

DESIGN AND IMPLEMENTATION OF PCI-E CORE

WITH MIX LANGUAGES

By

Abd-Elrahman Badr Diaa El-Din

Abd-Elrahman Khaled Abd-Elrahman

Marwa Sayed Ahmed Aboouf

Mohamed Yasser Abd-Elmotaleb

Under the Supervision of Associate Prof. Hassan Mostafa

A Graduation Project Report Submitted to

The Faculty of Engineering at Cairo University in

Partial Fulfillment of the Requirements for the

Degree of Bachelor of Science in

Electronics and Communications Engineering Faculty of Engineering,

 Cairo University Giza, Egypt

2 | Page

3 | Page

Abstract

According to Moore’s Law, processing speeds have doubled every 18 months since the

invention of the integrated circuit. Also, the huge technological improvement leads us to use

protocols of transferring data with high speed. PCI (Peripheral Component Interconnect)

Express bus was introduced by Intel in 2004. That protocol helps us to reach high throughput

of data, lower I/O pins and more detailed error detection and reporting mechanism (Advanced

Error Reporting, AER). PCI-E represents the currently fastest and most expensive solution to

connect the peripheral devices with general purpose CPU. It provides highest bandwidth

connection in the PC platform.

Keywords: PCI, PCI-E, Moore’s Law.

4 | Page

Acknowledgements

 We are using this opportunity to express our gratitude to everyone who supported us

throughout the graduation project. We are thankful for their aspiring guidance and friendly advice.

 First, we want to thank our major advisor Dr. Hassan Mustafa for his encouragement

through the whole year, his caring about following up each stage in the project and his suggestions to

solve some problems we faced during the project work.

 We want to thank team PCI Mentor Graphics, Eng. Mahmoud El-Tahawy, Team Leader,

and Eng. Ahmed Khedr, and Eng. Ahmed El-Zeiny, and Eng. Adham Rageh, for providing their time,

experience to help us overcome some obstacles we faced during some stages especially when dealing

with new concepts and tools.

 Finally, we want to thank our families for their support, tolerance and love during this year

especially during the hard times they were always there having faith in what we do. We are grateful

to our families, colleagues and friends for always motivating us, without them we wouldn't have come

so far.

5 | Page

Table of Contents

List of Acronyms .. 13

Chapter 1 ... 15

Introduction ... 15

1-1 Motivation .. 15

1-2 Architecture .. 15

1-3 Applications .. 17

1-4 Generations ... 17

1-5 PCI Express Device Layers .. 18

Chapter 2 ... 20

History of Buses... 20

2-1 ISA (Industry Standard Architecture) Bus ... 20

2-1-1 Introduction ... 20

2-1-2 Specifications .. 20

2-1-3 Future Replacement ... 20

2-2 EISA (Extended Industry Standard Architecture) Bus ... 21

2-2-1 Introduction ... 21

2-2-2 Specifications .. 21

2-2-3 Future Replacement ... 21

2-3 MCA (Micro Channel Architecture) Bus ... 21

2-3-1 Introduction ... 21

2-3-2 Specifications .. 22

2-3-3 Future Replacement ... 22

2-4 VESA (Video Electronics Standards Association) Bus .. 22

2-4-1 Introduction ... 22

2-4-2 Specifications .. 22

2-4-3 Future Replacement ... 23

2-5 PCI (Peripheral Component Interconnect) Bus .. 23

2-5-1 Introduction ... 23

2-5-2 Future Replacement ... 23

2-5-3 Difference between PCI and PCI-E ... 23

2-6 PCI-X (Peripheral Component Interconnect Extended) Bus .. 25

6 | Page

2-6-1 Introduction ... 25

2-6-2 Versions ... 25

2-6-3 Differences between PCI-X and PCI-E ... 25

2-7 CXL (Compute Express Link) Bus... 26

2-7-1 Introduction ... 26

2-7-2 Versions ... 27

2-7-3 Speed ... 27

2-7-4 Protocols .. 27

2-7-5 Differences between CXL and PCI-E ... 28

Chapter 3 ... 30

Transaction layer .. 30

3-1 Introduction .. 30

3-2 Project Design for Transaction Layer .. 31

3-3 TLP (Transaction Layer Packet) Types .. 32

3-4 TLP Structure ... 33

3-4-1 Generic TLP Header .. 33

3-4-2 Memory Requests .. 36

3-4-3 Configuration Requests ... 39

3-4-4 Completion Requests ... 42

3-4-5 Message Requests.. 45

3-5 Configuration Space ... 48

3-5-1 Introduction ... 48

3-5-2 Type 0 .. 49

3-5-3 Type 1 .. 65

3-5-4 Capabilities .. 79

3-5-5 Extended Capabilities .. 96

3-5-6 Our Design .. 100

3-6 TLP Decomposition .. 101

3-6-1 Block Interfacing ... 101

3-6-2 Block Flow .. 102

3-6-3 Error Checking .. 102

3-6-4 Error handling Block ... 103

3-6-5 Packet Decomposition ... 104

3-6-6 Implementation .. 106

7 | Page

3-7 Thread ... 106

3-7-1 Operations ... 106

3-7-2 Implementation .. 107

3-8 Flow Control ... 107

3-8-1 Concept .. 107

3-8-2 Flow Control Buffers... 109

3-8-3 Flow Control Logic ... 110

3-8-4 Implementation .. 111

Chapter 4 ... 112

Datalink Layer .. 112

4-1 Data Link Layer Overview ... 112

4-2 Data Integrity in Data Link Layer .. 112

4-3 Data Link Layer Packets (DLLP) ... 113

4-3-1 TLP Acknowledgment Ack/Nak DLLPs... 114

4-3-2 Flow Control Packet DLLPs ... 115

4-5 ACK/NAK Protocol ... 115

4-6 Elements of Transmitter ACK/NAK Protocol .. 117

4-6-1 Replay Buffer .. 118

4-6-2 Next Transmit Seq Num .. 118

4-6-3 LCRC Generator.. 118

4-6-4 Replay Timer ... 118

4-6-5 Replay_Num Count ... 119

4-6-6 ACKD_SEQ Count ... 120

4-6-7 DLLP CRC Check ... 120

4-7 Elements of Receiver ACK/NAK Protocol .. 120

4-7-1 Receive Buffer ... 121

4-7-2 LCRC Check ... 121

4-7-3 Next_RCV_SEQ_Count .. 121

4-7-4 Sequence Number Check .. 121

4-7-5 Nak scheduled flag .. 121

4-7-6 ACKNAK_Latency_Timer ... 121

4-7-7 ACK/NAK DLLP Generator ... 123

4-8 Scheduling an ACK DLLP ... 123

4-9 Scheduling a NAK DLLP ... 123

8 | Page

4-10 Design and implementation (Block Diagram) .. 124

4-11 Block Description ... 125

4-11-1 Creation_DataLink_TLP ... 125

4-11-2 DLLP Manager Rx .. 126

4-11-3 DLLP Manager Tx .. 127

4-11-4 Ack_Nak_Notifications ... 128

4-11-5 Data_link_Update .. 129

4-12 Interfacing with Transaction Layer .. 130

4-12-1 Creation of TLP .. 130

4-12-2 Create_Update_Flow_Control .. 130

4-12-3 GET_FLOW_CONTROL_DLLP ... 131

4-12-4 Data_Link_Update .. 132

4-12-5 Data_Link_To_Transaction ... 133

4-13 Recommended Priority to Schedule Packets .. 133

Chapter 5 ... 134

Physical Layer ... 134

5-1 Physical layer overview .. 134

5-2 Transmitter Logic ... 136

5-3 Receive Logic ... 137

5-4 Physical layer Error Handling .. 138

Chapter 6 ... 140

Testing .. 140

6-1 Interface of layers ... 140

6-2 Header type comparison .. 141

6-2-1 Header Type 0 Test ... 142

6-2-2 Header Type 1 Test ... 142

6-3 Test types .. 143

6-3-1 First Test type .. 143

6-3-2 Packet Examples.. 143

6-3-3 Second Test type ... 146

6-3-4 Packet Examples.. 146

6-4 Tests in blocks .. 149

6-4-1 Transaction layer test ... 149

6-4-2 Datalink layer test .. 150

9 | Page

6-4-3 Physical layer test .. 151

Conclusion and Future work ... 152

References .. 153

10 | Page

List of figures

Figure 1: Topology of PCI-E .. 15

Figure 2: PCI Express Device Layers ... 18

Figure 3: Working Topology of PCI/PCI-X vs PCI-E .. 26

Figure 4: CXL usages ... 28

Figure 5: PCI-E Topology .. 29

Figure 6: Detailed Block Diagram of PCI Express Device's Layers .. 30

Figure 7: Block Diagram of Transaction Layer .. 31

Figure 8: TLP Structure at the Transaction Layer .. 33

Figure 9: Generic TLP Header Fields ... 33

Figure 10: 3D and 4D Memory Request Header Formats .. 36

Figure 11: 3DW Configuration Request Header Format .. 39

Figure 12: Completion Request Header Format ... 42

Figure 13: Message Request Header Format .. 45

Figure 14:Configuration Space Type 0 ... 48

Figure 15: Configuration Space Type 1 .. 48

Figure 16: Class Code Register ... 50

Figure 17: Header Type Register .. 52

Figure 18: BIST Register .. 53

Figure 19: General Format of a New Capabilities List Entry ... 54

Figure 20: ROM Base Address Register ... 57

Figure 21: Command Register .. 58

Figure 22: Status Register ... 60

Figure 23: BAR 32-bit Memory assignment ... 64

Figure 24: BAR 64-bit Memory assignment ... 64

Figure 25: IO bit Assignment.. 64

Figure 26: IO Base & Limit Registers bit assignment .. 68

Figure 27: Prefetchable memory Base & Limit Registers .. 69

Figure 28: memory Base & Limit Registers ... 69

Figure 29: Bridge Command Register .. 70

Figure 30: Bridge Control Register ... 73

Figure 31: Bridge Status Register ... 75

Figure 32: Bridge Secondary Status Register ... 77

Figure 33: PCIe Capability Registers .. 79

11 | Page

Figure 34: PCIe Capability Register ... 80

Figure 35: Device Capabilities Register ... 82

Figure 36: Device Control Register .. 87

Figure 37: Device Status Register ... 90

Figure 38: MSI Capability Register Set 32&64-bit .. 93

Figure 39: Message Control Register.. 93

Figure 40: AER Extended Capability Register Set ... 96

Figure 41: AER Enhanced Capability Register .. 97

Figure 42: Advanced Error Capabilities and Control Register ... 97

Figure 43: Advanced Error Correctable Error Mask Register ... 97

Figure 44: Advanced Error Correctable Error Status Register ... 97

Figure 45: Advanced Error Uncorrectable Error Mask Register .. 98

Figure 46: Advanced Error Uncorrectable Error Severity Register .. 98

Figure 47: Advanced Error Uncorrectable Error Status Register ... 98

Figure 48: TLP Decomposition Interfacing .. 101

Figure 49: TLP Decomposition Block Flow ... 102

Figure 50: Error Handling Flowchart.. 103

Figure 51: Memory TLPs .. 104

Figure 52: Configuration TLPs ... 105

Figure 53: Completions TLPs ... 105

Figure 54: Flow Control Logic Location ... 108

Figure 55: Flow Control Buffers ... 109

Figure 56: Flow Control Logic Elements ... 111

Figure 57: Data link layer overview ... 112

Figure 58: Data Link Layer ... 112

Figure 59: DLLP Flow .. 113

Figure 60: General DLLP Format ... 114

Figure 61: ACK/NAK DLLP Format ... 114

Figure 62: Flow Control DLLP Format ... 115

Figure 63: Over View of ACK/NAK Protocol .. 116

Figure 64: Elements of Transmitter ACK/NAK Protocol ... 117

Figure 65: Equation of Replay Timer ... 119

Figure 66: Elements of Receiver ACK/NAK Protocol ... 120

Figure 67: ACKNAK_LATENCY_TIMER equation .. 122

file:///F:/last%20trial/Thesis.docx%23_Toc48498001
file:///F:/last%20trial/Thesis.docx%23_Toc48498002
file:///F:/last%20trial/Thesis.docx%23_Toc48498004
file:///F:/last%20trial/Thesis.docx%23_Toc48498005
file:///F:/last%20trial/Thesis.docx%23_Toc48498006
file:///F:/last%20trial/Thesis.docx%23_Toc48498007
file:///F:/last%20trial/Thesis.docx%23_Toc48498010

12 | Page

Figure 68: Design and Implementation of Data Link Layer ... 124

Figure 69: flow chart of Creation_Datalink_TLP .. 125

Figure 70: Flow chart of DLLP Manager Rx ... 126

Figure 71: Flow chart of DLLP Manager Tx .. 127

Figure 72: Flow chart of Ack_Nak_Notifcations.. 128

Figure 73: Flow chart of Data_Link_Update .. 129

Figure 74: Interfacing Transaction Layer with Data Link Layer and vice versa 130

Figure 75: Types and Format of Flow Control Packets .. 131

Figure 76: illustration of GET_FLOW_CONTROL_DLLP ... 131

Figure 77: Block Diagram Data_Link_Update ... 132

Figure 78: Illustration Data_Link_To_Transaction .. 133

Figure 79: The Physical layer ... 134

Figure 80: The Electrical and the Logical Physical .. 135

Figure 81: Detailed Physical layer .. 138

Figure 82: Layer Interface .. 140

Figure 83: Header type 0 ... 141

Figure 84: Header type 1 ... 141

Figure 85: Transaction layer test type 1 .. 149

Figure 86: Transaction layer test type 2 .. 149

Figure 87: Datalink layer test type 1 ... 150

Figure 88: Datalink layer test type 2 ... 150

Figure 89: Physical layer test type 1 ... 151

Figure 90: Physical layer test type 2 ... 151

file:///F:/last%20trial/Thesis.docx%23_Toc48498014
file:///F:/last%20trial/Thesis.docx%23_Toc48498018
file:///F:/last%20trial/Thesis.docx%23_Toc48498021
file:///F:/last%20trial/Thesis.docx%23_Toc48498022

13 | Page

List of Acronyms

ACK Acknowledgement

AER Advanced Error Reporting

AGP Accelerated Graphics Port

Attr Attributes

BE Byte Enable

BIST Built-In-Self-Test

CA Completion Abort

CfgRd Configuration Read

CfgWr Configuration Write

Cpl Completion

CplD Completion with Data

CRC Cyclic Redundancy Check

CRS Configuration Retry Request

CXL Compute Express Link

DLLP Data Link Layer Packet

DMA Direct Memory Access

DW Double Word

EISA Extended Industry Standard Architecture

EP End Point

FC Flow Control

FCC Flow Control Credit

IDE Integrated Drive Electronics

INTx Interrupt

ISA Industry Standard Architecture

14 | Page

MCA Micro Channel Architecture

MemRd Memory Read

MemWr Memory Write

MSI Message Signaled Interrupt

Msg Message

MsgD Message with Data

NRS Next Receive Sequence

NTS Next Transmit Sequence

OS Operating System

PCI Peripheral Component Interconnect

PCI-E Peripheral Component Interconnect Express

PCI-SIG Peripheral Component Interconnect Special Interested Group

PCI-X Peripheral Component Interconnect eXtended

PLP Physical Layer Packet

QoS Quality of Service

RC Root Complex

SC Successful Completion

SSD Solid State Drive

TC Traffic Class

TD TLP Digest

TLP Transaction Layer Packet

UR Unsupported Request

VC Virtual Channel

VESA Video Electronics Standards Association

VGA Video Graphics

15 | Page

Chapter 1

Introduction

In this thesis, we are going to propose the design and topology of PCI-E (Peripheral

Component Interconnect Express) Core implemented in mix language with DPI protocol.

