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Abstract 

 

In the era of mobile Internet, mobile operators are facing pressure on ever-increasing 

capital expenditures and operating expenses with much less growth of income. Cloud 

Radio Access Network (C-RAN) is expected to be a candidate of next generation 

access network techniques that can solve the operators’ puzzle. The main idea of C-

RAN is the cloud processing for multiple cells. One of the major trends towards 

achieving such a cloud is to make the L1 DSP computationally intensive processing 

on General Purpose Processor (GPP) based architectures. For this cloud to be realized 

it is required to offload the most complex L1 processing portions (like FEC decoders) 

to a highly parallel platform (FPGA) giving more powerful options to the cloud. 

In this project, different LTE Turbo decoder algorithms were explored and the SOVA 

(Soft-Veterbi Algorithm) was chosen owing to its relative simplicity, a MATLAB 

model was constructed for the decoder and tested for performance, an RTL code for 

the built model was then written in Verilog hardware description language and tested 

on the target XILINX SPARTAN-6 FPGA, finally, a Linux driver was developed for 

the PCIe with the help of the RIFFA framework using C programing language to 

interface the FPGA with a GPP located in a PC. 
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 Introduction 

 

1.1 C-RAN (Cloud/Centralized Radio Access Network) 

Nowadays mobile operators are facing a serious situation. With the introduction of 

various air interface standards and the prevalence of smart devices, mobile Internet 

traffic is surging, and operators are forced to increase capital expenditure (CAPEX) and 

operating expense (OPEX) in order to meet users’ requirements. On the other hand the 

average revenue per user (ARPU) cannot catch up with the increasing expenses. It is 

predicted that the traffic will double every year in the next few years till 2020 [1], which 

will require more cost to build, operate, and upgrade the network infrastructure, while 

only a small increase on the revenue is expected. The operators have to find new 

solutions to maintain a healthy profit and provide better services for customers. 

On the other hand, the proliferation of mobile broadband internet also presents a unique 

opportunity for developing an evolved network architecture that will enable new 

applications and services, and become more energy efficient. 

The RAN is the most important asset for mobile operators to provide high data rate, high 

quality, and 24x7 services to mobile users. Traditional RAN architecture has the 

following characteristics: first, each Base Station (BS) only connects to a fixed number 

of sector antennas that cover a small area and only handle transmission/reception signals 

in its coverage area; second, the system capacity is limited by interference, making it 

difficult to improve spectrum capacity; and last but not least, BSs are built on 

proprietary platforms as a vertical solution. These characteristics have resulted in many 

challenges. For example, the large number of BSs requires corresponding initial 

investment, site support, site rental and management support. Building more BS sites 

means increasing CAPEX and OPEX. Usually, BS’s utilization rate is low because the 

average network load is usually far lower than that in peak load; while the BS’ 

processing power can’t be shared with other BSs. Isolated BSs prove costly and difficult 

to improve spectrum capacity. Lastly, to meet the fast increasing data services, mobile 

operators need to upgrade their network frequently and operate multiple-standard 
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network, including GSM, WCDMA/TD-SCDMA and LTE. However, the proprietary 

platform means mobile operators lack the flexibility in network upgrade, or the ability to 

add services beyond simple upgrades [2]. 

In summary, traditional RAN will become far too expensive for mobile operators to 

keep competitive in the future mobile internet world. 

Nowadays multi-core processors are becoming increasingly powerful, and the cloud 

computing-based open IT platform is a promising alternative for both IT service 

providers and mobile operators. It is time for mobile operators to consider using the 

cloud computing facility to form a much larger processing resource pool shared in a 

large geographical area to achieve low-cost operation. 

Cloud Radio Access Network (C-RAN) is a new paradigm proposed by a few operators 

that features centralized processing, collaborative radio, real-time cloud computing, and 

power efficient infrastructure. This novel architecture aggregates all BS computational 

resources into a central pool; the radio frequency signals from geographically distributed 

antennas are collected by remote radio heads (RRHs) and transmitted to the cloud 

platform through an optical transmission network (OTN). It aims to reduce the number 

of cell sites while maintaining similar coverage, and reducing capital expenditures and 

operating expenses while offering better services. 

 

Figure 1-1 C-RAN Architecture 

C-RAN is designed to be applicable to most typical RAN scenarios, from macro cell to 

femtocell. As shown in Fig. 1-1, it is composed of the baseband unit (BBU), optical 
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transmission network (OTN), and remote radio head (RRH). The BBU acts as a digital 

unit implementing the base station functionality from baseband processing to packet 

processing, while the RRHs perform radio functions, including frequency conversion, 

amplification, and A/D and D/A conversion. The RRHs send/receive digitalized signals 

to/from the BBU pool via optical fiber, and antennas are equipped with RRHs to 

transmit/ receive radio frequency (RF) signals. By placing numerous BBUs in a central 

physical pool while distributing RRHs according to RF strategies, operators can 

dynamically employ a real-time virtualization technology that maps radio signals 

from/to one RRH to any BBU processing entity in the pool. The benefits of C-RAN lie 

in the following four areas: 

Reduced Cost: C-RAN aggregates computation resources in a few big rooms and leaves 

simpler functions in RRHs, thus saving a lot of operation and management cost. C-RAN 

makes equipment more effectively shared, such as GPS and transmission devices, thus 

reducing capital expenditure. Load balancing and scalability can be well achieved 

through virtualization, thus reducing waste of resources. 

Better Energy Efficiency: C-RAN frees up individual BSs from the commitment of 

providing 24/7 services. All processing functionalities are implemented in a remote data-

center. Power consumption and load congestion can be reduced by dynamically 

allocating processing capability and migrating tasks in the BS pool, and several BSs can 

be turned to low power or even be shut down selectively. Operators only need to install 

new RRHs connecting with the BBU pool to cover more service areas or split the cell 

for higher capacity. 

Capacity Improvement: In C-RAN, BSs can work together in a large physical BBU 

pool and they can easily share the signaling, traffic data and channel state information 

(CSI) of active UE’s in the system. It is much easier to implement joint processing & 

scheduling to mitigate inter-cell interference (ICI) and improve spectral efficiency. 

Smart Internet Traffic Offload: Through enabling the smart breakout technology in C-

RAN, the growing internet traffic from smart phones and other portable devices, can be 

offloaded from the core network of operators. The benefits are as follows: reduced back-

haul traffic and cost; reduced core network traffic and gateway upgrade cost; reduced 
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latency to the users; differentiating service delivery quality for various applications. The 

service overlapping the core network also supplies a better experience to users. 

Based on the recent developments in cloud computing and software defined radio (SDR) 

techniques, C-RAN is able to use general-purpose processors (GPPs) with multicore and 

multithread techniques to implement virtualized and centralized baseband and protocol 

processing. 

In order to reduce power consumption and improve processing capability, hardware 

accelerators are preferred for computation-intensive tasks even in C-RAN, e.g. Turbo 

decoders (which are our devices of concern), FFT, and MIMO decoders. In order to use 

these hardware accelerators efficiently and flexibly in the C-RAN environment, 

challenging problems need to be addressed. One is a high-throughput interface to 

facilitate data exchange between the cloud platform and the accelerators pool. The PCIe 

interface is a good candidate and is the one used in our project [3]. 

1.2 Baseband Processing 

Baseband refers to the original frequency range of a transmission signal before it is 

modulated. A baseband unit (BBU) is a unit that processes baseband in telecomm 

systems. A BBU has the following characteristics: modular design, small size, low 

power consumption and can be easily deployed. 

A BBU in a cellular telephone cell site is comprised of a digital signal processor to 

process forward voice signals for transmission to a mobile unit and to process reverse 

voice signals received from the mobile unit. 

In Baseband processing, discrete information is communicated with specific symbols 

selected from a finite set of symbols. A series of pulses forms a pulse train that carries 

the full message. Prior to transmission, especially in radio systems, these pulses are 

shaped to limit their high frequency content so as to minimize crosstalk with adjacent 

communication channels. During transmission through a bandlimited channel, pulses are 

dispersed (spread) in time and can overlap with each other giving rise to intersymbol 

interference (ISI). When the RF modulated pulses reach the receiver, dispersion and 

other distortions can be partially compensated with an equalizer. 
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An information source generates messages bearing information to be transmitted. The 

messages can be words, code symbols etc. The output of the information source is 

converted to a sequence of symbols from a certain alphabet. Most often binary symbols 

are transmitted.  

The output of the information source is in general not suitable for transmission as it 

might contain too much redundancy. For efficiency reasons, the source encoder is 

designed to convert the source output sequence into a sequence of binary digits with 

minimum redundancy. If the source encoder generates Rb bits per second (bps), Rb is 

called the data rate.  

The channel impairments cause errors in the received signal. The channel encoder is 

incorporated in the system to add redundancy to the information sequence. This 

redundancy is used to minimize transmission errors. The channel encoder assigns to 

each message of k digits a longer message of n digits called a codeword. 

1.3 Forward error correction (FEC) 

In 1948, Shannon [4] demonstrated in a landmark paper that, by proper encoding of the 

information, errors induced by a noisy channel or storage medium can be reduced to any 

desired level without sacrificing the rate of information transmission or storage, as long as 

the information rate is less than the capacity of the channel. Since Shannon’s work much 

effort has been expended on the problem of devising efficient encoding and decoding 

methods for error control in a noisy environment. Recent developments have contributed 

toward achieving the reliability required by today’s high-speed digital systems, and the use 

of coding for error control has become an integral part in the design of modern 

communication and digital storage systems. [5]. 

The primary function of an error control encoder-decoder pair (also known as a codec) is 

to enhance the reliability of message during transmission of information carrying 

symbols through a communication channel. An error control code can also ease the 

design process of a digital transmission system in multiple ways such as the following: 

a) The transmission power requirement of a digital transmission scheme can be reduced 

by the use of an error control codec. This aspect is exploited in the design of most of the 
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modern wireless digital communication systems such as a cellular mobile 

communication system. 

b) Even the size of a transmitting or receiving antenna can be reduced by the use of an 

error control codec while maintaining the same level of end-to-end performance  

c) Access of more users to same radio frequency in a multi-access communication 

system can be ensured by the use of error control technique [example: cellular CDMA]. 

d) Jamming margin in a spread spectrum communication system can be effectively 

increased by using suitable error control technique. Increased jamming margin allows 

signal transmission to a desired receiver in battlefield and elsewhere even if the enemy 

tries to drown the signal by transmitting high power in-band noise. 

Forward error correction (FEC) codes have long been a powerful tool in the 

advancement of information storage and transmission. By introducing meaningful 

redundancy (FEC codes) into a stream of information, systems gain the ability to not 

only detect data errors, but also correct them. With this ability, the systems can run on 

less power, operate at longer distances, and decrease the need for costly retransmissions 

. 

The encoding operation for a (n,k) error control code is a kind of mapping of sequences, 

chosen from a k-dimensional subspace to a larger, n-dimensional vector space of n-

tuples defined over a finite field and with n > k. 

Decoding refers to a reverse mapping operation for estimating the probable information 

sequence from the knowledge of the received coded sequence. The code rate or ‘coding 

efficiency’ R of the code is defined as:  

𝑅 =  
𝐼𝑖𝑛

𝐼𝑜𝑢𝑡

 

Where lin and lout denote the lengths of input and output sequences respectively. The code 

rate is a dimensionless proper fraction. 

A (7, 4) Hamming code is an example of a binary block code whose rate R= 4/7. For an 

error correction code, R < 1.0 and this implies that some additional information (in the form 

of ‘parity symbol’ or ‘redundant symbol’) is added during the process of encoding. 
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The two main categories of FEC codes are block codes and convolutional codes. The main 

difference between the two of them is memory of the encoder. In block codes each encoding 

operation depends on the current input message and is independent on previous encodings. 

That is, the encoder has no memory of history of past encodings. In contrast, for a 

convolutional code, each encoder output sequence depends not only on the current input 

message, but also on a number of past message blocks [6]. 
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 Convolutional Codes and Decoding Methods 

 

Most of this chapter is taken from an online course by MIT University [7] and [9].  

2.1 Overview 

Convolutional codes are a bit like the block codes in that they involve the transmission 

of parity bits that are computed from message bits. Unlike block codes in systematic 

form, however, the sender does not send the message bits followed by (or interspersed 

with) the parity bits; in a convolutional code, the sender sends only the parity bits. The 

encoder uses a sliding window to calculate r > 1 parity bits by combining various 

subsets of bits in the window. The combining is a simple addition in F2 (i.e., modulo-2 

addition, or equivalently, an exclusive-or operation). 

Unlike a block code, the windows overlap and slide by 1, as shown in Figure 2.1 The 

size of the window, in bits, is called the code’s constraint length. The longer the 

constraint length, the larger the number of parity bits that are influenced by any given 

message bit. 

Because the parity bits are the only bits sent over the channel, a larger constraint length 

generally implies a greater resilience to bit errors. The trade-off, though, is that it will 

take considerably longer to decode codes of long constraint length, so one can’t increase 

the constraint length arbitrarily and expect fast decoding. If a convolutional code that 

produces r parity bits per window and slides the window forward by one bit at a time, its 

rate (when calculated over long messages) is 1/r. The greater the value of r, the higher 

the resilience of bit errors, but the trade-off is that a proportionally higher amount of 

communication bandwidth is devoted to coding overhead. In practice, we would like to 

pick r and the constraint length to be as small as possible while providing a low enough 

resulting probability of a bit error. 

We will use K (upper case) to refer to the constraint length, a somewhat unfortunate 

choice because we have used k (lower case) to refer to the number of message bits that 

get encoded to produce coded bits. 
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Because we will rarely refer to a “block” of size k while talking about convolutional 

codes, we hope that this notation won’t cause confusion. 

Armed with this notation, we can describe the encoding process succinctly. The encoder 

looks at K bits at a time and produces r parity bits according to carefully     chosen 

functions that operate over various subsets of the K bits. One example is        shown in 

Figure 2-1, which shows a scheme with K = 3 and r = 2 (the rate of this code, 1/r = 1/2). 

The encoder spits out r bits, which are sent sequentially, slides the window by 1 to the 

right, and then repeats the process. 

2.2 Parity Equations 

The example in Figure 2-1 shows one example of a set of parity equations,  which  

govern the way in which parity bits are produced from the sequence of message bits x. 

In this example, the equations are as follows (all additions are in F2)): 

p₀ [n] = x[n] + x [n − 1] + x [n − 2] 

 

p₁ [n] = x[n] + x [n − 1] 

 

An example of parity equations for a rate 1/3 code is: 

 

p₀ [n] = x[n] + x [n − 1] + x [n − 2] 

 

 p₁ [n] = x[n] + x [n − 1] 

 

p₂ [n] = x[n] + x [n − 2] 

Figure 2-1 Convolutional code with two parity bits per message bit (r = 2, 

K=3). 
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In general, one can view each parity equation as being produced by composing the 

message bits, X, and a generator polynomial, g. In the first example above, the 

generator polynomial coefficients are (1, 1, 1) and (1, 1, 0), while in the second, they 

are (1, 1, 1), (1, 1, 0), and (1, 0, 1). 

We denote by gi the K-element generator polynomial for parity bit pᵢ. We can then 

write pi as follows: 

K−1 

pᵢ[n] = (∑ gi[j]x[n  −  j]) mod 2 

j=0 

 

The form of the above equation is a convolution of g and x hence the term 

“convolutional code”. The number of generator polynomials is equal to the number of 

generated parity bits, r, in each sliding window. 

 

2.3 Views of the Convolutional Encoder 

We now describe two views of the convolutional encoder, which we will find          

useful in better understanding convolutional codes and in implementing the encoding 

and decoding procedures. The first view is in terms of a block diagram, where one can 

construct the mechanism using shift registers that are connected together. The second 

is in terms of a state machine, which corresponds to a view of the encoder as a set of 

states with well-defined transitions between them. The state machine view will turn     

out to be extremely useful in figuring out how to decode a set of parity bits to 

reconstruct the original message bits. 

 

 

 

 

 

 

 

 

  

Figure 2-2 Block diagram view of convolutional coding with shift registers. 
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 Block Diagram View 

 

Figure 2-2 shows the same encoder as Figure 2-1 and its Equations in the form of a 

block diagram. The x [n − i] values (here there are two) are referred to as the state of   

the encoder. The way to think of this block diagram is as a “black box” that takes 

message bits in and spits out parity bits. Input message bits, x[n], arrive on the wire   

from the left. The box calculates the parity bits using the incoming bits and the state   of 

the encoder (the k − 1 previous bits; 2 in this example). After the 𝑟 parity bits are 

produced, the state of the encoder shifts by 1, with  x[n]  taking the place of  x[n − 1], 

x[n − 1] taking the place of x[n − 2], and so on, with x[n − K + 1] being discarded. This 

block diagram is directly amenable to a hardware implementation using shift registers. 

 State Machine View 

Another useful view of convolutional codes is as a state machine, which is shown   in 

Figure 2-3 for the same example that we have used (Figure 2-1). The state machine 

for a convolutional code is identical for all codes with a given constraint length, K,    

and the number of states is always 2K − 1. Only the 𝑝𝑖 labels change depending on    

the number of generator polynomials and the values of their coefficients. Each state is 

labeled with x [n − 1] x [n − 2] . . . x [n − K + 1]. Each arc is labeled with x[n]/pop1. 

In this example, if the message is 101100, the transmitted bits are 11 11 01 00 01 10. 

This state machine view is an elegant way to explain what the transmitter does, and    

also what the receiver ought to do to decode the message, as we now explain. The 

transmitter begins in the initial state labeled “STARTING STATE” in Figure (2-3)     

and processes the message one bit at a time. For each message bit, it makes the state 

transition from the current state to the new one depending on the value of the input      

bit, and sends the parity bits that are on the corresponding arc. The receiver, of course, 

does not have direct knowledge of the transmitter’s state transitions. It only sees the 

received sequence of parity bits, with possible corruptions. Its task is to determine the 

best possible sequence of transmitter states that could have produced the parity bit 

sequence. This task is called decoding, which we will be introduced next, and then 

study in more detail later. 

 



27 

 

 

 

 

 

 

 

 

2.4 Trellis Structure 

 

The trellis is a structure derived from the state machine that will allow us to develop 

an efficient way to decode convolutional codes. The state machine view      shows 

what happens at each instant when the sender has a message bit to process, but 

doesn’t show how the system evolves in time. The trellis is a structure that makes the 

time evolution explicit. 

An example is shown in Figure 2-4. Each column of the trellis has the set of states;     

each state in a column is connected to two states in the next column, the same two    

states in the state diagram. The top link from each state in a column of the trellis          

shows what gets transmitted on a “0”, while the bottom shows what gets transmitted    

on a “1”. The picture shows the links between states that are traversed in the trellis    

given the message 101100. We can now think about what the decoder needs to do in 

terms of this trellis. It gets a sequence of parity bits, and needs to determine the best 

path through the trellis that is, the sequence of states in the trellis that can explain the 

observed, and possibly corrupted, sequence of received parity bits. 

 

 

 

 

Figure 2-3 State machine view of convolutional coding. 
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2.5 Channel Models 

 

In any communications system, it is important to understand how a signal is affected 

by the transmission channel it encounters. We focus on two common models for 

communication channels that are used when evaluating the performance of 

convolutional codes [8]. 

 Binary Symmetric Channel 

The binary symmetric channel (BSC) is a channel model that involves only the 

transmission of bits, defining a hard line to determine between a “0” or “1”. For each 

unit of time, a bit is transmitted with probability of error p and probability of success 

1-p. The value p is known as the crossover probability, because it represents the 

probability that a bit “crosses over” from “0” to “1” or “1” to “0”, which can be seen   

in Figure 2-5 A BSC transmission can be modeled as: 

r = s + n 

 

Where r contains received bits, s contains transmitted bits, and n contains possible bit 

errors. The sequences r, s, and n have the same length and are indexed in discrete-   

time by i. If there is a bit error at time i, ni will be 1, otherwise it is 0. The sequence n 

is an independent and identically distributed Bernoulli random process. The + 

operator, also known as xor, applies any bit error at ni by toggling the value of si. In 

other words, corresponds to modulo-2 addition. 

Figure 2-4 Trellis Diagram. 
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When using a BSC model, the comparison between a transmitted sequence and a     

received sequence is most often done using Hamming distance. The Hamming 

distance between the sequences s and r is defined as the number of positions in which 

the corresponding elements are different. When a sequence is received over a BSC, it 

is compared with a group of possible transmitted sequences to determine which one it 

most closely resembles. Typically, the winner is the one with the shortest Hamming 

distance to the received sequence. 

 

 

 Additive White Gaussian Noise Channel 

The additive white Gaussian noise (AWGN) channel is one of the most common 

mathematical models for a communication channel. As the name suggests, it assumes 

that a communication link is primarily affected by Gaussian noise. The AWGN model 

can be applied to many physical channels, which makes it very useful when 

evaluating the performance of a system. 

In order for a data sequence to be physically transmitted, it must encounter some form 

of modulation. One simple modulation scheme is binary phase-shift keying (BPSK), 

where bits are mapped to antipodal values (+A or − A), with “0” → (−A) and “1” → 

(+A). Once a bit sequence has been modulated, it is sent over the channel, where it 

encounters additive Gaussian noise. A mathematical representation of this is: 

r = s + n 

Where r contains noisy received values, s contains transmitted antipodal bit values, and 

n contains noise values. This is similar to the BSC model in the above section, however 

Figure 2-5 Binary Symmetric Channel Model 
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E 

each sequence is real-valued and the + operator performs addition of reals. Each value 

in n is an independent Gaussian random variable with mean μ𝑛= 0 and variance 

σn
2=No/2. Es is the energy in a symbol (for BPSK, Es=A2) and No/2 is the two-sided 

power spectral density (PSD) of the noise. It is typical to normalize the symbol energy 

to Es = 1, therefore making A = 1. 

The performance of a digital communication system is often quantified with the bit 

error rate (BER) versus the signal-to-noise ratio (SNR). The SNR is typically defined 

as Eb =No, where Eb is the energy in an information bit. In an uncoded BPSK system, 

each transmitted symbol corresponds to one information bit, or Es= Eb. In a coded 

BPSK system, multiple transmitted symbols may correspond to a single information 

bit, making the relationship dependent on the code rate 𝑅, or Es = REb. Substituting this 

into the equation for the variance of the noise yields σn
2= 1/2REb , assuming Es=1. 

Using the standard deviation σ𝑛 to scale a standard normal (mean 0, variance 1) random 

variable allows n to be generated with a desired value of Eb = No.  When using the 

AWGN Channel model, the optimal comparison between a transmitted sequence and a 

received sequence is done using Euclidean distance. The squared Euclidean distance 

between the sequences s and r is defined as: 

 

n−1 

d2(s, r) =    ∑(s[i] − r[i]) 2 

i=0 

When a sequence is received over an AWGN channel, it is compared with the set of 

possible transmitted sequences to determine which one it most closely resembles.  

