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Chapter 1 

Introduction 

 

 he increases of population density and the relative amount of car owners 

makes traffic jam a serious problem in the whole world.  

Traffic jam is a major source for discomforting drivers, and also the cause of 

an increasing number of traffic accidents. 

 

1.1 Traffic Congestion Impacts 

 The greatest impact of traffic congestion is on economics, Table1 shows the 

impact of traffic congestion on some countries, also causes serious health issues. 

 

Figure1.1 traffic congestion impact 

1.2 Problem Statement 

 Traffic congestion has a lot of causes and impacts, solving it is a great challenge 

for all governments and countries worldwide. 

T 
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Accidents: Even simple accidents cause traffic congestions because of curiosity leads 

to low speed.  

Income: Higher-income can cause more traffic congestion leading to less social and 

economic development because it leads to an increment in the card numbers. 

 
Figure1.2 traffic congestion causes  

 

Figure1.3 impact graph 
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1.3 Solution approach 

1.3.1 Former Solutions:  

To minimize the severe effect of traffic congestion are carelessness and accidents, 

these strategic policies were used:  

1. The strict application of traffic rules and regulation.  

2. Awareness campaign.  

3. Strict licensing rules  

4. Better car inspection tests.  

5. Encouraging mass transport. 

6. Improving infrastructure.  

7. Improving monitoring systems. 

1.3.2 Our Approach:  

 By using machine learning algorithms and supervised learning models like 

RNN (Recurrent Neural Network), traffic congestion in a given route can be 

predicted. Following the next parameters equation: 

Rush hours + gathering facilities + school time + weather + number of cars + 

the capacity of the road + accidents occurrence + stadiums and matches time 

 A website and android application which take your origin and destination to 

predict your delay time, suggest other routes to prevent traffic jam, and lastly will 

suggest the best position for the routes and transportation modes barking that will be 

set by the government.  

1.4 Benefits 

1.4.1 User benefits:  

• Our system will lead to faster trips.  

• Solving traffic congestion would increase the safety of the routes.  

• Offer another transportation mode which will solve the congestion in the long-

time.  
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• Solve a lot of health issues where congestion causes mental and physiological 

effects.  

1.4.2 Industrial benefits: 

• Automotive cars because it will make safer routes and reduce the complex 

situations that will probably lead to more failures of the self-driving cars, with 

companies like Valeo.  

• Implement the system we will make in any touchpad at any car with one, as it’s 

a Linux kernel system with companies like Valeo.  

• Transportation modes services like Swvl, Careem, Uber, etc.  

• Provide a booking system for the companies, which support some 

transportation modes like buses or bikes.  

1.4.3 Governmental benefits:  

• Collected data will in modifying the traffic system in our specific region.  

• Our suggestion system will guide in-charge facilities to start new routes and 

parking in the most effective way to enhance traffic health in our country.  

• Effectively will increase the economy in Egypt as transportation will be easier. 

• Improve the total traffic infrastructure.  

• Improve tourism as the traffic jams are an annoying cause for the tourists. 

 

Figure1.4 outcome of our approach on society  
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Chapter 2 

Data Collecting 

 
“More data beats clever algorithms, but better data beats more data.” 

-Peter Norvig 

 

ata is the engine of every AI projects around us starting from a simple 

graduation project to a large scale of effect projects like Google’s self-

driving car, amazon’s suggesting systems…etc. 

 

 When it comes to the data used in your project, it’s a fatal decision to make as 

your data will decide which path your model will take and the end of it too. 

 

2.1 Region of interest 

 This part will describe the process of choosing the area that will be studied and 

try to extract as much traffic data, to use it further to train the model that will predict 

the traffic state in each street in the few next minutes. 

 

 Few criteria will be studied to decide which area to choose, but first, let us see 

the recommended areas, that can be chosen. 

 

• One of the USA states: the motivation beyond this option is the USA is one of 

the most countries that have daily online traffic data providers that are very 

accurate, free, and minutely refreshed. 

 

• The Giza Governorate: the motivation beyond this option is the Giza 

governorate is a place we all see and can measure by real trips the efficiency of 

the data and how much it is real and true and also, it’s a governorate that is full 

of variations and random pattern along the day. 

 

D 
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• The Alexandria Governorate: the motivation beyond this option is The 

Alexandria Governorate has more variations in weather and events and more 

seasons variation like in summer there is higher population than the rest of the 

year so it could be more suited for the variations of events and weather. 

 

 

 Now we have three different regions to start to study the traffic states in it, let 

us discuss the criteria that will define which region will be used: 

 

• Must have unpredictable Traffic states like sudden incidents or traffic jams in 

non-rush hours 

• Must suffer from events and high distribution of facilities  

• Must be able to well-define the traffic states for most of the regions in Egypt 

• Must have an online real-time data for the traffic states in it, in any online traffic 

data providers. 

• Must have a normal weather state like the other regions of Egypt. 

 

 Regarding these criteria, The Giza Governorate is the most proper choice and 

can be used as a source for daily traffic data that will be used for training and testing 

the model. 

 

2.2 Streets Network and Features 

 After choosing the most suitable region (The Giza Governorate), Now time to 

extract Giza network and the streets features to help to collect traffic data after, in 

this field, there are two possible chooses Google Maps and Open Street Map 

(OSM), as OSM is a free and refreshed source to extract Giza network of streets and 

its features, so it was the best platform to use. 

 

 OSM is a simple metadata source for maps with different layers and 

transportation modes, after choosing the transportation layer with care mode to 

identify all the streets that are suitable to travel in with cars, we get a .osm file, that 

is consists of two parts, nodes Figure2.1 that has features and identify one latitude 
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and longitude couple, and ways Figure2.2 that consists of a group of nodes and 

identify a route from its first node to its last node then using Java to Transfer it into 

.csv file Figure2.3 consists of 31 feature and 103901 street. 

 

After downloading data from OSM for Giza Governate it looks like Figure2.4  

 

 
 

Figure 2.1 Nodes in OSM file example               Figure 2.2 Ways in OSM file example 

 

 
Figure2.3 CSV file Example 

 

 
 

Figure2.4 OSM network for Giza 
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2.3 Streets Dataset Cleaning 

 After collecting the streets data, we know need to optimize the number of streets 

so that we can finally work with 1000 streets because we are limited to a maximum 

number of requests per day, we know will follow a sequence of trials to achieve this 

aim and how we solved it. 

 

Graph 2.5 Trials to choose streets sample 

2.3.1 As in Graph2.5 We started with removing all the NAN values from the dataset 

because these samples don’t contain the required information, we want like 

Figure2.6, it’s obvious that two last samples missing their type so they won't be 

useful at all. 

 

Figure 2.6 Missing values example 

2.3.2 After deleting all the missing values we then deleted all the streets that cannot 

be used in a transportation task like: 

• Construction 

• Unclassified 

• Footway 

• Service 

These streets are used for interconnections inside a building or a bikes way, so they 

cannot be included in our task. 
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2.3.3 After those successes filtration we settle with 70000 streets and give three long 

shots trying to optimize more but they were not acceptable as we try to filter under 

500-meter streets with the attempt of decreasing the least effective streets but we find 

out that those streets still can be effective on the transportation tasks so we still need 

to find out another way to solve this dilemma. 

2.3.4 Solution of this optimization problem can be achieved by separating streets into 

three categories: residential, non-links, links, then using a sigmoid-like function 

equ2.1 that try to take a 0-10 number of streets from a cluster depends on the average 

street length on this cluster, as the average length increases the number of taken 

streets from this specific cluster increases as we see in Figure2.7, now we have 1000 

streets that represent the total population. 

1

1+𝑎𝑏𝑥
     Equ2.1 

Where a and b are constants calculated by trial and error and x is the average group 

of street length. 

Figure2.7 Filtration function for decreasing streets number 

 

2.4 Cleaning Results 

 In data science we should intensely study the dataset after cleaning, to observe 

the effect of the cleaning technique on our dataset, because sometimes the dataset 

affected badly and the cleaning process manipulate the dataset distribution, so we 

will see some graphs to show the effect of our cleaning technique. 
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Comment: Before cleaning we see in the 

lower graph the distribution is much more 

unbalanced as residential streets are 90.27% 

of the data, and after cleaning the 

distribution we can observe the important 

streets that are mainly used in transportation 

is the scope of the modified dataset. 

 

         Figure 2.8 Streets types distribution after and before  

          cleaning 

Comment: The distribution of streets in 

the different suburbs should not change 

dramatically as we want to have the same 

focus on important suburbs after the 

cleaning too, and that what happened 

exactly. 

 

Figure 2.9 Distribution of streets over the different 

suburbs in Giza 

 

 

Figure 2.10 Histogram and boxplot for streets lengths after and before cleaning 
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Comment: As we see the cleaning process clears most of the outliers and make a fine 

one-sided Gaussian distribution for the street’s lengths, and increases the mean to 

become more expressive dataset with a higher variety and larger overall entropy 

coefficient.  

 

Figure 2.11 Streets distribution over the area of Giza 

 

2.5 API service providers: 

2.5.1 Google Places API:  

 Provides information about the available facilities in the area, opening and 

closing times. Like schools, malls, universities, shops, government services … etc.  

2.5.2 TomTom Traffic services (Flow, Incidents): 

• TomTom’s API provides us with very important traffic information. 

• Free service includes 2500 requests/day. 

• Is updated every minute with very latest traffic speed information. 

• Is based on the zooming level of different road categories that are displayed. 

• Provides traffic speed information with an option to use the absolute or relative 

speed information. 

• Returns detailed information about traffic speed, like Current speed, Free flow 

speed, quality indicator. 

• Is updated every minute with the very latest traffic incident and delay 

information. 
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• Returns detailed information about traffic jams and traffic-related incidents. 

Details include start-location, end-location, road-name, type of delay, length (in 

time) of the delay, significance, and distance. 

2.5.3 Open Weather Maps: 

• Provides current real-time weather data, which is frequently updated based on 

global models and data from more than 40,000 weather stations. 

• Free service includes 60 requests/hour. 

 

Now after we had our information sources, we need 

to get all Giza streets. And here came the OSM 

website “OpenStreetMap”. OSM provides all 

information about the streets, like longitude, latitude, 

shops, facilities, street links and nodes, type of street, 

street name, one-way Boolean, lanes, and a lot more. 

OSM also gives each street a unique ID called osm 

id. 

OSM lets you choose an area manually by drawing a boundary box around the area 

you want to get street information from. After that, you can export the osm file for 

this area. 

 

Figure 2.12 Choosing custom area from OpenStreetMap website 
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2.6 Data Preprocessing and Collecting 

 After we were finally able to choose 1000 streets from the original 102000 

streets, now we can preprocess those streets to prepare them for the collecting phase. 

 Before preceding to the preprocessing part, we need first to discuss what kind 

of data we want to collect, after some intensive searching we found out there are two 

types of reasons that will lead to congestion and they are stochastic reasons or we can 

call it user effect, this part depends on the user behavior  itself, and patterned reasons, 

they are four main predictable parameters that can affect the traffic state: 

• Facilities. 

• Incidents. 

• Weather. 

• Events. 

• And our label speed & distance. 

 So, we won’t be able to predict these stochastic effective reasons but we will be 

able to understand the other four. 