1-1 Motivation

 PCI-E is a high-speed serial computer expansion bus standard, designed to replace the

older PCI, PCI-X and AGP bus standards. It is the common motherboard interface for

personal computers' graphics cards, hard drives, SSDs, Wi-Fi and Ethernet hardware

connections.

1-2 Architecture

Figure 1: Topology of PCI-E

https://en.wikipedia.org/wiki/Serial_communication
https://en.wikipedia.org/wiki/Computer
https://en.wikipedia.org/wiki/Expansion_bus
https://en.wikipedia.org/wiki/Conventional_PCI
https://en.wikipedia.org/wiki/PCI-X
https://en.wikipedia.org/wiki/Accelerated_Graphics_Port
https://en.wikipedia.org/wiki/Motherboard
https://en.wikipedia.org/wiki/Video_card
https://en.wikipedia.org/wiki/Hard_disk_drive
https://en.wikipedia.org/wiki/Solid-state_drive
https://en.wikipedia.org/wiki/Wi-Fi
https://en.wikipedia.org/wiki/Ethernet

16 | Page

 The Root Complex denotes the device that connects the CPU and memory sub-system

to the PCI Express fabric. It may support one or more PCI Express ports. The root complex

in this example supports 3 ports. Each port is connected to an endpoint device or a switch

which forms a sub-hierarchy. The root complex generates transaction requests on the behalf

of the CPU. It is capable of initiating configuration transaction requests on the behalf of the

CPU. It generates both memory and IO requests as well as generates locked transaction

requests on the behalf of the CPU. The root complex as a completer does not respond to

locked requests. Root complex transmits packets out of its ports and receives packets on its

ports which it forwards to memory. A multi-port root complex may also route packets from

one port to another port but is NOT required by the specification to do so.

 Root complex implements central resources such as: hot plug controller, power

management controller, interrupt controller, error detection and reporting logic. The root

complex initializes with a bus number, device number and function number which are used

to form a requester ID or completer ID. The root complex bus, device and function numbers

initialize to all 0s.

 PCI Express devices communicate via a logical connection called

an interconnect or link. A link is a point-to-point communication channel between two PCI

Express ports allowing both of them to send and receive ordinary PCI requests (configuration,

I/O or memory read/write) and interrupts (INTx, MSI or MSI-X). At the physical level, a link

is composed of one or more lanes (from x1 to x32 lanes).

 A lane is composed of two differential signaling pairs, with one pair for receiving data

and the other for transmitting. Thus, each lane is composed of four wires or signal traces.

 Rather than bus cycles we are familiar with from PCI and PCI-X architectures, PCI

Express encodes transactions using a packet-based protocol. Packets are transmitted and

received serially and byte striped across the available Lanes of the Link. The more Lanes

implemented on a Link the faster a packet is transmit-ted and the greater the bandwidth of

the Link. The packets are used to support the split transaction protocol for non-posted

transactions. Various types of packets such as memory read and write requests, IO read and

write requests, configuration read and write requests, message requests and completions are

defined.

https://en.wikipedia.org/wiki/Interrupt
https://en.wikipedia.org/wiki/Peripheral_Component_Interconnect#Interrupts
https://en.wikipedia.org/wiki/Message_Signaled_Interrupts
https://en.wikipedia.org/wiki/Differential_signaling
https://en.wikipedia.org/wiki/Signal_traces

17 | Page

1-3 Applications

 It can be used as peripheral device interconnect, chip-to-chip interface and as a

bridge to many other protocol standards.

 Expansion Card interface.

 Sound Card.

 Network Cards (wired and wireless).

 GPUs.

 Interface in High-Performance Video Systems.

 Storage products like an SSD, to this high bandwidth interface allows for much faster

reading from, and writing to.

1-4 Generations

Table 1: Generations of PCI-E

PCI-E has five generations and Gen6 will be released in 2021.

As shown in the above table, Throughput of generations doubles because the frequency

doubles also, despite PCI-E Gen5 and Gen6 which have the same frequency. That’s because

Gen6 switches to PAM4 (Pulse Amplitude Modulation) so that 2 bits are transferred per

transfer.

18 | Page

1-5 PCI Express Device Layers

Figure 2: PCI Express Device Layers

Transmit Portion of Device Layers

Consider the transmit portion of a device. Packet contents are formed in the Transaction

Layer with information obtained from the device core and application. The packet is stored

in buffers ready for transmission to the lower layers. This packet is referred to as a

Transaction Layer Packet. The Data Link Layer concatenates to the packet additional

information required for error checking at a receiver device. The packet is then encoded in

the Physical layer and transmitted differentially on the Link by the analog portion of this

Layer. The packet is transmitted using the available Lanes of the Link to the receiving device

which is its neighbor.

19 | Page

Receive Portion of Device Layers

The receiver device decodes the incoming packet contents in the Physical Layer and forwards

the resulting contents to the upper layers. The Data Link Layer checks for errors in the

incoming packet and if there are no errors forwards the packet up to the Transaction Layer.

The Transaction Layer buffers the incoming TLPs and converts the information in the packet

to a representation that can be processed by the device core and application.

20 | Page

Chapter 2

History of Buses

2-1 ISA (Industry Standard Architecture) Bus

2-1-1 Introduction

 ISA is a standard bus architecture that was associated with the IBM AT motherboard.

In 1981, the first IBM personal computers (PCs) introduced included the 8-bit subset of the

ISA bus, and the PC AT, which IBM launched in 1984, was the first full 16-bit

implementation of the ISA bus. It allowed 16 bits at a time to flow between the motherboard

circuitry and an expansion slot card and its associated device(s).

ISA was one of the first expansion buses for PCs. Providing the hardware interface for

connecting peripheral devices in PCs, ISA accepted cards for sound, display, hard drives and

other devices. ISA allowed for additional expansion cards to be attached to a computer's

motherboard and was capable of direct memory access (DMA), with multiple expansion

cards on a memory channel and separate interrupt request (IRQ) assignment for each card.

The development and use of ISA led to several later technologies.

2-1-2 Specifications

 8-bit or 16-bit Data width

 Maximum Clock Frequency 8 MHz synchronous with the CPU clock

 Parallel internal bus with a separate (not multiplexed) address and data signals

 8 Mbytes/Sec Speed

 8-bit ISA Bandwidth is 8 MHz && 16-bit ISA Bandwidth is 16 MHz

 Used devices Sound cards, Modems, Network cards, display and hard drives

2-1-3 Future Replacement

 In the early 1990s, Intel developed PCI, which combined the characteristics of ISA and

VL-Bus. PCI provided direct access to system memory for connected devices while

employing a bridge to connect to the front side bus and, thus, to the CPU. As a result, PCI's

performance exceeded the VL-Bus while eliminating the potential for interference with the

CPU.

By the mid-1990s, new motherboards were manufactured with fewer ISA slots, and PCI

became standard for connecting computers and their peripherals. For several years,

motherboards had a combination of 8-bit and 16-bit ISA slots. As PCI became popular,

21 | Page

motherboards included only 16-bit ISA and PCI. Yet, by the early 2000s, the PCI interface

replaced ISA.

2-2 EISA (Extended Industry Standard Architecture) Bus

2-2-1 Introduction

 Extended Industry Standard Architecture (EISA) also known as Extended ISA is a bus

architecture that extends the Industry Standard Architecture (ISA) from 16 bits to 32 bits.

EISA was introduced in 1988 by the Gang of Nine - a group of PC manufacturers.

2-2-2 Specifications

 32-bit Data width

 Clock Frequency 8.33 MHz synchronous with the CPU clock

 Parallel internal bus with a separate (not multiplexed) address and data signals

 33 Mbytes/Sec Speed

 Bandwidth is 33 MHz

 Used devices Servers, network interface cards (NIC) or small computer system

interfaces (SCSI)…

2-2-3 Future Replacement

 Eventually, PCs required faster buses for higher performance. Faster expansion cards,

like Local Bus or Video Electronics Standards Association (VESA), were introduced, and

there was no longer an EISA card market. EISA bus is no longer used and replaced with PCI

bus as EISA was expensive so it was used in servers.

2-3 MCA (Micro Channel Architecture) Bus

2-3-1 Introduction

 MCA was introduced by IBM in 1987 as a competitor to the ISA bus it has 2 versions

,version for 16 bit and version for 32 bit.

https://www.computerhope.com/comp/ibm.htm
https://www.computerhope.com/history/1987.htm
https://www.computerhope.com/jargon/i/isa.htm

22 | Page

There are two types, 16- or 32-bit parallel Internal computer bus however, as both the 32-bit

and 16-bit versions initially had a number of additional optional connectors for memory cards

which resulted in a huge number of physically incompatible cards for bus attached memory.

In time, memory moved to the CPU's local bus, thereby eliminating the problem. On the

upside, signal quality was greatly improved as Micro Channel added ground and power pins

and arranged the pins to minimize interference; a ground or a supply was thereby located

within 3 pins of every signal.

2-3-2 Specifications

 bus speed of MCA is 10 MHZ.

 Data width of MCA is 32 or 16 bits.

 Band width of MCA is 40 MB/s.

2-3-3 Future Replacement

 It was used on PS/2 and other computers until the mid-1990s. Its name is commonly

abbreviated as "MCA", although not by IBM. In IBM products, it superseded the ISA bus

and was itself subsequently superseded by the PCI bus architecture.

2-4 VESA (Video Electronics Standards Association) Bus

2-4-1 Introduction

 VLB or VL bus is short for VESA (Video Electronics Standards Association) local bus.

Introduced by VESA in 1992, the VLB is a 32-bit computer bus that had direct access to the

system memory at the speed of the processor. The 486 CPU (33/40 MHz) employed the

VLB. VLB 2.0 was released in 1994, with a 64-bit bus, and a bus speed of 50 MHz,

Unfortunately, the VLB relied heavily on the 486 processor. When the Pentium processor

was introduced, manufacturers began switching to PCI Bus Type.

2-4-2 Specifications

 For bus speed 25 MHz bandwidth is 100 MB/s

 For bus speed 33 MHz bandwidth is 133 MB/s

 For bus speed 40 MHz bandwidth is 160 MB/s

 For bus speed 50 MHz bandwidth is 200 MB/s (out of specification)

 Data width as I said before 32-bit for version 1 and 64-bit for version 2

https://en.wikipedia.org/wiki/16-bit
https://en.wikipedia.org/wiki/32-bit
https://en.wikipedia.org/wiki/Parallel_communications
https://en.wikipedia.org/wiki/Bus_(computing)
https://en.wikipedia.org/wiki/IBM_Personal_System/2
https://en.wikipedia.org/wiki/Industry_Standard_Architecture
https://en.wikipedia.org/wiki/Conventional_PCI
https://www.computerhope.com/jargon/v/vesa.htm
https://www.computerhope.com/history/1992.htm
https://www.computerhope.com/jargon/num/32bit.htm
https://www.computerhope.com/help/cpu.htm
https://www.computerhope.com/jargon/m/mhz.htm
https://www.computerhope.com/history/1994.htm
https://www.computerhope.com/jargon/p/pentium.htm
https://www.computerhope.com/jargon/p/pci.htm

23 | Page

2-4-3 Future Replacement

 Despite these problems, the VESA Local Bus became very commonplace on later 486

motherboards, with a majority of later (post-1992) 486-based systems featuring a VESA

Local Bus video card. VLB importantly offered a less costly high-speed interface for

mainstream systems, as only by 1994 was PCI commonly available outside of the server

market through the Pentium and Intel's chipsets. PCI finally displaced the VESA Local Bus

(and also EISA) in the last years of the 486 market, with the last generation of 80486

motherboards featuring PCI slots instead of VLB-capable ISA slots. However, some

manufacturers did develop and offer "VIP" (VESA/ISA/PCI) motherboards with all three slot

types.

2-5 PCI (Peripheral Component Interconnect) Bus

2-5-1 Introduction

 PCI is parallel internal bus. It was created by intel in 1992, PCI local bus is the general

standard for a PC expansion bus, having replaced the Video Electronics Standards

Association (VESA) local bus and the Industry Standard Architecture (ISA) bus.

The first version of PCI found in retail desktop computers was a 32-bit bus using a

33 MHz bus clock and 5 V signaling, although the PCI 1.0 standard provided for a 64-

bit variant as well. These have one locating notch in the card. Version 2.0 of the PCI standard

introduced 3.3 V slots, physically distinguished by a flipped physical connector to prevent

accidental insertion of 5 V cards. Universal cards, which can operate on either voltage, have

two notches. Version 2.1 of the PCI standard introduced optional 66 MHz operation. A

server-oriented variant of PCI, called PCI-X (PCI Extended) operated at frequencies up to

133 MHz for PCI-X 1.0 and up to 533 MHz for PCI-X 2.0. An internal connector for laptop

cards, called Mini PCI, was introduced in version 2.2 of the PCI specification. The PCI bus

was also adopted for an external laptop connector standard –the Card Bus. The first PCI

specification was developed by Intel, but subsequent development of the standard became

the responsibility of the PCI Special Interest Group (PCI-SIG).

2-5-2 Future Replacement

PCI was superseded by PCI express in 2004 and PCIe becomes common.

2-5-3 Difference between PCI and PCI-E

This table shows some differences between PCI and PCI-E

https://en.wikipedia.org/wiki/List_of_Intel_chipsets#4xx_chipsets
https://en.wikipedia.org/wiki/32-bit
https://en.wikipedia.org/wiki/Hertz
https://en.wikipedia.org/wiki/64-bit_computing
https://en.wikipedia.org/wiki/64-bit_computing
https://en.wikipedia.org/wiki/PCI-X
https://en.wikipedia.org/wiki/Intel
https://en.wikipedia.org/wiki/PCI-SIG

24 | Page

Table 2: Difference between PCI and PCI-E

 PCIe is much faster compared to PCI.

 PCIe uses a serial interface while PCI uses a parallel interface.

 PCIe speed is classified into lanes, each capable of delivering up to 1GB/s data transfer.

 PCI slots are standardized while PCIe slots vary depending on the number of lanes the

slot is intended for.

 Despite PCIe superiority, most manufacturers still use the PCI standard for their devices.

25 | Page

2-6 PCI-X (Peripheral Component Interconnect Extended) Bus

2-6-1 Introduction

 PCI-X is a computer bus and expansion card standard that enhances the 32-

bit PCI local bus for higher bandwidth demanded mostly by servers and workstations. It uses

a modified protocol to support higher clock speeds (up to 133 MHz), but is otherwise similar

in electrical implementation. PCI-X 2.0 added speeds up to 533 MHz, with a reduction in

electrical signal levels.

2-6-2 Versions

PCI-X 1.0: 64-Bit slots with support for 3.3V and Universal PCI. No support for 5V-only

boards. Conventional 33/66 MHz PCI adapters can be used in PCI-X slots. Provides two

speed grades: 66 MHz and 133 MHZ.

PCI-X 2.0: Based on PCI-X 1.0. Introduces ECC (Error Correction Codes) mechanism to

improve robustness and data integrity. Provides two additional speed grades:

 PCI-X 266: 266 MHz (2.13 GB/sec).

 PCI-X 533: 533 MHz (4.26 GB/sec).

2-6-3 Differences between PCI-X and PCI-E

 PCI-X is a 64-bit parallel interface that is backward compatible with 32-bit PCI devices.

