
1 | P a g e

Cairo University

Faculty of Engineering

Electronics and Electrical Communication Engineering Department

Real-time Lane Detection
Project Documentation Year (2017-2018)

 Under Supervision

 Dr. Hassan Mostafa

 Dr. Hossam Hassan

Project’s Team

Ahmed Mahmoud Hussein

Loay Ehab Mostafa

Mohamed Reda Sabek

Mostafa Mohamed Mohamed Abdel Aleem

2 | P a g e

Table of Contents
List of Figures .. 4

Acknowledgement ... 7

Abstract .. 8

Chapter 1: Introduction ... 9

1. Problem Definition: .. 9

2. Problem impact: .. 10

3.Who are the pioneers? ... 10

4.What has been accomplished? .. 11

5. Project Description: .. 13

6. Approach: .. 14

7. Objectives and Outcomes: .. 15

8. Market .. 15

9. Project Applications .. 16

10. Tools ... 17

11. Project Implementation .. 18

Chapter 2: Software Layer: ... 19

Computer vision approaches: .. 19

1. Mohamed Aly ‘s paper ... 19

1.1. Input Stream... 21

1.2.IPM (Inverse Perspective Mapping) ... 21

1.3. Canny Edge... 26

1.4. Hough Transform .. 29

2. Kang Park and Toan Minh paper (LSD paper):.. 32

2.1. Region of interest (ROI) .. 35

1.1. Vanishing point approach: .. 35

1.2. Seed-Line Algorithm: .. 37

1.3. Fixed ROI: .. 39

2.2. Line Segment Detection (LSD) .. 42

2.3. Region Growing ... 51

2.4. Filtration Stage: ... 54

2.5. Curve Fitting .. 56

2.6. Lane Keeping assist .. 59

3 | P a g e

2.7. Output Stream .. 61

Algorithm Summary ... 62

Deep learning approach: .. 63

Core Concepts ... 63

Performance on PC (Proposed computer vision approach): .. 76

Chapter 3: Hardware Layer: ... 78

1. Nvidia Jetson TX1 ... 78

2. TI TDA3x ... 82

Nvidia Jetson TX1 Performance .. 87

Comparison Between Hardware Performance .. 88

Final Conclusion: .. 88

Graphical User Interface – GUI .. 89

Future Work .. 91

References:... 92

4 | P a g e

List of Figures
Figure 1:accidents as a percentage ... 9

Figure 2:Ratio of Lane departure accidents as a reason of the accident .. 9

Figure 3:(a):M. Aly results , (b): LSD results .. 12

Figure 4:Full autonomous car manufacturers .. 15

Figure 5: Project implentation .. 18

Figure 6: M. Aly results ... 20

Figure 7:output Frame after IPM .. 21

Figure 8: Input Frame .. 21

Figure 9: Pin hole camera model .. 22

Figure 10 IPM: Mapping point from 3D to 2D .. 22

Figure 11: Projection ... 24

Figure 12: IPM: Least square projection ... 24

Figure 13: Projection of b .. 25

Figure 14:Output Frame after IPM ... 25

Figure 15: Input Frame .. 25

Figure 16:Canny: Non-maximal suppression .. 26

Figure 17 : Gradient Magnitude .. 27

Figure 18 : Non-maximum suppression .. 27

Figure 19: origional image .. 27

Figure 20: Canny: Hysteresis threshold .. 27

Figure 21: step 1 :After grayscale nad Gaussian filter .. 28

Figure 22: step 2 : Compute gradient magnitude and angle .. 28

Figure 23: step 3:Non-maximum suppression .. 28

Figure 24: step 4:Hysteresis thresholding ... 28

Figure 25:Hough Transform: x-y plane and parameter space .. 29

Figure 26: Hough Transform: Parameterization of line in x-y plane ... 30

Figure 27: Hough Transform: ρθ-plane ... 30

Figure 28:Hough Transform: Division of the ρθ-plane into accumulator cells ... 30

Figure 29: Lane detection ouptput using Hough transform ... 31

Figure 30: Road Lane Detection by Discriminating Dashed and Solid Road Lanes Using a Visible Light

Camera Sensor .. 32

Figure 31: Line combination cases .. 34

Figure 32:LSD results for curved frame .. 34

Figure 33:steps to determine ROI based on vanishing point .. 35

Figure 34:Results of vanishing point ROI .. 36

Figure 35:output image from our LSD block ... 37

Figure 36: ROI based on Seed-line Algorithm ... 37

Figure 37:ROI detected based on Seed-line approach ... 38

Figure 38:Camera input frame .. 39

Figure 39: (a) Input image of the camera (b) Apply fixed ROI on the input (c) The Output................. 39

Figure 40: Fixed ROI dimensions ... 40

Figure 41: Input frame .. 41

Figure 42 : LSD ... 42

file:///C:/Users/loay/Documents/final%20thesis%20last%20time.docx%23_Toc519161903
file:///C:/Users/loay/Documents/final%20thesis%20last%20time.docx%23_Toc519161904
file:///C:/Users/loay/Documents/final%20thesis%20last%20time.docx%23_Toc519161910
file:///C:/Users/loay/Documents/final%20thesis%20last%20time.docx%23_Toc519161911
file:///C:/Users/loay/Documents/final%20thesis%20last%20time.docx%23_Toc519161913
file:///C:/Users/loay/Documents/final%20thesis%20last%20time.docx%23_Toc519161914
file:///C:/Users/loay/Documents/final%20thesis%20last%20time.docx%23_Toc519161915
file:///C:/Users/loay/Documents/final%20thesis%20last%20time.docx%23_Toc519161917
file:///C:/Users/loay/Documents/final%20thesis%20last%20time.docx%23_Toc519161918
file:///C:/Users/loay/Documents/final%20thesis%20last%20time.docx%23_Toc519161919
file:///C:/Users/loay/Documents/final%20thesis%20last%20time.docx%23_Toc519161920
file:///C:/Users/loay/Documents/final%20thesis%20last%20time.docx%23_Toc519161931

5 | P a g e

Figure 43 ... 43

Figure 44: LSD Algorithm .. 44

Figure 45: Staircase effect ... 45

Figure 46:LSD result for dashed and solid lanes (noon time) ... 48

Figure 47: LSD results for curved Lanes (noon time) .. 48

Figure 48: LSD results for night time ... 49

Figure 49: LSD before filteration ... 49

Figure 50: LSD output after filteratio .. 50

Figure 51: Region Growing .. 51

Figure 52: LSD output before filteration ... 55

Figure 53: LSD after filteration .. 55

Figure 54: Curve fitting point .. 56

Figure 55: Curve fitting algorithm ... 58

Figure 56: Curve fitting block output .. 58

Figure 57:Car is approximately in the center of lane .. 59

Figure 58: car moves to the Left ... 60

Figure 59:Driver moves to the right .. 60

Figure 60:Output stream after Lane Detection .. 61

Figure 61: Input frame .. 62

Figure 62: After ROI .. 62

Figure 63: Lane Keeping assist .. 62

Figure 64: After ROI & IPM.. 62

Figure 65: After LSD .. 62

Figure 66: Output stream .. 62

Figure 67: After Curve fitting .. 62

Figure 68: After filtration .. 62

Figure 69: The logistic sigmoid function ... 65

Figure 70: convolution of input with kernel without the need to kernel flipping. 70

Figure 71: Deep Learning model ... 73

Figure 72: sample1 of labeled data ... 74

Figure 73: sample2 of labeled data ... 74

Figure 74: Sample result ... 75

Figure 75: sample result from Egypt - NA road ... 75

Figure 76: Performance on PC .. 76

Figure 77: PC performance ... 77

Figure 78:Nvidia Jetson TX1 .. 78

Figure 79: Jetson TX1 H.W. components .. 79

Figure 80: Jetson TX1 H.W. components .. 79

Figure 81:CUDA overview ... 81

Figure 82:CUDA pesudo code ... 81

Figure 83:TDA3x .. 82

Figure 84:TDA3x specifications ... 84

Figure 85:TDA3x Hardware components .. 85

Figure 86: Kit performance ... 87

file:///C:/Users/loay/Documents/final%20thesis%20last%20time.docx%23_Toc519161954
file:///C:/Users/loay/Documents/final%20thesis%20last%20time.docx%23_Toc519161955
file:///C:/Users/loay/Documents/final%20thesis%20last%20time.docx%23_Toc519161957
file:///C:/Users/loay/Documents/final%20thesis%20last%20time.docx%23_Toc519161958
file:///C:/Users/loay/Documents/final%20thesis%20last%20time.docx%23_Toc519161959
file:///C:/Users/loay/Documents/final%20thesis%20last%20time.docx%23_Toc519161960
file:///C:/Users/loay/Documents/final%20thesis%20last%20time.docx%23_Toc519161961
file:///C:/Users/loay/Documents/final%20thesis%20last%20time.docx%23_Toc519161962
file:///C:/Users/loay/Documents/final%20thesis%20last%20time.docx%23_Toc519161963
file:///C:/Users/loay/Documents/final%20thesis%20last%20time.docx%23_Toc519161964

6 | P a g e

Figure 87: gui ... 89

Figure 88: Original video window ... 89

7 | P a g e

Acknowledgement
• First, we would like to express all our thanks to Allah for the great help in completing

this project.

• We would like to express our sincere thanks to Dr. Hossam Hassan and Dr. Hassan

Mostafa for them guidance, continuous encouragement and generous help throughout the

development of this work.

• And we would like to offer our special thanks to Eng. Mostafa Refay from Valeo , Eng.

Abdelrahman Abu-Taleb , Eng. Khaled Ahmed from Axxelera for them technical help.

• Finally, we would also like to express our love, gratitude and appreciation to our parents

for their endless love, encouragement, patience and prayers during this work and behind.

8 | P a g e

Abstract
With the increase in the number of vehicles, many intelligent systems have been developed to

help drivers to drive safely. Lane detection is a vital element of driver assistance systems. Lane

detection process has several major challenges, such as attaining robustness to inconsistencies in

lighting and background clutter. To address these issues in this project, several image processing,

computer vision algorithms and Deep learning algorithms will be implemented.

Application of the project:

1. Lane Detection: the suitable lane for the vehicle will be detected with a real time process.

2. Lane departure warning:

Advanced Driver Assistance System (ADAS) provides safe and better driving. It helps to

automate, adapt and enhance the driving experience. Most of the road accidents occur due to

carelessness of driver. Advanced Driver Assistance System ensures safety and reduces driver

workload. Whenever a dangerous situation is encountered, the system either warns the driver or

takes active role by performing necessary corrective action to avoid an accident.

3. Lane Keeping assist:

Lane keeping assist is a feature that, in addition to lane departure warning system automatically

take steps to ensure the vehicle stays in its lane.

Our Algorithm:

[2]

Region of

interest

(ROI)

[1]

Input

Frames

[5]
Filtration

stage

&

 Shadow

Removing

[4]

Line

Segment

Detection
(LSD)

[3]

Inverse

Perspective

Mapping
(IPM)

Curve

Fitting

[6]

Output

Stream

[7]

9 | P a g e

Chapter 1: Introduction

1. Problem Definition:
Nearly 1.3 million people die in road crashes each year, on average 3,287 deaths a day. An

additional 20-50 million are injured or disabled. More than half of all road traffic deaths occur

among young adults ages 15-44. Road traffic crashes rank as the 9th leading cause of death and

account for 2.2% of all deaths globally. Up to 90% of accidents due to human factor.

