
1 | P a g e

Digital Design and Implementation of

Narrowband IoT Physical Downlink Shared

Channel Receiver Chain

3GPP REL. 14

“NPDSCH RX R14”

Authors:

Hesham Khaled Abdel-Latif

Mohamed Ammar Mohamed

Reem Saleh Elshawarby

Youssef Ahmed Mohamed Galal

Youssef Taha Esmail

Supervised by:

Dr. Hassan Mostafa

Cairo University

Faculty of Engineering

Department of Electronics and Digital Communications

A thesis submitted for fulfilment of the requirements of Cairo University for

Bachelor of Science degree

2 | P a g e

Acknowledgment

We wish to thank our supervisor: Dr. Hassan Mostafa, for his endless support in resources and

encouragement. we are grateful to Si-Vision Inc. and ONE Lab, who supported, planned, and

guided this project through all its phases, especially Eng. Khaled Ismail, Eng. Mohamed Maher

and Eng. Ramy Raafat for their great efforts to help. Finally, we would like to express gratitude

to our professors and TAs for their sincerity in providing their knowledge and expertise to us.

3 | P a g e

Abstract

Narrowband Internet of Things (NB-IoT) is a new cellular technology introduced in 3GPP Release

13 for providing wide-area coverage for the IoT devices. This thesis provides a hardware

implementation of the physical downlink shared channel “NPDSCH” receiver chain in Release 14.

We describe how algorithms were constructed and hardware designed in accordance with the

requirements of the 3GPP standard to achieve specifications and good performance, low area,

low power and low complexity of design. We also provide insight on how the chain was

integrated, synthesized, simulated and tested.

4 | P a g e

Abbreviations
3GPP 3rd Generation Partnership Project

AWGN Additive White Gaussian Noise

BER Bit Error Rate

CBER Channel Bit Error Rate

CP Cyclic Prefix

CDF Cumulative Density Function

CFO Carrier Frequency Offset

CORDIC Coordinate Rotation Digital Computer

ETU Extended Typical Urban

FFO Fractional Frequency Offset

ICI Inter-Carrier Interference

IFO Integer Frequency Offset

ISI Inter-Symbol Interference

NPSS Narrowband Primary Synchronization Signal

PMF Probability Mass Function

RF Radio Frequency

SINR Signal to Interference Noise Ratio

SNR Signal to Noise Ratio

CRC Cyclic Redundancy Code or Cyclic Redundancy Check

FFT Fast Fourier Transform

IFFT Inverse Fast Fourier Transform

IoT Internet of Things

LTE Long-Term Evolution

MSB Most Significant Bit

NB-IoT Narrowband Internet of Things

NPBCH Narrowband Physical Broadcast Channel

NPDCCH Narrowband Physical Downlink Control Channel

5 | P a g e

NPDSCH Narrowband Physical Downlink Shared Channel

NPRACH Narrowband Physical Random-Access Channel

NPSS Narrowband Primary Synchronization Signal

NPUSCH Narrowband Physical Uplink Shared Channel

NRS Narrowband Reference Signal

NSSS Narrowband Secondary Synchronization Signal

OFDM Orthogonal Frequency-Division Multiplexing

QPSK Quadrature Phase-Shift Keying

RE Resource Element

TBS Transport Block Size

UE User Equipment

WAVA Wrap Around Viterbi Algorithm

Z-F Zero-Forcing

6 | P a g e

Table of Contents
Acknowledgment .. 2

Abstract ... 3

Abbreviations .. 4

1. Introduction ... 18

1.1. Motivation and Purpose ... 18

1.2. NB-IoT with Competitors .. 20

1.3. NPDSCH Receiver based on Rel14. 3GPP .. 21

1.4. OFDM .. 22

1.4.1. Cyclic Prefix ... 22

1.4.2. Advantages of OFDM .. 22

1.4.3. Disadvantages of OFDM .. 22

1.5. System Overview ... 23

1.5.1. Transmission Modes ... 23

1.5.2. Frame Structure .. 24

1.5.3. Scheduling in NPDSCH ... 25

1.6. Project Flow .. 28

1.7. Design Architecture... 28

2. Operation Theory ... 30

2.1. Coarse Synchronizer .. 30

2.1.1. Problem Definition .. 30

2.1.2. Frequency & Time Offsets ... 30

2.1.3. Operating Environment & Conditions ... 31

2.1.4. Narrowband Synchronization Signal (NPSS) ... 31

2.1.5. Acquisition and CFO Extraction Algorithm .. 32

2.2. CP Remover and Downsampler .. 34

2.3. CFO Corrector ... 35

2.3.1. CORDIC Algorithm ... 35

2.4. FFT Engine ... 37

2.5. Resource Demapper .. 38

2.6. Channel Estimation ... 39

2.6.1. Problem Definition .. 39

2.6.2. Used channel model ... 40

7 | P a g e

2.6.3. Types of Channel Estimation ... 40

2.6.4. Channel estimation algorithm .. 41

2.6.5. Least Square Channel Estimation .. 41

2.6.6. Interpolation ... 41

2.7. NRS Value Generator .. 44

2.7.1. Generating the NRS values ... 44

2.8. NRS Index Generator ... 45

2.8.1. Generating NRS Indices ... 45

2.9. Channel Equalizer .. 46

2.9.1. Complex division ... 46

2.10. Parallel to Serial and NRS removal .. 47

2.11. Fine Synchronizer .. 48

2.11.1. Problem Definition .. 48

2.11.2. Narrowband Reference Signals NRS ... 48

2.11.3. Frequency Offset Estimation... 48

2.12. Demodulator ... 50

2.12.1. Problem Definition .. 50

2.13. Descrambler .. 51

2.13.1. Problem Definition .. 51

2.13.2. Polynomials and Equations ... 51

2.13.3. Descrambler Re-Initialization .. 52

2.14. Rate De-Matcher ... 53

2.14.1. Problem Definition .. 53

2.14.2. The Rate matcher .. 53

2.14.3. The Rate De-matcher: ... 55

2.15. Viterbi Decoder ... 57

2.15.1. Tail Biting Convolutional Encoder ... 57

2.15.2. Viterbi Algorithm ... 57

2.15.3. System Requirements ... 57

2.15.4. Wrap Around Viterbi Algorithm .. 58

2.16. Cyclic Redundancy Check .. 59

3. Digital Design ... 60

3.1. Coarse Synchronizer .. 60

8 | P a g e

3.1.1. Top Module ... 60

3.1.2. Detailed Hardware .. 61

3.1.3. Design Challenges and Solutions .. 61

3.1.4. MATLAB Results .. 63

3.1.5. Synthesis Results ... 63

3.2. CP Remover and Downsampler .. 64

3.2.1. Top Module ... 64

3.2.2. Synthesis Results ... 65

3.3. CFO Corrector ... 65

3.3.1. Top Module ... 65

3.3.2. Detailed Hardware .. 67

3.3.3. Design Challenges and Solutions .. 67

3.3.4. Synthesis Results ... 67

3.4. FFT Engine ... 68

3.4.1. Top Module ... 68

3.4.2. Detailed Hardware .. 69

3.4.3. Synthesis Results ... 70

3.5. Resource Demapper .. 71

3.5.1. Top Module ... 71

3.5.2. Detailed Hardware .. 72

3.5.3. Design Challenges and Solutions .. 73

3.5.4. Results ... 74

3.6. Channel Estimation ... 75

3.6.1. Top Module ... 75

3.6.2. Detailed Hardware .. 76

3.6.3. Results ... 77

3.7. NRS Value Generator .. 79

3.7.1. Top module ... 79

3.7.2. Detailed Hardware .. 80

3.7.3. Results ... 81

3.8. NRS Index Generator ... 83

3.8.1. Top module ... 83

3.8.2. Detailed hardware .. 84

9 | P a g e

3.8.3. Design Challenges and Solutions .. 84

3.8.4. Results ... 85

3.9. Channel Equalizer .. 86

3.9.1. Top module ... 86

3.9.2. Detailed Hardware .. 87

3.9.3. Design Challenges and Solutions .. 88

3.9.4. Results ... 88

3.10. Parallel to Serial and NRS removal .. 89

3.10.1. Top module ... 89

3.10.2. Design Challenges and Solutions .. 90

3.10.3. Results ... 90

3.11. Fine Synchronizer .. 91

3.11.1. Top Module ... 91

3.11.2. Detailed Hardware .. 93

3.11.3. Design Challenges and Solutions .. 95

3.11.4. Results ... 95

3.12. Demodulator ... 96

3.12.1. Top Module ... 96

3.12.2. Detailed Hardware .. 97

3.12.3. Results ... 97

3.13. Descrambler .. 99

3.13.1. Top Module ... 99

3.13.2. Detailed Hardware .. 100

3.13.3. Results ... 101

3.14. Rate De-Matcher ... 102

3.14.1. Top Module ... 102

3.14.2. Detailed Hardware .. 103

3.14.3. Design Challenges and Solutions .. 105

3.14.4. Results ... 105

3.15. Viterbi Decoder ... 107

3.15.1. Block Interface .. 107

3.15.2. Detailed Hardware .. 108

3.15.3. Hardware Challenges and Solutions ... 110

10 | P a g e

3.15.4. MATLAB Results .. 112

3.15.5. Synthesis Results ... 112

3.16. Cyclic Redundancy Check .. 113

3.16.1. Top Module ... 113

3.16.2. Detailed Hardware .. 114

3.16.3. Results ... 114

4. Chain Results ... 115

4.1. Synopsys Design Compiler Synthesis Results .. 115

4.1.1. Coarse Synchronizer .. 115

4.1.2. CP Remover and Downsampler .. 116

4.1.3. CFO Corrector.. 117

4.1.4. FFT Engine ... 118

4.1.5. Resource Demapper .. 119

4.1.6. Channel Estimation ... 120

4.1.7. NRS Values Generator ... 121

4.1.8. NRS Index Generator ... 122

4.1.9. Channel Equalizer .. 123

4.1.10. Parallel to Serial and NRS removal .. 124

4.1.11. Fine Synchronizer .. 125

4.1.12. Demodulator ... 126

4.1.13. Descrambler .. 127

4.1.14. Rate De-Matcher ... 128

4.1.15. Viterbi Decoder ... 129

4.1.16. Cyclic Redundance Check .. 130

4.2. DC Results for RX Chain ... 131

4.2.1. Timing .. 131

4.2.2. Area Utilization ... 132

4.2.3. Power Consumption .. 133

4.3. FPGA Implementation Results .. 134

4.3.1. Post-Implementation FPGA View .. 134

4.3.2. Timing .. 134

4.3.3. Area Utilization ... 135

4.3.4. Power Consumption: .. 135

11 | P a g e

5. FPGA Deployment .. 136

5.1. FPGA Deployment ... 136

References .. 138

12 | P a g e

List of Figures
Figure [1]: IoT Applications ... 18

Figure [2]: NB-IoT deployment modes .. 19

Figure [3]: Data Rates Comparison .. 20

Figure [4]: Energy Efficiency Comparisons .. 20

Figure [5]: Guard Time .. 22

Figure [6]: Guard Time with CP ... 22

Figure [7]: Frequency/Time Division Duplex Structure .. 23

Figure [8]: UL/DL in NB-IoT .. 23

Figure [9]: Frame Structure ... 24

Figure [10]: Project Flow ... 28

Figure [11]: NPDSCH Rx Chain Block Diagram ... 28

Figure [12]: ICI Frequency Offset ... 30

Figure [13]: NPSS Subframe .. 31

Figure [14]: CPRDS Finite State Machine ... 34

Figure [15]: CORDIC Algorithm Rotations .. 35

Figure [16]: Radix 2² Butterfly Diagram ... 37

Figure [17]: Downlink resource grid .. 38

Figure [18]: PDP of a multipath system ... 39

Figure [19]: Channel effect on the signal .. 41

Figure [20]: Zero-Order interpolation ... 42

Figure [21]: Interpolation over slot ... 42

Figure [22]: Interpolation over subframe .. 42

Figure [23]: BER vs SNR for different types of interpolations .. 43

Figure [24]: Frame Pilot Locations ... 48

Figure [25]: QPSK Constellation Diagram .. 50

Figure [26]: Descrambler Re-initialization ... 52

Figure [27]: Rate Matcher Subblocks .. 53

Figure [28]: Interleaver Matrix .. 54

Figure [29]: Interleavers Intercolumn Permutation Pattern .. 54

Figure [30]: Interleaver Matrix after performing intercolumn change .. 54

Figure [31]: Tail Biting Convolutional Encoder for NB-IOT LTE .. 57

Figure [32]: Trellis Diagram ... 57

Figure [33]: CRC appending ... 59

Figure [34]: Coarse Synchronizer Top Module .. 60

Figure [35]: Coarse Synchronizer Detailed Hardware .. 61

Figure [36]: LPDT-Operand Isolation ... 61

Figure [37]: LPDT-Comparison Priority .. 62

Figure [38]: Window Sliding .. 63

Figure [39]: NB-IoT One Frame RE Grid ... 63

file:///D:/NB_IoT_Thesis.docx%23_Toc108723814
file:///D:/NB_IoT_Thesis.docx%23_Toc108723815
file:///D:/NB_IoT_Thesis.docx%23_Toc108723816
file:///D:/NB_IoT_Thesis.docx%23_Toc108723827
file:///D:/NB_IoT_Thesis.docx%23_Toc108723828
file:///D:/NB_IoT_Thesis.docx%23_Toc108723829
file:///D:/NB_IoT_Thesis.docx%23_Toc108723830
file:///D:/NB_IoT_Thesis.docx%23_Toc108723831
file:///D:/NB_IoT_Thesis.docx%23_Toc108723833
file:///D:/NB_IoT_Thesis.docx%23_Toc108723834
file:///D:/NB_IoT_Thesis.docx%23_Toc108723841

13 | P a g e

Figure [40]: Acquisition and CFO Extraction MATLAB Results ... 63

Figure [41]: Coarse Synchronizer Synthesis Utilization ... 64

Figure [42]: CP Remover and Downsampler Top Module ... 64

Figure [43]: CPRDS Synthesis Utilization ... 65

Figure [44]: CFO Corrector Top Module .. 65

Figure [45]: CFO Corrector Detailed Hardware ... 67

Figure [46]: CFO Corrector Synthesis Utilization ... 67

Figure [47]: FFT Top Module ... 68

Figure [48]: FFT Engine Detailed Hardware ... 69

Figure [49]: Butterfly Hardware Structure .. 69

Figure [50]: FFT Synthesis Utilization .. 70

Figure [51]: Resource Demapper Top Module .. 71

Figure [52]: Resource demapper detailed hardware ... 72

Figure [53]: Resource Demapper Synthesis result ... 74

Figure [54]: Channel Estimation Top Module .. 75

Figure [55]: Channel Estimation detailed hardware .. 76

Figure [56]: RTL estimates ... 77

Figure [57]: Matlab estimates ... 77

Figure [58]: Channel Estimation Synthesis results ... 78

Figure [59]: NRS Value Generator top module .. 79

Figure [60]: NRS Value Generator detailed hardware ... 80

Figure [61]: MATLAB function vs Our function .. 81

Figure [62]: RTL results .. 81

Figure [63]: NRS Values Generator Synthesis results .. 82

Figure [64]: NRS Index Generator top module .. 83

Figure [65]: NRS Index Generator detailed hardware ... 84

Figure [66]: MATLAB function vs Our function .. 85

Figure [67]: RTL results .. 85

Figure [68]: NRS Index Generator Synthesis results .. 85

Figure [69]: Channel Equalizer top module ... 86

Figure [70]: Channel Equalizer detailed hardware .. 87

Figure [71]: RTL equalized OFDM symbol .. 88

Figure [72]: Matlab equalized OFDM symbol .. 88

Figure [73]: Equalizer Synthesis results ... 88

Figure [74]: Parallel to Serial and NRS removal top module.. 89

Figure [75]: Parallel to Serial and NRS removal Synthesis results .. 90

Figure [76]: Fine Synchronization Top Module .. 91

Figure [77]: Fine Synchronization Detailed Design .. 93

Figure [78]: Arctan Linear Range ... 94

Figure [79]: Fine Synchronizer RTL Results .. 95

Figure [80]: Fine Synchronizer Synthesis Results... 95

file:///D:/NB_IoT_Thesis.docx%23_Toc108723849
file:///D:/NB_IoT_Thesis.docx%23_Toc108723865
file:///D:/NB_IoT_Thesis.docx%23_Toc108723880
file:///D:/NB_IoT_Thesis.docx%23_Toc108723887
file:///D:/NB_IoT_Thesis.docx%23_Toc108723888

14 | P a g e

Figure [81]: Demodulator Top Module ... 96

Figure [82]: Demodulator Detailed Hardware ... 97

Figure [83]: Demodulator MATLAB Results ... 97

Figure [84]: Demodulator RTL Results ... 97

Figure [85]: Demodulator Synthesis Results.. 98

Figure [86]: Descrambler Top Module .. 99

Figure [87]: Descrambler Detailed Design ... 100

Figure [88]: Descrambler MATLAB Results .. 101

Figure [89]: Descrambler RTL Results .. 101

Figure [90]: Descrambler Synthesis Results... 101

Figure [91]: Rate De-Matcher Control Finite State Machines .. 104

Figure [92]: Rate De-Matcher MATLAB Results ... 105

Figure [93]: Rate De-Matcher RTL Results ... 105

Figure [94]: Rate De-Matcher Synthesis Results ... 106

Figure [95]: Decoder Interface .. 107

Figure [96]: Detailed hardware of the decoder ... 108

Figure [97]: Trellis Diagram ... 108

Figure [98]: Example of Path Metric Unit operation ... 109

Figure [99]: Finite State Machine implemented in the control unit .. 109

Figure [100]: Hardware added to avoid overflow ... 110

Figure [101]: Another implementation of traceback operation to reduce memory size 111

