
 

 

 

 

 

ASIC PHYSICAL DESIGN OF THE RISC-V BASED OPENPULP CORE 

 

A THESIS 

SUBMITTED TO THE DEPARTMENT OF ELECTRONICS 

AND ELECTRICAL COMMUNICATIONS ENGINEERING 

OF CAIRO UNIVERSITY 

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS 

FOR THE DEGREE OF 

BACHELOR OF SCIENCE 

By 

Mariam Mohammed Mahmoud Mahmoud 

Menna Magdy Saad 

Monica Nashaat Botros Hakim 

Roaa Ahmed Sabek 

Walid Fady Akoum 

Yara Mamdouh Gohneim 

July 2021 



1 

 

ASIC PHYSICAL DESIGN OF THE RISC-V BASED OPENPULP CORE 

A THESIS 

SUBMITTED TO THE DEPARTMENT OF ELECTRONICS 

AND ELECTRICAL COMMUNICATIONS ENGINEERING 

OF CAIRO UNIVERSITY 

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS 

FOR THE DEGREE OF 

BACHELOR OF SCIENCE 

By 

Mariam Mohammed Mohammed                    Menna Magdy Saad 
Monica Nashaat Botros                   Roaa Ahmed Sabek 

Walid Fady Akoum                            Yara Mamdoh Gohneim 

 

Under the supervision of 

Dr. Hassan Mostafa Eng. Hoda Thabet 

Associate professor Senior ASIC team leader 

Sponsored by 

Si-VISION and ONE Lab 

                                     

July 2021 



2 

 

Table of Contents 

Abstract ...................................................................................................................17 

Chapter 1 .................................................................................................................19 

Introduction ............................................................................................................19 

1.1. RISC-V .....................................................................................................19 

1.1.1. Why Instruction Set Architecture Matters?........................................19 

1.1.2. Kinds of ISA.........................................................................................20 

1.1.2.1 CISC – Complex Instruction Set Computer.......................... 20 

1.1.2.2 RISC – Reduced Instruction Set Computer .......................... 21 

1.1.3. What’s Different about RISC-V? .........................................................21 

1.1.4. ISA Base and Extensions of RISC-V....................................................22 

1.2. What is OpenPULP.................................................................................23 

1.2.1. PULP platform cores ...........................................................................23 

1.2.2. Performance.........................................................................................24 

1.2.3. Area ......................................................................................................26 

1.2.4. Power ...................................................................................................26 

1.3. Why RISC-V in Open Pulp.....................................................................27 

1.4. Thesis objective .......................................................................................28 

1.5. Thesis Map ..............................................................................................28 

Chapter 2 .................................................................................................................29 

OpenPULP ..............................................................................................................29 



3 

 

2.1. OpenPULP architecture..........................................................................29 

2.2. 32-bit RISC-V in openPULP ...................................................................30 

2.2.1. RI5CY ISA: ...........................................................................................31 

2.2.1.1. Instruction fetch .................................................................... 32 

2.2.1.2. Load store unit (LSU) ........................................................... 33 

2.2.1.3. Physical Memory Protection (PMP) Unit ............................ 36 

2.2.1.4. Optional private floating-point unit (FPU) ......................... 36 

2.2.1.5. Control and status register (CSR) ........................................ 36 

2.2.1.6. Performance counters ........................................................... 39 

2.2.1.7. Pipeline.................................................................................. 42 

2.2.1.8. PULP Hardware Loop Extensions ....................................... 44 

2.2.1.9. Register file ........................................................................... 44 

2.2.1.10. Instruction set extensions ................................................... 45 

Chapter 3 .................................................................................................................47 

ASIC Flow ...............................................................................................................47 

3.1. ASIC Vs FPGA ........................................................................................47 

3.2. ASIC design flow ....................................................................................48 

3.2.1. Synthesis ..............................................................................................49 

3.2.1.1. Basic synthesis flow: ............................................................. 50 

3.2.2. PnR .......................................................................................................55 

3.2.2.1. Floor planning ...................................................................... 58 



4 

 

3.2.2.2. Power planning..................................................................... 61 

3.2.2.3 Placement ......................................................................................... 65 

3.2.2.3. Clock tree synthesis .............................................................. 69 

3.2.2.4. Route ..................................................................................... 76 

3.2.2.5. Finishing................................................................................ 82 

3.2.2.6. RC extraction......................................................................... 85 

3.2.3. STA.......................................................................................................85 

3.2.3.1. Setup Check Timing: ............................................................ 87 

3.2.3.2. Hold Check Timing: ............................................................. 89 

3.2.3.3. The types of paths:................................................................ 90 

3.2.3.4. Timing Analysis in the Design Flow:................................... 92 

3.2.3.5. Timing Analysis After Routing: ........................................... 93 

3.3. ASIC design methodologies ...................................................................98 

3.3.1. Flat overview .......................................................................................98 

3.3.2. Hierarchical overview .........................................................................98 

3.3.3. Topographical overview ...................................................................100 

Chapter 4 ...............................................................................................................102 

Flat flow.................................................................................................................102 

4.1. synthesis in Flat flow ............................................................................102 

4.2. PnR in Flat flow ....................................................................................106 

4.3. STA in Flat Flow ...................................................................................120 



5 

 

Chapter 5 ...............................................................................................................122 

Hierarchical flow...................................................................................................122 

5.1. Synthesis in hierarchical flow ..............................................................123 

5.2. PnR in hierarchical flow .......................................................................126 

5.3. STA in hierarchical flow .......................................................................138 

Chapter 6 ...............................................................................................................139 

Topographical flow...............................................................................................139 

6.1. Synthesis in Topographical flow..........................................................140 

6.2. PnR in Topographical flow ..................................................................147 

6.3. STA in Topographical flow ..................................................................159 

Chapter 7 ...............................................................................................................160 

Results ...................................................................................................................160 

7.1. Flat flow ................................................................................................160 

7.1.1. Area results ............................................................................ 160 

7.1.2. Power results ......................................................................... 160 

7.1.3. Timing results ........................................................................ 161 

7.1.4. LVS results ............................................................................. 166 

7.1.5. DRC results ............................................................................ 166 

7.2. Hierarchical flow ..................................................................................167 

7.2.1. Area results ............................................................................ 167 

7.2.2. Power results ......................................................................... 167 



6 

 

7.2.3. Timing results ........................................................................ 168 

7.2.4. LVS results ............................................................................. 172 

7.2.5. DRC results ............................................................................ 172 

7.3. Topographical flow ..............................................................................173 

7.3.1. Area results ............................................................................ 173 

7.3.2. Power results ......................................................................... 173 

7.3.3. Timing results ........................................................................ 174 

7.3.4. LVS results ............................................................................. 180 

7.3.5. DRC results ............................................................................ 180 

Chapter 8 ...............................................................................................................181 

Conclusion.............................................................................................................181 

8.1. Post-Synthesis Results ..........................................................................181 

8.2. Post-layout Results ...............................................................................183 

8.3. Future Work..........................................................................................186 

8.3.1. Switch from RVT Cells to LVT Cells ................................................186 

References..............................................................................................................187 

Appendix A ...........................................................................................................188 

RTL-to-GDSII Flow ...............................................................................................188 

A.1 GDSII format.........................................................................................188 

A.2 Constraint file .......................................................................................189 

A.3 clock gating ...........................................................................................191 



7 

 

A.4 IR Drop Analysis: .......................................................................................192 

A.4.1. Power Dissipation in CMOS...............................................................193 

A.4.1.1.  Static IR drop analysis: ................................................................ 193 

A.4.1.2. Dynamic power: ........................................................................... 195 

A.4.2. Methods to reduce IR drop.................................................................196 

A.5 Design Rule Check (DRC) ..........................................................................198 

A.6 Layout vs. Schematic (LVS) .......................................................................199 

A.6.1. How LVS works ..................................................................................199 

A.6.2. Steps of LVS check ..............................................................................199 

A.6.3. LVS flow ..............................................................................................200 

A.6.4. Commonly faced LVS issues ..............................................................201 

A.6.5. Typical errors which can occur during LVS checks ..........................201 

Appendix B ...........................................................................................................202 

Scripts of Flat Flow ...............................................................................................202 

B.1 Synthesis script............................................................................................202 

B.2 PnR scripts ...................................................................................................205 

B.3 STA-Max script............................................................................................221 

B.4 STA-Min script ............................................................................................222 

Appendix C ...........................................................................................................223 

Scripts of Hierarchical Flow .................................................................................223 

C.1 Synthesis script ...........................................................................................223 



8 

 

C.2 PnR scripts ..................................................................................................227 

C.3 STA-Max script ...........................................................................................242 

C.4 STA-Min script............................................................................................243 

Appendix D ...........................................................................................................244 

Scripts of Topographical Flow .............................................................................244 

D.1 Synthesis 1st stage .......................................................................................244 

D.2 PnR 1st stage ................................................................................................247 

D.3 Synthesis topographical mode ...................................................................252 

D.4 PnR 2nd stage...............................................................................................256 

 

List of figures 

Figure 1: improved performance for RI5CY ..........................................................24 

Figure 2:Area comparison ......................................................................................26 

Figure 3:static and dynamic power comparison ...................................................26 

Figure 4: example for different open-source RISC-V suppliers ............................27 

Figure 5: The PULP overview ................................................................................29 

Figure 6:the block diagram of the CV32E40P ........................................................30 

Figure 7: Event of masking with PCER and ORing together to increase one 
performance counters PCCR.......................................................................................41 

Figure 8: using pipeline ..........................................................................................43 

Figure 9: Design flow ..............................................................................................48 

Figure 10: front-end flow ........................................................................................49 



9 

 

Figure 11: libraries ..................................................................................................51 

Figure 12: library views ..........................................................................................51 

Figure 13: synthesis script  ......................................................................................52 

Figure 14: high level view of the design library ....................................................56 

Figure 15: core and die area, with relative io2core distances................................60 

Figure 16: utilization visual, showing cell area compared to core area................60 

Figure 17: visualization of both spacing and offset ...............................................63 

Figure 18: local skew...............................................................................................69 

Figure 19: global skew between unrelated registers .............................................70 

Figure 20: example of buffer insertion to fix the previously mentioned issues ...71 

Figure 21: showing the optimization due to the previous commands .................74 

Figure 22: timing path.............................................................................................86 

Figure 23: setup timing illustration ........................................................................87 

Figure 24: hold time illustration .............................................................................89 

Figure 25:  register to register path ........................................................................90 

Figure 26: register to output path...........................................................................91 

Figure 27: input to register path .............................................................................91 

Figure 28: Primetime inputs and outputs ..............................................................94 

Figure 29: represents hierarchical flow bottom-up method..................................99 

Figure 30: illustration for topographical flow .....................................................100 

Figure 31: floor plan and virtual placement in flat flow .....................................112 



10 

 

Figure 32: voltage drop map ................................................................................114 

Figure 33: placement map in flat flow .................................................................115 

Figure 34: CTS in flat flow ....................................................................................116 

Figure 35: Chip after finishing in Flat Flow .........................................................119 

Figure 36: floor plan and virtual placement in hierarchical flow .......................127 

Figure 37: IR drop map for hierarchical flow ......................................................129 

Figure 38: after placement in hierarchical flow ...................................................131 

Figure 39: placement map in hierarchical flow ...................................................132 

Figure 40: CTS in hierarchical flow ......................................................................133 

Figure 41: congestion at track assignment in hierarchical flow ..........................135 

Figure 42: after finishing the hierarchical flow....................................................136 

Figure 43: Topographical flow .............................................................................139 

Figure 44: inputs for the second pass flow ..........................................................141 

Figure 45: floor plan and virtual placement in topographical flow ...................152 

Figure 46: core area ...............................................................................................153 

Figure 47: IR drop across the chip in the Topographical Flow ...........................154 

Figure 48: placement of topographical flow ........................................................155 

Figure 49: CTS in topographical flow ..................................................................156 

Figure 50: The setup slack after removing hierarch in Flat Flow .......................161 

Figure 51: The setup slack after PnR in Flat Flow ...............................................162 

Figure 52: The Hold slack after PnR in Flat Flow ................................................163 



11 

 

Figure 53: The setup slack after PrimeTime in Flat Flow ....................................164 

Figure 54: The Hold slack after PrimeTime in Flat Flow ....................................165 

Figure 55: The LVS results of Flat Flow ...............................................................166 

Figure 56: The DRC results of Flat Flow ..............................................................166 

Figure 57: Setup timing after synthesis ................................................................168 

Figure 58: Endpoint lack for max timing .............................................................168 

Figure 59: Endpoint slacks for min timing ..........................................................169 

Figure 60: Setup timing after PNR stage..............................................................170 

Figure 61: Hold timing after PNR stage...............................................................170 

Figure 62: hold timing after PrimeTime...............................................................171 

Figure 63: Setup timing after PrimeTime.............................................................171 

Figure 64: The LVS results of the Hierarchical Flow ...........................................172 

Figure 65: DRC ICC results ..................................................................................172 

Figure 66: The setup slack after synthesis in Topographical Flow .....................174 

Figure 67: The Hold slack after synthesis in Topographical Flow  .....................175 

Figure 68: The setup slack after PnR in Topographical Flow .............................176 

Figure 69: The Hold slack after PnR in Topographical Flow ..............................177 

Figure 70: The setup slack after PrimeTime in Topographical Flow ..................178 

Figure 71: The Hold slack after PrimeTime in Topographical Flow ..................179 

Figure 72: The LVS results of the Topographical Flow .......................................180 

Figure 73: The DRC results of the Topographical Flow ......................................180 



12 

 

Figure 74: The total area comparison after post-synthesis..................................182 

Figure 75: The total power comparison after post-synthesis ..............................182 

Figure 76: The critical path delay comparison.....................................................183 

Figure 77: The total area comparison after post-Layout .....................................184 

Figure 78: The total power comparison after post-Layout..................................184 

Figure 79: The clock gate ......................................................................................191 

Figure 80: The IR analysis.....................................................................................192 

Figure 81: The power dissipation in CMOS.........................................................193 

Figure 82: The leakage power...............................................................................194 

Figure 83: The dynamic power.............................................................................196 

Figure 84: Custom power rail added to make it robust ......................................196 

Figure 85: The LVS flow .......................................................................................200 

 

List of tables 

Table 1: ISA kinds ...................................................................................................20 

Table 2: number of cycles, IPC and code size for each KERNEL..........................25 

Table 3: fetch signals ...............................................................................................32 

Table 4: LSU signals ................................................................................................34 

Table 5: comparison between ASIC and FPGA .....................................................47 

Table 6: Synthesis results of first run in Flat Flow  ..............................................102 

Table 7: Synthesis results of second run in Flat Flow..........................................102 



13 

 

Table 8: Synthesis results of third run in Flat Flow .............................................103 

Table 9: Synthesis results of forth run in Flat Flow .............................................103 

Table 10: Synthesis results of fifth run in Flat Flow ............................................104 

Table 11: Synthesis results of the final run in Flat Flow......................................105 

Table 12: The synthesis results of the Hierarchical Flow ....................................125 

Table 13: the synthesis results of the first path in the Topographical Flow .......142 

Table 14: the synthesis results of the second path in the Topographical Flow ..142 

Table 15: the synthesis results of the first path in the Topographical Flow at 2.5 
nsec.............................................................................................................................143 

Table 16: the synthesis results of the second path in the Topographical Flow at 
2.5 nsec. ......................................................................................................................143 

Table 17: the synthesis results of the first path in the Topographical Flow at 2.5 
nsec at timing_high_effort_script .............................................................................144 

Table 18: the synthesis results of the second path in the Topographical Flow at 
2.5 nsec at timing_high_effort_script........................................................................144 

Table 19: the synthesis results of the first path in the Topographical Flow at 2.5 
nsec at timing_high_effort_script -retime ................................................................145 

Table 20: the synthesis results of the first path in the Topographical Flow at 2.5 
nsec at timing_high_effort_script -retime ................................................................145 

Table 21: final results of the synthesis of the first pass in the Topographical Flow
 ....................................................................................................................................146 

Table 22: final results of the synthesis of the second pass in the Topographical 
Flow............................................................................................................................146 

Table 23: Results after PnR at Utilization = 0.3, power in 4 layers, clock = 2.5 ..149 

Table 24: Results after PnR at Utilization = 0.3, power in 2 layers, clock = 2.5 ..150 



14 

 

Table 25: Results after PnR at Utilization = 0.3, power in 4 layers, clock = 2.5 
using the placer_max command ...............................................................................151 

Table 26: The area results of the Flat Flow...........................................................160 

Table 27: The power results of the Flat flow........................................................160 

Table 28: The timing Results afte PrimeTime in Flat Flow .................................165 

Table 29: The total area results of the Hierarchical Flow ....................................167 

Table 30: The power results of the Hierarchical flow..........................................167 

Table 31: The timing results after synthesis of The Hierarchical Flow...............169 

Table 32: the timing results in the PnR flow of the Hierarchical Flow ...............170 

Table 33: The timing results after PrimeTime of the Hierarchical Flow.............171 

Table 34: The LVS results of the Hierarchical Flow.............................................172 

Table 35: The total area results of the Topographical Flow ................................173 

Table 36: The power results of the Topographical Flow .....................................173 

Table 37: The Post-synthesis results .....................................................................181 

Table 38: The key results.......................................................................................185 

 

List of symbols 

 

Equation 1: slack calculation ..................................................................................88 

Equation 2: hold time calculation...........................................................................89 

Equation 3: Slack calculation for register-to-register path ....................................90 



15 

 

Equation 4: Arrival time calculation ......................................................................91 

Equation 5: slack calculation for input to register path ........................................92 

Equation 6:The total power ..................................................................................193 

Equation 7: The leakage power ............................................................................193 

Equation 8: The static power ................................................................................194 

Equation 9: The switching power.........................................................................195 

Equation 10: The short-circuit power...................................................................195 

 

 

List of abbreviations 

 

Ri5cy  another name of OpenPULP core 

FPGA  Field Programmable Gate Arrays 

ASIC  Application specific integrated circuit 

ISA  instruction set architecture 

PULP  Parallel Ultra Low Power 

LSU  Load Store Unit 

PMP  Physical Memory Protection 

ALU  Athematic Logic Unit 

FPU  Floating Point Unit 

RTL  Register Transfer Logic 



16 

 

GDSII  data exchange of integrated circuit or IC layout artwork 

DC  Design Compiler 

CMOS  Complementary metal–oxide–semiconductor 

PDK  process design kit 

DRC  Design Rule Check 

PnR  Place and Route 

CTS  clock Tree Synthesis 

STA  Static Timing Analysis 

LVT Low Voltage Threshold 

ECO  Engineering Change Order 

MCMM  Multi-corner multi-mode 

HDL  Hardware Description Language 

VHDL  very high-speed integrated circuit Hardware Description Language 

EDA  Electronic design automation 

SDC  Synopsys Design Constraints 



17 

 

Abstract 

ASIC design or application specific integrated circuits is the physical 

implementation of logic designs, which simply put is creating chips that are 
specialized in a certain function, like the electronic chips found in televisions or 

DVD players. This branch of engineering has originated more than 20 years ago 

and grew exponentially with the growth and demand of ICs and electronics. ASIC 
design can be separated into two stages. The first stage is the frontend stage in 

which the designer writes RTL code, which is a code that describes the 
functionality of the hardware. The second stage or backend is the physical 

implementation of the RTL in which the designer turns the RTL into actual gates. 
The thesis will be mainly focused on the latter stage.  

The design that we will be implementing is a RISC-V ISA based core. An ISA is a 

group of instructions that helps interface with the hardware which makes it much 
easier than dealing with the hardware directly, and a core is simply a processor 

that can either be used for general or specific purposes. RISC-V is an open-source 
ISA, and because it’s open source the RISC-V community is very big in both the 

open source and the commercial market. It’s mainly used in storage, edge 
computing and AI applications. 

The RTL provided to us was written by OpenPULP which is an open-source 

multi-core computation platform. It is an open-source RTL that describes a RISC-V 
core. They were chosen because their reputation is good in both literature reviews 

and websites that promote open-source RTL. Adding as well that the RTL given to 
us has been verified by our sponsor and supervisor engineers from Si-Vision, and 
is therefore ready to go through the physical implementation process. 

The process of implementation is done through two stages, synthesis and PNR. 

Synthesis is the stage in which we read the RTL and convert it into logic gates that 

perform the same logical function. Secondly, PNR is the stage in which we take 
those gates and place them on the chip finally connecting them together and to the 
clock that feeds them with metal wires. 

 However there exists multiple flows in which a designer can use in order finish 

his design, such as the hierarchal, flat and topographical flow. In this thesis we 
describe what each of the flows deal with when using the tool provided as well as 

the final result for each of the flows with respect to timing closure or frequency 
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used, area and power consumption comparing them in order to know what is the 
advantage and disadvantage of each of the flows. 

The following thesis is a comparative analysis of three different ASIC design 
flows for a RISC-V core provided by openPULP. 
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Chapter 1 

Introduction 

1.1. RISC-V 

      RISC-V is an open instruction set architecture (ISA) which is standard and 
based on the principles of established reduced instruction set computer (RISC).  

Unlike most other open instruction set architecture designs, the RISC-V open 

instruction set architecture is provided by licenses that are open source and do not 
require fees to be used. Many companies have announced RISC-V hardware or 
offered it.  

     The instruction set is supported in several popular software tool chains and 
open-source operating systems are available. 

1.1.1.  Why Instruction Set Architecture Matters? 

First of all, we need to know what the instruction set architecture (ISA) is: 

ISA defines the software interface for hardware; the single ISA can make many 
hardware implementations. 

The ISA defines: 

• Set of instructions and how they behave 

• Data types 

• Registers 

• Addressing models 

• How inputs/outputs are done 

• Memory models 

• Virtual memory 

• Protection levels 
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      The ISA somehow decides the application. It is common sense that the 
world’s most famous 2 ISA are x86 and ARM. Their application fields are totally 
different. 

Over 99% of laptops, desktops, and servers are based on X86 or AMD64 ISA. 

Their IPs belong to Intel and AMD, over 99% of mobile phones, tablets are based 
on ARM ISA, the IPs are divided into A series, R series, and M series. 

While RISC-V is very suitable for use in some specific application fields such as 
storage, edge computing, and AI applications. 

      The different applications field makes it possible for RISC-V to compete with 
ARM and x86. 

1.1.2. Kinds of ISA 

Table 1: ISA kinds 

CISC RISC 

Instruction can take several clock cycles Single-cycle instructions 

Hardware-centric design  

The ISA does as much as possible using 
hardware circuitry 

Software-centric design  

High-level compilers take on most of the 
burden of coding many software steps from the 
programmer 

More efficient use of RAM than RISC Heavy use of RAM (cam cause bottlenecks if 
RAM is limited) 

Complex and variable length instruction Simple, standardized instructions 

May support microcode (micro-programming 
where instructions are treated like small programs) 

Only one layer of instructions 

Large number of instructions Small number of fixed-length instructions 
Compound addressing modes Limited addressing modes 

1.1.2.1 CISC – Complex Instruction Set Computer 

The CISC contains not only the common instructions of the processor but also a 

lot of uncommon instructions (the 28th principle, 80% of the instructions used in 
the program operation, only 20% of all instructions. 

There are many instructions; the typical representative is Intel’s x86 architecture. 

x86-64 is a 64-bit extension of the x86 architecture, designed by AMD and also 
known as AMD64. 
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1.1.2.2 RISC – Reduced Instruction Set Computer 

Reduced instruction set architecture contains only the instructions commonly 
used by the processor. For less commonly used operations, the same effect can be 

achieved by executing multiple commonly used instructions. The reduced 
instruction set represents more MIPS, RISC-V, Power, Alpha, etc. 

1.1.3. What’s Different about RISC-V? 

Comparing to ARM and x86, RISC-V has below advantages: 

• Free: RISC-V is open-source; there is no need to pay for the IP. 

• Simple: RISC-V is far smaller than other commercial ISAs. 

• Modular: RISC-V has a small standard base ISA, with multiple standard 

extensions. 

• Stable: Base and first standard extensions are already frozen. There is no 

need to worry about major updates. 

• Extensibility: Specific functions can be added based on extensions. There 

are many more extensions are under development, such as Vector. 

• Software architects / firmware engineers / software developers: RISC-V 

is much more than an open ISA; it is also a frozen ISA. The base 

instructions are frozen and optional extensions which have been 
approved are also frozen. Because of the stability of the ISA, software 

development can confidently be applied to RISC-V knowing that your 

investment will be preserved. Software written for RISC-V will run on all 
similar RISC-V cores forever. The frozen ISA provides a solid foundation 

that software managers can depend on to preserve their software 

investments. Because the RISC-V ISA is open, this translates to hardware 
engineers having more flexibility over the processor implementation. 

With this power, software architects can become more influential in the 

final hardware implementation. They can provide input to hardware 
designers to make the RISC-V core more software centric. 

• CTOs / Chip designers / System Architects: Innovation is the key enabler 

of RISC-V. Because the ISA is open, it is the equivalent of everyone 

having a micro architecture license. One can optimize designs for lower 
power, performance, security, etc. while keeping full compatibility with 

other designs. Because there is significantly more control over the 

hardware implementation, all technical recipients of the architecture can 
make suggestions at a much earlier point than previously was possible. 



22 

 

The result is a solution with significantly fewer compromises. RISC-V 
also supports custom instructions for designs which require particular 
acceleration or specialty functions.   

 

• Board designers: In addition to the frozen ISA benefits, RISC-V’s open 

ISA can provide several additional benefits. For example, if engineers are 
implementing a soft RISC-V core in an FPGA, often the RTL source code 

is available. Since RISC-V is royalty, free this creates significant flexibility 

to port a RISC-V based design from an FPGA to an ASIC or another 
FPGA without any software modifications. Designers who are concerned 

with security from a trust perspective will also appreciate RISC-V. When 

the RTL source code is available, this enables deep inspection. With the 
ability to inspect the RTL, one can establish trust.  

1.1.4. ISA Base and Extensions of RISC-V 

As mentioned earlier, the RISC-V instruction set has modular characteristics. 

The instruction set is organized in a modular manner. Each module is represented 
by an English letter. 

The instruction set includes the standard part and the extension part. The 
standard part must be implemented. 

For example: 

If you want to implement a 32-bit architecture RISC-V processor, the RV32I 
instruction set must be implemented on the hardware (machine mode must also be 
implemented in privileged mode). 

The basic integer ISA and the machine privilege ISA provide the functions 

required by the basic general-purpose CPU. Developers can also enhance the 
processor’s functionality by adding extensions to ISA. There are already many 
standard extensions, such as the approved MAFDGQ. 
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1.2. What is OpenPULP 

PULP stands for Parallel Ultra-Low-Power. It is an open-source multi-core 

computing platform started in 2013 in collaboration between ETH Zurich and the 
University of Bologna. 

 

1.2.1. PULP platform cores 

Ri5cy: 4-stage pipeline, optimized for energy efficiency, it implements RV32-
ICMX. 

• Enhance performance.  

• Reduce the code size. 

• Increase the energy efficiency of signal processing algorithms (DSP). 

• General Purpose extensions to Ri5cy include. 

• Post–incrementing load/store instructions. 

• Hardware Loops. 

• ALU instructions (Bit-manipulation instructions). 

• Packed-SIMD instructions. 

• The core has been designed and optimized to work in a multi-core 

cluster. 
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Figure 1: improved performance for RI5CY 

Zero-ri5cy: is 2-stage pipeline, an area-optimized RISC-V core implementing the 
RVC32IM for control applications, implements the HW multiplication instruction.  

Micro-ri5cy: it is more optimized for area, it is possible to further reduce area by 
using 16 registers instead of 32, and the multiplier can be removed saving a bit 
more area. 

1.2.2. Performance 

When running DSP applications, Ri5cy is 6.1× faster than Zero-ri5cy and 53.4× 
faster than Microri5cy. 

Coremark does not contain much DSP code, therefore the difference in 
performance does not come from the DSP extensions of Riscy, but mainly from its 

deeper pipeline that enables single-cycle data memory access, and from the single-
cycle multiplication-accumulation and general-purpose instruction extensions as 
e.g., bit-manipulation. 
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In the Runtime kernel, the three cores show negligible differences in 
performance: the code implementing these routines do not benefit from 
multiplications nor from DSP extensions. 

The IPC of Riscy is the highest for all the micro-benchmarks. As the PULPino 

data and instruction memories have 1 cycle access, the IPC is 0.8 due to misaligned 

memory accesses (that require two cycles), data-hazard after load operations and 
branches/jump. 

For Zero-riscy, the IPC in the DSP micro-benchmark is only 0.5 as the most 
common instructions are multi-cycle operations as load, store and multiplications. 

Table 2: number of cycles, IPC and code size for each KERNEL 

KERNEL Riscy Zero-riscy Micro -riscy 
 Cycles IPC Cod.size Cycles IPC Cod.

size 
Cycles IPC Cod.size 

2D-Convolution 1.0 
(43.1K) 

0.82 1.0 
(1.80B) 

6.1 0.52 1.0 53.4 0.66 1.0 

Core mark 1.0 
(313.5K) 

0.79 1.0 
(15.3KB) 

1.3 0.67 1.1 3.5 0.67 1.3 

Runtime 1.0 (37) 0.76 1.0 
(232B) 

1.0 0.68 1.1 1.0 (36) 0.67 1.1 
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1.2.3. Area 

 

Figure 2:Area comparison 

1.2.4. Power 

 

Figure 3:static and dynamic power comparison 
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Ariane: 

• supports single and double precision (F&D). 
• Its area 2*area of 32-bit. 

• Linux capable. 

As shown from previous comparison that Ri5cy has best performance and 

power for DSP applications and it has less area than Ariane that is why we choose 
to work with it. 

1.3. Why RISC-V in Open Pulp 

Since RISC-V is an open-source ISA, the availability of this standard creates an 

opportunity to find many different suppliers, which results in both commercial 
and open-source cores. 

 

Figure 4: example for different open-source RISC-V suppliers 

Out of the many open-source cores in the market, OpenHW or pulp-platfrom 
has been gaining much attention, in certain literature reviews and core open-source 

websites due to their efficient RTL, their low resource utilization, low power 
consumption and good performance. 

In addition to the fact the OpenPULP provides peripherals, microcontrollers, 
cluster and accelerators that are built on the RISC-V cores that they provide. 
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1.4. Thesis objective 

The RTL to GDSII Flow is critical in the creation of electrical chips all over the 

world. Due to intense rivalry and high client demands, technology in this industry 

is rapidly evolving toward smaller, quicker, and more complicated gadgets, 
making it difficult for a beginner to keep up without first studying and 

comprehending the fundamentals. More than one ASIC design style is currently 

available in CAD tools. Satisfy large customer expectations while improving ASIC 
designs' QoR and TTR. 

The goal of this thesis is to show how different design flows affect an 

OpenPULP Core (RI5CY) open-source RTL design utilizing 40nm CMOS 
technology. 

This goal is accomplished by following the RTL-to-GDSII path from start to 

finish. There are three types of logic synthesis flows: hierarchical, flat, and 
topographical. Following that, the relevant Place and Route steps are performed 

and STA post-layout to provide good timing performance across a variety of 
operating environments conditions. 

1.5. Thesis Map 

At First, we will see the OpenPULP and its architecture. Then about the main 

blocks in this architecture. Second, we will discuss the ASIC flow and its stages in 
the next chapter. Then We will know the Flat Flow, the Hierarchical Flow and the 
Topographical flow and their flow in each stage of the ASIC flow.  

The second part of the thesis is to see the results out of each flow and get the 

best one which can work on the maximum speed. The conclusion views the 
comparison between each flow according to timing, power and area. 

The third part is the appendix part that discusses the constrain file, the clock 
gate we used and the meaning of the power consumption, DRCs and LVS. Also, it 
contains the scripts we run in each flow. 
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Chapter 2 

OpenPULP  

OpenPULP Core or RI5CY is a 4-stage in-order 32b RISC-V processor core. The 

ISA of RI5CY was extended to support multiple additional instructions including 
hardware loops, post-increment load and store instructions and additional ALU 

instructions that are not part of the standard RISC-V ISA. RI5CY supports the 
following instructions: RV32IMC or RV32IMFCXpulp. 

2.1. OpenPULP architecture 

 

Figure 5: The PULP overview 

We are going to focus on the open RISC block which is repeated in green color at 
the bottom right. 
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2.2. 32-bit RISC-V in openPULP 

This architecture is called RI5Cy, the open-source RTL design core is called 
CV32E40P. 

 

Figure 6:the block diagram of the CV32E40P 
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2.2.1. RI5CY ISA:  

RISC-V is an ISA: it is a well-organized ISA divided into categories and 
extensions 

RI5CY supports the following instructions: 

Full support for RV32I Base Integer Instruction Set: We have 32 Registers from 

(0x to 31x) which means 1 word, but 0x handwritten with 0 value so we have 31 
bits to write any data we need. 

Ex: add rd, rs1, rs2. 

• Full support for RV32C Standard Extension for Compressed Instructions  

• Full support for RV32M Integer Multiplication and Division Instruction 

Set Extension  

• Optional full support for RV32F Single Precision Floating Point 

Extensions 

• PULP specific extensions  

• Post-Incrementing load and stores 

• Multiply-Accumulate extensions 

• ALU extensions  

• Hardware Loops 

• Optional Floating-Point Support 

Floating-point support in the form of IEEE-754 single precision can be enabled 
by setting the parameter FPU of the top-level file “riscv_core” to one. This will 

instantiate the FPU in the execution stage, and also extends the register file to host 
floating-point operands and extend the ALU to support the floating-point 
comparisons and classifications. 

We are going to talk about each block in Figure 6. 
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2.2.1.1. Instruction fetch 

The instruction fetcher of the core is able to supply one instruction to the ID 

stage per cycle, if the instruction cache or the instruction memory is able to serve 

one instruction per cycle. If the external bus interface can serve one instruction 
every cycle, the CV32E40P's Instruction Fetch (IF) stage can deliver one instruction 

to the Instruction Decode (ID) stage per cycle. When executing compressed 

instructions, the ID stage will require on average less than one 32-bit instruction 
fetch per instruction.  

The instruction address must be half-word-aligned due to the support of 

compressed instructions. It is not possible to jump to instruction addresses that 
have the LSB bit set.  

A prefetcher is utilized for optimal performance and timing closure, fetching 
instructions from an externally connected instruction memory or instruction cache 

via the external bus interface. The prefetch unit executes 32-bit word-aligned 
prefetches and saves the fetched words in a four-entry FIFO.  

CV32E40P can retrieve up to four words outside of the code region as a result of 

this (speculative) prefetch, and care should be made to ensure that no undesirable 
read side effects occur for such prefetches outside of the real code region. The 

signals that are utilized to fetch instructions are described in Table 2-1 below. This 
interface is a condensed version of the Load-Store-Unit (LSU) interface described in  

Load-Store-Unit (LSU). The difference is that no writes are permitted, hence fewer 
signals are required. 

Table 3: fetch signals 

Signal Direction Description 

Instr_req_o output Request ready, must stay high 
until instr_gnt_i is high for one 
cycle 

Instr_addr_o[31:0] output Address  
Instr_rdata_i[31:0] input Data read from memory 

Instr_rvalid_i input    Instr_rdata_is holds valid data 
when instr_rvalid_i is high. This 
signal will be high for exactly one 
cycle per request. 

Instr_gnt_i input The other side accepted the 
request. instr_addr_o may 
change in the next cycle 
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There are two prefetch flavors available:  

• 32-Bit word prefetcher. It stores the fetched words in a FIFO with three 

entries. 

• 128-Bit cache line prefetch. It stores one 128-bit wide cache line plus 32-bit 

to allow for cross-cache line misaligned instructions. 

Misaligned Access: 

Only word-aligned instruction fetches are performed by the IF interface from 

the outside. Two distinct word-aligned instruction fetches are used to handle 
misaligned instruction fetches. To handle compressed instructions, the core can 

deal with both word- and half-word-aligned instruction addresses internally. 
Internally, the instruction address's LSB is ignored. 

Protocol: 

The OBI (Open Bus Interface) protocol is used for the instruction bus interface. 