Figure 1:accidents as a percentage

Lane Departure represents the largest proportion as a reason for accident with 37%.

Figure 2:Ratio of Lane departure accidents as a reason of the accident

10 | P a g e

2. Problem impact:
For better, more secure driving and for luxury and with the advance of the technology and to

save user time and effort, the companies produced Advanced Driver Assistance System (ADAS)

for us. Lane Detection is a min block in ADAS system.

3.Who are the pioneers?
2008 | Mohamed Aly Real time and robust approach to detect lane markers in urban roads.

2008 | Abdulhakam. AM. Assidiq, Othman O. Khalifa, Md. Rafiqul Isalm and Sheroz Khan

developed a vision based algorithm for lane detection.

2009 | Chun-Wei Lin, Han-Ying Wang and Din-Chang Tseng constructed an algorithm for

lane detection with lateral inhibition and conjugate Gaussian model.

2009 | Amol Borkar updated a previous algorithm based on hough transform by incorporating

an inverse perspective mapping and kalman filter.

2012 | Amol Borkar, Monson Hayes and Mark T Smith developed a new night-time lane

detection system with efficient ground truth generation.

2013 | H. Yoo, et al. proposed an algorithm that is robust in illumination changes and suitable

for both straight and curved roads.

2014 | U. Ozgunalp and N. Dahnoun proposed an algorithm that is robust in night and

shadows.

2014 | N.N. Ahmed Salim, X. Cheng and X. Degui. A Robust Approach for Road Detection

with Shadow Detection Removal Technique. Information Technology Journal, 13: 782-788.

2015 | Ammu M Kumar , Philomina Simon. Review of lane detection and tracking algorithms in
advanced driver assistance system.

2016 | Soonhong Jung, Junsic Youn and Sanghoon Sull proposed an efficient method for

reliably detecting road lanes based on spatiotemporal images.

2016 | Bei He, Rui Ai, Yang Yan and Xianpeng Lang proposed a Dual-View Convolutional

Neutral Network framework for lane detection.

2016 | Pallavi V. Ingale , Prof. K. S. Bhagat. Comparative Study of Lane Detection

Techniques.

2016 | Toan Minh Hoang and Kang Ryoung Park: Road Lane Detection by Discriminating

Dashed and Solid Road Lanes Using a Visible Light Camera Sensor.

11 | P a g e

4.What has been accomplished?
2008 | Dr. Mohamed Ali published :Real time and robust approach to detect lane markers

in urban roads

 It first generates a top view of the road image using inverse perspective mapping, then the top

view is filtered using selective oriented two dimensional Gaussian kernel, then the straight lines

are detected using simplified Hough transform, which is followed by RANSAC line fitting which

provides initial guess to the RANSAC spline fitting step, then a post processing step is done to

localize the spline and extend it in the image. Note: This algorithm does not perform tracking. It

can detect any number of lane boundaries in the image not just the current lane. In this paper,

result is 20 fps with 90.89% correct rate according to the Caltech Dataset.

2013 | N. Phaneendra proposed a vision-based lane departure warning system. The main goal of

this model was to implement an image processing algorithm for detecting lanes on the road and

give a textual warning on departure from the lane. The lane departure decision making is based

on distance between lanes and the center of the bottom in captured image coordinate, which

needed less parameters. The lane detection performance has been improved by making use of

Hybrid median filter with modified Hough transform, compared to the usual method of using

Hough transform. The model proved to be efficient and feasible as compared to other systems.

Lane detection and tracking algorithm which can handle challenging scenarios such as

faded lane markers, lane curvatures and splitting lanes In the initial step, a gradient detector

and an intensity bump detector is used to eliminate the non-lane markers. Artificial Neural

Networks (ANN) is applied on remaining samples for lane detection. The detected lane markers

pixels are grouped using cubic splines. Hypotheses are generated from random set of line

segments. RANSAC algorithm helps in validating the hypotheses. Particle filtering is used for

lane tracking.

Variability of weather and road circumstances

Lane boundaries are successfully extracted in different conditions (sunny, cloudy, nighttime,

shadowing, and rainy)

Note: Each developed algorithm works well on specific dataset, but do not work well on any

other dataset. Also, some problems still not solved yet such as sharp curves in the foreground of

the image and the accurate detection of the lanes under heavy rain also the captured frames are

not that stable due to the vehicle movement.

12 | P a g e

2016 | Toan Minh Hoang and Kang Park published: Road Lane Detection by

Discriminating Dashed and Solid Road Lanes Using a Visible Light Camera Sensor.

The model used a new algorithm using the approach of line segment detection – LSD instead of

Hough Transform and also using fixed Region of interest – ROI instead of ROI based on vanishing

points to reduce processing time. lanes always appear within the predetermined region of the

image when the position and direction of the camera are fixed.

This approach gives high performance real-time output relative to Mohamed Aly approach and

all previous approaches. The algorithm takes 33 mile second per frame processing but Mohamed

Aly approach takes 50 mile second per frame with lower correct rate.

Figure 3:(a):M. Aly results , (b): LSD results

13 | P a g e

5. Project Description:
Lane detection is the process to locate lane markers on the road and then deliver these locations

to an intelligent system. In intelligent transportation systems, intelligent vehicles cooperate with

smart infrastructure to achieve a safer environment and better traffic conditions. The applications

of a lane detecting system could be as simple as pointing out lane locations to the driver on an

external display, to more complex tasks such as predicting a lane change in the instant future in

order to avoid collisions with other vehicles. Some of the interfaces used to detect lanes include

cameras, laser range images, LIDAR and GPS devices.

There are four aspects that need to be considered in the project: safety, accuracy, Real time

response, of course cost and the ability to work in extreme conditions with results as good as

possible.

There are various challenges in this field like parked and moving vehicles, bad quality lines,

shadows of trees, buildings and other vehicles, sharper curves, irregular lane shapes, merging

lanes, writings and other markings on the road, unusual pavement materials, dissimilar slopes

causes problems in lane detection and the ability to produce satisfactory results in a real time.

Also, gaps in the existing work include nowadays various lane detection algorithms have been

used for assisting the driver in Advanced Driver Assistance System (ADAS). Majority of these

techniques have focused on the detection of straight lanes and curved lanes have been ignored.

Thus, the gaps which exist in the literature are:

1. Majority of work is based on straight lane images i.e. curved lane images have been

ignored.

2. The improvement in Hough Transform has been ignored for better Lane Detection.

3. The effect of fog and shadow in Lane Detection has also been ignored.

14 | P a g e

6. Approach:
Many approaches have been applied to lane detection, which can be classified as either feature-

based or model-based. Feature-based methods detect lanes by low-level features like lane-mark

edges. The feature-based methods are highly dependent on clear lane-marks, and suffer from weak

lane marks, noise and occlusions. Model-based methods represent lanes as a kind of curve model

which can be determined by a few critical geometric parameters. The model-based methods are

less sensitive to weak lane appearance features and noise as compared to feature-based methods.

But the model constructed for one scene may not work in another scene, which makes the method

less adaptive. Additionally, for best estimation of model parameters, an iterative error

minimization algorithm should be applied, which is comparatively time-consuming.

We will use the best approach which saves time and effort and gives the best result after

experimenting different approaches.

The general method of lane detection is to first take an image of road with the help of a camera

fixed in the vehicle. Then the image is converted to a grayscale image in order to minimize the

processing time. Secondly, as presence of noise in the image will hinder the correct edge detection.

Therefore, filters should be applied to remove noises like bilateral filter, Gabor filter, trilateral

filter Then the edge detector is used to produce an edge image by using canny filter with automatic

thresholding to obtain the edges. Then edged image is sent to the line detector after detecting the

edges which will produces a right and left lane boundary segment. The lane boundary scan uses

the information in the edge image detected by the Hough transform or Line Segment Detection

(LSD) to perform the scan. The scan returns a series of points (line segments) on the right and left

side. Finally, pair of hyperbolas is fitted to these data points to represent the lane boundaries. For

visualization purposes the hyperbolas are displayed on the original color image.

The algorithm undergoes various changes and detection of patterns in the images of roads for

detecting the lanes.

Beside the computer vision algorithms, we will use Deep learning algorithms using convolutional

neural network - CNN to implement Real-time Lane Detection comparing between the two

approaches. Till now, the computer vision approaches achieve better performance in the

application of the Lane Detection.

15 | P a g e

7. Objectives and Outcomes:
1. The goal of this work is to offer a real time product that is compatible with multiple

environments and reduce the gaps in the existing work and to face the challenges that are

imposed on the field.

2. As it is implied this is a part of a big project that aims to Driver assistance in autonomous

cars, so we work on this module while other teams work on other modules like car

detection so we aim to integrate our work in a full autonomous car that contain all these

modules.

3. The product will enhance safety of the driver and of other cars and pedestrians too and
contributes to decreasing the rate of accidents in highways.

4. Improve the algorithms used in the project to give better speed to have the ability to work
in a practical environment.

8. Market
Automated driving is increasingly being considered the key technology to address societal

problems caused by the proliferation of automobiles around the world. The development of

automated driving has been ongoing since at least the 1950s. However, it has accelerated in the

last decade, enabled by advancements in computational architectures and sensing technology,

along with dramatic cost reductions. These advancements, combined with vehicle electrification

and ubiquitous connectivity, are enabling automated driving to rapidly become viable.

Figure 4:Full autonomous car manufacturers

Pioneers: GM, FORD, Daimler, Tesla, Waymo.

16 | P a g e

Future of Autonomous Cars:

In 2015, full Autonomous vehicles (AVs) are being developed for consumers.

By 2030, Consumers begin to adopt full autonomous cars. The after-sales service landscape is

reshaped, Insurers shift from covering individuals to covering technical failures, Supply chain

and logistics are redefined.

By 2050, full autonomous cars become the primary means of transport. AVs free up to 50

minutes a day for drivers. Parking space is reduced by billions of square meters. Vehicle crashes

fall by 90%, saving billions of dollars. AV technology accelerates development of robots for

consumer use.

9. Project Applications
1. Lane Detection: the suitable lane for the vehicle will be detected with a real time process.

2. Lane departure warning:

Advanced Driver Assistance System (ADAS) provides safe and better driving. It helps to

automate, adapt and enhance the driving experience. Most of the road accidents occur due to

carelessness of driver. Advanced Driver Assistance System ensures safety and reduces driver

workload. Whenever a dangerous situation is encountered, the system either warns the driver or

takes active role by performing necessary corrective action to avoid an accident.

3. Lane Keeping:

Lane keeping assist is a feature that, in addition to lane departure warning system automatically

take steps to ensure the vehicle stays in its lane.

17 | P a g e

10. Tools

• Python Programming language.

• C++11 Programming language.

• g++ (C++ compiler version 5.4).

• CMake (version 3.8)

➢ CMake is an open-source, cross-platform family of tools designed to build, test

and package software.

➢ CMake is used to control the software compilation process using simple platform

and compiler independent configuration files, and generate native Makefiles and

workspaces that can be used in the compiler environment.

• OpenCV library (version 3.2).