Figure [102]: MATLAB Implementation of WAVA Results ... 112

Figure [103]: Viterbi Decoder Synthesis Utilization ... 112

Figure [104]: CRC Top Module .. 113

Figure [105]: CRC Detailed Design ... 114

Figure [106]: CRC MATLAB Results .. 114

Figure [107]: CRC RTL Results .. 114

Figure [108]: CRC Synthesis Results .. 114

Figure [109]: Coarse Synchronizer DC Area Results .. 115

Figure [110]: Coarse Synchronizer DC Power Results .. 115

Figure [111]: CP Remover and Downsampler DC Area Results ... 116

Figure [112]: CP Remover and Downsampler DC Power Results ... 116

Figure [113]: CFO Corrector DC Area Results .. 117

Figure [114]: CFO Corrector DC Power Results ... 117

Figure [115]: FFT Engine DC Area Results .. 118

Figure [116]: FFT Engine DC Power Results ... 118

Figure [117]: Resource Demapper Area report ... 119

Figure [118]: Resource Demapper Power report .. 119

Figure [119]: Channel Estimation Area report ... 120

Figure [120]: Channel Estimation Power report .. 120

Figure [121]: NRS Values Generator Area report .. 121

file:///D:/NB_IoT_Thesis.docx%23_Toc108723891
file:///D:/NB_IoT_Thesis.docx%23_Toc108723906
file:///D:/NB_IoT_Thesis.docx%23_Toc108723907
file:///D:/NB_IoT_Thesis.docx%23_Toc108723908
file:///D:/NB_IoT_Thesis.docx%23_Toc108723909
file:///D:/NB_IoT_Thesis.docx%23_Toc108723910

15 | P a g e

Figure [122]: NRS Values Generator Power report .. 121

Figure [123]: NRS Index Generator Area report .. 122

Figure [124]: NRS Index Generator Power report ... 122

Figure [125]: Channel Equalizer Area report ... 123

Figure [126]: Channel Equalizer Power report .. 123

Figure [127]: Parallel to Serial and NRS removal Area report .. 124

Figure [128]: Parallel to Serial and NRS removal Power report ... 124

Figure [129]: Fine Synchronization Area Report .. 125

Figure [130]: Fine Synchronization Power Report ... 125

Figure [131]: Demodulator Area Report .. 126

Figure [132]: Demodulator Power Report ... 126

Figure [133]: Descrambler Area Report ... 127

Figure [134]: Descrambler Power Report .. 127

Figure [135]: Rate De-Matcher Area Report ... 128

Figure [136]: Rate De-Matcher Power Report ... 128

Figure [137]: Viterbi Decoder Area Reports .. 129

Figure [138]: Viterbi Decoder Power Reports ... 129

Figure [139]: CRC Area Report .. 130

Figure [140]: CRC Power Report .. 130

Figure [141]: Timing Report .. 131

Figure [142]: Area Utilization Histogram ... 132

Figure [143]: Area Utilization DC Report ... 132

Figure [144]: Power Consumption Histogram ... 133

Figure [145]: Total Power DC Report ... 133

Figure [146]: Post-Implementation FPGA View ... 134

Figure [147]: Vivado Timing Report ... 134

Figure [148]: FPGA Area Utilization ... 135

Figure [149]: FPGA Power Consumption Summary ... 135

Figure [150]: FPGA Deployment Schematic ... 136

Figure [151]: RX Chain Output ... 137

Figure [152]: BER vs SNR Curve ... 137

file:///D:/NB_IoT_Thesis.docx%23_Toc108723952

16 | P a g e

List of Tables
Table [1]: ETU Channel Tabs and Gains ... 32

Table [2]: Cyclic Prefix Lengths .. 34

Table [3]: CPRDS State Table ... 34

Table [4]: CORDIC Micro-Rotation Steps ... 36

Table [5]: FFT Radii Complexity ... 37

Table [6]: Power Delay Profile of ETU channel .. 40

Table [7]: Channel Estimation Algorithms ... 41

Table [8]: In phase and Quadrature components of QPSK .. 50

Table [9]: Coarse Synchronizer Interface Table ... 60

Table [10]: CP Remover and Downsampler Interface Table .. 64

Table [11]: CFO Corrector Interface Table ... 65

Table [12]: FFT Engine Interface Table .. 68

Table [13]: Resource Demapper Interface Table ... 71

Table [14]: Ordering table ... 74

Table [15]: Channel Estimation Interface Table .. 75

Table [16]: NRS Value Generator interface table .. 79

Table [17]: NRS Index Generator interface table .. 83

Table [18]: Channel Equalizer interface table ... 86

Table [19]: Parallel to Serial and NRS removal interface table .. 89

Table [20]: Fine Synchronization Interface Table .. 91

Table [21]: Demodulator Interface Table .. 96

Table [22]: Descrambler Interface Table ... 99

Table [23]: Rate De-Matcher Interface Table ... 102

Table [24]: Decoder Interface Table .. 107

Table [25]: CRC Interface Table ... 113

Table [26]: Area Utilization Table .. 132

Table [27]: Total Power Consumption Table ... 133

17 | P a g e

This page was intentionally left blank

18 | P a g e

1. Introduction

1.1. Motivation and Purpose
The number of wireless devices is rapidly increasing. So, we want to connect these devices

together to able to develop useful applications. This connectivity can be done through IoT.

The main concept of IoT is to have a network of wireless devices to collect and exchange data

between them over the internet or any communication network. IoT doesn’t require the

device, software or sensor to be connected to public internet it should only be connected to

a specific network and can be addressed.

There is a lot of IoT applications such smart cities, traffic management, smart metering and

many more.

These IoT devices and network should follow certain specifications, as the devices should be

of low cost and long battery life and the network should support low latency and coverage

requirements for wide area.

Figure [1]: IoT Applications

NB-IoT is a new mobile network that only used for IoT applications and it’s based on LTE. NB-

IoT supports a range of data rate depending on the channel quality and the bandwidth

besides it offers energy saving capabilities to increase battery life and it support.

It is designed to achieve the perfect co-existence performance along with other technologies.

For NB-LTE Rel.14 it works with one resource block occupying a bandwidth of 180 KHz.

19 | P a g e

Introduction

NB-IoT is designed to support three deployment modes

1. Standalone mode

An NB-IoT carrier is deployed independently of any LTE carrier and it can function as

replacement for GSM carrier. Besides it also provides deployment flexibility based on

spectrum availability.

2. Guard band

An NB-IoT carrier is deployed within the guard band of an LTE carrier by using a used

Resource Block within LTE carrier Guard Band. This doesn’t consume any capacity from

the primary LTE traffic carrier

3. In band

An NB-IoT carrier is deployed occupying a physical resource block (PRB) within an LTE

carrier. This mode is the most efficient one as it allows the base station schedule to

multiplex LTE and NB-IoT traffic in the same spectrum.

Figure [2]: NB-IoT deployment modes

20 | P a g e

1.2. NB-IoT with Competitors
Low Power Wide Area Network LPWAN connects wireless devices designed for Internet of

Things IoT and manages to combine efficient energy devices with wide transmission ranges

so they can run for a very long time on battery-based systems.

There are three famous technology nodes using LPWA, NB-

IoT, Long Range Wide Area Network (LoRaWAN) and Sigfox.

So, what makes NB-IoT special? NB-IoT is based on Long

Term Evolution LTE, so that makes it an open standard not proprietary as LoRaWAN and

Sigfox so they are used in.

NB-IoT is also a leading technology in terms of data throughput, data rates and energy

efficiency. As the chart shows. LoRaWAN suffers from interference in ISM band which reduces

data rates while Sigfox connection is lost in poor conditions.

Figure [3]: Data Rates Comparison

Figure [4]: Energy Efficiency Comparisons

21 | P a g e

Introduction

1.3. NPDSCH Receiver based on Rel14. 3GPP
3GPP first introduced the NB-LTE in release 13 and further enhancements were made

later in release 14 to improve the Quality-of-Service QoS. And also increased the transport

block size up to 2536 bits instead of being 680 in release 13.

22 | P a g e

1.4. OFDM
Orthogonal Frequency Division Multiplexing (OFDM) is a method of data transmission in

which information is split among several closely spaced narrowband subchannel frequencies

instead of using wide band frequency channel.

The spacing is precisely chosen so as to provide orthogonality which gives us immunity to

interference and letting the demodulators blind to any other frequency than the intended

one.

1.4.1. Cyclic Prefix
As we need to be more immune to fading

effects so, we need to cancel the Inter Symbol

Interference (ISI). This is done by adding a

guard time. This time is chosen larger than the

expected delay spread in order to a multipath

component of one symbol can interfere with

the next symbol.

Making this guard time consists of no signal

give us a problem which is Inter Carrier

Interference (ICI). ICI is the crosstalk between

different subcarrier meaning that we lost orthogonality.

We eliminate this ICI by making OFDM symbols

cyclically extended in the guard time by this we

maintain the orthogonality by ensuring that

delayed replicas of the OFDM symbol always

have integer number of cycles within the FFT

interval.

1.4.2. Advantages of OFDM

• OFDM efficiently deals with multipath fading as for a given delay spread the

complexity is significantly lower than that of single carrier system.

• Data rates and number of subcarriers can adaptively change according to channel

quality.

• Unlike FDM there is no guard bands here so it gives better spectral utilization

1.4.3. Disadvantages of OFDM
With all the previous advantages OFDM offers some challenges to be solved as it very

sensitive to frequency offset and doppler shifts. Hence, we need to correct these offsets

to able to use OFDM reliably.

Figure [5]: Guard Time

Figure [6]: Guard Time with CP

23 | P a g e

Introduction

1.5. System Overview
1.5.1. Transmission Modes

LTE Supports 3 types of frame structures

• Type 1 for Frequency Division Duplex (FDD)

• Type 2 for Time Division Duplex (TDD)

• Type 3 for LAA secondary cell operation

The main difference between FDD and TDD is that FDD uses different frequency bands for

the uplink and downlink transmission while TDD uses the same frequency band but with

time slots dedicated for uplink and other for downlink transmission.

In NB-IoT, frame structure type 1 is used, here is a closer look on how NB-Iot uplink and

downlink transmition takes place.

Figure [8]: UL/DL in NB-IoT

Uplink

Downlink

Frequency

Time

UL UL DL

Frequency

Time

DL

Figure [7]: Frequency/Time Division Duplex Structure

24 | P a g e

1.5.2. Frame Structure
Each NB-IoT radio frame has duration of 10 ms and consists of 10 subframes with 1 ms

duration each. Every subframe consists of 2 slots of 0.5 ms each. The slot consists of 7

OFDM symbols. And the frequency band of 180 kHz is divided into 12 sub carriers of 15

kHz each.

Figure [9]: Frame Structure

There are subframes that carries different types of information such as the broadcast

subframes and the Control Subframes the synchronization subframes such as the

Narrowband Primary Synchronization Signal NPSS and the Narrowband Secondary

Synchronization Signal NSSS.

According to 3GPP

Frame time 𝑇𝑓 = 307200𝑇𝑆 = 10𝑚𝑠, 𝑇𝑠𝑢𝑏𝑓𝑟𝑎𝑚𝑒 = 30720𝑇𝑠 = 1𝑚𝑠

𝑇𝑠 =
1

15000 × 2048
𝑚𝑠

𝑇𝑐𝑝 = 5.2 𝜇𝑠 for 1st OFDM symbol and 4.7𝜇𝑠 for the rest

𝑇𝑢 =
1

15𝐾
= 66.67𝜇𝑠 and 𝑇𝑠𝑦𝑚𝑏𝑜𝑙 =

1𝑚𝑠

14
= 71.4𝜇𝑠

Number of samples for cp = 160 for the first ODFM symbol and 144 for the rest. So, the

minimum number of samples used in LTE is 128 to get integer number of samples for

𝑐𝑝 = 10 for the first OFDM symbol and 9 for the rest.

For NB-IoT LTE it follows the number of minimum samples which is 128 although its

number of subcarriers is 12. Hence, we use down sampler in our design from 128 to 16.

So, the sampling rate 𝑇𝑠 =
1

(15000)(128)
=

1𝑚𝑠

1.92
= 520𝑛𝑠

NPBCH
SF0

NPDCCH
or

NPDSCH
SF1

NPDCCH
or

NPDSCH
SF2

NPDCCH
or

NPDSCH
SF3

NPDCCH
or

NPDSCH
SF4

NPSS
SF5

NPDCCH
or

NPDSCH
SF6

NPDCCH
or

NPDSCH
SF7

NPDCCH
or

NPDSCH
SF8

NPDCCH
or

NPDSCH
SF9

NPBCH
SF0

NPDCCH
or

NPDSCH
SF1

NPDCCH
or

NPDSCH
SF2

NPDCCH
or

NPDSCH
SF3

NPDCCH
or

NPDSCH
SF4

NPSS
SF5

NPDCCH
or

NPDSCH
SF6

NPDCCH
or

NPDSCH
SF7

NPDCCH
or

NPDSCH
SF8

NSSS
SF9

Radio Frame 1 Radio Frame 2

25 | P a g e

Introduction

1.5.3. Scheduling in NPDSCH
Scheduling is handled by the downlink control information DCI. In case of not carrying

system information block SIBs-NB the NPDSCH carries user data towards the UE and it

takes place after transmission of NPDCCH in order for the receiver to be able to decode

the DCI.

The DCI of the NPDSCH is DCI format type N1 for CRC not masked with RA-RNTI which is

random access response and it consists of:

Field Number
of bits

Description

Flag for format N0/format N1 differentiation 1 0 for N0, 1 for N1

Subcarrier order indicator 1

Scheduling delay 𝐼𝑑𝑒𝑙𝑎𝑦 3 indicates the start of the codeword

Resource Assignment 𝐼𝑆𝐹 3 indicates the number of subframes

Modulation and coding scheme 𝐼𝑀𝐶𝑆 4 indicates the transport block size

Repetition number 𝐼𝑅𝑒𝑝 4 indicates the number of repetitions

New data indicator 1

HARQ-Ack resource 4

DCI subframe repetition number 2

Total number of bits 23

1. Scheduling delay 𝐼𝑑𝑒𝑙𝑎𝑦

The scheduling delay is indicating the start of the codeword successive subframes

after 𝑛 + 5 + 𝑘𝑜 subframes, the NPDCCH that ends in n subframes so usually the NPDSCH

follows the NPDCCH after 5 or more subframes.

 𝐼𝑑𝑒𝑙𝑎𝑦
 𝑘𝑜

 𝑅𝑚𝑎𝑥

< 128

 𝑅𝑚𝑎𝑥

≥ 128

0 0 0

1 4 16

2 8 32

3 12 64

4 16 128

5 32 256

6 64 512

7 128 1024

26 | P a g e

2. Resource Assignment 𝐼𝑆𝐹

The resource assignment indicates the number of subframes that is constituting the

NPDSCH message.

𝐼𝑆𝐹 𝑁𝑆𝐹

0 1

1 2

2 3

3 4

4 5

5 6

6 8

7 10

Example:
 𝐼𝑑𝑒𝑙𝑎𝑦 = 0, 𝑘𝑜 = 0

𝐼𝑆𝐹 = 2 , 𝑁𝑆𝐹 = 3

3. Modulation and coding scheme 𝐼𝑀𝐶𝑆

The modulation and coding scheme in case of NPDSCH not carrying system information

block SIBs-NB is the same as 𝐼𝑇𝐵𝑆 where 𝐼𝑇𝐵𝑆 = 𝐼𝑀𝐶𝑆 indicates the transport block size

that is used in transmission and it is an important parameter in order to decode the data

correctly and hand it over from the physical layer to upper layer. There’s no segmentation

in NB-IoT because the maximum TBS is 2536 which is less than 6144.

𝐼𝑇𝐵𝑆 SFI

0 1 2 3 4 5 6 7

0 16 32 56 88 120 152 208 256

1 24 56 88 144 176 208 256 344

2 32 72 144 176 208 256 328 424

3 40 104 176 208 256 328 440 568

4 56 120 208 256 328 408 552 680

5 72 144 224 328 424 504 680 872

6 88 176 256 392 504 600 808 1032

7 104 224 328 472 584 680 968 1224

8 120 256 392 536 680 808 1096 1352

9 136 296 456 616 776 936 1256 1544

NPBCH
SF0

NPDCCH
SF1

SF2 SF3 SF4
NPSS
SF5

NPDSCH
SF6

NPDSCH
SF7

NPDSCH
SF8

NSSS
SF9

NPBCH
SF0

SF1 SF2 SF3 SF4
NPSS
SF5

SF6 SF7 SF8 SF9

n+5+ 𝑘𝑜

27 | P a g e

Introduction

10 144 328 504 680 872 1032 1384 1736

11 176 376 584 776 1000 1192 1608 2024

12 208 440 680 904 1128 1352 1800 2280

13 224 488 744 1032 1256 1544 2024 2536

4. Repetition number 𝐼𝑅𝑒𝑝

The repetition number indicates the number of repetitions of the codeword.

𝐼𝑅𝑒𝑝 𝑁𝑅𝑒𝑝

0 1

1 2

2 4

3 8

4 16

5 32

6 64

7 128

8 192

9 256

10 384

11 512

12 768

13 1024

14 1536

15 2048

28 | P a g e

1.6. Project Flow

Figure [10]: Project Flow

1.7. Design Architecture

Figure [11]: NPDSCH Rx Chain Block Diagram

29 | P a g e

Introduction

The in-phase and quadrature phase data enter the receiver chain through the Coarse

Synchronizer.

After the synchronization happen, we remove the cyclic prefix using CP Removal and we

down sample the data.

Then these data pass through CFO Corrector to correct the frequency offset using the

estimated frequency offset given by the Coarse Synchronizer.

Fine Synchronization is used to keep tracking of time and frequency offset.

There is a FIFO based memory used to store samples to prepare them for the FFT which

will transform these samples from time domain to frequency domain.

The Resource Demapper then stores the QPSK symbols output from the FFT till it have a

full subframe. It used to ensure storing the subframe constant during processing time.

The Channel Estimation then extract the pilots from the subframe using NRS Index

Generator and with the use of NRS Value Generator it tries to estimate the channel effect

and send these estimates to the Channel Equalizer to compensate this effect.

Data then pass through the Parallel to Serial and NRS Remove block to remove the pilots

and convert the parallel to serial data stream.