PCIe is a serial point-to-point connection with a different physical interface that was designed

to supersede both PCI and PCI-X.

https://en.wikipedia.org/wiki/Computer_bus
https://en.wikipedia.org/wiki/Expansion_card
https://en.wikipedia.org/wiki/Conventional_PCI
https://en.wikipedia.org/wiki/Local_bus
https://en.wikipedia.org/wiki/Bandwidth_(computing)
https://en.wikipedia.org/wiki/Server_(computing)
https://en.wikipedia.org/wiki/Workstations
https://en.wikipedia.org/wiki/Clock_rate

26 | Page

Figure 3: Working Topology of PCI/PCI-X vs PCI-E

 As shown in the figure above, the main difference between the previous PCI card and

PCI-X card and the successor PCIe card is "parallel vs serial" data transmission. PCI and

PCI-X network cards follow the original PCI standard, which is a classic shared bus

architecture with all connected peripherals using the same bus in parallel. Specifically, data

will be sent and received simultaneously across multiple lines. The devices normally have to

wait on the bus when communicating with the computer. The overall performance will go

down as the increase of added devices. PCI-E card, however, adopts dedicated point-to-point

serial technology, resembling an on-board network. Therefore, each individual device has its

own bus, which creates a more efficient bus system. Note that, one serial connection with a

higher clock can match the speed of multiple parallel lines moving on the same load.

2-7 CXL (Compute Express Link) Bus

2-7-1 Introduction

 Compute Express Link (CXL) is a high-bandwidth, low-latency serial bus interconnect

between host processors and devices such as accelerators, memory controllers/buffers, and

I/O devices. CXL is based on PCI Express (PCIe) 5.0 physical layer running at 32 GT/s with

x16, x8 and x4 link widths. Degraded modes run at 16 GT/s and 8 GT/s with x2 and x1 link

widths.

27 | Page

2-7-2 Versions

CXL Specification 1.0: On March 11, 2019, the CXL Specification 1.0 based upon PCIe 5.0

was released. The founding promoter members of the CXL specification

included: Alibaba, Cisco, Dell EMC, Facebook, Google, HPE, Huawei, Intel and Microsoft.

CXL Specification 1.1: In June, 2019, the CXL Specification 1.1 was released.

2-7-3 Speed
Table 3: Speed of CXL

2-7-4 Protocols

CXL transaction layer consists of three multiplexed sub-protocols that run simultaneously on

a single link:

1. CXL.io protocol is essentially a PCIe 5.0 protocol with some enhancements and is used

for initialization, link-up, device discovery and enumeration, and register access. It

provides a non-coherent load/store interface for I/O devices.

https://en.wikipedia.org/wiki/Alibaba_Group
https://en.wikipedia.org/wiki/Cisco_Systems
https://en.wikipedia.org/wiki/Dell_EMC
https://en.wikipedia.org/wiki/Facebook
https://en.wikipedia.org/wiki/Google
https://en.wikipedia.org/wiki/Hewlett_Packard_Enterprise
https://en.wikipedia.org/wiki/Huawei
https://en.wikipedia.org/wiki/Intel
https://en.wikipedia.org/wiki/Microsoft

28 | Page

2. CXL.cache protocol defines interactions between a Host and Device, allowing attached

CXL devices to efficiently cache Host memory with extremely low latency using a

request and response approach.

3. CXL.mem protocol provides a host processor with access to Device-attached memory

using load and store commands with the host CPU acting as a master and the CXL

Device acting as a subordinate and can support both volatile and persistent memory

architectures.

2-7-5 Differences between CXL and PCI-E

Figure 4: CXL usages

29 | Page

Figure 5: PCI-E Topology

To realize the difference, let’s take example. Sharing operands and data between multiple

devices, such as two GPU accelerators working on a problem, we will find that

 PCI-e: very inefficient.

 CXL: efficient.

If we check latency of shared memory pools that span across multiple physical machines, we

will find that

 PCI-e: High.

 CXL: Low.

CXL provides that processor can make transactions directly with memory or accelerator with

no need for Root Complex as in PCI-E which is responsible for routing and transmitting all

the packets around the hole system.

30 | Page

Chapter 3

Transaction layer

3-1 Introduction

Figure 6: Detailed Block Diagram of PCI Express Device's Layers

 The transaction Layer is responsible for generation of out-bound UP traffic and

reception of inbound TLP traffic. The Transaction Layer supports the split transaction

protocol for non-posted transactions. In other words, the Transaction Layer associates an

31 | Page

inbound completion UP of a given tag value with an outbound non-posted request TLP of the

same tag value transmitted earlier.

 The transaction layer contains virtual channel buffers (VC Buffers) to store out-bound

TLPs that await transmission and also to store inbound TLPs received from the link. The

flow control protocol associated with these virtual channel buffers ensures that a remote

transmitter does not transmit too many TLPs and cause the receiver virtual channel buffers

to overflow. The Transaction Layer also orders TLPs according to ordering rules before

transmission. It is this layer that supports the Quality of Service (QoS) protocol. The

Transaction Layer supports 4 address spaces: memory address, I0 address, configuration

address and message space. Message packets contain a message.

The Transaction Layer receives information from the Device Core and generates outbound

request and completion TLPs which it stores in virtual channel buffers. This layer assembles

Transaction Layer Packets (TLPs).

The receiver side of the Transaction Layer stores inbound TLPs in receiver virtual channel

buffers. The receiver checks for CRC errors based on the ECRC field in the TLP. If there are

no errors, the ECRC field is stripped and the resultant information in the TLP header as well

as the data payload is sent to the Device Core.

3-2 Project Design for Transaction Layer

Figure 7: Block Diagram of Transaction Layer

 The figure above shows the block diagram of Transaction Layer. In our design, we have

implemented the whole layer using C++ in classes, class for the whole layer and each block

in the design in also a class (TLP Creation, TLP Decomposition, Configuration Space,

Queues and mux) except the P-Thread which is a function in the constructor of the

Transaction Layer class.

32 | Page

Transmit Path

The transaction layer takes some information from the application layer to be able to initiate

a transaction, this information is address, data and length of data. TLP Creation block takes

this information and create the packet, then store it in the queue below it. P-thread block is

considered the main block which manages all the transactions and routes them, and it also

creates some TLPs and store them in its queue. Both of the queues store their TLPs into Tx

Buffer through a mux, then Tx Buffer sends them to the datalink layer.

Receive Path

After the datalink layer check for errors of the packet, it stores the packets into the Rx Buffer,

then P-thread routes them to TLP Decomposition block to di-assemble the packet and get the

data from it then store the data into the queue above to allow the application layer receiving

the data.

3-3 TLP (Transaction Layer Packet) Types

 In the table below, we can see all TLP types that can be initiated.

Table 4: TLP Types

 In our project, we only support MRd, MWr, CfgRd0, CfgRd1, CfgWr0, CfgWr1,

Msg, Cpl and CplD.

33 | Page

3-4 TLP Structure

Figure 8: TLP Structure at the Transaction Layer

 The major components of a TLP are: Header, Data Payload and an optional ECRC

(specification also uses the term Digest) field.

3-4-1 Generic TLP Header

Figure 9: Generic TLP Header Fields

 Most of the fields are common in all the TLP types, except some ones which vary with

TLP type. Here is summary for each field use:

34 | Page

Table 5: Generic Header Field Summary

35 | Page

36 | Page

3-4-2 Memory Requests

Figure 10: 3D and 4D Memory Request Header Formats

 The difference between a 3DW header and a 4DW header is the location and size of the

starting Address field:

 For a 3DW header (32-bit addressing): Address bits 31:2 are in Bytes 8-11, and 12-

15 are not used.

 For a 4DW header (64-bit addressing): Address bits 31:2 are in Bytes 12-15, and

address bits 63:32 are in Bytes 8-11.

Otherwise the header fields are the same.

37 | Page

Table 6: 4DW Memory Request Header Fields

38 | Page

Memory Request Notes. Features of memory requests include:

1. Memory transfers are never permitted to cross a 410 boundary.

2. All memory mapped writes are posted, resulting in much higher performance.

3. Either 32 bit or 64-bit addressing may be used. The 3DW header format sup-ports 32-

bit addresses and the 4DW header supports 64 bits.

4. The full capability of burst transfers is available with a transfer length of 0-1024 DW

(0-4KB).

39 | Page

5. Advanced PCI Express Quality of Service features, including up to 8 transfer classes

and virtual channels may be implemented.

6. The No Snoop attribute bit in the header may be set = 1, relieving the system hardware

from the burden of snooping processor caches when PCI Express transactions target

main memory. Optionally, the bit may be de-asserted in the packet, providing PCI-

like cache coherency protection.

7. The Relaxed Ordering bit may also be set = 1, permitting devices in the path between

the packet and its destination to apply the relaxed ordering rules available in PCI-X.

If de-asserted, strong PCI producer-consumer ordering is enforced.

3-4-3 Configuration Requests

Figure 11: 3DW Configuration Request Header Format

 To maintain compatibility with PCI, PCI Express supports both Type 0 and Type 1

configuration cycles. A Type 1 cycle propagates downstream until it reaches the bridge

interface hosting the bus (link) that the target device resides on. The configuration transaction

is converted on the destination link from Type 1 to Type 0 by the bridge. The bridge forwards

and converts configuration cycles using previously programmed Bus Number registers that

specify its primary, secondary and subordinate buses.

40 | Page

Table 7: Configuration Request Header Fields

41 | Page

Configuration Request Notes. Configuration requests always use the 3DW header format

and are routed by the contents of the ID field.

42 | Page

All devices “capture” the Bus Number and Device Number information provided by the

upstream device during each Type 0 configuration write cycle. Information is contained in

Completer ID.

3-4-4 Completion Requests

Figure 12: Completion Request Header Format

 Many of the fields in the completion must have the same values as the associated

request, including Traffic Class, Attribute bits, and the original Requester ID which is used

to route the completion back to the original requester.

43 | Page

Table 8: Completion Request Header Fields

44 | Page

45 | Page

Summary of Completion Status Codes

 000b (SC) Successful Completion code indicates the original request completed

properly at the target.

 001b (UR) Unsupported Request code indicates original request failed at the target

because it targeted an unsupported address, carried an unsupported address or request,

etc. This is handled as an uncorrectable error.

 010b (CRS) Configuration Request Retry Status indicates target was temporarily off-

line and the attempt should be retried. (e.g. initialization delay after reset, etc.).

 100b (CA) Completer Abort code indicates that completer is off-line due to an error

(much like target abort in PCI). The error will be logged and handled as uncorrectable

error.

3-4-5 Message Requests

Figure 13: Message Request Header Format

 Message requests replace many of the interrupt, error, and power management sideband

signals used on earlier bus protocols. All message requests use the 4DW header format, and

are handled much the same as posted memory write transactions. Messages may be routed

using address, ID, or implicit routing. The muting subfield in the packet header indicates the

routing method to apply, and which additional header registers are in use (address registers,

etc.).

46 | Page

Table 9: Message Request Header Fields

47 | Page

48 | Page

3-5 Configuration Space

3-5-1 Introduction

 Configuration is a set of registers used to Identify the device and control its functionality

and sense its status in a generic manner.it has two types Type 0 and Type 1. Type 0 is used in

endpoints but type 1 used in Switches and bridges which has some different registers than Type

0 as its used to control a bridge.

Figure 14:Configuration Space Type 0

Figure 15: Configuration Space Type 1

49 | Page

3-5-2 Type 0

 Its 16 DW Configuration Space used for a lot of functions. But not all of them is for PCIe

some of these registers are read only and hardwired to zero: -

 Latency Timer

 Cache Line Size

 Max_Lat

 Min_Gnt

Registers used to identify device’s driver: -

OS uses combination of registers to determine which driver to load for the device.

 Vendor ID

 Device ID

 Revision ID

 Class Code

 SubSystem Vendor ID

 SubSystem ID

Vendor ID

 16-bit Register identifies the manufacturer of the function. The value hardwired in this read only

register is assigned by a central authority (The PCI SIG) that controls issuance of the number. The value

FFFFh is reserved and must be returned by the Host/PCI Bridge when an attempt is made to perform a

configuration read from a configuration register in a non-existent function.

Device ID

 16-bit Register Assigned by the manufacturer of the function and identifies the type of the function.

In conjunction with the vendor ID and Possibly the Revision ID. The Device ID can be used to locate a

function specific driver.

Revision ID

 8-bit Register Assigned by the manufacturer of the function and identifies the Revision number of

the function. If the vendor has supplied a revision-specific driver, this is handy in ensuring that the

correct driver is loaded by the OS.

Class Code

 The Class Code register is a 24-bit, read-only register divided into three fields: base Class, Sub

Class, and Programming Interface. It identifies the basic function of the function (e.g., a mass storage

controller), a more specific function sub-class (e.g., IDE mass storage controller), and, in some cases, a

register-specific programming interface (such as a specific flavor of the IDE register set)

 The upper byte defines the base Class of the function

 The middle byte defines a sub-class within the base Class

 The lower byte defines the Programming Interface.

50 | Page

Figure 16: Class Code Register

 The currently-defined base Class codes are listed in the Second Table. First Table define

example for some Subclasses within the base Class. For many Class/Subclass categories, the

Programming Interface byte is hardwired to return zeros (in other words, it has no meaning).

For some, such as VGA-compatible functions and IDE controllers, it does have meaning.

 This register is useful when the OS is attempting to locate a function that a Class driver

can work with. As an example, assume that a particular device driver has been written to work

with any display adapter that is 100% XGA register set compatible. If the OS can locate a

function with a Class of 03h and a Sub Class of 0lh, the driver will work with that function. A

Class driver is more flexible than a driver that has been written to work only with a specific

function from a specific vendor.

 The Programming Interface Byte. For some functions (such as the XGA display adapter

used as an example in the previous section) the combination of the Class Code and Sub Class

Code is sufficient to fully-define its level of register set compatibility. The register set layout

for some function types, however, can vary from one implementation to another. As an

example, from a programming interface perspective there are a number of flavors of IDE mass

storage controllers, so it's not sufficient to identify yourself as an IDE mass storage controller.

The Programming Interface byte value provides the final level of granularity that identifies the

exact register set layout of the function.

Table 10: mass storage subclasses example

51 | Page

Table 11: Class Codes

Subsystem Vendor ID & Subsystem ID

 The Subsystem Vendor ID is obtained from the SIG, while the vendor supplies its own

Subsystem ID (the full name of this register is really "Sub-system Device ID", but the "device"

is silent). A value of zero in these registers indicates there isn't a Subsystem Vendor and

Subsystem ID associated with the function.

52 | Page

 These two mandatory registers (Subsystem Vendor ID and Subsystem ID) are used to

uniquely identify the add-in card or subsystem that the function resides within. Using these two

registers, the OS can distinguish the difference between cards or subsystems manufactured by

different vendors but designed around the same third-party core logic. This permits the Plug-

and-Play OS to locate the correct driver to load into memory.

 Must Contain Valid Data When First Accessed. These two registers must contain their

assigned values before the system first accesses them. If software attempts to access them

before they have been initialized, the device must issue:

 a Retry to the master (in PCI).

 a Completion with CRS (Configuration Request Retry Completion Status) in PCI

Express.

The values in these registers could be hardwired, loaded from a serial EEPROM, determined

from hardware strapping pins, etc.

Header Type

 Bits [6:0] of this one-byte register define the format of DW 4-through-15 of the function's

configuration Header. In addition, bit seven defines the device as a single (bit 7 = 0) or

multifunction (bit 7 =1) device. During configuration, the programmer determines if there are

any other functions in this device that require configuration by testing the state of bit seven.

Currently, the only Header formats defined other than Header Type Zero are:

 Header Type One (PCI-to-PCI bridge Header format).

 Header Type Two (CardBus bridge).

Future versions of the specification may define other formats.

Figure 17: Header Type Register

BIST

 This Optional register may be implemented by both Requester and Completer functions. If

a function implements a Built-In Self-Test (BIST), If the function doesn't support a BIST, this

register must return zeros when read. The function's BIST is invoked by setting bit six to one.

The function resets bit six upon completion of the BIST. Configuration software must fail the

function if it doesn't reset bit six within two seconds. At the conclusion of the BIST, the test

53 | Page

result is indicated in the lower four bits of the register. A completion code of zero indicates

successful completion. A non-zero value represents a function-specific error code.

