

ASIC PHYSICAL DESIGN OF THE RISC-V BASED OPENPULP CORE

A THESIS

SUBMITTED TO THE DEPARTMENT OF ELECTRONICS

AND ELECTRICAL COMMUNICATIONS ENGINEERING

OF CAIRO UNIVERSITY

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

FOR THE DEGREE OF

BACHELOR OF SCIENCE

By

Mariam Mohammed Mahmoud Mahmoud

Menna Magdy Saad

Monica Nashaat Botros Hakim

Roaa Ahmed Sabek

Walid Fady Akoum

Yara Mamdouh Gohneim

July 2021

1

ASIC PHYSICAL DESIGN OF THE RISC-V BASED OPENPULP CORE

A THESIS

SUBMITTED TO THE DEPARTMENT OF ELECTRONICS

AND ELECTRICAL COMMUNICATIONS ENGINEERING

OF CAIRO UNIVERSITY

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

FOR THE DEGREE OF

BACHELOR OF SCIENCE

By

Mariam Mohammed Mohammed Menna Magdy Saad
Monica Nashaat Botros Roaa Ahmed Sabek

Walid Fady Akoum Yara Mamdoh Gohneim

Under the supervision of

Dr. Hassan Mostafa Eng. Hoda Thabet

Associate professor Senior ASIC team leader

Sponsored by

Si-VISION and ONE Lab

July 2021

2

Table of Contents

Abstract ...17

Chapter 1 ...19

Introduction ..19

1.1. RISC-V ...19

1.1.1. Why Instruction Set Architecture Matters?..19

1.1.2. Kinds of ISA...20

1.1.2.1 CISC – Complex Instruction Set Computer.......................... 20

1.1.2.2 RISC – Reduced Instruction Set Computer 21

1.1.3. What’s Different about RISC-V? ...21

1.1.4. ISA Base and Extensions of RISC-V..22

1.2. What is OpenPULP...23

1.2.1. PULP platform cores ...23

1.2.2. Performance...24

1.2.3. Area ..26

1.2.4. Power ...26

1.3. Why RISC-V in Open Pulp...27

1.4. Thesis objective ...28

1.5. Thesis Map ..28

Chapter 2 ...29

OpenPULP ..29

3

2.1. OpenPULP architecture..29

2.2. 32-bit RISC-V in openPULP ...30

2.2.1. RI5CY ISA: ...31

2.2.1.1. Instruction fetch .. 32

2.2.1.2. Load store unit (LSU) ... 33

2.2.1.3. Physical Memory Protection (PMP) Unit 36

2.2.1.4. Optional private floating-point unit (FPU) 36

2.2.1.5. Control and status register (CSR) .. 36

2.2.1.6. Performance counters ... 39

2.2.1.7. Pipeline.. 42

2.2.1.8. PULP Hardware Loop Extensions 44

2.2.1.9. Register file ... 44

2.2.1.10. Instruction set extensions ... 45

Chapter 3 ...47

ASIC Flow ...47

3.1. ASIC Vs FPGA ..47

3.2. ASIC design flow ..48

3.2.1. Synthesis ..49

3.2.1.1. Basic synthesis flow: ... 50

3.2.2. PnR ...55

3.2.2.1. Floor planning .. 58

4

3.2.2.2. Power planning... 61

3.2.2.3 Placement ... 65

3.2.2.3. Clock tree synthesis .. 69

3.2.2.4. Route ... 76

3.2.2.5. Finishing.. 82

3.2.2.6. RC extraction... 85

3.2.3. STA...85

3.2.3.1. Setup Check Timing: .. 87

3.2.3.2. Hold Check Timing: ... 89

3.2.3.3. The types of paths:.. 90

3.2.3.4. Timing Analysis in the Design Flow:................................... 92

3.2.3.5. Timing Analysis After Routing: ... 93

3.3. ASIC design methodologies ...98

3.3.1. Flat overview ...98

3.3.2. Hierarchical overview ...98

3.3.3. Topographical overview ...100

Chapter 4 ...102

Flat flow...102

4.1. synthesis in Flat flow ..102

4.2. PnR in Flat flow ..106

4.3. STA in Flat Flow ...120

5

Chapter 5 ...122

Hierarchical flow...122

5.1. Synthesis in hierarchical flow ..123

5.2. PnR in hierarchical flow ...126

5.3. STA in hierarchical flow ...138

Chapter 6 ...139

Topographical flow...139

6.1. Synthesis in Topographical flow..140

6.2. PnR in Topographical flow ..147

6.3. STA in Topographical flow ..159

Chapter 7 ...160

Results ...160

7.1. Flat flow ..160

7.1.1. Area results .. 160

7.1.2. Power results ... 160

7.1.3. Timing results .. 161

7.1.4. LVS results ... 166

7.1.5. DRC results .. 166

7.2. Hierarchical flow ..167

7.2.1. Area results .. 167

7.2.2. Power results ... 167

6

7.2.3. Timing results .. 168

7.2.4. LVS results ... 172

7.2.5. DRC results .. 172

7.3. Topographical flow ..173

7.3.1. Area results .. 173

7.3.2. Power results ... 173

7.3.3. Timing results .. 174

7.3.4. LVS results ... 180

7.3.5. DRC results .. 180

Chapter 8 ...181

Conclusion...181

8.1. Post-Synthesis Results ..181

8.2. Post-layout Results ...183

8.3. Future Work..186

8.3.1. Switch from RVT Cells to LVT Cells ..186

References..187

Appendix A ...188

RTL-to-GDSII Flow ...188

A.1 GDSII format...188

A.2 Constraint file ...189

A.3 clock gating ...191

7

A.4 IR Drop Analysis: ...192

A.4.1. Power Dissipation in CMOS...193

A.4.1.1. Static IR drop analysis: .. 193

A.4.1.2. Dynamic power: ... 195

A.4.2. Methods to reduce IR drop...196

A.5 Design Rule Check (DRC) ..198

A.6 Layout vs. Schematic (LVS) ...199

A.6.1. How LVS works ..199

A.6.2. Steps of LVS check ..199

A.6.3. LVS flow ..200

A.6.4. Commonly faced LVS issues ..201

A.6.5. Typical errors which can occur during LVS checks201

Appendix B ...202

Scripts of Flat Flow ...202

B.1 Synthesis script..202

B.2 PnR scripts ...205

B.3 STA-Max script..221

B.4 STA-Min script ..222

Appendix C ...223

Scripts of Hierarchical Flow ...223

C.1 Synthesis script ...223

8

C.2 PnR scripts ..227

C.3 STA-Max script ...242

C.4 STA-Min script..243

Appendix D ...244

Scripts of Topographical Flow ...244

D.1 Synthesis 1st stage ...244

D.2 PnR 1st stage ..247

D.3 Synthesis topographical mode ...252

D.4 PnR 2nd stage...256

List of figures

Figure 1: improved performance for RI5CY ..24

Figure 2:Area comparison ..26

Figure 3:static and dynamic power comparison ...26

Figure 4: example for different open-source RISC-V suppliers27

Figure 5: The PULP overview ..29

Figure 6:the block diagram of the CV32E40P ..30

Figure 7: Event of masking with PCER and ORing together to increase one
performance counters PCCR...41

Figure 8: using pipeline ..43

Figure 9: Design flow ..48

Figure 10: front-end flow ..49

9

Figure 11: libraries ..51

Figure 12: library views ..51

Figure 13: synthesis script ..52

Figure 14: high level view of the design library ..56

Figure 15: core and die area, with relative io2core distances................................60

Figure 16: utilization visual, showing cell area compared to core area................60

Figure 17: visualization of both spacing and offset ...63

Figure 18: local skew...69

Figure 19: global skew between unrelated registers ...70

Figure 20: example of buffer insertion to fix the previously mentioned issues ...71

Figure 21: showing the optimization due to the previous commands74

Figure 22: timing path...86

Figure 23: setup timing illustration ..87

Figure 24: hold time illustration ...89

Figure 25: register to register path ..90

Figure 26: register to output path...91

Figure 27: input to register path ...91

Figure 28: Primetime inputs and outputs ..94

Figure 29: represents hierarchical flow bottom-up method..................................99

Figure 30: illustration for topographical flow ...100

Figure 31: floor plan and virtual placement in flat flow112

10

Figure 32: voltage drop map ..114

Figure 33: placement map in flat flow ...115

Figure 34: CTS in flat flow ..116

Figure 35: Chip after finishing in Flat Flow ...119

Figure 36: floor plan and virtual placement in hierarchical flow127

Figure 37: IR drop map for hierarchical flow ..129

Figure 38: after placement in hierarchical flow ...131

Figure 39: placement map in hierarchical flow ...132

Figure 40: CTS in hierarchical flow ..133

Figure 41: congestion at track assignment in hierarchical flow135

Figure 42: after finishing the hierarchical flow..136

Figure 43: Topographical flow ...139

Figure 44: inputs for the second pass flow ..141

Figure 45: floor plan and virtual placement in topographical flow152

Figure 46: core area ...153

Figure 47: IR drop across the chip in the Topographical Flow154

Figure 48: placement of topographical flow ..155

Figure 49: CTS in topographical flow ..156

Figure 50: The setup slack after removing hierarch in Flat Flow161

Figure 51: The setup slack after PnR in Flat Flow ...162

Figure 52: The Hold slack after PnR in Flat Flow ..163

11

Figure 53: The setup slack after PrimeTime in Flat Flow164

Figure 54: The Hold slack after PrimeTime in Flat Flow165

Figure 55: The LVS results of Flat Flow ...166

Figure 56: The DRC results of Flat Flow ..166

Figure 57: Setup timing after synthesis ..168

Figure 58: Endpoint lack for max timing ...168

Figure 59: Endpoint slacks for min timing ..169

Figure 60: Setup timing after PNR stage..170

Figure 61: Hold timing after PNR stage...170

Figure 62: hold timing after PrimeTime...171

Figure 63: Setup timing after PrimeTime...171

Figure 64: The LVS results of the Hierarchical Flow ...172

Figure 65: DRC ICC results ..172

Figure 66: The setup slack after synthesis in Topographical Flow174

Figure 67: The Hold slack after synthesis in Topographical Flow 175

Figure 68: The setup slack after PnR in Topographical Flow176

Figure 69: The Hold slack after PnR in Topographical Flow177

Figure 70: The setup slack after PrimeTime in Topographical Flow178

Figure 71: The Hold slack after PrimeTime in Topographical Flow179

Figure 72: The LVS results of the Topographical Flow180

Figure 73: The DRC results of the Topographical Flow180

12

Figure 74: The total area comparison after post-synthesis..................................182

Figure 75: The total power comparison after post-synthesis182

Figure 76: The critical path delay comparison...183

Figure 77: The total area comparison after post-Layout184

Figure 78: The total power comparison after post-Layout..................................184

Figure 79: The clock gate ..191

Figure 80: The IR analysis...192

Figure 81: The power dissipation in CMOS...193

Figure 82: The leakage power...194

Figure 83: The dynamic power...196

Figure 84: Custom power rail added to make it robust196

Figure 85: The LVS flow ...200

List of tables

Table 1: ISA kinds ...20

Table 2: number of cycles, IPC and code size for each KERNEL..........................25

Table 3: fetch signals ...32

Table 4: LSU signals ..34

Table 5: comparison between ASIC and FPGA ...47

Table 6: Synthesis results of first run in Flat Flow ..102

Table 7: Synthesis results of second run in Flat Flow..102

13

Table 8: Synthesis results of third run in Flat Flow ...103

Table 9: Synthesis results of forth run in Flat Flow ...103

Table 10: Synthesis results of fifth run in Flat Flow ..104

Table 11: Synthesis results of the final run in Flat Flow......................................105

Table 12: The synthesis results of the Hierarchical Flow125

Table 13: the synthesis results of the first path in the Topographical Flow142

Table 14: the synthesis results of the second path in the Topographical Flow ..142

Table 15: the synthesis results of the first path in the Topographical Flow at 2.5
nsec...143

Table 16: the synthesis results of the second path in the Topographical Flow at
2.5 nsec. ..143

Table 17: the synthesis results of the first path in the Topographical Flow at 2.5
nsec at timing_high_effort_script ...144

Table 18: the synthesis results of the second path in the Topographical Flow at
2.5 nsec at timing_high_effort_script..144

Table 19: the synthesis results of the first path in the Topographical Flow at 2.5
nsec at timing_high_effort_script -retime ..145

Table 20: the synthesis results of the first path in the Topographical Flow at 2.5
nsec at timing_high_effort_script -retime ..145

Table 21: final results of the synthesis of the first pass in the Topographical Flow
 ..146

Table 22: final results of the synthesis of the second pass in the Topographical
Flow..146

Table 23: Results after PnR at Utilization = 0.3, power in 4 layers, clock = 2.5 ..149

Table 24: Results after PnR at Utilization = 0.3, power in 2 layers, clock = 2.5 ..150

14

Table 25: Results after PnR at Utilization = 0.3, power in 4 layers, clock = 2.5
using the placer_max command ...151

Table 26: The area results of the Flat Flow...160

Table 27: The power results of the Flat flow..160

Table 28: The timing Results afte PrimeTime in Flat Flow165

Table 29: The total area results of the Hierarchical Flow167

Table 30: The power results of the Hierarchical flow..167

Table 31: The timing results after synthesis of The Hierarchical Flow...............169

Table 32: the timing results in the PnR flow of the Hierarchical Flow170

Table 33: The timing results after PrimeTime of the Hierarchical Flow.............171

Table 34: The LVS results of the Hierarchical Flow...172

Table 35: The total area results of the Topographical Flow173

Table 36: The power results of the Topographical Flow173

Table 37: The Post-synthesis results ...181

Table 38: The key results...185

List of symbols

Equation 1: slack calculation ..88

Equation 2: hold time calculation...89

Equation 3: Slack calculation for register-to-register path90

15

Equation 4: Arrival time calculation ..91

Equation 5: slack calculation for input to register path ..92

Equation 6:The total power ..193

Equation 7: The leakage power ..193

Equation 8: The static power ..194

Equation 9: The switching power...195

Equation 10: The short-circuit power...195

List of abbreviations

Ri5cy another name of OpenPULP core

FPGA Field Programmable Gate Arrays

ASIC Application specific integrated circuit

ISA instruction set architecture

PULP Parallel Ultra Low Power

LSU Load Store Unit

PMP Physical Memory Protection

ALU Athematic Logic Unit

FPU Floating Point Unit

RTL Register Transfer Logic

16

GDSII data exchange of integrated circuit or IC layout artwork

DC Design Compiler

CMOS Complementary metal–oxide–semiconductor

PDK process design kit

DRC Design Rule Check

PnR Place and Route

CTS clock Tree Synthesis

STA Static Timing Analysis

LVT Low Voltage Threshold

ECO Engineering Change Order

MCMM Multi-corner multi-mode

HDL Hardware Description Language

VHDL very high-speed integrated circuit Hardware Description Language

EDA Electronic design automation

SDC Synopsys Design Constraints

17

Abstract

ASIC design or application specific integrated circuits is the physical

implementation of logic designs, which simply put is creating chips that are
specialized in a certain function, like the electronic chips found in televisions or

DVD players. This branch of engineering has originated more than 20 years ago

and grew exponentially with the growth and demand of ICs and electronics. ASIC
design can be separated into two stages. The first stage is the frontend stage in

which the designer writes RTL code, which is a code that describes the
functionality of the hardware. The second stage or backend is the physical

implementation of the RTL in which the designer turns the RTL into actual gates.
The thesis will be mainly focused on the latter stage.

The design that we will be implementing is a RISC-V ISA based core. An ISA is a

group of instructions that helps interface with the hardware which makes it much
easier than dealing with the hardware directly, and a core is simply a processor

that can either be used for general or specific purposes. RISC-V is an open-source
ISA, and because it’s open source the RISC-V community is very big in both the

open source and the commercial market. It’s mainly used in storage, edge
computing and AI applications.

The RTL provided to us was written by OpenPULP which is an open-source

multi-core computation platform. It is an open-source RTL that describes a RISC-V
core. They were chosen because their reputation is good in both literature reviews

and websites that promote open-source RTL. Adding as well that the RTL given to
us has been verified by our sponsor and supervisor engineers from Si-Vision, and
is therefore ready to go through the physical implementation process.

The process of implementation is done through two stages, synthesis and PNR.

Synthesis is the stage in which we read the RTL and convert it into logic gates that

perform the same logical function. Secondly, PNR is the stage in which we take
those gates and place them on the chip finally connecting them together and to the
clock that feeds them with metal wires.

 However there exists multiple flows in which a designer can use in order finish

his design, such as the hierarchal, flat and topographical flow. In this thesis we
describe what each of the flows deal with when using the tool provided as well as

the final result for each of the flows with respect to timing closure or frequency

18

used, area and power consumption comparing them in order to know what is the
advantage and disadvantage of each of the flows.

The following thesis is a comparative analysis of three different ASIC design
flows for a RISC-V core provided by openPULP.

19

Chapter 1

Introduction

1.1. RISC-V

 RISC-V is an open instruction set architecture (ISA) which is standard and
based on the principles of established reduced instruction set computer (RISC).

Unlike most other open instruction set architecture designs, the RISC-V open

instruction set architecture is provided by licenses that are open source and do not
require fees to be used. Many companies have announced RISC-V hardware or
offered it.

 The instruction set is supported in several popular software tool chains and
open-source operating systems are available.

1.1.1. Why Instruction Set Architecture Matters?

First of all, we need to know what the instruction set architecture (ISA) is:

ISA defines the software interface for hardware; the single ISA can make many
hardware implementations.

The ISA defines:

• Set of instructions and how they behave

• Data types

• Registers

• Addressing models

• How inputs/outputs are done

• Memory models

• Virtual memory

• Protection levels

20

 The ISA somehow decides the application. It is common sense that the
world’s most famous 2 ISA are x86 and ARM. Their application fields are totally
different.

Over 99% of laptops, desktops, and servers are based on X86 or AMD64 ISA.

Their IPs belong to Intel and AMD, over 99% of mobile phones, tablets are based
on ARM ISA, the IPs are divided into A series, R series, and M series.

While RISC-V is very suitable for use in some specific application fields such as
storage, edge computing, and AI applications.

 The different applications field makes it possible for RISC-V to compete with
ARM and x86.

1.1.2. Kinds of ISA

Table 1: ISA kinds

CISC RISC

Instruction can take several clock cycles Single-cycle instructions

Hardware-centric design

The ISA does as much as possible using
hardware circuitry

Software-centric design

High-level compilers take on most of the
burden of coding many software steps from the
programmer

More efficient use of RAM than RISC Heavy use of RAM (cam cause bottlenecks if
RAM is limited)

Complex and variable length instruction Simple, standardized instructions

May support microcode (micro-programming
where instructions are treated like small programs)

Only one layer of instructions

Large number of instructions Small number of fixed-length instructions
Compound addressing modes Limited addressing modes

1.1.2.1 CISC – Complex Instruction Set Computer

The CISC contains not only the common instructions of the processor but also a

lot of uncommon instructions (the 28th principle, 80% of the instructions used in
the program operation, only 20% of all instructions.

There are many instructions; the typical representative is Intel’s x86 architecture.

x86-64 is a 64-bit extension of the x86 architecture, designed by AMD and also
known as AMD64.

21

1.1.2.2 RISC – Reduced Instruction Set Computer

Reduced instruction set architecture contains only the instructions commonly
used by the processor. For less commonly used operations, the same effect can be

achieved by executing multiple commonly used instructions. The reduced
instruction set represents more MIPS, RISC-V, Power, Alpha, etc.

1.1.3. What’s Different about RISC-V?

Comparing to ARM and x86, RISC-V has below advantages:

• Free: RISC-V is open-source; there is no need to pay for the IP.

• Simple: RISC-V is far smaller than other commercial ISAs.

• Modular: RISC-V has a small standard base ISA, with multiple standard

extensions.

• Stable: Base and first standard extensions are already frozen. There is no

need to worry about major updates.

• Extensibility: Specific functions can be added based on extensions. There

are many more extensions are under development, such as Vector.

• Software architects / firmware engineers / software developers: RISC-V

is much more than an open ISA; it is also a frozen ISA. The base

instructions are frozen and optional extensions which have been
approved are also frozen. Because of the stability of the ISA, software

development can confidently be applied to RISC-V knowing that your

investment will be preserved. Software written for RISC-V will run on all
similar RISC-V cores forever. The frozen ISA provides a solid foundation

that software managers can depend on to preserve their software

investments. Because the RISC-V ISA is open, this translates to hardware
engineers having more flexibility over the processor implementation.

With this power, software architects can become more influential in the

final hardware implementation. They can provide input to hardware
designers to make the RISC-V core more software centric.

• CTOs / Chip designers / System Architects: Innovation is the key enabler

of RISC-V. Because the ISA is open, it is the equivalent of everyone

having a micro architecture license. One can optimize designs for lower
power, performance, security, etc. while keeping full compatibility with

other designs. Because there is significantly more control over the

hardware implementation, all technical recipients of the architecture can
make suggestions at a much earlier point than previously was possible.

22

The result is a solution with significantly fewer compromises. RISC-V
also supports custom instructions for designs which require particular
acceleration or specialty functions.

• Board designers: In addition to the frozen ISA benefits, RISC-V’s open

ISA can provide several additional benefits. For example, if engineers are
implementing a soft RISC-V core in an FPGA, often the RTL source code

is available. Since RISC-V is royalty, free this creates significant flexibility

to port a RISC-V based design from an FPGA to an ASIC or another
FPGA without any software modifications. Designers who are concerned

with security from a trust perspective will also appreciate RISC-V. When

the RTL source code is available, this enables deep inspection. With the
ability to inspect the RTL, one can establish trust.

1.1.4. ISA Base and Extensions of RISC-V

As mentioned earlier, the RISC-V instruction set has modular characteristics.

The instruction set is organized in a modular manner. Each module is represented
by an English letter.

The instruction set includes the standard part and the extension part. The
standard part must be implemented.

For example:

If you want to implement a 32-bit architecture RISC-V processor, the RV32I
instruction set must be implemented on the hardware (machine mode must also be
implemented in privileged mode).

The basic integer ISA and the machine privilege ISA provide the functions

required by the basic general-purpose CPU. Developers can also enhance the
processor’s functionality by adding extensions to ISA. There are already many
standard extensions, such as the approved MAFDGQ.

23

1.2. What is OpenPULP

PULP stands for Parallel Ultra-Low-Power. It is an open-source multi-core

computing platform started in 2013 in collaboration between ETH Zurich and the
University of Bologna.

1.2.1. PULP platform cores

Ri5cy: 4-stage pipeline, optimized for energy efficiency, it implements RV32-
ICMX.

• Enhance performance.

• Reduce the code size.

• Increase the energy efficiency of signal processing algorithms (DSP).

• General Purpose extensions to Ri5cy include.

• Post–incrementing load/store instructions.

• Hardware Loops.

• ALU instructions (Bit-manipulation instructions).

• Packed-SIMD instructions.

• The core has been designed and optimized to work in a multi-core

cluster.

24

Figure 1: improved performance for RI5CY

Zero-ri5cy: is 2-stage pipeline, an area-optimized RISC-V core implementing the
RVC32IM for control applications, implements the HW multiplication instruction.

Micro-ri5cy: it is more optimized for area, it is possible to further reduce area by
using 16 registers instead of 32, and the multiplier can be removed saving a bit
more area.

1.2.2. Performance

When running DSP applications, Ri5cy is 6.1× faster than Zero-ri5cy and 53.4×
faster than Microri5cy.

Coremark does not contain much DSP code, therefore the difference in
performance does not come from the DSP extensions of Riscy, but mainly from its

deeper pipeline that enables single-cycle data memory access, and from the single-
cycle multiplication-accumulation and general-purpose instruction extensions as
e.g., bit-manipulation.

25

In the Runtime kernel, the three cores show negligible differences in
performance: the code implementing these routines do not benefit from
multiplications nor from DSP extensions.

The IPC of Riscy is the highest for all the micro-benchmarks. As the PULPino

data and instruction memories have 1 cycle access, the IPC is 0.8 due to misaligned

memory accesses (that require two cycles), data-hazard after load operations and
branches/jump.

For Zero-riscy, the IPC in the DSP micro-benchmark is only 0.5 as the most
common instructions are multi-cycle operations as load, store and multiplications.

Table 2: number of cycles, IPC and code size for each KERNEL

KERNEL Riscy Zero-riscy Micro -riscy
 Cycles IPC Cod.size Cycles IPC Cod.

size
Cycles IPC Cod.size

2D-Convolution 1.0
(43.1K)

0.82 1.0
(1.80B)

6.1 0.52 1.0 53.4 0.66 1.0

Core mark 1.0
(313.5K)

0.79 1.0
(15.3KB)

1.3 0.67 1.1 3.5 0.67 1.3

Runtime 1.0 (37) 0.76 1.0
(232B)

1.0 0.68 1.1 1.0 (36) 0.67 1.1

26

1.2.3. Area

Figure 2:Area comparison

1.2.4. Power

Figure 3:static and dynamic power comparison

27

Ariane:

• supports single and double precision (F&D).
• Its area 2*area of 32-bit.

• Linux capable.

As shown from previous comparison that Ri5cy has best performance and

power for DSP applications and it has less area than Ariane that is why we choose
to work with it.

1.3. Why RISC-V in Open Pulp

Since RISC-V is an open-source ISA, the availability of this standard creates an

opportunity to find many different suppliers, which results in both commercial
and open-source cores.

Figure 4: example for different open-source RISC-V suppliers

Out of the many open-source cores in the market, OpenHW or pulp-platfrom
has been gaining much attention, in certain literature reviews and core open-source

websites due to their efficient RTL, their low resource utilization, low power
consumption and good performance.

In addition to the fact the OpenPULP provides peripherals, microcontrollers,
cluster and accelerators that are built on the RISC-V cores that they provide.

28

1.4. Thesis objective

The RTL to GDSII Flow is critical in the creation of electrical chips all over the

world. Due to intense rivalry and high client demands, technology in this industry

is rapidly evolving toward smaller, quicker, and more complicated gadgets,
making it difficult for a beginner to keep up without first studying and

comprehending the fundamentals. More than one ASIC design style is currently

available in CAD tools. Satisfy large customer expectations while improving ASIC
designs' QoR and TTR.

The goal of this thesis is to show how different design flows affect an

OpenPULP Core (RI5CY) open-source RTL design utilizing 40nm CMOS
technology.

This goal is accomplished by following the RTL-to-GDSII path from start to

finish. There are three types of logic synthesis flows: hierarchical, flat, and
topographical. Following that, the relevant Place and Route steps are performed

and STA post-layout to provide good timing performance across a variety of
operating environments conditions.

1.5. Thesis Map

At First, we will see the OpenPULP and its architecture. Then about the main

blocks in this architecture. Second, we will discuss the ASIC flow and its stages in
the next chapter. Then We will know the Flat Flow, the Hierarchical Flow and the
Topographical flow and their flow in each stage of the ASIC flow.

The second part of the thesis is to see the results out of each flow and get the

best one which can work on the maximum speed. The conclusion views the
comparison between each flow according to timing, power and area.

The third part is the appendix part that discusses the constrain file, the clock
gate we used and the meaning of the power consumption, DRCs and LVS. Also, it
contains the scripts we run in each flow.

29

Chapter 2

OpenPULP

OpenPULP Core or RI5CY is a 4-stage in-order 32b RISC-V processor core. The

ISA of RI5CY was extended to support multiple additional instructions including
hardware loops, post-increment load and store instructions and additional ALU

instructions that are not part of the standard RISC-V ISA. RI5CY supports the
following instructions: RV32IMC or RV32IMFCXpulp.

2.1. OpenPULP architecture

Figure 5: The PULP overview

We are going to focus on the open RISC block which is repeated in green color at
the bottom right.

30

2.2. 32-bit RISC-V in openPULP

This architecture is called RI5Cy, the open-source RTL design core is called
CV32E40P.

Figure 6:the block diagram of the CV32E40P

31

2.2.1. RI5CY ISA:

RISC-V is an ISA: it is a well-organized ISA divided into categories and
extensions

RI5CY supports the following instructions:

Full support for RV32I Base Integer Instruction Set: We have 32 Registers from

(0x to 31x) which means 1 word, but 0x handwritten with 0 value so we have 31
bits to write any data we need.

Ex: add rd, rs1, rs2.

• Full support for RV32C Standard Extension for Compressed Instructions

• Full support for RV32M Integer Multiplication and Division Instruction

Set Extension

• Optional full support for RV32F Single Precision Floating Point

Extensions

• PULP specific extensions

• Post-Incrementing load and stores

• Multiply-Accumulate extensions

• ALU extensions

• Hardware Loops

• Optional Floating-Point Support

Floating-point support in the form of IEEE-754 single precision can be enabled
by setting the parameter FPU of the top-level file “riscv_core” to one. This will

instantiate the FPU in the execution stage, and also extends the register file to host
floating-point operands and extend the ALU to support the floating-point
comparisons and classifications.

We are going to talk about each block in Figure 6.

32

2.2.1.1. Instruction fetch

The instruction fetcher of the core is able to supply one instruction to the ID

stage per cycle, if the instruction cache or the instruction memory is able to serve

one instruction per cycle. If the external bus interface can serve one instruction
every cycle, the CV32E40P's Instruction Fetch (IF) stage can deliver one instruction

to the Instruction Decode (ID) stage per cycle. When executing compressed

instructions, the ID stage will require on average less than one 32-bit instruction
fetch per instruction.

The instruction address must be half-word-aligned due to the support of

compressed instructions. It is not possible to jump to instruction addresses that
have the LSB bit set.

A prefetcher is utilized for optimal performance and timing closure, fetching
instructions from an externally connected instruction memory or instruction cache

via the external bus interface. The prefetch unit executes 32-bit word-aligned
prefetches and saves the fetched words in a four-entry FIFO.

CV32E40P can retrieve up to four words outside of the code region as a result of

this (speculative) prefetch, and care should be made to ensure that no undesirable
read side effects occur for such prefetches outside of the real code region. The

signals that are utilized to fetch instructions are described in Table 2-1 below. This
interface is a condensed version of the Load-Store-Unit (LSU) interface described in

Load-Store-Unit (LSU). The difference is that no writes are permitted, hence fewer
signals are required.

Table 3: fetch signals

Signal Direction Description

Instr_req_o output Request ready, must stay high
until instr_gnt_i is high for one
cycle

Instr_addr_o[31:0] output Address
Instr_rdata_i[31:0] input Data read from memory

Instr_rvalid_i input Instr_rdata_is holds valid data
when instr_rvalid_i is high. This
signal will be high for exactly one
cycle per request.

Instr_gnt_i input The other side accepted the
request. instr_addr_o may
change in the next cycle

33

There are two prefetch flavors available:

• 32-Bit word prefetcher. It stores the fetched words in a FIFO with three

entries.

• 128-Bit cache line prefetch. It stores one 128-bit wide cache line plus 32-bit

to allow for cross-cache line misaligned instructions.

Misaligned Access:

Only word-aligned instruction fetches are performed by the IF interface from

the outside. Two distinct word-aligned instruction fetches are used to handle
misaligned instruction fetches. To handle compressed instructions, the core can

deal with both word- and half-word-aligned instruction addresses internally.
Internally, the instruction address's LSB is ignored.

Protocol:

The OBI (Open Bus Interface) protocol is used for the instruction bus interface.

The optional OBI signals we, be, wdata, auser, wuser, aid, rready, err, ruser, and

rid are not implemented by the CV32E40P instruction fetch interface. These signals
can be regarded as being linked off in the way that the OBI specification specifies.

Up to two pending transactions can be caused through the CV32E40P instruction
fetch interface. The protocol used to communicate with the instruction cache or the
instruction memory is the same as the protocol used by the LSU.

2.2.1.2. Load store unit (LSU)

The core's Load-Store Unit (LSU) is in charge of accessing the data memory.
Words (32 bit), half words (16 bit), and bytes (8 bit) can all be loaded and stored.

Table 4 describes the signals that are used by the LSU.

34

Table 4: LSU signals

Signal Direction Description

data_req_o output Request ready. Must stay high
until data_gnt_i is high for one
cycle

data_addr_o[31:0] output Address

data_we_o output Write enable, high for writes,
low for reads. Sent together with
data_req_o

data_be_o[3:0] output Byte enable. Is set for the
bytes to write/read. Sent together
with data_req_o

data_wdata_o[31:0] output Data to be written to memory.
Sent together with data_req_o

data_rdata_i[31:0] input Data read from memory

data_rvalid_i input data_rdata_is holds valid data
when data_rvalid_i is high. This
signal will be high for exactly one
cycle per request.

data_gnt_i input The other side accepted the
rquest. data_addr_o may change
in the next cycle

Misaligned Access:

Exceptions for address misalignment are never raised by the LSU, when the

effective address is not naturally aligned with the referenced data type during
loads and stores. If the data item exceeds a word boundary, the load/store is done

as two bus transactions (i.e., on a four-byte border for word accesses and a two-

byte boundary for half word accesses). For the following cases, a single load/store
operation is split into two bus transactions:

• Load/store of a word for a non-word-aligned address.

• Load/store of a half word crossing a word address boundary.

35

The transfer corresponding to the lowest address is completed first in both
circumstances. A single bus transaction can handle all other circumstances.

Protocol:

The OBI (Open Bus Interface) protocol is used for the data bus interface. The

optional OBI signals auser, wuser, aid, rready, err, ruser, and rid are not
implemented by the CV32E40P data interface. These signals can be regarded as

being linked off in the way that the OBI specification specifies. Up to two pending
transactions can be caused by the CV32E40P data interface.

The OBI protocol, which the LSU uses to interface with a memory, operates like
this:

The LSU sets data_req_o to high and supplies a valid address in data_addr_o.
As soon as the RAM is ready to handle the request, it responds with a data_gnt_i

set high. This may happen right after the request was received, or it could happen

a few cycles later. The LSU may change the address when a grant is received in the
next round. Furthermore, because it is assumed that the memory has already

processed and stored that information, the data_wdata_o, data_we_o, and

data_be_o signals may be changed. If data_rdata_i is valid, the memory responds
with a data_rvalid_i set high after getting a grant. This could happen after the

grant has been received for one or more rounds. When a write is conducted,
data_rvalid_i must also be set, even if data_rdata_i has no meaning in this case.