This QPSK symbol stream consists of real and imaginary data pass through the

demodulator to convert it into bits based on the constellation then goes to the

descrambler to restore the scrambled data at transmitter.

The bit stream finally goes through the Rate De-matcher to improve the channel efficiency

by changing the code rate of the transmitted data.

Then data pass through the Viterbi decoder which is used to decode the data encoded in

convolutional code at the transmitter side then finally reach CRC block to get an

acknowledgement signal.

30 | P a g e

2. Operation Theory

2.1. Coarse Synchronizer
2.1.1. Problem Definition

OFDM based systems faces two challenging problems, ICI (Inter-Carrier Interference) and

ISI (Inter-Symbol Interference). ICI problem arises from the basic assumption of the

subcarrier orthogonality, this assumption means that the spectrum of an arbitrary signal

on an arbitrary subcarrier must have nulls at all other subcarriers. Thus, a frequency offset

introduced from the channel will inevitably introduce ICI as shown in figure (12).

Figure [12]: ICI Frequency Offset

ISI problem isn’t exclusive for OFDM based systems, as it takes place when two symbols

interfere with each other in time domain because of multipath propagation dispersion,

poor pulse shaping at the transmitter or a synchronization error at the receiver. Both

problems cause a degradation in the overall system performance and SINR. Thus, these

problems will be addressed later in order to solve them.

2.1.2. Frequency & Time Offsets
Regarding ICI, it has two main sources;

1st source is Carrier Frequency Offset (CFO) which is the difference between the carrier

frequency at the transmitter and the RF oscillators at the receiver. CFO can take a value

up to 18KHz assuming a maximum mismatch of 20ppm between the transmitter and

receiver oscillators and a carrier frequency around 900 MHz.

2nd source is the raster offset. When a UE turns on it conducts a search in frequency

domain looking for a carrier to facilitate the synchronization process, referred to as

“anchor carrier”, this carrier is searched for on a 100 KHz raster, so the offset between

the 100 KHz raster and the center frequency of the anchor carrier is defined as the raster

offset. the NB-IoT’s cell search and acquisition are designed for the UE to be able to

synchronize having up to 7.5KHz raster offset. Assuming that sampling oscillator and

carrier oscillator are unified, thus, Sampling Frequency Offset (SFO) will be accounted for

if we considered the CFO.

Thus, the total maximum frequency offset is assumed to be ± 25.5 KHz.

31 | P a g e

Operation Theory

Considering ISI, for this context, perfect pulse shaping is assumed; also, it is assumed that

the cyclic prefix (CP) is longer than the multipath channel’s maximum excess tap delay.

Thus, errors in estimating the beginning of symbols in the synchronization process are the

source of ISI of interest in this context.

2.1.3. Operating Environment & Conditions
Due to coverage enhancement in the 14th release of 3GPP on NB-IoT, the minimum SNR

when assuming a maximum coupling loss of 164dB is -12.6dB in a guard-band or an in-

band deployment. The multipath fading channel is modeled by the Extended Typical

Urban (ETU) model, which is considered the worst-case channel, having 9 taps with a

maximum excess tap delay of 5 us and a maximum Doppler frequency of 5 Hz due to the

stationary nature of the applications of NB-IoT.

2.1.4. Narrowband Synchronization Signal (NPSS)
The NPSS is a subframe that is sent along every NB-IoT frame and used by the devices to

achieve synchronization, in both time and frequency, to an NB-IoT cell. The NPSS needs

to be designed so that it is detectable even with a very large frequency offset. Because of

the consideration of device complexity required for NPSS detection, all the cells in an NB-

IoT network uses the same NPSS. figure (13) below shows the NPSS signal within NB-IoT

frame.

Figure [13]: NPSS Subframe

NPSS base waveform in time domain is generated from a Zadoff-Chu (ZC) sequence of a

root index equals to 5 in frequency domain occupying 11 subcarriers of an OFDM symbol

in 11 OFDM symbols. It’s required from a ZC sequence to work on a prime number. Thus,

the 12th subcarrier and first three OFDM symbols are left unused. The sequence is

generated by:

𝑑(𝑙) = 𝑆(𝑙). 𝑒
−𝑗𝜋𝑢𝑛(𝑛+1)

11 → 𝑢 = 5 , 𝑛 = 0,1,2, … ,10

𝑆(𝑙) = {1 , 1, 1, 1, −1,−1, 1, 1, 1, −1, 1}

Where 𝑆(𝑙) is the 3GPP standardized code cover.

32 | P a g e

The reason behind the choice of ZC sequence is that it guarantees zero-crossing

auto/cross correlation when correlated with any different signal and a maximum value

when correlated with itself so it satisfies the Constant Amplitude Zero Autocorrelation

(CAZAC) property which limits the Peak to Average Power Ratio (PAPR) and provides ideal

cyclic autocorrelation.

2.1.5. Acquisition and CFO Extraction Algorithm

2.1.5.1. Channel Modelling

The channel is modelled to be Rayleigh ETU Fading channel with AWGN noise.

According to standard release 14, ETU can be modelled with channel tabs and gains

of
Table [1]: ETU Channel Tabs and Gains

Channel
Tabs (ns)

0 50 120 200 230 500 1600 2300 5000

Channel
Gains (dB)

-1 -1 -1 0 0 0 -3 -5 -7

The received time domain signal at the receiver should be modelled as:

𝑟(𝑛) = ((𝑥[𝑛] ⊛ h[n]) ∗ 𝑒−𝑗2𝜋.𝜖.𝑛.𝑇𝑠) + 𝑤[𝑛]

where: 𝑥[𝑛] is the baseband signal, ℎ[𝑛] is the channel impulse response, exponent

models the CFO (𝜖) where 𝜖 = 𝜖𝑓 + 𝜖𝐼, 𝑤[𝑛] represents the AWGN noise.

2.1.5.2. Initial Acquisition Stage

Slide and correlate algorithm is used to calculate the auto-correlation metric for a

single frame period with a window of 10 symbols. This is made by multiplying each

OFDM symbol to the conjugate of the proceeding symbol (sample by sample). This is

done after multiplying each sample with the NPSS code cover to correct symbols that

might have been multiplied by “-1” in the transmitter.

𝑅(𝑘) = ∑ (𝑟(𝑖). 𝑆 (
𝑖

𝑁𝑠
%11)) . ((𝑟(𝑖 + 𝑁𝑠). 𝑆 (

𝑖

𝑁𝑠
+ 1)%11))

∗𝑁𝑤𝑖𝑛𝑑𝑜𝑤

𝑖=1

where:

• 𝑘: Represents the sample shift

• 𝑁𝑤𝑖𝑛𝑑𝑜𝑤: Number of samples per window

• 𝑁𝑠: Number of samples per symbol

• 𝑖: Sample iterator for the same sample shift (k)

• 𝑅(𝑘): Auto-Correlation Metric for different sample shifts (k)

33 | P a g e

Operation Theory

For hardware memory utilization purposes, we can’t afford having a memory to store

this huge metric, thus, it is reduced by a factor of 16, which is done by adding each

consecutive 16 windows, resulting in a memory of just 1200 locations instead of 19200

locations.

𝑅𝑟𝑒𝑑𝑢𝑐𝑒𝑑(𝑘) = ∑ 𝑅(𝑘)

16(𝑘+1)−1

𝑖=16𝑘

Due to low SNR environments mentioned earlier, this metric has to be averaged

over many consecutive frames (M) so it can a reliable outcome. Nevertheless, due to

this low SNR, stochastic random peaks might appear in the metric, so, to suppress

those peaks we will apply a running average filter on the reduced metric value using

the following TD Filter. Where (m) covers 1200 locations only.

𝐴(𝑚) = 𝐴(𝑚). (1 − 𝛼) + 𝑅𝑟(𝑚). (𝛼) → 0 < 𝛼 < 1

Coarse Timing and FFO can be estimated then using:

𝜏 = 𝑎𝑟𝑔𝑚𝑎𝑥 ∀𝑚(|𝐴| ∗ 16) − 8

𝜖𝑓 =
𝑁

2𝜋𝑁𝑠
 𝑎𝑛𝑔𝑙𝑒 (𝐴 (

𝜏 + 8

16
))

This decision is taken only when the absolute value of the metric of any index

exceeds a specific threshold that we extracted by simulating over 500 LTE Frames.

2.1.5.3. CFO Extraction and Fine-Tuning Stage

This stage is done by cross-correlating a clean locally generated version of NPSS with

the incoming time domain received signal.

𝐶(𝜏𝑐 , 𝜖𝑐) = ∑ 𝑟(𝑖). (𝑝(𝑖 − 𝜏𝑐). 𝑒
−𝑗2𝜋𝜖𝑐(𝑖−𝜏𝑐)

𝑁)
∗

𝜏𝑐+𝑁𝑝−1

𝑖=𝜏𝑐

Where;

• 𝑟(𝑖) is received time domain signal • 𝑝(𝑖) is locally generated NPSS

• 𝜏𝑐 = [𝜏 − 𝛿 , 𝜏 + 𝛿] • 𝜖𝑐 = ([−2~2] ∗ 14 𝐾𝐻𝑧) + 𝜖𝑓

Deltas in Coarse Timing is a design parameter, chosen to start from 16 until it

reaches 1 with the following offsets (±8, ±4, ±2). Number of averaged frames in 2nd

stage is also a design parameter chosen to be 5 frames for each internally tuning

stage. Thus, Final Coarse Timing and CFO can be calculated using

(𝜏𝑐, 𝜖𝑐) = 𝑎𝑟𝑔𝑚𝑎𝑥∀𝜏𝑐,𝜖𝑐
|𝐶|

34 | P a g e

2.2. CP Remover and Downsampler

Baseband transmitters upsamples the baseband signal from 16 point to 128 point to increases

resolution, improves anti-aliasing filter performance and reduces noise. Nevertheless, after

upsampling time domain signal baseband transmitters uses cyclic prefix in Frequency Division

Multiplexing schemes including OFDM to primarily act as a guard band between successive

symbols to overcome inter-symbol interference, ISI. Use of cyclic prefix is a key element of

enabling the OFDM signal to operate reliably. This is done by copying the last 9 and/or 10

samples to the OFDM symbol start in all NB-IoT subframes according to table (2) below:

Table [2]: Cyclic Prefix Lengths

Symbol # 1 2 3 4 5 6 7 8 9 10 11 12 13 14

CP Length 10 9 9 9 9 9 9 10 9 9 9 9 9 9

So, we need to remove cyclic prefix and then downsample the time domain signal by a factor

of 8. We approached this by using a Finite State Machine (FSM) of the following states;

Figure [14]: CPRDS Finite State Machine

Table [3]: CPRDS State Table

State Description

Reset Considered as idle state until start of
operation

CP10 Removal Used for 1st and 8th symbols CP Removal

CP9 Removal Used for rest of subframe symbols CP
Removal

Downsample Used to skip samples in each symbol

Output Outputs one TD sample in every 8 samples

35 | P a g e

Operation Theory

2.3. CFO Corrector
2.3.1. CORDIC Algorithm

CFO Corrector is based on CORDIC Algorithm which is used to correct time introduced

frequency offset by successively rotating time domain symbols with fixed predetermined

angles. CORDIC algorithm is an iterative approach for generating trigonometric functions

such as sine and cosine that uses rotations to calculate a wide range of elementary

functions using simply shift and add.

Figure [15]: CORDIC Algorithm Rotations

So, to rotate a vector with a given angle θ using CORDIC algorithm as shown in Figure(X)
we rotate the vector with constant angles 𝛼𝑖 using the following rotation matrix:

 (𝑥𝑖+1
𝑦𝑖+1

) = (
cos 𝛼𝑖 −sin 𝛼𝑖

sin 𝛼𝑖 cos 𝛼𝑖
) (𝑥𝑖

𝑦𝑖
)

𝑥𝑖+1 = 𝑥𝑖 cos 𝛼𝑖 − 𝑦𝑖 sin 𝛼𝑖

𝑦𝑖+1 = 𝑥𝑖 sin 𝛼𝑖 + 𝑦𝑖 cos 𝛼𝑖

𝜃𝑖+1 = 𝜃𝑖 − 𝑑𝑖𝛼𝑖

Where 𝑑𝑖 is the sign of 𝜃𝑖. So, after n iteration the 𝜃𝑛 = 0, we can take cos 𝛼𝑖 common
factor we get:

𝑥𝑖+1 = cos 𝛼𝑖(𝑥𝑖 − 𝑦𝑖 tan𝛼𝑖)

𝑦𝑖+1 = cos 𝛼𝑖 (𝑦𝑖 + 𝑥𝑖 tan𝛼𝑖)

𝜃𝑖+1 = 𝜃𝑖 − 𝑑𝑖𝛼𝑖

36 | P a g e

To simplify the implementation of the CORDIC algorithm we chose tan𝛼𝑖 to be equals to

2−𝑖 to implement the multiplication using shifting operations so the final form of
equations, where 𝑑𝑖 is the sign of 𝜃𝑖:

𝑥𝑖+1 = cos 𝛼𝑖(𝑥𝑖 − 𝑑𝑖𝑦𝑖2
−𝑖)

𝑦𝑖+1 = cos 𝛼𝑖 (𝑦𝑖 + 𝑑𝑖𝑥𝑖2
−𝑖)

𝜃𝑖+1 = 𝜃𝑖 − 𝑑𝑖𝛼𝑖

So, after n iterations the new vector will be as follows:

(
𝑥𝑛

𝑦𝑛
) = cos 𝛼1 ∗ cos𝛼2 ∗ …∗ cos𝛼𝑛 (

1 −tan𝛼1

tan𝛼1 1
) (1 −2−1

2−1 1
) (1 −2−2

2−2 1
)…(

1 −2−𝑛

2−𝑛 1
) (

𝑥1

𝑦1
)

So, we can pre calculate the value of the multiplication of the cos 𝛼𝑖 as it will be
constant k

𝑥𝑛 = 𝑘(𝑥0 − 𝑑𝑛𝑦02
−𝑛)

𝑦𝑛 = 𝑘(𝑦0 + 𝑑𝑛𝑥02
−𝑛)

𝜃𝑛 = 0

The set of angles that will be used are in range −99.7 ≤ 𝜃 ≤ 99.7 as the sum of all

angles obeying the law of tan𝛼𝑖 equals to 2−𝑖 is 99.7

Table [4]: CORDIC Micro-Rotation Steps

tan 𝛼 𝛼 cos 𝛼

1 45 0.707106781

0.5 26.5650511771 0.894427191

0.25 14.0362434679 0.9701425

0.125 7.1250163489 0.992277877

0.0625 3.5763343750 0.998052578

0.03125 1.7899106082 0.999512078

0.015625 0.8951737102 0.999877952

0.0078125 0.4476141709 0.999969484

0.00390625 0.2238105004 0.999992371

0.001953125 0.1119056771 0.999998093

0.000976562 0.0559528919 0.999999523

0.000488281 0.0279764526 0.999999881

0.00024414 0.0139882271 0.99999997

From the table we can compute the value of k = 0.607252941

37 | P a g e

Operation Theory

2.4. FFT Engine
FFT Engine is used for time domain processing, where it takes 16-point time domain samples

and transforms them into frequency components (QPSK Symbols) for farther processing later

on.

We chose the Radix 2² algorithm as it has the same multiplicative complexity as radix 4

algorithm (which is lower than radix 2), but retains the butterfly structure of radix 2 algorithm,

which is very suitable for simple and efficient hardware implementation. As shown below in

table (5)

Table [5]: FFT Radii Complexity

Radix # Complex
Additions

Complex
Multiplications

Hardware
Complexity

Radix-2 64 17 Simple

Radix-4 96 9 Complex

Radix-2² 64 8 Simple

Single Delay Line Feedback (SDF) architecture is used instead of memory based because SDF

architecture has very much lower latency as it saves the memory accessing time in both

read/write cycles. SDF architectures also minimize the required memory, which can dominate

circuit area and power dissipation. Figure (X) below shows Radix 2² butterfly diagram;

Figure [16]: Radix 2² Butterfly Diagram

38 | P a g e

2.5. Resource Demapper
Each frame is 10ms in time and consisting of 10 subframe, 1ms each. These subframes are

divided into two slots of 0.5ms each. This slot is known as our resource block with 7 OFDM

symbols.

A resource block represents one time slot consisting of seven consecutive OFDM symbols

𝑁𝑠𝑦𝑚𝑏
𝐷𝐿 = 7 and twelve subcarriers 𝑁𝑠𝑐

𝑅𝐵 = 12, giving us a total of 𝑁𝑠𝑦𝑚𝑏
𝐷𝐿 × 𝑁𝑠𝑐

𝑅𝐵 of resource

elements.

A resource block is (RB) is the smallest unit of resources that can be allocated to a user. It is

used to represent mapping of certain physical channel to a resource element.

As in NB-LTE we use one RB with normal cyclic prefix (CP) giving ∆𝑓 = 15𝐾𝐻𝑧. Hence, each

resource element is 15𝐾𝐻𝑧 wide giving us 𝐵𝑊 = 12 ∗ 15 = 180𝐾𝐻𝑧

Figure [17]: Downlink resource grid

39 | P a g e

Operation Theory

2.6. Channel Estimation
2.6.1. Problem Definition

As we deal with wireless channel, we need to take into consideration the environment of

our channel and model it properly.

Any wireless channel would suffer from fading which can be classified into

1- Large scale fading

2- Small scale fading

Large Scale Fading:

It is for the large variation found in the received signal amplitude it mainly happens

because of

Path Loss:

It is a reduction in the power of the wave as it propagates through the space and

it's inversely proportional to the distance.

Shadowing:

It is caused by the obstacles in the path of propagation between Tx and Rx

Small Scale Fading:

Caused by interference between versions of the transmitted signal which arrive at the

receiver in slightly different times. This interference can be constructive or destructive

and as it happening between slightly delayed version so, it may result in rapid

variation in phase or amplitude.

Mobile communication also suffers from which is called High-Speed train conditions

which arise from moving of the user equipment (UE) while receiving the signal.