The winner is the one that is closest in squared Euclidean distance to the received 

sequence. 

2.6  Decoding Convolutional Codes 

Most of this part is taken from an online course by MIT University [9]. 

 

At the receiver, we have a sequence of voltage samples corresponding to the          

parity bits that the transmitter has sent. For simplicity, and without loss of generality, 

we will assume that the receiver picks a suitable sample for the bit, or averages the set 
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of samples corresponding to a bit, digitizes that value to a “0” or “1” by comparing to 

the threshold voltage (the demapping step), and propagates that bit decision to the 

decoder. 

Thus, we have a received bit sequence, which for a convolutionally-coded stream 

corresponds to the stream of parity bits. If we decode this received bit sequence with   

no other information from the receiver’s sampling and demapper, then the decoding 

process is termed hard-decision decoding (“hard decoding”). If, instead (or in 

addition), the decoder is given the stream of voltage samples and uses that “analog” 

information (in digitized form, using an analog-to-digital conversion) in decoding the 

data, we term the process soft-decision decoding (“soft decoding”). 

The Viterbi decoder can be used in either case. Intuitively, because hard-decision 

decoding makes an early decision regarding whether a bit 0 or 1 is, it throws away 

information in the digitizing process. It might make a wrong decision, especially for 

voltages near the threshold, introducing a greater number of bit errors in the received 

bit sequence. Although it still produces the most likely transmitted sequence given the 

received bit sequence, by introducing additional errors in the early digitization, the 

overall reduction in the probability of bit error will be smaller than with soft decision 

decoding. But it is conceptually easier to understand hard decoding, so we will start 

with that, before going on to soft decoding. 

As mentioned before, the trellis provides a good framework for understanding the 

decoding procedure for convolutional codes (Figure 2-6). Suppose we have the entire 

trellis in front of us for a code, and now receive a sequence of digitized bits (or            

voltage samples). If there are no errors, then there will be some path through the states 

of the trellis that would exactly match the received sequence. That path (specifically, 

the concatenation of the parity bits “spit out” on the traversed edges) corresponds to 

the transmitted parity bits. From there, getting to the original encoded message is easy 

because the top arc emanating from each node in the trellis corresponds to a “0” bit   

and the bottom arrow corresponds to a “1” bit. 

When there are bit errors, what can we do?  As explained earlier, finding the most 

likely transmitted message sequence is appealing because it minimizes the probability 

of a bit error in the decoding. If we can come up with a way to capture the errors 
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introduced by going from one state to the next, then we can accumulate those errors 

along a path and come up with an estimate of the total number of errors along the 

path. Then, the path with the smallest such accumulation of errors is the path we want, 

and the transmitted message sequence can be easily determined by the concatenation   

of states explained above. 

To solve this problem,  we need a way to  capture any errors that occur in  going        

through the states of the trellis, and a way to navigate the trellis without actually 

materializing the entire trellis (i.e., without enumerating all possible paths through it 

and then finding the one with smallest accumulated error). The Viterbi decoder solves 

these problems. 

 

 The Viterbi Decoder 

 

The decoding algorithm uses two metrics: the branch metric (BM) and the path metric 

(PM). The branch metric is a measure of the “distance” between what was transmitted 

and what was received, and is defined for each arc in the trellis. In hard decision 

decoding, where we are given a sequence of digitized parity bits, the branch metric is the 

Hamming distance between the expected parity bits and the received      ones. An 

example is shown in Figure 2-7, where the received bits are 00. For each       state 

transition, the number on the arc shows the branch metric for that transition. Two of the 

branch metrics are 0, corresponding to the only states and transitions where the 

corresponding Hamming distance is 0. The other non-zero branch metrics correspond to 

cases when there are bit errors. 

Figure 2-6 Trellis Structure. 



33 

 

The path metric is a value associated with a state in the trellis (i.e., a value      associated 

with each node). For hard decision decoding, it corresponds to the Hamming distance 

with respect to the received parity bit sequence over the most       likely path from the 

initial state to the current state in the trellis. By “most likely”, we mean the path with 

smallest Hamming distance between the initial state and the   current state, measured 

over all possible paths between the two states. The path with   the smallest Hamming 

distance minimizes the total number of bit errors, and is most likely when the BER is 

low. 

The key insight in the Viterbi algorithm is that the receiver can compute the path metric 

for a (state, time) pair incrementally using the path metrics of previously computed 

states and the branch metrics. 

2.6.1.1 Computing the Path Metric 

Suppose the receiver has computed the path metric PM[s, i] for each states at time step i 

(recall that there are 2K−1 states, where K is the constraint length of the convolutional 

code). In hard decision decoding, the value of PM[s, i] is the total number of bit errors 

detected when comparing the received parity bits to the most       likely transmitted 

message, considering all messages that could have been sent by the transmitter until time 

step i (starting from state “00”, which we will take to be the   starting state always, by 

convention). 

Among all the possible states at time step i, the most likely state is the one with the 

smallest path metric. If there is more than one such state, they are all equally good 

possibilities. 

Now, how do we determine the path metric at time step i + 1, PM[s, i + 1], for   each 

state s? To answer this question, first observe that if the transmitter is at state s at time 

step i + 1, then it must have been in only one of two possible states at time step 

i. These two predecessor states, labeled α and β, are always the same for a given state. 

In fact, they depend only on the constraint length of the code and not on the parity 

functions. Figure 2-7 shows the predecessor states for each state (the other end of         

each arrow). For instance, for state 00, α =00 and β=01; for state 01, α =10 and β =11. 

Any message sequence that leaves the transmitter in state s  at time i + 1  must have   
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left the transmitter in state α  or state β at time i. For example, in Figure 4.2, to arrive   

in state ’01’ at time i + 1, one of the following two properties must hold: 

 The transmitter was in state “10” at time i and the ith message bit was a “0”. If 

that is the case, then the transmitter sent ‘11’ as the parity bits and there were 

two bit errors, because we received the bits “00”. Then, the path metric of the 

new state, PM ["01", i + 1] is equal to PM ["10", i] + 2, because the new state 

is “01” and the corresponding path metric is larger by 2 because there are 2 

errors. 

 The other (mutually exclusive) possibility is that the transmitter was in state 

“11” at time I and the ith message bit was a “0”. If that is the case, then the 

transmitter sent “01” as the parity bits and there was one-bit error, because we 

received “00”. The path metric of the new state, PM [“01”, i + 1] is equal to 

PM [“11”, i] + 1. Formalizing the above intuition, we can see that: 

PM[s, i + 1] = min (PM [α, i] + BM [α → s], PM [β, i] + BM [β → s]) 

 

In the decoding algorithm, it is important to remember which arc corresponds to the 

minimum, because we need to traverse this path from the final state to the initial one 

keeping track of the arcs we used, and then finally reverse the order of the bits to 

produce the most likely message. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2-7 The branch metric for hard decision decoding. 
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2.6.1.2 Finding the Most Likely Path 

We can now describe how the decoder finds the maximum-likelihood path.  Initially, 

state “00” has a cost of 0 and the other 2K−1 − 1 states have a cost of ∞. The main loop 

of the algorithm consists of two main steps: first, calculating the branch metric for the 

next set of parity bits, and second, computing the path metric for the     next column. The 

path metric computation may be thought of as an add-compare- select procedure: 

 Add the branch metric to the path metric for the old state. 

 Compare the sums for paths arriving at the new state (there are only two such 

paths to compare at each new state because there are only two incoming arcs 

from the previous column). 

 Select the path with the smallest value, breaking ties arbitrarily. This path 

corresponds to the one with fewest errors. 

Figure 2-8 and 2-9 shows the decoding algorithm in action from one time step to the 

next. This example shows a received bit sequence of 11 10 11 00 01 10 and how    the 

receiver processes it. The fourth picture from the top shows all four states with the 

same path metric. At this stage, any of these four states and the paths leading up to      

they are most likely transmitted bit sequences (they all have a Hamming distance of   

2). The bottom-most picture shows the same situation with only the survivor paths 

shown. A survivor path is one that has a chance of being the maximum-likelihood path; 

there are many other paths that can be pruned away because there is no way in which 

they can be most likely. The reason why the Viterbi decoder is practical is that the 

number of survivor paths is much, much smaller than the total number of paths in the 

trellis. Another important point about the Viterbi decoder is that future knowledge will 

help it break any ties, and in fact may even cause paths that were considered         

“most likely” at a certain time step to change. Figure 2-9 continues the example in    

Figure 2-8, proceeding until all the received parity bits are decoded to produce the most 

likely transmitted message, which has two bit errors. 
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2.7 Soft-Decision Decoding 

Hard decision decoding digitizes the received voltage signals by comparing it to a 

threshold, before passing it to the decoder. As a result, we lose information: if the   

voltage was 0.500001, the confidence in the digitization is surely much lower than if the 

voltage was 0.999999. Both are treated as “1”, and the decoder now treats them   the 

same way, even though it is overwhelmingly more likely that 0.999999 is a “1” 

compared to the other value. Soft-decision decoding (also sometimes known as “soft 

input Viterbi decoding”) builds on this observation. It does not digitize the incoming 

samples prior to decoding. Rather, it uses a continuous function of the analog sample as 

the input to the decoder. For example, if the expected parity bit is 0 and the received 

voltage is 0.3 V, we might use 0.3 (or 0.32, or some such function) as the value of the 

“bit” instead   of digitizing it. For technical reasons that will become apparent later, an 

attractive soft decision metric is the square of the difference between the received 

voltage and the expected   one. If the convolutional code produces p parity bits, and the 

p corresponding analog samples are v = v1, v2,…,vp, one can construct a soft decision 

branch metric as follows: 

 

BMsoft = ∑ (𝑢𝑖 − 𝑣𝑖)2𝑝
𝑖=1    ( I ) 
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This picture shows four time steps, the bottom-most picture is the same as the one just 

before it, but with only the survivor paths shown. 

  

Figure 2-8 The Viterbi Decoder in Action 
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The decoded message is shown. To produce this message, start from the final state with 

smallest path metric and work backwards, and then reverse the bits. At each state during 

the forward pass, it is important to remember the arc that got us to this state, so that the 

backward pass can be done properly. 

 

Where u = u1, u2, . . . , up  are the expected p parity bits (each a 0 or 1). Figure 2-10     

shows the soft decision branch metric for p = 2 when u is 00. 

Figure 2-9 The Viterbi decoder in Action continued 
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With soft decision decoding, the decoding algorithm is identical to the one previously 

described for hard decision decoding, except that the branch metric is no longer an 

integer Hamming distance but a positive real number (if the voltages are all between 0 

and 1, then the 

branch metric is 

between 0 and 1 as 

well). 

 

 

 

 

 

 

 

 

 

 

It turns out that this soft decision metric is closely related to the probability of the 

decoding being correct when the channel experiences additive Gaussian noise. First, 

let’s look at the simple case of 1 parity bit (the more general case is a straightforward 

extension). Suppose the receiver gets the ith parity bit as vi volts. (In hard decision 

decoding, it would decode as 0 or 1 depending on whether  vi  was smaller or larger  

than 0.5) What is the probability that vi would have been received given that bit ui 

(either 0 or 1) was sent?  With zero-mean additive Gaussian noise, the PDF of this      

event is given by  

 

Figure 2-10 Branch Metric For Soft-Decision 

Decoding 
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f(vi|ui) = 
1

√2𝜋𝜎2
𝑒

−𝑑𝑖2

2𝜎2        ( II ) 

Where di = v2 if ui = 0 and di = (vi − 1)2  if ui  = 1. 

 

The log likelihood of this PDF is proportional to −di2. Moreover, along a path, the PDF 

of the sequence V = v1, v2, . . . , vp being received given that a codeword U = u1, u2, . . 

. , up was sent, is given by the product of a number of terms each resembling Eq. (II) 

The logarithm of this PDF for the path is equal to the sum of the individual     log 

likelihoods, and is proportional to − ∑i di2. But that’s precisely the negative of the 

branch metric we defined before, which the Viterbi decoder minimizes along the 

different possible paths! Minimizing this path metric is identical to maximizing the      

log likelihood along the different paths, implying that the soft decision decoder produces 

the most likely path that is consistent with the received voltage sequence. 

This direct relationship with the logarithm of the probability is the reason why we chose 

the sum of squares as the branch metric in Eq. (I). A different noise distribution (other 

than Gaussian) may entail a different soft decoding branch metric to obtain an analogous 

connection to the PDF of a correct decoding. 
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 Turbo Codes 

 

This chapter describes the turbo encoder/decoder and their structure in details [10],[11]. 

3.1 Turbo Encoder 

The fundamental turbo code encoder is built using two identical recursive systematic 

convolutional (RSC) codes with parallel concatenation [12]. 

An RSC encoder is typically r = 1/2 and is termed a component encoder. The two 

component encoders are separated by an interleaver. Only one of the systematic 

outputs from the two component encoders is used, because the systematic output from 

the other component encoder is just a permuted version of the chosen systematic 

output. 

Figure 3-1 shows the fundamental turbo code encoder with r = 1/3. The first RSC 

encoder outputs the systematic c1, and recursive convolutional c2 sequences while the 

second RSC encoder discards its systematic sequence and only outputs the recursive 

convolutional c3 sequence. 

 

Figure 3-1: Fundamental turbo code encoder. 

 

 Recursive Systematic Convolutional (RSC) Encoder 

The recursive systematic convolutional (RSC) encoder is obtained from the non 

recursive non-systematic (conventional) convolutional encoder by feeding back one     
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of its encoded outputs to its input. Figure 3-2 shows a conventional convolutional 

encoder. 

The conventional convolutional encoder is represented by the generator sequences              

g1 = [111] and g2 = [101] and can be equivalently represented in a more compact form 

as G = [g1, g2]. The RSC encoder of this conventional convolutional encoder is 

represented as G = [1, g2/ g1] where the first output (represented by g1) is fed back to 

the input. In the above representation, 1 denotes the systematic output, g2 denotes the 

feedforward output, and g1 is the feedback to the input of the RSC encoder. Figure 3-3 

shows the resulting RSC encoder. 

 

 

It was suggested in [13] that good codes can be obtained by setting the feedback of the 

RSC encoder to a primitive polynomial, because the primitive polynomial generates 

maximum-length sequences which adds randomness to the turbo code. 

Figure 3-2: Conventional convolutional encoder with r=1/2 and K=3. 
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Figure 3-3: The RSC encoder obtained from Figure 3.2 with r=1/2 and K=3. 
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 Trellis Termination 

For the conventional convolutional encoder, the trellis is terminated by inserting    m 

= K-1 additional zero bits after the input sequence. These additional bits drive the 

conventional convolutional encoder to the all-zero state (trellis termination). 

However, this strategy is not possible for the RSC encoder due to the feedback. The 

additional termination bits for the RSC encoder depend on the state of the encoder and 

are very difficult to predict. Furthermore, even if the termination bits for one of the 

component encoders are found, the other component encoder may not be driven to the 

all zero state with the same m termination bits due to the presence of the interleaver 

between the component encoders. Figure 3-4 shows a simple strategy that has been 

developed, which overcomes this problem. 

 

 

 

For encoding the input sequence, the switch is turned on to position A and for 

terminating the trellis, the switch is turned on to position B. 

Figure 3-4: Trellis termination strategy for RSC encoder 
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 Concatenation of Codes 

A concatenated code is composed of two separate codes that are combined to form 

a larger code. There are two types of concatenation, namely serial and parallel 

concatenations. Figure 3-5 shows the serial concatenation scheme for transmission. 

 

 
 

 

 

 

Figure 3-5: Serial concatenated code. 

Figure 3-6: Parallel concatenated code. 
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The total code rate for serial concatenation is: 

                                                             rtot=
𝐾1.𝐾2

𝑛1.𝑛2
 

  Which is equal to the product of the two code rates. 
 

Figure 3-6 shows the parallel concatenation scheme for transmission. 

The total code rate for parallel concatenation is: 

                                                                                                                                                                                       rtot=
𝐾

𝑛1.𝑛2
 

 
 

For both serial and parallel concatenation schemes, an interleaver is often used 

between the encoders to improve burst error correction capacity or to increase the 

randomness of the code. Turbo codes use the parallel concatenated encoding scheme. 

However, the turbo code decoder is based on the serial concatenated decoding 

scheme. The serial concatenated decoders are used because they perform better than 

the parallel concatenated decoding scheme due to the fact that the serial concatenation 

scheme has the ability to share information between the concatenated decoders 

whereas the decoders for the parallel concatenation scheme are primarily decoding 

independently. Later it will be shown how the serial concatenated decoding scheme is 

implemented for a turbo code. 

 Interleaver Design 

For turbo codes, an interleaver is used between the two component encoders. The 

interleaver is used to provide randomness to the input sequences. Also, it is used to 

increase the weights of the codewords as shown in Figure 3-7. 

 

 
 

Figure 3-7: The interleaver increases the code weight for Encoder 2 compared to Encoder 1. 
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From Figure 3-7, the input sequence x produces a low-weight recursive convolutional 

code sequence c2 for RSC Encoder 1. To avoid having RSC Encoder 2 produce    

another low-weight recursive output sequence, the interleaver permutes the input 

sequence 𝐱 to obtain a different sequence that hopefully produces a high-weight 

recursive convolutional code sequence c3. Thus, the turbo code’s code weight is   

moderate, combined from Encoder 1’s low-weight code and Encoder 2’s high-weight 

code. Figure 3-8 shows an illustrative example. 

 

 

Table 3.1: Input and Output Sequences for Encoder in Figure 3-8 

 Input Sequence 

xi 
Output 

Sequence 

c1i 

Output 

Sequence 

c2i 

Codeword 

Weight i 

i = 0 1 1 0 0 1 1 0 0 1 0 0 0 3 

i = 1 1 0 1 0 1 0 1 0 1 1 0 0 4 

i = 2 1 0 0 1 1 0 0 1 1 1 1 0 5 

 

 
As it can be seen from Table 3.1, the codeword weight can be increased by utilizing    

an interleaver. 

The interleaver affects the performance of turbo codes because it directly affects the 

distance properties of the code. By avoiding low-weight codewords, the BER of a    

turbo code can improve significantly. Thus, much research has been done on 

interleaver design. 

Figure 3-8: An illustrative example of an interleaver’s capability. 



49 

 

 LTE Turbo Encoder in the 3GPP Standard 

 

 

The LTE Turbo Encoder scheme is Parallel Concatenated Convolution Code (PCCC). 

It comprises of two constraint length K = 4 (8 state) RSC encoders concatenated in 

parallel. The overall code rate is approximately r = 1/3. Figure 3-9 shows the LTE 

turbo encoder [14]. 

The two convolutional encoders used in the Turbo code are identical with generator 

polynomials: 

g0(D) = 1 + D2 + D3 

g1(D) = 1 + D + D3 

Where g0 and g1 are the feedback and feed forward generator polynomials respectively. 

The transfer function of each constituent convolutional encoder is: G(D) = 
g0(D) 

g1(D) 
 

 

Figure 3-9:  Structure of LTE Turbo Encoder. 
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The data bits are transmitted together with the parity bits generated by two constituent 

convolutional encoders. Prior to encoding, both the convolutional encoders are set to all 

zero state, i.e., each shift register is filled with zeros. The turbo encoder consists of       

an internal   interleaver   which   interleaves   the   input   data   bits   c1, c2 … cK   to c′1, 

c′2  … … . c′K  which are then input to the second constituent encoder. Thus, the      data is 

encoded by the first encoder in the natural order and by the second encoder after being 

interleaved. The systematic output of the second encoder is not used and  thus the output 

of the turbo coder is serialized combination of the systematic bits Xk, parity bits from the 

first (upper) encoder Zk  and parity bits from the second encoder Z′k for k  =  1,2, … K. 

So the transmitted sequence will be: 

                                                X1, Z1, Z′1, X2, Z2, Z′2 … XK, ZK, Z′K 

 
The size of the input data word may range from as few as 40 to as many as 6144 bits. 

If the interleaver size is equal to the input data size K the data is scrambled according 

to the interleaving algorithm, otherwise dummy bits are added before scrambling.        

After all the data bits K have been encoded, trellis termination is  performed  by 

passing tail bits from the constituent encoders bringing them to all zeros state.                                    

To achieve this, the switches in Figure 3-9 are moved in the down position. The input 

in this case is shown by dashed lines (input=feedback bit). Because of the interleaver, 

the states of both the constituent encoders will usually be different, so the tail bits will 

also be different and need to be dealt separately. 

As constraint length K = 4 constituent convolutional encoders are used, so the 

transmitted bit stream includes not only the tail bits {Xk+1, Xk+2, Xk+3} corresponding 

to  the  upper  encoder  but  also  tail  bits  corresponding  to  the  lower  encoder 

{X′k+1, X′k+2, X′k+3}.  In addition to these six tail bits, six corresponding parity bits 

{Zk+1, Zk+2, Zk+3} and {Z′k+1, Z′k+2, Z′k+3}for the upper  and  lower  encoder 

respectively are also transmitted. First, the switch in the upper (first) encoder is 

brought to lower (flushing) position and then the switch in the lower (second) 

encoder. The tail bits are then transmitted at the end of the encoded data frame. The 

tail bits sequence are: 

XK+1, ZK+1, XK+2, ZK+2, XK+3, ZK+3, X′K+1, Z′K+1, X′K+2, Z′K+2, X′K+3, Z′K+3 
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The total length of the encoded bit sequence now becomes 3K + 12, 3K being the 

coded data bits and 12 being the tail bits. The code rate of the encoder is thus                                        

r = c / (3K + 12). However, for large size of input K, the fractional loss in code 

rate due to tail bits in negligible and thus, the code rate is approximated at 1/3. 

 Interleaver 

The bits input to the turbo code internal interleaver are denoted by c0, c1, … … . cK,  

where K is the number of input bits. The bits output from the turbo code internal   

interleaver are denoted by c′0, c′1, … … . c′K. 

The relationship between the input and output bits is as follows: 

 
c′i =  c′π(i), i = 0, 1, … , (K − 1) 

  

where the relationship between the output index i and the input index π(i) satisfies 

the following quadratic form: 

(𝑖) = (𝑓1. 𝑖 + 𝑓2. 𝑖2) 𝑚𝑜𝑑 𝐾 

 
The parameters 𝑓1 and 𝑓2 depend on the block size K and are summarized in  

 

 

 

Appendix A. [14] 
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3.2 Decoder 

This section describes the basic turbo code decoder. The turbo code decoder is based 

on a modified Viterbi algorithm that incorporates reliability values to improve 

decoding performance. First, this section introduces the concept of reliability for 

Viterbi decoding. Then, the metric that will be used in the modified Viterbi algorithm 

for turbo code decoding is described. Finally, the decoding algorithm and 

implementation structure for a turbo code are presented. [11] 

 Turbo Decoder 

 

The iterative decoding of concatenated codes has been termed Turbo decoding       

after the name of turbo engines. It then gave its name to a whole class of codes, the 

parallel concatenated convolutional codes, Turbo codes. This iterative decoding 

process is shown in Figure 3-10. 

