
i

FPGA-based LTE TURBO Decoder Coprocessor
Interfaced with a GPP through PCIe

By

Mohamed Adel Hafez Emeash

Mohamed Mahmoud Mostafa Talha

Mohamed Mohamed Mahrous Amer

Mahmoud Mohamed Ali Asy

Mahmoud Mostafa Mohamed Bahnasy

Mostafa Tharwat AbdElhalim Salama

Under supervision of

Dr. Hassan Mostafa

Dr. Yasmin Fahmy

ii

A Graduation Project Report Submitted to

the Faculty of Engineering at Cairo University

in Partial Fulfillment of the Requirements for the

Degree of

Bachelor of Science

in

Electronics and Communications Engineering

Faculty of Engineering, Cairo University

Giza, Egypt

July 2017

iii

Table of Contents

List of Tables ... viii

List of Figures ... ix

List of Symbols and Abbreviations.. xiii

Acknowledgments... xiv

Abstract .. xv

 Introduction .. 16

1.1 C-RAN (Cloud/Centralized Radio Access Network) 16

1.2 Baseband Processing ... 19

1.3 Forward error correction (FEC) .. 20

 Convolutional Codes and Decoding Methods 23

2.1 Overview ... 23

2.2 Parity Equations .. 24

2.3 Views of the Convolutional Encoder .. 25

 Block Diagram View ... 26

 State Machine View ... 26

2.4 Trellis Structure ... 27

2.5 Channel Models ... 28

 Binary Symmetric Channel .. 28

 Additive White Gaussian Noise Channel ... 29

2.6 Decoding Convolutional Codes ... 30

 The Viterbi Decoder .. 32

2.7 Soft-Decision Decoding .. 36

 Turbo Codes ... 41

3.1 Turbo Encoder ... 41

 Recursive Systematic Convolutional (RSC) Encoder............................ 41

 Trellis Termination .. 44

iv

 Concatenation of Codes ... 45

 Interleaver Design .. 47

 LTE Turbo Encoder in the 3GPP Standard .. 49

 Interleaver .. 51

3.2 Decoder ... 52

 Turbo Decoder ... 52

 Principle of the General Soft-Output Viterbi Decoder 54

 Likelihood Functions ... 54

 Reliability of the General SOVA Decoder .. 58

 SOVA Component Decoder for a Turbo Code 63

 SOVA Iterative Turbo Code Decoder.. 68

 Matlab Results and Analysis .. 71

4.1 Matlab Implementation ... 71

4.2 BER Performance over AWGN Channel .. 72

4.3 Interpretation of Results .. 75

 Hardware Architecture for SOVA ... 76

5.1 SOVA Component .. 76

 Trellis Stage ... 76

5.2 Trace back and Updating Depths .. 79

 Merge Stage ... 80

 Decode Stage ... 81

5.3 Block diagram of the hardware architecture for a SOVA decoder 81

5.4 Sliding Window... 85

5.5 Quantization .. 88

 Quantization Process .. 88

 Choosing the proper word size .. 91

 Hardware Implementation and Results .. 92

v

6.1 Design Flow in ISE ... 93

 Design Entry .. 93

 Synthesis .. 93

 Implementation .. 93

 Verification .. 94

 Device Configuration ... 94

6.2 Testing framework for SOVA Block .. 95

6.3 Simulation Results of Behavioral RTL design .. 97

6.4 Comparison with Software Reference... 97

6.5 Hardware Performance .. 98

6.6 Turbo Decoder implementation .. 99

 Scheduling of Computation at block level ... 99

 Turbo Decoder as a black box ... 101

 Additional Feature: .. 103

 Generic Parameters .. 104

6.7 Simulation Results of Behavioral RTL design .. 104

 Initialization and Data Input to Decoder .. 104

 Decoder Output When Processing is Done .. 105

6.8 Performance and Resource Usage ... 106

6.9 BER Performance .. 107

 PCI Express Interconnect ... 108

7.1 PCIe Link .. 109

7.2 PCIe Clock Recovery .. 110

7.3 PCIe Fabric Topology ... 111

7.4 PCIe Layering Overview ... 112

 Transaction layer .. 114

 Data link layer .. 115

vi

 Physical layer ... 115

7.5 Types of PCI Express Protocol ... 116

7.6 Why PCI Express Interface? ... 117

 PCI Express Linux Driver and RIFFA Framework 119

8.1 PCI Addressing ... 119

8.2 Direct Memory Access .. 120

 DMA mappings .. 122

 How a PCIe driver works ... 122

8.3 RIFFA Framework .. 122

 RIFFA 1.0 .. 123

 RIFFA 2.1 .. 123

 Design .. 124

 RIFFA Software ... 125

 Hardware Interface ... 128

 Architecture.. 132

 RIFFA 2.1 FPGA Support ... 137

 RIFFA 2.1 Bandwidth .. 137

 Turbo Interfacing ... 138

9.1 Hardware Interface .. 139

 PCIe Endpoint Core ... 139

 Turbo Timing Constraints .. 148

 Design .. 151

 Synthesizing the Design ... 153

 Configure Target Device.. 153

9.2 Software Interface ... 154

 Installing the RIFFA Driver ... 154

 User Space Application.. 155

vii

 Conclusion .. 158

References .. 159

Appendix A: Interleaver Table .. 162

Appendix B: Path metric derivation .. 163

Appendix C: MATLAB Code .. 165

viii

List of Tables

Table 3.1: Input and Output Sequences for Encoder in Figure 3-8 48

Table 4.1: BER values for frame K=64 over AWGN Channel 72

Table 4.2: BER values for frame K=1024 over AWGN Channel 73

Table 4.3: BER values for frame K=6144 over AWGN Channel 74

Table 5.1: BER values for different word sizes using frame size K=1024.................. 92

Table 6.1: Description of SOVA Signals ... 95

Table 6.2: FPGA Resources of SOVA Module ... 98

Table 6.3: Describtion of Turbo Decoder Signals ... 102

Table 6.4: Description of Turbo Decoder module parameters 104

Table 6.5: FPGA Resources used by Turbo Decoder .. 107

Table 7.1:PCI Express different generations speed comparison 110

Table 8.1: PCI Configuration Space .. 120

Table 8.2: Functions of RIFFA API .. 126

Table 8.3: Hardware Interface Receive Ports .. 129

Table 8.4: Hardware Interface Transmit Ports ... 130

ix

List of Figures

Figure 1-1 C-RAN Architecture .. 17

Figure 2-1 Convolutional code with two parity bits per message bit (r = 2, K=3). 24

Figure 2-2 Block diagram view of convolutional coding with shift registers. 25

Figure 2-3 State machine view of convolutional coding. .. 27

Figure 2-4 Trellis Diagram. ... 28

Figure 2-5 Binary Symmetric Channel Model... 29

Figure 2-6 Trellis Structure. ... 32

Figure 2-7 The branch metric for hard decision decoding. .. 34

Figure 2-8 The Viterbi Decoder in Action ... 37

Figure 2-9 The Viterbi decoder in Action continued ... 38

Figure 2-10 Branch Metric For Soft-Decision Decoding .. 39

Figure 3-1: Fundamental turbo code encoder. ... 41

Figure 3-2: Conventional convolutional encoder with r=1/2 and K=3. 42

Figure 3-3: The RSC encoder obtained from Figure 3.2 with r=1/2 and K=3. 43

Figure 3-4: Trellis termination strategy for RSC encoder ... 44

Figure 3-5: Serial concatenated code. .. 45

Figure 3-6: Parallel concatenated code. ... 45

Figure 3-7: The interleaver increases the code weight for Encoder 2 compared to

Encoder 1. .. 47

Figure 3-8: An illustrative example of an interleaver’s capability. 48

Figure 3-9: Structure of LTE Turbo Encoder. .. 49

Figure 3-10: Turbo Decoder .. 53

Figure 3-11: A concatenated SOVA decoder where y represents the received channel

values, u represents the hard decision output values, and L represents the associated

reliability values. .. 54

Figure 3-12: Example of survivor and competing paths for reliability estimation at

time t .. 58

Figure 3-13: Example that shows the weakness of reliability assignment using metric

.. 60

Figure 3-14: Updating process for time t-4 (MEMlow=4). ... 62

Figure 3-15: Updating process for time t-2 (MEMlow=2). ... 63

Figure 3-16: SOVA component decoder ... 63

x

Figure 3-17: Source relibility for SOVA metric computation 65

Figure 3-18: Example of SOVA survivor and competing paths for reliability

estimation. .. 66

Figure 3-19: SOVA iterative turbo code decoder. ... 69

Figure 4-1 BER for frame K=64 over AWGN Channel .. 72

Figure 4-2 BER for frame K=1024 over AWGN Channel .. 73

Figure 4-3: BER for frame K=6144 over AWGN Channel ... 74

Figure 4-4: BER Comparison between different frame sizes over AWGN using 3

iterations ... 75

Figure 5-1: BMC module in the trellis unit ... 78

Figure 5-2: Trellis unit for LTE consisting of 8 ACS .. 79

Figure 5-3: Block diagram of register exchange unit .. 81

Figure 5-4: System architecture of SOVA decoder ... 82

Figure 5-5: Block diagram of SMU module .. 83

Figure 5-6: Encoder to determine state sk−L ... 83

Figure 5-7: PCU for SOVA ... 84

Figure 5-8: Block diagram of UPD module ... 85

Figure 5-9: One bit releases sliding window decoding .. 86

Figure 5-10 BER for frame size K=1024 over AWGN Channel using 1 iteration 87

Figure 5-11 BER for frame size K=1024 over AWGN channel using 2 iterations 87

Figure 5-12 Scaling the recieved value in quantization process 89

Figure 5-13 Scaling Factor and Limits for quantization process 90

Figure 5-14 BER for frame size K=1024 over AWGN Channel for different word

sizes .. 92

Figure 6-1: Design and verification process of the FPGA implementations 94

Figure 6-2: Interface of SOVA Block .. 95

Figure 6-3: RTL Schematic of SOVA Module .. 96

Figure 6-4: Loading SOVA Block with Input Data ... 97

Figure 6-5: Output of SOVA Block ... 97

Figure 6-6: Performance of SOVA .. 98

Figure 6-7: Turbo Decoder Archeticture ... 99

Figure 6-8: Implementation of Turbo Decoder .. 100

Figure 6-9: Control Unit of Turbo Decoder ... 101

Figure 6-10: RTL Schematic of Turbo Decoder .. 101

xi

Figure 6-11: Interface of Turbo Decoder ... 102

Figure 6-12: handshaking signals: Start ... 104

Figure 6-13: handshaking signals: Finished .. 105

Figure 6-14: handshaking signals: Ready_To_Get_Output signal 105

Figure 6-15: handshaking signals: Ready_To_Process signal 106

Figure 6-16: handshaking signals: Valid_Output signal .. 106

Figure 6-17: BER Comparision for frame size K=1024 using 1 iteration 108

Figure 7-1 PCI Express Link ... 109

Figure 7-2 PCI Express Topology ... 112

Figure 7-3 PCI Express Layering Diagram ... 113

Figure 7-4 PCI Express soft and hardened implementation 116

Figure 7-5 The Spartan-6 FPGA SP605 Evaluation Kit [3] 117

Figure 7-6 Spartan-6 FPGA IP Core Specifications [4] .. 118

Figure 8-1:Receive Timing Diagram ... 130

Figure 8-2: Transmit Timing Diagram. ... 132

Figure 8-3: RIFFA Hardware Architecture.. 133

Figure 8-4: Upstream Data Transfer .. 136

Figure 8-5: RIFFA bandwidth. .. 138

Figure 9-1: Xilinx CORE Generator. ... 140

Figure 9-2: Xilinx CORE Generator Project Options. ... 141

Figure 9-3: Xilinx CORE Generator Design Entry.. 142

Figure 9-4: Xilinx CORE Generator generating IP CORE. 142

Figure 9-5: Spartan-6 Integrated Block for PCI Express. .. 143

Figure 9-6: PCI Express CORE Base Address Registers. ... 144

Figure 9-7: PCI Express CORE ID Initial Values. .. 145

Figure 9-8: PCI Express CORE Max Payload Size. .. 146

Figure 9-9: PCI Express Xilinx Reference Boards. ... 147

Figure 9-10: PCIe IP CORE Directory. ... 147

Figure 9-11: Turbo decoder critical path delay .. 148

Figure 9-12: Timing Constraints met ... 148

Figure 9-13: Clocking Features for Spartan-6 FPGA .. 149

Figure 9-14: Output Clock Settings Screen .. 149

Figure 9-15: Clock Summary Screen ... 150

Figure 9-16: Turbo Interfacing design ... 151

xii

Figure 9-17: FPGA Resources Summary .. 153

Figure 9-18: sp605 Configuration options ... 153

Figure 9-19: FPGA Startup Options ... 154

Figure 9-20: Turbo performance on Hardware ... 157

xiii

List of Symbols and Abbreviations

3GPP 3rd Generation Partnership Project

ACS Add, Compare, and Select

API Application Programming Interface

APP Aposteriori probability

BER Bit Error Rate

BSC Binary Symmetric Channel

CLI Command line interface.

C-RAN Cloud Radio Access Network

DMA Direct memory access.

DSP Digital Signal Processor

FEC Forward Error Correction

FIFO First In First Out

GPP General Purpose Processor

IP Intellectual Property

KLM Kernel loadable module.

L1 Layer 1 (Physical layer in the OSI Model)

LTE Long Term Evolution

MAP Maximum Aposteriori Probability

ML Maximum Likelihood

PCIe Peripheral Component Interconnect Express

PDF Probability Density Function

POSIX Portable Operating System Interface

QPI Quick Path Interconnect

RIFFA Reusable Integration Framework for FPGA Accelerators

RSC Recursive Systematic Code

SOVA Soft Output Viterbi Algorithm

xiv

Acknowledgments

We would like to thank Dr. Hassan Mustafa for giving us the opportunity to work

with him on this project and supplying us with the needed hardware. We would also

like to thank Dr. Yasmin Fahmy for her support in the Turbo Decoder part.

Finally, we would like to thank Eng. Mohammed Soliman for supporting us in the

communication concepts. Also we would like to thank Eng. Mohammed Farag for

his role in supporting us.

xv

Abstract

In the era of mobile Internet, mobile operators are facing pressure on ever-increasing

capital expenditures and operating expenses with much less growth of income. Cloud

Radio Access Network (C-RAN) is expected to be a candidate of next generation

access network techniques that can solve the operators’ puzzle. The main idea of C-

RAN is the cloud processing for multiple cells. One of the major trends towards

achieving such a cloud is to make the L1 DSP computationally intensive processing

on General Purpose Processor (GPP) based architectures. For this cloud to be realized

it is required to offload the most complex L1 processing portions (like FEC decoders)

to a highly parallel platform (FPGA) giving more powerful options to the cloud.

In this project, different LTE Turbo decoder algorithms were explored and the SOVA

(Soft-Veterbi Algorithm) was chosen owing to its relative simplicity, a MATLAB

model was constructed for the decoder and tested for performance, an RTL code for

the built model was then written in Verilog hardware description language and tested

on the target XILINX SPARTAN-6 FPGA, finally, a Linux driver was developed for

the PCIe with the help of the RIFFA framework using C programing language to

interface the FPGA with a GPP located in a PC.

16

 Introduction

1.1 C-RAN (Cloud/Centralized Radio Access Network)

Nowadays mobile operators are facing a serious situation. With the introduction of

various air interface standards and the prevalence of smart devices, mobile Internet

traffic is surging, and operators are forced to increase capital expenditure (CAPEX) and

operating expense (OPEX) in order to meet users’ requirements. On the other hand the

average revenue per user (ARPU) cannot catch up with the increasing expenses. It is

predicted that the traffic will double every year in the next few years till 2020 [1], which

will require more cost to build, operate, and upgrade the network infrastructure, while

only a small increase on the revenue is expected. The operators have to find new

solutions to maintain a healthy profit and provide better services for customers.

On the other hand, the proliferation of mobile broadband internet also presents a unique

opportunity for developing an evolved network architecture that will enable new

applications and services, and become more energy efficient.

The RAN is the most important asset for mobile operators to provide high data rate, high

quality, and 24x7 services to mobile users. Traditional RAN architecture has the

following characteristics: first, each Base Station (BS) only connects to a fixed number

of sector antennas that cover a small area and only handle transmission/reception signals

in its coverage area; second, the system capacity is limited by interference, making it

difficult to improve spectrum capacity; and last but not least, BSs are built on

proprietary platforms as a vertical solution. These characteristics have resulted in many

challenges. For example, the large number of BSs requires corresponding initial

investment, site support, site rental and management support. Building more BS sites

means increasing CAPEX and OPEX. Usually, BS’s utilization rate is low because the

average network load is usually far lower than that in peak load; while the BS’

processing power can’t be shared with other BSs. Isolated BSs prove costly and difficult

to improve spectrum capacity. Lastly, to meet the fast increasing data services, mobile

operators need to upgrade their network frequently and operate multiple-standard

17

network, including GSM, WCDMA/TD-SCDMA and LTE. However, the proprietary

platform means mobile operators lack the flexibility in network upgrade, or the ability to

add services beyond simple upgrades [2].

In summary, traditional RAN will become far too expensive for mobile operators to

keep competitive in the future mobile internet world.

Nowadays multi-core processors are becoming increasingly powerful, and the cloud

computing-based open IT platform is a promising alternative for both IT service

providers and mobile operators. It is time for mobile operators to consider using the

cloud computing facility to form a much larger processing resource pool shared in a

large geographical area to achieve low-cost operation.

Cloud Radio Access Network (C-RAN) is a new paradigm proposed by a few operators

that features centralized processing, collaborative radio, real-time cloud computing, and

power efficient infrastructure. This novel architecture aggregates all BS computational

resources into a central pool; the radio frequency signals from geographically distributed

antennas are collected by remote radio heads (RRHs) and transmitted to the cloud

platform through an optical transmission network (OTN). It aims to reduce the number

of cell sites while maintaining similar coverage, and reducing capital expenditures and

operating expenses while offering better services.

Figure 1-1 C-RAN Architecture

C-RAN is designed to be applicable to most typical RAN scenarios, from macro cell to

femtocell. As shown in Fig. 1-1, it is composed of the baseband unit (BBU), optical

18

transmission network (OTN), and remote radio head (RRH). The BBU acts as a digital

unit implementing the base station functionality from baseband processing to packet

processing, while the RRHs perform radio functions, including frequency conversion,

amplification, and A/D and D/A conversion. The RRHs send/receive digitalized signals

to/from the BBU pool via optical fiber, and antennas are equipped with RRHs to

transmit/ receive radio frequency (RF) signals. By placing numerous BBUs in a central

physical pool while distributing RRHs according to RF strategies, operators can

dynamically employ a real-time virtualization technology that maps radio signals

from/to one RRH to any BBU processing entity in the pool. The benefits of C-RAN lie

in the following four areas:

Reduced Cost: C-RAN aggregates computation resources in a few big rooms and leaves

simpler functions in RRHs, thus saving a lot of operation and management cost. C-RAN

makes equipment more effectively shared, such as GPS and transmission devices, thus

reducing capital expenditure. Load balancing and scalability can be well achieved

through virtualization, thus reducing waste of resources.

Better Energy Efficiency: C-RAN frees up individual BSs from the commitment of

providing 24/7 services. All processing functionalities are implemented in a remote data-

center. Power consumption and load congestion can be reduced by dynamically

allocating processing capability and migrating tasks in the BS pool, and several BSs can

be turned to low power or even be shut down selectively. Operators only need to install

new RRHs connecting with the BBU pool to cover more service areas or split the cell

for higher capacity.

Capacity Improvement: In C-RAN, BSs can work together in a large physical BBU

pool and they can easily share the signaling, traffic data and channel state information

(CSI) of active UE’s in the system. It is much easier to implement joint processing &

scheduling to mitigate inter-cell interference (ICI) and improve spectral efficiency.

Smart Internet Traffic Offload: Through enabling the smart breakout technology in C-

RAN, the growing internet traffic from smart phones and other portable devices, can be

offloaded from the core network of operators. The benefits are as follows: reduced back-

haul traffic and cost; reduced core network traffic and gateway upgrade cost; reduced

19

latency to the users; differentiating service delivery quality for various applications. The

service overlapping the core network also supplies a better experience to users.

Based on the recent developments in cloud computing and software defined radio (SDR)

techniques, C-RAN is able to use general-purpose processors (GPPs) with multicore and

multithread techniques to implement virtualized and centralized baseband and protocol

processing.

In order to reduce power consumption and improve processing capability, hardware

accelerators are preferred for computation-intensive tasks even in C-RAN, e.g. Turbo

decoders (which are our devices of concern), FFT, and MIMO decoders. In order to use

these hardware accelerators efficiently and flexibly in the C-RAN environment,

challenging problems need to be addressed. One is a high-throughput interface to

facilitate data exchange between the cloud platform and the accelerators pool. The PCIe

interface is a good candidate and is the one used in our project [3].

1.2 Baseband Processing

Baseband refers to the original frequency range of a transmission signal before it is

modulated. A baseband unit (BBU) is a unit that processes baseband in telecomm

systems. A BBU has the following characteristics: modular design, small size, low

power consumption and can be easily deployed.

A BBU in a cellular telephone cell site is comprised of a digital signal processor to

process forward voice signals for transmission to a mobile unit and to process reverse

voice signals received from the mobile unit.

In Baseband processing, discrete information is communicated with specific symbols

selected from a finite set of symbols. A series of pulses forms a pulse train that carries

the full message. Prior to transmission, especially in radio systems, these pulses are

shaped to limit their high frequency content so as to minimize crosstalk with adjacent

communication channels. During transmission through a bandlimited channel, pulses are

dispersed (spread) in time and can overlap with each other giving rise to intersymbol

interference (ISI). When the RF modulated pulses reach the receiver, dispersion and

other distortions can be partially compensated with an equalizer.

20

An information source generates messages bearing information to be transmitted. The

messages can be words, code symbols etc. The output of the information source is

converted to a sequence of symbols from a certain alphabet. Most often binary symbols

are transmitted.

The output of the information source is in general not suitable for transmission as it

might contain too much redundancy. For efficiency reasons, the source encoder is

designed to convert the source output sequence into a sequence of binary digits with

minimum redundancy. If the source encoder generates Rb bits per second (bps), Rb is

called the data rate.

The channel impairments cause errors in the received signal. The channel encoder is

incorporated in the system to add redundancy to the information sequence. This

redundancy is used to minimize transmission errors. The channel encoder assigns to

each message of k digits a longer message of n digits called a codeword.

1.3 Forward error correction (FEC)

In 1948, Shannon [4] demonstrated in a landmark paper that, by proper encoding of the

information, errors induced by a noisy channel or storage medium can be reduced to any

desired level without sacrificing the rate of information transmission or storage, as long as

the information rate is less than the capacity of the channel. Since Shannon’s work much

effort has been expended on the problem of devising efficient encoding and decoding

methods for error control in a noisy environment. Recent developments have contributed

toward achieving the reliability required by today’s high-speed digital systems, and the use

of coding for error control has become an integral part in the design of modern

communication and digital storage systems. [5].

The primary function of an error control encoder-decoder pair (also known as a codec) is

to enhance the reliability of message during transmission of information carrying

symbols through a communication channel. An error control code can also ease the

design process of a digital transmission system in multiple ways such as the following:

a) The transmission power requirement of a digital transmission scheme can be reduced

by the use of an error control codec. This aspect is exploited in the design of most of the

21

modern wireless digital communication systems such as a cellular mobile

communication system.

b) Even the size of a transmitting or receiving antenna can be reduced by the use of an

error control codec while maintaining the same level of end-to-end performance

c) Access of more users to same radio frequency in a multi-access communication

system can be ensured by the use of error control technique [example: cellular CDMA].

d) Jamming margin in a spread spectrum communication system can be effectively

increased by using suitable error control technique. Increased jamming margin allows

signal transmission to a desired receiver in battlefield and elsewhere even if the enemy

tries to drown the signal by transmitting high power in-band noise.

Forward error correction (FEC) codes have long been a powerful tool in the

advancement of information storage and transmission. By introducing meaningful

redundancy (FEC codes) into a stream of information, systems gain the ability to not

only detect data errors, but also correct them. With this ability, the systems can run on

less power, operate at longer distances, and decrease the need for costly retransmissions

.

The encoding operation for a (n,k) error control code is a kind of mapping of sequences,

chosen from a k-dimensional subspace to a larger, n-dimensional vector space of n-

tuples defined over a finite field and with n > k.

Decoding refers to a reverse mapping operation for estimating the probable information

sequence from the knowledge of the received coded sequence. The code rate or ‘coding

efficiency’ R of the code is defined as:

𝑅 =
𝐼𝑖𝑛

𝐼𝑜𝑢𝑡

Where lin and lout denote the lengths of input and output sequences respectively. The code

rate is a dimensionless proper fraction.

A (7, 4) Hamming code is an example of a binary block code whose rate R= 4/7. For an

error correction code, R < 1.0 and this implies that some additional information (in the form

of ‘parity symbol’ or ‘redundant symbol’) is added during the process of encoding.

22

The two main categories of FEC codes are block codes and convolutional codes. The main

difference between the two of them is memory of the encoder. In block codes each encoding

operation depends on the current input message and is independent on previous encodings.

That is, the encoder has no memory of history of past encodings. In contrast, for a

convolutional code, each encoder output sequence depends not only on the current input

message, but also on a number of past message blocks [6].

23

 Convolutional Codes and Decoding Methods

Most of this chapter is taken from an online course by MIT University [7] and [9].