Power Delay Profile:

It gives the intensity of the signal

received through a multi-path fading

channel as function of the time

delay. This time delay is the

difference in travel time between

the multipath arrivals.

Figure [18]: PDP of a multipath system

40 | P a g e

2.6.2. Used channel model
We used a multipath fading channel model as the channel is modeled as Extended

Typical Urban (ETU) with the following delay profile as specified by 3GPP standard.

Table [6]: Power Delay Profile of ETU channel

Excess tap
delay (ns)

Relative
power (dB)

0 -1

50 -1

120 -1

200 0

230 0

500 0

1600 -3

2300 -5

5000 -7

Maximum doppler frequency shift is 5 Hz and with sampling frequency 1.92 MHz

2.6.3. Types of Channel Estimation
There are mainly three types to estimate the channel effect on the signal to be able to

compensate it.

There are mainly three types of channel estimation

Pilot based: transmitter send certain symbols, which is known to the receiver, to be

used in channel estimation process

Blind: it uses statistics from the incoming data to estimate the channel effect without

the need of known symbols

Semi-blind: it uses both statistics from sent data as well as pilots to estimate the

channel effect

The channel estimation of the Narrowband Physical Downlink Shared Channel (NPDSCH)

is a pilot-based process in which transmitter sends some known symbol and the receiver

generate a noiseless version of these symbol then tries to find the relation between the

locally generated and the received pilots.

The pilots are called as Narrowband Reference Signal (NRS) there are certain equations

and sequence generators to calculate its value and location as per the standard.

41 | P a g e

Operation Theory

These pilots are found in every subframe except for the Narrowband Primary

Synchronization Signal (NPSS) and Narrowband Secondary Synchronization Signal (NSSS).

The NRS are found in four subcarriers in each slot with constant magnitude of
1

√2
.

2.6.4. Channel estimation algorithm

Pilot based channel estimation used in NB-IoT has many algorithms with a tradeoff

between performance with complexity and requirements of low power and area.

Table [7]: Channel Estimation Algorithms

Algorithm Complexity

Least square 𝑂(𝑁)

Minimum Mean Square (classic) 𝑂(𝑁3)

Minimum Mean Square (improved) 𝑂(𝑁2)

We used least square method for its low complexity then used interpolation to

compensate for accuracy.

2.6.5. Least Square Channel Estimation
Assume received signal 𝑦 that is equal

𝑦 = 𝑥𝐻 + 𝐴𝑊𝐺𝑁

𝑥: transmitted signal

𝐻: channel effect

𝐴𝑊𝐺𝑁: additive white gaussian noise

Lease square channel estimated 𝐻𝑒𝑠𝑡

𝐻𝑒𝑠𝑡 =
𝑦

𝑥

By that we see that the algorithm neglects the effect of the additive white gaussian noise

which indicates less accuracy but it is less complexity also.

The block aims to effectively divide the received pilot over the locally generated pilots to

get the channel effect and then interpolation is done to have better estimate for the

channel after that the estimated channel values are given to the equalizer.

2.6.6. Interpolation

As the pilots are found in only four subcarriers while we have twelve subcarriers so

interpolation process must be done.

Interpolation can be done in three different techniques

Figure [19]: Channel effect on the signal

42 | P a g e

2.6.6.1. Zero order interpolation

Here the interpolation is constant in which each three

subcarriers having one pilots will be divided by its channel

estimate. 𝐻𝐿𝑆

The channel estimation gives four estimates per slot as there

are four NRS. Each estimate will be used by three consecutive

subcarriers.

This is the simplest one but with lowest performance.

2.6.6.2. Interpolation over slot

Linear interpolation is calculated over the slot, in each slot we

have four estimates we use them and interpolate giving

twelve different outputs 𝐻𝐿𝑆each one used by the equalizer

with its corresponded subcarrier.

More complex than the previous with slight increase in the

performance.

2.6.6.3. Interpolation over subframe

Linear interpolation is calculated over the subframe, in each

subframe we have two slots giving a total of eight estimates.

Averaging first is done over every two on the same subcarrier

then liner interpolation over the twelve subcarriers giving

twelve different estimates to be used by the equalizer.

The most complex of the three but with noticeable impact on the performance.

This is the one to be used in our system.

Figure [20]: Zero-Order
interpolation

Figure [21]: Interpolation over slot

Figure [22]: Interpolation over subframe

43 | P a g e

Operation Theory

2.6.6.4. Comparison

Figure [23]: BER vs SNR for different types of interpolations

44 | P a g e

2.7. NRS Value Generator
NRS are our pilots which will be used to estimate the channel effect so, we need to locally

generate these pilots. According to 3GPP standard there are specific equations to get the

values of our pilots.

2.7.1. Generating the NRS values
2.7.1.1. Variables

NRS values change every slot depending on three variables

𝑙: 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑂𝐹𝐷𝑀 𝑠𝑦𝑚𝑏𝑜𝑙 𝑐𝑎𝑟𝑟𝑦𝑖𝑛𝑔 𝑡ℎ𝑒 𝑁𝑅𝑆 (5,6)

𝑚: 𝑚 = 0,1, … ,2𝑁𝑅𝐵 𝑚𝑎𝑥𝐷𝐿 − 1 → 𝑠𝑜 𝑚 = 0,1

Where 𝑁𝑅𝐵
𝑚𝑎𝑥𝐷𝐿 is the maximum downlink resource block which is equal to 1 in

narrowband case.

𝑛𝑠: 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑙𝑜𝑡 𝑟𝑎𝑛𝑔𝑒𝑠 𝑓𝑟𝑜𝑚 0 𝑡𝑜 19

2.7.1.2. Equations

𝑟𝑙,𝑛𝑠(𝑚) =
1

√2
 (1 − 2𝐶(2𝑚)) +

𝑗

(√2)
(1 − 2𝐶(2𝑚 + 1))

Where C refers to pseudo random sequence generated by 31-length golden sequence

defined below

𝐶(𝑛) = (𝑥1 (𝑛 + 𝑁𝑐) + 𝑥2 (𝑛 + 𝑁𝐶))𝑚𝑜𝑑2

And sequences 𝑥1and 𝑥2 defined as follow:

𝑥1 (𝑛 + 31) = (𝑥1 (𝑛 + 3) + 𝑥1 (𝑛))𝑚𝑜𝑑2

Initialized with 𝑥1 (0) = 1 and 𝑥1 (𝑛) = 0 𝑓𝑜𝑟 𝑛 = 1,2,3, . . ,30

𝑥2 (𝑛 + 31) = (𝑥2 (𝑛 + 3) + 𝑥2 (𝑛 + 2) + 𝑥2 (𝑛 + 1) + 𝑥2 (𝑛))𝑚𝑜𝑑2

Initialized with sequence 𝑐𝑖𝑛𝑖𝑡

𝑐𝑖𝑛𝑖𝑡 = 2 10(7(𝑛𝑠 + 1) + 𝑙 + 1)(2𝑁𝐼𝐷
𝑐𝑒𝑙𝑙 + 1) + 2𝑁𝐼𝐷

𝑐𝑒𝑙𝑙 + 𝑁𝑐𝑝

And

𝑁𝑐 = 1600

𝑁𝐼𝐷
𝑐𝑒𝑙𝑙 ∈ (0,504) and it’s input from upper layer.

𝑁𝑐𝑝 = 1 for normal cyclic prefix

45 | P a g e

Operation Theory

2.8. NRS Index Generator
There are set of defined equation in the standard for the NRS location as their location vary,

we must track it to extract it from the resource block.

2.8.1. Generating NRS Indices

2.8.1.1. Variables

NRS location within the resource block depend on

𝑣: 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒 𝑤ℎ𝑖𝑐ℎ 𝑐ℎ𝑎𝑛𝑔𝑒 𝑤𝑖𝑡ℎ 𝑂𝐹𝐷𝑀 𝑠𝑦𝑚𝑏𝑜𝑙 𝑛𝑢𝑚𝑏𝑒𝑟

𝑣𝑠ℎ𝑖𝑓𝑡: 𝑤ℎ𝑖𝑐ℎ 𝑑𝑒𝑝𝑒𝑛𝑑 𝑜𝑛 𝑁𝐼𝐷
𝑐𝑒𝑙𝑙

𝑚: 𝑚 = 0,1, … ,2𝑁𝑅𝐵
𝑚𝑎𝑥𝐷𝐿 − 1 → 𝑠𝑜 𝑚 = 0,1

2.8.1.2. Equations

𝑘 = 6𝑚 + (𝑣 + 𝑣𝑠ℎ𝑖𝑓𝑡)

𝑁𝑠𝑦𝑚𝑏
𝐷𝐿 : 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑦𝑚𝑏𝑜𝑙𝑠 𝑖𝑛 𝑜𝑛𝑒 𝑠𝑙𝑜𝑡 𝑤ℎ𝑖𝑐ℎ 𝑖𝑠 7

𝑙 = 𝑁𝑠𝑦𝑚𝑏
𝐷𝐿 − 2, 𝑁𝑠𝑦𝑚𝑏

𝐷𝐿 − 1 = 5,6 in each slot

𝑘: 𝑟𝑒𝑓𝑒𝑟𝑠 𝑡𝑜 𝑡ℎ𝑒 𝑠𝑢𝑏𝑐𝑎𝑟𝑟𝑖𝑒𝑟 𝑐𝑎𝑟𝑟𝑦𝑖𝑛𝑔 𝑡ℎ𝑒 𝑝𝑖𝑙𝑜𝑡

So, it can be said that 𝑘 refers to the number of rows in which the pilot is placed within

the resource block

𝑣 = 0, 𝑖𝑓 𝑙 = 5

𝑣 = 1, 𝑖𝑓 𝑙 = 6

𝑣𝑠ℎ𝑖𝑓𝑡 = 𝑁𝐼𝐷
𝑐𝑒𝑙𝑙 𝑚𝑜𝑑6

Note: 𝑁𝐼𝐷
𝑐𝑒𝑙𝑙 𝑚𝑜𝑑6 is assumed to be given from upper layer

46 | P a g e

2.9. Channel Equalizer
The data transmitted through wireless medium suffer from multipath fading and noise so, we

need received data as receiver can be expressed as follow in time domain

 𝑟𝑘 = 𝑠𝑘 ⊗ ℎ𝑘 + 𝑛𝑘

In which

𝑟𝑘: represent the received data.

𝑠𝑘: represent the sent data.

ℎ𝑘: represent the channel effect

𝑛𝑘: represent the AWGN

To receive the data correctly we should compensate to this channel effect. So, we need to

know it as correct as possible in order to cancel it from the received data.

First the channel estimation tries to estimate the channel effect and pass these estimates to

the channel equalizer. The equalizer will cancel the effect by dividing each symbol by the

corresponding channel estimated value

 𝑦𝑘 = 𝑠𝑘 ×
ℎ𝑘

ℎ𝑒𝑞
+

𝑛𝑘

ℎ𝑒𝑞

In which

ℎ𝑒𝑞: estimated value of the channel

In the equalizer we divide the symbol by the channel effect that was estimated by the channel

estimation.

We get the symbols from resource demapper and divide them by the estimates one by one.

So, the block is based on complex division.

2.9.1. Complex division
It is possible to use a complex divider directly but it is not common and not a good practice

as it consumes area and power. So, we replace it with complex multipliers.

Consider 𝑎 + 𝑖𝑏 and 𝑐 + 𝑖𝑑 so dividing them gives
𝑎+𝑖𝑏

𝑐+𝑖𝑑
 then multiply numerator and

denominator with conjugate.

𝑎 + 𝑖𝑏

𝑐 + 𝑖𝑑
×

𝑐 − 𝑖𝑑

𝑐 − 𝑖𝑑
 =

(𝑎𝑐 + 𝑏𝑑) + 𝑖(𝑏𝑐 − 𝑎𝑑)

𝑐2 + 𝑑2

The numerator is output of a complex multiplier and the denominator is a real positive

scaling value which won’t affect the accuracy of demodulating a QPSK symbol as we

concerned only with phase not magnitude.

47 | P a g e

Operation Theory

2.10. Parallel to Serial and NRS removal
After equalization and till the end of the chain the data should be serial and the NRS are

useless after channel estimation as it is not actual data and the real data at the transmitter

doesn’t contain these NRS. So, the data must be converted from parallel to serial and the NRS

should be removed.

48 | P a g e

2.11. Fine Synchronizer
2.11.1. Problem Definition

Assuming channel impulse response is not changed over a subframe, continuous tracking

of the residual frequency offset takes place for every received subframe after successive

acquisition is done at the beginning in the Coarse Synchronizer. This offset is used to

correct the received symbols in carrier frequency offset block at the beginning of our

chain.

 The residual frequency offset extraction is done by tracking the frequency offset effects

on the Narrowband Reference Signals (NRS) of different OFDM symbols, which are sent

over 4 different subcarriers in the two slots of each subframe.

2.11.2. Narrowband Reference Signals NRS
They are reference signals that are used as pilots to estimate the channel effects on the

received data. They are distributed within the subframe at four different subcarriers with

frequency spacing of 45 kHz between each two consecutive subcarriers carrying NRS

signals.

2.11.3. Frequency Offset Estimation
By using NRS signals of the same subcarrier we can estimate the frequency offset as we

have 4 pairs of NRS signals in each subframe,

The ratio between the complex multiplication of two NRS signals of the received subframe

and the locally generated NRS signals which are supposed to be received is given by the

following equation

𝑅𝑙(𝑝)𝑅𝑙+𝑁𝑠
∗ (𝑝)

𝑋𝑙(𝑝)𝑋𝑙+𝑁𝑠
∗ (𝑝)

  =  𝐾 𝑒
−𝑖2𝜋𝑁𝑠(𝑁+𝑁𝐶𝑃)𝜀𝑟

𝑁

Figure [24]: Frame Pilot Locations

0 1 2 3 4 5 6 0 1 2 3 4 5 6

0

1

2

3

4

5

6

7

8

9
 1

0
 1

1

49 | P a g e

Operation Theory

Where:

𝑋𝑙(𝑝) : Generated NRS OFDM symbol

𝑅𝑙(𝑝) : Received NRS ODFM symbol

 𝑁𝑠 : Number of OFDM symbols in one slot, 𝑁𝑠 = 7 in NB-IoT

 𝑝 : The subcarrier frequency index

 𝑙 : The OFDM time symbol index

 𝑁 : Number of samples in subframe

𝑁𝐶𝑃 : Length of Cyclic Prefix in number of samples

𝜀𝑟 : Residual frequency offset.

Repeating this operation for each pair of NRS signals at each given subcarrier. The phase

of the result is proportional to the required frequency offset so the frequency offset is

given by:

𝜀𝑟 =
𝑁

2𝜋𝑁𝑠(𝑁 + 𝑁𝐶𝑃)
 ∠(∑

𝑅𝑙(𝑝)𝑅𝑙+𝑁𝑠

∗ (𝑝)

𝑋𝑙(𝑝)𝑋𝑙+𝑁𝑠

∗ (𝑝)
𝑝∈𝜐

)

Where:

 𝜐 : set of the four subcarriers where NRS are sent in subframe.

The phase of this residual frequency offset is desired to be calculated in order to be used

in the carrier frequency offset block to eliminate this offset by correcting the received

symbols.

50 | P a g e

2.12. Demodulator
2.12.1. Problem Definition

The stated demodulation scheme for the NPDSCH is the Quadrature Phase Shift keying

(QPSK) which changes the carrier phase based on the input data bits. So, the demodulator

reverses this operation.

QPSK modulation Scheme maps each 2 bits of data to a specific QPSK symbol having In-

Phase and quadrature components as shown in the following table.

Table [8]: In phase and Quadrature components of QPSK

𝒃𝒊, 𝒃𝒊+𝟏 I Q

00 1

√2

1

√2

01 1

√2
 −

1

√2

10
−

1

√2

1

√2

11
−

1

√2
 −

1

√2

So, the Demodulator in the same manner receives the QPSK symbol after equalizing the

channel effects and processes them.

Using Hard Decision, the data bits are determined based on the signs of the received I and

Q components in the QPSK constellation, this helps using hard decision in the rest of the

receiving chain as well.

Figure [25]: QPSK Constellation Diagram

00 10

01 11

51 | P a g e

Operation Theory

2.13. Descrambler
2.13.1. Problem Definition

Scrambling is important as it is used to eliminate long sequences of 0’s and 1’s by

conditionally inverting some bits based on a Pseudo-random Noise sequence generated

from two Linear Feedback Shift Registers and also helps in security of received data as it

depends on specific parameters such as the cell identifier, and the Radio Network

Temporary Identifier.

2.13.2. Polynomials and Equations
Descrambler is implemented in the same manner as the scrambler because they use the

same polynomial shown down below:

𝐶(𝑛) = (𝑥1(𝑛 + 𝑁𝑐) + 𝑥2(𝑛 + 𝑁𝐶))𝑚𝑜𝑑2

And sequences 𝑥1and 𝑥2 defined as follow

𝑥1(𝑛 + 31) = (𝑥1(𝑛 + 3) + 𝑥1(𝑛))𝑚𝑜𝑑2

Initialized with 𝑥1(0) = 1, 𝑥1(𝑛) = 0, 𝑛 = 1,2, … ,30

𝑥2(𝑛 + 31) = (𝑥2(𝑛 + 3) + 𝑥2(𝑛 + 2) + 𝑥2(𝑛 + 1) + 𝑥2(𝑛))𝑚𝑜𝑑2

Initialized with sequence 𝑐𝑖𝑛𝑖𝑡

𝑐init = 𝑛RNTI ⋅ 2
14 + 𝑛𝑓 𝑚𝑜𝑑 2 ⋅ 213 + ⌊𝑛𝑠 2⁄ ⌋ ⋅ 29 + 𝑁ID

Ncell for NPDSCH

Where:

𝑁𝑐 = 1600

𝑁𝐼𝐷
𝑐𝑒𝑙𝑙 ∈ (0,503) Cell Identifier Number and it’s input from upper layer.