Post-Incrementing Load and Store Instructions:

The load and store instructions that are post-incrementing perform a load/store

operation from/to the data memory while also increasing the base address by the

provided offset. The base address without offset is used for memory access. In
order to run code with regular data access patterns, such as those seen in loops,

post-incrementing load and stores reduce the number of instructions necessary.

These post-incrementing load/store instructions integrate the address increment
into the memory access instructions, eliminating the need for separate pointer

handling instructions. These instructions, when combined with hardware loop
extension, allow for a significant reduction in loop overhead.

36

2.2.1.3. Physical Memory Protection (PMP) Unit

 The RI5CY core has a PMP module which can be enabled by setting the

parameter PULP SECURE=1 which also enables the core to possibly run in USER

MODE. Such a unit has a configurable number of entries (up to 16) and supports
all the modes as TOR, NAPOT and NA4. Every fetch, load and store access

executed in USER MODE are first filtered by the PMP unit which can possibly

generate exceptions. For the moment, the MPRV bit in MSTATUS as well as the
LOCK mechanism in the PMP is not supported.

2.2.1.4. Optional private floating-point unit (FPU)

It is possible to extend the core with a private FPU, which is capable of

performing all RISC-V floating-point operations that are defined in the RV32F ISA
extensions.

FP extensions can be enabled by setting the parameter of the top-level file
“riscv_core.sv” to one.

 The FPU is divided into three parts:

• A simple FPU of ~10kGE complexity, which computes FP-ADD, FP-SUB

and FP-casts.

• An iterative FP-DIV/SQRT unit of ~7 kGE complexity, which computes

FP-DIV/SQRT operations.

• An FP-FMA unit which takes care of all fused operations (currently only

supported through a Synopsys Design Ware instantiation, or a Xilinx
block for FPGA targets).

2.2.1.5. Control and status register (CSR)

• RI5CY implements only limited registers needed for the PULP system to

avoid any overhead regardless of that specified in the RISC-V privileged

specs.

• CSR Address 12-bit,22 registers

• All zeros address is for user status

Let’s focus on some of them:

37

MSTATUS:

For exceptions.

• Reset value at MPP (machine previous privileged mode) = 11, User mode

is disabled

• MPIE: previous machine interrupt enables, when an exception occurs, it

is set to MIE until MRET instruction is executed (machine mode trap
handler return), MPIE will be stored in MIE

• UPIE: Previous user interrupt enable, same case but user mode, pulp

doesn’t support user interrupt

• MIE: interrupt enable handling is ‘1’ in handler code

MTVEC:

• 01 for vectorized interrupt mode supported.

• When exception occurs, the core jumps to the corresponding handler at
address (31:8) as the base address. 8-Byte aligned address only is allowed.

MEPC:

When exception occurs, it saves the current PC and jumps to exception address,
when mret instruction is executed, it goes back to the saved PC.

38

MCAUSE:

Interrupt is set when the exception was triggered by interrupt.

PRIVLIV:

It contains the current privilege level the core is executing, provide a mechanism
to allow portions of the software to operate with differing levels of privilege.

The current privilege level is used by the system to control access to resources and
execution of certain instructions.

MHARTID/UHARTID

ID of the cluster and the core inside this cluster.

DCSR:

Supports external debugging.

39

DPC:

Contains the virtual address of the instruction to be executed when the core
enters debug mode.

DSCRATCH0/1:

Scratch registers that can be used by implementations that need it. (Temporary
registers needed in intermediate stages)

2.2.1.6. Performance counters

Placed inside CSR block and accessed by csrr and csrw instructions.

PCMR:

Global enable: activate or deactivates all performance counters.

Saturation: enables saturating arithmetic in performance counters.

40

PCER:

• Each bit controls 1 performance counter enabled by ‘1’.

• In ASIC there is only one counter, the counting events are masked by

PCER and ORed together, if an event is enabling the counter increase and

if there are multi unmasked events the counter increases only by one, to

count multi event separately the program should be executed inside a
loop with different events configured.

• In FPGA or RTL each event has its own counter and works separately.

PCCR

All these registers are accessed separately in FPGA, to save area in ASIC only
PCCR31 is used which is equivalent with using PCCR0:30 in FPGA

41

Figure 7: Event of masking with PCER and ORing together to increase one performance
counters PCCR

Exceptions and interrupts

• RI5KY supports only interrupts of illegal instructions and PMP filtered

requests if enabled on the data and instruction bus.

• Base address of interrupt vector table is given by MTVEC address.

• It supports vectorized interrupts only, interrupt 0 is reserved for illegal
instructions, ecall, and instructions or data prohibited access.

Interrupts:

• Interrupts can only be enabled in a global basis from MSTATUS

• It is assumed that there is an event/interrupt controller outside the core

that performs masking and buffering of interrupt lines.

• The global interrupt enable is done via CSR register MSTATUS

• Multiple interrupts/events are assumed to be handled by interrupt

controller. When interrupt is taken, the core acknowledges it to the
controller as well as the interrupt id is taken

42

Exceptions:

• Illegal instruction and ecall exceptions cannot be disabled and always

active.

• For PMP exception, if enabled all data and instructions requests are
filtered by PMP which cause load store and fetch exceptions

Handling:

• RI5KY supports SW-assisted nested exception/interrupt handling: the

SW has to take care to save the MSTATUS and MEPC before any possible
nested exceptions or interrupt.

• Interrupts are disabled during handling but can be explicitly enabled

Debug

• RI5KY supports the RISC-V debug specification 0.13 and it implements

the execution based to reuse the existing core pipeline

• RI5KY has a debug_req_i input port that is sent by system debug module.

Such request makes the core jumps to the specific address where the
debug Rom is mapped.

• This address location is referred to the parameter DM_HALTAddress.

• RI5KY implements the debug sets of registers as DPC, DCSR and
DSCRATCH0,1

2.2.1.7. Pipeline

RISCY has a fully independent pipeline containing four stages.

Each pipeline stage has two control inputs:

• An enable: activates the pipeline stage and the core moves forward by

one instruction.

• A clear: clear removes the instruction from the pipeline stage as it is
completed.

43

Every pipeline stage is cleared if the ready coming from the stage to the right is
high, and the valid signal of the stage is low.

If the valid signal is high, it is enabled.

Every pipeline stage is independent of its left neighbor, meaning that it can
finish its execution no matter if a stage to its left is currently stalled or not. On the

other hand, an instruction can only propagate to the next stage if the stage to its

right is ready to receive a new instruction. This means that in order to process an
instruction in a stage, its own stage needs to be ready and so does its right
neighbor.

Figure 8: using pipeline

44

2.2.1.8. PULP Hardware Loop Extensions

To increase the efficiency of small loops, RI5CY supports hardware loops.

Hardware loops make it possible to execute a piece of code multiple times, without
the overhead of branches or updating a counter.

• Hardware loops involve zero stall cycles for jumping to the first

instruction of a loop.

• A hardware loop is defined by its start address (pointing to the first

instruction in the loop), its end address (pointing to the instruction that

will be executed last in the loop) and a counter that is decremented every
time the loop body is executed.

• RI5CY contains two hardware loop register sets to support nested

hardware loops, each of them can store these three values in separate flip
flops.

2.2.1.9. Register file

There are two flavours of register file available:

a. Latch-based
b. Flip-flop based

• While the latch-based register file is recommended for ASICs, the flip-

flop-based register file is recommended for FPGA synthesis.

• Although both are compatible with either synthesis target. Note the flip-

flop-based register file is significantly larger than the latch-based register-
file for an ASIC implementation.

In case the optional FPU is instantiated, the register file is extended with an
additional register bank of 32 registers f0-f31.

45

2.2.1.10. Instruction set extensions

Post incrementing load and store:

• Perform load and store, besides, it increments the address used for

memory access.

• Post increment, the base address is used for the access and the modified

address is written back in register file.

• There are versions of instructions that use immediate and registers as

offsets.

• The base address always comes from a register.

Hardware loops:

• RI5KY supports 2 levels of nested HW loops.

• The loop has to be setup before entering the loop body.

• There are 2 methods for setup, long commands separately set start, end

and number of iterations, or a short command that does all these

instruction in a single one.

• Short command has a limited number of instructions in the loop and the

loop must start in the next instruction after set up.

• Loop number 0 has a higher priority than loop number 1 in a nested loop

configuration, that means loop zero is the inner loop.

• A hardware loop is subjected to the following constraints: minimum of 2

instructions in the body loop, and the loop counter must be greater than 0
as the loop is always entered at least once.

ALU:

• RI5CY supports advanced ALU operations that allow performing
multiple instructions that are specified in the base instruction set in one

single instruction and thus increases efficiency of the core.

• Examples:

• min/max/avg instructions.

• zero-/sign-extension instructions for 8-bit and 16-bit operands.

• simple bit manipulation/counting instructions.

46

Multiply-Accumulate:

It is a common step especially in digital signal processing computations; RI5Ky

supports its extensions to minimize the number of instructions needed for its
implementation.

Vectorial:

Vectorial instructions perform operations in a SIMD-like manner (single

instruction multiple data) on multiple sub-word elements at the same time. This is

done by segmenting the data path into smaller parts when 8 or 16-bit operations
should be performed.

They are available in two flavors:

• 8-bit, to perform operations on 4 bytes inside a 32-bit word at the same time.

• 16bit, to perform operations on 2 bytes inside a 32-bit word at the same time.

47

Chapter 3

ASIC Flow

ASIC stands for application specific integrated circuit; it is used in digital design
to model system on chips with high performance.

There are two types of ASICs which are full custom and standard cell based.

3.1. ASIC Vs FPGA

There are differences between ASIC and FPGA. Both of them are used in
industry and each of them has pros and cons.

Table 5: comparison between ASIC and FPGA

ASIC FPGA

Fabricated circuit only one time and in a Fab can be programmed many times

High cost Moderate cost

For mass production to reduce the cost Small and fast production

Needs long time to market Programmed in the field

Better utilization as it uses the cells needed
only

Waste for resources and less utilization
because of fixed number of programmable cells

Higher performance but more complex Less performance but more flexible

48

3.2. ASIC design flow

Figure 9: Design flow

In Figure 9 we can find the design flow starting from high level customer needs
ending with Tape-out of circuit given to fab for silicon chip production.

In our project, we focused on the synthesis and physical design phase. We
worked on the open-source logic design of 32-bit RISC-V in openPULP platform.

We performed synthesis, place and route (PNR), RC extraction and static timing
analysis (STA).

49

3.2.1. Synthesis

Synthesis is a step in the flow in which we convert the RTL along with physical
libraries to netlist. Design compiler tool is used.

Figure 10: front-end flow

Integration: description of the design as RTL with HDL such as: VHDL, Verilog
and system verilog.

Simulation to verify: simulate the RTL using simulation EDAs such as:

Modelsim and Xilinix. Synthesis the circuit: for ASIC, we use synthesis tools such
as Design compiler which converts RTL to Logic gates netlist.

50

 Synthesis is done in steps:

• Step 1: converts HDL to generic logic gates called GTECH stands for

generic technology; this is built in synthesis tool before using technology

library given to the tool specified by the fab.

• Step 2: reading the technology library to map these generic gates to

technology-based gates which are called standard cell library for

standard cell-based ASIC design. These standard cells are the layout for
basic logic gates.

• Step 3: optimization according to the constraints given to the tool.

Netlist: it is the output of synthesis tool; it doesn’t include wiring or
arrangement of cells. It can model timing according to gates only not wiring delay.
It represents logic gates in text form given to the PNR tool.

3.2.1.1. Basic synthesis flow:

In order:

• Define libraries.

• Reading design.

• Reading constraints.

• Check design.

• Compile / Technology mapping & optimization.

• Generate gate level netlist.

• Generate reports

We will clarify each step in the following section:

Define libraries:

Standard cells or technology libraries

51

Figure 11: libraries

• Combinational logic: basic logic cells only such as: NOT, AND, OR,

NAND, NOR, buffers and half adders.

• Sequential cells: flip flops and latches; positive and negative edge FF,

synchronous and asynchronous reset/set, ATPG cells used in DFT flow
and clock gating cells.

Clock gating cells are modeled in Verilog and mapped to technology directly; it
has problems inside the cells due to wiring as it doesn’t maintain the clock square

wave form as expected. Hence internal clock gating is added in libraries and is
instantiated directly in synthesis the same as the one used in simulations.

Figure 12: library views

libraries

combinational
logic

sequential cells

library views

behavioral view physical view
liberty timing

view

52

These libraries are given by the fab before design.

• Behavioral view: Vital simulation and gate level simulation (GLS). GLS is

the netlist simulation which contains the names of cells inside netlist

including the reference cells used in netlist. It is not used in synthesis

phase.

• Physical view: (.gds) and (.lef) files. Representing the layout and it is not

used in synthesis but used in PNR.

• (.gds) file: includes the detailed information about the layout of cells such
as types of metals and so on.

• (.lef) file: includes abstract information about cells as a black box which

are needed in PNR and RC extraction for delay information. It contains

pin locations and physical cell sizes.

• Liberty timing view: (.lib) file which is measured on a specific PVT. It is

used as an input to synthesis tool with timing, area, power information,
propagation delay and transition time of the output.

Figure 13: synthesis script

synthesis

commands variables

53

Variables:

• Setting specific variables and continue the synthesis flow with them

• target_library: taking timing libraries in (db) format which is the

compiled version of (.lib). This (db) format is given by the fab or

converted by the tool from (.lib). The tool understands that it uses this
library in mapping stage and it can be more than one library.

• link_library: responsible for linking all designs together. After

converting designs to gates, it links the gates together with the design

files. Hard macros are analog blocks; they are put in link libraries. They

are linked with the top module as analog blocks are not synthesized.

• Synthetic_library: it is defined by the tool automatically no need for

definition of the designer. It contains the operators used in HDL such as:
adders, shifters and so on.

Reading design files

There are two methods:

• Analyze/elaborate

analyze: reads HDL files. It informs the designer if there is any syntax error or
non-synthesizable block.

elaborate: takes (.syn) if it passed the analyze command and translates the HDL

to GTECH (technology independent cells). Also, it replaces operators and performs
link command automatically. Also, we can put link command after it.

read_file

Makes analyze and elaborate in a single step, but it doesn’t allow me to get

intermediate files or change parameters. Link command must follow read_file
command.

Linking files:

Linking instances of cells with their definitions in library after mapping.

If there any hard macros, it will also be linked.

54

Check design

It is done before compiling therefore before mapping. We should check there
that there are no errors in this stage and if there, we should fix these errors.

Constraints

• There are four types for paths:

• Input port to register: needs when the input will be available.

• Register to register: it won’t make problems if is not defined, it needs

clock period only.

• Register to output: needs set input and output delays.

• Input to output: needs set input and output delays.

• All these constraints must be set in the design.

Compile

Maps GTECH gates to technology gates and optimizes delay. After that, it
adjusts the area to the minimum acceptable at the minimum delay.

Generate netlist

• (.ddc): encrypted, can be used in stages after synthesis.

• (.v) or (.vhd): can be read and used in next stages after synthesis.

Reports

For timing, area and power

Timing reports:

Setup analysis: should be met in synthesis and is adjusted by design or
constrains.

Hold analysis: adjusted in PNR flow.

55

3.2.2. PnR

Place and route is the back-end flow in ASIC physical design. Here, we read the

netlist generated from synthesis and constraints to arrange the generated cells,
manage, fix timing and route them for physical system on chip.

At the start of PnR flow, we define the PDK that we use, and the TLU+ library

which is used to estimate the parasitic, hence estimating the delays. IC Compiler
tool is used.

3.2.2.1 Basic PnR flow

• Floor planning

• Power planning

• Placement

• Clock tree network

• Routing

• Finishing

Setup or design preparation at the start of PnR flow:

This section will explain in detail the commands and steps used in order to
setup the design in order to proceed in the PnR steps correctly.

• First, we make sure that our synthesized design has been set using:

𝒔𝒆𝒕 𝒅𝒆𝒔𝒊𝒈𝒏 𝒄𝒗𝟑𝟐𝒆𝟒𝟎𝒑_𝒄𝒐𝒓𝒆.

• After setting our design, we set our desired library path using

𝒔𝒆𝒕_𝒂𝒑𝒑_𝒗𝒂𝒓 𝒔𝒆𝒂𝒓𝒄𝒉_𝒑𝒂𝒕𝒉 [𝒑𝒂𝒕𝒉 𝒅𝒊𝒓𝒆𝒄𝒕𝒐𝒓𝒚] .

This is followed by the commands that choose the link and target library as well
using,

𝒔𝒆𝒕_𝒂𝒑𝒑_𝒗𝒂𝒓 𝒍𝒊𝒏𝒌_𝒍𝒊𝒃𝒓𝒂𝒓𝒚 [𝒍𝒊𝒏𝒌 𝒍𝒊𝒃𝒓𝒂𝒓𝒚 𝒑𝒂𝒕𝒉]

𝒔𝒆𝒕_𝒂𝒑𝒑_𝒗𝒂𝒓 𝒕𝒂𝒓𝒈𝒆𝒕_𝒍𝒊𝒃𝒓𝒂𝒓𝒚 [𝒕𝒂𝒓𝒈𝒆𝒕 𝒍𝒊𝒃𝒓𝒂𝒓𝒚]

56

Both the link and target library contain the library which contains the cells
referenced by the net list and the cells used for optimization and mapping
respectively.

• The next step in the workflow is creating a design library. A design

library contains all the information about the design that change during
the PNR process as well as the technology files used and reference

libraries. Creating a library is very helpful during the PNR process as it
helps create check points that enables returning to them when an error or

failure occurs so that we don’t need to start the design from the beginning
which.

A high-level abstraction of a design library as shown in the figure below:

Figure 14: high level view of the design library

In order to create the library, the following command is used:

𝒄𝒓𝒆𝒂𝒕𝒆_𝒎𝒘_𝒍𝒊𝒃 ./${𝒅𝒆𝒔𝒊𝒈𝒏} \

 −𝒕𝒆𝒄𝒉𝒏𝒐𝒍𝒐𝒈𝒚 $𝒔𝒄_𝒅𝒊𝒓/𝒕𝒆𝒄𝒉/𝒕𝒆𝒄𝒉𝒇𝒊𝒍𝒆/𝒎𝒊𝒍𝒌𝒚𝒘𝒂𝒚/𝑭𝒓𝒆𝒆𝑷𝑫𝑲𝟒𝟓_𝟏𝟎𝒎. 𝒕𝒇 \

−𝒎𝒘_𝒓𝒆𝒇𝒆𝒓𝒆𝒏𝒄𝒆_𝒍𝒊𝒃𝒓𝒂𝒓𝒚 $𝒔𝒄_𝒅𝒊𝒓/𝒍𝒊𝒃/𝑩𝒂𝒄𝒌_𝑬𝒏𝒅/𝒎𝒅𝒃 \

−𝒐𝒑𝒆𝒏

57

Both the technology files as well as the reference libraries were specified as
option in the creation of the design library.

• Following the process of creating a design library, we set information

useful for the completion of the PNR, which is are the TLU plus max and

min that contain the conditions for calculating resistance and
capacitances used in extraction, and the tech2itf file which is used in

mapping the names between the technology file and interconnect
technology format.

The commands used are:

𝒔𝒆𝒕 𝒕𝒍𝒖𝒑𝒎𝒂𝒙 "$𝒔𝒄_𝒅𝒊𝒓/𝒕𝒆𝒄𝒉/𝒓𝒄𝒙𝒕/𝑭𝒓𝒆𝒆𝑷𝑫𝑲𝟒𝟓_𝟏𝟎𝒎_𝑪𝒎𝒂𝒙. 𝒕𝒍𝒖𝒑"

𝒔𝒆𝒕 𝒕𝒍𝒖𝒑𝒎𝒊𝒏 "$𝒔𝒄_𝒅𝒊𝒓/𝒕𝒆𝒄𝒉/𝒓𝒄𝒙𝒕/𝑭𝒓𝒆𝒆𝑷𝑫𝑲𝟒𝟓_𝟏𝟎𝒎_𝑪𝒎𝒊𝒏. 𝒕𝒍𝒖𝒑"

𝒔𝒆𝒕 𝒕𝒆𝒄𝒉𝟐𝒊𝒕𝒇 $sc_dir/tech/rcxt/FreePDK45_10m.map

After setting the paths to the variable, the variable is then used in the next
command:

𝒔𝒆𝒕_𝒕𝒍𝒖_𝒑𝒍𝒖𝒔_𝒇𝒊𝒍𝒆𝒔 − 𝒎𝒂𝒙_𝒕𝒍𝒖𝒑𝒍𝒖𝒔 $𝒕𝒍𝒖𝒑𝒎𝒂𝒙 \

 −𝒎𝒊𝒏_𝒕𝒍𝒖𝒑𝒍𝒖𝒔 $𝒕𝒍𝒖𝒑𝒎𝒊𝒏 \

 −𝒕𝒆𝒄𝒉𝟐𝒊𝒕𝒇_𝒎𝒂𝒑 $𝒕𝒆𝒄𝒉𝟐𝒊𝒕𝒇

• The output of the synthesis step is then imported using:

𝒊𝒎𝒑𝒐𝒓𝒕_𝒅𝒆𝒔𝒊𝒈𝒏𝒔 . ./𝒔𝒚𝒏/𝒐𝒖𝒕𝒑𝒖𝒕/${𝒅𝒆𝒔𝒊𝒈𝒏}.𝒗 \

−𝒇𝒐𝒓𝒎𝒂𝒕 𝒗𝒆𝒓𝒊𝒍𝒐𝒈 \

−𝒕𝒐𝒑 ${𝒅𝒆𝒔𝒊𝒈𝒏} \

−𝒄𝒆𝒍 ${𝒅𝒆𝒔𝒊𝒈𝒏}

Where the option specifies the format of the HDL files used, as well as the name
of the top module and cell in which it’s saved.

58

• Lastly, we source the same constraints that were used in the synthesis step,

which contain all the timing information, and we set the propagated clock in
order not to use the default ideal clock.

𝒔𝒐𝒖𝒓𝒄𝒆 . ./𝒄𝒐𝒏𝒔𝒕𝒓𝒂𝒊𝒏𝒕𝒔/[𝒇𝒊𝒍𝒆. 𝒔𝒅𝒄]

𝒔𝒆𝒕_𝒑𝒓𝒐𝒑𝒂𝒈𝒂𝒕𝒆𝒅_𝒄𝒍𝒐𝒄𝒌 [𝒈𝒆𝒕_𝒄𝒍𝒐𝒄𝒌𝒔 [𝒄𝒍𝒐𝒄𝒌 𝒏𝒂𝒎𝒆]]

We will clarify the basic information in each PnR flow step:

3.2.2.1. Floor planning

The first stage of the PnR flow is the floor planning, floor planning formalizes

and refines the floor plan specified for the design. At this stage, we define the area
of the chip, and the core area where the cells will be placed. Also in this stage, the

macros are placed. Also, Top level, utilization, aspect radio and input/output to
core distance are specified here.

Pin and ports are also assigned at rough locations and further can be redefined
during the PnR flow.

Inputs for floor plan:

• Netlist (.v)
• Technology file (techlef)
• Timing Library files (.lib)
• Physical library (.lef)
• Synopsys design constraints (.sdc)
• Tlu+

Depending on the utilization value, the tool calculates the core area of the chip

based on the relation Utilization = (∑Cell Area)/(Core Area) .Utilization is the

percentage of core area that is taken up by standard cells. Increasing the utilization
decreases the area of the chip which is good, but it also makes the design more

congested. High congestion means many DRCs and makes it harder for the tool to

route the cells. Decreasing the utilization increases the area, but makes the routing
easier. Utilization value also affects the timing. Increasing it makes the tool trapped

between solving DRCs with timing violations or meeting timing with DRCs

violations. Also, decreasing it makes the routes between the cells longer as cells
will be placed far apart, and this increases the routes’ parasitic, hence increases the

59

delay. Therefore, determining the utilization value is a critical decision and has to
be made carefully.

We also set the ignored layers in this stage. Ignored layers are the layers at
which cells are not placed and routed because we use them for the power grid. We

preferred to separate the signal routes from the power routes in order to reduce
congestion and noise.

The main command at this stage is create_floorplan. Using -core_utilization
switch, we can specify the desired utilization, and using -core_aspect_ratio switch,
we can specify the height to width ratio of the chip. Default aspect ratio is 1.

Floor plan basic commands in PnR flow:

The next step in the flow is dedicating a certain area of the chip for the cells of
the design. This step is called floor planning and is initiated with the command:

𝒄𝒓𝒆𝒂𝒕𝒆_𝒇𝒍𝒐𝒐𝒓𝒑𝒍𝒂𝒏

This command defines a rectangular boundary based on a certain aspect ratio
(width and height), or number of cells. It also places the I/O pad and corner cells
based on pre-defined constraints.

Some of the options used within these commands will be listed below:

−𝒄𝒐𝒓𝒆_𝒖𝒕𝒊𝒍𝒊𝒛𝒂𝒕𝒊𝒐𝒏 𝟎.𝟐𝟓 − 𝒄𝒐𝒓𝒆_𝒂𝒔𝒑𝒆𝒄𝒕_𝒓𝒂𝒕𝒊𝒐 𝟐 \

−𝒔𝒕𝒂𝒓𝒕_𝒇𝒊𝒓𝒔𝒕_𝒓𝒐𝒘 − 𝒇𝒍𝒊𝒑_𝒇𝒊𝒓𝒔𝒕_𝒓𝒐𝒘 \

−𝒍𝒆𝒇𝒕_𝒊𝒐𝟐𝒄𝒐𝒓𝒆 𝟏𝟐. 𝟒 − 𝒃𝒐𝒕𝒕𝒐𝒎_𝒊𝒐𝟐𝒄𝒐𝒓𝒆 𝟏𝟐. 𝟒 − 𝒓𝒊𝒈𝒉𝒕_𝒊𝒐𝟐𝒄𝒐𝒓𝒆 𝟏𝟐. 𝟒
− 𝒕𝒐𝒑_𝒊𝒐𝟐𝒄𝒐𝒓𝒆 𝟏𝟐. 𝟒

60

Figure 15: core and die area, with relative io2core distances

The core utilization option is important as it defines how much of design’s core’s
area is utilized.

𝑼𝒕𝒊𝒍𝒊𝒛𝒂𝒕𝒊𝒐𝒏 =
𝒕𝒐𝒕𝒂𝒍 𝒂𝒓𝒆𝒂 𝒐𝒇 𝒕𝒉𝒆 𝒄𝒆𝒍𝒍𝒔

𝒕𝒐𝒕𝒂𝒍 𝒄𝒐𝒓𝒆 𝒂𝒓𝒆𝒂

The rest of the core’s area will be available for routing.

Figure 16: utilization visual, showing cell area compared to core area.

Start first row begins the placement for the bottom left. Flip first row will flip the

rows in order to have the correct power line orientation. The io2core is an option
defined by the distance between the IO ports and the corners of the specified core,
this distance is defined in microns.

61

.

3.2.2.2. Power planning

Power planning is the second step in PnR.

The power planning stage is very important. At this stage, we determine how
our power grid should be, and how we will deliver power to the design’s standard

cells. We make the power grid in the highest two metal layers; metal 9 and metal

10, and the tape layer is metal 8. We put it in the upper layer because resistance of
metal layers decreases as we get to the higher layers, and it is very important to

have a power network with low impedance to make sure that the voltage delivered

to the cells equals to the ideal voltage, and the IR drop of the metal route is very
small. High IR drop also causes electro migration (EM) which can result in

catastrophic failure like opens and shorts, or in the best cases it causes performance
degradation due to changing the width of the wire, so changes the RC.

Therefore, we need to carefully specify the number of straps, width of straps,
width of ring, and the layers of the power grid.

We generally map the IR drop using a color map to highlight “hot spots”, where

the IR drop is bad. It is also important to check the value of the IR drop itself to see

how much percentage of the VDD it represents. It is acceptable to be within 2 -3%
of VDD.

In order to create and synthesize the power network, there are main steps that
we followed:

• First, we create the power and ground network for the design, and

logically connect the power pins of standard cells to the specified power

nets using derive_pg_connection command.
• We define the power ring using command set_fp_rail_constraints, as we

give it the constraints that will be used to create the power ring like,

horizontal ring layer, vertical ring layer, ring width, … etc
• Using set_fp_rail_constraints, we constrained the power mesh with max

number of straps = 128, minimum number of straps = 20, minimum

width = 2.5, and minimum spacing.
• Create virtual pads to be able to synthesize the power network using

create_fp_virtual_pad command.
• Finally, we synthesize the power network using synthesize_fp_rail

62

• After synthesizing the power network and when the IR (voltage) drop

map meets target IR drop constraints. We use commit_fp_rail command
to generate a real power network (power/ground wires and vias) based

on power network synthesis results, Power/ground pins might also be

created on the chip boundary.
• set_preroute_drc_strategy -max_layer to specify the maximum metal

layer used for pre-routing, in our case, it is metal 8.

 In this stage, we also define virtual power pads, to have the ability to simulate

the IR drop. Also, at the end of this stage, we add tie cells. They are special non
logic cells to tie ‘0’ and ‘1’ logic constant values. We connect the by
connect_tie_cells command.

Power network basic commands in PnR flow:

These are the commands for 2-layer power grid planning.

After initial virtual placing the cells by create_fp_placement command (can be

done directly after floor planning step), it’s time to provide them with power, this
is done by creating a network of VDD and GND that spans over several layer in
both horizontal and vertical stripes.

First, we tell the tool to connect any net called VDD to the VDD provided in the
metals, and the same for the GND nets.

𝒅𝒆𝒓𝒊𝒗𝒆_𝒑𝒈_𝒄𝒐𝒏𝒏𝒆𝒄𝒕𝒊𝒐𝒏 − 𝒑𝒐𝒘𝒆𝒓_𝒏𝒆𝒕 𝑽𝑫𝑫\

 −𝒈𝒓𝒐𝒖𝒏𝒅_𝒏𝒆𝒕 𝑽𝑺𝑺\

 −𝒑𝒐𝒘𝒆𝒓_𝒑𝒊𝒏 𝑽𝑫𝑫\

 −𝒈𝒓𝒐𝒖𝒏𝒅_𝒑𝒊𝒏 𝑽𝑺𝑺

Then we define the constraints which the power rails will follow, this is done
using:

𝒔𝒆𝒕_𝒇𝒑_𝒓𝒂𝒊𝒍_𝒄𝒐𝒏𝒔𝒕𝒓𝒂𝒊𝒏𝒕𝒔 − 𝒔𝒆𝒕_𝒓𝒊𝒏𝒈 − 𝒏𝒆𝒕𝒔 {𝑽𝑫𝑫 𝑽𝑺𝑺} \

 −𝒉𝒐𝒓𝒊𝒛𝒐𝒏𝒕𝒂𝒍_𝒓𝒊𝒏𝒈_𝒍𝒂𝒚𝒆𝒓 { 𝒎𝒆𝒕𝒂𝒍𝟗 } \

63

 −𝒗𝒆𝒓𝒕𝒊𝒄𝒂𝒍_𝒓𝒊𝒏𝒈_𝒍𝒂𝒚𝒆𝒓 { 𝒎𝒆𝒕𝒂𝒍𝟏𝟎 } \

 −𝒓𝒊𝒏𝒈_𝒔𝒑𝒂𝒄𝒊𝒏𝒈 𝟎. 𝟖 \

 −𝒓𝒊𝒏𝒈_𝒘𝒊𝒅𝒕𝒉 𝟓 \

 −𝒓𝒊𝒏𝒈_𝒐𝒇𝒇𝒔𝒆𝒕 𝟎. 𝟖 \

 −𝒆𝒙𝒕𝒆𝒏𝒅_𝒔𝒕𝒓𝒂𝒑 𝒄𝒐𝒓𝒆_𝒓𝒊𝒏𝒈

The options define which layers to use for the power connections as well as ring
width, spacing and offset from I/O ports.

Figure 17: visualization of both spacing and offset

64

The mesh that provides the power is created using for loops that iterate across
the core area placing pads for the power at evenly spaced distances.