Now we are in the phase of searching from where we can get this type of data for our 

1000 streets and track it by some rate at a day, and after that search, we settle with 

these sources and their limitations: 

• Google Places API: 300-dollar free requests for each month 

• TomTom Traffic Incidents API: 2500 request free per day 

• TomTom Traffic Flow API: 2500 request free per day 

• Open Weather Maps: 30 requests per minute, but with update state each one 

hour 

• Open Streets Map: Open source for maps and its features metadata 

• Web Scrapping: Unlimited 

Now we can collect our data and the label with some rate at a day. 
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2.6.1 Clusters Level Preprocessing 

 Out of the five datasets, we need to collect there are two of them need to work 

in a cluster level not the streets level as they providers need the request to contain a 

cluster of data, not a specific street, so now we need to cluster the streets we see in 

Figure2.13 to be able to fit for the request needs. 

 The first cluster-based dataset is Incidents dataset collected by TomTom 

Incidents API, that it needs a rectangle shape to express the streets incident state 

inside it, we can see in Figure2.12 that we used K-means clustering algorithm to be 

able to create those cluster and we choose them to be 10 clusters as this number 

contain the best number of streets per each and also not over-focused as that will 

make the requests a lot and useless. 

 

Figure 2.13 Incident cluster level         Figure 2.14 Places cluster level 

 The second cluster-based dataset is places cluster it consists of 60 clusters 

clustered by K-means, with circle shape with a 1.5 km radius collected by Google 

Maps API. 

2.6.2 Street Level Preprocessing 

 The Other two main files which are speed & distance that contain the label of 

our dataset, and the second file is weather dataset, and they both all they need is the 

center point from the street which can be collected from OSM data we already 

gathered. 

Note: Events are ignored due to Covid-19 
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2.6.3 Data Collecting Rates 

 In this phase we were trying to estimate and decide the rate for collecting each 

dataset file from the four above files, in this area we were squeezed by two limits, 

upper limit of the maximum number of requests we can make in one day, and the 

lower limit is the phenomena rate itself as each file has its changing rate, for example, 

the weathering rate can be tens of minutes as the weather cannot change faster than 

that and catching faster rates will be useless. 

So, we decided we will go for this rate: 

• Google Places API every 3 hours for all clusters. 

• TomTom: Traffic Incidents API every 20 minutes for all clusters. 

• Open Weather Map every hour for each street. 

• Web scraping for events periodically every week. 

• TomTom: Traffic flow API every 20 minutes for each street. 

 By that, we make sure we won’t miss any details, and also, we won’t exceed 

the maximum number of requests per day. 

 After deciding and hard-coding those API routines we now can upload our data 

to a server that will run it for days and hours without missing any time or dates, 

 We use PythonAnyWhere.com as it’s only cost us 5$ per account and we 

reserve three accounts to make sure every code runs without any problems, and so on 

we collected 1 million and 100 thousand samples by the duration of 3 months. 
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Chapter 3 

Deep Learning Introduction 

eep Learning is the building block of any AI system, as it will decide 

what the machine will virtually-understand and be able to process, just 

like the human, his brain is the main source of actions, thoughts and 

decision making. 

3.1 Background and techniques: 

3.1.1 Neural network 

Training a neural network revolves around the following: 

• Layers, which are combined into a network (or model). 

• The input data and corresponding targets. 

• The loss function, which defines the feedback signal used for learning. 

• The optimizer, which determines how learning proceeds. 

The network, composed of layers that are chained together, maps the input data to 

predictions. The loss function then compares these predictions to the targets, 

producing a loss value: a measure of how well the network’s predictions match what 

was expected. The optimizer uses this loss value to update the network’s weights. 

 

Figure 3.1 Relationship between the network, layers, loss function, and optimizer 

D 
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A layer is a data-processing module that takes as input one or more tensors and that 

outputs one or more tensors. Some layers are stateless, but more frequently layers 

have a state: the layer’s weights, one or several tensors learned with stochastic 

gradient descent, which together contains the network’s knowledge. 

Once the network architecture is defined, two more things: 

• Loss function (objective function)—The quantity that will be minimized 

during 

training. It represents a measure of success for the task at hand. 

• Optimizer—Determines how the network will be updated based on the loss 

function. 

It implements a specific variant of stochastic gradient descent (SGD). 

3.1.2 Convolutional neural network 

This chapter introduces convolutional neural networks, also known as conv-nets, a 

type of deep-learning model almost universally used in computer vision 

applications. It is most commonly applied to analyzing visual imagery. They are 

also known as shift invariant or space invariant artificial neural networks (SIANN), 

based on their shared-weights architecture and translation invariance characteristics. 

They have applications in image and video recognition, recommender systems, 

image classification, medical image analysis, natural language processing, and 

financial time series. CNNs are regularized versions of multilayer perceptron. 

Multilayer perceptron usually means fully connected networks, that is, each neuron 

in one layer is connected to all neurons in the next layer. The "fully-connectedness" 

of these networks makes them prone to overfitting data. Typical ways of 

regularization include adding some form of magnitude measurement of weights to 

the loss function. 
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Figure 3.2 CNN architecture 

It consists of: 

• A convolutional layer that extracts features from a source image. 

• A pooling layer that down-samples each feature to reduce its dimensionality 

and focus on the most important elements. 

• A fully connected layer that flattens the features identified in the previous 

layers into a vector, and predicts probabilities that the image belongs to each 

one of several possible labels. 

 

Figure 3.3 CNN layers 
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Conv2d Explained 

 A basic conv-net looks like. It’s a stack of Conv2D and MaxPooling2D layers. 

2D convolutional layers take a three-dimensional input, typically an image with three 

color channels. They pass a filter, also called a convolution kernel, over the image, 

inspecting a small window of pixels at a time, for example, 3×3 or 5×5 pixels in size, 

and moving the window until they have scanned the entire image. The convolution 

operation calculates the dot product of the pixel values in the current filter window 

with the weights defined in the filter. 

 Convolutions operate over 3D tensors, called feature maps, with two spatial 

axes (height and width) as well as a depth axis (also called the channels axis). For an 

RGB image, the dimension of the depth axis is 3, because the image has three color 

channels: red, green, and blue. For a black-and-white picture, like the MNIST digits, 

the depth is 1 (levels of gray). The convolution operation extracts patches from its 

input feature map and applies the same transformation to all of these patches, 

producing an output feature map. 

  This output feature map is still a 3D tensor: it has a width and a height. Its depth 

can be arbitrary because the output depth is a parameter of the layer, different 

channels in that depth axis no longer stand for specific colors as in RGB input; rather, 

they stand for filters. Filters encode specific aspects of the input data: at a high level. 

 A 2D convolution layer means that the input of the convolution operation is 

three-dimensional, for example, a color image that has a value for each pixel across 

three layers: red, blue, and green. However, it is called a “2D convolution” because 

the movement of the filter across the image happens in two dimensions. The filter is 

run across the image three times, once for each of the three layers. 

 After the convolution ends, the features are down-sampled, and then the same 

convolutional structure repeats. At first, the convolution identifies features in the 

original image (for example in a cat, the body, legs, tail, head), then it identifies sub-

features within smaller parts of the image (for example, within the head, the ears, 

whiskers, eyes). Eventually, this process is meant to identify the essential features 
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that can help classify the image. Learn more in our guide to Convolutional Neural 

Networks (CNN). 

 In Conv2D layers, padding is configurable via the padding argument, which 

takes two values: "valid", which means no padding (only valid window locations will 

be used); and "same", which means “pad in such a way as to have an output with the 

same width and height as the input.” The padding argument defaults to "valid". 

Convolution Stride Explained 

 The other factor that can influence output size is the notion of strides. The 

description of convolution so far has assumed that the center tiles of the convolution 

windows are all contiguous. But the distance between two successive windows is a 

parameter of the convolution, called its stride, which defaults to 1. It’s possible to 

have stride convolutions: convolutions with a stride higher than 1. In figure 5.7, you 

can see the patches extracted by a 3 × 3 convolution with stride 2 over a 5 × 5 input 

(without padding). 

 

Figure 3.4 2D-convnet 

3.1.3 Recurrent Neural Network 

 A major characteristic of all neural networks densely connected networks and 

convnets, is that they have no memory. Each input shown to them is processed 

independently, with no state kept in between inputs. With such networks, to process 

a sequence or a temporal series of data points, must show the entire sequence to the 

network at once: turn it into a single data point which is not practical. 
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 A recurrent neural network (RNN) processes sequences by iterating through the 

sequence elements and maintaining a state containing information relative to what it 

has seen so far. In effect, an RNN is a type of 

neural network that has an internal loop the state of the 

RNN is reset between processing two different, 

independent sequences, so it still considers one 

sequence a single data point: a single input to the 

network. What changes is that this data point is no 

longer processed in a single step; rather, the network 

 Figure3.5 RNN structure     internally loops over sequence elements. 

Easy enough: in summary, an RNN is a for loop that reuses quantities computed 

during the previous iteration of the loop, nothing more. RNNs are characterized by 

their step function, such as the following function in this case: 

output-t = np.tanh(np.dot(W, input-t) + np.dot(U, state-t) + b) 

Each time step t in the output 

tensor contains information 

about time steps 0 to t in the input 

sequence—about the entire past 

that’s why no need for this full 

sequence of outputs; you just 

need the last output (output_t at  

   Figure 3.6 RNN states    the end of the loop) because it 

already contains information about the entire sequence. 

3.1.4 LSTM  

 Simple RNN is generally too simplistic to be of real use. Simple RNN has a 

major issue: although it should theoretically be able to retain at time t information 

about inputs seen many time steps before, in practice, such long-term dependencies 

are impossible to learn. This is due to the vanishing gradient problem, an effect that 

is similar to what is observed with non-recurrent networks (feedforward networks) 
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that are many layers deep: by keep adding layers to a network, the network eventually 

becomes untrainable. The theoretical reasons for this effect were studied by 

Hochreiter, Schmidhuber, and Bengio in the early 1990s.2 The LSTM is designed to 

solve this problem. 

 Long Short-Term Memory (LSTM) algorithm was developed by Hochreiter 

and Schmidhuber in 1997;3 it was the culmination of their research on the vanishing 

gradient problem. as; it adds a way to carry information across many time steps. it 

saves information for later, thus preventing older signals from gradually vanishing 

during processing. 

 An additional data flow that carries information across time steps. Call its 

values at different time steps Ct, where C stands for carrying. This information will 

have the following impact on the cell: it will be combined with the input connection 

and the recurrent connection (via a dense transformation: a dot product with a weight 

matrix followed by a bias add and the application of an activation function), and it 

will affect the state being sent to the next time step (via an activation function a 

multiplication operation). Conceptually, the carry dataflow is a way to modulate the 

next output and the next state. 

 

Figure 3.7 output states 

 More explanation of what each of these operations is meant to do. multiplying 

c_t and f_t is a way to deliberately forget irrelevant information in the carry dataflow. 

Meanwhile, i_t and k_t provides information about the present, updating the carry 

track with new information. But at the end of the day, these interpretations don’t 
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mean much, because what these operations do is determined by the contents of the 

weights parameterizing them; and the weights are learned in an end-to-end fashion, 

starting over with each training round, making it impossible to credit this or that 

operation with a specific purpose. The specification of an RNN cell (as just described) 

determines the hypothesis space but it doesn’t determine what the cell does; that is 

up to the cell weights. 

 The same cell with different weights can be doing very different things. So, the 

combination of operations making up an RNN cell is better interpreted as a set of 

search constraints, not as a design in an engineering sense. 