➢ Contains hundreds of programming functions mainly aimed at real-time computer vision.

Uses OpenBLAS (Open source implementation of Basic Linear Algebra Subprograms).

➢ Supports OpenCL, OpenGL and CUDA.

➢ OpenCV is used in Camera calibration, image processing, image and video I/O, basic

GUI.

• Data analysis (classification/regression, including neural networks).

• Optimization and nonlinear solvers.

• Interpolation and linear/nonlinear least-squares fitting.

• Linear algebra (direct algorithms, EVD/SVD), direct and iterative linear solvers, Fast

Fourier Transform and many other algorithms (numerical integration, ODEs, statistics,

special functions).

• GNU Bash.

• Ubuntu (version 14.04).

• Nvidia Jetson TX2 Embedded Kit.

• ELP Camera (3MP – 2.8-12mm – USB 2.0).

• Tornado 17” LCD.

• Opencv for cuda

18 | P a g e

11. Project Implementation
Proposed System:

• A car mounted camera that captures a video feed.

• Embedded kit where the algorithm is executed.

• LCD monitor to display a GUI.

• An accurate and fast lane detection algorithm that is capable to work in different

conditions of road and weather.

Such a system can be integrated with other ADAS systems for autonomous cars manufacturing.

Figure 5: Project implentation

19 | P a g e

Chapter 2: Software Layer:

Computer vision approaches:

1. Mohamed Aly ‘s paper
Paper overview:

Mohamed Aly’s paper is the first robust paper in the field of Lane Detection using computer

vision approach which published in 2008. It is considered as a common reference for the future

papers and researches in the field of Lane Detection.

Lane Detection has received considerable attention since the mid-1980s. Techniques used varied

from using monocular to stereo vision using low-level morphological operations to using

probabilistic grouping and B-snakes. However, most of these techniques were focused on

detection of lane markers on highway roads, which is an easier task compared to lane detection

in urban streets. Lane detection in urban streets is especially a hard problem. Challenges include:

parked and moving vehicles, bad quality lines, shadows cast from trees, buildings and other

vehicles, sharper curves, irregular/strange lane shapes, emerging and merging lanes, sun glare,

writings and other markings on the road (e.g. pedestrian crosswalks), different pavement

materials, and different slopes.

This paper presents a simple, fast, robust, and effective approach to tackle this problem. It is

based on taking a top-view of the image, called the Inverse Perspective Mapping (IPM). This

image is then filtered using selective Gaussian spatial filters that are optimized to detecting

vertical lines. This filtered image is then thresholded robustly by keeping only the highest values,

straight lines are detected using simplified Hough transform, which is followed by a RANSAC

line fitting step, and then a novel RANSAC spline fitting step is performed to refine the detected

straight lines and correctly detect curved lanes. Finally, a cleaning and localization step is

performed in the input image for the detected splines.

This paper provides a number of contributions. First of all, it’s robust and real time, running at

50 Hz on 640x480 images on a typical machine with Intel Core2 2.4 GHz machine. Second, it

can detect any number of lane boundaries in the image not just the current lane. it can detect lane

boundaries of neighboring lanes as well. This is a first step towards understanding urban road

images. Third, it presents a new and fast RANSAC algorithm for fitting splines efficiently.

Finally, the paper presents a thorough evaluation of our approach by employing hand-labeled

dataset of lanes and introducing an automatic way of scoring the detections found by the

algorithm.

The Algorithm used in Mohamed Aly’s paper:

1. IPM

2. Image filtering and thresholding

3. Progressive Probabilistic Hough Transform (PPHT)

4. RANSAC line fitting

20 | P a g e

Results:

Figure 6: M. Aly results

Conclusion:

The paper proposed an efficient, real time, and robust algorithm for detecting lanes in urban

streets. The algorithm is based on taking a top view of the road image, filtering with Gaussian

kernels, and then using line detection and a new RANSAC spline fitting technique to detect lanes

in the street, which is followed by a post-processing step. The algorithm can detect all lanes in

still images of urban streets and works at high rates of 50 Hz. We achieved comparable results to

other algorithms that only worked on detecting the current lane boundaries, and good results for

detecting all lane boundaries.

21 | P a g e

1.1. Input Stream
The algorithm runs on a demonstrating datasets videos, thus the first stage is to read the video

frames and apply the algorithm on these video frames.

Input Stream stage can be initialized by video file or camera device. The input frames are resized

to 800x480 to suit our GUI’s size and to achieve better performance. Dynamic frame rate (FPS)

is used to deliver real-time experience to the user. Dynamic frame rate is calculated from the

difference between actual inter-frame time and processing time in this stage.

1.2.IPM (Inverse Perspective Mapping)
It is the first step in this approach and it’s main roles are

• Get rid of the perspective effect in the image, and so lanes that appear to converge at the

horizon line are now vertical and parallel. This uses our main assumption that the lanes

are parallel (or close to parallel) to the camera.

• We can focus our attention on only a sub-region of the input image, which helps in

reducing the run time considerably.

Figure 8: Input Frame

Figure 7:output Frame after IPM

22 | P a g e

Pin hole camera model:

The pinhole camera model describes the mathematical relationship between the coordinates of a

3D point and its projection onto the image plane of an ideal pinhole camera, where the camera

aperture is described as a point and no lenses are used to focus light.

Figure 9: Pin hole camera model

In the previous figure, a simple illustration to the pin hole model is shown, containing an object

in 3D -real world- and how the image is formed.

Perspective Imaging:

In the following figure, the shown coordinate system has the image plane introduced in front of

the COP -center of projection- so that the image will not be inverted, which is mathematically

easier to deal with.

The world point (𝑥,,𝑧) is mapped to the point (𝑥′,𝑦′,𝑑) on the image plane.

To calculate a point on image plane that is corresponding to a point in the world we need to

calculate 𝑥′ and 𝑦′.

From the similar triangles (ABC and ADE), we get that: (𝑥′,′,𝑧′)=(−𝑑 𝑥/𝑧,−𝑑 𝑦/𝑧,−𝑑)

We get the projection (the location of the point on the image plane) by throwing out the last

coordinate (image plane is 2D), so the image plane point is (−𝑑 𝑥/𝑧,−𝑑 𝑦/𝑧).

Figure 10 IPM: Mapping point from 3D to 2D

23 | P a g e

The perspective projection is represented by this matrix multiplication

Homogeneous coordinates:

To get an image plane point, we divided 𝑥 and 𝑦 by 𝑧, the issue is that this transformation is not a

linear transformation as 𝑧 is not constant. Division by constant is a linear operation, so to solve

this problem we add one more coordinate which is a constant number, which is called

homogeneous coordinates.

Image to Image Projection:

A geometric transform is a vector function T that maps the pixel (𝒙,) to a new position (𝒙′,𝒚′).

The transformation equations are either known in advance such as translation, rotation or can be

determined from known original and transformed images such as affine and homoghraphy

transformations.

Homoghraphy transformations is what we care about.

it is represented by this matrix multiplication

24 | P a g e

Projective Transformation:

A transformation that maps lines to lines but does not necessarily preserve parallelism as shown

in figure 22, using 3x3 matrix called homography matrix

Figure 11: Projection

Least Squares Method:

Least squares method is used to solve and find values of homoghraphy matrix to do the

necessary plan transformation.

Consider having the equation: 𝐴 �̅�=𝑏 ̅

Where A = [𝑎 ̅1 𝑎 ̅2⋯�̅�𝑘] , �̅� = transpose([𝑥1𝑥2⋮𝑥𝑘]) and you want to find �̅� which satisfies the

equation. 𝑥1 𝑎 ̅1+ 𝑥2 𝑎 ̅2+ …+𝑥𝑘𝑎 ̅𝑘= 𝑏 ̅

The problem is that no linear combination for 𝑥1 𝑎 ̅1, 𝑥2 𝑎 ̅2 , … , 𝑥𝑘𝑎 ̅𝑘 can give 𝑏 ̅.

𝑏 ̅ is not in the (𝐴) as illustrated in the following figure.

To solve this problem, find 𝒙 ̅∗, where 𝑨𝒙 ̅∗ is as close to 𝒃 ̅ as possible. The closest vector in the

subspace (𝐴) to a vector 𝒃 ̅ outside. This subspace is the projection 𝒃 ̅ onto (𝐴) as illustrated in the

following figure.

𝒙 ̅∗ is called least square solution.

Figure 12: IPM: Least square projection

𝐴𝑥 ∗ =𝑝𝑟𝑜𝑗𝐶(𝐴)𝑏
𝐴𝑥 ∗ −𝑏 =𝑝𝑟𝑜𝑗𝐶(𝐴)𝑏 −𝑏
𝑝𝑟𝑜𝑗(𝐴)𝑏 −𝑏 =orthogonal to 𝐶(𝐴) (shown in the next figure). ∴𝐴𝑥 ∗ −𝑏 ∈Set of all vectors orthogonal to
all vectors 𝑖𝑛 (𝐴)
∴ 𝐴𝑥 ∗ −𝑏 ∈(𝐴𝑇) , 𝑁(𝐴𝑇) 𝑛𝑢𝑙𝑙 𝑠𝑝𝑎𝑐𝑒 𝑜𝑓 𝐴 transpose 𝑡ℎ𝑒𝑛 𝐴𝑇(𝐴𝑥 ∗ −𝑏)=0 𝐴𝑇𝐴𝑥 ∗ −𝐴𝑇𝑏 =0
𝐴𝑇𝐴𝑥 ∗ = 𝐴𝑇𝑏 , and this will always have a solution.
Finally, to get the homoghraphy matrix, solve the equation: 𝐴𝑇𝐴𝑥 ∗ = 𝐴𝑇𝑏

25 | P a g e

Where 𝒙 ∗ is the homoghraphy matrix, 𝑨 is the matrix of input points and 𝒃 is the matrix of destination

points.

Figure 13: Projection of b

Results

Figure 15: Input Frame

Figure 14:Output Frame
after IPM

26 | P a g e

1.3. Canny Edge
Canny Overview

Finds edges by looking for local maxima of the gradient of f(x, y). The gradient is calculated

using the derivative of a Gaussian filter. The method uses two thresholds to detect strong and

weak edges, and includes the weak edges in the output only if they are connected to strong

edges. Therefore, this method is more likely to detect true weak edges.

Canny Algorithm

• The image is smoothed using a Gaussian filter with a specified standard deviation, to

reduce noise.

• The local gradient, [gx2 + gy2] and edge direction, tan-1 (gy /gx), are computed at each

point. An edge point is defined to be a point whose strength is locally maximum in the

direction of the gradient.

• The edge points determined in the previous step give rise to ridges in the gradient

magnitude image. The algorithm then tracks along the top of these ridges and sets to zero

all pixels that are not actually on the ridge top to give a thin line in the output, a process

known as non-maximal suppression.

Figure 16:Canny: Non-maximal suppression

At ‘q’ we have a maximum if the value is larger than those at ‘p’ and ‘r’.

27 | P a g e

Then, A threshold is applied on the edge pixels, by so-called hysteresis thresholding, which is

based on using two thresholds, T1 and T2, with T1 < T2. Ridge pixels with values greater than

T2 are said to be "strong" edge pixels. Ridge pixels with values between T1 and T2 are said to

be "weak" edge pixels.