𝒇𝒐𝒓 {𝒔𝒆𝒕 𝒊 "[𝒆𝒙𝒑𝒓 $𝒅𝒊𝒆_𝒍𝒍𝒙 + 𝟐𝟎]"} {$𝒊
< "[𝑒𝑥𝑝𝑟 $𝑑𝑖𝑒_𝑢𝑟𝑥 − 40]"} {𝑠𝑒𝑡 𝑖 [𝑒𝑥𝑝𝑟 $𝑖 + 80]} {

𝒄𝒓𝒆𝒂𝒕𝒆_𝒇𝒑_𝒗𝒊𝒓𝒕𝒖𝒂𝒍_𝒑𝒂𝒅 − 𝒏𝒆𝒕 𝑽𝑺𝑺 − 𝒑𝒐𝒊𝒏𝒕 "{$𝒊 $𝒅𝒊𝒆_𝒍𝒍𝒚}"

𝒄𝒓𝒆𝒂𝒕𝒆_𝒇𝒑_𝒗𝒊𝒓𝒕𝒖𝒂𝒍_𝒑𝒂𝒅 − 𝒏𝒆𝒕 𝑽𝑫𝑫 − 𝒑𝒐𝒊𝒏𝒕 "{[𝒆𝒙𝒑𝒓 $𝒊 + 𝟒𝟎] $𝒅𝒊𝒆_𝒍𝒍𝒚}"

𝒄𝒓𝒆𝒂𝒕𝒆_𝒇𝒑_𝒗𝒊𝒓𝒕𝒖𝒂𝒍_𝒑𝒂𝒅 − 𝒏𝒆𝒕 𝑽𝑺𝑺 − 𝒑𝒐𝒊𝒏𝒕 "{$𝒊 $𝒅𝒊𝒆_𝒖𝒓𝒚}"

𝒄𝒓𝒆𝒂𝒕𝒆_𝒇𝒑_𝒗𝒊𝒓𝒕𝒖𝒂𝒍_𝒑𝒂𝒅 − 𝒏𝒆𝒕 𝑽𝑫𝑫 − 𝒑𝒐𝒊𝒏𝒕 "{[𝒆𝒙𝒑𝒓 $𝒊 + 𝟒𝟎] $𝒅𝒊𝒆_𝒖𝒓𝒚}"

}

𝒇𝒐𝒓 {𝒔𝒆𝒕 𝒊 "[𝒆𝒙𝒑𝒓 $𝒅𝒊𝒆_𝒍𝒍𝒚 + 𝟐𝟎]"} {$𝒊
< "[𝑒𝑥𝑝𝑟 $𝑑𝑖𝑒_𝑢𝑟𝑦 − 40]"} {𝑠𝑒𝑡 𝑖 [𝑒𝑥𝑝𝑟 $𝑖 + 80]} {

𝒄𝒓𝒆𝒂𝒕𝒆_𝒇𝒑_𝒗𝒊𝒓𝒕𝒖𝒂𝒍_𝒑𝒂𝒅 − 𝒏𝒆𝒕 𝑽𝑺𝑺 − 𝒑𝒐𝒊𝒏𝒕 "{$𝒅𝒊𝒆_𝒍𝒍𝒙 $𝒊}"

𝒄𝒓𝒆𝒂𝒕𝒆_𝒇𝒑_𝒗𝒊𝒓𝒕𝒖𝒂𝒍_𝒑𝒂𝒅 − 𝒏𝒆𝒕 𝑽𝑫𝑫 − 𝒑𝒐𝒊𝒏𝒕 "{$𝒅𝒊𝒆_𝒍𝒍𝒙 [𝒆𝒙𝒑𝒓 $𝒊 + 𝟒𝟎]}"

𝒄𝒓𝒆𝒂𝒕𝒆_𝒇𝒑_𝒗𝒊𝒓𝒕𝒖𝒂𝒍_𝒑𝒂𝒅 − 𝒏𝒆𝒕 𝑽𝑺𝑺 − 𝒑𝒐𝒊𝒏𝒕 "{$𝒅𝒊𝒆_𝒖𝒓𝒙 $𝒊}"

𝒄𝒓𝒆𝒂𝒕𝒆_𝒇𝒑_𝒗𝒊𝒓𝒕𝒖𝒂𝒍_𝒑𝒂𝒅 − 𝒏𝒆𝒕 𝑽𝑫𝑫 − 𝒑𝒐𝒊𝒏𝒕 "{$𝒅𝒊𝒆_𝒖𝒓𝒙 [𝒆𝒙𝒑𝒓 $𝒊 + 𝟒𝟎] }"

}

Each one of the for loops is responsible for the horizontal and vertical placement
of the pads respectively.

After placing the pads and constraining which layers the metal are placed in, we
synthesize the power rails and rings using:

𝒔𝒚𝒏𝒕𝒉𝒆𝒔𝒊𝒛𝒆_𝒇𝒑_𝒓𝒂𝒊𝒍

 −𝒏𝒆𝒕𝒔 {𝑽𝑫𝑫 𝑽𝑺𝑺} − 𝒔𝒚𝒏𝒕𝒉𝒆𝒔𝒊𝒛𝒆_𝒑𝒐𝒘𝒆𝒓_𝒑𝒍𝒂𝒏 − 𝒕𝒂𝒓𝒈𝒆𝒕 _𝒗𝒐𝒍𝒕𝒂𝒈𝒆_𝒅𝒓𝒐𝒑 𝟐𝟐
− 𝒗𝒐𝒍𝒕𝒂𝒈𝒆_𝒔𝒖𝒑𝒑𝒍𝒚 𝟏.𝟏 − 𝒑𝒐𝒘𝒆𝒓_𝒃𝒖𝒅𝒈𝒆𝒕 𝟓𝟎𝟎

The target voltage drop is an important option that specifies how much IR we
can deal with in our chip, and is specified using milli volts

65

The synthesis is then followed by the actual placement of the power network
using:

𝒄𝒐𝒎𝒊𝒕_𝒇𝒑_𝒓𝒂𝒊𝒍

After creating the network, we can now connect the cells to the receptive power
sources using

𝒑𝒓𝒆𝒓𝒐𝒖𝒕𝒆_𝒔𝒕𝒂𝒏𝒅𝒂𝒓𝒅_𝒄𝒆𝒍𝒍𝒔

 We continue by adding tap cells

𝒂𝒅𝒅_𝒕𝒂𝒑_𝒄𝒆𝒍𝒍_𝒂𝒓𝒓𝒂𝒚 − 𝒎𝒂𝒔𝒕𝒆𝒓 𝑻𝑨𝑷 \

 −𝒅𝒊𝒔𝒕𝒂𝒏𝒄𝒆 𝟑𝟎 \

 −𝒑𝒂𝒕𝒕𝒆𝒓𝒏 𝒔𝒕𝒂𝒈𝒈𝒆𝒓_𝒆𝒗𝒆𝒓𝒚_𝒐𝒕𝒉𝒆𝒓_𝒓𝒐𝒘

3.2.2.3 Placement

The third step in PnR.

In the placement process the ICC tool finds an appropriate position for the leaf
cells to be suited on. This process is completed in two different stages.

The first placement stage is the coarse placement, in which the tool places the

cells approximately taking into account the timing of the different paths, however

in these stages the approximation causes overlaps between the different cells as
well as wrong orientation.

The second stage is the legalization stage, wherein the tool starts to legalize the
cells by positioning them correctly within the grid, removing overlaps and wrong
orientation.

The second stage may result in a degradation for the timing in certain paths
which can be further resolved using optimization.

Certain techniques such as blockages and margins can be used during the
placement process to ensure that problems like congestion do not occur in certain
places.

No blockages were used in our design process.

66

Placement Density:

This option controls how dense the cells are packed together, and takes as input

the percentage of how packed they are where 100% means that there is no empty

space between the cells, this is done setting the following variable before actual
placement stage or virtual placement if done after floor planning stage:

set_app_var_placer_max_cell_density_threshold X

This X corresponds to a value specified by the designer according to the priority
needed. This value gives the high priority to wire length to the placement of cells

and its default is 0.7. by decreasing this X the priority of wide placement of cells
increases.

Performing placement and optimization:

The placement process is called using the place_opt command which consists of
5 different commands including:

• Initial placement (initial_place)

• Initial DRC violation fixing (initial_drc)

• Initial optimization (initial_opto)

• Final placement (final_place)

• Final optimization (final_opto)

• Legalization

In order to further optimize or incrementally place the cells we can use
refine_opt which also includes:

• Initial path optimization (initial_path_opt)

• Incremental placement (inc_place)

• Incremental optimization (inc_opt)

• Final placement (final_path_opt)

• Legalization

psynopt was also used which performs incremental pre-route or post-route
optimization.

There are many options which can be enabled in order to resolve certain issues
such as:

67

• timing driven

• congestion driven

The QoR in the placement process includes reporting placement violations and
legalization of non-legalized cells as overlapping cells and so on.

Placement basic commands in PnR flow:

Placement is the process in which we find a suitable physical location for the
cells within the core area.

Before starting the placement, we

𝒄𝒉𝒆𝒄𝒌_𝒑𝒉𝒚𝒔𝒊𝒄𝒂𝒍_𝒅𝒆𝒔𝒊𝒈𝒏 − 𝒔𝒕𝒂𝒈𝒆 𝒑𝒓𝒆_𝒑𝒍𝒂𝒄𝒆_𝒐𝒑𝒕

𝒄𝒉𝒆𝒄𝒌_𝒑𝒉𝒚𝒔𝒊𝒄𝒂𝒍_𝒄𝒐𝒏𝒔𝒕𝒓𝒂𝒊𝒏𝒕𝒔

The first of these two commands do checks that depend on the specified stage

and makes sure the design contents make sense for the specified stage; otherwise,

the report might be meaningless. By choosing preplace opt as the value for the
stage, the command requires that the floorplan and netlist data are ready and the
design constraints are set.

The second command checks several physical constraints and provide
information about possible errors in input. It checks for

• cell areas in hard bound

• Correct layers in the library against those in the floorplan.

• Resistance and capacitance for different route layers.

• Narrow placement areas in the floorplan.

• Legal sites for library cells in floorplan.

68

The placement process is called using the

𝒑𝒍𝒂𝒄𝒆_𝒐𝒑𝒕

This stage can also be referred to as coarse placement.

During the coarse placement the IC compiler tool finds an approximate location

for the cells based on timing, congestion and power criteria. In this step the cells
might overlap, and in the case of IP block usage, those blocks will act as blockages
preventing cells from overlapping with them.

Although approximate, the coarse placement is very accurate for initial timing
and congestion analysis.

• Initial DRC violation fixing (initial_drc)

• Initial optimization (initial_opto)

• Final placement (final_place)

• Final optimization (final_opto)

• Legalization (legalize_placement)

Following the coarse placement, legalization moves the cells to legal areas,
removing overlap, and finding the right places for the cells within the rows.

These new locations might cause variation in the timing and congestion analysis

that was previously achieved, and will usually be more pessimistic as the distances
may increase.

𝒑𝒔𝒚𝒏𝒐𝒑𝒕

For further incremental optimization on the synthesis of the placement.

𝒔𝒆𝒕 𝒕𝒊𝒆_𝒑𝒊𝒏𝒔

𝒄𝒐𝒏𝒏𝒆𝒄𝒕_𝒕𝒊𝒆_𝒄𝒆𝒍𝒍𝒔

 Tie constant values with VDD and VSS.

69

3.2.2.4. Clock tree synthesis

CTS or clock tree synthesis is the process of building a buffer/inverter network

in order to balance the delays of the flip flops that belong to a clock domain. This

delay is caused by the parasitic that appear due to the wire lengths, this delay can
also be called insertion delay.

Connection the clock wires causes 2 problems that the CTS helps resolving:

• Skew

• High capacitance and fan-out seen at the clock pin, which causes slow

signal transitioning eventually leading to crosstalk issues.

Before we dwell into what CTS does, we first we need some definitions:

• Skew is the difference in clock arrival time at two different registers

usually caused by the delay due to buffers and wires placed before clocks
pins.

• Capture clock edge: the edge of the clock where the data is read.

• Launch clock edge: the edge of the clock where the data is sent.

Local skew VS global skew:

• Local skew: clock arrival between related flops, so each pair of FFs with a

data path between them has their own local skew

Figure 18: local skew

• Global skew: the arrival time difference between the biggest arrival and

the smallest arrival, even between unrelated FFs across the entire clock
domain.

70

Figure 19: global skew between unrelated registers

CTS is the process in which we try to balance the delay between the different

clock paths of the design (sinks or excludes) and the clock source in order to
achieve the target global skew, which is done by placing a tree of symmetric

buffers so that all the different clock inputs in different flip flops see the same

insertion delay. In addition to that, it also helps in decreasing the total capacitance
seen by the clock source which reduces transition time as well as crosstalk issues.

Problem with skew: In case the skew is big; if the data flow is in the same
direction of clock propagation this will create hold violations, but helps me in
setup.

CTS optimizes based on global skew, so the goal is to have a 0 global skew.

By building a buffer network, we ensure that all the flip flops see the same

insertion delay while in the time, decrease the total capacitance seen by a single
pin.

71

Figure 20: example of buffer insertion to fix the previously mentioned issues

Now that we have an idea about the CTS operation goals, we can delve into the
commands used in the CTS script partition.

CTS basic commands in PnR flow:

First, we need to check the design for its readiness the way we did in the
placement section,

𝒄𝒉𝒆𝒄𝒌_𝒑𝒉𝒚𝒔𝒊𝒄𝒂𝒍_𝒅𝒆𝒔𝒊𝒈𝒏 –𝒔𝒕𝒂𝒈𝒆 𝒑𝒓𝒆_𝒄𝒍𝒐𝒄𝒌_𝒐𝒑𝒕

This stage requires the same items as 𝒑𝒓𝒆_𝒑𝒍𝒂𝒄𝒆_𝒐𝒑𝒕. In addition, the design
must be placed and the clock constraints must be set.

𝒄𝒉𝒆𝒄𝒌_𝒄𝒍𝒐𝒄𝒌_𝒕𝒓𝒆𝒆

72

Is a command preferably used before starting the CTS, this command helps us
identify certain issues which might create further problems down the CTS line
such as:

• A master clock does not propagate to a generated clock

• Improperly specified master clock

• A master clock terminates at a multi-clock pin

• A clock has no synchronous pins

• A clock loops to itself

• Multiple clocks per register

• Exceptions defined on output pins

Therefore, verification of:

• The clock master.

• Loops in the tree.

• Ignored exceptions.

• Stop pins or float pins on output pins.

• Conflicted exceptions.

• Conflicted balancing settings.

After finishing with the checks, we can now proceed with the CTS

The next command we’re going to use is set_driving_cell which sets an attribute
for a certain port in our design, where in our case we’re specifying the type of
buffer used for our clock pin.

Timing characteristics:

In order to model the clock roots correctly we must specify a driving strength
for the I/O clock pad cell so that the tool does not assume that the port as an
infinite driving strength, this is done using the command:

𝒔𝒆𝒕_𝒅𝒓𝒊𝒗𝒊𝒏𝒈_𝒄𝒆𝒍𝒍 − 𝒍𝒊𝒃_𝒄𝒆𝒍𝒍 𝑩𝑼𝑭_𝑿𝟏𝟔 − 𝒑𝒊𝒏 𝒁 [𝒈𝒆𝒕_𝒑𝒐𝒓𝒕𝒔 𝒅𝒆𝒔𝒊𝒈𝒏_𝒄𝒍𝒐𝒄𝒌]

design_clock is clk_i in our project.

73

Targets and constraints:

Next is to set the constraints on which the CTS will be optimizing the clock tree
on:

𝒔𝒆𝒕_𝒄𝒍𝒐𝒄𝒌_𝒕𝒓𝒆𝒆_𝒐𝒑𝒕𝒊𝒐𝒏𝒔 \

 −𝒄𝒍𝒐𝒄𝒌_𝒕𝒓𝒆𝒆𝒔 𝒄𝒍𝒌_𝒊 \

−𝒕𝒂𝒓𝒈𝒆𝒕_𝒆𝒂𝒓𝒍𝒚_𝒅𝒆𝒍𝒂𝒚 𝟎. 𝟏 \

−𝒕𝒂𝒓𝒈𝒆𝒕 _𝒔𝒌𝒆𝒘 𝟎. 𝟐 \

−𝒎𝒂𝒙_𝒄𝒂𝒑𝒂𝒄𝒊𝒕𝒂𝒏𝒄𝒆 𝟑𝟎𝟎 \

−𝒎𝒂𝒙_𝒇𝒂𝒏𝒐𝒖𝒕 𝟏𝟎 \

−𝒎𝒂𝒙_𝒕𝒓𝒂𝒏𝒔𝒊𝒕𝒊𝒐𝒏 𝟎. 𝟏𝟓𝟎

Most of the issues mentioned before have now been constrained by a certain
value.

By default, the tool tries to achieve the best possible skew and latency for the
clock tree, however this may lead to degradation in other parameters such as area

and power, therefore, set_clock_tree_options is used to define the target skew and
other constraints.

• clock_trees clk_i

• target_early_delay

• target_skew

• max_capacitance

• max_fanout

• max_transition

74

Specifying clock tree reference:

The references of a clock tree are the buffer and inverters used to build it, in

order to specify them we use: set_clock_tree_references -references [get_lib_cells
/CLKBUF]

Further optimization option for the clock tree can be enabled using these
commands that allow the CTS to apply different techniques for optimizing the tree:

𝒔𝒆𝒕_𝒄𝒍𝒐𝒄𝒌_𝒕𝒓𝒆𝒆_𝒐𝒑𝒕𝒊𝒐𝒏𝒔 − 𝒄𝒍𝒐𝒄𝒌_𝒕𝒓𝒆𝒆𝒔 𝒄𝒍𝒌_𝒊 \

−𝒃𝒖𝒇𝒇𝒆𝒓_𝒓𝒆𝒍𝒐𝒄𝒂𝒕𝒊𝒐𝒏 𝒕𝒓𝒖𝒆 \

−𝒃𝒖𝒇𝒇𝒆𝒓_𝒔𝒊𝒛𝒊𝒏𝒈 𝒕𝒓𝒖𝒆 \

−𝒈𝒂𝒕𝒆_𝒓𝒆𝒍𝒐𝒄𝒂𝒕𝒊𝒐𝒏 𝒕𝒓𝒖𝒆 \

−𝒈𝒂𝒕𝒆_𝒔𝒊𝒛𝒊𝒏𝒈 𝒕𝒓𝒖𝒆

Figure 21: showing the optimization due to the previous commands

75

Other constraints can also be defined, including specifying the metal layers on
which the metal wires that make up the clock tree walk on.

𝒅𝒆𝒇𝒊𝒏𝒆_𝒓𝒐𝒖𝒕𝒊𝒏𝒈_𝒓𝒖𝒍𝒆 𝒎𝒚_𝒓𝒐𝒖𝒕𝒆_𝒓𝒖𝒍𝒆 \

 −𝒘𝒊𝒅𝒕𝒉𝒔 {𝒎𝒆𝒕𝒂𝒍𝟑 𝟎. 𝟏𝟒 𝒎𝒆𝒕𝒂𝒍𝟒 𝟎. 𝟐𝟖 𝒎𝒆𝒕𝒂𝒍𝟓 𝟎. 𝟐𝟖 𝒎𝒆𝒕𝒂𝒍𝟔 𝟎. 𝟐𝟖 𝒎𝒆𝒕𝒂𝒍𝟕 𝟎. 𝟖} \

 −𝒔𝒑𝒂𝒄𝒊𝒏𝒈𝒔 {𝒎𝒆𝒕𝒂𝒍𝟑 𝟎. 𝟏𝟒 𝒎𝒆𝒕𝒂𝒍𝟒 𝟎. 𝟐𝟖 𝒎𝒆𝒕𝒂𝒍𝟓 𝟎. 𝟐𝟖 𝒎𝒆𝒕𝒂𝒍𝟔 𝟎. 𝟐𝟖 𝒎𝒆𝒕𝒂𝒍𝟕 𝟎. 𝟖}

This is in case maximum routing layer is metal 8.

As for the width of the wire, non-default wiring is used in order to make the
wires wider which helps in decrease crosstalk issues and electro-migration.

𝒔𝒆𝒕_𝒄𝒍𝒐𝒄𝒌_𝒕𝒓𝒆𝒆_𝒐𝒑𝒕𝒊𝒐𝒏𝒔 − 𝒖𝒔𝒆_𝒅𝒆𝒇𝒂𝒖𝒍𝒕_𝒓𝒐𝒖𝒕𝒊𝒏𝒈_𝒇𝒐𝒓_𝒔𝒊𝒏𝒌𝒔 𝟏

However, we use the default routing for the sinks (a sink is the flip flop seen by
the tree, and a tree has many sinks) in order to decrease DRCs.

Implementing the clock tree:

Now for the actual CTS

𝒄𝒍𝒐𝒄𝒌_𝒐𝒑𝒕

The clock_opt command is a mega command which contains multiple stages

that help create the clock tree, such as the synthesis of it, the routing, and lastly the
optimization.

The clock_opt command consist of the following three stages:

• The build_clock stage, during which the tool synthesizes and optimizes

the clock trees for all clocks in the active modes in all active scenarios.
After clock tree synthesis, the tool sets the synthesized clocks as

propagated.

• The route_clock stage, during which the tool detail routes the synthesized

clock nets.

• The final_opto stage, during which the tool further optimizes the design
for timing, logical DRC violations, area, power, and routability.

When you run the clock_opt command, by default, the tool executes all three
stages.

76

These synthesize the clock tree:

𝒄𝒐𝒎𝒑𝒊𝒍𝒆_𝒄𝒍𝒐𝒄𝒌_𝒕𝒓𝒆𝒆

𝒄𝒍𝒐𝒄𝒌_𝒐𝒑𝒕 − 𝒐𝒏𝒍𝒚_𝒄𝒕𝒔 − 𝒏𝒐 _𝒄𝒍𝒐𝒄𝒌_𝒓𝒐𝒖𝒕𝒆

set_fix_hold [all_clocks]

 set_fix_hold_options -prioritize_tns -effort low

set_propagated_clock [all_clocks]

set_fix_hold is to consider fixing hold time violation if needed.

𝒄𝒍𝒐𝒄𝒌_𝒐𝒑𝒕 − 𝒐𝒏𝒍𝒚_𝒑𝒔𝒚𝒏 − 𝒏𝒐_𝒄𝒍𝒐𝒄𝒌_𝒓𝒐𝒖𝒕𝒆

Pre-route optimization

Clock routing:

𝒓𝒐𝒖𝒕𝒆_𝒈𝒓𝒐𝒖𝒑 − 𝒂𝒍𝒍_𝒄𝒍𝒐𝒄𝒌_𝒏𝒆𝒕𝒔

3.2.2.5. Route

Routing is the process of creating physical connections based on logical

connectivity. Signal pins are connected by routing metal interconnects. Routed

metal paths must meet timing, clock skew, max trans/cap requirements and also
physical DRC requirements.

In grid-based routing system each metal layer has its own tracks and preferred
routing direction which are defined in a unified cell in the standard cell library.

There are four steps of routing operations:

Global routing

Track assignment

Detail routing

Search and repair

Global Route: assigns nets to specific metal layers and global routing cells.

Global route tries to avoid congested global cells while minimizing detours. Global

route also avoids pre-routed P/G, placement blockages and routing blockages.

77

Track Assignment (TA): assigns each net to a specific track and actual metal traces
are laid down by it. It tries to make long, straight traces to avoid the number of

vias. DRC is not followed in TA stage. TA operates on the entire design at once.

Detail Routing: tries to fix all DRC violations after track assignment using a fixed

size small area known as “SBox”. Detail route traverses the whole design box by

box until entire routing pass is complete.

Search and Repair: fixes remaining DRC violations through multiple iterative
loops using progressively larger SBox sizes.

The following commands are a detailed execution of the routing process

routing basic commands in PnR flow:

𝒊𝒏𝒔𝒆𝒓𝒕_𝒔𝒑𝒂𝒓𝒆_𝒄𝒆𝒍𝒍𝒔
− 𝒍𝒊𝒃_𝒄𝒆𝒍𝒍 {𝑵𝑶𝑹𝟐_𝑿𝟒 𝑵𝑨𝑵𝑫𝟐_𝑿𝟒} \−𝒏𝒖𝒎_𝒊𝒏𝒔𝒕𝒂𝒏𝒄𝒆𝒔 𝟐𝟎
\ −𝒄𝒆𝒍𝒍_𝒏𝒂𝒎𝒆 𝑺𝑷𝑨𝑹𝑬_𝑷𝑹𝑬𝑭𝑰𝑿_𝑵𝑨𝑴𝑬 \−𝒕𝒊𝒆 ∶

Inserts spare cells in the legalized design with (unnecessary depending on the
purpose):

• -lib_cell {NOR2_X4 NAND2_X4} option which specifies the names of

library cells for which the spares cells are to be created. If you specify

more than one library cell, the instances of these cells are placed as close
as possible

• -num_instances 20 option which Specifies the number of instances of the

library cell that are inserted as spare cells

• -cell_name SPARE_PREFIX_NAME option which Specifies the prefix

name of the spare cells to be used by the tool. An integer prefix is

automatically appended to the prefix name for each instance. If a cell
with a generated name already exists, the tool automatically assigns a

unique name for the cell name

• -tie option which Ties the input pins of the inserted spare cells to logic
zero.

78

𝒔𝒆𝒕_𝒅𝒐𝒏𝒕_𝒕𝒐𝒖𝒄𝒉 [𝒂𝒍𝒍_𝒔𝒑𝒂𝒓𝒆_𝒄𝒆𝒍𝒍𝒔] 𝒕𝒓𝒖𝒆

This command sets the dont_touch attribute on cells, nets, references,designs in

the current design, and on library cells, to prevent modification or replacement of
these objects during optimization.

𝒔𝒆𝒕_𝒂𝒕𝒕𝒓𝒊𝒃𝒖𝒕𝒆 [𝒂𝒍𝒍_𝒔𝒑𝒂𝒓𝒆_𝒄𝒆𝒍𝒍𝒔] 𝒊𝒔_𝒔𝒐𝒇𝒕_𝒇𝒊𝒙𝒆𝒅 𝒕𝒓𝒖𝒆

 This command sets the value of an attribute on an object. For a complete list of

attributes, see the attributes man page.This command returns a collection of

objects that have the specified attribute value set. If the attribute is not set on any
objects, the command returns an empty string.

𝒄𝒉𝒆𝒄𝒌_𝒑𝒉𝒚𝒔𝒊𝒄𝒂𝒍_𝒅𝒆𝒔𝒊𝒈𝒏 − 𝒔𝒕𝒂𝒈𝒆 𝒑𝒓𝒆_𝒓𝒐𝒖𝒕𝒆_𝒐𝒑𝒕

 This command checks the readiness of the current design for IC Compiler with:

• -stage option specifies which stage to check.

The checks performed by the check_physical_design command depend
on the specified stage.

𝒄𝒉𝒆𝒄𝒌_𝒓𝒐𝒖𝒕𝒆𝒂𝒃𝒊𝒍𝒊𝒕𝒚

Verifies that the current design is routable and Check’s pin access points, cell
instance wire tracks, pin out of boundaries, min-grid and pin design rules and

blockages to ensure they meet the design requirements. It performs a check of the

design for optimization in order to substantiate any errors in the design that might
need to be fixed or what could help to improve the design. This must currently be
run on a placed design.

𝒔𝒆𝒕_𝒅𝒆𝒍𝒂𝒚_𝒄𝒂𝒍𝒄𝒖𝒍𝒂𝒕𝒊𝒐𝒏_𝒐𝒑𝒕𝒊𝒐𝒏𝒔 − 𝒂𝒓𝒏𝒐𝒍𝒅𝒊_𝒆𝒇𝒇𝒐𝒓𝒕 𝒍𝒐𝒘

79

 Defines the delay model used to compute a timing arc delay value for a cell or
net. with:

-arnoldi_effort option which Specifies the Arnoldi delay calculation effort level

𝒔𝒆𝒕_𝒓𝒐𝒖𝒕𝒆_𝒐𝒑𝒕𝒊𝒐𝒏𝒔
− 𝒈𝒓𝒐𝒖𝒕𝒆_𝒕𝒊𝒎𝒊𝒏𝒈_𝒅𝒓𝒊𝒗𝒆𝒏 𝒕𝒓𝒖𝒆
\−𝒈𝒓𝒐𝒖𝒕𝒆_𝒊𝒏𝒄𝒓𝒆𝒎𝒆𝒏𝒕𝒂𝒍 𝒕𝒓𝒖𝒆
\ −𝒕𝒓𝒂𝒄𝒌_𝒂𝒔𝒔𝒊𝒈𝒏_𝒕𝒊𝒎𝒊𝒏𝒈_𝒅𝒓𝒊𝒗𝒆𝒏 𝒕𝒓𝒖𝒆
\−𝒔𝒂𝒎𝒆_𝒏𝒆𝒕_𝒏𝒐𝒕𝒄𝒉 𝒄𝒉𝒆𝒄𝒌_𝒂𝒏𝒅_𝒇𝒊𝒙

 Sets specific options in the internal router control database with:

• -groute_timing_driven true option which controls whether global

routing is timing driven. The default is false.

• -groute_incremental true option which controls whether incremental

global routing is enabled. The default is false

• -track_assign_timing_driven true option which controls whether track

assignment is timing driven.The default is false.

• -same_net_notch check_and_fix option which controls whether the router

checks same net notch rule. The default is ignored.

𝒔𝒆𝒕_𝒔𝒊_𝒐𝒑𝒕𝒊𝒐𝒏𝒔
− 𝒓𝒐𝒖𝒕𝒆_𝒙𝒕𝒂𝒍𝒌_𝒑𝒓𝒆𝒗𝒆𝒏𝒕𝒊𝒐𝒏 𝒕𝒓𝒖𝒆
\ −𝒅𝒆𝒍𝒕𝒂_𝒅𝒆𝒍𝒂𝒚 𝒕𝒓𝒖𝒆 \ −𝒎𝒊𝒏_𝒅𝒆𝒍𝒕𝒂_𝒅𝒆𝒍𝒂𝒚 𝒕𝒓𝒖𝒆
\−𝒔𝒕𝒂𝒕𝒊𝒄_𝒏𝒐𝒊𝒔𝒆 𝒕𝒓𝒖𝒆\ −𝒕𝒊𝒎𝒊𝒏𝒈_𝒘𝒊𝒏𝒅𝒐𝒘 𝒕𝒓𝒖𝒆 ∶

 Defines signal integrity options used for analysis or optimization. With:

• -route_xtalk_prevention true option which Specifies track assign xtalk

prevention. This option is disabled by default.

• -delta_delay true option which specifies whether crosstalk delta delay is

considered in timing and optimization. When set to false, crosstalk delta
delay isnot considered. This option is disabled by default. When set to

true, it automatically sets the -min_delta_delay option to true as well.

• -min_delta_delay true option which Specifies whether min delta delay is

considered in timing and optimization. When set to true, min delta delay

80

enables crosstalk calculation for min timing paths reporting hold. This
option also enables min noise propagation for capture clocks in max

paths for setup, thereby speeding up the capture clock timing. This

option is disabled by default and it is enabled automatically when -
delta_delay is set to "true".

• -static_noise true option which Specifies whether static noise is

considered in optimization. When set to false, static noise is not

considered. This option is disabled by default

• -timing_window true option which Specifies whether timing window

overlapping is considered in crosstalk analysis. When set to true, timing

window is considered. This options is disabled by default and can only
be enabled when -delta_delay (or -static_noise) option is set to "true".

𝒓𝒐𝒖𝒕𝒆_𝒂𝒖𝒕𝒐

Performs global routing, track assignment, detail routing, and search and repair
in one step

Track assignment: in routing step, occurs after global routing and before

detailed routing, assigns nets to specific tracks and lays down the actual metal
tracks.

Pin assignment: In design planning step, to assign pins at the top level of the
design or in macros and plan groups used in bottom-up design flow.

𝒓𝒐𝒖𝒕𝒆_𝒐𝒑𝒕

 Performs simultaneous routing and post route optimization on the design.

𝒑𝒔𝒚𝒏𝒐𝒑𝒕 − 𝒐𝒏𝒍𝒚_𝒉𝒐𝒍𝒅_𝒕𝒊𝒎𝒆 – 𝒄𝒐𝒏𝒈𝒆𝒔𝒕𝒊𝒐𝒏

Performs incremental synthesis on the design with only_hold_time which
Specifies that only hold time violations are fixed and congestion option which

enables congestion removal algorithms for improved routability by default,
congestion is not enabled.

𝒓𝒐𝒖𝒕𝒆_𝒛𝒓𝒕_𝒆𝒄𝒐 − 𝒐𝒑𝒆𝒏_𝒏𝒆𝒕_𝒅𝒓𝒊𝒗𝒆𝒏 𝒕𝒓𝒖𝒆

81

Performs ECO routing on the design with:

-open_net_driven true option which Controls whether ECO route fixes DRC

violations for the whole design (default) or only in the neighborhood
(bounding box) of the open nets. By default (false), ECO route connects the open

nets in the design and fixes design rule violations for the entire design. When true,

ECO route connects the open nets in the design and fixes DRC violations only in
the neighborhood of the open nets.

𝒗𝒆𝒓𝒊𝒇𝒚_𝒛𝒓𝒕_𝒓𝒐𝒖𝒕𝒆

Verifies and reports routing design rule constraint (DRC) viola tions, net opens,
antenna rule violations, and voltage-area rule violations.

𝒓𝒐𝒖𝒕𝒆_𝒛𝒓𝒕_𝒅𝒆𝒕𝒂𝒊𝒍 − 𝒊𝒏𝒄𝒓𝒆𝒎𝒆𝒏𝒕𝒂𝒍 𝒕𝒓𝒖𝒆
− 𝒊𝒏𝒊𝒕𝒊𝒂𝒍_𝒅𝒓𝒄_𝒇𝒓𝒐𝒎_𝒊𝒏𝒑𝒖𝒕 𝒕𝒓𝒖𝒆

Performs detail routing on the design with:

• -incremental option which If true (default is false), the router performs

incremental mode routing. By default, the router starts from the iteration

number that detail routing ends with last time the cell was routed. By
default, the router will re-check DRC in the beginning. If -

initial_drc_from_input is set as true, the router will skip the initial DRC

checking and start with the DRC information stored in the cell.

• -initial_drc_from_input option which When true, the detail router uses

the DRC information in the cell as the initial DRC information. Use this
option very carefully; set it to true only if you are absolutely sure that the
DRCs in the cell are up-to-date. The default is false.

𝑭𝒐𝒄𝒂𝒍_𝒐𝒑𝒕 − 𝒔𝒆𝒕𝒖𝒑_𝒆𝒏𝒅𝒑𝒐𝒊𝒏𝒕𝒔 𝒂𝒍𝒍

Performs postroute optimization to fix setup,hold or logical design rule
constraint violations, reduce crosstalk , or reduce leakage power with:

-setup_endpoints all option which optimizes the specified endpoints by using
setup time as time focal metric.

82

3.2.2.6. Finishing

To help address some of the process design issues during chip manufacturing,
IC provides some commands that provide options which can be applied:

𝒊𝒏𝒔𝒆𝒓𝒕_𝒔𝒕𝒅𝒄𝒆𝒍𝒍_𝒇𝒊𝒍𝒍𝒆𝒓

To ensure that all the power nets are connected and that all the spacing is filled,

these empty spaces in the row can cause power not to be connected throughout the

rest of the row which is filler cells are used, using the previous command. You can
insert these before routing:

• Insert standard cell fillers

• Insert end cap cells

After routing, you can

• Insert well fillers

• Insert pad fillers

During insertion, filler cells with metal are retained only when they do not cause
DRC violations.

𝒊𝒏𝒔𝒆𝒓𝒕_𝒛𝒓𝒕_𝒓𝒆𝒅𝒖𝒏𝒅𝒂𝒏𝒕_𝒗𝒊𝒂𝒔

Inserting redundant vias is very helpful after routing as during manufacturing,
some vias can fail and having an array of them can ensure correct operation.