During the operation, the probability of decoding in favor of the correct decision is 

improved by exchanging information between the two decoders. A single iteration 

begins by the first decoder (DEC1) calculating a soft output and then passing it to 

the second decoder (DEC2). The new decoder computes its soft output and the 

iteration is completed by passing the output of DEC2 to DECl to repeat the process 

over and         over. The soft output is a real number called the aposteriori 

probability (APP) that measures the probability of a correct decision for each bit in 

the information sequence. 

We need a "soft-in/soft-out" decoder for decoding the constituent codes. Such 

decoder uses apriori values for all information bits, if available, as well as the 

channel outputs. It delivers soft outputs for all information bits. There are two 

categories of soft decision decoders. The first is based on the Maximum Aposteriori 

Probability (MAP) decoding algorithm [l5] while the second is based on a 

Maximum Likelihood (ML) decoding algorithm such as the Soft Output Viterbi 

Algorithm (SOVA) [16]. The latter is a modified Viterbi algorithm that yields soft 
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outputs. 

 

 
 

 

 

 

Figure 3-10: Turbo Decoder       

 

The gain of using the Log-MAP based decoder compared to SOVA based decoders is 

only around 0.1 dB for an Eb/N0 around 2.0 dB [17]. Also MAP has a complexity of 

O(n2) for its comparisons, and O(2n2) for its summations, while SOVA has a 

complexity of O(0.5 n2) for its comparisons and  O(0.5n2)for its summations,  where 

n is the number of bits for decoding [18]. The small MAP decoder gain does not make 

up for increased complexity cost and is therefore not as interesting for the industry as 

SOVA. This is the reason for investigating SOVA thoroughly instead of the MAP 

algorithm. 
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 Principle of the General Soft-Output Viterbi Decoder 

The Viterbi algorithm produces the ML output sequence for convolutional codes. This 

algorithm provides optimal sequence estimation for one stage convolutional codes. 

For concatenated (multistage) convolutional codes, there are two main drawbacks to 

conventional Viterbi decoders.  

First, the first Viterbi decoder produces bursts of bit errors which degrades the 

performance of the second Viterbi decoders. Second, the first Viterbi decoder 

produces hard decision outputs which prohibits the second Viterbi decoders from 

deriving the benefits of soft decisions [19]. Both of these drawbacks can be reduced 

and the performance of the overall concatenated decoder can be significantly 

improved if the Viterbi decoders are able to produce reliability (soft-output) values 

[20].  

The reliability values are passed on to subsequent Viterbi decoders as apriori 

information to improve decoding performance. This modified Viterbi decoder is 

referred to as the soft-output Viterbi algorithm (SOVA) decoder. Figure 3-11 shows a 

concatenated SOVA decoder. 

 

 
Figure 3-11: A concatenated SOVA decoder where y represents the received channel values, u 

represents the hard decision output values, and L represents the associated reliability values. 
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 Likelihood Functions 

The mathematical foundations of hypothesis testing rest on Bayes’ theorem. For 

communications engineering, where applications involving an AWGN channel are of 

great interest, the most useful form of Bayes’ theorem expresses the a posteriori 

probability (APP) of a decision in terms of a continuous-valued random variable x in 

the following form:  

 

 

1,....=
)(

)=()=|(
=)|=( i

xp

idPidxp
xidP  (3.1)  

 

 

)=()=|(=)(
1=

idPidxPxp
M

i

  (3.2)  

Where P (d = i|x) is the APP, and d = i represents data d belonging to the ith signal 

class from a set of M classes. Further, p (x|d = i) represents the probability density 

function (pdf) of a received continuous-valued data-plus-noise signal x, conditioned 

on the signal class d = i. Also, P(d = i), called the a priori probability, is the 

probability of occurrence of the ith signal class.  

 

Typically x is an “observable” random variable or a test statistic that is obtained at the 

output of a demodulator or some other signal processor. Therefore, p(x) is the pdf of 

the received signal x, yielding the test statistic over the entire space of signal classes. 

Let the binary logical elements 1 and 0 be represented electronically by voltages +1 

and -1, respectively. The variable d is used to represent the transmitted data bit, 

whether it appears as a voltage or as a logical element. Sometimes one format is more 

convenient than the other; the reader should be able to recognize the difference from 

the context. 

The decision rule in terms of APPs is as follows is given by:  
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Equation (3.3) states that you should choose the hypothesis H1, (d = +1), if the APP 

P(d = +1|x), is greater than the APP P(d = -1|x). Otherwise, you should choose 

hypothesis H2, (d = -1). Using the Bayes’ theorem of Equation (3.1), the APPs in 

Equation (3.3) can be replaced by their equivalent expressions, yielding the following: 
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2
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>
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H

H

dPdxP  (3.4)  

Where the pdf p(x) appearing on both sides of the inequality in Equation (3.1) has 

been canceled.  

Equation (3.4) is generally expressed in terms of a ratio, yielding the so-called 

likelihood ratio test, as follows: 
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2
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H

H
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3.2.3.1 Log-Likelihood Ratio 

By taking the logarithm of the likelihood ratio developed in Equations (3.3) through 

(3.5), we obtain a useful metric called the log-likelihood ratio (LLR). It is a real 

number representing a soft decision out of a detector, designated by as follows: 
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)()|(=)|( dLdxLxdL   (3.8)  

Where L(x|d) is the LLR of the test statistic x obtained by measurements of the 

channel output x under the alternate conditions that d = +1 or d = -1 may have been 

transmitted, and L(d) is the a priori LLR of the data bit d. 

To simplify the notation, Equation (3.8) is rewritten as follows: 

 
)()(=)( dLxLdL c   (3.9)  

Where the notation Lc(x) emphasizes that this LLR term is the result of a channel 

measurement made at the receiver. Equations (3.1) through (3.9) were developed with 

only a data detector in mind. Next, the introduction of a decoder will typically yield 

decision-making benefits.  

For a systematic code, it can be shown that the LLR (soft output) L(dˆ) out of the 

decoder is equal to Equation (3.10): 

 
)()(=)( dLdLdL e
  (3.10) 

Where L′(dˆ) is the LLR of a data bit out of the demodulator (input to the decoder), 

and Le(dˆ), called the extrinsic LLR, represents extra knowledge gleaned from the 

decoding process. The output sequence of a systematic decoder is made up of values 

representing data bits and parity bits. From Equations (3.9) and (3.10), the output 

LLR L(dˆ) of the decoder is now written as follows: 

 
)()()(=)( dLdLxLdL ec
  (3.11) 
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Equation (3.11) shows that the output LLR of a systematic decoder can be represented 

as having three LLR elements a channel measurement, a priori knowledge of the data, 

and an extrinsic LLR stemming solely from the decoder. To yield the final L(dˆ ) , 

each of the individual LLRs can be added as shown in Equation (11), because the 

three terms are statistically independent. This soft decoder output L(dˆ) is a real 

number that provides a hard decision as well as the reliability of that decision. The 

sign of L(dˆ) denotes the hard decision; that is, for positive values of L(dˆ ) decide that 

d = +1, and for negative values decide that d = -1. The magnitude of L(dˆ) denotes the 

reliability of that decision. Often, the value of Le(dˆ) due to the decoding has the same 

sign as Lc(x) + L(d), and therefore acts to improve the reliability of L(dˆ ) . 

The channel model is assumed to be flat fading with Gaussian noise. By using the 

Gaussian pdf f(z), 
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Where m is the mean and the σ2 is the variance, it can be shown that 
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Where Eb/No is the signal to noise ratio per bit (directly related to the noise variance) 

and a is the fading amplitude. For nonfading Gaussian channel, a=1. 

Generally speaking the LLR value can be formulated as )(=)|( kkc uLYLxdL   

 Reliability of the General SOVA Decoder 

The reliability of the SOVA decoder is calculated from the trellis diagram as shown in 

Figure 3-12. 
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Figure 3-12: Example of survivor and competing paths for reliability estimation at time t 

 

In Figure 3-12, a 4-state trellis diagram is shown. The solid line indicates the survivor 

path (assumed here to be part of the final ML path) and the dashed line indicates the 

competing (concurrent) path at time t for state 1. For the sake of brevity, survivor and 

competing paths for other nodes are not shown. The label S1,t represents state 1 and 

time t. Also, the labels {0,1} shown on each path indicate the estimated binary 

decision for the paths. The survivor path for this node is assigned an accumulated 

metric Vs(S1,t) and the competing path for this node is assigned an accumulated metric 

Vc(S1,t). The fundamental information for assigning a reliability value L(t) to node 

S1,t’s survivor path is the absolute difference between the two accumulated metrics, 

L(t)=| Vs(S1,t) - Vc(S1,t) |. The greater this difference, the more reliable is the survivor 

path. For this reliability calculation, it is assumed that the survivor accumulated 

metric is always “better” than the competing accumulated metric. Furthermore, to 

reduce complexity, the reliability values only need to be calculated for the ML 

survivor path (assume it is known for now) and are unnecessary for the other survivor 

paths since they will be discarded later. 

To illustrate the concept of reliability, two examples are given below. In these 

examples, the Viterbi algorithm selects the survivor path as the path with the smaller 

accumulated metric. In the first example, assume that at node S1,t the accumulated 

survivor metric Vs(S1,t)=50 and that the accumulated competing metric Vc(S1,t)=100. 
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The reliability value associated with the selection of this survivor path is  

L(t)=|50-100|=50. 

In the second example, assume that the accumulated survivor metric does not change, 

Vs(S1,t)=50, and that the accumulated competing metric Vc(S1,t)=75. The resulting 

reliability value is L(t)=|50-75|=25. Although in both of these examples the survivor 

path has the same accumulated metric, the reliability value associated with the 

survivor path is different. The reliability value in the first example provides more 

confidence (twice as much confidence) in the selection of the survivor path than the 

value in the second example. 

Figure 3-13 illustrates a problem with the use of the absolute difference between 

accumulated survivor and competing metrics as a measure of the reliability of the 

decision. 

 

 
Figure 3-13: Example that shows the weakness of reliability assignment using metric 

values directly. 

 

In Figure 3-13, the survivor and competing paths at S1,t have diverged at time t-5. The 

survivor and competing paths produce opposite estimated binary decisions at times t, 

t-2, and t-4 as shown in bold labels. For the purpose of illustration, let us suppose that 

the survivor and competing accumulated metrics at S1,t are equal, Vs(S1,t) = Vc(S1,t) = 

100. 
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This means that both the survivor and competing paths have the same probability of 

being the ML path. Furthermore, let us assume that the survivor accumulated metric is 

“better” than the competing accumulated metric at time t-2 and t-4 as shown in Figure 

4.3. To reduce the figure complexity, these competing paths for times t-2 and t-4 are 

not shown. 

From this argument, it can be seen that the reliability value assigned to the survivor 

path at time t is L(t)=0, which means that there is no reliability associated with the 

selection of the survivor path. At times t-2 and t-4, the reliability values assigned to 

the survivor path were greater than zero (L(t-2)=25 and L(t-4)=10) as a result of the 

“better” accumulated metrics from the survivor path. However, at time t, the 

competing path could also have been the survivor path because they have the same 

metric. Thus, there could have been opposite estimated binary decisions at times t, t-2, 

and t-4 without reducing the associated reliability values along the survivor path. 

To improve the reliability values of the survivor path, a trace back operation to update 

the reliability values has been suggested. This updating procedure is integrated into 

the Viterbi algorithm as follows: 

For node Sk,t in the trellis diagram (corresponding to state k at time t), 

1. Store L(t) = | Vs(Sk,t) - Vc(Sk,t) |. (This is also denoted as in other papers.)  

If there is more than one competing path, then multiple reliability values must be 

calculated and the smallest reliability value is then set to L(t). 

2. Initialize the reliability value of Sk,t to +(most reliable). 

3. Compare the survivor and competing paths at Sk,t and store the memorization levels 

(MEMs) where the estimated binary decisions of the two paths differ. 

4. Update the reliability values at these MEMs with the following procedure: 

a. Find the lowest MEM>0, denoted as MEMlow, whose reliability value has not been 

updated. 

b. Update MEMlow’s reliability value L(t-MEMlow) by assigning the lowest reliability 

value between MEM = 0 and MEM = MEMlow. 
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Continuing from the example, the opposite bit estimations between the survivor and 

competing bit paths for S1,t are located and stored as MEM={0, 2, 4}. With this MEM 

information, the reliability updating process is accomplished as shown in Figure 3-14 

and Figure 3-15. Figure 3-14, the first reliability update is shown. The lowest 

MEM>0, whose reliability value has not been updated, is determined to be 

MEMlow=2. The lowest reliability value between MEM=0 and MEM=MEMlow=2 is 

found to be L(t)=0. Thus, the associated reliability value is updated from L(t-2)=25 to 

L(t-2)=L(t)=0. The next lowest MEM>0, whose reliability value has not been 

updated, is determined to be MEMlow=4. 

 

 

The lowest reliability value between MEM=0 and MEM=MEMlow=4 is found to be 

L(t)=L(t-2)=0. Thus, the associated reliability value is updated from L(t-4)=10 to  

L(t-4)=L(t)=L(t-2)=0. Figure 3-15 shows the second reliability update. 

 

Figure 3-14: Updating process for time t-4 (MEMlow=4). 
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Figure 3-15: Updating process for time t-2 (MEMlow=2). 

 

 SOVA Component Decoder for a Turbo Code 

The SOVA component decoder estimates the information sequence using one of the 

two encoded streams produced by the turbo code encoder. Figure 3-16 shows the 

inputs and outputs of the SOVA component decoder. 

 
Figure 3-16: SOVA component decoder 

 

The SOVA component decoder processes the (log-likelihood ratio) inputs L(u) and 

Lcy, where L(u) is the a-priori sequence of the information sequence u and Lcy is the 

weighted received sequence. The sequence y is received from the channel. However, 

the sequence L(u) is produced and obtained from the preceding SOVA component 

decoder. 

If there is no preceding SOVA component decoder then there are no a-priori values. 

Thus, the L(u) sequence is initialized to the all-zero sequence. A similar concept is 
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also shown at the beginning of the chapter in Figure 3-1. The SOVA component 

decoder produces u’ and L(u’) as outputs where u’ is the estimated information 

sequence and L(u’) is the associated log-likelihood ratio (“soft” or L-value) sequence. 

The SOVA component decoder operates similarly to the Viterbi decoder except the 

ML sequence is found by using a modified metric. This modified metric, which 

incorporates the a-priori value, is derived in Appendix B.  

For systematic codes, this can be modified to become 
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For each state in the trellis diagram where m denotes allowable binary trellis 

branch/transition to a state (m= 1, 2). 

)(m

tM is the accumulated metric for time t on branch m. 

)(m

tu  is the systematic bit (1st bit of N bits) for time t on branch m. 

)(

,

m

jtx  is the j-th bit of N bits for time t on branch m (2jN). 
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,

m

jty  is the received value from the channel corresponding to 
)(

,

m

jtx . 

Lc  4
Eb

𝑁0 
  is the channel reliability value.  

L (ut ) is the a-priori reliability value for time t. This value is from the preceding 

decoder. If there is no preceding decoder, then this value is set to zero. 

Figure 3-17 shows a trellis diagram with two states Sa and Sb and a transition period 

between time t-1 and time t. The solid line indicates that the transition will produce an 

information bit ut=+1 and the dash line indicates that the transition will produce an 

information bit ut=-1. The source reliability L(ut), which may be either a positive or   

a negative value, is from the preceding SOVA component decoder. The “add on” 

value is incorporated into the SOVA metric to provide a more reliable decision on the 

estimated information bit. For example, if L(ut) is a “large” positive number, then it 

would be relatively more difficult to change the estimated bit decision from +1 to -1 
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between decoding stages (based on assigning max{ )(m

tM }to the survivor path). 

However, if L(ut) is a “small” positive number, then it would be relatively easier to 

change the estimated bit decision from +1 to -1 between decoding stages. Thus, L(ut) 

is like a buffer which tries to prevent the decoder from choosing the opposite bit 

decision to the preceding decoder. 

 
Figure 3-17: Source relibility for SOVA metric computation 

 

At time t, the reliability value (magnitude of the log-likelihood ratio) assigned to a 

node in the trellis is determined from 
0

t | (1)

tM  (2)

tM   |Where 
MEM

t  denotes the 

reliability value at memorization level MEM relative to time t. 

This notation is similar to the notation L(t-MEM) as used before and is shown in 

Figure 4.10 for discussion. 
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Figure 3-18: Example of SOVA survivor and competing paths for reliability estimation. 

 

The probability of path m at time t and the SOVA metric are stated in [21] to be 

related as      
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At time t, let us suppose that the survivor metric of a node is denoted as Mt and the 

competing metric is denoted as Mt. Thus, the probability of selecting the correct 

survivor path is 
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The reliability of this path decision is calculated as 
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The reliability values along the survivor path for a particular node at time t are 

denoted as
MEM

t , where MEM = 0, .., t. For this node at time t, if the bit on the 

survivor path at MEM=k (or equivalently at time t-MEM) is the same as the 

associated bit on the competing path, then there would be no bit error if the competing 

path was chosen. Thus, the reliability value at this bit position remains unchanged. 

However, if the bits differ on the survivor and competing path at MEM=k, then there 

is a bit error. The reliability value at this bit error position must then be updated using 

the same updating procedure as described at the beginning of the chapter. As shown 

in Figure 3-18, reliability updates are required for MEM=2 and MEM=4. 

The reliability updates are performed to improve the “soft” or L-values. It is shown in 

[22] that the “soft” or L-value of a bit decision is 

 

                          k

tMEMlMEMtMEMt minuuL   0,...=.ˆ)ˆ(  (3.18) 

The soft output Viterbi algorithm (along with its reliability updating procedure) can 

be implemented as follows: 

1. (a) Initialize time t = 0. 

    (b) Initialize )(

0

mM  =0 only for the zero state in the trellis diagram and all other state      

to-. 
  

2. (a) Set time t = t +1. 

(b) Compute the metric )(= )(
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for each state in the trellis diagram where 

m denotes allowable binary trellis branch/transition to a state (m= 1, 2). 
)(m

tM is the accumulated metric for time t on branch m. 

)(m

tu   is the systematic bit (1st bit of N bits) for time t on branch m. 

 
)(

,

m

jtx  is the j-th bit of N bits for time t on branch m (2jN). 
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)(

,

m

jty is the received value from the channel corresponding to 
)(

,

m

jtx . 

Lc4
Eb

𝑁0 
 is the channel reliability value.  

L (ut ) is the a-priori reliability value for time t. This value is from the preceding 

decoder. If there is no preceding decoder, then this value is set to zero. 

3. Find max )(m

tM  for each state. For simplicity, let (1)

tM  denote the survivor path 

metric and (2)

tM  denote the competing path metric. 

4. Store (1)

tM  and its associated survivor bit and state paths. 

5. Compute  
0

t | (1)

tM  (2)

tM   |. 

6. Compare the survivor and competing paths at each state for time t and store the 

MEMs where the estimated binary decisions of the two paths differ. 

7. Update 
MEM

t  
UKmin 0,...=

{ 
K

t  } for all MEMs from smallest to largest MEM. 

8. Go back to Step (2) until the end of the received sequence. 

9. Output the estimated bit sequence u’ and its associated “soft” or L-value sequence 

L(u’)=u’, where operator defines element by element multiplication operation 

and is the final updated reliability sequence. L(u’) is then processed (to be 

discussed later) and passed on as the a-priori sequence L(u) for the succeeding 

decoder. 

 SOVA Iterative Turbo Code Decoder 

The SOVA component decoder produces the “soft” or L-value L(u′t) for the estimated 

bit (u′t) (for time t). The “soft” or L-value L(u′t) can be decomposed into three distinct 

terms as stated in [22]. 

L(u′t)=L(ut)+ Lcyt,1+ Le(u′t)  

 

L(ut) is the a-priori value and is produced by the preceding SOVA component 

decoder. Lcyt,1 is the weighted received systematic channel value. Le(u′t) is the 

extrinsic value produced by the present SOVA component decoder. 
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The information that is passed between SOVA component decoders is the extrinsic 

value 

Le(u′t)= L(u′t)−L(ut)− Lcyt,1 

  

The a-priori value L(ut) is subtracted out from the “soft” or L-value L(u′t) to prevent 

passing information back to the decoder from which it was produced. Also, the 

weighted received systematic channel value Lcyt,1 is subtracted out to remove 

“common” information in the SOVA component decoders. Figure 3-19 shows that the 

turbo code decoder is a closed loop serial concatenation of SOVA component 

decoders. In this closed loop decoding scheme, each of the SOVA component 

decoders estimates the information sequence using a different weighted parity check 

stream. The turbo code decoder further implements iterative decoding to provide more 

dependable reliability/a-priori estimations from the two different weighted parity 

check streams, hoping to achieve better decoding performance. 

 

 

Figure 3-19: SOVA iterative turbo code decoder. 
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The iterative turbo code decoding algorithm for the n-th iteration is as follows: 

1. The SOVA1 decoder inputs sequences 4EbNo y1 (systematic), 4EbNo y2 (parity 

check), and Le2(u′t) and outputs sequence L1(u′). For the first iteration, sequence 

Le2(u′t)=0 because there is no initial a-priori value (no extrinsic values from 

SOVA2).  

 

2. The extrinsic information from SOVA1 is obtained by  

Le1(u′) = L1(u′) - Le2(u′) -Lcy1  Where Lc=4
𝐸𝑏

𝑁0
 . 

3. The sequences 4 
Eb

No
 y1 and Le1(u′) are interleaved and denoted as I{4 

Eb

No
 y1} and 

I{Le1(u′)}. 

4. The SOVA2 decoder inputs sequences I{4EbNo y1} (systematic), and I{4EbNo y3} 

(parity check that was already interleaved by the turbo code encoder), and I {Le1(u′)}  

(a-priori information) and outputs sequences I{L2(u′)} and I{u′}. 

5. The extrinsic information from SOVA2 is obtained by  

           I{Le2(u′)}= I{L2(u′)} - I{Le1(u′)} - I{Lcy1}. 

6. The sequences I{Le2(u′)} and I {u′} are deinterleaved and denoted as Le2(u′)and u′.  

Le2(u′) is fed back to SOVA1 as a-priori information for the next iteration and u′  is 

the estimated bits output for the n-th iteration. 
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 Matlab Results and Analysis 

4.1 Matlab Implementation 

The input data frame size is between 40 and 6144 bits as is the size of the LTE 

interleaver according to the 3gpp standard. The turbo encoder consists of two main 

blocks, i.e., the recursive convolutional encoder and the interleaver. The encoded data 

frame is modulated using BPSK Modulation and sent over the channel. The channel 

model used in the simulation is AWGN channel. After adding noise to the data, the 

LLR is calculated and decoded using the turbo decoder using a specified number of 

iteration. The decoded bits are compared with the original bits to obtain the number of 

errors, hence calculate the BER. 