2.1 Overview

Convolutional codes are a bit like the block codes in that they involve the transmission

of parity bits that are computed from message bits. Unlike block codes in systematic

form, however, the sender does not send the message bits followed by (or interspersed

with) the parity bits; in a convolutional code, the sender sends only the parity bits. The

encoder uses a sliding window to calculate r > 1 parity bits by combining various

subsets of bits in the window. The combining is a simple addition in F2 (i.e., modulo-2

addition, or equivalently, an exclusive-or operation).

Unlike a block code, the windows overlap and slide by 1, as shown in Figure 2.1 The

size of the window, in bits, is called the code’s constraint length. The longer the

constraint length, the larger the number of parity bits that are influenced by any given

message bit.

Because the parity bits are the only bits sent over the channel, a larger constraint length

generally implies a greater resilience to bit errors. The trade-off, though, is that it will

take considerably longer to decode codes of long constraint length, so one can’t increase

the constraint length arbitrarily and expect fast decoding. If a convolutional code that

produces r parity bits per window and slides the window forward by one bit at a time, its

rate (when calculated over long messages) is 1/r. The greater the value of r, the higher

the resilience of bit errors, but the trade-off is that a proportionally higher amount of

communication bandwidth is devoted to coding overhead. In practice, we would like to

pick r and the constraint length to be as small as possible while providing a low enough

resulting probability of a bit error.

We will use K (upper case) to refer to the constraint length, a somewhat unfortunate

choice because we have used k (lower case) to refer to the number of message bits that

get encoded to produce coded bits.

24

Because we will rarely refer to a “block” of size k while talking about convolutional

codes, we hope that this notation won’t cause confusion.

Armed with this notation, we can describe the encoding process succinctly. The encoder

looks at K bits at a time and produces r parity bits according to carefully chosen

functions that operate over various subsets of the K bits. One example is shown in

Figure 2-1, which shows a scheme with K = 3 and r = 2 (the rate of this code, 1/r = 1/2).

The encoder spits out r bits, which are sent sequentially, slides the window by 1 to the

right, and then repeats the process.

2.2 Parity Equations

The example in Figure 2-1 shows one example of a set of parity equations, which

govern the way in which parity bits are produced from the sequence of message bits x.

In this example, the equations are as follows (all additions are in F2)):

p₀ [n] = x[n] + x [n − 1] + x [n − 2]

p₁ [n] = x[n] + x [n − 1]

An example of parity equations for a rate 1/3 code is:

p₀ [n] = x[n] + x [n − 1] + x [n − 2]

 p₁ [n] = x[n] + x [n − 1]

p₂ [n] = x[n] + x [n − 2]

Figure 2-1 Convolutional code with two parity bits per message bit (r = 2,

K=3).

25

In general, one can view each parity equation as being produced by composing the

message bits, X, and a generator polynomial, g. In the first example above, the

generator polynomial coefficients are (1, 1, 1) and (1, 1, 0), while in the second, they

are (1, 1, 1), (1, 1, 0), and (1, 0, 1).

We denote by gi the K-element generator polynomial for parity bit pᵢ. We can then

write pi as follows:

K−1

pᵢ[n] = (∑ gi[j]x[n − j]) mod 2

j=0

The form of the above equation is a convolution of g and x hence the term

“convolutional code”. The number of generator polynomials is equal to the number of

generated parity bits, r, in each sliding window.

2.3 Views of the Convolutional Encoder

We now describe two views of the convolutional encoder, which we will find

useful in better understanding convolutional codes and in implementing the encoding

and decoding procedures. The first view is in terms of a block diagram, where one can

construct the mechanism using shift registers that are connected together. The second

is in terms of a state machine, which corresponds to a view of the encoder as a set of

states with well-defined transitions between them. The state machine view will turn

out to be extremely useful in figuring out how to decode a set of parity bits to

reconstruct the original message bits.

Figure 2-2 Block diagram view of convolutional coding with shift registers.

26

 Block Diagram View

Figure 2-2 shows the same encoder as Figure 2-1 and its Equations in the form of a

block diagram. The x [n − i] values (here there are two) are referred to as the state of

the encoder. The way to think of this block diagram is as a “black box” that takes

message bits in and spits out parity bits. Input message bits, x[n], arrive on the wire

from the left. The box calculates the parity bits using the incoming bits and the state of

the encoder (the k − 1 previous bits; 2 in this example). After the 𝑟 parity bits are

produced, the state of the encoder shifts by 1, with x[n] taking the place of x[n − 1],

x[n − 1] taking the place of x[n − 2], and so on, with x[n − K + 1] being discarded. This

block diagram is directly amenable to a hardware implementation using shift registers.

 State Machine View

Another useful view of convolutional codes is as a state machine, which is shown in

Figure 2-3 for the same example that we have used (Figure 2-1). The state machine

for a convolutional code is identical for all codes with a given constraint length, K,

and the number of states is always 2K − 1. Only the 𝑝𝑖 labels change depending on

the number of generator polynomials and the values of their coefficients. Each state is

labeled with x [n − 1] x [n − 2] . . . x [n − K + 1]. Each arc is labeled with x[n]/pop1.

In this example, if the message is 101100, the transmitted bits are 11 11 01 00 01 10.

This state machine view is an elegant way to explain what the transmitter does, and

also what the receiver ought to do to decode the message, as we now explain. The

transmitter begins in the initial state labeled “STARTING STATE” in Figure (2-3)

and processes the message one bit at a time. For each message bit, it makes the state

transition from the current state to the new one depending on the value of the input

bit, and sends the parity bits that are on the corresponding arc. The receiver, of course,

does not have direct knowledge of the transmitter’s state transitions. It only sees the

received sequence of parity bits, with possible corruptions. Its task is to determine the

best possible sequence of transmitter states that could have produced the parity bit

sequence. This task is called decoding, which we will be introduced next, and then

study in more detail later.

27

2.4 Trellis Structure

The trellis is a structure derived from the state machine that will allow us to develop

an efficient way to decode convolutional codes. The state machine view shows

what happens at each instant when the sender has a message bit to process, but

doesn’t show how the system evolves in time. The trellis is a structure that makes the

time evolution explicit.

An example is shown in Figure 2-4. Each column of the trellis has the set of states;

each state in a column is connected to two states in the next column, the same two

states in the state diagram. The top link from each state in a column of the trellis

shows what gets transmitted on a “0”, while the bottom shows what gets transmitted

on a “1”. The picture shows the links between states that are traversed in the trellis

given the message 101100. We can now think about what the decoder needs to do in

terms of this trellis. It gets a sequence of parity bits, and needs to determine the best

path through the trellis that is, the sequence of states in the trellis that can explain the

observed, and possibly corrupted, sequence of received parity bits.

Figure 2-3 State machine view of convolutional coding.

28

2.5 Channel Models

In any communications system, it is important to understand how a signal is affected

by the transmission channel it encounters. We focus on two common models for

communication channels that are used when evaluating the performance of

convolutional codes [8].

 Binary Symmetric Channel

The binary symmetric channel (BSC) is a channel model that involves only the

transmission of bits, defining a hard line to determine between a “0” or “1”. For each

unit of time, a bit is transmitted with probability of error p and probability of success

1-p. The value p is known as the crossover probability, because it represents the

probability that a bit “crosses over” from “0” to “1” or “1” to “0”, which can be seen

in Figure 2-5 A BSC transmission can be modeled as:

r = s + n

Where r contains received bits, s contains transmitted bits, and n contains possible bit

errors. The sequences r, s, and n have the same length and are indexed in discrete-

time by i. If there is a bit error at time i, ni will be 1, otherwise it is 0. The sequence n

is an independent and identically distributed Bernoulli random process. The +

operator, also known as xor, applies any bit error at ni by toggling the value of si. In

other words, corresponds to modulo-2 addition.

Figure 2-4 Trellis Diagram.

29

When using a BSC model, the comparison between a transmitted sequence and a

received sequence is most often done using Hamming distance. The Hamming

distance between the sequences s and r is defined as the number of positions in which

the corresponding elements are different. When a sequence is received over a BSC, it

is compared with a group of possible transmitted sequences to determine which one it

most closely resembles. Typically, the winner is the one with the shortest Hamming

distance to the received sequence.

 Additive White Gaussian Noise Channel

The additive white Gaussian noise (AWGN) channel is one of the most common

mathematical models for a communication channel. As the name suggests, it assumes

that a communication link is primarily affected by Gaussian noise. The AWGN model

can be applied to many physical channels, which makes it very useful when

evaluating the performance of a system.

In order for a data sequence to be physically transmitted, it must encounter some form

of modulation. One simple modulation scheme is binary phase-shift keying (BPSK),

where bits are mapped to antipodal values (+A or − A), with “0” → (−A) and “1” →

(+A). Once a bit sequence has been modulated, it is sent over the channel, where it

encounters additive Gaussian noise. A mathematical representation of this is:

r = s + n

Where r contains noisy received values, s contains transmitted antipodal bit values, and

n contains noise values. This is similar to the BSC model in the above section, however

Figure 2-5 Binary Symmetric Channel Model

30

E

each sequence is real-valued and the + operator performs addition of reals. Each value

in n is an independent Gaussian random variable with mean μ𝑛= 0 and variance

σn
2=No/2. Es is the energy in a symbol (for BPSK, Es=A2) and No/2 is the two-sided

power spectral density (PSD) of the noise. It is typical to normalize the symbol energy

to Es = 1, therefore making A = 1.

The performance of a digital communication system is often quantified with the bit

error rate (BER) versus the signal-to-noise ratio (SNR). The SNR is typically defined

as Eb =No, where Eb is the energy in an information bit. In an uncoded BPSK system,

each transmitted symbol corresponds to one information bit, or Es= Eb. In a coded

BPSK system, multiple transmitted symbols may correspond to a single information

bit, making the relationship dependent on the code rate 𝑅, or Es = REb. Substituting this

into the equation for the variance of the noise yields σn
2= 1/2REb , assuming Es=1.

Using the standard deviation σ𝑛 to scale a standard normal (mean 0, variance 1) random

variable allows n to be generated with a desired value of Eb = No. When using the

AWGN Channel model, the optimal comparison between a transmitted sequence and a

received sequence is done using Euclidean distance. The squared Euclidean distance

between the sequences s and r is defined as:

n−1

d2(s, r) = ∑(s[i] − r[i]) 2

i=0

When a sequence is received over an AWGN channel, it is compared with the set of

possible transmitted sequences to determine which one it most closely resembles.

The winner is the one that is closest in squared Euclidean distance to the received

sequence.

2.6 Decoding Convolutional Codes

Most of this part is taken from an online course by MIT University [9].

At the receiver, we have a sequence of voltage samples corresponding to the

parity bits that the transmitter has sent. For simplicity, and without loss of generality,

we will assume that the receiver picks a suitable sample for the bit, or averages the set

31

of samples corresponding to a bit, digitizes that value to a “0” or “1” by comparing to

the threshold voltage (the demapping step), and propagates that bit decision to the

decoder.

Thus, we have a received bit sequence, which for a convolutionally-coded stream

corresponds to the stream of parity bits. If we decode this received bit sequence with

no other information from the receiver’s sampling and demapper, then the decoding

process is termed hard-decision decoding (“hard decoding”). If, instead (or in

addition), the decoder is given the stream of voltage samples and uses that “analog”

information (in digitized form, using an analog-to-digital conversion) in decoding the

data, we term the process soft-decision decoding (“soft decoding”).

The Viterbi decoder can be used in either case. Intuitively, because hard-decision

decoding makes an early decision regarding whether a bit 0 or 1 is, it throws away

information in the digitizing process. It might make a wrong decision, especially for

voltages near the threshold, introducing a greater number of bit errors in the received

bit sequence. Although it still produces the most likely transmitted sequence given the

received bit sequence, by introducing additional errors in the early digitization, the

overall reduction in the probability of bit error will be smaller than with soft decision

decoding. But it is conceptually easier to understand hard decoding, so we will start

with that, before going on to soft decoding.

As mentioned before, the trellis provides a good framework for understanding the

decoding procedure for convolutional codes (Figure 2-6). Suppose we have the entire

trellis in front of us for a code, and now receive a sequence of digitized bits (or

voltage samples). If there are no errors, then there will be some path through the states

of the trellis that would exactly match the received sequence. That path (specifically,

the concatenation of the parity bits “spit out” on the traversed edges) corresponds to

the transmitted parity bits. From there, getting to the original encoded message is easy

because the top arc emanating from each node in the trellis corresponds to a “0” bit

and the bottom arrow corresponds to a “1” bit.

When there are bit errors, what can we do? As explained earlier, finding the most

likely transmitted message sequence is appealing because it minimizes the probability

of a bit error in the decoding. If we can come up with a way to capture the errors

32

introduced by going from one state to the next, then we can accumulate those errors

along a path and come up with an estimate of the total number of errors along the

path. Then, the path with the smallest such accumulation of errors is the path we want,

and the transmitted message sequence can be easily determined by the concatenation

of states explained above.

To solve this problem, we need a way to capture any errors that occur in going

through the states of the trellis, and a way to navigate the trellis without actually

materializing the entire trellis (i.e., without enumerating all possible paths through it

and then finding the one with smallest accumulated error). The Viterbi decoder solves

these problems.

 The Viterbi Decoder

The decoding algorithm uses two metrics: the branch metric (BM) and the path metric

(PM). The branch metric is a measure of the “distance” between what was transmitted

and what was received, and is defined for each arc in the trellis. In hard decision

decoding, where we are given a sequence of digitized parity bits, the branch metric is the

Hamming distance between the expected parity bits and the received ones. An

example is shown in Figure 2-7, where the received bits are 00. For each state

transition, the number on the arc shows the branch metric for that transition. Two of the

branch metrics are 0, corresponding to the only states and transitions where the

corresponding Hamming distance is 0. The other non-zero branch metrics correspond to

cases when there are bit errors.

Figure 2-6 Trellis Structure.

33

The path metric is a value associated with a state in the trellis (i.e., a value associated

with each node). For hard decision decoding, it corresponds to the Hamming distance

with respect to the received parity bit sequence over the most likely path from the

initial state to the current state in the trellis. By “most likely”, we mean the path with

smallest Hamming distance between the initial state and the current state, measured

over all possible paths between the two states. The path with the smallest Hamming

distance minimizes the total number of bit errors, and is most likely when the BER is

low.

The key insight in the Viterbi algorithm is that the receiver can compute the path metric

for a (state, time) pair incrementally using the path metrics of previously computed

states and the branch metrics.

2.6.1.1 Computing the Path Metric

Suppose the receiver has computed the path metric PM[s, i] for each states at time step i

(recall that there are 2K−1 states, where K is the constraint length of the convolutional

code). In hard decision decoding, the value of PM[s, i] is the total number of bit errors

detected when comparing the received parity bits to the most likely transmitted

message, considering all messages that could have been sent by the transmitter until time

step i (starting from state “00”, which we will take to be the starting state always, by

convention).

Among all the possible states at time step i, the most likely state is the one with the

smallest path metric. If there is more than one such state, they are all equally good

possibilities.

Now, how do we determine the path metric at time step i + 1, PM[s, i + 1], for each

state s? To answer this question, first observe that if the transmitter is at state s at time

step i + 1, then it must have been in only one of two possible states at time step

i. These two predecessor states, labeled α and β, are always the same for a given state.

In fact, they depend only on the constraint length of the code and not on the parity

functions. Figure 2-7 shows the predecessor states for each state (the other end of

each arrow). For instance, for state 00, α =00 and β=01; for state 01, α =10 and β =11.

Any message sequence that leaves the transmitter in state s at time i + 1 must have

34

left the transmitter in state α or state β at time i. For example, in Figure 4.2, to arrive

in state ’01’ at time i + 1, one of the following two properties must hold:

 The transmitter was in state “10” at time i and the ith message bit was a “0”. If

that is the case, then the transmitter sent ‘11’ as the parity bits and there were

two bit errors, because we received the bits “00”. Then, the path metric of the

new state, PM ["01", i + 1] is equal to PM ["10", i] + 2, because the new state

is “01” and the corresponding path metric is larger by 2 because there are 2

errors.

 The other (mutually exclusive) possibility is that the transmitter was in state

“11” at time I and the ith message bit was a “0”. If that is the case, then the

transmitter sent “01” as the parity bits and there was one-bit error, because we

received “00”. The path metric of the new state, PM [“01”, i + 1] is equal to

PM [“11”, i] + 1. Formalizing the above intuition, we can see that:

PM[s, i + 1] = min (PM [α, i] + BM [α → s], PM [β, i] + BM [β → s])

In the decoding algorithm, it is important to remember which arc corresponds to the

minimum, because we need to traverse this path from the final state to the initial one

keeping track of the arcs we used, and then finally reverse the order of the bits to

produce the most likely message.

Figure 2-7 The branch metric for hard decision decoding.

35

2.6.1.2 Finding the Most Likely Path

We can now describe how the decoder finds the maximum-likelihood path. Initially,

state “00” has a cost of 0 and the other 2K−1 − 1 states have a cost of ∞. The main loop

of the algorithm consists of two main steps: first, calculating the branch metric for the

next set of parity bits, and second, computing the path metric for the next column. The

path metric computation may be thought of as an add-compare- select procedure:

 Add the branch metric to the path metric for the old state.

 Compare the sums for paths arriving at the new state (there are only two such

paths to compare at each new state because there are only two incoming arcs

from the previous column).

 Select the path with the smallest value, breaking ties arbitrarily. This path

corresponds to the one with fewest errors.

Figure 2-8 and 2-9 shows the decoding algorithm in action from one time step to the

next. This example shows a received bit sequence of 11 10 11 00 01 10 and how the

receiver processes it. The fourth picture from the top shows all four states with the

same path metric. At this stage, any of these four states and the paths leading up to

they are most likely transmitted bit sequences (they all have a Hamming distance of

2). The bottom-most picture shows the same situation with only the survivor paths

shown. A survivor path is one that has a chance of being the maximum-likelihood path;

there are many other paths that can be pruned away because there is no way in which

they can be most likely. The reason why the Viterbi decoder is practical is that the

number of survivor paths is much, much smaller than the total number of paths in the

trellis. Another important point about the Viterbi decoder is that future knowledge will

help it break any ties, and in fact may even cause paths that were considered

“most likely” at a certain time step to change. Figure 2-9 continues the example in

Figure 2-8, proceeding until all the received parity bits are decoded to produce the most

likely transmitted message, which has two bit errors.

36

2.7 Soft-Decision Decoding

Hard decision decoding digitizes the received voltage signals by comparing it to a

threshold, before passing it to the decoder. As a result, we lose information: if the

voltage was 0.500001, the confidence in the digitization is surely much lower than if the

voltage was 0.999999. Both are treated as “1”, and the decoder now treats them the

same way, even though it is overwhelmingly more likely that 0.999999 is a “1”

compared to the other value. Soft-decision decoding (also sometimes known as “soft

input Viterbi decoding”) builds on this observation. It does not digitize the incoming

samples prior to decoding. Rather, it uses a continuous function of the analog sample as

the input to the decoder. For example, if the expected parity bit is 0 and the received

voltage is 0.3 V, we might use 0.3 (or 0.32, or some such function) as the value of the

“bit” instead of digitizing it. For technical reasons that will become apparent later, an

attractive soft decision metric is the square of the difference between the received

voltage and the expected one. If the convolutional code produces p parity bits, and the

p corresponding analog samples are v = v1, v2,…,vp, one can construct a soft decision

branch metric as follows:

BMsoft = ∑ (𝑢𝑖 − 𝑣𝑖)2𝑝
𝑖=1 (I)

37

This picture shows four time steps, the bottom-most picture is the same as the one just

before it, but with only the survivor paths shown.

Figure 2-8 The Viterbi Decoder in Action

38

The decoded message is shown. To produce this message, start from the final state with

smallest path metric and work backwards, and then reverse the bits. At each state during

the forward pass, it is important to remember the arc that got us to this state, so that the

backward pass can be done properly.

Where u = u1, u2, . . . , up are the expected p parity bits (each a 0 or 1). Figure 2-10

shows the soft decision branch metric for p = 2 when u is 00.

Figure 2-9 The Viterbi decoder in Action continued

39

With soft decision decoding, the decoding algorithm is identical to the one previously

described for hard decision decoding, except that the branch metric is no longer an

integer Hamming distance but a positive real number (if the voltages are all between 0

and 1, then the

branch metric is

between 0 and 1 as

well).

It turns out that this soft decision metric is closely related to the probability of the

decoding being correct when the channel experiences additive Gaussian noise. First,

let’s look at the simple case of 1 parity bit (the more general case is a straightforward

extension). Suppose the receiver gets the ith parity bit as vi volts. (In hard decision

decoding, it would decode as 0 or 1 depending on whether vi was smaller or larger

than 0.5) What is the probability that vi would have been received given that bit ui

(either 0 or 1) was sent? With zero-mean additive Gaussian noise, the PDF of this

event is given by

Figure 2-10 Branch Metric For Soft-Decision

Decoding

40

f(vi|ui) =
1

√2𝜋𝜎2
𝑒

−𝑑𝑖2

2𝜎2 (II)

Where di = v2 if ui = 0 and di = (vi − 1)2 if ui = 1.

The log likelihood of this PDF is proportional to −di2. Moreover, along a path, the PDF

of the sequence V = v1, v2, . . . , vp being received given that a codeword U = u1, u2, . .

. , up was sent, is given by the product of a number of terms each resembling Eq. (II)

The logarithm of this PDF for the path is equal to the sum of the individual log

likelihoods, and is proportional to − ∑i di2. But that’s precisely the negative of the

branch metric we defined before, which the Viterbi decoder minimizes along the

different possible paths! Minimizing this path metric is identical to maximizing the

log likelihood along the different paths, implying that the soft decision decoder produces

the most likely path that is consistent with the received voltage sequence.

This direct relationship with the logarithm of the probability is the reason why we chose

the sum of squares as the branch metric in Eq. (I). A different noise distribution (other

than Gaussian) may entail a different soft decoding branch metric to obtain an analogous

connection to the PDF of a correct decoding.

41

 Turbo Codes

This chapter describes the turbo encoder/decoder and their structure in details [10],[11].

3.1 Turbo Encoder

The fundamental turbo code encoder is built using two identical recursive systematic

convolutional (RSC) codes with parallel concatenation [12].

An RSC encoder is typically r = 1/2 and is termed a component encoder. The two

component encoders are separated by an interleaver. Only one of the systematic

outputs from the two component encoders is used, because the systematic output from

the other component encoder is just a permuted version of the chosen systematic

output.

Figure 3-1 shows the fundamental turbo code encoder with r = 1/3. The first RSC

encoder outputs the systematic c1, and recursive convolutional c2 sequences while the

second RSC encoder discards its systematic sequence and only outputs the recursive

convolutional c3 sequence.

Figure 3-1: Fundamental turbo code encoder.

 Recursive Systematic Convolutional (RSC) Encoder

The recursive systematic convolutional (RSC) encoder is obtained from the non

recursive non-systematic (conventional) convolutional encoder by feeding back one

42

of its encoded outputs to its input. Figure 3-2 shows a conventional convolutional

encoder.

The conventional convolutional encoder is represented by the generator sequences

g1 = [111] and g2 = [101] and can be equivalently represented in a more compact form

as G = [g1, g2]. The RSC encoder of this conventional convolutional encoder is

represented as G = [1, g2/ g1] where the first output (represented by g1) is fed back to

the input. In the above representation, 1 denotes the systematic output, g2 denotes the

feedforward output, and g1 is the feedback to the input of the RSC encoder. Figure 3-3

shows the resulting RSC encoder.

It was suggested in [13] that good codes can be obtained by setting the feedback of the

RSC encoder to a primitive polynomial, because the primitive polynomial generates

maximum-length sequences which adds randomness to the turbo code.

Figure 3-2: Conventional convolutional encoder with r=1/2 and K=3.

43

Figure 3-3: The RSC encoder obtained from Figure 3.2 with r=1/2 and K=3.

44

 Trellis Termination

For the conventional convolutional encoder, the trellis is terminated by inserting m

= K-1 additional zero bits after the input sequence. These additional bits drive the

conventional convolutional encoder to the all-zero state (trellis termination).

However, this strategy is not possible for the RSC encoder due to the feedback. The

additional termination bits for the RSC encoder depend on the state of the encoder and

are very difficult to predict. Furthermore, even if the termination bits for one of the

component encoders are found, the other component encoder may not be driven to the

all zero state with the same m termination bits due to the presence of the interleaver

between the component encoders. Figure 3-4 shows a simple strategy that has been

developed, which overcomes this problem.

For encoding the input sequence, the switch is turned on to position A and for

terminating the trellis, the switch is turned on to position B.

Figure 3-4: Trellis termination strategy for RSC encoder

45

 Concatenation of Codes

A concatenated code is composed of two separate codes that are combined to form

a larger code. There are two types of concatenation, namely serial and parallel

concatenations. Figure 3-5 shows the serial concatenation scheme for transmission.

Figure 3-5: Serial concatenated code.

Figure 3-6: Parallel concatenated code.

46

47

The total code rate for serial concatenation is:

 rtot=
𝐾1.𝐾2

𝑛1.𝑛2

 Which is equal to the product of the two code rates.

Figure 3-6 shows the parallel concatenation scheme for transmission.

The total code rate for parallel concatenation is:

 rtot=
𝐾

𝑛1.𝑛2

For both serial and parallel concatenation schemes, an interleaver is often used

between the encoders to improve burst error correction capacity or to increase the

randomness of the code. Turbo codes use the parallel concatenated encoding scheme.