 

Figure 3.8 anatomy of LSTM 

3.2 Optimizing Techniques and Tuning: 

3.2.1 Over-sampling and Under-sampling 

 Both over-sampling and under-sampling involve introducing a bias to select 

more samples from one class than from another, to compensate for an imbalance that 

is either already present in the data, or likely to develop if a purely random sample 

were taken. 

Imbalanced Data: A classification data set with skewed class proportions is called 

imbalanced. Classes that make up a large proportion of the data set are called majority 

classes. Those that make up a smaller proportion are minority classes. 
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Down-sampling and Upweighting 

An effective way to handle imbalanced data is to down-sample and up to weight the 

majority class.  

Down-sampling: training on a disproportionately low subset of the majority class 

examples. 

Upweighting: adding an example weight to the down-sampled class equal to the 

factor by which you down-sampled. 

Step 1: Down-sample the majority class. Consider again our example of the fraud 

data set, with 1 positive to 200 negatives. We can down-sample by a factor of 20, 

taking 1/10 negatives. Now about 10% of our data is positive, which will be much 

better for training our model. 

Step 2: Up weight the down-sampled class: The last step is to add example weights 

to the down-sampled class. Since we down-sampled by a factor of 20, the example 

weight should be 20. 

 

Figure 3.9 counting an individual example more importantly 

Degree of imbalance The proportion of Minority Class 

Mild 20-40% of the data set 

Moderate 1-20% of the data set 

Extreme <1% of the data set 
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 Example weights, which means counting an individual example more 

importantly during training. An example weight of 10 means the model treats the 

example as 10 times as important (when computing loss) as it would an example of 

weight 1. 

The weight should be equal to the factor you used to down-sample: 

{example weight} = {original example weight} × {down-sampling factor}  

Why Down-sample and Upweight? 

It may seem odd to add example weights after down-sampling. We were trying to 

make our model improve on the minority class -- why would we up weight the 

majority? These are the resulting changes: 

• Faster convergence: During training, we see the minority class more often, 

which will help the model converge faster. 

• Disk space: By consolidating the majority class into fewer examples with larger 

weights, we spend less disk space storing them. This savings allows more disk 

space for the minority class, so we can collect a greater number and a wider 

range of examples from that class. 

• Calibration: Upweighting ensures our model is still calibrated; the outputs can 

still be interpreted as probabilities. 

• positive and false-negative results. 

 

 For these reasons, one will typically cleanse only as much data as is needed to 

answer a question with reasonable statistical confidence (see Sample Size), but not 

more than that. 

Normalization 

The goal of normalization is to transform features to be on a similar scale. This 

improves the performance and training stability of the model. 
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Four common normalization techniques may be useful: 

• scaling to a range 

• clipping 

• log scaling 

• z-score 

 The following charts show the effect of each normalization technique on the 

distribution of the raw feature (price) on the left. The charts are based on the data set 

from 1985 Ward's Automotive Yearbook that is part of the UCI Machine Learning 

Repository under Automobile Data Set. 

 
Figure 3.10 Normalization Tech 

Scaling  

 Scaling means converting floating-point feature values from their natural range 

(for example, 100 to 900) into a standard range—usually 0 and 1 (or sometimes -1 to 

+1). Use the following simple formula to scale to a range: 

x′=(x−x-min) / (x-max − x-min)   equ 3.1 

Scaling to a range is a good choice when both of the following conditions are met: 

• know an approximate upper and lower bound on your data with few or no 

outliers. 

• data is approximately uniformly distributed across that range. 

 A good example is an age. Most age values fall between 0 and 90, and every 

part of the range has a substantial number of people. 
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 In contrast, scaling on income, because only a few people have very high 

incomes. The upper bound of the linear scale for income would be very high, and 

most people would be squeezed into a small part of the scale. 

Feature Clipping 

 If your data set contains extreme outliers, try feature clipping, which caps all 

feature values above (or below) a certain value to fixed value. For example, clip all 

temperature values above 40 to be exactly 40. 

You may apply feature clipping before or after other normalizations. 

 

Figure 3.11 comparing a raw distribution to its clipped version 

 Another simple clipping strategy is to clip by z-score to +-Nσ (for example, 

limit to +-3σ). Note that σ is the standard deviation. 

Log Scaling  

 Log scaling computes the log of values to compress a wide range to a narrow 

range. 

x′=log(x)  equ 3.2 

 Log scaling is helpful when handful values have many points, while most other 

values have few points. This data distribution is known as the power-law distribution. 

Movie ratings are a good example. In the chart below, most movies have very few 



P a g e  | 34 

 

ratings (the data in the tail), while a few have lots of ratings (the data in the head). 

Log scaling changes the distribution, helping to improve linear model performance. 

 

Figure 3.12 comparing a raw distribution to its log 

 Z-score is a variation of scaling that represents the number of standard 

deviations away from the mean. use z-score to ensure that the feature distributions 

have mean = 0 and std = 1. It’s useful when there are a few outliers, but not so extreme 

that you need clipping. 

The formula for calculating the z-score of a point, x, is as follows: 

x′=(x−μ)/σ  equ 3.3 

 

Figure 3.13 comparing a raw distribution to its z-score distribution 

Note: μ is the mean and σ is the standard deviation. 
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Chapter 4 

Deep Learning-First Approach 

 

“When an algorithm or neural network inherits the flaws of its human creator.” 

- Clyde DeSouza 

n our project after the last chapter underlines from the process of collecting 

data and processing it, the process of building models be able to understand 

and extract features from this data, so then it will be able to process and 

manipulate new data to help to predict new labels that will help us avoiding 

traffic congestion. 

 Before starting any progress, we have made in this area we need first to study 

our problem from the machine learning point of view, in Graph3.1 the problem types 

in the prospection of machine learning. 

 

Graph 4.1 Problem categorization 

Supervised: The dataset used in the learning process has labels on it to identify if the 

model is good enough or not 

Regression: The task of the model is to follow some variable that we do not know its 

function or its definite parameters it depends on. 

I 
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 After categorizing the problem we need to dive together in the model building 

process and how we cooperate to conquer this hard-deep learning problem. 

As our problem has no former solutions, we need to cover a wider area in the model 

building strategy and try to use a large number of models and combinations with a 

state of art techniques, to achieve this aim, we will 

Split into two teams, each one has its own unique and different criteria and then we 

can reach the best solution in our problem. 

 

Figure4.2 Divide and conquer 

4.1 System Preparing  

4.1.1 Criteria 

• Work with all streets. 

• Intense feature extraction methods. 

• Deep networks with large parameter number. 

• Time series-based data. 

 By this criterion, we will be able to proceed in the deep learning task and 

implement our solution. 
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4.1.2 Data Preprocess 

In this problem we have 4 main datasets we already discussed before they are: 

1. Incidents 

2. Speed and distance 

3. Weather 

4. Places 

And we add five more data files to provide criteria two that heavy feature extracting, 

and they are: 

1. Houses  

2. Amenities 

3. Buildings  

4. Intersections 

5. Shops 

 Those five files contain static data about the streets, describe the number of 

facilities, buildings and houses in a small cluster contain this street, and also provide 

data describing how much this street is important by the number of intersections made 

by it and the types of those intersections. 

4.2 Data Preprocessing 

 After preparing the nine files we then will intensively extract the features in it, 

to create a 187 feature raw data, consists of dynamic and static parts. 

 And then to create a time series we will take the last three samples and stack 

them together and concatenate the output with the static part, to be able to predict the 

current sample. 
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Figure 3.3 data preprocess 

4.3 Model building process 

4.3.1 Trial-1 

 As we already stated that we will work with a time series data and see 

previously how we create it, so in our first trial it’s obvious that we will lean on RNN 

model, 

 As the most famous RNN layer is LSTM we will build our first model with it, 

as in Figure 3.4 we can see that the model consists of a dynamic part analyses and 

static concatenated with it. 

 

Figure 3.4 LSTM model-based  
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Problems in Trial-1 

 

 After building the model we tried to train it on 1 million samples, but the model 

was calculating a nan MAE value and that was because the different range of the 

input features, so we used min-max normalization to normalize the samples values 

and modify the range such that it will be between 0-1 so we can kill that problem. 

Another problem that appears after the model was able to learn is that the MAE does 

not decrease, and that was because the labels were unbalanced as 90.12% is zeros so 

the model was not able to train, to solve this problem we used Down-sampling 

technique to modify the data distribution. 

After all of that, the model was able to learn and after some SGD fine-tuning, we 

were able to get  

Test Error   = 3-min 

Train Error = 4.1-min 

Trial Observation 

“LSTM Network is not good enough alone to process and train the model with this data” 

 



P a g e  | 40 

 

4.3.2 Trial-2 

After trying LSTM, we saw that another simpler and more trusted network will be 

better, so we go to CNN to provide a more common network and easier to observe 

and understand. 

But now we need to prepare each time series, so that it can be feed to convolution 

layer, to solve this dilemma we use the simplest way, by reshaping each time series 

sample so that it will represent a 187x3x1 image that can be feed into Conv2D layer, 

as in figure 3.5 

 

Figure 3.5 Data preparation for Convolution network 

Now we can build our model as in figure 3.6 we can see that we used CNN for 

process dynamic part of the data and then concatenate with the static part. 

 

Figure 3.6 Conv-based model 
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And after some SGD fine-tuning, we can prove our hypothesis that conv models 

will behave better than RNN models in our dataset, By training and testing error 

much lower. 

Test Error   = 92-sec 

Train Error = 130-sec 

Trial Observation 

“CNN is good enough as a feature extractor to process and train the model with this data” 

 

Trial-3 

In a process of building a state of art model, we were in the right path of trying and 

error so we decide to build a hyper model that will include Conv and LSTM layers 

both. 

 

Figure 3.7 Hyper model components 

Test Error = 62-Sec 

Train Error = 58-sec  
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Chapter 5 

Deep Learning-Second Approach 

 

eep Learning techniques are used based on the problem, where the most 

basic type of deep learning techniques is Vanilla Neural Network (VNN) or 

known as the multi-layer perceptron.  VNN is used in the basic machine 

learning problems where there is no time dependency in the data or no 

spatial features needed to be detected. The second type of neural networks used is 

Convolutional Neural Networks (CNN), where CNN is used 

in detecting spatial features in the data e.g. In a cat vs dog 

classification problem, it doesn’t matter where the ears of 

the cat are at in the picture, the important thing is to detect 

the cat ears anywhere in the picture, VNN is sensitive to the 

ears place while CNN is not. 

The third type is Recurrent Neural Networks (RNN) in 

figure 5.1, RNN is used when the current output is 

dependent on the previous output and the current input. 

RNN is used in many fields such as text mining, speech         

 Figure 5.1 RNN unit    recognition, time series problems, and much more. 

5.1 Problem Description 

 In TrCPRS it’s required to predict the next time step delay based on multi-

features input. This problem is considered a real-time prediction. In real-time 

problems, the past time steps are crucial in predicting the next time step.  

5.2 Solution approach 

 RNN is used to solve time series problems as it uses its memory to remember 

previous states as well as the current state. RNN is expected to get the best results but 

before using RNN one must try VNN first as it has much lower computational power 

D 
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than RNN. VNN is used to check the feasibility and whether or not it can be solved 

using deep learning. After checking the feasibility of the problem, LSTMs will be 

used which is a special kind of RNN. 

5.2.1 LSTM 

 Long Short-term memory networks were invented in 1997 and set accuracy 

records in multiple application domains. LSTMS gives better performance as it fights 

the vanishing gradient problem. 

