masked by gaze map 

(3D) 

0.00968 7.8% 

RGB + Gaze heatmap (6D) 0.00898 14.5% 

RGB masked by heatmap 

(3D) 

0.00839 20% 

Figure 24   Top left: RGB frame, Top right :1D gaze map, Bottom left:  RGB masked by gaze 

heatmap & Bottom right: RGB frame masked by gaze map 
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6.2 Fusion Architectures 
 

 

Fusion techniques include middle and late fusion. In fusion networks, we 

have multiple inputs. We try to extract features from each input then fuse these 

extracted features to make a prediction. The point at which fusion takes place 

defines the type of fusion. If the fusion occurs directly after extracting features 

then it is a middle fusion and if fusion between features occurs after passing the 

extracted features through more than one fully connected layer, it is called late 

fusion. 

 

 

We tried middle fusion to give the network a chance to extract features from 

the input. Since we have two inputs; the RGB frame and the gaze map, our 

network consisted of two branches as shown in Fig. 25. We started by using the 

convolution layers (5 layers) in PilotNet as feature extractors from both the RGB 

frame and the gaze map. Afterward, we fuse the extracted features to one feature 

vector and go through a series of fully-connected layers ending with our final 

prediction.  
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Figure 25 Middle fusion architecture 
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6.2.1 Results Analysis 
 

The architecture in Fig. 25 had an RMSE value of 0.00963 and achieved an 

improvement percentage of 8.28 %. This architecture has 5180579 parameters. 

However, using the same number of convolutional layers as a feature extractor for 

both the gaze and the RGB frame is not fair. Because the gaze map is 1D and has 

much fewer features than the RGB frame which is 3D. Decreasing the number of 

layers in the gaze branch will decrease the number of parameters of the network 

and reduce its inference time. 

 

As a result, we started trying out different experiments involved decreasing 

the number of convolutional layers in the gaze branch and changing the number of 

filters in each layer. Keeping in mind that the length of the fully-connected layers 

is the most contributing factor in the network’s number of parameters. So, our 

main goal was to decrease the number of features entering the first fully-connected 

layer without hurting the network’s performance. The final architecture is shown in 

Fig.26 which achieved an RMSE value of 0.00730 and an improvement percentage 

of 30.5%. The number of parameters in this architecture is 926,665. 
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Figure 26 Middle fusion final architecture 

 

As part of verifying the idea that incorporating the gaze information does 

improve the performance of the network, we tried to feed the network with an 

RGB frame in both of the branches. Technically, this does not make sense, 

however, we wanted to make sure that the improvement in the performance is due 

to the presence of the gaze maps not due to the increase in the size of the network. 

We followed the same hyperparameters as described above and the network 

achieve an RMSE value of 0.0082609. 
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We implemented saliency maps using a method described in [22] to see 

what regions in the image are the most important for the network during steering 

angle decision making. We calculated saliency maps with respect to both branches. 

In other words, we calculated saliency maps from the output back to the RGB 

frame input and back to the gaze map input. 

 

 

Figure 27 Middle fusion saliency maps 
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6.3 Spatial Transformer Networks (STN) Architecture  

 

6.3.1 Neural-Attention Introduction 

 
Informally, a neural attention mechanism equips a neural network with the 

ability to focus on a subset of its inputs or features. It expands capabilities of 

neural networks: they allow approximating more complicated functions, or in more 

intuitive terms, they enable focusing on specific parts of the input. The attention 

mechanism is newly introduced to the world of the neural network with more focus 

on topics like natural language processing and generating image captions [23][24]. 

Neural attention is very famous in fields like natural language processing as the 

attention concept was introduced first in that field, and it achieved very impressive 

success, after that, it was introduced to other fields of deep neural networks and 

also a big success is being achieved right now. 

 

We thought of bringing that concept to our problem as its very related 

conceptually. The driver’s gaze position and information are directly correlated to 

the human brain's attention mechanisms to focus his gaze on a specific part of the 

image during driving. We wanted to simulate that optimized human behavior 

giving the SDC a strong ability to see the frames more efficiently. 
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Figure 28  human visual field 

 

 

As we can see in Fig.28, the human visual field from the top view is nearly 

124 degrees. Not all that area have the same resolution or the same density of 

information that is feed to the brain. The human visual mechanism is very simple 

and very efficient, as most of the field collects information about the space but 

only about 8.3% of it has the highest information intensity with a high-resolution 

receptive field of about 20 degrees from a total of 124 degrees. That is why the 

human has to keep moving his eyes and adjust his gaze position in the area the 

brain decided is the most important at each time instant. Using this idea, a lot of 

attention mechanisms for computer vision were introduced like: soft attention, hard 

attention, and many more ideas and techniques. We will focus on the one used in 

this project which is “Spatial Transformer Networks”.   