The optional OBI signals we, be, wdata, auser, wuser, aid, rready, err, ruser, and 

rid are not implemented by the CV32E40P instruction fetch interface. These signals 
can be regarded as being linked off in the way that the OBI specification specifies. 

Up to two pending transactions can be caused through the CV32E40P instruction 
fetch interface. The protocol used to communicate with the instruction cache or the 
instruction memory is the same as the protocol used by the LSU. 

2.2.1.2. Load store unit (LSU) 

The core's Load-Store Unit (LSU) is in charge of accessing the data memory. 
Words (32 bit), half words (16 bit), and bytes (8 bit) can all be loaded and stored.  

Table 4 describes the signals that are used by the LSU. 
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Table 4: LSU signals 

Signal Direction Description 

data_req_o output Request ready. Must stay high 
until data_gnt_i is high for one 
cycle 

data_addr_o[31:0] output Address 

data_we_o output Write enable, high for writes, 
low for reads. Sent together with 
data_req_o 

data_be_o[3:0] output Byte enable. Is set for the 
bytes to write/read. Sent together 
with data_req_o 

data_wdata_o[31:0] output Data to be written to memory. 
Sent together with data_req_o 

data_rdata_i[31:0] input Data read from memory 

data_rvalid_i input data_rdata_is holds valid data 
when data_rvalid_i is high. This 
signal will be high for exactly one 
cycle per request. 

data_gnt_i input The other side accepted the 
rquest. data_addr_o may change 
in the next cycle 

 

 

Misaligned Access: 

Exceptions for address misalignment are never raised by the LSU, when the 

effective address is not naturally aligned with the referenced data type during 
loads and stores. If the data item exceeds a word boundary, the load/store is done 

as two bus transactions (i.e., on a four-byte border for word accesses and a two-

byte boundary for half word accesses). For the following cases, a single load/store 
operation is split into two bus transactions: 

• Load/store of a word for a non-word-aligned address.  

• Load/store of a half word crossing a word address boundary. 
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The transfer corresponding to the lowest address is completed first in both 
circumstances. A single bus transaction can handle all other circumstances.  

Protocol: 

The OBI (Open Bus Interface) protocol is used for the data bus interface. The 

optional OBI signals auser, wuser, aid, rready, err, ruser, and rid are not 
implemented by the CV32E40P data interface. These signals can be regarded as 

being linked off in the way that the OBI specification specifies. Up to two pending 
transactions can be caused by the CV32E40P data interface. 

The OBI protocol, which the LSU uses to interface with a memory, operates like 
this: 

The LSU sets data_req_o to high and supplies a valid address in data_addr_o. 
As soon as the RAM is ready to handle the request, it responds with a data_gnt_i 

set high. This may happen right after the request was received, or it could happen 

a few cycles later. The LSU may change the address when a grant is received in the 
next round. Furthermore, because it is assumed that the memory has already 

processed and stored that information, the data_wdata_o, data_we_o, and 

data_be_o signals may be changed. If data_rdata_i is valid, the memory responds 
with a data_rvalid_i set high after getting a grant. This could happen after the 

grant has been received for one or more rounds. When a write is conducted, 
data_rvalid_i must also be set, even if data_rdata_i has no meaning in this case.  

 

Post-Incrementing Load and Store Instructions: 

The load and store instructions that are post-incrementing perform a load/store 

operation from/to the data memory while also increasing the base address by the 

provided offset. The base address without offset is used for memory access. In 
order to run code with regular data access patterns, such as those seen in loops, 

post-incrementing load and stores reduce the number of instructions necessary. 

These post-incrementing load/store instructions integrate the address increment 
into the memory access instructions, eliminating the need for separate pointer 

handling instructions. These instructions, when combined with hardware loop 
extension, allow for a significant reduction in loop overhead. 
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2.2.1.3. Physical Memory Protection (PMP) Unit 

 The RI5CY core has a PMP module which can be enabled by setting the 

parameter PULP SECURE=1 which also enables the core to possibly run in USER 

MODE. Such a unit has a configurable number of entries (up to 16) and supports 
all the modes as TOR, NAPOT and NA4. Every fetch, load and store access 

executed in USER MODE are first filtered by the PMP unit which can possibly 

generate exceptions. For the moment, the MPRV bit in MSTATUS as well as the 
LOCK mechanism in the PMP is not supported. 

2.2.1.4.  Optional private floating-point unit (FPU) 

It is possible to extend the core with a private FPU, which is capable of 

performing all RISC-V floating-point operations that are defined in the RV32F ISA 
extensions. 

FP extensions can be enabled by setting the parameter of the top-level file 
“riscv_core.sv” to one. 

          The FPU is divided into three parts: 

• A simple FPU of ~10kGE complexity, which computes FP-ADD, FP-SUB 

and FP-casts. 

• An iterative FP-DIV/SQRT unit of ~7 kGE complexity, which computes 

FP-DIV/SQRT operations. 

• An FP-FMA unit which takes care of all fused operations (currently only 

supported through a Synopsys Design Ware instantiation, or a Xilinx 
block for FPGA targets).  

 

2.2.1.5. Control and status register (CSR) 

• RI5CY implements only limited registers needed for the PULP system to 

avoid any overhead regardless of that specified in the RISC-V privileged 

specs. 

• CSR Address 12-bit,22 registers 

• All zeros address is for user status 

Let’s focus on some of them: 
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MSTATUS: 

 

For exceptions. 

• Reset value at MPP (machine previous privileged mode) = 11, User mode 

is disabled 

• MPIE:  previous machine interrupt enables, when an exception occurs, it 

is set to MIE until MRET instruction is executed (machine mode trap 
handler return), MPIE will be stored in MIE 

• UPIE: Previous user interrupt enable, same case but user mode, pulp 

doesn’t support user interrupt 

• MIE: interrupt enable handling is ‘1’ in handler code 

MTVEC: 

 

• 01 for vectorized interrupt mode supported. 

• When exception occurs, the core jumps to the corresponding handler at 
address (31:8) as the base address. 8-Byte aligned address only is allowed. 

MEPC: 

 

When exception occurs, it saves the current PC and jumps to exception address, 
when mret instruction is executed, it goes back to the saved PC. 
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MCAUSE: 

 

Interrupt is set when the exception was triggered by interrupt. 

PRIVLIV: 

 

It contains the current privilege level the core is executing, provide a mechanism 
to allow portions of the software to operate with differing levels of privilege. 

The current privilege level is used by the system to control access to resources and 
execution of certain instructions. 

MHARTID/UHARTID 

 

ID of the cluster and the core inside this cluster. 

DCSR: 

Supports external debugging. 
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DPC: 

 

Contains the virtual address of the instruction to be executed when the core 
enters debug mode. 

DSCRATCH0/1: 

 

Scratch registers that can be used by implementations that need it. (Temporary 
registers needed in intermediate stages) 

2.2.1.6. Performance counters 

Placed inside CSR block and accessed by csrr and csrw instructions. 

PCMR: 

 

Global enable: activate or deactivates all performance counters. 

Saturation: enables saturating arithmetic in performance counters. 
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PCER: 

 

• Each bit controls 1 performance counter enabled by ‘1’. 

• In ASIC there is only one counter, the counting events are masked by 

PCER and ORed together, if an event is enabling the counter increase and 

if there are multi unmasked events the counter increases only by one, to 

count multi event separately the program should be executed inside a 
loop with different events configured. 

• In FPGA or RTL each event has its own counter and works separately. 

PCCR  

 

All these registers are accessed separately in FPGA, to save area in ASIC only 
PCCR31 is used which is equivalent with using PCCR0:30 in FPGA 
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Figure 7: Event of masking with PCER and ORing together to increase one performance 
counters PCCR 

Exceptions and interrupts 

• RI5KY supports only interrupts of illegal instructions and PMP filtered 

requests if enabled on the data and instruction bus. 

• Base address of interrupt vector table is given by MTVEC address. 

• It supports vectorized interrupts only, interrupt 0 is reserved for illegal 
instructions, ecall, and instructions or data prohibited access. 

Interrupts: 

• Interrupts can only be enabled in a global basis from MSTATUS 

• It is assumed that there is an event/interrupt controller outside the core 

that performs masking and buffering of interrupt lines. 

• The global interrupt enable is done via CSR register MSTATUS 

• Multiple interrupts/events are assumed to be handled by interrupt 

controller. When interrupt is taken, the core acknowledges it to the 
controller as well as the interrupt id is taken 
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Exceptions: 

• Illegal instruction and ecall exceptions cannot be disabled and always 

active. 

• For PMP exception, if enabled all data and instructions requests are 
filtered by PMP which cause load store and fetch exceptions 

Handling: 

• RI5KY supports SW-assisted nested exception/interrupt handling:  the 

SW has to take care to save the MSTATUS and MEPC before any possible 
nested exceptions or interrupt. 

• Interrupts are disabled during handling  but can be explicitly enabled 

Debug 

• RI5KY supports the RISC-V debug specification 0.13 and it implements 

the execution based to reuse the existing core pipeline 

• RI5KY has a debug_req_i input port that is sent by system debug module. 

Such request makes the core jumps to the specific address where the 
debug Rom is mapped. 

• This address location is referred to the parameter DM_HALTAddress. 

• RI5KY implements the debug sets of registers as DPC, DCSR and 
DSCRATCH0,1 

2.2.1.7. Pipeline 

RISCY has a fully independent pipeline containing four stages. 

Each pipeline stage has two control inputs:  

• An enable: activates the pipeline stage and the core moves forward by 

one instruction. 

• A clear: clear removes the instruction from the pipeline stage as it is 
completed. 
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Every pipeline stage is cleared if the ready coming from the stage to the right is 
high, and the valid signal of the stage is low.  

If the valid signal is high, it is enabled. 

Every pipeline stage is independent of its left neighbor, meaning that it can 
finish its execution no matter if a stage to its left is currently stalled or not. On the 

other hand, an instruction can only propagate to the next stage if the stage to its 

right is ready to receive a new instruction. This means that in order to process an 
instruction in a stage, its own stage needs to be ready and so does its right 
neighbor. 

 

Figure 8: using pipeline 
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2.2.1.8. PULP Hardware Loop Extensions 

To increase the efficiency of small loops, RI5CY supports hardware loops. 

Hardware loops make it possible to execute a piece of code multiple times, without 
the overhead of branches or updating a counter. 

• Hardware loops involve zero stall cycles for jumping to the first 

instruction of a loop. 

• A hardware loop is defined by its start address (pointing to the first 

instruction in the loop), its end address (pointing to the instruction that 

will be executed last in the loop) and a counter that is decremented every 
time the loop body is executed. 

 

• RI5CY contains two hardware loop register sets to support nested 

hardware loops, each of them can store these three values in separate flip 
flops. 

2.2.1.9. Register file 

There are two flavours of register file available: 

a. Latch-based 
b. Flip-flop based 

• While the latch-based register file is recommended for ASICs, the flip-

flop-based register file is recommended for FPGA synthesis. 

• Although both are compatible with either synthesis target. Note the flip-

flop-based register file is significantly larger than the latch-based register-
file for an ASIC implementation. 

In case the optional FPU is instantiated, the register file is extended with an 
additional register bank of 32 registers f0-f31. 
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2.2.1.10. Instruction set extensions 

Post incrementing load and store: 

• Perform load and store, besides, it increments the address used for 

memory access. 

• Post increment, the base address is used for the access and the modified 

address is written back in register file. 

• There are versions of instructions that use immediate and registers as 

offsets. 

• The base address always comes from a register. 

Hardware loops: 

• RI5KY supports 2 levels of nested HW loops. 

• The loop has to be setup before entering the loop body. 

• There are 2 methods for setup, long commands separately set start, end 

and number of iterations, or a short command that does all these 

instruction in a single one. 

• Short command has a limited number of instructions in the loop and the 

loop must start in the next instruction after set up. 

• Loop number 0 has a higher priority than loop number 1 in a nested loop 

configuration, that means loop zero is the inner loop. 

• A hardware loop is subjected to the following constraints: minimum of 2 

instructions in the body loop, and the loop counter must be greater than 0 
as the loop is always entered at least once. 

ALU: 

• RI5CY supports advanced ALU operations that allow performing 
multiple instructions that are specified in the base instruction set in one 

single instruction and thus increases efficiency of the core. 

• Examples:  

• min/max/avg instructions. 

• zero-/sign-extension instructions for 8-bit and 16-bit operands. 

• simple bit manipulation/counting instructions. 
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Multiply-Accumulate: 

It is a common step especially in digital signal processing computations; RI5Ky 

supports its extensions to minimize the number of instructions needed for its 
implementation. 

Vectorial: 

Vectorial instructions perform operations in a SIMD-like manner (single 

instruction multiple data) on multiple sub-word elements at the same time. This is 

done by segmenting the data path into smaller parts when 8 or 16-bit operations 
should be performed. 

They are available in two flavors: 

• 8-bit, to perform operations on 4 bytes inside a 32-bit word at the same time. 

• 16bit, to perform operations on 2 bytes inside a 32-bit word at the same time. 
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Chapter 3 

ASIC Flow 

ASIC stands for application specific integrated circuit; it is used in digital design 
to model system on chips with high performance.  

There are two types of ASICs which are full custom and standard cell based. 

 

3.1. ASIC Vs FPGA 

There are differences between ASIC and FPGA. Both of them are used in 
industry and each of them has pros and cons. 

Table 5: comparison between ASIC and FPGA 

ASIC FPGA 

Fabricated circuit only one time and in a Fab can be programmed many times 

High cost  Moderate cost  

For mass production to reduce the cost Small and fast production 

Needs long time to market Programmed in the field 

Better utilization as it uses the cells needed 
only 

Waste for resources and less utilization 
because of fixed number of programmable cells 

Higher performance but more complex Less performance but more flexible 
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3.2. ASIC design flow 

 

Figure 9: Design flow 

In Figure 9 we can find the design flow starting from high level customer needs 
ending with Tape-out of circuit given to fab for silicon chip production. 

In our project, we focused on the synthesis and physical design phase. We 
worked on the open-source logic design of 32-bit RISC-V in openPULP platform. 

We performed synthesis, place and route (PNR), RC extraction and static timing 
analysis (STA). 
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3.2.1. Synthesis 

Synthesis is a step in the flow in which we convert the RTL along with physical 
libraries to netlist. Design compiler tool is used. 

 

 

Figure 10: front-end flow 

Integration: description of the design as RTL with HDL such as: VHDL, Verilog 
and system verilog. 

Simulation to verify: simulate the RTL using simulation EDAs such as: 

Modelsim and Xilinix. Synthesis the circuit: for ASIC, we use synthesis tools such 
as Design compiler which converts RTL to Logic gates netlist. 
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 Synthesis is done in steps: 

• Step 1: converts HDL to generic logic gates called GTECH stands for 

generic technology; this is built in synthesis tool before using technology 

library given to the tool specified by the fab. 

• Step 2: reading the technology library to map these generic gates to 

technology-based gates which are called standard cell library for 

standard cell-based ASIC design. These standard cells are the layout for 
basic logic gates. 

• Step 3: optimization according to the constraints given to the tool. 

Netlist: it is the output of synthesis tool; it doesn’t include wiring or 
arrangement of cells. It can model timing according to gates only not wiring delay. 
It represents logic gates in text form given to the PNR tool. 

3.2.1.1. Basic synthesis flow: 

In order: 

• Define libraries. 

• Reading design. 

• Reading constraints. 

• Check design. 

• Compile / Technology mapping & optimization. 

• Generate gate level netlist. 

• Generate reports 

We will clarify each step in the following section: 

Define libraries:  

Standard cells or technology libraries 



51 

 

 

Figure 11: libraries 

• Combinational logic: basic logic cells only such as: NOT, AND, OR, 

NAND, NOR, buffers and half adders. 

• Sequential cells:  flip flops and latches; positive and negative edge FF, 

synchronous and asynchronous reset/set, ATPG cells used in DFT flow 
and clock gating cells. 

Clock gating cells are modeled in Verilog and mapped to technology directly; it 
has problems inside the cells due to wiring as it doesn’t maintain the clock square 

wave form as expected. Hence internal clock gating is added in libraries and is 
instantiated directly in synthesis the same as the one used in simulations. 

 

 

Figure 12: library views 
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These libraries are given by the fab before design. 

• Behavioral view: Vital simulation and gate level simulation (GLS). GLS is 

the netlist simulation which contains the names of cells inside netlist 

including the reference cells used in netlist. It is not used in synthesis 

phase. 

• Physical view: (.gds) and (.lef) files. Representing the layout and it is not 

used in synthesis but used in PNR. 

• (.gds) file: includes the detailed information about the layout of cells such 
as types of metals and so on. 

• (.lef) file: includes abstract information about cells as a black box which 

are needed in PNR and RC extraction for delay information. It contains 

pin locations and physical cell sizes. 

• Liberty timing view: (.lib) file which is measured on a specific PVT. It is 

used as an input to synthesis tool with timing, area, power information, 
propagation delay and transition time of the output. 

 

Figure 13: synthesis script 
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Variables:  

• Setting specific variables and continue the synthesis flow with them 

• target_library: taking timing libraries in (db) format which is the 

compiled version of (.lib). This (db) format is given by the fab or 

converted by the tool from (.lib). The tool understands that it uses this 
library in mapping stage and it can be more than one library. 

• link_library: responsible for linking all designs together. After 

converting designs to gates, it links the gates together with the design 

files. Hard macros are analog blocks; they are put in link libraries. They 

are linked with the top module as analog blocks are not synthesized. 

• Synthetic_library: it is defined by the tool automatically no need for 

definition of the designer. It contains the operators used in HDL such as: 
adders, shifters and so on.  

 

Reading design files 

There are two methods: 

• Analyze/elaborate 

analyze: reads HDL files. It informs the designer if there is any syntax error or 
non-synthesizable block. 

elaborate: takes (.syn) if it passed the analyze command and translates the HDL 

to GTECH (technology independent cells). Also, it replaces operators and performs 
link command automatically. Also, we can put link command after it. 

read_file 

Makes analyze and elaborate in a single step, but it doesn’t allow me to get 

intermediate files or change parameters. Link command must follow read_file 
command. 

Linking files: 

Linking instances of cells with their definitions in library after mapping. 

If there any hard macros, it will also be linked. 
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Check design 

It is done before compiling therefore before mapping. We should check there 
that there are no errors in this stage and if there, we should fix these errors.  

Constraints 

• There are four types for paths: 

• Input port to register: needs when the input will be available. 

• Register to register: it won’t make problems if is not defined, it needs 

clock period only. 

• Register to output: needs set input and output delays. 

• Input to output: needs set input and output delays. 

• All these constraints must be set in the design. 

Compile  

Maps GTECH gates to technology gates and optimizes delay. After that, it 
adjusts the area to the minimum acceptable at the minimum delay.  

Generate netlist 

• (.ddc ): encrypted, can be used in stages after synthesis. 

• (.v) or (.vhd): can be read and used in next stages after synthesis. 

Reports 

For timing, area and power 

Timing reports: 

Setup analysis: should be met in synthesis and is adjusted by design or 
constrains. 

Hold analysis: adjusted in PNR flow. 
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3.2.2.  PnR  

Place and route is the back-end flow in ASIC physical design. Here, we read the 

netlist generated from synthesis and constraints to arrange the generated cells, 
manage, fix timing and route them for physical system on chip. 

At the start of PnR flow, we define the PDK that we use, and the TLU+ library 

which is used to estimate the parasitic, hence estimating the delays. IC Compiler 
tool is used. 

3.2.2.1 Basic PnR flow 

• Floor planning 

• Power planning 

• Placement 

• Clock tree network 

• Routing 

• Finishing  

Setup or design preparation at the start of PnR flow: 

This section will explain in detail the commands and steps used in order to 
setup the design in order to proceed in the PnR steps correctly. 

• First, we make sure that our synthesized design has been set using: 

𝒔𝒆𝒕 𝒅𝒆𝒔𝒊𝒈𝒏 𝒄𝒗𝟑𝟐𝒆𝟒𝟎𝒑_𝒄𝒐𝒓𝒆. 

• After setting our design, we set our desired library path using  

 

𝒔𝒆𝒕_𝒂𝒑𝒑_𝒗𝒂𝒓 𝒔𝒆𝒂𝒓𝒄𝒉_𝒑𝒂𝒕𝒉 [𝒑𝒂𝒕𝒉 𝒅𝒊𝒓𝒆𝒄𝒕𝒐𝒓𝒚] . 

This is followed by the commands that choose the link and target library as well 
using, 

𝒔𝒆𝒕_𝒂𝒑𝒑_𝒗𝒂𝒓 𝒍𝒊𝒏𝒌_𝒍𝒊𝒃𝒓𝒂𝒓𝒚 [𝒍𝒊𝒏𝒌 𝒍𝒊𝒃𝒓𝒂𝒓𝒚 𝒑𝒂𝒕𝒉] 

𝒔𝒆𝒕_𝒂𝒑𝒑_𝒗𝒂𝒓 𝒕𝒂𝒓𝒈𝒆𝒕_𝒍𝒊𝒃𝒓𝒂𝒓𝒚 [𝒕𝒂𝒓𝒈𝒆𝒕 𝒍𝒊𝒃𝒓𝒂𝒓𝒚] 
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Both the link and target library contain the library which contains the cells 
referenced by the net list and the cells used for optimization and mapping 
respectively. 

• The next step in the workflow is creating a design library. A design 

library contains all the information about the design that change during 
the PNR process as well as the technology files used and reference 

libraries. Creating a library is very helpful during the PNR process as it 
helps create check points that enables returning to them when an error or 

failure occurs so that we don’t need to start the design from the beginning 
which. 

A high-level abstraction of a design library as shown in the figure below: 

 

Figure 14: high level view of the design library 

In order to create the library, the following command is used: 

𝒄𝒓𝒆𝒂𝒕𝒆_𝒎𝒘_𝒍𝒊𝒃   ./${𝒅𝒆𝒔𝒊𝒈𝒏} \ 

                −𝒕𝒆𝒄𝒉𝒏𝒐𝒍𝒐𝒈𝒚 $𝒔𝒄_𝒅𝒊𝒓/𝒕𝒆𝒄𝒉/𝒕𝒆𝒄𝒉𝒇𝒊𝒍𝒆/𝒎𝒊𝒍𝒌𝒚𝒘𝒂𝒚/𝑭𝒓𝒆𝒆𝑷𝑫𝑲𝟒𝟓_𝟏𝟎𝒎. 𝒕𝒇 \ 

−𝒎𝒘_𝒓𝒆𝒇𝒆𝒓𝒆𝒏𝒄𝒆_𝒍𝒊𝒃𝒓𝒂𝒓𝒚 $𝒔𝒄_𝒅𝒊𝒓/𝒍𝒊𝒃/𝑩𝒂𝒄𝒌_𝑬𝒏𝒅/𝒎𝒅𝒃 \ 

−𝒐𝒑𝒆𝒏 
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Both the technology files as well as the reference libraries were specified as 
option in the creation of the design library. 

• Following the process of creating a design library, we set information 

useful for the completion of the PNR, which is are the TLU plus max and 

min that contain the conditions for calculating resistance and 
capacitances used in extraction, and the tech2itf file which is used in 

mapping the names between the technology file and interconnect 
technology format. 

The commands used are: 

𝒔𝒆𝒕 𝒕𝒍𝒖𝒑𝒎𝒂𝒙 "$𝒔𝒄_𝒅𝒊𝒓/𝒕𝒆𝒄𝒉/𝒓𝒄𝒙𝒕/𝑭𝒓𝒆𝒆𝑷𝑫𝑲𝟒𝟓_𝟏𝟎𝒎_𝑪𝒎𝒂𝒙. 𝒕𝒍𝒖𝒑" 

𝒔𝒆𝒕 𝒕𝒍𝒖𝒑𝒎𝒊𝒏 "$𝒔𝒄_𝒅𝒊𝒓/𝒕𝒆𝒄𝒉/𝒓𝒄𝒙𝒕/𝑭𝒓𝒆𝒆𝑷𝑫𝑲𝟒𝟓_𝟏𝟎𝒎_𝑪𝒎𝒊𝒏. 𝒕𝒍𝒖𝒑" 

𝒔𝒆𝒕 𝒕𝒆𝒄𝒉𝟐𝒊𝒕𝒇 $sc_dir/tech/rcxt/FreePDK45_10m.map 

 

After setting the paths to the variable, the variable is then used in the next 
command: 

𝒔𝒆𝒕_𝒕𝒍𝒖_𝒑𝒍𝒖𝒔_𝒇𝒊𝒍𝒆𝒔 − 𝒎𝒂𝒙_𝒕𝒍𝒖𝒑𝒍𝒖𝒔 $𝒕𝒍𝒖𝒑𝒎𝒂𝒙 \ 

                   −𝒎𝒊𝒏_𝒕𝒍𝒖𝒑𝒍𝒖𝒔 $𝒕𝒍𝒖𝒑𝒎𝒊𝒏 \ 

        −𝒕𝒆𝒄𝒉𝟐𝒊𝒕𝒇_𝒎𝒂𝒑 $𝒕𝒆𝒄𝒉𝟐𝒊𝒕𝒇 

• The output of the synthesis step is then imported using: 

𝒊𝒎𝒑𝒐𝒓𝒕_𝒅𝒆𝒔𝒊𝒈𝒏𝒔  . ./𝒔𝒚𝒏/𝒐𝒖𝒕𝒑𝒖𝒕/${𝒅𝒆𝒔𝒊𝒈𝒏}.𝒗 \ 

−𝒇𝒐𝒓𝒎𝒂𝒕 𝒗𝒆𝒓𝒊𝒍𝒐𝒈 \ 

−𝒕𝒐𝒑 ${𝒅𝒆𝒔𝒊𝒈𝒏} \ 

−𝒄𝒆𝒍 ${𝒅𝒆𝒔𝒊𝒈𝒏} 

Where the option specifies the format of the HDL files used, as well as the name 
of the top module and cell in which it’s saved. 
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• Lastly, we source the same constraints that were used in the synthesis step, 

which contain all the timing information, and we set the propagated clock in 
order not to use the default ideal clock. 

𝒔𝒐𝒖𝒓𝒄𝒆  . ./𝒄𝒐𝒏𝒔𝒕𝒓𝒂𝒊𝒏𝒕𝒔/[𝒇𝒊𝒍𝒆. 𝒔𝒅𝒄] 

𝒔𝒆𝒕_𝒑𝒓𝒐𝒑𝒂𝒈𝒂𝒕𝒆𝒅_𝒄𝒍𝒐𝒄𝒌 [𝒈𝒆𝒕_𝒄𝒍𝒐𝒄𝒌𝒔 [𝒄𝒍𝒐𝒄𝒌 𝒏𝒂𝒎𝒆]] 

We will clarify the basic information in each PnR flow step: 

3.2.2.1. Floor planning 

The first stage of the PnR flow is the floor planning, floor planning formalizes 

and refines the floor plan specified for the design. At this stage, we define the area 
of the chip, and the core area where the cells will be placed. Also in this stage, the 

macros are placed. Also, Top level, utilization, aspect radio and input/output to 
core distance are specified here.  

Pin and ports are also assigned at rough locations and further can be redefined 
during the PnR flow. 

Inputs for floor plan: 

• Netlist (.v) 
• Technology file (techlef) 
• Timing Library files (.lib) 
• Physical library (.lef) 
• Synopsys design constraints (.sdc) 
• Tlu+ 

Depending on the utilization value, the tool calculates the core area of the chip 

based on the relation Utilization = (∑Cell Area)/(Core Area) .Utilization is the 

percentage of core area that is taken up by standard cells. Increasing the utilization 
decreases the area of the chip which is good, but it also makes the design more 

congested. High congestion means many DRCs and makes it harder for the tool to 

route the cells. Decreasing the utilization increases the area, but makes the routing 
easier. Utilization value also affects the timing. Increasing it makes the tool trapped 

between solving DRCs with timing violations or meeting timing with DRCs 

violations. Also, decreasing it makes the routes between the cells longer as cells 
will be placed far apart, and this increases the routes’ parasitic, hence increases the 
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delay. Therefore, determining the utilization value is a critical decision and has to 
be made carefully.   

We also set the ignored layers in this stage. Ignored layers are the layers at 
which cells are not placed and routed because we use them for the power grid. We 

preferred to separate the signal routes from the power routes in order to reduce 
congestion and noise. 

The main command at this stage is create_floorplan. Using -core_utilization 
switch, we can specify the desired utilization, and using -core_aspect_ratio switch, 
we can specify the height to width ratio of the chip. Default aspect ratio is 1.  

Floor plan basic commands in PnR flow: 

The next step in the flow is dedicating a certain area of the chip for the cells of 
the design. This step is called floor planning and is initiated with the command: 

𝒄𝒓𝒆𝒂𝒕𝒆_𝒇𝒍𝒐𝒐𝒓𝒑𝒍𝒂𝒏 

This command defines a rectangular boundary based on a certain aspect ratio 
(width and height), or number of cells. It also places the I/O pad and corner cells 
based on pre-defined constraints. 

Some of the options used within these commands will be listed below: 

−𝒄𝒐𝒓𝒆_𝒖𝒕𝒊𝒍𝒊𝒛𝒂𝒕𝒊𝒐𝒏 𝟎.𝟐𝟓 − 𝒄𝒐𝒓𝒆_𝒂𝒔𝒑𝒆𝒄𝒕_𝒓𝒂𝒕𝒊𝒐 𝟐 \ 

−𝒔𝒕𝒂𝒓𝒕_𝒇𝒊𝒓𝒔𝒕_𝒓𝒐𝒘 − 𝒇𝒍𝒊𝒑_𝒇𝒊𝒓𝒔𝒕_𝒓𝒐𝒘 \ 

−𝒍𝒆𝒇𝒕_𝒊𝒐𝟐𝒄𝒐𝒓𝒆 𝟏𝟐. 𝟒 − 𝒃𝒐𝒕𝒕𝒐𝒎_𝒊𝒐𝟐𝒄𝒐𝒓𝒆 𝟏𝟐. 𝟒 − 𝒓𝒊𝒈𝒉𝒕_𝒊𝒐𝟐𝒄𝒐𝒓𝒆 𝟏𝟐. 𝟒 
− 𝒕𝒐𝒑_𝒊𝒐𝟐𝒄𝒐𝒓𝒆 𝟏𝟐. 𝟒 



60 

 

 

Figure 15: core and die area, with relative io2core distances 

The core utilization option is important as it defines how much of design’s core’s 
area is utilized. 

𝑼𝒕𝒊𝒍𝒊𝒛𝒂𝒕𝒊𝒐𝒏 =  
𝒕𝒐𝒕𝒂𝒍 𝒂𝒓𝒆𝒂 𝒐𝒇 𝒕𝒉𝒆 𝒄𝒆𝒍𝒍𝒔

𝒕𝒐𝒕𝒂𝒍 𝒄𝒐𝒓𝒆 𝒂𝒓𝒆𝒂
   

The rest of the core’s area will be available for routing. 

 

Figure 16: utilization visual, showing cell area compared to core area. 

Start first row begins the placement for the bottom left. Flip first row will flip the 

rows in order to have the correct power line orientation. The io2core is an option 
defined by the distance between the IO ports and the corners of the specified core, 
this distance is defined in microns. 
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. 

3.2.2.2. Power planning 

Power planning is the second step in PnR.  

The power planning stage is very important. At this stage, we determine how 
our power grid should be, and how we will deliver power to the design’s standard 

cells. We make the power grid in the highest two metal layers; metal 9 and metal 

10, and the tape layer is metal 8. We put it in the upper layer because resistance of 
metal layers decreases as we get to the higher layers, and it is very important to 

have a power network with low impedance to make sure that the voltage delivered 

to the cells equals to the ideal voltage, and the IR drop of the metal route is very 
small. High IR drop also causes electro migration (EM) which can result in 

catastrophic failure like opens and shorts, or in the best cases it causes performance 
degradation due to changing the width of the wire, so changes the RC. 

Therefore, we need to carefully specify the number of straps, width of straps, 
width of ring, and the layers of the power grid. 

We generally map the IR drop using a color map to highlight “hot spots”, where 

the IR drop is bad. It is also important to check the value of the IR drop itself to see 

how much percentage of the VDD it represents. It is acceptable to be within 2 -3% 
of VDD. 

In order to create and synthesize the power network, there are main steps that 
we followed: 

• First, we create the power and ground network for the design, and 

logically connect the power pins of standard cells to the specified power 

nets using derive_pg_connection command. 
• We define the power ring using command set_fp_rail_constraints, as we 

give it the constraints that will be used to create the power ring like, 

horizontal ring layer, vertical ring layer, ring width, … etc 
• Using set_fp_rail_constraints, we constrained the power mesh with max 

number of straps = 128, minimum number of straps = 20, minimum 

width = 2.5, and minimum spacing. 
• Create virtual pads to be able to synthesize the power network using 

create_fp_virtual_pad command. 
• Finally, we synthesize the power network using synthesize_fp_rail 
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• After synthesizing the power network and when the IR (voltage) drop 

map meets target IR drop constraints. We use commit_fp_rail command 
to generate a real power network (power/ground wires and vias) based 

on power network synthesis results, Power/ground pins might also be 

created on the chip boundary. 
• set_preroute_drc_strategy -max_layer to specify the maximum metal 

layer used for pre-routing, in our case, it is metal 8. 

 In this stage, we also define virtual power pads, to have the ability to simulate 

the IR drop. Also, at the end of this stage, we add tie cells. They are special non 
logic cells to tie ‘0’ and ‘1’ logic constant values. We connect the by 
connect_tie_cells command. 

 

Power network basic commands in PnR flow: 

These are the commands for 2-layer power grid planning. 

After initial virtual placing the cells by create_fp_placement command (can be 

done directly after floor planning step), it’s time to provide them with power, this 
is done by creating a network of VDD and GND that spans over several layer in 
both horizontal and vertical stripes. 

First, we tell the tool to connect any net called VDD to the VDD provided in the 
metals, and the same for the GND nets. 

𝒅𝒆𝒓𝒊𝒗𝒆_𝒑𝒈_𝒄𝒐𝒏𝒏𝒆𝒄𝒕𝒊𝒐𝒏  − 𝒑𝒐𝒘𝒆𝒓_𝒏𝒆𝒕 𝑽𝑫𝑫\ 

 −𝒈𝒓𝒐𝒖𝒏𝒅_𝒏𝒆𝒕 𝑽𝑺𝑺\ 

 −𝒑𝒐𝒘𝒆𝒓_𝒑𝒊𝒏 𝑽𝑫𝑫\ 

 −𝒈𝒓𝒐𝒖𝒏𝒅_𝒑𝒊𝒏 𝑽𝑺𝑺 

Then we define the constraints which the power rails will follow, this is done 
using: 

𝒔𝒆𝒕_𝒇𝒑_𝒓𝒂𝒊𝒍_𝒄𝒐𝒏𝒔𝒕𝒓𝒂𝒊𝒏𝒕𝒔  − 𝒔𝒆𝒕_𝒓𝒊𝒏𝒈 − 𝒏𝒆𝒕𝒔  {𝑽𝑫𝑫 𝑽𝑺𝑺}  \ 

                         −𝒉𝒐𝒓𝒊𝒛𝒐𝒏𝒕𝒂𝒍_𝒓𝒊𝒏𝒈_𝒍𝒂𝒚𝒆𝒓 {  𝒎𝒆𝒕𝒂𝒍𝟗 } \ 
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                         −𝒗𝒆𝒓𝒕𝒊𝒄𝒂𝒍_𝒓𝒊𝒏𝒈_𝒍𝒂𝒚𝒆𝒓 { 𝒎𝒆𝒕𝒂𝒍𝟏𝟎 } \ 

 −𝒓𝒊𝒏𝒈_𝒔𝒑𝒂𝒄𝒊𝒏𝒈 𝟎. 𝟖 \ 

 −𝒓𝒊𝒏𝒈_𝒘𝒊𝒅𝒕𝒉 𝟓 \ 

 −𝒓𝒊𝒏𝒈_𝒐𝒇𝒇𝒔𝒆𝒕 𝟎. 𝟖 \ 

 −𝒆𝒙𝒕𝒆𝒏𝒅_𝒔𝒕𝒓𝒂𝒑 𝒄𝒐𝒓𝒆_𝒓𝒊𝒏𝒈 

 

The options define which layers to use for the power connections as well as ring 
width, spacing and offset from I/O ports. 