 The time limit of two seconds may not be sufficient time to test a very complex function or

one with an extremely large buffer that needs to be tested. In that case, the remainder of the

test could be completed in the initialization portion of the function's device driver when the OS

loads it into memory and calls it.

Figure 18: BIST Register

Table 12: BIST Register Bit assignment

Capabilities Pointer

Configuration Header Space Not Large Enough

 The 2.1 PCI spec defined the first 16 DWs of a function's PCI-compatible configuration

space as its configuration Header space. It was originally intended that all of the function's PCI

spec-defined configuration registers would reside within this region and that all of its function-

specific configuration registers would reside within the lower 48 DWs of its PCI-compatible

configuration space. Unfortunately, they ran out of space when defining new configuration

registers in the 2.2 PCI spec. For this reason, the 2.2 and 2.3 PCI specs permit some spec-

defined registers to be implemented in the lower 48 DWs of a function's PCI-compatible

configuration space.

54 | Page

Discovering That Capabilities Exist

 If the Capabilities List bit in the Status register is set to one, the function implements the

Capabilities Pointer register in byte zero of DW 13 in its PCI-compatible configuration space.

This implies that the pointer contains the DW-aligned start address of the Capabilities List

within the function's lower 48 DWs of PCI-compatible configuration space. It is a rule that the

two least-significant bits must be hard-wired to zero and must be ignored (i.e., masked) by

software when reading the register. The upper six bits represents the upper six bits of the 8-bit,

DW-aligned start address of the new registers implemented in the lower 48 DWs of the

function's PCI-compatible space. The two least-significant bits are assumed to be zero.

What the Capabilities List Looks Like

 The configuration location pointed to by the Capabilities Pointer register is the first entry

in a linked series of one or more configuration register sets, each of which supports a feature.

Each entry has the general format illustrated in Figure 22-6 on page 782. The first byte is

referred to as the Capability ID (assigned by the PCI SIG) and identifies the feature associated

with this register set (e.g., 2 = AGP), while the second byte either points to another feature's

register set, or indicates that there are no additional register sets (with a pointer value of zero)

associated with this function. In either case, the least-significant two bits must return zero. If a

pointer to the next feature's register set is present in the second byte, it points to a DW within the

function's lower 48 DWs of PCI-compatible configuration space (it can point either forward or

backward in the function's configuration space). The respective feature's register set always

immediately follows the first two bytes of the entry, and its length and format are defined by what type

of feature it is. The Capabilities currently defined in the 2.3 PCI spec are those listed in Currently-

Assigned Capabilities ID Table.

Figure 19: General Format of a New Capabilities List Entry

55 | Page

56 | Page

Table 13: Currently-Assigned Capabilities IDs

CardBus CIS Pointer

This optional register is implemented by functions that share silicon between a CardBus

device and a PCI or PCI Express function. This field points to the Card Information Structure

(CIS) on the Card-Bus card. The register is read-only and indicates that the as can be accessed

from the indicated offset within one of the following address spaces:

 Offset within the function's function-specific PCI-compatible configuration space (after

DW 15d in the function's PCI-compatible configuration space).

 Offset from the start address indicated in one of the function's Memory Base Address

Registers.

 Offset within a code image in the function's expansion ROM.

Expansion ROM Base Address Register

 Required if a function incorporates a device ROM. Many PCI functions incorporate a

device ROM (the spec refers to it as an expansion ROM) that contains a device driver for the

function. The expansion ROM start memory address and size is specified in the Expansion

ROM Base Address Register at configuration DW 12d in the configuration Header region. on

power-up the system must be automatically configured so that each function's I0 and memory

decoders recognize mutually-exclusive address ranges. The configuration software must be

able to detect how much memory space an expansion ROM requires. In addition, the system

must have the capability of programming a ROM's address decoder in order to locate its ROM

in a non-conflicting address range.

 When the start-up configuration program detects that a function has an Expansion ROM

Base Address Register implemented (by writing all ones to it and reading it back), it must then

check the first two locations in the ROM for an Expansion ROM signature to determine if a

ROM is actually installed (i.e., there may be an empty ROM socket). If installed, the

configuration program must shadow the ROM and execute its initialization code.

The format of the expansion ROM Base Address Register:

 A one in bit zero enables the function's ROM address decoder (assuming that the

Memory Space bit in the Command register is also set to one).

 Bits [10:1] are reserved.

57 | Page

 Bits [31:11] are used to specify the ROM's start address (starting on an address

divisible by the ROM's size).

As an example, assume that the programmer writes FFFFFFFEh to the ROM's Base

Address Register (bit 0, the Expansion ROM Enable bit, is cleared so as not to enable the

ROM address decoder until a start memory address has been assigned). A subsequent

read from the register in the example yields FFFE0000h. This indicates the following:

 Bit 0 is a zero, indicating that the ROM address decoder is currently disabled.

 Bits [10:1] are reserved.

 In the Base Address field (bits [31:11]), bit 17 is the least-significant bit that the

programmer was able to set to one. It has a binary-weighted value of 128K, indicating

that the ROM decoder requires 128KB of memory space be assigned to the ROM.

The programmer then writes a 32-bit start address into the register to assign the ROM

start address on a 128K address boundary.

The PCI 2.3 spec recommends that the designer of the Expansion ROM Base Address

Register should request a memory block slightly larger than that required by the current

revision ROM to be installed. This permits the installation of subsequent ROM revisions

that occupy more space without requiring a redesign of the logic associated with the

function's Expansion ROM Base Address Register. The spec sets a limit of 16MB as the

maximum expansion ROM size.

The Memory Space bit in the Command register has precedence over the Expansion

ROM Enable bit. The function's expansion ROM should respond to memory accesses

only if both its Memory Space bit (in its Command register) and the Expansion ROM

Enable bit (in its expansion ROM Base Address register) are both set to one.

In order to minimize the number of address decoders that a function must implement,

one address decoder can be shared between the Expansion ROM Base Address Register

and one of the function's Memory Base Address Registers. The two Base Address

Registers must be able to hold different values at the same time, but the address decoder

will not decode ROM accesses unless the Expansion ROM Enable bit is set in the

Expansion ROM Base Address Register.

Figure 20: ROM Base Address Register

58 | Page

Command Register

 16-Bit Register the software gives commands to the layer to do it as shown below. Some

of the bits are read only as they do not apply for PCIe and some reserved and the most is

read/Write.

Figure 21: Command Register

59 | Page

60 | Page

Table 14: Command Register

Status Register

 16-Bit Register the layer use it to update the software with status of what happened and

happening in the layer. It has read only bits and read write one to clear bits. The read only is

for bits which indicate something in the layer but RW1C bits indicates something has happened

and the software write one to clear after reading it to enable the layer to detect it again like

errors reporting.

Figure 22: Status Register

61 | Page

62 | Page

Table 15: Status Register

Interrupt line

 Optional Register, A PCI Express function may generate interrupts in the legacy PCl/PCI-

X manner. As an example, when a PCI Express-to-PCI or PCI-X bridge detects the assertion

or deassertion of one of its INTA#, INTB#, INTC#, or INTD# inputs on the legacy side of the

bridge, it sends an INTx Assert or Deassert message upstream towards the Root Complex

(specifically, to the interrupt controller within the Root Complex).

 As in PCI, the Interrupt Line register communicates interrupt line routing information. The

register is read/write and must be implemented by any function that contains a valid non-zero

value in its Interrupt Pin configuration register. The OS or device driver can examine a device's

Interrupt Line register to determine which system interrupt request line the device uses to issue

requests for service (and, therefore, which entry in the interrupt table to "hook").

 In a non-PC environment, the value written to this register is architecture-specific and

therefore outside the scope of the specification.

Interrupt Pin

 This read-only optional register identifies the legacy INTx interrupt Message (INTA,

INTB, INTC, or INTD) the function transmits upstream to generate an interrupt. The values

Olh-through-04h correspond to legacy INTx interrupt Messages INTA-through-INTD. A

63 | Page

return value of zero indicates that the device doesn't generate interrupts using the legacy

method. All other values (05h-FFh) are reserved. Note that, although the function may not

generate interrupts via the legacy method, it may generate them via the MSI method.

Base Address Registers (BARs)

On power-up, the system must be automatically configured so that each function's I0 and

memory functions occupy mutually-exclusive address ranges. In order to accomplish this, the

system must be able to detect how many memory and 10 address ranges a function requires

and the size of each. Obviously, the system must then be able to program the function's address

decoders in order to assign non-conflicting address ranges to them.

The Base Address Registers (BARs), located in DWs 4-through-9 of the function's

configuration Header space, are used to implement a function's programmable memory and/or

I0 decoders. Each register is 32-bits wide (or 64-bits wide if it's a memory decoder and its

associated memory block can be located above the 4GB address boundary). the three possible

formats of a Base Address Register are 32-bit & 64-bit Memory & 32-bit IO. Bit 0 is a read-

only bit and indicates whether it's a memory or an I0 decoder:

 If bit 0 = 0, the register is a memory address decoder.

 If bit 0 = 1, the register is an I0 address decoder.

Decoders may be implemented in any of the Base Address Register positions. If more than

one decoder is implemented, there may be holes. During configuration, the configuration

software must therefore look at all six of the possible Base Address Register positions in a

function's Header to determine which registers are actually implemented.

In Memory BARs in Third bit is Prefetchable Attribute Bit. Bit three defines the block of

memory as Prefetchable or not. A block of memory space may be marked as Prefetchable only

if it can guarantee that:

 there are no side effects from reads (e.g., the read doesn't alter the con-tents of the

location or alter the state of the function in some manner). It's permissible for a bridge

that resides between a Requester and a memory target to prefetch read data from

memory that has this characteristic. If the Requester doesn't end up asking for all of the

data that the bridge read into a read-ahead buffer, the bridge must discard the data. The

data remains unchanged in the target's memory locations.

 on a read, it always returns all bytes irrespective of the byte enable set-tings.

 the memory device continues to function correctly if a bridge that resides between the

Requester and the memory target performs byte merging in its posted memory write

buffer when memory writes are performed within the memory target's range.

The device uses two BARs in case of addressed 32-bit memory addressing one for start and

one for end & in case of addressed 64-bit memory addressing uses 4 BARs 2 for start and 2 for

end & in case of IO 32-bit Addressing uses 2 BARs for start and end

Worst Case is when device is addressed by IO & 64-bit Memory which uses all the 6 BARs.

64 | Page

Figure 23: BAR 32-bit Memory assignment

Figure 24: BAR 64-bit Memory assignment

Figure 25: IO bit Assignment

A Memory Example. As an example, assume that FFFFFFFFh is written to the Base

Address Register at configuration DW 04d and the value read back is FFF00000h. The fact that

any bits could be changed to one indicates that the Base Address Register is implemented.

 Bit 0 = 0, indicating that this is a memory address decoder.

 Bits [2:1] = 00b, indicating that it's a 32-bit memory decoder.

65 | Page

 Bit 3 = 0, indicating that it's not Prefetchable memory

 Bit 20 is the first one bit found in the Base Address field. The binary-weighted value of

this bit is 1,048,576, indicating that this is an address decoder for 1MB of memory.

The programmer then writes a 32-bit base address into the register. How-ever, only bits

[31:20] are writable. The decoder accepts bits [31:20] and assumes that bits [19:0] of the

assigned base address are zero. This means that the base address is divisible by 1MB, the size

of the requested memory range. It is a characteristic of PCI, PCI-X, and PCI Express decoders

that the assigned start address is always divisible by the size of requested range.

As an example, it is possible to program the example memory address decoder for a 1MB

block of memory to start on the one, two, or three meg boundary, but it is not possible to set its

start address at the 1.5, 2.3, or 3.7 meg boundary.

An IO Example. As a second example, assume that FFFFFFFFh is written to a function's

Base Address Register at configuration DW address 05d and the value read back is

FFFFFF01h. Bit 0 is a one, indicating that this is an IO address decoder. Scanning upwards

starting at bit 2 (the least-significant bit of the Base Address field), bit 8 is the first bit that was

successfully changed to one. The binary-weighted value of this bit is 256, indicating that this

is an JO address decoder requesting 256 bytes of IO space.

The programmer then writes a 32-bit base JO address into the register. However, only bits

[31:8] are writable. The decoder accepts bits [31:8] and assumes that bits [7:0] of the assigned

base address are zero. This means that the base address is divisible by 256, the size of the

requested IO range.

3-5-3 Type 1

Bus Numbers Registers

Before proceeding, it's important to define some basic terms associated with an actual or a

virtual PCI-to-PCI bridge. Each PCI-to-PCI bridge is connected to two buses, referred to as

its primary and secondary buses:

 Downstream: When a transaction is initiated and is passed through one or more PCI-

to-PCI bridges flowing away from the host processor, it is said to be moving

downstream.

 Upstream: When a transaction is initiated and is passed through one or more PCI-to-

PCI bridges flowing towards the host processor, it is said to be moving upstream.

 Primary bus: PCI bus that is directly connected to the upstream side of a bridge.

 Secondary bus: PCI bus that is directly connected to the downstream inter-face of a

PCI-to-PCI bridge.

 Subordinate bus: Highest-numbered PCI bus on the downstream side of the bridge.

Introduction

 Each PCI-to-PCI bridge must implement three mandatory bus number registers. All of

them are read /writable and are cleared to zero by reset. During configuration, the

66 | Page

configuration software initializes these three registers to assign bus numbers. These registers

are:

 the Primary Bus Number register.

 the Secondary Bus Number register.

 the Subordinate Bus Number register.

The combination of the Secondary and the Subordinate Bus Number register values

defines the range of buses that exists on the downstream side of the bridge. The information

supplied by these three registers is used by the bridge to determine whether or not to pass a

packet through to the opposite interface.

Primary bus register

 PCI-Compatible register. Mandatory. Located in Header byte zero of DW six. The

Primary Bus Number register is initialized by software with the number of the bus that is

directly connected to the bridge's primary interface. This register exists for three reasons:

 To mute Completion packets.

 To mute a Vendor-defined message that uses ID-based routing.

 To route a PCI Special Cycle Request that is moving upstream.

Secondary bus register

 PCI-Compatible register. Mandatory. Located in Header byte one of DW six. The

Secondary Bus Number register is initialized by software with the number of the bus that is

directly connected to the bridge's secondary interface. This register exists for three reasons:

 When a Special Cycle Request is latched on the primary side, the bridge uses this

register (and, possibly, the Subordinate Bus Number register) to determine if it should

be passed to the bridge's secondary interface as either a PCI Special Cycle transaction

(if the bus connected to the secondary inter-face is the destination PCI or PCI-X bus)

or as is (i.e., as a Type 1 configuration write request packet).

 When a Type 1 Configuration transaction (read or write and not a PCI Spe-cial Cycle

Request) is latched on the primary side, the bridge uses this regis-ter (and, possibly,

the Subordinate Bus Number register) to determine if it should be passed to the

bridge's secondary interface as either a Type 0 con-figuration transaction (if the bus

connected to the secondary interface is the destination PCI or PCI-X bus) or as is (i.e.,

as a Type 1 configuration write request packet).

 When a Completion packet is latched on the primary side, the bridge uses this register

(and, possibly, the Subordinate Bus Number register) to deter-mine if it should be

passed to the bridge's secondary interface.

Subordinate bus register

 PCI-Compatible register. Mandatory. Located in Header byte two of DW six. The

Subordinate Bus Number register is initialized by software with the number of the highest-

numbered bus that exists on the downstream side of the bridge. If there are no PCI-to-PCI

67 | Page

bridges on the secondary bus, the Subordinate Bus Number register is initialized with the

same value as the Secondary Bus Number register.