LSTM fights back vanishing gradient problem which gives it the ability to process 

thousands or millions of back steps with multiple LSTM layers. 

 

Figure 5.2 LSTM unit 

5.3 Pre-Processing 
 Good data pre-processing is the key to a good model. Pre-processing is done 

for many reasons: 

• Turning all data to numerical data as machine learning can’t work with non-

numerical data. 

• Pre-processing categorical data. 

• Normalizing Data. 

• Removing outliers. 
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5.3.1 Turning data to numerical 

 Machine learning models are all based on numbers and differentiation problems 

which can’t be done using string or any other data rather than numerical data. Any 

other type of data must be converted to numerical data before starting and must be 

converted in a certain way to ensure that the information included is not lost. E.g. if 

the data is ‘Good’, ‘Moderate’, and ‘Bad’ it can be turned easily to 2, 1, and 0 

respectively, while if the data is ‘Giza’, ‘Cairo’ and ‘Alex.’ It can’t be turned in the 

same manner as they all share the same weight and none of them is preferable over 

the other where this data is called categorical data. 

5.3.2 Categorical data 

 As mentioned earlier, categorical data must be dealt with particularly to ensure 

that non-data loss takes place. Machine learning depends on numbers, if ‘Cairo’ was 

given number 2 and ‘Alex’ is given number 1, the model understands that ‘Cairo’ is 

more important where they share the same importance. There are many different 

ways to deal with categorical data, the one used in the project is called One Hot 

Encoding method where each data input is considered a one zeros vector with one in 

the required place. E.g. in processing fruits data as ‘Apple’, ‘Orange’ and ‘Bananas’ 

and Orange representation is required, it will be represented in the vector [0 1 0] 

which means it’s not apple nor bananas but orange, where Apple and Bananas can be 

represented as [1 0 0] and [0 0 1] respectively. 

5.4 Model Trials 

 As mentioned earlier, the first step in building machine learning models is to 

build a VNN. This step ensures that the problem is solvable. In the following section, 

VNN trials will be listed and discussed. 

5.4.1 VNN 

VNN or multi-layer perceptron is considered 

the most basic neural network. In TrCPRS, 

it’s used to check the feasibility of the        

  Figure 5.3 VNN unit    problem. Figure 5.3 shows the architecture of 

VNN. Through different VNN trials, a brief description of the input will be discussed.         
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5.4.1.1 VNN-1 

 While constructing a model, it’s important to recognize that it resembles the 

human mind. If a human start thinking about understanding a cluster level, one might 

think of it as a group of streets where incidents occur repeatedly more than once, if a 

cluster was watched over for a long time, the number of streets where incidents occur 

will converge. E.g. if a cluster has 10 streets in total, you can think of it that almost 3 

streets have repeated incidents. Watching the 10 streets in a long interval will 

eventually get you maybe 6 streets where incidents occur. 

In this way, the cluster level data dependents on how unique streets affect their cluster 

over some time.  

Pros: 

• Model starts learning 

Cons: 

 This model has a serious problem, a feature space explosion! If the cluster data 

collected has 300 unique streets, there’s one hot encoding for each street in the feature 

space with 300 lengths. All other features follow one hot encoding method which 

means if there are 4 different causes for incidents and delay magnitudes, there are 

4*300 columns feature space for causes and 4*300 columns feature space for delay 

magnitudes as for each street there must be 4 columns feature space indicating the 

cause and 4 indicating delay magnitude. Most of this is 0 while 1’s is only included 

for the present street. This problem led to a large error in the model as in machine 

learning there must be data rows 10x more than data columns for good learning 

procedure. 

5.4.1.2 VNN-2 

 This model had great improvement, eliminating street names and replacing 

them by types, i.e. instead of listing all street names, only their types matter. E.g. if 

a new street in the cluster had an accident, no new columns added as, in the end, it 

has one of 6 types discussed in the data frame. In this way, the feature space size 

reduces a lot! Feature space size reduced to 1/10 at least of version 1. 
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Pros: 

• Model Learns 

• Average-Good error 

Cons: 

Due to in-availability of the time step number in the input, the model error doesn’t 

decrease much 

5.4.1.3 VNN-Final 

 In this model, two new data columns were added to street level, specific street 

id, and time step number. The previous cases where street names where used and 

caused relatively large errors were due to Incidents Street name at the cluster level. 

Adding specific street id isn’t the same, as there’s a constant number of streets in 

street level but on a cluster level, each day new streets may have new incidents. 

 This addition increases the size by only the number of unique streets in speed 

and distance data frame. 

Adding the number of time steps within the day helped the model to understand 

when the congestion occurs on average. 

Pros: 

• Low error. 

• Can generalize to future time steps. 

Cons: 

• Street-level specific. 
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VNN-Final Architecture 

 

Figure 5.4 VNN-final architecture  

VNN-Final Results 

 

 

 

5.6.2 RNN-LSTM 

 

 

Figure 5.5 VNN-final results 

After checking the problem feasibility using VNN, time to use RNN. RNNs are better 

than VNNs in a real-time application where future time steps depend on the current 

and previous steps. Each street has a pattern that resembles that in figure 5.5. LSTM 

tries to catch that pattern and find a relation between other features and the change in 

the pattern. All street specific data has been removed in both cluster and street levels. 

The first layer in the model is the masking layer which was discussed briefly in 

section 5.6 in this chapter. 
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Pros: 

• Low error. 

• Non-street specific. 

• Can generalize well to future time steps. 

Cons: 

• Even with low error, better results can be achieved but due to several changes 

in the data patterns in reflect changes in government curfew times, people 

commitment and more, data became non-consistent which affected the model 

greatly. 

LSTM Architecture 

 

 Figure 5.6 LSTM architecture 
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Chapter 6 

Routing 

ne of the most common tools for divide traffic costs on all the roads 

dynamic traffic assignment is a tool used to divide traffic costs o not one 

route to making less congestion between specific origin and destination.  

In a dynamic traffic assignment, each traveler is an agent choosing a 

route; the joint actions of all travelers result in congestion patterns throughout the 

network, which determine the travel time each traveler faces. At the equilibrium 

solution, no traveler can reduce their travel time by switching to another route, so 

Travel forecasting models are the target. 

 

Figure 6.1 General DTA algorithmic procedure  

 

o 
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6.1 Routing Procedure 

 Travel forecasting models are used in transportation planning to evaluate the 

impact of future changes in demographics, land use, or transportation facilities on the 

performance of a region's transportation system. Traveler behavior is introduced into 

these forecasting models through sequences of modeling steps. The traditional four-

step process, for example, results in travel choices made by groups of homogeneous 

travelers in aggregate trip-based models. More advanced activity-based processes 

seek to represent travel choices made by individual travelers. Cost and time of travel 

are key components of all travel models throughout the entire sequence of model 

steps. For example, a household's choice of the number of personal vehicles to own 

is often forecast subject to aggregate measures of the accessibility of the household. 

The less accessible a household is, the more likely it is to own automobiles. An 

accessibility measure is then some representation of the travel time and costs from 

the residence to workplaces or shopping places. Likewise, time and cost are 

significant factors in other choices made, including residential, workplace, and 

discretionary activity locations, as well as factors in deciding which transportation 

services to use and which routes to follow when engaging in travel. From a travel 

forecasting perspective, the time and cost of travel are critical factors. Those 

measures are also critical in quantifying impacts on a regional scale to inform policy 

decisions. Travel-time and cost measures determined using static network analysis 

(assignment) procedures use variables of interest that are time-invariant. It has 

become increasingly evident that these procedures are inadequate as explanations of 

influences on travel choices and as measures used to evaluate impacts when deciding 

how to develop policies for managing transportation systems, how to fund 

transportation system improvements, and how to measure environmental impacts 

related to system-wide travel.  

 Dynamic network analysis models seek to provide another, more detailed 

means to represent the interaction between travel choices, traffic flows, and time and 

cost measures in a temporally coherent manner (e.g., further improve upon the 

existing time-of-day static assignment approach). More specifically, Dynamic Traffic 

Assignment (DTA) models aim to describe such time-varying network and demand 
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interaction using a behaviorally sound approach. The DTA model analysis results can 

be used to evaluate many more meaningful measures related to individual travel time 

and cost, as well as system-wide network measures for regional planning purposes. 

Now we can describe the many advantages DTA models have over static network 

assignment models that make them better suited for use in travel forecasting models 

and transportation planning studies. 

 

 Traffic engineers increasingly rely on traffic analysis tools(matsim-dynest-

visim-sumo) to analyze and evaluate the current and future performance of 

transportation facilities for various modes of transport. There are a variety of 

analytical procedures and methodologies available that support different aspects of 

traffic and transportation analyses. Nowadays, most traffic analysts rely on either 

analytical/deterministic tools or microscopic simulation modeling to assess the 

performance of transportation systems of interest. 

 Newer microscopic models are route-based, meaning vehicles select a route at 

departure and follow that route with or without further updates along the journey 

during the simulation. 

  Most microscopic simulation models provide various ways by which a 

vehicle’s route at departure or enroot is selected or updated. Each approach is linked 

to a distinct route choice behavior and, while such flexibility can be of great 

convenience to the modeling work at hand, one needs to realize the underlying route 

choice behavior assumption associated with each method, as well as the impact of 

analysis outcomes depending upon which of the different available mechanisms is 

chosen.  

 For example, the “one-shot” (non-iterative) assignment-simulation approach is 

commonly used in some micro-simulators, in which vehicles departing at different 

times are given a route that is periodically updated in simulation-based on 

instantaneous travel-times – snapshot travel-time measured at the time that the routes 

are generated without considering congestion during subsequent periods. Such an 
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assignment can be regarded as if travelers strictly follow some types of “pre-trip” 

route guidance.  

 Some micro-simulation models allow the enroot vehicles to update their routes 

based on the updated shortest route generated at a later time. This feature also implies 

a route choice behavior that strictly follows the enroot route guidance. While these 

two route choice behaviors exist in reality, it is important to realize that the majority 

of travelers may choose a route that leads to the minimally experienced travel-time 

instead of minimal instantaneous travel-time. The experienced travel-time needs to 

be evaluated “after the fact”, by which point the traffic condition along the entire 

journey is revealed and experienced. In other words, choosing a minimal experienced 

travel-time route at departure involves anticipation of future traffic conditions along 

the journey. This anticipation is usually formed by learning from prior experience 

(e.g., try different routes). 

 To account for this “learning” process, an iterative algorithmic process is needed.  

 Such an iterative process reflects the learning and adjustment in route choice 

from one iteration to the next until the traveler cannot find a route with a shorter 

experienced travel-time. The equilibrium-seeking DTA methods are based on 

iterative algorithmic procedures that are particularly aimed at describing such an 

individual route/departure time choice adjustment as well as at relating such changes 

to the network-level performance through simulation.  

These models apply iterative procedures involving the interplay of vehicular traffic 

loading and assignment algorithm to adjust the traveler route assignment for travelers 

departing at different times to select the respective minimal experienced travel-time 

route.  

 Many simulation-based DTA models adopt more computationally efficient 

traffic simulation logic (at the price of simplifying some simulation fidelity or detail) 

to be able to describe a corridor/region-wide traffic flow shift at a larger geographical 

scope (from a corridor up to a region) and over a longer period (from peak hours to 

24 hours), compared with microscopic models. Most of these simulation methods are 

generally defined as mesoscopic simulation sharing common characteristics with 
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microscopic models – individual vehicles are represented and vehicle dynamic states 

are simulated through simplified car-following or traffic flow theories without 

describing detailed inter-vehicle interactions (e.g. lane changing or gap acceptance). 