 

Figure 17: visualization of both spacing and offset 
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The mesh that provides the power is created using for loops that iterate across 
the core area placing pads for the power at evenly spaced distances. 

𝒇𝒐𝒓 {𝒔𝒆𝒕 𝒊 "[𝒆𝒙𝒑𝒓 $𝒅𝒊𝒆_𝒍𝒍𝒙 +  𝟐𝟎]"} {$𝒊 
<  "[𝑒𝑥𝑝𝑟 $𝑑𝑖𝑒_𝑢𝑟𝑥 −  40]"} {𝑠𝑒𝑡 𝑖 [𝑒𝑥𝑝𝑟 $𝑖 +  80]} { 

𝒄𝒓𝒆𝒂𝒕𝒆_𝒇𝒑_𝒗𝒊𝒓𝒕𝒖𝒂𝒍_𝒑𝒂𝒅 − 𝒏𝒆𝒕 𝑽𝑺𝑺 − 𝒑𝒐𝒊𝒏𝒕 "{$𝒊 $𝒅𝒊𝒆_𝒍𝒍𝒚}" 

𝒄𝒓𝒆𝒂𝒕𝒆_𝒇𝒑_𝒗𝒊𝒓𝒕𝒖𝒂𝒍_𝒑𝒂𝒅 − 𝒏𝒆𝒕 𝑽𝑫𝑫 − 𝒑𝒐𝒊𝒏𝒕 "{[𝒆𝒙𝒑𝒓 $𝒊 +  𝟒𝟎] $𝒅𝒊𝒆_𝒍𝒍𝒚}" 

𝒄𝒓𝒆𝒂𝒕𝒆_𝒇𝒑_𝒗𝒊𝒓𝒕𝒖𝒂𝒍_𝒑𝒂𝒅 − 𝒏𝒆𝒕 𝑽𝑺𝑺 − 𝒑𝒐𝒊𝒏𝒕 "{$𝒊 $𝒅𝒊𝒆_𝒖𝒓𝒚}" 

𝒄𝒓𝒆𝒂𝒕𝒆_𝒇𝒑_𝒗𝒊𝒓𝒕𝒖𝒂𝒍_𝒑𝒂𝒅 − 𝒏𝒆𝒕 𝑽𝑫𝑫 − 𝒑𝒐𝒊𝒏𝒕 "{[𝒆𝒙𝒑𝒓 $𝒊 +  𝟒𝟎] $𝒅𝒊𝒆_𝒖𝒓𝒚}" 

} 

𝒇𝒐𝒓 {𝒔𝒆𝒕 𝒊 "[𝒆𝒙𝒑𝒓 $𝒅𝒊𝒆_𝒍𝒍𝒚 +  𝟐𝟎]"} {$𝒊 
<  "[𝑒𝑥𝑝𝑟 $𝑑𝑖𝑒_𝑢𝑟𝑦 −  40]"} {𝑠𝑒𝑡 𝑖  [𝑒𝑥𝑝𝑟 $𝑖 +  80]} { 

𝒄𝒓𝒆𝒂𝒕𝒆_𝒇𝒑_𝒗𝒊𝒓𝒕𝒖𝒂𝒍_𝒑𝒂𝒅 − 𝒏𝒆𝒕 𝑽𝑺𝑺 − 𝒑𝒐𝒊𝒏𝒕 "{$𝒅𝒊𝒆_𝒍𝒍𝒙 $𝒊}" 

𝒄𝒓𝒆𝒂𝒕𝒆_𝒇𝒑_𝒗𝒊𝒓𝒕𝒖𝒂𝒍_𝒑𝒂𝒅 − 𝒏𝒆𝒕 𝑽𝑫𝑫 − 𝒑𝒐𝒊𝒏𝒕 "{$𝒅𝒊𝒆_𝒍𝒍𝒙 [𝒆𝒙𝒑𝒓 $𝒊 +  𝟒𝟎]}" 

𝒄𝒓𝒆𝒂𝒕𝒆_𝒇𝒑_𝒗𝒊𝒓𝒕𝒖𝒂𝒍_𝒑𝒂𝒅 − 𝒏𝒆𝒕 𝑽𝑺𝑺 − 𝒑𝒐𝒊𝒏𝒕 "{$𝒅𝒊𝒆_𝒖𝒓𝒙 $𝒊}" 

𝒄𝒓𝒆𝒂𝒕𝒆_𝒇𝒑_𝒗𝒊𝒓𝒕𝒖𝒂𝒍_𝒑𝒂𝒅 − 𝒏𝒆𝒕 𝑽𝑫𝑫 − 𝒑𝒐𝒊𝒏𝒕 "{$𝒅𝒊𝒆_𝒖𝒓𝒙 [𝒆𝒙𝒑𝒓 $𝒊 +  𝟒𝟎] }" 

} 

Each one of the for loops is responsible for the horizontal and vertical placement 
of the pads respectively. 

After placing the pads and constraining which layers the metal are placed in, we 
synthesize the power rails and rings using: 

𝒔𝒚𝒏𝒕𝒉𝒆𝒔𝒊𝒛𝒆_𝒇𝒑_𝒓𝒂𝒊𝒍 

 −𝒏𝒆𝒕𝒔 {𝑽𝑫𝑫 𝑽𝑺𝑺} − 𝒔𝒚𝒏𝒕𝒉𝒆𝒔𝒊𝒛𝒆_𝒑𝒐𝒘𝒆𝒓_𝒑𝒍𝒂𝒏 − 𝒕𝒂𝒓𝒈𝒆𝒕 _𝒗𝒐𝒍𝒕𝒂𝒈𝒆_𝒅𝒓𝒐𝒑 𝟐𝟐 
− 𝒗𝒐𝒍𝒕𝒂𝒈𝒆_𝒔𝒖𝒑𝒑𝒍𝒚 𝟏.𝟏 − 𝒑𝒐𝒘𝒆𝒓_𝒃𝒖𝒅𝒈𝒆𝒕 𝟓𝟎𝟎 

The target voltage drop is an important option that specifies how much IR we 
can deal with in our chip, and is specified using milli volts 
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The synthesis is then followed by the actual placement of the power network 
using: 

𝒄𝒐𝒎𝒊𝒕_𝒇𝒑_𝒓𝒂𝒊𝒍 

After creating the network, we can now connect the cells to the receptive power 
sources using  

𝒑𝒓𝒆𝒓𝒐𝒖𝒕𝒆_𝒔𝒕𝒂𝒏𝒅𝒂𝒓𝒅_𝒄𝒆𝒍𝒍𝒔 

 We continue by adding tap cells 

𝒂𝒅𝒅_𝒕𝒂𝒑_𝒄𝒆𝒍𝒍_𝒂𝒓𝒓𝒂𝒚 − 𝒎𝒂𝒔𝒕𝒆𝒓   𝑻𝑨𝑷 \ 

        −𝒅𝒊𝒔𝒕𝒂𝒏𝒄𝒆 𝟑𝟎 \ 

        −𝒑𝒂𝒕𝒕𝒆𝒓𝒏  𝒔𝒕𝒂𝒈𝒈𝒆𝒓_𝒆𝒗𝒆𝒓𝒚_𝒐𝒕𝒉𝒆𝒓_𝒓𝒐𝒘 

3.2.2.3 Placement 

The third step in PnR. 

In the placement process the ICC tool finds an appropriate position for the leaf 
cells to be suited on. This process is completed in two different stages. 

The first placement stage is the coarse placement, in which the tool places the 

cells approximately taking into account the timing of the different paths, however 

in these stages the approximation causes overlaps between the different cells as 
well as wrong orientation. 

The second stage is the legalization stage, wherein the tool starts to legalize the 
cells by positioning them correctly within the grid, removing overlaps and wrong 
orientation. 

The second stage may result in a degradation for the timing in certain paths 
which can be further resolved using optimization. 

Certain techniques such as blockages and margins can be used during the 
placement process to ensure that problems like congestion do not occur in certain 
places. 

No blockages were used in our design process. 
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Placement Density:  

This option controls how dense the cells are packed together, and takes as input 

the percentage of how packed they are where 100% means that there is no empty 

space between the cells, this is done setting the following variable before actual 
placement stage or virtual placement if done after floor planning stage:  

set_app_var_placer_max_cell_density_threshold X 

This X corresponds to a value specified by the designer according to the priority 
needed. This value gives the high priority to wire length to the placement of cells 

and its default is 0.7. by decreasing this X the priority of wide placement of cells 
increases. 

Performing placement and optimization: 

The placement process is called using the place_opt command which consists of 
5 different commands including: 

• Initial placement (initial_place) 

• Initial DRC violation fixing (initial_drc) 

• Initial optimization (initial_opto) 

• Final placement (final_place) 

• Final optimization (final_opto) 

• Legalization 

In order to further optimize or incrementally place the cells we can use 
refine_opt which also includes: 

• Initial path optimization (initial_path_opt) 

• Incremental placement (inc_place) 

• Incremental optimization (inc_opt) 

• Final placement (final_path_opt) 

• Legalization 

psynopt was also used which performs incremental pre-route or post-route 
optimization. 

There are many options which can be enabled in order to resolve certain issues 
such as: 
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• timing driven  

• congestion driven 

The QoR in the placement process includes reporting placement violations and 
legalization of non-legalized cells as overlapping cells and so on. 

Placement basic commands in PnR flow: 

Placement is the process in which we find a suitable physical location for the 
cells within the core area. 

Before starting the placement, we  

𝒄𝒉𝒆𝒄𝒌_𝒑𝒉𝒚𝒔𝒊𝒄𝒂𝒍_𝒅𝒆𝒔𝒊𝒈𝒏 − 𝒔𝒕𝒂𝒈𝒆 𝒑𝒓𝒆_𝒑𝒍𝒂𝒄𝒆_𝒐𝒑𝒕 

𝒄𝒉𝒆𝒄𝒌_𝒑𝒉𝒚𝒔𝒊𝒄𝒂𝒍_𝒄𝒐𝒏𝒔𝒕𝒓𝒂𝒊𝒏𝒕𝒔 

The first of these two commands do checks that depend on the specified stage 

and makes sure the design contents make sense for the specified stage; otherwise, 

the report might be meaningless. By choosing preplace opt as the value for the 
stage, the command requires that the floorplan and netlist data are ready and the 
design constraints are set. 

The second command checks several physical constraints and provide 
information about possible errors in input. It checks for 

• cell areas in hard bound 

• Correct layers in the library against those in the floorplan. 

• Resistance and capacitance for different route layers. 

• Narrow placement areas in the floorplan. 

• Legal sites for library cells in floorplan. 

 

 

 

 

 



68 

 

The placement process is called using the  

𝒑𝒍𝒂𝒄𝒆_𝒐𝒑𝒕 

This stage can also be referred to as coarse placement. 

During the coarse placement the IC compiler tool finds an approximate location 

for the cells based on timing, congestion and power criteria. In this step the cells 
might overlap, and in the case of IP block usage, those blocks will act as blockages 
preventing cells from overlapping with them. 

Although approximate, the coarse placement is very accurate for initial timing 
and congestion analysis. 

• Initial DRC violation fixing (initial_drc) 

• Initial optimization (initial_opto) 

• Final placement (final_place) 

• Final optimization (final_opto) 

• Legalization (legalize_placement) 

Following the coarse placement, legalization moves the cells to legal areas, 
removing overlap, and finding the right places for the cells within the rows. 

These new locations might cause variation in the timing and congestion analysis 

that was previously achieved, and will usually be more pessimistic as the distances 
may increase. 

𝒑𝒔𝒚𝒏𝒐𝒑𝒕 

For further incremental optimization on the synthesis of the placement. 

𝒔𝒆𝒕 𝒕𝒊𝒆_𝒑𝒊𝒏𝒔 

𝒄𝒐𝒏𝒏𝒆𝒄𝒕_𝒕𝒊𝒆_𝒄𝒆𝒍𝒍𝒔 

 Tie constant values with VDD and VSS. 
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3.2.2.4. Clock tree synthesis 

CTS or clock tree synthesis is the process of building a buffer/inverter network 

in order to balance the delays of the flip flops that belong to a clock domain. This 

delay is caused by the parasitic that appear due to the wire lengths, this delay can 
also be called insertion delay. 

Connection the clock wires causes 2 problems that the CTS helps resolving: 

• Skew  

• High capacitance and fan-out seen at the clock pin, which causes slow 

signal transitioning eventually leading to crosstalk issues. 

Before we dwell into what CTS does, we first we need some definitions: 

• Skew is the difference in clock arrival time at two different registers 

usually caused by the delay due to buffers and wires placed before clocks 
pins. 

• Capture clock edge: the edge of the clock where the data is read. 

• Launch clock edge: the edge of the clock where the data is sent. 

Local skew VS global skew: 

• Local skew: clock arrival between related flops, so each pair of FFs with a 

data path between them has their own local skew 

 

Figure 18: local skew 

• Global skew: the arrival time difference between the biggest arrival and 

the smallest arrival, even between unrelated FFs across the entire clock 
domain. 
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Figure 19: global skew between unrelated registers 

CTS is the process in which we try to balance the delay between the different 

clock paths of the design (sinks or excludes) and the clock source in order to 
achieve the target global skew, which is done by placing a tree of symmetric 

buffers so that all the different clock inputs in different flip flops see the same 

insertion delay. In addition to that, it also helps in decreasing the total capacitance 
seen by the clock source which reduces transition time as well as crosstalk issues. 

Problem with skew: In case the skew is big; if the data flow is in the same 
direction of clock propagation this will create hold violations, but helps me in 
setup. 

CTS optimizes based on global skew, so the goal is to have a 0 global skew. 

By building a buffer network, we ensure that all the flip flops see the same 

insertion delay while in the time, decrease the total capacitance seen by a single 
pin. 
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Figure 20: example of buffer insertion to fix the previously mentioned issues 

Now that we have an idea about the CTS operation goals, we can delve into the 
commands used in the CTS script partition. 

 

CTS basic commands in PnR flow: 

First, we need to check the design for its readiness the way we did in the 
placement section, 

𝒄𝒉𝒆𝒄𝒌_𝒑𝒉𝒚𝒔𝒊𝒄𝒂𝒍_𝒅𝒆𝒔𝒊𝒈𝒏 –𝒔𝒕𝒂𝒈𝒆 𝒑𝒓𝒆_𝒄𝒍𝒐𝒄𝒌_𝒐𝒑𝒕 

This stage requires the same items as 𝒑𝒓𝒆_𝒑𝒍𝒂𝒄𝒆_𝒐𝒑𝒕. In addition, the design 
must be placed and the clock constraints must be set. 

𝒄𝒉𝒆𝒄𝒌_𝒄𝒍𝒐𝒄𝒌_𝒕𝒓𝒆𝒆 
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Is a command preferably used before starting the CTS, this command helps us 
identify certain issues which might create further problems down the CTS line 
such as: 

• A master clock does not propagate to a generated clock 

• Improperly specified master clock 

• A master clock terminates at a multi-clock pin 

• A clock has no synchronous pins 

• A clock loops to itself 

• Multiple clocks per register 

• Exceptions defined on output pins 

Therefore, verification of: 

• The clock master. 

• Loops in the tree. 

• Ignored exceptions. 

• Stop pins or float pins on output pins. 

• Conflicted exceptions. 

• Conflicted balancing settings. 

 

After finishing with the checks, we can now proceed with the CTS 

The next command we’re going to use is set_driving_cell which sets an attribute 
for a certain port in our design, where in our case we’re specifying the type of 
buffer used for our clock pin. 

Timing characteristics: 

In order to model the clock roots correctly we must specify a driving strength 
for the I/O clock pad cell so that the tool does not assume that the port as an 
infinite driving strength, this is done using the command: 

𝒔𝒆𝒕_𝒅𝒓𝒊𝒗𝒊𝒏𝒈_𝒄𝒆𝒍𝒍 − 𝒍𝒊𝒃_𝒄𝒆𝒍𝒍 𝑩𝑼𝑭_𝑿𝟏𝟔 − 𝒑𝒊𝒏 𝒁 [𝒈𝒆𝒕_𝒑𝒐𝒓𝒕𝒔 𝒅𝒆𝒔𝒊𝒈𝒏_𝒄𝒍𝒐𝒄𝒌] 

design_clock is clk_i in our project. 
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Targets and constraints: 

Next is to set the constraints on which the CTS will be optimizing the clock tree 
on: 

𝒔𝒆𝒕_𝒄𝒍𝒐𝒄𝒌_𝒕𝒓𝒆𝒆_𝒐𝒑𝒕𝒊𝒐𝒏𝒔 \ 

                −𝒄𝒍𝒐𝒄𝒌_𝒕𝒓𝒆𝒆𝒔 𝒄𝒍𝒌_𝒊 \ 

−𝒕𝒂𝒓𝒈𝒆𝒕_𝒆𝒂𝒓𝒍𝒚_𝒅𝒆𝒍𝒂𝒚 𝟎. 𝟏 \ 

−𝒕𝒂𝒓𝒈𝒆𝒕 _𝒔𝒌𝒆𝒘 𝟎. 𝟐 \ 

−𝒎𝒂𝒙_𝒄𝒂𝒑𝒂𝒄𝒊𝒕𝒂𝒏𝒄𝒆 𝟑𝟎𝟎 \ 

−𝒎𝒂𝒙_𝒇𝒂𝒏𝒐𝒖𝒕 𝟏𝟎 \ 

−𝒎𝒂𝒙_𝒕𝒓𝒂𝒏𝒔𝒊𝒕𝒊𝒐𝒏 𝟎. 𝟏𝟓𝟎 

Most of the issues mentioned before have now been constrained by a certain 
value. 

By default, the tool tries to achieve the best possible skew and latency for the 
clock tree, however this may lead to degradation in other parameters such as area 

and power, therefore, set_clock_tree_options is used to define the target skew and 
other constraints. 

• clock_trees clk_i  

• target_early_delay  

• target_skew  

• max_capacitance   

• max_fanout  

• max_transition  
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Specifying clock tree reference: 

The references of a clock tree are the buffer and inverters used to build it, in 

order to specify them we use: set_clock_tree_references -references [get_lib_cells 
*/CLKBUF*]  

Further optimization option for the clock tree can be enabled using these 
commands that allow the CTS to apply different techniques for optimizing the tree:  

𝒔𝒆𝒕_𝒄𝒍𝒐𝒄𝒌_𝒕𝒓𝒆𝒆_𝒐𝒑𝒕𝒊𝒐𝒏𝒔 − 𝒄𝒍𝒐𝒄𝒌_𝒕𝒓𝒆𝒆𝒔 𝒄𝒍𝒌_𝒊 \ 

−𝒃𝒖𝒇𝒇𝒆𝒓_𝒓𝒆𝒍𝒐𝒄𝒂𝒕𝒊𝒐𝒏 𝒕𝒓𝒖𝒆 \ 

−𝒃𝒖𝒇𝒇𝒆𝒓_𝒔𝒊𝒛𝒊𝒏𝒈 𝒕𝒓𝒖𝒆 \ 

−𝒈𝒂𝒕𝒆_𝒓𝒆𝒍𝒐𝒄𝒂𝒕𝒊𝒐𝒏 𝒕𝒓𝒖𝒆 \ 

−𝒈𝒂𝒕𝒆_𝒔𝒊𝒛𝒊𝒏𝒈 𝒕𝒓𝒖𝒆  

 

Figure 21: showing the optimization due to the previous commands 
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Other constraints can also be defined, including specifying the metal layers on 
which the metal wires that make up the clock tree walk on. 

𝒅𝒆𝒇𝒊𝒏𝒆_𝒓𝒐𝒖𝒕𝒊𝒏𝒈_𝒓𝒖𝒍𝒆 𝒎𝒚_𝒓𝒐𝒖𝒕𝒆_𝒓𝒖𝒍𝒆  \ 

  −𝒘𝒊𝒅𝒕𝒉𝒔   {𝒎𝒆𝒕𝒂𝒍𝟑 𝟎. 𝟏𝟒 𝒎𝒆𝒕𝒂𝒍𝟒 𝟎. 𝟐𝟖 𝒎𝒆𝒕𝒂𝒍𝟓 𝟎. 𝟐𝟖 𝒎𝒆𝒕𝒂𝒍𝟔 𝟎. 𝟐𝟖 𝒎𝒆𝒕𝒂𝒍𝟕 𝟎. 𝟖} \ 

  −𝒔𝒑𝒂𝒄𝒊𝒏𝒈𝒔 {𝒎𝒆𝒕𝒂𝒍𝟑 𝟎. 𝟏𝟒 𝒎𝒆𝒕𝒂𝒍𝟒 𝟎. 𝟐𝟖 𝒎𝒆𝒕𝒂𝒍𝟓 𝟎. 𝟐𝟖 𝒎𝒆𝒕𝒂𝒍𝟔 𝟎. 𝟐𝟖 𝒎𝒆𝒕𝒂𝒍𝟕 𝟎. 𝟖}  

This is in case maximum routing layer is metal 8. 

As for the width of the wire, non-default wiring is used in order to make the 
wires wider which helps in decrease crosstalk issues and electro-migration. 

𝒔𝒆𝒕_𝒄𝒍𝒐𝒄𝒌_𝒕𝒓𝒆𝒆_𝒐𝒑𝒕𝒊𝒐𝒏𝒔 − 𝒖𝒔𝒆_𝒅𝒆𝒇𝒂𝒖𝒍𝒕_𝒓𝒐𝒖𝒕𝒊𝒏𝒈_𝒇𝒐𝒓_𝒔𝒊𝒏𝒌𝒔 𝟏 

However, we use the default routing for the sinks (a sink is the flip flop seen by 
the tree, and a tree has many sinks) in order to decrease DRCs. 

Implementing the clock tree: 

Now for the actual CTS 

𝒄𝒍𝒐𝒄𝒌_𝒐𝒑𝒕 

The clock_opt command is a mega command which contains multiple stages 

that help create the clock tree, such as the synthesis of it, the routing, and lastly the 
optimization. 

The clock_opt command consist of the following three stages: 

• The build_clock stage, during which the tool synthesizes and optimizes 

the clock trees for all clocks in the active modes in all active scenarios. 
After clock tree synthesis, the tool sets the synthesized clocks as 

propagated. 

• The route_clock stage, during which the tool detail routes the synthesized 

clock nets. 

• The final_opto stage, during which the tool further optimizes the design 
for timing, logical DRC violations, area, power, and routability. 

When you run the clock_opt command, by default, the tool executes all three 
stages. 
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These synthesize the clock tree: 

𝒄𝒐𝒎𝒑𝒊𝒍𝒆_𝒄𝒍𝒐𝒄𝒌_𝒕𝒓𝒆𝒆 

𝒄𝒍𝒐𝒄𝒌_𝒐𝒑𝒕 − 𝒐𝒏𝒍𝒚_𝒄𝒕𝒔 − 𝒏𝒐 _𝒄𝒍𝒐𝒄𝒌_𝒓𝒐𝒖𝒕𝒆 

set_fix_hold [all_clocks] 

   set_fix_hold_options -prioritize_tns -effort low 

set_propagated_clock [all_clocks] 

set_fix_hold is to consider fixing hold time violation if needed. 

𝒄𝒍𝒐𝒄𝒌_𝒐𝒑𝒕 − 𝒐𝒏𝒍𝒚_𝒑𝒔𝒚𝒏 − 𝒏𝒐_𝒄𝒍𝒐𝒄𝒌_𝒓𝒐𝒖𝒕𝒆 

Pre-route optimization 

Clock routing:  

𝒓𝒐𝒖𝒕𝒆_𝒈𝒓𝒐𝒖𝒑 − 𝒂𝒍𝒍_𝒄𝒍𝒐𝒄𝒌_𝒏𝒆𝒕𝒔  

3.2.2.5.  Route 

Routing is the process of creating physical connections based on logical 

connectivity. Signal pins are connected by routing metal interconnects. Routed 

metal paths must meet timing, clock skew, max trans/cap requirements and also 
physical DRC requirements. 

 

In grid-based routing system each metal layer has its own tracks and preferred 
routing direction which are defined in a unified cell in the standard cell library. 

There are four steps of routing operations: 

Global routing 

Track assignment 

Detail routing 

Search and repair 

Global Route: assigns nets to specific metal layers and global routing cells. 

Global route tries to avoid congested global cells while minimizing detours. Global 

route also avoids pre-routed P/G, placement blockages and routing blockages. 



77 

 

 
Track Assignment (TA): assigns each net to a specific track and actual metal traces 
are laid down by it. It tries to make long, straight traces to avoid the number of 

vias. DRC is not followed in TA stage. TA operates on the entire design at once. 

 
Detail Routing: tries to fix all DRC violations after track assignment using a fixed 

size small area known as “SBox”. Detail route traverses the whole design box by 

box until entire routing pass is complete. 
 
Search and Repair: fixes remaining DRC violations through multiple iterative 
loops using progressively larger SBox sizes. 

The following commands are a detailed execution of the routing process 

routing basic commands in PnR flow: 

𝒊𝒏𝒔𝒆𝒓𝒕_𝒔𝒑𝒂𝒓𝒆_𝒄𝒆𝒍𝒍𝒔 
− 𝒍𝒊𝒃_𝒄𝒆𝒍𝒍 {𝑵𝑶𝑹𝟐_𝑿𝟒 𝑵𝑨𝑵𝑫𝟐_𝑿𝟒} \−𝒏𝒖𝒎_𝒊𝒏𝒔𝒕𝒂𝒏𝒄𝒆𝒔 𝟐𝟎 
\ −𝒄𝒆𝒍𝒍_𝒏𝒂𝒎𝒆 𝑺𝑷𝑨𝑹𝑬_𝑷𝑹𝑬𝑭𝑰𝑿_𝑵𝑨𝑴𝑬 \−𝒕𝒊𝒆 ∶   

 

Inserts spare cells in the legalized design with (unnecessary depending on the 
purpose): 

• -lib_cell {NOR2_X4 NAND2_X4} option which specifies the names of 

library cells for which the spares cells are to be created.  If you specify 

more than one library cell, the instances of these cells are placed as close 
as possible 

• -num_instances 20 option which Specifies the number of instances of the 

library cell that are inserted as spare cells  

• -cell_name SPARE_PREFIX_NAME option which Specifies the prefix 

name of the spare cells to be used by the tool.  An integer prefix is 

automatically appended to the prefix name for each instance.  If a cell 
with a generated name already exists, the tool automatically assigns a 

unique name for the cell name   

• -tie option which Ties the input pins of the inserted spare cells to logic 
zero. 
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𝒔𝒆𝒕_𝒅𝒐𝒏𝒕_𝒕𝒐𝒖𝒄𝒉  [𝒂𝒍𝒍_𝒔𝒑𝒂𝒓𝒆_𝒄𝒆𝒍𝒍𝒔] 𝒕𝒓𝒖𝒆 

This command sets the dont_touch attribute on cells, nets, references,designs in 

the current design, and on library cells, to prevent modification or replacement of 
these objects during optimization. 

𝒔𝒆𝒕_𝒂𝒕𝒕𝒓𝒊𝒃𝒖𝒕𝒆 [𝒂𝒍𝒍_𝒔𝒑𝒂𝒓𝒆_𝒄𝒆𝒍𝒍𝒔]  𝒊𝒔_𝒔𝒐𝒇𝒕_𝒇𝒊𝒙𝒆𝒅  𝒕𝒓𝒖𝒆 

 This command sets the value of an attribute on an object.  For a complete list of 

attributes, see the attributes man page.This  command  returns  a collection of 

objects that have the specified attribute value set.  If the attribute is not set on any 
objects, the command returns an empty string. 

𝒄𝒉𝒆𝒄𝒌_𝒑𝒉𝒚𝒔𝒊𝒄𝒂𝒍_𝒅𝒆𝒔𝒊𝒈𝒏 − 𝒔𝒕𝒂𝒈𝒆 𝒑𝒓𝒆_𝒓𝒐𝒖𝒕𝒆_𝒐𝒑𝒕 

 This command checks the readiness of the current design for IC Compiler with: 

• -stage option specifies which stage to check.  

The checks performed by the check_physical_design command depend 
on the specified stage. 

𝒄𝒉𝒆𝒄𝒌_𝒓𝒐𝒖𝒕𝒆𝒂𝒃𝒊𝒍𝒊𝒕𝒚 

Verifies that the current design is routable and Check’s pin access points, cell 
instance wire tracks, pin out of boundaries, min-grid and pin design rules and 

blockages to ensure they meet the design requirements. It performs a check of the 

design for optimization in order to substantiate any errors in the design that might 
need to be fixed or what could help to improve the design. This must currently be 
run on a placed design. 

𝒔𝒆𝒕_𝒅𝒆𝒍𝒂𝒚_𝒄𝒂𝒍𝒄𝒖𝒍𝒂𝒕𝒊𝒐𝒏_𝒐𝒑𝒕𝒊𝒐𝒏𝒔 − 𝒂𝒓𝒏𝒐𝒍𝒅𝒊_𝒆𝒇𝒇𝒐𝒓𝒕 𝒍𝒐𝒘 
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 Defines the delay model used to compute a timing arc delay value for a cell or 
net. with: 

-arnoldi_effort option which Specifies the Arnoldi delay calculation effort level 

𝒔𝒆𝒕_𝒓𝒐𝒖𝒕𝒆_𝒐𝒑𝒕𝒊𝒐𝒏𝒔 
− 𝒈𝒓𝒐𝒖𝒕𝒆_𝒕𝒊𝒎𝒊𝒏𝒈_𝒅𝒓𝒊𝒗𝒆𝒏 𝒕𝒓𝒖𝒆 
\−𝒈𝒓𝒐𝒖𝒕𝒆_𝒊𝒏𝒄𝒓𝒆𝒎𝒆𝒏𝒕𝒂𝒍 𝒕𝒓𝒖𝒆 
\ −𝒕𝒓𝒂𝒄𝒌_𝒂𝒔𝒔𝒊𝒈𝒏_𝒕𝒊𝒎𝒊𝒏𝒈_𝒅𝒓𝒊𝒗𝒆𝒏 𝒕𝒓𝒖𝒆 
\−𝒔𝒂𝒎𝒆_𝒏𝒆𝒕_𝒏𝒐𝒕𝒄𝒉 𝒄𝒉𝒆𝒄𝒌_𝒂𝒏𝒅_𝒇𝒊𝒙  

 Sets specific options in the internal router control database with: 

• -groute_timing_driven true option which controls whether global 

routing is timing driven. The default is false.  

• -groute_incremental true option which controls whether incremental 

global routing is enabled. The default is false  

• -track_assign_timing_driven true option which controls whether track 

assignment is timing driven.The default is false.  

• -same_net_notch check_and_fix option which controls whether the router 

checks same net notch rule. The default is ignored. 

𝒔𝒆𝒕_𝒔𝒊_𝒐𝒑𝒕𝒊𝒐𝒏𝒔 
− 𝒓𝒐𝒖𝒕𝒆_𝒙𝒕𝒂𝒍𝒌_𝒑𝒓𝒆𝒗𝒆𝒏𝒕𝒊𝒐𝒏 𝒕𝒓𝒖𝒆
\ −𝒅𝒆𝒍𝒕𝒂_𝒅𝒆𝒍𝒂𝒚 𝒕𝒓𝒖𝒆 \ −𝒎𝒊𝒏_𝒅𝒆𝒍𝒕𝒂_𝒅𝒆𝒍𝒂𝒚 𝒕𝒓𝒖𝒆 
\−𝒔𝒕𝒂𝒕𝒊𝒄_𝒏𝒐𝒊𝒔𝒆 𝒕𝒓𝒖𝒆\ −𝒕𝒊𝒎𝒊𝒏𝒈_𝒘𝒊𝒏𝒅𝒐𝒘 𝒕𝒓𝒖𝒆 ∶ 

 Defines signal integrity options used for analysis or optimization. With: 

• -route_xtalk_prevention true option which Specifies track assign xtalk 

prevention.  This option is disabled by default.  

• -delta_delay true option which specifies whether crosstalk delta delay is 

considered in timing and optimization. When set to false, crosstalk delta 
delay isnot considered. This option is disabled by default.  When set to 

true, it automatically sets the -min_delta_delay option to true as well. 

• -min_delta_delay true option which Specifies whether min delta delay is 

considered in timing and optimization. When set to true, min delta delay 
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enables crosstalk calculation for min timing paths reporting hold.  This 
option also enables min noise propagation for capture clocks in max 

paths for setup, thereby speeding up the capture clock timing.  This 

option is disabled by default and it is enabled automatically when -
delta_delay is set to "true".  

• -static_noise true option which Specifies whether static noise is 

considered in optimization. When set to false, static noise is not 

considered. This option is disabled by default  

• -timing_window true option which Specifies whether timing window 

overlapping is considered in crosstalk analysis.  When set to true, timing 

window is considered. This options is disabled by default and can only 
be enabled when -delta_delay  (or -static_noise) option is set to "true". 

𝒓𝒐𝒖𝒕𝒆_𝒂𝒖𝒕𝒐 

Performs global routing, track assignment, detail routing, and search and repair 
in one step 

Track assignment: in routing step, occurs after global routing and before 

detailed routing, assigns nets to specific tracks and lays down the actual metal 
tracks. 

Pin assignment: In design planning step, to assign pins at the top level of the 
design or in macros and plan groups used in bottom-up design flow.  

𝒓𝒐𝒖𝒕𝒆_𝒐𝒑𝒕 

 Performs simultaneous routing and post route optimization on the design. 

𝒑𝒔𝒚𝒏𝒐𝒑𝒕  − 𝒐𝒏𝒍𝒚_𝒉𝒐𝒍𝒅_𝒕𝒊𝒎𝒆 – 𝒄𝒐𝒏𝒈𝒆𝒔𝒕𝒊𝒐𝒏 

Performs incremental synthesis on the design with only_hold_time which 
Specifies that only hold time violations are fixed and congestion option which 

enables congestion removal algorithms for improved routability by default, 
congestion is not enabled. 

𝒓𝒐𝒖𝒕𝒆_𝒛𝒓𝒕_𝒆𝒄𝒐 − 𝒐𝒑𝒆𝒏_𝒏𝒆𝒕_𝒅𝒓𝒊𝒗𝒆𝒏 𝒕𝒓𝒖𝒆 
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Performs ECO routing on the design with: 

-open_net_driven true option which Controls whether ECO route fixes DRC 

violations for the whole design (default) or only in the neighborhood 
(bounding box) of the open nets. By default (false), ECO route connects the open 

nets in the design and fixes design rule violations for the entire design. When true, 

ECO route connects the open nets in the design and fixes DRC violations only in 
the neighborhood of the open nets.  

𝒗𝒆𝒓𝒊𝒇𝒚_𝒛𝒓𝒕_𝒓𝒐𝒖𝒕𝒆 

Verifies and reports routing design rule constraint (DRC) viola tions, net opens, 
antenna rule violations, and voltage-area rule violations. 

𝒓𝒐𝒖𝒕𝒆_𝒛𝒓𝒕_𝒅𝒆𝒕𝒂𝒊𝒍 − 𝒊𝒏𝒄𝒓𝒆𝒎𝒆𝒏𝒕𝒂𝒍 𝒕𝒓𝒖𝒆
− 𝒊𝒏𝒊𝒕𝒊𝒂𝒍_𝒅𝒓𝒄_𝒇𝒓𝒐𝒎_𝒊𝒏𝒑𝒖𝒕  𝒕𝒓𝒖𝒆 

Performs detail routing on the design with: 

• -incremental option which If true (default is false), the router performs 

incremental mode routing.  By default, the router starts from the iteration 

number that detail routing ends with last time the cell was routed. By 
default, the router will re-check DRC in the beginning.  If -

initial_drc_from_input is set as true, the router will skip the initial DRC 

checking and start with the DRC information stored in the cell. 

• -initial_drc_from_input option which When true, the detail router uses 

the DRC information in the cell as the initial DRC information. Use this 
option very carefully; set it to true only if you are absolutely sure that the 
DRCs in the cell are up-to-date. The default is false. 