As a rule of thumb, the number of samples required to obtain the ber with high 

accuracy is given by 10x – 100x BER-1 samples. For example, if the estimated BER = 

10-6, 108 samples are used for a relative variance of 0.01 (99% confidence). 

The decoder implementation is complex and computationally extensive. It includes 

processing using a number of loops. A limit is set on the maximum number of bits to 

be encoded and maximum allowable error for early termination of the code. The 

decoder decodes iteratively checking the number of errors after every iteration. If the 

number of errors is zero for an iteration, the code will not execute the next iteration to 

decrease processing load. 

There are a large number of simulation options to consider when measuring the 

performance of a turbo decoder (for example, number of iterations, channel model, 

frame size, etc.). For this study many permutations were considered. 

For performance analysis, it should be clear that there are many different 

configurations of turbo encoders. In this study, the LTE Turbo Encoder Scheme is 

used, which is a Parallel Concatenated Convolutional Code (PCCC) with two 8-state 

constituent encoders and one turbo code internal interleaver. The coding rate of turbo 

encoder is 1/3. The structure of turbo encoder is shown in details in chapter 3. 
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4.2 BER Performance over AWGN Channel 

Since LTE Turbo decoder supports a wide range of frame sizes, three distinct frame 

sizes were used in the simulation to show the effect of frame sizes on the 

performance. The chosen sizes are 64, 1024, and 6144.  

The turbo code program was simulated for frame size K = 64 over an AWGN 

channel. The SNR range was used from 0 to 4 dB. The number of decoder iterations 

was chosen to be 10. The BER for the iterations is shown in Figure 4-1. The BER 

values at the end of each iteration are given in Table 4-1. 

 

Figure 4-1 BER for frame K=64 over AWGN Channel 

 

Table 4.1: BER values for frame K=64 over AWGN Channel 

 

 

SNR = 0 SNR = 1 SNR = 2 SNR = 3 SNR = 4 

Iter =1 0.1502 0.0778 0.0245 0.0041 4.094e-04 

Iter =2 0.1283 0.0499 0.0093 7.6750e-04 3.625e-05 

Iter =3 0.1200 0.0417 0.0066 5.1667e-04 2.4375e-05 

Iter =4 0.1163 0.0378 0.0056 3.5677e-04 1.5719e-05 

Iter =6 0.1119 0.0353 0.0051 3.2708e-04 1.3624e-05 

Iter = 10 0.1028 0.0340 0.0044 2.6266e-04 1.0743e-05 
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Similarly, the code was simulated for frame size K = 1024 over AWGN channel. The 

SNR range was used from 0 to 4 dB. The number of decoder iterations was chosen to 

be 5. Figure 4-2 depicts the performance improvement when the frame size is 

increased. The BER values at the end of each iteration are given in Table 4-3. 

 

Figure 4-2 BER for frame K=1024 over AWGN Channel 

 

Table 4.2: BER values for frame K=1024 over AWGN Channel 

 

 

SNR = 0 SNR = 0.5 SNR = 1 SNR =1.5 SNR = 2 

Iter =1 0.0762 0.1165 0.0762 0.0404 0.0174 

Iter =2 0.1368 0.0759 0.0260 0.0044 3.4258e-04 

Iter =3 0.1207 0.0541 0.0086 3.3320e-04 8.4352e-06 

Iter =4 0.1113 0.0403 0.0033 3.6719e-05 - 

Iter =5 0.1083 0.0316 0.0014 7.0312e-06 - 
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Finally, Fig. 4-3 describes the performance for frame size K = 6144 over AWGN 

channel. The SNR range was used from 0 to 4 dB. The number of decoder iterations 

was chosen to be 5. Some important BER values at the end of each iteration are given 

in Table 4-3. 

 

Figure 4-3: BER for frame K=6144 over AWGN Channel 

 

Table 4.3: BER values for frame K=6144 over AWGN Channel 

 

 

SNR = 0 SNR = 0.5 SNR = 1 SNR =1.5 SNR = 2 

Iter =1 0.1598 0.1177 0.0759 0.0402 0.0167 

Iter =2 0.1352 0.0754 0.0234 0.0034 0.0002 

Iter =3 0.1207 0.0514 0.0051 1.4583e-004 1.4583e-004 

Iter =4 0.1084 0.0352 7.7441e-004 1.1068e-005 - 

Iter =5 0.1053 0.0238 1.3997e-004 - - 
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4.3 Interpretation of Results 

It can be seen that as the number of iteration increases, the BER performance 

improves. However, the rate of improvement decreases. This is depicted by the 

overlapping curves after 5th
 iterations as shown in Fig.4-1. The BER does not show 

significant improvement after 5th iteration. Thus, the number of iterations should be 

kept such as to avoid extra computations. 

Turbo code performance can be improved by increasing the frame size K. The code 

can achieve higher BER with the increase of frame size. This is because the 

interleaver permutes the data and the decoder is better able to decode the data.  

However, it can be seen that by increasing the frame size K, the code can achieve the 

same BER at much lower SNR. 

It should be noted that larger frame sizes mean more latency as the encoding and 

decoding is done per frame. Thus, the performance improvement is achieved at the 

cost of increased latency. 

The performance comparison of turbo code can be done by plotting the BER for 

different frame sizes K as in Figure 4-4. The figure shows an example that by 

increasing the frame size K, the BER performance of the code improves. As a result, 

lower BER can be achieved by keeping the SNR constant. 

 

Figure 4-4: BER Comparison between different frame sizes over AWGN using 3 iterations 
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 Hardware Architecture for SOVA 

 

This chapter presents a hardware architecture that can be applied to implementation of 

SOVA decoders. Optimizations are done to reduce the hardware complexity of the 

SOVA decoder. Some hardware issues are discussed through the chapter, and trade-

offs between the hardware costs and performance are presented. [23],[24],[25]  

5.1 SOVA Component 

The Hardware Architecture for SOVA consists of three stages, namely the trellis, 

merge and decode stages, as illustrated in Figure 5-5. 

 

 

 
Figure 5-5: Hardware stages in SOVA 

 

 Trellis Stage 

The first stage is the trellis stage that computes the state metrics of each of the 2v 

states, according to Equation 5.1 .That can be separated into the recursion and the 

branch metric terms.    
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Assuming that the expected parity bit xk,2 = +1, or equivalently that the parity bit has a 

value of ‘0’,and let the branch metrics for the cases when the expected systematic bits 

Of uk=0 and uk=1 be denoted by 𝞴0,0 and 𝞴0,0 respectively. 

These branch metrics are then calculated as follows   
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Where yk,1 and yk,2 are the received channel systematic and parity values respectively, 

and Lk is input extrinsic information. Likewise, by assuming once again that the 

expected parity bit xk,2 = −1, the branch metrics for the expected systematic bits of  

uk = 0 and uk=1 denoted by 𝞴0,1 and 𝞴1,1 respectively can be calculated. 
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It can be observed that 𝞴0,1 and 𝞴1,1 are simply the negative values of 𝞴1,0 and 𝞴0,0 

respectively. This implies that there is only a need to generate two of the four branch 
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metrics, since the other two can be easily obtained in the ACS when needed. A branch 

metric calculation unit BMC as shown in Figure 5-1 is used to generate 𝞴0,0 and 𝞴0,1. 

 

 
Figure 5-1: BMC module in the trellis unit 

 

Other than the BMC unit, there are 2v ACS in the trellis unit that will perform 

recursion by adding the branch metric to the previous survivor path metric, compare 

the two resultant metrics and finally select a survivor path metric to be saved for use 

at the next stage. Each ACS will perform calculations for one state, and the 

connections between the ACS are dependent on the generator’s polynomials. In the 

case of the LTE turbo code, there are a total of 8 ACS modules connected together as 

shown in Figure 5-2. 
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Figure 5-2: Trellis unit for LTE consisting of 8 ACS 

 

A close up view of the ACS can be seen in Figure 5-2. By taking advantage of the fact 

that the branch metric and its inverse are negative values of one another, the ACS uses 

a subtractor at one of its input branches to obtain the required inverse branch metric. 

Thus by using one addition and one subtraction, the path metrics for both cases when 

the input decision bit is ‘1’ and ‘0’ can be obtained. The two path metrics are then 

compared to select the survivor (larger) metric which will be output from ACS and 

stored for the next stage of the trellis. The hard decision bit corresponding to the 

selection of the survivor path, together with the difference between the two metric 

values are also output to be used in later stages for merging and SOVA updates. 

5.2 Trace back and Updating Depths 

In a practical decoder, it is not possible to perform VA over the entire block of 

channel data due to the excessive latency and storage requirements. Instead, sliding 

windows of merging depth L and update depth U are used to limit the trace back and 

decoding depths. One possible modification is to vary L and U parameters for the 

SOVA algorithm.  
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Increasing L will increase the likelihood for a merged path while using a larger U 

increases the number of updates for the reliability value. However, it is clear that 

increasing these two values will increase the memory requirements and latency. The 

simulation results for determining the optimal values for L and U are presented in 

Section 5.4 Hardware considerations such as performance, latency and hardware 

requirements. 

 Merge Stage 

The merge stage of depth L performs Viterbi decoding on the hard decision bits 

determined at the trellis stage. The depth L has to be sufficiently large for all 2v paths 

to merge after L stages, and is usually expressed in terms the constraint length of the 

encoder K. In hardware, the merge stage can either be implemented via the Register 

Exchange (RE) or traceback method. The block diagram of a RE unit suitable for use 

in LTE is shown in Figure 5-3. 

The RE method utilizes registers to store all the N*L decision bits within the trellis. 

Each row in the RE unit contains the decision bits of the entire path of length L 

corresponding to the state of the first register of the row. The hard decision bits from 

the trellis unit are used as the select signals for the MUXes to control the state 

exchanges. The connections between the columns of registers are identical for all 

columns and dependent on the generator polynomial. Assuming that the depth of the 

RE is sufficient for merging, the output of all N rows of the RE unit would give the 

same decision bit (i.e. decision bit of the survivor path), which would be selected as 

the estimated received bit uk. 

For the case of traceback, the decision bits are stored in a memory instead of registers, 

and a decision bit d stages away from a given state is to be determined by traversing d 

steps backwards in a trellis. The main advantage of traceback is that it can be 

implemented efficiently in dense memory, but the drawback is that there is increased 

latency as compared to RE. Both methods are commonly used in hardware designs of 

Viterbi decoders, and the chosen method is usually dependent on the trade-off 

between latency and hardware utilization. In this thesis, only the RE method is 

considered, due to the short latency required for the LTE decoder. 
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Figure 5-3: Block diagram of register exchange unit 

 Decode Stage 

The decode stage of depth U performs Viterbi decoding and reliability updates on the 

metric difference values obtained at the output of the trellis stage. Reliability updates 

are performed on the U reliability values on the survivor path S

LKL 1 , S

LKL 2 , . . . , 

S

ULKL    with each reliability value being updated for up to U times. The output of the 

decode stage, multiplied by the hard decision bit, i.e. ûk−L−U ・
S

ULKL   is the intrinsic 

output of the SOVA decoder. 

5.3 Block diagram of the hardware architecture for a SOVA 

decoder 

Based on the SOVA components in the previous section in this section the block 

diagram of the hardware architecture for a HR-SOVA decoder is as shown in 

Figure 5-4. 

The trellis unit (TRU) performs the branch metric computation followed by the Add-

Compare-Select (ACS) operations as described in Section 5.2.1. The Survivor 

Memory Unit (SMU) performs as the merge stage to determine the ML path at L 
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stages away. The Path Comparison Unit (PCU) has a RE unit with similar structure as 

that in the SMU and it performs the decode stage with depth U. Viterbi decoding is 

performed using hardware decision bits that are stored in the First In First Out (FIFO) 

memory (FIFO U) as shown in the figure. There are two FIFOs required in the 

architecture; the first of which (FIFO U) is used to store the hard decision bits uk 

decoded by the trellis unit and the second (FIFO  ) is used to store the metric 

difference  K computed by the trellis unit. For each stage, uk and delta k for all 2v 

states will be stored. The SMU and PCU are made up of columns of RE units. Each 

row of RE registers stores the hard decision sequence of the respective state.  

 

 
Figure 5-4: System architecture of SOVA decoder 

 

The reliability updates are performed by the UPD module. The UPD module consists 

of U units of UPE elements that update and store the reliability values 
S

jLKL   at each 

stage of the decoding, based on the survivor and concurrent hard decision bit 

sequences. As reliability updates require survivor and concurrent path decision bits (

C

jLKu   and 
S

jLKu  ) for comparison before deciding if an update is needed, the PCU 

has additional logic to provide these relevance bits. 

In order to obtain the survivor and concurrent paths, the SMU will first determine the 

ML state sk by selecting the largest state metric гi from the trellis unit as shown in 

Figure 5-5.  
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Figure 5-5: Block diagram of SMU module 

 

Very often in practical designs, finding the largest state metric is not practical, and 

since it can be assumed that after L stages, the trellis has merged, any one of the N 

outputs of the register exchange unit can be used instead of the state chosen by the 

ML path index. The corresponding decision bit ûk−L is output from the RE unit, and 

the associated state at L stages away (end of SMU) sk−L can be determined by using an 

encoder. The encoder used to determine sk−L is illustrated in Figure 5-6. 

 
Figure 5-6: Encoder to determine state sk−L 

 

With sk−L and ûk−L determined, these two inputs are then used to select the desired 

rows from the RE in the PCU that correspond to the survivor and concurrent path 

sequences of decision bits. The selection is performed by letting v̂k−L represent the 

complementary decision bit of ûk−L. 

That is, 

ûk−L = 0 ⇒ v̂k−L = 1  

ûk−L = 1 ⇒ v̂k−L = 0 

The previous transition state of sk−L will be 
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and thus survivor and concurrent states S

LKS 1  and a row select signal SC = C

LKS 1  

can be obtained. A block diagram of the PCU is shown in Figure 5-7. By means of 8-

to-1 MUXes, the SC signal selects the row in the RE network that corresponds to the 

set of concurrent path bits ( C

LKu 1 , C

LKu 2 , . . . , C

ULKu 
). The relevance bits are then 

determined by computing the XOR result of the decision bits of the survivor and the 

concurrent sequences. Thus, a relevance bit of ‘0’ means that the survivor and 

concurrent bit at the stage are the same, i.e. 
S

jLKu   = 
C

jLKu   , and conversely a 

relevance bit of ‘1’ implies that the bits are different (
S

jLKu    ≠ 
C

jLKu   ). 

  

 
Figure 5-7: PCU for SOVA 

 

In SOVA, the update rule is only applied when the survivor and concurrent bits are 

different. Therefore the relevance bits generated in the PCU are used in the UPD to 

indicate if reliability updates are required for each of the U stages. The UPD module 

consists of U units of UPE, with each UPE element responsible for checking a 

relevance bit from the PCU and to decide if an update is required. If an update is 
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required, the reliability value stored in the previous UPE stage is then compared 

against s

Lk  that is selected from the FIFO delta using sk−L. The block diagram of the 

UPD is as shown in Figure 5-8 

 

 

 

Figure 5-8: Block diagram of UPD module 

 

5.4 Sliding Window 

Sliding window implementations of decoding algorithms are used to reduce the 

memory requirements in turbo decoders. The performance of turbo codes depends 

heavily on frame length and deteriorates rapidly as the frame length decreases as 

shown in chapter 4. A long frame length, however, means a long decoding trellis for 

which the memory requirements as well as decoder complexity are excessive from an 

implementation viewpoint. Sliding window or finite-length window decoding can 

significantly reduce the memory requirements and the complexity of the decoder. 

In trellis based decoding, the number of trellis stages required to make reliable 

decisions determines the length of the decoding window and is referred to as the 

decision depth D. Forward recursion in forward SOVA starts by building the first D 

stages of the trellis. This is followed by SOVA traceback at each stage of the trellis in 
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the current window. After the SOVA traceback the decoded bit at the first stage of the 

trellis is released and the decoding window slides forward by one trellis stage. The 

decoded bit at the second trellis stage is released in this window followed by another 

slide of the window and so on as shown in Figure 5-9 [25]. 

 

Figure 5-9: One bit releases sliding window decoding 

Backward SOVA operates in the similar fashion, the only difference is that it starts 

from the last stage in the trellis and moves in the opposite direction, thus releasing the 

bits in reverse order. 

The main objectives of using the sliding window technique are to reduce the decoding 

delay and storage requirements at the expense of a slight loss in performance. The 

overall code block at the receiver is divided into smaller sub-blocks (windows) of 

length W. The decoder output can already be calculated for the first block of 

information bits (trellis sections) within this window, thus reducing decoding delay 

significantly for large block lengths. When the first window is decoded, the decoder 

window is then shifted by one bit to the right in order to decode the next window. 

It is worth to be mentioned that the traceback ( merge (L) ) stage and the update                   

( decode (U) ) stage can use different window sizes. In order to choose the depth of 

each stage, simulations were done to investigate the performance of turbo decoder for 

different window sizes. 
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Figure 5-10 BER for frame size K=1024 over AWGN Channel using 1 iteration 

 

 

Figure 5-11 BER for frame size K=1024 over AWGN channel using 2 iterations 
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Figures 5-10, and 5-11 show the BER performance when the traceback window size 

changes. The frame length used is K=1024. The window sizes range is from W=20 to 

W=80. As shown in these figures, the performance converges to the original one 

(without using sliding window technique). The increment in performance is getting 

smaller as the window size increases. So L=70 was chosen since there’s no significant 

improvement in performance for larger windows. 

Similarly, simulations were done to design the optimum window size for update stage. 

U=30 was chosen. Hence the total latency (the number of clock cycles taken by our 

SOVA decoder before releasing the first bit) is 100 clock cycles  

5.5 Quantization 

Much of the work on turbo decoding assumes that the decoder has access to infinitely 

soft (unquantized) channel data. In practice, however, a quantizer is used at the 

receiver and the turbo decoder must operate on finite precision, quantized data. 

Floating-point units would make the hardware more complex, so quantization leads to 

simpler hardware design. In addition, the number of bits used to represent the 

quantized data is considered an important factor to the process of optimizing the HDL 

design since it represents the width of the memories and data buses used in our 

design. 

This section discusses the process of converting from a floating-point simulation 

model of a turbo decoder to quantized decoder representative of one that could be 

implemented in hardware. One approach to quantization is presented here [26]. 

Performance measurements are done and the word size is designed according to the 

proper quantization. 

 Quantization Process 

For simulation purposes the output of the encoder is generally taken to be a +/- 1 

value. After being transmitted through a noisy channel, these values are still 

distributed around +/- 1. When the input to a quantized system is received, it must be 

scaled up by some amount. Scaling must be performed to retain some of the important 

information that would be lost in a floating-point to integer conversion of the input 

value. For example, if the transmitted data is –1 and the received value is –0.4, there 

is still significant probability information in the received value. Standard floating-
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point to integer conversion of –0.4 would yield 0. Since a 0 has equal probability of 

being a +1 or a –1, all received probability information is lost. Conversion of –0.4 to –

1 would indicate too high of a probability that a –1 was transmitted. By simply 

multiplying the input by some fixed value, we move the distribution to the new-scaled 

value as shown in figure 5-12. This allows us to better approximate the floating-point 

system in our quantized implementation, without losing as much of the probability 

information. The following figure illustrates the effect of scaling on the received 

values, in a Gaussian channel. 

 

Figure 5-12 Scaling the recieved value in quantization process 

 

To select the proper input-scaling factor, we must consider the quantization of the 

inputs. The input quantization and the input scale factor define where the received 

distribution is saturated. (Note: since we are using the log-likelihood ratio for the 

input to the decoder, the received distribution is also scaled by the signal-to-noise 

ratio. The following diagram illustrates how the saturation limits, defined by our 

choice of quantization, determine how much of the distribution will be clipped or 

saturated at the max/min values 
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Figure 5-13 Scaling Factor and Limits for quantization process 

 

We can adjust the input scale factor sc and our clipping limits cl (a clipping limit will 

be imposed by our limited bit width on the input signal, discussed later) as shown in 

figure 5-13, to provide an estimated amount of distribution clipping. The clipping 

estimate accounts for the amount of clipping associated with the adjacent limit. The 

amount of clipping due to the limit of the opposite sign is negligible. The following 

equations calculate the amount of clipping 

from both quantization limits. The percent of values clipped by adjacent limit is given 

by:  

Q(
𝑐𝑙−𝑠𝑐

𝑠𝑐
) * 100 = pcla. The percentage of values clipped by the opposite limit is 

Q(
𝑐𝑙+𝑠𝑐

𝑠𝑐
) * 100 = pclo.  

For example if we are using a 6-bit quantization on the input, +31 to –32, and we 

want no more than 5% of the values to be clipped we would use a scaling factor of: 

pcla = Q(
31−𝑠𝑐

𝑠𝑐
) * 100 = 5% which yields a scale factor sc = 11.7. The amount of 

clipping resulting from the opposite sign limit is pclo.= Q(
31+11.7

11.7
) * 100 

The limit at which an integer variable is forced to saturate defines the effective 

quantization (or number of bits required). 

By defining saturation limits for the inputs and all internally calculated values, we can 

approximate the performance of a hardware implementation’s specific bit widths. 

After any calculation for a particular variable, saturation logic is added.  
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After multiplying the data with the proper input scaling and defining the saturation 

limits, the floating point data could be rounded to the nearest integer value. Hence, 

these integer values can be used directly to be decoded using our turbo decoder. 

 Choosing the proper word size  

In order to choose the optimum number of bits to represent the quantized data, 

simulations were using different quantization bits. The performance of Turbo decoder 

was measured, hence the proper word size was selected such that it achieves BER 

very close to the BER resulted from using unquantized (floating point) data.   

Fig 5-14 shows and example for the simulations done to design the word size. The 

BER curves are plotted for different word sizes, using a fixed frame size K = 1024 

over an AWGN channel. The SNR range was used from 0 to 5 dB. The number of 

decoder iterations was chosen to be two iterations. It’s shown that increasing the 

number of quantization bits improves the performance of the turbo decoder. The BER 

curves converges to the one represents the unquantized turbo decoder. 