Figure 20: Canny: Hysteresis threshold

Figure 19: origional image
Figure 17 : Gradient Magnitude Figure 18 : Non-maximum suppression

28 | P a g e

Algorithm of canny edge:

1. convert pic to gray scale.

2. Noise reduction using Gaussian filter.

3. Compute gradient magnitude and angle

4. Non-maximum suppression

5. Hysteresis thresholding.

Figure 21: step 1 :After grayscale nad
Gaussian filter

Figure 22: step 2 : Compute gradient
magnitude and angle

Figure 23: step 3:Non-maximum
suppression

Figure 24: step 4:Hysteresis thresholding

29 | P a g e

1.4. Hough Transform

Hough Transform Overview

In practice, the resulting pixels of edge detection seldom characterize an edge completely

because of noise, breaks in the edge from non-uniform illumination, and other effects that

introduce spurious intensity discontinuities. Thus, edge detection algorithms typically are

followed by linking procedures to assemble edge pixels into meaningful edges. One approach for

linking line segments in an image is the Hough transform.

Linear Representation

Many lines pass through (xi, yi),all of which satisfy the slope-intercept line equation yi = axi + b

for some values of a and b. Writing this equation as b = -axi + yi and considering the ab-plane

(also called parameter space). A second point (xj, yj) also has a line in parameter space

associated with it, and this line intersects the line associated with (xi , yi) at (a', b') where a' is

the slope and b' the intercept of the line containing both (xi , yi) and (xj, yj) in the xy-plane. In

fact, all points contained on this line have lines in parameter space that intersect at (a', b').

As result any point in xy-plane is represented by a line in parameter/ Hough space, and any line

in xy-plane is represented by a point in parameter/ Hough space.

The problem in the linear representation is that a and b can take infinite values. Thus the polar

representation of line is used to overcome this problem.

Figure 25:Hough Transform: x-y plane and parameter space

30 | P a g e

Polar Representation

The Polar representation of a line:

Figure 26: Hough Transform: Parameterization of line in x-y plane

Figure 27: Hough Transform: ρθ-plane

The intersection point (ρ', θ') corresponds to the line that passes through both (xi, yi) and (xj , yj).

In order to pick the intersection point, the ρθ -plane is divided into cells called accumulator cells.

Figure 28:Hough Transform: Division of the ρθ-plane into accumulator cells

31 | P a g e

Where [ρmin, ρmax] and [θmin, θmax] are the expected ranges of the parameter values.

Usually, the range of values is -D < p < D and -90° < θ < 90°, where D is the farthest distance

between opposite corners in the image.

Let each edge point vote in image space vote for a set of possible parameters in Hough space,

then accumulate votes in discrete set of cells, parameters with the most votes indicate line in

image space (xy-plane).

Hough transform Algorithm

• Initialize H[ρ, θ] = 0, where H is an accumulator array (votes).

• For each edge point I[x, y] in the image:

For each θ = [θmin to θmax], calculate ρ = x cos θ – y sin θ then increment H[ρ, θ].

• Find the values of (ρ’, θ’) where H[ρ’, θ’] is maximum.

• The detected line in the image is given by ρ’ = x cos θ’ – y sin θ’.

Hough transform results

Figure 29: Lane detection ouptput using Hough transform

32 | P a g e

2. Kang Park and Toan Minh paper (LSD paper):
This paper (Road Lane Detection by Discriminating Dashed and Solid Road Lanes Using a

Visible Light Camera Sensor) implemented by Kang Park and Toan Minh achieved high real

time performance comparing with Mohamed Ali paper performance. This algorithm was robustly

implemented in 2016. We added some blocks to the algorithm to improve the algorithm

performance.

1. ROI (region of interest)

2. LSD (Line Segment Detection) & curve fitting.

3. Filtration

Figure 30: Road Lane Detection by Discriminating Dashed and Solid Road Lanes Using a Visible Light Camera Sensor

33 | P a g e

Postprocessing

Filtration

The detected lines in photo contain a lot of incorrect lines in regions of photo outside the lanes

and those need to be removed and filtration is done here with high weight compared to MALY

paper and the next used approach because this approach doesn’t use IPM so it doesn’t have a big

perspective view of the photo to get the desired area only. so photo is divided into 2 parts : a

lower part with y coordinates from one third of the height of the photo to the height of the photo

and a higher part which extends from the 0 coordinated of the photo (origin point at top left) and

it extends to one third of the height of the photo each has different approaches in filtration of line

segments as the lower part it has an easier approach as lines there are filtered due to their length

and orientation or angle and the ranges are found practically to be from -75 to -60 for left region

of the lane and from 35 to 50 for the right part in lower region of the area.

While the higher part of the photo is filtrated by 2 approaches the first one uses threshold of

angles determined from the information obtained from the lower part of the photo and if no lines

were detected in the lower part of the photo. Thresholds are set from trial and error from the

statistics of tried photos before to find the angle (trial and error). While the second approach is

more similar to region growing algorithm, which is used for image segmentation in general

where first the lines are sorted from bottom to top to keep starting from the part which was

previously processed by the code and then a seedline is found and the seedline is chosen as the

line with the most resemblance in angle or orientation with the lower part of photo which was

previously processed by the algorithm and the average angle of the filtered lines in the lower part

is found and seedline is chosen such that it is the line with the least absolute difference to the

lines detected in the lower region and then lines of the top region of the photo are scanned with

their order and the line with the smallest absolute difference to the seedline are pushed into a

vector of the filtered lines and then is chosen as a seedline and so on.

Line combination algorithm

Lines filtered are combined and determined if they are a curve or line due to the difference in

orientation between the two line to be combined and distance between the starting point of the

top line and the ending point of the bottom line as if the difference between the angle of two

lines is less than or equal a certain threshold and thresholds are found practically to be 2 degrees

for the difference in angle and 3 pixels for the difference between the starting point and the

ending point.

And based on these differences the lines are combined for several cases shown in the figure

below

34 | P a g e

Figure 31: Line combination cases

some results:

Figure 32:LSD results for curved frame

35 | P a g e

2.1. Region of interest (ROI)
The input images usually include unnecessary information and road conditions need to be

analyzed only in a region of interest (ROI) to reduce the amount of computation. So, we can

focus our attention on only a sub-region of the input image, which helps in reducing the run time

considerably and Processing resources. This block wasn’t included in the Mohamed Aly’s

algorithm but we will use ROI to provide real-time approach.

There are commonly three ROI approaches used for Lane Detection algorithms. We studied them

carefully.

2.1.1. Vanishing point approach:

1. The input here is the output from the block used for line segment detection (LSD or

PPHT).

2. Divide the input into left region and right region, getting left/right lines.

3. We will extend every left/right line and get all the intersection points between the left

lines and right lines. So, Num. of intersection points = Num. of right lines X Num. of left

lines

4. We will consider Threshold Num. of intersection points and moving sliding window

(41X41) with step of 15 pixels to catch the threshold Num. of intersection points and if

the sliding window catches the threshold or higher it will approx. the position of the

vanishing point. -Threshold Num. of intersection points =

Num. of right lines X Num. of left lines /4

5. We will extend vertical line which pass on the vanishing point and parallel to the central

line, we will consider this line is central lane line.

Figure 33:steps to determine ROI based on vanishing point

36 | P a g e

Output :

Figure 34:Results of vanishing point ROI

Advantage:

1. It can be used for each vehicle regardless its height and the position of the camera.

2. In the highway or in fixed roads the vanishing point is almost fixed. So, if we used simple

tracking method we will easily predict the vanishing point and the central line.

Disadvantage:

1. This approach includes the lane central line not the left/right lines.

2. It will provide good results in the case of good road and good lane markers.

3. No results: if the road includes many noisy line segments, there will be no threshold

existing.

4. Multiple results: if the road includes many noisy line segments, there will be more than

one threshold existing.

5. Wrong results: if the road includes many noisy line segments, there will be threshold

existing in wrong position.

6. Lots of processing overheads and processing time.

37 | P a g e

2.1.2. Seed-Line Algorithm:

1. The input here is the output from the block used for line segment detection (LSD or

PPHT).

2. Divide the input into left region and right region, getting left/right lines.

3. Left/right lines are ordered according to their position from bottom to top.

4. For each region choose seed line to be the initial line, also to has a neighboring line.

5. For each region, loop over ordered lines, for each line calculate horizontal distance from

seed line Δ𝒙, and the angle 𝜽 of the line. The line is added to the region if Δ𝒙 is less than

α1 (empirically chosen 40) and Δ𝜽 is less than α2 (empirically chosen 15). The initial

region angle 𝜽 𝒓𝒆𝒈𝒊𝒐𝒏 is the angle of the seed line, and each time a line is added to the

region, 𝜽 𝒓𝒆𝒈𝒊𝒐𝒏 is updated to the average angle of all lines in the region.

Figure 36: ROI based on Seed-line Algorithm

Figure 35:output image from our LSD block

38 | P a g e

Output:

Figure 37:ROI detected based on Seed-line approach

Advantage:

1. More Accurate results than vanishing point algorithm.

2. This approach includes the left/right lines not only the lane central line.

3. It can be used for each vehicle regardless its height and the position of the camera.

Disadvantage: Lots of processing overheads and processing time.

39 | P a g e

2.1.3. Fixed ROI:

Previous researches defined the ROI based on vanishing points takes a lot of processing time and

might determine an incorrect ROI if the vanishing points were incorrect. Our project is mainly

focused on detecting the starting and ending positions of straight and curve lanes with the

discrimination of dashed and solid lanes within the ROI. Here we will use a simple approach to

apply ROI. We will manually apply suitable fixed ROI on the input image before using line

segment detection (LSD) or Progressive Probabilistic Hough Transform (PPHT). Here, we will

avoid too much processing on unnecessary information of the roads in the Non-road region.

Figure 38:Camera input frame

Output:

Figure 39: (a) Input image of the camera (b) Apply fixed ROI on the input (c) The Output

40 | P a g e

Advantage:

1. Suitable approach for real time applications, here, we can apply the fixed ROI almost in

no processing time.

2. This approach includes the left/right lines not only the lane central line.

3. Fixed ROI avoids processing overheads on unnecessary information in the road so we

can decrease all processing time in the future blocks (LSD block, Filtration block, Curve

fitting block, Tracking, Lane Departure warning). So, we can easily reach real-time.

Disadvantage:

1. We must manually change the position of the Fixed ROI to be suitable for each vehicle.

2. The position of fixed ROI may be changed if uphill and downhill appear in the road.

Conclusion :

We will use the third approach (Fixed ROI) as it is very simple and suitable for our proposed

solution. It’s more suitable for real- time application.

ROI results

Figure 40: Fixed ROI dimensions

41 | P a g e

Figure 41: Input frame

Output of ROI block:

42 | P a g e

2.2. Line Segment Detection (LSD)
LSD is aimed at detecting locally straight contours on images. This is what we call line

segments. Contours are zones of the image where the gray level is changing fast enough from

dark to light or the opposite. Thus, the gradient and level-lines of the image are key concepts for

LSD. The algorithm starts by computing the level-line angle at each pixel to produce a level-line

i.e., a unit vector such that all vectors are tangent to the level line going through their base point.