𝑭𝒐𝒄𝒂𝒍_𝒐𝒑𝒕  − 𝒔𝒆𝒕𝒖𝒑_𝒆𝒏𝒅𝒑𝒐𝒊𝒏𝒕𝒔 𝒂𝒍𝒍  

Performs postroute optimization to fix setup,hold or logical design rule 
constraint violations, reduce crosstalk , or reduce leakage power  with: 

-setup_endpoints all option which optimizes the specified endpoints by using 
setup time as time focal metric. 
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3.2.2.6. Finishing 

To help address some of the process design issues during chip manufacturing, 
IC provides some commands that provide options which can be applied: 

𝒊𝒏𝒔𝒆𝒓𝒕_𝒔𝒕𝒅𝒄𝒆𝒍𝒍_𝒇𝒊𝒍𝒍𝒆𝒓 

To ensure that all the power nets are connected and that all the spacing is filled, 

these empty spaces in the row can cause power not to be connected throughout the 

rest of the row which is filler cells are used, using the previous command. You can 
insert these before routing: 

• Insert standard cell fillers  

• Insert end cap cells  

After routing, you can  

• Insert well fillers 

• Insert pad fillers 

During insertion, filler cells with metal are retained only when they do not cause 
DRC violations. 

𝒊𝒏𝒔𝒆𝒓𝒕_𝒛𝒓𝒕_𝒓𝒆𝒅𝒖𝒏𝒅𝒂𝒏𝒕_𝒗𝒊𝒂𝒔 

Inserting redundant vias is very helpful after routing as during manufacturing, 
some vias can fail and having an array of them can ensure correct operation. 

Reports and checks: 

Finally, as we output out PNR into the design library, we run a few check 
commands to get an idea of how the violations look like: 

𝒗𝒆𝒓𝒊𝒇𝒚_𝒍𝒗𝒔 − 𝒊𝒈𝒏𝒐𝒓𝒆_𝒇𝒍𝒐𝒂𝒕𝒊𝒏𝒈_𝒑𝒐𝒓𝒕 − 𝒊𝒈𝒏𝒐𝒓𝒆_𝒇𝒍𝒐𝒂𝒕𝒊𝒏𝒈_𝒏𝒆𝒕 \ 

           −𝒄𝒉𝒆𝒄𝒌_𝒐𝒑𝒆𝒏_𝒍𝒐𝒄𝒂𝒕𝒐𝒓 − 𝒄𝒉𝒆𝒄𝒌_𝒔𝒉𝒐𝒓𝒕_𝒍𝒐𝒄𝒂𝒕𝒐𝒓 

𝒗𝒆𝒓𝒊𝒇𝒚_𝒍𝒗𝒔 − 𝒎𝒂𝒙_𝒆𝒓𝒓𝒐𝒓 𝟏𝟎𝟎𝟎  
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Verify_lvs is an important command that checks for the inconsistencies in the 
physical layout of the deisign, such as the number of shorted or open wires, this 

command was used in the previous stages as well, in order to keep track of how 
each of the commands affect the violations. 

𝒓𝒆𝒑𝒐𝒓𝒕_𝒕𝒊𝒎𝒊𝒏𝒈 − 𝒅𝒆𝒍𝒂𝒚_𝒕𝒚𝒑𝒆 𝒎𝒂𝒙 

𝒓𝒆𝒑𝒐𝒓𝒕_𝒕𝒊𝒎𝒊𝒏𝒈 − 𝒅𝒆𝒍𝒂𝒚_𝒕𝒚𝒑𝒆 𝒎𝒊𝒏 

Report_timing is another command that was also in almost every stage of the 

PNR, as it returns the setup and hold slack on which we base our script strategy 
on. 

𝒂𝒏𝒂𝒍𝒚𝒛𝒆_𝒇𝒑_𝒓𝒂𝒊𝒍  − 𝒏𝒆𝒕𝒔 {𝑽𝑫𝑫 𝑽𝑺𝑺} − 𝒑𝒐𝒘𝒆𝒓_𝒃𝒖𝒅𝒈𝒆𝒕 𝟓𝟎𝟎 
− 𝒗𝒐𝒍𝒕𝒂𝒈𝒆_𝒔𝒖𝒑𝒑𝒍𝒚 𝟏. 𝟏 

This command analyzes the created power network in order to check for the IR 

drop across the entire design as well as the electro-migration for both the power 
and ground nets. 

Used in every stage, we use this command to keep an eye on the IR drop. 

The power_budget option in this command is in milliwatts and shows us the 
available power that we distribute among all of the cells of the design. 

Before we write_stream command, we set options to it use the this first: 

𝒔𝒆𝒕_𝒘𝒓𝒊𝒕𝒆_𝒔𝒕𝒓𝒆𝒂𝒎_𝒐𝒑𝒕𝒊𝒐𝒏𝒔 
− 𝒎𝒂𝒑_𝒍𝒂𝒚𝒆𝒓 $𝒔𝒄_𝒅𝒊𝒓/𝒕𝒆𝒄𝒉/𝒔𝒕𝒓𝒎𝒐𝒖𝒕
/𝑭𝒓𝒆𝒆𝑷𝑫𝑲𝟒𝟓_𝟏𝟎𝒎_𝒈𝒅𝒔𝒐𝒖𝒕. 𝒎𝒂𝒑 \ 

                         −𝒐𝒖𝒕𝒑𝒖𝒕_𝒇𝒊𝒍𝒍𝒊𝒏𝒈 𝒇𝒊𝒍𝒍 \ 

 −𝒄𝒉𝒊𝒍𝒅_𝒅𝒆𝒑𝒕𝒉 𝟐𝟎 \ 

 −𝒐𝒖𝒕𝒑𝒖𝒕_𝒐𝒖𝒕𝒅𝒂𝒕𝒆𝒅_𝒇𝒊𝒍𝒍  \ 

 −𝒐𝒖𝒕𝒑𝒖𝒕_𝒑𝒊𝒏  {𝒕𝒆𝒙𝒕 𝒈𝒆𝒐𝒎𝒆𝒕𝒓𝒚} 

map_layer specifies the file that helps in turning the milkyway to GDSII format, 

the next option is important for the case of hierarchal use, where the child_depth 

specifies the level of child cells in a design. A large number should be used like 20. 
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output_outdated_fill forces the output of fill data. The last option specifies the 
type of information that is associated with each pin in the design, the geometry of 
the pin was chosen in this case. 

𝒘𝒓𝒊𝒕𝒆_𝒔𝒕𝒓𝒆𝒂𝒎 − 𝒍𝒊𝒃 $𝒅𝒆𝒔𝒊𝒈𝒏  

                  −𝒇𝒐𝒓𝒎𝒂𝒕 𝒈𝒅𝒔\ 

  −𝒄𝒆𝒍𝒍𝒔 $𝒅𝒆𝒔𝒊𝒈𝒏\ 

  ./𝒐𝒖𝒕𝒑𝒖𝒕/${𝒅𝒆𝒔𝒊𝒈𝒏}. 𝒈𝒅𝒔 

Finally, we turn out design into GDSII format using the write_stream command, 
specifying the output folder and cells. 

𝒅𝒆𝒇𝒊𝒏𝒆_𝒏𝒂𝒎𝒆_𝒓𝒖𝒍𝒆𝒔 𝒏𝒆𝒘_𝒗𝒆𝒓𝒊𝒍𝒐𝒈 − 𝒔𝒑𝒆𝒄𝒊𝒂𝒍 𝒗𝒆𝒓𝒊𝒍𝒐𝒈 
− 𝒕𝒂𝒓𝒈𝒆𝒕_𝒃𝒖𝒔_𝒏𝒂𝒎𝒊𝒏𝒈_𝒔𝒕𝒚𝒍𝒆 {%𝒔[%𝒅]} 
− 𝒄𝒉𝒆𝒄𝒌_𝒊𝒏𝒕𝒆𝒓𝒏𝒂𝒍_𝒏𝒆𝒕_𝒏𝒂𝒎𝒆 − 𝒄𝒉𝒆𝒄𝒌_𝒃𝒖𝒔_𝒊𝒏𝒅𝒆𝒙𝒊𝒏𝒈 

𝒄𝒉𝒂𝒏𝒈𝒆_𝒏𝒂𝒎𝒆𝒔 − 𝒓𝒖𝒍𝒆 𝒏𝒆𝒘_𝒗𝒆𝒓𝒊𝒍𝒐𝒈 − 𝒉𝒊𝒆𝒓𝒂𝒓𝒄𝒉𝒚 

These two commands are used for the extractor tool to read the bus names in the 
right way. It can be replaced by other commands according to the naming style.  

𝒔𝒆𝒕 𝒗𝒆𝒓𝒊𝒍𝒐𝒈𝒐𝒖𝒕_𝒏𝒐_𝒕𝒓𝒊 𝒕𝒓𝒖𝒆 

𝒔𝒆𝒕 𝒗𝒆𝒓𝒊𝒍𝒐𝒈𝒐𝒖𝒕_𝒆𝒒𝒖𝒂𝒕𝒊𝒐𝒏  𝒇𝒂𝒍𝒔𝒆 

𝒘𝒓𝒊𝒕𝒆_𝒗𝒆𝒓𝒊𝒍𝒐𝒈 − 𝒑𝒈 − 𝒏𝒐_𝒑𝒉𝒚𝒔𝒊𝒄𝒂𝒍_𝒐𝒏𝒍𝒚_𝒄𝒆𝒍𝒍𝒔 ./𝒐𝒖𝒕𝒑𝒖𝒕/${𝒅𝒆𝒔𝒊𝒈𝒏}_𝒊𝒄𝒄. 𝒗 

𝒘𝒓𝒊𝒕𝒆_𝒗𝒆𝒓𝒊𝒍𝒐𝒈 − 𝒏𝒐_𝒑𝒉𝒚𝒔𝒊𝒄𝒂𝒍_𝒐𝒏𝒍𝒚_𝒄𝒆𝒍𝒍𝒔 ./𝒐𝒖𝒕𝒑𝒖𝒕/${𝒅𝒆𝒔𝒊𝒈𝒏}_𝒊𝒄𝒄_𝒏𝒐𝒑𝒈. 𝒗 

These are the output files used in StarRC tool for RC extraction and PrimeTime 
tool for STA. 
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3.2.2.7.  RC extraction 

There are two methods: 

First one is by using command in ICC tool after finishing which is 

𝒆𝒙𝒕𝒓𝒂𝒄𝒕_𝒓𝒄 

Then write the output in (.spef) file by the following 

𝒘𝒓𝒊𝒕𝒆_𝒑𝒂𝒓𝒂𝒔𝒊𝒕𝒊𝒄𝒔 − 𝒐𝒖𝒕𝒑𝒖𝒕 {./𝒐𝒖𝒕𝒑𝒖𝒕/𝒇𝒊𝒍𝒆. 𝒔𝒑𝒆𝒇} 

𝒄𝒓𝒆𝒂𝒕𝒆_𝒓𝒂𝒊𝒍_𝒔𝒆𝒕𝒖𝒑 

 

The second method is by using StarRC tool and it is the recommended method. 

It has a special style for scripting by setting specific values for maximum 
capacitance and minimum capacitance. It is run by the tool automatically. 

3.2.3.  STA  

Using PrimeTime tool. 

Static timing analysis is a way of assessing a design's timing performance under 

worst-case scenarios by checking all possible paths for timing violations. It takes 

into account the shortest possible latency across each logic node, but not the 
circuit's logical action.  

Static timing analysis is faster and more complete than circuit modelling. 

Because it does not need to simulate many test vectors, it is faster. It's more 

thorough since it examines worst-case timing for all possible logic situations, not 
just those that are sensitive to a certain set of test vectors. Static timing analysis, on 

the other hand, simply analyses the design for right timing, not for accurate logical 
functionality. 

The operation of synthesis with Design Compiler and physical implementation 
with IC Compiler is driven by timing, area, and power restrictions. These tools 

synthesize the netlist and execute physical placement and routing with the goal of 

producing the quickest device with the least amount of area and power in the 
shortest time possible while staying true to the design specifications. These tools 
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make trade-offs between speed, area, power, and runtime based on the designer's 
limitations. However, in order to run at the required clock rate, a chip must meet 
timing limitations; hence timing is the most critical design constraint. 

In Flip Flop flavor: 

 

Figure 22: timing path 

A timing path is represented by the dashed arrow. Before the next clock edge 
arrives at FF2, the change in signal data induced by a clock transition at flip-flop 

FF1 must be propagated to flip-flop FF2, so that the logically processed data can be 

properly latched onto FF2. Depending on the logic, the data value, and the values 
of any side inputs going into the logic, the change at FF1.Q could impact the output 

of the combinational logic cloud at FF2. D. If there is a change at FF2.D, it must 
happen before the next clock edge reaches FF2. 
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3.2.3.1. Setup Check Timing: 

 

Figure 23: setup timing illustration 

With some delay, this signal passes via the combinational logic. The second flip-

flop, FF2.D, receives the output of the combinational logic. The arrival time for the 
path is the time at which the signal value changes. The change in value at FF2.D 

must occur at least an amount equivalent to the setup time requirement for the flip -
flop before the arrival of the clock edge at FF2. The needed time for the path is the 

latest permissible arrival time. The capture event for the timing path is the latching 

of data at FF2. The capture event occurs one full clock cycle after the launch event 
in this case. 

The slack of the timing check is the amount of time it takes to meet the timing 
constraint. 

The amount of slack is equal to the needed time minus the arrival time. So, 

Setup Time is the amount of time the synchronous input (D) must show up, and be 

stable before the capturing edge of the clock. This is so that the data can be stored 
successfully in the storage device. 

 



88 

 

𝒔𝒆𝒕𝒖𝒑 𝒔𝒍𝒂𝒄𝒌 = 𝒕𝒉𝒆 𝒅𝒂𝒕𝒂 𝒓𝒆𝒒𝒖𝒊𝒓𝒆𝒅 𝒕𝒊𝒎𝒆 − 𝒕𝒉𝒆 𝒅𝒂𝒕𝒂 𝒂𝒓𝒓𝒊𝒗𝒆𝒅 𝒕𝒊𝒎𝒆 

Equation 1: slack calculation 

The slack is zero and the timing constraint is barely met if the signal arrives 
exactly at the appropriate time.  

The slack is negative if the signal arrives later than expected. 

The slack can be positive means that the design is working at specified 
frequency and it has some more margins as well. 

Setup violations can be fixed by either slowing down the clock (increasing the 
period) or by decreasing the delay of the data path logic. 
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3.2.3.2. Hold Check Timing: 

 

Figure 24: hold time illustration 

The timing path, which consists of a single NAND gate, has a relatively short 

combinational delay from FF1 to FF2. Meanwhile, the three buffers generate a 

considerable delay in the clock signal between the two flip-flops, which is probably 
exacerbated by a huge RC delay due to the long route. As a result, the arrival of the 

capture clock signal CLK2 at FF2 is greatly delayed in comparison to the launch 
clock CLK1 at FF1. 

𝑯𝒐𝒍𝒅 𝒔𝒍𝒂𝒄𝒌 = 𝒕𝒉𝒆 𝒅𝒂𝒕𝒂 𝒂𝒓𝒓𝒊𝒗𝒂𝒍 𝒕𝒊𝒎𝒆 − 𝒕𝒉𝒆 𝒅𝒂𝒕𝒂 𝒓𝒆𝒒𝒖𝒊𝒓𝒆𝒅 𝒕𝒊𝒎𝒆 

Equation 2: hold time calculation 
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3.2.3.3. The types of paths: 

• Register to Register: 

The time it takes for data to propagate via the source flip-flop, travel through 

combinational logic and routing, and arrive at the destination flip-flop before the 
next clock edge occurs is known as data arrival time. 

 

Figure 25:  register to register path 

𝑨𝒓𝒓𝒊𝒗𝒂𝒍 𝑻𝒊𝒎𝒆 =  𝑻𝒄𝒍𝒌 − 𝒒 + 𝑻𝒄𝒐𝒎𝒃𝒐 

𝑹𝒆𝒒𝒖𝒊𝒓𝒆𝒅 𝑻𝒊𝒎𝒆 = 𝑻𝒄𝒍𝒐𝒄𝒌 − 𝑻𝒔𝒆𝒕𝒖𝒑 

𝒔𝒆𝒕𝒖𝒑 𝒔𝒍𝒂𝒄𝒌 = 𝒕𝒉𝒆 𝒅𝒂𝒕𝒂 𝒓𝒆𝒒𝒖𝒊𝒓𝒆𝒅 𝒕𝒊𝒎𝒆 − 𝒕𝒉𝒆 𝒅𝒂𝒕𝒂 𝒂𝒓𝒓𝒊𝒗𝒆𝒅 𝒕𝒊𝒎𝒆 

= (𝑻𝒄𝒍𝒐𝒄𝒌 − 𝑻𝒔𝒆𝒕𝒖𝒑)– (𝑻𝒄𝒍𝒌 − 𝒒 + 𝑻𝒄𝒐𝒎𝒃𝒐) 

Equation 3: Slack calculation for register-to-register path 
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Register to Output: 

The time it takes for data to leave the source flip-flop, travel via combinational 

logic and interconnects, and exit the chip through the output port is known as data 
arrival time. 

 

Figure 26: register to output path 

𝑨𝒓𝒓𝒊𝒗𝒂𝒍 𝑻𝒊𝒎𝒆 =  𝑻𝒄𝒍𝒌 − 𝒒 + 𝑻𝒄𝒐𝒎𝒃𝒐 

𝑹𝒆𝒒𝒖𝒊𝒓𝒆𝒅 𝒕𝒊𝒎𝒆 = 𝒖𝒏𝒄𝒐𝒏𝒔𝒕𝒓𝒂𝒊𝒏𝒆𝒅 

Equation 4: Arrival time calculation 

• Input to Register: 

Data arrival time is the time required for the data to start from the input port 
and propagate through combinational logic and end at the data pin of the flip-flop. 

 

Figure 27: input to register path 
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𝑨𝒓𝒓𝒊𝒗𝒂𝒍 𝒕𝒊𝒎𝒆 = 𝑻𝒄𝒐𝒎𝒃𝒐 

𝑹𝒆𝒒𝒖𝒊𝒓𝒆𝒅 𝒕𝒊𝒎𝒆 =  𝑻𝒄𝒍𝒌 − 𝑻𝒔𝒆𝒕𝒖𝒑 

𝒔𝒆𝒕𝒖𝒑 𝒔𝒍𝒂𝒄𝒌 =  𝑹𝒆𝒒𝒖𝒊𝒓𝒆𝒅 𝑻𝒊𝒎𝒆 −  𝑨𝒓𝒓𝒊𝒗𝒂𝒍 𝑻𝒊𝒎𝒆 

= ( 𝑻𝒄𝒍𝒐𝒄𝒌 − 𝑻𝒔𝒆𝒕𝒖𝒑)–  𝑻𝒄𝒐𝒎𝒃𝒐 

Equation 5: slack calculation for input to register path  

3.2.3.4. Timing Analysis in the Design Flow: 

Timing analysis serves different purposes in different phases of the design flow. 

In Design Compiler, timing drives the selection of library cells used for synthesis 

and the allocation of registers between combinational logic in data paths. In IC 
Compiler, timing drives the placement of cells and the routing of interconnections 

to minimize delays in the critical paths. In Primetime, exhaustive sign-off timing 
analysis is the main purpose of the tool. 

Many timing analysis features are shared by Design Compiler, IC Compiler, and 
Primetime. The tools allow you to establish timing limitations and create timing 

reports with the same commands. The Synopsys Design Constraints, or SDC, are 

these instructions. These commands have the same syntax and have the same 
effects across all the supported tools. That implies you can constrain a design in 

Design Compiler, IC Compiler, Primetime, and other tools using the same SDC 

script. Design rule restrictions, power limitations, and time constraints can all be 
specified using SDC commands. 

The (write_sdc) command generates a script containing a collection of SDC 

commands that describe the design's present limitations. To read in the file and 

apply the same restrictions in a different tool, use the read sdc command. The 
(read_sdc) command operates similarly to the source command, except it also 

checks for SDC compliance in the script commands. SDC script files can be used to 

transmit restrictions between Synopsys products as well as some external 
programs. 
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3.2.3.5. Timing Analysis After Routing: 

Following routing, comprehensive nets are accessible for accurate RC extraction, 

resulting in more accurate delay calculation results. The report constraint 

command generates detailed reports on the critical paths, while the report timing 
command reports on timing violations. 

Use a sign-off extraction tool like StarRC and a sign-off timing tool like 

PrimeTime for a complete and final design. A sign-off tool's purpose is to ensure 

that the design will perform properly in terms of time with the highest possible 
accuracy. The sign-off tools are more precise at extraction and timing analysis than 
the synthesis, physical implementation, and optimization tools. 

StarRC is a parasitic RC extraction tool that takes into account all capacitive 

interactions between conductors and precisely mimics physical aspects of wires 
including dishing, erosion, and the physical closeness of surrounding structures. 

For a typical design, StarRC separates billions of capacitors and applies an 

innovative parasitic reduction method to build the shortest possible netlist capable 
of producing reliable timing analysis results.  

PrimeTime is a full-chip static timing analyzer that shares Design Compiler and 
IC Compiler's libraries, gate-level netlist, parasitic RC data, and SDC timing 

constraints. PrimeTime performs a thorough analysis with the utmost speed and 
accuracy, yielding results that are extremely similar to those of the SPICE 
simulation. 
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Figure 28: Primetime inputs and outputs 
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Reading the Design Data: 

The first step is to read the gate-level design description and information from 
the linked technology library. Design descriptions and library information in .db 

format, as well as .ddc and gate-level netlists in Verilog and VHDL forms, are 
accepted by PrimeTime. read_db, read_ddc, read_verilog, and read_vhdl are the 
commands for reading design files. 

The link design tool resolves all references between distinct modules in the 

hierarchy and produces an internal representation of the design for timing analysis 
when you read in a collection of hierarchical design files. 

If the chip layout has been completed, back-annotating the design with detailed 
delay or parasitic information will yield more accurate findings. Use the read sdf 

command to back-annotate the design with delay information from an SDF file. 

Use the read parasitics command to back-annotate the design using parasitic 
capacitance and resistance data. PrimeTime allows the RSPF, SPEF, and SBPF 
formats for detailed parasitic data. 

Parallel Parasitic Reading: 

Before the time update can take place, the following types of information must 
be read in while completing a design analysis: 

• Netlists using the read_verilog, read_vhdl, read_ddc, and 

read_milkyway commands. 

• Annotations using the read_parasitics and read_sdf commands. 

• Timing constraints and exceptions using the source and read_sdc 

commands. 

• User-defined scripts and custom pre-update reports using the source 

command. 

• Reading detailed parasitics files using the read_parasitics command 

allows the parsing of parasitics files and back annotation to happen in 
parallel with other unrelated commands in the script. 
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Constraining the Design: 

PrimeTime requires information about the design-level timing limitations in 
order to do timing analysis:  

• Clock characteristics. 

• Signal transition arrival times at each input port. 

• Signal transition required times at each output port. 

Checking the Design and Analysis Setup: 

It's a good idea to check the design's characteristics, such as the hierarchy, 

library elements, ports, nets, and cells, as well as the analysis setup parameters, 
such as clocks, wire load models, input delay constraints, and output delay 
constraints, before starting a thorough analysis. 

The check_timing command checks for constraint problems such as undefined 

clocking, undefined input data arrival times, and undefined output data required 

times. In addition, it provides information about potential problems related to 
minimum clock separation (for master-slave clocking), ignored timing exceptions, 
combinational feedback loops, and latch fanout. 

Performing a full analysis: 

The report_timing command is perhaps the most flexible and powerful 
PrimeTime analysis command. It provides general or more information about the 

timing of the whole design, a group of paths, or an individual path. The command 
options let you specify the types of paths reported, the scope of the design to 

search for the specified paths, and the type of information included in the path 
reports. 

The report includes the following information about each reported path: 

• Path startpoint, endpoint, and intermediate points 

• Incremental and cumulative delay at each point along the path 

• Final data arrival time at the endpoint  

• Time at which the data must arrive at the endpoint to meet the constraint 

(“data required time”) 
• Setup timing slack (required time minus arrival time) 
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In the report_timing command, the -delay_type option specifies the type of 
timing checks to report. You can set the delay type to maximum using the max 
value for setup checks, minimum using the min value for hold checks. 

Timing Analysis Updates: 

The timing update at any time with the update_timing command. By default, 
PrimeTime minimizes the time it spends on a timing update by analyzing only the 

parts of the design that are affected by changes since the previous timing update. 

You can override this default behavior and update the entire delay by using the -
full option of the update_timing command. 

 

Fixing Timing Violations: 

When PrimeTime indicates a timing violation, check the violation report to see if 
it's an actual violation rather than a condition like a false path or an erroneously 

defined constraint. Use the numerous "report" commands to figure out what 

caused each violation. PrimeTime lets you temporarily change the design in certain 
ways, without modifying the original netlist, so you can easily test the timing 

effects of those changes. To make these changes, use the insert_buffer, size_cell, 

and swap_cell commands or use fix_eco_timing -type setup -method size_cell 
command to resize the cells Automatically. 

Saving and Restoring Single-Core Sessions: 

The save_session and restore_session commands allow you to save the current 

state of a PrimeTime session and restore the same session later. When you need to 
examine the results of an earlier timing analysis, using the save and restore feature 

avoids repeating the costly time-consuming update_timing portion of the analysis. 
Additionally, you can save a session before it is updated so that you can also save 

and restore the time-consuming pre-update actions. The restore_session command 

takes you to the same point in the analysis using only a small fraction of the 
original runtime. This command clears out any existing design data and library 
data in PrimeTime memory before it restores the saved session. 

You can use the save_session command to save sessions before or after using 

the update_timing command. If the timing of the design is already updated, the 
saved session includes the timing. If only incremental timing updates are pending, 

the incremental update is performed and the resulting timing is saved with the 

session. If a full timing update is pending or the timing has not yet been updated in 
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the analysis, the save_session command does not save any timing information. 
Saving such sessions without timing allows designs and parasitics to be loaded 

once, saved, and reused, improving throughput for multiple design runs that share 

a netlist and parasitics. In all cases, the save_session command requires a linked 
design and causes an implicit link if the design has not yet been linked. 

3.3. ASIC design methodologies 

There are three flows: 

• Flat flow 

• Hierarchical flow 

• Topographical flow 

Our target is to get along with the three flows and decide which one fits more 
our project objective which is the highest speed. 

Let’s know what is the difference between these three flows: 

3.3.1.  Flat overview 

Flat design is the design in which the whole module is flattened. It has all the 

controls for the smallest cell in the design and hence can serve more optimization 
techniques. 

Most of the cases, flattening increase the area 

3.3.2. Hierarchical overview 

Hierarchical design uses blocks to represent lower-level modules as black boxes 
then gather them is a higher level reaching top module as instantiations. 

There is no access to internal details, so it’s harder in optimization.  
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Figure 29: represents hierarchical flow bottom-up method 
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3.3.3. Topographical overview 

‘Topographical technology offers much-needed predictability for a convergent 

RTL- to- GDSII path. Front-end designers no longer have to wait for layout results 

to uncover critical design issues; they can identify and fix them up front. In turn, 
back-end teams receive a better netlist for physical implementation which is more 

likely to meet the desired performance” said Philippe Magarshack, group vice 
president, Central CAD and design solutions. 

This means that Topographical flow improve the design process for better 
optimization technique, as it gives the synthesis flow future insight about the floor 

plan in the PnR flow then returns after synthesizing to PnR at placement step. 

Synthesizing with these information gives faster, reliable and meet design 
specifications efficiently. 

 

Figure 30: illustration for topographical flow 
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In our project, our objective is to maximize the speed of RISC-V. 

We will examine the design by the three ASIC flows which are flat, hierarchical 
and topographical flows and choose the one which meets our objective. 

The following chapters will scope our technical work in the three flows, 
compare results and reach final conclusion. 
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Chapter 4 

Flat flow 

4.1. synthesis in Flat flow 

• First by running the synthesis script as discussed in with period = 5ns 
(frequency = 200MHz), the results shown in the table are got  

Table 6: Synthesis results of first run in Flat Flow 

Setup slack Hold slack Cell area Total dynamic power Total leakage power 

-0.61 ns 0.00 ns 42793.282356 

 

1.9909 mW 197.1497 uW 

So as shown the setup slack is negative and too large so it needs much effort to 
reduce it as it is done in the next step 

• In this step instead of using (compile -map_effort meduim) command the 

tool effort is increased to be high instead of medium to be (compile -
map_effort high) command, the results shown in the table are got 

Table 7: Synthesis results of second run in Flat Flow 

Setup slack Hold slack Cell area Total dynamic power Total leakage power 

-0.33 ns 0.00 ns 43072.050352 1.9991 mW 198.6210 uW 

So as shown the setup slack is reduced (as magnitude) but still negative and 
large so it also needs much effort to reduce it as it is done in the next step 
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• In this step instead of using (compile -map_effort high) command the 

effort is increased to be high instead of medium to be (compile_ultra) 

command which (performs a high_effort compile on the current design 

for better quality of results (Qor)), the results shown in the table are got   

Table 8: Synthesis results of third run in Flat Flow 

Setup slack Hold slack Cell area Total dynamic power Total leakage power 

0.00(met) 
ns 

0.00 ns 26182.114529 1.8613 mW 132.8229 uW 

 

So as shown the setup slack is 0.00 met so it is indication that the speed can be 
increased as it is done in the next step.  

Note:  

Compile_ultra: performs a high_effort compile on the current design for better 
quality of results (QoR). As with the compile command, optimization is controlled 

by constraints that you specify on the design. This command is targeted toward 
high performance designs with very tight timing constraints. It provides you with 
a simple approach to achieve critical delay optimization. 

• In this step with the same command ( compile_ultra) the period is 

reduced more and more till reaching that period = 2.5ns ( frequency = 
400MHz) which is double speed of the last step , the results shown in the 
table are got 

Table 9: Synthesis results of forth run in Flat Flow 

Setup slack Hold slack Cell area Total dynamic power Total leakage power 

-0.41 ns 0.00 ns 28099.974447 3.7526mW 142.1629uW 

So as shown the setup slack is negative and too large so we need much effort to 
reduce it as it is done in the next step. 
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• In this step instead of using (compile_ultra) the (compile_ultra -

timing_high_effort_script) command is used which (runs a strategy 

intended to improve the resulting delay of the design, possibly at the cost 
of additional runtime), with the same period in the last step (period = 2.5 
ns), the results shown in the table are got. 

Table 10: Synthesis results of fifth run in Flat Flow 

Setup slack Hold slack Cell area Total dynamic power Total leakage power 

-0.37ns 0.00 ns 28208.236457 

 

3.7715 mW 142.5580 uW 

So as shown the setup slack is reduced (as magnitude) but still large, so it is 

better to proceed to the next step in the flow (the PnR) where more optimization 
can be done. 

Note:  

-timing_high_effort_script: runs a strategy intended to improve the resulting 
delay of the design, possibly at the cost of additional runtime. The strategy can 

make changes to variable or constraints that modify compile_ultra behavior and 
perform additional passes to achieve better delay. 
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• In this step the register_file latch-based file is replaced by register_file flip 

flop based so there is a good result in timing and with increasing the 

options of the compile_ultra to be compile_ultra -
timing_high_effort_script –retime –incremental with retime option which 

Uses the adaptive -retime algorithm during optimization to improve 

delay and –incremental option which Runs compile_ultra in incremental 
mode. In the incremental mode, the tool does not run the mapping or 
implementation selection stages. the results shown in the table are got. 

Table 11: Synthesis results of the final run in Flat Flow 

          

Note:  

-incremental: Runs compile_ultra in incremental mode. In the incremental 
mode, the tool does not run the mapping or implementation selection stages.  

-retime: Uses the adaptive retiming algorithm during optimization to improve 

delay.  This option is ignored if the -only_design_rule option or the -top option is 
chosen at the same time. 

 

 

 

 

 

 

 

 

Setup slack Hold slack Cell area Total dynamic power Total leakage power 

0 ns (met) 0.00 ns 31962.5605 um2 4.2435 mW 159.5308 uW 
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4.2. PnR in Flat flow 

The Synopsys IC Compiler tool integrates proprietary design planning, physical 

synthesis, clock tree synthesis, and routing for logical and physical design 

implementations across the design phase to give a complete netlist-to-GDSII design 
solution. 

After proceeding to insert and route the complete core inside the chip area after 
successfully synthesizing the core with the target clock and limitations. Now our 

target to get clean timing and clean LVS. So, we followed different scenario’s so as 
to get better performance. 

• Latch based flavor in Register file: 

Level-sensitive latches are used to implement the registers in the latch-based 

register file. When compared to an implementation utilizing normal flip-flops, 

this provides for significant area savings, making the latch-based register file the 
top choice for ASIC implementations. Commercial tools can be used to simulate 

the latch-based register file. The latch-based register file cannot be simulated 
using Verilator. The latch-based register file can also be used for FPGA 

synthesis; however, this isn't encouraged because latches aren't well supported 

by FPGAs. Using the source file cv32e40p_register_file_latch.sv in the project to 
select the latch-based register file. When the latches are not written, a 

technology-specific clock gating cell must be provided to keep the clock inactive. 
This cell must be wrapped in the cv32e40p_clock_gate module. 

1st scenario: 

• With period = 2.5 nsec. 

• Core utilization = 40%. 

• Aspect ratio = 2. 
• 4-layers for the power (metal 7 and metal 9) are horizontal ring layers and 

(metal 8 and metal 10) are vertical ring layers 

The power supply voltage is 1.1 V and the maximum IR drop is 11.05 mV which 

is less than 22 mV and the average power is 500 mW. Also, the worst path is 
register to output with slack equals -1.05 nsec. 

• Using the place_opt command without focusing in any optimization  
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Resulting in approximately 0 percent congestion in both vertical and horizontal 
directions. Also, the worst path is register to output with slack equals -0.12 nsec. 
and the area equals 30919.840506. 

• Nothing is changed in the CTS script as discussed in the CTS script section:  

− Total dynamic power is   4.2971 mW. 

− Cell leakage power is 171.1259 uW. 

− Total cell area is 31904.306500  

− Worst path of setup is -0.15 nsec. 

− Worst path in Hold is -0.03 nsec. 

 

• The only difference in the script of the routing in this scenario is that using 
“route_auto” command. 

To run automatic routing, use route_auto command. The route_auto command 

is used to perform global, track assignment, and detail routing. Zroute reads the 
block before starting routing and updates the block when all routing steps are 

completed when running route_auto. Zroute verifies the input data when 

restarting routing with this command if you stop automated routing before it 
conducts detail routing. When running routing, use the route auto command to 

check for convergence, congestion, and design rule quality-of-results (QoR). If 
congestion QoR is more important to you than timing QoR, you might wish to 
utilize route auto. 

As a result, in the routing step: 

• Total SHORT Nets are 373. 

• Total Open Nets are 0. 

• Total number of DRC = 21941. 

• Worst path Setup slack is -0.35 nsec. 

• Worst path Hold slack is -0.03 nsec. 

So, it is clear that the first scenario results are not good as the shorts are large 
and also the setup slack is too large that we cannot continue with this scenario.  
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2nd scenario: 

In the second scenario, our target is to decrease the shorts as we can so,  

• With period = 2.5 nsec. 
• Core utilization = 40%. 

• Aspect ratio = 2. 
• 2-layers for the power (metal 9) is horizontal ring layer and (metal 10) are 

vertical ring layer 

The power supply voltage is 1.1 V and the maximum IR drop is 11.05 mV which 

is less than 22 mV and the average power is 500 mW. Also, the worst path is 
register to output with slack equals -1.06 nsec. 

• Using the place_opt command without focusing in any optimization  

Resulting in the congestion, the congestion is high in both vertical and 
horizontal directions. Also, the worst path is register to output with slack equals -
0.08 nsec. and the area equals 30221.590496. 

• Nothing is changed in the CTS script as discussed in the CTS script section:  

− Total dynamic power is 4.2540 mW. 

− Cell leakage power is 165.0084 uW. 

− Total cell area is 31110.296492. 

− Worst path of setup is -0.13 nsec. 

− Worst path in Hold 0 violated. 

• Nothing is changed in the routing script of the first scenario. 

As a result, in the routing step: 

• Total SHORT Nets are 412. 

• Total Open Nets are 0. 