The BER values are given in Table 5.1. It can be noticed that 8 bits for quantization is 

sufficient, since BER doesn’t fall significantly for larger word sizes.  
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Figure 5-14 BER for frame size K=1024 over AWGN Channel for different word sizes 

 

Table 5.1: BER values for different word sizes using frame size K=1024 

 SNR = 0 SNR = 1 SNR = 2 SNR = 3 

q = 4 0.1634 0.0718 0.0073 1.8945e-04 

q = 5 0.1540 0.0663 0.0055 7.8050e-05 

q = 6 0.1432 0.0605 0.0041 2.1484e-05 

q = 7 0.1375 0.0573 0.0027 8.2484e-06 

q = 8 0.1314 0.0524 0.0014 3.9063e-06 

q = 9 0.1307 0.0516 0.0011 2.8863e-06 

Unquantized 0.1368 0.1368 0.1368 1.8391e-06 

 

 Hardware Implementation and Results 

 

This chapter gives performance results of the HDL implementation of the SOVA 

decoder design outlined in Chapter 3. Then the implementation of the complete turbo 

decoder is presented in details. The HDL version of the decoder was compared with a 

given reference decoder written in MATLAB, which was known to be accurate. 
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The Turbo decoder using proposed algorithm was implemented using Verilog 

hardware description language, which offers high abstraction level during the 

implementation. Designs are completed with the Integrated Software Environment 

(ISE), which is a software suite developed by Xilinx that allows designers to take 

their designs from design entry through FPGA device programming. The Verilog 

description was synthesized using XST (Xilinx Synthesis Tool) on Spartan-6 FPGA 

SP605 Evaluation Kit. 

6.1 Design Flow in ISE 

The ISE manages and processes a design through the following steps in the ISE 

design flow [28]. 

 Design Entry 

Design entry is the first step in the ISE design flow. During design entry, the design 

source files can be created based on the design objectives using a Hardware 

Description Language (HDL), such as VHDL, Verilog, or ABEL, or using a 

schematic. Multiple formats for the lower-level source files are also supported in 

design entry.  

 Synthesis 

After design entry and optional simulation, Xilinx Synthesis Technology (XST), 

integrated in ISE, synthesizes VHDL, Verilog, or mixed language designs to create 

Xilinx specific netlist files. Then they are accepted as input to the implementation 

step. 

 Implementation 

After synthesis, ISE design implementation converts the logical design into a physical 

file format that can be downloaded to the selected target device. The implementation 

process includes four major steps: Translate, which merges the incoming netlists and 

constraints into a Xilinx design file; Map, which fits the design into the available 

resources on the target device; Place and Route, which places and routes the design 

to the timing constraints; Programming file generation, which creates a bitstream file 

that can be downloaded to the device 
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 Verification  

A design can be verified at several points in the design flow. The integrated ISE 

simulator or ModelSim software can be used to verify the functionality and timing of 

a design or a portion of the design. These simulators interpret VHDL or Verilog code 

into circuit functionality and displays logical results of the described HDL to 

determine correct circuit operation. In-circuit verification can also be carried out with 

the Chipscope software, also provided by Xilinx, after programming the FPGA 

device. 

 Device Configuration 

After generating a programming file, it is downloaded from a host computer to a 

Xilinx 

device on a development board. The Spartan-6 XC6SLX45T-FGG484-3C FPGA on 

SP605 Kit is used for in-circuit verification and BER testing. This device belongs to 

the Spartan-6 FPGA family. The designing and testing flow are shown in the figure 

below. 

 

Figure 6-1: Design and verification process of the FPGA implementations 
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6.2 Testing framework for SOVA Block 

Since SOVA is the main block in the turbo decoder, it was implemented using 

Verilog and tested alone to make sure. Testing SOVA was really required to point out 

the defects and errors that were made during the development phases and to ensure 

that it should not result into any failures because it can be very expensive to fix in the 

later stages of the turbo decoder development. 

Figure 6.2 describes the interfaces of the SOVA decoder, and the used signal names 

and Table 6.1 defines them. 

 

Figure 6-2: Interface of SOVA Block 

Table 6.1: Description of SOVA Signals 

Pin Direction Description 

Data_in_encoded Input RSC encoded data: is the quantized version of the 

received convolutional sequence of the RSC encoder 

after it’s sent over the channel 

Data_in_feedback Input RSC 1 encoded data: is the quantized version of the 

extrinsic sequence produced by the previous SOVA 

component decoder. 

Data_in_systematic Input Systematic data: is the quantized version  of the 

http://istqbexamcertification.com/what-is-defect-or-bugs-or-faults-in-software-testing/
http://istqbexamcertification.com/what-are-the-software-development-life-cycle-sdlc-phases/
http://istqbexamcertification.com/what-is-a-failure-in-software-testing/
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received systematic sequence of the RSC encoder after 

it’s sent over the channel 

Clk Input Clock: All synchronous operations occur on the rising 

edge of the clock signal. 

Reset Input Reset: is an active-high, asynchronous resets all the 

registers inside the SOVA 

Data_out_delta_soft Output Soft Output: the soft information output ( LLRs) that 

will be passed to the next SOVA 

Data_out_hard Output Hard Output: the hard decision sequence of the 

decoded data 

 

The SOVA decoder is designed to have 5 main blocks as shown in chapter X. Each 

block is described in structural RTL style in separate Verilog files and combined 

structurally in one file which described the exact connections and signal names as 

shown in the RTL schematic in fig 6.3. 

 

Figure 6-3: RTL Schematic of SOVA Module 
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6.3 Simulation Results of Behavioral RTL design 

The results in figures 6.4-6.5, are from the case where the frame length is equal to 

1024. The quantized systematic and encoded data are generated from MATLAB and 

stored in files.  The input files are read by the SOVA test bench to be used in 

simulation  

 

Figure 6-4: Loading SOVA Block with Input Data 

 

Figure 6-5: Output of SOVA Block 

6.4 Comparison with Software Reference 

The Verilog and MATLAB decoders were compared by simulating using frame 

length of 1024 over an AWGN channel. The SNR range was used from 0 to 5 dB. 8 

bits for quantization are used, traceback window of length = 70, and update window if 

length = 30 are used.  

MATLAB was used to generate noisy, encoded streams of data, and each decoder 

used a common traceback. A bit error rate (BER) comparison was done using only the 

information bit decisions, meaning the reliability outputs of each decoder were 

mapped to 0’s and 1’s before being compared for equality.  Figure 6.6 shows the 

comparison in BER performance.  
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Figure 6-6: Performance of SOVA 

6.5 Hardware Performance 

The Verilog used to define the SOVA decoder was synthesized, mapped, and routed. 

The processing was done using the Xilinx ISE design tools. A user constraint was 

defined for the clock signal to have a period of 6ns with a 50% duty cycle. This forced 

ISE to work harder in its attempts to find the maximum clock frequency. 

Tables 6.2 shows the hardware results obtained in the building of the designs. We see 

in this table that the overall footprint of the SOVA decoder is relatively small, with all 

builds using about 10% of the available LUTs. 

Table 6.2: FPGA Resources of SOVA Module 
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6.6 Turbo Decoder implementation 

 Scheduling of Computation at block level  

The encoded data is sent in a sequence of … systematic, parity1, parity2, systematic, 

parity1, parity2, … which gives a rate of 1/3 as specified in the 3GPP LTE standard. 

The received sequence has to be demultiplexed to SOVA1 and SOVA2. SOVA1 

expects to work on systemtic, and parity1 bits, while SOVA2 expects to work on 

parity2 and the interleaved version of systematic as shown in fig 6.7. 

 

Figure 6-7: Turbo Decoder Archeticture 

Each block of data needs to be processed through the SOVA Blocks number of times 

equals to the number of iterations specified for the turbo decoder. Due to data 

dependency, the processing needs to be sequential, that is SOVA1 iteration 1 

produces the results for SOVA2 iteration 1, SOVA2 iteration 1 produces the results 

for SOVA1 iteration 2, and so on. 

Thus it’s obvious that while SOVA1 is processing some data, SOVA2 is idle and 

waiting for SOVA1 to finish. The same happens for SOVA1 when SOVA2 is 

processing the data. Thus pipelining across the data blocks has to be implemented 
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with the cost of using more hardware resources and introducing more output delay. 

However, we preferred to simplify the design, so instead of using two blocks for 

SOVA decoder, only one block is used to save almost half of the hardware resources. 

The new connections are shown in fig 6.8.  

 

Figure 6-8: Implementation of Turbo Decoder 

 

The top level of the design shown in Fig. 6.8 shows that the turbo decoder is designed 

to have 4 main blocks. Brief descriptions for each block is shown as follows: 

1. SOVA block 

2. Memories. 

3. Interleavers, Deinterleaver. 

4. Control Unit  

The central control unit is used to generate the control pulses to synchronize 

the operation of the input buffer, SOVA, and memories. It also generates 

“select” signal to alternate between the interleaved and the original versions of 

data blocks back and forth at every half iteration. Its design is very simple. It 

has an internal counter used as a Timer to generate these control signals and 

these addresses at specific times.  
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Figure 6-9: Control Unit of Turbo Decoder 

The Interface between these modules and the control unit is implemented and also 

shown in the next RTL schematic 

 

Figure 6-10: RTL Schematic of Turbo Decoder 

 

 Turbo Decoder as a black box 



102 

 

After implementing the proposed turbo decoder, the interface was chosen carefully 

such that that module could be used properly without resulting in any errors or 

failures. Figure 6.11 describes the interfaces of the turbo decoder, and the used signal 

names and Table 6.3 defines them. 

 

 

 

 

 

 

 

 

 

Table 6.3: Describtion of Turbo Decoder Signals 

Pin Direction Description 

Systematic_Input Input Systematic data: is the quantized version  of 

the received systematic sequence of the RSC 

encoder after it’s sent over the channel 

Encoded_Systematic_Input Input RSC encoded data: is the quantized version of 

the received convolutional sequence of the RSC 

encoder after it’s sent over the channel 

Encoded_Interleaved_Input Input RSC 1 encoded data: is the quantized version 

of the extrinsic sequence produced by the 

previous SOVA component decoder. 

CLK Input Clock: All synchronous operations occur on the 

rising edge of the clock signal. 

CLK_Enable Input Clock Enable: When deasserted (Low), rising 

clock edges are ignored and the core is held in 

its current state. 

Reset Input Reset: A signal used to Reset the core to its 

initial state. 

Figure 6-11: Interface of Turbo Decoder 
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Start Input Start: A hand shaking signal used to indicate 

the start of input data reception 

Frame_Size_Choice Input Frame Size Choice: Each supported Frame 

size has an ID number that should be given to 

the core with the high edge of Start Signal to 

inform the core with the required frame size.  

Iterations_Required Input Number of Iterations Required: informs the 

core with the number of iterations to do on the 

data. The core supports from a single iteration 

up to 15 iterations which is a relatively big 

number. 

Ready_To_Get_Output Input Ready to Receive Bits: A hand shaking signal 

used to inform the core that the user is ready to 

receive decoded bits. 

Iteration_Passed Output Number of Iterations Passed: It is used to 

inform the user how many iterations has passed. 

Finished Output Finished: A hand shaking signal that is set to 

high when the core finished processing. 

Decoded_Bits Output Hard Output: the hard decision sequence of 

the decoded data 

Valid_Output Output Valid_Output: A hand shaking signal which is 

set to high when data on Decoded_Bits is Valid 

to take. 

Ready_To_Process Output Ready To Process A New Frame: A hand 

shaking signal that is Set to high when all 

decoded bits are output. 

 

 Additional Feature: 

This interface has another feature that is added to make the core is absolutely 

configurable. The feature is that the core is outputting the decoded bits after each 

iteration –not just after the required number of iterations- and Setting the 

Valid_Output signal to indicate the outputting of these bits. This is very useful to 

minimize the time for the error correction stage. For example, let’s suppose that the 
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core is asked to do a 6 iterations on the frame and that after 3 iterations the Code 

Redundancy Check (CRC) – using this feature – has found that the output after the 

third iteration is error free so no need for waiting another 3 iterations to have this 

output. It can take it and send a signal to an earlier stage to reset the decoder and give 

it another frame to process on it. 

 Generic Parameters 

Table 6.4 shows a list of parameters that can be adjusted before synthesis of the turbo 

decoder code. 

Table 6.4: Description of Turbo Decoder module parameters 

Parameter Description 

Data Bus Size Width of the input data bus according to the number 

quantization bits. 

Address Bus Size Width of the address bus according to the size of the 

largest frame. 

6.7 Simulation Results of Behavioral RTL design 

 Initialization and Data Input to Decoder 

Figures 6.12 shows an important instance from simulation results which reveal how 

handshaking signals work to receive data. The Start signal needs to be set with the 

entering all configurations and input data of the frame. 

 

Figure 6-12: handshaking signals: Start 
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 Decoder Output When Processing is Done 

Figures 6.13-6.16 show 4 important instances from simulation results which reveal 

how hand shaking signals work to output decoded bits and also show an example of 

the additional feature added to the Turbo Decoder. The following figure shows the 

Finished Signal Set to 1 after fininshing the required number of Iterations. 

 

Figure 6-13: handshaking signals: Finished 

Next Figure shows how the module using our core signaled that it is ready to get 

output and shows also how the core responded to it by outputing the decoded data and 

setting the Valid Signal. 

 

Figure 6-14: handshaking signals: Ready_To_Get_Output signal 

The Figure 6.15 shows how the core acknowledges his availability to process a new 

frame after finishing outputing the decoded data after the required number of 

iterations. 
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Figure 6-15: handshaking signals: Ready_To_Process signal 

The Figure below shows how the signals work to provide the new feature stated 

before.  

 

Figure 6-16: handshaking signals: Valid_Output signal 

6.8 Performance and Resource Usage 

The code has been extensively tested to optimize performance. A user constraint was 

defined for the clock signal to have a period of 27 ns with a 50% duty cycle. This 

forced ISE to work harder in its attempts to find the maximum clock frequency. Table 

6.5 shows the resource requirements. These results have been obtained for the chosen 

parameters mentioned previously in chapter 4. 
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Table 6.5: FPGA Resources used by Turbo Decoder 

 

6.9 BER Performance 

Figure 6.17 shows the difference between the BER performance in hardware and the 

MATLAB model. Marginal loss in performance is shown due to the finite length 

window and using quantization. 
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Figure 6-17: BER Comparision for frame size K=1024 using 1 iteration 

 

 

 

 

 

 

 

 PCI Express Interconnect 

This chapter presents an overview of the PCI Express architecture and key concepts. 

PCI Express is a high performance, general purpose I/O interconnect defined for a 
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wide variety of computing and communication platforms. Key PCI attributes, such as 

its usage model, load-store architecture, and software interfaces, are maintained, 

whereas its parallel bus implementation is replaced by a highly scalable, fully serial 

interface. PCI Express takes advantage of recent advances in point-to-point 

interconnects, Switch-based technology, and packetized protocol to deliver new levels 

of performance and features. Power Management, Quality Of Service (QoS), Hot-

Plug/Hot-Swap support, Data Integrity, and Error Handling are among some of the 

advanced features supported by PCI Express. [29] 

7.1 PCIe Link 

A Link represents a dual-simplex communications channel between two components. 

The fundamental PCI Express Link consists of two, low-voltage, differentially driven 

signal pairs: a Transmit pair and a Receive pair as shown in 7-1. 

 
Figure 7-1 PCI Express Link 

Some of the primary link’s attributes are the following. The PCI Express link consists 

of dual unidirectional differential Links, implemented as a Transmit pair and a 

Receive pair. Once initialized, each link must only operate at one of the supported 

signaling levels. In the first generation of PCI Express technology, there was only one 

signaling rate supported, which provided an effective 2.5 

Gigabits/second/Lane/direction of raw bandwidth. The second generation provides 

an effective 5.0 Gigabits/second/Lane/direction of raw bandwidth. The data rate is 

expected to increase in the future as the technology advances. 

A link must support at least one lane and each Lane represents a set of differential 

signal pairs (one pair for transmission, one pair for reception). To scale bandwidth, a 
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Link must aggregate multiple lanes denoted by xN where N may be any of the 

supported Link widths. An x8 link represents an aggregate bandwidth of 20 

Gigabits/second of raw bandwidth in each direction. The implementation of the 

hardware in this thesis is PCIe 1.0 x1. It should be noted that each link must support a 

symmetric number of Lanes in each direction, i.e., a x16 link indicates there are 16 

differential signal pairs in each direction. 

PCIe link speed is based on the generation and number of lanes in the link as shown 

in Table 7.1. [30] 

 
Table 7.1:PCI Express different generations speed comparison 

 

During hardware initialization, each PCI Express link is set up following a negotiation 

of lane widths and frequency of operation by the two agents at each end of the link. 

No firmware or operating system software is involved. [29] 

 

 

7.2 PCIe Clock Recovery 

At speeds starting at 2.5GHz, the point-to-point architecture is still a challenge to get 

working because the duration of each bit is so short that timing jitter (the time 

uncertainty surrounding the arrival of each bit) becomes a problem. And even if each 

signal pair had an associated clock pair transmitted along with it, the clock pair would 
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also be subject to timing 

jitter. So instead a new 

technique called 

"clock recovery" is used. 

Clock recovery is simple. 

Basically, for each 

signal pair, the pair 

receiver looks at the signal transitions (a bit 0 followed by a bit 1, or vice-versa), from 

which it can infer the position of surrounding bits. One problem is that if many 

successive bits are transmitted with the same value (like lots of 0's), no signal 

transition is seen. So extra bits are transmitted to ensure that signals transitions are not 

too far apart (which "re-synchronizes" the clock recovery mechanism). 

The extra bits are sent using a scheme called 8b/10b encoding, so that for each 8 bit 

of useful data, 10 bits are actually transmitted (a 20% overhead) in a specific way that 

guarantees enough signal transitions. But that also means that at 2.5GHz, we only get 

250MB/s of useful bandwidth per pair (instead of the 312MBps we would get without 

the encoding overhead), which results in 32-bit interface with 62.5 MHz clock 

7.3 PCIe Fabric Topology 

A fabric is composed of point-to-point Links that interconnect a set of components, an 

example fabric topology is shown in Figure 7.2. This figure illustrates a single fabric 

instance referred to as a hierarchy, composed of a Root Complex, multiple Endpoints 

(I/O devices), a Switch, and a PCI Express to PCI/PCI-X Bridge, all interconnected 

via PCI Express links.  
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 A Root Complex denotes the root of the I/O hierarchy that connects the 

CPU/memory 

subsystem to the I/O. As illustrated in Figure 1.2, a Root Complex may support one or 

more PCI Express ports. Each interface defines a separate hierarchy domain. Each 

hierarchy domain may be composed of a single Endpoint or a sub-hierarchy 

containing one or more Switch components and Endpoints. Endpoint refers to a type 

of Function that can be the Requester or the Completer of a PCI Express transaction 

either on its own behalf or on behalf of a distinct non-PCI Express device (other than 

a PCI device or Host CPU), e.g., a PCI Express attached graphics controller or a PCI 

Express-USB host controller. Endpoints are classified as either legacy, PCI Express, 

or Root Complex Integrated Endpoints. [29] 

7.4 PCIe Layering Overview 

The architecture of PCI Express is specified in terms of three discrete logical layers: 

the Transaction Layer, the Data Link Layer, and the Physical Layer. Each of these 

layers is divided into two sections: one that processes outbound (to be transmitted) 

information and one that processes inbound (received) information, as shown in 

Figure 7.3. 

Figure 7-2 PCI Express Topology 
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Figure 7-3 PCI Express Layering Diagram 

PCI Express uses packets to communicate information between components. Packets 

are formed in the Transaction and Data Link Layers to carry the information from the 

transmitting component to the receiving component. As the transmitted packets flow 

through the other layers, they are extended with additional information necessary to 

handle packets at those layers. At the receiving side the reverse process occurs and 

packets get transformed from their Physical Layer representation to the Data Link 

Layer representation and finally (for Transaction Layer Packets) to the form that can 

be processed by the Transaction Layer of the receiving device, the procedure is 

similar to the encapsulation of packets in the network layers of the internet, such as 

the Transport layer (TCP), the Network layer (IP) and the Link 

layer. 

PCI Express stack is composed of three layers. 

1. The physical layer. 

2. The data link layer. 

3. The transaction layer. 

The first two layers are the ones implemented for us in the PCI Express FPGA core 

(usually a combination of hard and soft core) and handling all the complexity. As a 

user, we work only in the transaction layer. 
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In more details: 

1. The physical layer: that's where the pins are toggling. The 8b/10b 

encoding/decoding and the lanes disassembly/reassembly are done there. 

2. The data link layer: that's where data integrity is checked (CRCs) and packets 

are re-transmitted if required. 

3. The transaction layer: that's the user level. Once a packet arrives here, it is 

guaranteed to be good data. 

 Transaction layer 

The upper layer of the architecture is the Transaction Layer. The Transaction Layer’s 

primary responsibility is the assembly and disassembly of Transaction Layer Packets 

(TLPs). TLPs are the packets used to communicate transactions, such as read and 

write, as well as certain types of events. The Transaction Layer is also responsible for 

managing credit-based flow control for TLPs. Every request packet requiring a 

response packet is implemented as a split transaction. Each packet has a unique 

identifier that enables response packets to be directed to the correct originator. The 

packet format supports different forms of addressing depending on the type of the 

transaction (Memory, I/O, Configuration, and Message). The Packets may also have 

attributes such as No Snoop, Relaxed Ordering, and ID-Based Ordering (IDO). The 

Transaction Layer supports four address spaces: it includes the three PCI address 

spaces (memory, I/O, and configuration) and adds Message Space. [29] 

The Transaction Layer, in the process of generating and receiving TLPs, exchanges 

Flow Control information with its complementary Transaction Layer implementations 

on the other side of the link. It is also responsible for supporting both software and 

hardware-initiated power management. Initialization and configuration functions 

require the Transaction Layer to store the link’s configuration that is generated by the 

processor, and the link capabilities generated by the physical layer hardware 

negotiation, such as width and operational frequency. A Transaction Layer’s Packet 

generation and processing services require it to generate TLPs from device core 

requests and convert received requests TLPs into request for the specific device core. 
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 Data link layer 

The middle layer in the stack, the Data Link Layer, serves as an intermediate stage 

between the Transaction Layer and the Physical Layer. The primary responsibilities of 

the Data Link Layer include link management and data integrity, including error 

detection and error correction. The transmission side of the Data Link Layer accepts 

TLPs assembled by the Transaction Layer, calculates and applies a data protection 

code and TLP sequence number, and submits them to Physical Layer for transmission 

across the link. The receiving Data Link Layer is responsible for checking the 

integrity of received TLPs and for submitting them to the Transaction Layer for 

further processing. On detection of TLP errors, this layer is responsible for requesting 

re-transmission of TLPs until information is correctly received, or the link is 

considered to have failed. The Data Link Layer also generates and consumes packets 

that are used for Link management functions. To differentiate these packets from 

those used by the Transaction Layer (TLP), the term Data Link Layer Packet (DLLP) 

will be used when referring to packets that are generated and consumed at the Data 

Link Layer. Some of the services of the Data Link Layer regarding data protection, 

error checking and re-transmission are CRC generation, transmitted TLP storage for 

data link level retry, error checking, TLP acknowledgment are retry messages and 

error indication for error reporting and logging. 