 

 

 



CHAPTER 6. MAIN ARCHITECTURES  

61 | P a g e  
 

6.3.2 Spatial Transformer Networks (STN)  
 

 

STN was introduced by Google Deep Mind in 2016 [25], it was Mainly 

directed to image classification problems. The idea was that Convolutional Neural 

Networks define an exceptionally powerful class of models, but are still limited by 

the lack of ability to be spatially invariant to the input data in a computationally 

and parameter efficient manner. The main idea of the paper was to allow for much 

more general transformation that just differentiable image-cropping. 

 

 
Figure 29   STN visulization 

  

 

 

As we can see in Fig.28, the STN layer transforms the input frame so it’s 

better recognized by the classifier. It can be added to any network without 

changing it and can be trained using backpropagation techniques as it is 

differentiable and this is its main strength.  
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STN consists of 3 main parts: Localization net, Grid generator, and sampler, 

as shown in Fig.30 

 

 
Figure 30  STN Components 

 
The Localization net can be a CNN followed by a fully-connected (FC) or 

can be only FC as described by the paper. It takes the input feature map with width 

W, height H, and C channels and outputs the parameters of the transformation T  to 

be applied to the feature map. 

 
The 6 elements of localization net output are used by the transformer to do this 

transformation: cropping, translation, rotation, scale, and skew. All the 

transformation equations can be found in the paper. For the nature of our problem, 

we will only use only 3 transformations of the above 5: cropping, translation, 

and isotropic scaling. Any other transformation will confuse our steering angle 

generator network. So our theta matrix will be reduced to only 3 elements: 
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S parameter is for scaling, tx, and ty for shifting in x and y directions. Our 

architecture design of the Localization Network is shown in Fig.31. It consists of 

alternating convolutional and max-pooling layers to focus and locate the important 

features only, followed by 2 FC layers and a final FC layer with tanh activation 

function to get the theta 3 transformation parameters. 

 

 

 

 
Figure 31  LocalizationNet architecture 
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Now we modify the connections the structure of the STN to fit our model, 

instead of feeding the mainframe to the localization network, we feed the 

mainframe overlaid with the gaze map as RGB heat map, so the localization 

network will learn to pick the region of interest from taking into consideration 

the information in the mainframe plus the information in the gaze map. Now we 

construct the final architecture as shown in Fig.32. The input frame and the 

gaze map will be the inputs for the STN layer, the output will be the mainframe 

with the STN transformation applied on it which will be fed to Nvidia PilotNet. 

The whole architecture will be trained end to end.  
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Figure 32  final structure of  our STN architecture  
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6.3.3 Results analysis 

 

 

 
Figure 33   output of  STN  Layer after training 

 

As shown in Fig.33, the STN Layer learned to focus on the street, and 

specifically on the lanes. It also tends to shift right a little bit to get the right lane as 

its more important than the left one and nearer in most cases as the cars always 

take the right path in 2-ways streets. We can observe that the localization Net of 

the STN Layer after training outputs nearly the same transformation with small 

changes from one frame to another, which makes the place and the size of the red 

box shown in Fig.32 the nearly the same for different input frames. This behavior 

is because of the position dependence nature of our problem, as a shifted input 

frame to the right or the left indicated different car positions in the street which 

leads to different steering angle output. 

a1 

a2 

b1 

b2 

c1 

c2 

d1 

d2 
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This architecture scored an RMSE value of 0.008312 which is an 

improvement of 20.83%, and to our knowledge, it’s the first architecture to use the 

STN in self-driving cars regression problem, and also the first to use the gaze 

information. 

 

 

Its only drawback is its inference time which has a huge bottleneck delay as 

it gets the gaze map frame from the Gaze Network (discussed in Gaze Network 

chapter) which is not a real-time network. Its inference time after our modification 

is approximately 30 sec./frame (Google-Colab GPU). So it will be impossible to be 

used on embedded systems in real-life SDC’s. 
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6.4 Multi-task Learning (MTL) Architecture 
 

 

We wanted to make use of the available dataset broadly and let our model 

generalize better on our original task which is predicting steering angles.  We went 

to the Multi-Task Learning (MTL) approach, which is a successful approach in the 

field of Natural Language Processing (NLP), drug discovery, speech 

recognition[0], but most importantly computer vision which is our main use of 

interest. We can effectively optimize more than one loss function for various tasks, 

as long as these tasks are somehow correlated, the chance of getting an auxiliary 

task will help improving the optimization process and hence, our main task 

performance[26].   

 

 

In our case we worked on only two tasks: predicting steering angles and 

predicting the eye-gaze location, and of course, we could add more auxiliary tasks, 

but this would affect our runtime in training and testing. 