𝑛𝑓 System frame number

𝑛𝑠 ∈ (0,19) Slot number

𝑛RNTI Radio Network Temporary Identifier

Initialization takes 1600 cycle then the sequence should stop until the input is valid then

with each cycle the PN sequence is XORed with the input.

52 | P a g e

2.13.3. Descrambler Re-Initialization

The Linear feedback shift registers get re-initialized every min(𝑁𝑟𝑒𝑝, 4) transmissions of

the codeword. Repetitions in NPDSCH is done by repeating the message. The generated

codeword in 𝑁𝑆𝐹 subframes are repeated 𝑁𝑅𝑒𝑝 times.

A NPDSCH codeword that contains 3 subframes

DCI format type N1 parameter 𝐼𝑆𝐹 = 2 , 𝑁𝑆𝐹 = 3

Case: 𝑁𝑅𝑒𝑝 = 2

Case: 𝑁𝑅𝑒𝑝 = 8

1st
SF

2nd
SF

3rd
SF

1st
SF

1st
SF

2nd
SF

2nd
SF

3rd
SF

3rd
SF

1st
SF

1st
SF

1st
SF

1st
SF

2nd
SF

2nd
SF

2nd
SF

2nd
SF

3rd
SF

3rd
SF

3rd
SF

3rd
SF

1st
SF

1st
SF

1st
SF

1st
SF

2nd
SF

2nd
SF

2nd
SF

2nd
SF

3rd
SF

3rd
SF

3rd
SF

3rd
SF

Figure [26]: Descrambler Re-initialization

Re-initialize

Re-initialize Re-initialize

53 | P a g e

Operation Theory

2.14. Rate De-Matcher
2.14.1. Problem Definition

The rate matcher is used to improve the system performance as it sends 3 streams of the

encoded data and interleaves them by a specified inter-column permutation matrix which

changes the code rate of the transmitted data and distributes the information so that

they don’t face the same channel effects to grantee diversity.

Repetitions are handled by this block as the same codeword length can be transmitted

multiple times to decrease the possibility of failure and re-transmissions.

Maximum voting technique is used to handle repetitions in the bit collection stage.

2.14.2. The Rate matcher

Figure [27]: Rate Matcher Subblocks

The input to the Rate matcher block is the 3 outputs of the tail-biting convolutional

encoder 𝑑𝑘
(1)

, 𝑑𝑘
(2)

, 𝑑𝑘
(3)

 each of length D as D is the number of bits

2.14.2.1. Sub-block interleaver

A reshape matrix of number of columns equal 32 and number of rows equal the ceiling

of division of number of bits by 32, then dummy bits of number 𝑁𝐷 are added to the

beginning of this matrix such that

𝐶𝑠𝑢𝑏𝑏𝑙𝑜𝑐𝑘
𝐶𝐶 = 32

𝑅𝑠𝑢𝑏𝑏𝑙𝑜𝑐𝑘
𝐶𝐶 = ⌈

𝐷

𝐶𝑠𝑢𝑏𝑏𝑙𝑜𝑐𝑘
𝐶𝐶 ⌉

𝐾𝜋 = 𝐶𝑠𝑢𝑏𝑏𝑙𝑜𝑐𝑘
𝐶𝐶 𝑥𝑅𝑠𝑢𝑏𝑏𝑙𝑜𝑐𝑘

𝐶𝐶

𝑁𝐷 = 𝐾𝜋 − 𝐷

54 | P a g e

And the interleavers are filled by 𝑦𝑘 where:

𝑦𝑘  =< 𝑁𝑈𝐿𝐿 > for k = 0,1, …, 𝑁𝐷

𝑦 𝑁𝐷+𝑘  = 𝑑𝑘
(1)

 for k = 0,1, …, D

The three encoded data streams are stored in three matricides by filling them row

by row using the incoming data after the first 𝑁𝐷 bits which are dummy bits.





















−+−+−−

−++

−

)1(2)1(1)1()1(

1221

1210

CC
subblock

CC
subblock

CC
subblock

CC
subblock

CC
subblock

CC
subblock

CC
subblock

CC
subblock

CC
subblock

CC
subblock

CC
subblock

CC
subblock

CC
subblock

CRCRCRCR

CCCC

C

yyyy

yyyy

yyyy









Figure [28]: Interleaver Matrix

The Encoded bits of each bit stream gets interleaved based on an intercolumn

permutation pattern shown:

Number of columns
CC
subblockC

Inter-column permutation pattern

−)1(),...,1(),0(CC
subblockCPPP

32
< 1, 17, 9, 25, 5, 21, 13, 29, 3, 19, 11, 27, 7, 23, 15, 31,
0, 16, 8, 24, 4, 20, 12, 28, 2, 18, 10, 26, 6, 22, 14, 30 >

Figure [29]: Interleavers Intercolumn Permutation Pattern

Then after performing the inter-column permutation the result is





















−+−−+−+−+

+−+++

−

CC
subblock

CC
subblock

CC
subblock

CC
subblock

CC
subblock

CC
subblock

CC
subblock

CC
subblock

CC
subblock

CC
subblock

CC
subblock

CC
subblock

CC
subblock

CC
subblock

CC
subblock

CRCPCRPCRPCRP

CCPCPCPCP

CPPPP

yyyy

yyyy

yyyy

)1()1()1()2()1()1()1()0(

)1()2()1()0(

)1()2()1()0(









Figure [30]: Interleaver Matrix after performing intercolumn change

2.14.2.2. Bit Collection and transmission

The output of the block interleaver is read column by column and fill the circular

buffer of length 𝐾𝑤 = 3𝐾𝜋 with the data of each interleaver in the following manner,

𝑤 𝑘  = 𝑣𝑘
(1)

𝑤 𝐾𝜋+𝑘  = 𝑣𝑘
(2)

𝑤 2𝐾𝜋+𝑘 = 𝑣𝑘
(3)

55 | P a g e

Operation Theory

After that, data is read from the circular buffer by eliminating the dummy bits until

reach E

where E is the output sequence length

The following Pseudo code represents how the output is generated.

 output= 𝑒 𝑘 where k = 0,1, …, E-1

Set k = 0 and j = 0

while {k < E}
if  NULLw

wKj mod

wKjk we mod=

k = k +1

end if

j = j +1

end while

2.14.3. The Rate De-matcher:
2.14.3.1. Bit collection

Bit collecting which is a memory of size that should cover the length of the circular

buffer for the maximum TBS that can be transmit which is 2536 and the maximum

repetitions number which is 2048 in release 14.

𝐶𝑖𝑟𝑐𝑢𝑙𝑎𝑟 𝑏𝑢𝑓𝑓𝑒𝑟 𝑙𝑒𝑛𝑔𝑡ℎ = 3 ∗ (Max TBS + 24 bits CRC) ∗ log2(max 𝑟𝑒𝑝𝑒𝑡𝑖𝑡𝑖𝑜𝑛 𝑠𝑖𝑧𝑒)

There are 3 possibilities for the value of the input data length E:

1. E = 𝐾𝑤, then the value saved in the buffer will be passed to the interleavers

2. E > 𝐾𝑤, then the incoming bit stream is added to the previous repetitions of data

and then take the average of them and compare it to 0.5, if it is greater than or

equal the value is assumed to be 1 else, it is a 0, which is called maximum voting

3. E < 𝐾𝑤, then the buffer is zero-padded

2.14.3.2. Sub-block De-interleaver

Interleavers which are three memories of size that should cover the length of 𝐾𝜋 and

consists of 𝐶𝑠𝑢𝑏𝑏𝑙𝑜𝑐𝑘
𝐶𝐶 columns and 𝑅𝑠𝑢𝑏𝑏𝑙𝑜𝑐𝑘

𝐶𝐶 rows.

𝐼𝑛𝑡𝑒𝑟𝑙𝑒𝑎𝑣𝑒𝑟 𝑙𝑒𝑛𝑔𝑡ℎ = 𝐶𝑠𝑢𝑏𝑏𝑙𝑜𝑐𝑘
𝐶𝐶 ∗ ⌈

Max TBS + 24 bits CRC

𝐶𝑠𝑢𝑏𝑏𝑙𝑜𝑐𝑘
𝐶𝐶 ⌉

The bit collection stage output is the input for the interleavers which are written in a

specific order following the permutation pattern and then read in another order to

execute the interleaving process.

56 | P a g e

Rate De-matcher de-interleavers input writing direction:

[

𝑎0,0 𝑎0,1 𝑎0,2 𝑎0,3

𝑎0,4 … 𝑎0,31

𝑎1,0 𝑎1,1 𝑎1,2 𝑎1,3
𝑎1,4 … 𝑎1,31

𝑎2,0

⋮
𝑎𝑟,0

𝑎2,1

⋮
𝑎𝑟,1

𝑎2,2

⋮
𝑎𝑟,2

𝑎2,3

⋮
𝑎𝑟,3

𝑎2,4

⋮
𝑎𝑟,4

…
⋱
…

𝑎2,31

⋮
𝑎𝑟,31]

Rate De-matcher de-interleavers output reading direction:

[

𝑎0,1 𝑎0,17 𝑎0,9 𝑎0,25

𝑎0,5 … 𝑎0,30

𝑎1,1 𝑎1,17 𝑎1,9 𝑎1,25
𝑎1,5 … 𝑎1,30

𝑎2,1

⋮
𝑎𝑟,1

𝑎2,17

⋮
𝑎𝑟,17

𝑎2,9

⋮
𝑎𝑟,9

𝑎2,25

⋮
𝑎𝑟,25

𝑎2,5

⋮
𝑎𝑟,5

…
⋱
…

𝑎2,30

⋮
𝑎𝑟,30]

57 | P a g e

Operation Theory

2.15. Viterbi Decoder
2.15.1. Tail Biting Convolutional Encoder

A Tail Biting Convolutional Encoder (TBCC) with constraint length 7 and a rate of 1/3 is

defined in 3GPP 36.212 standard as shown in the figure with polynomials G0 = 133,

G1=171, G2=165 (octal).

Figure [31]: Tail Biting Convolutional Encoder for NB-IOT LTE

Another requirement is defined to initialize the states of encoder’s shift register. The

initial value of the shift register is the last 6 bits of the transmitted block. This results in

having the initial state of the shift register equal to the final state of the shift register. This

increases the decoder complexity but also doesn’t affect the code rate.

2.15.2. Viterbi Algorithm
Viterbi algorithm is a maximum likelihood method to detect the

most probable sequence of states given certain bits. It calculates

the similarities (Hamming Distance in hard decision decoders)

between the received bits and all trellis paths entering each state

at a time as shown in the figure.

2.15.3. System Requirements
The algorithm needed for the system must have a lower

complexity as we need to reduce the power, the winning path

must be a tail biting path as the encoder implicitly made the initial

state and the final state equal, the available states in the trellis

diagram are 64 states as we have a 6-bit shift register and the

code rate is 1/3 so the received message will be divided into 3-bit

segments. The algorithm chosen for the system is Wrap Around

Viterbi Algorithm (WAVA).

 Figure [32]: Trellis Diagram

58 | P a g e

2.15.4. Wrap Around Viterbi Algorithm
It is an iterative algorithm that applies the non-fixed state Viterbi algorithm and keeps

applying itself until the winning path becomes a tail biting path where the initial and final

states become equal. Steps of the algorithm are as shown:

1. Start from all the state with state metrics set to 0

2. Proceed in the trellis diagram calculating Branch Metrics, Path Metrics and

Survived Paths for all states.

3. Perform the traceback operation to reach the initial state to evaluate the Tailbiting

Condition.

4. If the Tailbiting Condition is true, assert the valid signal and start the output

stream of decoded bits.

5. If the Tailbiting Condition is false, go to step 2 and keep the current values of the

path metrics saved for the next iteration.

6. If the number of iterations becomes 3, assert the valid signal and start the output

stream of decoded bits.

59 | P a g e

Operation Theory

2.16. Cyclic Redundancy Check
Cyclic redundancy check is an error detecting code used to validate received data integrity by

appending a specific value to the data which is the remainder in case of dividing this data by

w specific polynomial, which makes the result divisible by this polynomial so at the receiver

the result of this operation should result in Zero which means the received data is correct.

 The parity bits are generated by the following cyclic generator polynomial:

𝑔𝐶𝑅𝐶24𝐴(D) = 𝐷24 + 𝐷23 + 𝐷18 + 𝐷17 + 𝐷14 + 𝐷11 + 𝐷10 + 𝐷7 + 𝐷6 + 𝐷5 + 𝐷4 + 𝐷3 + D + 1

Where the input bits are donated by 𝑎0, 𝑎1, 𝑎2, 𝑎3, … , 𝑎𝐴−1, while the parity bits are

donated by 𝑝0, 𝑝1, 𝑝2, 𝑝3, … , 𝑝𝐿−1

After appending the CRC parity bits, the output is donated by 𝑏0, 𝑏1, 𝑏2, 𝑏3, … , 𝑏𝐵−1where

B=A+L

𝑏𝑘 = 𝑎𝑘 for k = 0, 1, 2, …, A-1

𝑏𝑘 = 𝑝𝑘−𝐴 for k = A, A+1, A+2, ..., A+L-1.

Data CRC

Figure [33]: CRC appending

Cyclic redundancy check is implemented in the same manner in the receiver because they

use the same polynomial.

60 | P a g e

3. Digital Design

3.1. Coarse Synchronizer
3.1.1. Top Module

Figure [34]: Coarse Synchronizer Top Module

Table [9]: Coarse Synchronizer Interface Table

Signal Name Direction Width Description

clk_520 Input 1 1.92 MHz clock signal

clk_32n5 Input 1 30.769 MHz clock signal for internal
CORDIC units in Fine-Tuning Stage

rstn Input 1 Global reset signal

rx_en Input 1 Enable Signal that indicates the
start of NB-IoT Receiver Operation

I_in Input 16 Real serial input samples

Q_in Input 16 Imaginary serial input samples

cs_valid Output 1 Valid Signal indicating the validity of
the output CFO

cfo Output 19 Estimated Carrier Frequency Offset

61 | P a g e

Digital Design

3.1.2. Detailed Hardware

Figure [35]: Coarse Synchronizer Detailed Hardware

3.1.3. Design Challenges and Solutions
3.1.3.1. High Power Consumption

Coarse Synchronizer is the most power-hungry block in the RX chain as it is one of the

largest in area and contains many arithmetic circuits for metric calculations and frame

processing. In order to minimize the power consumption, we used some of the Low

Power Design Techniques in the block design

• Operand Isolation: By inserting pipeline registers before any arithmetic operation,

this is because one of the operands bits might arrive at different time than other

bits within the same clock cycle, making the arithmetic circuit operate multiple

times within the same clock cycle. By Registering the input operands, we ensure

that the arithmetic circuit will operate only once as they are already after the

active clock edge.

Figure [36]: LPDT-Operand Isolation

62 | P a g e

• Comparison Priority: Coarse Synchronizer continuously compares metric values

with the Acquisition Threshold which consumes high power as comparator

operations involve XORs which have high switching activity factor, thus,

consuming more power. So, when we have to compare large data busses, we

avoided comparing all the bits in one go but rather we compared the MSB’s first,

if it satisfies the condition, there’s no need to evaluate the rest of the bit XORing.

If not, then we compare the rest of the bus bits.

Figure [37]: LPDT-Comparison Priority

3.1.3.2. Large Memory Requirements

Coarse Synchronizer requires storing different window metric values along the NB-IoT

frame which consumes around (
19200∗32

8∗1024
= 75 𝐾𝐵). We solved this problem by

successive addition of every 16-window metric with each other and fine-tuning these

metric accumulations in the Fine-Tuning Stage to preserve the CFO extraction

accuracy. Resulting in the need of only
1200∗32

8∗1024
= 4.6875 𝐾𝐵.

3.1.3.3. Window’s Metric Huge Latency

Window sliding to calculate coarse timing requires processing on 1508 samples in

every window over the entire NB-IoT frame which introduces huge latency in the

block. Thus, we decided to store the window sample multiplications so that this

processing occurs only once for the first window, and every new sample, a new

window is evaluated by subtracting the multiplication of first samples and adding the

multiplication of the newer samples. Thus, decreasing block’s latency.

63 | P a g e

Digital Design

Figure [38]: Window Sliding

3.1.4. MATLAB Results
MathsWorks LTE Toolbox were used to generate input vectors to the Coarse Synchronizer

MATLAB model for algorithm’s accuracy testing.

Figure [39]: NB-IoT One Frame RE Grid

Operating on randomly generated data on 𝑆𝑁𝑅 = −15 𝑑𝐵, the figure below shows the

acquisition results along with estimated coarse timing and CFO extraction errors.

3.1.5. Synthesis Results
The Figure below shows the overall synthesized area in FPGA cells on the targeted FPGA. Synthesis

is done using Vivado Design Suite which includes block’s utilization in resources (LUTs, FFs, DSPs,

etc.)

Figure [40]: Acquisition and CFO Extraction MATLAB Results

64 | P a g e

Figure [41]: Coarse Synchronizer Synthesis Utilization

3.2. CP Remover and Downsampler
3.2.1. Top Module

Figure [42]: CP Remover and Downsampler Top Module

Table [10]: CP Remover and Downsampler Interface Table

Signal Name Direction Width Description

clk_520 Input 1 1.92 MHz clock signal

rstn Input 1 Global reset signal

cprds_en Input 1 Enable Signal that indicates the
start block’s operation

I_in Input 16 Real serial input samples

Q_in Input 16 Imaginary serial input samples

cprds_valid Output 1 Valid Signal indicating the validity of
the output samples

I_out Output 16 Real serial output samples

Q_out Output 16 Imaginary serial output samples

65 | P a g e

Digital Design

3.2.2. Synthesis Results

Figure [43]: CPRDS Synthesis Utilization

3.3. CFO Corrector
3.3.1. Top Module

Figure [44]: CFO Corrector Top Module

Table [11]: CFO Corrector Interface Table

Signal Name Direction Width Description

clk_260 Input 1 3.84 MHz clock signal

rstn Input 1 Global reset signal

CFO_en Input 1 Enable Signal that indicates the
start block’s operation

I_in Input 16 Real serial input samples

Q_in Input 16 Imaginary serial input samples

Coarse Offset Input 19 Estimated Carrier Frequency Offset
from Coarse Synchronizer

66 | P a g e

Fine Synch Valid Input 1 Valid Signal indicating the validity of
Fine Synchronizer offset

Fine Synch Offset Input 19 Estimated Fine Synchronizer Offset

CFO_valid Output 1 Valid Signal indicating the validity of
the output samples after correction

I_out Output 16 Real serial output samples

Q_out Output 16 Imaginary serial output samples

67 | P a g e

Digital Design

3.3.2. Detailed Hardware

Figure [45]: CFO Corrector Detailed Hardware

3.3.3. Design Challenges and Solutions
3.3.3.1. Area Utilization

There is a trade-off between CFO Corrector’s area and latency. Expanded version of a

CORDIC Unit could be implemented by using 15 parallel stages and output could be

obtained in one clock cycle. Nevertheless, this very low latency will be redundant as

CFO Corrector samples a new input every 8 clock cycles coming from Downsampler.