  Physical layer 

The Physical Layer includes all circuitry for interface operation, including driver and 

input buffers, parallel-to-serial and serial-to-parallel conversion, PLLs, and 

impedance matching circuitry. It includes also logical functions related to interface 

initialization and maintenance. The Physical Layer exchanges information with the 

Data Link Layer in an implementation specific format. This Layer is responsible for 

converting information received from the Data Link Layer into an appropriate 

serialized format and transmitting it across the PCI Express Link at a frequency and 

width compatible with the device connected to the other side of the Link. The PCI 

Express architecture has “hooks” to support future performance enhancements via 

speed upgrades and  advanced encoding techniques. The future speeds, encoding 

techniques or media may only impact the Physical Layer definition. [29] 
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7.4.3.1 Logical Sub-block 

Takes care of symbol encoding, framing, data scrambling, link initialization and 

training, lane to lane de-skew. 

Electrical Sub-block 

The electrical sub-block section defines the physical layer of the PCI Express that 

consists of reference clock, transmitter, receiver and channel. This section defines the 

electrical layer parameters required to guarantee the interoperability between the 

above listed PCI Express parameters. 

7.5 Types of PCI Express Protocol 

There are two types for implementation PCIe interface: 

 Soft 

In this type we design and implement all layer of PCIe protocol from 

Application layer until Physical layer using VHDL or Verilog language. 

 Hardened 

In this type we only design and implement the Application layer and the other 

layer already exist as hard IP block in the FPGA. [31] 

 
Figure 7-4 PCI Express soft and hardened implementation 
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7.6 Why PCI Express Interface? 

PCIe is high-performance, scalable, and feature-rich serial protocol with data 

transfer rates starts from 2.5 GT/s to to 8.0 GT/s and most of GPPS have native 

support for PCIe bus, so it is the best choice for this project where the main purpose is 

to offload the most complex unit (Turbo Decoder) to highly parallel platform (FPGA) 

to allow the implementation of L1 DSP computationally intensive processing on 

General Purpose Processor (GPP) based architectures. Since PCIe is supported by 

most GPPs and has high data transfer rate, it's the best choice for the project. 

In our project, The Spartan-6 FPGA SP605 Evaluation Kit (shown in figure 7.5) 

from Xilinx is used to implement the turbo decoder and interface it with the 

workstation through PCIe interface [32]. Since the Spartan-6 FPGA has hard IP 

block for PCIe Integrated Endpoint, hardened implementation is used where only the 

application layer is developed and the PCI Express stack (Transaction layer, Data link 

layer, Physical layer) is generated as IP core using Xilinx Coregen. 

 

Figure 7-5 The Spartan-6 FPGA SP605 Evaluation Kit [32] 
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The Spartan-6 FPGA Integrated Endpoint Block for PCI Express has the 

specifications shown in Figure 7.6 [33]. 

 

Figure 7-6 Spartan-6 FPGA IP Core Specifications [33] 
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 PCI Express Linux Driver and RIFFA 

Framework 

 

Device drivers take on a special role in the Linux kernel. They are distinct 

“blackboxes” that make a particular piece of hardware respond to a defined internal 

programming interface, additionally they hide completely the details of how the 

device works. User activities are performed by means of a set of standardized calls 

that are independent of the specific driver. Mapping those calls to device-specific 

operations that act on real hardware is the role of the device driver. This programming 

interface is such that drivers can be built separately from the rest of the kernel and 

then plugged in at runtime when needed. This modularity makes Linux drivers easy to 

write, to the point that there are now hundreds of them available. One of the features 

of the Linux operating system is the ability to extend at runtime the set of features 

offered by the kernel. This means that you can add functionality to the kernel (and 

remove functionality as well) while the system is up and running. Each piece of code 

that can be added to the kernel at runtime is called a module. The Linux kernel offers 

support for quite a few different types (or classes) of modules, including, but not 

limited to, device drivers. Each module is made up of object code that can be 

dynamically linked to the running kernel by the insmod program and can be unlinked 

by the rmmod program. 

8.1 PCI Addressing 

Each PCI peripheral is identified by a bus number, a device number, and a function 

number. The PCI specification permits a single system to host up to 256 buses, but 

because 256 buses are not sufficient for many large systems, Linux now supports PCI 

domains. Each PCI domain can host up to 256 buses. Each bus hosts up to 32 devices, 

and each device can be a multifunction board (such as an audio device with an 

accompanying CD-ROM drive) with a maximum of eight functions. [34] 

During boot, the BIOS-type boot firmware (or the kernel itself if so configured) walks 

the PCI bus and assigns resources such as interrupt levels and I/O base addresses. The 

device driver gleans this assignment by peeking at a memory region called the PCI 

configuration space. PCI devices possess 256 bytes of configuration memory. The top 
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64 bytes of the configuration space is standardized and holds registers that contain 

details such as the status, interrupt line, and I/O base addresses. PCIe  offers an 

extended configuration space of 4KB. [35] 

PCI drivers register the vendor IDs, device IDs, and class codes that they support with 

the PCI subsystem from the configuration space as shown in Table 8-1 [35] 

 

Table 8.1: PCI Configuration Space 

 

  

Base Address Registers (BARs) serve two purposes. Initially they serve as a 

mechanism for the device to request blocks of address space in the system memory 

map. After the BIOS or OS determines what addresses to assign to the device, The 

Base Address registers are programmed with the addresses and the device uses this 

information to perform decoding. 

8.2 Direct Memory Access 

Direct memory access, or DMA, is the advanced topic that completes our overview of 

how to create a modern PCI driver. DMA is the hardware mechanism that allows 

peripheral components to transfer their I/O data directly to and from main memory 

without the need to involve the system processor. Use of this mechanism can greatly 

increase throughput to and from a device, because a great deal of computational 

overhead is eliminated. [34] 

Let’s begin with the mechanism of how a DMA transfer takes place, considering only 

input transfers to simplify the discussion. Data transfer can be triggered in two ways: 

either the software asks for data (via a function such as read) or the hardware 
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asynchronously pushes data to the system. In the first case, the steps involved can be 

summarized as follows: 

1- When a process calls read, the driver method allocates a DMA buffer and 

instructs the hardware to transfer its data into that buffer. The process is put to 

sleep. 

2- The hardware writes data to the DMA buffer and raises an interrupt when it’s 

done. 

3- The interrupt handler gets the input data, acknowledges the interrupt, and 

awakens the process, which is now able to read data.  

The second case comes about when DMA is used asynchronously. This happens, for 

example, with data acquisition devices that go on pushing data even if nobody is 

reading them. In this case, the driver should maintain a buffer so that a subsequent 

read call will return all the accumulated data to user space. The steps involved in this 

kind of transfer are slightly different: 

1- The hardware raises an interrupt to announce that new data has arrived. 

2- The interrupt handler allocates a buffer and tells the hardware where to 

transfer its data. 

3- The peripheral device writes the data to the buffer and raises another interrupt 

when it’s done. 

4- The handler dispatches the new data, wakes any relevant process, and takes 

care of housekeeping. 

The processing steps in all of these cases emphasize that efficient DMA handling 

relies on interrupt reporting. While it is possible to implement DMA with a polling 

driver, it wouldn’t make sense, because a polling driver would waste the performance 

benefits that DMA offers over the easier processor-driven I/O. As far as interrupts are 

concerned, PCI is easy to handle. By the time Linux boots, the computer’s firmware 

has already assigned a unique interrupt number to the device, and the driver just needs 

to use it. The interrupt number is stored in configuration register 60 

(PCI_INTERRUPT_LINE), which is one byte wide. 
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  DMA mappings 

A DMA mapping is a combination of allocating a DMA buffer and generating an 

address for that buffer that is accessible by the device. The PCI code distinguishes 

between two types of DMA mappings, depending on how long the DMA buffer is 

expected to stay around, Coherent and Streaming DMA mappings. 

Coherent DMA mappings usually exist for the life of the driver. A coherent buffer 

must be simultaneously available to both the CPU and the peripheral. As a result, 

coherent mappings must live in cache-coherent memory. Coherent mappings can be 

expensive to set up and use. 

Streaming mappings are usually set up for a single operation. The kernel developers 

recommend the use of streaming mappings over coherent mappings whenever 

possible, and there are two reasons for this recommendation. The first is that, on 

systems that support mapping registers, each DMA mapping uses one or more of them 

on the bus. Coherent mappings, which have a long lifetime, can monopolize these 

registers for a long time, even when they are not being used. The other reason is that, 

on some hardware, streaming mappings can be optimized in ways that are not 

available to coherent mappings. [34] 

 How a PCIe driver works 

The BAR address space (mapped in memory or I/O space) is used for control 

registers. The driver allocates buffers in RAM. The addresses of these buffers are 

written in control registers. The device reads and writes from the buffer via DMA. All 

this it timed out and orchestrated via control registers and interrupts.  [36]  

8.3 RIFFA Framework 

RIFFA (Reusable Integration Framework for FPGA Accelerators) is a simple 

framework for communicating data from a host CPU to a FPGA via a PCI Express 

bus. The framework requires a PCIe enabled workstation and a FPGA on a board with 

a PCIe connector. RIFFA supports Windows and Linux, Altera and Xilinx, 

with bindings for C/C++, Python, MATLAB and Java. 

RIFFA provides high bandwidth, low latency communication and synchronization 

between FPGA devices and computers equipped with a PCIe connection. It provides 
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this via simple software APIs and a FIFO hardware interface. On the software side 

there are two main functions: data send and data receive. These functions are exposed 

via user library in C. The driver supports multiple FPGAs (up to 5) per system. Users 

can communicate with FPGA IP cores by writing only a few lines of code. On the 

hardware side, users access an interface with independent transmit and receive 

signals. The signals provide transaction handshaking and a first word fall through 

FIFO interface for reading/writing data to the host. No knowledge of bus addresses, 

buffer sizes, or PCIe packet formats is required. Simply send data on a FIFO interface 

and receive data on a FIFO interface. RIFFA does not rely on a PCIe Bridge and 

therefore is not subject to the limitations of a bridge implementation. Instead, RIFFA 

works directly with the PCIe Endpoint and can run fast enough to saturate the PCIe 

link. 

RIFFA communicates data using direct memory access (DMA) transfers and 

interrupt signaling. This achieves high bandwidth over the PCIe link. 

 RIFFA 1.0 

The initial version of RIFFA is based on a set of components provided by 

Xilinx. It relies on a PCIe Endpoint, a PCIe Bridge, and a DMA core available in 

Xilinx’s Embedded Development Kit. It supports a single FPGA per host PC. [37] 

 RIFFA 2.1 

RIFFA 2.1 is a complete rewrite of the original release. It supports most modern 

FPGA devices from Xilinx and Altera across PCIe Gen 1, Gen 2, and Gen 3. The 

original release only supports the Xilinx Virtex 5 family.  

RIFFA 1.0 requires the use of a Xilinx PCIe Processor Local Bus (PLB) Bridge core. 

Xilinx has since moved away from PLB technology and deprecated this core. The 

PLB Bridge core limited the PCIe configuration to a Gen 1 ×1 link. Additionally, the 

bridge core did not support overlapping PLB transactions. This did not have an effect 

on the upstream direction because upstream transactions are one way. Downstream 

transactions, however, must be sent by the core and serviced by the host PC’s root 

complex. Not being able to overlap transactions on the PLB bus results in only one 

outstanding downstream PCIe transaction at a time. This limits the maximum 

throughput for upstream and downstream transfers to 181MB/s and 25MB/s, 
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respectively. The relatively low downstream bandwidth was a chief motivator for 

improving upon RIFFA 1.0. 

RIFFA 1.0 made use of a simple DMA core that uses PLB addressing to transfer data. 

The hardware interface exposes a set of DMA request signals that must be managed 

by the user core in order to complete DMA transfers. RIFFA 2.1 exposes no bus 

addressing or DMA transfer signals in the interface. Data is read and written directly 

from and to FWFT FIFO interfaces on the hardware end. On the software end, data is 

read and written from and to byte arrays. The software and hardware interfaces have 

been significantly simplified since RIFFA 1.0. 

On the host PC, contiguous user space memory is typically scattered across many 

noncontiguous pages in physical memory. This is an artifact of memory virtualization 

and makes transfer of user space data difficult. Earlier versions of RIFFA had a single 

packet DMA engine that required physically scattered user space data be copied 

between a physically contiguous block of memory when being read or written to. 

Though simpler to implement, this limits transfer bandwidth because of the time 

required for the CPU to copy data. RIFFA 2.1 supports a scatter gather DMA engine. 

The scatter gather approach allows data to be read or written to directly from/to the 

physical page locations without the need to copy data. 

RIFFA 1.0 supports only a single FPGA per host PC with C/C++ bindings for Linux. 

Version 2.1 supports up to 5 FPGAs that can all be addressed simultaneously from 

different threads. Additionally, RIFFA 2.1 has bindings for C/C++, Java, Python, and 

Matlab for both Linux and Windows. Lastly, RIFFA 2.1 is capable of reaching 97% 

maximum achievable PCIe link utilization during transfers. RIFFA 1.0 is not able to 

exceed more than 77% in the upstream direction or more than 11% in the downstream 

direction. 

 Design 

RIFFA is based on the concept of communication channels between software threads 

on the CPU and user cores on the FPGA. A channel is similar to a network socket in 

that it must first be opened, can be read and written, and then closed. However, unlike 

a network socket, reads and writes can happen simultaneously (if using two threads.) 

Additionally, all writes must declare a length so the receiving side knows how much 

data to expect. Each channel is independent. RIFFA supports up to 12 channels per 
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FPGA. Up to 12 different user cores can be accessed directly by software threads on 

the CPU, simultaneously. Designs requiring more than 12 cores per FPGA can share 

channels. This increases the number of effective channels, but requires users to 

manually multiplex and de-multiplex access on a channel. Before a channel can be 

accessed, the FPGA must be opened. RIFFA supports multiple FPGAs per system (up 

to five). This limit is software configurable. Each FPGA is assigned an identifier on 

system start up. Once opened, all channels on that FPGA can be accessed without any 

further initialization. Data is read and written directly from and to the channel 

interface. On the FPGA side, this manifests as a First Word Fall Through (FWFT) 

style FIFO interface for each direction. On the software side, function calls support 

sending and receiving data with byte arrays. 

Memory read/write requests and software interrupts are used to communicate between 

the workstation and FPGA. The FPGA exports a configuration space accessible from 

an operating system device driver. The device driver accesses this address space when 

prompted by user application function calls or when it receives an interrupt from the 

FPGA. This model supports low-latency communication in both directions. Only 

status and control values are sent using this model. Data transfer is accomplished with 

large payload PCIe transactions issued by the FPGA. The FPGA acts as a bus master 

scatter gather DMA engine for both upstream and downstream transfers. In this way, 

multiple FPGAs can operate simultaneously in the same workstation with minimal 

CPU system load. 

The details of the PCIe protocol, device driver, DMA operation, and all hardware 

addressing are hidden from both the software and hardware. This means some level of 

flexibility is lost for users to configure custom behaviors. For example, users cannot 

set up custom PCIe Base Address Register (BAR) address spaces and map them 

directly to a user core. Nor can they implement quality of service policies for channels 

or PCIe transaction types. However, we feel any loss is more than offset by the ease 

of programming and design. 

 RIFFA Software 

8.3.4.1 Software Architecture 

On the host PC is a kernel device driver and a set of language bindings. The device 

driver is installed into the operating system and is loaded at system startup. It handles 
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registering all detected FPGAs configured with RIFFA cores. Once registered, a small 

memory buffer is preallocated from kernel memory. This buffer facilitates sending 

scatter gather data between the workstation and FPGA. 

A user library provides language bindings for user applications to be able to call into 

the driver. The user library exposes the software interface described in Section 

8.3.4.2, when an application makes a call into the user library, the thread enters the 

kernel driver and initiates a transfer. [38] 

At runtime, a custom communication protocol is used between the kernel driver and 

the RX Engine. The protocol is encoded in PCIe payload data and address offset. The 

protocol consists of single word reads and writes to the FPGA BAR address space. 

The FPGA communicates with the kernel driver by firing a device interrupt. The 

driver reads an interrupt status word from the FPGA to identify the conditions of each 

channel. The conditions communicated include start of a transfer, end of a transfer, 

and request for scatter gather elements. The protocol is designed to be as 

lightweight as possible. For example, a write of three words is all that is needed to 

start a downstream transfer. Once a transfer starts, the only communication between 

the driver and RIFFA is to provide additional scatter gather elements or signal transfer 

completion. [38] 

8.3.4.2 Software Interface 

The interface on the software side is consisted by a few functions. Data transfers can 

be initiated by both sides, PC functions initiate downstream transfers and hardware 

cores initiate upstream transfers. The function of the RIFFA 2.1 software interface is 

listed in Table 8-2 (for the C/C++ API). [38] 

 
Table 8.2: Functions of RIFFA API 

 
There are four primary functions in the API: open, close, send, and receive. The API 

supports accessing individual FPGAs and individual channels on each FPGA. There is 



127 

 

also a function to list the RIFFA-capable FPGAs installed on the system. A reset 

function is provided that triggers the FPGA channel reset signal. The RIFFA 2.1 

library and device driver provide useful messages about transfer events. The messages 

will print to the operating system’s kernel log [37]. Here are the library functions 

provided by the driver to the user space applications using RIFFA: 

 

 int fpga_list(fpga_info_list * list); 
 

Populates the fpga_info_list pointer with all FPGAs registered in the 

system. 

Returns 0 on success, a negative value on error. 

 

 fpga_t * fpga_open(int id); 
Initializes the FPGA specified by id. On success, returns a pointer to an 

fpga_t 

struct. On error, returns NULL. Each FPGA must be opened before any 

channel can be accessed. Once opened, any number of threads can use the 

fpga_t struct. 

 

 void fpga_close(fpga_t * fpga); 
 

      Cleans up memory/resources for the FPGA specified by the fd descriptor. 

 

 int fpga_send(fpga_t * fpga, int chnl, void * data, int len, int destoff, 

int last,long long timeout); 

Sends len words (4 byte words) from data to FPGA channel chnl using the 

fpga_t struct. The FPGA channel will be sent len, destoff, and last. If last 

is 1 the channel should interpret the end of this send as the end of a 

transaction. If last is 0, the channel should wait for additional sends before 

the end of the 

transaction. If timeout is non-zero, this call will send data and wait up to 

timeout ms for the FPGA to respond (between packets) before timing out. 

If 112 timeout is zero. Multiple threads sending on the same channel may 

result in corrupt data or error. On success, returns the number of words 

sent. On error returns a negative value. 

 int fpga_recv(fpga_t * fpga, int chnl, void * data, int len, long long 

timeout); 
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Receives data from the FPGA channel chnl to the data pointer, using the 

fpga_t struct. The FPGA channel can send any amount of data, so the data 

array should be large enough to accommodate this data. The len parameter 

specifies the actual size of the data buffer in words (4 byte words). The 

FPGA channel will specify an offset which will determine where in the 

data array the data will start being written. If the amount of data (plus 

offset) exceed the size of the data array (len), then that data will be 

discarded. If timeout is non-zero, this call will wait up to timeout ms for 

the FPGA to respond (between packets) before timing out. If timeout is 

zero, this call may block indefinitely. Multiple threads receiving on the 

same channel may result in corrupt data or error. On success, it returns the 

number of words written to the data array. On error returns a negative 

value. 

 void fpga_reset(fpga_t * fpga); 

 

Resets the state of the FPGA and all transfers across all channels. This is 

meant to be used as an alternative to rebooting if an error occurs while 

sending/receiving.  

NOTE: Calling this function while other threads are sending or receiving 

will result in unexpected behavior. 

 Hardware Interface 

A single RIFFA channel has two sets of signals, one for receiving data (RX) and one 

for sending data (TX). RIFFA has simplified the interface to use a minimal handshake 

and receive/send data using a FIFO with first word fall through semantics (valid+read 

interface). The clocks used for receiving and sending can be asynchronous from each 

other and from the PCIe interface (RIFFA clock). The tables 8-3, 8-4 below describes 

the ports of the interface. The input/output designations are from your our core’s 

perspective. The interface is pretty similar to the AXI-4 interface provided by the 

Xilinx core, but it has added functionality for the current use case. 
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Table 8.3: Hardware Interface Receive Ports 
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Table 8.4: Hardware Interface Transmit Ports 

 

 

The timing diagram in figure 8-1 shows the RIFFA channel receiving a data transfer 

of 16 (4byte) words (64 bytes). When CHNL_RX is high, CHNL_RX_LAST, 

CHNL_RX_LEN, and CHNL_RX_OFF will all be valid. In this example, 

CHNL_RX_LAST is high, indicating to the user core that there are no other 

transactions following this one and that the user core can start processing the received 

data as soon as the transaction completes. CHNL_RX_LAST may be set low if 

multiple transactions will be initiated before the user core should start processing 

received data. Of course, the user core will always need to read the data as it arrives, 

even if CHNL_RX_LAST is low. 

 
Figure 8-1:Receive Timing Diagram 

 

In the example CHNL_RX_OFF is 0. However, if the PC specified a value for offset 

when it initiated the send, that value would be present on the CHNL_RX_OFF signal. 

The 31 least significant bits of the 32 bit integer specified by the PC thread are 
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transmitted. The CHNL_RX_OFF signal is meant to be used in situations where data 

is transferred in multiple sends and the user core needs to know where to write the 

data (if, for example it is writing to BRAM or DRAM). 

The user core must pulse the CHNL_RX_ACK signal high for at least one cycle to 

acknowledge the receive transaction. The RIFFA channel will not recognize that the 

transaction has been received until it receives a CHNL_RX_ACK pulse. The 

combination of CHNL_RX_DATA_VALID high and CHNL_RX_DATA_REN high 

consumes the data on CHNL_RX_DATA. New data will be provided until the FIFO 

is drained. Note that the FIFO may drain completely before all the data has been 

received. The CHNL_RX signal will remain high until all data for the transaction has 

been received into the FIFO. Note that CHNL_RX may go low while 

CHNL_RX_DATA_VALID is still high. That means there is still data in the FIFO to 

be read by the user core. Attempting to read (asserting CHNL_RX_DATA_REN 

high) while CHNL_RX_DATA_VALID is low, will have no affect on the FIFO. The 

user core may want to count the number of words received and compare against the 

value provided by CHNL_RX_LEN to keep track of how much data is expected. [39] 

The diagram in figure 8-2 shows the RIFFA channel sending a data transfer of 16 (4 

byte) words (64bytes). It’s nearly symmetric to the receive example. The user core 

sets CHNL_TX high and asserts values for CHNL_TX_LAST, CHNL_TX_LEN, and 

CHNL_TX_OFF for the duration CHNL_TX is high. CHNL_TX must remain high 

until all data has been consumed. RIFFA will expect to read CHNL_TX_LEN words 

from the user core. Any more data provided may be consumed, but will be discarded. 