• Total number of DRC = 12742. 

• Worst path Setup slack is -0.43 nsec. 

• Worst path Hold slack is 0.01 nsec met. 

So, it is clear that the first scenario results are not good compared to the first 
scenario and our target as the shorts are large and also the setup slack is too large 
that we cannot continue with this scenario. 
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3rd scenario: 

• Period=2.5ns. 

• Core utilization= 30%. 

• Aspect ratio = 2. 
• Using the command in the floorplanning before the virtual placement: 

placer_max_cell_density_threshold 0.4:  

This variable enables a mode of coarse placement in which cells are not 

distributed evenly across the surface of the chip, but are allowed to clump 
together.  The value you specify sets the threshold of how tightly the cells are 
allowed to clump.  The value of 1.0 allows no gaps between cells. 

A reasonable value is one that is above the background utilization of your 

design but below 1.0.  For example, if your background utilization is 40%, or 0.4, a 
reasonable value for this variable is a value between 0.4 and 1.0. The higher the 
value, the more tightly the cells clump together. 

• 2-layers for the power (metal 9) is horizontal ring layer and (metal 10) are 

vertical ring layer 

• Nothing is changed in the CTS script as discussed in the CTS script section:  

− Total dynamic power is 4216 uW 

− Cell leakage power is 163.6 uW. 

− Total cell area is 30882.0685 

− Worst path of setup is -0.04 nsec. 

− Worst path in Hold -0.1 nsec. 

• Nothing is changed in the routing script of the first scenario. 

As a result, in the routing step: 

− Total SHORT Nets are 387. 

− Total Open Nets are 0. 

− Total number of DRC = 3976. 

− Worst path Setup slack is -0.15 nsec. 

− Worst path Hold slack is -0.1 nsec. 

So, it is clear that the shorts aren’t accepted as well as the timing so many 
iterations are required. 
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4th scenario: 

• Period=2.5ns 

• Core utilization = 25% 

• Aspect ratio = 2. 

• Using the command in the floorplanning before the virtual placement: 

placer_max_cell_density_threshold 0.3. 

• 2-layers for the power (metal 9) is horizontal ring layer and (metal 10) are 
vertical ring layer 

• Nothing is changed in the CTS script as discussed in the CTS script section:  

− Total dynamic power is 4.5105 mW. 

− Cell leakage power is 169.57 uW. 

− Total cell area is 31385.074513. 

− Worst path of setup is -0.12 nsec. 

− Worst path in Hold -0.04 nsec. 

• Nothing is changed in the routing script of the first scenario. 

As a result, in the routing step: 

− Total SHORT Nets are 2. 

− Total Open Nets are 0. 

− Total number of DRC = 11. 

− Worst path Setup slack is -0.16 nsec. 

− Worst path Hold slack is -0.04 nsec. 
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• Flip-flop based flavor in Register file: 

The registers of the flip-flop-based register file are implemented using ordinary, 
positive-edge-triggered flip-flops. As a result, it is the first choice when using 

Verilator to simulate the design. Using the source file cv32e40p_register_file_ff.sv 
in the project to select the flip-flop-based register file.Also, working on clock period 
of 2.6 nsec which is 384.6 MHz. 

Floorplanning: 

Because it involves the location of I/O pads and macros, as well as power and 
ground structures, floorplanning can be difficult. Before beginning physical 

floorplanning, make sure that the data that will be used during the physical design 
process is appropriately prepared. 

All ASIC physical designs require proper data preparation in order to apply a 

correct-by-construct methodology. So, at the beginning the physical standard cells 
have to be put inside the boundaries of the die area. So, we put an aspect ratio (is 

the ratio between width of the die to height of the die) equals 2 and utilization of 
25%. At which the utilization is defined as the ratio of the area of the standard Cells 

to the area of the chip minus the area of the macros and area of blockages. So as to 

reduce the congestion, we used the virtual placement with the congestion switch is 
on and high effort at which it enables congestion-driven placement mode. And the 

high effort to Specifies the effort level for congestion mode.  The default effort level 

is medium.  Expect a significant increase in run-time for high effort. Also, we used 
the timing driven option so as to enable direct timing-driven placement mode to 
get positive slack with margin out of this phase. 
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Figure 31: floor plan and virtual placement in flat flow 

This figure shows the floorplanning with 25% in utilization of the core area and 
aspect ratio of 2. 

 Then we define the metal layers that will be used for routing stage, this is 

important at floorplanning stage so that PnR tool can perform global routing to 
estimate routing regions and potential congestion properly 

After this stage, the congestion approximately equals to zero and the slack is 
zero met.  

The final stage in this part is to use virtual flat placement, which is at the heart of 

our design flow, so that cells can freely move around the core without being 
constrained. 
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After we've virtually positioned the design in the core area and established the 
placement strategy, we're ready to set up the power grid that will supply the 
standard cells with the required voltage supply. 

Power planning: 

In this scenario, in each standard cell, we define the power and ground nets and 

ports so that the tool can connect to the grid afterwards. we used 2-layers for the 
power (metal 9) is horizontal ring layer and (metal 10) is vertical ring layer. and the 

maximum voltage drop not to exceed 2% of the normal power supply. So as to 
simulate the power flow in the network, the tool needs the virtual power pads so 

that it can compute the available current flown from them and build the power 
grid entirely on the basis of virtual ports.  

So that the layers will be used as the following: 

• Metal 9 and metal 10 are horizontal/vertical power straps 

• Metal 8 is the tap layer. 

• Metal 1 to metal 6 are used for routing to decrease the shorts. 

• Metal 3 to metal 7 for clock signal routing as higher metal layers have less 

resistance than lower layers which means lower interconnections 
propagation delay. 

Using the command:  

define_routing_rule my_route_rule  \ 

  -widths {metal3 0.14 metal4 0.28 metal5 0.28 metal6 0.28 metal7 0.8}  

 -spacings {metal3 0.14 metal4 0.28 metal5 0.28 metal6 0.28 metal7 0.8} 
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Figure 32: voltage drop map 

PNA Voltage drop is constrained by the voltage supply value, here voltage 

supply of 1.1 V is used which constrains the maximum IR Drop value by 22 mV 

(2% of the voltage supply). We achieved maximum VDD IR Drop of 12.092 mV and 
maximum VSS IR Drop of 11.356 mV. These values are the values inside the red 
region in Figure 32 which are acceptable as long as they are below 22 mV. 
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Placement: 

We used a standard coarse placement step after executing a virtual flat 

placement and synthesizing the power network on the chip. We used a congestion -

driven placement in this stage to improve routing congestion in the design, and the 
outcome was an overflow of a few GRC cells, as shown by about 0% congestion in 

both vertical and horizontal directions. The timing requirements were also satisfied 
in this stage. Therefore, the design was clean in timing and congestion so,  

• The setup slack is 0.05 met. 

• The hold slack is 0.07 met. 

 

Figure 33: placement map in flat flow 

The design's post-placement hierarchy Each of the six colors represents a high-

level block in the hierarchy. The color blue dominates the design area since it 
represents the majority of the flattened pieces. 
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CTS: 

The next stage is to construct our clock tree after setting the design with no 

congestion or timing violations. A single clock source is dispersed throughout the 

entire semiconductor in this configuration. This stage is divided into three sub-
stages, each with its unique set of features. We set the clock nets' fanout to 10 in 

order to reduce clock latency and skew as much as possible. We gave the tool some 

information about timing needs to assist it in building the network with some 
limits. The target early delay was set to 0.1 nanoseconds, with a minimum skew of 

0.5 nanoseconds and a maximum clock transition of 0.150 nanoseconds. After all 

these information, we are ready to start the clock tree stages as discussed in the 
CTS section. 

 

Figure 34: CTS in flat flow 

 



117 

 

The clock tree network is spread throughout the entire chip. 

Because of the non-uniform distribution of sequential devices, the density of 
clock nets in the chip is not balanced, as seen in the figure. 

As a result, in the CTS step: 

• Total dynamic power is   4.9644 mW  (100%). 

• Cell leakage power is 174.5627 uW. 

• Total cell area is 34004.376546 

• Worst path of setup is 0 met. 

• Worst path in Hold is 0.02 met. 

Routing: 

The physical design is now ready to be routed after completing the core clock 
network without any timing or DRC violations. However, before proceeding to the 

routing stage, we must first check for congestion so that the tool can route 

efficiently. In the post-CTS stage, the resultant congestion is nearly 0% in both 
vertical and horizontal directions. 

First of all, specify the routing layers. We choose to route at maximum of six 

layers which are metal-1, metal-2, metal-3, metal-4, metal-5 and metal-6 layers. we 

can forward to our routing steps directly. The routing process comprises of three 
main phases: global routing, track assignment and detailed routing. Each of them 

is discussed in detail in the routing section. When routing is complete, it is time to 
correct physical DRC violations. 

We can see that there is almost no congestion in the design by examining the 
congestion one more time before routing. As a result, the separate global routing 

stage can be skipped. The IC compiler tool has a routing command that can 
complete all three routing processes in a single hit. 

To run automatic routing, use route_auto command. The route_auto command 
is used to perform global, track assignment, and detail routing. Zroute reads the 

block before starting routing and updates the block when all routing steps are 

completed when running route_auto. Zroute verifies the input data when 
restarting routing with this command if you stop automated routing before it 

conducts detail routing. When running routing, use the route auto command to 

check for convergence, congestion, and design rule quality-of-results (QoR). If 
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congestion QoR is more important to you than timing QoR, you might wish to 
utilize route auto. 

After performing this step, we found many DRC violations on nets and timing 
requirements was not met. So, we had to bypass this step and jump right into the 

routing phase. This step addresses all routing difficulties, although it takes a long 

time to complete. We discovered few time and physical DRC violations after 
successfully completing the first full routing phase. The program also provides an 

incremental routing phase that allows you to resolve time and DRC violations 
without having to reroute the entire design. After all, we have got a clean timing 
and physical DRC results. 

As a result, in the routing step: 

• Total SHORT Nets are 0. 

• Total Open Nets are 0. 

• Worst path Setup slack is -0.04 nsec.  

• Worst path Hold slack is 0.03 met. 

Chip finishing: 

The finishing touches on the chip are the final stage in the place and route. The 
main reason for this phase is that the manufacturing process necessitates certain 

measures in order to ensure an error-free chip during the manufacturing process. 
The following are the four elements that make up this stage: 

• Metal layers spreading and widening 

• Standard cell filling 

• Redundant vias insertion 

• Metal filling 

Metal layers spreading and widening: 

Is carried out to prevent minimum width interconnections from openings and 

minimum-spacing interconnections from shorts, which could occur as a result of 
any random particles that may fall on the chip and cause damage during the 

fabrication process. However, spreading and expanding may result in new 
temporal inconsistencies. 

Standard cell filling: 
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Is carried out in the empty areas in the normal cell rows to make the chip's 
density uniform and to increase its yield. Some places may still be unoccupied 
since filling would result in DRC violations if they were filled. 

Redundant vias insertion: 

Is the addition of extra vias to the original vias so that if one of the vias in both 
the original and extra vias fails, the connection between the metal layers will not 
fail since another contact will join the metal layers together.  

Metal filling: 

Is used to prevent over-etching of metal interconnections in low-metal-density 
locations during the fabrication process. Metal fill near key nets on the same layer 

is deleted or trimmed, and timing driven metal filling is performed precisely to 
protect timing on critical nets. 

 

Figure 35: Chip after finishing in Flat Flow 
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To fill the spaces between the actual cells and wires, the die has been filled with 
dummy standard cells and false metal wires. Actual cells appear in a dark violet 
color, while dummy cells appear in a pale blue color. 

After completing this stage, we must do a final check for timing and DRC 

violations across the entire design. If any of them appear, we can use a simple 

synthesis to correct them, and then the chip is ready to be built following a post-
layout sign-off in a STA tool to ensure that the timing of the entire chip is accurate. 

4.3. STA in Flat Flow 

The next stage after completing a clean place-and-route phase is to Use a high-

precision static timing analysis tool to verify the timing. The timing factor is quite 
important to consider. We have a STA tool that we use. 

Synopsys PrimeTime is one of the projects we've worked on, and we're going to 
talk about it on our project. 

The goal of utilizing this tool at this stage is to check timing across a range of 

projected operating situations for the design. Temperature, operating voltage, and 
manufacturing process are the three key dimensions of these operating 
circumstances. MOSFET threshold voltage is another factor that can be considered.  

We can divide manufacturing process analysis into three categories: slow slow, 

typical-typical, and fast-fast process. The slow-slow process, as indicated by its 
name, has the highest standard cell delay among the others, while the fast-fast 

process has the shortest. In terms of the temperature outside, the highest 

temperature-based cells have the greatest delay, while the lowest temperature-
based cells have the smallest delay. 

The operating voltage has a considerable impact on the propagation delay, as 
the highest voltage-based cells have the shortest delay and the lowest voltage-
based cells might contribute with the longest delay. 

The threshold voltage of the MOSFET is the final influencing factor. Low voltage 

threshold (LVT), regular voltage threshold (RVT), and high voltage threshold 
(HVT) are the three major forms of threshold voltage found in MOS devices (HVT). 

This element has a substantial impact on the typical cells' delay. The lowest 

threshold-based cells have the shortest propagation delay, whereas the highest 

threshold-based cells have the longest propagation delay. We only have regular 
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voltage threshold-based libraries in our scenario. This sort of library has a wide 
range of working circumstances, as described earlier. 

As a result, the best-case library has the lowest temperature, greatest voltage, 
and fastest procedure, whereas the worst-case library has the opposite of these 
conditions. 

We can go through our job and address the predicted instances after we've 
identified them. 

In order to fulfil the setup and hold timing requirements, all of these situations 
must be met. 

Referring to the tool's inputs, the tool must read the Verilog netlist. In addition 
to the operational libraries that we will examine in this scenario, so that we can 

define the real delays of the physical nets, we'll need the restrictions and parasitics 
files. 

The issue is that the tool estimates the nets' propagation delay using non-real 
resistance and capacitance values, resulting in non-real delay values. The standard 

cell library provides a table that can be used to compute the delay. When parasitic 

values exceed certain thresholds, the STA tool starts extrapolating based on the 
table's most recent parasitic values. It then adds an additional 10% delay to the 

maximum value of the defined delay. This might lead to inaccuracy in delay 
calculations. That finding demonstrated that the parasitic values are incorrectly 
written in the file in some way. 

We proceeded to analyze the design against the various instances after 

successfully completing the setup. In most situations, the setup timing was perfect, 

and the hold time was the issue. The way to get the actual setup time is to fix them 
in STA tool itself and to write the changes that have done to the design, and then 

forward them the layout tool to make these changes on the design, and finally the 
tool can write a new DDC-based file that contains the changes. That new file can be 

forwarded again to the STA tool for further analysis. The PrimeTime STA tool 
offers a built-in synthesis engine to fix the setup and hold timing violations. 

 

 

 



122 

 

 

Chapter 5 

Hierarchical flow 

There are two topologies in hierarchical flow: 

• Top-down approach: here we analyze all RTL design files including top 

module at the same time, the tool handles interdependencies between 
files automatically. This method is recommended most of times but is 

hard in large designs; it needs large memory to adopt all the files at 

simultaneously during analysis step. 

• Bottom-up approach: here each file is constrained and analyzed 
independently; at the end of the flow, they are assembled together. 

In our project we used the top-down approach which fit for RISC-V design. 

The open-source RISC-V in PULP has constrained file at period= 5nsec, our 
objective is highest possible speed with clean lvs and met timing. 

Hence, we started to try the flow with period= 2.5 nsec and utilization = 0.4 it 
gave us large violation for timing and DRCs: 

− Slack = -0.12 nsec 

− Hold= -0.01 nsec 

− Shorts > 300 

Then we tried further optimizations including reducing cell placement density 
in single area, maximizing the number of routing layers and routing optimization. 

These helped us to reach maximum optimization in period= 2.5 nsec and 
utilization=0.25 with results: 

− Slack = -0.06 nsec 

− Hold= -0.01 nsec 

− Shorts <10 

So, we increased the period gradually till reaching the final iteration with the 
following results at period=2.7 and utilization= 0.5: 
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− Slack = 0.01 nsec (met) 

− Hold= 0.02 nsec (met) 

− Shorts =0  

− Opens=0 

− DRCs=1 which can be solved by other tools not available with us. 

Here are the steps for the final successful iteration 

5.1. Synthesis in hierarchical flow 

𝒔𝒆𝒕_𝒂𝒑𝒑_𝒗𝒂𝒓 𝒔𝒆𝒂𝒓𝒄𝒉_𝒑𝒂𝒕𝒉 "/𝒉𝒐𝒎𝒆/𝒔𝒕𝒂𝒏𝒅𝒂𝒓𝒅_𝒄𝒆𝒍𝒍_𝒍𝒊𝒃𝒓𝒂𝒓𝒊𝒆𝒔
/𝑵𝒂𝒏𝒈𝒂𝒕𝒆𝑶𝒑𝒆𝒏𝑪𝒆𝒍𝒍𝑳𝒊𝒃𝒓𝒂𝒓𝒚_𝑷𝑫𝑲𝒗𝟏_𝟑_𝒗𝟐𝟎𝟏𝟎_𝟏𝟐/𝒍𝒊𝒃/𝑭𝒓𝒐𝒏𝒕_𝑬𝒏𝒅
/𝑳𝒊𝒃𝒆𝒓𝒕𝒚/𝑵𝑳𝑫𝑴" 

𝒔𝒆𝒕_𝒂𝒑𝒑_𝒗𝒂𝒓 𝒍𝒊𝒏𝒌_𝒍𝒊𝒃𝒓𝒂𝒓𝒚 " ∗  𝑵𝒂𝒏𝒈𝒂𝒕𝒆𝑶𝒑𝒆𝒏𝑪𝒆𝒍𝒍𝑳𝒊𝒃𝒓𝒂𝒓𝒚_𝒔𝒔𝟎𝒑𝟗𝟓𝒗𝒏𝟒𝟎𝒄. 𝒅𝒃" 

𝒔𝒆𝒕_𝒂𝒑𝒑_𝒗𝒂𝒓 𝒕𝒂𝒓𝒈𝒆𝒕 _𝒍𝒊𝒃𝒓𝒂𝒓𝒚 "𝑵𝒂𝒏𝒈𝒂𝒕𝒆𝑶𝒑𝒆𝒏𝑪𝒆𝒍𝒍𝑳𝒊𝒃𝒓𝒂𝒓𝒚_𝒔𝒔𝟎𝒑𝟗𝟓𝒗𝒏𝟒𝟎𝒄.𝒅𝒃" 

Here we started to read our open-source library Nangate and included the slow-

slow corner database in link and target libraries at temperature -40 celsius degrees. 

𝒔𝒉 𝒓𝒎 − 𝒓𝒇 𝒘𝒐𝒓𝒌 

𝒔𝒉 𝒎𝒌𝒅𝒊𝒓 − 𝒑 𝒘𝒐𝒓𝒌 

Here we remove any old folder named work and create another new one named 
in “work”. 

𝒅𝒆𝒇𝒊𝒏𝒆_𝒅𝒆𝒔𝒊𝒈𝒏_𝒍𝒊𝒃 𝒘𝒐𝒓𝒌 − 𝒑𝒂𝒕𝒉 ./𝒘𝒐𝒓𝒌 

Here we define the path of design library work which is the folder we created 
before. 

𝒔𝒆𝒕 𝒉𝒅𝒍𝒊𝒏_𝒔𝒗𝒆𝒓𝒊𝒍𝒐𝒈_𝒔𝒕𝒅                  𝟐𝟎𝟎𝟗 

The open-source RTL had different version than the tool we have, so we created 
this command to match the versions in reading the files. 

Then we analyzed all the RTL files included in the open-source RTL and the 
packages needed that are instantiated inside these files. 
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These files should be analyzed in order of which the file instantiated in the other 
should be called before the other. 

Analyzing is done by 𝒂𝒏𝒂𝒍𝒚𝒛𝒆 command 

The clock gating file is created with us as we instantiated it from library, because 
the one downloaded from PULP is for simulation only. 

Then elaborated, checked and linked the design as discussed in the ASIC flow 
on chapter 3 

𝒖𝒏𝒊𝒒𝒖𝒊𝒇𝒚 

This command is very important in hierarchical design, it differentiates by name 

the instantiations in the design that have the same names. This is important for 

optimizations as any change for example in the size of any instantiated cell, it will 
change only this cell and doesn’t affect the other identical instantiated cells because 
they have different names after this command.       

Then we compiled the design with 𝒄𝒐𝒎𝒑𝒊𝒍_𝒖𝒍𝒕𝒓𝒂 command with option 

– 𝒏𝒐_𝒂𝒖𝒕𝒐𝒖𝒏𝒈𝒓𝒐𝒖𝒑 which differentiate between flat flow and hierarchical as it 
tells them not to flatten the design while compiling. Another option is added which 
are −𝒕𝒊𝒎𝒊𝒏𝒈_𝒉𝒊𝒈𝒉_𝒆𝒇𝒇𝒐𝒓𝒕_𝒔𝒄𝒓𝒊𝒑𝒕 and – 𝒓𝒆𝒕𝒊𝒎𝒆 to fix violated slack 

To finish the synthesis with 0 MET timing we had to repeat the previous 

compile command 3 more times with another added option to the above 
−𝒊𝒏𝒄𝒓𝒆𝒎𝒆𝒏𝒕𝒂𝒍 

Then we wrote the generated netlist in verilog format and. ddc using the 
following 

𝒘𝒓𝒊𝒕𝒆_𝒔𝒅𝒄  𝒐𝒖𝒕𝒑𝒖𝒕/${𝒅𝒆𝒔𝒊𝒈𝒏}. 𝒔𝒅𝒄  

 

𝒅𝒆𝒇𝒊𝒏𝒆_𝒏𝒂𝒎𝒆_𝒓𝒖𝒍𝒆𝒔  𝒏𝒐_𝒄𝒂𝒔𝒆 − 𝒄𝒂𝒔𝒆_𝒊𝒏𝒔𝒆𝒏𝒔𝒊𝒕𝒊𝒗𝒆 

𝒄𝒉𝒂𝒏𝒈𝒆_𝒏𝒂𝒎𝒆𝒔 − 𝒓𝒖𝒍𝒆 𝒏𝒐_𝒄𝒂𝒔𝒆 − 𝒉𝒊𝒆𝒓𝒂𝒓𝒄𝒉𝒚 

𝒄𝒉𝒂𝒏𝒈𝒆_𝒏𝒂𝒎𝒆𝒔 − 𝒓𝒖𝒍𝒆 𝒗𝒆𝒓𝒊𝒍𝒐𝒈 − 𝒉𝒊𝒆𝒓𝒂𝒓𝒄𝒉𝒚  

𝒔𝒆𝒕 𝒗𝒆𝒓𝒊𝒍𝒐𝒈𝒐𝒖𝒕_𝒏𝒐_𝒕𝒓𝒊 𝒕𝒓𝒖𝒆 
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𝒔𝒆𝒕 𝒗𝒆𝒓𝒊𝒍𝒐𝒈𝒐𝒖𝒕_𝒆𝒒𝒖𝒂𝒕𝒊𝒐𝒏  𝒇𝒂𝒍𝒔𝒆 

 

𝒘𝒓𝒊𝒕𝒆 − 𝒉𝒊𝒆𝒓𝒂𝒓𝒄𝒉𝒚 − 𝒇𝒐𝒓𝒎𝒂𝒕 𝒗𝒆𝒓𝒊𝒍𝒐𝒈 − 𝒐𝒖𝒕𝒑𝒖𝒕 𝒐𝒖𝒕𝒑𝒖𝒕/${𝒅𝒆𝒔𝒊𝒈𝒏}. 𝒗 

𝒘𝒓𝒊𝒕𝒆 − 𝒇 𝒅𝒅𝒄 − 𝒉𝒊𝒆𝒓𝒂𝒓𝒄𝒉𝒚 − 𝒐𝒖𝒕𝒑𝒖𝒕 𝒐𝒖𝒕𝒑𝒖𝒕/${𝒅𝒆𝒔𝒊𝒈𝒏}. 𝒅𝒅𝒄 

Define name rules and change names are done to make the recent files match the 
next files in the flow. 

Final synthesis results: 

Table 12: The synthesis results of the Hierarchical Flow 

Slack Area Total power 

0 met  31567.284529 3.8288e+03 uW 
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5.2. PnR in hierarchical flow 

We started with the design setup reading the netlist, constraints, TLU+ files as 
stated in design setup in chapter 3 

Floor planning: 

− Aspect ratio: 2 

− Utilization: 0.25 

− Flipping the first row 

− Io2core 12.4 

Setting the maximum routing layer to be metal 8 

𝒔𝒆𝒕_𝒊𝒈𝒏𝒐𝒓𝒆𝒅_𝒍𝒂𝒚𝒆𝒓𝒔 − 𝒎𝒂𝒙_𝒓𝒐𝒖𝒕𝒊𝒏𝒈_𝒍𝒂𝒚𝒆𝒓 𝒎𝒆𝒕𝒂𝒍𝟖  

Then setting the following command with 0.3 which gives more priority to 
reduce the density of cells at small areas than the wire length 

𝒔𝒆𝒕_𝒂𝒑𝒑_𝒗𝒂𝒓 𝒑𝒍𝒂𝒄𝒆𝒓_𝒎𝒂𝒙_𝒄𝒆𝒍𝒍_𝒅𝒆𝒏𝒔𝒊𝒕𝒚_𝒕𝒉𝒓𝒆𝒔𝒉𝒐𝒍𝒅 𝟎. 𝟑  

Then followed by virtual placement for cells 

c𝒓𝒆𝒂𝒕𝒆_𝒇𝒑_𝒑𝒍𝒂𝒄𝒆𝒎𝒆𝒏𝒕 
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Figure 36: floor plan and virtual placement in hierarchical flow 
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Power planning: 

We used power ring and power strips to be in layer 10 and 9 only. Minimum 
Strap width is 2.5 nm. 

Then we added power pads and tap cells. 

𝒂𝒅𝒅_𝒕𝒂𝒑_𝒄𝒆𝒍𝒍_𝒂𝒓𝒓𝒂𝒚 − 𝒎𝒂𝒔𝒕𝒆𝒓   𝑻𝑨𝑷 \ 

        −𝒅𝒊𝒔𝒕𝒂𝒏𝒄𝒆 𝟑𝟎 \ 

        −𝒑𝒂𝒕𝒕𝒆𝒓𝒏  𝒔𝒕𝒂𝒈𝒈𝒆𝒓_𝒆𝒗𝒆𝒓𝒚_𝒐𝒕𝒉𝒆𝒓_𝒓𝒐𝒘 

Tap cells are used to prevent the latch up problem. 

In this step, we should check for the max IR drop, it should be less than 1%-2% 
of the VDD. 

In our design, we use 1.1V for VDD so we need the max IR drop <22 mV 

Using the following command 

𝒂𝒏𝒂𝒍𝒚𝒛𝒆_𝒇𝒑_𝒓𝒂𝒊𝒍  − 𝒏𝒆𝒕𝒔 {𝑽𝑫𝑫 𝑽𝑺𝑺} − 𝒑𝒐𝒘𝒆𝒓_𝒃𝒖𝒅𝒈𝒆𝒕 𝟓𝟎𝟎 
− 𝒗𝒐𝒍𝒕𝒂𝒈𝒆_𝒔𝒖𝒑𝒑𝒍𝒚 𝟏. 𝟏 

We found that for VDD and VSS the max IR drop is 11.328 mV and 11.743 mV 
respectively which are less than 22 mV 
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Figure 37: IR drop map for hierarchical flow 

If IR drop is violated it needs other tools to fix it, so you should then increase the 
metal layers for power grid. 
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Placement: 

Started with initial placement by 𝒑𝒍𝒂𝒄𝒆_𝒐𝒑𝒕 command then optimization with 
𝒑𝒔𝒚𝒏𝒐𝒑𝒕 command 

And added tie cells to tie logic 0 and logic 1 to VDD and VSS. 

We should connect VDD and VSS to cells after each flow in PnR or any insertion 
for cells using the following command. 

𝒅𝒆𝒓𝒊𝒗𝒆_𝒑𝒈_𝒄𝒐𝒏𝒏𝒆𝒄𝒕𝒊𝒐𝒏     − 𝒑𝒐𝒘𝒆𝒓_𝒏𝒆𝒕 𝑽𝑫𝑫\ 

−𝒈𝒓𝒐𝒖𝒏𝒅_𝒏𝒆𝒕 𝑽𝑺𝑺\ 

−𝒑𝒐𝒘𝒆𝒓_𝒑𝒊𝒏 𝑽𝑫𝑫\ 

−𝒈𝒓𝒐𝒖𝒏𝒅_𝒑𝒊𝒏 𝑽𝑺𝑺 
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Figure 38: after placement in hierarchical flow 
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Figure 39: placement map in hierarchical flow 

CTS: 

we set the driving cell to be BUF_X16, and target skew is 0.2 in clock tree 
options. 

Layer list is: metal3, metal4, metal5, metal6 and metal7. 

Then we synthesized the clock tree using 𝒄𝒐𝒎𝒑𝒊𝒍𝒆_𝒄𝒍𝒐𝒄𝒌_𝒕𝒓𝒆𝒆 

Then performed optimization using: 

𝒄𝒍𝒐𝒄𝒌_𝒐𝒑𝒕 − 𝒐𝒏𝒍𝒚_𝒄𝒕𝒔 − 𝒏𝒐_𝒄𝒍𝒐𝒄𝒌_𝒓𝒐𝒖𝒕𝒆 

Then to fix hold: 

𝒔𝒆𝒕_𝒇𝒊𝒙_𝒉𝒐𝒍𝒅 [𝒂𝒍𝒍_𝒄𝒍𝒐𝒄𝒌𝒔] 

   𝒔𝒆𝒕_𝒇𝒊𝒙_𝒉𝒐𝒍𝒅_𝒐𝒑𝒕𝒊𝒐𝒏𝒔 − 𝒑𝒓𝒊𝒐𝒓𝒊𝒕𝒊𝒛𝒆_𝒕𝒏𝒔 − 𝒆𝒇𝒇𝒐𝒓𝒕 𝒍𝒐𝒘 

𝒔𝒆𝒕_𝒑𝒓𝒐𝒑𝒂𝒈𝒂𝒕𝒆𝒅_𝒄𝒍𝒐𝒄𝒌 [𝒂𝒍𝒍_𝒄𝒍𝒐𝒄𝒌𝒔] 
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𝒄𝒍𝒐𝒄𝒌_𝒐𝒑𝒕 − 𝒐𝒏𝒍𝒚_𝒑𝒔𝒚𝒏 − 𝒏𝒐_𝒄𝒍𝒐𝒄𝒌_𝒓𝒐𝒖𝒕𝒆 

Then routing the clock tree using 𝒓𝒐𝒖𝒕𝒆_𝒈𝒓𝒐𝒖𝒑 − 𝒂𝒍𝒍_𝒄𝒍𝒐𝒄𝒌_𝒏𝒆𝒕𝒔 . 

Also connected the design after updates again with power grid VDD and VSS. 

 

Figure 40: CTS in hierarchical flow 
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Routing: 

Before the routing step, most of designers add spare cells to fix small errors after 

fabrication if exit, but we didn’t put it in our hierarchical design and helped us in 
reducing DRCs violations. 

We started setting route options as discussed in chapter 3. Then we don’t have 
hold violations at this step so we didn’t set fix hold before the following step.  

First route command: 𝒓𝒐𝒖𝒕𝒆_𝒂𝒖𝒕𝒐 

This command gives first route iteration with large DRCs violations, large 
number for short nets and large setup slack violation. 

Then we followed with the command 𝒓𝒐𝒖𝒕𝒆_𝒐𝒑𝒕 

It reduced shorts and slack violations, therefore we decided to make other 
iterations using this command 

𝒓𝒐𝒖𝒕𝒆_𝒐𝒑𝒕 − 𝒊𝒏𝒄𝒓𝒆𝒎𝒆𝒏𝒕𝒂𝒍 − 𝒆𝒇𝒇𝒐𝒓𝒕 𝒉𝒊𝒈𝒉 

We repeated the above command 2 times then reached good slack, hold and 
shorts at this step 

− Short nets = 2 

− Slack= -0.02 nsec 

− Hold= 0.01 nsec (MET) 

Then we connected the modified chip to power grid again. 

Note: 

After each route step we should verify lvs to check for number of short and 
open nets which results from large congestion or large max IR drop. Then we check 
for timing and IR drop 

We recognized that IR drop doesn’t change too much after the routing 
commands. 
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Figure 41: congestion at track assignment in hierarchical flow 

Finishing 

Here we insert filler cells and redundant vias then make our final checks for lvs 
and timing 

We found that: 

− Short nets = 0 

− Open nets=0 

− DRCs violations=1 

− Floating nets=0 

− Slack= -0.02 nsec 

− Hold= 0.01 nsec (MET) 

There exist floating ports but all of them are output ports. 
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Figure 42: after finishing the hierarchical flow 
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Extraction 

we used 𝒆𝒙𝒕𝒓𝒂𝒄𝒕_𝒓𝒄 command in ICC tool and wrote the spef file. 

𝒘𝒓𝒊𝒕𝒆_𝒑𝒂𝒓𝒂𝒔𝒊𝒕𝒊𝒄𝒔 − 𝒐𝒖𝒕𝒑𝒖𝒕 {./𝒐𝒖𝒕𝒑𝒖𝒕/𝒉𝒊𝒆𝒓𝒂𝒓𝒄𝒉. 𝒔𝒑𝒆𝒇} 

𝒄𝒓𝒆𝒂𝒕𝒆_𝒓𝒂𝒊𝒍_𝒔𝒆𝒕𝒖𝒑 

There is another and more accurate method which is StarRc tool, we tried it also 
and, in our case, it gives us the same values in PrimeTime compared to extract_rc 
command. 

Note:  

In our case, to use the StarRC tool we had to change reading name of the bus 
using the following commands: 

𝒅𝒆𝒇𝒊𝒏𝒆_𝒏𝒂𝒎𝒆_𝒓𝒖𝒍𝒆𝒔 𝒏𝒆𝒘_𝒗𝒆𝒓𝒊𝒍𝒐𝒈 − 𝒔𝒑𝒆𝒄𝒊𝒂𝒍 𝒗𝒆𝒓𝒊𝒍𝒐𝒈 
− 𝒕𝒂𝒓𝒈𝒆𝒕_𝒃𝒖𝒔_𝒏𝒂𝒎𝒊𝒏𝒈_𝒔𝒕𝒚𝒍𝒆 {%𝒔[%𝒅]} 
− 𝒄𝒉𝒆𝒄𝒌_𝒊𝒏𝒕𝒆𝒓𝒏𝒂𝒍_𝒏𝒆𝒕_𝒏𝒂𝒎𝒆 − 𝒄𝒉𝒆𝒄𝒌_𝒃𝒖𝒔_𝒊𝒏𝒅𝒆𝒙𝒊𝒏𝒈 

𝒄𝒉𝒂𝒏𝒈𝒆_𝒏𝒂𝒎𝒆𝒔 − 𝒓𝒖𝒍𝒆 𝒏𝒆𝒘_𝒗𝒆𝒓𝒊𝒍𝒐𝒈 – 𝒉𝒊𝒆𝒓𝒂𝒓𝒄𝒉𝒚 

To match the StarRC tool. 
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5.3. STA in hierarchical flow 

we read the parasitic files in PrimeTime tool, we read the slack by using library 

at slow slow corner and maximum capacitance spef file, and read the hold time at 
fast fast corner library and minimum capacitance spef file. 

The final timing results: 

− Setup Slack= 0.01 nsec. 

− Hold time= 0.02 nsec. 
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Chapter 6 

Topographical flow 

Topographical technology enables you to accurately predict post-layout timing, 

area, and power during RTL synthesis without the need for wireload model-based 
timing approximations. It uses Synopsys’ placement and optimization technologies 

to drive accurate timing prediction within synthesis, ensuring better correlation to 
the final physical design. 

In ultra-deep submicron designs, interconnect parasitic have a major effect on 

path delays; accurate estimates of resistance and capacitance are necessary to 
calculate path delays. In topographical mode, Design Compiler leverages the 

Synopsys physical implementation solution to derive the “virtual layout” of the 
design so that the tool can accurately predict and use real net capacitances instead 

of wire load model-based statistical net approximations. If wire load models are 
present, they are ignored. 