6.2 STA Vs DTA 

 In a model defined on a relatively long time-of-day period, such as the peak 

period, the congestion properties of each link are described by a link-

time/performance function that expresses the average or steady-state travel-time on a 

link as a function of the volume of traffic on the link. Such models are called “static”. 

The volume of traffic on the link is determined directly from the loading of the 

Origin-Departure (O-D) matrix to links via routes. The travel times of each link on a 

route are added together to determine the route travel time. This approach has some 

limitations as far as the realism with which it represents the actual process (taking 

place on the road) that gives rise to congestion and increased travel time. In a static 

model, inflow to a link is always equal to the outflow: the travel time simply increases 

as the inflow and outflow (“volume”) increases. The volume on a link may increase 

indefinitely, and exceed the physical capacity (in vehicles/hour) of the link, as 

represented by a volume/capacity (v/c) ratio > 11. Since the link volume does not 

conform to the traffic flow limit that results from the physical characteristics of the 

roadway, the assigned link volume can be considered as demand – trips desired to 

traverse the link – instead of the actual flow. V/C > 1.0 means that the demand 

exceeds the capacity and subsequently, congestion will occur. The drawback of using 

V/C is that it does not directly correlate with any physical measure describing 

congestion (e.g., speed, density or queue, etc.) In dynamic models, as in reality, 

explicit modeling of traffic flow dynamics ensures direct linkage between travel-time 

and congestion. If link outflow is lower than link inflow, link density (or 

concentration) will increase (congestion), and speed will decrease (fundamental 

speed-density relationship), and therefore link travel time will increase. 

 Outflow from a link may be reduced, and thus be potentially less than the 

inflow, for various reasons, such as:  
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• Merging two lanes into one (e.g., at a freeway on-ramp) effectively reduces the 

capacity of each of the two merging lanes;  

• Weaving (lane change maneuvers that cross over each other) also reduces link 

capacity; 

• On arterial streets, traffic signals reduce the outflow capacity of links; 

• On both freeways and arterial streets, significant over-saturation for one exiting 

movement from a link can result in reduced flow rates on the other exiting 

movements, due to a local choke-off effect. 

 Traffic initially becomes congested (e.g., queuing occurs) at the end of a link 

because link inflow is greater than link outflow (put another way, a congested traffic 

state arises at the end of the link under these conditions). According to the basic tenets 

of traffic flow theory – upon which dynamic models are based – for a given value of 

outflow, there is a corresponding value of density and speed under congested 

conditions. This is best thought of in the case of a freeway, where the outflow is 

roughly constant, as opposed to a signalized road where the outflow is constantly 

fluctuating. For the moment – for purposes of this discussion, we assume that the 

outflow is constant. The longer this condition (inflow > outflow) persists, the more 

vehicles accumulate on the link, and the portion of the link covered by the congested 

traffic grows in the upstream direction until it reaches the link entrance. At this point, 

the inflow is reduced. It is equal to the outflow, and the link is in a steady-state 

condition, meaning that speed, density, and flow are essentially constant at all 

positions (in space) along with the link. The speed and density on the link 

corresponding to the flow (inflow and outflow, which are equal) in a well-defined 

mathematical way, called the “fundamental diagram” of traffic flow. In a dynamic 

model, each link may be defined by its fundamental diagram, if desired. This is 

sometimes thought of as the dynamic analogy to the static VDF, but this analogy is 

loose as the two mathematical relationships perform very different functions in the 

contexts of their respective models. In a static model, the VDF represents the 

congested condition, while in a dynamic model, the fundamental diagram describes 

how congestion at the exit node (reduced link outflow) is propagated upstream 

through the link until it “spills back” onto the next upstream links. This phenomenon 

brings forth the question of congestion spill-back, which is not represented in a static 



P a g e  | 55 

 

model. At the moment that the link inflow becomes equal to the outflow (as described 

above), the congestion then continues to spread upstream into whichever upstream 

links are feeding traffic into the congested link. The outflows of these links are thus 

reduced, and the process repeats as described above. This queue spillback process 

also describes how a long queue (congested traffic) can be represented over a 

sequence of links in a dynamic traffic model. There is also the question of link FIFO 

(first-in-first-out). Static models, and even some dynamic models that are based on 

fluid mechanics, enforce the link FIFO rule. In a static model, this means that all 

vehicles traveling on the link experience the same travel time. In a dynamic model 

with FIFO, this means that all vehicles entering the link at a given point in time 

experience the same travel time. What this implies is that there is no overtaking 

between vehicles and, in particular, this means no overtaking between vehicles that 

exit the link by different turning movements. In reality, it is quite obvious that if there 

are two turning movements for exiting a link and if one is oversaturated and the other 

is not, then the vehicles in the queue for the over-saturated movement can be 

overtaken by the other vehicles (assuming the link has more than one lane), and that 

the latter vehicles can have significantly lower travel times than the former. Models 

that move individual vehicles on discrete lanes of the roadway can model non-FIFO 

conditions realistically, and thus do not need employing the FIFO assumption. 

Further, if the turn-bay queue spills back to the through lane, the resulting capacity 

reduction also needs to be properly accounted for through appropriate traffic 

modeling. Lastly, it is worth noting that, as there is no explicit representation of 

individual lanes in static models, there can be no distinction between the traffic 

conditions on different lanes of the same link. 

 There is no way to represent the fact, for example, that the outside lane of a 

freeway is at a crawl due to an oversaturated off-ramp, while the other lanes are 

moving at a higher speed. In summary, the limitations of static models due to their 

use of VDFs include:  

• Using VDFs, a link may have a volume/capacity (V/C) ratio greater than 1.0; 

the V/C ratio does not have intuitive traffic meaning.  

• VDFs assume link FIFO, and therefore no overtaking.  
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• VDFs do not distinguish between different lanes on a roadway.  

• VDFs are based on a single value of link flow (or volume), implying that inflow 

is equal to outflow, and hence there is no accumulation of traffic on the link. As 

a result, there is no representation of the phenomenon of congestion spillback, 

i.e., where congested traffic spans a sequence of two or more links due to a 

downstream bottleneck.  

 Beyond the issues related directly to the use of the VDF and how travel time is 

determined in static models, other limitations include, for example, modeling of 

signal synchronization, modeling of lane-based effects, such as High Occupancy 

Vehicle (HOV) or High Occupancy Toll (HOT) lanes, as they require representing 

the special lane as a parallel link. Most intelligent transportation systems (ITS)-

related applications, such as traveler information systems and advanced network 

control schemes (e.g., adaptive control and ramp metering), are beyond the modeling 

capabilities of static assignment models. Notwithstanding the above critique, this 

document does not intentionally overlook the merit of static models. The widely 

recognized advantages of static models, including the ability to solve large-scale 

problems, to converge to precise equilibria and to provide consistency of solutions 

(if a proper algorithm is used with a sufficient number of iterations) have been aiding 

policy/project decision-making for agencies for decades. The critique is of benefit in 

demonstrating the contrast with dynamic models, but the contributions and merits of 

the static models should not be understated. 

 

Figure 6.2 Dynamic assignment (with feedback) in a one-shot simulation  
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Figure 6.3 Structure of a generic DTA model 

6.3 equilibrium solution 

 The equilibrium solution is the interdependence between different travelers’ 

route choices and travel times. If all travelers were to shift to the shortest routes found 

in the previous step, those routes would become highly congested and would no 

longer be shortest. Therefore, only some travelers’ route choices should be adjusted, 

avoid overcorrecting. Generally, this step involves finding which routes in the set 

need to be increased with assignment flow/vehicles and which to be decreased, and 

by how much. Normally, the newly found TDSP along with several other good routes 

(with close to minimal travel time) are among those to be increased with flows. 

Underperforming routes (long travel time) are decreased with the flow. It is also 

noteworthy that at this step, not all vehicles will select (or be assigned) a new route. 

The adjustment made is only what is necessary to achieve equal travel among all 

routers in the current set. After performing Path Assignment Adjustment, the 

algorithm returns to the route evaluation step to determine the traffic pattern that 

would result from the new route choices (route flows). Thus, the three steps work 

sequentially: the output of the network loading provides the input for Path Set 

Update; the output of Path Set Update provides the input for Path Assignment 

Adjustment, and the output of Path Assignment Adjustment provides the input for 

Network Loading. These three steps are repeated until a stopping criterion is met. 

The algorithmic structure is illustrated in Figure 2.1. The stopping criterion is 

typically computed at the end of the network loading step. Older DTA solution 

algorithms applied a solution approach called the Method of Successive Averages 

(MSA). MSA imposes a pre-determined fixed amount of flow adjustment at each 
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iteration, implying a slower convergence, but most recent algorithms employ the 

notion of the relative gap as the stopping criterion. 

6.4 Defining Quality of DTA Model Outputs 

- Convergence 

a DTA algorithm can test for convergence by calculating various metrics that measure 

the deviations in flow patterns or congestion indexes (such as experienced travel-

times) between successive iterations and checking to determine whether they are less 

than a pre-specified tolerance level. 

- Solution Sensitivity and Stability 

Sensitivity and stability are two notions that relate to how a problem’s solution varies 

as a function of parameters that characterize the problem. It describes the expected 

behavior of DTA problem solutions as the problem itself is changed. For example, 

given a DTA solution for a particular O-D pattern and network, what might be 

expected of the solution for a modified problem in which a link is added or changed. 

time-dependent route choices and link flows and times change as the algorithm 

progresses towards an equilibrium solution. 

- The realism of Traffic Dynamics 

6.5 Tools to make routing be done 

6.5.1 Original plan:  MAT-Sim 

MATSim: Multi-agent-transport-simulation. 

 MATSim is an activity-based, extendable, multi-agent simulation framework 

implemented in Java. It is open-source. It needs minimally 3 files (network file- 

population file- configuration file). 

 The framework is designed for large-scale scenarios, meaning that all models’ 

features are stripped down to efficiently handle the targeted functionality; 

parallelization has also been very important 
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  Using MAT-Sim through the GUI to provide Transportation Analysis and 

Simulation System as well as bringing together expertise in traffic flow, large-scale 

computation, choice modeling and CAS (Complex Adaptive Systems): 

• Microscopic modeling of traffic: MATSim performs an integral microscopic 

simulation of resulting traffic flows and the congestion they produce. 

• Microscopic behavioral modeling of demand/agent-based modeling: MATSim 

uses a microscopic description of demand by tracing the daily schedule and the 

synthetic travelers’ decisions. In 

• retrospect, this can be called “agent-based”. 

• Computational physics: MATSim performs fast microscopic simulations with 

107 or more “particles”. 

• Complex adaptive systems/co-evolutionary algorithms: MATSim optimizes the 

experienced utilities of the whole schedule through the co-evolutionary search 

for the resulting equilibrium or steady state. 

 MATSim is based on the co-evolutionary principle. Every agent repeatedly 

optimizes its daily activity schedule while in competition for space-time slots with 

all other agents on the transportation infrastructure. This is somewhat similar to the 

route assignment iterative cycle but goes beyond route assignment by incorporating 

other choice dimensions like time choice, mode choice, or destination choice into the 

iterative loop. 