The user core can provide less than CHNL_TX_LEN words and drop CHNL_TX at 

any point. Dropping CHNL_TX indicates the end of the transaction. Whatever data 

was consumed before CHNL_TX was dropped will be sent and reported as 

received to the software thread. [39] 
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Figure 8-2: Transmit Timing Diagram. 

 

As with the receive interface, setting CHNL_TX_LAST high will signal to the PC 

thread to not wait for additional transactions (after this one). Setting CHNL_TX_OFF 

will cause the transferred data to be written into the PC thread’s buffer starting 

CHNL_TX_OFF 4 bytes words from the beginning. This can be useful when sending 

multiple transactions and needing to order them in the PC thread’s receive buffer. 

CHNL_TX_LEN defines the length of the transaction in 4 byte words. As the 

CHNL_TX_DATA bus can be 32 bits, 64 bits, or 128 bits wide, it may be that the 

number of 32 bit words the user core wants to transfer is not an even multiple of the 

bus width. In this case, CHNL_TX_DATA_VALID must be high on the last cycle 

CHNL_TX_DATA has at least 1 word to send. The channel will only send as many 

words as is specified by CHNL_TX_LEN. So any additional data consumed, past the 

last word, will be discarded. 

Shortly after CHNL_TX goes high, the RIFFA channel will pulse high the 

CHNL_TX_ACK and begin to consume the CHNL_TX_DATA bus. The 

combination of CHNL_TX_DATA_VALID high and CHNL_TX_DATA_REN high 

will consume the data currently on CHNL_TX_DATA. New data can be consumed 

every cycle. After all the data is consumed, CHNL_TX can be dropped. Keeping 

CHNL_TX_DATA_VALID high while CHNL_TX_DATA_REN is low will have no 

effect. 

 Architecture 

On the FPGA, the RIFFA architecture is a scatter gather bus master DMA design 

connected to a vendor-specific PCIe Endpoint core, could be the core from Xilinx that 

we are using or an equivalent core from Altera. The PCIe Endpoint core drives the 

gigabit transceivers and exposes a bus interface for PCIe formatted packet data. 
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RIFFA cores use this interface to translate between payload data and PCIe packets. A 

set of RIFFA channels provide read and write asynchronous FIFOs to user cores that 

deal exclusively with payload data. 

 
Figure 8-3: RIFFA Hardware Architecture. 

 

The RIFFA cores are driven by a clock derived from the PCIe reference clock. This 

clock’s frequency is a product of the PCIe link configuration. It runs fast enough to 

saturate the PCIe link if data were sent every cycle. User cores do not need to use this 

clock for their CHNL_TX_CLK or CHNL_RX_CLK. Any clock can be used by the 

user core. The frequency of the clock is determined by the Xilinx core and is chosen 

by the configuration of the PCIe Link we are going to support, for example if we 

create an endpoint for a 1 lane setup we need to use 62.5 MHz clock. 

The PCIe link configuration also determines the width of the PCIe data bus. This 

width can be 32, 64, or 128 bits wide. Writing a DMA engine that supports multiple 

widths requires different logic when extracting and formatting PCIe data. For 

example, with a 32-bit interface, header packets can be generated one 4-byte word per 

cycle. Only one word can be sent/received per cycle. Therefore, the DMA engine only 

needs to process one word at a time, containing either header or payload data. 

However, with a 128-bit interface, a single cycle presents four words per cycle. This 

may require processing three header packets and the first word of payload in a single 
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cycle. It is possible (and simpler) to design a scatter gather DMA engine that does not 

perform such advanced and flexible processing. However, the result is a much lower 

performing system that does not take advantage of the underlying link as efficiently. 

There are many examples of this in research and industry. [38] 

Upstream transfers are initiated by the user core via the CHNL_TX_* ports. Data 

written to the TX FIFO is split into chunks appropriate for individual PCIe write 

packets. RIFFA will attempt to send the maximum payload per packet. It must also 

avoid writes that cross physical memory page boundaries, as this is prohibited by the 

PCIe specification. In order to send the data, the locations in host PC memory need to 

be retrieved. This comes in the form of scatter gather elements. Each scatter gather 

element defines a physical memory address and size. These define the memory 

locations into which the payload data will be written. Therefore, each channel first 

requests a read of list of scatter gather elements from the host. 

Once the channel has the scatter gather elements, they issue write packets for each 

chunk of data. Channels operate independently and share the upstream PCIe direction. 

The TX Engine provides this multiplexing. [38] 

The TX Engine drives the upstream direction of the vendor-specific PCIe Endpoint 

interface. It multiplexes access to this interface across all channels. Channel requests 

are serviced in a round-robin fashion. The TX Engine also formats the requests into 

full PCIe packets and sends them to the vendor-specific PCIe Endpoint. The TX 

Engine is fully pipelined and can write a new packet every cycle. Throttling on data 

writes only occurs if the vendor specific PCIe Endpoint core cannot transmit the data 

quickly enough. The Endpoint may apply back pressure if it runs out of transmit 

buffers. As this is a function of the host PC’s root complex acknowledgment scheme, 

it is entirely system dependent. [38] 

Downstream transfers are initiated by the host PC via the software APIs and manifest 

on the CHNL_RX_* ports. Once initiated, the channel cores request scatter gather 

elements for the data to transfer. Afterward, individual PCIe read requests are made 

for the data at the scatter gather element locations. Care is also taken to request data 

so as to not overflow the RX FIFO. Each channel throttles the read request rate to 

match the rate at which the RX FIFO is draining. Channel requests are serviced by the 

TX Engine. When the requested data arrives at the vendor Endpoint, it is forwarded to 
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the RX Engine. There the completion packet data is reordered to match the requested 

order. Payload data is then provided to the channel. 

The RX Engine core is connected to the downstream ports on the vendor-specific 

PCIe Endpoint. It is responsible for extracting data from received PCIe completions 

and servicing various RIFFA device driver requests. It also demultiplexes the received 

data to the correct channel. The RX Engine processes incoming packets at line rate. It 

therefore never blocks the vendor-specific PCIe Endpoint core. Data received by the 

Endpoint will be processed as soon as it is presented to the RX Engine, avoiding the 

possibility of running out of buffer space. After extracting payload data, the RX 

Engine uses a Reordering Queue module to ensure the data is forwarded to the 

channel in the order it was requested. [38] 

8.3.6.1 Upstream transfers 

A sequence diagram for an upstream transfer is shown in Figure 8-4. An upstream 

transfer is initiated by the FPGA. However, data cannot begin transferring until the 

user application calls the user library function fpga_recv. Upon doing so, the thread 

enters the kernel driver and begins the pending upstream request. If the upstream 

request has not yet been received, the thread waits for it to arrive. The user can set a 

timeout parameter upon calling the fpga_recv function. On the diagram, the user 

library and device driver are represented by the single node labeled “RIFFA Library. 

Servicing the request involves building a list of scatter gather elements that identify 

the pages of physical memory corresponding to the user space byte array. The scatter 

gather elements are written to a small shared buffer. This buffer location and content 

length are provided to the FPGA so that it can read the contents. Each page 

enumerated by the scatter gather list is pinned to memory to avoid costly disk paging. 

The FPGA reads the scatter gather data, then issues write requests to memory for the 

upstream data. If more scatter gather elements are needed, the FPGA will request 

additional elements via an interrupt. Otherwise, the kernel driver waits until all the 

data is written. The FPGA provides this notification, again via an interrupt. [38] 
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Figure 8-4: Upstream Data Transfer 

 

After the upstream transaction is complete, the driver reads the FPGA for a final 

count of data words written. This is necessary as the scatter gather elements only 

provide an upper bound on the amount of data that is to be written. This completes the 

transfer and the function call returns to the application with the final count. [38] 

8.3.6.2 Downstream transfers 

A similar sequence exists for downstream transfers. Figure 8-5 illustrates this 

sequence. In this direction, the application initiates the transfer by calling the library 

function fpga_send. The thread enters the kernel driver and writes to the FPGA to 

initiate the transfer. Again, a scatter gather list is compiled, pages are pinned, and the 

FPGA reads the scatter gather elements. The elements provide location and length 

information for FPGA issued read requests. The read requests are serviced and the 

kernel driver is notified only when morescatter gather elements are needed or when 

the transfer has completed. [10] 

Upon completion, the driver reads the final count read by the FPGA. In error-free 

operation, this value should always be the length of all the scatter gather elements. 

This count is returned to the user application. The kernel driver is thread safe and 

supports multiple threads in multiple transactions simultaneously. For a single 

channel, an upstream and downstream transaction can be active simultaneously, 

driven by two different threads. But multiple threads cannot simultaneously attempt a 



137 

 

transaction in the same direction. The data transfer will likely fail as both threads 

attempt to service each other’s transfer events. 

 

Figure 8-4: Downstream Data Transfer. 

 RIFFA 2.1 FPGA Support 

RIFFA 2.1 relies on a Vendor PCIe Endpoint core to drive the transceivers. These are 

lowest-level interface that FPGA vendors provide. RIFFA 2.1 is tested with the 

following Xilinx and Altera Endpoint cores: 

 Xilinx Spartan 6 Integrated Block for PCI Express ver. 2.4 

 Xilinx Virtex 6 Integrated Block for PCI Express ver. 2.5 

 Xilinx 7 Series Integrated Block for PCI Express vers. 1.6, 1.8, 2.1 

 Altera IP Compiler for PCI Express (Stratix IV, Cyclone IV) 

 Altera HardIP For PCI Express (Stratix V) 

 RIFFA 2.1 Bandwidth 

RIFFA 2.1 is significantly more efficient than its predecesors. The RIFFA 2.1 is able 

to saturate the PCIe link for nearly all link configurations supported. Figure 8-5 shows 

the performance of designs using the 32 bit, 64 bit, and 128 bit interfaces. The colored 

bands show the bandwidth region between the theoretical maximum and the 

maximum achievable. PCIe Gen 1 and 2 use 8 bit / 10 bit encoding which limits the 

maximum achievable bandwidth to 80% of the theoretical. Our experiments show that 
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RIFFA can achieve 80% of the theoretical bandwidth in nearly all cases. The 128 bit 

interface achieves 76% of the theoretical maximum. 

 
Figure 8-5: RIFFA bandwidth. 

 

In our project, we used Xilinx Coregen to generate the PCIe Endpoint core (Xilinx 

Spartan 6 Integrated Block for PCI Express ver. 2.4) for Spartan-6 (LX45T) FPGA 

SP605 Evaluation Kit and Combine the PCIe Endpoint core’s source HDL with the 

RIFFA 2.1 HDL. More details about generating the PCIe Endpoint core and 

combining with RIFFA 2.1 HDL are illustrated in Chapter 9.  

As illustrated in this chapter that RIFFA framework can support up to 12 channels per 

FPGA, where each channel communicates to a thread in the CPU. In our design 2 

channels are used to interface the TURBO Decoder with 2 threads running on the 

CPU. More details about the interfacing are shown in Chapter 9. 

 

 Turbo Interfacing 

In this chapter, the process of implementing the Turbo decoder HDL (developed in 

chapter 6) on Spartan-6 FPGA SP605 Evaluation Kit and interfacing it through 

https://www.xilinx.com/products/boards-and-kits/ek-s6-sp605-g.html#documentation
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PCIe link with workstation that has Linux kernels 2.6.27+ (versions between 2.6.32 - 

3.X) is illustrated in the next sections. 

9.1 Hardware Interface 

 PCIe Endpoint Core 

The PCIe Endpoint core for Spartan 6 FPGAs is the Spartan 6 Integrated Block for 

PCI Express. This core is licensed by the Xilinx End User License Agreement and is 

provided with the Xilinx ISE Design suite with no additional charge. In this section, 

steps for generating the PCIe Endpoint core and then merging it with the RIFFA 2.1 

source HDL are: 

1. Using Xilinx CORE Generator to generate the PCIe Endpoint core. 

2. Combining the PCIe Endpoint core’s source HDL with the RIFFA 2.1 

HDL. 

Detailed instructions on how to do each step follow. 

1. Using Xilinx CORE Generator to generate the PCIe Endpoint core 

In this step CORE Generator is used to generate Verilog source for the Spartan 

6 Integrated Block for PCI Express ver.2.4. Unless otherwise described, the 

default values on each wizard screen should be left as they are presented. 

 Open the CORE Generator 

Start → All Programs → Xilinx ISE Design Suite 14.7 → 

ISE Design Tools → Tools → CORE Generator 

 Create a new project; select File → New Project 
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Figure 9-1: Xilinx CORE Generator. 

 

 The Project options will appear as shown in Figure 9-2,  set the project 

settings to generate Verilog code for the  XC6SLX45t-3FGG484 as 

follows: 

o Family: Spartan6 

o Device: xc6slx45t 

o Package: fgg484 

o  Speed Grade: -3 



141 

 

 

Figure 9-2: Xilinx CORE Generator Project Options. 

 

 Select Generation : Set the Design Entry to Verilog 
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Figure 9-3: Xilinx CORE Generator Design Entry. 

 

 

 

 Right click on the Spartan-6 Integrated Block for PCI Express, 

Version 2.4: Select Customize and Generate as shown in Figure 9-4. 

 

Figure 9-4: Xilinx CORE Generator generating IP CORE. 
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 As shown in Figure 9-5, there is no selection to make for lane width or 

link speed as this core only supports one lane at 2.5 GT/s. This results 

in a 32 bit interface and a 62.5 MHz interface frequency clock.  

 

Figure 9-5: Spartan-6 Integrated Block for PCI Express. 

 

 Select only Bar0 and set to a size of 1 KB. Deselect Bar2 as shown in 

Figure 9-6. 
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Figure 9-6: PCI Express CORE Base Address Registers. 

 

 As shown in Figure 9-7, ID Initial Values are: 

o Vendor ID  =  10EE 

o Device ID  =  0007 

o  Revision ID  =  00 

o Subsystem vendor ID = 10EE 

o Subsystem ID  =  0007 
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Figure 9-7: PCI Express CORE ID Initial Values. 

 

 

 Select Performance Level High. Additionally, set the Max 

Payload Size to the maximum value offered as shown in Figure 

9-8. These changes are not necessary for RIFFA 2.1 to function. 

They are required to achieve maximum performance. 
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Figure 9-8: PCI Express CORE Max Payload Size. 

 

 Select SP605 as shown in Figure 9-9. 
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Figure 9-9: PCI Express Xilinx Reference Boards. 

2. Combining the PCIe Endpoint core’s source HDL with the RIFFA 2.1 

HDL. 

CORE Generator will produce a directory structure similar to what is shown in 

Figure 9-10. Once completed, combine all the source HDL files from the 

source directory with the RIFFA 2.1 HDL files from the distribution [39] into 

a new directory of your choosing. Also, into this new directory, copy the top 

level and adapter module HDL files for this board from the RIFFA 

distribution. 

 

Figure 9-10: PCIe IP CORE Directory. 
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 Turbo Timing Constraints 

Post Placing and routing the Turbo decoder design on Spartan-6 XC6SLX45T 

FPGA, the critical path of the design is 27.045ns, Figure 9-11 shows the period of 

the critical path from the Post-PAR Static Timing Report generated by ISE Design 

suite. 

 

Figure 9-11: Turbo decoder critical path delay 

 

PERIOD Timing constraint is applied in the ucf (user constraints file) with period 

larger than the critical path delay, where PERIOD = 27.5 ns (36.36 MHz). The 

design met the constraint with Slack (setup path) = 0.172 ns as shown in Figure 9-

12. 

 

Figure 9-12: Timing Constraints met 

 

The Clock that drives the turbo design (TURBO CLOCK) = 36 MHz. The SP605 

has differential 200 MHz oscillator [40], so DCM IP Core is generated and configured 

using Xilinx Clocking Wizard to get the required clock. Figure 9-13 shows 

configuring the input clock and configuring Clocking Features: 

 Input Clock = 200 MHz 

 Input Jitter = 7.44 ps [41] 

 Minimize output jitter 



149 

 

 

 

Figure 9-13: Clocking Features for Spartan-6 FPGA 

 

Figure 9-14 shows the configuration of the output clock of the DCM Core: 

 Output Clock = 36 MHz 

 Duty Cycle = 50% 

 

Figure 9-14:  Output Clock Settings Screen 
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Figure 9-15 shows summary information about the input and output clocks. The DCM 

Core has 2 additional signals reset and locked. Reset: When asserted, asynchronously 

clears the internal state of the primitive, and causes the primitive to re-initiate the 

locking sequence when released. Locked: When asserted, indicates that the output 

clocks are stable and usable by downstream circuitry. 

 

Figure 9-15: Clock Summary Screen 
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 Design 

The Hardware design for interfacing the Turbo decoder implemented on Spartan-6 

FPGA via PCIe is illustrated in this section.  

As mentioned in chapter 7 that Spartan-6 FPGA sp605 kit supports PCIe Gen1 x1 

which results in 32-bit interface with 62.5 MHz clock frequency and from Section 

9.1.2 it is shown that Turbo decoder operates with 36 MHz clock frequency, so dual-

port memories (FIFOs) are required to store data with high frequency clock (PCIe 

Interface) and read data with low frequency clock (Turbo Clock). Interfacing unit is 

also required to read data from memory, feed the turbo with the encoded symbols and 

I/O signals (illustrated in chapter 6) and read the decoded bits from the turbo after 

finishing.  

Since RIFFA framework can support up to 12 channels per FPGA As mentioned in 

chapter 8, RIFFA HDL is configured to have 2 channels. Each channel communicates 

with PC thread. The First channel is used for receiving the Frame size, required 

iterations and Encoded symbols from the first PC thread. The second channel is used 

for sending the output of the Turbo (Decoded Bits) to the second PC thread.  

Figure 9-16 shows the hardware designed for interfacing the Turbo decoder. 

 

Figure 9-16: Turbo Interfacing design 
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The description of each component in the design follows: 

 User Core connected to channel 1 

This core reads the data received by RIFFA channel 1 through the Rx FIFO 

interface and writes the received data in the Encoded Symbols Memory with 

the same order. When a frame is written, the core notifies the interfacing unit 

to start reading the symbols and feed the turbo. 

 Encoded Symbols Memory 

This memory is dual-port Block RAM that has data width = 24-bit, and 

address width = 14-bit. This memory can store 10 frames each of 1024 bit. 

The first data of each frame contains the frame size and required iterations. 

The following data contain the encoded symbols (systematic, Encoded and 

Encoded interleaved). Each of these symbols is 8-bit width and stored in the 

memory using little Indian. 

 Interfacing Unit 

This component is responsible for interfacing with the turbo decoder directly. 

The interfacing unit reads the configuration and symbols of each frame from 

the Encoded Symbols Memory and feed the turbo with them, wait for the 

turbo to finish and finally writes the decoded bits into the Decoded Bits 

Memory and notifies the user core (connected to channel 2) after each frame 

written. 

 Decoded Bits Memory 

This memory is dual-port Block RAM that has data width = 1-bit (represents 

the decoded bit), and address width = 14-bit. This memory can store 10 frames 

each of 1024 bit. 

 User Core connected to channel 2 

This core writes the data to RIFFA channel 2 through the Tx FIFO interface. 

The core is notified by the Interfacing Unit when a frame is written in the 

Decoded Bits Memory and ready to be sent. 
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 Synthesizing the Design 

The design is synthesized using XST (Xilinx synthesis tool) provided by ISE Design 

suite. The target device is Spartan-6 XC6SLX45T. Figure 9-17 shows the resources 

used by the Turbo Decoder, Interfacing Core, RIFFA Core and PCIe Enpoint Core. 

 

Figure 9-17: FPGA Resources Summary 

 

 Configure Target Device 

The design is implemented (translation, mapping, placing and routing) using Xilinx 

ISE Design Suite. Configuration options available for Spartan-6 FPGA SP605 

Evaluation Kit are shown in Figure 9-18. Since the Kit needs to configure fast on 

start-up from non-volatile source, JTAG isn't an option. Configuration is done by SPI 

x4 Flash. [42] 

 

Figure 9-18: sp605 Configuration options 

 

For the sp605 kit to be configured from SPI x4 Flash, FPGA start-up clock (from the 

Generate Programming File process properties) must be set to CCLK as shown in 

Figure 9-19. 



154 

 

 

Figure 9-19:  FPGA Startup Options 

 

The generated configuration file (.bit) is converted to a PROM file (.MCS) using 

IMPACT to program the SPI x4 Flash with the design [42]. The sp605 kit is 

programmed with the generated (.MCS) file using IMPACT and configured to load 

the configuration file from SPI x4 Flash on start-up. [42]  

9.2 Software Interface 

 Installing the RIFFA Driver 

To install the RIFFA driver in linux, it must be built it against the installed version 

of the Linux kernel. RIFFA 2.1 comes with a makefile that will install the necessary 

linux kernel headers and the driver. This makefile will also build and install the 

C/C++ native library. To install RIFFA 2.1 in linux, follow these instructions: 

1. Open a terminal in linux and navigate to the RIFFA 2.1/source/driver/linux 

directory. 

2. Ensure you have the kernel headers installed, run: 

$ sudo make setup 

This will attempt to install the kernel headers using your system’s package 

manager. You can skip this step if you’ve already installed the kernel headers. 
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3. Compile the driver and C/C++ library: 

$ make  

or 

$ make debug 

Using make debug will compile in code to output debug messages to the 

system log at runtime. These messages are useful when developing your 

design. However they pollute your system log and incur some overhead. So 

you may want to install the non-debug version after you’ve completed 

development. 

4. Install the driver and library: 

$ sudo make install  

The system will be configured to load the driver at boot time. The C/C++ 

library will be installed in the default library path. The header files will be 

placed in the default include path. You will need to reboot after you’ve 

installed for the driver to be (re)loaded. 

5. If the driver is installed and there is a RIFFA 2.1 configured FPGA when the 

computer boots, the driver will detect it. Output in the system log will provide 

additional information. 

6. The C/C++ code must include the riffa.h header. 

7. When compiling (using GCC/G++, etc.) you must link with the RIFFA 

libraries using the -lriffa flag 

$ gcc -g -c  -o test.o test.c        // Compiling with gcc to produce the object file 

$ gcc -g -lriffa  -o test test.o  // Linking  with riffa library 

 User Space Application 

The user space application uses the functions in the RIFFA C Library illustrated in 

Chapter 6 for testing the driver with the hardware. Since the application cannot send 

to RIFFA channel and receive from it simultaneously, the application had to use 
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POSIX thread libraries (standards based thread API for C/C++) to make use of the 

full duplex communication feature of PCI Express. The application creates 2 threads 

that run simultaneously. The first thread sends the data to RIFFA channel 1 on the 

FPGA to be decoded by the Turbo Decoder. The second thread receives the decoded 

bits from channel 2 in the FPGA. Both threads timeout is set to 0, so they wait for the 

FPGA to respond. 