 

Figure 43: Topographical flow 
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6.1. Synthesis in Topographical flow 

Synthesis is the process of converting the RTL design into a gate-level netlist. It 
consists mainly from three 

Steps: translation, optimization and mapping. 

First of all, we perform first-pass synthesis depending on flat synthesis, where flat 
designs contain no subdesigns and have only one structural level.  

• First-pass synthesis flow: 

It is typically the same as synthesis flow that is explained previously in synthesis 
section. 

The recommended compile flow in topographical mode is top down. 

• Floorplan for topographical flow:  

After first-pass synthesis, we perform floorplanning and power network and 
write def file to use it in the second-pass synthesis as explained in PnR section. 

The reason for using floorplan constraints in topographical mode is to 

accurately estimate interconnect parasitics and improve timing with the post-place-

and-route tools, such as IC Compiler, by considering floorplanning information 
during optimizations.  

Design Compiler topographical mode supports high-level physical constraints 

such as die area, core area and shape, port location, macro location and orientation, 

keep out margins, placement blockages, preroutes, bounds, vias, tracks, voltage 
areas, and wiring keep outs. 

• Second-pass synthesis flow: 

We enter dc_shell –topo to run second pass synthesis flow. 

− First, we read libraries and tlu_plus files. 

− Open milkyway library using open_mw_lib command. 

− We perform the reading design step in the synthesis flow (analyze & 

elaborate) and specifying constraints step. 
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− Then we extract physical constraints from the def file which we wrote 

before, using extract_physical_constraints command. 

− Then we synthesized the design using compile_ultra -spg -

timing_high_effort_script -gate_clock command, we used the option –

spg to enable physical guidance in Design Compiler. 

− Finally, we completed the flow performing creating netlist step and 
checking synthesis. 

So, during the second pass, it uses floorplan constraints in Design Compiler 
topographical mode to create an optimized netlist and performs detailed design 
closure in IC Compiler. 

So as shown in the figure the inputs of second-pass flow are: 

 

Figure 44: inputs for the second pass flow 
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Here are some trials that we have tried in synthesis in the topographical flow: 

All the trials have been done with floorplan with utilization 0.25, core aspect 
ratio 2 and power in 2 layers (metal9, metal10). 

Clock period=5ns 

Firstly, we synthesized the design with the clock period (5 ns) that is provided 
in the constraints file. 

a. First-pass synthesis:  

Using compile_ultra  

Table 13: the synthesis results of the first path in the Topographical Flow 

Setup 
Slack 

Hold 
Slack 

Total Dynamic 
power 

Total Leakage 
power 

Cell area 

0 (Met) 0.09 1.9156 mW 140.1103 uW 28440.720
561 

b. Second-pass synthesis 

Using compile_ultra -spg  

Table 14: the synthesis results of the second path in the Topographical Flow 

Setup 
Slack 

Hold 
Slack 

Total Dynamic 
power 

Total Leakage 
power 

Cell area 

0 (Met) 0.07 2.000e+03 uW 1.537e+05 nW   
29985.914563 
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Clock Period 2.5 ns 

Here, we reduced clock period to 2.5 ns as our target in the project to increase 
the speed of Ri5cy. 

a. First-pass synthesis 

Using compile_ultra  

Table 15: the synthesis results of the first path in the Topographical Flow at 2.5 nsec. 

Setup 
Slack 

Hold 
Slack 

Total Dynamic 
power 

Total Leakage 
power 

Cell area 

-0.1 0.09 3.8697 mW 159.9576 uW 31607.450477 

b. Second-pass synthesis 

Using compile_ultra -spg 

Table 16: the synthesis results of the second path in the Topographical Flow at 2.5 nsec. 

Setup 
Slack 

Hold 
Slack 

Total Dynamic 
power 

Total Leakage 
power 

Cell area 

0(Met) 0.07 4.045e+03 uW 1.652e+05 nW 31831.422533 
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Clock Period 2.5 ns 

Here, we tried to optimize timing by using the timing_high_effort_script 
option. 

a. First-pass synthesis 

Using compile_ultra -timing_high_effort_script 

Table 17: the synthesis results of the first path in the Topographical Flow at 2.5 nsec at 
timing_high_effort_script 

Setup 
Slack 

Hold 
Slack 

Total Dynamic 
power 

Total Leakage 
power 

Cell area 

   -0.03 0.09 3.9285 mW 161.3372 uW 31701.880461 

 

b. Second-pass synthesis 

Using compile_ultra -spg -timing_high_effort_script 

Table 18: the synthesis results of the second path in the Topographical Flow at 2.5 nsec at 
timing_high_effort_script 

Setup 
Slack 

Hold 
Slack 

Total Dynamic 
power 

Total Leakage 
power 

Cell area 

0 (Met) 0.07   4.033e+03 uW 1.623e+05 nW 31585.638529 
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Clock Period 2.5 ns 

Here, we tried to perform more optimization in timing by using the 
timing_high_effort_script and retime options. 

a. First-pass synthesis 

Using compile_ultra -timing_high_effort_script -retime 

Table 19: the synthesis results of the first path in the Topographical Flow at 2.5 nsec at 
timing_high_effort_script -retime 

Setup 
Slack 

Hold 
Slack 

Total Dynamic 
power 

Total Leakage 
power 

Cell area 

-0.03 0.09 4.0566 mW 162.0495 uW 31977.722479 

 

b. Second-pass synthesis 

Using compile_ultra -spg -timing_high_effort_script -retime 

Table 20: the synthesis results of the first path in the Topographical Flow at 2.5 nsec at 
timing_high_effort_script -retime 

Setup 
Slack 

Hold 
Slack 

Total Dynamic 
power 

Total Leakage 
power 

Cell area 

0 (Met) 0.07   4.465e+03 uW 1.711e+05 nW 33406.674
571 

 

 

 

 

 

 

 

 

 

 

 

 



146 

 

Final Results 

Finally, we get the best results after using incremental option. 

a. First-pass synthesis 

Table 21: final results of the synthesis of the first pass in the Topographical Flow 

Setup 
Slack 

Hold 
Slack 

Total Dynamic 
power 

Total Leakage 
power 

Cell area 

-0.02 0.09  3.9085 mW  160.8004 uW 31692.836457 

 

b. Second-pass synthesis 

Table 22: final results of the synthesis of the second pass in the Topographical Flow 

Setup 
Slack 

Hold 
Slack 

Total Dynamic 
power 

Total Leakage 
power 

Cell area 

0 0.07   4.344e+03 uW   1.637e+05 nW 31768.646537 

We have tried to make the power in 4 layers (metal7, metal8, metal9, metal10), 

but after going through pnr, we found the best results for both timing and short 
nets while using the 2 layers. 
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6.2. PnR in Topographical flow 

In this section, we describe in detail the PnR stages in the topographical mode. 

After first pass synthesis, we open IC Compiler and go through the floorplanning 

and power planning stage. Then, write the def file and go back to Design Compiler, 
but in topographical mode to perform the second pass synthesis. After second pass 

synthesis, we have the final netlist and the floorplan file that contains the physical 

guidance information that is used by the IC Compiler to perform placement 
optimization. Finally, we go back to IC Compiler to perform the remaining PnR 
flow starting from the placement and going through CTS and routing. 

Overview of the PnR Topographical Flow: 

− Floor planning and Powerplanning: 

We started with utilization 0.3, aspect ratio = 2, and routing layers from layer 1 

to layer 6. As layers from 7 to 10 have the power rings. Layer 6 is the tap layer as it 

is the last layer having power n=mesh and standard cells can be routed in it also. 
Tap layer also should be a vertical layer to make sure that it goes through all power 
rails. 

After multiple iterations, we found that utilization = 0.25, improves both timing 

and DRCs. Also, we reduced the power ring layers to 2 layers instead of 4. To 
reduce the number of DRCs, and help the tool eliminate shorts and opens from the 
design by increasing the routing resources. 

− Placement: 

In topographical flow, the main placement of the cells happens in the design 

compiler in topo mode during the second pass synthesis as it uses accurate 
estimation of parasitics and delays without the need for wire-load models. 

Therefore, Topographical mode uses Synopsys’ placement and optimization 
technologies to drive accurate timing prediction within synthesis, ensuring better 
correlation to the final physical design. 

In IC Compiler, we started by place_opt -spg to enable the physical guidance 
during the placement optimization.  
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− CTS: 

After completing the placement stage with accepted congestion, setup and hold 
slacks (~0ns slack), we go to the next stage which is the clock synthesis tree. And as 

we discussed in section (), the main goal of CTS stage is to build a buffer/inverter 

network in order to balance the relative delays and optimize the global skew of the 
clock domain. There is no difference between CTS in topographical flow, and in 

other flows. Clock synthesis tree was built based on buffers, in metal layers 3, 4, 
and 5. 

a. Constraints: 

− Clock synthesis tree was built based on buffers, in metal layers 3, 4, and 5. 

− target_early_delay 0.1  

− target_skew 0.5  

− max_capacitance 300  

− max_fanout 10  

− max_transition 0.15 

 

− We used non-Default clock routing to make the clock nets have double 

width and double spacing. This makes the clock routes less sensitive to 

cross talk or electromigration effects as non-default rules are used to 
“harden” the clock. Making the nets have double-width, increases the 

threshold current for EM, and as the clock nets are the highest in 

switching activity, they have the highest power and current going 
through them. Therefore, it is very important to make these nets have 
double width. 

• Synhtesis, Optimization 

At this point, we are ready to build our clock buffer tree and optimize it using 
the clock_opt command. 

• Routing 

After optimizing the clock buffer tree, we use command route_group -
all_clock_nets to route it before going to the standard cells routing stage. 
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− Routing: 

Before starting to route the standard cells, we insert spare cells:  

𝒊𝒏𝒔𝒆𝒓𝒕_𝒔𝒑𝒂𝒓𝒆_𝒄𝒆𝒍𝒍𝒔 − 𝒍𝒊𝒃_𝒄𝒆𝒍𝒍 {𝑵𝑶𝑹𝟐_𝑿𝟒 𝑵𝑨𝑵𝑫𝟐_𝑿𝟒} \ 

−𝒏𝒖𝒎_𝒊𝒏𝒔𝒕𝒂𝒏𝒄𝒆𝒔 𝟐𝟎 \ 

−𝒄𝒆𝒍𝒍_𝒏𝒂𝒎𝒆 𝑺𝑷𝑨𝑹𝑬_𝑷𝑹𝑬𝑭𝑰𝑿_𝑵𝑨𝑴𝑬 \ 

−𝒕𝒊𝒆 

Spare cells are main cells that any logic can be implemented with like NAND 

and NOR cells. They are added to the chip cells before being fabricated to make 
sure that if something wrong happens in the chip and it is needed to be 

refabricated, we won’t need to do regeneration for the front end of masks again, 

which costs very much. Because the problem can be solved using the spare cells. 
However, spare cells are considered as overhead because they consume static 
power 

The results of multiple iterations in the Topographical Flow: 

In this section, we describe in more details, the multiple iterations that we did to 
reach the final results. 

• Utilization = 0.3, power in 4 layers, clock = 2.5 

Table 23: Results after PnR at Utilization = 0.3, power in 4 layers, clock = 2.5  

stage placement CTS Routing 

setup 0 (met) -0.12 -0.46 

hold 0.07 (met) -0.02 0 (violated) 

• Ending routing with shorts equal to 461 
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In this iteration, we ended up with a very high negative setup slack and too 
many shorts that were hard to optimize and solve. However, creating the power 

rings in 4 layers makes a very good IR drop, and is very optimized with respect to 
the power.  

It was very hard to optimize these routing results, and after optimization, the 

results weren’t improved in an optimistic way. Therefore, we tried to increase the 
routing resources. 

• Utilization = 0.3, power in 2 layers, clock = 2.5 

In order to eliminate negative slack and shorts, we tried to reduce the power 

metal layers to increase the routing resources for standard cells. We also checked 
the IR drop to make sure that it is within the acceptable percentage of the VDD and 
it was accepted. 

Table 24: Results after PnR at Utilization = 0.3, power in 2 layers, clock = 2.5 

stage placement CTS Routing 

setup 0 (met) -0.12 -0.27 

hold 0.07 (met) 0 (violated) 0.01(met) 

• Total short nets are 446. 

We noticed that there was improvement in the setup slack and the number of 

shorts reduced, however, increasing the routing layers didn’t solve the problem 
completely. 

It was hard to optimize these routing results, and after optimization, the results 
weren’t much better. Therefore, we did multiple iterations and trials. 
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• Utilization = 0.3, power in 2 layers, clock = 2.5, set_app_var 

placer_max_cell_density_threshold 0.3 

After multiple iterations, we added to our placement script the command set 

_var placer_max_cell_density_threshold to be equal to 0.3 to control the cells 
density and distribution.  

Table 25: Results after PnR at Utilization = 0.3, power in 4 layers, clock = 2.5 using the 
placer_max command 

stage placement CTS Routing 

setup 0(met) -0.12 -0.22 

hold 0.07(met) 0 (met) 0.01(met) 

• Total short nets are 397 

There was an improvement in both setup slack and number of short nets, also 
after performing routing optimization we got better results. 

After optimization: 

• Setup: -0.17 

• Hold: 0.00 (met) 

• Shorts: 4 
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Topographical Flow Final Results 

In this section, we describe in detail the final PnR iteration, and its final results.   

− clock = 2.5 ns, which is equivalent to frequency 400 MHz. 

− Standard Cells Utilization = 0.25.  

− Aspect ratio = 2. 

− Power ring in 2 layers. 

− Using command set_app_var placer_max_cell_density_threshold 0.3. 

Floorplanning: 

 

Figure 45: floor plan and virtual placement in topographical flow 

Figure 45 shows the floorplan of the chip. And as shown in Figure 45 With core 

utilization equals 25%, and aspect ratio equals 2, the total area of the chip equals to 
126530 The width is 502.6, and the height is 251.75. 
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Figure 46: core area 

Powerplanning: 

In order to create the power mesh, we should specify the metal layers where the 

power ring is built. We chose to create the power ring in the highest two metal 
layers, metal 9 (vertical) and metal 10 (horizontal).  

The other power ring constraints are as follows:  

− ring spacing equals to 0.8 

− ring width 5 

− ring offset 0.8   

          After this, we specify the constraints for the power rails as follows:  

− power rails are in metal layers 8, 9, and 10. 

− Metal 8 is the tap layer, and it is vertical as preferred. 

− Maximum straps number is 128, and minimum straps number is 20. 

− Minimum width is 2.5. 

− Minimum spacing between straps. 

Therefore, the metal layers are used as following: 

− From metal 1 to metal 8 for signal routing. 

− Metal 8 is the tap layer. 

− Metal 9 and metal 10 for power rings and straps. 

The next step is defining the virtual pads, so that the tool can simulate and 
analyze the power network.  
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Figure 47: IR drop across the chip in the Topographical Flow 

Figure 47 shows the IR drop across the whole chip. PNA is constrained by the 

voltage supply value as it should be less than 2% from the power supply value. 

Here the voltage supply is 1.1 v, therefore the max acceptable IR drop equals to 
22mv. The max IR drop in our chip is 10.016mv, therefore it is accepted. 

The final step in the powerplanning stage is adding the well tie cells. 
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placement: 

 

 

Figure 48: placement of topographical flow 

After second pass synthesis, we go back to IC Compiler to continue the pnr flow 

with an optimized netlist. Using command place_opt -spg -effort high -congestion. 

With the -spg option, the place_opt uses Design Compiler's Physical guide 
information to guide optimization of the placement of standard cells. We added 

the switch – effort high to force the tool to spend more time to optimize the quality 

of results (QoR) as the default for place_opt command is medium effort. The 
congestion switch is for more optimization with respect to congestion in order to 

make the following stage tasks easier, and to make sure that the routing will end 

up with a minimum number of DRCs.  Figure (0 shows the hierarchy map of the 
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core after the placement of the cells. At the end of the placement stage, the time 
slacks are as follows:  

− The setup slack: - 0.00177  

− The hold slack: 0.05362 

Clock Tree Synthesis: 

 

Figure 49: CTS in topographical flow 
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The figure shows the clock network of the core, Clock network is built across 5 

levels. Each level is colored in a different color as shown. Here the clock tree is 
built exactly as described in section (). At the end of the cts stage, the quality of 
results is as follows: 

− Setup slack:   -0.00247 

− Hold slack: 0.07092 

− Dynamic power: 4.7819 mW 

− Leakage power: 183.5204 uW 

− Cell area: 34161.848552 

Routing 

   All signal nets are routed during the Routing stage as clock signals are already 
routed in the CTS stage. The signal nets are routed starting from metal 1 up to 

metal 8 as discussed in previous sections. Before starting to route the signal nets, 

we should verify that the design is routable and to have a prediction of the results 
of the routing stage in order to not consume too much time in the routing of design 

and resulting in bad results. We use command check_routeability. This command 

checks pin access points, cell instance wire tracks, pin out of boundaries, and many 
other things to ensure they meet the design requirements. It performs a check of 

the design for optimization in order to substantiate any errors in the design that 
might need to be fixed or what could help to improve the design.   

Then, we are ready to route our design and as discussed in section (), routing is 
performed in four main steps: 

1. Global Route  
2. Track assignment  

3. Detail Route  
4. Search and Repair   

• The first command we used in routing is route_auto. This command 
performs the four steps in only one step. 

• The second command is route_opt. This command performs simultaneous 

routing and post-route optimization on the current design. 
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• The third command is route_opt also, but with switches: -effort high and -
incremental.  “-effort high” is used to increase the time and the effort of the 

tool to optimize the routing of the chip. “- incremental” is used to run 

topology-based incremental optimization and ECO routing. 
• In order to solve the remaining shorts, we used the command” 

route_zrt_detail -incremental true -initial_drc_from_input true”. 

The final results of the routing stage and the PnR flow are as follows: 

• Setup Slack is -0.01ns 

• Hold Slack is 0.06ns 

• DRCs are 3 
• Total short nets are 1 
• Total open nets are 0 

Chip finishing 

Chip finishing is the same as discussed in the other flows, it consists of four 

main steps: 

− Metal layers spreading and widening  

− Standard cell filling  

− Redundant vias insertion  

− Metal filling 
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6.3. STA in Topographical flow 

After chip finishing, we go to the sign off tool for static timing analysis which is 

Prime Time. We checked the setup slack at the slow slow corner. using command 

“fix_eco_timing -type setup” to fix violating paths by resizing their cells to have 
higher speed. After that, we went back to IC Compiler to reroute the nets that 

needed to be rerouted again due to the changes that happened by primeTime. 

finally, checked the setup slack again by the primeTime. We found it is a positive 
slack and equals 0.02ns. Hold slack is checked at the fast fast corner and it is also 
positive and equals to 0.02ns. 
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Chapter 7 

Results  

7.1. Flat flow 
7.1.1. Area results 

Table 26: The area results of the Flat Flow 

 After  removing hierarchy After optimization 

Total cell area 32678.366549 um2 34461.630550 um2 

 

7.1.2. Power results 

Table 27: The power results of the Flat flow 

 After removing hierarchy After optimization 

Total leakage power 0.16388 mW 0.17903 mW 

Total switching power 0.659 mW 1.3115 mW 

Total power 4.3065 mW 5.2742 mW 

the Leakage power which is the power consumed in transistor due to the 

constant current from Vdd to ground and its value is 0.17903 mw which is 3.3944% 
of total power. The switching power or dynamic power which is the power 

consumed in transistors due to switching from 1 to 0 or from 0 to 1 and its value is 
1.3115 mW which is 24.86% of total power. 
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7.1.3. Timing results 

A. After removing hierarchy: 

 

 

Figure 50: The setup slack after removing hierarch in Flat Flow 

 

the setup slacks of all paths (2547 path) are represented as:  

• First column consists of 799 path and is from 0 to 0.286.  

• Second column consists of 159 path and is from 0.306 to 0.608.  

• Third column consists of 173 path and is from 0.613 to 0.9.  

• Forth column consists of 244 path and is from 0.907 to 1.204.  

• Fifth column consists of 314 path and is from 1.21 to 1.5.  

• Sixth column consists of 212 path and is from 1.51 to 1.8.  

• Seventh column consists of 82 path and is from 1.8 to 2.02.  

• Eighth column consists of 564 path and is from 2.21 to 2.40122. 
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B. After PnR: 

− Maximum delay timing results: 

 

 

Figure 51: The setup slack after PnR in Flat Flow 

As said before, after the routing stage the slack is -0.04 nsec. 
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− Minimum delay timing results: 

 

Figure 52: The Hold slack after PnR in Flat Flow 

based timing paths, there is no hold time requirements.  
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C. After optimization: 

The design timing was tested using static timing analysis (STA) in primetime. In 
STA you define the design constraints and then test the design and see if it passes 

them. These constraints are the same constraints used to build up the design in 
addition to the parasitics come from layout. 

− Maximum delay timing results: 

 

Figure 53: The setup slack after PrimeTime in Flat Flow 
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− Minimum delay timing results: 

 

 

Figure 54: The Hold slack after PrimeTime in Flat Flow 

Table 28: The timing Results afte PrimeTime in Flat Flow 

 Setup Hold 

Primetime 0.0039 (MET) 0.01 (MET) 
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7.1.4. LVS results 

 

Figure 55: The LVS results of Flat Flow 

7.1.5. DRC results 

 

Figure 56: The DRC results of Flat Flow 
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7.2. Hierarchical flow 
7.2.1. Area results 

Table 29: The total area results of the Hierarchical Flow 

 Post-synthesis Post-PNR 

Total cell area 31598.406520 um2 33082.9525 um2 

 

7.2.2.  Power results 

Table 30: The power results of the Hierarchical flow 

 Post-synthesis Post-PNR 

Total leakage power 0.161649 mW 0.17506 mW 

Total switching power 0.62509 mW 1.2604 mW 

Total power 3.6707  mW 4.8474 mW 

the Leakage power which is the power consumed in transistor due to the 

constant current from Vdd to ground and its value is 0.  161649 mw which is 4 .403% 

of total power. The switching power or dynamic power which is the power 
consumed in transistors due to switching from 1 to 0 or from 0 to 1 and its value is 
0.62509 mW which is 17.029% of total power. 
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7.2.3. Timing results 

A. Post synthesis 

 

 

Figure 57: Setup timing after synthesis 

 

 

Figure 58: Endpoint lack for max timing 
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Figure 59: Endpoint slacks for min timing 

 

Table 31: The timing results after synthesis of The Hierarchical Flow 

 Setup Hold 

First compile iteration -0.04 
(VIOLATED) 

0.07 (MET) 

Fourth compile iteration 0.00 (MET) 0.00 (MET) 
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B. PNR stages: 

 

 

Figure 60: Setup timing after PNR stage 

. 

 

Figure 61: Hold timing after PNR stage. 

Table 32: the timing results in the PnR flow of the Hierarchical Flow 

 Setup Hold 

placement 0.00 (MET) -0.09 (VIOLATED) 

CTS 0.02 (MET) 0.01 (MET) 
Routing -0.29 (VIOLATED) 0.01 (MET) 
Route_opt (3 iterations) -0.01 (VIOLATED) 0.01 (MET) 

Finishing -0.01 (VIOLATED) 0.00 (MET) 
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C. Post-PrimeTime 

 

 

Figure 62: hold timing after PrimeTime 

 

Figure 63: Setup timing after PrimeTime 

Table 33: The timing results after PrimeTime of the Hierarchical Flow 

 Setup Hold 

Primetime 0.01 (MET) 0.02 (MET) 
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7.2.4. LVS results 

 

Figure 64: The LVS results of the Hierarchical Flow 

 

Table 34: The LVS results of the Hierarchical Flow 

 Shorted nets Open nets 

Route auto 171 0 

Route opt (3x) 0 0 

 

7.2.5.  DRC results 

 

Figure 65: DRC ICC results 
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7.3. Topographical flow 
7.3.1. Area results 

Table 35: The total area results of the Topographical Flow 

 After removing 
hierarchy 

After optimization 

Total cell area 31768.646537 um2 34267.716551 um2  

7.3.2. Power results 

Table 36: The power results of the Topographical Flow 

 After removing hierarchy After optimization 

Total leakage power 1.6366e+05 nW 1.8474e+05 nW 

Total switching power 839.8591 uW 1.2763e+03 uW 

Total power 4.5074 mW 5.0174 mW 
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7.3.3. Timing results 

A. After removing hierarchy: 

− Maximum delay timing results: 

 

Figure 66: The setup slack after synthesis in Topographical Flow 
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− Minimum delay timing results: 

 

Figure 67: The Hold slack after synthesis in Topographical Flow 
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B. After PnR 

− Maximum delay timing results: 

 

Figure 68: The setup slack after PnR in Topographical Flow 

as said before the setup slack -0.01 ns. 
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− Minimum delay timing results: 

 

Figure 69: The Hold slack after PnR in Topographical Flow 

as said before the hold slack 0.06 ns. 
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C. After optimization: 

− Maximum delay timing results: 

 

Figure 70: The setup slack after PrimeTime in Topographical Flow 
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− Minimum delay timing results: 

 

Figure 71: The Hold slack after PrimeTime in Topographical Flow 
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7.3.4. LVS results 

 

Figure 72: The LVS results of the Topographical Flow 

7.3.5. DRC results 

 

Figure 73: The DRC results of the Topographical Flow 
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Chapter 8 

Conclusion 

The goal of this thesis is to help ASIC designers in selecting the most 

appropriate flow that meets their requirements. A complete RTL-to-GDSII flow for 
the OpenPULP Core known as RI5CY was accomplished in this thesis, with three 

distinct synthesis techniques yielding three different flow outcomes. Following 

that, we'll look at the primary advantages and disadvantages of each flow in 
comparison to other flows. We will summarize our findings in both the post-
synthesis and post-layout stages of the implementation flows in the sections below. 

8.1. Post-Synthesis Results 

In post-synthesis stage as shown in Table 37, we can notice that the Flat Flow 
has the biggest area. And the Hierarchical Flow has the least area as it works with 

the design as blocks. Also in power, the Topographical Flow and the Flat flow has 

nearly the same total power. According to the critical delay, the Topographical 
Flow has the least clock period comparing to the other flows. However, we will 

distinguish key benefits of each flow later on after actual layout is made for the 

core. Below charts that demonstrate the results between flows in post-synthesis 
stage. 

Table 37: The Post-synthesis results 

 Flat Flow Topographical Flow 
(Second path) 

Hierarchical Flow 

Critical path 

delay (n sec) 

2.6 2.5 2.7 

Total cell 

area (𝜇𝑚2) 

32678.366549 34267.716551 33082.9525 

Total Power 

(mW) 

4.3065 4.5074 5.0174 
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Figure 74: The total area comparison after post-synthesis 

 

Figure 75: The total power comparison after post-synthesis 
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8.2. Post-layout Results 

The post-layout results in addition to the total power calculated at each PDK 
corner of the verified corners, including the corner which is used for actual 

implementation of the core in all flows which is (Slow-Slow / 0.95 V / 40 °C). 
Below are charts that help visualize these results. 

 

Figure 76: The critical path delay comparison 
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Figure 77: The total area comparison after post-Layout 

 

Figure 78: The total power comparison after post-Layout 
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Table 38: The key results 

 Flat Flow Topographical Flow 

(Second path) 

Hierarchical Flow 

Critical path 
delay (n sec) 

2.6 2.5 2.7 

Total cell area 

(𝜇𝑚2) 

34461.630550 31768.646537 31598.406520 

Total Power 

(mW) 

5.2742 5.0174 4.8474 

Table 38 summarizes the key results that distinguish each flow. We can see that 
Hierarchical flow has the least total cell area and the least total power, but as our 

target is to work on maximum speed, So, the Topographical Flow is the best flow 

and it can be run in less clock period than the 2.5 nsec as the slack margin is 0.02 
nsec which is a big margin. But our tool doesn’t support the Topographical Flow as 

perfect as it has to be and all the flows are clean LVS with almost clean DRCs and 
that was our target. 

Therefore, if an ASIC designer might want to achieve maximum speed, we 
strongly advice him/her with working with Topographical flow. If the goal is to 

minimize occupied area as much as possible, Hierarchical flow is the best choice in 

that case. And if the goal is to reduce the total power consumed by the design, then 
it is preferred to perform the implementation with Hierarchical flow to achieve 
highest cell area optimizations. 
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8.3. Future Work 

We present some solutions in this area to improve design performance and 

speed across all implementation flows. We'll go over these concepts in greater 
depth further down.  

8.3.1. Switch from RVT Cells to LVT Cells  

LVT standard cells have high speed than RVT cells due to the less threshold 

voltage. This can fix the timing setup very quickly than using the RVT cells at high 
frequency. 
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Appendix A 

RTL-to-GDSII Flow 

A.1 GDSII format 

In the design of integrated circuits, the most popular format for interchange is 
the Calma GDS II stream format (GDS II is a trademark of Calma Company, a 

wholly owned subsidiary of General Electric Company, U.S.A.). For many years, 

this format was the only one of its kind and many other vendors accepted it in their 
systems. Although Calma has updated the format as their CAD systems have 

developed, they have maintained backward compatibility so that no GDS II files 

become obsolete. This is important because GDS II is a binary format that makes 
assumptions about integer and floating-point representations. 

A GDS II circuit description is a collection of cells that may contain geometry or 

other cell references. These cells, called structures in GDS II parlance, have 

alphanumeric names up to 32 characters long. A library of these structures is 
contained in a file that consists of a library header, a sequence of structures, and a 

library tail. Each structure in the sequence consists of a structure header, a  

sequence of elements, and a structure tail. There are seven kinds of 
elements: boundary defines a filled polygon, path defines a wire, structure 

reference invokes a subcell, array reference invokes an array of subcells, text is for 

documentation, node defines an electrical path, and box places rectangular 
geometry. 

For a larger IC circuit, we cannot use schematic drawing to represent and store 
its layout for obvious reasons. 

• A language and database format were developed for this problem. This so 

called GDSII serves as a stream format database file format and has been 

used as the de facto industry standard for data exchange of integrated 

circuit or IC layout artwork. 

• It is a binary file format representing planar geometric shapes, text labels, 

and other information about the IC layout in a hierarchical form. 

• The data can be used to reconstruct all or part of the artwork to be used in 

sharing layouts, transferring artwork between different EDA tools, or 

creating photo masks for fabrication. 
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A.2 Constraint file 

In this section, we describe the constraint file we use in our implementation. The 
constraint file is provided by open pulp and it is as follows: 

• Specifying clocks and defining default clock definitions using command 

create_clock. The create_clock command specifies the characteristics of a 
clock, including the clock name, source, period, and waveform. -name switch 

specifies the name of the clock being created. -period switch specifies the 
period of the clock waveform in library time units. The defined clock period 

is 5ns, but we changed it according to the speed of each flow. For the 

hierarchal flow, clock period is 2.7ns. clock period is 2.6 for the flat flow, and 
2.5 for the topographical flow. 

 

• Defining I/O constraints. Defining the input and output delays is very 

important to make sure that there will be no problems when the block we 

worked on integrate with other blocks. They are used to model the 
environment of that module. set_input_delay command sets input delay on 

pins or input ports relative to a clock signal. It has two main arguments; first 

is the “delay_value”. It specifies the path delay.  The delay_value must be in 
units consistent with the technology library used during optimization. The 

delay_value represents the amount of time the signal is available after a 
clock edge.  This represents a combinational path delay from the clock pin of 

a register. The second argument is clock_name. It specifies the clock to 

which the specified delay is related. If -clock is not specified, the delay is 
relative to time zero for combinational designs.  For sequential designs, the 

delay is considered relative to a new clock with the period determined by 
considering the sequential cells in the transitive fanout of each port. 

 

The percentage of input and output delays from the clock period differs for 

different input and output ports. These percentages are defined in our constraint 
file as follows: 
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➢ Input delay for interrupts is 0.5 * clock period. 
➢ Output delay for interrupt related signals is 0.25*clock period. 

➢ Input delay for early signals is 0.1 * clock period. 

➢ OBI input delays are 0.8 * clock period. 
➢ OBI output delays are 0.6 * clock period 

➢ Input delays for non-RISC-V Bus Interface ports are 0.1*clock period. 

➢ output delays for non-RISC-V Bus Interface ports are 0.6*clock period. 
➢ core_sleep_o output delay is 0.25 * clock period. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



191 

 

A.3 clock gating 

Clock gating is a very common technique to save power by stopping the clock to 

a module when the module is not operating. Clock gating cells are required in 

CV32E40P, especially in sleep unit and latch-based register file.  These cells are 
specific to the selected target technology and thus not provided as part of the RTL 

design. Therefore, the clock gate RTL code that provided by open pulp is a 

simulation only version of the clock gating cell. This file contains a module 
called cv32e40p_clock_gate that has the following ports: 

• clk_i: Clock Input 

• en_i: Clock Enable Input 

• scan_cg_en_i: Scan Clock Gate Enable Input (activates the clock even 
though en_i is not set) 

• clk_o: Gated Clock Output 

We manually instantiated clock gating cells from our standard cell library 

(Nangate Open Cell Library) that is wrapped in a module called cluster clock 
gating and has the following ports: 

• clk_i: Clock Input 

• en i: Clock Enable Input 

• test en i: Test Enable Input (activates the clock even though en i is not set) 

• clk_o: Gated Clock Output 

 

 

Figure 79: The clock gate 
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A.4 IR Drop Analysis: 

The voltage drops in metal wires that make up power grids before it reaches the 

vdd pins of the cells is known as IR Drop. When there are cells with high current 

requirements or high switching regions, the IR drops. The IR drop creates a voltage 
loss, which delays the cells, triggering setup and hold violations. Once the chip is 
produced, hold violations cannot be corrected. 

A device's power consumption is divided into two categories: dynamic, also 

known as switching power, and static, also known as leakage power. Leakage 
power has become the primary power consumer in geometries lower than 90nm, 

whilst switching is the larger contribution in larger geometries. Both forms of 
power can be reduced using power reduction measures. 

 

Figure 80: The IR analysis 
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A.4.1. Power Dissipation in CMOS 

Total power is a function of switching activity, capacitance, voltage, and the 

transistor structure itself. 

 

Figure 81: The power dissipation in CMOS 

Total power is the sum of the dynamic and leakage power 

𝑇𝑜𝑡𝑎𝑙 𝑃𝑜𝑤𝑒𝑟 =  𝑃𝑠𝑤𝑖𝑡𝑐ℎ𝑖𝑛𝑔 +  𝑃𝑠ℎ𝑜𝑟𝑡 𝑐𝑖𝑟𝑐𝑢𝑖𝑡 +  𝑃𝑙𝑒𝑎𝑘𝑎𝑔𝑒  

Equation 6:The total power 

There are two types of IR drop analysis namely: 

A.4.1.1.  Static IR drop analysis: 

Leakage power is a function of the supply voltage 𝑉𝑑𝑑, the switching threshold 
voltage 𝑉𝑡ℎ , and the transistor size. 

𝑃𝐿𝑒𝑎𝑘𝑎𝑔𝑒 =  𝑓 (𝑉𝑑𝑑, 𝑉𝑡ℎ, 𝑊/𝐿) 

Equation 7: The leakage power 

Where 𝑉𝑑𝑑 = the supply voltage, 𝑉𝑡ℎ  = the threshold voltage, 𝑊 = the transistor 
width and 𝐿 = the transistor length. 
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Figure 82: The leakage power 

 

Of the following leakage components, sub-threshold leakage is dominant. 

o I1: Diode reverse bias current 

o I2: Sub-threshold current 

o I3: Gate-induced drain leakage 

o I4: Gate oxide leakage 

While dynamic power is dissipated only when switching, leakage power due to 
leakage current is continuous. 

So, static power analysis: 

• Calculates the average voltage drop of entire design assuming current 

drawn across is constant. 

• As average current is calculated this analysis depends on time period. This 

analysis is good for signoff checks in older technology. 