 

Figure 6.4 MATSim loop, (MATSim cycle)  

6.5.1.1 The simulation is done by 

 A MATSim run contains a configurable number of iterations, represented by 

the loop. It starts with an initial demand arising from the study area population’s 



P a g e  | 60 

 

daily activity chains. The modeled persons are called agents in MATSim. Activity 

chains are usually derived from empirical data through sampling or discrete choice 

modeling. A variety of approaches is suitable, as evidenced in the scenarios. During 

iterations, this initial demand is optimized individually by each agent. Every agent 

possesses a memory containing a fixed number of day plans, where each plan is 

composed of a daily activity chain and an associated score. The score can be 

interpreted as an econometric utility. 

 

 
Figure 6.5 population file 

 In every iteration, before the simulation of the network loading with the 

MATSim mobsim (mobility simulation) each agent selects a plan from its memory. 

This selection is dependent on the plan scores, which are computed after each mobsim 

run, based on the executed plans’ performances. A certain share of the agents (often 

10 %) is allowed to clone the selected plan and modify this clone (planning).  

For the network loading step, multiple mobsims are available and configurable. 

Plan modification is performed by the planning modules. Four dimensions are usually 

considered for MATSim at this time: departure time (and, implicitly, activity 

duration), route, mode, and destination. 

Further dimensions, such as activity adding or dropping, or parking and group choices 

are currently under development and only available experimentally. MATSim 

planning offers different strategies to adapt plans, ranging from random mutation to 

approximate suggestions, to best-response answers where, in every iteration, the 

currently optimal choice is searched. For example, routing often is a best-response 

modification, while time and mode planning are random mutations. 
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Figure 6.6 network file 

 

 
Figure 6.7 toy network 
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Figure 6.8 real network 

 

 Initial day chains do not have to be very carefully defined for the planning 

dimensions included in the optimization process. Plausible values just speed up the 

optimization process. 

If an agent ends up with too many plans (configurable), the plan with the lowest score 

(configurable) is removed from the agent’s memory. Agents that have not undergone 

planning select between existing plans. The selection model is configurable; in many 

MATSim investigations, a model generating a logit distribution for plan selection is 

used. 

An iteration is completed by evaluating the agents’ experiences with the selected day 

plans (scoring). 

The iterative process is repeated until the average population score stabilizes. The 

typical score development curve takes the form of evolutionary optimization 

progress. Since the simulations are stochastic, one cannot use convergence criteria 

appropriate for deterministic algorithms; for a discussion of possible approaches for 

the MATSim situation. 
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Figure 6.9 configuration file 

 

6.5.1.2 Drawbacks and challenges 

 

 Our main target is to apply the machine learning algorithm outputs (delay) on 

routes that will control the routing between an origin and a destination. 

 

 MATSim could not be configured as We have tried to change the plans of every 

agent to give different scores to the needed routes while the simulated program 

already has a plan to calculate score function which gives the score according to the 

implemented algorithm which cannot be changed.so we need to go to an alternative 

plan. 

 

6.5.2 Alternative plan: Google developer platform 

 

Google APIs: 

is a set of application programming interfaces (APIs) developed by Google which 

allows communication with Google Services and their integration to other services. 

https://en.wikipedia.org/wiki/API
https://en.wikipedia.org/wiki/Google
https://en.wikipedia.org/wiki/Google_Services
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Examples of these include Search, Gmail, Translate, or Google Maps. Third-party 

apps can use these APIs to take advantage of or extend the functionality of the 

existing services. 

The APIs provide functionality like analytics, machine learning as a service (the 

Prediction API), or access to user data (when permission to read the data is given). 

Another important example is an embedded Google map on a website, which can be 

achieved using the Static Maps API, Places API, or Google Earth API.  

Authentication and Authorization 

Usage of all of the APIs requires Authentication and Authorization using the OAuth 

2.0 protocol. Oauth 2.0 is a simple protocol. To start, it is necessary to obtain 

credentials from the Developers Console. Then the client app can request an Access 

Token from the Google Authorization Server and uses that Token for authorization 

when accessing a Google API service. 

 

Client libraries 

 There are client libraries in various languages that allow developers to use 

Google APIs from within their code, including Java, JavaScript, Ruby, .NET, 

Objective-C, PHP, and Python. [5] 

 

 The Google Loader is a JavaScript library that allows web developers to easily 

load other JavaScript API provided by Google and other developers of popular 

libraries. Google Loader provides a JavaScript method for loading a specific API 

(also called a module), in which additional settings can be specified such as API 

version, language, location, selected packages, load callback (computer 

programming), and other parameters specific to a particular API. Dynamic loading 

or auto-loading is also supported to enhance the performance of the application using 

the loaded APIs. 

 

Google Apps Script 

Google Apps Script is a cloud-based JavaScript platform that allows developers to 

write scripts the only owner can manipulate API services such as Calendar, Docs, 

https://en.wikipedia.org/wiki/Machine_learning
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Drive, Gmail, and Sheets and easily create Add-Ons for these services with 

chromium-based applications.  

the algorithm of Google Maps  

maps and navigation systems have many algorithms including: 

• Spatial indexing algorithms and algorithms of computational geometry 

to organize the map data and retrieve it efficiently. 

• Algorithms to draw maps (e.g. project latitude and longitude 

coordinates, fill the polygons, place names for streets, cities, businesses, 

parks, …). 

• Algorithms to understand queries from users (NLU or NLP) 

• Algorithms to process GPS signals (on which I am much less expert than 

on other topics here) 

• Algorithms to perform what is called geocoding, converting addresses to 

points (or polygons) on a map. 

• Algorithms to perform reverse geocoding, converting points to addresses 

using point in polygon algorithms (another example of using 

computational geometry). 

 I’ll get to the route calculation algorithms, but let me mention more of the 

other complex aspects of maps and navigation especially those relevant to 

computing routes. 

• Gathering and organizing the data: it can come from many different sources. 

Just one example of a very complex problem that arises from that is the very 

messy geometry that results when the map coordinates from two sources 

(latitude, longitude) are in slight disagreement – especially polygons and lines. 

Besides data about roads, data about addresses, businesses, parks, malls, and 

institutions are needed. 

• Iddo mentions “costs”. Yes, that’s important and not at all trivial for various 

reasons. The costs are the “weights” on the graph’s edges to use the 

terminology of graph theory, but computing those weights accurately is 

complex. Here are some complex parts of determining costs: 

o Collecting and using traffic data so that slow roads are less likely to be 

chosen in the route calculation. 

o Estimating future costs when the route is long and is driven in the future. 

o Time to travel through intersections of roads. All navigation products 

take into account the differences in time needed to make different turns 

at an intersection because the times can vary significantly – left turns 

usually take much longer than right turns but not always. And the many 
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and complex varieties of configurations of intersections make this a 

challenging problem. 

o Additional parameters to consider are fuel costs and the complexity of 

the route. If a route with a few turns is only slightly longer than a route 

with many turns, it is likely to be a better choice for the driver. 

• I mentioned intersections. The diagram below might provide some idea of 

how difficult it is to deal with intersections because not every turn is allowed. 

The restrictions shown must be encoded into the graph used by the route 

calculation algorithm. 

 

Okay, I’ll discuss route calculation 

algorithms themselves but remember it’s 

only one component of many in the map 

and navigation technology. As some have 

mentioned computing a route a long way 

across a large map can be expensive and 

slow. So, optimizations of the Dijkstra are     

 Figure 6.10 restriction         needed: 

• A*. A* has been a very important concept in traditional AI, and many route 

calculation algorithms include it. But, in my experience in developing the 

algorithms, A* offers only a minor improvement in performance – maybe 30%. 

For other applications in AI, the graphs might be very different in such a way 

the A* provides a larger performance advantage, but not much for road 

networks. 

• Bi-directional. This is a somewhat more effective optimization and almost all 

route calculation algorithms in the industry use it but not primarily for the 

performance advantage it brings. It means that the route is computed both 

forward from the origin (with Dijkstra, A*, reach-based routing, highway 

hierarchies, contraction hierarchies, or other methods) and backward from the 

destination. Like A*, the technique reduces the area searched, but more 

importantly, some more important algorithms (ones using road hierarchies) 

require it to work. But bi-directional route computations bring their 

complications – the algorithm must determine when the two searches have met 
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at a point on an optimum or near optimum route and that’s more complex than 

it sounds. 

• Using the road network hierarchy. This is the most important performance 

optimization and was used long ago at companies like Etak in a practical but 

not academically formal way. My invention and paper on reach-based routing 

brought the concept into academia and spawned further research producing 

algorithms like Highway Hierarchies and Contraction Hierarchies. Since the 

lead author of the papers on Highway Hierarchies, Peter Sanders, gave a talk at 

Google, it has been speculated that Google has used Highway Hierarchies: 

• Shortcuts. This concept replaces sequences of edges with single edges in the 

preparation of the graph. The concept was used in the industry before I 

published my paper and I regret not having space to mention it under Further 

Work in my paper. The folks at Karlsruhe in Germany took full advantage of 

shortcuts in Highway Hierarchies and Contraction Hierarchies. 

• Other issues affecting the algorithms: 

• Even if we ignore performance, Dijkstra does not solve all problems. One 

problem is time-dependency. Sometimes the algorithms must allow the costs 

on the edges to change depending on the time that the route brings the user to a 

particular point on the roads. 

• For example, the road might be closed at a particular time. 

• Or traffic might be predicted to become worse. 

• Most of the fast algorithms require processing on the map data before any routes 

are computed, but some of the data affecting that “pre-processing” changes 

quickly, e.g. traffic data. Determining what part of the problem is solved in pre-

processing and what part is solved during the route calculation and how it is 

solved is very difficult. 
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Figure 6.11 algorithm history 

One final list of complexities that map and navigation technologies face: 

• Guidance: how is the user instructed on the route and when? 

• Detecting when the driver has gone off the route and needs a new route. 

• Special requirements depending on the type of transportation 

• Bicycles cannot legally use all roads. 

• Electric vehicles needing to be charged along the route. 

• Use of trains and buses 

• Trips that combine different modes of transportation including walking 

• Where will the vehicle park? That’s not trivial in city centers like San Francisco. 

• What if the navigation device (e.g. cell phone) can only hold map data for 

nearby areas but the driver is on a long trip that sometimes travels out of the 

cell network. 

• Keeping map data up to date on cell phones. 

• Differences between states and countries that affect 

• Rules for using roads. 

• Language and addressing systems supported by geocoding. 

• 3D map data – organizing and displaying it. Complex 3D graphics algorithms 

here. 
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Google Maps javascript API 

 Build customized, agile experiences that bring the real world to your users with 

static and dynamic maps, Street View imagery, and 360° views. 

The API provides: 

• An interactive map to your website. Customize it with your content and 

imagery. 

• Waypoints specify an array of DirectionsWaypoints. Waypoints alter a route by 

routing it through the specified location(s).  

• ProvideRouteAlternatives when set to true specifies that the Directions service 

may provide more than one route alternative in the response. Note that 

providing route alternatives may increase the response time from the server. 

This is only available for requests without intermediate waypoints. 

• You can calculate directions (using a variety of methods of transportation) by 

using the DirectionsService object. This object communicates with the Google 

Maps API Directions Service which receives direction requests and returns an 

efficient path. Travel time is the primary factor that is optimized, but other 

factors such as distance, number of turns, and many more may be taken into 

account. You may either handle these directions results yourself or use the 

DirectionsRenderer object to render these results. 