Bridge Routes ID Addressed Packets Using Bus Number Registers

 When one of the bridge's interfaces latches a Completion packet, an ID-routed Vendor-

defined message, or a PCI Special Cycle request, it uses its internal bus number registers to

decide whether or not to accept the packet and pass it to the opposite bridge interface:

 The routing of PCI Special Cycle requests was described in the previous sections.

 When the bridge latches a Completion packet or an ID-routed Vendor-defined

message on its primary interface, it compares the Bus Number portion of destination

ID to its Secondary Bus Number and Subordinate Bus Number register values. If the

target bus number falls within the range of buses defined by the bridge's Secondary

Bus Number and Subordinate Bus Number registers, the bridge accepts the packet and

passes it to its opposite interface.

 When the bridge latches a Completion packet or an ID-routed Vendor-defined

message on its secondary interface, it compares the Bus Number portion of the

destination ID to its Primary Bus Number register.

o If it matches, the bridge accepts the packet and passes it to the primary

interface.

o If it doesn't match the bridge's Primary Bus Number register and it's outside

the range of buses defined by the bridge's Secondary Bus Number and

Subordinate Bus Number registers, the bridge accepts the packet (the target

bus is not on the downstream side of the bridge and therefore it must be passed

upstream) and passes it to its primary inter-face.

o If the destination bus falls within the range of buses defined by the bridge's

Secondary Bus Number and Subordinate Bus Number registers, then the target

bus is on the downstream side of the bridge. The bridge therefore does not

accept the packet.

 These registers are also used to route Type 1 configuration packets.

Base Address Registers

 Differs from PCI. Optional. Only necessary if the bridge implements a device-specific

register set and/or a memory buffer. Located in Header DWs four and five. If the designer

doesn't implement any internal, device-specific register set or memory, then these address

decoders aren't necessary. These Base Address Registers are used in the same manner as

those described for a non-bridge PCI function. If implemented, both may be implemented as

memory decoders, both as I0 decoders, one as memory and one as I0, or only one may be

implemented as either I0 or memory.

 If a BAR is implemented as a memory BAR with the Prefetchable bit set to one, it must

be implemented as a 64-bit memory BAR and would therefore consume both DWs four and

five.

68 | Page

IO & Memory & Prefetchable Memory Base and Limit Registers

 Used to know if the incoming packet is routed to an endpoint or bridge on the

downstream of this bridge or not. It can route 3 types:

 IO 16&32-bit (In case of 32-bit it uses the upper IO registers to complete the address)

 Memory 32-bit

 Prefetchable 32&64-bit (In case of 64-bit it uses the upper IO registers to complete

the address)

Figure 26: IO Base & Limit Registers bit assignment

 IO 16-bit Example. Assume that the I0 base is set to 2h and the I0 Limit is set to 3h. The

bridge is now primed to recognize any I0 transaction on the primary bus that targets an I0

address within the range consisting of 2000h through 3FFFh.

 Anytime that the bridge detects an I0 transaction on the primary bus with an address

inside the 2000h through 3FFFh range, it accepts the transaction and passes it through

(because it's within the range defined by the I0 Base and Limit registers and may therefore be

for an I0 device that resides behind the bridge).

 Anytime that the bridge detects an IO transaction on the primary bus with an address

outside the 2000h through 3FFFh range, it ignores the transaction (because the target 10

address is outside the range of addresses assigned to I0 devices that reside behind the bridge).

 Anytime that the bridge detects an I0 transaction on the secondary bus with an address

inside the 2000h through 3FFFh range, it ignores the transaction (because the target address

falls within the range assigned to I0 devices that reside on the secondary side of the bridge).

Anytime that the bridge detects an I0 transaction on the secondary bus with an address outside

the 2000h through 3FFbh range, it accepts the transaction and passes it through to the primary

side (because the target address falls outside the range assigned to 10 devices that reside on the

secondary side of the bridge, but it may be for an I0 device on the primary side).

69 | Page

Figure 27: Prefetchable memory Base & Limit Registers

Figure 28: memory Base & Limit Registers

As Prefetchable 64-bit example, assume that these four registers are set as follows:

 FF00000h is written into the Prefetchable Memory Base Upper 32-bits register.

 123h is written into the upper three digits of the Base register.

 FF000000h is written into Prefetchable Memory Limit Upper 32-bits register.

 124h is written into the upper three digits of the Limit register.

This defines the Prefetchable memory address range as the 2MB range from

FF00000012300000h through FF000000124FFFFFh.

As another example, assume they are programmed as follows:

 00000230h is written into the Prefetchable Memory Base Upper 32-bits register.

 222h written into the upper three digits of the Base register.

 00000230h is written into Prefetchable Memory Limit Upper 32-bits register.

 222h written into the upper three digits of the Limit register.

This defines the Prefetchable memory address range as the 1MB range from

0000023022200000h through 00000230222FFFFFh.

70 | Page

As a memory 32-bit example, assume that the configuration software has written the following

values to the Memory Base and Limit registers:

 The upper three digits of the Memory Base register contain 555h.

 The upper three digits of the Memory Limit register contain 678h.

This defines a 292MB memory-mapped I0 region on the downstream side of the bridge starting

at 55500000h and ending at 678FEFFFh.

Command & Control Registers

The bridge designer must implement two required command registers in the bridge's

configuration Header region:

 The Command register is the standard configuration Command register defined by the

spec for any function. It is associated with the bridge's primary bus interface.

 The Bridge Control register is an extension to the standard Command register and is

associated with the operation of both of the bridge's bus interfaces.

Figure 29: Bridge Command Register

71 | Page

72 | Page

73 | Page

Table 26: Bridge Command Register

Figure 30: Bridge Control Register

74 | Page

75 | Page

Table 17: Bridge Control Register

Status & Secondary Status Register

Figure 31: Bridge Status Register

76 | Page

77 | Page

Table 18: Bridge Status Register

Figure 32: Bridge Secondary Status Register

78 | Page

79 | Page

Table 19 Bridge Secondary Status Register

3-5-4 Capabilities

PCIe Capability

 This capability gives more control to the software to the device, the capability register is

read only register to tell the software about what is the device hardware capable of, the control

is like command register to tell the device what to use of this hardware.

Figure 33: PCIe Capability Registers

80 | Page

Figure 34: PCIe Capability Register

81 | Page

82 | Page

Table 20: PCIe Capability Register

Figure 35: Device Capabilities Register

83 | Page

84 | Page

85 | Page

86 | Page

Table 21: Device Capabilities Register (RO)

87 | Page

Figure 36: Device Control Register

88 | Page

89 | Page

90 | Page

Table 22: Device Control Register (R/W)

Figure 37: Device Status Register

91 | Page

92 | Page

Table 23: Device Status Register

Link Registers gives more Capabilities and control and status.

MSI Capability

 A PCI Express function indicates its support for MSI via the MSI Capability registers. Each

native PCI Express function must implement a single MSI register set within its own

configuration space. Note that the PCI Express specification defines two register formats:

 64-bit memory addressing format required by all native PCI Express devices and

optionally implemented by Legacy end-points.

 32-bit memory addressing format optionally supported by Legacy endpoints.

93 | Page

Figure 38: MSI Capability Register Set 32&64-bit

Figure 39: Message Control Register

94 | Page

95 | Page

Table 24: Message Control Register

Message Address Register The lower two bits of the 32-bit Message Address register are

hardwired to zero and cannot be changed. In other words, the address assigned by system

software is always aligned on a DW address boundary.

 The upper 32-bits of the Message Address register are required for native PCI Express

devices and optional for legacy endpoints. This register is present if Bit 7 of the Message

Control register is set. If present, it is a read/write register and it is used in conjunction with the

Message Address register to assign a 32-bit or a 64-bit memory address to the device:

 If the upper 32-bits of the Message Address register are set to a non-zero value by the

system software, then a 64-bit message address has been assigned to the device using

both the upper and lower halves of the register.

 If the upper 32-bits of the Message Address register are set to zero by the system

software, then a 32-bit message address has been assigned to the device using both the

upper and lower halves of the register.

Message Data Register The system software assigns the device a base message data pattern

by writing it into this 16-bit, read/write register. When the device must generate an interrupt

request, it writes a 32-bit value to the memory address specified in the Message Address

register. The data written has the following format:

 The upper 16 bits are always set to zero.

 The lower 16 bits are supplied from the Message Data register. If more than one

message has been assigned to the device, the device modifies the lower bits (the number

of modifiable bits depends on how many messages have been assigned to the device by

96 | Page

the configuration software) of the data from the Message Data register to form the

appropriate message for the event it wishes to report to its driver.

3-5-5 Extended Capabilities

 Capabilities extends the configuration space to 64 DW but it wasn’t enough so it was

extended to 1024 DW.

Advanced Error Reporting Extended Capability (AER)

Figure 40: AER Extended Capability Register Set

97 | Page

Figure 41: AER Enhanced Capability Register

Figure 42: Advanced Error Capabilities and Control Register

Figure 43: Advanced Error Correctable Error Mask Register

Figure 44: Advanced Error Correctable Error Status Register

98 | Page

Figure 45: Advanced Error Uncorrectable Error Mask Register

Figure 46: Advanced Error Uncorrectable Error Severity Register

Figure 47: Advanced Error Uncorrectable Error Status Register

99 | Page

100 | Page

3-5-6 Our Design

 Configuration Space is implemented as a class inside transaction layer with interfacing

read and write APIs with taking in consideration inside the class the read only and read write

bits and capabilities. Inside the class it’s an array with all default values at constructor then its

configured by software during device driver phase with series of configuration read and write

packets then after device driver the thread connects it to other blocks which needs configuration

and writes to it and also respond to normal configuration reads and writes.

Table 25: AER Extended Capabilities Register Set

101 | Page

3-6 TLP Decomposition

3-6-1 Block Interfacing

Figure 48: TLP Decomposition Interfacing

As an input to decomposition block (TLP):

 Header

 Data in DWs

 ECRC if exist

 Length of Data in DWs

Output is decomposed TLP to the Application layer:

 Address

 Data

 Length of Data in Bytes

As interfacing with thread:

 Set needed Configurations Enables for errors detections and handling and enables

for decoding and commands like memory space decode enable which enables the layer

to decode memory packets

 Get Error update status after detection and handling the error sends the bits to be

updated in configuration space to thread and thread to configuration space

 Get Tag Array and Setting the other one from the creation Tag array used between

creation and decomposition to save headers awaiting completions to be able to decode

completions in decomposition block and create completions in creation block

 Setting Layer type Endpoint or Bridge to decode correctly

102 | Page

 Telling the thread to create some packets as completions for CfgRd & CfgWr and UR

and CRS and MSG

3-6-2 Block Flow

Figure 49: TLP Decomposition Block Flow

 First after receiving TLP check for errors if any detected then go for error handling block

then updating thread but if no errors detected it go for packet decomposition block to

decompose the packet and return it application layer.

3-6-3 Error Checking

Unsupported Request UR

 Max Payload Receiving packet exceeds device max payload supported and enabled

 Wrong Format

 Unsupported Type

 BAR wrong address

 Memory Address Decoder Receiving memory packet while memory address

decoding enable is disabled

 Wrong Completer ID

Poisoned TLP

 EP Check poisoned data bit is set ECRC error

 ECRC Check

Malformed TLP

 Length Check length inside the packet doesn’t match with length which si input to

decomposition block

 Digest bit if set and no ECRC and vice versa

 Byte Enable Violations

 Unknown Type

103 | Page

Completion Abort CA

 Received Completion with Completion Status CA

Unexpected Completion

 Tag Mismatch

3-6-4 Error handling Block

Figure 50: Error Handling Flowchart

Error handling block executes the flow chart above by setting some bits in configuration space

and reading some bits by thread to handle the error correctly according to specification.

104 | Page

3-6-5 Packet Decomposition

Memory Packets

Figure 51: Memory TLPs

Memory packets (MRd32, MRd64, MWr32, MWr64) decomposed as follows:

 Address Calculation by byte enable and DW aligned address

 Data Length Bytes Calculation by byte enable and Length DW field

 Data Calculation by byte enable (in case of MWr)

 Header is Saved in Tag Array in case of Memory Read for Completion (Tag & ID)

105 | Page

Configuration Packets

Figure 52: Configuration TLPs

Configuration Packets (CfgRd, CfgWr) decomposed as follows:

 Register Number (Address) Calculation by byte enable and DW aligned Register

Number

 Data Length Bytes Calculation by byte enable

 Data Calculation by byte enable (in case of CfgWr)

 Header is Saved in Tag Array for Completion (Tag & ID)

Completion Packets

Figure 53: Completions TLPs

Completion Packets (Cpl, CplD) decomposed as follows:

 Completion Status UR, CA, CRS, SC

 UR, CA Generate Error & Clear Header from Tag Array & Update Application

Layer (Device Core)

 CRS Send to thread to retry the Request

 SC

o Cpl – CfgWr

 Clear Tag Array

o CplD – CfgRd

 Register Number (Address) Calculation by byte enable and DW aligned

Register Number from the Tag Array

 Data Length Bytes Calculation by byte enable

 Data Calculation by byte enable

 Clear Header from Tag Array

106 | Page

o CplD – MRd

 Address Calculation by byte enable and DW aligned Address from the

Tag Array

 Data Length Bytes Calculation by byte enable and DW aligned address

 Data Calculation by byte enable and DW aligned address

 Clear Header from Tag Array

 In Case of Split Transaction (Multiple Completions) Data is saved in

Decomposition till completed before doing above steps

3-6-6 Implementation

 TLP Decomposition was implemented as a class with APIs for interfacing with it to

decompose the packet and connect with thread to get data from it and to tell the thread to do

something like sending packets and update errors.

3-7 Thread

3-7-1 Operations

 Thread mainly used as a controller to connect between blocks by polling and Controlling

the flow in the transaction layer and servicing blocks

 Block connections

o Taking packets from Rx Buffer to TLP Decomposition then to Transaction to

Application Queue

o Taking packets from Creation to thread Queue & from Thread Queue to Tx

Buffer by Round Robin

o Taking packets from Tx Buffer to DataLink Layer if Flow Control Logic is true

o Taking Decomposed packets from Transaction to Application Queue by Set

Callback

o Get Flow Control Variables from DataLink

 Servicing Blocks

o Taking Tag Array from TLP decomposition to TLP Creation and Vice Versa

o Set Needed Configurations to Configuration space to TLP Creation and

Decomposition

o Update Configurations from TLP Creation and Decomposition to Configuration

space

o Creating and Sending packets required by TLP Decomposition (CfgRd, CfgWr,

CRS, UR, MSG)

 Control

o Checking Completion Timeout and executing Error handling flow chart in case

of error

o Calling DataLink Update (DataLink Controller)

107 | Page

3-7-2 Implementation

 The thread was implemented as a private function inside transaction layer and the thread

is created in the transaction layer block constructor and terminated in destructor. It’s an infinite

loop which use polling by checking all blocks APIs to interface with them and give them what

they need and take from them what the thread needs and connecting between them by taking

data from one block to another. And calling Datalink update (thread) and datalink flow control

packets.

3-8 Flow Control

3-8-1 Concept

 The ports at each end of every PCI Express link must implement Flow Control. Before a

transaction packet can be sent across a link to the receiving port, the transmitting port must

verify that the receiving port has sufficient buffer space to accept the transaction to be sent. In

many other architectures including PCI and PCI-X, transactions are delivered to a target device

without knowing if it can accept the transaction. If the transaction is rejected due to insufficient

buffer space, the transaction is resent (retried) until the transaction completes. This procedure

can severely reduce the efficiency of a bus, by wasting bus bandwidth when other transactions

are ready to be sent.

 Because PCI Express is a point-to-point implementation, the Flow Control mechanism

would be ineffective, if only one transaction stream was pending transmission across a link.