Reports and checks:

Finally, as we output out PNR into the design library, we run a few check
commands to get an idea of how the violations look like:

𝒗𝒆𝒓𝒊𝒇𝒚_𝒍𝒗𝒔 − 𝒊𝒈𝒏𝒐𝒓𝒆_𝒇𝒍𝒐𝒂𝒕𝒊𝒏𝒈_𝒑𝒐𝒓𝒕 − 𝒊𝒈𝒏𝒐𝒓𝒆_𝒇𝒍𝒐𝒂𝒕𝒊𝒏𝒈_𝒏𝒆𝒕 \

 −𝒄𝒉𝒆𝒄𝒌_𝒐𝒑𝒆𝒏_𝒍𝒐𝒄𝒂𝒕𝒐𝒓 − 𝒄𝒉𝒆𝒄𝒌_𝒔𝒉𝒐𝒓𝒕_𝒍𝒐𝒄𝒂𝒕𝒐𝒓

𝒗𝒆𝒓𝒊𝒇𝒚_𝒍𝒗𝒔 − 𝒎𝒂𝒙_𝒆𝒓𝒓𝒐𝒓 𝟏𝟎𝟎𝟎

83

Verify_lvs is an important command that checks for the inconsistencies in the
physical layout of the deisign, such as the number of shorted or open wires, this

command was used in the previous stages as well, in order to keep track of how
each of the commands affect the violations.

𝒓𝒆𝒑𝒐𝒓𝒕_𝒕𝒊𝒎𝒊𝒏𝒈 − 𝒅𝒆𝒍𝒂𝒚_𝒕𝒚𝒑𝒆 𝒎𝒂𝒙

𝒓𝒆𝒑𝒐𝒓𝒕_𝒕𝒊𝒎𝒊𝒏𝒈 − 𝒅𝒆𝒍𝒂𝒚_𝒕𝒚𝒑𝒆 𝒎𝒊𝒏

Report_timing is another command that was also in almost every stage of the

PNR, as it returns the setup and hold slack on which we base our script strategy
on.

𝒂𝒏𝒂𝒍𝒚𝒛𝒆_𝒇𝒑_𝒓𝒂𝒊𝒍 − 𝒏𝒆𝒕𝒔 {𝑽𝑫𝑫 𝑽𝑺𝑺} − 𝒑𝒐𝒘𝒆𝒓_𝒃𝒖𝒅𝒈𝒆𝒕 𝟓𝟎𝟎
− 𝒗𝒐𝒍𝒕𝒂𝒈𝒆_𝒔𝒖𝒑𝒑𝒍𝒚 𝟏. 𝟏

This command analyzes the created power network in order to check for the IR

drop across the entire design as well as the electro-migration for both the power
and ground nets.

Used in every stage, we use this command to keep an eye on the IR drop.

The power_budget option in this command is in milliwatts and shows us the
available power that we distribute among all of the cells of the design.

Before we write_stream command, we set options to it use the this first:

𝒔𝒆𝒕_𝒘𝒓𝒊𝒕𝒆_𝒔𝒕𝒓𝒆𝒂𝒎_𝒐𝒑𝒕𝒊𝒐𝒏𝒔
− 𝒎𝒂𝒑_𝒍𝒂𝒚𝒆𝒓 $𝒔𝒄_𝒅𝒊𝒓/𝒕𝒆𝒄𝒉/𝒔𝒕𝒓𝒎𝒐𝒖𝒕
/𝑭𝒓𝒆𝒆𝑷𝑫𝑲𝟒𝟓_𝟏𝟎𝒎_𝒈𝒅𝒔𝒐𝒖𝒕. 𝒎𝒂𝒑 \

 −𝒐𝒖𝒕𝒑𝒖𝒕_𝒇𝒊𝒍𝒍𝒊𝒏𝒈 𝒇𝒊𝒍𝒍 \

 −𝒄𝒉𝒊𝒍𝒅_𝒅𝒆𝒑𝒕𝒉 𝟐𝟎 \

 −𝒐𝒖𝒕𝒑𝒖𝒕_𝒐𝒖𝒕𝒅𝒂𝒕𝒆𝒅_𝒇𝒊𝒍𝒍 \

 −𝒐𝒖𝒕𝒑𝒖𝒕_𝒑𝒊𝒏 {𝒕𝒆𝒙𝒕 𝒈𝒆𝒐𝒎𝒆𝒕𝒓𝒚}

map_layer specifies the file that helps in turning the milkyway to GDSII format,

the next option is important for the case of hierarchal use, where the child_depth

specifies the level of child cells in a design. A large number should be used like 20.

84

output_outdated_fill forces the output of fill data. The last option specifies the
type of information that is associated with each pin in the design, the geometry of
the pin was chosen in this case.

𝒘𝒓𝒊𝒕𝒆_𝒔𝒕𝒓𝒆𝒂𝒎 − 𝒍𝒊𝒃 $𝒅𝒆𝒔𝒊𝒈𝒏

 −𝒇𝒐𝒓𝒎𝒂𝒕 𝒈𝒅𝒔\

 −𝒄𝒆𝒍𝒍𝒔 $𝒅𝒆𝒔𝒊𝒈𝒏\

 ./𝒐𝒖𝒕𝒑𝒖𝒕/${𝒅𝒆𝒔𝒊𝒈𝒏}. 𝒈𝒅𝒔

Finally, we turn out design into GDSII format using the write_stream command,
specifying the output folder and cells.

𝒅𝒆𝒇𝒊𝒏𝒆_𝒏𝒂𝒎𝒆_𝒓𝒖𝒍𝒆𝒔 𝒏𝒆𝒘_𝒗𝒆𝒓𝒊𝒍𝒐𝒈 − 𝒔𝒑𝒆𝒄𝒊𝒂𝒍 𝒗𝒆𝒓𝒊𝒍𝒐𝒈
− 𝒕𝒂𝒓𝒈𝒆𝒕_𝒃𝒖𝒔_𝒏𝒂𝒎𝒊𝒏𝒈_𝒔𝒕𝒚𝒍𝒆 {%𝒔[%𝒅]}
− 𝒄𝒉𝒆𝒄𝒌_𝒊𝒏𝒕𝒆𝒓𝒏𝒂𝒍_𝒏𝒆𝒕_𝒏𝒂𝒎𝒆 − 𝒄𝒉𝒆𝒄𝒌_𝒃𝒖𝒔_𝒊𝒏𝒅𝒆𝒙𝒊𝒏𝒈

𝒄𝒉𝒂𝒏𝒈𝒆_𝒏𝒂𝒎𝒆𝒔 − 𝒓𝒖𝒍𝒆 𝒏𝒆𝒘_𝒗𝒆𝒓𝒊𝒍𝒐𝒈 − 𝒉𝒊𝒆𝒓𝒂𝒓𝒄𝒉𝒚

These two commands are used for the extractor tool to read the bus names in the
right way. It can be replaced by other commands according to the naming style.

𝒔𝒆𝒕 𝒗𝒆𝒓𝒊𝒍𝒐𝒈𝒐𝒖𝒕_𝒏𝒐_𝒕𝒓𝒊 𝒕𝒓𝒖𝒆

𝒔𝒆𝒕 𝒗𝒆𝒓𝒊𝒍𝒐𝒈𝒐𝒖𝒕_𝒆𝒒𝒖𝒂𝒕𝒊𝒐𝒏 𝒇𝒂𝒍𝒔𝒆

𝒘𝒓𝒊𝒕𝒆_𝒗𝒆𝒓𝒊𝒍𝒐𝒈 − 𝒑𝒈 − 𝒏𝒐_𝒑𝒉𝒚𝒔𝒊𝒄𝒂𝒍_𝒐𝒏𝒍𝒚_𝒄𝒆𝒍𝒍𝒔 ./𝒐𝒖𝒕𝒑𝒖𝒕/${𝒅𝒆𝒔𝒊𝒈𝒏}_𝒊𝒄𝒄. 𝒗

𝒘𝒓𝒊𝒕𝒆_𝒗𝒆𝒓𝒊𝒍𝒐𝒈 − 𝒏𝒐_𝒑𝒉𝒚𝒔𝒊𝒄𝒂𝒍_𝒐𝒏𝒍𝒚_𝒄𝒆𝒍𝒍𝒔 ./𝒐𝒖𝒕𝒑𝒖𝒕/${𝒅𝒆𝒔𝒊𝒈𝒏}_𝒊𝒄𝒄_𝒏𝒐𝒑𝒈. 𝒗

These are the output files used in StarRC tool for RC extraction and PrimeTime
tool for STA.

85

3.2.2.7. RC extraction

There are two methods:

First one is by using command in ICC tool after finishing which is

𝒆𝒙𝒕𝒓𝒂𝒄𝒕_𝒓𝒄

Then write the output in (.spef) file by the following

𝒘𝒓𝒊𝒕𝒆_𝒑𝒂𝒓𝒂𝒔𝒊𝒕𝒊𝒄𝒔 − 𝒐𝒖𝒕𝒑𝒖𝒕 {./𝒐𝒖𝒕𝒑𝒖𝒕/𝒇𝒊𝒍𝒆. 𝒔𝒑𝒆𝒇}

𝒄𝒓𝒆𝒂𝒕𝒆_𝒓𝒂𝒊𝒍_𝒔𝒆𝒕𝒖𝒑

The second method is by using StarRC tool and it is the recommended method.

It has a special style for scripting by setting specific values for maximum
capacitance and minimum capacitance. It is run by the tool automatically.

3.2.3. STA

Using PrimeTime tool.

Static timing analysis is a way of assessing a design's timing performance under

worst-case scenarios by checking all possible paths for timing violations. It takes

into account the shortest possible latency across each logic node, but not the
circuit's logical action.

Static timing analysis is faster and more complete than circuit modelling.

Because it does not need to simulate many test vectors, it is faster. It's more

thorough since it examines worst-case timing for all possible logic situations, not
just those that are sensitive to a certain set of test vectors. Static timing analysis, on

the other hand, simply analyses the design for right timing, not for accurate logical
functionality.

The operation of synthesis with Design Compiler and physical implementation
with IC Compiler is driven by timing, area, and power restrictions. These tools

synthesize the netlist and execute physical placement and routing with the goal of

producing the quickest device with the least amount of area and power in the
shortest time possible while staying true to the design specifications. These tools

86

make trade-offs between speed, area, power, and runtime based on the designer's
limitations. However, in order to run at the required clock rate, a chip must meet
timing limitations; hence timing is the most critical design constraint.

In Flip Flop flavor:

Figure 22: timing path

A timing path is represented by the dashed arrow. Before the next clock edge
arrives at FF2, the change in signal data induced by a clock transition at flip-flop

FF1 must be propagated to flip-flop FF2, so that the logically processed data can be

properly latched onto FF2. Depending on the logic, the data value, and the values
of any side inputs going into the logic, the change at FF1.Q could impact the output

of the combinational logic cloud at FF2. D. If there is a change at FF2.D, it must
happen before the next clock edge reaches FF2.

87

3.2.3.1. Setup Check Timing:

Figure 23: setup timing illustration

With some delay, this signal passes via the combinational logic. The second flip-

flop, FF2.D, receives the output of the combinational logic. The arrival time for the
path is the time at which the signal value changes. The change in value at FF2.D

must occur at least an amount equivalent to the setup time requirement for the flip -
flop before the arrival of the clock edge at FF2. The needed time for the path is the

latest permissible arrival time. The capture event for the timing path is the latching

of data at FF2. The capture event occurs one full clock cycle after the launch event
in this case.

The slack of the timing check is the amount of time it takes to meet the timing
constraint.

The amount of slack is equal to the needed time minus the arrival time. So,

Setup Time is the amount of time the synchronous input (D) must show up, and be

stable before the capturing edge of the clock. This is so that the data can be stored
successfully in the storage device.

88

𝒔𝒆𝒕𝒖𝒑 𝒔𝒍𝒂𝒄𝒌 = 𝒕𝒉𝒆 𝒅𝒂𝒕𝒂 𝒓𝒆𝒒𝒖𝒊𝒓𝒆𝒅 𝒕𝒊𝒎𝒆 − 𝒕𝒉𝒆 𝒅𝒂𝒕𝒂 𝒂𝒓𝒓𝒊𝒗𝒆𝒅 𝒕𝒊𝒎𝒆

Equation 1: slack calculation

The slack is zero and the timing constraint is barely met if the signal arrives
exactly at the appropriate time.

The slack is negative if the signal arrives later than expected.

The slack can be positive means that the design is working at specified
frequency and it has some more margins as well.

Setup violations can be fixed by either slowing down the clock (increasing the
period) or by decreasing the delay of the data path logic.

89

3.2.3.2. Hold Check Timing:

Figure 24: hold time illustration

The timing path, which consists of a single NAND gate, has a relatively short

combinational delay from FF1 to FF2. Meanwhile, the three buffers generate a

considerable delay in the clock signal between the two flip-flops, which is probably
exacerbated by a huge RC delay due to the long route. As a result, the arrival of the

capture clock signal CLK2 at FF2 is greatly delayed in comparison to the launch
clock CLK1 at FF1.

𝑯𝒐𝒍𝒅 𝒔𝒍𝒂𝒄𝒌 = 𝒕𝒉𝒆 𝒅𝒂𝒕𝒂 𝒂𝒓𝒓𝒊𝒗𝒂𝒍 𝒕𝒊𝒎𝒆 − 𝒕𝒉𝒆 𝒅𝒂𝒕𝒂 𝒓𝒆𝒒𝒖𝒊𝒓𝒆𝒅 𝒕𝒊𝒎𝒆

Equation 2: hold time calculation

90

3.2.3.3. The types of paths:

• Register to Register:

The time it takes for data to propagate via the source flip-flop, travel through

combinational logic and routing, and arrive at the destination flip-flop before the
next clock edge occurs is known as data arrival time.

Figure 25: register to register path

𝑨𝒓𝒓𝒊𝒗𝒂𝒍 𝑻𝒊𝒎𝒆 = 𝑻𝒄𝒍𝒌 − 𝒒 + 𝑻𝒄𝒐𝒎𝒃𝒐

𝑹𝒆𝒒𝒖𝒊𝒓𝒆𝒅 𝑻𝒊𝒎𝒆 = 𝑻𝒄𝒍𝒐𝒄𝒌 − 𝑻𝒔𝒆𝒕𝒖𝒑

𝒔𝒆𝒕𝒖𝒑 𝒔𝒍𝒂𝒄𝒌 = 𝒕𝒉𝒆 𝒅𝒂𝒕𝒂 𝒓𝒆𝒒𝒖𝒊𝒓𝒆𝒅 𝒕𝒊𝒎𝒆 − 𝒕𝒉𝒆 𝒅𝒂𝒕𝒂 𝒂𝒓𝒓𝒊𝒗𝒆𝒅 𝒕𝒊𝒎𝒆

= (𝑻𝒄𝒍𝒐𝒄𝒌 − 𝑻𝒔𝒆𝒕𝒖𝒑)– (𝑻𝒄𝒍𝒌 − 𝒒 + 𝑻𝒄𝒐𝒎𝒃𝒐)

Equation 3: Slack calculation for register-to-register path

91

Register to Output:

The time it takes for data to leave the source flip-flop, travel via combinational

logic and interconnects, and exit the chip through the output port is known as data
arrival time.

Figure 26: register to output path

𝑨𝒓𝒓𝒊𝒗𝒂𝒍 𝑻𝒊𝒎𝒆 = 𝑻𝒄𝒍𝒌 − 𝒒 + 𝑻𝒄𝒐𝒎𝒃𝒐

𝑹𝒆𝒒𝒖𝒊𝒓𝒆𝒅 𝒕𝒊𝒎𝒆 = 𝒖𝒏𝒄𝒐𝒏𝒔𝒕𝒓𝒂𝒊𝒏𝒆𝒅

Equation 4: Arrival time calculation

• Input to Register:

Data arrival time is the time required for the data to start from the input port
and propagate through combinational logic and end at the data pin of the flip-flop.

Figure 27: input to register path

92

𝑨𝒓𝒓𝒊𝒗𝒂𝒍 𝒕𝒊𝒎𝒆 = 𝑻𝒄𝒐𝒎𝒃𝒐

𝑹𝒆𝒒𝒖𝒊𝒓𝒆𝒅 𝒕𝒊𝒎𝒆 = 𝑻𝒄𝒍𝒌 − 𝑻𝒔𝒆𝒕𝒖𝒑

𝒔𝒆𝒕𝒖𝒑 𝒔𝒍𝒂𝒄𝒌 = 𝑹𝒆𝒒𝒖𝒊𝒓𝒆𝒅 𝑻𝒊𝒎𝒆 − 𝑨𝒓𝒓𝒊𝒗𝒂𝒍 𝑻𝒊𝒎𝒆

= (𝑻𝒄𝒍𝒐𝒄𝒌 − 𝑻𝒔𝒆𝒕𝒖𝒑)– 𝑻𝒄𝒐𝒎𝒃𝒐

Equation 5: slack calculation for input to register path

3.2.3.4. Timing Analysis in the Design Flow:

Timing analysis serves different purposes in different phases of the design flow.

In Design Compiler, timing drives the selection of library cells used for synthesis

and the allocation of registers between combinational logic in data paths. In IC
Compiler, timing drives the placement of cells and the routing of interconnections

to minimize delays in the critical paths. In Primetime, exhaustive sign-off timing
analysis is the main purpose of the tool.

Many timing analysis features are shared by Design Compiler, IC Compiler, and
Primetime. The tools allow you to establish timing limitations and create timing

reports with the same commands. The Synopsys Design Constraints, or SDC, are

these instructions. These commands have the same syntax and have the same
effects across all the supported tools. That implies you can constrain a design in

Design Compiler, IC Compiler, Primetime, and other tools using the same SDC

script. Design rule restrictions, power limitations, and time constraints can all be
specified using SDC commands.

The (write_sdc) command generates a script containing a collection of SDC

commands that describe the design's present limitations. To read in the file and

apply the same restrictions in a different tool, use the read sdc command. The
(read_sdc) command operates similarly to the source command, except it also

checks for SDC compliance in the script commands. SDC script files can be used to

transmit restrictions between Synopsys products as well as some external
programs.

93

3.2.3.5. Timing Analysis After Routing:

Following routing, comprehensive nets are accessible for accurate RC extraction,

resulting in more accurate delay calculation results. The report constraint

command generates detailed reports on the critical paths, while the report timing
command reports on timing violations.

Use a sign-off extraction tool like StarRC and a sign-off timing tool like

PrimeTime for a complete and final design. A sign-off tool's purpose is to ensure

that the design will perform properly in terms of time with the highest possible
accuracy. The sign-off tools are more precise at extraction and timing analysis than
the synthesis, physical implementation, and optimization tools.

StarRC is a parasitic RC extraction tool that takes into account all capacitive

interactions between conductors and precisely mimics physical aspects of wires
including dishing, erosion, and the physical closeness of surrounding structures.

For a typical design, StarRC separates billions of capacitors and applies an

innovative parasitic reduction method to build the shortest possible netlist capable
of producing reliable timing analysis results.

PrimeTime is a full-chip static timing analyzer that shares Design Compiler and
IC Compiler's libraries, gate-level netlist, parasitic RC data, and SDC timing

constraints. PrimeTime performs a thorough analysis with the utmost speed and
accuracy, yielding results that are extremely similar to those of the SPICE
simulation.

94

Figure 28: Primetime inputs and outputs

95

Reading the Design Data:

The first step is to read the gate-level design description and information from
the linked technology library. Design descriptions and library information in .db

format, as well as .ddc and gate-level netlists in Verilog and VHDL forms, are
accepted by PrimeTime. read_db, read_ddc, read_verilog, and read_vhdl are the
commands for reading design files.

The link design tool resolves all references between distinct modules in the

hierarchy and produces an internal representation of the design for timing analysis
when you read in a collection of hierarchical design files.

If the chip layout has been completed, back-annotating the design with detailed
delay or parasitic information will yield more accurate findings. Use the read sdf

command to back-annotate the design with delay information from an SDF file.

Use the read parasitics command to back-annotate the design using parasitic
capacitance and resistance data. PrimeTime allows the RSPF, SPEF, and SBPF
formats for detailed parasitic data.

Parallel Parasitic Reading:

Before the time update can take place, the following types of information must
be read in while completing a design analysis:

• Netlists using the read_verilog, read_vhdl, read_ddc, and

read_milkyway commands.

• Annotations using the read_parasitics and read_sdf commands.

• Timing constraints and exceptions using the source and read_sdc

commands.

• User-defined scripts and custom pre-update reports using the source

command.

• Reading detailed parasitics files using the read_parasitics command

allows the parsing of parasitics files and back annotation to happen in
parallel with other unrelated commands in the script.

96

Constraining the Design:

PrimeTime requires information about the design-level timing limitations in
order to do timing analysis:

• Clock characteristics.

• Signal transition arrival times at each input port.

• Signal transition required times at each output port.

Checking the Design and Analysis Setup:

It's a good idea to check the design's characteristics, such as the hierarchy,

library elements, ports, nets, and cells, as well as the analysis setup parameters,
such as clocks, wire load models, input delay constraints, and output delay
constraints, before starting a thorough analysis.

The check_timing command checks for constraint problems such as undefined

clocking, undefined input data arrival times, and undefined output data required

times. In addition, it provides information about potential problems related to
minimum clock separation (for master-slave clocking), ignored timing exceptions,
combinational feedback loops, and latch fanout.

Performing a full analysis:

The report_timing command is perhaps the most flexible and powerful
PrimeTime analysis command. It provides general or more information about the

timing of the whole design, a group of paths, or an individual path. The command
options let you specify the types of paths reported, the scope of the design to

search for the specified paths, and the type of information included in the path
reports.

The report includes the following information about each reported path:

• Path startpoint, endpoint, and intermediate points

• Incremental and cumulative delay at each point along the path

• Final data arrival time at the endpoint

• Time at which the data must arrive at the endpoint to meet the constraint

(“data required time”)
• Setup timing slack (required time minus arrival time)

97

In the report_timing command, the -delay_type option specifies the type of
timing checks to report. You can set the delay type to maximum using the max
value for setup checks, minimum using the min value for hold checks.

Timing Analysis Updates:

The timing update at any time with the update_timing command. By default,
PrimeTime minimizes the time it spends on a timing update by analyzing only the

parts of the design that are affected by changes since the previous timing update.

You can override this default behavior and update the entire delay by using the -
full option of the update_timing command.

Fixing Timing Violations:

When PrimeTime indicates a timing violation, check the violation report to see if
it's an actual violation rather than a condition like a false path or an erroneously

defined constraint. Use the numerous "report" commands to figure out what

caused each violation. PrimeTime lets you temporarily change the design in certain
ways, without modifying the original netlist, so you can easily test the timing

effects of those changes. To make these changes, use the insert_buffer, size_cell,

and swap_cell commands or use fix_eco_timing -type setup -method size_cell
command to resize the cells Automatically.

Saving and Restoring Single-Core Sessions:

The save_session and restore_session commands allow you to save the current

state of a PrimeTime session and restore the same session later. When you need to
examine the results of an earlier timing analysis, using the save and restore feature

avoids repeating the costly time-consuming update_timing portion of the analysis.
Additionally, you can save a session before it is updated so that you can also save

and restore the time-consuming pre-update actions. The restore_session command

takes you to the same point in the analysis using only a small fraction of the
original runtime. This command clears out any existing design data and library
data in PrimeTime memory before it restores the saved session.

You can use the save_session command to save sessions before or after using

the update_timing command. If the timing of the design is already updated, the
saved session includes the timing. If only incremental timing updates are pending,

the incremental update is performed and the resulting timing is saved with the

session. If a full timing update is pending or the timing has not yet been updated in

98

the analysis, the save_session command does not save any timing information.
Saving such sessions without timing allows designs and parasitics to be loaded

once, saved, and reused, improving throughput for multiple design runs that share

a netlist and parasitics. In all cases, the save_session command requires a linked
design and causes an implicit link if the design has not yet been linked.

3.3. ASIC design methodologies

There are three flows:

• Flat flow

• Hierarchical flow

• Topographical flow

Our target is to get along with the three flows and decide which one fits more
our project objective which is the highest speed.

Let’s know what is the difference between these three flows:

3.3.1. Flat overview

Flat design is the design in which the whole module is flattened. It has all the

controls for the smallest cell in the design and hence can serve more optimization
techniques.

Most of the cases, flattening increase the area

3.3.2. Hierarchical overview

Hierarchical design uses blocks to represent lower-level modules as black boxes
then gather them is a higher level reaching top module as instantiations.

There is no access to internal details, so it’s harder in optimization.

99

Figure 29: represents hierarchical flow bottom-up method

100

3.3.3. Topographical overview

‘Topographical technology offers much-needed predictability for a convergent

RTL- to- GDSII path. Front-end designers no longer have to wait for layout results

to uncover critical design issues; they can identify and fix them up front. In turn,
back-end teams receive a better netlist for physical implementation which is more

likely to meet the desired performance” said Philippe Magarshack, group vice
president, Central CAD and design solutions.

This means that Topographical flow improve the design process for better
optimization technique, as it gives the synthesis flow future insight about the floor

plan in the PnR flow then returns after synthesizing to PnR at placement step.

Synthesizing with these information gives faster, reliable and meet design
specifications efficiently.

Figure 30: illustration for topographical flow

101

In our project, our objective is to maximize the speed of RISC-V.

We will examine the design by the three ASIC flows which are flat, hierarchical
and topographical flows and choose the one which meets our objective.

The following chapters will scope our technical work in the three flows,
compare results and reach final conclusion.

102

Chapter 4

Flat flow

4.1. synthesis in Flat flow

• First by running the synthesis script as discussed in with period = 5ns
(frequency = 200MHz), the results shown in the table are got

Table 6: Synthesis results of first run in Flat Flow

Setup slack Hold slack Cell area Total dynamic power Total leakage power

-0.61 ns 0.00 ns 42793.282356

1.9909 mW 197.1497 uW

So as shown the setup slack is negative and too large so it needs much effort to
reduce it as it is done in the next step

• In this step instead of using (compile -map_effort meduim) command the

tool effort is increased to be high instead of medium to be (compile -
map_effort high) command, the results shown in the table are got

Table 7: Synthesis results of second run in Flat Flow

Setup slack Hold slack Cell area Total dynamic power Total leakage power

-0.33 ns 0.00 ns 43072.050352 1.9991 mW 198.6210 uW

So as shown the setup slack is reduced (as magnitude) but still negative and
large so it also needs much effort to reduce it as it is done in the next step

103

• In this step instead of using (compile -map_effort high) command the

effort is increased to be high instead of medium to be (compile_ultra)

command which (performs a high_effort compile on the current design

for better quality of results (Qor)), the results shown in the table are got

Table 8: Synthesis results of third run in Flat Flow

Setup slack Hold slack Cell area Total dynamic power Total leakage power

0.00(met)
ns

0.00 ns 26182.114529 1.8613 mW 132.8229 uW

So as shown the setup slack is 0.00 met so it is indication that the speed can be
increased as it is done in the next step.

Note:

Compile_ultra: performs a high_effort compile on the current design for better
quality of results (QoR). As with the compile command, optimization is controlled

by constraints that you specify on the design. This command is targeted toward
high performance designs with very tight timing constraints. It provides you with
a simple approach to achieve critical delay optimization.

• In this step with the same command (compile_ultra) the period is

reduced more and more till reaching that period = 2.5ns (frequency =
400MHz) which is double speed of the last step , the results shown in the
table are got

Table 9: Synthesis results of forth run in Flat Flow

Setup slack Hold slack Cell area Total dynamic power Total leakage power

-0.41 ns 0.00 ns 28099.974447 3.7526mW 142.1629uW

So as shown the setup slack is negative and too large so we need much effort to
reduce it as it is done in the next step.

104

• In this step instead of using (compile_ultra) the (compile_ultra -

timing_high_effort_script) command is used which (runs a strategy

intended to improve the resulting delay of the design, possibly at the cost
of additional runtime), with the same period in the last step (period = 2.5
ns), the results shown in the table are got.

Table 10: Synthesis results of fifth run in Flat Flow

Setup slack Hold slack Cell area Total dynamic power Total leakage power

-0.37ns 0.00 ns 28208.236457

3.7715 mW 142.5580 uW

So as shown the setup slack is reduced (as magnitude) but still large, so it is

better to proceed to the next step in the flow (the PnR) where more optimization
can be done.

Note:

-timing_high_effort_script: runs a strategy intended to improve the resulting
delay of the design, possibly at the cost of additional runtime. The strategy can

make changes to variable or constraints that modify compile_ultra behavior and
perform additional passes to achieve better delay.

105

• In this step the register_file latch-based file is replaced by register_file flip

flop based so there is a good result in timing and with increasing the

options of the compile_ultra to be compile_ultra -
timing_high_effort_script –retime –incremental with retime option which

Uses the adaptive -retime algorithm during optimization to improve

delay and –incremental option which Runs compile_ultra in incremental
mode. In the incremental mode, the tool does not run the mapping or
implementation selection stages. the results shown in the table are got.

Table 11: Synthesis results of the final run in Flat Flow

Note:

-incremental: Runs compile_ultra in incremental mode. In the incremental
mode, the tool does not run the mapping or implementation selection stages.

-retime: Uses the adaptive retiming algorithm during optimization to improve

delay. This option is ignored if the -only_design_rule option or the -top option is
chosen at the same time.

Setup slack Hold slack Cell area Total dynamic power Total leakage power

0 ns (met) 0.00 ns 31962.5605 um2 4.2435 mW 159.5308 uW

106

4.2. PnR in Flat flow

The Synopsys IC Compiler tool integrates proprietary design planning, physical

synthesis, clock tree synthesis, and routing for logical and physical design

implementations across the design phase to give a complete netlist-to-GDSII design
solution.

After proceeding to insert and route the complete core inside the chip area after
successfully synthesizing the core with the target clock and limitations. Now our

target to get clean timing and clean LVS. So, we followed different scenario’s so as
to get better performance.

• Latch based flavor in Register file:

Level-sensitive latches are used to implement the registers in the latch-based

register file. When compared to an implementation utilizing normal flip-flops,

this provides for significant area savings, making the latch-based register file the
top choice for ASIC implementations. Commercial tools can be used to simulate

the latch-based register file. The latch-based register file cannot be simulated
using Verilator. The latch-based register file can also be used for FPGA

synthesis; however, this isn't encouraged because latches aren't well supported

by FPGAs. Using the source file cv32e40p_register_file_latch.sv in the project to
select the latch-based register file. When the latches are not written, a

technology-specific clock gating cell must be provided to keep the clock inactive.
This cell must be wrapped in the cv32e40p_clock_gate module.

1st scenario:

• With period = 2.5 nsec.

• Core utilization = 40%.

• Aspect ratio = 2.
• 4-layers for the power (metal 7 and metal 9) are horizontal ring layers and

(metal 8 and metal 10) are vertical ring layers

The power supply voltage is 1.1 V and the maximum IR drop is 11.05 mV which

is less than 22 mV and the average power is 500 mW. Also, the worst path is
register to output with slack equals -1.05 nsec.

• Using the place_opt command without focusing in any optimization

107

Resulting in approximately 0 percent congestion in both vertical and horizontal
directions. Also, the worst path is register to output with slack equals -0.12 nsec.
and the area equals 30919.840506.

• Nothing is changed in the CTS script as discussed in the CTS script section:

− Total dynamic power is 4.2971 mW.

− Cell leakage power is 171.1259 uW.

− Total cell area is 31904.306500

− Worst path of setup is -0.15 nsec.

− Worst path in Hold is -0.03 nsec.

• The only difference in the script of the routing in this scenario is that using
“route_auto” command.

To run automatic routing, use route_auto command. The route_auto command

is used to perform global, track assignment, and detail routing. Zroute reads the
block before starting routing and updates the block when all routing steps are

completed when running route_auto. Zroute verifies the input data when

restarting routing with this command if you stop automated routing before it
conducts detail routing. When running routing, use the route auto command to

check for convergence, congestion, and design rule quality-of-results (QoR). If
congestion QoR is more important to you than timing QoR, you might wish to
utilize route auto.

As a result, in the routing step:

• Total SHORT Nets are 373.

• Total Open Nets are 0.

• Total number of DRC = 21941.

• Worst path Setup slack is -0.35 nsec.

• Worst path Hold slack is -0.03 nsec.

So, it is clear that the first scenario results are not good as the shorts are large
and also the setup slack is too large that we cannot continue with this scenario.

108

2nd scenario:

In the second scenario, our target is to decrease the shorts as we can so,

• With period = 2.5 nsec.
• Core utilization = 40%.

• Aspect ratio = 2.
• 2-layers for the power (metal 9) is horizontal ring layer and (metal 10) are

vertical ring layer

The power supply voltage is 1.1 V and the maximum IR drop is 11.05 mV which

is less than 22 mV and the average power is 500 mW. Also, the worst path is
register to output with slack equals -1.06 nsec.

• Using the place_opt command without focusing in any optimization

Resulting in the congestion, the congestion is high in both vertical and
horizontal directions. Also, the worst path is register to output with slack equals -
0.08 nsec. and the area equals 30221.590496.

• Nothing is changed in the CTS script as discussed in the CTS script section:

− Total dynamic power is 4.2540 mW.

− Cell leakage power is 165.0084 uW.

− Total cell area is 31110.296492.

− Worst path of setup is -0.13 nsec.

− Worst path in Hold 0 violated.

• Nothing is changed in the routing script of the first scenario.

As a result, in the routing step:

• Total SHORT Nets are 412.

• Total Open Nets are 0.

• Total number of DRC = 12742.

• Worst path Setup slack is -0.43 nsec.

• Worst path Hold slack is 0.01 nsec met.

So, it is clear that the first scenario results are not good compared to the first
scenario and our target as the shorts are large and also the setup slack is too large
that we cannot continue with this scenario.

109

3rd scenario:

• Period=2.5ns.

• Core utilization= 30%.

• Aspect ratio = 2.
• Using the command in the floorplanning before the virtual placement:

placer_max_cell_density_threshold 0.4:

This variable enables a mode of coarse placement in which cells are not

distributed evenly across the surface of the chip, but are allowed to clump
together. The value you specify sets the threshold of how tightly the cells are
allowed to clump. The value of 1.0 allows no gaps between cells.