In MTL, we followed the Hard parameter sharing [27], which means we extract 

some features by shared layers between all tasks, imagine it as the backbone of the 

network, then input the extracted features to the heads of the network which 

represent task-specific layers, Fig.34, this kind of sharing, reduces the risk of 

overfitting[28]. 
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Figure 34  MTL general schematic 

 

 

Concerning our multitask architecture, we needed two heads one for 

predicting the steering angle which is the (main task) and the other is for predicting 

the gaze map (secondary task), and it's supposed that adding the secondary task 

will improve the primary target task as discussed above. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



CHAPTER 6. MAIN ARCHITECTURES  

70 | P a g e  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

Figure 35   Multi-task architecture 
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Our Multi-task architecture idea is to use the PilotNet as the main block, as 

our primary task is the steering angle prediction. We use the first 3 convolutional 

layers of the PilotNet as the shared layers. Afterward, it is branched into 2 

branches, one is the rest of the PilotNet and the other one is a decoder like network 

consisting of 3 deconvolutional layers inverting the effect of the 3 shared layers to 

get the same size of the input image for gaze map. these 3 deconvolutional layers 

have 3 convolutional layers between them to increase the number of image 

constructing parameters and improve the accuracy of the constructed image as 

shown in Fig.35. 

 

 

While each task has its own defined loss function: the steering branch loss 

function is the root mean squared error between the original and predicted steering 

angle, while the gaze map branch is pixel-wise RMSE between the ground truth 

gaze map and the predicted one. We had to define a loss function for the two tasks 

together, so at first, we combined the different losses simply by summing them into 

one loss function, but this ended up with bad results as one task dominates the 

overall sum, because of different loss scales. So we replaced the sum of losses to a 

weighted sum of losses with steering branch having full weight, and the gaze 

branch multiplied by 0.1 as our main task is the steering one so giving it higher 

loss value makes the system focus on this task more than the other, and the results 

were better. 
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6.4.1 Results Analysis 
 

 

 

In Fig. 36, (a) is the input frame, (b) is the ground truth of gaze map, and (c) 

is the prediction of the gaze branch. We can see that the network makes very good 

predictions, and it learned to detect the far end of the street which helped in the 

prediction of the steering angle better and improved the accuracy. 

 

 

 

 

 

 

 

 

a 

b 

Figure 36  From top : input frame, Gazemap groundtruth,  and  prediction of gaze 

branch 

c 
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This architecture scored an RMSE value of 0.008312 which makes an 

improvement of 21.42% over the baseline. The main advantage of this MTL 

architecture is the inference time. The previous architectures have the Gaze 

network put in serial before the model, which takes the input frame and generates 

the gaze map which will be used by the network as an input. The inference time of 

the Gaze network is very large as discussed before, it's equal approximately 24 

sec/frame. This MTL architecture replaces the Gaze network completely, and its 

inference time is 0.0028 sec./frame, which gives us a very high frame rate to be 

used in real-time embedded system devices.   
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6.5 STN + Multi-task Learning  Architecture 
 

 

Although our STN attention model is very powerful as it seeks only the 

important part of the input image and made a very good improvement, it has 2 

problems. The input gaze map is not very effective to the network as the network 

can’t make large changes in the transformations as discussed before, and it didn’t 

make the optimal use of the gaze information. The second problem is that the 

network gets the gaze information as an input which makes the delay time of the 

network very high because of the gaze network which predicts the gaze map for 

the input frame. As a solution to these problems and to increase accuracy, we 

thought of merging the 2 architectures: STN and Multi-task. 

 

In this architecture Fig.37, we combine the strengths of the 2 architectures by 

letting the network with its 2 branches decide the best regions for the given tasks. 

We tried three forms, we let the STN layer make 1, 2 and 3 transformations on the 

input frame to give it more degrees of freedom, then we stacked the output images 

into a single frame and resize it to be of size 200x60 image to be the same input 

size to the multi-task network. In the 1-transformation trial, it was hard for the 

network to focus on only one region in the input frame, as each one of the 2 tasks 

wants the STN layer to focus on a different part of the frame. The steering branch 

pushes the STN layer to focus on the right lane as discussed in the attention 

section, but the gaze branch pushes it to focus on the far end of the road to get the 

gaze position as it's mostly at the far end of the road. So 1 transformation was not 

enough. We added 2 transformations which gave the network one more degree of 

freedom. And a slight improvement was achieved by increasing the 

transformations from 2 to 3 transformations. 
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The initial value for the STN layer transformation is better to be such that 

the whole frame stays the same and not to be changed, and let the network learn 

the best transformation as recommended by the authors of [25], but here we made a 

random small change between the 2 or 3 transformations to prevent getting the 

same transformation and to get better results. 
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Figure 37   Multi-task + STN Final architecture (3-Transformations) 
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6.3.1 Results Analysis 

 

In Fig.39, the results of the 2-transformation version are shown, we can 

notice that each one of the 2 tasks forces one of the 2 transformations to focus on 

its preferred region of interest, so the network learned to focus on the right lane 

and the street’s far end for the 2 transformations. We can see that it’s not always a 

good region to crop for situations like the one shown in Fig. 20-b-1, but the 

network learned the best place to focus on from the whole training set, and this can 

be explained as the human driver from his experience in driving, expects to have 

the right lane for example at specific place relative to the car’s position and he tries 

to vary the steering angle until he gets the right lane in the place he decides and 

keep changing the steering angle to have the lane position relative to the car 

constant as the street curvature changes.  