Using Java Script 

 Java-Script is a scripting or programming language that allows you to 

implement complex features on web pages — every time a web page does more than 

just sit there and display static information for you to look at — displaying timely 

content updates, interactive maps, animated 2D/3D graphics, scrolling video 

jukeboxes, etc. — you can bet that JavaScript is probably involved. It is the third 

layer of the layer cake of standard web technologies, two of which (HTML and CSS) 

we have covered in much more detail in other parts of the Learning Area. 
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• HTML is the markup language that we use to structure and give meaning to our 

web content, for example defining paragraphs, headings, and data tables, or 

embedding images and videos on the page. 

• CSS is a language of style rules that we use to apply styling to our HTML 

content, for example setting background colors and fonts, and laying out our 

content in multiple columns. 

• JavaScript is a scripting language that enables you to create dynamically 

updating content, control multimedia, animate images, and pretty much 

everything else. (Okay, not everything, but it is amazing what you can achieve 

with a few lines of JavaScript code.)  

 

 The core client-side JavaScript language consists of some common 

programming features that allow you to do things like: 

• Store useful values inside variables. In the above example, for instance, we ask 

for a new name to be entered then store that name in a variable called name. 

• Operations on pieces of text (known as "strings" in programming). In the above 

example, we take the string "Player 1: " and join it to the name variable to create 

the complete text label, e.g. ''Player 1: Chris". 

• Running code in response to certain events occurring on a web page. We used 

a click event in our example above to detect when the button is clicked and then 

run the code that updates the text label. 

• And much more! 

 What is even more exciting however is the functionality built on top of the 

client-side JavaScript language. So-called Application Programming Interfaces 

(APIs) provide you with extra superpowers to use in your JavaScript code. 

 APIs are ready-made sets of code building blocks that allow a developer to 

implement programs that would otherwise be hard or impossible to implement. They 

do the same thing for programming that ready-made furniture kits do for home 

building — it is much easier to take ready-cut panels and screw them together to 

make a bookshelf than it is to work out the design yourself, go and find the correct 
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wood, cut all the panels to the right size and shape, find the correct-sized screws, and 

then put them together to make a bookshelf. 

6.6 Outputs 

 We have thankfully reached all the possible routes between an origin and 

destination given the waypoint of each route which is in the form of latitude and 

longitude. each two-way point represents a route that has a cost of delay. 

the chosen route is the route which has the least accumulative cost. 

 

Figure 6.12 Output displayed on a map 
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Chapter 7 

User Data Gathering Backend 

ow, we try to connect what we built before all together to get the final 

output on our USI which is the website, we try to handle all the input data 

and output of the DL model and present them all on the map that the user 

access it.  

7.1 procedure 

• implementation of the map from google java-script as we discussed in the 

chapter before. 

• using a flask (python library) to get all the possible routes from the java-script 

map as a JSON request. 

• returning this data (all the possible routes) to the map on the website to be 

available to the USI user. 

• By using an online server(pythonanywhere) to host URL which has the needed 

data to be sent to the original website. 

7.2 Handling JSON 

• This route will receive some JSON, parse the data, do some validation, and 

return a new JSON response. 

• Posting data to the server so passing the method's argument to the @app. route() 

decorator, along with the HTTP methods allowed for this route. 

• To gain access to request object in Flask import it from the Flask library to use 

it in any view functions 

7.2.1 Receiving JSON from an HTTP Request 

 To handle the incoming JSON. Flask provides the handy request.get_json () the 

method, which parses any incoming JSON data into a Python dictionary. 

 

N 
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7.3 Functions 

7.3.1 Flask 

 Is a micro web framework written in Python? It is classified as a 

microframework because it does not require particular tools or libraries. It has no 

database abstraction layer, form validation, or any other components where pre-

existing third-party libraries provide common functions. However, Flask supports 

extensions that can add application features as if they were implemented in Flask 

itself. Extensions exist for object-relational mappers, form validation, upload 

handling, various open authentication technologies, and several common framework 

related tools. Extensions are updated far more frequently than the core Flask program. 

In any web app, you'll have to process incoming request data from users. Flask, like 

any other web framework, allows you to access the requested data easily. 

one of the extensions is Cross-Origin Resource Sharing (CORS), making cross-origin 

AJAX possible. 

7.3.2 Using JSON with CORS 

 When using JSON cross origin, browsers will issue a pre-flight OPTIONS 

request for POST requests. For browsers to allow POST requests with a JSON content 

type, you must allow the Content-Type header. The simplest way to do this is to 

simply set the CORS_HEADERS configuration value on your application 

7.3.3 The Request Object 

 The request object is an instance of a Request subclass and provides all of the 

attributes Werkzeug defines 

 To access the incoming data in Flask, you have to use the request object. The 

request object holds all incoming data from the request, which includes the mimetype, 

referrer, IP address, raw data, HTTP method, and headers, among other things. 

Although all the information the request object holds can be useful. 

Jsonfiy 
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 Creates a Response with the JSON representation of the given arguments with 

an application/JSON mimetype. The arguments to this function are the same as the 

dict constructor. For security reasons, only objects are supported top level. For more 

information about this, have a look at JSON Security. 

JSON. loads ()  

Takes in a string and returns a JSON object.  

JSON. dumps ()  

Takes in a JSON object and returns a string. 

Reading the incoming JSON data 

 Assignment everything from the JSON object into a variable using 

request.get_json (). which converts the JSON object into Python data for us. Let's 

assign the incoming request data to variables and return them by making the 

following changes to our JSON-example route. 

Method 

The request method. (For example, 'GET' or 'POST') 

• GET: Sends data in unencrypted form to the server. Most common method. 

• POST: Used to send HTML form data to the server. Data received by the POST 

method is not cached by the server. 

 By default, the Flask route responds to the GET requests. However, this 

preference can be altered by providing methods argument to route () decorator. 

To demonstrate the use of the POST method in URL routing, first, let us create an 

HTML form and use the POST method to send form data to a URL. 
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Chapter 8 

Model Cloud Deployment 

 

fter Building a strong backend algorithm using machine learning different 

algorithms and routing algorithms, the model deployment is critical as it 

plays many different roles i.e. 

• Friendly UI with the users  

• The connection between routing and machine learning algorithms 

The model deployment contains many parts such as: 

• Amazon SageMaker hosting 

• Website Building 

8.1 Amazon SageMaker 

 Amazon SageMaker is a cloud machine-learning platform that was launched in 

November 2017. SageMaker enables developers to create, train, and deploy machine-

learning models in the cloud. SageMaker also enables developers to deploy ML 

models on embedded systems and edge-devices.  

 Using SageMaker, one can bind the model to a website to interface with the 

machine learning model. 

8.2 Cloud Computing 

 Cloud computing can be easily interpreted as transforming an IT product to an 

IT service. We’re dealing with cloud computing daily using many applications like 

Google Drive, iCloud, Microsoft OneDrive, and many more. 

 E.g. using a hard drive (a product) to store images can be transformed to using 

Google Drive (a service), this is why cloud computing is a process of transforming 

an IT product into IT service. 

A 
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 Using cloud computing can be helpful in many ways, your data is portable and 

easy to access on any device and surely has a lower cost. 

 Cloud storage is one of many examples of cloud computing, there are also cloud 

applications, databases, virtual machines, and many other cloud services. 

8.2.1 Why Cloud Computing 

Cloud computing is proven to be efficient and dependable in many ways. Startups 

with IT needs to find it better to start with cloud services as its implementation cost 

and running time is very low in comparison to implementing a whole new system for 

the corporate as well as upgrading/downgrading the system is made easily based on 

the corporate needs and with less financial risks. 

8.2.2 Pros and Cons of Cloud computing 

Cloud computing has proven to be beneficial with various benefits such as: 

• Reduced Investments and Proportional Costs (providing cost reduction) 

• Increased Scalability (providing simplified capacity planning) 

• Increased Availability and Reliability (providing organizational agility) 

Although it has many pros, it comes with some risks: 

• (Potential) Increase in Security Vulnerabilities 

• Reduced Operational Governance Control (over cloud resources) 

• Limited Portability Between Cloud Providers 

• Multi-regional Compliance and Legal Issues 

8.3 Deployment to Production 

 Deployment to Production is a process of introducing a machine learning model 

into a running environment where the model takes actions or give results based on 

system inputs. 

 To deploy a model, many ways can be used but the most three used ways are: 

• Python model is recoded into the programming language of the production 

environment. 
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• Model is coded in Predictive Model Markup Language (PMML) or Portable 

Format Analytics (PFA). 

• Python model is converted into a format that can be used in the production 

environment. 

 

8.3.1 Recoding Model into Programming Language of Production Environment 

 The first method involves recording the Python model into the language of the 

production environment, often Java or C++. This method is rarely used anymore 

because it takes time to recode, test, and validate the model that provides the same 

predictions as the original. 

8.3.2 Model is coded in PMML or PFA 

 The second method is to code the model in Predictive Model Markup Language 

(PMML) or Portable Format for Analytics (PFA), which are two complementary 

standards that simplify moving predictive models to deployment into a production 

environment. The Data Mining Group developed both PMML and PFA to provide 

vendor-neutral executable model specifications for certain predictive models used by 

data mining and machine learning. Certain analytic software allows for the direct 

import of PMML including but not limited to IBM SPSS, R, SAS Base & Enterprise 

Miner, Apache Spark, Teradata Warehouse Miner, and TIBCO Spotfire. The third 

method is to build a Python model 

8.3.3 Model is converted into Format that’s used in the Production Environment 

 The third method to build a Python model and use libraries and methods that 

convert the model into code that can be used in the production environment. 

Specifically, most popular machine learning software frameworks, like PyTorch, 

TensorFlow, SciKit-Learn, have methods that will convert Python models into an 

intermediate standard format, like ONNX (Open Neural Network Exchange Format). 

This intermediate standard format then can be converted into the software native to 

the production environment. 
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 This is the easiest and fastest way to move a Python model from modeling directly 

to deployment. 

• Moving forward this is typically the way models are moved into the production 

environment. 

• Technologies like containers, endpoints, and APIs (Application Programming 

Interfaces) also help ease the work required for deploying a model into the 

production environment. 

 

8.3.4 Endpoint 

 An endpoint in the deployment process is the interface to the model, this 

endpoint facilitates the communication between the model and the application where 

this interface: 

• Allows the application to send user data to the model and 

• Receives predictions back from the model-based upon that user data. 

One way to think of the endpoint that acts as this interface is to think of a Python 

program where: 

• The endpoint itself is like a function call. 

• The function itself would be the model. 

• The Python program is the application. 

 E.g. Figure 1 shows a simple example of an Application, Model, and Endpoint 

connection, where: 

• The endpoint: line 8 function call to ml_model 

• The model: beginning on line 14 function definition for ml_model 

• The application: Python program web_app.py 
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Figure 8.1 App, model, and endpoint  

8.3.5 How Endpoint Works 

 The interface between application and model takes place through endpoint 

where the endpoint is considered an application programming interface (API)  

• An API is thought of as a set of rules used to set the interface between the model 

and the application. 

• Here, REST API is used, as it uses HTTP requests and responses to handle the 

communication between the application and the model through an endpoint. 

• HTTP request and response are the communication between the model and the 

application. 

8.3.5.1 HTTP Request 

The HTTP request sent from the application to model is composed of 4 crucial parts: 

1. Endpoint 

This endpoint will be in the form of a URL, Uniform Resource Locator, which is 

commonly known as a web address. 
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2. HTTP Method 

HTTP has many methods; POST is used in deployment. 