However, the turbo code decoder is based on the serial concatenated decoding

scheme. The serial concatenated decoders are used because they perform better than

the parallel concatenated decoding scheme due to the fact that the serial concatenation

scheme has the ability to share information between the concatenated decoders

whereas the decoders for the parallel concatenation scheme are primarily decoding

independently. Later it will be shown how the serial concatenated decoding scheme is

implemented for a turbo code.

 Interleaver Design

For turbo codes, an interleaver is used between the two component encoders. The

interleaver is used to provide randomness to the input sequences. Also, it is used to

increase the weights of the codewords as shown in Figure 3-7.

Figure 3-7: The interleaver increases the code weight for Encoder 2 compared to Encoder 1.

48

From Figure 3-7, the input sequence x produces a low-weight recursive convolutional

code sequence c2 for RSC Encoder 1. To avoid having RSC Encoder 2 produce

another low-weight recursive output sequence, the interleaver permutes the input

sequence 𝐱 to obtain a different sequence that hopefully produces a high-weight

recursive convolutional code sequence c3. Thus, the turbo code’s code weight is

moderate, combined from Encoder 1’s low-weight code and Encoder 2’s high-weight

code. Figure 3-8 shows an illustrative example.

Table 3.1: Input and Output Sequences for Encoder in Figure 3-8

 Input Sequence

xi
Output

Sequence

c1i

Output

Sequence

c2i

Codeword

Weight i

i = 0 1 1 0 0 1 1 0 0 1 0 0 0 3

i = 1 1 0 1 0 1 0 1 0 1 1 0 0 4

i = 2 1 0 0 1 1 0 0 1 1 1 1 0 5

As it can be seen from Table 3.1, the codeword weight can be increased by utilizing

an interleaver.

The interleaver affects the performance of turbo codes because it directly affects the

distance properties of the code. By avoiding low-weight codewords, the BER of a

turbo code can improve significantly. Thus, much research has been done on

interleaver design.

Figure 3-8: An illustrative example of an interleaver’s capability.

49

 LTE Turbo Encoder in the 3GPP Standard

The LTE Turbo Encoder scheme is Parallel Concatenated Convolution Code (PCCC).

It comprises of two constraint length K = 4 (8 state) RSC encoders concatenated in

parallel. The overall code rate is approximately r = 1/3. Figure 3-9 shows the LTE

turbo encoder [14].

The two convolutional encoders used in the Turbo code are identical with generator

polynomials:

g0(D) = 1 + D2 + D3

g1(D) = 1 + D + D3

Where g0 and g1 are the feedback and feed forward generator polynomials respectively.

The transfer function of each constituent convolutional encoder is: G(D) =
g0(D)

g1(D)

Figure 3-9: Structure of LTE Turbo Encoder.

50

The data bits are transmitted together with the parity bits generated by two constituent

convolutional encoders. Prior to encoding, both the convolutional encoders are set to all

zero state, i.e., each shift register is filled with zeros. The turbo encoder consists of

an internal interleaver which interleaves the input data bits c1, c2 … cK to c′1,

c′2 … … . c′K which are then input to the second constituent encoder. Thus, the data is

encoded by the first encoder in the natural order and by the second encoder after being

interleaved. The systematic output of the second encoder is not used and thus the output

of the turbo coder is serialized combination of the systematic bits Xk, parity bits from the

first (upper) encoder Zk and parity bits from the second encoder Z′k for k = 1,2, … K.

So the transmitted sequence will be:

 X1, Z1, Z′1, X2, Z2, Z′2 … XK, ZK, Z′K

The size of the input data word may range from as few as 40 to as many as 6144 bits.

If the interleaver size is equal to the input data size K the data is scrambled according

to the interleaving algorithm, otherwise dummy bits are added before scrambling.

After all the data bits K have been encoded, trellis termination is performed by

passing tail bits from the constituent encoders bringing them to all zeros state.

To achieve this, the switches in Figure 3-9 are moved in the down position. The input

in this case is shown by dashed lines (input=feedback bit). Because of the interleaver,

the states of both the constituent encoders will usually be different, so the tail bits will

also be different and need to be dealt separately.

As constraint length K = 4 constituent convolutional encoders are used, so the

transmitted bit stream includes not only the tail bits {Xk+1, Xk+2, Xk+3} corresponding

to the upper encoder but also tail bits corresponding to the lower encoder

{X′k+1, X′k+2, X′k+3}. In addition to these six tail bits, six corresponding parity bits

{Zk+1, Zk+2, Zk+3} and {Z′k+1, Z′k+2, Z′k+3}for the upper and lower encoder

respectively are also transmitted. First, the switch in the upper (first) encoder is

brought to lower (flushing) position and then the switch in the lower (second)

encoder. The tail bits are then transmitted at the end of the encoded data frame. The

tail bits sequence are:

XK+1, ZK+1, XK+2, ZK+2, XK+3, ZK+3, X′K+1, Z′K+1, X′K+2, Z′K+2, X′K+3, Z′K+3

51

The total length of the encoded bit sequence now becomes 3K + 12, 3K being the

coded data bits and 12 being the tail bits. The code rate of the encoder is thus

r = c / (3K + 12). However, for large size of input K, the fractional loss in code

rate due to tail bits in negligible and thus, the code rate is approximated at 1/3.

 Interleaver

The bits input to the turbo code internal interleaver are denoted by c0, c1, … … . cK,

where K is the number of input bits. The bits output from the turbo code internal

interleaver are denoted by c′0, c′1, … … . c′K.

The relationship between the input and output bits is as follows:

c′i = c′π(i), i = 0, 1, … , (K − 1)

where the relationship between the output index i and the input index π(i) satisfies

the following quadratic form:

(𝑖) = (𝑓1. 𝑖 + 𝑓2. 𝑖2) 𝑚𝑜𝑑 𝐾

The parameters 𝑓1 and 𝑓2 depend on the block size K and are summarized in

Appendix A. [14]

52

3.2 Decoder

This section describes the basic turbo code decoder. The turbo code decoder is based

on a modified Viterbi algorithm that incorporates reliability values to improve

decoding performance. First, this section introduces the concept of reliability for

Viterbi decoding. Then, the metric that will be used in the modified Viterbi algorithm

for turbo code decoding is described. Finally, the decoding algorithm and

implementation structure for a turbo code are presented. [11]

 Turbo Decoder

The iterative decoding of concatenated codes has been termed Turbo decoding

after the name of turbo engines. It then gave its name to a whole class of codes, the

parallel concatenated convolutional codes, Turbo codes. This iterative decoding

process is shown in Figure 3-10.

During the operation, the probability of decoding in favor of the correct decision is

improved by exchanging information between the two decoders. A single iteration

begins by the first decoder (DEC1) calculating a soft output and then passing it to

the second decoder (DEC2). The new decoder computes its soft output and the

iteration is completed by passing the output of DEC2 to DECl to repeat the process

over and over. The soft output is a real number called the aposteriori

probability (APP) that measures the probability of a correct decision for each bit in

the information sequence.

We need a "soft-in/soft-out" decoder for decoding the constituent codes. Such

decoder uses apriori values for all information bits, if available, as well as the

channel outputs. It delivers soft outputs for all information bits. There are two

categories of soft decision decoders. The first is based on the Maximum Aposteriori

Probability (MAP) decoding algorithm [l5] while the second is based on a

Maximum Likelihood (ML) decoding algorithm such as the Soft Output Viterbi

Algorithm (SOVA) [16]. The latter is a modified Viterbi algorithm that yields soft

53

outputs.

Figure 3-10: Turbo Decoder

The gain of using the Log-MAP based decoder compared to SOVA based decoders is

only around 0.1 dB for an Eb/N0 around 2.0 dB [17]. Also MAP has a complexity of

O(n2) for its comparisons, and O(2n2) for its summations, while SOVA has a

complexity of O(0.5 n2) for its comparisons and O(0.5n2)for its summations, where

n is the number of bits for decoding [18]. The small MAP decoder gain does not make

up for increased complexity cost and is therefore not as interesting for the industry as

SOVA. This is the reason for investigating SOVA thoroughly instead of the MAP

algorithm.

54

 Principle of the General Soft-Output Viterbi Decoder

The Viterbi algorithm produces the ML output sequence for convolutional codes. This

algorithm provides optimal sequence estimation for one stage convolutional codes.

For concatenated (multistage) convolutional codes, there are two main drawbacks to

conventional Viterbi decoders.

First, the first Viterbi decoder produces bursts of bit errors which degrades the

performance of the second Viterbi decoders. Second, the first Viterbi decoder

produces hard decision outputs which prohibits the second Viterbi decoders from

deriving the benefits of soft decisions [19]. Both of these drawbacks can be reduced

and the performance of the overall concatenated decoder can be significantly

improved if the Viterbi decoders are able to produce reliability (soft-output) values

[20].

The reliability values are passed on to subsequent Viterbi decoders as apriori

information to improve decoding performance. This modified Viterbi decoder is

referred to as the soft-output Viterbi algorithm (SOVA) decoder. Figure 3-11 shows a

concatenated SOVA decoder.

Figure 3-11: A concatenated SOVA decoder where y represents the received channel values, u

represents the hard decision output values, and L represents the associated reliability values.

55

 Likelihood Functions

The mathematical foundations of hypothesis testing rest on Bayes’ theorem. For

communications engineering, where applications involving an AWGN channel are of

great interest, the most useful form of Bayes’ theorem expresses the a posteriori

probability (APP) of a decision in terms of a continuous-valued random variable x in

the following form:

1,....=
)(

)=()=|(
=)|=(i

xp

idPidxp
xidP (3.1)

)=()=|(=)(
1=

idPidxPxp
M

i

 (3.2)

Where P (d = i|x) is the APP, and d = i represents data d belonging to the ith signal

class from a set of M classes. Further, p (x|d = i) represents the probability density

function (pdf) of a received continuous-valued data-plus-noise signal x, conditioned

on the signal class d = i. Also, P(d = i), called the a priori probability, is the

probability of occurrence of the ith signal class.

Typically x is an “observable” random variable or a test statistic that is obtained at the

output of a demodulator or some other signal processor. Therefore, p(x) is the pdf of

the received signal x, yielding the test statistic over the entire space of signal classes.

Let the binary logical elements 1 and 0 be represented electronically by voltages +1

and -1, respectively. The variable d is used to represent the transmitted data bit,

whether it appears as a voltage or as a logical element. Sometimes one format is more

convenient than the other; the reader should be able to recognize the difference from

the context.

The decision rule in terms of APPs is as follows is given by:

56

)|1=(

2

<

>

1

)|1=(xdP

H

H

xdP (3.3)

Equation (3.3) states that you should choose the hypothesis H1, (d = +1), if the APP

P(d = +1|x), is greater than the APP P(d = -1|x). Otherwise, you should choose

hypothesis H2, (d = -1). Using the Bayes’ theorem of Equation (3.1), the APPs in

Equation (3.3) can be replaced by their equivalent expressions, yielding the following:

1)=(1)=|(

2

<

>

1

1)=(1)=|(dPdxP

H

H

dPdxP (3.4)

Where the pdf p(x) appearing on both sides of the inequality in Equation (3.1) has

been canceled.

Equation (3.4) is generally expressed in terms of a ratio, yielding the so-called

likelihood ratio test, as follows:

1)=(1)=|(

2

<

>

1

1)=(1)=|(dPdxP

H

H

dPdxP (3.5)

3.2.3.1 Log-Likelihood Ratio

By taking the logarithm of the likelihood ratio developed in Equations (3.3) through

(3.5), we obtain a useful metric called the log-likelihood ratio (LLR). It is a real

number representing a soft decision out of a detector, designated by as follows:

57

1)=(1)=|(

1)=(1)=|(
=

)|1=(

)|1=(
=)|(

dPdxP

dPdxP
log

xdP

xdP
logxdL (3.6)

1)=(

1)=(

1)=|(

1)=|(
=)|(

dP

dP
log

dxP

dxP
logxdL (3.7)

)()|(=)|(dLdxLxdL (3.8)

Where L(x|d) is the LLR of the test statistic x obtained by measurements of the

channel output x under the alternate conditions that d = +1 or d = -1 may have been

transmitted, and L(d) is the a priori LLR of the data bit d.

To simplify the notation, Equation (3.8) is rewritten as follows:

)()(=)(dLxLdL c (3.9)

Where the notation Lc(x) emphasizes that this LLR term is the result of a channel

measurement made at the receiver. Equations (3.1) through (3.9) were developed with

only a data detector in mind. Next, the introduction of a decoder will typically yield

decision-making benefits.

For a systematic code, it can be shown that the LLR (soft output) L(dˆ) out of the

decoder is equal to Equation (3.10):

)()(=)(dLdLdL e
 (3.10)

Where L′(dˆ) is the LLR of a data bit out of the demodulator (input to the decoder),

and Le(dˆ), called the extrinsic LLR, represents extra knowledge gleaned from the

decoding process. The output sequence of a systematic decoder is made up of values

representing data bits and parity bits. From Equations (3.9) and (3.10), the output

LLR L(dˆ) of the decoder is now written as follows:

)()()(=)(dLdLxLdL ec
 (3.11)

58

Equation (3.11) shows that the output LLR of a systematic decoder can be represented

as having three LLR elements a channel measurement, a priori knowledge of the data,

and an extrinsic LLR stemming solely from the decoder. To yield the final L(dˆ) ,

each of the individual LLRs can be added as shown in Equation (11), because the

three terms are statistically independent. This soft decoder output L(dˆ) is a real

number that provides a hard decision as well as the reliability of that decision. The

sign of L(dˆ) denotes the hard decision; that is, for positive values of L(dˆ) decide that

d = +1, and for negative values decide that d = -1. The magnitude of L(dˆ) denotes the

reliability of that decision. Often, the value of Le(dˆ) due to the decoding has the same

sign as Lc(x) + L(d), and therefore acts to improve the reliability of L(dˆ) .

The channel model is assumed to be flat fading with Gaussian noise. By using the

Gaussian pdf f(z),

22

2)(

2

1
=)(

mz

ezf

 (3.12)

Where m is the mean and the σ2 is the variance, it can be shown that

2)(

2)(

=
1)=|(

1)=|(

ay

o
N

b
E

ay

o
N

b
E

e

e
ln

xyp

xyp
ln

ay

o
N

b
E

ay

o
N

b
E

e

e
ln

2

2

=

ay
N

E

o

b4= (3.13)

Where Eb/No is the signal to noise ratio per bit (directly related to the noise variance)

and a is the fading amplitude. For nonfading Gaussian channel, a=1.

Generally speaking the LLR value can be formulated as)(=)|(kkc uLYLxdL

 Reliability of the General SOVA Decoder

The reliability of the SOVA decoder is calculated from the trellis diagram as shown in

Figure 3-12.

59

Figure 3-12: Example of survivor and competing paths for reliability estimation at time t

In Figure 3-12, a 4-state trellis diagram is shown. The solid line indicates the survivor

path (assumed here to be part of the final ML path) and the dashed line indicates the

competing (concurrent) path at time t for state 1. For the sake of brevity, survivor and

competing paths for other nodes are not shown. The label S1,t represents state 1 and

time t. Also, the labels {0,1} shown on each path indicate the estimated binary

decision for the paths. The survivor path for this node is assigned an accumulated

metric Vs(S1,t) and the competing path for this node is assigned an accumulated metric

Vc(S1,t). The fundamental information for assigning a reliability value L(t) to node

S1,t’s survivor path is the absolute difference between the two accumulated metrics,

L(t)=| Vs(S1,t) - Vc(S1,t) |. The greater this difference, the more reliable is the survivor

path. For this reliability calculation, it is assumed that the survivor accumulated

metric is always “better” than the competing accumulated metric. Furthermore, to

reduce complexity, the reliability values only need to be calculated for the ML

survivor path (assume it is known for now) and are unnecessary for the other survivor

paths since they will be discarded later.

To illustrate the concept of reliability, two examples are given below. In these

examples, the Viterbi algorithm selects the survivor path as the path with the smaller

accumulated metric. In the first example, assume that at node S1,t the accumulated

survivor metric Vs(S1,t)=50 and that the accumulated competing metric Vc(S1,t)=100.

60

The reliability value associated with the selection of this survivor path is

L(t)=|50-100|=50.

In the second example, assume that the accumulated survivor metric does not change,

Vs(S1,t)=50, and that the accumulated competing metric Vc(S1,t)=75. The resulting

reliability value is L(t)=|50-75|=25. Although in both of these examples the survivor

path has the same accumulated metric, the reliability value associated with the

survivor path is different. The reliability value in the first example provides more

confidence (twice as much confidence) in the selection of the survivor path than the

value in the second example.

Figure 3-13 illustrates a problem with the use of the absolute difference between

accumulated survivor and competing metrics as a measure of the reliability of the

decision.

Figure 3-13: Example that shows the weakness of reliability assignment using metric

values directly.

In Figure 3-13, the survivor and competing paths at S1,t have diverged at time t-5. The

survivor and competing paths produce opposite estimated binary decisions at times t,

t-2, and t-4 as shown in bold labels. For the purpose of illustration, let us suppose that

the survivor and competing accumulated metrics at S1,t are equal, Vs(S1,t) = Vc(S1,t) =

100.

61

This means that both the survivor and competing paths have the same probability of

being the ML path. Furthermore, let us assume that the survivor accumulated metric is

“better” than the competing accumulated metric at time t-2 and t-4 as shown in Figure

4.3. To reduce the figure complexity, these competing paths for times t-2 and t-4 are

not shown.

From this argument, it can be seen that the reliability value assigned to the survivor

path at time t is L(t)=0, which means that there is no reliability associated with the

selection of the survivor path. At times t-2 and t-4, the reliability values assigned to

the survivor path were greater than zero (L(t-2)=25 and L(t-4)=10) as a result of the

“better” accumulated metrics from the survivor path. However, at time t, the

competing path could also have been the survivor path because they have the same

metric. Thus, there could have been opposite estimated binary decisions at times t, t-2,

and t-4 without reducing the associated reliability values along the survivor path.

To improve the reliability values of the survivor path, a trace back operation to update

the reliability values has been suggested. This updating procedure is integrated into

the Viterbi algorithm as follows:

For node Sk,t in the trellis diagram (corresponding to state k at time t),

1. Store L(t) = | Vs(Sk,t) - Vc(Sk,t) |. (This is also denoted as in other papers.)

If there is more than one competing path, then multiple reliability values must be

calculated and the smallest reliability value is then set to L(t).

2. Initialize the reliability value of Sk,t to +(most reliable).

3. Compare the survivor and competing paths at Sk,t and store the memorization levels

(MEMs) where the estimated binary decisions of the two paths differ.

4. Update the reliability values at these MEMs with the following procedure:

a. Find the lowest MEM>0, denoted as MEMlow, whose reliability value has not been

updated.

b. Update MEMlow’s reliability value L(t-MEMlow) by assigning the lowest reliability

value between MEM = 0 and MEM = MEMlow.

62

Continuing from the example, the opposite bit estimations between the survivor and

competing bit paths for S1,t are located and stored as MEM={0, 2, 4}. With this MEM

information, the reliability updating process is accomplished as shown in Figure 3-14

and Figure 3-15. Figure 3-14, the first reliability update is shown. The lowest

MEM>0, whose reliability value has not been updated, is determined to be

MEMlow=2. The lowest reliability value between MEM=0 and MEM=MEMlow=2 is

found to be L(t)=0. Thus, the associated reliability value is updated from L(t-2)=25 to

L(t-2)=L(t)=0. The next lowest MEM>0, whose reliability value has not been

updated, is determined to be MEMlow=4.

The lowest reliability value between MEM=0 and MEM=MEMlow=4 is found to be

L(t)=L(t-2)=0. Thus, the associated reliability value is updated from L(t-4)=10 to

L(t-4)=L(t)=L(t-2)=0. Figure 3-15 shows the second reliability update.

Figure 3-14: Updating process for time t-4 (MEMlow=4).

63

Figure 3-15: Updating process for time t-2 (MEMlow=2).

 SOVA Component Decoder for a Turbo Code

The SOVA component decoder estimates the information sequence using one of the

two encoded streams produced by the turbo code encoder. Figure 3-16 shows the

inputs and outputs of the SOVA component decoder.

Figure 3-16: SOVA component decoder

The SOVA component decoder processes the (log-likelihood ratio) inputs L(u) and

Lcy, where L(u) is the a-priori sequence of the information sequence u and Lcy is the

weighted received sequence. The sequence y is received from the channel. However,

the sequence L(u) is produced and obtained from the preceding SOVA component

decoder.

If there is no preceding SOVA component decoder then there are no a-priori values.

Thus, the L(u) sequence is initialized to the all-zero sequence. A similar concept is

64

also shown at the beginning of the chapter in Figure 3-1. The SOVA component

decoder produces u’ and L(u’) as outputs where u’ is the estimated information

sequence and L(u’) is the associated log-likelihood ratio (“soft” or L-value) sequence.

The SOVA component decoder operates similarly to the Viterbi decoder except the

ML sequence is found by using a modified metric. This modified metric, which

incorporates the a-priori value, is derived in Appendix B.

For systematic codes, this can be modified to become

)(=)(

,,

)(

,

2=

,1

)()(

1

)(

t

m

tjtjct

m

jt

N

j

tc

m

t

m

t

m

t uLuyLxyLuMM (3.14)

For each state in the trellis diagram where m denotes allowable binary trellis

branch/transition to a state (m= 1, 2).

)(m

tM is the accumulated metric for time t on branch m.

)(m

tu is the systematic bit (1st bit of N bits) for time t on branch m.

)(

,

m

jtx is the j-th bit of N bits for time t on branch m (2jN).

)(

,

m

jty is the received value from the channel corresponding to
)(

,

m

jtx .

Lc 4
Eb

𝑁0
 is the channel reliability value.

L (ut) is the a-priori reliability value for time t. This value is from the preceding

decoder. If there is no preceding decoder, then this value is set to zero.

Figure 3-17 shows a trellis diagram with two states Sa and Sb and a transition period

between time t-1 and time t. The solid line indicates that the transition will produce an

information bit ut=+1 and the dash line indicates that the transition will produce an

information bit ut=-1. The source reliability L(ut), which may be either a positive or

a negative value, is from the preceding SOVA component decoder. The “add on”

value is incorporated into the SOVA metric to provide a more reliable decision on the

estimated information bit. For example, if L(ut) is a “large” positive number, then it

would be relatively more difficult to change the estimated bit decision from +1 to -1

65

between decoding stages (based on assigning max{)(m

tM }to the survivor path).

However, if L(ut) is a “small” positive number, then it would be relatively easier to

change the estimated bit decision from +1 to -1 between decoding stages. Thus, L(ut)

is like a buffer which tries to prevent the decoder from choosing the opposite bit

decision to the preceding decoder.

Figure 3-17: Source relibility for SOVA metric computation

At time t, the reliability value (magnitude of the log-likelihood ratio) assigned to a

node in the trellis is determined from
0

t | (1)

tM (2)

tM |Where
MEM

t denotes the

reliability value at memorization level MEM relative to time t.

This notation is similar to the notation L(t-MEM) as used before and is shown in

Figure 4.10 for discussion.

66

Figure 3-18: Example of SOVA survivor and competing paths for reliability estimation.

The probability of path m at time t and the SOVA metric are stated in [21] to be

related as

)(=))(()(m

tSPmpathP 2

)(

=

m
t

M

e
(3.15)

At time t, let us suppose that the survivor metric of a node is denoted as Mt and the

competing metric is denoted as Mt. Thus, the probability of selecting the correct

survivor path is

(2))((1))(

(1))(
=)(

pathPpathP

pathP
correctP

2

(2)

2

(1)

2

(1)

=
t

M
t

M

t
M

ee

e

0

0

1

=
t

t

e

e

(3.16)

67

The reliability of this path decision is calculated as

0

0

0

0

1

1

1=
)(1

)(

t

t

t

t

e

e

e

e

log
correctP

correctP
log

 (3.17)

The reliability values along the survivor path for a particular node at time t are

denoted as
MEM

t , where MEM = 0, .., t. For this node at time t, if the bit on the

survivor path at MEM=k (or equivalently at time t-MEM) is the same as the

associated bit on the competing path, then there would be no bit error if the competing

path was chosen. Thus, the reliability value at this bit position remains unchanged.

However, if the bits differ on the survivor and competing path at MEM=k, then there

is a bit error. The reliability value at this bit error position must then be updated using

the same updating procedure as described at the beginning of the chapter. As shown

in Figure 3-18, reliability updates are required for MEM=2 and MEM=4.

The reliability updates are performed to improve the “soft” or L-values. It is shown in

[22] that the “soft” or L-value of a bit decision is

 k

tMEMlMEMtMEMt minuuL 0,...=.ˆ)ˆ((3.18)

The soft output Viterbi algorithm (along with its reliability updating procedure) can

be implemented as follows:

1. (a) Initialize time t = 0.

 (b) Initialize)(

0

mM =0 only for the zero state in the trellis diagram and all other state

to-.

2. (a) Set time t = t +1.

(b) Compute the metric)(=)(

,,

)(

,

2=

,1

)()(

1

)(

t

m

tjtjct

m

jt

N

j

tc

m

t

m

t

m

t uLuyLxyLuMM

for each state in the trellis diagram where

m denotes allowable binary trellis branch/transition to a state (m= 1, 2).
)(m

tM is the accumulated metric for time t on branch m.

)(m

tu is the systematic bit (1st bit of N bits) for time t on branch m.