Then, this is segmented into connected regions of pixels that share the same level-line angle up

to a certain tolerance . These connected regions are called line support regions.

Figure 42 : LSD

Each line support region (a set of pixels) is a candidate for a line segment. The corresponding

geometrical object (a rectangle in this case) must be associated with it.

Each rectangle is subject to a validation procedure. The pixels in the rectangle whose level-line

angle corresponds to the angle of the rectangle up to a tolerance _ are called aligned points. The

validation step is based on the a contrario approach and the Helmholtz principle. The so-called

Helmholtz principle states that no perception (or detection) should be produced on an image of

noise. Accordingly, the a contrario approach proposes to define a noise or a contrario model H0

where the desired structure is not present. Then, an event is validated if the expected number of

events as good as the observed one is small on the a contrario model. In other words, structured

events are defined as being rare in the a contrario model.

Another definition states that it is not possible to observe a regular structure in a noise.

Given an image i and a rectangle r, we will note k(r; i) the number of aligned points and n(r) the

total number of pixels in r. Then, the expected number of events which are as good as the

observed one is

where the number of tests Ntest is the total number of possible rectangles being considered, PH0

is the probability on the a contrario model H0 (that is defined below), and I is a random image

43 | P a g e

following H0. The H0 stochastic model fixes the distribution of the number of aligned points k(r;

I), which only depends on the distribution of the level-line field associated with I. Thus H0 is a

noise model for the image gradient orientation rather than a noise model for the image.

The a contrario model H0 used for line segment detection is therefore defined as a stochastic

model of the level-line field satisfying the following properties:

The level lines of pixels are independent random variable and and the level line angles at pixels

are uniformly distributed between 0 and 2pi so where LLA(j) is the level-line angle at pixel j.

Under hypothesis H0, the probability that a pixel on

the a contrario model is an aligned point is

p =

and, as a consequence of the independence of the random variables LLA(j), k(r; I) follows a

binomial distribution. Thus, the probability term PH0 [k(r; I) > k(r; i)] is given by :

where B(n; k; p) is the tail of the binomial distribution:

Figure 43: Determine number of tests

From the above figure the number of tests is given by (NM) power ()

The precision p is initially set to the value; but other values are also tested to cover the relevant

range of values. We will note the number different p values potentially tried. Each rectangle with

each p value is a different test. Thus, the final number of tests

44 | P a g e

Is (NM) power (2.5) *

Finally, we define the Number of False Alarms (NFA) associated with a rectangle r on the image

I as:

This corresponds to the expected number of rectangles which have a sufficient number of aligned

points to be as rare as r under H0. When the NFA associated with an image rectangle is large,

this means that such an event is expected on the a contrario model, i.e., common and thus not a

relevant one. On the other hand, when the NFA value is small, the event is rare and probably a

meaningful one. A threshold " is selected and when a rectangle has NFA (r; i) < threshold it is

called "-meaningful rectangle and produces a detection.

LSD Algorithm

Figure 44: LSD Algorithm

45 | P a g e

Image scaling

The result of LSD is different when the image is analyzed at different scales or if the algorithm is

applied to a small part of the image. This is natural and corresponds to the different details that

one can see if an image is observed from a distance or if attention is paid to a specific part. As a

result of the a contrario validation step, the detection thresholds automatically adapt to the image

size that is directly related to the number of tests. The scale of analysis is a choice left to the user,

who can select it by cropping the image. Otherwise LSD processes automatically the entire

image. The first step of LSD is, nevertheless, to scale the input image to 80% of its size. This

scaling helps to cope with aliasing and quantization artifacts (especially the staircase effect)

present in many images. Blurring the image would produce the same effect but affecting

statistics of an image in the a contrario model: some structures would be detected on a blurred

white noise. When correctly sub-sampled, the white noise statistics are preserved. Note that the a

contrario validation is applied to the scaled image and the N _M image size used in the NFA

computation corresponds to an input image of size 1:25N _ 1:25M.

Figure 45: Staircase effect

46 | P a g e

Gradient computation

The image gradient is computed at each pixel using a 2x2 mask. Given:

 where i(x; y) is the image gray level value at pixel (x; y), the image gradient is computed as

And the LLA is computed as

And the gradient magnitude is computed by

Gradient Pseudo-Ordering

LSD is a greedy algorithm and the order in which pixels are processed has an impact on the

result. Pixels with high gradient magnitude correspond to the more contrasted edges. In an edge,

the central pixels usually have the highest gradient magnitude. hence it makes sense to start

looking for line segments at pixels with the highest gradient magnitude. Sorting algorithms

usually require O(n log n) operations to sort n values. However, a simple pixel pseudo-ordering

is possible in linear-time. To this aim, 1024 bins are created corresponding to equal gradient

magnitude intervals between zero and the largest observed value on the image. Pixels are

classified into the bins according to their gradient magnitude. LSD uses first seed pixels from the

bin of the largest gradient magnitudes; then it takes seed pixels from the second bin, and so on

until exhaustion of all bins. 1024 bins are enough to sort almost strictly the gradient values when

the gray level values are quantized in the integer range [0,255].

47 | P a g e

Gradient Threshold

Pixels with small gradient magnitude correspond to at zones or slow gradients. Also, they

naturally present a higher error in the gradient computation due to the quantization of their

values. In LSD the pixels with gradient magnitude smaller than p are therefore rejected and not

used in the construction of line-support regions or rectangles.

Assuming a quantization noise n and an ideal image i we observe:

So the threshold is set up as

Where the above law is driven from the following picture

Figure 46: threshold calculation

48 | P a g e

Our implemented LSD Results:

Figure 47:LSD result for dashed and solid lanes (noon time)

Figure 48: LSD results for curved Lanes (noon time)

49 | P a g e

Figure 49: LSD results for night time

Figure 50: LSD before filteration

50 | P a g e

Figure 51: LSD output after filteratio

51 | P a g e

2.3. Region Growing

Figure 52: Region Growing

Starting from a pixel in the ordered list of unused pixels, the seed, a region growing algorithm is

applied to form a line-support region. Recursively, the unused neighbors of the pixels already in

the region are tested, and the ones whose level-line angle is equal to the region angle region up to

tolerance _ are added to the region. The initial region angle theta region is the level-line angle of

the seed point, and each time a pixel is added to the region the region angle value is updated to

Rectangular Approximation

A line segment corresponds to a geometrical event, a rectangle. Before evaluating a line-support

region, the rectangle associated with it must be found. The region of pixels is interpreted as a

solid object and the gradient magnitude of each pixel is used as the mass of that point. Then, the

center of mass of the region is selected as the center of the rectangle and the main direction of

the rectangle is set to the first inertia axis of the region. Finally, the width and length of the

rectangles are set to the smallest values that make the rectangle to cover the full line-support

region.

52 | P a g e

where G(j) is the gradient magnitude of pixel j, and the index j runs over the pixels in the region.

The main rectangle's angle is set to the angle of the eigenvector associated with the smallest

eigenvalue of the matrix

NFA Computation

A key concept in the validation of a rectangle is that of p-aligned points, namely the pixels in the

rectangle whose level-line angle is equal to the rectangle's main orientation, up to a tolerance ῑ.

The precision p is initially set to the value taw/pi, but other values are also tested and a total of

different values for p are tried. The total number of pixels in the rectangle is denoted by n and the

number of p-aligned points is denoted by k (we drop r and i when they are implicit to simplify

the notation). Then, the number of false alarms (NFA) associated with the rectangle r is

where N and M are the number of columns and rows of the image (after scaling), and B(n; k; p)

is the binomial tail.

53 | P a g e

The rectangles with NFA(r) < threshold are validated as detections.

Computational Complexity

Performing a Gaussian sub-sampling and computing the image gradient, both can be performed

with a number of operations proportional to the number of pixels in the image. Then, pixels are

pseudo-ordered by a classification into bins, operation that can be done in linear time. The

computational time of the line-support region finding algorithm is proportional to the number of

visited pixels, and this number is equal to the total number of pixels in the regions plus the

border pixels of each one.

Thus, the number of visited pixels remains proportional to the total number of pixels of the

image.

The rest of the processing can be divided into two kinds of tasks. The first kind, for example

summing the region mass or counting aligned points, are proportional to the total number of

pixels involved in all regions. The second kind, like computing inertia moments or computing

the NFA value from the number of aligned points, are proportional to the number of regions.

Both the total number of pixels involved and the number of regions are at most equal to the

number of pixels. All in all, LSD has an execution time proportional to the number of pixels in

the image.

54 | P a g e

2.4. Filtration Stage:
Filtration process is done on the output from the LSD step to eliminate the false line segments

detected.

False line segments are those characterized by:

• Inclined line segments below or above certain threshold of angle theta, those line

segments usually form a kind of noisy lines that may affect the efficiency of detecting

lanes.

• Length of line segment is below a certain threshold, those line segments should be

removed to maintain the longest lines which form the lane.

• Shadows on the lane from nearby vehicles or from the surroundings are detected as false

line segments which shall be removed for better accuracy.

The filtration process is done through two major functions which are (Eliminate false line

segments – Eliminate shadows’ Noise)

1. Eliminate False Line Segments

For each line detected from the LSD stage, the inclination angle (theta) of each line is calculated. Then,
the length of each line segment is calculated using the Euclidian Distance.
Line segments whose inclination angle is not in the range of threshold and length below the threshold

value are eliminated. Line segments which pass these conditions are used through the next stages for

lane detection.

Eliminate Shadows’ Noise

Shadows produce false line segments, which cause faults and errors in detecting lanes, so they

should be eliminated.

Shadows elimination is done by the following steps:

• Convert video frame from RGB format to HSV color space.

• Split the image into H(Hue),S(Saturation),and v (Value)

• Detect shadow areas from the Value and check for the position of every LSD Lines.

55 | P a g e

LSD Results:

Figure 53: LSD output before filteration

Figure 54: LSD after filteration

56 | P a g e

2.5. Curve Fitting
Overview

The goal of using curve fitting is to identify the coefficients of first/second order equation that

‘fits’ the data well, to get the curve equation.

The process of finding the equation of the curve of best fit, which may be most suitable for

predicting the unknown values, is known as curve fitting. Therefore, curve fitting means an exact

relationship between two variables by algebraic equations. There are following methods for fitting

a curve.

I. Graphic method II.

II. Method of group averages III.

III. Method of moments IV.

IV. Principle of least square.

In this project, we use the Principle of least square. Because the graphical method has the drawback

that the straight line drawn may not be unique but principle of least squares provides a unique set

of values to the constants and hence suggests a curve of best fit to the given data. The method of

least square is probably the most systematic procedure to fit a unique curve through the given data

points.

Curve fitting and solution of equation

Figure 55: Curve fitting point

A mathematical procedure for finding the best-fitting curve to a given set of points by

minimizing the sum of the squares of the offsets ("the residuals") of the points from the curve.

The sum of the squares of the offsets is used instead of the offset absolute values because this

allows the residuals to be treated as a continuous differentiable quantity. The function’s input are

points detected from previous stage and the function’s output are the coefficients of the

curve/line equation based on number of input points. Generalizing from a straight-line

equation: 𝑦 = 𝑎0 + 𝑎1𝑥 + ⋯+ 𝑎𝑘𝑥
𝑘

57 | P a g e

The residual is given by:

𝑅2 = ∑(𝑦𝑖 − (𝑎0 + 𝑎1𝑥

𝑛

𝑖=1

+⋯+ 𝑎𝑘𝑥
𝑘))2

𝑦𝑖: is the term corresponding to the actual value, and (𝑎0 + 𝑎1𝑥 +⋯+ 𝑎𝑘𝑥
𝑘) is the term

corresponding to the expected value “the assumed curve”.