After installing the RIFFA driver and library as shown in Section 9.2.1, the developed 

C code is compiled using GCC and linked using both the RIFFA library and POSIX 

threads library as follows: 

1. Compiling with GCC to produce the object file 

$ gcc -g -c  -o   TurboDecoder.o TurboDecoder.c 

2. Linking with RIFFA library and pthread library 

$ gcc -g   -o   TurboDecoder  TurboDecoder.o   -lriffa   -pthread 

The input arguments to the user application are: 

 < Number of Frames > Number of Frames to be sent to the Turbo Decoder 

 < Symbols File > Text file contains each frame size, required iterations and 

encoded symbols 

 < Original File > Text file contains the original bits to calculate the BER 

 < Output File >  Text file to write the Turbo output 

The following example shows how to use the application 

$  ./TurboDecoder   < Number of Frames >   < Symbols File >    < Original 

File >   < Output File > 
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Figure 9-20 shows the BER of 10 Frames each of size 1024 sent to the Turbo 

Decoder implemented on SP605 Evaluation Kit plugged into PCI Express slot on 

PC. The BER is shown for different iterations. 

 

 

Figure 9-20:  Turbo Performance on Hardware 
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 Conclusion 

 

C-RAN is a promising solution to the challenges mentioned above. By using 

new technologies, we can change the network construction and deployment ways, 

fundamentally change the cost structure of mobile operators, and provide more 

flexible and efficient services to end users. With the distributed RRH and centralized 

BBU architecture, a very computationally heavy block of this technology is turbo 

coding, an error correction code for reaching near Shannon limit (optimum) coding 

performance. Due to the computational complexity of this block, it is suggested to 

offload this block especially when trying to realize multiple cells processing or what 

so called “C-RAN”. So building a pluggable FPGA-based LTE coprocessor that could 

be connected to many-cores GPP platform using PCI interface was our solution. 

Turbo codes are a class of convolution code which exhibit the properties of large 

block codes through the use of recursive coders. Coder performance is heavily 

dependent on the design of the interleaver, which must ensure adequate weight for at 

least one of the codes. Soft decoders are used with turbo codes to allow the a 

posteriori probability to be passed between decoder iterations, Sliding window 

implementations of 3G turbo decoder were presented, the BER performance results 

demonstrate that while both decoders can achieve small BERs at low signal to noise 

ratios, sliding window SOVA based decoder has better performance and can achieve 

faster decoding speeds than Max-Log-MAP. 

RIFFA proved to be one of the best implementations of PCIe endpoints, that is 

opensource and free to use, and in comparison with intellectual property 

implementations is more advanced and uses state of the art techniques in its code. The 

bandwidth measured is pretty close to the peak limit of the PCIe link, especially for 

big transfers. The software interface supports most of the popular programming 

languages and was easy to use. 

The process of implementing the Turbo decoder HDL on Spartan-6 FPGA SP605 

Evaluation Kit and interfacing it through PCIe link with workstation that has Linux 

kernels 2.6.27+ was completed and proved to possess a great potential for C-RAN 

hardware acceleration.  
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Appendix A: Interleaver Table 

 

I K f1 f 2 i K f1 f 2 i K f1 f 2 i K f1 f 2 

1 40 3 10 48 416 25 52 95 1120 67 140 142 3200 111 240 

2 48 7 12 49 424 51 106 96 1152 35 72 143 3264 443 204 

3 56 19 42 50 432 47 72 97 1184 19 74 144 3328 51 104 

4 64 7 16 51 440 91 110 98 1216 39 76 145 3392 51 212 

5 72 7 18 52 448 29 168 99 1248 19 78 146 3456 451 192 

6 80 11 20 53 456 29 114 100 1280 199 240 147 3520 257 220 

7 88 5 22 54 464 247 58 101 1312 21 82 148 3584 57 336 

8 96 11 24 55 472 29 118 102 1344 211 252 149 3648 313 228 

9 104 7 26 56 480 89 180 103 1376 21 86 150 3712 271 232 

10 112 41 84 57 488 91 122 104 1408 43 88 151 3776 179 236 

11 120 103 90 58 496 157 62 105 1440 149 60 152 3840 331 120 

12 128 15 32 59 504 55 84 106 1472 45 92 153 3904 363 244 

13 136 9 34 60 512 31 64 107 1504 49 846 154 3968 375 248 

14 144 17 108 61 528 17 66 108 1536 71 48 155 4032 127 168 

15 152 9 38 62 544 35 68 109 1568 13 28 156 4096 31 64 

16 160 21 120 63 560 227 420 110 1600 17 80 157 4160 33 130 

17 168 101 84 64 576 65 96 111 1632 25 102 158 4224 43 264 

18 176 21 44 65 592 19 74 112 1664 183 104 159 4288 33 134 

19 184 57 46 66 608 37 76 113 1696 55 954 160 4352 477 408 

20 192 23 48 67 624 41 234 114 1728 127 96 161 4416 35 138 

21 200 13 50 68 640 39 80 115 1760 27 110 162 4480 233 280 

22 208 27 52 69 656 185 82 116 1792 29 112 163 4544 357 142 

23 216 11 36 70 672 43 252 117 1824 29 114 164 4608 337 480 

24 224 27 56 71 688 21 86 118 1856 57 116 165 4672 37 146 

25 232 85 58 72 704 155 44 119 1888 45 354 166 4736 71 444 

26 240 29 60 73 720 79 120 120 1920 31 120 167 4800 71 120 

27 248 33 62 74 736 139 92 121 1952 59 610 168 4864 37 152 

28 256 15 32 75 752 23 94 122 1984 185 124 169 4928 39 462 

29 264 17 198 76 768 217 48 123 2016 113 420 170 4992 127 234 

30 272 33 68 77 784 25 98 124 2048 31 64 171 5056 39 158 

31 280 103 210 78 800 17 80 125 2112 17 66 172 5120 39 80 

32 288 19 36 79 816 127 102 126 2176 171 136 173 5184 31 96 

33 296 19 74 80 832 25 52 127 2240 209 420 174 5248 113 902 

34 304 37 76 81 848 239 106 128 2304 253 216 175 5312 41 166 

35 312 19 78 82 864 17 48 129 2368 367 444 176 5376 251 336 

36 320 21 120 83 880 137 110 130 2432 265 456 177 5440 43 170 

37 328 21 82 84 896 215 112 131 2496 181 468 178 5504 21 86 

38 336 115 84 85 912 29 114 132 2560 39 80 179 5568 43 174 

39 344 193 86 86 928 15 58 133 2624 27 164 180 5632 45 176 

40 352 21 44 87 944 147 118 134 2688 127 504 181 5696 45 178 

41 360 133 90 88 960 29 60 135 2752 143 172 182 5760 161 120 

42 368 81 46 89 976 59 122 136 2816 43 88 183 5824 89 182 

43 376 45 94 90 992 65 124 137 2880 29 300 184 5888 323 184 

44 384 23 48 91 1008 55 84 138 2944 45 92 185 5952 47 186 

45 392 243 98 92 1024 31 64 139 3008 157 188 186 6016 23 94 

46 400 151 40 93 1056 17 66 140 3072 47 96 187 6080 47 190 

47 408 155 102 94 1088 171 204 141 3136 13 28 188 6144 263 480 
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Appendix B: Path metric derivation  

 

The fundamental Viterbi algorithm searches for the state sequence S(m) or the 

information sequence u(m) that maximizes the a-posteriori probability P(S(m)|y). For 

binary (k=1) trellises, m can be either 1 or 2 to denote the survivor and the competing 

paths respectively. By using Bayes’ Theorem, the a-posteriori probability can be 

expressed as 

Since the received sequence y is fixed for metric computation and does not depend on 

m, it can be discarded. Thus, the maximization results to 

)()|( )()( mm

m SPSypmax  

The probability of a state sequence terminating at time t is P(St). This probability can 

be calculated as 

)()(=)( 1 ttt SPSPSP  )()(= 1 tt uPSP   

Where P(St) and P(ut) denote the probability of the state and the bit at time t 

respectively. The maximization can then be expanded to 
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Thus, the maximization becomes 
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This maximization is not changed if logarithm is applied to the whole expression, 

multiplied by 2, and added two constants that are independent of m. This leads to 
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And for convenience, the two constants are 
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After substitution of these two constants, the SOVA metric is obtained as 
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For systematic codes, this can be modified to become 
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As seen from the two previous equations, the SOVA metric incorporates values from 

the past metric, the channel reliability, and the source reliability (a-priori value). 
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Appendix C: MATLAB Code 

 

Main Function for test 

 
clc; 

clear all; 

  

% Configurations 

L_total = 1024;             % Frame Length 

rate = 1/3;                 % Code rate    

a = 1;                      % Fading amplitude; a=1 in AWGN channel 

SNRdB = 0:0.5:4;            % SNRdB Values  

iterations = 10;            % Number of Tubro iterations 

frames = 100000;            % Number of frames 

  

% Init 

errs = zeros(1,length(SNRdB)); 

ber = zeros(1,length(SNRdB)); 

  

for k = 1:length(SNRdB) 

  

    SNR = 10^(SNRdB(k)/10);         % convert SNRdB from unit db to Watts 

    L_c = 4*a*SNR*rate;             % reliability value  channel 

    sigma = 1/sqrt(2*rate*SNR);     % standard deviation of AWGN noise 

     

    for frame = 1:frames 

             

        data = round(rand(1, L_total));                     % generate info bits          

        encoded = LTE_Turbo_Encoder(data);                  % channel encoding       

        modulated = 2 * encoded - ones(size(encoded)) ;     % BPSK Modulation 

        r = modulated +sigma*randn(1,L_total*3+12);         % adding noise 

        rec_s = L_c*r;                                      % reliability scaling 

         

        % Decoding using Turbo Decoder 

        decoded_bits = LTE_Turbo_Decoder( rec_s,iterations); 

  

        % Number of bit errors in current iteration 

        err = sum(xor(decoded_bits(1:L_total),data(1:L_total))); 

     

        % Total number of bit errors for all iterations 

        errs(k) = errs(k) + err; 

         

        % Monitoring simulation 

        progress = 100*(frame/frames); 

        if mod(progress,10) == 0 

            fprintf('%d %% \n',progress); 

        end 

  

    end    

    fprintf('SNR: %d is done \n',SNRdB(k)); 

    ber(k) = errs(k)/(frames*L_total);          % ber = total errors/total bits 

    

end      

  

% Plot BER graph 

figure 

semilogy(SNRdB,ber); 

hold on; 

title('Turbo Decoder'); 

xlabel('SNRdB in db'); 

ylabel('BER'); 

grid on 
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Turbo Encoder Function 

function [out] = LTE_Turbo_Encoder(input) 

  

len = length(input); 

out = zeros(1,3*len+12); 

  

enc1 = RSC_Encoder(input);                  % Parity 1 

int  = internal_interleaver(input,len);     % Interleaving data 

enc2 = RSC_Encoder(int);                    % Parity 2 

  

% Multeplixing the encoded stream including tail bits 

 for k=1:len+3 

     out(3*k-2)=enc1(2*k-1); 

     out(3*k-1)=enc1(2*k); 

     out(3*k)=enc2(2*k); 

 end 

  

 % special hanlding for interleaved systematic data 

 out(3*len+10) = enc2(2*len+1); 

 out(3*len+11) = enc2(2*len+3); 

 out(3*len+12) = enc2(2*len+5); 

end 
 

Recursive Systematic Encoder Function 

function [output] = RSC_Encoder(input) 

  

% Reset Shift Registers 

D1 = 0; 

D2 = 0; 

D3 = 0; 

output = zeros(1,2*length(input)); 

  

for k=1:length(input) 

  

    % Evaluate XOR Operations 

    fb0 = xor(D2,D3); 

    fb1 = xor(fb0,input(k)); 

  

    out0 = input(k); 

    out1 = xor(fb1,xor(D1,D3)); 

  

    output(2*k-1:2*k) = [out0 out1]; 

  

    % Shift Left 

    D3 = D2; 

    D2 = D1; 

    D1 = fb1;  

end 

  

% tail termination 

for k=length(input)+1:length(input)+3 

  

    fb0 = xor(D2,D3); 

    fb1 = xor(fb0,fb0); 

  

    out0 = fb0; 

    out1 = xor(fb1,xor(D1,D3)); 

  

    output(2*k-1:2*k) = [out0 out1]; 

  

    D3 = D2; 

    D2 = D1; 

    D1 = fb1;   

end 

end 
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Turbo Interleaver Function 

function [out] = internal_interleaver(in, K) 

     

% Supported sizes by LTE and correponding interleaving parameters 

K_table = 

[40,48,56,64,72,80,88,96,104,112,120,128,136,144,152,160,168,176,184,192,200,208,216,2

24,232,240,248,256,264,272,280,288,296,304,312,320,328,336,344,352,360,368,376,384,392

,400,408,416,424,432,440,448,456,464,472,480,488,496,504,512,528,544,560,576,592,608,6

24,640,656,672,688,704,720,736,752,768,784,800,816,832,848,864,880,896,912,928,944,960

,976,992,1008,1024,1056,1088,1120,1152,1184,1216,1248,1280,1312,1344,1376,1408,1440,14

72,1504,1536,1568,1600,1632,1664,1696,1728,1760,1792,1824,1856,1888,1920,1952,1984,201

6,2048,2112,2176,2240,2304,2368,2432,2496,2560,2624,2688,2752,2816,2880,2944,3008,3072

,3136,3200,3264,3328,3392,3456,3520,3584,3648,3712,3776,3840,3904,3968,4032,4096,4160,

4224,4288,4352,4416,4480,4544,4608,4672,4736,4800,4864,4928,4992,5056,5120,5184,5248,5

312,5376,5440,5504,5568,5632,5696,5760,5824,5888,5952,6016,6080,6144]; 

     

f1_table = 

[3,7,19,7,7,11,5,11,7,41,103,15,9,17,9,21,101,21,57,23,13,27,11,27,85,29,33,15,17,33,1

03,19,19,37,19,21,21,115,193,21,133,81,45,23,243,151,155,25,51,47,91,29,29,247,29,89,9

1,157,55,31,17,35,227,65,19,37,41,39,185,43,21,155,79,139,23,217,25,17,127,25,239,17,1

37,215,29,15,147,29,59,65,55,31,17,171,67,35,19,39,19,199,21,211,21,43,149,45,49,71,13

,17,25,183,55,127,27,29,29,57,45,31,59,185,113,31,17,171,209,253,367,265,181,39,27,127

,143,43,29,45,157,47,13,111,443,51,51,451,257,57,313,271,179,331,363,375,127,31,33,43,

33,477,35,233,357,337,37,71,71,37,39,127,39,39,31,113,41,251,43,21,43,45,45,161,89,323

,47,23,47,263]; 

     

f2_table = 

[10,12,42,16,18,20,22,24,26,84,90,32,34,108,38,120,84,44,46,48,50,52,36,56,58,60,62,32

,198,68,210,36,74,76,78,120,82,84,86,44,90,46,94,48,98,40,102,52,106,72,110,168,114,58

,118,180,122,62,84,64,66,68,420,96,74,76,234,80,82,252,86,44,120,92,94,48,98,80,102,52

,106,48,110,112,114,58,118,60,122,124,84,64,66,204,140,72,74,76,78,240,82,252,86,88,60

,92,846,48,28,80,102,104,954,96,110,112,114,116,354,120,610,124,420,64,66,136,420,216,

444,456,468,80,164,504,172,88,300,92,188,96,28,240,204,104,212,192,220,336,228,232,236

,120,244,248,168,64,130,264,134,408,138,280,142,480,146,444,120,152,462,234,158,80,96,

902,166,336,170,86,174,176,178,120,182,184,186,94,190,480]; 

    out = zeros(1,K); 

     

% Determine f1 and f2 

    for n=0:length(K_table)-1  

        if(K == K_table(n+1)) 

            f1 = f1_table(n+1); 

            f2 = f2_table(n+1); 

            break;     

        end 

    end 

     

    % output the interleaved data 

    for n=0:length(in)-1 

        out(n+1) = in(mod(f1*n + f2*(n^2), K)+1); 

    end 

end  
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Turbo Decoder Function 

function [decoded_bits] = LTE_Turbo_Decoder(input,iterations) 

  

len = (length(input)-12)/3; 

r0 = zeros(1,len+3);              % Systematic 

r0_bar = zeros(1,len+3);          % Interleaved Systematic 

r1 = zeros(1,len+3);              % first encoder 

r2 = zeros(1,len+3);              % second encoder (interleaved) 

  

% tail bits 

for k=1:len+3 

    r0(k) = input(3*k-2);  

    r1(k) = input(3*k-1); 

    r2(k) = input(3*k); 

end 

  

r0_bar(1:len) = internal_interleaver(r0(1:len), len);     % intertleaving stystematic  

r0_bar(len+1:len+3) = input(3*len+10:3*len+12);           % interleaved tail bits 

  

%Initialize extrinsic information       

L_e1 = zeros(1,len+3); 

L_e2 = zeros(1,len+3); 

  

for iter = 1:iterations 

     

    % Decoder one 

    L_e2_Int = [internal_deinterleaver(L_e2(1:len), len) zeros(1,3)];       % a priori 

info.  

    tmp_in1 = reshape([r0;r1], 1, []); 

    L1 = SOVA(tmp_in1, L_e2_Int);                       % First Decoder   

    L_e1 = L1 - r0 - L_e2_Int;                          % extrinsic info. 

    scale = 0.5; 

    L_e1 = L_e1*scale;                                  % scaling soft output 

     

    % Decoder two          

    L_e1_Int = [internal_interleaver(L_e1(1:len), len) zeros(1,3)];   % a priori info. 

    tmp_in2   = reshape([r0_bar;r2], 1, []); 

    L2 = SOVA(tmp_in2 , L_e1_Int);                      % Second Decoder 

    L_e2 = L2 - r0_bar - L_e1_Int;                      % extrinsic info. 

    L_e2 = L_e2*scale;                                  % scaling soft output     

end  

  

% Estimate the info. bits.  

LLR_est = internal_deinterleaver(L2(1:len), len); 

  

% Hard decision output 

decoded_bits = (sign(LLR_est)+1)/2; 

  

end 
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SOVA Decoder Function 

function softOutput = SOVA(input,LLR) 

  

% length of input 

N_bits = length(input);          

infoLen = N_bits/2; 

  

% states = [1 2 3 4 5 6 7 8]; %states(decimal) [000 -> 1  111 -> 8]  

prv_0 =  [1 4 5 8 2 3 6 7];  

prv_1 =  [2 3 6 7 1 4 5 8]; 

out_0 =  [-1 -1 ; -1 -1 ; -1 1 ; -1 1 ; -1 1 ; -1 1 ; -1 -1 ; -1 -1];    

%output when input = 0 

out_1 =  [1 1 ; 1 1 ; 1 -1 ; 1 -1 ; 1 -1 ; 1 -1 ; 1 1 ; 1 1];            

%output when input = 1 

  

% Init vectors 

pathMetricOld = zeros(1,8); 

pathMetricNew = zeros(1,8); 

branchMetric0 = zeros(1,8); 

branchMetric1 = zeros(1,8); 

  

pathMetric0 = zeros(8, infoLen); 

pathMetric1 = zeros(8, infoLen); 

  

delta = zeros(8, infoLen); 

ML = zeros(1,infoLen+1); 

competingPath = zeros(1,infoLen+1); 

output = zeros(1,infoLen); 

output_c = zeros(1,infoLen); 

softOutput = zeros(1,infoLen-3); 

  

Inf = 1E5; 

pathMetricOld = -Inf*ones(1,8); 

pathMetricOld(1) = 0; 

  

% Trellis Diagram 

for i=1:infoLen 

     

    symbol = input(2*i-1:2*i); 

    % Evaluating the branch metrics 

    for cur_state = 1:8      

        branchMetric0(cur_state)= (symbol*transpose(out_0(cur_state, :))) - LLR(i); 

        branchMetric1(cur_state)= (symbol*transpose(out_1(cur_state, :))) + LLR(i);       

    end 

     

    % Evaluating the path metrics 

    for cur_state = 1:8 

        PM0 = pathMetricOld(prv_0(cur_state)) + 0.5*branchMetric0(prv_0(cur_state)); 

        PM1 = pathMetricOld(prv_1(cur_state)) + 0.5*branchMetric1(prv_1(cur_state)); 

        delta(cur_state,i) = abs(PM1 - PM0); 

        

        pathMetric0(cur_state,i+1) = PM0; 

        pathMetric1(cur_state,i+1) = PM1; 

        pathMetricNew(cur_state) = max(PM0,PM1);        

    end 

     

    pathMetricOld = pathMetricNew; 

     

end 

  

  

 

 

 

 

 

 

 

 

 

 

 

 

    



170 

 

% Finding state of max. path metric 

[~,ML(infoLen+1)] = max(pathMetricOld); 

  

% Trace back to find the Most-likely path (ML) 

state = ML(infoLen+1); 

for i=infoLen:-1:1 

     

    if pathMetric0(state,i+1) > pathMetric1(state,i+1) 

        output(i) = 0; 

        softOutput(i) = -1*delta(state,i); 

        state = prv_0(state); 

        ML(i) = state; 

    else 

        output(i) = 1; 

        softOutput(i) = +1*delta(state,i); 

        state = prv_1(state); 

        ML(i) = state; 

    end 

end 

  

% Updating the soft Output 

delta_vector = abs(softOutput); 

  

% Find the last state in competing path squence 

for m = 1:infoLen 

  

    if prv_0(ML(m+1)) == ML(m) 

        competingPath(m) = prv_1(ML(m+1)); 

    else 

        competingPath(m) = prv_0(ML(m+1)); 

    end 

     

    updateDelta = delta_vector(m); 

    state = competingPath(m); 

  

    % Trace back to find the competing path 

    for i=m-1:-1:1 

        if pathMetric0(state,i+1) > pathMetric1(state,i+1) 

            state = prv_0(state); 

            output_c(i) = 0; 

        else 

            state = prv_1(state); 

            output_c(i) = 1; 

        end 

         

        if output_c(i) ~= output(i) && updateDelta < delta_vector(i) 

            delta_vector(i) = updateDelta; 

        end 

         

    end 

     

end 

  

% Output the soft data multiplied by the corresponding sign 

for i=1:infoLen                      

    if(output(i) == 0)  

        softOutput(i) = -1*delta_vector(i); 

    else 

        softOutput(i) = +1*delta_vector(i); 

    end 

end 

  

softOutput = softOutput(1:infoLen); 

 

end 

 
 

 