That is, if the receive buffer was temporarily full, the transmitter would be prevented from

sending a subsequent transaction due to transaction ordering requirements, thereby blocking

any further transfers. PCI Express improves link efficiency by implementing multiple flow

control buffers for separate transaction streams (virtual channels). Because Flow Control is

managed separately for each virtual channel implemented for a given link, if the Flow Control

buffer for one VC is full, the transmitter can advance to another VC buffer and send

transactions associated with it.

 The link Row Control mechanism uses a credit-based mechanism that allows the

transmitting port to check buffer space availability at the receiving port. During initialization

each receiver reports the size of its receive buffers (in Flow Control credits) to the port at the

opposite end of the link. The receiving port continues to update the transmitting port regularly

by transmitting the number of credits that have been freed up. This is accomplished via Flow

Control DLLPs.

 Flow control logic is located in the transaction layer of the transmitting and receiving

devices. Both transmitter and receiver sides of each device are involved in flow control.

108 | Page

 Devices Report Buffer Space Available: The receiver of each node contains the Flow

Control buffers. Each device must report the amount of flow control buffer space they

have available to the device on the opposite end of the link. Buffer space is reported in

units called Flow Control Credits (FCCs). The number of Flow Control Credits within

each buffer is for-warded from the transaction layer to the transmit side of the link layer.

The link creates a Flow Control DLLP that carries this credit information to the receiver

at the opposite end of the link. This is done for each Flow Control Buffer.

 Receiving Credits: The receiver also receives Flow Control DLLPs from the device at

the opposite end of the link. This information is transferred to the transaction layer to

update the Flow Control Counters that track the amount of Row Control Buffer space

in the other device.

 Credit Checks Made: Each transmitter checks consults the Flow Control Counters to

check available credits. If sufficient credits are available to receive the transaction

pending delivery, then the transaction is forwarded to the link layer and is ultimately

sent to the opposite device. If enough credits are not available, the transaction is

temporarily blocked until additional Flow Control credits are reported by the receiving

device.

Figure 54: Flow Control Logic Location

109 | Page

3-8-2 Flow Control Buffers

 Tx & Rx Buffers are divided to six Buffers as shown in the figure to easy calculate credits

for counters and to separate headers from data as there is packets without data so check for

buffer of data only.

 Posted Headers PH MWr , MSG

 Posted Data PD MWr

 Non-Posted Headers NPH CfgRd , CfgWr , MRd

 Non-Posted Data NPD CfgWr

 Completion Headers CPLH Cpl , CplD

 Completion Data CPLD CplD

Header Credit for PH & NPH is 5 DW

Header Credit for CPLH is 4 DW

Data Credit for PD & NPD & CPLD is 4 DW

Figure 55: Flow Control Buffers

110 | Page

3-8-3 Flow Control Logic

Transmitter Elements

 Pending Transaction Buffer holds transactions that are pending transfer within the

same virtual channel.

 Credit Consumed Counter tracks the size of all transactions sent from the VC buffer

(of the specified type, e.g., non-posted headers) in Flow Control credits. This count is

abbreviated "CC."

 Credit limit Register this register is initialized by the receiving device when it sends

Flow Control initialization packets to report the size of the corresponding Flow Control

receive buffer. Following initialization, Flow Control update packets are sent

periodically to add more Flow Control credits as they become available at the receiver.

This value is abbreviated

 Flow Control Gating Logic performs the calculations to determine if the receiver has

sufficient Row Control credits to receive the pending TLP (PTLP). In essence, this

check ensures that the total CREDITS CONSUMED (CC) plus the credit required for

the next packet pending transmission (PTLP) does not exceed the CREDIT LIMIT

(CL). This specification defines the following equation for performing the check, with

all values represented in credits:

Receiver Elements

 Flow Control (Receive) Buffer stores incoming header or data information.

 Credit Allocated This counter tracks the total Flow Control credits that have been

allocated (made available) since initialization. It is initialized by hardware to reflect the

size of the associated Flow Control buffer. As the buffer fills the amount of available

buffer space decreases until transactions are removed from the buffer. The number of

Row Control credits associated with each transaction removed from the buffer is added

to the CREDIT_ALLOCATED counter; thereby keeping a running count of new credits

made available.

 Credits Received Counter (optional) — this counter keeps track of the total size of all

data received from the transmitting device and placed into the Flow Control buffer (in

Flow Control credits). When flow control is functioning properly, the

CREDITS_RECEIVED count should be the same as CREDITS_CONSUMED count

at the transmitter and be equal to or less than the CREDIT_ALLOCATED count. If this

is not true, then a flow control buffer overflow has occurred and error is detected.

Although optional the specification recommends its use. The error checking equation

is as shown.

111 | Page

Figure 56: Flow Control Logic Elements

3-8-4 Implementation

 Flow control logic is implemented in transaction and counters are updated continuously

by datalink layer through APIs called by thread. The buffers is made as a queue of credits 6 at

transmitter and 6 at receiver. The counters are private variables in the transaction layer. The

flow control uses these counters when the transaction has packets ready to be transferred to

datalink layer, then it applies the flow control gating equation shown above in the Flow Control

Elements to make sure that the receiver has enough space to receive the packets.

112 | Page

Chapter 4

Datalink Layer

4-1 Data Link Layer Overview
Data Link Layer is the middle PCI-Express architectural layer and interacts with both the

Physical Layer and the Transaction Layer. Its primary responsibility is data integrity,

including error detection and error correction and to provide a reliable mechanism for

exchanging Transaction Layer Packets (TLPs) between the two components on a Link

As well as link management support

4-2 Data Integrity in Data Link Layer
The Data Link Layer takes the TLPs from the transmit side of the Transaction Layer and it

adds a sequence number to the front of the packet and a LCRC error checker to the tail The

Receive Data Link Layer validates received TLPs by checking the Sequence Number, LCRC

code and any error indications from the Receive Physical Layer. this ensures that the receiver

transaction layer should receive TLP in the same order that the transmitter send them .so this

thing enhance QOS. In case of error in a TLP, Data Link Layer Retry is used for recovery

Figure 57: Data link layer overview

Figure 58: Data Link Layer

113 | Page

4-3 Data Link Layer Packets (DLLP)
The primary responsibility of the PCI Express Data Link Layer is to assure that integrity is

maintained when TLPs move between two devices. It also has link initialization and power

management responsibilities, including tracking of the link state and passing messages and

status between the Transaction Layer above and the Physical Layer below.

In performing its role, the Data Link Layer exchanges traffic with its neighbor using Data

Link Layer Packets (DLLPs). DLLPs originate and terminate at the Data Link Layer of each

device.

Figure 59: DLLP Flow

There are two important groups of DLLP used in managing a link:

1-TLP Acknowledgment Ack/Nak DLLPs.

2-Flow Control Packet DLLPs

114 | Page

4-3-1 TLP Acknowledgment Ack/Nak DLLPs.

Ack DLLP: TLP Sequence number acknowledgement; used to indicate successful receipt of

some number of TLPs

Nak DLLP: TLP Sequence number negative acknowledgement; used to initiate a Data Link

Layer Retry. As to notify the transmitter that there is error in somewhat packet or error in link

and order it to send packets again from Reply Buffer.

Figure 60: General DLLP Format

Figure 61: ACK/NAK DLLP Format

115 | Page

4-3-2 Flow Control Packet DLLPs

The device must inform the other device the credits available of specified transaction (e.g

posted, non-posted, completions) in its transaction layer to notify another device to make check

of its pending TLP. the size of Pending TLP must be less than this Credits so if the size of

pending TLP is less than Credits Available in the other device. the transmitter then get

permission and send TLP

Init 1: means at the beginning of link initialization the device must inform the other device the

credits available of specified transaction (e.g posted, non-posted, completions)

Init 2: used as a check for transaction layer in transmitter to notify other layer that the

transmitter transaction layer has already known the credits available in other device

Update: used through transferring of packets across link to keep all devices updated with

Credits Available in other devices

4-5 ACK/NAK Protocol
The TLP transmission path through the Data Link Layer prepares each TLP for transmission

by applying a sequence number, then calculating and appending

a Link CRC (LCRC) which is used to ensure the integrity of TLPs during transmission across

a Link from one component to another. TLPs are stored in a retry buffer, and are re-sent

unless a positive acknowledgement of receipt is received from the other component. If

repeated attempts to transmit a TLP are unsuccessful, the Transmitter will determine that the

Link is not operating correctly, and instruct the Physical Layer to retrain the Link If Link

retraining fails, the Physical Layer will indicate that the Link is no longer up, causing the

Data Link Layer to move to the DL Inactive state

Figure 62: Flow Control DLLP Format

116 | Page

The ACK/NAK protocol associated with the Data Link Layer is described with the aid of

Figure 5-2 on page 211 which shows sub-blocks with greater detail. For every TLP that is sent

from one device (Device A) to another (Device B) across one Link, the receiver checks for

errors in the TLP (using the TLP’s LCRC field). The receiver Device B notifies transmitter

Device A on good or bad reception of TLPs by returning an ACK or a NAK DLLP. Reception

of an ACK DLLP by the transmitter indicates that the receiver has received one or more TLP(s)

successfully. Reception of a NAK DLLP by the transmitter indicates that the receiver has

received one or more TLP(s) in error. Device A which receives a NAK DLLP then re-sends

associated TLP(s) which will hopefully, arrive at the Receiver successfully without error.

Figure 63: Over View of ACK/NAK Protocol

117 | Page

4-6 Elements of Transmitter ACK/NAK Protocol

Figure 64: Elements of Transmitter ACK/NAK Protocol

118 | Page

4-6-1 Replay Buffer

The replay buffer stores TLPs with all fields including the Data Link Layer- related Sequence

Number and LCRC fields. The TLPs are saved in the order of arrival from the Transaction

Layer before transmission. Each TLP in the Replay Buffer contains a Sequence Number which

is incrementally greater than the sequence number of the previous TLP in the buffer.

When the transmitter receives acknowledgement via an ACK DLLP that TLPs have reached

the receiver successfully, it purges the associated TLPs from the Replay Buffer. If, on the other

hand, the transmitter receives a NAK DLLP, it replays (i.e., re-transmits) the contents of the

buffer.

4-6-2 Next Transmit Seq Num

This counter generates the Sequence Number assigned to each new transmitted TLP. The

counter is a 12-bit counter that is initialized to O at reset, or when the Data Link Layer is in the

inactive state. It increments until it reaches 4095 and then rolls over to 0 (i.e., it is a modulo

4096 counter).

4-6-3 LCRC Generator

This module calculates a 32-bit CRC. The LCRC value is added to the tad of the TLP. This

module sends the LCRC value in four bytes after the Transaction Layer sends the last byte of

the TLP.

4-6-4 Replay Timer

REPLAY_TIMER - Counts time since last Ack or Nak DLLP received

The Timer is reset to zero and restart when

1. A replay event occurs and the last symbol of TLP is replayed.

2. For ACK DLLP received as long as there is unacknowledged TLP in replay buffer

The Timer is reset to Zero and held when

1. There are no TLPs to transmit, or when the Replay Buffer is empty.

2. A NAK DLLP is received. The timer restarts when replay begins.

3. When the timer expires.

4. The Data Link Layer is inactive.

Timer is Held during Link training or re-training.

When this Timer expires the Data Link layer of transmitter know that there is problem in link

so it sends all packets in replay buffer.

The timer is loaded with a value that reflects the worst-case latency for the return of an ACK

or NAK DLLP. This time depends on the maximum data payload allowed for a TLP and the

width of the Link.

119 | Page

The equation to calculate the REPLAY_TIMER value required is:

Figure 65: Equation of Replay Timer

Where

Max Payload_Size: is the value in the Max_Payload_Size field of the Device Control register.

For a multi-function device whose Max_Payload_Size settings are identical across all

functions, the common Max_Payload_Size setting must be used. For a multi-function

Device whose Max_Payload_Size settings are not identical across all functions, the selected

Max_Payload_Size setting is implementation specific, but it’s recommended to use the

largest Max_Payload_Size setting across all functions.

TLP Overhead: represents the additional TLP components which consume Link

bandwidth (header, LCRC, framing Symbols) and is treated here asa constant value of 28

Symbols

AckFactor : represents the number of maximum size TLPs which can be received before an

Ack is sent, and is used to balance Link bandwidth efficiency and retry buffer size – the value

varies according to Max_Payload_Size and Link width

LinkWidth: is the operating width of the Link

InternalDelay : represents the internal processing delays for received TLPs and transmitted

DLLPs, and is treated here as a constant value of 19 Symbol Times

Rx_L0s_Adjustment: equals the time required by the components receive circuits to exit

from L0s to L0 (as to receive an Ack DLLP from the other component on the Link)

4-6-5 Replay_Num Count

This 2-bit counter stores the number of replay attempts following either reception of a NAK

DLLP, or a REPLAY_TIMER time-out. When the REPLAY_NUM count rolls over from 11b

to 00b, the Data Link Layer triggers a Physical Layer that the link need retrained and data link

layer enter inactive state and after that It waits for completion of re-training before attempting

to transmit TLPs once again. The REPLAY_NUM counter is initialized to 00b at reset, or when

the Data Link Layer is inactive. It is also reset whenever an ACK is received, indicating that

forward progress is being made in transmitting TLPs.

120 | Page

4-6-6 ACKD_SEQ Count

This 12-bit register tracks or stores the Sequence Number of the most recently received ACK

or NAK DLLP. It is initialized to all is at reset, or when the Data Link Layer is inactive. This

register is updated with the AckNak_Seq Num [11:0] field of a received ACK or NAK DLLP.

The ACKD_SEQ count is compared with the NEXT_TRANSMIT_SEQ count.

4-6-7 DLLP CRC Check

This block checks for CRC errors in DLLPs returned from the receiver. Good DLLPs are

further processed. If a DLLP CRC error is detected, the DLLP is discarded and an error

reported. No further action is taken.

4-7 Elements of Receiver ACK/NAK Protocol

Figure 66: Elements of Receiver ACK/NAK Protocol

121 | Page

4-7-1 Receive Buffer

The receive buffer temporarily stores received TLPs while TLP CRC and Sequence Number

checks are performed. If there are no errors, the TLP is processed and transferred to the receiver

‘s Transaction Layer. If there are errors associated with the TLP, it is discarded and a NAK

DLLP may be scheduled. If the TLP is a duplicate TLP it is discarded and an ACK DLLP is

scheduled. If the TLP is a ‘nullified’ TLP, it is discarded and no further action is taken

4-7-2 LCRC Check

This block checks for LCRC errors in the received TLP using the TLP’s 32-bit LCRC fie1d.

4-7-3 Next_RCV_SEQ_Count

The 12-bit NEXT_RCV_SEQ counter keeps track of the next expected TLP’s Sequence

Number. This counter is initialized to 0 at reset, or when the Data Link Layer is inactive. This

counter is incremented once for each good TLP received that is forwarded to the Transaction

Layer. The counter rolls over to 0 after reaching a value of 4095. The counter is not incremented

for TLPs received with CRC error, nullified TLPs, or TLPs with an incorrect Sequence

Number.

4-7-4 Sequence Number Check

• If the TLP’s Sequence Number = NEXT_RCV_SEQ count, the TLP is accepted, processed

and forwarded to the Transaction Layer. NEXT_RCV_SEQ count is incremented. The receiver

continues to process inbound TLPs and does not have to return an ACK DLLP until the

ACKNAK_LATENCY_TIMER expires or exceeds its set value.

• If the TLP’s Sequence Number is an earlier Sequence Number than NEXT_RCV_SEQ count

and with a separation of no more than 2048 from NEXT_RCV_SEQ count, the TLP is a

duplicate TLP. It is discarded and an ACK DLLP is scheduled for return to the transmitter.