𝑃𝑠𝑡𝑎𝑡𝑖𝑐 = 𝑉𝑑𝑑 × 𝐼𝑙𝑒𝑎𝑘𝑎𝑔𝑒 

Equation 8: The static power 

 



195 

 

A.4.1.2. Dynamic power: 

Dynamic IR drop analysis: 

• Depends on switching activity of the logic. 

• Is vector dependent. 

• Less dependent on clock period as depends on instantaneous current. 

• Analysis of peak current demand and highly localized cells. 

 

Dynamic power is the sum of two factors: switching power plus short-circuit 
power. 

Switching power is dissipated when charging or discharging internal and net 

capacitances. Short-circuit power is the power dissipated by an instantaneous 
short-circuit connection between the supply voltage and the ground at the time the 
gate switches state. 

𝑃𝑠𝑤𝑖𝑡𝑐ℎ𝑖𝑛𝑔  =  𝑎. 𝑓. 𝐶𝑒𝑓𝑓 . 𝑉𝑑𝑑
2 

Equation 9: The switching power 

Where 𝑎 = switching activity, 𝑓 = switching frequency, 𝐶𝑒𝑓𝑓 = the effective 

capacitance and 𝑉𝑑𝑑= the supply voltage. 

𝑃𝑠ℎ𝑜𝑟𝑡 𝑐𝑖𝑟𝑐𝑢𝑖𝑡 =  𝐼𝑠𝑐 .𝑉𝑑𝑑 . 𝑓 

Equation 10: The short-circuit power 

Where 𝐼𝑠𝑐  = the short-circuit current during switching, 𝑉𝑑𝑑= the supply voltage 
and 𝑓 = switching frequency. 

 



196 

 

 

Figure 83: The dynamic power 

Dynamic power can be lowered by reducing switching activity and clock 

frequency, which affects performance; and also, by reducing capacitance and 
supply voltage. Dynamic power can also be reduced by cell selection-faster slew 
cells consume less dynamic power. 

A.4.2. Methods to reduce IR drop 

Robust power mesh– Initial power grid is made based on static IR analysis due 
to late availability of switching activity. If there is IR drop due to some of the 
clustered cells then adding a strip will make the power mesh more robust. 

 

Figure 84: Custom power rail added to make it robust 
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• De-cap– These are decoupling capacitors which are spread across the high 

switching region to maintain the voltage. 

• Spacing– If clock cells are clustered and causing IR drop, then by spacing 

them apart near to different power rails will reduce the IR drop. While 

shifting the cell to next power rail, it should be made sure that the power 

rail is not driving many cells, because adding another cell may give IR drop. 

 

• Reducing load– Cells driving more load will be drawing more current. 

Hence reducing load will reduce IR drop. 

• Downsizing– Cells of smaller size will draw less current. But the transition 

of cells should not become worse. 

• The number of power switches can be increased to reduce IR drop 

• It should be made sure that all the power pins of macros are properly 

connected to the power rails. 

Note: 

• For accurate dynamic analysis VCD files (switching activity file) with SDF 

(standard delay format) is better. 

• Glitches produced from combinational circuit may act as instantaneous 

switch. Reducing them will decrease the pessimism of dynamic IR drop 

analysis. 
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• IR drop analysis is done in RC worst corner (corner having more resistance 

of rails) and FF process, high voltage and high temp corner (PVT corner) 

because current is drawn more in this corner. 

A.5 Design Rule Check (DRC) 

The Design Rule Check (DRC) is a check for certain layout rules, to ensure 

design will be manufactured reliably. It is a part of the PDK that determines 
whether the layout of a chip satisfies a series of recommended parameters called 

design rules. Design rules are set of parameters provided by semiconductor 

manufacturers to the designers, in order to verify the correctness of a mask set. It 
varies based on semiconductor manufacturing process. These rule set describes 

certain restrictions in geometry and connectivity to ensure that the design has 
sufficient margin to take care of any variability in manufacturing process.  

Design rule checks are nothing but physical checks of metal width, pitch and 
spacing requirement for the different layers with respect to different 

manufacturing process. If we give physical connection to the components without 

considering the DRC rules, then it will lead to failure of functionality of chip, so all 
DRC violations has to be cleaned up. 

Here are some basic and common types of DRC rules 

• Minimum width 

• Minimum spacing  

• Minimum area 
• Wide metal jog 

• Misaligned via wire 

• Special notch spacing 
• End of line spacing 

 

After the completion of physical connection, we check each and every polygon 

in the design, based on the design rules and reports all the violations. This whole 
process is called Design Rule Check. 
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A.6 Layout vs. Schematic (LVS) 

DRC only checks if the given layout complies with the fabrication unit's design 

requirements. It does not guarantee layout functionality. As a result, the concept of 

LVS was born. This appendix focuses on how LVS works and the most common 
challenges that LVS users confront. 

A.6.1. How LVS works 

Inputs needed to perform LVS are: 

• (.v) netlist of the design 

• GDS layout database of the design 

• LVS rule deck 

Note: .v and GDS should be of same stage 

The LVS rule deck is a collection of code written in SVRF (Standard Verification 

Rule Format) or TCL Verification Format (TVF). It instructs the tool on how to 

extract devices and IC connectivity. It contains the layer definition, which is used 
to identify the layers in the layout file and match them to their GDS locations. It 
also has definitions for device structures. 

A.6.2. Steps of LVS check  

1. Extraction: The tool accepts a GDSII file with all of the layers and uses a 

polygon-based technique to identify components such as transistors, diodes, 

capacitors, and resistors, as well as connectivity information between 

devices in the layout. All of the device layers, device terminals, device sizes, 

nets, vias, and pin positions are described and given a unique identifier. 

2. Reduction: All the defined information is extracted in the form of netlist. 

3. Comparison: Using the LVS rule deck, the extracted layout netlist is 

compared to the netlist of the same stage. The number of instances, nets, and 

ports are compared at this point. All mismatches are reported, including 

shorts and openings, pin mismatches, and so on. Topology and size 

mismatch are also checked by the tools. 
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A.6.3. LVS flow 

 

Figure 85: The LVS flow 
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A.6.4. Commonly faced LVS issues 

LVS check includes following comparisons: 

• Number of devices in schematic and its layout 

• Type of devices in schematic and its layout 

• Number of nets in schematic and its layout 

A.6.5. Typical errors which can occur during LVS checks 

1. Shorts: Shorts are formed, if two or more wires which should not be 

connected together are connected. 

2. Opens: Opens are formed, if the wires or components which should be 

connected together are left floating or partially connected. 

3. Component mismatch: Component mismatch can happen, if components of 

different types are used (e.g, LVT cells instead of HVT cells). 
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Appendix B 

Scripts of Flat Flow 

B.1 Synthesis script 

 

set design cv32e40p_core 

set_app_var   search_path 
"/home/standard_cell_libraries/NangateOpenCellLibrary_PDKv1_3_v2010_12/lib/Front
_End/Liberty/NLDM" 

set_app_var link_library "* NangateOpenCellLibrary_ss0p95vn40c.db" 

set_app_var target_library "NangateOpenCellLibrary_ss0p95vn40c.db" 

sh rm -rf work 

sh mkdir -p work 

define_design_lib work -path ./work 

set hdlin_sverilog_std                  2009 

analyze -library work -format verilog 
/home/standard_cell_libraries/NangateOpenCellLibrary_PDKv1_3_v2010_12/lib/Back_

End/virtuoso/NangateOpenCellLibrary/CLKGATETST_X4/functional/verilog.v 

    analyze -library work -format sverilog ../rtl/cv32e40p_register_file_ff.sv 

    analyze -library work -format sverilog ../rtl/include/cv32e40p_apu_core_pkg.sv 

    analyze -library work -format sverilog ../rtl/include/cv32e40p_pkg.sv 

    analyze -library work -format sverilog ../rtl/include/cv32e40p_fpu_pkg.sv 

    analyze -library work -format sverilog ../rtl/cv32e40p_alu.sv 
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    analyze -library work -format sverilog ../rtl/cv32e40p_alu_div.sv 

    analyze -library work -format sverilog ../rtl/cv32e40p_ff_one.sv 

    analyze -library work -format sverilog ../rtl/cv32e40p_popcnt.sv 

    analyze -library work -format sverilog ../rtl/cv32e40p_compressed_decoder.sv 

    analyze -library work -format sverilog ../rtl/cv32e40p_controller.sv 

    analyze -library work -format sverilog ../rtl/cv32e40p_cs_registers.sv 

    analyze -library work -format sverilog ../rtl/cv32e40p_decoder.sv 

    analyze -library work -format sverilog ../rtl/cv32e40p_int_controller.sv 

    analyze -library work -format sverilog ../rtl/cv32e40p_ex_stage.sv 

    analyze -library work -format sverilog ../rtl/cv32e40p_hwloop_regs.sv 

    analyze -library work -format sverilog ../rtl/cv32e40p_id_stage.sv 

    analyze -library work -format sverilog ../rtl/cv32e40p_if_stage.sv 

    analyze -library work -format sverilog ../rtl/cv32e40p_load_store_unit.sv 

    analyze -library work -format sverilog ../rtl/cv32e40p_mult.sv 

    analyze -library work -format sverilog ../rtl/cv32e40p_prefetch_buffer.sv 

    analyze -library work -format sverilog ../rtl/cv32e40p_prefetch_controller.sv 

    analyze -library work -format sverilog ../rtl/cv32e40p_obi_interface.sv 

    analyze -library work -format sverilog ../rtl/cv32e40p_aligner.sv 

    analyze -library work -format sverilog ../rtl/cv32e40p_sleep_unit.sv 

    analyze -library work -format sverilog ../rtl/cv32e40p_core.sv 

    analyze -library work -format sverilog ../rtl/cv32e40p_apu_disp.sv 

    analyze -library work -format sverilog ../rtl/cv32e40p_fifo.sv 



204 

 

    analyze -library work -format sverilog ../rtl/cv32e40p_clock_gate.sv 

analyze -library work -format sverilog  ../rtl/${design}.sv 

elaborate $design -lib work 

current_design  

report_hierarchy > ./report/synth_hier.rpt 

check_design 

source ../constraints/cv32e40p_core.sdc 

link 

compile_ultra -timing_high_effort_script -retime 

compile_ultra -timing_high_effort_script -retime -incremental 

#report_auto_ungroup 

report_area > ./report/synth_area.rpt 

report_power > ./report/synth_power.rpt 

report_cell > ./report/synth_cells.rpt 

report_qor  > ./report/synth_qor.rpt 

report_resources > ./report/synth_resources.rpt 

report_timing -max_paths 10 > ./report/synth_timing.rpt  

write_sdc  output/${design}.sdc  

define_name_rules  no_case -case_insensitive 

change_names -rule no_case -hierarchy 

change_names -rule verilog -hierarchy 

set verilogout_no_tri  true 
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set verilogout_equation  false 

write -hierarchy -format verilog -output output/${design}.sv  

write -f ddc -hierarchy -output output/${design}.ddc  

dc_shell-t |tee ./log/syn.log   

exit 

 

 

B.2 PnR scripts 

############################################## 

########### 1. DESIGN SETUP ################## 

############################################## 

set design cv32e40p_core 

sh rm -rf $design 

set sc_dir "/home/standard_cell_libraries/NangateOpenCellLibrary_PDKv1_3_v2010_12" 

set_app_var search_path 
"/home/standard_cell_libraries/NangateOpenCellLibrary_PDKv1_3_v2010_12/lib/Front
_End/Liberty/NLDM \ 

    /home/mohamed/Desktop/johnson/rtl" 

set_app_var link_library "* NangateOpenCellLibrary_ss0p95vn40c.db" 

set_app_var target_library "NangateOpenCellLibrary_ss0p95vn40c.db" 

create_mw_lib   ./${design} \ 

                -technology $sc_dir/tech/techfile/milkyway/FreePDK45_10m.tf \ 
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  -mw_reference_library $sc_dir/lib/Back_End/mdb \ 

  -open 

set tlupmax "$sc_dir/tech/rcxt/FreePDK45_10m_Cmax.tlup" 

set tlupmin "$sc_dir/tech/rcxt/FreePDK45_10m_Cmin.tlup" 

set tech2itf "$sc_dir/tech/rcxt/FreePDK45_10m.map" 

set_tlu_plus_files -max_tluplus $tlupmax \ 

                   -min_tluplus $tlupmin \ 

          -tech2itf_map $tech2itf 

import_designs  ../syn/output/${design}.v \ 

                -format verilog \ 

  -top ${design} \ 

  -cel ${design} 

source  ../syn/output/${design}.sdc 

save_mw_cel -as ${design}_1_imported 

############################################## 

########### 2. Floorplan ##################### 

############################################## 

## Create Starting Floorplan 

############################ 

create_floorplan -core_utilization 0.25 \ 

        -core_aspect_ratio 2 \ 

 -start_first_row -flip_first_row \ 
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 -left_io2core 12.4 -bottom_io2core 12.4 -right_io2core 12.4 -top_io2core 12.4 

## CONSTRAINTS 

############## 

## Here, We define more constraints on your design that are related to floorplan stage. 

report_ignored_layers 

remove_ignored_layers -all 

set_ignored_layers -max_routing_layer metal8 

## Initial Virtual Flat Placement 

################################# 

## Use the following command with any of its options to meet a specific target  

set_app_var  placer_max_cell_density_threshold 0.3 

create_fp_placement -timing_driven -no_hierarchy_gravity -effort high -congestion -
incremental all 

save_mw_cel -as ${design}_2_fp 

################################################## 

########### 3. POWER NETWORK ##################### 

################################################## 

## Defining Logical POWER/GROUND Connections 

############################################ 

derive_pg_connection   -power_net VDD  \ 

    -ground_net VSS \ 

    -power_pin VDD  \ 



208 

 

    -ground_pin VSS  

## Define Power Ring  

#################### 

set_fp_rail_constraints  -set_ring -nets  {VDD VSS}  \ 

                         -horizontal_ring_layer { metal9 } \ 

                         -vertical_ring_layer { metal10 } \ 

    -ring_spacing 0.8 \ 

    -ring_width 5 \ 

    -ring_offset 0.8 \ 

    -extend_strap core_ring 

## Define Power Mesh  

#################### 

set_fp_rail_constraints -add_layer  -layer metal10 -direction vertical   -max_strap 128 -
min_strap 20 -min_width 2.5 -spacing minimum 

set_fp_rail_constraints -add_layer  -layer metal9  -direction horizontal -max_strap 128 -
min_strap 20 -min_width 2.5 -spacing minimum 

set_fp_rail_constraints -add_layer  -layer metal8  -direction vertical   -max_strap 128 -
min_strap 20 -min_width 2.5 -spacing minimum 

set_fp_rail_constraints -set_global 

## Creating virtual PG pads 

########################### 

# you can create them with gui. Preroute > Create Virtual Power Pad 

set die_llx [lindex [lindex [ get_attribute [get_die_area] bbox] 0] 0] 
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set die_lly [lindex [lindex [ get_attribute [get_die_area] bbox] 0] 1] 

set die_urx [lindex [lindex [ get_attribute [get_die_area] bbox] 1] 0] 

set die_ury [lindex [lindex [ get_attribute [get_die_area] bbox] 1] 1]  

for {set i "[expr $die_llx + 20]"} {$i < "[expr $die_urx - 40]"} {set i [expr $i + 80]} { 

 create_fp_virtual_pad -net VSS -point "{$i $die_lly}" 

 create_fp_virtual_pad -net VDD -point "{[expr $i + 40] $die_lly}" 

 create_fp_virtual_pad -net VSS -point "{$i $die_ury}" 

 create_fp_virtual_pad -net VDD -point "{[expr $i + 40] $die_ury}" 

} 

for {set i "[expr $die_lly + 20]"} {$i < "[expr $die_ury - 40]"} {set i [expr $i + 80]} { 

 create_fp_virtual_pad -net VSS -point "{$die_llx $i}" 

 create_fp_virtual_pad -net VDD -point "{$die_llx [expr $i + 40]}" 

 

 create_fp_virtual_pad -net VSS -point "{$die_urx $i}" 

 create_fp_virtual_pad -net VDD -point "{$die_urx [expr $i + 40] }" 

} 

synthesize_fp_rail  -nets {VDD VSS} -synthesize_power_plan -target_voltage_drop 22 -
voltage_supply 1.1 -power_budget 500 

## Analyze IR-drop; Modify power network constraints and re-synthesize, as needed. 

## Max IR is 2% of Nominal Supply. In our case, 0.02 x 1.1v= 22mv 

commit_fp_rail 

set_preroute_drc_strategy -max_layer metal8 
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preroute_standard_cells -fill_empty_rows -remove_floating_pieces 

## If you want to remove power and recreate it 

#remove_net_shape  [get_net_shapes -of_objects [get_nets -all "VSS VDD"]] 

#remove_via  [get_vias -of_objects [get_nets -all "VSS VDD"]] 

## MAy need => remove_fp_virtual_pad -all 

## Analyze IR-drop; Modify power network constraints and re-synthesize, as needed. 

analyze_fp_rail  -nets {VDD VSS} -power_budget 500 -voltage_supply 1.1 

## Final Floorplan Assessment 

#create_fp_placement -incremental all; # Updates fp placement after PG mesh creation. 

#### Analyze Congestion 

#### Analyze Timing 

## Add Well Tie Cells 

##################### 

add_tap_cell_array -master   TAP \ 

          -distance 30 \ 

          -pattern  stagger_every_other_row 

save_mw_cel -as ${design}_3_power 

report_timing -max_paths 10 > ./reports/timing_CU_power.rpt  

############################################## 

########### 4. Placement ##################### 

############################################## 

puts "start_place" 
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## CHECKS 

######### 

set_ignored_layers -max_routing_layer metal8 

report_ignored_layers ; # To Make sure they are as wanted. 

check_physical_design -stage pre_place_opt 

check_physical_constraints 

## INITIAL PLACEMENT 

#################### 

## Initial Placement can be done using the following command using any of its target 
options  

place_opt  

## OPTIMIZATION 

############### 

# psynopt -area_recovery |-power| |-congestion|  

psynopt -congestion 

 

## FINAL ASSESSMENT 

################### 

check_legality 

## If no legalized cells => legalize_placement -effort high -incremental  

# Check Congestion 
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# Check Timing  

 report_design_physical -utilization > ./reports/utilization_placement.rpt 

# DEFINING POWER/GROUND NETS AND PINS     

derive_pg_connection     -power_net VDD  \ 

    -ground_net VSS \ 

    -power_pin VDD  \ 

    -ground_pin VSS  

## Tie fixed values 

set tie_pins [get_pins -all -filter "constant_value == 0 || constant_value == 1 && name !~ 
V* && is_hierarchical == false "] 

derive_pg_connection   -power_net VDD  \ 

    -ground_net VSS \ 

    -tie 

connect_tie_cells -objects $tie_pins \ 

                  -obj_type port_inst \ 

    -tie_low_lib_cell  LOGIC0_X1 \ 

    -tie_high_lib_cell LOGIC1_X1 

puts "finish_place" 

save_mw_cel -as ${design}_4_placed 

report_timing -max_paths 10 > ./reports/timing_CU_placement.rpt  

report_area > ./reports/area_placement.rpt 
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############################################## 

########### 5. CTS       ##################### 

############################################## 

puts "start_cts" 

## CHECKS 

######### 

check_physical_design -stage pre_clock_opt  

check_clock_tree  

report_clock_tree 

## CONSTRAINTS  

############## 

## Here, We define more constraints on your design that are related to CTS stage. 

set_driving_cell -lib_cell BUF_X16 -pin Z [get_ports clk_i] 

#### Set Clock Exceptions 

### Set Clock Control/Targets 

set_clock_tree_options \ 

                -clock_trees clk_i \ 

  -target_early_delay 0.1 \ 

  -target_skew 0.5 \ 

  -max_capacitance 300 \ 

  -max_fanout 10 \ 

  -max_transition 0.150 
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set_clock_tree_options -clock_trees clk_i \ 

  -buffer_relocation true \ 

  -buffer_sizing true \ 

  -gate_relocation true \ 

  -gate_sizing true  

## Selection of CTS cells 

set_clock_tree_references -references [get_lib_cells */CLKBUF*]  

### Set Clock Physical Constraints 

## Clock Non-Default Ruls (NDR) - Set it to be double width and double spacing  

define_routing_rule my_route_rule  \ 

  -widths   {metal3 0.14 metal4 0.28 metal5 0.28 metal6 0.28 metal7 0.8} \ 

  -spacings {metal3 0.14 metal4 0.28 metal5 0.28 metal6 0.28 metal7 0.8}  

set_clock_tree_options -clock_trees clk_i \ 

                       -routing_rule my_route_rule  \ 

         -layer_list "metal3 metal4 metal5 metal6 metal7" 

## To avoid NDR at clock sinks 

set_clock_tree_options -use_default_routing_for_sinks 1 

report_clock_tree -settings 

## Clock Tree : Synhtesis, Optimization, and Routing 

#################################################### 

## The 3 steps can be done with the combo command clock_opt. But below,  we do them 
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individually. 

compile_clock_tree  -clock_trees clk_i 

## 1- CTS  

clock_opt -only_cts -no_clock_route 

## analyze 

    report_design_physical -utilization 

    report_clock_tree -summary ; # reports for the clock tree, regardless of relation between 
FFs 

    report_clock_tree 

    report_clock_timing -type summary ; # reports for the clock tree, considering relation 
between FFs   

    report_timing         ; #slack (VIOLATED)   -0.02 

    report_timing -delay_type min      ;       #report_worest_hold_violation   la2eto 0.01 met 

    report_constraints -all_violators -max_delay -min_delay 

    # Check Congestion 

    # Check Timing 

## 2- CTO 

## To Consider Hold Fix -- Design Dependent 

clock_opt -only_psyn -no_clock_route 

#analyze 

## 3- Clock Tree Routing 

route_group -all_clock_nets 

#analyze 
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clock_opt -only_psyn -congestion 

clock_opt -only_psyn  

route_group -all_clock_nets 

set_propagated_clock [get_clocks clk_i] 

## If any issue at analysis, update CT constraints  

################################################## 

# DEFINING POWER/GROUND NETS AND PINS     

derive_pg_connection     -power_net VDD  \ 

    -ground_net VSS \ 

    -power_pin VDD  \ 

    -ground_pin VSS  

save_mw_cel -as ${design}_5_cts 

puts "finish_cts" 

report_area > ./reports/area_CU_CTS.rpt 

report_cell > ./reports/cells_CU_CTS.rpt 

report_qor  > ./reports/qor_CU_CTS.rpt 

report_resources > ./reports/resources_CU_CTS.rpt 

report_timing -max_paths 10 > ./reports/timing_CU_CTS.rpt  

report_power > ./reports/power_CU_CTS.rpt 

############################################## 

########### 6. Routing   ##################### 

############################################## 
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## Before starting to route, you should add spare cells 

insert_spare_cells -lib_cell {NOR2_X4 NAND2_X4} \ 

     -num_instances 20 \ 

     -cell_name SPARE_PREFIX_NAME \ 

     -tie 

set_dont_touch  [all_spare_cells] true 

set_attribute [all_spare_cells]  is_soft_fixed true 

############################################## 

puts "start_route" 

get_utilization -flat 

#set_dont_touch [get_nets -all VDD] 

#set_dont_touch [get_nets -all VSS] 

check_physical_design -stage pre_route_opt; # dump check_physical_design result to f ile 

./cpd_pre_route_opt_*/index.html 

all_ideal_nets 

all_high_fanout -nets -threshold 100 

check_routeability 

set_delay_calculation_options -arnoldi_effort low 

set_route_options -groute_timing_driven true \ 

           -groute_incremental true \ 

           -track_assign_timing_driven true \ 
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           -same_net_notch check_and_fix  

set_si_options -route_xtalk_prevention true\ 

        -delta_delay true \ 

        -min_delta_delay true \ 

        -static_noise true\ 

        -timing_window true  

route_auto -effort high 

save_mw_cel -as ${design}_30_after_route_auto 

verify_lvs -max_error 1000 

verify_zrt_route 

route_opt 

save_mw_cel -as ${design}_31_after_route_opt 

verify_lvs -max_error 1000 

verify_zrt_route 

route_opt -incremental -effort high 

route_opt -incremental -effort high 

route_opt -incremental -effort high 

save_mw_cel -as ${design}_32_now 

focal_opt -setup_endpoints all 

focal_opt -drc_pins  all 

focal_opt -drc_nets  all 

route_opt -incremental -effort high 
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route_opt -incremental -effort high 

route_opt -incremental -effort high 

derive_pg_connection     -power_net VDD  \ 

    -ground_net VSS \ 

    -power_pin VDD  \ 

    -ground_pin VSS  

#report_noise 

#report_timing -crosstalk_delta 

report_area > ./reports/area_route.rpt 

report_cell > ./reports/cells_route.rpt 

report_qor  > ./reports/qor_route.rpt 

report_resources > ./reports/resources_route.rpt 

report_timing -max_paths 10 > ./reports/timing_route.rpt  

report_power > ./reports/power_route.rpt 

save_mw_cel -as ${design}_6_routed 

puts "finish_route" 

############################################## 

########### 7. Finishing ##################### 

############################################## 

insert_stdcell_filler -cell_without_metal {FILLCELL_X32 FILLCELL_X16 FILLCELL_X8 
FILLCELL_X4 FILLCELL_X2 FILLCELL_X1} \ 

 -connect_to_power VDD -connect_to_ground VSS 
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derive_pg_connection     -power_net VDD  \ 

    -ground_net VSS \ 

    -power_pin VDD  \ 

    -ground_pin VSS  

save_mw_cel -as ${design}_7_finished 

save_mw_cel -as ${design} 

############################################## 

########### 8. Checks and Outputs ############ 

############################################## 

verify_zrt_route 

verify_lvs -ignore_floating_port -ignore_floating_net \ 

           -check_open_locator -check_short_locator 

set_write_stream_options  -map_layer 
$sc_dir/tech/strmout/FreePDK45_10m_gdsout.map \ 

                         -output_filling fill \ 

    -child_depth 20 \ 

    -output_outdated_fill  \ 

    -output_pin  {text geometry} 

write_stream -lib $design \ 

                  -format gds\ 

    -cells $design\ 

    ./output/${design}.gds 

define_name_rules new_verilog -special verilog -target_bus_naming_style {%s[%d]} -
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check_internal_net_name -check_bus_indexing 

change_names -rule new_verilog -hierarchy 

set verilogout_no_tri  true 

set verilogout_equation  false 

write_sdc ./output/${design}.sdc  

write_verilog -pg -no_physical_only_cells ./output/cv32e40p_core_icc.v 

write_verilog -no_physical_only_cells ./output/cv32e40p_core_icc_nopg.v 

extract_rc 

write_parasitics -output {./output/cv32e40p_core.spef} 

close_mw_cel 

close_mw_lib 

exit 

 

B.3 STA-Max script 

set design cv32e40p_core 

set  link_path  "* 

/home/standard_cell_libraries/NangateOpenCellLibrary_PDKv1_3_v2010_12/lib/Front_
End/Liberty/NLDM/NangateOpenCellLibrary_ss0p95vn40c.db" 

read_verilog "../../../pnr/output/${design}_icc.v" 

current_design $design 

link 

source ../../../pnr/output/${design}.sdc 
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read_parasitics ../../../pnr/output/${design}.spef.max 

#read_parasitics -format spef ../../rcxt/cmax/cv32e40p_core_cmax_tm40.spef 

set_propagated_clock [get_clocks clk_i] 

update_timing 

report_timing -delay_type max 

fix_eco_timing -type setup -method size_cell -buffer_list {BUF_X1 BUF_X2 BUF_X3 
BUF_X4} 

write_changes -format icctcl -output ./ecol.tcl 

save_session ${design}_max.session 

report_constraint -all_violators -significant_digits 4 > ./${design}.max_constr.rpt 

report_timing -delay_type max -nworst 40 -significant_digits 4 > 
./${design}.max_timing.rpt 

write_sdf ./${design}.max.sdf 

 

B.4 STA-Min script 

set design cv32e40p_core 

set  link_path  "* 
/home/standard_cell_libraries/NangateOpenCellLibrary_PDKv1_3_v2010_12/lib/Front_
End/Liberty/NLDM/NangateOpenCellLibrary_ff1p25vn40c.db" 

read_verilog "../../../pnr/output/${design}_icc.v" 

current_design $design 

link 

source ../../../pnr/output/${design}.sdc 
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read_parasitics ../../../pnr/output/${design}.spef.min 

#read_parasitics -format spef ../../rcxt/cmax/cv32e40p_core_cmax_tm40.spef 

set_propagated_clock [get_clocks clk_i] 

update_timing 

report_timing -delay_type min 

save_session ${design}_min.session 

report_constraint -all_violators -significant_digits 4 > ./${design}.min_constr.rpt 

report_timing -delay_type min -nworst 40 -significant_digits 4 > 
./${design}.min_timing.rpt 

write_sdf ./${design}.min.sdf 

 

Appendix C 

Scripts of Hierarchical Flow 

C.1 Synthesis script 

dc_shell-t |tee ./log/syn.log 

set design cv32e40p_core 

set_app_var  search_path 
"/home/standard_cell_libraries/NangateOpenCellLibrary_PDKv1_3_v2010_12/lib/Fro
nt_End/Liberty/NLDM" 

set_app_var link_library "* NangateOpenCellLibrary_ss0p95vn40c.db" 

set_app_var target_library "NangateOpenCellLibrary_ss0p95vn40c.db" 

sh rm -rf work 
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sh mkdir -p work 

define_design_lib work -path ./work 

set hdlin_sverilog_std                  2009 

    analyze -library work -format sverilog ../rtl/cv32e40p_register_file_ff.sv 

    analyze -library work -format sverilog ../rtl/include/cv32e40p_apu_core_pkg.sv 

    analyze -library work -format sverilog ../rtl/include/cv32e40p_pkg.sv 

    analyze -library work -format sverilog ../rtl/include/cv32e40p_fpu_pkg.sv 

    analyze -library work -format sverilog ../bhv/include/cv32e40p_tracer_pkg.sv 

    analyze -library work -format sverilog ../rtl/cv32e40p_alu.sv 

    analyze -library work -format sverilog ../rtl/cv32e40p_alu_div.sv 

    analyze -library work -format sverilog ../rtl/cv32e40p_ff_one.sv 

    analyze -library work -format sverilog ../rtl/cv32e40p_popcnt.sv 

    analyze -library work -format sverilog ../rtl/cv32e40p_compressed_decoder.sv 

    analyze -library work -format sverilog ../rtl/cv32e40p_controller.sv 

    analyze -library work -format sverilog ../rtl/cv32e40p_cs_registers.sv 

    analyze -library work -format sverilog ../rtl/cv32e40p_decoder.sv 

    analyze -library work -format sverilog ../rtl/cv32e40p_int_controller.sv 

    analyze -library work -format sverilog ../rtl/cv32e40p_ex_stage.sv 

    analyze -library work -format sverilog ../rtl/cv32e40p_hwloop_regs.sv 

    analyze -library work -format sverilog ../rtl/cv32e40p_id_stage.sv 

    analyze -library work -format sverilog ../rtl/cv32e40p_if_stage.sv 

    analyze -library work -format sverilog ../rtl/cv32e40p_load_store_unit.sv 
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    analyze -library work -format sverilog ../rtl/cv32e40p_mult.sv 

    analyze -library work -format sverilog ../rtl/cv32e40p_prefetch_buffer.sv 

    analyze -library work -format sverilog ../rtl/cv32e40p_prefetch_controller.sv 

    analyze -library work -format sverilog ../rtl/cv32e40p_obi_interface.sv 

    analyze -library work -format sverilog ../rtl/cv32e40p_aligner.sv 

    analyze -library work -format sverilog ../rtl/cv32e40p_sleep_unit.sv 

    analyze -library work -format sverilog ../rtl/cv32e40p_apu_disp.sv 

    analyze -library work -format sverilog ../rtl/cv32e40p_fifo.sv 

    analyze -library work -format sverilog ../bhv/cv32e40p_sim_clock_gate.sv 

    analyze -library work -format sverilog ../bhv/cv32e40p_wrapper.sv 

analyze -library work -format sverilog  ../rtl/${design}.sv 

puts "elaborate_stage"  

elaborate $design -lib work 

current_design  

report_hierarchy > ./report/synth_hier.rpt 

check_design 

source ../constraints/cv32e40p_core.sdc 

link 

uniquify 

compile_ultra -no_autoungroup -timing_high_effort_script -retime  

report_timing -delay_type max 

compile_ultra -no_autoungroup -timing_high_effort_script -retime -incremental 
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compile_ultra -no_autoungroup -timing_high_effort_script -retime -incremental 

compile_ultra -no_autoungroup -timing_high_effort_script -retime -incremental 

report_area > ./report/synth_area.rpt 

report_power > ./report/synth_power.rpt 

report_timing -max_paths 10 > ./report/synth_timing.rpt  

write_sdc  output/${design}.sdc  

define_name_rules  no_case -case_insensitive 

change_names -rule no_case -hierarchy 

change_names -rule verilog -hierarchy 

set verilogout_no_tri  true 

set verilogout_equation  false 

write -hierarchy -format verilog -output output/${design}.v 

write -f ddc -hierarchy -output output/${design}.ddc  

exit 
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C.2 PnR scripts 

############################################## 

########### 1. DESIGN SETUP ################## 

############################################## 

icc_shell -output_log_file ./log/pnr.log  

set design cv32e40p_core 

sh rm -rf $design 

set sc_dir "/home/standard_cell_libraries/NangateOpenCellLibrary_PDKv1_3_v2010_12" 

set_app_var  search_path 
"/home/standard_cell_libraries/NangateOpenCellLibrary_PDKv1_3_v2010_12/lib/Front
_End/Liberty/NLDM" 

set_app_var link_library "* NangateOpenCellLibrary_ss0p95vn40c.db" 

set_app_var target_library "NangateOpenCellLibrary_ss0p95vn40c.db" 

create_mw_lib   ./${design} \ 

                -technology $sc_dir/tech/techfile/milkyway/FreePDK45_10m.tf \ 

  -mw_reference_library $sc_dir/lib/Back_End/mdb \ 

  -open 

set tlupmax "$sc_dir/tech/rcxt/FreePDK45_10m_Cmax.tlup" 

set tlupmin "$sc_dir/tech/rcxt/FreePDK45_10m_Cmin.tlup" 

set tech2itf "$sc_dir/tech/rcxt/FreePDK45_10m.map" 

set_tlu_plus_files -max_tluplus $tlupmax \ 

                   -min_tluplus $tlupmin \ 
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          -tech2itf_map $tech2itf 

import_designs  ../syn/output/${design}.v \ 

                -format verilog \ 

  -top ${design} \ 

  -cel ${design} 

source  ../constraints/cv32e40p_core.sdc 

set_propagated_clock [get_clocks clk_i] 

save_mw_cel -as ${design}_1_imported 

############################################## 

########### 2. Floorplan ##################### 

############################################## 

## Create Starting Floorplan 

############################ 

puts "start floorplan" 

create_floorplan -core_utilization 0.25 -core_aspect_ratio 2 \ 

 -start_first_row -flip_first_row \ 

 -left_io2core 12.4 -bottom_io2core 12.4 -right_io2core 12.4 -top_io2core 12.4 

report_ignored_layers 

remove_ignored_layers -all 

set_ignored_layers -max_routing_layer metal8 

## Initial Virtual Flat Placement 

################################# 



229 

 

set_app_var placer_max_cell_density_threshold 0.3 

 create_fp_placement 

 report_fp_placement 

puts "end floorplan" 

save_mw_cel -as ${design}_2_fp 

 

################################################## 

########### 3. POWER NETWORK ##################### 

################################################## 

puts "start powergrid" 

## Defining Logical POWER/GROUND Connections 

############################################ 

derive_pg_connection   -power_net VDD  \ 

    -ground_net VSS \ 

    -power_pin VDD  \ 

    -ground_pin VSS  

## Define Power Ring  

#################### 

set_fp_rail_constraints  -set_ring -nets  {VDD VSS}  \ 

                         -horizontal_ring_layer {  metal9 } \ 

                         -vertical_ring_layer { metal10 } \ 

    -ring_spacing 0.8 \ 
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    -ring_width 5 \ 

    -ring_offset 0.8 \ 

    -extend_strap core_ring 

 