Computing the partial derivatives with respect to 𝑎1 𝑎2…𝑎𝑘 respectively, in order to minimize

the difference between the real value and the expected value -finding the minimum squares’

areas-

These equations lead to:

Solve for finding coefficients 𝑎1 𝑎2 … 𝑎𝑘.

Note that 𝒌 is the order, and 𝑛 is the number of input points.

58 | P a g e

Curve fitting Algorithm

Figure 56: Curve fitting algorithm

Results

Figure 57: Curve fitting block output

59 | P a g e

2.6. Lane Keeping assist
After efficiently detecting the lane line left and right boundaries, a lane keeping assist system can

be introduced to warn driver from any unintentional lane drifts.

The system measures the absolute distance between the center of the lane and the left lane

boundary and compares it with the absolute distance between the center of the lane and the right

lane boundary. If any absolute distance is bigger than the other with some threshold the system

warns the driver and an indication is showed on the screen guiding the driver into the center of

the lane again.

System allows lane change if and only if the line boundary is dashed and not solid. The solid

lines will have a red boundary line while the dashed lines will have a green boundary line to

inform the driver of the available lane change direction.

Algorithm:

1. IF (center to left line > (center to right line + threshold))

2. Then (warn the driver and show guiding arrow pointing to the left till car is

approximately at the center of the lane)

3. Else IF (center to right line > (center to left line + threshold))

4. Then (warn the driver and show guiding arrow pointing to the right till car is

approximately at the center of the lane)

Possible cases:

Case1: The driver approximately drives around the center of lane.

Figure 58:Car is approximately in the center of lane

60 | P a g e

Case 2: The driver moves to the left lane away from the center of lane.

Case 3: The driver moves to the left lane away from the center of lane.

Figure 59: car moves to the Left

Figure 60:Driver moves to the right

61 | P a g e

2.7. Output Stream
This is the final stage of the algorithm where the visualization of the result happens. The

visualization procedure is as the following:

• Lane’s lines/curves are drawn clearly on the left side and right side.

• The region between the two lines/curves are marked and filled for better lane

visualization with green color.

• In case of dashed line/curve, it’s drawn with dark green color. And the solid line/curve is

drawn with red color.

• In case of the solid line/curve, the car cannot depart the current lane and cross the side of

this line/curve, but for the dashed line/curve, the car can depart.

A white arrow is drawn on the shaded area between the two lanes to indicate the direction of the

movement, if the car is drifting to the right the arrow direction is to the left and vice versa

Figure 61:Output stream after Lane Detection

62 | P a g e

Algorithm Summary

Figure 62: Input frame Figure 63: After ROI

Figure 65: After ROI & IPM

Figure 66: After LSD

Figure 69: After filtration Figure 68: After Curve fitting

Figure 67: Output stream

Figure 64: Lane Keeping assist

63 | P a g e

Deep learning approach:
Deep learning techniques were used for our project and the core concepts of machine learning

and deep learning used are explained below.

Core Concepts
Machine Learning

In machine learning we take some data ,then train a model on that data, and eventually use the

trained model to make predictions on new data. The process of training a model can be seen as a

learning process where the model is exposed to new, unfamiliar data step by step. At each step,

the model makes predictions and gets feedback about how accurate its generated predictions

were. This feedback, which is provided in terms of an error according to some measure (for

example distance from the correct solution), is used to correct the errors made in prediction.

The learning process is often a game of back-and-forth in the parameter space: If you tweak a

parameter of the model to get a prediction right, the model may have in such that it gets a

previously correct prediction wrong. It may take many iterations to train a model with good

predictive performance. This iterative predict-and-adjust process continues until the predictions

of the model no longer improve.

Feature Engineering

Feature engineering is the art of extracting useful patterns from data that will make it easier for

Machine learning models to distinguish between classes. For example, you might take the

number of greenish vs. bluish pixels as an indicator of whether a land or water animal is in some

picture. This feature is helpful for a machine learning model because it limits the number of

classes that need to be considered for a good classification.

Feature engineering is the most important skill when you want to achieve good results for most

predictions tasks. However, it is difficult to learn and master since different data sets and

different kinds of data require different feature engineering approaches. Only crude guidelines

exist, which makes feature engineering more of an art than a science. Features that are usable for

one data set often are not usable for other data sets (for example the next image data set only

contains land animals). The difficulty of feature engineering and the effort involved is the main

reason to seek algorithms that can learn features; that is, algorithms that automatically engineer

features.

While many tasks can be automated by Feature Learning (like object and speech recognition),

feature engineering remains the single most effective techniques to perform difficult tasks.

64 | P a g e

Feature learning algorithms find the common patterns that are important to distinguish between

classes and extract them automatically to be used in a classification or regression process.

Feature learning can be thought of as Feature learning done automatically by algorithms. In deep

learning, convolutional layers are exceptionally good at finding good features in images to the

next layer to form a hierarchy of nonlinear features that grow in complexity (e.g. blobs, edges ->

noses, eyes, cheeks -> faces). The final layer(s) use all these generated features for classification

or regression (the last layer in a convolutional net is, essentially, multinomial logistic

regressions).

Deep Learning

In hierarchical Feature Learning , we extract multiple layers of non-linear features and pass them

to a classifier that combines all the features to make predictions. We are interested in stacking

such very deep hierarchies of non-linear features because we cannot learn complex features from

a few layers. It can be shown mathematically that for images the best features for a single layer

are edges and blobs because they contain the most information that we can extract from a single

non-linear transformation. To generate features that contain more information we cannot operate

on the inputs directly, but we need to transform our first features (edges and blobs) again to get

more complex features that contain more information to distinguish between classes.

It has been shown that the human brain does exactly the same thing: The first hierarchy of

neurons that receives information in the visual cortex are sensitive to specific edges and blobs

while brain regions further down the visual pipeline are sensitive to more complex structures

such as faces.

While hierarchical feature learning was used before the field deep learning existed, these

architectures suffered from major problems such as the vanishing gradient problem where the

gradients became too small to provide a learning signal for very deep layers, thus making these

architectures perform poorly when compared to shallow learning algorithms (such as support

vector machines).

The term deep learning originated from new methods and strategies designed to generate these

deep hierarchies of non-linear features by overcoming the problems with vanishing gradients so

that we can train architectures with dozens of layers of non-linear hierarchical features. In the

early 2010s, it was shown that combining GPUs with activation functions that offered better

gradient flow was sufficient to train deep architectures without major difficulties. From here the

interest in deep learning grew steadily.

65 | P a g e

Logistic Regression

Regression analysis estimates the relationship between statistical input variables in order to

predict an outcome variable. Logistic regression is a regression model that uses input variables to

predict a categorical outcome variable that can take on one of a limited set of class values, for

example “cancer” / “no cancer”, or an image category such as “bird” / “car” / “dog” / “cat” /

“horse”.

Logistic regression applies the logistic sigmoid function (see Figure 1) to weighted input values

to generate a prediction of which of two classes the input data belongs to (or in case of

multinomial logistic regression, which of multiple classes).

Figure 70: The logistic sigmoid function

Logistic regression is similar to a non-linear perceptron or a neural network without hidden

layers. The main difference from other basic models is that logistic regression is easy to interpret

and reliable if some statistical properties for the input variables hold. If these statistical

properties hold one can produce a very reliable model with very little input data. This makes

logistic regression valuable for areas where data are scarce, like the medical and social sciences

where logistic regression is used to analyze and interpret results from experiments. Because it is

simple and fast it is also used for very large data sets.

In deep learning, the final layer of a neural network used for classification can often be

interpreted as a logistic regression. In this context, one can see a deep learning algorithm as

multiple feature learning stages, which then pass their features into a logistic regression that

classifies an input.

66 | P a g e

Artificial Neural Network

An artificial neural network is a structure which takes some input data and transforms this input

data by calculating a weighted sum over the inputs and applies a non-linear function to this

transformation to calculate an intermediate state. The three steps above constitute what is known

as a layer, and the transformative function is often referred to as a unit. The intermediate states—

often termed features are used as the input into another layer.

Through repetition of these steps, the artificial neural network learns multiple layers of non-

linear features, which it then combines in a final layer to create a prediction.

The neural network learns by generating an error signal that measures the difference between the

predictions of the network and the desired values and then using this error signal to change the

weights (or parameters) so that predictions get more accurate.

Artificial Neuron

The term artificial neuron—or most often just neuron—is an equivalent term to unit, but implies

a close connection to neurobiology and the human brain while deep learning has very little to do

with the brain (for example, it is now thought that biological neurons are more similar to entire

multilayer perceptron’s rather than a single unit in a neural network). The term neuron was

encouraged after the last AI winter to differentiate the more successful neural network from the

failing and abandoned perceptron. However, since the wild successes of deep learning after

2012, the media often picked up on the term “neuron” and sought to explain deep learning as

mimicry of the human brain, which is very misleading and potentially dangerous for the

perception of the field of deep learning. Now the term neuron is discouraged and the more

descriptive term unit should be used instead.

Activation Function

An activation function takes in weighted data (matrix multiplication between input data and

weights) and outputs a non-linear transformation of the data. For example, the rectified linear

activation function (RELU) (essentially set all negative values to zero) which takes the

maximum of the input or 0 and its main advantage is it makes the training process fast . The

difference between units and activation functions is that units can be more complex, that is, a

unit can have multiple activation functions (for example LSTM units) or a slightly more complex

structure

The difference between linear and non-linear activation functions can be shown with the

relationship of some weighted values: Imagine the four points A1, A2, B1 and B2. The pairs A1 /

A2, and B1 / B2 lie close to each other, but A1 is distant from B1 and B2, and vice versa; the

same for A2.

67 | P a g e

With a linear transformation the relationship between pairs might change. For example, A1 and

A2 might be far apart, but this implies that B1 and B2 are also far apart. The distance between

the pairs might shrink, but if it does, then both B1 and B2 will be close to A1 and A2 at the same

time. We can apply many linear transformations, but the relationship between A1 / A2 and B1 /

B2 will always be similar.

In contrast, with a non-linear activation function we can increase the distance between A1 and

A2 while we decrease the distance between B1 and B2. We can make B1 close to A1, but B2

distant from A1. By applying non-linear functions, we create new relationships between the

points. With every new non-linear transformation, we can increase the complexity of the

relationships. In deep learning, using non-linear activation functions creates increasingly

complex features with every layer.

In contrast, the features of 1000 layers of pure linear transformations can be reproduced by a

single layer (because a chain of matrix multiplication can always be represented by a single

matrix multiplication). This is why non-linear activation functions are so important in deep

learning.

Layer

A layer is the highest-level building block in deep learning. A layer is a container that usually

receives weighted input, transforms it with a set of mostly non-linear functions and then passes

these values as output to the next layer. A layer is usually uniform, that is it only contains one

type of activation function, pooling, convolution etc. so that it can be easily compared to other

parts of the network. The first and last layers in a network are called input and output layers,

respectively, and all layers in between are called hidden layers.