A reasonable value is one that is above the background utilization of your

design but below 1.0. For example, if your background utilization is 40%, or 0.4, a
reasonable value for this variable is a value between 0.4 and 1.0. The higher the
value, the more tightly the cells clump together.

• 2-layers for the power (metal 9) is horizontal ring layer and (metal 10) are

vertical ring layer

• Nothing is changed in the CTS script as discussed in the CTS script section:

− Total dynamic power is 4216 uW

− Cell leakage power is 163.6 uW.

− Total cell area is 30882.0685

− Worst path of setup is -0.04 nsec.

− Worst path in Hold -0.1 nsec.

• Nothing is changed in the routing script of the first scenario.

As a result, in the routing step:

− Total SHORT Nets are 387.

− Total Open Nets are 0.

− Total number of DRC = 3976.

− Worst path Setup slack is -0.15 nsec.

− Worst path Hold slack is -0.1 nsec.

So, it is clear that the shorts aren’t accepted as well as the timing so many
iterations are required.

110

4th scenario:

• Period=2.5ns

• Core utilization = 25%

• Aspect ratio = 2.

• Using the command in the floorplanning before the virtual placement:

placer_max_cell_density_threshold 0.3.

• 2-layers for the power (metal 9) is horizontal ring layer and (metal 10) are
vertical ring layer

• Nothing is changed in the CTS script as discussed in the CTS script section:

− Total dynamic power is 4.5105 mW.

− Cell leakage power is 169.57 uW.

− Total cell area is 31385.074513.

− Worst path of setup is -0.12 nsec.

− Worst path in Hold -0.04 nsec.

• Nothing is changed in the routing script of the first scenario.

As a result, in the routing step:

− Total SHORT Nets are 2.

− Total Open Nets are 0.

− Total number of DRC = 11.

− Worst path Setup slack is -0.16 nsec.

− Worst path Hold slack is -0.04 nsec.

111

• Flip-flop based flavor in Register file:

The registers of the flip-flop-based register file are implemented using ordinary,
positive-edge-triggered flip-flops. As a result, it is the first choice when using

Verilator to simulate the design. Using the source file cv32e40p_register_file_ff.sv
in the project to select the flip-flop-based register file.Also, working on clock period
of 2.6 nsec which is 384.6 MHz.

Floorplanning:

Because it involves the location of I/O pads and macros, as well as power and
ground structures, floorplanning can be difficult. Before beginning physical

floorplanning, make sure that the data that will be used during the physical design
process is appropriately prepared.

All ASIC physical designs require proper data preparation in order to apply a

correct-by-construct methodology. So, at the beginning the physical standard cells
have to be put inside the boundaries of the die area. So, we put an aspect ratio (is

the ratio between width of the die to height of the die) equals 2 and utilization of
25%. At which the utilization is defined as the ratio of the area of the standard Cells

to the area of the chip minus the area of the macros and area of blockages. So as to

reduce the congestion, we used the virtual placement with the congestion switch is
on and high effort at which it enables congestion-driven placement mode. And the

high effort to Specifies the effort level for congestion mode. The default effort level

is medium. Expect a significant increase in run-time for high effort. Also, we used
the timing driven option so as to enable direct timing-driven placement mode to
get positive slack with margin out of this phase.

112

Figure 31: floor plan and virtual placement in flat flow

This figure shows the floorplanning with 25% in utilization of the core area and
aspect ratio of 2.

 Then we define the metal layers that will be used for routing stage, this is

important at floorplanning stage so that PnR tool can perform global routing to
estimate routing regions and potential congestion properly

After this stage, the congestion approximately equals to zero and the slack is
zero met.

The final stage in this part is to use virtual flat placement, which is at the heart of

our design flow, so that cells can freely move around the core without being
constrained.

113

After we've virtually positioned the design in the core area and established the
placement strategy, we're ready to set up the power grid that will supply the
standard cells with the required voltage supply.

Power planning:

In this scenario, in each standard cell, we define the power and ground nets and

ports so that the tool can connect to the grid afterwards. we used 2-layers for the
power (metal 9) is horizontal ring layer and (metal 10) is vertical ring layer. and the

maximum voltage drop not to exceed 2% of the normal power supply. So as to
simulate the power flow in the network, the tool needs the virtual power pads so

that it can compute the available current flown from them and build the power
grid entirely on the basis of virtual ports.

So that the layers will be used as the following:

• Metal 9 and metal 10 are horizontal/vertical power straps

• Metal 8 is the tap layer.

• Metal 1 to metal 6 are used for routing to decrease the shorts.

• Metal 3 to metal 7 for clock signal routing as higher metal layers have less

resistance than lower layers which means lower interconnections
propagation delay.

Using the command:

define_routing_rule my_route_rule \

 -widths {metal3 0.14 metal4 0.28 metal5 0.28 metal6 0.28 metal7 0.8}

 -spacings {metal3 0.14 metal4 0.28 metal5 0.28 metal6 0.28 metal7 0.8}

114

Figure 32: voltage drop map

PNA Voltage drop is constrained by the voltage supply value, here voltage

supply of 1.1 V is used which constrains the maximum IR Drop value by 22 mV

(2% of the voltage supply). We achieved maximum VDD IR Drop of 12.092 mV and
maximum VSS IR Drop of 11.356 mV. These values are the values inside the red
region in Figure 32 which are acceptable as long as they are below 22 mV.

115

Placement:

We used a standard coarse placement step after executing a virtual flat

placement and synthesizing the power network on the chip. We used a congestion -

driven placement in this stage to improve routing congestion in the design, and the
outcome was an overflow of a few GRC cells, as shown by about 0% congestion in

both vertical and horizontal directions. The timing requirements were also satisfied
in this stage. Therefore, the design was clean in timing and congestion so,

• The setup slack is 0.05 met.

• The hold slack is 0.07 met.

Figure 33: placement map in flat flow

The design's post-placement hierarchy Each of the six colors represents a high-

level block in the hierarchy. The color blue dominates the design area since it
represents the majority of the flattened pieces.

116

CTS:

The next stage is to construct our clock tree after setting the design with no

congestion or timing violations. A single clock source is dispersed throughout the

entire semiconductor in this configuration. This stage is divided into three sub-
stages, each with its unique set of features. We set the clock nets' fanout to 10 in

order to reduce clock latency and skew as much as possible. We gave the tool some

information about timing needs to assist it in building the network with some
limits. The target early delay was set to 0.1 nanoseconds, with a minimum skew of

0.5 nanoseconds and a maximum clock transition of 0.150 nanoseconds. After all

these information, we are ready to start the clock tree stages as discussed in the
CTS section.

Figure 34: CTS in flat flow

117

The clock tree network is spread throughout the entire chip.

Because of the non-uniform distribution of sequential devices, the density of
clock nets in the chip is not balanced, as seen in the figure.

As a result, in the CTS step:

• Total dynamic power is 4.9644 mW (100%).

• Cell leakage power is 174.5627 uW.

• Total cell area is 34004.376546

• Worst path of setup is 0 met.

• Worst path in Hold is 0.02 met.

Routing:

The physical design is now ready to be routed after completing the core clock
network without any timing or DRC violations. However, before proceeding to the

routing stage, we must first check for congestion so that the tool can route

efficiently. In the post-CTS stage, the resultant congestion is nearly 0% in both
vertical and horizontal directions.

First of all, specify the routing layers. We choose to route at maximum of six

layers which are metal-1, metal-2, metal-3, metal-4, metal-5 and metal-6 layers. we

can forward to our routing steps directly. The routing process comprises of three
main phases: global routing, track assignment and detailed routing. Each of them

is discussed in detail in the routing section. When routing is complete, it is time to
correct physical DRC violations.

We can see that there is almost no congestion in the design by examining the
congestion one more time before routing. As a result, the separate global routing

stage can be skipped. The IC compiler tool has a routing command that can
complete all three routing processes in a single hit.

To run automatic routing, use route_auto command. The route_auto command
is used to perform global, track assignment, and detail routing. Zroute reads the

block before starting routing and updates the block when all routing steps are

completed when running route_auto. Zroute verifies the input data when
restarting routing with this command if you stop automated routing before it

conducts detail routing. When running routing, use the route auto command to

check for convergence, congestion, and design rule quality-of-results (QoR). If

118

congestion QoR is more important to you than timing QoR, you might wish to
utilize route auto.

After performing this step, we found many DRC violations on nets and timing
requirements was not met. So, we had to bypass this step and jump right into the

routing phase. This step addresses all routing difficulties, although it takes a long

time to complete. We discovered few time and physical DRC violations after
successfully completing the first full routing phase. The program also provides an

incremental routing phase that allows you to resolve time and DRC violations
without having to reroute the entire design. After all, we have got a clean timing
and physical DRC results.

As a result, in the routing step:

• Total SHORT Nets are 0.

• Total Open Nets are 0.

• Worst path Setup slack is -0.04 nsec.

• Worst path Hold slack is 0.03 met.

Chip finishing:

The finishing touches on the chip are the final stage in the place and route. The
main reason for this phase is that the manufacturing process necessitates certain

measures in order to ensure an error-free chip during the manufacturing process.
The following are the four elements that make up this stage:

• Metal layers spreading and widening

• Standard cell filling

• Redundant vias insertion

• Metal filling

Metal layers spreading and widening:

Is carried out to prevent minimum width interconnections from openings and

minimum-spacing interconnections from shorts, which could occur as a result of
any random particles that may fall on the chip and cause damage during the

fabrication process. However, spreading and expanding may result in new
temporal inconsistencies.

Standard cell filling:

119

Is carried out in the empty areas in the normal cell rows to make the chip's
density uniform and to increase its yield. Some places may still be unoccupied
since filling would result in DRC violations if they were filled.

Redundant vias insertion:

Is the addition of extra vias to the original vias so that if one of the vias in both
the original and extra vias fails, the connection between the metal layers will not
fail since another contact will join the metal layers together.

Metal filling:

Is used to prevent over-etching of metal interconnections in low-metal-density
locations during the fabrication process. Metal fill near key nets on the same layer

is deleted or trimmed, and timing driven metal filling is performed precisely to
protect timing on critical nets.

Figure 35: Chip after finishing in Flat Flow

120

To fill the spaces between the actual cells and wires, the die has been filled with
dummy standard cells and false metal wires. Actual cells appear in a dark violet
color, while dummy cells appear in a pale blue color.

After completing this stage, we must do a final check for timing and DRC

violations across the entire design. If any of them appear, we can use a simple

synthesis to correct them, and then the chip is ready to be built following a post-
layout sign-off in a STA tool to ensure that the timing of the entire chip is accurate.

4.3. STA in Flat Flow

The next stage after completing a clean place-and-route phase is to Use a high-

precision static timing analysis tool to verify the timing. The timing factor is quite
important to consider. We have a STA tool that we use.

Synopsys PrimeTime is one of the projects we've worked on, and we're going to
talk about it on our project.

The goal of utilizing this tool at this stage is to check timing across a range of

projected operating situations for the design. Temperature, operating voltage, and
manufacturing process are the three key dimensions of these operating
circumstances. MOSFET threshold voltage is another factor that can be considered.

We can divide manufacturing process analysis into three categories: slow slow,

typical-typical, and fast-fast process. The slow-slow process, as indicated by its
name, has the highest standard cell delay among the others, while the fast-fast

process has the shortest. In terms of the temperature outside, the highest

temperature-based cells have the greatest delay, while the lowest temperature-
based cells have the smallest delay.

The operating voltage has a considerable impact on the propagation delay, as
the highest voltage-based cells have the shortest delay and the lowest voltage-
based cells might contribute with the longest delay.

The threshold voltage of the MOSFET is the final influencing factor. Low voltage

threshold (LVT), regular voltage threshold (RVT), and high voltage threshold
(HVT) are the three major forms of threshold voltage found in MOS devices (HVT).

This element has a substantial impact on the typical cells' delay. The lowest

threshold-based cells have the shortest propagation delay, whereas the highest

threshold-based cells have the longest propagation delay. We only have regular

121

voltage threshold-based libraries in our scenario. This sort of library has a wide
range of working circumstances, as described earlier.

As a result, the best-case library has the lowest temperature, greatest voltage,
and fastest procedure, whereas the worst-case library has the opposite of these
conditions.

We can go through our job and address the predicted instances after we've
identified them.

In order to fulfil the setup and hold timing requirements, all of these situations
must be met.

Referring to the tool's inputs, the tool must read the Verilog netlist. In addition
to the operational libraries that we will examine in this scenario, so that we can

define the real delays of the physical nets, we'll need the restrictions and parasitics
files.

The issue is that the tool estimates the nets' propagation delay using non-real
resistance and capacitance values, resulting in non-real delay values. The standard

cell library provides a table that can be used to compute the delay. When parasitic

values exceed certain thresholds, the STA tool starts extrapolating based on the
table's most recent parasitic values. It then adds an additional 10% delay to the

maximum value of the defined delay. This might lead to inaccuracy in delay
calculations. That finding demonstrated that the parasitic values are incorrectly
written in the file in some way.

We proceeded to analyze the design against the various instances after

successfully completing the setup. In most situations, the setup timing was perfect,

and the hold time was the issue. The way to get the actual setup time is to fix them
in STA tool itself and to write the changes that have done to the design, and then

forward them the layout tool to make these changes on the design, and finally the
tool can write a new DDC-based file that contains the changes. That new file can be

forwarded again to the STA tool for further analysis. The PrimeTime STA tool
offers a built-in synthesis engine to fix the setup and hold timing violations.

122

Chapter 5

Hierarchical flow

There are two topologies in hierarchical flow:

• Top-down approach: here we analyze all RTL design files including top

module at the same time, the tool handles interdependencies between
files automatically. This method is recommended most of times but is

hard in large designs; it needs large memory to adopt all the files at

simultaneously during analysis step.

• Bottom-up approach: here each file is constrained and analyzed
independently; at the end of the flow, they are assembled together.

In our project we used the top-down approach which fit for RISC-V design.

The open-source RISC-V in PULP has constrained file at period= 5nsec, our
objective is highest possible speed with clean lvs and met timing.

Hence, we started to try the flow with period= 2.5 nsec and utilization = 0.4 it
gave us large violation for timing and DRCs:

− Slack = -0.12 nsec

− Hold= -0.01 nsec

− Shorts > 300

Then we tried further optimizations including reducing cell placement density
in single area, maximizing the number of routing layers and routing optimization.

These helped us to reach maximum optimization in period= 2.5 nsec and
utilization=0.25 with results:

− Slack = -0.06 nsec

− Hold= -0.01 nsec

− Shorts <10

So, we increased the period gradually till reaching the final iteration with the
following results at period=2.7 and utilization= 0.5:

123

− Slack = 0.01 nsec (met)

− Hold= 0.02 nsec (met)

− Shorts =0

− Opens=0

− DRCs=1 which can be solved by other tools not available with us.

Here are the steps for the final successful iteration

5.1. Synthesis in hierarchical flow

𝒔𝒆𝒕_𝒂𝒑𝒑_𝒗𝒂𝒓 𝒔𝒆𝒂𝒓𝒄𝒉_𝒑𝒂𝒕𝒉 "/𝒉𝒐𝒎𝒆/𝒔𝒕𝒂𝒏𝒅𝒂𝒓𝒅_𝒄𝒆𝒍𝒍_𝒍𝒊𝒃𝒓𝒂𝒓𝒊𝒆𝒔
/𝑵𝒂𝒏𝒈𝒂𝒕𝒆𝑶𝒑𝒆𝒏𝑪𝒆𝒍𝒍𝑳𝒊𝒃𝒓𝒂𝒓𝒚_𝑷𝑫𝑲𝒗𝟏_𝟑_𝒗𝟐𝟎𝟏𝟎_𝟏𝟐/𝒍𝒊𝒃/𝑭𝒓𝒐𝒏𝒕_𝑬𝒏𝒅
/𝑳𝒊𝒃𝒆𝒓𝒕𝒚/𝑵𝑳𝑫𝑴"

𝒔𝒆𝒕_𝒂𝒑𝒑_𝒗𝒂𝒓 𝒍𝒊𝒏𝒌_𝒍𝒊𝒃𝒓𝒂𝒓𝒚 " ∗ 𝑵𝒂𝒏𝒈𝒂𝒕𝒆𝑶𝒑𝒆𝒏𝑪𝒆𝒍𝒍𝑳𝒊𝒃𝒓𝒂𝒓𝒚_𝒔𝒔𝟎𝒑𝟗𝟓𝒗𝒏𝟒𝟎𝒄. 𝒅𝒃"

𝒔𝒆𝒕_𝒂𝒑𝒑_𝒗𝒂𝒓 𝒕𝒂𝒓𝒈𝒆𝒕 _𝒍𝒊𝒃𝒓𝒂𝒓𝒚 "𝑵𝒂𝒏𝒈𝒂𝒕𝒆𝑶𝒑𝒆𝒏𝑪𝒆𝒍𝒍𝑳𝒊𝒃𝒓𝒂𝒓𝒚_𝒔𝒔𝟎𝒑𝟗𝟓𝒗𝒏𝟒𝟎𝒄.𝒅𝒃"

Here we started to read our open-source library Nangate and included the slow-

slow corner database in link and target libraries at temperature -40 celsius degrees.

𝒔𝒉 𝒓𝒎 − 𝒓𝒇 𝒘𝒐𝒓𝒌

𝒔𝒉 𝒎𝒌𝒅𝒊𝒓 − 𝒑 𝒘𝒐𝒓𝒌

Here we remove any old folder named work and create another new one named
in “work”.

𝒅𝒆𝒇𝒊𝒏𝒆_𝒅𝒆𝒔𝒊𝒈𝒏_𝒍𝒊𝒃 𝒘𝒐𝒓𝒌 − 𝒑𝒂𝒕𝒉 ./𝒘𝒐𝒓𝒌

Here we define the path of design library work which is the folder we created
before.

𝒔𝒆𝒕 𝒉𝒅𝒍𝒊𝒏_𝒔𝒗𝒆𝒓𝒊𝒍𝒐𝒈_𝒔𝒕𝒅 𝟐𝟎𝟎𝟗

The open-source RTL had different version than the tool we have, so we created
this command to match the versions in reading the files.

Then we analyzed all the RTL files included in the open-source RTL and the
packages needed that are instantiated inside these files.

124

These files should be analyzed in order of which the file instantiated in the other
should be called before the other.

Analyzing is done by 𝒂𝒏𝒂𝒍𝒚𝒛𝒆 command

The clock gating file is created with us as we instantiated it from library, because
the one downloaded from PULP is for simulation only.

Then elaborated, checked and linked the design as discussed in the ASIC flow
on chapter 3

𝒖𝒏𝒊𝒒𝒖𝒊𝒇𝒚

This command is very important in hierarchical design, it differentiates by name

the instantiations in the design that have the same names. This is important for

optimizations as any change for example in the size of any instantiated cell, it will
change only this cell and doesn’t affect the other identical instantiated cells because
they have different names after this command.

Then we compiled the design with 𝒄𝒐𝒎𝒑𝒊𝒍_𝒖𝒍𝒕𝒓𝒂 command with option

– 𝒏𝒐_𝒂𝒖𝒕𝒐𝒖𝒏𝒈𝒓𝒐𝒖𝒑 which differentiate between flat flow and hierarchical as it
tells them not to flatten the design while compiling. Another option is added which
are −𝒕𝒊𝒎𝒊𝒏𝒈_𝒉𝒊𝒈𝒉_𝒆𝒇𝒇𝒐𝒓𝒕_𝒔𝒄𝒓𝒊𝒑𝒕 and – 𝒓𝒆𝒕𝒊𝒎𝒆 to fix violated slack

To finish the synthesis with 0 MET timing we had to repeat the previous

compile command 3 more times with another added option to the above
−𝒊𝒏𝒄𝒓𝒆𝒎𝒆𝒏𝒕𝒂𝒍

Then we wrote the generated netlist in verilog format and. ddc using the
following

𝒘𝒓𝒊𝒕𝒆_𝒔𝒅𝒄 𝒐𝒖𝒕𝒑𝒖𝒕/${𝒅𝒆𝒔𝒊𝒈𝒏}. 𝒔𝒅𝒄

𝒅𝒆𝒇𝒊𝒏𝒆_𝒏𝒂𝒎𝒆_𝒓𝒖𝒍𝒆𝒔 𝒏𝒐_𝒄𝒂𝒔𝒆 − 𝒄𝒂𝒔𝒆_𝒊𝒏𝒔𝒆𝒏𝒔𝒊𝒕𝒊𝒗𝒆

𝒄𝒉𝒂𝒏𝒈𝒆_𝒏𝒂𝒎𝒆𝒔 − 𝒓𝒖𝒍𝒆 𝒏𝒐_𝒄𝒂𝒔𝒆 − 𝒉𝒊𝒆𝒓𝒂𝒓𝒄𝒉𝒚

𝒄𝒉𝒂𝒏𝒈𝒆_𝒏𝒂𝒎𝒆𝒔 − 𝒓𝒖𝒍𝒆 𝒗𝒆𝒓𝒊𝒍𝒐𝒈 − 𝒉𝒊𝒆𝒓𝒂𝒓𝒄𝒉𝒚

𝒔𝒆𝒕 𝒗𝒆𝒓𝒊𝒍𝒐𝒈𝒐𝒖𝒕_𝒏𝒐_𝒕𝒓𝒊 𝒕𝒓𝒖𝒆

125

𝒔𝒆𝒕 𝒗𝒆𝒓𝒊𝒍𝒐𝒈𝒐𝒖𝒕_𝒆𝒒𝒖𝒂𝒕𝒊𝒐𝒏 𝒇𝒂𝒍𝒔𝒆

𝒘𝒓𝒊𝒕𝒆 − 𝒉𝒊𝒆𝒓𝒂𝒓𝒄𝒉𝒚 − 𝒇𝒐𝒓𝒎𝒂𝒕 𝒗𝒆𝒓𝒊𝒍𝒐𝒈 − 𝒐𝒖𝒕𝒑𝒖𝒕 𝒐𝒖𝒕𝒑𝒖𝒕/${𝒅𝒆𝒔𝒊𝒈𝒏}. 𝒗

𝒘𝒓𝒊𝒕𝒆 − 𝒇 𝒅𝒅𝒄 − 𝒉𝒊𝒆𝒓𝒂𝒓𝒄𝒉𝒚 − 𝒐𝒖𝒕𝒑𝒖𝒕 𝒐𝒖𝒕𝒑𝒖𝒕/${𝒅𝒆𝒔𝒊𝒈𝒏}. 𝒅𝒅𝒄

Define name rules and change names are done to make the recent files match the
next files in the flow.

Final synthesis results:

Table 12: The synthesis results of the Hierarchical Flow

Slack Area Total power

0 met 31567.284529 3.8288e+03 uW

126

5.2. PnR in hierarchical flow

We started with the design setup reading the netlist, constraints, TLU+ files as
stated in design setup in chapter 3

Floor planning:

− Aspect ratio: 2

− Utilization: 0.25

− Flipping the first row

− Io2core 12.4

Setting the maximum routing layer to be metal 8

𝒔𝒆𝒕_𝒊𝒈𝒏𝒐𝒓𝒆𝒅_𝒍𝒂𝒚𝒆𝒓𝒔 − 𝒎𝒂𝒙_𝒓𝒐𝒖𝒕𝒊𝒏𝒈_𝒍𝒂𝒚𝒆𝒓 𝒎𝒆𝒕𝒂𝒍𝟖

Then setting the following command with 0.3 which gives more priority to
reduce the density of cells at small areas than the wire length

𝒔𝒆𝒕_𝒂𝒑𝒑_𝒗𝒂𝒓 𝒑𝒍𝒂𝒄𝒆𝒓_𝒎𝒂𝒙_𝒄𝒆𝒍𝒍_𝒅𝒆𝒏𝒔𝒊𝒕𝒚_𝒕𝒉𝒓𝒆𝒔𝒉𝒐𝒍𝒅 𝟎. 𝟑

Then followed by virtual placement for cells

c𝒓𝒆𝒂𝒕𝒆_𝒇𝒑_𝒑𝒍𝒂𝒄𝒆𝒎𝒆𝒏𝒕

127

Figure 36: floor plan and virtual placement in hierarchical flow

128

Power planning:

We used power ring and power strips to be in layer 10 and 9 only. Minimum
Strap width is 2.5 nm.

Then we added power pads and tap cells.

𝒂𝒅𝒅_𝒕𝒂𝒑_𝒄𝒆𝒍𝒍_𝒂𝒓𝒓𝒂𝒚 − 𝒎𝒂𝒔𝒕𝒆𝒓 𝑻𝑨𝑷 \

 −𝒅𝒊𝒔𝒕𝒂𝒏𝒄𝒆 𝟑𝟎 \

 −𝒑𝒂𝒕𝒕𝒆𝒓𝒏 𝒔𝒕𝒂𝒈𝒈𝒆𝒓_𝒆𝒗𝒆𝒓𝒚_𝒐𝒕𝒉𝒆𝒓_𝒓𝒐𝒘

Tap cells are used to prevent the latch up problem.

In this step, we should check for the max IR drop, it should be less than 1%-2%
of the VDD.

In our design, we use 1.1V for VDD so we need the max IR drop <22 mV

Using the following command

𝒂𝒏𝒂𝒍𝒚𝒛𝒆_𝒇𝒑_𝒓𝒂𝒊𝒍 − 𝒏𝒆𝒕𝒔 {𝑽𝑫𝑫 𝑽𝑺𝑺} − 𝒑𝒐𝒘𝒆𝒓_𝒃𝒖𝒅𝒈𝒆𝒕 𝟓𝟎𝟎
− 𝒗𝒐𝒍𝒕𝒂𝒈𝒆_𝒔𝒖𝒑𝒑𝒍𝒚 𝟏. 𝟏

We found that for VDD and VSS the max IR drop is 11.328 mV and 11.743 mV
respectively which are less than 22 mV

129

Figure 37: IR drop map for hierarchical flow

If IR drop is violated it needs other tools to fix it, so you should then increase the
metal layers for power grid.

130

Placement:

Started with initial placement by 𝒑𝒍𝒂𝒄𝒆_𝒐𝒑𝒕 command then optimization with
𝒑𝒔𝒚𝒏𝒐𝒑𝒕 command

And added tie cells to tie logic 0 and logic 1 to VDD and VSS.

We should connect VDD and VSS to cells after each flow in PnR or any insertion
for cells using the following command.

𝒅𝒆𝒓𝒊𝒗𝒆_𝒑𝒈_𝒄𝒐𝒏𝒏𝒆𝒄𝒕𝒊𝒐𝒏 − 𝒑𝒐𝒘𝒆𝒓_𝒏𝒆𝒕 𝑽𝑫𝑫\

−𝒈𝒓𝒐𝒖𝒏𝒅_𝒏𝒆𝒕 𝑽𝑺𝑺\

−𝒑𝒐𝒘𝒆𝒓_𝒑𝒊𝒏 𝑽𝑫𝑫\

−𝒈𝒓𝒐𝒖𝒏𝒅_𝒑𝒊𝒏 𝑽𝑺𝑺

131

Figure 38: after placement in hierarchical flow

132

Figure 39: placement map in hierarchical flow

CTS:

we set the driving cell to be BUF_X16, and target skew is 0.2 in clock tree
options.

Layer list is: metal3, metal4, metal5, metal6 and metal7.

Then we synthesized the clock tree using 𝒄𝒐𝒎𝒑𝒊𝒍𝒆_𝒄𝒍𝒐𝒄𝒌_𝒕𝒓𝒆𝒆

Then performed optimization using:

𝒄𝒍𝒐𝒄𝒌_𝒐𝒑𝒕 − 𝒐𝒏𝒍𝒚_𝒄𝒕𝒔 − 𝒏𝒐_𝒄𝒍𝒐𝒄𝒌_𝒓𝒐𝒖𝒕𝒆

Then to fix hold:

𝒔𝒆𝒕_𝒇𝒊𝒙_𝒉𝒐𝒍𝒅 [𝒂𝒍𝒍_𝒄𝒍𝒐𝒄𝒌𝒔]

 𝒔𝒆𝒕_𝒇𝒊𝒙_𝒉𝒐𝒍𝒅_𝒐𝒑𝒕𝒊𝒐𝒏𝒔 − 𝒑𝒓𝒊𝒐𝒓𝒊𝒕𝒊𝒛𝒆_𝒕𝒏𝒔 − 𝒆𝒇𝒇𝒐𝒓𝒕 𝒍𝒐𝒘

𝒔𝒆𝒕_𝒑𝒓𝒐𝒑𝒂𝒈𝒂𝒕𝒆𝒅_𝒄𝒍𝒐𝒄𝒌 [𝒂𝒍𝒍_𝒄𝒍𝒐𝒄𝒌𝒔]

133

𝒄𝒍𝒐𝒄𝒌_𝒐𝒑𝒕 − 𝒐𝒏𝒍𝒚_𝒑𝒔𝒚𝒏 − 𝒏𝒐_𝒄𝒍𝒐𝒄𝒌_𝒓𝒐𝒖𝒕𝒆

Then routing the clock tree using 𝒓𝒐𝒖𝒕𝒆_𝒈𝒓𝒐𝒖𝒑 − 𝒂𝒍𝒍_𝒄𝒍𝒐𝒄𝒌_𝒏𝒆𝒕𝒔 .

Also connected the design after updates again with power grid VDD and VSS.

Figure 40: CTS in hierarchical flow

134

Routing:

Before the routing step, most of designers add spare cells to fix small errors after

fabrication if exit, but we didn’t put it in our hierarchical design and helped us in
reducing DRCs violations.

We started setting route options as discussed in chapter 3. Then we don’t have
hold violations at this step so we didn’t set fix hold before the following step.

First route command: 𝒓𝒐𝒖𝒕𝒆_𝒂𝒖𝒕𝒐

This command gives first route iteration with large DRCs violations, large
number for short nets and large setup slack violation.

Then we followed with the command 𝒓𝒐𝒖𝒕𝒆_𝒐𝒑𝒕

It reduced shorts and slack violations, therefore we decided to make other
iterations using this command

𝒓𝒐𝒖𝒕𝒆_𝒐𝒑𝒕 − 𝒊𝒏𝒄𝒓𝒆𝒎𝒆𝒏𝒕𝒂𝒍 − 𝒆𝒇𝒇𝒐𝒓𝒕 𝒉𝒊𝒈𝒉

We repeated the above command 2 times then reached good slack, hold and
shorts at this step

− Short nets = 2

− Slack= -0.02 nsec

− Hold= 0.01 nsec (MET)

Then we connected the modified chip to power grid again.

Note:

After each route step we should verify lvs to check for number of short and
open nets which results from large congestion or large max IR drop. Then we check
for timing and IR drop

We recognized that IR drop doesn’t change too much after the routing
commands.

135

Figure 41: congestion at track assignment in hierarchical flow

Finishing

Here we insert filler cells and redundant vias then make our final checks for lvs
and timing

We found that:

− Short nets = 0

− Open nets=0

− DRCs violations=1

− Floating nets=0

− Slack= -0.02 nsec

− Hold= 0.01 nsec (MET)

There exist floating ports but all of them are output ports.

136

Figure 42: after finishing the hierarchical flow

137

Extraction

we used 𝒆𝒙𝒕𝒓𝒂𝒄𝒕_𝒓𝒄 command in ICC tool and wrote the spef file.

𝒘𝒓𝒊𝒕𝒆_𝒑𝒂𝒓𝒂𝒔𝒊𝒕𝒊𝒄𝒔 − 𝒐𝒖𝒕𝒑𝒖𝒕 {./𝒐𝒖𝒕𝒑𝒖𝒕/𝒉𝒊𝒆𝒓𝒂𝒓𝒄𝒉. 𝒔𝒑𝒆𝒇}

𝒄𝒓𝒆𝒂𝒕𝒆_𝒓𝒂𝒊𝒍_𝒔𝒆𝒕𝒖𝒑

There is another and more accurate method which is StarRc tool, we tried it also
and, in our case, it gives us the same values in PrimeTime compared to extract_rc
command.

Note:

In our case, to use the StarRC tool we had to change reading name of the bus
using the following commands:

𝒅𝒆𝒇𝒊𝒏𝒆_𝒏𝒂𝒎𝒆_𝒓𝒖𝒍𝒆𝒔 𝒏𝒆𝒘_𝒗𝒆𝒓𝒊𝒍𝒐𝒈 − 𝒔𝒑𝒆𝒄𝒊𝒂𝒍 𝒗𝒆𝒓𝒊𝒍𝒐𝒈
− 𝒕𝒂𝒓𝒈𝒆𝒕_𝒃𝒖𝒔_𝒏𝒂𝒎𝒊𝒏𝒈_𝒔𝒕𝒚𝒍𝒆 {%𝒔[%𝒅]}
− 𝒄𝒉𝒆𝒄𝒌_𝒊𝒏𝒕𝒆𝒓𝒏𝒂𝒍_𝒏𝒆𝒕_𝒏𝒂𝒎𝒆 − 𝒄𝒉𝒆𝒄𝒌_𝒃𝒖𝒔_𝒊𝒏𝒅𝒆𝒙𝒊𝒏𝒈

𝒄𝒉𝒂𝒏𝒈𝒆_𝒏𝒂𝒎𝒆𝒔 − 𝒓𝒖𝒍𝒆 𝒏𝒆𝒘_𝒗𝒆𝒓𝒊𝒍𝒐𝒈 – 𝒉𝒊𝒆𝒓𝒂𝒓𝒄𝒉𝒚

To match the StarRC tool.

138

5.3. STA in hierarchical flow

we read the parasitic files in PrimeTime tool, we read the slack by using library

at slow slow corner and maximum capacitance spef file, and read the hold time at
fast fast corner library and minimum capacitance spef file.

The final timing results:

− Setup Slack= 0.01 nsec.

− Hold time= 0.02 nsec.

139

Chapter 6

Topographical flow

Topographical technology enables you to accurately predict post-layout timing,

area, and power during RTL synthesis without the need for wireload model-based
timing approximations. It uses Synopsys’ placement and optimization technologies

to drive accurate timing prediction within synthesis, ensuring better correlation to
the final physical design.