)(

,

m

jtx is the j-th bit of N bits for time t on branch m (2jN).

68

)(

,

m

jty is the received value from the channel corresponding to
)(

,

m

jtx .

Lc4
Eb

𝑁0
 is the channel reliability value.

L (ut) is the a-priori reliability value for time t. This value is from the preceding

decoder. If there is no preceding decoder, then this value is set to zero.

3. Find max)(m

tM for each state. For simplicity, let (1)

tM denote the survivor path

metric and (2)

tM denote the competing path metric.

4. Store (1)

tM and its associated survivor bit and state paths.

5. Compute
0

t | (1)

tM (2)

tM |.

6. Compare the survivor and competing paths at each state for time t and store the

MEMs where the estimated binary decisions of the two paths differ.

7. Update
MEM

t
UKmin 0,...=

{
K

t } for all MEMs from smallest to largest MEM.

8. Go back to Step (2) until the end of the received sequence.

9. Output the estimated bit sequence u’ and its associated “soft” or L-value sequence

L(u’)=u’, where operator defines element by element multiplication operation

and is the final updated reliability sequence. L(u’) is then processed (to be

discussed later) and passed on as the a-priori sequence L(u) for the succeeding

decoder.

 SOVA Iterative Turbo Code Decoder

The SOVA component decoder produces the “soft” or L-value L(u′t) for the estimated

bit (u′t) (for time t). The “soft” or L-value L(u′t) can be decomposed into three distinct

terms as stated in [22].

L(u′t)=L(ut)+ Lcyt,1+ Le(u′t)

L(ut) is the a-priori value and is produced by the preceding SOVA component

decoder. Lcyt,1 is the weighted received systematic channel value. Le(u′t) is the

extrinsic value produced by the present SOVA component decoder.

69

The information that is passed between SOVA component decoders is the extrinsic

value

Le(u′t)= L(u′t)−L(ut)− Lcyt,1

The a-priori value L(ut) is subtracted out from the “soft” or L-value L(u′t) to prevent

passing information back to the decoder from which it was produced. Also, the

weighted received systematic channel value Lcyt,1 is subtracted out to remove

“common” information in the SOVA component decoders. Figure 3-19 shows that the

turbo code decoder is a closed loop serial concatenation of SOVA component

decoders. In this closed loop decoding scheme, each of the SOVA component

decoders estimates the information sequence using a different weighted parity check

stream. The turbo code decoder further implements iterative decoding to provide more

dependable reliability/a-priori estimations from the two different weighted parity

check streams, hoping to achieve better decoding performance.

Figure 3-19: SOVA iterative turbo code decoder.

70

The iterative turbo code decoding algorithm for the n-th iteration is as follows:

1. The SOVA1 decoder inputs sequences 4EbNo y1 (systematic), 4EbNo y2 (parity

check), and Le2(u′t) and outputs sequence L1(u′). For the first iteration, sequence

Le2(u′t)=0 because there is no initial a-priori value (no extrinsic values from

SOVA2).

2. The extrinsic information from SOVA1 is obtained by

Le1(u′) = L1(u′) - Le2(u′) -Lcy1 Where Lc=4
𝐸𝑏

𝑁0
 .

3. The sequences 4
Eb

No
 y1 and Le1(u′) are interleaved and denoted as I{4

Eb

No
 y1} and

I{Le1(u′)}.

4. The SOVA2 decoder inputs sequences I{4EbNo y1} (systematic), and I{4EbNo y3}

(parity check that was already interleaved by the turbo code encoder), and I {Le1(u′)}

(a-priori information) and outputs sequences I{L2(u′)} and I{u′}.

5. The extrinsic information from SOVA2 is obtained by

 I{Le2(u′)}= I{L2(u′)} - I{Le1(u′)} - I{Lcy1}.

6. The sequences I{Le2(u′)} and I {u′} are deinterleaved and denoted as Le2(u′)and u′.

Le2(u′) is fed back to SOVA1 as a-priori information for the next iteration and u′ is

the estimated bits output for the n-th iteration.

71

 Matlab Results and Analysis

4.1 Matlab Implementation

The input data frame size is between 40 and 6144 bits as is the size of the LTE

interleaver according to the 3gpp standard. The turbo encoder consists of two main

blocks, i.e., the recursive convolutional encoder and the interleaver. The encoded data

frame is modulated using BPSK Modulation and sent over the channel. The channel

model used in the simulation is AWGN channel. After adding noise to the data, the

LLR is calculated and decoded using the turbo decoder using a specified number of

iteration. The decoded bits are compared with the original bits to obtain the number of

errors, hence calculate the BER.

As a rule of thumb, the number of samples required to obtain the ber with high

accuracy is given by 10x – 100x BER-1 samples. For example, if the estimated BER =

10-6, 108 samples are used for a relative variance of 0.01 (99% confidence).

The decoder implementation is complex and computationally extensive. It includes

processing using a number of loops. A limit is set on the maximum number of bits to

be encoded and maximum allowable error for early termination of the code. The

decoder decodes iteratively checking the number of errors after every iteration. If the

number of errors is zero for an iteration, the code will not execute the next iteration to

decrease processing load.

There are a large number of simulation options to consider when measuring the

performance of a turbo decoder (for example, number of iterations, channel model,

frame size, etc.). For this study many permutations were considered.

For performance analysis, it should be clear that there are many different

configurations of turbo encoders. In this study, the LTE Turbo Encoder Scheme is

used, which is a Parallel Concatenated Convolutional Code (PCCC) with two 8-state

constituent encoders and one turbo code internal interleaver. The coding rate of turbo

encoder is 1/3. The structure of turbo encoder is shown in details in chapter 3.

72

4.2 BER Performance over AWGN Channel

Since LTE Turbo decoder supports a wide range of frame sizes, three distinct frame

sizes were used in the simulation to show the effect of frame sizes on the

performance. The chosen sizes are 64, 1024, and 6144.

The turbo code program was simulated for frame size K = 64 over an AWGN

channel. The SNR range was used from 0 to 4 dB. The number of decoder iterations

was chosen to be 10. The BER for the iterations is shown in Figure 4-1. The BER

values at the end of each iteration are given in Table 4-1.

Figure 4-1 BER for frame K=64 over AWGN Channel

Table 4.1: BER values for frame K=64 over AWGN Channel

SNR = 0 SNR = 1 SNR = 2 SNR = 3 SNR = 4

Iter =1 0.1502 0.0778 0.0245 0.0041 4.094e-04

Iter =2 0.1283 0.0499 0.0093 7.6750e-04 3.625e-05

Iter =3 0.1200 0.0417 0.0066 5.1667e-04 2.4375e-05

Iter =4 0.1163 0.0378 0.0056 3.5677e-04 1.5719e-05

Iter =6 0.1119 0.0353 0.0051 3.2708e-04 1.3624e-05

Iter = 10 0.1028 0.0340 0.0044 2.6266e-04 1.0743e-05

73

Similarly, the code was simulated for frame size K = 1024 over AWGN channel. The

SNR range was used from 0 to 4 dB. The number of decoder iterations was chosen to

be 5. Figure 4-2 depicts the performance improvement when the frame size is

increased. The BER values at the end of each iteration are given in Table 4-3.

Figure 4-2 BER for frame K=1024 over AWGN Channel

Table 4.2: BER values for frame K=1024 over AWGN Channel

SNR = 0 SNR = 0.5 SNR = 1 SNR =1.5 SNR = 2

Iter =1 0.0762 0.1165 0.0762 0.0404 0.0174

Iter =2 0.1368 0.0759 0.0260 0.0044 3.4258e-04

Iter =3 0.1207 0.0541 0.0086 3.3320e-04 8.4352e-06

Iter =4 0.1113 0.0403 0.0033 3.6719e-05 -

Iter =5 0.1083 0.0316 0.0014 7.0312e-06 -

74

Finally, Fig. 4-3 describes the performance for frame size K = 6144 over AWGN

channel. The SNR range was used from 0 to 4 dB. The number of decoder iterations

was chosen to be 5. Some important BER values at the end of each iteration are given

in Table 4-3.

Figure 4-3: BER for frame K=6144 over AWGN Channel

Table 4.3: BER values for frame K=6144 over AWGN Channel

SNR = 0 SNR = 0.5 SNR = 1 SNR =1.5 SNR = 2

Iter =1 0.1598 0.1177 0.0759 0.0402 0.0167

Iter =2 0.1352 0.0754 0.0234 0.0034 0.0002

Iter =3 0.1207 0.0514 0.0051 1.4583e-004 1.4583e-004

Iter =4 0.1084 0.0352 7.7441e-004 1.1068e-005 -

Iter =5 0.1053 0.0238 1.3997e-004 - -

75

4.3 Interpretation of Results

It can be seen that as the number of iteration increases, the BER performance

improves. However, the rate of improvement decreases. This is depicted by the

overlapping curves after 5th
 iterations as shown in Fig.4-1. The BER does not show

significant improvement after 5th iteration. Thus, the number of iterations should be

kept such as to avoid extra computations.

Turbo code performance can be improved by increasing the frame size K. The code

can achieve higher BER with the increase of frame size. This is because the

interleaver permutes the data and the decoder is better able to decode the data.

However, it can be seen that by increasing the frame size K, the code can achieve the

same BER at much lower SNR.

It should be noted that larger frame sizes mean more latency as the encoding and

decoding is done per frame. Thus, the performance improvement is achieved at the

cost of increased latency.

The performance comparison of turbo code can be done by plotting the BER for

different frame sizes K as in Figure 4-4. The figure shows an example that by

increasing the frame size K, the BER performance of the code improves. As a result,

lower BER can be achieved by keeping the SNR constant.

Figure 4-4: BER Comparison between different frame sizes over AWGN using 3 iterations

76

 Hardware Architecture for SOVA

This chapter presents a hardware architecture that can be applied to implementation of

SOVA decoders. Optimizations are done to reduce the hardware complexity of the

SOVA decoder. Some hardware issues are discussed through the chapter, and trade-

offs between the hardware costs and performance are presented. [23],[24],[25]

5.1 SOVA Component

The Hardware Architecture for SOVA consists of three stages, namely the trellis,

merge and decode stages, as illustrated in Figure 5-5.

Figure 5-5: Hardware stages in SOVA

 Trellis Stage

The first stage is the trellis stage that computes the state metrics of each of the 2v

states, according to Equation 5.1 .That can be separated into the recursion and the

branch metric terms.

)(
2

1

2

1

2

1
)(=)(,

)(

,

2=

,111 KKvkc

m

vk

n

v

kkcKKKK uLuyLxuyLSMSM
 (5.1)

77

Assuming that the expected parity bit xk,2 = +1, or equivalently that the parity bit has a

value of ‘0’,and let the branch metrics for the cases when the expected systematic bits

Of uk=0 and uk=1 be denoted by 𝞴0,0 and 𝞴0,0 respectively.

These branch metrics are then calculated as follows

)1.(
2

1
1

2

1
1.

2

1
= ,2,10,0 kckck yLyLL

,2,1

2

1

2

1

2

1
= kckck yLyLL

 (5.2)

)1.(
2

1
1

2

1
1.

2

1
= ,2,11,0 kckck yLyLL

,2,1

2

1

2

1

2

1
= kckck yLyLL

 (5.3)

Where yk,1 and yk,2 are the received channel systematic and parity values respectively,

and Lk is input extrinsic information. Likewise, by assuming once again that the

expected parity bit xk,2 = −1, the branch metrics for the expected systematic bits of

uk = 0 and uk=1 denoted by 𝞴0,1 and 𝞴1,1 respectively can be calculated.

)1.(
2

1
1

2

1
1.

2

1
= ,2,10,1 kckck yLyLL

1,0,2,1

2

1

2

1

2

1
=

 kckck yLyLL (5.4)

)1.(
2

1
1

2

1
1.

2

1
= ,2,11,0 kckck yLyLL

0,0,2,1
2

1

2

1

2

1
=

 kckck yLyLL (5.5)

It can be observed that 𝞴0,1 and 𝞴1,1 are simply the negative values of 𝞴1,0 and 𝞴0,0

respectively. This implies that there is only a need to generate two of the four branch

78

metrics, since the other two can be easily obtained in the ACS when needed. A branch

metric calculation unit BMC as shown in Figure 5-1 is used to generate 𝞴0,0 and 𝞴0,1.

Figure 5-1: BMC module in the trellis unit

Other than the BMC unit, there are 2v ACS in the trellis unit that will perform

recursion by adding the branch metric to the previous survivor path metric, compare

the two resultant metrics and finally select a survivor path metric to be saved for use

at the next stage. Each ACS will perform calculations for one state, and the

connections between the ACS are dependent on the generator’s polynomials. In the

case of the LTE turbo code, there are a total of 8 ACS modules connected together as

shown in Figure 5-2.

79

Figure 5-2: Trellis unit for LTE consisting of 8 ACS

A close up view of the ACS can be seen in Figure 5-2. By taking advantage of the fact

that the branch metric and its inverse are negative values of one another, the ACS uses

a subtractor at one of its input branches to obtain the required inverse branch metric.

Thus by using one addition and one subtraction, the path metrics for both cases when

the input decision bit is ‘1’ and ‘0’ can be obtained. The two path metrics are then

compared to select the survivor (larger) metric which will be output from ACS and

stored for the next stage of the trellis. The hard decision bit corresponding to the

selection of the survivor path, together with the difference between the two metric

values are also output to be used in later stages for merging and SOVA updates.

5.2 Trace back and Updating Depths

In a practical decoder, it is not possible to perform VA over the entire block of

channel data due to the excessive latency and storage requirements. Instead, sliding

windows of merging depth L and update depth U are used to limit the trace back and

decoding depths. One possible modification is to vary L and U parameters for the

SOVA algorithm.

80

Increasing L will increase the likelihood for a merged path while using a larger U

increases the number of updates for the reliability value. However, it is clear that

increasing these two values will increase the memory requirements and latency. The

simulation results for determining the optimal values for L and U are presented in

Section 5.4 Hardware considerations such as performance, latency and hardware

requirements.

 Merge Stage

The merge stage of depth L performs Viterbi decoding on the hard decision bits

determined at the trellis stage. The depth L has to be sufficiently large for all 2v paths

to merge after L stages, and is usually expressed in terms the constraint length of the

encoder K. In hardware, the merge stage can either be implemented via the Register

Exchange (RE) or traceback method. The block diagram of a RE unit suitable for use

in LTE is shown in Figure 5-3.

The RE method utilizes registers to store all the N*L decision bits within the trellis.

Each row in the RE unit contains the decision bits of the entire path of length L

corresponding to the state of the first register of the row. The hard decision bits from

the trellis unit are used as the select signals for the MUXes to control the state

exchanges. The connections between the columns of registers are identical for all

columns and dependent on the generator polynomial. Assuming that the depth of the

RE is sufficient for merging, the output of all N rows of the RE unit would give the

same decision bit (i.e. decision bit of the survivor path), which would be selected as

the estimated received bit uk.

For the case of traceback, the decision bits are stored in a memory instead of registers,

and a decision bit d stages away from a given state is to be determined by traversing d

steps backwards in a trellis. The main advantage of traceback is that it can be

implemented efficiently in dense memory, but the drawback is that there is increased

latency as compared to RE. Both methods are commonly used in hardware designs of

Viterbi decoders, and the chosen method is usually dependent on the trade-off

between latency and hardware utilization. In this thesis, only the RE method is

considered, due to the short latency required for the LTE decoder.

81

Figure 5-3: Block diagram of register exchange unit

 Decode Stage

The decode stage of depth U performs Viterbi decoding and reliability updates on the

metric difference values obtained at the output of the trellis stage. Reliability updates

are performed on the U reliability values on the survivor path S

LKL 1 , S

LKL 2 , . . . ,

S

ULKL with each reliability value being updated for up to U times. The output of the

decode stage, multiplied by the hard decision bit, i.e. ûk−L−U ・
S

ULKL is the intrinsic

output of the SOVA decoder.

5.3 Block diagram of the hardware architecture for a SOVA

decoder

Based on the SOVA components in the previous section in this section the block

diagram of the hardware architecture for a HR-SOVA decoder is as shown in

Figure 5-4.

The trellis unit (TRU) performs the branch metric computation followed by the Add-

Compare-Select (ACS) operations as described in Section 5.2.1. The Survivor

Memory Unit (SMU) performs as the merge stage to determine the ML path at L

82

stages away. The Path Comparison Unit (PCU) has a RE unit with similar structure as

that in the SMU and it performs the decode stage with depth U. Viterbi decoding is

performed using hardware decision bits that are stored in the First In First Out (FIFO)

memory (FIFO U) as shown in the figure. There are two FIFOs required in the

architecture; the first of which (FIFO U) is used to store the hard decision bits uk

decoded by the trellis unit and the second (FIFO) is used to store the metric

difference K computed by the trellis unit. For each stage, uk and delta k for all 2v

states will be stored. The SMU and PCU are made up of columns of RE units. Each

row of RE registers stores the hard decision sequence of the respective state.

Figure 5-4: System architecture of SOVA decoder

The reliability updates are performed by the UPD module. The UPD module consists

of U units of UPE elements that update and store the reliability values
S

jLKL at each

stage of the decoding, based on the survivor and concurrent hard decision bit

sequences. As reliability updates require survivor and concurrent path decision bits (

C

jLKu and
S

jLKu) for comparison before deciding if an update is needed, the PCU

has additional logic to provide these relevance bits.

In order to obtain the survivor and concurrent paths, the SMU will first determine the

ML state sk by selecting the largest state metric гi from the trellis unit as shown in

Figure 5-5.

83

Figure 5-5: Block diagram of SMU module

Very often in practical designs, finding the largest state metric is not practical, and

since it can be assumed that after L stages, the trellis has merged, any one of the N

outputs of the register exchange unit can be used instead of the state chosen by the

ML path index. The corresponding decision bit ûk−L is output from the RE unit, and

the associated state at L stages away (end of SMU) sk−L can be determined by using an

encoder. The encoder used to determine sk−L is illustrated in Figure 5-6.

Figure 5-6: Encoder to determine state sk−L

With sk−L and ûk−L determined, these two inputs are then used to select the desired

rows from the RE in the PCU that correspond to the survivor and concurrent path

sequences of decision bits. The selection is performed by letting v̂k−L represent the

complementary decision bit of ûk−L.

That is,

ûk−L = 0 ⇒ v̂k−L = 1

ûk−L = 1 ⇒ v̂k−L = 0

The previous transition state of sk−L will be

84

and thus survivor and concurrent states S

LKS 1 and a row select signal SC = C

LKS 1

can be obtained. A block diagram of the PCU is shown in Figure 5-7. By means of 8-

to-1 MUXes, the SC signal selects the row in the RE network that corresponds to the

set of concurrent path bits (C

LKu 1 , C

LKu 2 , . . . , C

ULKu
). The relevance bits are then

determined by computing the XOR result of the decision bits of the survivor and the

concurrent sequences. Thus, a relevance bit of ‘0’ means that the survivor and

concurrent bit at the stage are the same, i.e.
S

jLKu =
C

jLKu , and conversely a

relevance bit of ‘1’ implies that the bits are different (
S

jLKu ≠
C

jLKu).

Figure 5-7: PCU for SOVA

In SOVA, the update rule is only applied when the survivor and concurrent bits are

different. Therefore the relevance bits generated in the PCU are used in the UPD to

indicate if reliability updates are required for each of the U stages. The UPD module

consists of U units of UPE, with each UPE element responsible for checking a

relevance bit from the PCU and to decide if an update is required. If an update is

85

required, the reliability value stored in the previous UPE stage is then compared

against s

Lk that is selected from the FIFO delta using sk−L. The block diagram of the

UPD is as shown in Figure 5-8

Figure 5-8: Block diagram of UPD module

5.4 Sliding Window

Sliding window implementations of decoding algorithms are used to reduce the

memory requirements in turbo decoders. The performance of turbo codes depends

heavily on frame length and deteriorates rapidly as the frame length decreases as

shown in chapter 4. A long frame length, however, means a long decoding trellis for

which the memory requirements as well as decoder complexity are excessive from an

implementation viewpoint. Sliding window or finite-length window decoding can

significantly reduce the memory requirements and the complexity of the decoder.

In trellis based decoding, the number of trellis stages required to make reliable

decisions determines the length of the decoding window and is referred to as the

decision depth D. Forward recursion in forward SOVA starts by building the first D

stages of the trellis. This is followed by SOVA traceback at each stage of the trellis in

86

the current window. After the SOVA traceback the decoded bit at the first stage of the

trellis is released and the decoding window slides forward by one trellis stage. The

decoded bit at the second trellis stage is released in this window followed by another

slide of the window and so on as shown in Figure 5-9 [25].

Figure 5-9: One bit releases sliding window decoding

Backward SOVA operates in the similar fashion, the only difference is that it starts

from the last stage in the trellis and moves in the opposite direction, thus releasing the

bits in reverse order.

The main objectives of using the sliding window technique are to reduce the decoding

delay and storage requirements at the expense of a slight loss in performance. The

overall code block at the receiver is divided into smaller sub-blocks (windows) of

length W. The decoder output can already be calculated for the first block of

information bits (trellis sections) within this window, thus reducing decoding delay

significantly for large block lengths. When the first window is decoded, the decoder

window is then shifted by one bit to the right in order to decode the next window.

It is worth to be mentioned that the traceback (merge (L)) stage and the update

(decode (U)) stage can use different window sizes. In order to choose the depth of

each stage, simulations were done to investigate the performance of turbo decoder for

different window sizes.

87

Figure 5-10 BER for frame size K=1024 over AWGN Channel using 1 iteration

Figure 5-11 BER for frame size K=1024 over AWGN channel using 2 iterations

88

Figures 5-10, and 5-11 show the BER performance when the traceback window size

changes. The frame length used is K=1024. The window sizes range is from W=20 to

W=80. As shown in these figures, the performance converges to the original one

(without using sliding window technique). The increment in performance is getting

smaller as the window size increases. So L=70 was chosen since there’s no significant

improvement in performance for larger windows.

Similarly, simulations were done to design the optimum window size for update stage.

U=30 was chosen. Hence the total latency (the number of clock cycles taken by our

SOVA decoder before releasing the first bit) is 100 clock cycles

5.5 Quantization

Much of the work on turbo decoding assumes that the decoder has access to infinitely

soft (unquantized) channel data. In practice, however, a quantizer is used at the

receiver and the turbo decoder must operate on finite precision, quantized data.

Floating-point units would make the hardware more complex, so quantization leads to

simpler hardware design. In addition, the number of bits used to represent the

quantized data is considered an important factor to the process of optimizing the HDL

design since it represents the width of the memories and data buses used in our

design.

This section discusses the process of converting from a floating-point simulation

model of a turbo decoder to quantized decoder representative of one that could be

implemented in hardware. One approach to quantization is presented here [26].

Performance measurements are done and the word size is designed according to the

proper quantization.

 Quantization Process

For simulation purposes the output of the encoder is generally taken to be a +/- 1

value. After being transmitted through a noisy channel, these values are still

distributed around +/- 1. When the input to a quantized system is received, it must be

scaled up by some amount. Scaling must be performed to retain some of the important

information that would be lost in a floating-point to integer conversion of the input

value. For example, if the transmitted data is –1 and the received value is –0.4, there

is still significant probability information in the received value. Standard floating-

89

point to integer conversion of –0.4 would yield 0. Since a 0 has equal probability of

being a +1 or a –1, all received probability information is lost. Conversion of –0.4 to –

1 would indicate too high of a probability that a –1 was transmitted. By simply

multiplying the input by some fixed value, we move the distribution to the new-scaled

value as shown in figure 5-12. This allows us to better approximate the floating-point

system in our quantized implementation, without losing as much of the probability

information. The following figure illustrates the effect of scaling on the received

values, in a Gaussian channel.

Figure 5-12 Scaling the recieved value in quantization process

To select the proper input-scaling factor, we must consider the quantization of the

inputs. The input quantization and the input scale factor define where the received

distribution is saturated. (Note: since we are using the log-likelihood ratio for the

input to the decoder, the received distribution is also scaled by the signal-to-noise

ratio. The following diagram illustrates how the saturation limits, defined by our

choice of quantization, determine how much of the distribution will be clipped or

saturated at the max/min values

90

Figure 5-13 Scaling Factor and Limits for quantization process

We can adjust the input scale factor sc and our clipping limits cl (a clipping limit will

be imposed by our limited bit width on the input signal, discussed later) as shown in

figure 5-13, to provide an estimated amount of distribution clipping. The clipping

estimate accounts for the amount of clipping associated with the adjacent limit. The

amount of clipping due to the limit of the opposite sign is negligible. The following

equations calculate the amount of clipping

from both quantization limits. The percent of values clipped by adjacent limit is given

by:

Q(
𝑐𝑙−𝑠𝑐

𝑠𝑐
) * 100 = pcla. The percentage of values clipped by the opposite limit is

Q(
𝑐𝑙+𝑠𝑐

𝑠𝑐
) * 100 = pclo.

For example if we are using a 6-bit quantization on the input, +31 to –32, and we

want no more than 5% of the values to be clipped we would use a scaling factor of:

pcla = Q(
31−𝑠𝑐

𝑠𝑐
) * 100 = 5% which yields a scale factor sc = 11.7. The amount of

clipping resulting from the opposite sign limit is pclo.= Q(
31+11.7

11.7
) * 100

The limit at which an integer variable is forced to saturate defines the effective

quantization (or number of bits required).

By defining saturation limits for the inputs and all internally calculated values, we can

approximate the performance of a hardware implementation’s specific bit widths.