Convolutional neural networks

Convolutional networks, also known as convolutional neural networks or CNNs, are a

specialized kind of neural network for processing data that has a known, grid-like topology.

Examples include time-series data, which can be thought of as a 1D grid taking samples at

regular time intervals, and image data, which can be thought of as a 2D grid of pixels.

Convolutional networks have been tremendously successful in practical applications. The name

“convolutional neural network” indicates that the network employs a mathematical operation

called convolution. Convolution is a specialized kind of linear operation. Convolutional

networks are simply neural networks that use convolution in place of general matrix

multiplication in at least one of their layers. In this chapter, we will first describe what

convolution is. Next, we will explain the motivation behind using convolution in a neural

network. We will then describe an operation called pooling, which almost all convolutional

networks employ. Usually, the operation used in a convolutional neural network does not

correspond precisely to the definition of convolution as used in other fields such as engineering

or pure mathematics. We will describe several variants on the convolution function that are

widely used in practice for neural networks. We will also show how convolution may be applied

to many kinds of data, with different numbers of dimensions.

68 | P a g e

We then discuss means of making convolution more efficient. Convolutional networks stand out

as an example of neuroscientific principles influencing deep learning.

The Convolution Operation

In its most general form, convolution is an operation on two functions of a real- valued

argument. To motivate the definition of convolution, we start with examples of two functions we

might use. Suppose we are tracking the location of a spaceship with a laser sensor. Our laser

sensor provides a single output x(t), the position of the spaceship at time t. Both x and t are real-

valued, i.e., we can get a different reading from the laser sensor at any instant in time. Now

suppose that our laser sensor is somewhat noisy. To obtain a less noisy estimate of the

spaceship’s position, we would like to average together several measurements. Of course, more

recent measurements are more relevant, so we will want this to be a weighted average that gives

more weight to recent measurements. We can do this with a weighting function w (a), where a is

the age of a measurement. If we apply such a weighted average operation at every moment, we

obtain a new function s providing a smoothed estimate of the position of the spaceship:

This operation is called convolution. The convolution operation is typically denoted with an

asterisk:

In our example, w needs to be a valid probability density function, or the output is not a weighted

average. Also, w needs to be 0 for all negative arguments, or it will look into the future, which is

presumably beyond our capabilities. These limitations are particular to our example though. In

general, convolution is defined for any functions for which the above integral is defined, and

may be used for other purposes besides taking weighted averages.

In convolutional network terminology, the first argument (in this example, the function x) to the

convolution is often referred to as the input and the second argument (in this example, the

function w) as the kernel. The output is sometimes referred to as the feature map . In our

example, the idea of a laser sensor that can provide measurements at every instant in time is not

realistic. Usually, when we work with data on a computer, time will be discretized, and our

sensor will provide data at regular intervals. In our example, it might be more realistic to assume

that our laser provides a measurement once per second. The time index t can then take on only

integer values. If we now assume that x and w are defined only on integer t.

69 | P a g e

we can define the discrete convolution:

In machine learning applications, the input is usually a multidimensional array of data and the

kernel is usually a multidimensional array of parameters that are adapted by the learning

algorithm. We will refer to these multidimensional arrays as tensors. Because each element of

the input and kernel must be explicitly stored separately, we usually assume that these functions

are zero everywhere but the finite set of points for which we store the values. This means that in

practice we can implement the infinite summation as a summation over a finite number of array

elements.

Finally, we often use convolutions over more than one axis at a time. For example, if we use a

two-dimensional image I as our input, we probably also want to use a two-dimensional kernel K:

Convolution is commutative. The commutative property of convolution arises because we have

flipped the kernel relative to the input, in the sense that as m increases, the index into the input

increases, but the index into the kernel decreases. The only reason to flip the kernel is to obtain

the commutative property. While the commutative property is useful for writing proofs, it is not

usually an important property of a neural network implementation. Instead, many neural network

libraries implement a related function called the cross-correlation, which is the same as

convolution but without flipping the kernel. Many machine learning libraries implement cross-

correlation but call it convolution.

Discrete convolution can be viewed as multiplication by a matrix. However, the matrix has

several entries constrained to be equal to other entries. For example, for univariate discrete

convolution, each row of the matrix is constrained to be equal to the row above shifted by one

element.

70 | P a g e

This is known as a Toeplitz matrix. In two dimensions, a doubly block circulant matrix

corresponds to convolution. In addition to these constraints that several elements be equal to

each other, convolution usually corresponds to a very sparse matrix (a matrix whose entries are

mostly equal to zero). This is because the kernel is usually much smaller than the input image.

Any neural network algorithm that works with matrix multiplication and does not depend on

specific properties of the matrix structure should work with convolution, without requiring any

further changes to the neural network. Typical convolutional neural networks do make use of

further specializations in order to deal with large inputs efficiently, but these are not strictly

necessary from a theoretical perspective.

Figure 71: convolution of input with kernel without the need to kernel flipping.

Motivation

Convolution leverages three important ideas that can help improve a machine learning system:

sparse interactions, parameter sharing and equivariant representations. Moreover,

convolution provides a means for working with inputs of variable size. We now describe each of

these ideas in turn.

Traditional neural network layers use matrix multiplication by a matrix of parameters with a

separate parameter describing the interaction between each input unit and each output unit. This

means every output unit interacts with every input unit. Convolutional networks, however,

71 | P a g e

typically have sparse interactions (also referred to as sparse connectivity or sparse weights).

This is accomplished by making the kernel smaller than the input. For example, when processing

an image, the input image might have thousands or millions of pixels, but we can detect small,

meaningful features such as edges with kernels that occupy only tens or hundreds of pixels. This

means that we need to store fewer parameters, which both reduces the memory requirements of

the model and improves its statistical efficiency. It also means that computing the output requires

fewer operations. These improvements in efficiency are usually quite large. If there are m inputs

and n outputs, then matrix multiplication requires m×n parameters and the algorithms used in

practice have O(m × n) runtime (per example). If we limit the number of connections each output

may have to k, then the sparsely connected approach requires only k × n parameters and O(k × n)

runtime. For many practical applications, it is possible to obtain good performance on the

machine learning task while keeping k several orders of magnitude smaller than m.

First , Parameter sharing refers to using the same parameter for more than one function in a

model. In a traditional neural net, each element of the weight matrix is used exactly once when

computing the output of a layer. It is multiplied by one element of the input and then never

revisited. As a synonym for parameter sharing, one can say that a network has tied weights,

because the value of the weight applied to one input is tied to the value of a weight applied

elsewhere. In a convolutional neural net, each member of the kernel is used at every position of

the input (except perhaps some of the boundary pixels, depending on the design decisions

regarding the boundary). The parameter sharing used by the convolution operation means that

rather than learning a separate set of parameters for every location, we learn only one set. This

does not affect the runtime of forward propagation—it is still O(k × n)—but it does further

reduce the storage requirements of the model to k parameters. Recall that k is usually several

orders of magnitude less than m. Since m and n are usually roughly the same size, k is practically

insignificant compared to m×n. Convolution is thus dramatically more efficient than dense

matrix multiplication in terms of the memory requirements and statistical efficiency.

In the case of convolution, the particular form of parameter sharing causes the layer to have a

property called equivariance to translation. To say a function is equivariant means that if the

input changes, the output changes in the same way.

Specifically, a function f (x) is equivariant to a function g if f(g(x)) = g(f (x)).

In the case of convolution, if we let g be any function that translates the input, i.e., shifts it, then

the convolution function is equivariant to g. For example, let I be a function giving image

brightness at integer coordinates. Let g be a function mapping one image function to another

image function, such that I = g(I) is the image function with I(x, y) = I(x − 1, y).

This shifts every pixel of I one unit to the right. If we apply this transformation to I, then apply

convolution, the result will be the same as if we applied convolution to I, then applied the

transformation g to the output. When processing time series data, this means that convolution

produces a sort of timeline that shows when different features appear in the input. If we move an

event later in time in the input, the exact same representation of it will appear in the output, just

later in time.

72 | P a g e

Similarly with images, convolution creates a 2-D map of where certain features appear in the

input. If we move the object in the input, its representation will move the same amount in the

output. This is useful for when we know that some function of a small number of neighboring

pixels is useful when applied to multiple input locations. For example, when processing images,

it is useful to detect edges in the first layer of a convolutional network. The same edges appear

more or less everywhere in the image, so it is practical to share parameters across the entire

image.

In some cases, we may not wish to share parameters across the entire image. For example, if we

are processing images that are cropped to be centered on an individual’s face, we probably want

to extract different features at different locations—the part of the network processing the top of

the face needs to look for eyebrows, while the part of the network processing the bottom of the

face needs to look for a chin.

Convolution is not naturally equivariant to some other transformations, such as changes in the

scale or rotation of an image. Other mechanisms are necessary for handling these kinds of

transformations.

Pooling

In the first stage, the layer performs several convolutions in parallel to produce a set of linear

activations. In the second stage, each linear activation is run through a nonlinear activation

function, such as the rectified linear activation function. This stage is sometimes called the

detector stage. In the third stage, we use a pooling function to modify the output of the layer

further.

A pooling function replaces the output of the net at a certain location with a summary statistic of

the nearby outputs. For example, the max pooling operation reports the maximum output within

a rectangular neighborhood. Other popular pooling functions include the average of a rectangular

neighborhood, the L2 norm of a rectangular neighborhood, or a weighted average based on the

distance from the central pixel.

In all cases, pooling helps to make the representation become approximately invariant to small

translations of the input. Invariance to translation means that if we translate the input by a small

amount, the values of most of the pooled outputs do not change.

 For example, when determining whether an image contains a face, we need not know the

location of the eyes with pixel-perfect accuracy, we just need to know that there is an eye on the

left side of the face and an eye on the right side of the face. In other contexts, it is more

important to preserve the location of a feature. For example, if we want to find a corner defined

by two edges meeting at a specific orientation, we need to preserve the location of the edges well

enough to test whether they meet.

The use of pooling can be viewed as adding an infinitely strong prior that the function the layer

learns must be invariant to small translations. When this assumption is correct, it can greatly

improve the statistical efficiency of the network.

73 | P a g e

Pooling over spatial regions produces invariance to translation, but if we pool over the outputs of

separately parametrized convolutions, the features can learn which transformations to become

invariant to.

Proposed deep learning approaches for lane detection

Convolutional neural networks (CNNs) are usually built by stacking convolutional operations

layer-by-layer. Although CNN has shown strong capability to extract semantics from raw pixels,

its capacity to capture spatial relationships of pixels across rows and columns of an image is not

fully explored. These relationships are important to learn semantic objects with strong shape

priors but weak appearance coherences, such as traffic lanes.

In this approach, we propose Spatial CNN (SCNN), which generalizes traditional deep layer-by-

layer convolutions to slice-by-slice convolutions within feature maps, thus enabling message

passings between pixels across rows and columns in a layer. Such SCNN is particular suitable

for long continuous shape structure or large objects, with strong spatial relationship but less

appearance clues, such as traffic lanes, poles, and Wall

Traditional methods to model spatial relationship are based on Markov Random Fields (MRF) or

Conditional Random Fields (CRF).