In ultra-deep submicron designs, interconnect parasitic have a major effect on

path delays; accurate estimates of resistance and capacitance are necessary to
calculate path delays. In topographical mode, Design Compiler leverages the

Synopsys physical implementation solution to derive the “virtual layout” of the
design so that the tool can accurately predict and use real net capacitances instead

of wire load model-based statistical net approximations. If wire load models are
present, they are ignored.

Figure 43: Topographical flow

140

6.1. Synthesis in Topographical flow

Synthesis is the process of converting the RTL design into a gate-level netlist. It
consists mainly from three

Steps: translation, optimization and mapping.

First of all, we perform first-pass synthesis depending on flat synthesis, where flat
designs contain no subdesigns and have only one structural level.

• First-pass synthesis flow:

It is typically the same as synthesis flow that is explained previously in synthesis
section.

The recommended compile flow in topographical mode is top down.

• Floorplan for topographical flow:

After first-pass synthesis, we perform floorplanning and power network and
write def file to use it in the second-pass synthesis as explained in PnR section.

The reason for using floorplan constraints in topographical mode is to

accurately estimate interconnect parasitics and improve timing with the post-place-

and-route tools, such as IC Compiler, by considering floorplanning information
during optimizations.

Design Compiler topographical mode supports high-level physical constraints

such as die area, core area and shape, port location, macro location and orientation,

keep out margins, placement blockages, preroutes, bounds, vias, tracks, voltage
areas, and wiring keep outs.

• Second-pass synthesis flow:

We enter dc_shell –topo to run second pass synthesis flow.

− First, we read libraries and tlu_plus files.

− Open milkyway library using open_mw_lib command.

− We perform the reading design step in the synthesis flow (analyze &

elaborate) and specifying constraints step.

141

− Then we extract physical constraints from the def file which we wrote

before, using extract_physical_constraints command.

− Then we synthesized the design using compile_ultra -spg -

timing_high_effort_script -gate_clock command, we used the option –

spg to enable physical guidance in Design Compiler.

− Finally, we completed the flow performing creating netlist step and
checking synthesis.

So, during the second pass, it uses floorplan constraints in Design Compiler
topographical mode to create an optimized netlist and performs detailed design
closure in IC Compiler.

So as shown in the figure the inputs of second-pass flow are:

Figure 44: inputs for the second pass flow

142

Here are some trials that we have tried in synthesis in the topographical flow:

All the trials have been done with floorplan with utilization 0.25, core aspect
ratio 2 and power in 2 layers (metal9, metal10).

Clock period=5ns

Firstly, we synthesized the design with the clock period (5 ns) that is provided
in the constraints file.

a. First-pass synthesis:

Using compile_ultra

Table 13: the synthesis results of the first path in the Topographical Flow

Setup
Slack

Hold
Slack

Total Dynamic
power

Total Leakage
power

Cell area

0 (Met) 0.09 1.9156 mW 140.1103 uW 28440.720
561

b. Second-pass synthesis

Using compile_ultra -spg

Table 14: the synthesis results of the second path in the Topographical Flow

Setup
Slack

Hold
Slack

Total Dynamic
power

Total Leakage
power

Cell area

0 (Met) 0.07 2.000e+03 uW 1.537e+05 nW
29985.914563

143

Clock Period 2.5 ns

Here, we reduced clock period to 2.5 ns as our target in the project to increase
the speed of Ri5cy.

a. First-pass synthesis

Using compile_ultra

Table 15: the synthesis results of the first path in the Topographical Flow at 2.5 nsec.

Setup
Slack

Hold
Slack

Total Dynamic
power

Total Leakage
power

Cell area

-0.1 0.09 3.8697 mW 159.9576 uW 31607.450477

b. Second-pass synthesis

Using compile_ultra -spg

Table 16: the synthesis results of the second path in the Topographical Flow at 2.5 nsec.

Setup
Slack

Hold
Slack

Total Dynamic
power

Total Leakage
power

Cell area

0(Met) 0.07 4.045e+03 uW 1.652e+05 nW 31831.422533

144

Clock Period 2.5 ns

Here, we tried to optimize timing by using the timing_high_effort_script
option.

a. First-pass synthesis

Using compile_ultra -timing_high_effort_script

Table 17: the synthesis results of the first path in the Topographical Flow at 2.5 nsec at
timing_high_effort_script

Setup
Slack

Hold
Slack

Total Dynamic
power

Total Leakage
power

Cell area

 -0.03 0.09 3.9285 mW 161.3372 uW 31701.880461

b. Second-pass synthesis

Using compile_ultra -spg -timing_high_effort_script

Table 18: the synthesis results of the second path in the Topographical Flow at 2.5 nsec at
timing_high_effort_script

Setup
Slack

Hold
Slack

Total Dynamic
power

Total Leakage
power

Cell area

0 (Met) 0.07 4.033e+03 uW 1.623e+05 nW 31585.638529

145

Clock Period 2.5 ns

Here, we tried to perform more optimization in timing by using the
timing_high_effort_script and retime options.

a. First-pass synthesis

Using compile_ultra -timing_high_effort_script -retime

Table 19: the synthesis results of the first path in the Topographical Flow at 2.5 nsec at
timing_high_effort_script -retime

Setup
Slack

Hold
Slack

Total Dynamic
power

Total Leakage
power

Cell area

-0.03 0.09 4.0566 mW 162.0495 uW 31977.722479

b. Second-pass synthesis

Using compile_ultra -spg -timing_high_effort_script -retime

Table 20: the synthesis results of the first path in the Topographical Flow at 2.5 nsec at
timing_high_effort_script -retime

Setup
Slack

Hold
Slack

Total Dynamic
power

Total Leakage
power

Cell area

0 (Met) 0.07 4.465e+03 uW 1.711e+05 nW 33406.674
571

146

Final Results

Finally, we get the best results after using incremental option.

a. First-pass synthesis

Table 21: final results of the synthesis of the first pass in the Topographical Flow

Setup
Slack

Hold
Slack

Total Dynamic
power

Total Leakage
power

Cell area

-0.02 0.09 3.9085 mW 160.8004 uW 31692.836457

b. Second-pass synthesis

Table 22: final results of the synthesis of the second pass in the Topographical Flow

Setup
Slack

Hold
Slack

Total Dynamic
power

Total Leakage
power

Cell area

0 0.07 4.344e+03 uW 1.637e+05 nW 31768.646537

We have tried to make the power in 4 layers (metal7, metal8, metal9, metal10),

but after going through pnr, we found the best results for both timing and short
nets while using the 2 layers.

147

6.2. PnR in Topographical flow

In this section, we describe in detail the PnR stages in the topographical mode.

After first pass synthesis, we open IC Compiler and go through the floorplanning

and power planning stage. Then, write the def file and go back to Design Compiler,
but in topographical mode to perform the second pass synthesis. After second pass

synthesis, we have the final netlist and the floorplan file that contains the physical

guidance information that is used by the IC Compiler to perform placement
optimization. Finally, we go back to IC Compiler to perform the remaining PnR
flow starting from the placement and going through CTS and routing.

Overview of the PnR Topographical Flow:

− Floor planning and Powerplanning:

We started with utilization 0.3, aspect ratio = 2, and routing layers from layer 1

to layer 6. As layers from 7 to 10 have the power rings. Layer 6 is the tap layer as it

is the last layer having power n=mesh and standard cells can be routed in it also.
Tap layer also should be a vertical layer to make sure that it goes through all power
rails.

After multiple iterations, we found that utilization = 0.25, improves both timing

and DRCs. Also, we reduced the power ring layers to 2 layers instead of 4. To
reduce the number of DRCs, and help the tool eliminate shorts and opens from the
design by increasing the routing resources.

− Placement:

In topographical flow, the main placement of the cells happens in the design

compiler in topo mode during the second pass synthesis as it uses accurate
estimation of parasitics and delays without the need for wire-load models.

Therefore, Topographical mode uses Synopsys’ placement and optimization
technologies to drive accurate timing prediction within synthesis, ensuring better
correlation to the final physical design.

In IC Compiler, we started by place_opt -spg to enable the physical guidance
during the placement optimization.

148

− CTS:

After completing the placement stage with accepted congestion, setup and hold
slacks (~0ns slack), we go to the next stage which is the clock synthesis tree. And as

we discussed in section (), the main goal of CTS stage is to build a buffer/inverter

network in order to balance the relative delays and optimize the global skew of the
clock domain. There is no difference between CTS in topographical flow, and in

other flows. Clock synthesis tree was built based on buffers, in metal layers 3, 4,
and 5.

a. Constraints:

− Clock synthesis tree was built based on buffers, in metal layers 3, 4, and 5.

− target_early_delay 0.1

− target_skew 0.5

− max_capacitance 300

− max_fanout 10

− max_transition 0.15

− We used non-Default clock routing to make the clock nets have double

width and double spacing. This makes the clock routes less sensitive to

cross talk or electromigration effects as non-default rules are used to
“harden” the clock. Making the nets have double-width, increases the

threshold current for EM, and as the clock nets are the highest in

switching activity, they have the highest power and current going
through them. Therefore, it is very important to make these nets have
double width.

• Synhtesis, Optimization

At this point, we are ready to build our clock buffer tree and optimize it using
the clock_opt command.

• Routing

After optimizing the clock buffer tree, we use command route_group -
all_clock_nets to route it before going to the standard cells routing stage.

149

− Routing:

Before starting to route the standard cells, we insert spare cells:

𝒊𝒏𝒔𝒆𝒓𝒕_𝒔𝒑𝒂𝒓𝒆_𝒄𝒆𝒍𝒍𝒔 − 𝒍𝒊𝒃_𝒄𝒆𝒍𝒍 {𝑵𝑶𝑹𝟐_𝑿𝟒 𝑵𝑨𝑵𝑫𝟐_𝑿𝟒} \

−𝒏𝒖𝒎_𝒊𝒏𝒔𝒕𝒂𝒏𝒄𝒆𝒔 𝟐𝟎 \

−𝒄𝒆𝒍𝒍_𝒏𝒂𝒎𝒆 𝑺𝑷𝑨𝑹𝑬_𝑷𝑹𝑬𝑭𝑰𝑿_𝑵𝑨𝑴𝑬 \

−𝒕𝒊𝒆

Spare cells are main cells that any logic can be implemented with like NAND

and NOR cells. They are added to the chip cells before being fabricated to make
sure that if something wrong happens in the chip and it is needed to be

refabricated, we won’t need to do regeneration for the front end of masks again,

which costs very much. Because the problem can be solved using the spare cells.
However, spare cells are considered as overhead because they consume static
power

The results of multiple iterations in the Topographical Flow:

In this section, we describe in more details, the multiple iterations that we did to
reach the final results.

• Utilization = 0.3, power in 4 layers, clock = 2.5

Table 23: Results after PnR at Utilization = 0.3, power in 4 layers, clock = 2.5

stage placement CTS Routing

setup 0 (met) -0.12 -0.46

hold 0.07 (met) -0.02 0 (violated)

• Ending routing with shorts equal to 461

150

In this iteration, we ended up with a very high negative setup slack and too
many shorts that were hard to optimize and solve. However, creating the power

rings in 4 layers makes a very good IR drop, and is very optimized with respect to
the power.

It was very hard to optimize these routing results, and after optimization, the

results weren’t improved in an optimistic way. Therefore, we tried to increase the
routing resources.

• Utilization = 0.3, power in 2 layers, clock = 2.5

In order to eliminate negative slack and shorts, we tried to reduce the power

metal layers to increase the routing resources for standard cells. We also checked
the IR drop to make sure that it is within the acceptable percentage of the VDD and
it was accepted.

Table 24: Results after PnR at Utilization = 0.3, power in 2 layers, clock = 2.5

stage placement CTS Routing

setup 0 (met) -0.12 -0.27

hold 0.07 (met) 0 (violated) 0.01(met)

• Total short nets are 446.

We noticed that there was improvement in the setup slack and the number of

shorts reduced, however, increasing the routing layers didn’t solve the problem
completely.

It was hard to optimize these routing results, and after optimization, the results
weren’t much better. Therefore, we did multiple iterations and trials.

151

• Utilization = 0.3, power in 2 layers, clock = 2.5, set_app_var

placer_max_cell_density_threshold 0.3

After multiple iterations, we added to our placement script the command set

_var placer_max_cell_density_threshold to be equal to 0.3 to control the cells
density and distribution.

Table 25: Results after PnR at Utilization = 0.3, power in 4 layers, clock = 2.5 using the
placer_max command

stage placement CTS Routing

setup 0(met) -0.12 -0.22

hold 0.07(met) 0 (met) 0.01(met)

• Total short nets are 397

There was an improvement in both setup slack and number of short nets, also
after performing routing optimization we got better results.

After optimization:

• Setup: -0.17

• Hold: 0.00 (met)

• Shorts: 4

152

Topographical Flow Final Results

In this section, we describe in detail the final PnR iteration, and its final results.

− clock = 2.5 ns, which is equivalent to frequency 400 MHz.

− Standard Cells Utilization = 0.25.

− Aspect ratio = 2.

− Power ring in 2 layers.

− Using command set_app_var placer_max_cell_density_threshold 0.3.

Floorplanning:

Figure 45: floor plan and virtual placement in topographical flow

Figure 45 shows the floorplan of the chip. And as shown in Figure 45 With core

utilization equals 25%, and aspect ratio equals 2, the total area of the chip equals to
126530 The width is 502.6, and the height is 251.75.

153

Figure 46: core area

Powerplanning:

In order to create the power mesh, we should specify the metal layers where the

power ring is built. We chose to create the power ring in the highest two metal
layers, metal 9 (vertical) and metal 10 (horizontal).

The other power ring constraints are as follows:

− ring spacing equals to 0.8

− ring width 5

− ring offset 0.8

 After this, we specify the constraints for the power rails as follows:

− power rails are in metal layers 8, 9, and 10.

− Metal 8 is the tap layer, and it is vertical as preferred.

− Maximum straps number is 128, and minimum straps number is 20.

− Minimum width is 2.5.

− Minimum spacing between straps.

Therefore, the metal layers are used as following:

− From metal 1 to metal 8 for signal routing.

− Metal 8 is the tap layer.

− Metal 9 and metal 10 for power rings and straps.

The next step is defining the virtual pads, so that the tool can simulate and
analyze the power network.

154

Figure 47: IR drop across the chip in the Topographical Flow

Figure 47 shows the IR drop across the whole chip. PNA is constrained by the

voltage supply value as it should be less than 2% from the power supply value.

Here the voltage supply is 1.1 v, therefore the max acceptable IR drop equals to
22mv. The max IR drop in our chip is 10.016mv, therefore it is accepted.

The final step in the powerplanning stage is adding the well tie cells.

155

placement:

Figure 48: placement of topographical flow

After second pass synthesis, we go back to IC Compiler to continue the pnr flow

with an optimized netlist. Using command place_opt -spg -effort high -congestion.

With the -spg option, the place_opt uses Design Compiler's Physical guide
information to guide optimization of the placement of standard cells. We added

the switch – effort high to force the tool to spend more time to optimize the quality

of results (QoR) as the default for place_opt command is medium effort. The
congestion switch is for more optimization with respect to congestion in order to

make the following stage tasks easier, and to make sure that the routing will end

up with a minimum number of DRCs. Figure (0 shows the hierarchy map of the

156

core after the placement of the cells. At the end of the placement stage, the time
slacks are as follows:

− The setup slack: - 0.00177

− The hold slack: 0.05362

Clock Tree Synthesis:

Figure 49: CTS in topographical flow

157

The figure shows the clock network of the core, Clock network is built across 5

levels. Each level is colored in a different color as shown. Here the clock tree is
built exactly as described in section (). At the end of the cts stage, the quality of
results is as follows:

− Setup slack: -0.00247

− Hold slack: 0.07092

− Dynamic power: 4.7819 mW

− Leakage power: 183.5204 uW

− Cell area: 34161.848552

Routing

 All signal nets are routed during the Routing stage as clock signals are already
routed in the CTS stage. The signal nets are routed starting from metal 1 up to

metal 8 as discussed in previous sections. Before starting to route the signal nets,

we should verify that the design is routable and to have a prediction of the results
of the routing stage in order to not consume too much time in the routing of design

and resulting in bad results. We use command check_routeability. This command

checks pin access points, cell instance wire tracks, pin out of boundaries, and many
other things to ensure they meet the design requirements. It performs a check of

the design for optimization in order to substantiate any errors in the design that
might need to be fixed or what could help to improve the design.

Then, we are ready to route our design and as discussed in section (), routing is
performed in four main steps:

1. Global Route
2. Track assignment

3. Detail Route
4. Search and Repair

• The first command we used in routing is route_auto. This command
performs the four steps in only one step.

• The second command is route_opt. This command performs simultaneous

routing and post-route optimization on the current design.

158

• The third command is route_opt also, but with switches: -effort high and -
incremental. “-effort high” is used to increase the time and the effort of the

tool to optimize the routing of the chip. “- incremental” is used to run

topology-based incremental optimization and ECO routing.
• In order to solve the remaining shorts, we used the command”

route_zrt_detail -incremental true -initial_drc_from_input true”.

The final results of the routing stage and the PnR flow are as follows:

• Setup Slack is -0.01ns

• Hold Slack is 0.06ns

• DRCs are 3
• Total short nets are 1
• Total open nets are 0

Chip finishing

Chip finishing is the same as discussed in the other flows, it consists of four

main steps:

− Metal layers spreading and widening

− Standard cell filling

− Redundant vias insertion

− Metal filling

159

6.3. STA in Topographical flow

After chip finishing, we go to the sign off tool for static timing analysis which is

Prime Time. We checked the setup slack at the slow slow corner. using command

“fix_eco_timing -type setup” to fix violating paths by resizing their cells to have
higher speed. After that, we went back to IC Compiler to reroute the nets that

needed to be rerouted again due to the changes that happened by primeTime.

finally, checked the setup slack again by the primeTime. We found it is a positive
slack and equals 0.02ns. Hold slack is checked at the fast fast corner and it is also
positive and equals to 0.02ns.

160

Chapter 7

Results

7.1. Flat flow
7.1.1. Area results

Table 26: The area results of the Flat Flow

 After removing hierarchy After optimization

Total cell area 32678.366549 um2 34461.630550 um2

7.1.2. Power results

Table 27: The power results of the Flat flow

 After removing hierarchy After optimization

Total leakage power 0.16388 mW 0.17903 mW

Total switching power 0.659 mW 1.3115 mW

Total power 4.3065 mW 5.2742 mW

the Leakage power which is the power consumed in transistor due to the

constant current from Vdd to ground and its value is 0.17903 mw which is 3.3944%
of total power. The switching power or dynamic power which is the power

consumed in transistors due to switching from 1 to 0 or from 0 to 1 and its value is
1.3115 mW which is 24.86% of total power.

161

7.1.3. Timing results

A. After removing hierarchy:

Figure 50: The setup slack after removing hierarch in Flat Flow

the setup slacks of all paths (2547 path) are represented as:

• First column consists of 799 path and is from 0 to 0.286.

• Second column consists of 159 path and is from 0.306 to 0.608.

• Third column consists of 173 path and is from 0.613 to 0.9.

• Forth column consists of 244 path and is from 0.907 to 1.204.

• Fifth column consists of 314 path and is from 1.21 to 1.5.

• Sixth column consists of 212 path and is from 1.51 to 1.8.

• Seventh column consists of 82 path and is from 1.8 to 2.02.

• Eighth column consists of 564 path and is from 2.21 to 2.40122.

162

B. After PnR:

− Maximum delay timing results:

Figure 51: The setup slack after PnR in Flat Flow

As said before, after the routing stage the slack is -0.04 nsec.

163

− Minimum delay timing results:

Figure 52: The Hold slack after PnR in Flat Flow

based timing paths, there is no hold time requirements.

164

C. After optimization:

The design timing was tested using static timing analysis (STA) in primetime. In
STA you define the design constraints and then test the design and see if it passes

them. These constraints are the same constraints used to build up the design in
addition to the parasitics come from layout.

− Maximum delay timing results:

Figure 53: The setup slack after PrimeTime in Flat Flow

165

− Minimum delay timing results:

Figure 54: The Hold slack after PrimeTime in Flat Flow

Table 28: The timing Results afte PrimeTime in Flat Flow

 Setup Hold

Primetime 0.0039 (MET) 0.01 (MET)

166

7.1.4. LVS results

Figure 55: The LVS results of Flat Flow

7.1.5. DRC results

Figure 56: The DRC results of Flat Flow

167

7.2. Hierarchical flow
7.2.1. Area results

Table 29: The total area results of the Hierarchical Flow

 Post-synthesis Post-PNR

Total cell area 31598.406520 um2 33082.9525 um2

7.2.2. Power results

Table 30: The power results of the Hierarchical flow

 Post-synthesis Post-PNR

Total leakage power 0.161649 mW 0.17506 mW

Total switching power 0.62509 mW 1.2604 mW

Total power 3.6707 mW 4.8474 mW

the Leakage power which is the power consumed in transistor due to the

constant current from Vdd to ground and its value is 0. 161649 mw which is 4 .403%

of total power. The switching power or dynamic power which is the power
consumed in transistors due to switching from 1 to 0 or from 0 to 1 and its value is
0.62509 mW which is 17.029% of total power.

168

7.2.3. Timing results

A. Post synthesis

Figure 57: Setup timing after synthesis

Figure 58: Endpoint lack for max timing

169

Figure 59: Endpoint slacks for min timing

Table 31: The timing results after synthesis of The Hierarchical Flow

 Setup Hold

First compile iteration -0.04
(VIOLATED)

0.07 (MET)

Fourth compile iteration 0.00 (MET) 0.00 (MET)

170

B. PNR stages:

Figure 60: Setup timing after PNR stage

.

Figure 61: Hold timing after PNR stage.

Table 32: the timing results in the PnR flow of the Hierarchical Flow

 Setup Hold

placement 0.00 (MET) -0.09 (VIOLATED)

CTS 0.02 (MET) 0.01 (MET)
Routing -0.29 (VIOLATED) 0.01 (MET)
Route_opt (3 iterations) -0.01 (VIOLATED) 0.01 (MET)

Finishing -0.01 (VIOLATED) 0.00 (MET)

171

C. Post-PrimeTime

Figure 62: hold timing after PrimeTime

Figure 63: Setup timing after PrimeTime

Table 33: The timing results after PrimeTime of the Hierarchical Flow

 Setup Hold

Primetime 0.01 (MET) 0.02 (MET)

172

7.2.4. LVS results

Figure 64: The LVS results of the Hierarchical Flow

Table 34: The LVS results of the Hierarchical Flow

 Shorted nets Open nets

Route auto 171 0

Route opt (3x) 0 0

7.2.5. DRC results

Figure 65: DRC ICC results

173

7.3. Topographical flow
7.3.1. Area results

Table 35: The total area results of the Topographical Flow

 After removing
hierarchy

After optimization

Total cell area 31768.646537 um2 34267.716551 um2

7.3.2. Power results

Table 36: The power results of the Topographical Flow

 After removing hierarchy After optimization

Total leakage power 1.6366e+05 nW 1.8474e+05 nW

Total switching power 839.8591 uW 1.2763e+03 uW

Total power 4.5074 mW 5.0174 mW

174

7.3.3. Timing results

A. After removing hierarchy:

− Maximum delay timing results:

Figure 66: The setup slack after synthesis in Topographical Flow

175

− Minimum delay timing results:

Figure 67: The Hold slack after synthesis in Topographical Flow

176

B. After PnR

− Maximum delay timing results:

Figure 68: The setup slack after PnR in Topographical Flow

as said before the setup slack -0.01 ns.

177

− Minimum delay timing results:

Figure 69: The Hold slack after PnR in Topographical Flow

as said before the hold slack 0.06 ns.

178

C. After optimization:

− Maximum delay timing results:

Figure 70: The setup slack after PrimeTime in Topographical Flow

179

− Minimum delay timing results:

Figure 71: The Hold slack after PrimeTime in Topographical Flow

180

7.3.4. LVS results

Figure 72: The LVS results of the Topographical Flow

7.3.5. DRC results

Figure 73: The DRC results of the Topographical Flow

181

Chapter 8

Conclusion

The goal of this thesis is to help ASIC designers in selecting the most

appropriate flow that meets their requirements. A complete RTL-to-GDSII flow for
the OpenPULP Core known as RI5CY was accomplished in this thesis, with three

distinct synthesis techniques yielding three different flow outcomes. Following

that, we'll look at the primary advantages and disadvantages of each flow in
comparison to other flows. We will summarize our findings in both the post-
synthesis and post-layout stages of the implementation flows in the sections below.

8.1. Post-Synthesis Results

In post-synthesis stage as shown in Table 37, we can notice that the Flat Flow
has the biggest area. And the Hierarchical Flow has the least area as it works with

the design as blocks. Also in power, the Topographical Flow and the Flat flow has

nearly the same total power. According to the critical delay, the Topographical
Flow has the least clock period comparing to the other flows. However, we will

distinguish key benefits of each flow later on after actual layout is made for the

core. Below charts that demonstrate the results between flows in post-synthesis
stage.

Table 37: The Post-synthesis results

 Flat Flow Topographical Flow
(Second path)

Hierarchical Flow

Critical path

delay (n sec)

2.6 2.5 2.7

Total cell

area (𝜇𝑚2)

32678.366549 34267.716551 33082.9525

Total Power

(mW)

4.3065 4.5074 5.0174

182

Figure 74: The total area comparison after post-synthesis

Figure 75: The total power comparison after post-synthesis

183

8.2. Post-layout Results

The post-layout results in addition to the total power calculated at each PDK
corner of the verified corners, including the corner which is used for actual

implementation of the core in all flows which is (Slow-Slow / 0.95 V / 40 °C).
Below are charts that help visualize these results.

Figure 76: The critical path delay comparison

184

Figure 77: The total area comparison after post-Layout

Figure 78: The total power comparison after post-Layout

185

Table 38: The key results

 Flat Flow Topographical Flow

(Second path)

Hierarchical Flow

Critical path
delay (n sec)

2.6 2.5 2.7

Total cell area

(𝜇𝑚2)

34461.630550 31768.646537 31598.406520

Total Power

(mW)

5.2742 5.0174 4.8474

Table 38 summarizes the key results that distinguish each flow. We can see that
Hierarchical flow has the least total cell area and the least total power, but as our

target is to work on maximum speed, So, the Topographical Flow is the best flow

and it can be run in less clock period than the 2.5 nsec as the slack margin is 0.02
nsec which is a big margin. But our tool doesn’t support the Topographical Flow as

perfect as it has to be and all the flows are clean LVS with almost clean DRCs and
that was our target.

Therefore, if an ASIC designer might want to achieve maximum speed, we
strongly advice him/her with working with Topographical flow. If the goal is to

minimize occupied area as much as possible, Hierarchical flow is the best choice in

that case. And if the goal is to reduce the total power consumed by the design, then
it is preferred to perform the implementation with Hierarchical flow to achieve
highest cell area optimizations.

186

8.3. Future Work

We present some solutions in this area to improve design performance and

speed across all implementation flows. We'll go over these concepts in greater
depth further down.

8.3.1. Switch from RVT Cells to LVT Cells

LVT standard cells have high speed than RVT cells due to the less threshold

voltage. This can fix the timing setup very quickly than using the RVT cells at high
frequency.

187

References

[1] Synopsys. (2016). IC Compiler™️ II Implementation User Guide : Version L-
2016.03-SP4. Mountain View, CA: Synopsys.

[2] Synopsys. (2005). Design Compiler™️ User Guide : Version L-2016.03-SP4.
Mountain View, CA: Synopsys.

[3] Rakesh ChadhaJ, Bhasker. (2009) Static Timing Analysis for Nanometer
Designs : 1st edition. Boston, MA: Springer.

[4] Bhatnagar, Himanshu. (2002). Static Timing Analysis for Nanometer Designs
: 2nd edition. Boston, MA: Springer.

[5] OpenHW Group, link: https://github.com/openhwgroup/cv32e40

[6] OpenHW Group, link: https://pulp-platform.org/implementation.html

[7] Semi engineering, link:

https://semiengineering.com/knowledge_centers/low-power/low-power-
design/power-consumption/

[8] Sign-off semi-conductors, link:

 https://www.signoffsemi.com/sign-off-checks/

https://github.com/openhwgroup/cv32e40
https://pulp-platform.org/implementation.html
https://semiengineering.com/knowledge_centers/low-power/low-power-design/power-consumption/
https://semiengineering.com/knowledge_centers/low-power/low-power-design/power-consumption/
https://www.signoffsemi.com/sign-off-checks/

188

Appendix A

RTL-to-GDSII Flow

A.1 GDSII format

In the design of integrated circuits, the most popular format for interchange is
the Calma GDS II stream format (GDS II is a trademark of Calma Company, a

wholly owned subsidiary of General Electric Company, U.S.A.). For many years,

this format was the only one of its kind and many other vendors accepted it in their
systems. Although Calma has updated the format as their CAD systems have

developed, they have maintained backward compatibility so that no GDS II files

become obsolete. This is important because GDS II is a binary format that makes
assumptions about integer and floating-point representations.

A GDS II circuit description is a collection of cells that may contain geometry or

other cell references. These cells, called structures in GDS II parlance, have

alphanumeric names up to 32 characters long. A library of these structures is
contained in a file that consists of a library header, a sequence of structures, and a

library tail. Each structure in the sequence consists of a structure header, a

sequence of elements, and a structure tail. There are seven kinds of
elements: boundary defines a filled polygon, path defines a wire, structure

reference invokes a subcell, array reference invokes an array of subcells, text is for

documentation, node defines an electrical path, and box places rectangular
geometry.

For a larger IC circuit, we cannot use schematic drawing to represent and store
its layout for obvious reasons.

• A language and database format were developed for this problem. This so

called GDSII serves as a stream format database file format and has been

used as the de facto industry standard for data exchange of integrated

circuit or IC layout artwork.

• It is a binary file format representing planar geometric shapes, text labels,

and other information about the IC layout in a hierarchical form.

• The data can be used to reconstruct all or part of the artwork to be used in

sharing layouts, transferring artwork between different EDA tools, or

creating photo masks for fabrication.

189

A.2 Constraint file

In this section, we describe the constraint file we use in our implementation. The
constraint file is provided by open pulp and it is as follows:

• Specifying clocks and defining default clock definitions using command

create_clock. The create_clock command specifies the characteristics of a
clock, including the clock name, source, period, and waveform. -name switch

specifies the name of the clock being created. -period switch specifies the
period of the clock waveform in library time units. The defined clock period

is 5ns, but we changed it according to the speed of each flow. For the

hierarchal flow, clock period is 2.7ns. clock period is 2.6 for the flat flow, and
2.5 for the topographical flow.

• Defining I/O constraints. Defining the input and output delays is very

important to make sure that there will be no problems when the block we

worked on integrate with other blocks. They are used to model the
environment of that module. set_input_delay command sets input delay on

pins or input ports relative to a clock signal. It has two main arguments; first

is the “delay_value”. It specifies the path delay. The delay_value must be in
units consistent with the technology library used during optimization. The

delay_value represents the amount of time the signal is available after a
clock edge. This represents a combinational path delay from the clock pin of

a register. The second argument is clock_name. It specifies the clock to

which the specified delay is related. If -clock is not specified, the delay is
relative to time zero for combinational designs. For sequential designs, the

delay is considered relative to a new clock with the period determined by
considering the sequential cells in the transitive fanout of each port.

The percentage of input and output delays from the clock period differs for

different input and output ports. These percentages are defined in our constraint
file as follows:

190

➢ Input delay for interrupts is 0.5 * clock period.
➢ Output delay for interrupt related signals is 0.25*clock period.

➢ Input delay for early signals is 0.1 * clock period.

➢ OBI input delays are 0.8 * clock period.
➢ OBI output delays are 0.6 * clock period

➢ Input delays for non-RISC-V Bus Interface ports are 0.1*clock period.

➢ output delays for non-RISC-V Bus Interface ports are 0.6*clock period.
➢ core_sleep_o output delay is 0.25 * clock period.

191

A.3 clock gating

Clock gating is a very common technique to save power by stopping the clock to

a module when the module is not operating. Clock gating cells are required in

CV32E40P, especially in sleep unit and latch-based register file. These cells are
specific to the selected target technology and thus not provided as part of the RTL

design. Therefore, the clock gate RTL code that provided by open pulp is a

simulation only version of the clock gating cell. This file contains a module
called cv32e40p_clock_gate that has the following ports:

• clk_i: Clock Input

• en_i: Clock Enable Input

• scan_cg_en_i: Scan Clock Gate Enable Input (activates the clock even
though en_i is not set)

• clk_o: Gated Clock Output

We manually instantiated clock gating cells from our standard cell library

(Nangate Open Cell Library) that is wrapped in a module called cluster clock
gating and has the following ports:

• clk_i: Clock Input

• en i: Clock Enable Input

• test en i: Test Enable Input (activates the clock even though en i is not set)

• clk_o: Gated Clock Output

Figure 79: The clock gate

192

A.4 IR Drop Analysis:

The voltage drops in metal wires that make up power grids before it reaches the

vdd pins of the cells is known as IR Drop. When there are cells with high current

requirements or high switching regions, the IR drops. The IR drop creates a voltage
loss, which delays the cells, triggering setup and hold violations. Once the chip is
produced, hold violations cannot be corrected.

A device's power consumption is divided into two categories: dynamic, also

known as switching power, and static, also known as leakage power. Leakage
power has become the primary power consumer in geometries lower than 90nm,

whilst switching is the larger contribution in larger geometries. Both forms of
power can be reduced using power reduction measures.

Figure 80: The IR analysis

193

A.4.1. Power Dissipation in CMOS

Total power is a function of switching activity, capacitance, voltage, and the

transistor structure itself.