After any calculation for a particular variable, saturation logic is added.

91

After multiplying the data with the proper input scaling and defining the saturation

limits, the floating point data could be rounded to the nearest integer value. Hence,

these integer values can be used directly to be decoded using our turbo decoder.

 Choosing the proper word size

In order to choose the optimum number of bits to represent the quantized data,

simulations were using different quantization bits. The performance of Turbo decoder

was measured, hence the proper word size was selected such that it achieves BER

very close to the BER resulted from using unquantized (floating point) data.

Fig 5-14 shows and example for the simulations done to design the word size. The

BER curves are plotted for different word sizes, using a fixed frame size K = 1024

over an AWGN channel. The SNR range was used from 0 to 5 dB. The number of

decoder iterations was chosen to be two iterations. It’s shown that increasing the

number of quantization bits improves the performance of the turbo decoder. The BER

curves converges to the one represents the unquantized turbo decoder.

The BER values are given in Table 5.1. It can be noticed that 8 bits for quantization is

sufficient, since BER doesn’t fall significantly for larger word sizes.

92

Figure 5-14 BER for frame size K=1024 over AWGN Channel for different word sizes

Table 5.1: BER values for different word sizes using frame size K=1024

 SNR = 0 SNR = 1 SNR = 2 SNR = 3

q = 4 0.1634 0.0718 0.0073 1.8945e-04

q = 5 0.1540 0.0663 0.0055 7.8050e-05

q = 6 0.1432 0.0605 0.0041 2.1484e-05

q = 7 0.1375 0.0573 0.0027 8.2484e-06

q = 8 0.1314 0.0524 0.0014 3.9063e-06

q = 9 0.1307 0.0516 0.0011 2.8863e-06

Unquantized 0.1368 0.1368 0.1368 1.8391e-06

 Hardware Implementation and Results

This chapter gives performance results of the HDL implementation of the SOVA

decoder design outlined in Chapter 3. Then the implementation of the complete turbo

decoder is presented in details. The HDL version of the decoder was compared with a

given reference decoder written in MATLAB, which was known to be accurate.

93

The Turbo decoder using proposed algorithm was implemented using Verilog

hardware description language, which offers high abstraction level during the

implementation. Designs are completed with the Integrated Software Environment

(ISE), which is a software suite developed by Xilinx that allows designers to take

their designs from design entry through FPGA device programming. The Verilog

description was synthesized using XST (Xilinx Synthesis Tool) on Spartan-6 FPGA

SP605 Evaluation Kit.

6.1 Design Flow in ISE

The ISE manages and processes a design through the following steps in the ISE

design flow [28].

 Design Entry

Design entry is the first step in the ISE design flow. During design entry, the design

source files can be created based on the design objectives using a Hardware

Description Language (HDL), such as VHDL, Verilog, or ABEL, or using a

schematic. Multiple formats for the lower-level source files are also supported in

design entry.

 Synthesis

After design entry and optional simulation, Xilinx Synthesis Technology (XST),

integrated in ISE, synthesizes VHDL, Verilog, or mixed language designs to create

Xilinx specific netlist files. Then they are accepted as input to the implementation

step.

 Implementation

After synthesis, ISE design implementation converts the logical design into a physical

file format that can be downloaded to the selected target device. The implementation

process includes four major steps: Translate, which merges the incoming netlists and

constraints into a Xilinx design file; Map, which fits the design into the available

resources on the target device; Place and Route, which places and routes the design

to the timing constraints; Programming file generation, which creates a bitstream file

that can be downloaded to the device

94

 Verification

A design can be verified at several points in the design flow. The integrated ISE

simulator or ModelSim software can be used to verify the functionality and timing of

a design or a portion of the design. These simulators interpret VHDL or Verilog code

into circuit functionality and displays logical results of the described HDL to

determine correct circuit operation. In-circuit verification can also be carried out with

the Chipscope software, also provided by Xilinx, after programming the FPGA

device.

 Device Configuration

After generating a programming file, it is downloaded from a host computer to a

Xilinx

device on a development board. The Spartan-6 XC6SLX45T-FGG484-3C FPGA on

SP605 Kit is used for in-circuit verification and BER testing. This device belongs to

the Spartan-6 FPGA family. The designing and testing flow are shown in the figure

below.

Figure 6-1: Design and verification process of the FPGA implementations

95

6.2 Testing framework for SOVA Block

Since SOVA is the main block in the turbo decoder, it was implemented using

Verilog and tested alone to make sure. Testing SOVA was really required to point out

the defects and errors that were made during the development phases and to ensure

that it should not result into any failures because it can be very expensive to fix in the

later stages of the turbo decoder development.

Figure 6.2 describes the interfaces of the SOVA decoder, and the used signal names

and Table 6.1 defines them.

Figure 6-2: Interface of SOVA Block

Table 6.1: Description of SOVA Signals

Pin Direction Description

Data_in_encoded Input RSC encoded data: is the quantized version of the

received convolutional sequence of the RSC encoder

after it’s sent over the channel

Data_in_feedback Input RSC 1 encoded data: is the quantized version of the

extrinsic sequence produced by the previous SOVA

component decoder.

Data_in_systematic Input Systematic data: is the quantized version of the

http://istqbexamcertification.com/what-is-defect-or-bugs-or-faults-in-software-testing/
http://istqbexamcertification.com/what-are-the-software-development-life-cycle-sdlc-phases/
http://istqbexamcertification.com/what-is-a-failure-in-software-testing/

96

received systematic sequence of the RSC encoder after

it’s sent over the channel

Clk Input Clock: All synchronous operations occur on the rising

edge of the clock signal.

Reset Input Reset: is an active-high, asynchronous resets all the

registers inside the SOVA

Data_out_delta_soft Output Soft Output: the soft information output (LLRs) that

will be passed to the next SOVA

Data_out_hard Output Hard Output: the hard decision sequence of the

decoded data

The SOVA decoder is designed to have 5 main blocks as shown in chapter X. Each

block is described in structural RTL style in separate Verilog files and combined

structurally in one file which described the exact connections and signal names as

shown in the RTL schematic in fig 6.3.

Figure 6-3: RTL Schematic of SOVA Module

97

6.3 Simulation Results of Behavioral RTL design

The results in figures 6.4-6.5, are from the case where the frame length is equal to

1024. The quantized systematic and encoded data are generated from MATLAB and

stored in files. The input files are read by the SOVA test bench to be used in

simulation

Figure 6-4: Loading SOVA Block with Input Data

Figure 6-5: Output of SOVA Block

6.4 Comparison with Software Reference

The Verilog and MATLAB decoders were compared by simulating using frame

length of 1024 over an AWGN channel. The SNR range was used from 0 to 5 dB. 8

bits for quantization are used, traceback window of length = 70, and update window if

length = 30 are used.

MATLAB was used to generate noisy, encoded streams of data, and each decoder

used a common traceback. A bit error rate (BER) comparison was done using only the

information bit decisions, meaning the reliability outputs of each decoder were

mapped to 0’s and 1’s before being compared for equality. Figure 6.6 shows the

comparison in BER performance.

98

Figure 6-6: Performance of SOVA

6.5 Hardware Performance

The Verilog used to define the SOVA decoder was synthesized, mapped, and routed.

The processing was done using the Xilinx ISE design tools. A user constraint was

defined for the clock signal to have a period of 6ns with a 50% duty cycle. This forced

ISE to work harder in its attempts to find the maximum clock frequency.

Tables 6.2 shows the hardware results obtained in the building of the designs. We see

in this table that the overall footprint of the SOVA decoder is relatively small, with all

builds using about 10% of the available LUTs.

Table 6.2: FPGA Resources of SOVA Module

99

6.6 Turbo Decoder implementation

 Scheduling of Computation at block level

The encoded data is sent in a sequence of … systematic, parity1, parity2, systematic,

parity1, parity2, … which gives a rate of 1/3 as specified in the 3GPP LTE standard.

The received sequence has to be demultiplexed to SOVA1 and SOVA2. SOVA1

expects to work on systemtic, and parity1 bits, while SOVA2 expects to work on

parity2 and the interleaved version of systematic as shown in fig 6.7.

Figure 6-7: Turbo Decoder Archeticture

Each block of data needs to be processed through the SOVA Blocks number of times

equals to the number of iterations specified for the turbo decoder. Due to data

dependency, the processing needs to be sequential, that is SOVA1 iteration 1

produces the results for SOVA2 iteration 1, SOVA2 iteration 1 produces the results

for SOVA1 iteration 2, and so on.

Thus it’s obvious that while SOVA1 is processing some data, SOVA2 is idle and

waiting for SOVA1 to finish. The same happens for SOVA1 when SOVA2 is

processing the data. Thus pipelining across the data blocks has to be implemented

100

with the cost of using more hardware resources and introducing more output delay.

However, we preferred to simplify the design, so instead of using two blocks for

SOVA decoder, only one block is used to save almost half of the hardware resources.

The new connections are shown in fig 6.8.

Figure 6-8: Implementation of Turbo Decoder

The top level of the design shown in Fig. 6.8 shows that the turbo decoder is designed

to have 4 main blocks. Brief descriptions for each block is shown as follows:

1. SOVA block

2. Memories.

3. Interleavers, Deinterleaver.

4. Control Unit

The central control unit is used to generate the control pulses to synchronize

the operation of the input buffer, SOVA, and memories. It also generates

“select” signal to alternate between the interleaved and the original versions of

data blocks back and forth at every half iteration. Its design is very simple. It

has an internal counter used as a Timer to generate these control signals and

these addresses at specific times.

101

Figure 6-9: Control Unit of Turbo Decoder

The Interface between these modules and the control unit is implemented and also

shown in the next RTL schematic

Figure 6-10: RTL Schematic of Turbo Decoder

 Turbo Decoder as a black box

102

After implementing the proposed turbo decoder, the interface was chosen carefully

such that that module could be used properly without resulting in any errors or

failures. Figure 6.11 describes the interfaces of the turbo decoder, and the used signal

names and Table 6.3 defines them.

Table 6.3: Describtion of Turbo Decoder Signals

Pin Direction Description

Systematic_Input Input Systematic data: is the quantized version of

the received systematic sequence of the RSC

encoder after it’s sent over the channel

Encoded_Systematic_Input Input RSC encoded data: is the quantized version of

the received convolutional sequence of the RSC

encoder after it’s sent over the channel

Encoded_Interleaved_Input Input RSC 1 encoded data: is the quantized version

of the extrinsic sequence produced by the

previous SOVA component decoder.

CLK Input Clock: All synchronous operations occur on the

rising edge of the clock signal.

CLK_Enable Input Clock Enable: When deasserted (Low), rising

clock edges are ignored and the core is held in

its current state.

Reset Input Reset: A signal used to Reset the core to its

initial state.

Figure 6-11: Interface of Turbo Decoder

103

Start Input Start: A hand shaking signal used to indicate

the start of input data reception

Frame_Size_Choice Input Frame Size Choice: Each supported Frame

size has an ID number that should be given to

the core with the high edge of Start Signal to

inform the core with the required frame size.

Iterations_Required Input Number of Iterations Required: informs the

core with the number of iterations to do on the

data. The core supports from a single iteration

up to 15 iterations which is a relatively big

number.

Ready_To_Get_Output Input Ready to Receive Bits: A hand shaking signal

used to inform the core that the user is ready to

receive decoded bits.

Iteration_Passed Output Number of Iterations Passed: It is used to

inform the user how many iterations has passed.

Finished Output Finished: A hand shaking signal that is set to

high when the core finished processing.

Decoded_Bits Output Hard Output: the hard decision sequence of

the decoded data

Valid_Output Output Valid_Output: A hand shaking signal which is

set to high when data on Decoded_Bits is Valid

to take.

Ready_To_Process Output Ready To Process A New Frame: A hand

shaking signal that is Set to high when all

decoded bits are output.

 Additional Feature:

This interface has another feature that is added to make the core is absolutely

configurable. The feature is that the core is outputting the decoded bits after each

iteration –not just after the required number of iterations- and Setting the

Valid_Output signal to indicate the outputting of these bits. This is very useful to

minimize the time for the error correction stage. For example, let’s suppose that the

104

core is asked to do a 6 iterations on the frame and that after 3 iterations the Code

Redundancy Check (CRC) – using this feature – has found that the output after the

third iteration is error free so no need for waiting another 3 iterations to have this

output. It can take it and send a signal to an earlier stage to reset the decoder and give

it another frame to process on it.

 Generic Parameters

Table 6.4 shows a list of parameters that can be adjusted before synthesis of the turbo

decoder code.

Table 6.4: Description of Turbo Decoder module parameters

Parameter Description

Data Bus Size Width of the input data bus according to the number

quantization bits.

Address Bus Size Width of the address bus according to the size of the

largest frame.

6.7 Simulation Results of Behavioral RTL design

 Initialization and Data Input to Decoder

Figures 6.12 shows an important instance from simulation results which reveal how

handshaking signals work to receive data. The Start signal needs to be set with the

entering all configurations and input data of the frame.

Figure 6-12: handshaking signals: Start

105

 Decoder Output When Processing is Done

Figures 6.13-6.16 show 4 important instances from simulation results which reveal

how hand shaking signals work to output decoded bits and also show an example of

the additional feature added to the Turbo Decoder. The following figure shows the

Finished Signal Set to 1 after fininshing the required number of Iterations.

Figure 6-13: handshaking signals: Finished

Next Figure shows how the module using our core signaled that it is ready to get

output and shows also how the core responded to it by outputing the decoded data and

setting the Valid Signal.

Figure 6-14: handshaking signals: Ready_To_Get_Output signal

The Figure 6.15 shows how the core acknowledges his availability to process a new

frame after finishing outputing the decoded data after the required number of

iterations.

106

Figure 6-15: handshaking signals: Ready_To_Process signal

The Figure below shows how the signals work to provide the new feature stated

before.

Figure 6-16: handshaking signals: Valid_Output signal

6.8 Performance and Resource Usage

The code has been extensively tested to optimize performance. A user constraint was

defined for the clock signal to have a period of 27 ns with a 50% duty cycle. This

forced ISE to work harder in its attempts to find the maximum clock frequency. Table

6.5 shows the resource requirements. These results have been obtained for the chosen

parameters mentioned previously in chapter 4.

107

Table 6.5: FPGA Resources used by Turbo Decoder

6.9 BER Performance

Figure 6.17 shows the difference between the BER performance in hardware and the

MATLAB model. Marginal loss in performance is shown due to the finite length

window and using quantization.

108

Figure 6-17: BER Comparision for frame size K=1024 using 1 iteration

 PCI Express Interconnect

This chapter presents an overview of the PCI Express architecture and key concepts.

PCI Express is a high performance, general purpose I/O interconnect defined for a

109

wide variety of computing and communication platforms. Key PCI attributes, such as

its usage model, load-store architecture, and software interfaces, are maintained,

whereas its parallel bus implementation is replaced by a highly scalable, fully serial

interface. PCI Express takes advantage of recent advances in point-to-point

interconnects, Switch-based technology, and packetized protocol to deliver new levels

of performance and features. Power Management, Quality Of Service (QoS), Hot-

Plug/Hot-Swap support, Data Integrity, and Error Handling are among some of the

advanced features supported by PCI Express. [29]

7.1 PCIe Link

A Link represents a dual-simplex communications channel between two components.

The fundamental PCI Express Link consists of two, low-voltage, differentially driven

signal pairs: a Transmit pair and a Receive pair as shown in 7-1.

Figure 7-1 PCI Express Link

Some of the primary link’s attributes are the following. The PCI Express link consists

of dual unidirectional differential Links, implemented as a Transmit pair and a

Receive pair. Once initialized, each link must only operate at one of the supported

signaling levels. In the first generation of PCI Express technology, there was only one

signaling rate supported, which provided an effective 2.5

Gigabits/second/Lane/direction of raw bandwidth. The second generation provides

an effective 5.0 Gigabits/second/Lane/direction of raw bandwidth. The data rate is

expected to increase in the future as the technology advances.

A link must support at least one lane and each Lane represents a set of differential

signal pairs (one pair for transmission, one pair for reception). To scale bandwidth, a

110

Link must aggregate multiple lanes denoted by xN where N may be any of the

supported Link widths. An x8 link represents an aggregate bandwidth of 20

Gigabits/second of raw bandwidth in each direction. The implementation of the

hardware in this thesis is PCIe 1.0 x1. It should be noted that each link must support a

symmetric number of Lanes in each direction, i.e., a x16 link indicates there are 16

differential signal pairs in each direction.

PCIe link speed is based on the generation and number of lanes in the link as shown

in Table 7.1. [30]

Table 7.1:PCI Express different generations speed comparison

During hardware initialization, each PCI Express link is set up following a negotiation

of lane widths and frequency of operation by the two agents at each end of the link.

No firmware or operating system software is involved. [29]

7.2 PCIe Clock Recovery

At speeds starting at 2.5GHz, the point-to-point architecture is still a challenge to get

working because the duration of each bit is so short that timing jitter (the time

uncertainty surrounding the arrival of each bit) becomes a problem. And even if each

signal pair had an associated clock pair transmitted along with it, the clock pair would

111

also be subject to timing

jitter. So instead a new

technique called

"clock recovery" is used.

Clock recovery is simple.

Basically, for each

signal pair, the pair

receiver looks at the signal transitions (a bit 0 followed by a bit 1, or vice-versa), from

which it can infer the position of surrounding bits. One problem is that if many

successive bits are transmitted with the same value (like lots of 0's), no signal

transition is seen. So extra bits are transmitted to ensure that signals transitions are not

too far apart (which "re-synchronizes" the clock recovery mechanism).

The extra bits are sent using a scheme called 8b/10b encoding, so that for each 8 bit

of useful data, 10 bits are actually transmitted (a 20% overhead) in a specific way that

guarantees enough signal transitions. But that also means that at 2.5GHz, we only get

250MB/s of useful bandwidth per pair (instead of the 312MBps we would get without

the encoding overhead), which results in 32-bit interface with 62.5 MHz clock

7.3 PCIe Fabric Topology

A fabric is composed of point-to-point Links that interconnect a set of components, an

example fabric topology is shown in Figure 7.2. This figure illustrates a single fabric

instance referred to as a hierarchy, composed of a Root Complex, multiple Endpoints

(I/O devices), a Switch, and a PCI Express to PCI/PCI-X Bridge, all interconnected

via PCI Express links.

112

 A Root Complex denotes the root of the I/O hierarchy that connects the

CPU/memory

subsystem to the I/O. As illustrated in Figure 1.2, a Root Complex may support one or

more PCI Express ports. Each interface defines a separate hierarchy domain. Each

hierarchy domain may be composed of a single Endpoint or a sub-hierarchy

containing one or more Switch components and Endpoints. Endpoint refers to a type

of Function that can be the Requester or the Completer of a PCI Express transaction

either on its own behalf or on behalf of a distinct non-PCI Express device (other than

a PCI device or Host CPU), e.g., a PCI Express attached graphics controller or a PCI

Express-USB host controller. Endpoints are classified as either legacy, PCI Express,

or Root Complex Integrated Endpoints. [29]

7.4 PCIe Layering Overview

The architecture of PCI Express is specified in terms of three discrete logical layers:

the Transaction Layer, the Data Link Layer, and the Physical Layer. Each of these

layers is divided into two sections: one that processes outbound (to be transmitted)

information and one that processes inbound (received) information, as shown in

Figure 7.3.

Figure 7-2 PCI Express Topology

113

Figure 7-3 PCI Express Layering Diagram

PCI Express uses packets to communicate information between components. Packets

are formed in the Transaction and Data Link Layers to carry the information from the

transmitting component to the receiving component. As the transmitted packets flow

through the other layers, they are extended with additional information necessary to

handle packets at those layers. At the receiving side the reverse process occurs and

packets get transformed from their Physical Layer representation to the Data Link

Layer representation and finally (for Transaction Layer Packets) to the form that can

be processed by the Transaction Layer of the receiving device, the procedure is

similar to the encapsulation of packets in the network layers of the internet, such as

the Transport layer (TCP), the Network layer (IP) and the Link

layer.

PCI Express stack is composed of three layers.

1. The physical layer.

2. The data link layer.

3. The transaction layer.

The first two layers are the ones implemented for us in the PCI Express FPGA core

(usually a combination of hard and soft core) and handling all the complexity. As a

user, we work only in the transaction layer.

114

In more details:

1. The physical layer: that's where the pins are toggling. The 8b/10b

encoding/decoding and the lanes disassembly/reassembly are done there.

2. The data link layer: that's where data integrity is checked (CRCs) and packets

are re-transmitted if required.

3. The transaction layer: that's the user level. Once a packet arrives here, it is

guaranteed to be good data.

 Transaction layer

The upper layer of the architecture is the Transaction Layer. The Transaction Layer’s

primary responsibility is the assembly and disassembly of Transaction Layer Packets

(TLPs). TLPs are the packets used to communicate transactions, such as read and

write, as well as certain types of events. The Transaction Layer is also responsible for

managing credit-based flow control for TLPs. Every request packet requiring a

response packet is implemented as a split transaction. Each packet has a unique

identifier that enables response packets to be directed to the correct originator. The

packet format supports different forms of addressing depending on the type of the

transaction (Memory, I/O, Configuration, and Message). The Packets may also have

attributes such as No Snoop, Relaxed Ordering, and ID-Based Ordering (IDO). The

Transaction Layer supports four address spaces: it includes the three PCI address

spaces (memory, I/O, and configuration) and adds Message Space. [29]

The Transaction Layer, in the process of generating and receiving TLPs, exchanges

Flow Control information with its complementary Transaction Layer implementations

on the other side of the link. It is also responsible for supporting both software and

hardware-initiated power management. Initialization and configuration functions

require the Transaction Layer to store the link’s configuration that is generated by the

processor, and the link capabilities generated by the physical layer hardware

negotiation, such as width and operational frequency. A Transaction Layer’s Packet

generation and processing services require it to generate TLPs from device core

requests and convert received requests TLPs into request for the specific device core.

115

 Data link layer

The middle layer in the stack, the Data Link Layer, serves as an intermediate stage

between the Transaction Layer and the Physical Layer. The primary responsibilities of

the Data Link Layer include link management and data integrity, including error

detection and error correction. The transmission side of the Data Link Layer accepts

TLPs assembled by the Transaction Layer, calculates and applies a data protection

code and TLP sequence number, and submits them to Physical Layer for transmission

across the link. The receiving Data Link Layer is responsible for checking the

integrity of received TLPs and for submitting them to the Transaction Layer for

further processing. On detection of TLP errors, this layer is responsible for requesting

re-transmission of TLPs until information is correctly received, or the link is

considered to have failed. The Data Link Layer also generates and consumes packets

that are used for Link management functions. To differentiate these packets from

those used by the Transaction Layer (TLP), the term Data Link Layer Packet (DLLP)

will be used when referring to packets that are generated and consumed at the Data

Link Layer. Some of the services of the Data Link Layer regarding data protection,

error checking and re-transmission are CRC generation, transmitted TLP storage for

data link level retry, error checking, TLP acknowledgment are retry messages and

error indication for error reporting and logging.

 Physical layer

The Physical Layer includes all circuitry for interface operation, including driver and

input buffers, parallel-to-serial and serial-to-parallel conversion, PLLs, and

impedance matching circuitry. It includes also logical functions related to interface

initialization and maintenance. The Physical Layer exchanges information with the

Data Link Layer in an implementation specific format. This Layer is responsible for

converting information received from the Data Link Layer into an appropriate

serialized format and transmitting it across the PCI Express Link at a frequency and

width compatible with the device connected to the other side of the Link. The PCI

Express architecture has “hooks” to support future performance enhancements via

speed upgrades and advanced encoding techniques. The future speeds, encoding

techniques or media may only impact the Physical Layer definition. [29]

116

7.4.3.1 Logical Sub-block

Takes care of symbol encoding, framing, data scrambling, link initialization and

training, lane to lane de-skew.

Electrical Sub-block

The electrical sub-block section defines the physical layer of the PCI Express that

consists of reference clock, transmitter, receiver and channel. This section defines the

electrical layer parameters required to guarantee the interoperability between the

above listed PCI Express parameters.

7.5 Types of PCI Express Protocol

There are two types for implementation PCIe interface:

 Soft

In this type we design and implement all layer of PCIe protocol from

Application layer until Physical layer using VHDL or Verilog language.

 Hardened

In this type we only design and implement the Application layer and the other

layer already exist as hard IP block in the FPGA. [31]

Figure 7-4 PCI Express soft and hardened implementation

117

7.6 Why PCI Express Interface?

PCIe is high-performance, scalable, and feature-rich serial protocol with data

transfer rates starts from 2.5 GT/s to to 8.0 GT/s and most of GPPS have native

support for PCIe bus, so it is the best choice for this project where the main purpose is

to offload the most complex unit (Turbo Decoder) to highly parallel platform (FPGA)

to allow the implementation of L1 DSP computationally intensive processing on

General Purpose Processor (GPP) based architectures. Since PCIe is supported by

most GPPs and has high data transfer rate, it's the best choice for the project.

In our project, The Spartan-6 FPGA SP605 Evaluation Kit (shown in figure 7.5)

from Xilinx is used to implement the turbo decoder and interface it with the

workstation through PCIe interface [32]. Since the Spartan-6 FPGA has hard IP

block for PCIe Integrated Endpoint, hardened implementation is used where only the

application layer is developed and the PCI Express stack (Transaction layer, Data link

layer, Physical layer) is generated as IP core using Xilinx Coregen.