3. HTTP Headers 

The headers will contain additional information, like the format of the data within the 

message, that’s passed to the receiving program. 

4. Message 

The final part is the message (data or body); for deployment will contain the user’s 

data which is input into the model. 

8.3.5.2 HTTP Response 

The HTTP response has 3 parts: 

1. HTTP status code 

A status whether the request is successful or not, start with 2 if successful 

2. HTTP Headers 

The headers will contain additional information, like the format of the data within the 

message, that’s passed to the receiving program. 

3. Message 

What’s returned as the data within the message is the prediction that’s provided by 

the model. 

This prediction can be represented by a developed UI by the developer on the 

application. 

8.3.6 Application Responsibilities  

The application is mainly responsible for: 

• To format the user’s data in a way that can be easily put into the HTTP request 

message and used by the model. 
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• To translate the predictions from the HTTP response message in a way that’s 

easy for the application users to understand. 

8.4 Deployment Characteristics  

Model deployment has many characteristics, which include: 

Model Versioning  

 With each update to the model, its version must be saved to the model’s 

metadata in the database, this will make it easier to build, monitor, and maintain 

model versions. 

Model Monitoring 

 The ease of model monitoring post-deployment is important to make sure that 

the model still meets its intended needs otherwise it need update. 

Model updating and routing 

 The ease of updating a deployed model is another important part of the model 

deployment, the model update is needed when the model performance starts to 

decline. One of the most important reasons for updating the model is that the data it 

gets became different than the data it was trained on. 

 The deployment platform should support routing differing proportions of user 

requests to the deployed models; to allow comparison of performance between the 

deployed model variants. 

 Routing in this way allows for a test of model performance as compared to other 

model variants. 

Model Predictions 

There are two main types of model deployment: 

- On-Demand Predictions 

• online 
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• real-time 

• synchronous 

With On-Demand predictions, one can expect: 

• Low latency of response to each prediction request 

• But allows for the possibility of high variability in request volume 

Predictions are returned in the response from the request. Often these requests and 

responses are done through an API using JSON or XML formatted strings. 

Each prediction request from the user can contain one or many requests for 

predictions. Noting that many are limited based upon the size of the data sent as the 

request. Common cloud platforms on-demand prediction request size limits can range 

from 1.5(ML Engine) to 5 Megabytes (SageMaker). 

On-demand predictions are commonly used to provide customers, users, or 

employees with real-time, online responses based upon a deployed model.  

Batch Predictions 

• Asynchronous 

• batch-based predictions 

With these types of predictions, one expects: 

• the high volume of requests with more periodic submissions 

• So, latency won’t be an issue.  

Each batch request will point to a specifically formatted data file of requests and will 

return the predictions to a file. Cloud services require these files will be stored in the 

cloud provider’s cloud. 

Cloud services typically have limits to how much data they can process with each 

batch request based upon limits they impose on the size of the file you can store in 

their cloud storage service. For example, Amazon’s SageMaker limits batch 

predictions requests to the size limit they enforce on an object in their S3 storage 

service. 
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Batch predictions are commonly used to help make business decisions. 

8.5 Deployment on AWS 

 After model building and verifying, time to deploy it. Amongst many service 

providers, AWS provides a great service with high reliability and viability. In this 

section, deployment on Amazon SageMaker will be discussed in detail. 

Amazon SageMaker gives the ability to work on your machine learning projects using 

Jupiter notebooks which makes it easier to write, share, and build machine learning 

programs alongside data preparations. 

After creating an AWS account and entering AWS SageMaker from the console, one 

can go to notebook instances and create a new instance to start working on machine 

learning projects using Jupiter notebooks.  

On creating a notebook instance, one must choose carefully an IAM role, this role 

decides which services are bind to the notebook instance. For instance, create a new 

role with all options enabled. 

Start by data exploration ad preparation like any other machine learning project. After 

data preparation, it’s preferable to save your pre-processed data on AWS servers 

which will guarantee less data preparation time for the next time you use the 

notebook.  

E.g.  

 

Figure 8.2 saving a pre-processed list to a pickle file 

 

Figure 8.3 saving the train data and its labels to a .csv file 
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Next, we need to upload the training data to the SageMaker default S3 bucket so 

that we can provide access to it while training our model. 

 

Figure 8.4 Creating a SagaMaker session to upload out files to s3 bucket 

Note that S3 Bucket is considered as SageMaker’s storehouse.  

8.5.1 Train on SageMaker 

 When a model is constructed in SageMaker, an entry point must be specified. 

This is the Python file which will be executed when the model is trained. Let the 

training file located at train/train.py  

Starting a training job on SageMaker is easy with the following two steps assuming 

Pytorch use. 

 

Figure 8.5 starting a training job on SageMaker 

The folder where the .py file is in is called a train, the file where the model is built 

is train.py. 

The role in Pytorch function is the role specified when creating the notebook 

instance and can be found using the line of code in figure 8.5. 
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8.5.2 Model Deploying 

Once the model is built on SageMaker, it’s necessary to test it to check how good 

the results are on test data. To test the model, it has to be deployed first. 

NOTE: When deploying a model, you are asking SageMaker to launch a compute 

instance that will wait for data to be sent to it. As a result, this compute instance 

will continue to run until you shut it down. This is important to know since the cost 

of a deployed endpoint depends on how long it has been running for. 

 

Figure 8.6 deploying a model in SageMaker 

And then to predict, you have to preprocess your test data the same way you did to 

input data and call 

Predictor.predict() function. 

Once we've deployed an endpoint it continues to run until we tell it to shut down. 

Since we are done using our endpoint, for now, we can delete it. 

 

Figure 8.7 deleting an endpoint 

8.5.3 Linking Model to Website 

In the upper steps, the model has been deployed and used using predictor function, 

in this section, it will be shown how to link this endpoint to be used through a 

website. 

 

Figure 8.8 The link between a web app and a model 
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 The web app can be easily interpreted as an attractive UI to the users, the model 

is the decision-maker which is the core of the project. 

 In the sections earlier it was shown why using a REST API in the connection 

between the model and the app is crucial, but what is Lambda? 

 Lambda is a straightforward Python function that can be executed whenever a 

specified event occurs. We will give this function permission to send and receive data 

from a SageMaker endpoint. 

 Lastly, the method we will use to execute the Lambda function is a new 

endpoint that we will create using API Gateway. This endpoint will be a URL that 

listens for data to be sent to it. Once it gets some data it will pass that data on to the 

Lambda function and then return whatever the Lambda function returns. Essentially 

it will act as an interface that lets our web app communicate with the Lambda 

function. 

8.5.3.1 Lambda Function 

 The Lambda function is the function that will be executed whenever it receives 

data from the API gateway, then it will send the given data to the SageMaker endpoint 

and return with the results. 

To create a Lambda function on SageMaker: 

Create an IAM Role for the Lambda function 

 Lambda function needs permissions to be able to call SageMaker endpoint, it’s 

important to create an IAM Role that will be given to the Lambda function later. 

Using the AWS Console, navigate to the IAM page and click on Roles. Then, click 

on Create role. Make sure that the AWS service is the type of trusted entity selected 

and choose Lambda as the service that will use this role, then click Next: Permissions. 

In the search box type sagemaker and select the checkbox next to the 

AmazonSageMakerFullAccess policy. Then, click on Next: Review. 
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Lastly, give this role a name. Make sure you use a name that you will remember later 

on, for example, LambdaSageMakerRole. Then, click on Create role. 

 

Creating the Lambda function 

Time to build the Lambda function itself and assign to it the IAM Role. 

 Using the AWS Console, navigate to the AWS Lambda Page and click on 

Create a function. When you get to the next page, make sure that the Author from 

scratch is selected. Now, name your Lambda function, using a name that you will 

remember later on, for example, first_func. Make sure that the Python 3.6 runtime is 

selected and then choose the role that you created in the previous part. Then, click on 

Create Function. 

8.5.3.2 Setting API Gateway 

After setting up the Lambda function, it needs an API Gateway to trigger it. 

Using AWS Console, navigate to Amazon API Gateway and then click on Get 

started. 

On the next page, make sure that New API is selected and give the new API a 

name, for example, first_api. Then, click on Create API. 

After creating an API, time to bind it with Lambda function, click on Actions, and 

then Create Method. A new blank method will be created, select its dropdown 

menu, and select POST, then click on the checkmark beside it. 

For the integration point, make sure that Lambda Function is selected and click on 

the Use Lambda Proxy integration. This option makes sure that the data that is sent 

to the API is then sent directly to the Lambda function with no processing. It also 

means that the return value must be a proper response object as it will also not be 

processed by API Gateway. 
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Type the name of the Lambda function you created earlier into the Lambda 

Function text entry box and then click on Save. Click on OK in the pop-up box that 

then appears, permitting API Gateway to invoke the Lambda function you created. 

The last step in creating the API Gateway is to select the Actions dropdown and 

click on Deploy API. You will need to create a new Deployment stage and name it 

anything you like, for example, prod. 

After completing the previous steps, the API is successfully set up and working, 

copy the API URL which will be used to invoke the API. 

This URL will be used later on the website in a form to send and receive data. 
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Chapter 9 

Website and User Interface 

 

uilding a strong UI is crucial to any IT service, as it contacts directly with 

the user. 

 

In TrCPRS, the website is important where it’s responsible for: 

• Friendly UI with the user. 

• Receiving the user data (Location and Destination). 

• Linking between Routing algorithms and Machine learning model. 

• Integrated with Google Maps. 

• Acts as the web app in the deployment process. 

Building the website needs to meet a certain specification to be able to work well as 

a friendly UI i.e. 

• A well-built structure using HTML. 

• Friendly UI using CSS and SASS. 

• Dynamic website using JavaScript and jQuery. 

• Responsive across multi-platform using Bootstrap. 

9.1 HTML Structure 

 Hypertext Markup Language (HTML) is the standard markup language for 

documents designed to be displayed in a web browser. It’s considered as the basic 

structure for building any web app. The TrCPRS website is built from scratch to 

ensure it meets the project specifications. The website has many sections such as a 

header which contains a project slogan, an ‘about’ section which contains 

information about the project as well as its vision and mission. The most important 

B 
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part of the website is the google maps integration part which is responsible for 

taking the user's location and destination and finally draw the best route on the map. 

 

Figure 9.1 Header HTML Structure 

 

Figure 9.2 About HTML Structure 

 

Figure 9.3 Map HTML Structure 
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9.2 CSS Designs 

 HTML can be assisted by technologies such as Cascading Style Sheets (CSS) 

where CSS can be used to add colors, shapes, positions, or any added designs to an 

HTML Structure. 

9.3 Map Design 

 One of the most crucial parts of TrCPRS is the routing process, where it 

outputs all the possible routes between two given points. This routing process is 

done through Google Maps JavaScript API. 

In the website, there’s a map provided for such purpose where it first asks for user 

location to center the map on the user’s location, then it waits for both the starting 

and ending points. 

In the backend, the maps.js file on the website handles this process where it calls 

the API using an API key, works on the routing process, and finally print all the 

possible routes between two points. 

Finally, this route is sent as a request to be pre-processed and worked through the 

machine learning model, the result of this request is the best route given by the 

model which will be displayed using renderer tools on the map. 

The map design is initialized by google maps and is handled by map.js which is 

called on index.html file as in the next figure. 

 