Figure 81: The power dissipation in CMOS

Total power is the sum of the dynamic and leakage power

𝑇𝑜𝑡𝑎𝑙 𝑃𝑜𝑤𝑒𝑟 = 𝑃𝑠𝑤𝑖𝑡𝑐ℎ𝑖𝑛𝑔 + 𝑃𝑠ℎ𝑜𝑟𝑡 𝑐𝑖𝑟𝑐𝑢𝑖𝑡 + 𝑃𝑙𝑒𝑎𝑘𝑎𝑔𝑒

Equation 6:The total power

There are two types of IR drop analysis namely:

A.4.1.1. Static IR drop analysis:

Leakage power is a function of the supply voltage 𝑉𝑑𝑑, the switching threshold
voltage 𝑉𝑡ℎ , and the transistor size.

𝑃𝐿𝑒𝑎𝑘𝑎𝑔𝑒 = 𝑓 (𝑉𝑑𝑑, 𝑉𝑡ℎ, 𝑊/𝐿)

Equation 7: The leakage power

Where 𝑉𝑑𝑑 = the supply voltage, 𝑉𝑡ℎ = the threshold voltage, 𝑊 = the transistor
width and 𝐿 = the transistor length.

194

Figure 82: The leakage power

Of the following leakage components, sub-threshold leakage is dominant.

o I1: Diode reverse bias current

o I2: Sub-threshold current

o I3: Gate-induced drain leakage

o I4: Gate oxide leakage

While dynamic power is dissipated only when switching, leakage power due to
leakage current is continuous.

So, static power analysis:

• Calculates the average voltage drop of entire design assuming current

drawn across is constant.

• As average current is calculated this analysis depends on time period. This

analysis is good for signoff checks in older technology.

𝑃𝑠𝑡𝑎𝑡𝑖𝑐 = 𝑉𝑑𝑑 × 𝐼𝑙𝑒𝑎𝑘𝑎𝑔𝑒

Equation 8: The static power

195

A.4.1.2. Dynamic power:

Dynamic IR drop analysis:

• Depends on switching activity of the logic.

• Is vector dependent.

• Less dependent on clock period as depends on instantaneous current.

• Analysis of peak current demand and highly localized cells.

Dynamic power is the sum of two factors: switching power plus short-circuit
power.

Switching power is dissipated when charging or discharging internal and net

capacitances. Short-circuit power is the power dissipated by an instantaneous
short-circuit connection between the supply voltage and the ground at the time the
gate switches state.

𝑃𝑠𝑤𝑖𝑡𝑐ℎ𝑖𝑛𝑔 = 𝑎. 𝑓. 𝐶𝑒𝑓𝑓 . 𝑉𝑑𝑑
2

Equation 9: The switching power

Where 𝑎 = switching activity, 𝑓 = switching frequency, 𝐶𝑒𝑓𝑓 = the effective

capacitance and 𝑉𝑑𝑑= the supply voltage.

𝑃𝑠ℎ𝑜𝑟𝑡 𝑐𝑖𝑟𝑐𝑢𝑖𝑡 = 𝐼𝑠𝑐 .𝑉𝑑𝑑 . 𝑓

Equation 10: The short-circuit power

Where 𝐼𝑠𝑐 = the short-circuit current during switching, 𝑉𝑑𝑑= the supply voltage
and 𝑓 = switching frequency.

196

Figure 83: The dynamic power

Dynamic power can be lowered by reducing switching activity and clock

frequency, which affects performance; and also, by reducing capacitance and
supply voltage. Dynamic power can also be reduced by cell selection-faster slew
cells consume less dynamic power.

A.4.2. Methods to reduce IR drop

Robust power mesh– Initial power grid is made based on static IR analysis due
to late availability of switching activity. If there is IR drop due to some of the
clustered cells then adding a strip will make the power mesh more robust.

Figure 84: Custom power rail added to make it robust

197

• De-cap– These are decoupling capacitors which are spread across the high

switching region to maintain the voltage.

• Spacing– If clock cells are clustered and causing IR drop, then by spacing

them apart near to different power rails will reduce the IR drop. While

shifting the cell to next power rail, it should be made sure that the power

rail is not driving many cells, because adding another cell may give IR drop.

• Reducing load– Cells driving more load will be drawing more current.

Hence reducing load will reduce IR drop.

• Downsizing– Cells of smaller size will draw less current. But the transition

of cells should not become worse.

• The number of power switches can be increased to reduce IR drop

• It should be made sure that all the power pins of macros are properly

connected to the power rails.

Note:

• For accurate dynamic analysis VCD files (switching activity file) with SDF

(standard delay format) is better.

• Glitches produced from combinational circuit may act as instantaneous

switch. Reducing them will decrease the pessimism of dynamic IR drop

analysis.

198

• IR drop analysis is done in RC worst corner (corner having more resistance

of rails) and FF process, high voltage and high temp corner (PVT corner)

because current is drawn more in this corner.

A.5 Design Rule Check (DRC)

The Design Rule Check (DRC) is a check for certain layout rules, to ensure

design will be manufactured reliably. It is a part of the PDK that determines
whether the layout of a chip satisfies a series of recommended parameters called

design rules. Design rules are set of parameters provided by semiconductor

manufacturers to the designers, in order to verify the correctness of a mask set. It
varies based on semiconductor manufacturing process. These rule set describes

certain restrictions in geometry and connectivity to ensure that the design has
sufficient margin to take care of any variability in manufacturing process.

Design rule checks are nothing but physical checks of metal width, pitch and
spacing requirement for the different layers with respect to different

manufacturing process. If we give physical connection to the components without

considering the DRC rules, then it will lead to failure of functionality of chip, so all
DRC violations has to be cleaned up.

Here are some basic and common types of DRC rules

• Minimum width

• Minimum spacing

• Minimum area
• Wide metal jog

• Misaligned via wire

• Special notch spacing
• End of line spacing

After the completion of physical connection, we check each and every polygon

in the design, based on the design rules and reports all the violations. This whole
process is called Design Rule Check.

199

A.6 Layout vs. Schematic (LVS)

DRC only checks if the given layout complies with the fabrication unit's design

requirements. It does not guarantee layout functionality. As a result, the concept of

LVS was born. This appendix focuses on how LVS works and the most common
challenges that LVS users confront.

A.6.1. How LVS works

Inputs needed to perform LVS are:

• (.v) netlist of the design

• GDS layout database of the design

• LVS rule deck

Note: .v and GDS should be of same stage

The LVS rule deck is a collection of code written in SVRF (Standard Verification

Rule Format) or TCL Verification Format (TVF). It instructs the tool on how to

extract devices and IC connectivity. It contains the layer definition, which is used
to identify the layers in the layout file and match them to their GDS locations. It
also has definitions for device structures.

A.6.2. Steps of LVS check

1. Extraction: The tool accepts a GDSII file with all of the layers and uses a

polygon-based technique to identify components such as transistors, diodes,

capacitors, and resistors, as well as connectivity information between

devices in the layout. All of the device layers, device terminals, device sizes,

nets, vias, and pin positions are described and given a unique identifier.

2. Reduction: All the defined information is extracted in the form of netlist.

3. Comparison: Using the LVS rule deck, the extracted layout netlist is

compared to the netlist of the same stage. The number of instances, nets, and

ports are compared at this point. All mismatches are reported, including

shorts and openings, pin mismatches, and so on. Topology and size

mismatch are also checked by the tools.

200

A.6.3. LVS flow

Figure 85: The LVS flow

201

A.6.4. Commonly faced LVS issues

LVS check includes following comparisons:

• Number of devices in schematic and its layout

• Type of devices in schematic and its layout

• Number of nets in schematic and its layout

A.6.5. Typical errors which can occur during LVS checks

1. Shorts: Shorts are formed, if two or more wires which should not be

connected together are connected.

2. Opens: Opens are formed, if the wires or components which should be

connected together are left floating or partially connected.

3. Component mismatch: Component mismatch can happen, if components of

different types are used (e.g, LVT cells instead of HVT cells).

202

Appendix B

Scripts of Flat Flow

B.1 Synthesis script

set design cv32e40p_core

set_app_var search_path
"/home/standard_cell_libraries/NangateOpenCellLibrary_PDKv1_3_v2010_12/lib/Front
_End/Liberty/NLDM"

set_app_var link_library "* NangateOpenCellLibrary_ss0p95vn40c.db"

set_app_var target_library "NangateOpenCellLibrary_ss0p95vn40c.db"

sh rm -rf work

sh mkdir -p work

define_design_lib work -path ./work

set hdlin_sverilog_std 2009

analyze -library work -format verilog
/home/standard_cell_libraries/NangateOpenCellLibrary_PDKv1_3_v2010_12/lib/Back_

End/virtuoso/NangateOpenCellLibrary/CLKGATETST_X4/functional/verilog.v

 analyze -library work -format sverilog ../rtl/cv32e40p_register_file_ff.sv

 analyze -library work -format sverilog ../rtl/include/cv32e40p_apu_core_pkg.sv

 analyze -library work -format sverilog ../rtl/include/cv32e40p_pkg.sv

 analyze -library work -format sverilog ../rtl/include/cv32e40p_fpu_pkg.sv

 analyze -library work -format sverilog ../rtl/cv32e40p_alu.sv

203

 analyze -library work -format sverilog ../rtl/cv32e40p_alu_div.sv

 analyze -library work -format sverilog ../rtl/cv32e40p_ff_one.sv

 analyze -library work -format sverilog ../rtl/cv32e40p_popcnt.sv

 analyze -library work -format sverilog ../rtl/cv32e40p_compressed_decoder.sv

 analyze -library work -format sverilog ../rtl/cv32e40p_controller.sv

 analyze -library work -format sverilog ../rtl/cv32e40p_cs_registers.sv

 analyze -library work -format sverilog ../rtl/cv32e40p_decoder.sv

 analyze -library work -format sverilog ../rtl/cv32e40p_int_controller.sv

 analyze -library work -format sverilog ../rtl/cv32e40p_ex_stage.sv

 analyze -library work -format sverilog ../rtl/cv32e40p_hwloop_regs.sv

 analyze -library work -format sverilog ../rtl/cv32e40p_id_stage.sv

 analyze -library work -format sverilog ../rtl/cv32e40p_if_stage.sv

 analyze -library work -format sverilog ../rtl/cv32e40p_load_store_unit.sv

 analyze -library work -format sverilog ../rtl/cv32e40p_mult.sv

 analyze -library work -format sverilog ../rtl/cv32e40p_prefetch_buffer.sv

 analyze -library work -format sverilog ../rtl/cv32e40p_prefetch_controller.sv

 analyze -library work -format sverilog ../rtl/cv32e40p_obi_interface.sv

 analyze -library work -format sverilog ../rtl/cv32e40p_aligner.sv

 analyze -library work -format sverilog ../rtl/cv32e40p_sleep_unit.sv

 analyze -library work -format sverilog ../rtl/cv32e40p_core.sv

 analyze -library work -format sverilog ../rtl/cv32e40p_apu_disp.sv

 analyze -library work -format sverilog ../rtl/cv32e40p_fifo.sv

204

 analyze -library work -format sverilog ../rtl/cv32e40p_clock_gate.sv

analyze -library work -format sverilog ../rtl/${design}.sv

elaborate $design -lib work

current_design

report_hierarchy > ./report/synth_hier.rpt

check_design

source ../constraints/cv32e40p_core.sdc

link

compile_ultra -timing_high_effort_script -retime

compile_ultra -timing_high_effort_script -retime -incremental

#report_auto_ungroup

report_area > ./report/synth_area.rpt

report_power > ./report/synth_power.rpt

report_cell > ./report/synth_cells.rpt

report_qor > ./report/synth_qor.rpt

report_resources > ./report/synth_resources.rpt

report_timing -max_paths 10 > ./report/synth_timing.rpt

write_sdc output/${design}.sdc

define_name_rules no_case -case_insensitive

change_names -rule no_case -hierarchy

change_names -rule verilog -hierarchy

set verilogout_no_tri true

205

set verilogout_equation false

write -hierarchy -format verilog -output output/${design}.sv

write -f ddc -hierarchy -output output/${design}.ddc

dc_shell-t |tee ./log/syn.log

exit

B.2 PnR scripts

########### 1. DESIGN SETUP ##################

set design cv32e40p_core

sh rm -rf $design

set sc_dir "/home/standard_cell_libraries/NangateOpenCellLibrary_PDKv1_3_v2010_12"

set_app_var search_path
"/home/standard_cell_libraries/NangateOpenCellLibrary_PDKv1_3_v2010_12/lib/Front
_End/Liberty/NLDM \

 /home/mohamed/Desktop/johnson/rtl"

set_app_var link_library "* NangateOpenCellLibrary_ss0p95vn40c.db"

set_app_var target_library "NangateOpenCellLibrary_ss0p95vn40c.db"

create_mw_lib ./${design} \

 -technology $sc_dir/tech/techfile/milkyway/FreePDK45_10m.tf \

206

 -mw_reference_library $sc_dir/lib/Back_End/mdb \

 -open

set tlupmax "$sc_dir/tech/rcxt/FreePDK45_10m_Cmax.tlup"

set tlupmin "$sc_dir/tech/rcxt/FreePDK45_10m_Cmin.tlup"

set tech2itf "$sc_dir/tech/rcxt/FreePDK45_10m.map"

set_tlu_plus_files -max_tluplus $tlupmax \

 -min_tluplus $tlupmin \

 -tech2itf_map $tech2itf

import_designs ../syn/output/${design}.v \

 -format verilog \

 -top ${design} \

 -cel ${design}

source ../syn/output/${design}.sdc

save_mw_cel -as ${design}_1_imported

########### 2. Floorplan #####################

Create Starting Floorplan

############################

create_floorplan -core_utilization 0.25 \

 -core_aspect_ratio 2 \

 -start_first_row -flip_first_row \

207

 -left_io2core 12.4 -bottom_io2core 12.4 -right_io2core 12.4 -top_io2core 12.4

CONSTRAINTS

##############

Here, We define more constraints on your design that are related to floorplan stage.

report_ignored_layers

remove_ignored_layers -all

set_ignored_layers -max_routing_layer metal8

Initial Virtual Flat Placement

#################################

Use the following command with any of its options to meet a specific target

set_app_var placer_max_cell_density_threshold 0.3

create_fp_placement -timing_driven -no_hierarchy_gravity -effort high -congestion -
incremental all

save_mw_cel -as ${design}_2_fp

########### 3. POWER NETWORK #####################

Defining Logical POWER/GROUND Connections

derive_pg_connection -power_net VDD \

 -ground_net VSS \

 -power_pin VDD \

208

 -ground_pin VSS

Define Power Ring

####################

set_fp_rail_constraints -set_ring -nets {VDD VSS} \

 -horizontal_ring_layer { metal9 } \

 -vertical_ring_layer { metal10 } \

 -ring_spacing 0.8 \

 -ring_width 5 \

 -ring_offset 0.8 \

 -extend_strap core_ring

Define Power Mesh

####################

set_fp_rail_constraints -add_layer -layer metal10 -direction vertical -max_strap 128 -
min_strap 20 -min_width 2.5 -spacing minimum

set_fp_rail_constraints -add_layer -layer metal9 -direction horizontal -max_strap 128 -
min_strap 20 -min_width 2.5 -spacing minimum

set_fp_rail_constraints -add_layer -layer metal8 -direction vertical -max_strap 128 -
min_strap 20 -min_width 2.5 -spacing minimum

set_fp_rail_constraints -set_global

Creating virtual PG pads

###########################

you can create them with gui. Preroute > Create Virtual Power Pad

set die_llx [lindex [lindex [get_attribute [get_die_area] bbox] 0] 0]

209

set die_lly [lindex [lindex [get_attribute [get_die_area] bbox] 0] 1]

set die_urx [lindex [lindex [get_attribute [get_die_area] bbox] 1] 0]

set die_ury [lindex [lindex [get_attribute [get_die_area] bbox] 1] 1]

for {set i "[expr $die_llx + 20]"} {$i < "[expr $die_urx - 40]"} {set i [expr $i + 80]} {

 create_fp_virtual_pad -net VSS -point "{$i $die_lly}"

 create_fp_virtual_pad -net VDD -point "{[expr $i + 40] $die_lly}"

 create_fp_virtual_pad -net VSS -point "{$i $die_ury}"

 create_fp_virtual_pad -net VDD -point "{[expr $i + 40] $die_ury}"

}

for {set i "[expr $die_lly + 20]"} {$i < "[expr $die_ury - 40]"} {set i [expr $i + 80]} {

 create_fp_virtual_pad -net VSS -point "{$die_llx $i}"

 create_fp_virtual_pad -net VDD -point "{$die_llx [expr $i + 40]}"

 create_fp_virtual_pad -net VSS -point "{$die_urx $i}"

 create_fp_virtual_pad -net VDD -point "{$die_urx [expr $i + 40] }"

}

synthesize_fp_rail -nets {VDD VSS} -synthesize_power_plan -target_voltage_drop 22 -
voltage_supply 1.1 -power_budget 500

Analyze IR-drop; Modify power network constraints and re-synthesize, as needed.

Max IR is 2% of Nominal Supply. In our case, 0.02 x 1.1v= 22mv

commit_fp_rail

set_preroute_drc_strategy -max_layer metal8

210

preroute_standard_cells -fill_empty_rows -remove_floating_pieces

If you want to remove power and recreate it

#remove_net_shape [get_net_shapes -of_objects [get_nets -all "VSS VDD"]]

#remove_via [get_vias -of_objects [get_nets -all "VSS VDD"]]

MAy need => remove_fp_virtual_pad -all

Analyze IR-drop; Modify power network constraints and re-synthesize, as needed.

analyze_fp_rail -nets {VDD VSS} -power_budget 500 -voltage_supply 1.1

Final Floorplan Assessment

#create_fp_placement -incremental all; # Updates fp placement after PG mesh creation.

Analyze Congestion

Analyze Timing

Add Well Tie Cells

#####################

add_tap_cell_array -master TAP \

 -distance 30 \

 -pattern stagger_every_other_row

save_mw_cel -as ${design}_3_power

report_timing -max_paths 10 > ./reports/timing_CU_power.rpt

########### 4. Placement #####################

puts "start_place"

211

CHECKS

#########

set_ignored_layers -max_routing_layer metal8

report_ignored_layers ; # To Make sure they are as wanted.

check_physical_design -stage pre_place_opt

check_physical_constraints

INITIAL PLACEMENT

####################

Initial Placement can be done using the following command using any of its target
options

place_opt

OPTIMIZATION

###############

psynopt -area_recovery |-power| |-congestion|

psynopt -congestion

FINAL ASSESSMENT

###################

check_legality

If no legalized cells => legalize_placement -effort high -incremental

Check Congestion

212

Check Timing

 report_design_physical -utilization > ./reports/utilization_placement.rpt

DEFINING POWER/GROUND NETS AND PINS

derive_pg_connection -power_net VDD \

 -ground_net VSS \

 -power_pin VDD \

 -ground_pin VSS

Tie fixed values

set tie_pins [get_pins -all -filter "constant_value == 0 || constant_value == 1 && name !~
V* && is_hierarchical == false "]

derive_pg_connection -power_net VDD \

 -ground_net VSS \

 -tie

connect_tie_cells -objects $tie_pins \

 -obj_type port_inst \

 -tie_low_lib_cell LOGIC0_X1 \

 -tie_high_lib_cell LOGIC1_X1

puts "finish_place"

save_mw_cel -as ${design}_4_placed

report_timing -max_paths 10 > ./reports/timing_CU_placement.rpt

report_area > ./reports/area_placement.rpt

213

########### 5. CTS #####################

puts "start_cts"

CHECKS

#########

check_physical_design -stage pre_clock_opt

check_clock_tree

report_clock_tree

CONSTRAINTS

##############

Here, We define more constraints on your design that are related to CTS stage.

set_driving_cell -lib_cell BUF_X16 -pin Z [get_ports clk_i]

Set Clock Exceptions

Set Clock Control/Targets

set_clock_tree_options \

 -clock_trees clk_i \

 -target_early_delay 0.1 \

 -target_skew 0.5 \

 -max_capacitance 300 \

 -max_fanout 10 \

 -max_transition 0.150

214

set_clock_tree_options -clock_trees clk_i \

 -buffer_relocation true \

 -buffer_sizing true \

 -gate_relocation true \

 -gate_sizing true

Selection of CTS cells

set_clock_tree_references -references [get_lib_cells */CLKBUF*]

Set Clock Physical Constraints

Clock Non-Default Ruls (NDR) - Set it to be double width and double spacing

define_routing_rule my_route_rule \

 -widths {metal3 0.14 metal4 0.28 metal5 0.28 metal6 0.28 metal7 0.8} \

 -spacings {metal3 0.14 metal4 0.28 metal5 0.28 metal6 0.28 metal7 0.8}

set_clock_tree_options -clock_trees clk_i \

 -routing_rule my_route_rule \

 -layer_list "metal3 metal4 metal5 metal6 metal7"

To avoid NDR at clock sinks

set_clock_tree_options -use_default_routing_for_sinks 1

report_clock_tree -settings

Clock Tree : Synhtesis, Optimization, and Routing

The 3 steps can be done with the combo command clock_opt. But below, we do them

215

individually.

compile_clock_tree -clock_trees clk_i

1- CTS

clock_opt -only_cts -no_clock_route

analyze

 report_design_physical -utilization

 report_clock_tree -summary ; # reports for the clock tree, regardless of relation between
FFs

 report_clock_tree

 report_clock_timing -type summary ; # reports for the clock tree, considering relation
between FFs

 report_timing ; #slack (VIOLATED) -0.02

 report_timing -delay_type min ; #report_worest_hold_violation la2eto 0.01 met

 report_constraints -all_violators -max_delay -min_delay

 # Check Congestion

 # Check Timing

2- CTO

To Consider Hold Fix -- Design Dependent

clock_opt -only_psyn -no_clock_route

#analyze

3- Clock Tree Routing

route_group -all_clock_nets

#analyze

216

clock_opt -only_psyn -congestion

clock_opt -only_psyn

route_group -all_clock_nets

set_propagated_clock [get_clocks clk_i]

If any issue at analysis, update CT constraints

DEFINING POWER/GROUND NETS AND PINS

derive_pg_connection -power_net VDD \

 -ground_net VSS \

 -power_pin VDD \

 -ground_pin VSS

save_mw_cel -as ${design}_5_cts

puts "finish_cts"

report_area > ./reports/area_CU_CTS.rpt

report_cell > ./reports/cells_CU_CTS.rpt

report_qor > ./reports/qor_CU_CTS.rpt

report_resources > ./reports/resources_CU_CTS.rpt

report_timing -max_paths 10 > ./reports/timing_CU_CTS.rpt

report_power > ./reports/power_CU_CTS.rpt

########### 6. Routing #####################

217

Before starting to route, you should add spare cells

insert_spare_cells -lib_cell {NOR2_X4 NAND2_X4} \

 -num_instances 20 \

 -cell_name SPARE_PREFIX_NAME \

 -tie

set_dont_touch [all_spare_cells] true

set_attribute [all_spare_cells] is_soft_fixed true

puts "start_route"

get_utilization -flat

#set_dont_touch [get_nets -all VDD]

#set_dont_touch [get_nets -all VSS]

check_physical_design -stage pre_route_opt; # dump check_physical_design result to f ile

./cpd_pre_route_opt_*/index.html

all_ideal_nets

all_high_fanout -nets -threshold 100

check_routeability

set_delay_calculation_options -arnoldi_effort low

set_route_options -groute_timing_driven true \

 -groute_incremental true \

 -track_assign_timing_driven true \

218

 -same_net_notch check_and_fix

set_si_options -route_xtalk_prevention true\

 -delta_delay true \

 -min_delta_delay true \

 -static_noise true\

 -timing_window true

route_auto -effort high

save_mw_cel -as ${design}_30_after_route_auto

verify_lvs -max_error 1000

verify_zrt_route

route_opt

save_mw_cel -as ${design}_31_after_route_opt

verify_lvs -max_error 1000

verify_zrt_route

route_opt -incremental -effort high

route_opt -incremental -effort high

route_opt -incremental -effort high

save_mw_cel -as ${design}_32_now

focal_opt -setup_endpoints all

focal_opt -drc_pins all

focal_opt -drc_nets all

route_opt -incremental -effort high

219

route_opt -incremental -effort high

route_opt -incremental -effort high

derive_pg_connection -power_net VDD \

 -ground_net VSS \

 -power_pin VDD \

 -ground_pin VSS

#report_noise

#report_timing -crosstalk_delta

report_area > ./reports/area_route.rpt

report_cell > ./reports/cells_route.rpt

report_qor > ./reports/qor_route.rpt

report_resources > ./reports/resources_route.rpt

report_timing -max_paths 10 > ./reports/timing_route.rpt

report_power > ./reports/power_route.rpt

save_mw_cel -as ${design}_6_routed

puts "finish_route"

########### 7. Finishing #####################

insert_stdcell_filler -cell_without_metal {FILLCELL_X32 FILLCELL_X16 FILLCELL_X8
FILLCELL_X4 FILLCELL_X2 FILLCELL_X1} \

 -connect_to_power VDD -connect_to_ground VSS

220

derive_pg_connection -power_net VDD \

 -ground_net VSS \

 -power_pin VDD \

 -ground_pin VSS

save_mw_cel -as ${design}_7_finished

save_mw_cel -as ${design}

########### 8. Checks and Outputs ############

verify_zrt_route

verify_lvs -ignore_floating_port -ignore_floating_net \

 -check_open_locator -check_short_locator

set_write_stream_options -map_layer
$sc_dir/tech/strmout/FreePDK45_10m_gdsout.map \

 -output_filling fill \

 -child_depth 20 \

 -output_outdated_fill \

 -output_pin {text geometry}

write_stream -lib $design \

 -format gds\

 -cells $design\

 ./output/${design}.gds

define_name_rules new_verilog -special verilog -target_bus_naming_style {%s[%d]} -

221

check_internal_net_name -check_bus_indexing

change_names -rule new_verilog -hierarchy

set verilogout_no_tri true

set verilogout_equation false

write_sdc ./output/${design}.sdc

write_verilog -pg -no_physical_only_cells ./output/cv32e40p_core_icc.v

write_verilog -no_physical_only_cells ./output/cv32e40p_core_icc_nopg.v

extract_rc

write_parasitics -output {./output/cv32e40p_core.spef}

close_mw_cel

close_mw_lib

exit

B.3 STA-Max script

set design cv32e40p_core

set link_path "*

/home/standard_cell_libraries/NangateOpenCellLibrary_PDKv1_3_v2010_12/lib/Front_
End/Liberty/NLDM/NangateOpenCellLibrary_ss0p95vn40c.db"

read_verilog "../../../pnr/output/${design}_icc.v"

current_design $design

link

source ../../../pnr/output/${design}.sdc

222

read_parasitics ../../../pnr/output/${design}.spef.max

#read_parasitics -format spef ../../rcxt/cmax/cv32e40p_core_cmax_tm40.spef

set_propagated_clock [get_clocks clk_i]

update_timing

report_timing -delay_type max

fix_eco_timing -type setup -method size_cell -buffer_list {BUF_X1 BUF_X2 BUF_X3
BUF_X4}

write_changes -format icctcl -output ./ecol.tcl

save_session ${design}_max.session

report_constraint -all_violators -significant_digits 4 > ./${design}.max_constr.rpt

report_timing -delay_type max -nworst 40 -significant_digits 4 >
./${design}.max_timing.rpt

write_sdf ./${design}.max.sdf

B.4 STA-Min script

set design cv32e40p_core

set link_path "*
/home/standard_cell_libraries/NangateOpenCellLibrary_PDKv1_3_v2010_12/lib/Front_
End/Liberty/NLDM/NangateOpenCellLibrary_ff1p25vn40c.db"

read_verilog "../../../pnr/output/${design}_icc.v"

current_design $design

link

source ../../../pnr/output/${design}.sdc

223

read_parasitics ../../../pnr/output/${design}.spef.min

#read_parasitics -format spef ../../rcxt/cmax/cv32e40p_core_cmax_tm40.spef

set_propagated_clock [get_clocks clk_i]

update_timing

report_timing -delay_type min

save_session ${design}_min.session

report_constraint -all_violators -significant_digits 4 > ./${design}.min_constr.rpt

report_timing -delay_type min -nworst 40 -significant_digits 4 >
./${design}.min_timing.rpt

write_sdf ./${design}.min.sdf

Appendix C

Scripts of Hierarchical Flow

C.1 Synthesis script

dc_shell-t |tee ./log/syn.log

set design cv32e40p_core

set_app_var search_path
"/home/standard_cell_libraries/NangateOpenCellLibrary_PDKv1_3_v2010_12/lib/Fro
nt_End/Liberty/NLDM"

set_app_var link_library "* NangateOpenCellLibrary_ss0p95vn40c.db"

set_app_var target_library "NangateOpenCellLibrary_ss0p95vn40c.db"

sh rm -rf work

224

sh mkdir -p work

define_design_lib work -path ./work

set hdlin_sverilog_std 2009

 analyze -library work -format sverilog ../rtl/cv32e40p_register_file_ff.sv

 analyze -library work -format sverilog ../rtl/include/cv32e40p_apu_core_pkg.sv

 analyze -library work -format sverilog ../rtl/include/cv32e40p_pkg.sv

 analyze -library work -format sverilog ../rtl/include/cv32e40p_fpu_pkg.sv

 analyze -library work -format sverilog ../bhv/include/cv32e40p_tracer_pkg.sv

 analyze -library work -format sverilog ../rtl/cv32e40p_alu.sv

 analyze -library work -format sverilog ../rtl/cv32e40p_alu_div.sv

 analyze -library work -format sverilog ../rtl/cv32e40p_ff_one.sv

 analyze -library work -format sverilog ../rtl/cv32e40p_popcnt.sv

 analyze -library work -format sverilog ../rtl/cv32e40p_compressed_decoder.sv

 analyze -library work -format sverilog ../rtl/cv32e40p_controller.sv

 analyze -library work -format sverilog ../rtl/cv32e40p_cs_registers.sv

 analyze -library work -format sverilog ../rtl/cv32e40p_decoder.sv

 analyze -library work -format sverilog ../rtl/cv32e40p_int_controller.sv

 analyze -library work -format sverilog ../rtl/cv32e40p_ex_stage.sv

 analyze -library work -format sverilog ../rtl/cv32e40p_hwloop_regs.sv

 analyze -library work -format sverilog ../rtl/cv32e40p_id_stage.sv

 analyze -library work -format sverilog ../rtl/cv32e40p_if_stage.sv

 analyze -library work -format sverilog ../rtl/cv32e40p_load_store_unit.sv

225

 analyze -library work -format sverilog ../rtl/cv32e40p_mult.sv

 analyze -library work -format sverilog ../rtl/cv32e40p_prefetch_buffer.sv

 analyze -library work -format sverilog ../rtl/cv32e40p_prefetch_controller.sv

 analyze -library work -format sverilog ../rtl/cv32e40p_obi_interface.sv

 analyze -library work -format sverilog ../rtl/cv32e40p_aligner.sv

 analyze -library work -format sverilog ../rtl/cv32e40p_sleep_unit.sv

 analyze -library work -format sverilog ../rtl/cv32e40p_apu_disp.sv

 analyze -library work -format sverilog ../rtl/cv32e40p_fifo.sv

 analyze -library work -format sverilog ../bhv/cv32e40p_sim_clock_gate.sv

 analyze -library work -format sverilog ../bhv/cv32e40p_wrapper.sv

analyze -library work -format sverilog ../rtl/${design}.sv

puts "elaborate_stage"

elaborate $design -lib work

current_design

report_hierarchy > ./report/synth_hier.rpt

check_design

source ../constraints/cv32e40p_core.sdc

link

uniquify

compile_ultra -no_autoungroup -timing_high_effort_script -retime

report_timing -delay_type max

compile_ultra -no_autoungroup -timing_high_effort_script -retime -incremental

226

compile_ultra -no_autoungroup -timing_high_effort_script -retime -incremental

compile_ultra -no_autoungroup -timing_high_effort_script -retime -incremental

report_area > ./report/synth_area.rpt

report_power > ./report/synth_power.rpt

report_timing -max_paths 10 > ./report/synth_timing.rpt

write_sdc output/${design}.sdc

define_name_rules no_case -case_insensitive

change_names -rule no_case -hierarchy

change_names -rule verilog -hierarchy

set verilogout_no_tri true

set verilogout_equation false

write -hierarchy -format verilog -output output/${design}.v

write -f ddc -hierarchy -output output/${design}.ddc

exit

227

C.2 PnR scripts

########### 1. DESIGN SETUP ##################

icc_shell -output_log_file ./log/pnr.log

set design cv32e40p_core

sh rm -rf $design

set sc_dir "/home/standard_cell_libraries/NangateOpenCellLibrary_PDKv1_3_v2010_12"

set_app_var search_path
"/home/standard_cell_libraries/NangateOpenCellLibrary_PDKv1_3_v2010_12/lib/Front
_End/Liberty/NLDM"

set_app_var link_library "* NangateOpenCellLibrary_ss0p95vn40c.db"

set_app_var target_library "NangateOpenCellLibrary_ss0p95vn40c.db"

create_mw_lib ./${design} \

 -technology $sc_dir/tech/techfile/milkyway/FreePDK45_10m.tf \

 -mw_reference_library $sc_dir/lib/Back_End/mdb \

 -open

set tlupmax "$sc_dir/tech/rcxt/FreePDK45_10m_Cmax.tlup"

set tlupmin "$sc_dir/tech/rcxt/FreePDK45_10m_Cmin.tlup"

set tech2itf "$sc_dir/tech/rcxt/FreePDK45_10m.map"

set_tlu_plus_files -max_tluplus $tlupmax \

 -min_tluplus $tlupmin \

228

 -tech2itf_map $tech2itf

import_designs ../syn/output/${design}.v \

 -format verilog \

 -top ${design} \

 -cel ${design}

source ../constraints/cv32e40p_core.sdc

set_propagated_clock [get_clocks clk_i]

save_mw_cel -as ${design}_1_imported

########### 2. Floorplan #####################

Create Starting Floorplan

############################

puts "start floorplan"

create_floorplan -core_utilization 0.25 -core_aspect_ratio 2 \

 -start_first_row -flip_first_row \

 -left_io2core 12.4 -bottom_io2core 12.4 -right_io2core 12.4 -top_io2core 12.4

report_ignored_layers

remove_ignored_layers -all

set_ignored_layers -max_routing_layer metal8

Initial Virtual Flat Placement

#################################

229

set_app_var placer_max_cell_density_threshold 0.3

 create_fp_placement

 report_fp_placement

puts "end floorplan"

save_mw_cel -as ${design}_2_fp

########### 3. POWER NETWORK #####################

puts "start powergrid"