Figure 7-5 The Spartan-6 FPGA SP605 Evaluation Kit [32]

118

The Spartan-6 FPGA Integrated Endpoint Block for PCI Express has the

specifications shown in Figure 7.6 [33].

Figure 7-6 Spartan-6 FPGA IP Core Specifications [33]

119

 PCI Express Linux Driver and RIFFA

Framework

Device drivers take on a special role in the Linux kernel. They are distinct

“blackboxes” that make a particular piece of hardware respond to a defined internal

programming interface, additionally they hide completely the details of how the

device works. User activities are performed by means of a set of standardized calls

that are independent of the specific driver. Mapping those calls to device-specific

operations that act on real hardware is the role of the device driver. This programming

interface is such that drivers can be built separately from the rest of the kernel and

then plugged in at runtime when needed. This modularity makes Linux drivers easy to

write, to the point that there are now hundreds of them available. One of the features

of the Linux operating system is the ability to extend at runtime the set of features

offered by the kernel. This means that you can add functionality to the kernel (and

remove functionality as well) while the system is up and running. Each piece of code

that can be added to the kernel at runtime is called a module. The Linux kernel offers

support for quite a few different types (or classes) of modules, including, but not

limited to, device drivers. Each module is made up of object code that can be

dynamically linked to the running kernel by the insmod program and can be unlinked

by the rmmod program.

8.1 PCI Addressing

Each PCI peripheral is identified by a bus number, a device number, and a function

number. The PCI specification permits a single system to host up to 256 buses, but

because 256 buses are not sufficient for many large systems, Linux now supports PCI

domains. Each PCI domain can host up to 256 buses. Each bus hosts up to 32 devices,

and each device can be a multifunction board (such as an audio device with an

accompanying CD-ROM drive) with a maximum of eight functions. [34]

During boot, the BIOS-type boot firmware (or the kernel itself if so configured) walks

the PCI bus and assigns resources such as interrupt levels and I/O base addresses. The

device driver gleans this assignment by peeking at a memory region called the PCI

configuration space. PCI devices possess 256 bytes of configuration memory. The top

120

64 bytes of the configuration space is standardized and holds registers that contain

details such as the status, interrupt line, and I/O base addresses. PCIe offers an

extended configuration space of 4KB. [35]

PCI drivers register the vendor IDs, device IDs, and class codes that they support with

the PCI subsystem from the configuration space as shown in Table 8-1 [35]

Table 8.1: PCI Configuration Space

Base Address Registers (BARs) serve two purposes. Initially they serve as a

mechanism for the device to request blocks of address space in the system memory

map. After the BIOS or OS determines what addresses to assign to the device, The

Base Address registers are programmed with the addresses and the device uses this

information to perform decoding.

8.2 Direct Memory Access

Direct memory access, or DMA, is the advanced topic that completes our overview of

how to create a modern PCI driver. DMA is the hardware mechanism that allows

peripheral components to transfer their I/O data directly to and from main memory

without the need to involve the system processor. Use of this mechanism can greatly

increase throughput to and from a device, because a great deal of computational

overhead is eliminated. [34]

Let’s begin with the mechanism of how a DMA transfer takes place, considering only

input transfers to simplify the discussion. Data transfer can be triggered in two ways:

either the software asks for data (via a function such as read) or the hardware

121

asynchronously pushes data to the system. In the first case, the steps involved can be

summarized as follows:

1- When a process calls read, the driver method allocates a DMA buffer and

instructs the hardware to transfer its data into that buffer. The process is put to

sleep.

2- The hardware writes data to the DMA buffer and raises an interrupt when it’s

done.

3- The interrupt handler gets the input data, acknowledges the interrupt, and

awakens the process, which is now able to read data.

The second case comes about when DMA is used asynchronously. This happens, for

example, with data acquisition devices that go on pushing data even if nobody is

reading them. In this case, the driver should maintain a buffer so that a subsequent

read call will return all the accumulated data to user space. The steps involved in this

kind of transfer are slightly different:

1- The hardware raises an interrupt to announce that new data has arrived.

2- The interrupt handler allocates a buffer and tells the hardware where to

transfer its data.

3- The peripheral device writes the data to the buffer and raises another interrupt

when it’s done.

4- The handler dispatches the new data, wakes any relevant process, and takes

care of housekeeping.

The processing steps in all of these cases emphasize that efficient DMA handling

relies on interrupt reporting. While it is possible to implement DMA with a polling

driver, it wouldn’t make sense, because a polling driver would waste the performance

benefits that DMA offers over the easier processor-driven I/O. As far as interrupts are

concerned, PCI is easy to handle. By the time Linux boots, the computer’s firmware

has already assigned a unique interrupt number to the device, and the driver just needs

to use it. The interrupt number is stored in configuration register 60

(PCI_INTERRUPT_LINE), which is one byte wide.

122

 DMA mappings

A DMA mapping is a combination of allocating a DMA buffer and generating an

address for that buffer that is accessible by the device. The PCI code distinguishes

between two types of DMA mappings, depending on how long the DMA buffer is

expected to stay around, Coherent and Streaming DMA mappings.

Coherent DMA mappings usually exist for the life of the driver. A coherent buffer

must be simultaneously available to both the CPU and the peripheral. As a result,

coherent mappings must live in cache-coherent memory. Coherent mappings can be

expensive to set up and use.

Streaming mappings are usually set up for a single operation. The kernel developers

recommend the use of streaming mappings over coherent mappings whenever

possible, and there are two reasons for this recommendation. The first is that, on

systems that support mapping registers, each DMA mapping uses one or more of them

on the bus. Coherent mappings, which have a long lifetime, can monopolize these

registers for a long time, even when they are not being used. The other reason is that,

on some hardware, streaming mappings can be optimized in ways that are not

available to coherent mappings. [34]

 How a PCIe driver works

The BAR address space (mapped in memory or I/O space) is used for control

registers. The driver allocates buffers in RAM. The addresses of these buffers are

written in control registers. The device reads and writes from the buffer via DMA. All

this it timed out and orchestrated via control registers and interrupts. [36]

8.3 RIFFA Framework

RIFFA (Reusable Integration Framework for FPGA Accelerators) is a simple

framework for communicating data from a host CPU to a FPGA via a PCI Express

bus. The framework requires a PCIe enabled workstation and a FPGA on a board with

a PCIe connector. RIFFA supports Windows and Linux, Altera and Xilinx,

with bindings for C/C++, Python, MATLAB and Java.

RIFFA provides high bandwidth, low latency communication and synchronization

between FPGA devices and computers equipped with a PCIe connection. It provides

123

this via simple software APIs and a FIFO hardware interface. On the software side

there are two main functions: data send and data receive. These functions are exposed

via user library in C. The driver supports multiple FPGAs (up to 5) per system. Users

can communicate with FPGA IP cores by writing only a few lines of code. On the

hardware side, users access an interface with independent transmit and receive

signals. The signals provide transaction handshaking and a first word fall through

FIFO interface for reading/writing data to the host. No knowledge of bus addresses,

buffer sizes, or PCIe packet formats is required. Simply send data on a FIFO interface

and receive data on a FIFO interface. RIFFA does not rely on a PCIe Bridge and

therefore is not subject to the limitations of a bridge implementation. Instead, RIFFA

works directly with the PCIe Endpoint and can run fast enough to saturate the PCIe

link.

RIFFA communicates data using direct memory access (DMA) transfers and

interrupt signaling. This achieves high bandwidth over the PCIe link.

 RIFFA 1.0

The initial version of RIFFA is based on a set of components provided by

Xilinx. It relies on a PCIe Endpoint, a PCIe Bridge, and a DMA core available in

Xilinx’s Embedded Development Kit. It supports a single FPGA per host PC. [37]

 RIFFA 2.1

RIFFA 2.1 is a complete rewrite of the original release. It supports most modern

FPGA devices from Xilinx and Altera across PCIe Gen 1, Gen 2, and Gen 3. The

original release only supports the Xilinx Virtex 5 family.

RIFFA 1.0 requires the use of a Xilinx PCIe Processor Local Bus (PLB) Bridge core.

Xilinx has since moved away from PLB technology and deprecated this core. The

PLB Bridge core limited the PCIe configuration to a Gen 1 ×1 link. Additionally, the

bridge core did not support overlapping PLB transactions. This did not have an effect

on the upstream direction because upstream transactions are one way. Downstream

transactions, however, must be sent by the core and serviced by the host PC’s root

complex. Not being able to overlap transactions on the PLB bus results in only one

outstanding downstream PCIe transaction at a time. This limits the maximum

throughput for upstream and downstream transfers to 181MB/s and 25MB/s,

124

respectively. The relatively low downstream bandwidth was a chief motivator for

improving upon RIFFA 1.0.

RIFFA 1.0 made use of a simple DMA core that uses PLB addressing to transfer data.

The hardware interface exposes a set of DMA request signals that must be managed

by the user core in order to complete DMA transfers. RIFFA 2.1 exposes no bus

addressing or DMA transfer signals in the interface. Data is read and written directly

from and to FWFT FIFO interfaces on the hardware end. On the software end, data is

read and written from and to byte arrays. The software and hardware interfaces have

been significantly simplified since RIFFA 1.0.

On the host PC, contiguous user space memory is typically scattered across many

noncontiguous pages in physical memory. This is an artifact of memory virtualization

and makes transfer of user space data difficult. Earlier versions of RIFFA had a single

packet DMA engine that required physically scattered user space data be copied

between a physically contiguous block of memory when being read or written to.

Though simpler to implement, this limits transfer bandwidth because of the time

required for the CPU to copy data. RIFFA 2.1 supports a scatter gather DMA engine.

The scatter gather approach allows data to be read or written to directly from/to the

physical page locations without the need to copy data.

RIFFA 1.0 supports only a single FPGA per host PC with C/C++ bindings for Linux.

Version 2.1 supports up to 5 FPGAs that can all be addressed simultaneously from

different threads. Additionally, RIFFA 2.1 has bindings for C/C++, Java, Python, and

Matlab for both Linux and Windows. Lastly, RIFFA 2.1 is capable of reaching 97%

maximum achievable PCIe link utilization during transfers. RIFFA 1.0 is not able to

exceed more than 77% in the upstream direction or more than 11% in the downstream

direction.

 Design

RIFFA is based on the concept of communication channels between software threads

on the CPU and user cores on the FPGA. A channel is similar to a network socket in

that it must first be opened, can be read and written, and then closed. However, unlike

a network socket, reads and writes can happen simultaneously (if using two threads.)

Additionally, all writes must declare a length so the receiving side knows how much

data to expect. Each channel is independent. RIFFA supports up to 12 channels per

125

FPGA. Up to 12 different user cores can be accessed directly by software threads on

the CPU, simultaneously. Designs requiring more than 12 cores per FPGA can share

channels. This increases the number of effective channels, but requires users to

manually multiplex and de-multiplex access on a channel. Before a channel can be

accessed, the FPGA must be opened. RIFFA supports multiple FPGAs per system (up

to five). This limit is software configurable. Each FPGA is assigned an identifier on

system start up. Once opened, all channels on that FPGA can be accessed without any

further initialization. Data is read and written directly from and to the channel

interface. On the FPGA side, this manifests as a First Word Fall Through (FWFT)

style FIFO interface for each direction. On the software side, function calls support

sending and receiving data with byte arrays.

Memory read/write requests and software interrupts are used to communicate between

the workstation and FPGA. The FPGA exports a configuration space accessible from

an operating system device driver. The device driver accesses this address space when

prompted by user application function calls or when it receives an interrupt from the

FPGA. This model supports low-latency communication in both directions. Only

status and control values are sent using this model. Data transfer is accomplished with

large payload PCIe transactions issued by the FPGA. The FPGA acts as a bus master

scatter gather DMA engine for both upstream and downstream transfers. In this way,

multiple FPGAs can operate simultaneously in the same workstation with minimal

CPU system load.

The details of the PCIe protocol, device driver, DMA operation, and all hardware

addressing are hidden from both the software and hardware. This means some level of

flexibility is lost for users to configure custom behaviors. For example, users cannot

set up custom PCIe Base Address Register (BAR) address spaces and map them

directly to a user core. Nor can they implement quality of service policies for channels

or PCIe transaction types. However, we feel any loss is more than offset by the ease

of programming and design.

 RIFFA Software

8.3.4.1 Software Architecture

On the host PC is a kernel device driver and a set of language bindings. The device

driver is installed into the operating system and is loaded at system startup. It handles

126

registering all detected FPGAs configured with RIFFA cores. Once registered, a small

memory buffer is preallocated from kernel memory. This buffer facilitates sending

scatter gather data between the workstation and FPGA.

A user library provides language bindings for user applications to be able to call into

the driver. The user library exposes the software interface described in Section

8.3.4.2, when an application makes a call into the user library, the thread enters the

kernel driver and initiates a transfer. [38]

At runtime, a custom communication protocol is used between the kernel driver and

the RX Engine. The protocol is encoded in PCIe payload data and address offset. The

protocol consists of single word reads and writes to the FPGA BAR address space.

The FPGA communicates with the kernel driver by firing a device interrupt. The

driver reads an interrupt status word from the FPGA to identify the conditions of each

channel. The conditions communicated include start of a transfer, end of a transfer,

and request for scatter gather elements. The protocol is designed to be as

lightweight as possible. For example, a write of three words is all that is needed to

start a downstream transfer. Once a transfer starts, the only communication between

the driver and RIFFA is to provide additional scatter gather elements or signal transfer

completion. [38]

8.3.4.2 Software Interface

The interface on the software side is consisted by a few functions. Data transfers can

be initiated by both sides, PC functions initiate downstream transfers and hardware

cores initiate upstream transfers. The function of the RIFFA 2.1 software interface is

listed in Table 8-2 (for the C/C++ API). [38]

Table 8.2: Functions of RIFFA API

There are four primary functions in the API: open, close, send, and receive. The API

supports accessing individual FPGAs and individual channels on each FPGA. There is

127

also a function to list the RIFFA-capable FPGAs installed on the system. A reset

function is provided that triggers the FPGA channel reset signal. The RIFFA 2.1

library and device driver provide useful messages about transfer events. The messages

will print to the operating system’s kernel log [37]. Here are the library functions

provided by the driver to the user space applications using RIFFA:

 int fpga_list(fpga_info_list * list);

Populates the fpga_info_list pointer with all FPGAs registered in the

system.

Returns 0 on success, a negative value on error.

 fpga_t * fpga_open(int id);
Initializes the FPGA specified by id. On success, returns a pointer to an

fpga_t

struct. On error, returns NULL. Each FPGA must be opened before any

channel can be accessed. Once opened, any number of threads can use the

fpga_t struct.

 void fpga_close(fpga_t * fpga);

 Cleans up memory/resources for the FPGA specified by the fd descriptor.

 int fpga_send(fpga_t * fpga, int chnl, void * data, int len, int destoff,

int last,long long timeout);

Sends len words (4 byte words) from data to FPGA channel chnl using the

fpga_t struct. The FPGA channel will be sent len, destoff, and last. If last

is 1 the channel should interpret the end of this send as the end of a

transaction. If last is 0, the channel should wait for additional sends before

the end of the

transaction. If timeout is non-zero, this call will send data and wait up to

timeout ms for the FPGA to respond (between packets) before timing out.

If 112 timeout is zero. Multiple threads sending on the same channel may

result in corrupt data or error. On success, returns the number of words

sent. On error returns a negative value.

 int fpga_recv(fpga_t * fpga, int chnl, void * data, int len, long long

timeout);

128

Receives data from the FPGA channel chnl to the data pointer, using the

fpga_t struct. The FPGA channel can send any amount of data, so the data

array should be large enough to accommodate this data. The len parameter

specifies the actual size of the data buffer in words (4 byte words). The

FPGA channel will specify an offset which will determine where in the

data array the data will start being written. If the amount of data (plus

offset) exceed the size of the data array (len), then that data will be

discarded. If timeout is non-zero, this call will wait up to timeout ms for

the FPGA to respond (between packets) before timing out. If timeout is

zero, this call may block indefinitely. Multiple threads receiving on the

same channel may result in corrupt data or error. On success, it returns the

number of words written to the data array. On error returns a negative

value.

 void fpga_reset(fpga_t * fpga);

Resets the state of the FPGA and all transfers across all channels. This is

meant to be used as an alternative to rebooting if an error occurs while

sending/receiving.

NOTE: Calling this function while other threads are sending or receiving

will result in unexpected behavior.

 Hardware Interface

A single RIFFA channel has two sets of signals, one for receiving data (RX) and one

for sending data (TX). RIFFA has simplified the interface to use a minimal handshake

and receive/send data using a FIFO with first word fall through semantics (valid+read

interface). The clocks used for receiving and sending can be asynchronous from each

other and from the PCIe interface (RIFFA clock). The tables 8-3, 8-4 below describes

the ports of the interface. The input/output designations are from your our core’s

perspective. The interface is pretty similar to the AXI-4 interface provided by the

Xilinx core, but it has added functionality for the current use case.

129

Table 8.3: Hardware Interface Receive Ports

130

Table 8.4: Hardware Interface Transmit Ports

The timing diagram in figure 8-1 shows the RIFFA channel receiving a data transfer

of 16 (4byte) words (64 bytes). When CHNL_RX is high, CHNL_RX_LAST,

CHNL_RX_LEN, and CHNL_RX_OFF will all be valid. In this example,

CHNL_RX_LAST is high, indicating to the user core that there are no other

transactions following this one and that the user core can start processing the received

data as soon as the transaction completes. CHNL_RX_LAST may be set low if

multiple transactions will be initiated before the user core should start processing

received data. Of course, the user core will always need to read the data as it arrives,

even if CHNL_RX_LAST is low.

Figure 8-1:Receive Timing Diagram

In the example CHNL_RX_OFF is 0. However, if the PC specified a value for offset

when it initiated the send, that value would be present on the CHNL_RX_OFF signal.

The 31 least significant bits of the 32 bit integer specified by the PC thread are

131

transmitted. The CHNL_RX_OFF signal is meant to be used in situations where data

is transferred in multiple sends and the user core needs to know where to write the

data (if, for example it is writing to BRAM or DRAM).

The user core must pulse the CHNL_RX_ACK signal high for at least one cycle to

acknowledge the receive transaction. The RIFFA channel will not recognize that the

transaction has been received until it receives a CHNL_RX_ACK pulse. The

combination of CHNL_RX_DATA_VALID high and CHNL_RX_DATA_REN high

consumes the data on CHNL_RX_DATA. New data will be provided until the FIFO

is drained. Note that the FIFO may drain completely before all the data has been

received. The CHNL_RX signal will remain high until all data for the transaction has

been received into the FIFO. Note that CHNL_RX may go low while

CHNL_RX_DATA_VALID is still high. That means there is still data in the FIFO to

be read by the user core. Attempting to read (asserting CHNL_RX_DATA_REN

high) while CHNL_RX_DATA_VALID is low, will have no affect on the FIFO. The

user core may want to count the number of words received and compare against the

value provided by CHNL_RX_LEN to keep track of how much data is expected. [39]

The diagram in figure 8-2 shows the RIFFA channel sending a data transfer of 16 (4

byte) words (64bytes). It’s nearly symmetric to the receive example. The user core

sets CHNL_TX high and asserts values for CHNL_TX_LAST, CHNL_TX_LEN, and

CHNL_TX_OFF for the duration CHNL_TX is high. CHNL_TX must remain high

until all data has been consumed. RIFFA will expect to read CHNL_TX_LEN words

from the user core. Any more data provided may be consumed, but will be discarded.

The user core can provide less than CHNL_TX_LEN words and drop CHNL_TX at

any point. Dropping CHNL_TX indicates the end of the transaction. Whatever data

was consumed before CHNL_TX was dropped will be sent and reported as

received to the software thread. [39]

132

Figure 8-2: Transmit Timing Diagram.

As with the receive interface, setting CHNL_TX_LAST high will signal to the PC

thread to not wait for additional transactions (after this one). Setting CHNL_TX_OFF

will cause the transferred data to be written into the PC thread’s buffer starting

CHNL_TX_OFF 4 bytes words from the beginning. This can be useful when sending

multiple transactions and needing to order them in the PC thread’s receive buffer.

CHNL_TX_LEN defines the length of the transaction in 4 byte words. As the

CHNL_TX_DATA bus can be 32 bits, 64 bits, or 128 bits wide, it may be that the

number of 32 bit words the user core wants to transfer is not an even multiple of the

bus width. In this case, CHNL_TX_DATA_VALID must be high on the last cycle

CHNL_TX_DATA has at least 1 word to send. The channel will only send as many

words as is specified by CHNL_TX_LEN. So any additional data consumed, past the

last word, will be discarded.

Shortly after CHNL_TX goes high, the RIFFA channel will pulse high the

CHNL_TX_ACK and begin to consume the CHNL_TX_DATA bus. The

combination of CHNL_TX_DATA_VALID high and CHNL_TX_DATA_REN high

will consume the data currently on CHNL_TX_DATA. New data can be consumed

every cycle. After all the data is consumed, CHNL_TX can be dropped. Keeping

CHNL_TX_DATA_VALID high while CHNL_TX_DATA_REN is low will have no

effect.

 Architecture

On the FPGA, the RIFFA architecture is a scatter gather bus master DMA design

connected to a vendor-specific PCIe Endpoint core, could be the core from Xilinx that

we are using or an equivalent core from Altera. The PCIe Endpoint core drives the

gigabit transceivers and exposes a bus interface for PCIe formatted packet data.

133

RIFFA cores use this interface to translate between payload data and PCIe packets. A

set of RIFFA channels provide read and write asynchronous FIFOs to user cores that

deal exclusively with payload data.

Figure 8-3: RIFFA Hardware Architecture.

The RIFFA cores are driven by a clock derived from the PCIe reference clock. This

clock’s frequency is a product of the PCIe link configuration. It runs fast enough to

saturate the PCIe link if data were sent every cycle. User cores do not need to use this

clock for their CHNL_TX_CLK or CHNL_RX_CLK. Any clock can be used by the

user core. The frequency of the clock is determined by the Xilinx core and is chosen

by the configuration of the PCIe Link we are going to support, for example if we

create an endpoint for a 1 lane setup we need to use 62.5 MHz clock.

The PCIe link configuration also determines the width of the PCIe data bus. This

width can be 32, 64, or 128 bits wide. Writing a DMA engine that supports multiple

widths requires different logic when extracting and formatting PCIe data. For

example, with a 32-bit interface, header packets can be generated one 4-byte word per

cycle. Only one word can be sent/received per cycle. Therefore, the DMA engine only

needs to process one word at a time, containing either header or payload data.

However, with a 128-bit interface, a single cycle presents four words per cycle. This

may require processing three header packets and the first word of payload in a single

134

cycle. It is possible (and simpler) to design a scatter gather DMA engine that does not

perform such advanced and flexible processing. However, the result is a much lower

performing system that does not take advantage of the underlying link as efficiently.

There are many examples of this in research and industry. [38]

Upstream transfers are initiated by the user core via the CHNL_TX_* ports. Data

written to the TX FIFO is split into chunks appropriate for individual PCIe write

packets. RIFFA will attempt to send the maximum payload per packet. It must also

avoid writes that cross physical memory page boundaries, as this is prohibited by the

PCIe specification. In order to send the data, the locations in host PC memory need to

be retrieved. This comes in the form of scatter gather elements. Each scatter gather

element defines a physical memory address and size. These define the memory

locations into which the payload data will be written. Therefore, each channel first

requests a read of list of scatter gather elements from the host.

Once the channel has the scatter gather elements, they issue write packets for each

chunk of data. Channels operate independently and share the upstream PCIe direction.

The TX Engine provides this multiplexing. [38]

The TX Engine drives the upstream direction of the vendor-specific PCIe Endpoint

interface. It multiplexes access to this interface across all channels. Channel requests

are serviced in a round-robin fashion. The TX Engine also formats the requests into

full PCIe packets and sends them to the vendor-specific PCIe Endpoint. The TX

Engine is fully pipelined and can write a new packet every cycle. Throttling on data

writes only occurs if the vendor specific PCIe Endpoint core cannot transmit the data

quickly enough. The Endpoint may apply back pressure if it runs out of transmit

buffers. As this is a function of the host PC’s root complex acknowledgment scheme,

it is entirely system dependent. [38]

Downstream transfers are initiated by the host PC via the software APIs and manifest

on the CHNL_RX_* ports. Once initiated, the channel cores request scatter gather

elements for the data to transfer. Afterward, individual PCIe read requests are made

for the data at the scatter gather element locations. Care is also taken to request data

so as to not overflow the RX FIFO. Each channel throttles the read request rate to

match the rate at which the RX FIFO is draining. Channel requests are serviced by the

TX Engine. When the requested data arrives at the vendor Endpoint, it is forwarded to

135

the RX Engine. There the completion packet data is reordered to match the requested

order. Payload data is then provided to the channel.

The RX Engine core is connected to the downstream ports on the vendor-specific

PCIe Endpoint. It is responsible for extracting data from received PCIe completions

and servicing various RIFFA device driver requests. It also demultiplexes the received

data to the correct channel. The RX Engine processes incoming packets at line rate. It

therefore never blocks the vendor-specific PCIe Endpoint core. Data received by the

Endpoint will be processed as soon as it is presented to the RX Engine, avoiding the

possibility of running out of buffer space. After extracting payload data, the RX

Engine uses a Reordering Queue module to ensure the data is forwarded to the

channel in the order it was requested. [38]

8.3.6.1 Upstream transfers

A sequence diagram for an upstream transfer is shown in Figure 8-4. An upstream

transfer is initiated by the FPGA. However, data cannot begin transferring until the

user application calls the user library function fpga_recv. Upon doing so, the thread

enters the kernel driver and begins the pending upstream request. If the upstream

request has not yet been received, the thread waits for it to arrive. The user can set a

timeout parameter upon calling the fpga_recv function. On the diagram, the user

library and device driver are represented by the single node labeled “RIFFA Library.