## Define Power Mesh  

#################### 

set_fp_rail_constraints -add_layer  -layer metal10 -direction vertical   -max_strap 128 -
min_strap 20 -min_width 2.5 -spacing minimum 

set_fp_rail_constraints -add_layer  -layer metal9  -direction horizontal -max_strap 128 -
min_strap 20 -min_width 2.5 -spacing minimum 

set_fp_rail_constraints -add_layer  -layer metal8  -direction vertical   -max_strap 128 -
min_strap 20 -min_width 2.5 -spacing minimum 

set_fp_rail_constraints -set_global 

set die_llx [lindex [lindex [ get_attribute [get_die_area] bbox] 0] 0] 

set die_lly [lindex [lindex [ get_attribute [get_die_area] bbox] 0] 1] 

set die_urx [lindex [lindex [ get_attribute [get_die_area] bbox] 1] 0] 

set die_ury [lindex [lindex [ get_attribute [get_die_area] bbox] 1] 1]  

 

for {set i "[expr $die_llx + 20]"} {$i < "[expr $die_urx - 40]"} {set i [expr $i + 80]} { 

 create_fp_virtual_pad -net VSS -point "{$i $die_lly}" 

 create_fp_virtual_pad -net VDD -point "{[expr $i + 40] $die_lly}" 

 

 create_fp_virtual_pad -net VSS -point "{$i $die_ury}" 
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 create_fp_virtual_pad -net VDD -point "{[expr $i + 40] $die_ury}" 

} 

 

for {set i "[expr $die_lly + 20]"} {$i < "[expr $die_ury - 40]"} {set i [expr $i + 80]} { 

 create_fp_virtual_pad -net VSS -point "{$die_llx $i}" 

 create_fp_virtual_pad -net VDD -point "{$die_llx [expr $i + 40]}" 

 

 create_fp_virtual_pad -net VSS -point "{$die_urx $i}" 

 create_fp_virtual_pad -net VDD -point "{$die_urx [expr $i + 40] }" 

} 

synthesize_fp_rail  -nets {VDD VSS} -synthesize_power_plan -target_voltage_drop 22 -
voltage_supply 1.1 -power_budget 500 

analyze_fp_rail  -nets {VDD VSS} -power_budget 500 -voltage_supply 1.1 

commit_fp_rail 

set_preroute_drc_strategy -max_layer metal8 

preroute_standard_cells -fill_empty_rows -remove_floating_pieces 

## Add Well Tie Cells 

##################### 

add_tap_cell_array -master   TAP \ 

          -distance 30 \ 

          -pattern  stagger_every_other_row 

puts "end powergrid" 
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save_mw_cel -as ${design}_3_power 

############################################## 

########### 4. Placement ##################### 

############################################## 

puts "start_place" 

report_ignored_layers  

check_physical_design -stage pre_place_opt 

check_physical_constraints 

## INITIAL PLACEMENT 

place_opt 

## check Congestion -> open global congestion map 

# check timing 

report_timing -delay_type max 

report_timing -delay_type min 

## OPTIMIZATION 

############### 

psynopt 

##  ASSESSMENT 

################### 

check_legality 

## check Congestion -> open global congestion map 

# check timing 
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report_timing -delay_type max 

report_timing -delay_type min 

# DEFINING POWER/GROUND NETS AND PINS     

derive_pg_connection     -power_net VDD  \ 

    -ground_net VSS \ 

    -power_pin VDD  \ 

    -ground_pin VSS  

## Tie fixed values 

################### 

set tie_pins [get_flat_pins -all -filter "(constant_value == 0 || constant_value == 1) && 
name !~ V* && is_hierarchical == false "] 

 

derive_pg_connection   -power_net VDD  \ 

    -ground_net VSS \ 

    -tie 

connect_tie_cells -objects $tie_pins \ 

                  -obj_type port_inst \ 

    -tie_low_lib_cell  LOGIC0_X1 \ 

    -tie_high_lib_cell LOGIC1_X1 

puts "finish_place" 

save_mw_cel -as ${design}_4_placed 

############################################## 
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########### 5. CTS       ##################### 

############################################## 

 

puts "start_cts" 

## CHECKS 

######### 

check_physical_design -stage pre_clock_opt  

check_clock_tree  

report_clock_tree 

set_driving_cell -lib_cell BUF_X16 -pin Z [get_ports clk_i] 

### Set Clock Control/Targets 

set_clock_tree_options \ 

                -clock_trees clk_i \ 

  -target_early_delay 0.1 \ 

  -target_skew 0.2 \ 

  -max_capacitance 300 \ 

  -max_fanout 10 \ 

  -max_transition 0.150 

set_clock_tree_options -clock_trees clk_i \ 

  -buffer_relocation true \ 

  -buffer_sizing true \ 

  -gate_relocation true \ 
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  -gate_sizing true  

## Selection of CTS cells 

set_clock_tree_references -references [get_lib_cells */CLKBUF*]  

### Set Clock Physical Constraints 

define_routing_rule my_route_rule  \ 

  -widths   {metal3 0.14 metal4 0.28 metal5 0.28 metal6 0.28 metal7 0.8} \ 

  -spacings {metal3 0.14 metal4 0.28 metal5 0.28 metal6 0.28 metal7 0.8}  

set_clock_tree_options -clock_trees clk_i \ 

                       -routing_rule my_route_rule  \ 

         -layer_list "metal3 metal4 metal5 metal6 metal7" 

set_clock_tree_options -use_default_routing_for_sinks 1 

report_clock_tree -settings 

## Clock Tree : Synhtesis, Optimization, and Routing 

#################################################### 

compile_clock_tree 

 

clock_opt -only_cts -no_clock_route 

## analyze 

    report_design_physical -utilization 

    report_clock_tree -summary   

    report_clock_tree 

    report_clock_timing -type summary  
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    report_timing -delay_type max 

    report_timing -delay_type min 

    report_constraints -all_violators -max_delay -min_delay 

## To Consider Hold Fix  

   set_fix_hold [all_clocks] 

   set_fix_hold_options -prioritize_tns -effort low 

set_propagated_clock [all_clocks] 

clock_opt -only_psyn -no_clock_route 

route_group -all_clock_nets  

derive_pg_connection     -power_net VDD  \ 

    -ground_net VSS \ 

    -power_pin VDD  \ 

    -ground_pin VSS  

puts "end_CTS" 

save_mw_cel -as ${design}_5_cts 

############################################## 

########### 6. ROUTING      ##################### 

############################################## 

puts "start_route" 

check_physical_design -stage pre_route_opt 

all_ideal_nets 

all_high_fanout -nets -threshold 100 



237 

 

check_routeability 

set_delay_calculation_options -arnoldi_effort low 

set_route_options -groute_timing_driven true \ 

           -groute_incremental true \ 

           -track_assign_timing_driven true \ 

           -same_net_notch check_and_fix  

 

set_si_options -route_xtalk_prevention true\ 

        -delta_delay true \ 

        -min_delta_delay true \ 

        -static_noise true\ 

        -timing_window true  

 set_fix_hold [all_clocks] 

   set_prefer -min  [get_lib_cells "*/BUF_X2 */BUF_X1"] 

   set_fix_hold_options -preferred_buffer -effort low 

set_propagated_clock [all_clocks] 

route_auto  

# check short nets 

verify_lvs -max_error 1000 

# check timing 

report_timing -delay_type max 

report_timing -delay_type min 
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# check max IR drop 

analyze_fp_rail  -nets {VDD VSS} -power_budget 500 -voltage_supply 1.1 

save_mw_cel -as ${design}_6_routed 

route_opt 

# check short nets 

verify_lvs -max_error 1000 

# check timing 

report_timing -delay_type max 

report_timing -delay_type min 

# check max IR drop 

analyze_fp_rail  -nets {VDD VSS} -power_budget 500 -voltage_supply 1.1 

save_mw_cel -as ${design}_6_routed2 

route_opt -incremental -effort high 

# check short nets 

verify_lvs -max_error 1000 

# check timing 

report_timing -delay_type max 

report_timing -delay_type min 

# check max IR drop 

analyze_fp_rail  -nets {VDD VSS} -power_budget 500 -voltage_supply 1.1 

save_mw_cel -as ${design}_6_routed7 
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route_opt -incremental -effort high 

# check short nets 

verify_lvs -max_error 1000 

# check timing 

report_timing -delay_type max 

report_timing -delay_type min 

# check max IR drop 

analyze_fp_rail  -nets {VDD VSS} -power_budget 500 -voltage_supply 1.1 

save_mw_cel -as ${design}_6_routed10 

derive_pg_connection     -power_net VDD  \ 

    -ground_net VSS \ 

    -power_pin VDD  \ 

    -ground_pin VSS  

save_mw_cel -as ${design}_6_routed4 

puts "finish_route" 

 

############################################## 

########### 7. Finishing ##################### 

############################################## 

insert_stdcell_filler -cell_without_metal {FILLCELL_X32 FILLCELL_X16 FILLCELL_X8 
FILLCELL_X4 FILLCELL_X2 FILLCELL_X1} \ 

 -connect_to_power VDD -connect_to_ground VSS 
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insert_zrt_redundant_vias  

derive_pg_connection     -power_net VDD  \ 

    -ground_net VSS \ 

    -power_pin VDD  \ 

    -ground_pin VSS 

create_port -direction inout VDD 

connect_net VDD [get_ports VDD] 

create_port -direction inout VSS 

connect_net VSS [get_ports VSS] 

save_mw_cel -as ${design}_7_finished 

save_mw_cel -as ${design} 

 

############################################## 

########### 8. Checks and Outputs ############ 

############################################## 

verify_lvs -ignore_floating_port -ignore_floating_net \ 

           -check_open_locator -check_short_locator 

verify_lvs -max_error 1000  

report_timing -delay_type max 

report_timing -delay_type min 

analyze_fp_rail  -nets {VDD VSS} -power_budget 500 -voltage_supply 1.1 

set_write_stream_options  -map_layer 
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$sc_dir/tech/strmout/FreePDK45_10m_gdsout.map \ 

                         -output_filling fill \ 

    -child_depth 20 \ 

    -output_outdated_fill  \ 

    -output_pin  {text geometry} 

 

write_stream -lib $design \ 

                  -format gds\ 

    -cells $design\ 

    ./output/${design}.gds 

define_name_rules new_verilog -special verilog -target_bus_naming_style {%s[%d]} -
check_internal_net_name -check_bus_indexing 

change_names -rule new_verilog -hierarchy 

set verilogout_no_tri  true 

set verilogout_equation  false 

write_verilog -pg -no_physical_only_cells ./output/${design}_icc.v 

write_verilog -no_physical_only_cells ./output/${design}_icc_nopg.v 

report_area > ./report/pnr_area.rpt 

report_power > ./report/pnr_power.rpt 

report_cell > ./report/pnr_cells.rpt 

report_qor  > ./report/pnr_qor.rpt 

report_resources > ./report/pnr_resources.rpt 
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report_timing -max_paths 10 > ./report/pnr_timing.rpt  

 

extract_rc 

write_parasitics -output {./output/hierarch.spef} 

create_rail_setup 

close_mw_cel 

close_mw_lib 

exit 

 

 

C.3 STA-Max script 

set  link_path  "$link_path 
/home/standard_cell_libraries/NangateOpenCellLibrary_PDKv1_3_v2010_12/lib/Front_
End/Liberty/NLDM/NangateOpenCellLibrary_ss0p95vn40c.db" 

read_verilog "../../../pnr/output/cv32e40p_core_icc.v" 

current_design cv32e40p_core 

link 

source ../../../constraints/cv32e40p_core.sdc 

set_propagated_clock [get_clocks clk_i] 

read_parasitics ../../../pnr/output/hierarch.spef.max 

#read_parasitics ../../rcxt/cmax/cv32e40p_core_cmax_tm40.spef 

#fix_eco_timing -type setup 
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#update_timing 

 

save_session cv32e40p_core_max_rcxt.session 

report_constraint -all_violators -significant_digits 4 > ./cv32e40p_core.max_constr.rpt 

report_timing -delay_type max -nworst 40 -significant_digits 4 > 
./cv32e40p_core.max_timing.rpt 

write_sdf ./cv32e40p_core.max.sdf 

exit 

 

C.4 STA-Min script 

Set  link_path  "$link_path 
/home/standard_cell_libraries/NangateOpenCellLibrary_PDKv1_3_v2010_12/lib/Front_
End/Liberty/NLDM/NangateOpenCellLibrary_ff1p25v0c.db" 

read_verilog "../../../pnr/output/cv32e40p_core_icc.v" 

current_design cv32e40p_core 

link 

source ../../../constraints/cv32e40p_core.sdc 

read_parasitics ../../../pnr/output/hierarch.spef.min 

#read_parasitics ../../rcxt/cmin/cv32e40p_core_cmin_t125.spef 

#fix_eco_timing -type hold -buffer_list {BUF_X16} -methods { insert_buffer} 

#update_timing 

save_session cv32e40p_core_min_rcxt.session 

report_constraint -all_violators -significant_digits 4 > ./cv32e40p_core.min_constr.rpt 
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report_timing -delay_type min -nworst 40 -significant_digits 4 > 
./cv32e40p_core.min_timing.rpt 

write_sdf ./cv32e40p_core.min.sdf 

exit 

 

Appendix D 

Scripts of Topographical Flow 

D.1 Synthesis 1st stage 

set design cv32e40p_core 

set_app_var search_path 
"/home/standard_cell_libraries/NangateOpenCellLibrary_PDKv1_3_v2010_12/lib/Front
_End/Liberty/NLDM" 

set_app_var link_library "* NangateOpenCellLibrary_ss0p95vn40c.db" 

set_app_var target_library "NangateOpenCellLibrary_ss0p95vn40c.db" 

sh rm -rf work 

sh mkdir -p work 

define_design_lib work -path ./work 

set hdlin_sverilog_std                  2009 

    analyze -library work -format sverilog ../rtl/cv32e40p_register_file_ff.sv 

    analyze -library work -format sverilog ../rtl/include/cv32e40p_apu_core_pkg.sv 

    analyze -library work -format sverilog ../rtl/include/cv32e40p_pkg.sv 

    analyze -library work -format sverilog ../rtl/include/cv32e40p_fpu_pkg.sv 
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    analyze -library work -format sverilog ../bhv/include/cv32e40p_tracer_pkg.sv 

    analyze -library work -format sverilog ../rtl/cv32e40p_alu.sv 

    analyze -library work -format sverilog ../rtl/cv32e40p_alu_div.sv 

    analyze -library work -format sverilog ../rtl/cv32e40p_ff_one.sv 

    analyze -library work -format sverilog ../rtl/cv32e40p_popcnt.sv 

    analyze -library work -format sverilog ../rtl/cv32e40p_compressed_decoder.sv 

    analyze -library work -format sverilog ../rtl/cv32e40p_controller.sv 

    analyze -library work -format sverilog ../rtl/cv32e40p_cs_registers.sv 

    analyze -library work -format sverilog ../rtl/cv32e40p_decoder.sv 

    analyze -library work -format sverilog ../rtl/cv32e40p_int_controller.sv 

    analyze -library work -format sverilog ../rtl/cv32e40p_ex_stage.sv 

    analyze -library work -format sverilog ../rtl/cv32e40p_hwloop_regs.sv 

    analyze -library work -format sverilog ../rtl/cv32e40p_id_stage.sv 

    analyze -library work -format sverilog ../rtl/cv32e40p_if_stage.sv 

    analyze -library work -format sverilog ../rtl/cv32e40p_load_store_unit.sv 

    analyze -library work -format sverilog ../rtl/cv32e40p_mult.sv 

    analyze -library work -format sverilog ../rtl/cv32e40p_prefetch_buffer.sv 

    analyze -library work -format sverilog ../rtl/cv32e40p_prefetch_controller.sv 

    analyze -library work -format sverilog ../rtl/cv32e40p_obi_interface.sv 

    analyze -library work -format sverilog ../rtl/cv32e40p_aligner.sv 

    analyze -library work -format sverilog ../rtl/cv32e40p_sleep_unit.sv 

    analyze -library work -format sverilog ../rtl/cv32e40p_core.sv 
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    analyze -library work -format sverilog ../rtl/cv32e40p_apu_disp.sv 

    analyze -library work -format sverilog ../rtl/cv32e40p_fifo.sv 

    analyze -library work -format sverilog ../bhv/cv32e40p_sim_clock_gate.sv 

    analyze -library work -format sverilog ../bhv/cv32e40p_wrapper.sv 

elaborate $design -lib work 

current_design  

check_design 

##in Topo 

#change_names -rules verilog -hier 

source ./cons/cv32e40p_core.sdc 

link 

compile_ultra -timing_high_effort_script  

report_timing -delay_type max  

compile_ultra -timing_high_effort_script -incremental 

report_timing -delay_type max  

compile_ultra -timing_high_effort_script -incremental 

report_timing -delay_type max  

report_area > ./report/synth_area_CU_topo1.rpt 

report_cell > ./report/synth_cells_CU_topo1.rpt 

report_qor  > ./report/synth_qor_CU_topo1.rpt 

report_resources > ./report/synth_resources_CU_topo1.rpt 

report_timing -max_paths 10 > ./report/synth_timing_CU_topo1.rpt  
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report_timing -delay_type min > ./report/synth_timing_CU_topo_hold1.rpt  

report_power > ./report/power_CU_topo1.rpt 

define_name_rules  no_case -case_insensitive 

change_names -rule no_case -hierarchy 

change_names -rule verilog -hierarchy 

set verilogout_no_tri  true 

set verilogout_equation  false 

write -hierarchy -format verilog -output output/${design}_1.v 

write -f ddc -hierarchy -output output/${design}_1.ddc  

write_sdc -version 1.9 output/${design}_1.sdc 

exit 

 

D.2 PnR 1st stage 

############################################## 

########### 1. DESIGN SETUP ################## 

############################################## 

set design cv32e40p_core 

sh rm -rf $design 

set sc_dir "/home/standard_cell_libraries/NangateOpenCellLibrary_PDKv1_3_v2010_12" 

set_app_var  search_path 
"/home/standard_cell_libraries/NangateOpenCellLibrary_PDKv1_3_v2010_12/lib/Front
_End/Liberty/NLDM \ 
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    /home/mohamed/Desktop/johnson/rtl" 

set_app_var link_library "* NangateOpenCellLibrary_ss0p95vn40c.db" 

set_app_var target_library "NangateOpenCellLibrary_ss0p95vn40c.db" 

create_mw_lib   ./${design} \ 

                -technology $sc_dir/tech/techfile/milkyway/FreePDK45_10m.tf \ 

  -mw_reference_library $sc_dir/lib/Back_End/mdb \ 

  -open 

set tlupmax "$sc_dir/tech/rcxt/FreePDK45_10m_Cmax.tlup" 

set tlupmin "$sc_dir/tech/rcxt/FreePDK45_10m_Cmin.tlup" 

set tech2itf "$sc_dir/tech/rcxt/FreePDK45_10m.map" 

set_tlu_plus_files -max_tluplus $tlupmax \ 

                   -min_tluplus $tlupmin \ 

          -tech2itf_map $tech2itf 

import_designs  ../syn/output/${design}_1.ddc \ 

                -format ddc \ 

  -top ${design} \ 

  -cel ${design} 

source  ../syn/cons/cv32e40p_core.sdc 

set_propagated_clock [get_clocks clk_i] 

save_mw_cel -as ${design}_1_imported 

 

############################################## 
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########### 2. Floorplan ##################### 

############################################## 

## Create Starting Floorplan 

############################ 

create_floorplan -core_utilization 0.25 \ 

 -core_aspect_ratio 2 \ 

 -start_first_row -flip_first_row \ 

 -left_io2core 12.4 -bottom_io2core 12.4 -right_io2core 12.4 -top_io2core 12.4 

 

set_ignored_layers -max_routing_layer metal8 -min_routing_layer metal1 

create_fp_placement -timing -no_hierarchy_gravity -congestion  

create_fp_placement 

save_mw_cel -as ${design}_1_fp 

################################################## 

########### 3. POWER NETWORK ##################### 

################################################## 

 

derive_pg_connection   -power_net VDD  \ 

    -ground_net VSS \ 

    -power_pin VDD  \ 

    -ground_pin VSS  
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set_fp_rail_constraints  -set_ring -nets  {VDD VSS}  \ 

                         -horizontal_ring_layer { metal9 } \ 

                         -vertical_ring_layer { metal10 } \ 

    -ring_spacing 0.8 \ 

    -ring_width 5 \ 

    -ring_offset 0.8 \ 

    -extend_strap core_ring 

 

set_fp_rail_constraints -add_layer  -layer metal10 -direction vertical   -max_strap 128 -
min_strap 20 -min_width 2.5 -spacing minimum 

set_fp_rail_constraints -add_layer  -layer metal9  -direction horizontal -max_strap 128 -
min_strap 20 -min_width 2.5 -spacing minimum 

set_fp_rail_constraints -add_layer  -layer metal8  -direction vertical   -max_strap 128 -
min_strap 20 -min_width 2.5 -spacing minimum 

set_fp_rail_constraints -set_global 

set die_llx [lindex [lindex [ get_attribute [get_die_area] bbox] 0] 0] 

set die_lly [lindex [lindex [ get_attribute [get_die_area] bbox] 0] 1] 

set die_urx [lindex [lindex [ get_attribute [get_die_area] bbox] 1] 0] 

set die_ury [lindex [lindex [ get_attribute [get_die_area] bbox] 1] 1]  

 

for {set i "[expr $die_llx + 20]"} {$i < "[expr $die_urx - 40]"} {set i [expr $i + 80]} { 

 create_fp_virtual_pad -net VSS -point "{$i $die_lly}" 

 create_fp_virtual_pad -net VDD -point "{[expr $i + 40] $die_lly}" 
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 create_fp_virtual_pad -net VSS -point "{$i $die_ury}" 

 create_fp_virtual_pad -net VDD -point "{[expr $i + 40] $die_ury}" 

} 

 

for {set i "[expr $die_lly + 20]"} {$i < "[expr $die_ury - 40]"} {set i [expr $i + 80]} { 

 create_fp_virtual_pad -net VSS -point "{$die_llx $i}" 

 create_fp_virtual_pad -net VDD -point "{$die_llx [expr $i + 40]}" 

 

 create_fp_virtual_pad -net VSS -point "{$die_urx $i}" 

 create_fp_virtual_pad -net VDD -point "{$die_urx [expr $i + 40] }" 

} 

synthesize_fp_rail  -nets {VDD VSS} -synthesize_power_plan -target_voltage_drop 22 -
voltage_supply 1.1 -power_budget 500 

commit_fp_rail 

set_preroute_drc_strategy -max_layer metal8 

preroute_standard_cells -fill_empty_rows -remove_floating_pieces 

analyze_fp_rail  -nets {VDD VSS} -power_budget 500 -voltage_supply 1.1 

add_tap_cell_array -master   TAP \ 

          -distance 30 \ 

          -pattern  stagger_every_other_row 

save_mw_cel -as ${design}_3_power 
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change_names -rule verilog -dont_touch . 

write_def -output ./output/defff.def 

exit 

 

D.3 Synthesis topographical mode 

 

set design cv32e40p_core 

set sc_dir "/home/standard_cell_libraries/NangateOpenCellLibrary_PDKv1_3_v2010_12" 

set_app_var  search_path 
"/home/standard_cell_libraries/NangateOpenCellLibrary_PDKv1_3_v2010_12/lib/Front

_End/Liberty/NLDM \ 

    /home/mohamed/Desktop/johnson/rtl" 

 

set_app_var link_library "* NangateOpenCellLibrary_ss0p95vn40c.db" 

set_app_var target_library "NangateOpenCellLibrary_ss0p95vn40c.db" 

set tlupmax "$sc_dir/tech/rcxt/FreePDK45_10m_Cmax.tlup" 

set tlupmin "$sc_dir/tech/rcxt/FreePDK45_10m_Cmin.tlup" 

set tech2itf "$sc_dir/tech/rcxt/FreePDK45_10m.map" 

set_tlu_plus_files -max_tluplus $tlupmax \ 

                   -min_tluplus $tlupmin \ 

          -tech2itf_map $tech2itf 
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open_mw_lib ../pnr/cv32e40p_core 

sh rm -rf work 

sh mkdir -p work 

define_design_lib work -path ./work 

set hdlin_sverilog_std                  2009 

    analyze -library work -format sverilog ../rtl/cv32e40p_register_file_ff.sv 

    analyze -library work -format sverilog ../rtl/include/cv32e40p_apu_core_pkg.sv 

    analyze -library work -format sverilog ../rtl/include/cv32e40p_pkg.sv 

    analyze -library work -format sverilog ../rtl/include/cv32e40p_fpu_pkg.sv 

    analyze -library work -format sverilog ../bhv/include/cv32e40p_tracer_pkg.sv 

    analyze -library work -format sverilog ../rtl/cv32e40p_alu.sv 

    analyze -library work -format sverilog ../rtl/cv32e40p_alu_div.sv 

    analyze -library work -format sverilog ../rtl/cv32e40p_ff_one.sv 

    analyze -library work -format sverilog ../rtl/cv32e40p_popcnt.sv 

    analyze -library work -format sverilog ../rtl/cv32e40p_compressed_decoder.sv 

    analyze -library work -format sverilog ../rtl/cv32e40p_controller.sv 

    analyze -library work -format sverilog ../rtl/cv32e40p_cs_registers.sv 

    analyze -library work -format sverilog ../rtl/cv32e40p_decoder.sv 

    analyze -library work -format sverilog ../rtl/cv32e40p_int_controller.sv 

    analyze -library work -format sverilog ../rtl/cv32e40p_ex_stage.sv 

    analyze -library work -format sverilog ../rtl/cv32e40p_hwloop_regs.sv 

    analyze -library work -format sverilog ../rtl/cv32e40p_id_stage.sv 
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    analyze -library work -format sverilog ../rtl/cv32e40p_if_stage.sv 

    analyze -library work -format sverilog ../rtl/cv32e40p_load_store_unit.sv 

    analyze -library work -format sverilog ../rtl/cv32e40p_mult.sv 

    analyze -library work -format sverilog ../rtl/cv32e40p_prefetch_buffer.sv 

    analyze -library work -format sverilog ../rtl/cv32e40p_prefetch_controller.sv 

    analyze -library work -format sverilog ../rtl/cv32e40p_obi_interface.sv 

    analyze -library work -format sverilog ../rtl/cv32e40p_aligner.sv 

    analyze -library work -format sverilog ../rtl/cv32e40p_sleep_unit.sv 

    analyze -library work -format sverilog ../rtl/cv32e40p_core.sv 

    analyze -library work -format sverilog ../rtl/cv32e40p_apu_disp.sv 

    analyze -library work -format sverilog ../rtl/cv32e40p_fifo.sv 

    analyze -library work -format sverilog ../bhv/cv32e40p_sim_clock_gate.sv 

    analyze -library work -format sverilog ../bhv/cv32e40p_wrapper.sv    

elaborate $design -lib work 

current_design 

check_design 

##in Topo 

change_names -rule verilog -hierarchy 

source ./cons/cv32e40p_core.sdc 

link 

extract_physical_constraints ../pnr/output/defff.def 

compile_ultra -spg -timing_high_effort_script  
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compile_ultra -spg -timing_high_effort_script -incremental 

compile_ultra -spg -timing_high_effort_script -incremental 

compile_ultra -spg -timing_high_effort_script -retime  

compile_ultra -spg -timing_high_effort_script -retime -incremental 

report_area > ./report/synth_area_CU_topo2.rpt 

report_cell > ./report/synth_cells_CU_topo2.rpt 

report_qor  > ./report/synth_qor_CU_topo2.rpt 

report_resources > ./report/synth_resources_CU_topo2.rpt 

report_timing -max_paths 10 > ./report/synth_timing_CU_topo2.rpt  

report_timing -delay_type min > ./report/synth_timing_CU_topo_hold2.rpt  

report_power > ./report/power_CU_topo2.rpt 

 

 

define_name_rules  no_case -case_insensitive 

change_names -rule no_case -hierarchy 

change_names -rule verilog -hierarchy 

set verilogout_no_tri  true 

set verilogout_equation  false 

write -hierarchy -format verilog -output output/${design}_2.v 

write -f ddc -hierarchy -output output/${design}_2.ddc  

write_sdc -version 1.9 output/${design}_2.sdc 

write_floorplan -all ./output/yara.fp   
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D.4 PnR 2nd stage 

############################################## 

########### 1. DESIGN SETUP ################## 

############################################## 

set design cv32e40p_core 

set sc_dir "/home/standard_cell_libraries/NangateOpenCellLibrary_PDKv1_3_v2010_12" 

set_app_var  search_path 
"/home/standard_cell_libraries/NangateOpenCellLibrary_PDKv1_3_v2010_12/lib/Front
_End/Liberty/NLDM \ 

    /home/mohamed/Desktop/johnson/rtl" 

set_app_var link_library "* NangateOpenCellLibrary_ss0p95vn40c.db" 

set_app_var target_library "NangateOpenCellLibrary_ss0p95vn40c.db" 

open_mw_lib cv32e40p_core 

set tlupmax "$sc_dir/tech/rcxt/FreePDK45_10m_Cmax.tlup" 

set tlupmin "$sc_dir/tech/rcxt/FreePDK45_10m_Cmin.tlup" 

set tech2itf "$sc_dir/tech/rcxt/FreePDK45_10m.map" 

 

set_tlu_plus_files -max_tluplus $tlupmax \ 

                   -min_tluplus $tlupmin \ 

          -tech2itf_map $tech2itf 

import_designs  ../syn/output/${design}_2.ddc \ 
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                -format ddc \ 

  -top ${design} \ 

  -cel ${design} 

source  ../syn/cons/cv32e40p_core.sdc 

save_mw_cel -as ${design}_1_imported 

read_floorplan ../syn/output/yara.fp.objects 

read_floorplan ../syn/output/yara.fp 

set_ignored_layers -max_routing_layer metal8 -min_routing_layer metal1 

set_preroute_drc_strategy -max_layer metal8 

preroute_standard_cells -fill_empty_rows -remove_floating_pieces 

 

############################################## 

########### 4. Placement ##################### 

############################################## 

puts "start_place" 

set_app_var placer_max_cell_density_threshold 0.3 

place_opt -spg -effort high -cts -congestion  

refine_placement -congestion_effort high 

psynopt -congestion 

check_legality 

derive_pg_connection     -power_net VDD  \ 

    -ground_net VSS \ 
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    -power_pin VDD  \ 

    -ground_pin VSS  

puts "finish_place" 

save_mw_cel -as ${design}_4_placed 

############################################## 

########### 5. CTS       ##################### 

############################################## 

puts "start_cts" 

set_driving_cell -lib_cell BUF_X16 -pin Z [get_ports clk_i] 

set_clock_tree_options \ 

                -clock_trees clk_i \ 

  -target_early_delay 0.1 \ 

  -target_skew 0.25 \ 

  -max_capacitance 300 \ 

  -max_fanout 10 \ 

  -max_transition 0.15 

set_clock_tree_options -clock_trees clk_i \ 

  -buffer_relocation true \ 

  -buffer_sizing true \ 

  -gate_relocation true \ 

  -gate_sizing true  

set_clock_tree_references -references [get_lib_cells */CLKBUF*]  
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define_routing_rule my_route_rule  \ 

  -widths   {metal3 0.14 metal4 0.28 metal5 0.28} \ 

  -spacings {metal3 0.14 metal4 0.28 metal5 0.28}  

set_clock_tree_options -clock_trees clk_i \ 

                       -routing_rule my_route_rule  \ 

         -layer_list "metal3 metal4 metal5" 

set_clock_tree_options -use_default_routing_for_sinks 1 

report_clock_tree -settings 

compile_clock_tree  -clock_trees clk_i 

clock_opt -only_cts -no_clock_route 

report_timing 

save_mw_cel -as ${design}_CTS1 

set_fix_hold [all_clocks] 

set_fix_hold_options -prioritize_tns  

set_propagated_clock [all_clocks] 

clock_opt -only_psyn -no_clock_route  

save_mw_cel -as ${design}_CTS2 

route_group -all_clock_nets 

save_mw_cel -as ${design}_CTS3 

derive_pg_connection     -power_net VDD  \ 

    -ground_net VSS \ 

    -power_pin VDD  \ 
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    -ground_pin VSS    

save_mw_cel -as ${design}_5_cts 

puts "finish_cts" 

############################################## 

########### 6. Routing   ##################### 

############################################## 

 

## Before starting to route, you should add spare cells 

insert_spare_cells -lib_cell {NOR2_X4 NAND2_X4} \ 

     -num_instances 20 \ 

     -cell_name SPARE_PREFIX_NAME \ 

     -tie 

set_dont_touch  [all_spare_cells] true 

set_attribute [all_spare_cells]  is_soft_fixed true 

############################################## 

puts "start_route" 

check_physical_design -stage pre_route_opt; # dump check_physical_design result to f ile 
./cpd_pre_route_opt_*/index.html 

all_ideal_nets 

all_high_fanout -nets -threshold 100 

check_routeability 

set_delay_calculation_options -arnoldi_effort low 
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set_route_options -groute_timing_driven true \ 

           -groute_incremental true \ 

           -track_assign_timing_driven true \ 

           -same_net_notch check_and_fix  

 

set_si_options -route_xtalk_prevention true\ 

        -delta_delay true \ 

        -min_delta_delay true \ 

        -static_noise true\ 

        -timing_window true  

route_auto -effort high 

save_mw_cel -as ${design}_route_auto 

verify_lvs -max_error 1000 

report_timing -delay_type max 

report_timing -delay_type min 

route_opt -effort high 

verify_lvs -max_error 1000 

report_timing -delay_type max 

report_timing -delay_type min 

save_mw_cel -as ${design}_route_opt1 

route_opt -effort high 

route_opt -incremental -effort high ///do it five times 
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verify_lvs -max_error 1000 

report_timing -delay_type max 

report_timing -delay_type min 

save_mw_cel -as ${design}_route_inc_effort 

psynopt  -only_hold_time  

save_mw_cel -as ${design}_psyn 

route_zrt_eco -open_net_driven true 

verify_lvs -max_error 1000 

report_timing -delay_type max 

report_timing -delay_type min 

save_mw_cel -as ${design}_zrt_eco 

verify_zrt_route 

route_zrt_detail -initial_drc_from_input true 

save_mw_cel -as ${design}_zrt_detail 

verify_lvs -max_error 1000 

report_timing -delay_type max 

report_timing -delay_type min 

route_zrt_detail -incremental true -initial_drc_from_input true 

save_mw_cel -as ${design}_zrt_detail_2 

verify_lvs -max_error 1000 

report_timing -delay_type max 

report_timing -delay_type min 
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derive_pg_connection     -power_net VDD  \ 

    -ground_net VSS \ 

    -power_pin VDD  \ 

    -ground_pin VSS  

save_mw_cel -as ${design}_6_routed 

save_mw_cel -as ${design} 

puts "finish_route" 

verify_zrt_route 

verify_lvs -ignore_floating_port -ignore_floating_net \ 

           -check_open_locator -check_short_locator 

 

set_write_stream_options  -map_layer 
$sc_dir/tech/strmout/FreePDK45_10m_gdsout.map \ 

                         -output_filling fill \ 

    -child_depth 20 \ 

    -output_outdated_fill  \ 

    -output_pin  {text geometry} 

write_stream -lib $design \ 

                  -format gds\ 

    -cells $design\ 

    ./output/${design}.gds 

define_name_rules new_verilog -special verilog -target_bus_naming_style {%s[%d]} -
check_internal_net_name -check_bus_indexing 
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change_names -rule new_verilog -hierarchy 

set verilogout_no_tri  true 

set verilogout_equation  false 

write_verilog -pg -no_physical_only_cells ./output/${design}_icc.v 

write_verilog -no_physical_only_cells ./output/${design}_icc_nopg.v 

set write_sdc_output_lumped_net_capacitance false 

set write_sdc_output_net_resistance false 

write_sdc -version 1.9 output/conss2.sdc 

write -format ddc -hier -output output/ddc_netlist_core2.ddc 

extract_rc 

write_parasitics -output {./output/cv32e40p_core1.spef} 

create_rail_setup 

close_mw_cel 

close_mw_lib 

exit 

 

 

 

 

 

 