 

We can see the gaze branch learned to detect all the paths the car can take in 

Fig. 39-e-1, the ground truth has only one spot tending to the right path as the gaze 

network has much information more than ours like optical flow and semantic 

segmentation besides a sequence of 16 frames, but learning the paths is important 

and sufficient to improve the steering angle accuracy. 

The three transformations are shown in Fig. 38, the network learned to focus on the 

right lane and the street far end like the 2 transformations–Network, in addition to 

the third one is focused on the left lane which is less important than the right one. 
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This Novel architecture combining STN and MTL scored an RMSE value of 

0.008312 which makes an improvement of 32.37% over the baseline for the 2-

transformations and scored an RMSE value of 0.006701 which makes an 

improvement of 36.18% over the baseline for the 3-Transformations which is the 

best result achieved in all the architectures. It also has an inference time of 0.015 

which makes a frame rate of 66 frames/second. The delay time is directly 

proportional to the number of the transformations used, so there is a tradeoff 

between inference time and getting less RMSE value. Increasing the number of 

transformations also decreases the quality of each frame in the final stacked frame. 

For visualization for our model  please refer to our video demo at 

https://goo.gl/13551M 

 

 

 

Figure 38   3 transformations STN layer output 



CHAPTER 6. MAIN ARCHITECTURES  

79 | P a g e  
 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

a 

c 

e 

Figure 39   output of STN layer (b/c), gaze  ground truth (d) and predictions of gaze branch (e) 
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6.4 Results 
 

The results of the discussed architecture are summarized in the following table: 

 

Table 4 Results summary 

Architecture RMSE Improvement (%) Inference time (sec.) 

Baseline 0.0105 - 0.0028 

Middle-fusion 0.0071132 30.45% 27 + 0.00858 

STN layer 0.008312 20.83% 27 + 0.005 

Multi-task 0.008250 21.42% 0.0028 

STN+MTL 2-

Trans 

0.007101 32.37% 0.01 

STN+MTL 3-

Trans. 

0.006701 36.18% 0.015 
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6.5 On-Road Test 

To insure the ability of the model to generalize well in different distribution 

unseen environment we did a real time road-test in our city in Egypt, all the 

preprocessing needed were: right & left shifting of new frames to compensate for 

the different road and lane sizes between the country of the dataset and our country 

besides a “histogram matching ” to match the color distribution between our 

frames with a reference frame from the dataset of training, the STN made it 

possible that the model can really drive in this very different unseen environment 

quit well without fine-tuning of, as the frame cropping and zooming enables us to 

shift the image without adding black boxes in the side  to compensate this shift to 

preserve the frame size , and it made the histogram matching  possible, because the 

zoomed area is always focused on the road and the lanes , so there is nearly only 2 

main colors and no more objects with different colors besides the road appear in 

the frame which can vastly change the color components of each frame and make it 

very hard to predict and compensate for this differences.  histogram matching 

example is shown in the below figure. 

 

 

 

 
 

 

 



CHAPTER 6. MAIN ARCHITECTURES  

82 | P a g e  
 

 

 

 

 

 

 

 

 

Figure 40  From top: reference frame, new environment frame, new 

environment frame after applying histogram matching with the reference 

frame 



 

 

Chapter 7 

Conclusion 
 

 

We have verified that incorporating eye gaze information into the training process does 

help the model to predict accurate steering commands, generalize to unseen 

environments, and operate in different environments without being explicitly trained in 

them.  

 

We introduced an attention mechanism that enables the model to focus on the important 

features in the road such as the lanes and eliminate unnecessary elements. We also used 

multitask learning (MTL) and implement a multitask network which can make steering 

predictions and generate gaze maps.  

 

We introduced a state of the art architecture that combines attention mechanism and 

multitask learning to predict steering commands and gaze maps, achieving an 

improvement percentage of 36% over the Nvidia PilotNet.  

 

Due to the nature of our problem, being able to operate in real-time is a must. We have 

optimized the inference time to reach 0.015 seconds/frame. 

 

We test our model on a recorded dataset from Egypt and the model was able to predict 

accurate steering commands without any fine-tuning which is proof of its ability to 

generalize to unseen environments.
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