Defining Logical POWER/GROUND Connections

derive_pg_connection -power_net VDD \

 -ground_net VSS \

 -power_pin VDD \

 -ground_pin VSS

Define Power Ring

####################

set_fp_rail_constraints -set_ring -nets {VDD VSS} \

 -horizontal_ring_layer { metal9 } \

 -vertical_ring_layer { metal10 } \

 -ring_spacing 0.8 \

230

 -ring_width 5 \

 -ring_offset 0.8 \

 -extend_strap core_ring

Define Power Mesh

####################

set_fp_rail_constraints -add_layer -layer metal10 -direction vertical -max_strap 128 -
min_strap 20 -min_width 2.5 -spacing minimum

set_fp_rail_constraints -add_layer -layer metal9 -direction horizontal -max_strap 128 -
min_strap 20 -min_width 2.5 -spacing minimum

set_fp_rail_constraints -add_layer -layer metal8 -direction vertical -max_strap 128 -
min_strap 20 -min_width 2.5 -spacing minimum

set_fp_rail_constraints -set_global

set die_llx [lindex [lindex [get_attribute [get_die_area] bbox] 0] 0]

set die_lly [lindex [lindex [get_attribute [get_die_area] bbox] 0] 1]

set die_urx [lindex [lindex [get_attribute [get_die_area] bbox] 1] 0]

set die_ury [lindex [lindex [get_attribute [get_die_area] bbox] 1] 1]

for {set i "[expr $die_llx + 20]"} {$i < "[expr $die_urx - 40]"} {set i [expr $i + 80]} {

 create_fp_virtual_pad -net VSS -point "{$i $die_lly}"

 create_fp_virtual_pad -net VDD -point "{[expr $i + 40] $die_lly}"

 create_fp_virtual_pad -net VSS -point "{$i $die_ury}"

231

 create_fp_virtual_pad -net VDD -point "{[expr $i + 40] $die_ury}"

}

for {set i "[expr $die_lly + 20]"} {$i < "[expr $die_ury - 40]"} {set i [expr $i + 80]} {

 create_fp_virtual_pad -net VSS -point "{$die_llx $i}"

 create_fp_virtual_pad -net VDD -point "{$die_llx [expr $i + 40]}"

 create_fp_virtual_pad -net VSS -point "{$die_urx $i}"

 create_fp_virtual_pad -net VDD -point "{$die_urx [expr $i + 40] }"

}

synthesize_fp_rail -nets {VDD VSS} -synthesize_power_plan -target_voltage_drop 22 -
voltage_supply 1.1 -power_budget 500

analyze_fp_rail -nets {VDD VSS} -power_budget 500 -voltage_supply 1.1

commit_fp_rail

set_preroute_drc_strategy -max_layer metal8

preroute_standard_cells -fill_empty_rows -remove_floating_pieces

Add Well Tie Cells

#####################

add_tap_cell_array -master TAP \

 -distance 30 \

 -pattern stagger_every_other_row

puts "end powergrid"

232

save_mw_cel -as ${design}_3_power

########### 4. Placement #####################

puts "start_place"

report_ignored_layers

check_physical_design -stage pre_place_opt

check_physical_constraints

INITIAL PLACEMENT

place_opt

check Congestion -> open global congestion map

check timing

report_timing -delay_type max

report_timing -delay_type min

OPTIMIZATION

###############

psynopt

ASSESSMENT

###################

check_legality

check Congestion -> open global congestion map

check timing

233

report_timing -delay_type max

report_timing -delay_type min

DEFINING POWER/GROUND NETS AND PINS

derive_pg_connection -power_net VDD \

 -ground_net VSS \

 -power_pin VDD \

 -ground_pin VSS

Tie fixed values

###################

set tie_pins [get_flat_pins -all -filter "(constant_value == 0 || constant_value == 1) &&
name !~ V* && is_hierarchical == false "]

derive_pg_connection -power_net VDD \

 -ground_net VSS \

 -tie

connect_tie_cells -objects $tie_pins \

 -obj_type port_inst \

 -tie_low_lib_cell LOGIC0_X1 \

 -tie_high_lib_cell LOGIC1_X1

puts "finish_place"

save_mw_cel -as ${design}_4_placed

234

########### 5. CTS #####################

puts "start_cts"

CHECKS

#########

check_physical_design -stage pre_clock_opt

check_clock_tree

report_clock_tree

set_driving_cell -lib_cell BUF_X16 -pin Z [get_ports clk_i]

Set Clock Control/Targets

set_clock_tree_options \

 -clock_trees clk_i \

 -target_early_delay 0.1 \

 -target_skew 0.2 \

 -max_capacitance 300 \

 -max_fanout 10 \

 -max_transition 0.150

set_clock_tree_options -clock_trees clk_i \

 -buffer_relocation true \

 -buffer_sizing true \

 -gate_relocation true \

235

 -gate_sizing true

Selection of CTS cells

set_clock_tree_references -references [get_lib_cells */CLKBUF*]

Set Clock Physical Constraints

define_routing_rule my_route_rule \

 -widths {metal3 0.14 metal4 0.28 metal5 0.28 metal6 0.28 metal7 0.8} \

 -spacings {metal3 0.14 metal4 0.28 metal5 0.28 metal6 0.28 metal7 0.8}

set_clock_tree_options -clock_trees clk_i \

 -routing_rule my_route_rule \

 -layer_list "metal3 metal4 metal5 metal6 metal7"

set_clock_tree_options -use_default_routing_for_sinks 1

report_clock_tree -settings

Clock Tree : Synhtesis, Optimization, and Routing

compile_clock_tree

clock_opt -only_cts -no_clock_route

analyze

 report_design_physical -utilization

 report_clock_tree -summary

 report_clock_tree

 report_clock_timing -type summary

236

 report_timing -delay_type max

 report_timing -delay_type min

 report_constraints -all_violators -max_delay -min_delay

To Consider Hold Fix

 set_fix_hold [all_clocks]

 set_fix_hold_options -prioritize_tns -effort low

set_propagated_clock [all_clocks]

clock_opt -only_psyn -no_clock_route

route_group -all_clock_nets

derive_pg_connection -power_net VDD \

 -ground_net VSS \

 -power_pin VDD \

 -ground_pin VSS

puts "end_CTS"

save_mw_cel -as ${design}_5_cts

########### 6. ROUTING #####################

puts "start_route"

check_physical_design -stage pre_route_opt

all_ideal_nets

all_high_fanout -nets -threshold 100

237

check_routeability

set_delay_calculation_options -arnoldi_effort low

set_route_options -groute_timing_driven true \

 -groute_incremental true \

 -track_assign_timing_driven true \

 -same_net_notch check_and_fix

set_si_options -route_xtalk_prevention true\

 -delta_delay true \

 -min_delta_delay true \

 -static_noise true\

 -timing_window true

 set_fix_hold [all_clocks]

 set_prefer -min [get_lib_cells "*/BUF_X2 */BUF_X1"]

 set_fix_hold_options -preferred_buffer -effort low

set_propagated_clock [all_clocks]

route_auto

check short nets

verify_lvs -max_error 1000

check timing

report_timing -delay_type max

report_timing -delay_type min

238

check max IR drop

analyze_fp_rail -nets {VDD VSS} -power_budget 500 -voltage_supply 1.1

save_mw_cel -as ${design}_6_routed

route_opt

check short nets

verify_lvs -max_error 1000

check timing

report_timing -delay_type max

report_timing -delay_type min

check max IR drop

analyze_fp_rail -nets {VDD VSS} -power_budget 500 -voltage_supply 1.1

save_mw_cel -as ${design}_6_routed2

route_opt -incremental -effort high

check short nets

verify_lvs -max_error 1000

check timing

report_timing -delay_type max

report_timing -delay_type min

check max IR drop

analyze_fp_rail -nets {VDD VSS} -power_budget 500 -voltage_supply 1.1

save_mw_cel -as ${design}_6_routed7

239

route_opt -incremental -effort high

check short nets

verify_lvs -max_error 1000

check timing

report_timing -delay_type max

report_timing -delay_type min

check max IR drop

analyze_fp_rail -nets {VDD VSS} -power_budget 500 -voltage_supply 1.1

save_mw_cel -as ${design}_6_routed10

derive_pg_connection -power_net VDD \

 -ground_net VSS \

 -power_pin VDD \

 -ground_pin VSS

save_mw_cel -as ${design}_6_routed4

puts "finish_route"

########### 7. Finishing #####################

insert_stdcell_filler -cell_without_metal {FILLCELL_X32 FILLCELL_X16 FILLCELL_X8
FILLCELL_X4 FILLCELL_X2 FILLCELL_X1} \

 -connect_to_power VDD -connect_to_ground VSS

240

insert_zrt_redundant_vias

derive_pg_connection -power_net VDD \

 -ground_net VSS \

 -power_pin VDD \

 -ground_pin VSS

create_port -direction inout VDD

connect_net VDD [get_ports VDD]

create_port -direction inout VSS

connect_net VSS [get_ports VSS]

save_mw_cel -as ${design}_7_finished

save_mw_cel -as ${design}

########### 8. Checks and Outputs ############

verify_lvs -ignore_floating_port -ignore_floating_net \

 -check_open_locator -check_short_locator

verify_lvs -max_error 1000

report_timing -delay_type max

report_timing -delay_type min

analyze_fp_rail -nets {VDD VSS} -power_budget 500 -voltage_supply 1.1

set_write_stream_options -map_layer

241

$sc_dir/tech/strmout/FreePDK45_10m_gdsout.map \

 -output_filling fill \

 -child_depth 20 \

 -output_outdated_fill \

 -output_pin {text geometry}

write_stream -lib $design \

 -format gds\

 -cells $design\

 ./output/${design}.gds

define_name_rules new_verilog -special verilog -target_bus_naming_style {%s[%d]} -
check_internal_net_name -check_bus_indexing

change_names -rule new_verilog -hierarchy

set verilogout_no_tri true

set verilogout_equation false

write_verilog -pg -no_physical_only_cells ./output/${design}_icc.v

write_verilog -no_physical_only_cells ./output/${design}_icc_nopg.v

report_area > ./report/pnr_area.rpt

report_power > ./report/pnr_power.rpt

report_cell > ./report/pnr_cells.rpt

report_qor > ./report/pnr_qor.rpt

report_resources > ./report/pnr_resources.rpt

242

report_timing -max_paths 10 > ./report/pnr_timing.rpt

extract_rc

write_parasitics -output {./output/hierarch.spef}

create_rail_setup

close_mw_cel

close_mw_lib

exit

C.3 STA-Max script

set link_path "$link_path
/home/standard_cell_libraries/NangateOpenCellLibrary_PDKv1_3_v2010_12/lib/Front_
End/Liberty/NLDM/NangateOpenCellLibrary_ss0p95vn40c.db"

read_verilog "../../../pnr/output/cv32e40p_core_icc.v"

current_design cv32e40p_core

link

source ../../../constraints/cv32e40p_core.sdc

set_propagated_clock [get_clocks clk_i]

read_parasitics ../../../pnr/output/hierarch.spef.max

#read_parasitics ../../rcxt/cmax/cv32e40p_core_cmax_tm40.spef

#fix_eco_timing -type setup

243

#update_timing

save_session cv32e40p_core_max_rcxt.session

report_constraint -all_violators -significant_digits 4 > ./cv32e40p_core.max_constr.rpt

report_timing -delay_type max -nworst 40 -significant_digits 4 >
./cv32e40p_core.max_timing.rpt

write_sdf ./cv32e40p_core.max.sdf

exit

C.4 STA-Min script

Set link_path "$link_path
/home/standard_cell_libraries/NangateOpenCellLibrary_PDKv1_3_v2010_12/lib/Front_
End/Liberty/NLDM/NangateOpenCellLibrary_ff1p25v0c.db"

read_verilog "../../../pnr/output/cv32e40p_core_icc.v"

current_design cv32e40p_core

link

source ../../../constraints/cv32e40p_core.sdc

read_parasitics ../../../pnr/output/hierarch.spef.min

#read_parasitics ../../rcxt/cmin/cv32e40p_core_cmin_t125.spef

#fix_eco_timing -type hold -buffer_list {BUF_X16} -methods { insert_buffer}

#update_timing

save_session cv32e40p_core_min_rcxt.session

report_constraint -all_violators -significant_digits 4 > ./cv32e40p_core.min_constr.rpt

244

report_timing -delay_type min -nworst 40 -significant_digits 4 >
./cv32e40p_core.min_timing.rpt

write_sdf ./cv32e40p_core.min.sdf

exit

Appendix D

Scripts of Topographical Flow

D.1 Synthesis 1st stage

set design cv32e40p_core

set_app_var search_path
"/home/standard_cell_libraries/NangateOpenCellLibrary_PDKv1_3_v2010_12/lib/Front
_End/Liberty/NLDM"

set_app_var link_library "* NangateOpenCellLibrary_ss0p95vn40c.db"

set_app_var target_library "NangateOpenCellLibrary_ss0p95vn40c.db"

sh rm -rf work

sh mkdir -p work

define_design_lib work -path ./work

set hdlin_sverilog_std 2009

 analyze -library work -format sverilog ../rtl/cv32e40p_register_file_ff.sv

 analyze -library work -format sverilog ../rtl/include/cv32e40p_apu_core_pkg.sv

 analyze -library work -format sverilog ../rtl/include/cv32e40p_pkg.sv

 analyze -library work -format sverilog ../rtl/include/cv32e40p_fpu_pkg.sv

245

 analyze -library work -format sverilog ../bhv/include/cv32e40p_tracer_pkg.sv

 analyze -library work -format sverilog ../rtl/cv32e40p_alu.sv

 analyze -library work -format sverilog ../rtl/cv32e40p_alu_div.sv

 analyze -library work -format sverilog ../rtl/cv32e40p_ff_one.sv

 analyze -library work -format sverilog ../rtl/cv32e40p_popcnt.sv

 analyze -library work -format sverilog ../rtl/cv32e40p_compressed_decoder.sv

 analyze -library work -format sverilog ../rtl/cv32e40p_controller.sv

 analyze -library work -format sverilog ../rtl/cv32e40p_cs_registers.sv

 analyze -library work -format sverilog ../rtl/cv32e40p_decoder.sv

 analyze -library work -format sverilog ../rtl/cv32e40p_int_controller.sv

 analyze -library work -format sverilog ../rtl/cv32e40p_ex_stage.sv

 analyze -library work -format sverilog ../rtl/cv32e40p_hwloop_regs.sv

 analyze -library work -format sverilog ../rtl/cv32e40p_id_stage.sv

 analyze -library work -format sverilog ../rtl/cv32e40p_if_stage.sv

 analyze -library work -format sverilog ../rtl/cv32e40p_load_store_unit.sv

 analyze -library work -format sverilog ../rtl/cv32e40p_mult.sv

 analyze -library work -format sverilog ../rtl/cv32e40p_prefetch_buffer.sv

 analyze -library work -format sverilog ../rtl/cv32e40p_prefetch_controller.sv

 analyze -library work -format sverilog ../rtl/cv32e40p_obi_interface.sv

 analyze -library work -format sverilog ../rtl/cv32e40p_aligner.sv

 analyze -library work -format sverilog ../rtl/cv32e40p_sleep_unit.sv

 analyze -library work -format sverilog ../rtl/cv32e40p_core.sv

246

 analyze -library work -format sverilog ../rtl/cv32e40p_apu_disp.sv

 analyze -library work -format sverilog ../rtl/cv32e40p_fifo.sv

 analyze -library work -format sverilog ../bhv/cv32e40p_sim_clock_gate.sv

 analyze -library work -format sverilog ../bhv/cv32e40p_wrapper.sv

elaborate $design -lib work

current_design

check_design

##in Topo

#change_names -rules verilog -hier

source ./cons/cv32e40p_core.sdc

link

compile_ultra -timing_high_effort_script

report_timing -delay_type max

compile_ultra -timing_high_effort_script -incremental

report_timing -delay_type max

compile_ultra -timing_high_effort_script -incremental

report_timing -delay_type max

report_area > ./report/synth_area_CU_topo1.rpt

report_cell > ./report/synth_cells_CU_topo1.rpt

report_qor > ./report/synth_qor_CU_topo1.rpt

report_resources > ./report/synth_resources_CU_topo1.rpt

report_timing -max_paths 10 > ./report/synth_timing_CU_topo1.rpt

247

report_timing -delay_type min > ./report/synth_timing_CU_topo_hold1.rpt

report_power > ./report/power_CU_topo1.rpt

define_name_rules no_case -case_insensitive

change_names -rule no_case -hierarchy

change_names -rule verilog -hierarchy

set verilogout_no_tri true

set verilogout_equation false

write -hierarchy -format verilog -output output/${design}_1.v

write -f ddc -hierarchy -output output/${design}_1.ddc

write_sdc -version 1.9 output/${design}_1.sdc

exit

D.2 PnR 1st stage

########### 1. DESIGN SETUP ##################

set design cv32e40p_core

sh rm -rf $design

set sc_dir "/home/standard_cell_libraries/NangateOpenCellLibrary_PDKv1_3_v2010_12"

set_app_var search_path
"/home/standard_cell_libraries/NangateOpenCellLibrary_PDKv1_3_v2010_12/lib/Front
_End/Liberty/NLDM \

248

 /home/mohamed/Desktop/johnson/rtl"

set_app_var link_library "* NangateOpenCellLibrary_ss0p95vn40c.db"

set_app_var target_library "NangateOpenCellLibrary_ss0p95vn40c.db"

create_mw_lib ./${design} \

 -technology $sc_dir/tech/techfile/milkyway/FreePDK45_10m.tf \

 -mw_reference_library $sc_dir/lib/Back_End/mdb \

 -open

set tlupmax "$sc_dir/tech/rcxt/FreePDK45_10m_Cmax.tlup"

set tlupmin "$sc_dir/tech/rcxt/FreePDK45_10m_Cmin.tlup"

set tech2itf "$sc_dir/tech/rcxt/FreePDK45_10m.map"

set_tlu_plus_files -max_tluplus $tlupmax \

 -min_tluplus $tlupmin \

 -tech2itf_map $tech2itf

import_designs ../syn/output/${design}_1.ddc \

 -format ddc \

 -top ${design} \

 -cel ${design}

source ../syn/cons/cv32e40p_core.sdc

set_propagated_clock [get_clocks clk_i]

save_mw_cel -as ${design}_1_imported

249

########### 2. Floorplan #####################

Create Starting Floorplan

############################

create_floorplan -core_utilization 0.25 \

 -core_aspect_ratio 2 \

 -start_first_row -flip_first_row \

 -left_io2core 12.4 -bottom_io2core 12.4 -right_io2core 12.4 -top_io2core 12.4

set_ignored_layers -max_routing_layer metal8 -min_routing_layer metal1

create_fp_placement -timing -no_hierarchy_gravity -congestion

create_fp_placement

save_mw_cel -as ${design}_1_fp

########### 3. POWER NETWORK #####################

derive_pg_connection -power_net VDD \

 -ground_net VSS \

 -power_pin VDD \

 -ground_pin VSS

250

set_fp_rail_constraints -set_ring -nets {VDD VSS} \

 -horizontal_ring_layer { metal9 } \

 -vertical_ring_layer { metal10 } \

 -ring_spacing 0.8 \

 -ring_width 5 \

 -ring_offset 0.8 \

 -extend_strap core_ring

set_fp_rail_constraints -add_layer -layer metal10 -direction vertical -max_strap 128 -
min_strap 20 -min_width 2.5 -spacing minimum

set_fp_rail_constraints -add_layer -layer metal9 -direction horizontal -max_strap 128 -
min_strap 20 -min_width 2.5 -spacing minimum

set_fp_rail_constraints -add_layer -layer metal8 -direction vertical -max_strap 128 -
min_strap 20 -min_width 2.5 -spacing minimum

set_fp_rail_constraints -set_global

set die_llx [lindex [lindex [get_attribute [get_die_area] bbox] 0] 0]

set die_lly [lindex [lindex [get_attribute [get_die_area] bbox] 0] 1]

set die_urx [lindex [lindex [get_attribute [get_die_area] bbox] 1] 0]

set die_ury [lindex [lindex [get_attribute [get_die_area] bbox] 1] 1]

for {set i "[expr $die_llx + 20]"} {$i < "[expr $die_urx - 40]"} {set i [expr $i + 80]} {

 create_fp_virtual_pad -net VSS -point "{$i $die_lly}"

 create_fp_virtual_pad -net VDD -point "{[expr $i + 40] $die_lly}"

251

 create_fp_virtual_pad -net VSS -point "{$i $die_ury}"

 create_fp_virtual_pad -net VDD -point "{[expr $i + 40] $die_ury}"

}

for {set i "[expr $die_lly + 20]"} {$i < "[expr $die_ury - 40]"} {set i [expr $i + 80]} {

 create_fp_virtual_pad -net VSS -point "{$die_llx $i}"

 create_fp_virtual_pad -net VDD -point "{$die_llx [expr $i + 40]}"

 create_fp_virtual_pad -net VSS -point "{$die_urx $i}"

 create_fp_virtual_pad -net VDD -point "{$die_urx [expr $i + 40] }"

}

synthesize_fp_rail -nets {VDD VSS} -synthesize_power_plan -target_voltage_drop 22 -
voltage_supply 1.1 -power_budget 500

commit_fp_rail

set_preroute_drc_strategy -max_layer metal8

preroute_standard_cells -fill_empty_rows -remove_floating_pieces

analyze_fp_rail -nets {VDD VSS} -power_budget 500 -voltage_supply 1.1

add_tap_cell_array -master TAP \

 -distance 30 \

 -pattern stagger_every_other_row

save_mw_cel -as ${design}_3_power

252

change_names -rule verilog -dont_touch .

write_def -output ./output/defff.def

exit

D.3 Synthesis topographical mode

set design cv32e40p_core

set sc_dir "/home/standard_cell_libraries/NangateOpenCellLibrary_PDKv1_3_v2010_12"

set_app_var search_path
"/home/standard_cell_libraries/NangateOpenCellLibrary_PDKv1_3_v2010_12/lib/Front

_End/Liberty/NLDM \

 /home/mohamed/Desktop/johnson/rtl"

set_app_var link_library "* NangateOpenCellLibrary_ss0p95vn40c.db"

set_app_var target_library "NangateOpenCellLibrary_ss0p95vn40c.db"

set tlupmax "$sc_dir/tech/rcxt/FreePDK45_10m_Cmax.tlup"

set tlupmin "$sc_dir/tech/rcxt/FreePDK45_10m_Cmin.tlup"

set tech2itf "$sc_dir/tech/rcxt/FreePDK45_10m.map"

set_tlu_plus_files -max_tluplus $tlupmax \

 -min_tluplus $tlupmin \

 -tech2itf_map $tech2itf

253

open_mw_lib ../pnr/cv32e40p_core

sh rm -rf work

sh mkdir -p work

define_design_lib work -path ./work

set hdlin_sverilog_std 2009

 analyze -library work -format sverilog ../rtl/cv32e40p_register_file_ff.sv

 analyze -library work -format sverilog ../rtl/include/cv32e40p_apu_core_pkg.sv

 analyze -library work -format sverilog ../rtl/include/cv32e40p_pkg.sv

 analyze -library work -format sverilog ../rtl/include/cv32e40p_fpu_pkg.sv

 analyze -library work -format sverilog ../bhv/include/cv32e40p_tracer_pkg.sv

 analyze -library work -format sverilog ../rtl/cv32e40p_alu.sv

 analyze -library work -format sverilog ../rtl/cv32e40p_alu_div.sv

 analyze -library work -format sverilog ../rtl/cv32e40p_ff_one.sv

 analyze -library work -format sverilog ../rtl/cv32e40p_popcnt.sv

 analyze -library work -format sverilog ../rtl/cv32e40p_compressed_decoder.sv

 analyze -library work -format sverilog ../rtl/cv32e40p_controller.sv

 analyze -library work -format sverilog ../rtl/cv32e40p_cs_registers.sv

 analyze -library work -format sverilog ../rtl/cv32e40p_decoder.sv

 analyze -library work -format sverilog ../rtl/cv32e40p_int_controller.sv

 analyze -library work -format sverilog ../rtl/cv32e40p_ex_stage.sv

 analyze -library work -format sverilog ../rtl/cv32e40p_hwloop_regs.sv

 analyze -library work -format sverilog ../rtl/cv32e40p_id_stage.sv

254

 analyze -library work -format sverilog ../rtl/cv32e40p_if_stage.sv

 analyze -library work -format sverilog ../rtl/cv32e40p_load_store_unit.sv

 analyze -library work -format sverilog ../rtl/cv32e40p_mult.sv

 analyze -library work -format sverilog ../rtl/cv32e40p_prefetch_buffer.sv

 analyze -library work -format sverilog ../rtl/cv32e40p_prefetch_controller.sv

 analyze -library work -format sverilog ../rtl/cv32e40p_obi_interface.sv

 analyze -library work -format sverilog ../rtl/cv32e40p_aligner.sv

 analyze -library work -format sverilog ../rtl/cv32e40p_sleep_unit.sv

 analyze -library work -format sverilog ../rtl/cv32e40p_core.sv

 analyze -library work -format sverilog ../rtl/cv32e40p_apu_disp.sv

 analyze -library work -format sverilog ../rtl/cv32e40p_fifo.sv

 analyze -library work -format sverilog ../bhv/cv32e40p_sim_clock_gate.sv

 analyze -library work -format sverilog ../bhv/cv32e40p_wrapper.sv

elaborate $design -lib work

current_design

check_design

##in Topo

change_names -rule verilog -hierarchy

source ./cons/cv32e40p_core.sdc

link

extract_physical_constraints ../pnr/output/defff.def

compile_ultra -spg -timing_high_effort_script

255

compile_ultra -spg -timing_high_effort_script -incremental

compile_ultra -spg -timing_high_effort_script -incremental

compile_ultra -spg -timing_high_effort_script -retime

compile_ultra -spg -timing_high_effort_script -retime -incremental

report_area > ./report/synth_area_CU_topo2.rpt

report_cell > ./report/synth_cells_CU_topo2.rpt

report_qor > ./report/synth_qor_CU_topo2.rpt

report_resources > ./report/synth_resources_CU_topo2.rpt

report_timing -max_paths 10 > ./report/synth_timing_CU_topo2.rpt

report_timing -delay_type min > ./report/synth_timing_CU_topo_hold2.rpt

report_power > ./report/power_CU_topo2.rpt

define_name_rules no_case -case_insensitive

change_names -rule no_case -hierarchy

change_names -rule verilog -hierarchy

set verilogout_no_tri true

set verilogout_equation false

write -hierarchy -format verilog -output output/${design}_2.v

write -f ddc -hierarchy -output output/${design}_2.ddc

write_sdc -version 1.9 output/${design}_2.sdc

write_floorplan -all ./output/yara.fp

256

D.4 PnR 2nd stage

########### 1. DESIGN SETUP ##################

set design cv32e40p_core

set sc_dir "/home/standard_cell_libraries/NangateOpenCellLibrary_PDKv1_3_v2010_12"

set_app_var search_path
"/home/standard_cell_libraries/NangateOpenCellLibrary_PDKv1_3_v2010_12/lib/Front
_End/Liberty/NLDM \

 /home/mohamed/Desktop/johnson/rtl"

set_app_var link_library "* NangateOpenCellLibrary_ss0p95vn40c.db"

set_app_var target_library "NangateOpenCellLibrary_ss0p95vn40c.db"

open_mw_lib cv32e40p_core

set tlupmax "$sc_dir/tech/rcxt/FreePDK45_10m_Cmax.tlup"

set tlupmin "$sc_dir/tech/rcxt/FreePDK45_10m_Cmin.tlup"

set tech2itf "$sc_dir/tech/rcxt/FreePDK45_10m.map"

set_tlu_plus_files -max_tluplus $tlupmax \

 -min_tluplus $tlupmin \

 -tech2itf_map $tech2itf

import_designs ../syn/output/${design}_2.ddc \

257

 -format ddc \

 -top ${design} \

 -cel ${design}

source ../syn/cons/cv32e40p_core.sdc

save_mw_cel -as ${design}_1_imported

read_floorplan ../syn/output/yara.fp.objects

read_floorplan ../syn/output/yara.fp

set_ignored_layers -max_routing_layer metal8 -min_routing_layer metal1

set_preroute_drc_strategy -max_layer metal8

preroute_standard_cells -fill_empty_rows -remove_floating_pieces

########### 4. Placement #####################

puts "start_place"

set_app_var placer_max_cell_density_threshold 0.3

place_opt -spg -effort high -cts -congestion

refine_placement -congestion_effort high

psynopt -congestion

check_legality

derive_pg_connection -power_net VDD \

 -ground_net VSS \

258

 -power_pin VDD \

 -ground_pin VSS

puts "finish_place"

save_mw_cel -as ${design}_4_placed

########### 5. CTS #####################

puts "start_cts"

set_driving_cell -lib_cell BUF_X16 -pin Z [get_ports clk_i]

set_clock_tree_options \

 -clock_trees clk_i \

 -target_early_delay 0.1 \

 -target_skew 0.25 \

 -max_capacitance 300 \

 -max_fanout 10 \

 -max_transition 0.15

set_clock_tree_options -clock_trees clk_i \

 -buffer_relocation true \

 -buffer_sizing true \

 -gate_relocation true \

 -gate_sizing true

set_clock_tree_references -references [get_lib_cells */CLKBUF*]

259

define_routing_rule my_route_rule \

 -widths {metal3 0.14 metal4 0.28 metal5 0.28} \

 -spacings {metal3 0.14 metal4 0.28 metal5 0.28}

set_clock_tree_options -clock_trees clk_i \

 -routing_rule my_route_rule \

 -layer_list "metal3 metal4 metal5"

set_clock_tree_options -use_default_routing_for_sinks 1

report_clock_tree -settings

compile_clock_tree -clock_trees clk_i

clock_opt -only_cts -no_clock_route

report_timing

save_mw_cel -as ${design}_CTS1

set_fix_hold [all_clocks]

set_fix_hold_options -prioritize_tns

set_propagated_clock [all_clocks]

clock_opt -only_psyn -no_clock_route

save_mw_cel -as ${design}_CTS2

route_group -all_clock_nets

save_mw_cel -as ${design}_CTS3

derive_pg_connection -power_net VDD \

 -ground_net VSS \

 -power_pin VDD \

260

 -ground_pin VSS

save_mw_cel -as ${design}_5_cts

puts "finish_cts"

########### 6. Routing #####################

Before starting to route, you should add spare cells

insert_spare_cells -lib_cell {NOR2_X4 NAND2_X4} \

 -num_instances 20 \

 -cell_name SPARE_PREFIX_NAME \

 -tie

set_dont_touch [all_spare_cells] true

set_attribute [all_spare_cells] is_soft_fixed true

puts "start_route"

check_physical_design -stage pre_route_opt; # dump check_physical_design result to f ile
./cpd_pre_route_opt_*/index.html

all_ideal_nets

all_high_fanout -nets -threshold 100

check_routeability

set_delay_calculation_options -arnoldi_effort low

261

set_route_options -groute_timing_driven true \

 -groute_incremental true \

 -track_assign_timing_driven true \

 -same_net_notch check_and_fix

set_si_options -route_xtalk_prevention true\

 -delta_delay true \

 -min_delta_delay true \

 -static_noise true\

 -timing_window true

route_auto -effort high

save_mw_cel -as ${design}_route_auto

verify_lvs -max_error 1000

report_timing -delay_type max

report_timing -delay_type min

route_opt -effort high

verify_lvs -max_error 1000

report_timing -delay_type max

report_timing -delay_type min

save_mw_cel -as ${design}_route_opt1

route_opt -effort high

route_opt -incremental -effort high ///do it five times

262

verify_lvs -max_error 1000

report_timing -delay_type max

report_timing -delay_type min

save_mw_cel -as ${design}_route_inc_effort

psynopt -only_hold_time

save_mw_cel -as ${design}_psyn

route_zrt_eco -open_net_driven true

verify_lvs -max_error 1000

report_timing -delay_type max

report_timing -delay_type min

save_mw_cel -as ${design}_zrt_eco

verify_zrt_route

route_zrt_detail -initial_drc_from_input true

save_mw_cel -as ${design}_zrt_detail

verify_lvs -max_error 1000

report_timing -delay_type max

report_timing -delay_type min

route_zrt_detail -incremental true -initial_drc_from_input true

save_mw_cel -as ${design}_zrt_detail_2

verify_lvs -max_error 1000

report_timing -delay_type max

report_timing -delay_type min

263

derive_pg_connection -power_net VDD \

 -ground_net VSS \

 -power_pin VDD \

 -ground_pin VSS

save_mw_cel -as ${design}_6_routed

save_mw_cel -as ${design}

puts "finish_route"

verify_zrt_route

verify_lvs -ignore_floating_port -ignore_floating_net \

 -check_open_locator -check_short_locator

set_write_stream_options -map_layer
$sc_dir/tech/strmout/FreePDK45_10m_gdsout.map \

 -output_filling fill \

 -child_depth 20 \

 -output_outdated_fill \

 -output_pin {text geometry}

write_stream -lib $design \

 -format gds\

 -cells $design\

 ./output/${design}.gds

define_name_rules new_verilog -special verilog -target_bus_naming_style {%s[%d]} -
check_internal_net_name -check_bus_indexing

264

change_names -rule new_verilog -hierarchy

set verilogout_no_tri true

set verilogout_equation false

write_verilog -pg -no_physical_only_cells ./output/${design}_icc.v

write_verilog -no_physical_only_cells ./output/${design}_icc_nopg.v

set write_sdc_output_lumped_net_capacitance false

set write_sdc_output_net_resistance false

write_sdc -version 1.9 output/conss2.sdc

write -format ddc -hier -output output/ddc_netlist_core2.ddc

extract_rc

write_parasitics -output {./output/cv32e40p_core1.spef}

create_rail_setup

close_mw_cel

close_mw_lib

exit