The used model in our project consists of five convolutional layers in the convolution stage with

two pooling layers embedded in this stage for enhancing the training time while also keeping the

most important details of features and dropout regularization was used in the layers with large

connections to prevent overfitting to the training data and this model is followed by the stage of

deconvolution which learns the weights for returning the picture back after classification

instead of just extracting parameters from the network and then using computer vision for

stacking the photo together and this saves time but come on the cost of the performance.

Figure 72: Deep Learning model

Training data and test data are first normalized by dividing them to 255 on each channel of

colour or by dividing the only channel of picture if the training or testing is performed on only a

single channel of the photos and stacking the results with the remaining channels.

74 | P a g e

Then in the convolutional layers , they are convoluted with kernels of learnt parameters and and

then the output is upsampled to inverse the effect of pooling layer and deconvoluted to get the

image from the filter outputs.

Labeling data

Data was labeled with both cases in the green channel and in all channels by drawing the lane

region of road in it and using it to determine the road for the driver and samples of the labeled

data are shown below. Data were chosen from various road cases like curved lanes and straight

lanes to make the network able of detecting any type of lane.

Figure 73: sample1 of labeled data

Figure 74: sample2 of labeled data

75 | P a g e

Results below obtained from variety of lanes in Egypt (above) and china in different weather

conditions.

Model can be improved by using more data for training and by adding more layers and of course

following this with regularization and data augmentation in order to prevent overfitting and it can

also be improved by increasing the variations in training data to be able to work robustly under

various circumstances.

Deep Learning Results:

Figure 75: Sample result

Figure 76: sample result from Egypt - NA road

76 | P a g e

Performance on PC (Proposed computer vision approach):
CPU: i7 2.4 GHz - RAM: 6 GB - OS: Ubuntu Linux

Figure 77: Performance on PC

Block Timing performance

IPM & ROI 0. 799502 ms

LSD 7.8171 ms

Filtration 1.35336 ms

Curve fitting 0.660428 ms

Inverse IPM

3.346 ms

77 | P a g e

Figure 78: PC performance

The frame took 13.95 ms on PC. So, the performance arrives to 71 frame per second.

78 | P a g e

Chapter 3: Hardware Layer:

1. Nvidia Jetson TX1

Figure 79:Nvidia Jetson TX1

Overview:

Jetson TX2 is the fastest, most power-efficient embedded AI computing device. The latest

addition to the industry-leading Jetson embedded platform, this 7.5-watt supercomputer on a

module brings true AI computing at the edge. It's built around an NVIDIA Pascal™-family GPU

and loaded with 8 GB of memory and 59.7 GB/s of memory bandwidth. It features a variety of

standard hardware interfaces that make it easy to integrate it into a wide range of products and

form factors.

Main advantages:

1. Using CUDA programming, has 256 CUDA cores.

2. Using Embedded Linux Ubuntu 16.04 LTS aarch64.

3. Available technical support and large community

4. Support OpenCV, Tensor Flow so it can run computer vision and AI approaches.

5. Up to 60 GB memory.

6. Easy to compile and Edit your code and easy to run.

7. All hardware, Software needed are available.

8. Support different programming languages: C – C++ - Python.

79 | P a g e

Hardware components:

Figure 80: Jetson TX1 H.W. components

Software Components:

Figure 81: Jetson TX1 H.W. components

80 | P a g e

Jetson TX2 Camera specs:

81 | P a g e

Main advantage of Nvidia Jetson TX1: CUDA programming:

In CUDA programming, we can use the resources of the GPU cores in the processing beside the CPU

resources. So, we can increase the speed of executing from 10 to 50 times.

Figure 82:CUDA overview

Figure 83:CUDA pesudo code

82 | P a g e

2. TI TDA3x

Figure 84:TDA3x

Overview:

TI’s TDA3x System-on-Chip (SoC) is a highly optimized and scalable family of devices designed

to meet the requirements of leading Advanced Driver Assistance Systems (ADAS). TDA3x SoC

processors enable broad ADAS applications by integrating an optimal mix of performance, low

power, smaller form factor and ADAS vision analytics processing that aims to facilitate a more

autonomous and collision-free driving experience. The TDA3x SoC enables sophisticated

embedded vision technology in today’s automobile by enabling the industry’s broadest range of

ADAS applications including front camera, rear camera, surround view, radar, and fusion on a

single architecture.

Features:

• Texas Instruments TDA3x SoC Processor

• FPD-Link III video inputs (4)

• HDMI video display input output

• Ethernet, CAN bus, and serial connectivity

83 | P a g e

Applications

• Mono or Stereo Front Camera

• Night Vision System

• LVDS Surround View

• Rear View Video Display

• Blind Spot Detection

• Pedestrian Detection

• Sensor Fusion

• Traffic Sign Recognition

• Remote Applications and Monitoring

• Lane Departure Warning

Specifications:

• heterogeneous & scalable architecture.

• fixed and floating-point dual-TMS320C66x generation of DSP cores.

• fully programmable Vision acceleration Pac (EVE).

• dual ARM®Cortex®-M4 cores.

• Image signal processor (ISP).

• displays, CAN and multi camera interfaces.

84 | P a g e

Figure 85:TDA3x specifications

85 | P a g e

Hardware components:

Figure 86:TDA3x Hardware components

86 | P a g e

Main advantages:

• The Soc is produced for ADAS system and Embedded vision projects especially.

• The Soc has different and powerful hardware components such as: EVE core, ISP core

which especially added for computer vision projects.

Disadvantages:

• Doesn’t support OpenCV library which the core of the project.

• Only OpenGl library for computer vision projects

• Only support C & C++ programming languages, so we can’t run our Deep Learning

approach which written in python language.

• Doesn’t support Embedded Linux but only support attached Software Development Kit –

SDK which difficult to edit, compile and execute our code.

• Doesn’t support AI computing, so we can’t apply our Deep Learning approach.

• Some Hardware, Technical Support from TI needed aren’t available or unreachable.

• Doesn’t support CUDA programming so we can’t fast our execution.

87 | P a g e

Nvidia Jetson TX1 Performance
Block Timing performance

IPM & ROI 8.326 ms

LSD 33.5048 ms

Filtration 1.7541 ms

Curve fitting 0.452 ms

Inverse IPM 17.6404 ms

Figure 87: Kit performance

The frame takes 61.67 ms processing . The performance arrives on the kit more than 16 frame

per second.

88 | P a g e

Comparison Between Hardware Performance
The following table shows the performance of the algorithm on different CPUs recording the

execution time and the avg. frame per second on each:

 CPU: i7 2.6 GHz
RAM: 16 GB
OS: Ubuntu Linux

Jetson TX1
CPU: octa-core
cortex-A15 2GHz &
cortex-A7 1.7GHz
RAM: 2 GB
OS: Ubuntu Linux

Execution time per frame

(mile seconds)

13.7491 60

Avg. frame per second 72.72 16.66

Final Conclusion:
It is concluded that there are different approaches that can be used to tackle the lane detection

problem either by computer vision or deep learning.

Computer vision approaches like Hough transform , IPM and line segment detection algorithm

and they vary from their performance and speed.

Computer vision results:

PC: The frame took 13.95 ms on PC. So, the performance arrives to 71 frame per second.

Nvidia Jetson TX1: The frame takes 61.67 ms on kit . The performance arrives on the kit more

than 16 frame per second.

While deep learning approaches uses CNN for classification and detection and it can work in real

time as this is the advantage it has over the computer vision approaches while computer vision

approaches have the advantage of reliable performance and robustness over deep learning

approaches and it needs parallelism in software and pipelining in hardware to have a real time

performance.

89 | P a g e

Graphical User Interface – GUI

Figure 88: gui

Using Qt5 library based on C++ programming language, we designed a simple GUI to present

the project.

The main window contents:

• Original video window

• IPM , ROI and Algorithm push buttons

• ROI control group box

• Task Bar.

1- Original video window: show the video which was chosen by the user.

Figure 89: Original video window

90 | P a g e

2- IPM , ROI and Algorithm push buttons:

ROI push button: show the output from ROI block.

IPM push button: show the output from IPM block.

Algorithm push button: show the output frame.

4- Task bar: contain browse push button to choose the input video to the algorithm ,

Task bar contains:

 - Browse push button to choose the input video to the algorithm.

 - Play push button to play or resume the video

 - Pause push button

 - Stop push button

4- ROI control to choose the 4 corner points in the ROI

91 | P a g e

Future Work
1. Deep Learning - CNN

Model can be improved by using more data for training and by adding more layers and of course

following this with regularization and data augmentation in order to prevent overfitting and it can

also be improved by increasing the variations in training data to be able to work robustly under

various circumstances.

2. Detect the road lanes using one line

The road lanes may be erased in some parts of the road and this may cause wrong detection A

solution proposed is to use only one line to predict the location of the other line by mapping the

points detected from the correctly detected line to the expected location of the other line using

distance between the lines obtained from the previous clear lines.

3. Simulate virtual lines to the driver in case if there is no lane marks at all using techniques of

deep learning and vehicle to vehicle communication

4. Lane switching assistance Assist the driver when switching lanes by recognizing the

surrounding environment

92 | P a g e

References:
1. OpenCV Documentation. https://opencv.org

2. Qt Documentation. http://doc.qt.io/qt-5/

3. Harald Fernengel. Qt on Real Time OSs.

https://www.slideshare.net/qtbynokia/qt-on-real-time-operating-systems/

4. Mohamed Aly: Real Time Detection of Lane Markers in Urban Streets; Proceedings of

the IEEE Intelligent Vehicles Symposium; Eindhoven, The Netherlands. 4–6 June 2008.

5. Dajun Ding, Chanho Lee, Kwang Lee: An Adaptive Road ROI Determination Algorithm

for Lane Detection; Proceedings of the TENCON 2013–2013 IEEE Region 10

Conference; Xi’an, China. 22–25 October 2013.

6. Toan Minh Hoang and Kang Ryoung Park: Road Lane Detection by Discriminating

Dashed and Solid Road Lanes Using a Visible Light Camera Sensor.

7. Aaron Bobik, Irfan Essa and Arpan Chakraborty. Georgia Tech. Introduction to computer

vision. Udaciy. https://www.udacity.com/course/introduction-to-computer-vision--ud810

8. N.N. Ahmed Salim, X. Cheng and X. Degui, 2014. A Robust Approach for Road

Detection with Shadow Detection Removal Technique. Information Technology Journal,

13: 782-788.

9. Krishna Kant Singh, Kirat Pal, M.J. Nigam: Shadow Detection and Removal from

Remote Sensing Images Using NDI and Morphological Operators, International Journal

of Computer Applications, March 2012.

10. Ammu M Kumar and Philomina Simon,2015. Review of lane detection and tracking

algorithms in advanced driver assistance system.

11. Pallavi V. Ingale and Prof. K. S. Bhagat. Comparative Study of Lane Detection

Techniques.

12. Xingang Pan, Jianping Shi, Ping Luo, Xiaogang Wang, Xiaoou Tang,2017.Spatial As

Deep: Spatial CNN for Traffic Scene Understanding.

13. Ian Goodfellow Deep Learning book

http://doc.qt.io/qt-5/
https://www.udacity.com/course/introduction-to-computer-vision--ud810