So, we decided to go with an iterative implementation by only using one stage and

reusing the same hardware for all CORDIC steps and operating at double the

frequency. Resulting in no wasted clock cycles and 93.5% improvement in area.

3.3.4. Synthesis Results

Figure [46]: CFO Corrector Synthesis Utilization

68 | P a g e

3.4. FFT Engine
3.4.1. Top Module

Figure [47]: FFT Top Module

Table [12]: FFT Engine Interface Table

Signal Name Direction Width Description

clk_260 Input 1 3.84 MHz clock signal

rstn Input 1 Global reset signal

cprds_en Input 1 Enable Signal that indicates the
start block’s operation

I_in Input 16 Real serial input samples

Q_in Input 16 Imaginary serial input samples

cprds_valid Output 1 Valid Signal indicating the validity of
the output samples

I_out Output 16 Real serial output samples

Q_out Output 16 Imaginary serial output samples

FFT Specifications:

• 16-point processing • Discrimination in Frequency (DIF)

• SDF Architecture • Radix 2² Algorithm

Data flow through stages:

At first, 16-time domain samples coming from CFO Corrector are stored in 8×4 memory and

to improve system latency the first stage will start to operate as soon as the 9th sample is

stored in the 1st stage’s memory. Output of first stage will propagate to 2nd stage, and like in

1st stage, 2nd stage will start operating as soon as the 5th output from stage 1 arrives. This will

also happen for 3rd and 4th stage until QPSK symbols begin to show at the output serially one

by one. Block’s latency is 16 clock cycle, once the pipeline is filled, a QPSK symbol will be ready

every one clock cycle.

69 | P a g e

Digital Design

3.4.2. Detailed Hardware

Figure [48]: FFT Engine Detailed Hardware

Regarding DIF architectures, data widths increase linearly as delay-line memory depths

decrease exponentially. This means that restraining bit growth in DIF FFT processors

results in minimal savings as compared to the potential impacts of quantization.

Memories used to implement delay-lines for SDF FFT processors do not require random

access. A straightforward sequential access scheme in which read and write pointers are

simultaneously incremented for each pair of complex data samples for all four stages.

Figure [49]: Butterfly Hardware Structure

70 | P a g e

As shown in butterfly hardware structure, BF (1,3) and BF (2,4) are identical except that

BF (2,4) have some added logic to perform a ±j multiplication without the need of a

complex multiplier. This is done by adding a multiplexing level to swap between Real and

Imaginary stage inputs, and a control signal coming from control unit to invert the sign in

the butterfly adders.

In the Radix-2² SDF architecture, a twiddle multiplication stage is implemented after every

two butterfly stages. At every twiddle stage, a complex hardware multiplier is used to

multiply each data sample by a corresponding complex twiddle coefficient of unit

magnitude. The product is then truncated down to the bit width of the data stream before

entering the subsequent butterfly stage.

3.4.3. Synthesis Results

Figure [50]: FFT Synthesis Utilization

71 | P a g e

Digital Design

3.5. Resource Demapper
3.5.1. Top Module

Resource
Demapper

Clk

I

Q

rstn

Rm_done

RM Enable

Est_R1

Est_R2

Est_I1

Est_I2

Est_Row2

Est_Col2

Eq
1

Eq
12... Eq_col

Fine_Row2

Fine_Col2

Est_Row1

Est_Col1

Fine_Row1

Fine_Col1

Fine_R1

Fine_R2

Fine_I1

Fine_I2

Figure [51]: Resource Demapper Top Module

Table [13]: Resource Demapper Interface Table

Signal Name Direction Width Description

clk Input 1 260ns clock signal

Rstn Input 1 Active low reset

I Input 16 Real part of received sample from fft

Q Input 16 Imaginary part of received sample from fft

rmEnable Input 1 Block enable from the fft

Eq_col Input 4 Number of the column to be equalized

Est_row1 Input 4 The row of the needed pilot by the estimator

Est_col1 Input 4 The column of the needed pilot by the estimator

Est_row2 Input 4 The row of the needed pilot by the estimator

Est_col2 Input 4 The column of the needed pilot by the estimator

Fine_row1 Input 4 The row of the needed pilot by fine synchronizer

Fine_col1 Input 4 The column of the needed pilot by fine synchronizer

Fine_row2 Input 4 The row of the needed pilot by fine synchronizer

Fine_col2 Input 4 The column of the needed pilot by fine synchronizer

72 | P a g e

Est_R1 Output 16 Received pilot real part

Est_I1 Output 16 Received pilot imaginary part

Est_R2 Output 16 Received pilot real part

Est_I2 Output 16 Received pilot imaginary part

fine_R1 Output 16 Received pilot real part

fine_I1 Output 16 Received pilot imaginary part

fine_R2 Output 16 Received pilot real part

fine_I2 Output 16 Received pilot imaginary part

Eq1 to Eq12 R Output 16 Received symbol’s real part to be equalized

Eq1 to Eq12 I Output 16 Received symbol’s imaginary part to be equalized

Rm_done Output 1 Signal indicates that storing is done

3.5.2. Detailed Hardware

Memory 1
(12x14)

I

Q
Memory 2

(12x14)

Symbol1

Symbol12

...
Eq1

Eq12

...

Row counter

Control Unit

Enable

Est_Fine interface

column
counter

Symbol
counter

Figure [52]: Resource demapper detailed hardware

The block consists of two memories 12x14 each to store the whole subframe which

consists of 12 subcarriers and 14 OFDM symbol, the 1st memory takes the output of the

FFT sample by sample (QPSK symbol) constructing an OFDM symbol every 16 cycles then

after a complete OFDM symbol we start to fill the second column in the memory.

The row and column counter are used to keep tracking how many places are filled and

also used as addresses for the data in the first memory then the symbol counter is used

to count the number of OFDM symbol transferred from the 1st memory to the 2nd

memory.

73 | P a g e

Digital Design

After storing the whole subframe (14 OFDM symbol) the 1st memory raises the write

enable of the 2nd memory and transfer to it symbol by symbol till the second memory is

full and store the whole subframe, while the 2nd memory stores the subframe the 1st

memory will keep storing in the new subframe.

By this we guarantee the stability of data in the memory within our processing time

3.5.3. Design Challenges and Solutions
3.5.3.1. Timing

We need to know the processing time which is the time that we need the data to be

constant in the memory, so this time determine our memory width.

𝑡𝑖𝑚𝑒 = (𝑁𝑅𝑆 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛 𝑙𝑎𝑡𝑒𝑛𝑐𝑦)(𝑐𝑙𝑘) + (𝑐ℎ𝑎𝑛𝑛𝑒𝑙 𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑖𝑜𝑛 𝑙𝑎𝑡𝑒𝑛𝑐𝑦)(𝑐𝑙𝑘)

+ (𝑒𝑞𝑢𝑎𝑙𝑖𝑧𝑎𝑡𝑒𝑟 𝑙𝑎𝑡𝑒𝑛𝑐𝑦)(𝑐𝑙𝑘)

𝑡𝑖𝑚𝑒 = 6424 × 130𝑛𝑠 + 7 × 520𝑛𝑠 + 1 × 520𝑛𝑠 ≅ 0.85𝑚𝑠

Knowing that the subframe time is around 0.95𝑚𝑠 so we need to keep the whole

subframe constant using the 12 × 14 memories

3.5.3.2. Removing Dummy

The data output from our FFT has 4 dummy samples. The dummy is inserted at the Tx

because we use 16-point FFT while the OFDM symbol contain only 12 sample so 4

dummy samples are added to work with the 16-point FFT.

There was a solution of storing the whole received samples letting the 1st memory to

be 16x14 memory which we considered as high overhead because this gives 4 dummy

samples in 14 symbol each of 16bit real and 16 imaginary and this is a total of 4 ∗

14 ∗ 16 ∗ 2 = 1792 𝑏𝑖𝑡.

The dummy samples output from the fft will not be stored as we know when they are

coming as they are at well-known places so we know when they will come and disable

the write enable of the memory so as not to store them.

3.5.3.3. Ordering

The data output from the FFT is out of order as the FFT uses DIF so its input is in order

but the output is out of order.

Instead of using complex control to control the storing in different order than the

order the data comes in with we decided to normally store the data in the 1st memory

then while transferring from the 1st memory to the 2nd memory we use wiring to do

the needed ordering. By that the data in the 2nd memory are in the required normal

order without adding complexity of control.

74 | P a g e

Table [14]: Ordering table

Input Stored order

0 0

1 8

2 4

3 2

4 6

5 1

6 9

7 13

8 3

9 11

10 7

11 15

3.5.4. Results
3.5.4.1. Synthesis Result

Figure [53]: Resource Demapper Synthesis result

75 | P a g e

Digital Design

3.6. Channel Estimation
3.6.1. Top Module

Channel Estimation

rxReal1

rxReal2

rxImg1

rxImg2

Col2

nrsIdx1

nrsLoc

nrsR
eal1

nrsIm
g1

H1

H12

clk

rstn

nrsGenDone

nrsR
eal2

nrsIm
g2

done

row

Col1

Figure [54]: Channel Estimation Top Module

Table [15]: Channel Estimation Interface Table

Signal Name Direction Width Description

Clk Input 1 520ns clock signal

Rstn Input 1 Active low reset signal

nrsGenDone Input 1 Signal indicate that pilot generation has finished

rxReal1 Input 16 Real part of the received pilot

rxImg1 Input 16 Imaginary part of the received pilot

rxReal2 Input 16 Real part of the received pilot

rxImg2 Input 16 Imaginary part of the received pilot

nrsLoc Input 4 Index that we get from the NRS index generator

nrsReal1 Input 16 Real part of locally generated pilot

nrsImg1 Input 16 Imaginary part of locally generated pilot

nrsReal2 Input 16 Real part of locally generated pilot

nrsImg2 Input 16 Imaginary part of locally generated pilot

76 | P a g e

nrsIdx1 Output 3 Index used to access NRS index generator memory

nrsIdx2 Output 3 Index used to access NRS index generator memory

Row Output 4 Row of the received pilot in the resource block

Col1 Output 4 Column of the received pilot in the resource block

Col2 Output 4 Column of the received pilot in the resource block

H1 … H12 Real Output 16 Estimated real part

H1 … H12 Img Output 16 Estimated imaginary part

done Output 1 Signal verifies that estimation is done

3.6.2. Detailed Hardware

Get Data

Complex Mul

Complex Mul

Adder Memory Interpolation

rxReal1

rxReal2

rxImg1

rxImg2

row

col1

col2

N
R

S_
Id

x1

n
rsLo

c

n
rsR

eal1

N
R

S_
I1

N
R

S_
Id

x2

n
rsR

eal2

N
R

S_
I2

rx1

rx2

nrs1

nrs2

H1

H12

Figure [55]: Channel Estimation detailed hardware

The estimation process is done through the following steps:

1- We gather the needed data which is the received pilots (noisy) and the locally

generated pilots (noiseless) the received are stored in the resource demapper and the

generated in the NRS generation memory.

2- Calculate the channel frequency response by dividing which is implemented as

multiplication by conjugate

3- Getting the average and store them in the memory

4- A combinational interpolation block to interpolate between the calculated four values

to get the twelve-channel estimate.

77 | P a g e

Digital Design

3.6.3. Results
3.6.3.1. Matlab vs RTL

Figure [57]: Matlab estimates

Figure [56]: RTL estimates

78 | P a g e

3.6.3.2. Synthesis Results

Figure [58]: Channel Estimation Synthesis results

79 | P a g e

Digital Design

3.7. NRS Value Generator
3.7.1. Top module

NRS Value
 Generator

9

Channel Estimation1_r

Channel Estimation1_i

Channel Estimation2_r

Channel Estimation2_i

fineSynch1_r

fineSynch1_i

Addr2

Addr1

AddrFine1

nf

N_cellID

4

Demapper Done

Clk

rstn
16

16

3

16

16

3

16

16

3

Valid

AddrFine2
3

fineSynch2_r

fineSynch2_i

16

16

Figure [59]: NRS Value Generator top module

Table [16]: NRS Value Generator interface table

Signal Name Direction Width Description

Clk Input 1 130ns clock signal

Rstn Input 1 Active low reset signal

demapperDone Input 1 Signal indicates that storing subframe is done

Nf Input 4 Subframe number

N_cellID Input 9 Cell ID

Addr1 Input 3 Address of first pilot from channel estimation

Addr2 Input 3 Address of second pilot channel estimation

Addrfine1 Input 3 Address of first pilot from fine synchronization

Addrfine2 Input 3 Address of second pilot from fine synchronization

ChannelEstimation1_r Output 16 First pilot real part

ChannelEstimation1_i Output 16 First pilot imaginary part

ChannelEstimation2_r Output 16 Second pilot real part

ChannelEstimation2_r Output 16 Second pilot imaginary part

80 | P a g e

3.7.2. Detailed Hardware

1

-1

X2 initialization Generator

XOR

XOR

X2

X1

NRS Register File
8 Registers
 16+16 bits

16

Channel Estimation1_r

Channel Estimation1_i

Channel Estimation2_r

Channel Estimation2_i

fineSynch1_r

fineSynch1_i

Addr2

Addr1

AddrFine1

clk

rst

Din

16

16

3

16

16

3

16

16

3

fineSynch2_r

fineSynch2_i

AddrFine2

16

16

3

Figure [60]: NRS Value Generator detailed hardware

The pilot value is either
1

√2
 𝑜𝑟 −

1

√2
 depending on the value of the golden sequence. So,

x2 initialization generator generates the initializing sequence for 𝑥2 then both are XORed

giving the golden sequence to choose which value is to be stored in the register file. Other

blocks will interface with this register file accessing it with the required address to extract

the needed generated pilot.

fineSynch1_r Output 16 First pilot real part

fineSynch1_i Output 16 First pilot imaginary part

fineSynch2_r Output 16 Second pilot real part

fineSynch2_i Output 16 Second pilot imaginary part

Valid Output 1 Signal verifies that generation is done

81 | P a g e

Digital Design

3.7.3. Results
3.7.3.1. Matlab vs RTL

For subframe number = 0 and N_cellID = 1

Figure [61]: MATLAB function vs Our function

Figure [62]: RTL results

82 | P a g e

3.7.3.2. Synthesis Results

Figure [63]: NRS Values Generator Synthesis results

83 | P a g e

Digital Design

3.8. NRS Index Generator
3.8.1. Top module

NRS Index
 Generator

3

ChannelEstIdx

NRS_Removal idx 1

NRS_Removal idx 2

NRS_Removal idx 3

NRS_Removal idx 4

EstIdxAddr

FineSyncIdx

Fine Index address

Generation Done

2

4

4

4

4

4

2

4

N_cellIDmod6

Demapper Done

Clk

rstn

Figure [64]: NRS Index Generator top module

Table [17]: NRS Index Generator interface table

Signal Name Direction Width Description

Clk Input 1 520ns clock signal

Rstn Input 1 Active low reset signal

demapperDone Input 1 Signal indicates that storing subframe is done

N_cellIDmod6 Input 3 Cell ID modulus 6

EstIdxAddr Input 2 Address of pilot needed by channel estimation

FineSyncAddr Input 2 Address of pilot needed by fine synchronization

ChannelEstIdx Output 4 Index of the pilot needed by channel est. in RB

FineSyncIdx Output 4 Index of the pilot needed by fine sync. in RB

NRSremovalIdx1 Output 4 Index of first pilot to be given to NRS removal

NRSremovalIdx2 Output 4 Index of second pilot to be given to NRS removal

NRSremovalIdx3 Output 4 Index of third pilot to be given to NRS removal

NRSremovalIdx4 Output 4 Index of fourth pilot to be given to NRS removal

GenerationDone Output 1 Signal verifies that index generation is done

84 | P a g e

3.8.2. Detailed hardware

+

L

0
3

1
4

2
5

3
0

4
1

5
2

6

4-bits

Register
File

channelEstIdx

NRS_Removal idx 1

NRS_Removal idx 2

NRS_Removal idx 3

NRS_Removal idx 4

EstIdxAddr

FineSyncIdx

FineIdxAddr

Vshift

m

Generation Done

4

4

4

4

4

3

4

3

Figure [65]: NRS Index Generator detailed hardware

The design intends to implement the equations in the standard to calculate the value of

the indices to extract them from the subframe

3.8.3. Design Challenges and Solutions
3.8.3.1. Calculations

Instead of using adders or any arithmetic block the design is implemented as

multiplexer this is because the pilots are always in OFDM symbol number 5 or 6 and

the rest of the equation are all set of choices from certain values

By that we reduce the consumed power using multiplexers instead of arithmetic units.

3.8.3.2. Memory

As the pilots are always in pair per subcarrier and always at OFDM symbol 5 or 6. So,

we only need to know four values of the four subcarriers and there is no need to store

eight values as every subcarrier of the calculated four has two pilots also no need to

store the number of OFDM symbol as it is well known to any block in the system that

the pilots are at OFDM symbol 5 and 6.

By that we have used half the size of the memory storing four numbers other than

eight.