•If the TLP’s Sequence Number is a later Sequence Number than NEXT_RCV_SEQ count, or

for any other case other than the above two conditions, the TLP is discarded and a NAK DLLP

may be scheduled (more on this later) for return to the transmitter.

4-7-5 Nak scheduled flag

The NAK_SCHEDULED flag is set when the receiver schedules a NAK DLLP to return to the

remote transmitter. It is cleared when the receiver sees the first TLP associated with the replay

of a previously-Nak’d TLP. The receiver shouldn’t schedule additional NAK DLLP forbad

TIPs received while the NAK_SCHEDULED flag is set.

4-7-6 ACKNAK_Latency_Timer

The ACKNAK_LATENCY_TIMER monitors the elapsed time since the last ACK or NAK

DLLP was scheduled to be returned to the remote transmitter. The receiver uses this timer to

ensure that it processes TLPs promptly and returns an ACK or a NAK DLLP when the timer

expires or exceeds its set value.

122 | Page

The timer resets to 0 and holds when:

1. . All received TLPs have been acknowledged.

2. . The Data Link Layer is in the inactive state.

When the timer expires the receiver schedules and Ack DLLP of last unacknowledged good

TLP

The receiver’s ACKNAK_LATENCY_TIMER is loaded with a value that reflects the worst-

case transmission latency in sending an ACK or NAK in response to a received TLP.

This time depends on the anticipated maximum payload size and the widthof the Link.

The equation to calculate the ACKNAK_LATENCY_TIMER value required

Figure 67: ACKNAK_LATENCY_TIMER equation

Max_Payload_Size: is the value in the Max_Payload_Size field of the Device Control register.

For a multi-function device whose Max_Payload_Size settings are identical across all

functions, the common Max_Payload_Size setting must be used. For a multi-function device

whose Max_Payload_Size settings are not identical across all functions, the selected

Max_Payload_Size setting is implementation specific, but it’s recommended to use the

smallest Max_Payload_Size setting across all functions.

TLP Overhead: represents the additional TLP components which consume Link bandwidth

(header, LCRC, framing Symbols) and is treated here as a constant value of 28 Symbols.

30 AckFactor represents the number of maximum size TLPs which can be received before an

Ack is sent, and is used to balance Link bandwidth efficiency and retry buffer size – the value

varies according to Max_Payload_Size and Link width.

LinkWidth: is the operating width of the Link.

InternalDelay : represents the internal processing delays for received TLPs and transmitted

DLLPs, and is treated here as a constant value of 19 Symbol Times.

Tx_L0s_Adjustment: if L0s is enabled, the time required for the Transmitter to exit L0s

123 | Page

4-7-7 ACK/NAK DLLP Generator

This block generates the ACK or NAK DLLP upon command from the LCRC or Sequence

Number check block. The ACK or NAK DLLP contains an AckNak_Seq_Num[11:0] field

obtained from NEXT_RCV_SEQ counter . Ack or NAK DLLPs contain AckNak_Seq_Num

[11:0] value equal to NEXT_RCV_SEQ – 1

4-8 Scheduling an ACK DLLP

If the receiver does not detect an LCRC error or a Sequence Number related error associated

with a received TLP, it accepts the TLP and sends it to the Transaction Layer. The

NEXT_RCV_SEQ counter is incremented and the receiver is ready for the next TLP. At this

point, the receiver can schedule an ACK DLLP with the Sequence Number of the received

TLP.

Alternatively, the receiver could also wait for additional TLPs and schedule an ACK DLLP

with the Sequence Number of the last good TLP received. The receiver is allowed to

accumulate a number of good TLPs and then sends one aggregate ACK DLLP with a Sequence

Number of the latest good TLP received. The coalesced ACK DLLP acknowledges the good

receipt of a collection of TLPs starting with the oldest TLP in the transmitter’s Replay Buffer

and ending with the TLP being acknowledged by the current ACK DLLP. By doing so, the

receiver optimizes the use of Link bandwidth due to reduced ACK DLLP traffic. .When the

ACKNAK_LATENCY_ TIMER expires or exceeds its set value and TLPs are received, an

ACK DLLP with a Sequence Number of the last good TLP is returned to the transmitter.

4-9 Scheduling a NAK DLLP

Upon receipt of a TLP, the first type of error condition the receiver may detect is a TLP LCRC

error) The receiver discards the had TLP. If the NAK_SCHEDULED flag is clear, it schedules

a NAK DLLP to return to the transmitter. The NAK_SCHEDULED flag is then set. The

receiver uses the NEXT_RCV_SEQ count - 1 count value as the AckNak_Seq_Num [11:0]

field in the NAK DLLP At the time the receiver schedules a NAK DLLP to return to the

transmitter, the Link may be in use to transmit other queued TLPs, DLLPs or PLPs. In that

case, the receiver delays the transmission of the NAK DLLP . When the Link becomes

available, however, it sends the NAK DLLP to the remote transmitter. The transmitter replays

the TLPs from the Replay Buffer.

124 | Page

In the meantime, TLPs currently en route continue to arrive at the receiver. These TLPs have

later Sequence Numbers than the NEXT_RC V_SEQ count. The receiver discards them. The

specification is unclear about whether the receiver should schedule a NAK DLLP for these

TLPs. It is the authors’ interpretation that the receiver must not schedule the return of additional

NAK DLLPs for subsequently received TLPs while the NAK_SCHEDULED flag remains set.

 The receiver detects a replayed TLP when it receives a TLP with Sequence Numbers that

matches NEXT_RC V_SEQ count. If the replayed TLPs arrive with no errors, the receiver

increments NEXT_RCV_SEQ count and clears the NAK_SCHEDULED flag. The receiver

may schedule an ACK DLLP for return to the transmitter if the

ACKNAK_LATENCY_TIMER expires. The good replayed TLPs are forwarded to the

Transaction Layer.

4-10 Design and implementation (Block Diagram)

Figure 68: Design and Implementation of Data Link Layer

125 | Page

4-11 Block Description

4-11-1 Creation_DataLink_TLP

Figure 69: flow chart of Creation_Datalink_TLP

126 | Page

4-11-2 DLLP Manager Rx

Manages the reception of the DLLPs. If an Ack or Nak DLLP has been received, then the

DLLP Manager Rx passes the sequence number of the TLP acknowledged or

unacknowledged to the Ack_Nak_Notifications.

Figure 70: Flow chart of DLLP Manager Rx

127 | Page

4-11-3 DLLP Manager Tx

The DLLP Manager Tx module forms DLLPs,Ack for Good TLP and Nak for Bad TLP,and

then schedules and transmits a DLLP to the other component on the Link

Figure 71: Flow chart of DLLP Manager Tx

128 | Page

4-11-4 Ack_Nak_Notifications

This module notifies to the Replay Buffer the TLPs acknowledged or unacknowledged in the

Receiver.

Figure 72: Flow chart of Ack_Nak_Notifcations

129 | Page

4-11-5 Data_link_Update

It is the controller of Data Link, work as thread, it calls All blocks in Data Link by polling and

check for expiration of timers and take action in case of expirations of one of these timers and

also this block sends new packets to other layer

Figure 73: Flow chart of Data_Link_Update

130 | Page

4-12 Interfacing with Transaction Layer

In Our Design We Designed Transaction Layer as a class and Data Link Layer as another class

and Class Transaction layer can interface Data Link Class through four Interfaces(APIs) and

Class Data Link Layer Can Interface Transaction Layer Class through One Interface(API)

4-12-1 Creation of TLP

This API first check link status management if the link is active it gets TLP from Transaction

and Assign Sequence Number and LCRC and then put the packet in Reply Buffer

4-12-2 Create_Update_Flow_Control

As we said before, Transaction Layer should notify other devices with the credits available in

their Transaction Layer according to each type of Transaction this can be done by transmitting

Credits Alloc for both Header and Data and type of Transaction to Data Link Layer to Create

Flow Control Packet and send it to other device, this can be done by this

Create_Update_Flow_Control API

Figure 74: Interfacing Transaction Layer with Data Link Layer and vice versa

131 | Page

Figure 75: Types and Format of Flow Control Packets

4-12-3 GET_FLOW_CONTROL_DLLP

As we said before DLLP terminates at Data Link Layer, so when the device send flow control

DLLP carrying Credits Alloc to other device. the Transaction Layer of receiving device want

to know the Credits Alloc in other Layer to update its Credit Limit Register for both data and

header and know if it can send its pending TLP as the size of Pending TLP must be less than

Credits Limit, this can be done by this API, this API returns the value of Credits Alloc of other

Transaction Layer

Figure 76: illustration of GET_FLOW_CONTROL_DLLP

132 | Page

4-12-4 Data_Link_Update

The thread of transaction Layer should call this API because it is the Controller of Data link

that calls all blocks in Data Link and managing transferring packets and DLLP through Data

Link

The mechanism of Data_Link_Update when it is called by the thread of transaction layer is as

shown in its Block diagram

Figure 77: Block Diagram Data_Link_Update

133 | Page

4-12-5 Data_Link_To_Transaction

Before the Data Link Calls this API, Data link must Decompose Packet as to remove Sequence

number and LCRC, this can be done by DLLP Manger Tx Block, After Decomposing it class

Data Link Call this API, when calling this API, the TLP is passed from Data Link Layer to

Transaction Layer and enqueued in Rx Buffer according to the type of transaction of this TLP

(e.g posted transaction enqueued)

4-13 Recommended Priority to Schedule Packets
A device may have many types of TLPs, and DLLPs to transmit on a given Link. The

following is a recommended but not required set of priorities for scheduling packets:

1. Completion of any TLP or DLLP currently in progress (highest priority).

2. PLP transmissions.

3. NAK DLL-P.

4. ACK DLLP.

5. FC (Flow Control) DLLP.

6. Replay Buffer re-transmissions.

7. TLPs that are waiting in the Transaction Layer.

8. All other DLLP transmissions (lowest priority)

Figure 78: Illustration Data_Link_To_Transaction

134 | Page

Chapter 5

Physical Layer

5-1 Physical layer overview

The Physical Layer shown in connects to the Link on one side and interfaces to the

Data Link Layer on the other side. The Physical Layer processes outbound packets before

transmission to the Link and processes inbound packets received from the Link. The two

sections of the Physical Layer associated with transmission and reception of packets are

referred to as the transmit logic and the receive logic throughout this chapter.

The transmit logic of the Physical Layer essentially processes packets arriving from the Data

Link Layer, then converts them into a serial bit stream. The bit stream is clocked out at 2.5

Gbits/s/Lane onto the Link.

The receive logic clocks in a serial bit stream arriving on the Lanes of the Link with a clock

that is recovered from the incoming bit stream. The receive logic converts the serial bit steam

into a parallel symbol stream, processes the incoming symbols, assembles packets and sends

them to the Data Link Layer.

Figure 79: The Physical layer

135 | Page

In the future, data rates per Lane are expected to go to 5 Gbits/s, 10 Gbits/s and beyond. When

this happens, an existing design can be adapted to the higher data rates by redesigning the

Physical Layer while maximizing reuse of the Data Link Layer, Transaction Layer and Device

Core/Software Layer. The Physical Layer may be designed as a standalone entity separate from

the Data Link Layer and Transaction Layer. This allows a design to be migrated to higher data

rates or even to an optical implementation if such a Physical Layer is supported in the future.

Two sub-blocks make up the Physical Layer. These are the logical Physical Layer and the

electrical Physical Layer as shown below. This chapter describes the logical sub-block, and the

next chapter describes the electrical sub-block. Both sub-blocks are split into transmit logic

and receive logic (independent of each other) which allow dual simplex communication.

Figure 80: The Electrical and the Logical Physical

136 | Page

5-2 Transmitter Logic

Figure 81 shows the elements that make up the transmit logic:

 Multiplexer (mux).

 Byte striping logic (only necessary if the link implements more than one data

lane).

 Scramblers.

 8b/10b encoders.

 Parallel-To-Serial converters.

TLPs and DLLPs from the Data Link layer are clocked into a Tx Buffer. With the aid of a

multiplexer, the Physical Layer frames the TLPs or DLLPs with Start and End characters.

These characters are framing symbols which the receiver device uses to detect start and end of

packet.

The framed packet is sent to the Byte Striping logic which multiplexes the bytes of the packet

onto the Lanes. One byte of the packet is transferred on one Lane, the next byte on the next

Lane and so on for the available Lanes.

The Scrambler uses an algorithm to pseudo-randomly scramble each byte of the packet. The

Start and End framing bytes are not scrambled. Scrambling eliminates repetitive patterns in the

bit stream. Repetitive patterns result in large amounts of energy concentrated in discrete

frequencies which leads to significant EMI noise generation. Scrambling spreads energy over

a frequency range, hence minimizing average EMI noise generated.

The scrambled 8-bit characters (8b characters) are encoded into 10-bit symbols (10b symbols)

by the 8b/10b Encoder logic. And yes, there is a 25% loss in trans-mission performance due to

the expansion of each byte into a 10-bit character. A Character is defined as the 8-bit un-

encoded byte of a packet. A Symbol is defined as the 10-bit encoded equivalent of the 8-bit

character. The purpose of 8b/10b Encoding the packet characters is primarily to create

sufficient 1-to-0 and 0-to-1 transition density in the bit stream so that the receiver can re-create

a receive clock with the aid of a receiver Phase Lock Loop (PLL). Note that the clock used to

clock the serial data bit stream out of the transmitter is not itself transmitted onto the wire.

Rather, the receive clock is used to clock in an inbound packet.

The 10b symbols are converted to a serial bit stream by the Parallel-to-Serial converter This

logic uses a 2.5 GHz clock to serially clock the packets out on each Lane. The serial bit stream

is sent to the electrical sub-block which differentially transmits the packet onto each Lane of

the Link.

137 | Page

5-3 Receive Logic

Figure 81 shows the elements that make up the receive logic:

 Receive PLL.

 Serial-to-parallel converter.

 Elastic buffer.

 8b/10b decoder.

 De-scrambler.

 Byte un-striping logic (only necessary if the link implements more than one data

lane).

 Control character removal circuit.

 Packet receive buffer.

As the data bit stream is received, the receiver PLL is synchronized to the clock frequency with

which the packet was clocked out of the remote transmitter device. The transitions in the

incoming serial bit stream are used to re-synchronize the PPL circuitry and maintain bit and

symbol lock while generating a clock recovered from the data bit stream. The serial-to-parallel

converter is clocked by the recovered clock and outputs 10b symbols. The 106 symbols are

clocked into the Elastic Buffer using the recovered clock associated with the receiver PLL. The

Elastic Buffer is used for clock tolerance compensation; i.e. the Elastic Buffer is used to adjust

for minor clock frequency variation between the recovered clock used to clock the incoming

bit stream into the Elastic Buffer and the locally-generated clock associated that is used to clock

data out of the Elastic Buffer.

The 10b symbols are converted back to 8b characters by the 8b/10b Decoder. The Start and

End characters that frame a packet are eliminated. The 8b/10b Decoder also looks for errors in

the incoming 10b symbols. For example, error detection logic can check for invalid 10b

symbols or detect a missing Start or End character.

The De-Scrambler reproduces the de-scrambled packet stream from the incoming scrambled

packet stream. The De-Scrambler implements the inverse of the algorithm implemented in the

transmitter Scrambler.

The bytes from each Lane are un-striped to form a serial byte stream that is loaded into the

receive buffer to feed to the Data Link layer.

138 | Page

Figure 81: Detailed Physical layer

5-4 Physical layer Error Handling

When the Physical Layer logic detects an error, it sends a Receiver Error indication to

the Data Link Layer. The specification lists a few of these errors, but it is far from being an

exhaustive error list. It is up to the designer to determine what Physical Layer errors to detect

and report.

Some of these errors include:

 86/106 Decoder-related disparity errors.

 8b/10b Decoder-related code violation errors.