Servicing the request involves building a list of scatter gather elements that identify

the pages of physical memory corresponding to the user space byte array. The scatter

gather elements are written to a small shared buffer. This buffer location and content

length are provided to the FPGA so that it can read the contents. Each page

enumerated by the scatter gather list is pinned to memory to avoid costly disk paging.

The FPGA reads the scatter gather data, then issues write requests to memory for the

upstream data. If more scatter gather elements are needed, the FPGA will request

additional elements via an interrupt. Otherwise, the kernel driver waits until all the

data is written. The FPGA provides this notification, again via an interrupt. [38]

136

Figure 8-4: Upstream Data Transfer

After the upstream transaction is complete, the driver reads the FPGA for a final

count of data words written. This is necessary as the scatter gather elements only

provide an upper bound on the amount of data that is to be written. This completes the

transfer and the function call returns to the application with the final count. [38]

8.3.6.2 Downstream transfers

A similar sequence exists for downstream transfers. Figure 8-5 illustrates this

sequence. In this direction, the application initiates the transfer by calling the library

function fpga_send. The thread enters the kernel driver and writes to the FPGA to

initiate the transfer. Again, a scatter gather list is compiled, pages are pinned, and the

FPGA reads the scatter gather elements. The elements provide location and length

information for FPGA issued read requests. The read requests are serviced and the

kernel driver is notified only when morescatter gather elements are needed or when

the transfer has completed. [10]

Upon completion, the driver reads the final count read by the FPGA. In error-free

operation, this value should always be the length of all the scatter gather elements.

This count is returned to the user application. The kernel driver is thread safe and

supports multiple threads in multiple transactions simultaneously. For a single

channel, an upstream and downstream transaction can be active simultaneously,

driven by two different threads. But multiple threads cannot simultaneously attempt a

137

transaction in the same direction. The data transfer will likely fail as both threads

attempt to service each other’s transfer events.

Figure 8-4: Downstream Data Transfer.

 RIFFA 2.1 FPGA Support

RIFFA 2.1 relies on a Vendor PCIe Endpoint core to drive the transceivers. These are

lowest-level interface that FPGA vendors provide. RIFFA 2.1 is tested with the

following Xilinx and Altera Endpoint cores:

 Xilinx Spartan 6 Integrated Block for PCI Express ver. 2.4

 Xilinx Virtex 6 Integrated Block for PCI Express ver. 2.5

 Xilinx 7 Series Integrated Block for PCI Express vers. 1.6, 1.8, 2.1

 Altera IP Compiler for PCI Express (Stratix IV, Cyclone IV)

 Altera HardIP For PCI Express (Stratix V)

 RIFFA 2.1 Bandwidth

RIFFA 2.1 is significantly more efficient than its predecesors. The RIFFA 2.1 is able

to saturate the PCIe link for nearly all link configurations supported. Figure 8-5 shows

the performance of designs using the 32 bit, 64 bit, and 128 bit interfaces. The colored

bands show the bandwidth region between the theoretical maximum and the

maximum achievable. PCIe Gen 1 and 2 use 8 bit / 10 bit encoding which limits the

maximum achievable bandwidth to 80% of the theoretical. Our experiments show that

138

RIFFA can achieve 80% of the theoretical bandwidth in nearly all cases. The 128 bit

interface achieves 76% of the theoretical maximum.

Figure 8-5: RIFFA bandwidth.

In our project, we used Xilinx Coregen to generate the PCIe Endpoint core (Xilinx

Spartan 6 Integrated Block for PCI Express ver. 2.4) for Spartan-6 (LX45T) FPGA

SP605 Evaluation Kit and Combine the PCIe Endpoint core’s source HDL with the

RIFFA 2.1 HDL. More details about generating the PCIe Endpoint core and

combining with RIFFA 2.1 HDL are illustrated in Chapter 9.

As illustrated in this chapter that RIFFA framework can support up to 12 channels per

FPGA, where each channel communicates to a thread in the CPU. In our design 2

channels are used to interface the TURBO Decoder with 2 threads running on the

CPU. More details about the interfacing are shown in Chapter 9.

 Turbo Interfacing

In this chapter, the process of implementing the Turbo decoder HDL (developed in

chapter 6) on Spartan-6 FPGA SP605 Evaluation Kit and interfacing it through

https://www.xilinx.com/products/boards-and-kits/ek-s6-sp605-g.html#documentation

139

PCIe link with workstation that has Linux kernels 2.6.27+ (versions between 2.6.32 -

3.X) is illustrated in the next sections.

9.1 Hardware Interface

 PCIe Endpoint Core

The PCIe Endpoint core for Spartan 6 FPGAs is the Spartan 6 Integrated Block for

PCI Express. This core is licensed by the Xilinx End User License Agreement and is

provided with the Xilinx ISE Design suite with no additional charge. In this section,

steps for generating the PCIe Endpoint core and then merging it with the RIFFA 2.1

source HDL are:

1. Using Xilinx CORE Generator to generate the PCIe Endpoint core.

2. Combining the PCIe Endpoint core’s source HDL with the RIFFA 2.1

HDL.

Detailed instructions on how to do each step follow.

1. Using Xilinx CORE Generator to generate the PCIe Endpoint core

In this step CORE Generator is used to generate Verilog source for the Spartan

6 Integrated Block for PCI Express ver.2.4. Unless otherwise described, the

default values on each wizard screen should be left as they are presented.

 Open the CORE Generator

Start → All Programs → Xilinx ISE Design Suite 14.7 →

ISE Design Tools → Tools → CORE Generator

 Create a new project; select File → New Project

140

Figure 9-1: Xilinx CORE Generator.

 The Project options will appear as shown in Figure 9-2, set the project

settings to generate Verilog code for the XC6SLX45t-3FGG484 as

follows:

o Family: Spartan6

o Device: xc6slx45t

o Package: fgg484

o Speed Grade: -3

141

Figure 9-2: Xilinx CORE Generator Project Options.

 Select Generation : Set the Design Entry to Verilog

142

Figure 9-3: Xilinx CORE Generator Design Entry.

 Right click on the Spartan-6 Integrated Block for PCI Express,

Version 2.4: Select Customize and Generate as shown in Figure 9-4.

Figure 9-4: Xilinx CORE Generator generating IP CORE.

143

 As shown in Figure 9-5, there is no selection to make for lane width or

link speed as this core only supports one lane at 2.5 GT/s. This results

in a 32 bit interface and a 62.5 MHz interface frequency clock.

Figure 9-5: Spartan-6 Integrated Block for PCI Express.

 Select only Bar0 and set to a size of 1 KB. Deselect Bar2 as shown in

Figure 9-6.

144

Figure 9-6: PCI Express CORE Base Address Registers.

 As shown in Figure 9-7, ID Initial Values are:

o Vendor ID = 10EE

o Device ID = 0007

o Revision ID = 00

o Subsystem vendor ID = 10EE

o Subsystem ID = 0007

145

Figure 9-7: PCI Express CORE ID Initial Values.

 Select Performance Level High. Additionally, set the Max

Payload Size to the maximum value offered as shown in Figure

9-8. These changes are not necessary for RIFFA 2.1 to function.

They are required to achieve maximum performance.

146

Figure 9-8: PCI Express CORE Max Payload Size.

 Select SP605 as shown in Figure 9-9.

147

Figure 9-9: PCI Express Xilinx Reference Boards.

2. Combining the PCIe Endpoint core’s source HDL with the RIFFA 2.1

HDL.

CORE Generator will produce a directory structure similar to what is shown in

Figure 9-10. Once completed, combine all the source HDL files from the

source directory with the RIFFA 2.1 HDL files from the distribution [39] into

a new directory of your choosing. Also, into this new directory, copy the top

level and adapter module HDL files for this board from the RIFFA

distribution.

Figure 9-10: PCIe IP CORE Directory.

148

 Turbo Timing Constraints

Post Placing and routing the Turbo decoder design on Spartan-6 XC6SLX45T

FPGA, the critical path of the design is 27.045ns, Figure 9-11 shows the period of

the critical path from the Post-PAR Static Timing Report generated by ISE Design

suite.

Figure 9-11: Turbo decoder critical path delay

PERIOD Timing constraint is applied in the ucf (user constraints file) with period

larger than the critical path delay, where PERIOD = 27.5 ns (36.36 MHz). The

design met the constraint with Slack (setup path) = 0.172 ns as shown in Figure 9-

12.

Figure 9-12: Timing Constraints met

The Clock that drives the turbo design (TURBO CLOCK) = 36 MHz. The SP605

has differential 200 MHz oscillator [40], so DCM IP Core is generated and configured

using Xilinx Clocking Wizard to get the required clock. Figure 9-13 shows

configuring the input clock and configuring Clocking Features:

 Input Clock = 200 MHz

 Input Jitter = 7.44 ps [41]

 Minimize output jitter

149

Figure 9-13: Clocking Features for Spartan-6 FPGA

Figure 9-14 shows the configuration of the output clock of the DCM Core:

 Output Clock = 36 MHz

 Duty Cycle = 50%

Figure 9-14: Output Clock Settings Screen

150

Figure 9-15 shows summary information about the input and output clocks. The DCM

Core has 2 additional signals reset and locked. Reset: When asserted, asynchronously

clears the internal state of the primitive, and causes the primitive to re-initiate the

locking sequence when released. Locked: When asserted, indicates that the output

clocks are stable and usable by downstream circuitry.

Figure 9-15: Clock Summary Screen

151

 Design

The Hardware design for interfacing the Turbo decoder implemented on Spartan-6

FPGA via PCIe is illustrated in this section.

As mentioned in chapter 7 that Spartan-6 FPGA sp605 kit supports PCIe Gen1 x1

which results in 32-bit interface with 62.5 MHz clock frequency and from Section

9.1.2 it is shown that Turbo decoder operates with 36 MHz clock frequency, so dual-

port memories (FIFOs) are required to store data with high frequency clock (PCIe

Interface) and read data with low frequency clock (Turbo Clock). Interfacing unit is

also required to read data from memory, feed the turbo with the encoded symbols and

I/O signals (illustrated in chapter 6) and read the decoded bits from the turbo after

finishing.

Since RIFFA framework can support up to 12 channels per FPGA As mentioned in

chapter 8, RIFFA HDL is configured to have 2 channels. Each channel communicates

with PC thread. The First channel is used for receiving the Frame size, required

iterations and Encoded symbols from the first PC thread. The second channel is used

for sending the output of the Turbo (Decoded Bits) to the second PC thread.

Figure 9-16 shows the hardware designed for interfacing the Turbo decoder.

Figure 9-16: Turbo Interfacing design

152

The description of each component in the design follows:

 User Core connected to channel 1

This core reads the data received by RIFFA channel 1 through the Rx FIFO

interface and writes the received data in the Encoded Symbols Memory with

the same order. When a frame is written, the core notifies the interfacing unit

to start reading the symbols and feed the turbo.

 Encoded Symbols Memory

This memory is dual-port Block RAM that has data width = 24-bit, and

address width = 14-bit. This memory can store 10 frames each of 1024 bit.

The first data of each frame contains the frame size and required iterations.

The following data contain the encoded symbols (systematic, Encoded and

Encoded interleaved). Each of these symbols is 8-bit width and stored in the

memory using little Indian.

 Interfacing Unit

This component is responsible for interfacing with the turbo decoder directly.

The interfacing unit reads the configuration and symbols of each frame from

the Encoded Symbols Memory and feed the turbo with them, wait for the

turbo to finish and finally writes the decoded bits into the Decoded Bits

Memory and notifies the user core (connected to channel 2) after each frame

written.

 Decoded Bits Memory

This memory is dual-port Block RAM that has data width = 1-bit (represents

the decoded bit), and address width = 14-bit. This memory can store 10 frames

each of 1024 bit.

 User Core connected to channel 2

This core writes the data to RIFFA channel 2 through the Tx FIFO interface.

The core is notified by the Interfacing Unit when a frame is written in the

Decoded Bits Memory and ready to be sent.

153

 Synthesizing the Design

The design is synthesized using XST (Xilinx synthesis tool) provided by ISE Design

suite. The target device is Spartan-6 XC6SLX45T. Figure 9-17 shows the resources

used by the Turbo Decoder, Interfacing Core, RIFFA Core and PCIe Enpoint Core.

Figure 9-17: FPGA Resources Summary

 Configure Target Device

The design is implemented (translation, mapping, placing and routing) using Xilinx

ISE Design Suite. Configuration options available for Spartan-6 FPGA SP605

Evaluation Kit are shown in Figure 9-18. Since the Kit needs to configure fast on

start-up from non-volatile source, JTAG isn't an option. Configuration is done by SPI

x4 Flash. [42]

Figure 9-18: sp605 Configuration options

For the sp605 kit to be configured from SPI x4 Flash, FPGA start-up clock (from the

Generate Programming File process properties) must be set to CCLK as shown in

Figure 9-19.

154

Figure 9-19: FPGA Startup Options

The generated configuration file (.bit) is converted to a PROM file (.MCS) using

IMPACT to program the SPI x4 Flash with the design [42]. The sp605 kit is

programmed with the generated (.MCS) file using IMPACT and configured to load

the configuration file from SPI x4 Flash on start-up. [42]

9.2 Software Interface

 Installing the RIFFA Driver

To install the RIFFA driver in linux, it must be built it against the installed version

of the Linux kernel. RIFFA 2.1 comes with a makefile that will install the necessary

linux kernel headers and the driver. This makefile will also build and install the

C/C++ native library. To install RIFFA 2.1 in linux, follow these instructions:

1. Open a terminal in linux and navigate to the RIFFA 2.1/source/driver/linux

directory.

2. Ensure you have the kernel headers installed, run:

$ sudo make setup

This will attempt to install the kernel headers using your system’s package

manager. You can skip this step if you’ve already installed the kernel headers.

155

3. Compile the driver and C/C++ library:

$ make

or

$ make debug

Using make debug will compile in code to output debug messages to the

system log at runtime. These messages are useful when developing your

design. However they pollute your system log and incur some overhead. So

you may want to install the non-debug version after you’ve completed

development.

4. Install the driver and library:

$ sudo make install

The system will be configured to load the driver at boot time. The C/C++

library will be installed in the default library path. The header files will be

placed in the default include path. You will need to reboot after you’ve

installed for the driver to be (re)loaded.

5. If the driver is installed and there is a RIFFA 2.1 configured FPGA when the

computer boots, the driver will detect it. Output in the system log will provide

additional information.

6. The C/C++ code must include the riffa.h header.

7. When compiling (using GCC/G++, etc.) you must link with the RIFFA

libraries using the -lriffa flag

$ gcc -g -c -o test.o test.c // Compiling with gcc to produce the object file

$ gcc -g -lriffa -o test test.o // Linking with riffa library

 User Space Application

The user space application uses the functions in the RIFFA C Library illustrated in

Chapter 6 for testing the driver with the hardware. Since the application cannot send

to RIFFA channel and receive from it simultaneously, the application had to use

156

POSIX thread libraries (standards based thread API for C/C++) to make use of the

full duplex communication feature of PCI Express. The application creates 2 threads

that run simultaneously. The first thread sends the data to RIFFA channel 1 on the

FPGA to be decoded by the Turbo Decoder. The second thread receives the decoded

bits from channel 2 in the FPGA. Both threads timeout is set to 0, so they wait for the

FPGA to respond.

After installing the RIFFA driver and library as shown in Section 9.2.1, the developed

C code is compiled using GCC and linked using both the RIFFA library and POSIX

threads library as follows:

1. Compiling with GCC to produce the object file

$ gcc -g -c -o TurboDecoder.o TurboDecoder.c

2. Linking with RIFFA library and pthread library

$ gcc -g -o TurboDecoder TurboDecoder.o -lriffa -pthread

The input arguments to the user application are:

 < Number of Frames > Number of Frames to be sent to the Turbo Decoder

 < Symbols File > Text file contains each frame size, required iterations and

encoded symbols

 < Original File > Text file contains the original bits to calculate the BER

 < Output File > Text file to write the Turbo output

The following example shows how to use the application

$./TurboDecoder < Number of Frames > < Symbols File > < Original

File > < Output File >

157

Figure 9-20 shows the BER of 10 Frames each of size 1024 sent to the Turbo

Decoder implemented on SP605 Evaluation Kit plugged into PCI Express slot on

PC. The BER is shown for different iterations.

Figure 9-20: Turbo Performance on Hardware

158

 Conclusion

C-RAN is a promising solution to the challenges mentioned above. By using

new technologies, we can change the network construction and deployment ways,

fundamentally change the cost structure of mobile operators, and provide more

flexible and efficient services to end users. With the distributed RRH and centralized

BBU architecture, a very computationally heavy block of this technology is turbo

coding, an error correction code for reaching near Shannon limit (optimum) coding

performance. Due to the computational complexity of this block, it is suggested to

offload this block especially when trying to realize multiple cells processing or what

so called “C-RAN”. So building a pluggable FPGA-based LTE coprocessor that could

be connected to many-cores GPP platform using PCI interface was our solution.

Turbo codes are a class of convolution code which exhibit the properties of large

block codes through the use of recursive coders. Coder performance is heavily

dependent on the design of the interleaver, which must ensure adequate weight for at

least one of the codes. Soft decoders are used with turbo codes to allow the a

posteriori probability to be passed between decoder iterations, Sliding window

implementations of 3G turbo decoder were presented, the BER performance results

demonstrate that while both decoders can achieve small BERs at low signal to noise

ratios, sliding window SOVA based decoder has better performance and can achieve

faster decoding speeds than Max-Log-MAP.

RIFFA proved to be one of the best implementations of PCIe endpoints, that is

opensource and free to use, and in comparison with intellectual property

implementations is more advanced and uses state of the art techniques in its code. The

bandwidth measured is pretty close to the peak limit of the PCIe link, especially for

big transfers. The software interface supports most of the popular programming

languages and was easy to use.

The process of implementing the Turbo decoder HDL on Spartan-6 FPGA SP605

Evaluation Kit and interfacing it through PCIe link with workstation that has Linux

kernels 2.6.27+ was completed and proved to possess a great potential for C-RAN

hardware acceleration.

159

References

[1] H. Taoka, “Views on 5G,” DoCoMo, WWRF21, Dusseldorf, Germany, Tech.

Rep., Oct 2011.

[2] China Mobile Research Institute, C-RAN: The Road Towards Green RAN White

Paper Version 2.5 (Oct, 2011)

[3] Jun Wu, Zhifeng Zhang, Yu Hong, and Yonggang Wen, Cloud Radio Access

Network (C-RAN): A Primer January/February 2015

[4] C. E. Shannon, “A Mathematical Theory of Communication”, Bell System

Technical Journal, Vol. 27, pp. 379-423 (Part One), pp. 623-656 (Part Two), Oct.

1948.

[5] S. Lin and D. J. Costello, Jr., “Error Control Coding: Fundamentals and

Applications”, Prentice Hall: Englewood Cliffs, NJ, 1983.

[6] B. Vucetic and J. Yuan, “Turbo Codes Principles and Applications”, 1st ed. New

York, 2000.

[7] http://web.mit.edu/6.02/www/f2010/handouts/lectures/L8.pdf [Accessed 16 Dec.

2016].

[8] B. W. Werling, “A Hardware Implementation of the Soft Output Viterbi

Algorithm for Serially Concatenated Convolutional Codes”, Kansas Uni.

[9] http://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-02-

introduction-to-eecs-ii-digital-communication-systems-fall- [Accessed 16 Dec. 2016].

[10] https://theses.lib.vt.edu/theses/available/etd-71897-15815/unrestricted/chap3.pdf

[Accessed 16 Dec. 2016].

[11] https://theses.lib.vt.edu/theses/available/etd-71897-15815/unrestricted/chap4.pdf

[Accessed 16 Dec. 2016].

[12] Berrou, C., Glavieux, A., and Thitimajshima, P., “Near Shannon Limit Error-

Correcting Coding and Decoding: Turbo-Codes,” Proceedings of ICC 1993, Geneva,

Switzerland, pp. 1064-1070, May 1993.

[13] Baail, G., Berrou, C., and Glavieux, A., “Psuedo-Random Recursive

Convolutional Coding for Near-Capacity Performance,” GLOBECOM 1993, pp. 23-

27, Dec. 1993.

[14] 3GPP Technical Specification: Group Radio Access Network, Evolved Universal

Terrestrial Radio Access, Multiplexing and Channel Coding (Release 10), TS 36.212

v10.1.0, March 2011.

https://l.facebook.com/l.php?u=http%3A%2F%2Fweb.mit.edu%2F6.02%2Fwww%2Ff2010%2Fhandouts%2Flectures%2FL8.pdf&h=ATOP4MvSeu9knd-UFD5GRh7MVJ8K31gyokq8swjgysAYzYLlf6Kjk5w86l-PvqMfjubQEQowXDgRLLvGk7XEuhXjnFnvL2_ORFvNYLLT5VLVbag69gDsRmxJJy3tNctoH4-VpkhDr6Y
https://l.facebook.com/l.php?u=http%3A%2F%2Focw.mit.edu%2Fcourses%2Felectrical-engineering-and-computer-science%2F6-02-&h=ATOP4MvSeu9knd-UFD5GRh7MVJ8K31gyokq8swjgysAYzYLlf6Kjk5w86l-PvqMfjubQEQowXDgRLLvGk7XEuhXjnFnvL2_ORFvNYLLT5VLVbag69gDsRmxJJy3tNctoH4-VpkhDr6Y
https://theses.lib.vt.edu/theses/available/etd-71897-15815/unrestricted/chap3.pdf
https://theses.lib.vt.edu/theses/available/etd-71897-15815/unrestricted/chap4.pdf

160

[15] L. R. Bahl, J. Cocke, F. Jelinek, and J. Raviv, 'Qptimal Decoding of Linear

Codes for Minimizing SymboI Error Rate,'' IEEE Trans. Inform. Theory, vol. IT 20,

pp. 248-287, March 1974.

[16] G. Battail, "Ponderation des Symboles Dtcodes par SAgorithem de Viterbi,"

Ann. Teleconimiin., Fr., vol. 42, no. 1-2, pp. 3 1 -38, Jan. 1987.

[17] Z. Wang and K. Parhi, \High performance, high throughput turbo/SOVA decoder

design," Communications, IEEE Transactions on, vol. 51, pp. 570{579, April 2003.

[18] L. Sabeti, “New Design of a MAP Decoder.” Slides, 2004.

[19] Hagenauer, J. and Hoeher, P., “A Viterbi Algorithm with Soft-Decision Outputs

and Its Applications,” GLOBECOM 1989, Dallas, Texas, pp.1680-1686, Nov. 1989.

[20] Berrou, C., Adde, P. Angui, E., and Faudeil, S., “A Low Complexity Soft-Output

Viterbi Decoder Architecture,” Proceedings of ICC 1993, Geneva, Switzerland, pp.

737-740, May 1993.

[21] Hagenauer, J., Robertson, P., and Papke, L., “Iterative (“Turbo”) Decoding of

Systematic Convolutional Codes with the MAP and SOVA Algorithms,” Proceeding

of ITG, pp. 21-29, Oct. 1994.

[22] Hagenauer, J., “Source-Controlled Channel Decoding,” IEEE Transactions on

Communications, Vol. 43, No. 9, pp. 2449-2457, Sept. 1995.

[23] O. Joeressen and H. Meyr. A 40 Mb/s soft-output viterbi decoder. IEEE Journal

of Solid-State Circuits 30(7):812–817, July 1995.

[24] E. Yeo, S. Augsberger, W. R. Davis, and B. Nikolić. 500 Mb/s soft-output viterbi

decoder. ESSCIRC pp. 523–526, 2002.

[25] O. Joeressen, M. Vaupel, and H. Meyr. High-speed VLSI architectures for soft-

output viterbi decoding. Proceedings of the International Conference on Applications

Specific Array Processors pp. 373–384, August 1992.

[26] Z. Wang, Z. Chi, and K. K. Parhi, “Area efficient high-speed decoding schemes

for turbo decoders,” IEEE Trans. VLSI Syst., vol. 10, pp. 902–912, Dec. 2002.

[27] Michel, H. and When, N., “Turbo-Decoder Quantization for UMTS,” IEEE

Communications Letters, pp. 55-57, February 2001.

[28] Xilinx.com. (2017). ISE Design Flow Overview. [Online] Available at:

https://www.xilinx.com/support/documentation/sw_manuals/xilinx11/ise_c_fpga_desi

gn_flow_overview.htm [Accessed 16 Jul. 2017].

[29] PCI SIG. PCI Express® Base Specification Revision 2.1. PCI SIG, 2009.

161

[30]

http://www.flashmemorysummit.com/English/Collaterals/Proceedings/2013/2013081

2_PreConfD_Onufryk.pdf [Accessed 16 Dec. 2016].

[31] Altera.com. (2017). FPGA CPLD and ASIC from Intel PSG. [Online] Available

at: https://www.altera.com/products/intellectual-property/ip/interface-protocols/mpci-

express-protocol.html [Accessed 16 Jul. 2017].

[32] Xilinx.com. (2017). Spartan-6 FPGA SP605 Evaluation Kit. [Online] Available

at: https://www.xilinx.com/products/boards-and-kits/ek-s6-sp605-g.html#overview

[Accessed 16 Jul. 2017].