85 | P a g e

Digital Design

3.8.4. Results
3.8.4.1. Matlab vs RTL

For subframe number = 1 and N_cellID = 0

Figure [66]: MATLAB function vs Our function

Figure [67]: RTL results

3.8.4.2. Synthesis Results

Figure [68]: NRS Index Generator Synthesis results

86 | P a g e

3.9. Channel Equalizer
3.9.1. Top module

Channel Equalizer

H1

H12

Rx12Rx

EqReal

EqImg

Clk
rstn

chdone

col

done

Figure [69]: Channel Equalizer top module

Table [18]: Channel Equalizer interface table

Signal Name Direction Width Description

Clk Input 1 520ns clock signal

Rstn Input 1 Active low reset signal

chDone Input 1 Signal indicates that channel estimation is done

H1 … H12 Input 16 Channel estimates per subcarrier

Rx1 … Rx12 Input 16 OFDM symbol to be equalized

Col Output 4 Number of required OFDM symbol to be equalized

EqReal Output 12 MSB of real part of the equalized symbol

EqImg Output 12 MSB of imaginary part of the equalized symbol

Done Output 1 Signal indicates that symbol has equalized

87 | P a g e

Digital Design

3.9.2. Detailed Hardware

Complex Multiplier

Complex Multiplier

Complex Multiplier

Complex Multiplier

Complex Multiplier

Complex Multiplier

Complex Multiplier

Complex Multiplier

Complex Multiplier

Complex Multiplier

Complex Multiplier

Complex Multiplier

Figure [70]: Channel Equalizer detailed hardware

The design is a set of twelve complex multiplier (conjugate) to equalize the data symbols

by diving them by the channel estimated value.

There is a counter that counts the number of equalized OFDM symbols, the value of the

counter is sent to the resource demapper to extract the need OFDM symbol to equalized.

Also, this counter value will be used to detect the last column as we need to know when

we reached the last OFDM symbol to achieve the timing needed in Parallel to Serial block.

88 | P a g e

3.9.3. Design Challenges and Solutions
There was a challenge in communication between this block and parallel to serial block

because the data are stored in the resource demapper for certain time which doesn’t

include the overhead of converting each symbol to serial and this conversion takes around

12 clock cycles.

 The counter is passed to the parallel to serial and it gets registered there to be used as

the storing time of RB is enough for all Symbols except the last one.

3.9.4. Results
3.9.4.1. Matlab vs RTL

Figure [72]: Matlab equalized OFDM symbol

3.9.4.2. Synthesis results

Figure [73]: Equalizer Synthesis results

Figure [71]: RTL equalized OFDM symbol

89 | P a g e

Digital Design

3.10. Parallel to Serial and NRS removal
3.10.1. Top module

Parallel to Serial
and

NRS Removal

Sign(I)

nrsRemovalIdx1

nrsRemovalIdx2

nrsRemovalIdx3

nrsRemovalIdx4

In Sign(Q)

Qn

DemodEn

12

12

Clk

rstn

4

4

4

4

chdone
eqdone

eqcol

Figure [74]: Parallel to Serial and NRS removal top module

Table [19]: Parallel to Serial and NRS removal interface table

As the demodulation is hard demodulation so it needs only the sign of the QPSK symbol

the equalizer send us 12 bits representing the sign of every QPSK symbol in the OFDM

symbol. Here we take these bits in payload shift register and start outputting this bits in

serial.

Signal Name Direction Width Description

Clk Input 1 520ns clock signal

Rstn Input 1 Active low reset signal

chDone Input 1 Signal indicates that channel estimation is done

Eqdone Input 1 Signal indicates that channel equalization is done

In Input 12 MSB of the real part of the equalized symbol (sign)

Qn Input 12 MSB of the imaginary part of the equalized symbol (sign)

Eqcol Input 4 Number of equalized OFDM symbol

nrsRemovalIdx1 Input 4 Index of first pilot to be removed

nrsRemovalIdx2 Input 4 Index of second pilot to be removed

nrsRemovalIdx3 Input 4 Index of third pilot to be removed

nrsRemovalIdx4 Input 4 Index of fourth pilot to be removed

Signi Output 1 Sign of real part

SignQ Output 1 Sign of imaginary part

DemodEn Output 1 Enable signal to bit processing indicate valid data

90 | P a g e

3.10.2. Design Challenges and Solutions
The main challenge was in handling the last OFDM symbol as the time of storing the

subframe doesn’t include converting it to serial data.

The time was sufficient to convert every OFDM symbol except for the last one for that the

design has special registers to store the needed values for the last column.

We register the last set of QPSK symbols to be output in serial then manage to disable the

enable after all the subframe has been converted.

3.10.3. Results
3.10.3.1. Synthesis results

Figure [75]: Parallel to Serial and NRS removal Synthesis results

91 | P a g e

Digital Design

3.11. Fine Synchronizer
3.11.1. Top Module

Figure [76]: Fine Synchronization Top Module

Table [20]: Fine Synchronization Interface Table

Signal Name Direction Width Description

Clk_260 Input 1 3.84 MHz clock signal

Reset Input 1 Global reset signal

Fine_Enable Input 1 Enable signal for the Fine

Synchronization module from the NRS

Value Generator

I_received1 Input 16 Real value of the first-time domain

received NRS signal

Q_ received1 Input 16 Imaginary value of the first-time

domain received NRS signal

I_received2 Input 16 Real value of the second-time domain

received NRS signal

Q_ received2 Input 16 Imaginary value of the second-time

domain received NRS signal

Fine
Synchronization

Clk

I_received

Q_received

Reset

NRS_index

Valid

RM_row

RM_Column

Fine_Enable

I_generated

Q_generated

NRS_Location

NRS_generated_address

RFO

92 | P a g e

I_generated1 Input 16 Real value of the first-time domain

generated NRS signal

Q_ generated1 Input 16 Imaginary value of the first-time

domain generated NRS signal

I_generated2 Input 16 Real value of the second-time domain

generated NRS signal

Q_ generated2 Input 16 Imaginary value of the second-time

domain generated NRS signal

NRS_index Input 4 NRS index from the NRS Index

Generator block

RM_row1 Output 4 Row address to the Resource De-

Mapper to get the first received NRS

RM_Column1 Output 4 Column address to the Resource De-

Mapper to get the first received NRS

RM_row2 Output 4 Row address to the Resource De-

Mapper to get the second received NRS

RM_Column2 Output 4 Column address to the Resource De-

Mapper to get the second received NRS

NRS_Location Output 3 NRS Location to the NRS Index

Generator block

NRS_generated_address1 Output 3 NRS address to the NRS Value

Generator block to get the second

received NRS

NRS_generated_address2 Output 3 NRS address to the NRS Value

Generator block to get the second

received NRS

RFO Output 19 Residual Frequency offset to the CFO

Block

valid Output 1 Valid signal that verifies the integrity of

the output bus data

93 | P a g e

Digital Design

3.11.2. Detailed Hardware

Figure [77]: Fine Synchronization Detailed Design

Fine Synchronization Description:

• Fetching each pair takes place as

1. The block first sends the grid Location of this pair to the NRS address generation block.

2. The NRS address generation block sends back the row indices of these pairs.

3. The block then sends the NRS address in the Resource Element De-Mapper as row and

column addresses in order to fetch the received NRS. And also sends the NRS address

to the locally generated NRS memory in the NRS value generation block.

• Each pair of received NRS is complex multiplied as well as each pair of locally generated

NRS signals

• The received complex product result is divided by the generated complex product result,

but instead of division we use complex multiplication by using the complex conjugate.

There is no need to account for the magnitude in this operation because the complex

division will not affect the magnitude as it results in unity factor.

• The above operations are repeated for four iterations and each time the accumulator

accumulates the resulting phase

• Frequency offset can be extract by using the Arctan function

Complex Multiplier

Complex Multiplier

NRS_generated1

NRS_generated2

NRS_received1

NRS_received2

Complex
Multiplier

Accumulator
RFO

Arctan

Divider Core

Si
gn

 C
h

ec
k

C
o

m
p

ar
at

o
r

Refine
Angle

94 | P a g e

Arctan Synchronization Description:

The Low power implementation of the arctan is using the linear range of the arctan

function in order to obtain the real arctan value.

z= [0,1]

𝜃= [0:45]

The implementation of the arctan is divided into 5 stages

• Checking the sign of the real and imaginary parts of the complex quantity that we are

calculating the arctan of and storing their sign to be used later in the Redefine angle

stage.

• Passing the absolute values of the x (real part) and y (imaginary part), compare them

and the smaller one is then used as numerator for the division operation while the

greater is the numerator. This is in order to guarantee that the division z quantity is in

range of [0,1].

• As the numerator and denominator of the division are identified in the comparator

stage, this stage divides them using Non-restoring Algorithm

• Core is the main stage of this arctan which uses the value of this division to get the

result of the angle from [0:45] using the following equations:

tan−1 𝑧 = {

56𝑧, 0 < 𝑧 < 0.25
50z+1.5, 0.25 < 𝑧 < 0.5
40𝑧 + 6.5, 0.5 < 𝑧 < 0.75
32𝑧 + 13, 0.75 < 𝑧 < 1

• If the numerator was the real part, x<y then θ = 90 − tan−1 𝑧

• If the numerator was the imaginary part, y<x then θ = tan−1 𝑧

• The resulted 𝜃 lies in the first quadrature in range of [0:90]

Figure [78]: Arctan Linear Range

(z)

z

95 | P a g e

Digital Design

• In the Refine angle block, final value of 𝜃𝑓𝑖𝑛𝑎𝑙 is determined through the full range of

[0:360] using the stored signs in the first stage using the following equations:

𝜃𝑓𝑖𝑛𝑎𝑙 = {

𝜃, 𝑥 + 𝑣𝑒, 𝑦 + 𝑣𝑒
180 − 𝜃, 𝑥 − 𝑣𝑒, 𝑦 + 𝑣𝑒
𝜃 − 180, 𝑥 − 𝑣𝑒, 𝑦 − 𝑣𝑒
−𝜃, 𝑥 + 𝑣𝑒, 𝑦 − 𝑣𝑒

The Calculated RFO value is a 19 bits result used by the CFO Correction block. 10 for the

fraction and 9 for the integer.

3.11.3. Design Challenges and Solutions
The non-restoring algorithm divides absolute numbers and gives the final results based

on this. So, it will not work well with the used fixed-point representation. The solution

was to shift right the denominator by 10 as the fixed-point representation has 10 bits for

the fraction and 6 bits for the integer. That’s how it is guaranteed that the quotient which

is the final division result is following the fixed-point representation.

3.11.4. Results
3.11.3.1. MATLAB vs. RTL

138432 in fixed point representation. To convert it, 138432/1024 = 135.1875.

3.11.3.2. Synthesis Results

Figure [80]: Fine Synchronizer Synthesis Results

Figure [79]: Fine Synchronizer RTL Results

96 | P a g e

3.12. Demodulator
3.12.1. Top Module

Figure [81]: Demodulator Top Module

Table [21]: Demodulator Interface Table

Signal Name Direction Width Description

Clk_260 Input 1 3.84 MHz clock signal

Reset Input 1 Global reset signal

Enable Input 1 Enable signal for the Demodulator

module to start operating

Sign_I Input 1 sign of In-phase component

received from the P/S block

Sign_Q Input 1 sign of Quadrature component

received from the P/S block

Data_bit Output 1 Serial data bits output to

descrambler

Done Output 1 signal that verifies the integrity of

the output bus data

DemodulatorSign(I)

Data bit

Sign(Q)

Done

Enable

Clk

Reset

97 | P a g e

Digital Design

3.12.2. Detailed Hardware

3.12.3. Results
All the upcoming MATLAB results are for a transport block size of 24 bits that consists of

12 bits of zeros and 12 bits of ones.

3.12.3.1. MATLAB vs. RTL

Figure [83]: Demodulator MATLAB Results

Figure [84]: Demodulator RTL Results

Figure [82]: Demodulator Detailed Hardware

s
e

le
c
ti
o
n

M
U

X

Sign(I)

Sign(Q)

Clk_260

Togglin

g

control

Data_bit

selection

98 | P a g e

3.12.3.2. Synthesis Results

Figure [85]: Demodulator Synthesis Results

99 | P a g e

Digital Design

3.13. Descrambler
3.13.1. Top Module

Figure [86]: Descrambler Top Module

Table [22]: Descrambler Interface Table

Signal Name Direction Width Description

Clk_260 Input 1 3.84 MHz clock signal

Reset Input 1 Global reset signal

Enable Input 1 Enable signal for the Scrambler

module to start operating

Data Input 1 Serial input data bits from

demodulator

RNTI Input 16 Radio Network Temporary

Identifier which is an upper layer

parameter

Ns Input 5 First slot of transmission

Nf Input 1 First frame of transmission

Descrambler

Clk

Data

Reset

Nf
Valid

Enable

RNTI

Ns

Data_out

Cell_ID

100 | P a g e

Nsf Input 4 Number of subframes used in

codeword

Nrep Input 12 Number of repetitions used in

codeword

Cell_ID Input 9 The Cell Identifier which is an

upper layer parameter

Data_out Output 1 Serial output data bits to the rate

matcher

Valid Output 1 signal that verifies the integrity of

the output bus data

3.13.2. Detailed Hardware

Figure [87]: Descrambler Detailed Design

Description: The two linear feedback shift registers are initialized with their values and

then they take 1600 clock cycle to reach the desired golden sequence than should be XOR-

ed with the input bitstream, until it finishes the received codeword from the

demodulator. the codeword that is successive repetitions of the codeword subframes.

The linear feedback shift registers are re-initialized every min(𝑁𝑟𝑒𝑝, 4) transmissions of

the codeword.

Bits

101 | P a g e

Digital Design

3.13.3. Results
TBS = 24, 𝑁𝐼𝐷

𝑐𝑒𝑙𝑙 = 1, 𝑛𝑓 = 20, 𝑛𝑠= 0, 𝑛RNTI = 1000

Figure [88]: Descrambler MATLAB Results

Figure [89]: Descrambler RTL Results

Figure [90]: Descrambler Synthesis Results

102 | P a g e

3.14. Rate De-Matcher
3.14.1. Top Module

Figure [79]: Rate Dematcher Top Module

Table [23]: Rate De-Matcher Interface Table

Signal Name Direction Width Description

Clk_260 Input 1 3.84 MHz clock signal

Clk_130 Input 1 7.69 MHz clock signal

Reset Input 1 Global reset signal

Enable Input 1 Enable signal for the Rate De-matcher.

Data Input 1 Serial input data bits from Descrambler.

E Input 24 Size of the input data to the Block.

TBS Input 12 Transport Block Size of the incoming data

Matcher_repeat Input 1 If decode didn’t decode correctly at first trial

Data_out1 Output 1 First output to decoder

Data_out2 Output 1 Second output to decoder

Data_out3 Output 1 Third output to decoder

Valid Output 1 signal that verifies the integrity of the output

bus data

Rate Dematcher

Clk

Data

Reset

Memory Read

Valid

Enable

E

TBS

Data_out1

Data_out2

Data_out3

Memory Write Address

Memory Read Address

Data to write

103 | P a g e

Digital Design

3.14.2. Detailed Hardware

Figure [80]: Rate De-Matcher Detailed Design

Description:

• The input data is collected at the bit collecting memory whenever there’s an enable

signal high which indicates that the input from the descrambler is valid.

• Bits are written to the first memory until reach the circular buffer length. If the

incoming stream is not over, the write pointer rolls over to the start of the circular

buffer again to read the memory content and add the incoming input stream to them.

• when from the input data length E is received, bit collection memory output is

averaged by dividing them by the number of repetitions and taking the majority vote.

• The data after majority vote is stored in each RAM each at a time, and the inter-

column permutation matrix is performed by changing the address using the control

unit.

• The control unit generated the addresses based on the ROM storing the intercolumn

permutation pattern. And it also generates the write enable for each memory

• when the 3 RAMs are filled, they are read each row at a time without the dummy bits

and the output is given to the decoder.

RAM 1

RAM 2

RAM 3 D
E

-M
U

X

Control Unit

and Address

Generation

Bit stream
𝑑𝑘

(1)

𝑑𝑘
(2)

𝑑𝑘
(3)

E

TBS
Clock
Reset

Enable

s
e

le
c
ti
o
n

Circular

Buffer

Address

WE

Average Data In

Permutation

Pattern

Address

Address

Data In

Data In

WE

WE

Input

104 | P a g e

The Rate De-matcher control unit executes the following state machines in order to

perform the block operations correctly without interfering with the reception of the next

transport block as the reception is continuous in time. So, to handle this the control unit

is built as two separate finite state machines that once the first once finishes it triggers

the operation of the second state machine which perform the interleaving process and

the output.

Address generation unit handles the three RAMs filling in order to account for the first 𝑁𝐷

dummy bits and then store data at the right locations. Memory unrolling is performed in

order to make the memory easier with only one address decoder instead of two row and

column decoders.

Figure [91]: Rate De-Matcher Control Finite State Machines

105 | P a g e

Digital Design

3.14.3. Design Challenges and Solutions
The block’s first memory in the bit collecting stage cannot stop for the time interval that

the three rams are being filled as the received subframes are continuous in time and every

new subframe has data that propagates down the chain and needs to be stored correctly.

In order to fix this the first memory has to be a dual port memory so the reading and

writing processes are decoupled from each other. The first port is read/write port and the

second port is a read only port.