 Elastic Buffer overflow or underflow caused by loss of symbols.

 The packet received is not consistent with the packet format rules.

 Loss of Symbol Lock (see "Symbol Boundary Sensing (Symbol Lock)" on page 441).

 Loss of Lane-to-Lane de-skew.

Response of Data Link Layer to 'Receiver Error' Indication If the Physical Layer indicates a

Receiver Error to the Data link layer, the Data Link Layer discards the TIP currently being

139 | Page

received and frees any storage allocated for the TIP. The Data Link Layer schedules a NAK

DLLP for transmission back to the transmitter of the TIP. Doing so automatically causes the

transmitter device to replay TLPs from the Replay Buffer, resulting in possible auto-correction

of the error. The Data Link Layer may also direct the Physical Layer to initiate Link re-training

(i.e., link recovery).

Detected Link errors may also result in the Physical Layer initiating the Link retraining

(recovery) process. In addition, the device that detects a Receiver Error sets the Receiver Error

Status bit in the Correctable Error Status register of the PCI Express Extended Advanced Error

Capabilities register set. If enabled to do so, the device sends an ERR_COR (correctable error)

message to the Root Complex.

140 | Page

Chapter 6

 Testing

6-1 Interface of layers

 A Transactor, implemented in Verilog as a simple physical layer, used as a block of

handshaking between two layers implemented in different languages.

As there are two layers, Transaction layer and Datalink layer, implemented in C++ and a layer,

Physical layer (Transactor in this case), DPI “Direct Programming Interface” is used as the

interface between them.

Figure shows how the interface between the layers looks like in the presence of DPI.

Figure 82: Layer Interface

141 | Page

6-2 Header type comparison

Figure show the header type 0 and Figure shows header type 1.

Figure 83: Header type 0

Figure 84: Header type 1

142 | Page

6-2-1 Header Type 0 Test

Some of the tested registers of header type 0 will be shown as follow:

 Command register.

 Status register.

 Interrupt Line register.

 Interrupt Pin register.

 PCIe Device capability

 Device capability register.

 Device control register.

 Device status register.

 MSI capability

 MSI Message Control register.

 MSI Message Address register.

 MSI Message Data register.

 AER capability

 AER Enhanced header register.

 AER Correctable status register.

 AER un-Correctable status register.

6-2-2 Header Type 1 Test

Some of the tested registers of header type 0 will be shown as follow:

 Same registers as header type 0.

 Other registers

 Primary Bus Number register.

 Secondary Bus Number register.

 Subordinate Bus Number register.

 Memory Base register.

 Memory Limit register.

 Prefetchable Memory Base register.

 Prefetchable Memory Limit register.

 Prefetchable Upper Base register.

 Bridge Control register.

143 | Page

6-3 Test types

To test the performance of the design and to know how good the implementation of the

two header types, header type 0 which is used for Endpoints and header type 1 which is used

for switches, that the PCIe has, two types of test is performed:

 Root Complex (OS) communicating with an Endpoint through a PCIe switch.

 Two Endpoints connected Back-to-Back.

The first type, OS communicating with an Endpoint through a PCIe switch, is used to test the

design and implementation of header type 1, and the second type, two Endpoints are connected

back-to-back, is used to test the implementation of header type 0.

6-3-1 First Test type

Some of the packet types tested in this method as follow:

 Configuration Write “4 Bytes”.

 Configuration Read “4 Bytes”.

 DMA (Memory Write)

 1 Byte.

 2 Bytes.

 4 Bytes.

 8 Bytes.

 DMA (Memory Read)

 1 Byte.

 4 Bytes.

 8 Bytes.

 128 Bytes.

 512 Bytes.

6-3-2 Packet Examples

To verify the results of the implementation, they were compared to the results of real

used PCIe bus at Mentor Graphics company. Where its results were given in two separate Excel

files.

144 | Page

Comparisons of some packets will be clarified as follow.

 Write configuration

o Writing (0xFFFFFFFF) at BAR0.

 Expected Output

Header 0 0x44000001 0x44000001

Header 1 0x0000CB0F 0x0000150F

Header 2 0x01000010 0x01000010

Data 0xFFFFFFFF 0xFFFFFFFF

 Completion

 Expected Output

Header 0 0x0A000000 0x0A000000

Header 1 0x01000004 0x01000004

Header 2 0x0000CB00 0x00001500

 Read configuration

o Reading from BAR0.

 Expected Output

Header 0 0x04000001 0x04000001

Header 1 0x0000CC0F 0x0000160F

Header 2 0x01000010 0x01000010

 Completion

 Expected Output

Header 0 0x4A000001 0x4A000001

Header 1 0x01000004 0x01000004

Header 2 0x0000CC00 0x00001600

Data 0xFFFFFC00 0xFFFFFC00

 Write configuration

o Writing (0xFFFFFFFF) at BAR1.

 Expected Output

Header 0 0x44000001 0x44000001

Header 1 0x0000CF0F 0x0000180F

145 | Page

Header 2 0x01000014 0x01000014

Data 0xFFFFFFFF 0xFFFFFFFF

 Completion

 Expected Output

Header 0 0x0A000000 0x0A000000

Header 1 0x01000004 0x01000004

Header 2 0x0000CF00 0x00001800

 Read configuration

o Reading from BAR0.

 Expected Output

Header 0 0x04000001 0x04000001

Header 1 0x00000D0F 0x0000190F

Header 2 0x01000014 0x01000014

 Completion

 Expected Output

Header 0 0x4A000001 0x4A000001

Header 1 0x01000004 0x01000004

Header 2 0x00000D00 0x00001900

Data 0xFFF00008 0xFFF00008

 Memory Test

Packet type #Bytes Offset Address
MemRd 1 Byte Offset 0 0xFE000000

MemRd 1 Byte Offset 1 0xFE000001

MemRd 1 Byte Offset 2 0xFE000006

MemWr 1 Byte Offset 0 0xFE000000

MemWr 2 Bytes Offset 2 0xFE000006

MemRd 4 Bytes Offset 0 0xFE80000C

MemWr 4 Bytes Offset 0 0xFE80000C

MemRd 8 Bytes Offset 0 0xFE000000

MemRd 8 Bytes Offset 0 0xFE000048

MemWr 8 Bytes Offset 0 0xFE000000

MemWr 8 Bytes Offset 0 0xFE100AC8

MemRd 128 Bytes Offset 0 0x3600F800

MemRd 512 Bytes Offset 0 0x3603FC00

146 | Page

6-3-3 Second Test type

Some of the packet types tested in this method as follow:

 BARs

o 3 DWs header (32-bits address).

o 4 DWs header (64-bits address).

 DMA.

o Memory write.

o Memory read.

 Multiple completions.

 Completion timeout.

 Configuration Retry Request “CRS “.

 Completion Abort “CA “.

 Unsupported Request “UR “.

 ECRC.

 MSI.

6-3-4 Packet Examples

Comparisons of some packets will be clarified as follow.

 Multiple completions

 Settings

o Command register.

 To allow memory transactions.

Packet type Endpoint Data
CfgWr E1 0x06

CfgWr E2 0x06

o Device status register.

 To set Max Payload Size to 128 Bytes.

Packet type Endpoint Data
CfgWr E1 0x5000

CfgWr E2 0x5000

 Test

Packet type #Bytes Direction Address
MemRd 512 Bytes E1 to E2 0xAC000000

 As the MPL has been set to 128 Bytes, the completion is divided to four separate

completion packets with the same sequence number.

 Completion timeout

147 | Page

 Test

Packet type #Bytes Direction Address
MemRd 3 Bytes E1 to E2 0xAC000000

 We had completion response delayed from App. Layer of E2 to try Completion

timeout.

 Configuration Retry Request “CRS “.

 Sending Configuration write to E2 with wrong ID.

 We made the header and sent it to E1 with completion status CRS, then the

correct completion has been sent to E2.

 Completion Abort “CA “.

 Sending Configuration write to E2 with wrong ID.

 We made the header and sent it to E1 with completion status CA.

 No need to send the successful completion as it’s already terminated.

 Unsupported Request.

 Settings

o Command register (2nd Byte).

Packet type Endpoint Data
CfgWr E2 0x01

o Device control register

Packet type Endpoint Data
CfgWr E2 0x0E

 To enable UR & MSG error reporting.

 Test

 Sending MemWr to E2 with address 0x00F1F1F1 (wrong address) to

try Msg & UR.

148 | Page

 ECRC

 Settings

o AER control register

Packet type Endpoint Data
CfgWr E1 0x01E0

CfgWr E2 0x01E0

 To enable ECRC generation and check.

 Test.

Packet type Endpoint #Bytes Address Data
MemWr E2 3 Bytes 0xABF1F1F1 0xFFFFFFFF

MemRd E1 4 Bytes 0xAC000000 ---------------

 MSI

 Settings

Packet type #Bytes Register Data
CfgWr 2 Bytes MSI Control 0x0081

CfgWr 4 Bytes MSI Address 0xFEE02000

CfgWr 2 Bytes MSI Data 0x4021

 To enable MSI.

 Test

o When MSI_0 is sent, INTA sends MemWr packet.

149 | Page

6-4 Tests in blocks

6-4-1 Transaction layer test

Figure shows the test of the Transaction layer in the first test type, OS communicating with an

Endpoint through a PCIe switch, Where Figure shows its test in the second test type, two

Endpoints are connected back-to-back.

Figure 85: Transaction layer test type 1

Figure 86: Transaction layer test type 2

150 | Page

6-4-2 Datalink layer test

Figure shows the test of the Datalink layer in the first test type, OS communicating with an

Endpoint through a PCIe switch, Where Figure shows its test in the second test type, two

Endpoints are connected back-to-back.

Figure 87: Datalink layer test type 1

Figure 88: Datalink layer test type 2

151 | Page

6-4-3 Physical layer test

Figure shows the test of the Physical layer in the first test type, OS communicating with an

Endpoint through a PCIe switch, Where Figure shows its test in the second test type, two

Endpoints are connected back-to-back.

Figure 89: Physical layer test type 1

Figure 90: Physical layer test type 2

152 | Page

Conclusion and Future work

The main advantage of the model is it tries to reduce the complexity of the bus by the use of

co-simulation. Co-simulation is simply that a part of the design is mainly hardware and the

other part is mainly software, and the two parts are simulated together using some simulation

tools (e.g. Questa-Sim, Model-Sim, ….). Where Questa-Sim is the tool used for this model.

So, the use of co-simulation in this model has simplified the design of the PCIe bus by

Conveying some of the hardware complexity to the software part.

In the future, this model can be modified and completed in some ways. The first part to be

completed is the full implementation of the Physical layer in Verilog. Then the other two layers,

Transaction layer and the Datalink layer, are implemented in Verilog. Then the three completed

layers of the PCIe are integrated together and tested before burning the final model of FPGA.

153 | Page

References

1. “PCI Express System Architecture” by MindShare, Inc, Ravi Buduck, Don Anderson,

Tom Shanley.

2. https://en.wikipedia.org/wiki/PCI_Express

3. http://www.differencebetween.net/technology/difference-between-pci-and-pci-

express/

4. https://en.wikipedia.org/wiki/PCI-X

5. https://community.fs.com/blog/pci-vs-pci-x-vs-pci-e-why-choose-pci-e-card.html

6. https://www.cs.unc.edu/Research/stc/FAQs/pci-

overview.pdf?fbclid=IwAR2kbDOJJJdOhF7JNgBmYmDq5Z9hRebPZWCdMW3h5

SwT0guxT_v7UI4QqMQ

7. https://en.wikipedia.org/wiki/Compute_Express_Link

8. https://www.mindshare.com/Learn/CXL_-_Compute_Express_Link

9. https://www.techpowerup.com/254462/intel-reveals-the-what-and-why-of-cxl-

interconnect-its-answer-to-nvlink

10. Wikipedia. (2020). Industry Standard Architecture. [online] Available at:

https://en.wikipedia.org/wiki/Industry_Standard_Architecture#History.

11. SearchWindowsServer. (n.d.). What is ISA (Industry Standard Architecture)? [online]

Available at: https://searchwindowsserver.techtarget.com/definition/ISA-Industry-

Standard-Architecture.

12. Webster, J.G. (2004). The Measurement, Instrumentation and Sensors Handbook.

[online] Available at:

http://www.kelm.ftn.uns.ac.rs/literatura/si/pdf/Measurement%20Instrumentation%20

Sensors.pdf.

13. Singh, N. (2013). All Round Experts: Difference Between 8 bit ISA, 16 bit ISA and

EISA. [online] All Round Experts. Available at:

http://allroundexpert.blogspot.com/2013/12/difference-between-8-bit-isa-16-bit-

isa.html.

14. Techopedia.com. (n.d.). What is Extended Industry Standard Architecture (EISA)? -

Definition from Techopedia. [online] Available at:

https://www.techopedia.com/definition/309/extended-industry-standard-architecture-

eisa.

15. Akhil Ahuja (2014). Types of Buses. [online] Available at:

https://www.slideshare.net/akhilahuja11/types-of-buses.

16. www.computerhope.com. (n.d.). What is VL Bus? [online] Available at:

https://www.computerhope.com/jargon/v/vlbus.htm?fbclid=IwAR37139GogsWFZIX

ogBJyqYc7dToTDFsjW5pMSOM7i4di24bXaxxJejA8P8.

17. Wikipedia. (2020). Industry Standard Architecture. [online] Available at:

https://en.wikipedia.org/wiki/Industry_Standard_Architecture#History.

18. Navabi, Z. and Kaeli, D.R. (2009). Computer Science and Engineering.

[online] Google Books. EOLSS Publications. Available at:

https://en.wikipedia.org/wiki/PCI_Express
http://www.differencebetween.net/technology/difference-between-pci-and-pci-express/
http://www.differencebetween.net/technology/difference-between-pci-and-pci-express/
https://en.wikipedia.org/wiki/PCI-X
https://community.fs.com/blog/pci-vs-pci-x-vs-pci-e-why-choose-pci-e-card.html
https://www.cs.unc.edu/Research/stc/FAQs/pci-overview.pdf?fbclid=IwAR2kbDOJJJdOhF7JNgBmYmDq5Z9hRebPZWCdMW3h5SwT0guxT_v7UI4QqMQ
https://www.cs.unc.edu/Research/stc/FAQs/pci-overview.pdf?fbclid=IwAR2kbDOJJJdOhF7JNgBmYmDq5Z9hRebPZWCdMW3h5SwT0guxT_v7UI4QqMQ
https://www.cs.unc.edu/Research/stc/FAQs/pci-overview.pdf?fbclid=IwAR2kbDOJJJdOhF7JNgBmYmDq5Z9hRebPZWCdMW3h5SwT0guxT_v7UI4QqMQ
https://en.wikipedia.org/wiki/Compute_Express_Link
https://www.mindshare.com/Learn/CXL_-_Compute_Express_Link
https://www.techpowerup.com/254462/intel-reveals-the-what-and-why-of-cxl-interconnect-its-answer-to-nvlink
https://www.techpowerup.com/254462/intel-reveals-the-what-and-why-of-cxl-interconnect-its-answer-to-nvlink

154 | Page

https://books.google.com.eg/books?id=NLvVCwAAQBAJ&pg=PA129&lpg=PA129

&dq=devices+connected+to+vesa+bus&source=bl&ots=dxVurhaiMF&sig=ACfU3U

28jBnzDlUEw9oXUjyLQlis_-

iI9w&hl=ar&sa=X&ved=2ahUKEwiP1uqm_JXpAhUkAWMBHSqgAtcQ6AEwDHo

ECAwQAQ#v=snippet&q=%20vesa&f=false.

19. morrison (2014). A history of PC buses. [online] SlideServe. Available at:

https://www.slideserve.com/morrison/a-history-of-pc-buses.