[33]

https://www.xilinx.com/support/documentation/ip_documentation/s6_pcie_ds718.pdf

[Accessed 16 Dec. 2016].

[34] Jonathan Corbet, Alessandro Rubini, and Greg Kroah-Hartman. Linux Device

Drivers, 3rd Edition. O’Reilly Media, Inc., 2005.

[35] Essential Linux device drivers (Prentice Hall)

[36] Eli Billauer. The anatomy of a pci/pci express kernel driver. http://haifux.org/

lectures/256/.

[37] UNIVERSITY OF CALIFORNIA, SAN DIEGO Smart Frame Grabber: A

Hardware Accelerated Computer Vision Framework. A dissertation submitted in

partial satisfaction of the requirements for the degree of Doctor of Philosophy in

Computer Science by Matthew Daniel Jacobsen.

[38] Matthew Jacobsen, Dustin Richmond, Matthew Hogains, and Ryan Kastner.

Riffa 2.1: A reusable integration framework for fpga accelerators. ACM Trans.

Reconfigurable Technol. Syst., 8(4):22:1–22:23, September 2015.

[39] Riffa: Reusable integration framework for fpga accelerators. http://riffa.ucsd.

edu.

[40] https://www.xilinx.com/support/documentation/boards_and_kits/ug526.pdf

[41] SiTime SiT9102 Data Sheet

[42] https://www.xilinx.com/support/documentation/boards_and_kits/xtp065.pdf

https://l.facebook.com/l.php?u=http%3A%2F%2Fwww.flashmemorysummit.com%2FEnglish%2FCollaterals%2FProceedings%2F2013%2F20130812_PreConfD_Onufryk.pdf&h=ATOP4MvSeu9knd-UFD5GRh7MVJ8K31gyokq8swjgysAYzYLlf6Kjk5w86l-PvqMfjubQEQowXDgRLLvGk7XEuhXjnFnvL2_ORFvNYLLT5VLVbag69gDsRmxJJy3tNctoH4-VpkhDr6Y
https://l.facebook.com/l.php?u=http%3A%2F%2Fwww.flashmemorysummit.com%2FEnglish%2FCollaterals%2FProceedings%2F2013%2F20130812_PreConfD_Onufryk.pdf&h=ATOP4MvSeu9knd-UFD5GRh7MVJ8K31gyokq8swjgysAYzYLlf6Kjk5w86l-PvqMfjubQEQowXDgRLLvGk7XEuhXjnFnvL2_ORFvNYLLT5VLVbag69gDsRmxJJy3tNctoH4-VpkhDr6Y
https://l.facebook.com/l.php?u=https%3A%2F%2Fwww.altera.com%2Fproducts%2Fintellectual-property%2Fip%2Finterface-protocols%2Fmpci-express-protocol.html&h=ATOP4MvSeu9knd-UFD5GRh7MVJ8K31gyokq8swjgysAYzYLlf6Kjk5w86l-PvqMfjubQEQowXDgRLLvGk7XEuhXjnFnvL2_ORFvNYLLT5VLVbag69gDsRmxJJy3tNctoH4-VpkhDr6Y
https://l.facebook.com/l.php?u=https%3A%2F%2Fwww.altera.com%2Fproducts%2Fintellectual-property%2Fip%2Finterface-protocols%2Fmpci-express-protocol.html&h=ATOP4MvSeu9knd-UFD5GRh7MVJ8K31gyokq8swjgysAYzYLlf6Kjk5w86l-PvqMfjubQEQowXDgRLLvGk7XEuhXjnFnvL2_ORFvNYLLT5VLVbag69gDsRmxJJy3tNctoH4-VpkhDr6Y
https://l.facebook.com/l.php?u=https%3A%2F%2Fwww.xilinx.com%2Fproducts%2Fboards-and-kits%2Fek-s6-sp605-g.html%23overview&h=ATOP4MvSeu9knd-UFD5GRh7MVJ8K31gyokq8swjgysAYzYLlf6Kjk5w86l-PvqMfjubQEQowXDgRLLvGk7XEuhXjnFnvL2_ORFvNYLLT5VLVbag69gDsRmxJJy3tNctoH4-VpkhDr6Y
https://l.facebook.com/l.php?u=https%3A%2F%2Fwww.xilinx.com%2Fsupport%2Fdocumentation%2Fip_documentation%2Fs6_pcie_ds718.pdf&h=ATOP4MvSeu9knd-UFD5GRh7MVJ8K31gyokq8swjgysAYzYLlf6Kjk5w86l-PvqMfjubQEQowXDgRLLvGk7XEuhXjnFnvL2_ORFvNYLLT5VLVbag69gDsRmxJJy3tNctoH4-VpkhDr6Y
https://l.facebook.com/l.php?u=http%3A%2F%2Fhaifux.org%2F&h=ATOP4MvSeu9knd-UFD5GRh7MVJ8K31gyokq8swjgysAYzYLlf6Kjk5w86l-PvqMfjubQEQowXDgRLLvGk7XEuhXjnFnvL2_ORFvNYLLT5VLVbag69gDsRmxJJy3tNctoH4-VpkhDr6Y
https://l.facebook.com/l.php?u=http%3A%2F%2Friffa.ucsd%2F&h=ATOP4MvSeu9knd-UFD5GRh7MVJ8K31gyokq8swjgysAYzYLlf6Kjk5w86l-PvqMfjubQEQowXDgRLLvGk7XEuhXjnFnvL2_ORFvNYLLT5VLVbag69gDsRmxJJy3tNctoH4-VpkhDr6Y
https://www.xilinx.com/support/documentation/boards_and_kits/xtp065.pdf

162

Appendix A: Interleaver Table

I K f1 f 2 i K f1 f 2 i K f1 f 2 i K f1 f 2

1 40 3 10 48 416 25 52 95 1120 67 140 142 3200 111 240

2 48 7 12 49 424 51 106 96 1152 35 72 143 3264 443 204

3 56 19 42 50 432 47 72 97 1184 19 74 144 3328 51 104

4 64 7 16 51 440 91 110 98 1216 39 76 145 3392 51 212

5 72 7 18 52 448 29 168 99 1248 19 78 146 3456 451 192

6 80 11 20 53 456 29 114 100 1280 199 240 147 3520 257 220

7 88 5 22 54 464 247 58 101 1312 21 82 148 3584 57 336

8 96 11 24 55 472 29 118 102 1344 211 252 149 3648 313 228

9 104 7 26 56 480 89 180 103 1376 21 86 150 3712 271 232

10 112 41 84 57 488 91 122 104 1408 43 88 151 3776 179 236

11 120 103 90 58 496 157 62 105 1440 149 60 152 3840 331 120

12 128 15 32 59 504 55 84 106 1472 45 92 153 3904 363 244

13 136 9 34 60 512 31 64 107 1504 49 846 154 3968 375 248

14 144 17 108 61 528 17 66 108 1536 71 48 155 4032 127 168

15 152 9 38 62 544 35 68 109 1568 13 28 156 4096 31 64

16 160 21 120 63 560 227 420 110 1600 17 80 157 4160 33 130

17 168 101 84 64 576 65 96 111 1632 25 102 158 4224 43 264

18 176 21 44 65 592 19 74 112 1664 183 104 159 4288 33 134

19 184 57 46 66 608 37 76 113 1696 55 954 160 4352 477 408

20 192 23 48 67 624 41 234 114 1728 127 96 161 4416 35 138

21 200 13 50 68 640 39 80 115 1760 27 110 162 4480 233 280

22 208 27 52 69 656 185 82 116 1792 29 112 163 4544 357 142

23 216 11 36 70 672 43 252 117 1824 29 114 164 4608 337 480

24 224 27 56 71 688 21 86 118 1856 57 116 165 4672 37 146

25 232 85 58 72 704 155 44 119 1888 45 354 166 4736 71 444

26 240 29 60 73 720 79 120 120 1920 31 120 167 4800 71 120

27 248 33 62 74 736 139 92 121 1952 59 610 168 4864 37 152

28 256 15 32 75 752 23 94 122 1984 185 124 169 4928 39 462

29 264 17 198 76 768 217 48 123 2016 113 420 170 4992 127 234

30 272 33 68 77 784 25 98 124 2048 31 64 171 5056 39 158

31 280 103 210 78 800 17 80 125 2112 17 66 172 5120 39 80

32 288 19 36 79 816 127 102 126 2176 171 136 173 5184 31 96

33 296 19 74 80 832 25 52 127 2240 209 420 174 5248 113 902

34 304 37 76 81 848 239 106 128 2304 253 216 175 5312 41 166

35 312 19 78 82 864 17 48 129 2368 367 444 176 5376 251 336

36 320 21 120 83 880 137 110 130 2432 265 456 177 5440 43 170

37 328 21 82 84 896 215 112 131 2496 181 468 178 5504 21 86

38 336 115 84 85 912 29 114 132 2560 39 80 179 5568 43 174

39 344 193 86 86 928 15 58 133 2624 27 164 180 5632 45 176

40 352 21 44 87 944 147 118 134 2688 127 504 181 5696 45 178

41 360 133 90 88 960 29 60 135 2752 143 172 182 5760 161 120

42 368 81 46 89 976 59 122 136 2816 43 88 183 5824 89 182

43 376 45 94 90 992 65 124 137 2880 29 300 184 5888 323 184

44 384 23 48 91 1008 55 84 138 2944 45 92 185 5952 47 186

45 392 243 98 92 1024 31 64 139 3008 157 188 186 6016 23 94

46 400 151 40 93 1056 17 66 140 3072 47 96 187 6080 47 190

47 408 155 102 94 1088 171 204 141 3136 13 28 188 6144 263 480

163

Appendix B: Path metric derivation

The fundamental Viterbi algorithm searches for the state sequence S(m) or the

information sequence u(m) that maximizes the a-posteriori probability P(S(m)|y). For

binary (k=1) trellises, m can be either 1 or 2 to denote the survivor and the competing

paths respectively. By using Bayes’ Theorem, the a-posteriori probability can be

expressed as

Since the received sequence y is fixed for metric computation and does not depend on

m, it can be discarded. Thus, the maximization results to

)()|()()(mm

m SPSypmax

The probability of a state sequence terminating at time t is P(St). This probability can

be calculated as

)()(=)(1 ttt SPSPSP)()(= 1 tt uPSP

Where P(St) and P(ut) denote the probability of the state and the bit at time t

respectively. The maximization can then be expanded to

)(),|(=)()|()()()(

1

0=

)()(m

t

m

i

m

ii

t

i

m

mm

m SPSSypmaxSPSypmax

Where (
)()(

1 , m

i

m

i SS) denotes the state transition between time i-1 and time i and yi

denotes the associated received channel values for the state transition. After

substituting and rearranging,

),|()(),|()(=)()|()()(

1

)()()(

1

1

0=

)(

1

)()(m

t

m

tt

m

t

m

i

m

ii

t

i

m

tm

mm

m SSypuPSSypSPmaxSPSypmax

Note that

)|(=),|()(

,,

1=

)()(

1

m

jtjt

N

j

m

t

m

tt xypSSyp

Thus, the maximization becomes

164

)|()(),|(()(

,,

1=

)()()(

1

1

0=

)(

1

m

jtjt

N

j

m

t

m

t

m

ii

t

j

m

tm xypuPSSypSPmax

This maximization is not changed if logarithm is applied to the whole expression,

multiplied by 2, and added two constants that are independent of m. This leads to

])|([2])([2=)(

,,

1=

)()(

1

)(

y

m

jtjt

N

j

u

m

t

m

tm

m

tm CxylnpCulnPMmaxMmax

Where

),|()(=

2

)()(

1

1

0=

)(

1

)(

1 m

i

m

ii

t

i

m

t

m

t SSypSPln
M

And for convenience, the two constants are

1)=(1)=(= ttu ulnPulnPC

1))=|((1))=|((= ,,,, jtjtjtjty xyplnxyplnC

After substitution of these two constants, the SOVA metric is obtained as

1)=(

1)=(

1)=|(

1)=|(
=)(

,,

,,)(

,

1=

)(

1

)(

t

tm

t

jtjt

jtjtm

jt

N

j

m

t

m

t
uP

uP
lnu

xyp

xyp
lnxMM

And is reduced to

)(=)(

,

)(

,

1=

)(

1

)(

t

m

tjtc

m

jt

N

j

m

t

m

t uLuyLxMM

For systematic codes, this can be modified to become

)(=)(

,,

)(

,

2=

,1

)()(

1

)(

t

m

tjtjct

m

jt

N

j

tc

m

t

m

t

m

t uLuyLxyLuMM

As seen from the two previous equations, the SOVA metric incorporates values from

the past metric, the channel reliability, and the source reliability (a-priori value).

165

Appendix C: MATLAB Code

Main Function for test

clc;

clear all;

% Configurations

L_total = 1024; % Frame Length

rate = 1/3; % Code rate

a = 1; % Fading amplitude; a=1 in AWGN channel

SNRdB = 0:0.5:4; % SNRdB Values

iterations = 10; % Number of Tubro iterations

frames = 100000; % Number of frames

% Init

errs = zeros(1,length(SNRdB));

ber = zeros(1,length(SNRdB));

for k = 1:length(SNRdB)

 SNR = 10^(SNRdB(k)/10); % convert SNRdB from unit db to Watts

 L_c = 4*a*SNR*rate; % reliability value channel

 sigma = 1/sqrt(2*rate*SNR); % standard deviation of AWGN noise

 for frame = 1:frames

 data = round(rand(1, L_total)); % generate info bits

 encoded = LTE_Turbo_Encoder(data); % channel encoding

 modulated = 2 * encoded - ones(size(encoded)) ; % BPSK Modulation

 r = modulated +sigma*randn(1,L_total*3+12); % adding noise

 rec_s = L_c*r; % reliability scaling

 % Decoding using Turbo Decoder

 decoded_bits = LTE_Turbo_Decoder(rec_s,iterations);

 % Number of bit errors in current iteration

 err = sum(xor(decoded_bits(1:L_total),data(1:L_total)));

 % Total number of bit errors for all iterations

 errs(k) = errs(k) + err;

 % Monitoring simulation

 progress = 100*(frame/frames);

 if mod(progress,10) == 0

 fprintf('%d %% \n',progress);

 end

 end

 fprintf('SNR: %d is done \n',SNRdB(k));

 ber(k) = errs(k)/(frames*L_total); % ber = total errors/total bits

end

% Plot BER graph

figure

semilogy(SNRdB,ber);

hold on;

title('Turbo Decoder');

xlabel('SNRdB in db');

ylabel('BER');

grid on

166

Turbo Encoder Function

function [out] = LTE_Turbo_Encoder(input)

len = length(input);

out = zeros(1,3*len+12);

enc1 = RSC_Encoder(input); % Parity 1

int = internal_interleaver(input,len); % Interleaving data

enc2 = RSC_Encoder(int); % Parity 2

% Multeplixing the encoded stream including tail bits

 for k=1:len+3

 out(3*k-2)=enc1(2*k-1);

 out(3*k-1)=enc1(2*k);

 out(3*k)=enc2(2*k);

 end

 % special hanlding for interleaved systematic data

 out(3*len+10) = enc2(2*len+1);

 out(3*len+11) = enc2(2*len+3);

 out(3*len+12) = enc2(2*len+5);

end

Recursive Systematic Encoder Function

function [output] = RSC_Encoder(input)

% Reset Shift Registers

D1 = 0;

D2 = 0;

D3 = 0;

output = zeros(1,2*length(input));

for k=1:length(input)

 % Evaluate XOR Operations

 fb0 = xor(D2,D3);

 fb1 = xor(fb0,input(k));

 out0 = input(k);

 out1 = xor(fb1,xor(D1,D3));

 output(2*k-1:2*k) = [out0 out1];

 % Shift Left

 D3 = D2;

 D2 = D1;

 D1 = fb1;

end

% tail termination

for k=length(input)+1:length(input)+3

 fb0 = xor(D2,D3);

 fb1 = xor(fb0,fb0);

 out0 = fb0;

 out1 = xor(fb1,xor(D1,D3));

 output(2*k-1:2*k) = [out0 out1];

 D3 = D2;

 D2 = D1;

 D1 = fb1;

end

end

167

Turbo Interleaver Function

function [out] = internal_interleaver(in, K)

% Supported sizes by LTE and correponding interleaving parameters

K_table =

[40,48,56,64,72,80,88,96,104,112,120,128,136,144,152,160,168,176,184,192,200,208,216,2

24,232,240,248,256,264,272,280,288,296,304,312,320,328,336,344,352,360,368,376,384,392

,400,408,416,424,432,440,448,456,464,472,480,488,496,504,512,528,544,560,576,592,608,6

24,640,656,672,688,704,720,736,752,768,784,800,816,832,848,864,880,896,912,928,944,960

,976,992,1008,1024,1056,1088,1120,1152,1184,1216,1248,1280,1312,1344,1376,1408,1440,14

72,1504,1536,1568,1600,1632,1664,1696,1728,1760,1792,1824,1856,1888,1920,1952,1984,201

6,2048,2112,2176,2240,2304,2368,2432,2496,2560,2624,2688,2752,2816,2880,2944,3008,3072

,3136,3200,3264,3328,3392,3456,3520,3584,3648,3712,3776,3840,3904,3968,4032,4096,4160,

4224,4288,4352,4416,4480,4544,4608,4672,4736,4800,4864,4928,4992,5056,5120,5184,5248,5

312,5376,5440,5504,5568,5632,5696,5760,5824,5888,5952,6016,6080,6144];

f1_table =

[3,7,19,7,7,11,5,11,7,41,103,15,9,17,9,21,101,21,57,23,13,27,11,27,85,29,33,15,17,33,1

03,19,19,37,19,21,21,115,193,21,133,81,45,23,243,151,155,25,51,47,91,29,29,247,29,89,9

1,157,55,31,17,35,227,65,19,37,41,39,185,43,21,155,79,139,23,217,25,17,127,25,239,17,1

37,215,29,15,147,29,59,65,55,31,17,171,67,35,19,39,19,199,21,211,21,43,149,45,49,71,13

,17,25,183,55,127,27,29,29,57,45,31,59,185,113,31,17,171,209,253,367,265,181,39,27,127

,143,43,29,45,157,47,13,111,443,51,51,451,257,57,313,271,179,331,363,375,127,31,33,43,

33,477,35,233,357,337,37,71,71,37,39,127,39,39,31,113,41,251,43,21,43,45,45,161,89,323

,47,23,47,263];

f2_table =

[10,12,42,16,18,20,22,24,26,84,90,32,34,108,38,120,84,44,46,48,50,52,36,56,58,60,62,32

,198,68,210,36,74,76,78,120,82,84,86,44,90,46,94,48,98,40,102,52,106,72,110,168,114,58

,118,180,122,62,84,64,66,68,420,96,74,76,234,80,82,252,86,44,120,92,94,48,98,80,102,52

,106,48,110,112,114,58,118,60,122,124,84,64,66,204,140,72,74,76,78,240,82,252,86,88,60

,92,846,48,28,80,102,104,954,96,110,112,114,116,354,120,610,124,420,64,66,136,420,216,

444,456,468,80,164,504,172,88,300,92,188,96,28,240,204,104,212,192,220,336,228,232,236

,120,244,248,168,64,130,264,134,408,138,280,142,480,146,444,120,152,462,234,158,80,96,

902,166,336,170,86,174,176,178,120,182,184,186,94,190,480];

 out = zeros(1,K);

% Determine f1 and f2

 for n=0:length(K_table)-1

 if(K == K_table(n+1))

 f1 = f1_table(n+1);

 f2 = f2_table(n+1);

 break;

 end

 end

 % output the interleaved data

 for n=0:length(in)-1

 out(n+1) = in(mod(f1*n + f2*(n^2), K)+1);

 end

end

168

Turbo Decoder Function

function [decoded_bits] = LTE_Turbo_Decoder(input,iterations)

len = (length(input)-12)/3;

r0 = zeros(1,len+3); % Systematic

r0_bar = zeros(1,len+3); % Interleaved Systematic

r1 = zeros(1,len+3); % first encoder

r2 = zeros(1,len+3); % second encoder (interleaved)

% tail bits

for k=1:len+3

 r0(k) = input(3*k-2);

 r1(k) = input(3*k-1);

 r2(k) = input(3*k);

end

r0_bar(1:len) = internal_interleaver(r0(1:len), len); % intertleaving stystematic

r0_bar(len+1:len+3) = input(3*len+10:3*len+12); % interleaved tail bits

%Initialize extrinsic information

L_e1 = zeros(1,len+3);

L_e2 = zeros(1,len+3);

for iter = 1:iterations

 % Decoder one

 L_e2_Int = [internal_deinterleaver(L_e2(1:len), len) zeros(1,3)]; % a priori

info.

 tmp_in1 = reshape([r0;r1], 1, []);

 L1 = SOVA(tmp_in1, L_e2_Int); % First Decoder

 L_e1 = L1 - r0 - L_e2_Int; % extrinsic info.

 scale = 0.5;

 L_e1 = L_e1*scale; % scaling soft output

 % Decoder two

 L_e1_Int = [internal_interleaver(L_e1(1:len), len) zeros(1,3)]; % a priori info.

 tmp_in2 = reshape([r0_bar;r2], 1, []);

 L2 = SOVA(tmp_in2 , L_e1_Int); % Second Decoder

 L_e2 = L2 - r0_bar - L_e1_Int; % extrinsic info.

 L_e2 = L_e2*scale; % scaling soft output

end

% Estimate the info. bits.

LLR_est = internal_deinterleaver(L2(1:len), len);

% Hard decision output

decoded_bits = (sign(LLR_est)+1)/2;

end

169

SOVA Decoder Function

function softOutput = SOVA(input,LLR)

% length of input

N_bits = length(input);

infoLen = N_bits/2;

% states = [1 2 3 4 5 6 7 8]; %states(decimal) [000 -> 1 111 -> 8]

prv_0 = [1 4 5 8 2 3 6 7];

prv_1 = [2 3 6 7 1 4 5 8];

out_0 = [-1 -1 ; -1 -1 ; -1 1 ; -1 1 ; -1 1 ; -1 1 ; -1 -1 ; -1 -1];

%output when input = 0

out_1 = [1 1 ; 1 1 ; 1 -1 ; 1 -1 ; 1 -1 ; 1 -1 ; 1 1 ; 1 1];

%output when input = 1

% Init vectors

pathMetricOld = zeros(1,8);

pathMetricNew = zeros(1,8);

branchMetric0 = zeros(1,8);

branchMetric1 = zeros(1,8);

pathMetric0 = zeros(8, infoLen);

pathMetric1 = zeros(8, infoLen);

delta = zeros(8, infoLen);

ML = zeros(1,infoLen+1);

competingPath = zeros(1,infoLen+1);

output = zeros(1,infoLen);

output_c = zeros(1,infoLen);

softOutput = zeros(1,infoLen-3);

Inf = 1E5;

pathMetricOld = -Inf*ones(1,8);

pathMetricOld(1) = 0;

% Trellis Diagram

for i=1:infoLen

 symbol = input(2*i-1:2*i);

 % Evaluating the branch metrics

 for cur_state = 1:8

 branchMetric0(cur_state)= (symbol*transpose(out_0(cur_state, :))) - LLR(i);

 branchMetric1(cur_state)= (symbol*transpose(out_1(cur_state, :))) + LLR(i);

 end

 % Evaluating the path metrics

 for cur_state = 1:8

 PM0 = pathMetricOld(prv_0(cur_state)) + 0.5*branchMetric0(prv_0(cur_state));

 PM1 = pathMetricOld(prv_1(cur_state)) + 0.5*branchMetric1(prv_1(cur_state));

 delta(cur_state,i) = abs(PM1 - PM0);

 pathMetric0(cur_state,i+1) = PM0;

 pathMetric1(cur_state,i+1) = PM1;

 pathMetricNew(cur_state) = max(PM0,PM1);

 end

 pathMetricOld = pathMetricNew;

end

170

% Finding state of max. path metric

[~,ML(infoLen+1)] = max(pathMetricOld);

% Trace back to find the Most-likely path (ML)

state = ML(infoLen+1);

for i=infoLen:-1:1

 if pathMetric0(state,i+1) > pathMetric1(state,i+1)

 output(i) = 0;

 softOutput(i) = -1*delta(state,i);

 state = prv_0(state);

 ML(i) = state;

 else

 output(i) = 1;

 softOutput(i) = +1*delta(state,i);

 state = prv_1(state);

 ML(i) = state;

 end

end

% Updating the soft Output

delta_vector = abs(softOutput);

% Find the last state in competing path squence

for m = 1:infoLen

 if prv_0(ML(m+1)) == ML(m)

 competingPath(m) = prv_1(ML(m+1));

 else

 competingPath(m) = prv_0(ML(m+1));

 end

 updateDelta = delta_vector(m);

 state = competingPath(m);

 % Trace back to find the competing path

 for i=m-1:-1:1

 if pathMetric0(state,i+1) > pathMetric1(state,i+1)

 state = prv_0(state);

 output_c(i) = 0;

 else

 state = prv_1(state);

 output_c(i) = 1;

 end

 if output_c(i) ~= output(i) && updateDelta < delta_vector(i)

 delta_vector(i) = updateDelta;

 end

 end

end

% Output the soft data multiplied by the corresponding sign

for i=1:infoLen

 if(output(i) == 0)

 softOutput(i) = -1*delta_vector(i);

 else

 softOutput(i) = +1*delta_vector(i);

 end

end

softOutput = softOutput(1:infoLen);

end