A new problem arises from this implementation that in case of repetitions the memory

has to read first the memory content and then add the incoming input to the stored value

so for this to happen the first port has to operate at twice the frequency of the block with

flock clock of 130 nsec. This solution was chosen because this new clock as already

generated and used in our system chain at different other blocks so no overhead would

appear from such scenario

3.14.4. Results
3.14.4.1. MATLAB v. RTL

Figure [92]: Rate De-Matcher MATLAB Results

Figure [93]: Rate De-Matcher RTL Results

106 | P a g e

3.14.4.2. Synthesis Results

Figure [94]: Rate De-Matcher Synthesis Results

107 | P a g e

Digital Design

3.15. Viterbi Decoder
3.15.1. Block Interface

Viterbi Decoder

TBS

Input
Message

Decoder_Enable

Valid

Decoded out

i_Clk_260

Reset

Repeat Input

Figure [95]: Decoder Interface

Table [24]: Decoder Interface Table

Signal Name Direction Width Description

Clk Input 1 Clock signal to the block (260ns)

Reset Input 1 Reset signal to the block

TBS Input 12 Transport Block Size

Input Message Input 3 Inputs divided to 3 parallel bits

Decoder_Enable Input 1 Signal to enable the decoder

Decoded_out Output 1 Output serial decoded bits

Valid Output 1 Valid signal to next block

Repeat_Input Output 1 Signal to previous block to repeat
the input for another iteration

108 | P a g e

3.15.2. Detailed Hardware

Figure [96]: Detailed hardware of the decoder

3.15.2.1. Branch Metric Unit (BMU)

This block is responsible for calculating the hamming distance

between the input 3 bits and the expected outputs from all

branches in the trellis diagram. Every state has two output

branches as shown in the figure. This means that we need 128

Hamming Distance Units for 64 states.

Figure [97]: Trellis Diagram

109 | P a g e

Digital Design

3.15.2.2. Path Metric Unit (PMU)

This block contains Add-Compare-Select units that work in this following flow:

1. Add the branch metrics to the saved path metrics.

2. Compares the two input paths to the next states.

3. Selects the path with higher metric.

4. Accumulates this metric in the path metrics memory.

5. Saves the selected path (high or low branch) in the path

record memory.

In the shown figure, we can see an example of the path metric

unit operation. The example shows that there’s two different

paths that are entering the same next state. The key to

differentiate between them is to compare the path metrics of

them after adding the new branch metrics to the path metrics

then selecting the path that has the larger metric to be our

survived path in this state. For this example, at the left side, we

can see that the survived path that enters the first state is the path that has all green

branches.

3.15.2.3. Path Record Memory

This block is a memory that saves the transitions in each state and used in the

traceback unit. The size of the memory is 64x2560 bits as we need to store the

condition of the branch entering the state whether it’s the upper branch (0 is stored)

or the lower branch (1 is stored). The encoding of the stored values will be elaborated

in the next section.

3.15.2.4. Control Unit

It controls the entire operation of the decoding algorithm using a finite state machine

that has these operations:

• Manages the calculation and saving of

the survived paths in the path record

memory.

• Performs the traceback operation by

evaluating the winning path and reading

from the path record memory.

• Checking the Tailbiting condition and

controls the output flow from the LIFO

memory.

• Performs the Wrap Around Viterbi

Algorithm (WAVA) elaborated before.

Figure [99]: Finite State Machine implemented in the

control unit

Figure [98]: Example of Path
Metric Unit operation

110 | P a g e

3.15.2.5. LIFO Memory

A LIFO Memory of size (1x2560) is implemented to store the decoded bits from the

traceback operation. Last-In-First-Out mechanism is required as the traceback

operation starts from the last bit of the message to the start bit of the message.

3.15.3. Hardware Challenges and Solutions
3.15.3.1. Path Metrics are Monotonically Increasing

As the decoder proceeds in the trellis structure, the path metrics are being

accumulated due to the Add-Compare-Select (ACS) operation. Moreover, the values

are monotonically increasing as the branch metrics are positive values from 0 to 3.

Also, given the fixed size of the path metrics registers (8 bits), these registers will

overflow and the decoder will not operate correctly.

To avoid the overflow of these registers, in

the shown figure, a simple hardware that is

controlled by the control unit is added to

subtract the minimum value stored in these

registers occasionally before the overflow

occurs. This avoids the overflow problem and

also will not affect the operation as it only

cares about the relation between the path

metrics not the actual values of them.

Figure [100]: Hardware added to avoid overflow

111 | P a g e

Digital Design

3.15.3.2. Path Record Memory Size

Traceback operation is done by knowing the branch and the two states connected to

it in order to find the actual decoded bit and to go to the previous state. These

parameters can be calculated in the first stages but they need to be stored as the

traceback operation must start from the end of the message to the start of it. We can

calculate the size of the memory using:

𝑀𝑒𝑚𝑜𝑟𝑦 𝑆𝑖𝑧𝑒 = 𝑛𝑠𝑡𝑎𝑡𝑒𝑠 ∗ 𝑙𝑜𝑔2 𝑛𝑠𝑡𝑎𝑡𝑒𝑠 ∗ 𝑚𝑒𝑠𝑠𝑎𝑔𝑒 𝑙𝑒𝑛𝑔𝑡ℎ

In our case, the memory size will approximately be

983,040 bits. This is a very large memory to be

implemented. To reduce this size, a better traceback

implementation is done that only encodes all the

parameters said before to a single bit that tells whether

the branch that is connecting the two states together is

an upper or lower branch then with a simple left shift

operation, we can figure out the previous state simply as

shown in the figure.

The figure shows an example of the used traceback

operation method where the current state is 23 and the

previous state is required to complete tracing back to the

initial state. The available two previous states are 46 and

47 only according to the trellis diagram of the encoder.

The control unit reads the bit stored in the location of the

path record memory that is [t+1][23] and then performs

a shift left operation to the current value 23 then finally

adds the stored bit read from the memory. If the saved

bit was 0’, the previous state will be 46. And if the saved

bit was 1’, the previous state will be 47. In conclusion, by

saving only one bit, we could perform the traceback

operation correctly without having a very large memory.

Figure [101]: Another implementation of

traceback operation to reduce memory size

112 | P a g e

3.15.4. MATLAB Results
High Level Implementation of the algorithm was done on MATLAB and was tested with a

random vector with the maximum transport block size (2560). The figure below shows

the different error counts against different SNR values.

Figure [102]: MATLAB Implementation of WAVA Results

3.15.5. Synthesis Results
The Figure below shows the overall synthesized area in FPGA cells on the targeted FPGA.

Synthesis is done using Vivado Design Suite which includes block’s utilization in resources

(LUTs, FFs, DSPs, etc.)

Figure [103]: Viterbi Decoder Synthesis Utilization

113 | P a g e

Digital Design

3.16. Cyclic Redundancy Check
3.16.1. Top Module

Figure [104]: CRC Top Module

Table [25]: CRC Interface Table

Signal Name Direction Width Description

Clk_260 Input 1 3.84 MHz clock signal

Reset Input 1 Global reset signal

Enable Input 1 Enable signal for the Demodulator

module to start operating

Data Input 1 Data received from the decoder

TBS Input 12 Transport Block Size of the

incoming data

Data_out Output 1 Serial data bits output

Ack Output 1 Ack to indicate data validity

CRC

Clk

Data

Reset

Ack

Enable

TBS

Data_out

114 | P a g e

3.16.2. Detailed Hardware

Figure [105]: CRC Detailed Design

Description:

The CRC value is generated by XORing the input bit with the value of the final register and

the result is used as feedback to all the XORs implementing the polynomial. This

implementation reduces the number of cycles taken to perform the check.

The Register at first is initialized to 0 then after passing the received data bitstream of

length equal TBS+ 24 bits CRC the register should contain Zeros once again and that’s

when the acknowledge signal is asserted.

3.16.3. Results
3.16.3.1. MATLAB vs. RTL

Figure [106]: CRC MATLAB Results

Figure [107]: CRC RTL Results

3.16.3.2. Synthesis Results

Figure [108]: CRC Synthesis Results

115 | P a g e

4. Chain Results

4.1. Synopsys Design Compiler Synthesis Results
4.1.1. Coarse Synchronizer

4.1.1.1. Area Results

Figure [109]: Coarse Synchronizer DC Area Results

4.1.1.2. Power Results

Figure [110]: Coarse Synchronizer DC Power Results

116 | P a g e

4.1.2. CP Remover and Downsampler
4.1.2.1. Area Results

Figure [111]: CP Remover and Downsampler DC Area Results

4.1.2.2. Power Results

Figure [112]: CP Remover and Downsampler DC Power Results

117 | P a g e

Chain Results

4.1.3. CFO Corrector
4.1.3.1. Area Results

Figure [113]: CFO Corrector DC Area Results

4.1.3.2. Power Results

Figure [114]: CFO Corrector DC Power Results

118 | P a g e

4.1.4. FFT Engine
4.1.4.1. Area Results

Figure [115]: FFT Engine DC Area Results

4.1.4.2. Power Results

Figure [116]: FFT Engine DC Power Results

119 | P a g e

Chain Results

4.1.5. Resource Demapper
4.1.5.1. Area Results

Figure [117]: Resource Demapper Area report

4.1.5.2. Power Results

Figure [118]: Resource Demapper Power report

120 | P a g e

4.1.6. Channel Estimation
4.1.6.1. Area Results

Figure [119]: Channel Estimation Area report

4.1.6.2. Power Results

Figure [120]: Channel Estimation Power report

121 | P a g e

Chain Results

4.1.7. NRS Values Generator
4.1.7.1. Area Results

Figure [121]: NRS Values Generator Area report

4.1.7.2. Power Results

Figure [122]: NRS Values Generator Power report

122 | P a g e

4.1.8. NRS Index Generator
4.1.8.1. Area Results

Figure [123]: NRS Index Generator Area report

4.1.8.2. Power Results

Figure [124]: NRS Index Generator Power report

123 | P a g e

Chain Results

4.1.9. Channel Equalizer
4.1.9.1. Area Results

Figure [125]: Channel Equalizer Area report

4.1.9.2. Power Results

Figure [126]: Channel Equalizer Power report

124 | P a g e

4.1.10. Parallel to Serial and NRS removal
4.1.10.1. Area Results

Figure [127]: Parallel to Serial and NRS removal Area report

4.1.10.2. Power Results

Figure [128]: Parallel to Serial and NRS removal Power report

125 | P a g e

Chain Results

4.1.11. Fine Synchronizer
4.1.11.1. Area Results

Figure [129]: Fine Synchronization Area Report

4.1.11.2. Power Results

Figure [130]: Fine Synchronization Power Report

126 | P a g e

4.1.12. Demodulator
4.1.12.1. Area Results

Figure [131]: Demodulator Area Report

4.1.12.2. Power Results

Figure [132]: Demodulator Power Report

127 | P a g e

Chain Results

4.1.13. Descrambler
4.1.13.1. Area Results

Figure [133]: Descrambler Area Report

4.1.13.2. Power Results

Figure [134]: Descrambler Power Report

128 | P a g e

4.1.14. Rate De-Matcher
4.1.14.1. Area Results

Figure [135]: Rate De-Matcher Area Report

4.1.14.2. Power Results

Figure [136]: Rate De-Matcher Power Report

129 | P a g e

Chain Results

4.1.15. Viterbi Decoder
4.1.15.1. Area Results

Figure [137]: Viterbi Decoder Area Reports

4.1.15.2. Power Results

Figure [138]: Viterbi Decoder Power Reports

130 | P a g e

4.1.16. Cyclic Redundance Check
4.1.16.1. Area Results

Figure [139]: CRC Area Report

4.1.16.2. Power Results

Figure [140]: CRC Power Report

131 | P a g e

Chain Results

4.2. DC Results for RX Chain
4.2.1. Timing

Figure [141]: Timing Report

All specified timing constrains have been met with total available slack of 21.643 ns.

132 | P a g e

4.2.2. Area Utilization

Figure [142]: Area Utilization Histogram

Table [26]: Area Utilization Table

Block Area (µm²)

Coarse Synchronizer 135658.669893

CP Remover & Downsampler 270.256005

CFO Corrector 7014.952029

FFT Engine 11810.399929

Resource Demapper 112617.220342

Channel Estimation 19771.780108

NRS Value Generator 4502.582040

NRS Index Generator 215.726003

Channel Equalizer 61711.202107

Parallel to Serial 307.230001

Fine Synchronizer 18249.994066

Demodulator 9.576

Descrambler 798.798016

Rate Dematcher 1034782.81128

Viterbi Decoder 1226906.624348

CRC 373.996008

Total Area Reported = 2639612.9281 µm²

Figure [143]: Area Utilization DC Report

133 | P a g e

Chain Results

4.2.3. Power Consumption

Figure [144]: Power Consumption Histogram

Table [27]: Total Power Consumption Table

Figure [145]: Total Power DC Report

Total Power Consumption = 20596 µW

Block Total Power (µW)

Coarse Synchronizer 875.9543

CP Remover & Downsampler 16.9145

CFO Corrector 219.0724

FFT Engine 519.9951

Resource Demapper 752.9954

Channel Estimation 86.9436

NRS Value Generator 34.96

NRS Index Generator 1.21

Channel Equalizer 327.2816

Parallel to Serial 1.775

Fine Synchronizer 88.3618

Demodulator 1.05

Descrambler 6.0481

Rate Dematcher 7994.9

Viterbi Decoder 9485.6

CRC 2.7186

134 | P a g e

4.3. FPGA Implementation Results
Targeted FPGA: ZYNQ-7 ZC702 Evaluation Board

4.3.1. Post-Implementation FPGA View

Figure [146]: Post-Implementation FPGA View

4.3.2. Timing

Figure [147]: Vivado Timing Report

135 | P a g e

Chain Results

4.3.3. Area Utilization

Figure [148]: FPGA Area Utilization

4.3.4. Power Consumption:

Figure [149]: FPGA Power Consumption Summary

136 | P a g e

5. FPGA Deployment

5.1. FPGA Deployment

Figure [150]: FPGA Deployment Schematic

We are targeting ZYNQ-7 ZC702 Evaluation Board. This kit contains 3 user push buttons, 2 user

switches and 8 user LEDs along with a reset switch. The available I O’s are not sufficient for our

design to be deployed, so, we used built-in IPs in Vivado that allow us to use as many I/O pins as

we need. These IPs are Virtual I/O (VIO), Integrated Logic Analyzer (ILA) and Clocking wizard and

connected them with our design as shown in figure (149) above.

VIO: Virtual Input/Output (VIO) It is a configurable core IP that has real-time monitoring and

driving capabilities for internal FPGA signals. To interact with the FPGA design, the input and

output ports' size, number, and width may all be changed. The design outputs are the inputs into

VIO, and vice versa.

ILA: Integrated Logic Analyzer (ILA) IP core is a logic analyzer core that can be used for analyzing

and monitoring the internal signals of a design. ILA is used to visualize the design’s outputs in a

waveform.

Clocking Wizard: The Clocking Wizard simplifies the process of configuring the clocking resources

in Xilinx FPGAs. Its input is an external differential clock and its output is the operating frequency

for the design.

137 | P a g e

FPGA Deployment

We assumed perfect synchronization while testing on the chain using 3 NB-IoT subframes using

number of repetitions (Nrep) = 2 with data transport block size (TBS) = 136. As shown in the

example shown in the figure below, the CRC Ack’s indicating a successfully received transport

block bits.

Figure [151]: RX Chain Output

We calculated receiver’s performance and plotted the BER vs. SNR curve for the same Nrep and

TBS as shown in the figure below.

Figure [152152]: BER vs SNR Curve

138 | P a g e

References
[1] 3GPP TS 36.211 Evolved Universal Terrestrial Radio Access (E-UTRA); Physical channels

and modulation (Release 14).

[2] 3GPP TS 36.212 Evolved Universal Terrestrial Radio Access (E-UTRA); Multiplexing and

channel coding (Release 14).

[3] 3GPP TS 36.213 Evolved Universal Terrestrial Radio Access (E-UTRA); Physical layer

procedures (Release 14).

[4] Ali and W. Hamouda, “On the Cell Search and Initial Synchronization for NB-IoT LTE

Systems,” IEEE Comm. Lett., vol. 21, pp. 1843-1846, May 2017

[5] X. Wang, "Design and Implementation of CORDIC Algorithm Based on FPGA," 2018

International Conference on Robots & Intelligent System (ICRIS), 2018, pp. 70-71, doi:

10.1109/ICRIS.2018.00026.

[6] Andraka, Ray. (2001). A survey of CORDIC algorithms for FPGA based computers.

ACM/SIGDA International Symposium on Field Programmable Gate Arrays - FPGA.

10.1145/275107.275139.

[7] Parallel Extensions to Single-Path Delay-Feedback FFT Architectures Brett W. Dickson, and

Albert A. Conti.

[8] Y. E. Wang et al., “A Primer on 3GPP Narrowband Internet of Things (NB- IoT),” CoRR, vol.

abs/1606.04171, 2016

[9] S. Adegbite, B. G. Stewart, and S. G. McMeekin, "Least Squares Interpolation Methods for

LTE System Channel Estimation over Extended ITU Channels," International Journal of

Information and Electronics Engineering vol. 3, no. 4, pp. 414-418, 2013.

[10] W. Liu and X. Li, "An Improved LMMSE Channel Estimation Algorithm of LTE

System," 2012 Fourth International Conference on Computational and Information

Sciences, 2012, pp. 231-234, doi: 10.1109/ICCIS.2012.71.

[11] Hala M. Abd Elkader, Gamal Mabrouk, Adly Tag* El-Dien and Reham S. Saad,

Performance of LTE Channel Estimation Algorithms for Different Interpolation Methods

and Modulation Schemes, 2014.

[12] A Tutorial on NB-IoT Physical Layer Design Matthieu Kanj, Vincent Savaux,

Mathieu Le Guen, DOI 10.1109/COMST.2020.3022751, IEEE

[13] Magani, S., Kuchi, K. Cell-search and tracking of residual time and frequency

offsets in low power NB-IoT devices. CSIT 7, 27–34 (2019).

[14] A Low-Power Implementation of arctangent function for Communication

Applications using FPGA M. saber, Yutaka Jitsumatsu and T. Kohda.

[15] R. Y. Shao, Shu Lin and M. P. C. Fossorier, "Two decoding algorithms for tailbiting

codes," in IEEE Transactions on Communications, vol. 51, no. 10, pp. 1658-1665, Oct.

2003, doi: 10.1109/TCOMM.2003.818084.

[16] J. Ortin, P. Garcia, F. Gutierrez and A. Valdovinos, "Simplified Circular Viterbi

Algorithm for Tailbiting Convolutional Codes," 2011 IEEE Vehicular Technology

Conference (VTC Fall), 2011, pp. 1-5, doi: 10.1109/VETECF.2011.6092864.

